Science.gov

Sample records for burst accretion disks

  1. Accretion Disk Signatures in Type I X-Ray Bursts: Prospects for Future Missions

    NASA Astrophysics Data System (ADS)

    Keek, L.; Wolf, Z.; Ballantyne, D. R.

    2016-07-01

    Type I X-ray bursts and superbursts from accreting neutron stars illuminate the accretion disk and produce a reflection signal that evolves as the burst fades. Examining the evolution of reflection features in the spectra will provide insight into the burst–disk interaction, a potentially powerful probe of accretion disk physics. At present, reflection has been observed during only two bursts of exceptional duration. We investigate the detectability of reflection signatures with four of the latest well-studied X-ray observatory concepts: Hitomi, Neutron Star Interior Composition Explorer (NICER), Athena, and Large Observatory For X-ray Timing (LOFT). Burst spectra are modeled for different values for the flux, temperature, and the disk ionization parameter, which are representative for most known bursts and sources. The effective area and throughput of a Hitomi-like telescope are insufficient for characterizing burst reflection features. NICER and Athena will detect reflection signatures in Type I bursts with peak fluxes ≳10‑7.5 erg cm‑2 s‑1 and also effectively constrain the reflection parameters for bright bursts with fluxes of ∼10‑7 erg cm‑2 s‑1 in exposures of several seconds. Thus, these observatories will provide crucial new insight into the interaction of accretion flows and X-ray bursts. For sources with low line-of-sight absorption, the wide bandpass of these instruments allows for the detection of soft X-ray reflection features, which are sensitive to the disk metallicity and density. The large collecting area that is part of the LOFT design would revolutionize the field by tracing the evolution of the accretion geometry in detail throughout short bursts.

  2. Anisotropy of X-Ray Bursts from Neutron Stars with Concave Accretion Disks

    NASA Astrophysics Data System (ADS)

    He, C.-C.; Keek, L.

    2016-03-01

    Emission from neutron stars and accretion disks in low-mass X-ray binaries is anisotropic. The non-spherical shape of the disk as well as blocking of the neutron star by the disk make the observed flux dependent on the inclination angle of the disk with respect to the line of sight. This is of importance for the interpretation of thermonuclear X-ray bursts from neutron stars. Because part of the X-ray burst is reflected off the disk, the observed burst flux depends on the anisotropies for both direct emission from the neutron star and reflection off the disk. This influences measurements of source distance, mass accretion rate, and constraints on the neutron star’s equation of state. Previous predictions of the anisotropy factors assumed a geometrically flat disk. Detailed observations of two so-called superbursts allowed for the direct and the reflected burst fluxes to each be measured separately. The reflection fraction was much higher than what the anisotropies of a flat disk can account for. We create numerical models to calculate the anisotropy factors for different disk shapes, including concave disks. We present the anisotropy factors of the direct and reflected burst fluxes separately, as well as the anisotropy of the persistent flux. Reflection fractions substantially larger than unity are produced in the case where the inner accretion disk increases steeply in height, such that part of the star is blocked from view. Such a geometry could possibly be induced by the X-ray burst if X-ray heating causes the inner disk to puff up.

  3. A NEW PARADIGM FOR GAMMA-RAY BURSTS: LONG-TERM ACCRETION RATE MODULATION BY AN EXTERNAL ACCRETION DISK

    SciTech Connect

    Cannizzo, J. K. E-mail: gehrels@milkyway.gsfc.nasa.gov

    2009-08-01

    We present a new way of looking at the very long-term evolution of gamma-ray bursts (GRBs) in which the disk of material surrounding the putative black hole powering the GRB jet modulates the mass flow, and hence the efficacy of the process that extracts rotational energy from the black hole and inner accretion disk. The pre-Swift paradigm of achromatic, shallow-to-steep 'breaks' in the long-term GRB light curves has not been borne out by detailed Swift data amassed in the past several years. We argue that, given the initial existence of a fall-back disk near the progenitor, an unavoidable consequence will be the formation of an 'external disk' whose outer edge continually moves to larger radii due to angular momentum transport and lack of a confining torque. The mass reservoir at large radii moves outward with time and gives a natural power-law decay to the GRB light curves. In this model, the different canonical power-law decay segments in the GRB identified by Zhang et al. and Nousek et al. represent different physical states of the accretion disk. We identify a physical disk state with each power-law segment.

  4. Variabilities of Gamma-ray Bursts from Black Hole Hyper-accretion Disks

    NASA Astrophysics Data System (ADS)

    Lin, Da-Bin; Lu, Zu-Jia; Mu, Hui-Jun; Liu, Tong; Hou, Shu-Jin; Lü, Jing; Gu, Wei-Min; Liang, En-Wei

    2016-08-01

    The emission from black hole binaries (BHBs) and active galactic nuclei (AGNs) displays significant aperiodic variabilities. The most promising explanation for these variabilities is the propagating fluctuations in the accretion flow. It is natural to expect that the mechanism driving variabilities in BHBs and AGNs may operate in a black hole hyper-accretion disk, which is believed to power gamma-ray bursts (GRBs). We study the variabilities of jet power in GRBs based on the model of propagating fluctuations. It is found that the variabilities of jet power and the temporal profile of erratic spikes in this scenario are similar to those in observed light curves of prompt gamma-ray emission of GRBs. Our results show that the mechanism driving X-ray variabilities in BHBs and AGNs may operate in the central engine to drive the variabilities of GRBs.

  5. Probing X-ray burst - accretion disk interaction in low mass X-ray binaries through kilohertz quasiperiodic oscillations

    NASA Astrophysics Data System (ADS)

    Peille, P.; Olive, J.-F.; Barret, D.

    2014-07-01

    The intense radiation flux of Type I X-ray bursts is expected to interact with the accretion flow around neutron stars. High frequency quasiperiodic oscillations (kHz QPOs), observed at frequencies matching orbital frequencies at tens of gravitational radii, offer a unique probe of the innermost disk regions. In this paper, we follow the lower kHz QPOs, in response to Type I X-ray bursts, in two prototypical QPO sources, namely 4U 1636-536 and 4U 1608-522, as observed by the Proportional Counter Array of the Rossi X-ray Timing Explorer. We have selected a sample of 15 bursts for which the kHz QPO frequency can be tracked on timescales commensurable with the burst durations (tens of seconds). We find evidence that the QPOs are affected for over ~200 s during one exceptionally long burst and ~100 s during two others (although at a less significant level), while the burst emission has already decayed to a level that would enable the pre-burst QPO to be detected. On the other hand, for most of our burst-kHz QPO sample, we show that the QPO is detected as soon as the statistics allow and in the best cases, we are able to set an upper limit of ~20 s on the recovery time of the QPO. This diversity of behavior cannot be related to differences in burst peak luminosity. We discuss these results in the framework of recent findings that accretion onto the neutron star may be enhanced during Type I X-ray bursts. The subsequent disk depletion could explain the disappearance of the QPO for ~100 s, as possibly observed in two events. However, alternative scenarios would have to be invoked for explaining the short recovery timescales inferred from most bursts. Heating of the innermost disk regions would be a possibility, although we cannot exclude that the burst does not affect the QPO emission at all. Clearly the combination of fast timing and spectral information of Type I X-ray bursts holds great potential in the study of the dynamics of the inner accretion flow around neutron

  6. A New Paradigm for Gamma Ray Bursts: Long Term Accretion Rate Modulation by an External Accretion Disk

    NASA Technical Reports Server (NTRS)

    Cannizzo, John; Gehrels, Neil

    2009-01-01

    We present a new way of looking at the very long term evolution of GRBs in which the disk of material surrounding the putative black hole powering the GRB jet modulates the mass flow, and hence the efficacy of the process that extracts rotational energy from the black hole and inner accretion disk. The pre-Swift paradigm of achromatic, shallow-to-steep "breaks" in the long term GRB light curves has not been borne out by detailed Swift data amassed in the past several years. We argue that, given the initial existence of a fall-back disk near the progenitor, an unavoidable consequence will be the formation of an "external disk" whose outer edge continually moves to larger radii due to angular momentum transport and lack of a confining torque. The mass reservoir at large radii moves outward with time and gives a natural power law decay to the GRB light curves. In this model, the different canonical power law decay segments in the GRB identified by Zhang et al. and Nousek et al. represent different physical states of the accretion disk. We identify a physical disk state with each power law segment.

  7. THE VERTICAL COMPOSITION OF NEUTRINO-DOMINATED ACCRETION DISKS IN GAMMA-RAY BURSTS

    SciTech Connect

    Liu, Tong; Xue, Li; Gu, Wei-Min; Lu, Ju-Fu

    2013-01-10

    We investigate the vertical structure and element distribution of neutrino-dominated accretion flows around black holes in spherical coordinates using the reasonable nuclear statistical equilibrium. According to our calculations, heavy nuclei tend to be produced in a thin region near the disk surface, whose mass fractions are primarily determined by the accretion rate and vertical distribution of temperature and density. In this thin region, we find that {sup 56}Ni is dominant for the flow with a low accretion rate (e.g., 0.05 M {sub Sun} s{sup -1}), but {sup 56}Fe is dominant for the flow with a high accretion rate (e.g., 1 M {sub Sun} s{sup -1}). The dominant {sup 56}Ni in the aforementioned region may provide a clue to understanding the bumps in the optical light curve of core-collapse supernovae.

  8. Formation Rates of Black Hole Accretion Disk Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Fryer, Chris L.; Woosley, S. E.; Hartmann, Dieter H.

    1999-11-01

    The cosmological origin of at least an appreciable fraction of classical gamma-ray bursts (GRBs) is now supported by redshift measurements for a half-dozen faint host galaxies. Still, the nature of the central engine (or engines) that provide the burst energy remains unclear. While many models have been proposed, those currently favored are all based upon the formation of and/or rapid accretion into stellar-mass black holes. Here we discuss a variety of such scenarios and estimate the probability of each. Population synthesis calculations are carried out using a Monte Carlo approach in which the many uncertain parameters intrinsic to such calculations are varied. We estimate the event rate for each class of model as well as the propagation distances for those having significant delay between formation and burst production, i.e., double neutron star (DNS) mergers and black hole-neutron star (BH/NS) mergers. One conclusion is a 1-2 order of magnitude decrease in the rate of DNS and BH/NS mergers compared to that previously calculated using invalid assumptions about common envelope evolution. Other major uncertainties in the event rates and propagation distances include the history of star formation in the universe, the masses of the galaxies in which merging compact objects are born, and the radii of the hydrogen-stripped cores of massive stars. For reasonable assumptions regarding each, we calculate a daily event rate in the universe for (1) merging neutron stars: ~100 day-1 (2) neutron star-black hole mergers: ~450 day-1 (3) collapsars: ~104 day-1 (4) helium star black hole mergers: ~1000 day-1 and (5) white dwarf-black hole mergers: ~20 day-1. The range of uncertainty in these numbers, however, is very large, typically 2-3 orders of magnitude. These rates must additionally be multiplied by any relevant beaming factor (fΩ<1) and sampling fraction (if the entire universal set of models is not being observed). Depending upon the mass of the host galaxy, one-half of

  9. Accretion disk electrodynamics

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.

    1985-01-01

    Accretion disk electrodynamic phenomena are separable into two classes: (1) disks and coronas with turbulent magnetic fields; (2) disks and black holes which are connected to a large-scale external magnetic field. Turbulent fields may originate in an alpha-omega dynamo, provide anomalous viscous transport, and sustain an active corona by magnetic buoyancy. The large-scale field can extract energy and angular momentum from the disk and black hole, and be dynamically configured into a collimated relativistic jet.

  10. Accretion disk coronae

    NASA Technical Reports Server (NTRS)

    White, N. E.; Holt, S. S.

    1981-01-01

    Recent observations of partial X-ray eclipses from 4U1822-37 have shown that the central X-ray source in this system is diffused by a large Compton-thick accretion disk corona (ADC). Another binary, 4U2129-47, also displays a partial eclipse and contains an ADC. The possible origin of an ADC is discussed and a simple hydrostatic evaporated ADC model is developed which, when applied to 4U1822-37, 4U2129+47 and Cyg X-3, can explain their temporal and spectral properties. The quasi-sinusoidal modulation of all three sources can be reconciled with the partial occultation of the ADC by a bulge at the edge of the accretion disk which is caused by the inflowing material. The height of this bulge is an order of magnitude larger than the hydrostatic disk height and is the result of turbulence in the outer region of the disk. The spectral properties of all three sources can be understood in terms of Compton scattering of the original source spectrum by the ADC. Spectral variations with epoch in Cyg X-3 are probably caused by changes in the optical depth of the corona. A consequence of our model is that any accreting neutron star X-ray source in a semi-detached binary system which is close to its Eddington limit most likely contains an optically thick ADC.

  11. Ringed Accretion Disks: Instabilities

    NASA Astrophysics Data System (ADS)

    Pugliese, D.; Stuchlík, Z.

    2016-04-01

    We analyze the possibility that several instability points may be formed, due to the Paczyński mechanism of violation of mechanical equilibrium, in the orbiting matter around a supermassive Kerr black hole. We consider a recently proposed model of a ringed accretion disk, made up by several tori (rings) that can be corotating or counter-rotating relative to the Kerr attractor due to the history of the accretion process. Each torus is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. We prove that the number of the instability points is generally limited and depends on the dimensionless spin of the rotating attractor.

  12. ACCRETION OUTBURSTS IN CIRCUMPLANETARY DISKS

    SciTech Connect

    Lubow, S. H.; Martin, R. G.

    2012-04-20

    We describe a model for the long-term evolution of a circumplanetary disk that is fed mass from a circumstellar disk and contains regions of low turbulence (dead zones). We show that such disks can be subject to accretion-driven outbursts, analogous to outbursts previously modeled in the context of circumstellar disks to explain FU Ori phenomena. Circumplanetary disks around a proto-Jupiter can undergo outbursts for infall accretion rates onto the disks in the range M-dot{sub infall} approx. 10{sup -9} to 10{sup -7} M{sub Sun} yr{sup -1}, typical of accretion rates in the T Tauri phase. During outbursts, the accretion rate and disk luminosity increases by several orders of magnitude. Most of the planet mass growth during planetary gas accretion may occur via disk outbursts involving gas that is considerably hotter than predicted by steady state models. For low infall accretion rates M-dot{sub infall} {approx}< 10{sup -10} M{sub sun} yr{sup -1} that occur in late stages of disk accretion, disk outbursts are unlikely to occur, even if dead zones are present. Such conditions are favorable for the formation of icy satellites.

  13. Properties of accretion disk coronae

    NASA Technical Reports Server (NTRS)

    Wilms, J.; Dove, J.; Staubert, R.; Begelman, M. C.

    1997-01-01

    The properties of accretion disk corona in a parameter regime suitable for Galactic black hole candidates are considered and the results of an analysis of these properties using a self-consistent Monte Carlo code are presented. Examples of the coronal temperature structure, the shape and angular dependency of the spectrum and the maximum temperature allowed for each optical depth of the corona are presented. It is shown that the observed spectrum of the Galactic black hole candidate Cygnus X-1 cannot be explained by accreting disk corona models with a slab geometry, where the accretion disk is sandwiched by the comptonizing medium.

  14. ACCRETING CIRCUMPLANETARY DISKS: OBSERVATIONAL SIGNATURES

    SciTech Connect

    Zhu, Zhaohuan

    2015-01-20

    I calculate the spectral energy distributions of accreting circumplanetary disks using atmospheric radiative transfer models. Circumplanetary disks only accreting at 10{sup –10} M {sub ☉} yr{sup –1} around a 1 M{sub J} planet can be brighter than the planet itself. A moderately accreting circumplanetary disk ( M-dot ∼10{sup −8} M{sub ⊙} yr{sup −1}; enough to form a 10 M{sub J} planet within 1 Myr) around a 1 M{sub J} planet has a maximum temperature of ∼2000 K, and at near-infrared wavelengths (J, H, K bands), this disk is as bright as a late-M-type brown dwarf or a 10 M{sub J} planet with a ''hot start''. To use direct imaging to find the accretion disks around low-mass planets (e.g., 1 M{sub J} ) and distinguish them from brown dwarfs or hot high-mass planets, it is crucial to obtain photometry at mid-infrared bands (L', M, N bands) because the emission from circumplanetary disks falls off more slowly toward longer wavelengths than those of brown dwarfs or planets. If young planets have strong magnetic fields (≳100 G), fields may truncate slowly accreting circumplanetary disks ( M-dot ≲10{sup −9} M{sub ⊙} yr{sup −1}) and lead to magnetospheric accretion, which can provide additional accretion signatures, such as UV/optical excess from the accretion shock and line emission.

  15. Jets from magnetized accretion disks

    NASA Astrophysics Data System (ADS)

    Matsumoto, Ryoji

    When an accretion disk is threaded by large scale poloidal magnetic fields, the injection of magnetic helicity from the accretion disk drives bipolar outflows. We present the results of global magnetohydrodynamic (MHD) simulations of jet formation from a torus initially threaded by vertical magnetic fields. After the torsional Alfvén waves generated by the injected magnetic twists propagate along the large-scale magnetic field lines, magnetically driven jets emanate from the surface of the torus. Due to the magnetic pinch effect, the jets are collimated along the rotation axis. Since the jet formation process extracts angular momentum from the disk, it enhances the accretion rate of the disk material. Through three-dimensional (3D) global MHD simulations, we confirmed previous 2D results that the magnetically braked surface of the disk accretes like an avalanche. Owing to the growth of non-axisymmetric perturbations, the avalanche flow breaks up into spiral channels. Helical structure also appears inside the jet. When magnetic helicity is injected into closed magnetic loops connecting the central object and the accretion disk, it drives recurrent magnetic reconnection and outflows.

  16. Magnetically Torqued Thin Accretion Disks

    NASA Astrophysics Data System (ADS)

    Kluźniak, W.; Rappaport, S.

    2007-12-01

    We compute the properties of a geometrically thin, steady accretion disk surrounding a central rotating, magnetized star. The magnetosphere is assumed to entrain the disk over a wide range of radii. The model is simplified in that we adopt two (alternate) ad hoc, but plausible, expressions for the azimuthal component of the magnetic field as a function of radial distance. We find a solution for the angular velocity profile tending to corotation close to the central star and smoothly matching a Keplerian curve at a radius where the viscous stress vanishes. The value of this ``transition'' radius is nearly the same for both of our adopted B-field models. We then solve analytically for the torques on the central star and for the disk luminosity due to gravity and magnetic torques. When expressed in a dimensionless form, the resulting quantities depend on one parameter alone, the ratio of the transition radius to the corotation radius. For rapid rotators, the accretion disk may be powered mostly by spin-down of the central star. These results are independent of the viscosity prescription in the disk. We also solve for the disk structure for the special case of an optically thick alpha disk. Our results are applicable to a range of astrophysical systems including accreting neutron stars, intermediate polar cataclysmic variables, and T Tauri systems.

  17. THE BURST MODE OF ACCRETION IN PRIMORDIAL PROTOSTARS

    SciTech Connect

    Vorobyov, Eduard I.; DeSouza, Alexander L.; Basu, Shantanu E-mail: alexander.desouza@gmail.com

    2013-05-10

    We study the formation and long-term evolution of primordial protostellar disks harbored by first stars using numerical hydrodynamics simulations in the thin-disk limit. The initial conditions are specified by pre-stellar cores with distinct mass, angular momentum, and temperature. This allows us to probe several tens of thousand years of the disk's initial evolution, during which we observe multiple episodes of fragmentation leading to the formation of gravitationally bound gaseous clumps within spiral arms. These fragments are torqued inward due to gravitational interaction with the spiral arms on timescales of 10{sup 3}-10{sup 4} yr and accreted onto the growing protostar, giving rise to accretion and luminosity bursts. The burst phenomenon is fueled by continuing accretion of material falling onto the disk from the collapsing parent core, which replenishes the mass lost by the disk due to accretion, and triggers repetitive episodes of disk fragmentation. We show that the burst phenomenon is expected to occur for a wide spectrum of initial conditions in primordial pre-stellar cores and speculate on how the intense luminosities ({approx}10{sup 7} L{sub Sun }) produced by this mechanism may have important consequences for the disk evolution and subsequent growth of the protostar.

  18. Spiral Waves in Accretion Disks

    NASA Astrophysics Data System (ADS)

    Harlaftis, Emilios

    A review with the most characteristic spiral waves in accretion disks of cataclysmic variables will be presented. Recent work on experiments targeting the detection of spiral waves from time lapse movies of real disks and the study of permanent spiral waves will be discussed. The relevance of spiral waves with other systems such as star-planet X-ray binaries and Algols will be reviewed.

  19. Persistent Patterns in Accretion Disks

    SciTech Connect

    Amin, Mustafa A.; Frolov, Andrei V.; /KIPAC, Menlo Park

    2006-04-03

    We present a set of new characteristic frequencies associated with accretion disks around compact objects. These frequencies arise from persistent rotating patterns in the disk that are finite in radial extent and driven purely by the gravity of the central body. Their existence depends on general relativistic corrections to orbital motion and, if observed, could be used to probe the strong gravity region around a black hole. We also discuss a possible connection to the puzzle of quasi-periodic oscillations.

  20. Ringed Accretion Disks: Equilibrium Configurations

    NASA Astrophysics Data System (ADS)

    Pugliese, D.; Stuchlík, Z.

    2015-12-01

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  1. Accretion disks around black holes

    NASA Technical Reports Server (NTRS)

    Abramowicz, M. A.

    1994-01-01

    The physics of accretion flow very close to a black hole is dominated by several general relativistic effects. It cannot be described by the standard Shakura Sunyaev model or by its relativistic version developed by Novikov and Thome. The most important of these effects is a dynamical mass loss from the inner edge of the disk (Roche lobe overflow). The relativistic Roche lobe overflow induces a strong advective cooling, which is sufficient to stabilize local, axially symmetric thermal and viscous modes. It also stabilizes the non-axially-symmetric global modes discovered by Papaloizou and Pringle. The Roche lobe overflow, however, destabilizes sufficiently self-gravitating accretion disks with respect to a catastrophic runaway of mass due to minute changes of the gravitational field induced by the changes in the mass and angular momentum of the central black hole. One of the two acoustic modes may become trapped near the inner edge of the disk. All these effects, absent in the standard model, have dramatic implications for time-dependent behavior of the accretion disks around black holes.

  2. Accretion Disk Outflows from Compact Object Mergers

    NASA Astrophysics Data System (ADS)

    Metzger, Brian

    Nuclear reactions play a key role in the accretion disks and outflows associated with the merger of binary compact objects and the central engines of gamma-ray bursts and supernovae. The proposed research program will investigate the impact of nucleosynthesis on these events and their observable signatures by means of analytic calculations and numerical simulations. One focus of this research is rapid accretion following the tidal disruption of a white dwarf (WD) by a neutron star (NS) or black hole (BH) binary companion. Tidal disruption shreds the WD into a massive torus composed of C, O, and/or He, which undergoes nuclear reactions and burns to increasingly heavier elements as it flows to smaller radii towards the central compact object. The nuclear energy so released is comparable to that released gravitationally, suggesting that burning could drastically alter the structure and stability of the accretion flow. Axisymmetric hydrodynamic simulations of the evolution of the torus including nuclear burning will be performed to explore issues such as the mass budget of the flow (accretion vs. outflows) and its thermal stability (steady burning and accretion vs. runaway explosion). The mass, velocity, and composition of outflows from the disk will be used in separate radiative transfer calculations to predict the lightcurves and spectra of the 56Ni-decay powered optical transients from WD-NS/WD-BH mergers. The possible connection of such events to recently discovered classes of sub-luminous Type I supernovae will be assessed. The coalescence of NS-NS/NS-BH binaries also results in the formation of a massive torus surrounding a central compact object. Three-dimensional magnetohydrodynamic simulations of the long-term evolution of such accretion disks will be performed, which for the first time follow the effects of weak interactions and the nuclear energy released by Helium recombination. The nucleosynthetic yield of disk outflows will be calculated using a detailed

  3. Self-gravity in neutrino-dominated accretion disks

    SciTech Connect

    Liu, Tong; Yu, Xiao-Fei; Gu, Wei-Min; Lu, Ju-Fu

    2014-08-10

    We present the effects of self-gravity on the vertical structure and neutrino luminosity of the neutrino-dominated accretion disks in cylindrical coordinates. It is found that significant changes of the structure appear in the outer region of the disk, especially for high accretion rates (e.g., ≳ 1 M{sub ☉} s{sup –1}), and thus cause the slight increase in the neutrino luminosity. Furthermore, the gravitational instability of the disk is reviewed by the vertical distribution of the Toomre parameter, which may account for the late-time flares in gamma-ray bursts and the extended emission in short-duration gamma-ray bursts.

  4. Evolution of Massive Protostars Via Disk Accretion

    NASA Astrophysics Data System (ADS)

    Hosokawa, Takashi; Yorke, Harold W.; Omukai, Kazuyuki

    2010-09-01

    Mass accretion onto (proto-)stars at high accretion rates \\dot{M}_* > 10^{-4} M_{⊙} yr^{-1} is expected in massive star formation. We study the evolution of massive protostars at such high rates by numerically solving the stellar structure equations. In this paper, we examine the evolution via disk accretion. We consider a limiting case of "cold" disk accretion, whereby most of the stellar photosphere can radiate freely with negligible backwarming from the accretion flow, and the accreting material settles onto the star with the same specific entropy as the photosphere. We compare our results to the calculated evolution via spherically symmetric accretion, the opposite limit, whereby the material accreting onto the star contains the entropy produced in the accretion shock front. We examine how different accretion geometries affect the evolution of massive protostars. For cold disk accretion at 10-3 M sun yr-1, the radius of a protostar is initially small, R *sime a few R sun. After several solar masses have accreted, the protostar begins to bloat up and for M * ~= 10 M sun the stellar radius attains its maximum of 30-400 R sun. The large radius ~100 R sun is also a feature of spherically symmetric accretion at the same accreted mass and accretion rate. Hence, expansion to a large radius is a robust feature of accreting massive protostars. At later times, the protostar eventually begins to contract and reaches the zero-age main sequence (ZAMS) for M * ~= 30 M sun, independent of the accretion geometry. For accretion rates exceeding several 10-3 M sun yr-1, the protostar never contracts to the ZAMS. The very large radius of several hundreds R sun results in the low effective temperature and low UV luminosity of the protostar. Such bloated protostars could well explain the existence of bright high-mass protostellar objects, which lack detectable H II regions.

  5. Accretion disks in Algols: Progenitors and evolution

    NASA Astrophysics Data System (ADS)

    Van Rensbergen, W.; De Greve, J. P.

    2016-08-01

    Context. There are only a few Algols with measured accretion disk parameters. These measurements provide additional constraints for tracing the origin of individual systems, narrowing down the initial parameter space. Aims: We investigate the origin and evolution of six Algol systems with accretion disks to find the initial parameters and evolutionary constraints for them. Methods: With a modified binary evolution code, series of close binary evolution are calculated to obtain the best match for observed individual systems. Results: Initial parameters for six Algol systems with accretion disks were determined matching both the present system parameters and the observed disk characteristics. Conclusions: When Roche lobe overflow (RLOF) starts during core hydrogen burning of the donor, the disk lifetime was found to be short. The disk luminosity is comparable to the luminosity of the gainer during a large fraction of the disk lifetime.

  6. Accretion disks in interacting binary stars

    NASA Technical Reports Server (NTRS)

    Lin, D. N. C.

    1991-01-01

    Accretion disks have most often been analyzed in cataclysmic variables (CVs); the structure and evolution of accretion disks is defined by angular momentum transfer processes. Detailed atmospheric models indicate that angular momentum transport is efficient, that CV outbursts are regulated by mass transfer variations in the disk, and that they may be initiated either from the inner and outer regions of the disk. Tidal effects on the companion are noted to be capable of inducing a significant departure from Keplerian flow near the outer region of the disk.

  7. Lyman edges - Signatures of accretion disks

    NASA Astrophysics Data System (ADS)

    Kinney, A. L.

    1992-05-01

    Accretion disks are thought to provide the ultraviolet emission seen in the big blue bump of quasars. However, observations of the UV spectra of quasars do not show the additional signatures predicted by the accretion disk models. This paper will concentrate on just one of those signatures - the Lyman edge. Two studies are briefly discussed which explore the Lyman edge region of both high and low redshift quasars (Antonucci, Kinney, and Ford 1989 and Koratkar, Kinney, and Bohlin 1992). Both studies find that Lyman edges are not present in quasar spectra as frequently as predicted by the models or at the strength predicted by accretion disk models.

  8. Gravitomagnetic acceleration from black hole accretion disks

    NASA Astrophysics Data System (ADS)

    Poirier, J.; Mathews, G. J.

    2016-05-01

    We demonstrate how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near an accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism contributing to the production of jets, it presents a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet.

  9. Disk accretion by magnetic neutron stars

    NASA Technical Reports Server (NTRS)

    Ghosh, P.; Lamb, F. K.

    1978-01-01

    A model for disk accretion by a rotating magnetic neutron star is proposed which includes a detailed description of matter flow in the transition region between the disk and the magnetosphere. It is shown that the disk plasma cannot be completely screened from the stellar magnetic field and that the resulting magnetic coupling between the star and the disk exerts a significant torque on the star. On the assumption that the distortion of the residual stellar field lines threading the disk is limited by reconnection, the total accretion torque on the star is calculated. The calculated torque gives period changes in agreement with those observed in the pulsating X-ray sources and provides a natural explanation of why a fast rotator like Her X-1 has a spin-up rate much below the conventional estimate for slow rotators. It is shown that for such fast rotators, fluctuations in the mass-accretion rate can produce fluctuations in the accretion torque about 100 times larger. For sufficiently fast rotators or, equivalently, for sufficiently low accretion rates, the star experiences a braking torque even while accretion continues and without any mass ejection from its vicinity.

  10. Accretion of solid materials onto circumplanetary disks from protoplanetary disks

    SciTech Connect

    Tanigawa, Takayuki; Maruta, Akito; Machida, Masahiro N.

    2014-04-01

    We investigate the accretion of solid materials onto circumplanetary disks from heliocentric orbits rotating in protoplanetary disks, which is a key process for the formation of regular satellite systems. In the late stage of the gas-capturing phase of giant planet formation, the accreting gas from protoplanetary disks forms circumplanetary disks. Since the accretion flow toward the circumplanetary disks affects the particle motion through gas drag force, we use hydrodynamic simulation data for the gas drag term to calculate the motion of solid materials. We consider a wide range of size for the solid particles (10{sup –2}-10{sup 6} m), and find that the accretion efficiency of the solid particles peaks around 10 m sized particles because energy dissipation of drag with circum-planetary disk gas in this size regime is most effective. The efficiency for particles larger than 10 m becomes lower because gas drag becomes less effective. For particles smaller than 10 m, the efficiency is lower because the particles are strongly coupled with the background gas flow, which prevents particles from accretion. We also find that the distance from the planet where the particles are captured by the circumplanetary disks is in a narrow range and well described as a function of the particle size.

  11. Disk-overflow accretion in GK Persei?

    NASA Technical Reports Server (NTRS)

    Hellier, Coel; Livio, Mario

    1994-01-01

    We reanalyze the 1983 European X-ray Observatory Satellite (EXOSAT) observations of GK Per during an outburst to investigate the approximately 5000 s quasiperiodic modulation. We find that the spectral behavior is reminiscent of dipping low-mass X-ray binaries and note that the time scale is characteristic of the radius where an accretion stream overflowing the disk would collide back onto the disk. We suggest that structure caused by such disk-overflow accretion was periodically obscuring the white dwarf, producing the modulation.

  12. Where a Neutron Star's Accretion Disk Ends

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    In X-ray binaries that consist of a neutron star and a companion star, gas funnels from the companion into an accretion disk surrounding the neutron star, spiraling around until it is eventually accreted. How do the powerful magnetic fields threading through the neutron star affect this accretion disk? Recent observations provide evidence that they may push the accretion disk away from the neutron stars surface.Truncated DisksTheoretical models have indicated that neutron star accretion disks may not extend all the way in to the surface of a neutron star, but may instead be truncated at a distance. This prediction has been difficult to test observationally, however, due to the challenge of measuring the location of the inner disk edge in neutron-star X-ray binaries.In a new study, however, a team of scientists led by Ashley King (Einstein Fellow at Stanford University) has managed to measure the location of the inner edge of the disk in Aquila X-1, a neutron-star X-ray binary located 17,000 light-years away.Iron line feature detected by Swift (red) and NuSTAR (black). The symmetry of the line is one of the indicators that the disk is located far from the neutron star; if the inner regions of the disk were close to the neutron star, severe relativistic effects would skew the line to be asymmetric. [King et al. 2016]Measurements from ReflectionsKing and collaborators used observations made by NuSTAR and Swift/XRT both X-ray space observatories of Aquila X-1 during the peak of an X-ray outburst. By observing the reflection of Aquila X-1s emission off of the inner regions of the accretion disk, the authors were able to estimate the location of the inner edge of the disk.The authors find that this inner edge sits at ~15 gravitational radii. Since the neutron stars surface is at ~5 gravitational radii, this means that the accretion disk is truncated far from the stars surface. In spite of this truncation, material still manages to cross the gap and accrete onto the

  13. Accretion disk thermal instability in galactic nuclei

    NASA Technical Reports Server (NTRS)

    Mineshige, S.; Shields, G. A.

    1990-01-01

    The nonlinear evolution and spatial propagation of the thermal instability in accretion disks in galactic nuclei are investigated. Integrations of the vertical structure of the disks are described for different alpha prescriptions, and the thermal stability is examined. Global time-dependent calculations of the unstable disks are performed which show that there are two distinct types of behavior according to the assumed prescription for the viscosity parameter: the 'purr' type and the 'roar' type. The roar type is analyzed in some detail.

  14. Exploring the disk accretion in DI Cep

    NASA Astrophysics Data System (ADS)

    Parihar, Padmakar Singh; Shantikumar, N. S.

    The low mass young stellar objects of class-II, popularly known as classical T Tauri stars (CTTS) supposed to be surrounded by thick flared disk and accretes disk material through strong stellar dipolar magnetic field. The disk accretion rate and its variation with time is poorly know. DI Cep is an interesting object, found to have unexpected hump around 5300 Å in the continuum excess emission spectrum, which cannot be explained by current models of YSOs. Over the last six years this object is being spectroscopically as well as photometrically monitored using HCT. The data have been analyzed and modeled using a simple modeling technique developed by us. In this paper, we report for the first time our results related to the disk accretion phenomena in DI Cep.

  15. Quasar Accretion Disks are Strongly Inhomogeneous

    NASA Astrophysics Data System (ADS)

    Dexter, Jason; Agol, Eric

    2011-01-01

    Active galactic nuclei have been observed to vary stochastically with 10%-20% rms amplitudes over a range of optical wavelengths where the emission arises in an accretion disk. Since the accretion disk is unlikely to vary coherently, local fluctuations may be significantly larger than the global rms variability. We investigate toy models of quasar accretion disks consisting of a number of regions, n, whose temperatures vary independently with an amplitude of σ T in dex. Models with large fluctuations (σ T = 0.35-0.50) in 102-103 independently fluctuating zones for every factor of two in radius can explain the observed discrepancy between thin accretion disk sizes inferred from microlensing events and optical luminosity while matching the observed optical variability. For the same range of σ T , inhomogeneous disk spectra provide excellent fits to the Hubble Space Telescope quasar composite without invoking global Compton scattering atmospheres to explain the high levels of observed UV emission. Simulated microlensing light curves for the Einstein cross from our time-varying toy models are well fit using a time-steady power-law temperature disk and produce magnification light curves that are consistent with current microlensing observations. Deviations due to the inhomogeneous, time-dependent disk structure should occur above the 1% level in the light curves, detectable in future microlensing observations with millimagnitude sensitivity.

  16. Driving of Accretion Disk Variability by the Disk Dynamo

    NASA Astrophysics Data System (ADS)

    Hogg, J. Drew; Reynolds, Christopher S.

    2016-01-01

    Variability is a univeral feature of emission from accreting objects, but many questions remain as to how the variability is driven and how it relates to the underlying accretion physics. We use a long, semi-global MHD simulation of a thin accretion disk around a black hole to perform a detailed study of the fluctuations in the internal disk stress and the affect these fluctuations have on the accretion flow. In this poster, we show that low frequency fluctuations in the effective α-parameter in the disk are due to oscillations of the disk dynamo. Additionally, we show that fluctuations in the effective α-parameter drive "propagating fluctuations" in mass accretion rate through the disk that qualitatively resemble the variability from astrophysical black hole systems. In particular, we show that several of the ubiquitous phenomenological properties of black hole variability, including log-normal flux distributions, RMS-flux relationships, and radial coherence are present in the mass accretion rate fluctuations of our simulation.

  17. EARTH, MOON, SUN, AND CV ACCRETION DISKS

    SciTech Connect

    Montgomery, M. M.

    2009-11-01

    Net tidal torque by the secondary on a misaligned accretion disk, like the net tidal torque by the Moon and the Sun on the equatorial bulge of the spinning and tilted Earth, is suggested by others to be a source to retrograde precession in non-magnetic, accreting cataclysmic variable (CV) dwarf novae (DN) systems that show negative superhumps in their light curves. We investigate this idea in this work. We generate a generic theoretical expression for retrograde precession in spinning disks that are misaligned with the orbital plane. Our generic theoretical expression matches that which describes the retrograde precession of Earths' equinoxes. By making appropriate assumptions, we reduce our generic theoretical expression to those generated by others, or to those used by others, to describe retrograde precession in protostellar, protoplanetary, X-ray binary, non-magnetic CV DN, quasar, and black hole systems. We find that spinning, tilted CV DN systems cannot be described by a precessing ring or by a precessing rigid disk. We find that differential rotation and effects on the disk by the accretion stream must be addressed. Our analysis indicates that the best description of a retrogradely precessing spinning, tilted, CV DN accretion disk is a differentially rotating, tilted disk with an attached rotating, tilted ring located near the innermost disk annuli. In agreement with the observations and numerical simulations by others, we find that our numerically simulated CV DN accretion disks retrogradely precess as a unit. Our final, reduced expression for retrograde precession agrees well with our numerical simulation results and with selective observational systems that seem to have main-sequence secondaries. Our results suggest that a major source to retrograde precession is tidal torques like that by the Moon and the Sun on the Earth. In addition, these tidal torques should be common to a variety of systems where one member is spinning and tilted, regardless if

  18. Earth, Moon, Sun, and CV Accretion Disks

    NASA Astrophysics Data System (ADS)

    Montgomery, M. M.

    2009-11-01

    Net tidal torque by the secondary on a misaligned accretion disk, like the net tidal torque by the Moon and the Sun on the equatorial bulge of the spinning and tilted Earth, is suggested by others to be a source to retrograde precession in non-magnetic, accreting cataclysmic variable (CV) dwarf novae (DN) systems that show negative superhumps in their light curves. We investigate this idea in this work. We generate a generic theoretical expression for retrograde precession in spinning disks that are misaligned with the orbital plane. Our generic theoretical expression matches that which describes the retrograde precession of Earths' equinoxes. By making appropriate assumptions, we reduce our generic theoretical expression to those generated by others, or to those used by others, to describe retrograde precession in protostellar, protoplanetary, X-ray binary, non-magnetic CV DN, quasar, and black hole systems. We find that spinning, tilted CV DN systems cannot be described by a precessing ring or by a precessing rigid disk. We find that differential rotation and effects on the disk by the accretion stream must be addressed. Our analysis indicates that the best description of a retrogradely precessing spinning, tilted, CV DN accretion disk is a differentially rotating, tilted disk with an attached rotating, tilted ring located near the innermost disk annuli. In agreement with the observations and numerical simulations by others, we find that our numerically simulated CV DN accretion disks retrogradely precess as a unit. Our final, reduced expression for retrograde precession agrees well with our numerical simulation results and with selective observational systems that seem to have main-sequence secondaries. Our results suggest that a major source to retrograde precession is tidal torques like that by the Moon and the Sun on the Earth. In addition, these tidal torques should be common to a variety of systems where one member is spinning and tilted, regardless if

  19. Lifetimes and Accretion Rates of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Li, Min; Xiao, Lin

    2016-03-01

    Protoplanetary disks originate in the collapse of molecular cloud cores. The formation and evolution of disks are influenced by the properties of molecular cloud cores. In this paper we investigate the dependence of disk lifetimes and accretion rates on cloud core properties. We find that the lifetime increases as the angular velocities and the mass of cloud cores increase and that the lifetime decreases as the core temperature increases. We have calculated the distribution of disk lifetimes and disk fractions with stellar age. Our calculations show that the lifetime is in the range of 1-15 Myr and that the typical lifetime is 1-3 Myr. There are a few disks with lifetimes greater than 10 Myr and ˜ 30% of the disks have lifetimes less than 1 Myr. We also fit the disk fraction by an exponential decay curve with characteristic time ˜3.7 Myr. Our results explain the observations of disk lifetimes. We also find that the accretion rate does not change significantly with ω and generally decreases with {T}{{cd}}. At the early evolution of the disks, the \\dot{M}{--}{M}* relation is about \\dot{M}\\propto {M}*1.2-2. Since the effects of the photoevaporation are weak at this stage, this relation is the consequence of the cloud core properties. At the late evolution of the disks, the \\dot{M}{--}{M}* relation is about \\dot{M}\\propto {M}*1.2-1.7. For low accretion rates at this stage, the \\dot{M}{--}{M}* relation results from the effects of X-ray photoevaporation. The calculated \\dot{M}{--}{M}* relations are consistent with the observations.

  20. Disk Accretion and the Stellar Birthline

    NASA Astrophysics Data System (ADS)

    Hartmann, Lee; Cassen, Patrick; Kenyon, Scott J.

    1997-02-01

    We present a simplified analysis of some effects of disk accretion on the early evolution of fully convective, low-mass pre-main-sequence stars. Our analysis builds on the previous seminal work of Stahler, but it differs in that the accretion of material occurs over a small area of the stellar surface, such as through a disk or magnetospheric accretion column, so that most of the stellar photosphere is free to radiate to space. This boundary condition is similar to the limiting case considered by Palla & Stahler for intermediate-mass stars. We argue that for a wide variety of disk mass accretion rates, material will be added to the star with relatively small amounts of thermal energy. Protostellar evolution calculated assuming this ``low-temperature'' limit of accretion generally follows the results of Stahler because of the thermostatic nature of deuterium fusion, which prevents protostars from contracting below a ``birthline'' in the H-R diagram. Our calculated protostellar radii tend to fall below Stahler's at higher masses; the additional energy loss from the stellar photosphere in the case of disk accretion tends to make the protostar contract. The low-temperature disk accretion evolutionary tracks never fall below the deuterium-fusion birthline until the internal deuterium is depleted, but protostellar tracks can lie above the birthline in the H-R diagram if the initial radius of the protostellar core is large enough or if rapid disk accretion (such as might occur during FU Ori outbursts) adds significant amounts of thermal energy to the star. These possibilities cannot be ruled out by either theoretical arguments or observational constraints at present, so that individual protostars might evolve along a multiplicity of birthlines with a modest range of luminosity at a given mass. Our results indicate that there are large uncertainties in assigning ages for the youngest stars from H-R diagram positions, given the uncertainty in birthline positions. Our

  1. MHD of accretion-disk flows

    NASA Astrophysics Data System (ADS)

    Yankova, Krasimira

    2015-01-01

    Accretion is one of the most important problems of astrophysics concerning the transfer of matter and the transformation of energy into space. Process represents a falling of the substance on a cosmic object from the surrounding area and is a powerful gravitational mechanism for the production of radiation. Accretion disc effectively converts the mass of the substance by viscous friction and released potential energy transformed into radiation by particle collisions. Accretion onto compact object shows high energy efficiency and temporal variability in a broad class of observational data in all ranges. In the disks of these objects are developed a series instabilities and structures that govern the distribution of the energy. They are expressed in many variety non-stationary phenomena that we observe. That is why we propose generalized model of magnetized accretion disk with advection, which preserves the nonlinearity of the problem. We study interaction of the plasmas flow with the magnetic field, and how this affects the self-organizing disk. The aim of the work is to describe the accretion flow in detail, in his quality of the open astrophysical system, to investigate the evolution and to reveal the mechanisms of the structuring the disk-corona system for to interpret correctly the high energy behavior of such sources.

  2. Accretion outbursts in self-gravitating protoplanetary disks

    SciTech Connect

    Bae, Jaehan; Hartmann, Lee; Zhu, Zhaohuan; Nelson, Richard P. E-mail: lhartm@umich.edu E-mail: r.p.nelson@qmul.ac.uk

    2014-11-01

    We improve on our previous treatments of the long-term evolution of protostellar disks by explicitly solving disk self-gravity in two dimensions. The current model is an extension of the one-dimensional layered accretion disk model of Bae et al. We find that gravitational instability (GI)-induced spiral density waves heat disks via compressional heating (i.e., PdV work), and can trigger accretion outbursts by activating the magnetorotational instability (MRI) in the magnetically inert disk dead zone. The GI-induced spiral waves propagate well inside of the gravitationally unstable region before they trigger outbursts at R ≲ 1 AU where GI cannot be sustained. This long-range propagation of waves cannot be reproduced with the previously used local α treatments for GI. In our standard model where zero dead-zone residual viscosity (α{sub rd}) is assumed, the GI-induced stress measured at the onset of outbursts is locally as large as 0.01 in terms of the generic α parameter. However, as suggested in our previous one-dimensional calculations, we confirm that the presence of a small but finite α{sub rd} triggers thermally driven bursts of accretion instead of the GI + MRI-driven outbursts that are observed when α{sub rd} = 0. The inclusion of non-zero residual viscosity in the dead zone decreases the importance of GI soon after mass feeding from the envelope cloud ceases. During the infall phase while the central protostar is still embedded, our models stay in a 'quiescent' accretion phase with M-dot {sub acc}∼10{sup −8}--10{sup −7} M{sub ⊙} yr{sup −1} over 60% of the time and spend less than 15% of the infall phase in accretion outbursts. While our models indicate that episodic mass accretion during protostellar evolution can qualitatively help explain the low accretion luminosities seen in most low-mass protostars, detailed tests of the mechanism will require model calculations for a range of protostellar masses with some constraint on the initial core

  3. Lessons from accretion disks in cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Horne, Keith

    1998-04-01

    We survey recent progress in the interpretation of observations of cataclysmic variables, whose accretion disks are heated by viscous dissipation rather than irradiation. Many features of standard viscous accretion disk models are confirmed by tomographic imaging studies of dwarf novae. Eclipse maps indicate that steady disk temperature structures are established during outbursts. Doppler maps of double-peaked emission lines suggest disk chromospheres heated by magnetic activity. Gas streams impacting on the disk rim leave expected signatures both in the eclipses and emission lines. Doppler maps of dwarf nova IP Peg at the beginning of an outburst show evidence for tidally-induced spiral shocks. While enjoying these successes, we must still face up to the dreaded ``SW Sex syndrome'' which afflicts most if not all cataclysmic variables in high accretion states. The anomalies include single-peaked emission lines with skewed kinematics, flat temperature-radius profiles, shallow offset line eclipses, and narrow low-ionization absorption lines at phase 0.5. The enigmatic behavior of AE Aqr is now largely understood in terms of a magnetic propeller model in which the rapidly spinning white dwarf magnetosphere expels the gas stream out of the system before an accretion disk can form. A final piece in this puzzle is the realization that an internal shock zone occurs in the exit stream at just the right place to explain the anomalous kinematics and violent flaring of the single-peaked emission lines. Encouraged by this success, we propose that disk-anchored magnetic propellers operate in the high accretion rate systems afflicted by the SW Sex syndrome. Magnetic fields anchored in the Keplerian disk sweep forward and apply a boost that expels gas stream material flowing above the disk plane. This working hypothesis offers a framework on which we can hang all the SW Sex anomalies. The lesson for theorists is that magnetic links appear to be transporting energy and angular

  4. Accretion disks in luminous young stellar objects

    NASA Astrophysics Data System (ADS)

    Beltrán, M. T.; de Wit, W. J.

    2016-01-01

    An observational review is provided of the properties of accretion disks around young stars. It concerns the primordial disks of intermediate- and high-mass young stellar objects in embedded and optically revealed phases. The properties were derived from spatially resolved observations and, therefore, predominantly obtained with interferometric means, either in the radio/(sub)millimeter or in the optical/infrared wavelength regions. We make summaries and comparisons of the physical properties, kinematics, and dynamics of these circumstellar structures and delineate trends where possible. Amongst others, we report on a quadratic trend of mass accretion rates with mass from T Tauri stars to the highest mass young stellar objects and on the systematic difference in mass infall and accretion rates.

  5. Two-dimensional vortices and accretion disks

    NASA Astrophysics Data System (ADS)

    Nauta, Michiel Doede

    2000-01-01

    Observations show that there are disks around certain stars that slowly rain down on the central (compact) object: accretion disks. The rate of depletion of the disk might be slow but is still larger than was expected on theoretical grounds. That is why it has been suggested that the disks are turbulent. Because the disk is thin and rotating this turbulence might be related to two-dimensional (2D) turbulence which is characterized by energy transfers towards small wave numbers and the formation of 2D-vortices. This hypothesis is investigated in this thesis by numerical simulations. After an introduction, the numerical algorithm that was inplemented is discussed together with its relation to an accretion disk. It performs well under the absence of discontinuities. The code is used to study 2D-turbulence under the influence of background rotation with compressibility and a shearing background flow. The first is found to be of little consequence but the shear flow alters 2D-turbulence siginificantly. Only prograde vortices of enough strength are able to withstand the shear flow. The size of the vortices in the cross stream direction is also found to be smaller than the equivalent of the thickness of an accretion disk. These circulstances imply that the assumption of two-dimensionality is questionable so that 2D-vortices might not abound in accretion disks. However, the existence of such vortices is not ruled out and one such a cortex is studied in detail in chapter 4. The internal structure of the vortex is well described by a balance between Coriolis, centrifugal and pressure forces. The vortex is also accompanied by two spiral compressible waves. These are not responsible for the azimuthal drift of the vortex, which results from secondary vortices, but they might be related to the small radial drift that is observed. Radial drift leads to accretion but it is not very efficient. Multiple vortex interactions are the topic of tha last chapter and though interesting the

  6. Observational constraints on black hole accretion disks

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1994-01-01

    We review the empirical constraints on accretion disk models of stellar-mass black holes based on recent multiwavelength observational results. In addition to time-averaged emission spectra, the time evolutions of the intensity and spectrum provide critical information about the structure, stability, and dynamics of the disk. Using the basic thermal Keplerian disk paradigm, we consider in particular generalizations of the standard optically thin disk models needed to accommodate the extremely rich variety of dynamical phenomena exhibited by black hole candidates ranging from flares of electron-positron annihilations and quasiperiodic oscillations in the X-ray intensity to X-ray novae activity. These in turn provide probes of the disk structure and global geometry. The goal is to construct a single unified framework to interpret a large variety of black hole phenomena. This paper will concentrate on the interface between basic theory and observational data modeling.

  7. The feedback of type-I bursts to the corona and the accretion process in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Li, J.; Zhang, S.; Torres, D.; Chen, Y.; Ji, L.

    2014-07-01

    We discuss the interaction between the soft X-ray photons and the corona / accretion disk during type-I X-ray bursts. Up to date, a hard X-ray shortage and fast recovery during the evolution of bursts have been found in 6 sources. These observations promote a plausible interpretation based on the position and origin of the corona. We also note that type-I X-ray bursts embedded in the banana state of an outburst seem to deviate from a blackbody spectrum, which may hint for a temporary increased accretion rate in the accretion disk during type-I X-ray bursts. These results could be consistently explained by the feedback of type-I X-ray bursts to the accretion process.

  8. Dust Coagulation in Protoplanetary Accretion Disks

    NASA Technical Reports Server (NTRS)

    Schmitt, W.; Henning, Th.; Mucha, R.

    1996-01-01

    The time evolution of dust particles in circumstellar disk-like structures around protostars and young stellar objects is discussed. In particular, we consider the coagulation of grains due to collisional aggregation. The coagulation of the particles is calculated by solving numerically the non-linear Smoluchowski equation. The different physical processes leading to relative velocities between the grains are investigated. The relative velocities may be induced by Brownian motion, turbulence and drift motion. Starting from different regimes which can be identified during the grain growth we also discuss the evolution of dust opacities. These opacities are important for both the derivation of the circumstellar dust mass from submillimeter/millimeter continuum observations and the dynamical behavior of the disks. We present results of our numerical studies of the coagulation of dust grains in a turbulent protoplanetary accretion disk described by a time-dependent one-dimensional (radial) alpha-model. For several periods and disk radii, mass distributions of coagulated grains have been calculated. From these mass spectra, we determined the corresponding Rosseland mean dust opacities. The influence of grain opacity changes due to dust coagulation on the dynamical evolution of a protostellar disk is considered. Significant changes in the thermal structure of the protoplanetary nebula are observed. A 'gap' in the accretion disk forms at the very frontier of the coagulation, i.e., behind the sublimation boundary in the region between 1 and 5 AU.

  9. EVIDENCE FOR ACCRETION RATE CHANGE DURING TYPE I X-RAY BURSTS

    SciTech Connect

    Worpel, Hauke; Galloway, Duncan K.; Price, Daniel J.

    2013-08-01

    The standard approach for time-resolved X-ray spectral analysis of thermonuclear bursts involves subtraction of the pre-burst emission as background. This approach implicitly assumes that the persistent flux remains constant throughout the burst. We reanalyzed 332 photospheric radius expansion bursts observed from 40 sources by the Rossi X-Ray Timing Explorer, introducing a multiplicative factor f{sub a} to the persistent emission contribution in our spectral fits. We found that for the majority of spectra the best-fit value of f{sub a} is significantly greater than 1, suggesting that the persistent emission typically increases during a burst. Elevated f{sub a} values were not found solely during the radius expansion interval of the burst, but were also measured in the cooling tail. The modified model results in a lower average value of the {chi}{sup 2} fit statistic, indicating superior spectral fits, but not yet to the level of formal statistical consistency for all the spectra. We interpret the elevated f{sub a} values as an increase of the mass accretion rate onto the neutron star during the burst, likely arising from the effects of Poynting-Robertson drag on the disk material. We measured an inverse correlation of f{sub a} with the persistent flux, consistent with theoretical models of the disk response. We suggest that this modified approach may provide more accurate burst spectral parameters, as well as offering a probe of the accretion disk structure.

  10. Black hole accretion disks with coronae

    NASA Technical Reports Server (NTRS)

    Svensson, Roland; Zdziarski, Andrzej A.

    1994-01-01

    Observations suggest the existence of both hot and cold dark matter in the centers of active galactic nuclei. Recent spectral models require a major fraction of power to be dissipated in the hot matter. We study the case when the hot matter forms a corona around a standard cold alpha-disk. In particular, we investigate the case when a major fraction, f, of the power released when the cold matter accretes is transported to and dissipated in the corona. This has major effects on the cold disk, making it colder, more geometrically thin, denser, and having larger optical depths. One important consequence is the disappearance of the effectively optically thin zone as well as of the radiation pressure dominated zone for values of f sufficiently closed to unity. The disappearance of the radiation pressure dominated zone will result in a cold disk with only a gas pressure dominated zone that is stable against thermal and viscous instabilities. We also show that the pressure ( and the radiation) from the corona will only affect the surface layers of the cold disk. Our results disagree with those of other recent work on accretion disks with coronae. We find those works to be based on unphysical assumptions.

  11. Dynamo Activity in Strongly Magnetized Accretion Disks

    NASA Astrophysics Data System (ADS)

    Salvesen, Greg; Simon, Jacob B.; Armitage, Philip J.; Begelman, Mitchell C.

    2016-01-01

    Strongly magnetized accretion disks around black holes have many attractive features that may explain the enigmatic behavior observed from X-ray binaries. The physics and structure of these disks are governed by a dynamo-like mechanism, which channels the accretion power liberated by the magnetorotational instability into an ordered toroidal magnetic field. To study dynamo activity, we performed three-dimensional, stratified, isothermal, ideal magnetohydrodynamic shearing box simulations. In our simulations, the strength of this self-sustained toroidal magnetic field depends on the net vertical magnetic flux we impose, which allows us to study weak-to-strong magnetization regimes. We find that the entire disk develops into a magnetic pressure-dominated state for a sufficiently strong net vertical magnetic flux. Over the two orders of magnitude in net vertical magnetic flux that we consider, the effective α-viscosity parameter scales as a power-law. We quantify dynamo properties of toroidal magnetic flux production and its buoyant escape as a function of disk magnetization. Finally, we compare our simulations to an analytic model for the vertical structure of strongly magnetized disks applicable to the high/soft state of X-ray binaries.

  12. Accretion disk structure in SS Cygni

    NASA Astrophysics Data System (ADS)

    Hessman, F. V.

    1987-02-01

    High-resolution coude observations of nonaxisymmetric line emission from the dwarf nova SS Cygni are presented. By subtracting the constant line component, the asymmetric line emission responsible for the observed phase shift between the absorption and emission line radial velocity curves can be isolated. The extra emission is a large fraction of the total line emission and extends to large velocities (of about 1500 km/sec). The phase stability of the emission demands a large-scale structure which is fixed in the frame of the binary. A magnetic origin of the excitation cannot be ruled out but is implausible. A simple explanation is that the accretion stream from the companion star is able to spill over the edge of the disk, introducing emission at noncircular velocities and most likely disturbing the upper layers of the accretion disk.

  13. Dynamics of flux tubes in accretion disks

    NASA Technical Reports Server (NTRS)

    Vishniac, E. T.; Duncan, R. C.

    1994-01-01

    The study of magnetized plasmas in astrophysics is complicated by a number of factors, not the least of which is that in considering magnetic fields in stars or accretion disks, we are considering plasmas with densities well above those we can study in the laboratory. In particular, whereas laboratory plasmas are dominated by the confining magnetic field pressure, stars, and probably accretion disks, have magnetic fields whose beta (ratio of gas pressure to magnetic field pressure) is much greater than 1. Observations of the Sun suggest that under such circumstances the magnetic field breaks apart into discrete flux tubes with a small filling factor. On the other hand, theoretical treatments of MHD turbulence in high-beta plasmas tend to assume that the field is more or less homogeneously distributed throughout the plasma. Here we consider a simple model for the distribution of magnetic flux tubes in a turbulent medium. We discuss the mechanism by which small inhomogeneities evolve into discrete flux tubes and the size and distribution of such flux tubes. We then apply the model to accretion disks. We find that the fibrilation of the magnetic field does not enhance magnetic buoyancy. We also note that the evolution of an initially diffuse field in a turbulent medium, e.g., any uniform field in a shearing flow, will initially show exponential growth as the flux tubes form. This growth saturates when the flux tube formation is complete and cannot be used as the basis for a self-sustaining dynamo effect. Since the typical state of the magnetic field is a collection of intense flux tubes, this effect is of limited interest. However, it may be important early in the evolution of the galactic magnetic field, and it will play a large role in numerical simulations. Finally, we note that the formation of flux tubes is an essential ingredient in any successful dynamo model for stars or accretion disks.

  14. Recent Observational Progress on Accretion Disks Around Compact Objects

    NASA Astrophysics Data System (ADS)

    Miller, Jon M.

    2016-04-01

    Studies of accretion disks around black holes and neutron stars over the last ten years have made remarkable progress. Our understanding of disk evolution as a function of mass accretion rate is pushing toward a consensus on thin/thick disk transitions; an apparent switching between disk-driven outflow modes has emerged; and monitoring observations have revealed complex spectral energy distributions wherein disk reprocessing must be important. Detailed studies of disk winds, in particular, have the potential to reveal the basic physical processes that mediate disk accretion, and to connect with numerical simulations. This talk will review these developments and look ahead to the potential of Astro-H.

  15. Black hole spin influence on accretion disk neutrino detection

    NASA Astrophysics Data System (ADS)

    Caballero, O. L.; Zielinski, T.; McLaughlin, G. C.; Surman, R.

    2016-06-01

    Neutrinos are copiously emitted from neutrino-cooled black hole accretion disks playing a fundamental role in their evolution, as well as in the production of gamma ray bursts and r-process nucleosynthesis. The black hole generates a strong gravitational field able to change the properties of the emerging neutrinos. We study the influence of the black hole spin on the structure of the neutrino surfaces, neutrino luminosities, average neutrino energies, and event counts at SuperK. We consider several disk models and provide estimates that cover different black hole efficiency scenarios. We discuss the influence of the detector's inclination with respect to the axis of the torus on neutrino properties. We find that tori around spinning black holes have larger luminosities, energies, and rates compared to tori around static black holes and that the inclination of the observer causes a reduction in the luminosities and detection rates but an increase in the average energies.

  16. Torque Reversals in Disk Accreting Pulsars

    NASA Astrophysics Data System (ADS)

    Li, Jianke; Wickramasinghe, Dayal T.

    1998-07-01

    X-ray binaries in which the accreting component is a neutron star commonly exhibit significant changes in their spin. In the system Cen X-3, a disk accreting binary system, the pulsar was observed to spin up at a rate ḟ = 8 × 10-13 Hz s-1 when averaged over the past twenty years, but significant fluctuations were observed above this mean. Recent BASTE observations have disclosed that these fluctuations are much larger than previously noted, and appeared to be a system characteristic. The change in the spin state from spin-up to spin-down or vice-versa occurs on a time scale that is much shorter than the instrument can resolve (≤1 d), but appears always to be a similar amplitude, and to occur stochastically. These observations have posed a problem for the conventional torque-mass accretion relation for accreting pulsars, because in this model the spin rate is closely related to the accretion rate, and the latter needs to be finely tuned and to change abruptly to explain the observations. Here we review recent work in this direction and present a coherent picture that explains these observations. We also draw attention to some outstanding problems for future studies.

  17. BONDI-HOYLE-LYTTLETON ACCRETION ONTO A PROTOPLANETARY DISK

    SciTech Connect

    Moeckel, Nickolas; Throop, Henry B.

    2009-12-10

    Young stellar systems orbiting in the potential of their birth cluster can accrete from the dense molecular interstellar medium during the period between the star's birth and the dispersal of the cluster's gas. Over this time, which may span several Myr, the amount of material accreted can rival the amount in the initial protoplanetary disk; the potential importance of this 'tail-end' accretion for planet formation was recently highlighted by Throop and Bally. While accretion onto a point mass is successfully modeled by the classical Bondi-Hoyle-Lyttleton solutions, the more complicated case of accretion onto a star-disk system defies analytic solution. In this paper, we investigate via direct hydrodynamic simulations the accretion of dense interstellar material onto a star with an associated gaseous protoplanetary disk. We discuss the changes to the structure of the accretion flow caused by the disk, and vice versa. We find that immersion in a dense accretion flow can redistribute disk material such that outer disk migrates inward, increasing the inner disk surface density and reducing the outer radius. The accretion flow also triggers the development of spiral density features, and changes to the disk inclination. The mean accretion rate onto the star remains roughly the same with and without the presence of a disk. We discuss the potential impact of this process on planet formation, including the possibility of triggered gravitational instability, inclination differences between the disk and the star, and the appearance of spiral structure in a gravitationally stable system.

  18. Unveiling Accretion Disks - Physical Parameter Eclipse Mapping of Accretion Disks in Dwarf Novae

    NASA Astrophysics Data System (ADS)

    Vrielmann, S.

    1997-06-01

    This work presents a new tomography algorithm, the Physical Parameter Eclipse Mapping method. It has been designed to reconstruct the structure of accretion disks in cataclysmic variables in terms of the basic physical parameters. Cataclysmic variables are close interacting binaries, in which mass transfer from one of the stars, typically a main sequence star, to the other star, a white dwarf, proceeds via an accretion disk around the white dwarf. Accretion disks are of general importance in astrophysics, since they occur in a number of objects with mass accretion, like active galactic nuclei and young stellar objects. The eclipsing cataclysmic variables are ideal systems to study such accretion process, since with the varying orbital phase different parts of the accretion disk can be viewed. The tomography method is based on the classical Eclipse Mapping algorithm which yields intensity distributions in the accretion disk by fitting the observed eclipse light curve. In order to avoid ambiguities this back-projection is using a maximum entropy algorithm, with selects the smoothest solution still compatible with the data. In my new method the intensity distributions are replaced by distributions of physical parameters, using a specific theoretical model spectrum to fit a set of eclipse light curves at various wavelengths. The spectrum is chosen according to the type of cataclysmic variable under investigation and its state at the time of observation. This work shows through application to synthetic data that with such an approach given distributions in physical parameters can be reproduced, as long as the parameters assume values in the parameter space outside of regions where ambiguities arise. Versions with two simple models are tested, but in principle this method can cope with any given model spectrum. The Physical Parameter Eclipse Mapping method is applied to two sets of real data of the dwarf nova IP Pegasi on decline from outburst and HT Cassiopeiae in

  19. Self-Consistent Models of Accretion Disks

    NASA Technical Reports Server (NTRS)

    Narayan, Ramesh

    1997-01-01

    The investigations of advection-dominated accretion flows (ADAFs), with emphasis on applications to X-ray binaries containing black holes and neutron stars is presented. This work is now being recognized as the standard paradigm for understanding the various spectral states of black hole X-ray Binaries (BHXBs). Topics discussed include: (1) Problem in BHXBS, namely that several of these binaries have unusually large concentrations of lithium in their companion stars; (2) A novel test to show that black holes have event horizons; (3) Application of the ADAF model to the puzzling X-ray delay in the recent outburst of the BHXB, GRO J1655-40; (4) Description of the various spectral states in BHXBS; (5) Application of the ADAF model to the famous supermassive black hole at the center of our Galaxy, Sgr A(*); (6) Writing down and solving equations describing steady-state, optically thin, advection-dominated accretion onto a Kerr black hole; (7) The effect of "photon bubble" instability on radiation dominated accretion disks; and (8) Dwarf nova disks in quiescence that have rather low magnetic Reynolds number, of order 10(exp 3).

  20. ACCRETION DISK TEMPERATURES OF QSOs: CONSTRAINTS FROM THE EMISSION LINES

    SciTech Connect

    Bonning, E. W.; Shields, G. A.; Stevens, A. C.; Salviander, S. E-mail: shields@astro.as.utexas.edu E-mail: triples@astro.as.utexas.edu

    2013-06-10

    We compare QSO emission-line spectra to predictions based on theoretical ionizing continua of accretion disks. The observed line intensities do not show the expected trend of higher ionization with theoretical accretion disk temperature as predicted from the black hole mass and accretion rate. Consistent with earlier studies, this suggests that the inner disk does not reach temperatures as high as expected from standard disk theory. Modified radial temperature profiles, taking account of winds or advection in the inner disk, achieve better agreement with observation. The emission lines of radio-detected and radio-undetected sources show different trends as a function of the theoretically predicted disk temperature.

  1. Neutrino oscillation above a black hole accretion disk

    SciTech Connect

    Malkus, A.; Kneller, J. P.; McLaughlin, G. C.; Surman, R.

    2015-05-15

    We examine neutrino oscillations in the context of an accretion disk surrounding a black hole. Because accretion disks produce large quantities of neutrinos, they may be home to interesting neutrino oscillation as well. We model accretion disks associated with stellar collapse for the sake of understanding neutrino oscillations. We find that the neutrino oscillations include phenomena seen in the protoneutron star setting as well as phenomena not seen elsewhere.

  2. Normal Modes of Black Hole Accretion Disks

    SciTech Connect

    Ortega-Rodriguez, Manuel; Silbergleit, Alexander S.; Wagoner, Robert V.; /Stanford U., Phys. Dept. /KIPAC, Menlo Park

    2006-11-07

    This paper studies the hydrodynamical problem of normal modes of small adiabatic oscillations of relativistic barotropic thin accretion disks around black holes (and compact weakly magnetic neutron stars). Employing WKB techniques, we obtain the eigen frequencies and eigenfunctions of the modes for different values of the mass and angular momentum of the central black hole. We discuss the properties of the various types of modes and examine the role of viscosity, as it appears to render some of the modes unstable to rapid growth.

  3. Dead Zone Accretion Flows in Protostellar Disks

    NASA Technical Reports Server (NTRS)

    Turner, Neal; Sano, T.

    2008-01-01

    Planets form inside protostellar disks in a dead zone where the electrical resistivity of the gas is too high for magnetic forces to drive turbulence. We show that much of the dead zone nevertheless is active and flows toward the star while smooth, large-scale magnetic fields transfer the orbital angular momentum radially outward. Stellar X-ray and radionuclide ionization sustain a weak coupling of the dead zone gas to the magnetic fields, despite the rapid recombination of free charges on dust grains. Net radial magnetic fields are generated in the magnetorotational turbulence in the electrically conducting top and bottom surface layers of the disk, and reach the midplane by ohmic diffusion. A toroidal component to the fields is produced near the midplane by the orbital shear. The process is similar to the magnetization of the solar tachocline. The result is a laminar, magnetically driven accretion flow in the region where the planets form.

  4. Accretion disk viscosity and internal waves in disks

    NASA Astrophysics Data System (ADS)

    Huang, Min

    1992-01-01

    Recently, Vishniac, Jin and Diamond suggested that internal waves in accretion disks play a critical role in generating magnetic fields, and consequently are indirectly responsible for angular momentum transfer in thin, conducting, and non-self-gravitational disk systems. A project in which we will construct a quantitative model of the internal wave spectrum in accretion disks is started. It includes two aspects of work. The physical properties of the waves in a thin, non-self-gravitational, and non-magnetized accretion disk with realistic vertical structure is cataloged and examined. Besides the low frequency internal waves discovered by Vishniac and Diamond, it was found that sound waves with low frequency and low axisymmetry (with small absolute value of m) are capable of a driving dynamo because they are (1) well confined in a layer with thickness 2(absolute value of m)H where H is the disk scale height; (2) highly dispersive so they may survive the strong dissipation caused by the coherent nonlinear interaction their high frequency partners experience; and (3) elliptically polarized because they are confined in the z-direction. As a first step towards constructing a quantitative theory of this dynamo effect, a framework of calculating resonant nonlinear interaction among waves in disk is established. We are developing a numerical code which will compute the steady spectrum of the wave field in this framework. For simplicity, we only include the low frequency internal waves suggested by Vishniac and Diamond in the present stage. In the vicinity of the static state, the time step whose length is determined by the evolution of the modes with the largest amplitudes is too large for the modes with smaller amplitudes and overshooting occurs. Through nonlinear coupling, this overshooting is amplified and appears as a numerical instability affecting the evolution of the large amplitude modes. Shorter time steps may delay the appearance of the instability but not cure

  5. Magnetohydrodynamic Origin of Jets from Accretion Disks

    NASA Technical Reports Server (NTRS)

    Lovelace, R. V. E.; Romanova, M. M.

    1998-01-01

    A review is made of magnetohydrodynamic (MHD) theory and simulation of outflows from disks for different distributions of magnetic field threading the disk. In one limit of a relatively weak, initially diverging magnetic field, both thermal and magnetic pressure gradients act to drive matter to an outflow, while a toroidal magnetic field develops which strongly collimates the outflow. The collimation greatly reduces the field divergence and the mass outflow rate decreases after an initial peak. In a second limit of a strong magnetic field, the initial field configuration was taken with the field strength on the disk decreasing outwards to small values so that collimation was reduced. As a result, a family of stationary solutions was discovered where matter is driven mainly by the strong magnetic pressure gradient force. The collimation in this case depends on the pressure of an external medium. These flows are qualitatively similar to the analytic solutions for magnetically driven outflows. The problem of the opening of a closed field line configuration linking a magnetized star and an accretion disk is also discussed.

  6. Evolution and precession of accretion disk in tidal disruption events

    NASA Astrophysics Data System (ADS)

    Shen, R.-F.; Matzner, C. D.

    2012-12-01

    In a supermassive black hole (BH) tidal disruption event (TDE), the tidally disrupted star feeds the BH via an accretion disk. Most often it is assumed that the accretion rate history, hence the emission light curve, tracks the rate at which new debris mass falls back onto the disk, notably the t-5/3 power law. But this is not the case when the disk evolution due to viscous spreading - the driving force for accretion - is carefully considered. We construct a simple analytical model that comprehensively describes the accretion rate history across 4 different phases of the disk evolution, in the presence of mass fallback and disk wind loss. Accretion rate evolves differently in those phases which are governed by how the disk heat energy is carried away, early on by advection and later by radiation. The accretion rate can decline as steeply as t-5/3 only if copious disk wind loss is present during the early advection-cooled phase. Later, the accretion rate history is t-8/7 or shallower. These have great implications on the TDE flare light curve. A TDE accretion disk is most likely misaligned with the equatorial plane of the spinning BH. Moreover, in the TDE the accretion rate is super- or near-Eddington thus the disk is geometrically thick, for which case the BH's frame dragging effect may cause the disk precess as a solid body, which may manifest itself as quasi-periodic signal in the TDE light curve. Our disk evolution model predicts the disk precession period increases with time, typically as ∝ t. The results are applied to the recently jetted TDE flare Swift transient J1644 + 57 which shows numerous, quasi-periodic dips in its long-term X-ray light curve. As the current TDE sample increases, the identification of the disk precession signature provides a unique way of measuring BH spin and studying BH accretion physics.

  7. Thermonuclear bursts from slowly and rapidly accreting neutron stars

    NASA Astrophysics Data System (ADS)

    Linares, Manuel

    2012-07-01

    Models of thermonuclear burning on accreting neutron stars predict different ignition regimes, depending mainly on the mass accretion rate per unit area. For more than three decades, testing these regimes observationally has met with only partial success. I will present recent results from the Fermi-GBM all-sky X-ray burst monitor, which is yielding robust measurements of recurrence time of rare and highly energetic thermonuclear bursts at the lowest mass accretion rates. I will also present RXTE observations of thermonuclear bursts at high mass accretion rates, including the discovery of millihertz quasi-periodic oscillations and several bursting regimes in a neutron star transient and 11 Hz X-ray pulsar. This unusual neutron star, with higher magnetic field and slower rotation than any other known burster, showed copious bursting activity when the mass accretion rate varied between 10% and 50% of the Eddington rate. I will discuss the role of fuel composition and neutron star spin in setting the burst properties of this system, and the possible implications for the rest of thermonuclear bursters.

  8. The Evolution of the Accretion Disk Around 4U 1820-30 During a Superburst

    NASA Technical Reports Server (NTRS)

    Ballantyne, D. R.; Strohmayer, T. E.

    2004-01-01

    Accretion from a disk onto a collapsed, relativistic star - a neutron star or black hole - is the mechanism widely believed to be responsible for the emission from compact X-ray binaries. Because of the extreme spatial resolution required, it is not yet possible to directly observe the evolution or dynamics of the inner parts of the accretion disk where general relativistic effects are dominant. Here, we use the bright X-ray emission from a superburst on the surface of the neutron star 4U 1820-30 as a spotlight to illuminate the disk surface. The X-rays cause iron atoms in the disk t o fluoresce, allowing a determination of the ionization state, covering factor and inner radius of the disk over the course of the burst. The time-resolved spectral fitting shows that the inner region of the disk is disrupted by the burst, possibly being heated into a thicker, more tenuous flow, before recovering its previous form in approximately 1000 s. This marks the first instance that the evolution of the inner regions of an accretion disk has been observed in real-time.

  9. Accretion in Protoplanetary Disks by Collisional Fusion

    NASA Astrophysics Data System (ADS)

    Wettlaufer, J. S.

    2010-08-01

    The formation of a solar system such as ours is believed to have followed a multi-stage process around a protostar and its associated accretion disk. Whipple first noted that planetesimal growth by particle agglomeration is strongly influenced by gas drag, and Cuzzi and colleagues have shown that when midplane particle mass densities approach or exceed those of the gas, solid-solid interactions dominate the drag effect. The size dependence of the drag creates a "bottleneck" at the meter scale with such bodies rapidly spiraling into the central star, whereas much smaller or larger particles do not. Independent of whether the origin of the drag is angular momentum exchange with gas or solids in the disk, successful planetary accretion requires rapid planetesimal growth to kilometer scales. A commonly accepted picture is that for collisional velocities Vc above a certain threshold value, V th~ 0.1-10 cm s-1, particle agglomeration is not possible; elastic rebound overcomes attractive surface and intermolecular forces. However, if perfect sticking is assumed for all ranges of interparticle collision speeds the bottleneck can be overcome by rapid planetesimal growth. While previous work has dealt with the influences of collisional pressures and the possibility of particle fracture or penetration, the basic role of the phase behavior of matter-phase diagrams, amorphs, and polymorphs—has been neglected. Here, it is demonstrated for compact bodies that novel aspects of surface phase transitions provide a physical basis for efficient sticking through collisional melting/amorphization/polymorphization and subsequent fusion/annealing to extend the collisional velocity range of primary accretion to ΔVc ~ 1-100 m s-1 Gt V th, which encompasses both typical turbulent rms speeds and the velocity differences between boulder-sized and small grains ~1-50 m s-1. Therefore, as inspiraling meter-sized bodies collide with smaller particles in this high velocity collisional fusion

  10. ACCRETION IN PROTOPLANETARY DISKS BY COLLISIONAL FUSION

    SciTech Connect

    Wettlaufer, J. S.

    2010-08-10

    The formation of a solar system such as ours is believed to have followed a multi-stage process around a protostar and its associated accretion disk. Whipple first noted that planetesimal growth by particle agglomeration is strongly influenced by gas drag, and Cuzzi and colleagues have shown that when midplane particle mass densities approach or exceed those of the gas, solid-solid interactions dominate the drag effect. The size dependence of the drag creates a 'bottleneck' at the meter scale with such bodies rapidly spiraling into the central star, whereas much smaller or larger particles do not. Independent of whether the origin of the drag is angular momentum exchange with gas or solids in the disk, successful planetary accretion requires rapid planetesimal growth to kilometer scales. A commonly accepted picture is that for collisional velocities V{sub c} above a certain threshold value, V {sub th{approx}} 0.1-10 cm s{sup -1}, particle agglomeration is not possible; elastic rebound overcomes attractive surface and intermolecular forces. However, if perfect sticking is assumed for all ranges of interparticle collision speeds the bottleneck can be overcome by rapid planetesimal growth. While previous work has dealt with the influences of collisional pressures and the possibility of particle fracture or penetration, the basic role of the phase behavior of matter-phase diagrams, amorphs, and polymorphs-has been neglected. Here, it is demonstrated for compact bodies that novel aspects of surface phase transitions provide a physical basis for efficient sticking through collisional melting/amorphization/polymorphization and subsequent fusion/annealing to extend the collisional velocity range of primary accretion to {Delta}V{sub c} {approx} 1-100 m s{sup -1} >> V {sub th}, which encompasses both typical turbulent rms speeds and the velocity differences between boulder-sized and small grains {approx}1-50 m s{sup -1}. Therefore, as inspiraling meter-sized bodies collide

  11. Power Spectrum Density of Stochastic Oscillating Accretion Disk

    NASA Astrophysics Data System (ADS)

    Long, G. B.; Ou, J. W.; Zheng, Y. G.

    2016-06-01

    In this paper, we employ a stochastic oscillating accretion disk model for the power spectral index and variability of BL Lac object S5 0716+714. In the model, we assume that there is a relativistic oscillation of thin accretion disks and it interacts with an external thermal bath through a friction force and a random force. We simulate the light curve and the power spectrum density (PSD) at (i) over-damped, (ii) critically damped and (iii) under-damped cases, respectively. Our results show that the simulated PSD curves depend on the intrinsic property of the accretion disk, and it could be produced in a wide interval ranging from 0.94 to 2.05 by changing the friction coefficient in a stochastic oscillating accretion disk model. We argue that accretion disk stochastic oscillating could be a possible interpretation for observed PSD variability.

  12. Compact stars and accretion disks: Workshop summary

    NASA Astrophysics Data System (ADS)

    Li, J.

    1998-07-01

    A workshop on `Compact Stars and Accretion Disks' was held on 11-12 August 1997 at the Australian National University. The workshop was opened by Professor Jeremy Mould, the Director of Mount Stromlo Observatory. The workshop was organised to coincide with visits to the ANU Astrophysical Theory Centre by Professor Ron Webbink from the University of Illinois, Professor Rainer Wehrse from the University of Heidelberg and Dr Chris Tout from the University of Cambridge. The workshop attracted over 25 participants nationwide. Participants included members of the Special Research Centre for Theoretical Astrophysics, University of Sydney, led by Professor Don Melrose, Professor Dick Manchester from the ATNF, Professor Ravi Sood from ADFA, Dr John Greenhill from the University of Tasmania and Dr Rosemary Mardling from Monash University. Dr Helen Johnston from AAO and Dr Kurt Liffman from AFDL also attended the workshop. The abstracts of twelve of the workshop papers are presented in this summary.

  13. Accretion disk radiation dynamics and the cosmic battery

    SciTech Connect

    Koutsantoniou, Leela E.; Contopoulos, Ioannis E-mail: icontop@academyofathens.gr

    2014-10-10

    We investigate the dynamics of radiation in the surface layers of an optically thick astrophysical accretion disk around a Kerr black hole. The source of the radiation is the surface of the accretion disk itself, and not a central object as in previous studies of the Poynting-Robertson effect. We generate numerical sky maps from photon trajectories that originate on the surface of the disk as seen from the inner edge of the disk at the position of the innermost stable circular orbit. We investigate several accretion disk morphologies with a Shakura-Sunyaev surface temperature distribution. Finally, we calculate the electromotive source of the Cosmic Battery mechanism around the inner edge of the accretion disk and obtain characteristic timescales for the generation of astrophysical magnetic fields.

  14. TESTING CONVERGENCE FOR GLOBAL ACCRETION DISKS

    SciTech Connect

    Hawley, John F.; Richers, Sherwood A.; Guan Xiaoyue; Krolik, Julian H. E-mail: xg3z@virginia.edu

    2013-08-01

    Global disk simulations provide a powerful tool for investigating accretion and the underlying magnetohydrodynamic turbulence driven by magneto-rotational instability (MRI). Using them to accurately predict quantities such as stress, accretion rate, and surface brightness profile requires that purely numerical effects, arising from both resolution and algorithm, be understood and controlled. We use the flux-conservative Athena code to conduct a series of experiments on disks having a variety of magnetic topologies to determine what constitutes adequate resolution. We develop and apply several resolution metrics: (Q{sub z} ) and (Q{sub {phi}}), the ratio of the grid zone size to the characteristic MRI wavelength, {alpha}{sub mag}, the ratio of the Maxwell stress to the magnetic pressure, and /, the ratio of radial to toroidal magnetic field energy. For the initial conditions considered here, adequate resolution is characterized by (Q{sub z} ) {>=} 15, (Q{sub {phi}}) {>=} 20, {alpha}{sub mag} Almost-Equal-To 0.45, and /{approx}0.2. These values are associated with {>=}35 zones per scaleheight H, a result consistent with shearing box simulations. Numerical algorithm is also important. Use of the Harten-Lax-van Leer-Einfeldt flux solver or second-order interpolation can significantly degrade the effective resolution compared to the Harten-Lax-van Leer discontinuities flux solver and third-order interpolation. Resolution at this standard can be achieved only with large numbers of grid zones, arranged in a fashion that matches the symmetries of the problem and the scientific goals of the simulation. Without it, however, quantitative measures important to predictions of observables are subject to large systematic errors.

  15. Testing Convergence for Global Accretion Disks

    NASA Astrophysics Data System (ADS)

    Hawley, John F.; Richers, Sherwood A.; Guan, Xiaoyue; Krolik, Julian H.

    2013-08-01

    Global disk simulations provide a powerful tool for investigating accretion and the underlying magnetohydrodynamic turbulence driven by magneto-rotational instability (MRI). Using them to accurately predict quantities such as stress, accretion rate, and surface brightness profile requires that purely numerical effects, arising from both resolution and algorithm, be understood and controlled. We use the flux-conservative Athena code to conduct a series of experiments on disks having a variety of magnetic topologies to determine what constitutes adequate resolution. We develop and apply several resolution metrics: langQz rang and langQ phirang, the ratio of the grid zone size to the characteristic MRI wavelength, αmag, the ratio of the Maxwell stress to the magnetic pressure, and \\langle B_R^2\\rangle /\\langle B_\\phi ^2\\rangle, the ratio of radial to toroidal magnetic field energy. For the initial conditions considered here, adequate resolution is characterized by langQz rang >= 15, langQ phirang >= 20, αmag ≈ 0.45, and \\langle B_R^2\\rangle /\\langle B_\\phi ^2\\rangle \\approx 0.2. These values are associated with >=35 zones per scaleheight H, a result consistent with shearing box simulations. Numerical algorithm is also important. Use of the Harten-Lax-van Leer-Einfeldt flux solver or second-order interpolation can significantly degrade the effective resolution compared to the Harten-Lax-van Leer discontinuities flux solver and third-order interpolation. Resolution at this standard can be achieved only with large numbers of grid zones, arranged in a fashion that matches the symmetries of the problem and the scientific goals of the simulation. Without it, however, quantitative measures important to predictions of observables are subject to large systematic errors.

  16. Magnetic fields in primordial accretion disks

    NASA Astrophysics Data System (ADS)

    Latif, M. A.; Schleicher, D. R. G.

    2016-01-01

    Magnetic fields are considered a vital ingredient of contemporary star formation and may have been important during the formation of the first stars in the presence of an efficient amplification mechanism. Initial seed fields are provided via plasma fluctuations and are subsequently amplified by the small-scale dynamo, leading to a strong, tangled magnetic field. We explore how the magnetic field provided by the small-scale dynamo is further amplified via the α-Ω dynamo in a protostellar disk and assess its implications. For this purpose, we consider two characteristic cases, a typical Pop. III star with 10M⊙ and an accretion rate of 10-3M⊙ yr-1, and a supermassive star with 105M⊙ and an accretion rate of 10-1M⊙ yr-1. For the 10M⊙ Pop. III star, we find that coherent magnetic fields can be produced on scales of at least 100 AU, which are sufficient to drive a jet with a luminosity of 100L⊙ and a mass outflow rate of 10-3.7M⊙ yr-1. For the supermassive star, the dynamical timescales in its environment are even shorter, implying smaller orbital timescales and an efficient magnetization out to at least 1000 AU. The jet luminosity corresponds to ~106.0L⊙ and a mass outflow rate of 10-2.1M⊙ yr-1. We expect that the feedback from the supermassive star can have a relevant impact on its host galaxy.

  17. THE LARGE-SCALE MAGNETIC FIELDS OF THIN ACCRETION DISKS

    SciTech Connect

    Cao Xinwu; Spruit, Hendrik C. E-mail: henk@mpa-garching.mpg.de

    2013-03-10

    Large-scale magnetic field threading an accretion disk is a key ingredient in the jet formation model. The most attractive scenario for the origin of such a large-scale field is the advection of the field by the gas in the accretion disk from the interstellar medium or a companion star. However, it is realized that outward diffusion of the accreted field is fast compared with the inward accretion velocity in a geometrically thin accretion disk if the value of the Prandtl number P{sub m} is around unity. In this work, we revisit this problem considering the angular momentum of the disk to be removed predominantly by the magnetically driven outflows. The radial velocity of the disk is significantly increased due to the presence of the outflows. Using a simplified model for the vertical disk structure, we find that even moderately weak fields can cause sufficient angular momentum loss via a magnetic wind to balance outward diffusion. There are two equilibrium points, one at low field strengths corresponding to a plasma-beta at the midplane of order several hundred, and one for strong accreted fields, {beta} {approx} 1. We surmise that the first is relevant for the accretion of weak, possibly external, fields through the outer parts of the disk, while the latter one could explain the tendency, observed in full three-dimensional numerical simulations, of strong flux bundles at the centers of disk to stay confined in spite of strong magnetororational instability turbulence surrounding them.

  18. Accreting planets as dust dams in 'transition' disks

    SciTech Connect

    Owen, James E.

    2014-07-01

    We investigate under what circumstances an embedded planet in a protoplanetary disk may sculpt the dust distribution such that it observationally presents as a 'transition' disk. We concern ourselves with 'transition' disks that have large holes (≳ 10 AU) and high accretion rates (∼10{sup –9}-10{sup –8} M {sub ☉} yr{sup –1}), particularly, those disks which photoevaporative models struggle to explain. Adopting the observed accretion rates in 'transition' disks, we find that the accretion luminosity from the forming planet is significant, and can dominate over the stellar luminosity at the gap edge. This planetary accretion luminosity can apply a significant radiation pressure to small (s ≲ 1 μm) dust particles provided they are suitably decoupled from the gas. Secular evolution calculations that account for the evolution of the gas and dust components in a disk with an embedded, accreting planet, show that only with the addition of the radiation pressure can we explain the full observed characteristics of a 'transition' disk (NIR dip in the spectral energy distribution (SED), millimeter cavity, and high accretion rate). At suitably high planet masses (≳ 3-4 M{sub J} ), radiation pressure from the accreting planet is able to hold back the small dust particles, producing a heavily dust-depleted inner disk that is optically thin to infrared radiation. The planet-disk system will present as a 'transition' disk with a dip in the SED only when the planet mass and planetary accretion rate are high enough. At other times, it will present as a disk with a primordial SED, but with a cavity in the millimeter, as observed in a handful of protoplanetary disks.

  19. Evolution of Pre-Main Sequence Accretion Disks

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2003-01-01

    The aim of this project is to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, pre-main sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we are developing much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; measuring disk accretion rates in these systems; and constructing detailed model disk structures consistent with observations to infer physical conditions such as grain growth in protoplanetary disks.

  20. Evolution of Pre-Main Sequence Accretion Disks

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2005-01-01

    The aim of this project was to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, premain sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we developed much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; measured disk accretion rates in these systems; and constructed detailed model disk structures consistent with observations to infer physical conditions such as grain growth in protoplanetary disks.

  1. Evolution of Pre-Main Sequence Accretion Disks

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2004-01-01

    The aim of this project is to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, pre-main sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we are developing much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; measuring disk accretion rates in these systems; and constructing detailed model disk structures consistent with observations to infer physical conditions such as grain growth in protoplanetary disks.

  2. A State-dependent Influence of Type I Bursts on the Accretion in 4U 1608-52?

    NASA Astrophysics Data System (ADS)

    Ji, Long; Zhang, Shu; Chen, YuPeng; Zhang, Shuang-Nan; Torres, Diego F.; Kretschmar, Peter; Li, Jian

    2014-08-01

    We investigated the possible feedback of type I bursts on the accretion process during the spectral evolution of the atoll source 4U 1608-52. By fitting the burst spectrum with a blackbody and an adjustable, persistent spectral component, we found that the latter is significantly state-dependent. In the banana state, the persistent flux increases along the burst evolution, while in the island state this trend holds only when the bursts are less luminous and start to reverse at higher burst luminosities. We speculate that, by taking into account both the Poynting-Robertson drag and radiation pressure, these phenomena may arise from the interactions between the radiation field of the type I burst and the inner region of the accretion disk.

  3. A STATE-DEPENDENT INFLUENCE OF TYPE I BURSTS ON THE ACCRETION IN 4U 1608-52?

    SciTech Connect

    Ji, Long; Zhang, Shu; Chen, YuPeng; Zhang, Shuang-Nan; Li, Jian; Torres, Diego F.; Kretschmar, Peter

    2014-08-20

    We investigated the possible feedback of type I bursts on the accretion process during the spectral evolution of the atoll source 4U 1608-52. By fitting the burst spectrum with a blackbody and an adjustable, persistent spectral component, we found that the latter is significantly state-dependent. In the banana state, the persistent flux increases along the burst evolution, while in the island state this trend holds only when the bursts are less luminous and start to reverse at higher burst luminosities. We speculate that, by taking into account both the Poynting-Robertson drag and radiation pressure, these phenomena may arise from the interactions between the radiation field of the type I burst and the inner region of the accretion disk.

  4. Compton heated winds and coronae above accretion disks. I Dynamics

    NASA Technical Reports Server (NTRS)

    Begelman, M. C.; Mckee, C. F.; Shields, G. A.

    1983-01-01

    X rays emitted in the inner part of an accretion disk system can heat the surface of the disk farther out, producing a corona and possibly driving off a strong wind. The dynamics of Compton-heated coronae and winds are analyzed using an approximate two-dimensional technique to estimate the mass loss rate as a function of distance from the source of X rays. The findings have important dynamical implications for accretion disks in quasars, active galactic nuclei, X ray binaries, and cataclysmic variables. These include: mass loss from the disk possibly comparable with or exceeding the net accretion rate onto the central compact object, which may lead to unstable accretion; sufficient angular momentum loss in some cases to truncate the disk in a semidetached binary at a smaller radius than that predicted by tidal truncation theories; and combined static plus ram pressure in the wind adequate to confine line-emitting clouds in quasars and Seyfert galaxies.

  5. Burst-Disk Device Simulates Effect Of Pyrotechnic Device

    NASA Technical Reports Server (NTRS)

    Rogers, James P.; Sexton, James H.

    1995-01-01

    Expendable disks substituted for costly pyrotechnic devices for testing actuators. Burst-disk device produces rush of pressurized gas similar to pyrotechnic device. Designed to reduce cost of testing pyrotechnically driven emergency actuators (parachute-deploying mechanisms in original application).

  6. A pure hydrodynamic origin of accretion disk turbulence

    NASA Astrophysics Data System (ADS)

    Nath, Sujit Kumar; Mukhopadhyay, Banibrata

    2016-07-01

    Accretion disks consist of flows for which angular velocity decreases but specific angular momentum increases with increasing radial coordinate. Such flows are Rayleigh stable, but must be turbulent in order to explain observed data. Since molecular viscosity is negligible in these systems, scientists have argued for turbulent viscosity for energy dissipation and hence to explain infall of matter. However, so far, the success to explain the origin of turbulence in accretion disks is done with caveats. Here we investigate the evolution of pure hydrodynamic perturbations in stochastically driven accretion disks. We show that the accretion flows, which are inevitably driven by stochastic noise, are hydrodynamically unstable under linear perturbations. We also argue that in accretion disks, stochastic forcing appears generically due to the presence of shear between different annuli of the disk. This work resolves the turbulence problem of accretion disks from pure hydrodynamics and explains the infall of matter for both hot and cold disks. This would help in explaining the origin of timing and spectral features in the disk flows generically.

  7. Conservative GRMHD simulations of moderately thin, tilted accretion disks

    SciTech Connect

    Teixeira, Danilo Morales; Fragile, P. Chris; Zhuravlev, Viacheslav V.; Ivanov, Pavel B.

    2014-12-01

    This paper presents our latest numerical simulations of accretion disks that are misaligned with respect to the rotation axis of a Kerr black hole. In this work, we use a new, fully conservative version of the Cosmos++ general relativistic magnetohydrodynamics (GRMHD) code, coupled with an ad hoc cooling function designed to control the thickness of the disk. Together these allow us to simulate the thinnest tilted accretion disks ever using a GRMHD code. In this way, we are able to probe the regime where the dimensionless stress and scale height of the disk become comparable. We present results for both prograde and retrograde cases. The simulated prograde tilted disk shows no sign of Bardeen-Petterson alignment even in the innermost parts of the disk. The simulated retrograde tilted disk, however, does show modest alignment. The implication of these results is that the parameter space associated with Bardeen-Petterson alignment for prograde disks may be rather small, only including very thin disks. Unlike our previous work, we find no evidence for standing shocks in our simulated tilted disks. We ascribe this to the black hole spin, tilt angle, and disk scale height all being small in these simulations. We also add to the growing body of literature pointing out that the turbulence driven by the magnetorotational instability in global simulations of accretion disks is not isotropic. Finally, we provide a comparison between our moderately thin, untilted reference simulation and other numerical simulations of thin disks in the literature.

  8. LUNAR ACCRETION FROM A ROCHE-INTERIOR FLUID DISK

    SciTech Connect

    Salmon, Julien; Canup, Robin M. E-mail: robin@boulder.swri.edu

    2012-11-20

    We use a hybrid numerical approach to simulate the formation of the Moon from an impact-generated disk, consisting of a fluid model for the disk inside the Roche limit and an N-body code to describe accretion outside the Roche limit. As the inner disk spreads due to a thermally regulated viscosity, material is delivered across the Roche limit and accretes into moonlets that are added to the N-body simulation. Contrary to an accretion timescale of a few months obtained with prior pure N-body codes, here the final stage of the Moon's growth is controlled by the slow spreading of the inner disk, resulting in a total lunar accretion timescale of {approx}10{sup 2} years. It has been proposed that the inner disk may compositionally equilibrate with the Earth through diffusive mixing, which offers a potential explanation for the identical oxygen isotope compositions of the Earth and Moon. However, the mass fraction of the final Moon that is derived from the inner disk is limited by resonant torques between the disk and exterior growing moons. For initial disks containing <2.5 lunar masses (M{sub Last-Quarter-Moon }), we find that a final Moon with mass > 0.8 M{sub Last-Quarter-Moon} contains {<=}60% material derived from the inner disk, with this material preferentially delivered to the Moon at the end of its accretion.

  9. DISTRIBUTION OF ACCRETING GAS AND ANGULAR MOMENTUM ONTO CIRCUMPLANETARY DISKS

    SciTech Connect

    Tanigawa, Takayuki; Ohtsuki, Keiji; Machida, Masahiro N.

    2012-03-01

    We investigate gas accretion flow onto a circumplanetary disk from a protoplanetary disk in detail by using high-resolution three-dimensional nested-grid hydrodynamic simulations, in order to provide a basis of formation processes of satellites around giant planets. Based on detailed analyses of gas accretion flow, we find that most of gas accretion onto circumplanetary disks occurs nearly vertically toward the disk surface from high altitude, which generates a shock surface at several scale heights of the circumplanetary disk. The gas that has passed through the shock surface moves inward because its specific angular momentum is smaller than that of the local Keplerian rotation, while gas near the midplane in the protoplanetary disk cannot accrete to the circumplanetary disk. Gas near the midplane within the planet's Hill sphere spirals outward and escapes from the Hill sphere through the two Lagrangian points L{sub 1} and L{sub 2}. We also analyze fluxes of accreting mass and angular momentum in detail and find that the distributions of the fluxes onto the disk surface are well described by power-law functions and that a large fraction of gas accretion occurs at the outer region of the disk, i.e., at about 0.1 times the Hill radius. The nature of power-law functions indicates that, other than the outer edge, there is no specific radius where gas accretion is concentrated. These source functions of mass and angular momentum in the circumplanetary disk would provide us with useful constraints on the structure and evolution of the circumplanetary disk, which is important for satellite formation.

  10. Dynamo magnetic-field generation in turbulent accretion disks

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.

    1991-01-01

    Magnetic fields can play important roles in the dynamics and evolution of accretion disks. The presence of strong differential rotation and vertical density gradients in turbulent disks allows the alpha-omega dynamo mechanism to offset the turbulent dissipation and maintain strong magnetic fields. It is found that MHD dynamo magnetic-field normal modes in an accretion disk are highly localized to restricted regions of a disk. Implications for the character of real, dynamically constrained magnetic fields in accretion disks are discussed. The magnetic stress due to the mean magnetic field is found to be of the order of a viscous stress. The dominant stress, however, is likely to come from small-scale fluctuating magnetic fields. These fields may also give rise to energetic flares above the disk surface, providing a possible explanation for the highly variable hard X-ray emission from objects like Cyg X-l.

  11. Accretion Disks in Two-dimensional Hoyle-Lyttleton Flow

    NASA Astrophysics Data System (ADS)

    Blondin, John M.

    2013-04-01

    We investigate the flip-flop instability observed in two-dimensional planar hydrodynamic simulations of Hoyle-Lyttleton accretion in the case of an accreting object with a radius much smaller than the nominal accretion radius, as one would expect in astrophysically relevant situations. Contrary to previous results with larger accretors, accretion from a homogenous medium onto a small accretor is characterized by a robust, quasi-Keplerian accretion disk. For gas with a ratio of specific heats of 5/3, such a disk remains locked in one direction for a uniform ambient medium. The accretion flow is more variable for gas with a ratio of specific heats of 4/3, with more dynamical interaction of the disk flow with the bow shock leading to occasional flips in the direction of rotation of the accretion disk. In both cases the accretion of angular momentum is determined by the flow pattern behind the accretion shock rather than by the parameters of the upstream flow.

  12. TEMPERATURE STRUCTURE OF PROTOPLANETARY DISKS UNDERGOING LAYERED ACCRETION

    SciTech Connect

    Lesniak, M. V.; Desch, S. J.

    2011-10-20

    We calculate the temperature structures of protoplanetary disks (PPDs) around T Tauri stars heated by both incident starlight and viscous dissipation. We present a new algorithm for calculating the temperatures in disks in hydrostatic and radiative equilibrium, based on Rybicki's method for iteratively calculating the vertical temperature structure within an annulus. At each iteration, the method solves for the temperature at all locations simultaneously, and converges rapidly even at high (>>10{sup 4}) optical depth. The method retains the full frequency dependence of the radiation field. We use this algorithm to study for the first time disks evolving via the magnetorotational instability. Because PPD midplanes are weakly ionized, this instability operates preferentially in their surface layers, and disks will undergo layered accretion. We find that the midplane temperatures T{sub mid} are strongly affected by the column density {Sigma}{sub a} of the active layers, even for fixed mass accretion rate M-dot . Models assuming uniform accretion predict midplane temperatures in the terrestrial planet forming region several x 10{sup 2} K higher than our layered accretion models do. For M-dot < 10{sup -7} M{sub sun} yr{sup -1} and the column densities {Sigma}{sub a} < 10 g cm{sup -2} associated with layered accretion, disk temperatures are indistinguishable from those of a passively heated disk. We find emergent spectra are insensitive to {Sigma}{sub a}, making it difficult to observationally identify disks undergoing layered versus uniform accretion.

  13. Accretion Disks in Supersoft X-ray Sources

    NASA Technical Reports Server (NTRS)

    Popham, Robert; DiStefano, Rosanne

    1996-01-01

    We examine the role of the accretion disk in the steady-burning white dwarf model for supersoft sources. The accretion luminosity of the disk is quite small compared to the nuclear burning luminosity of the central source. Thus, in contrast to standard accretion disks, the main role of the disk is to reprocess the radiation from the white dwarf. We calculate models of accretion disks around luminous white dwarfs and compare the resulting disk fluxes to optical and UV observations of the LMC supersoft sources CAL 83, CAL 87, and RX J0513.9-6951. We find that if the white dwarf luminosity is near the upper end of the steady-burning region, and the flaring of the disk is included, then reprocessing by the disk can account for the UV fluxes and a substantial fraction of the optical fluxes of these systems. Reprocessing by the companion star can provide additional optical flux, and here too the disk plays an important role: since the disk is fairly thick, it shadows a significant fraction of the companion's surface.

  14. Gamma-ray bursts from the accretion of solid bodies onto high-velocity Galactic neutron stars

    SciTech Connect

    Colgate, S.A.; Leonard, P.J.T.

    1993-12-31

    We propose a simple model for the gamma-ray bursts based on high- velocity Galactic neutron stars that have accretion disks. The latter are formed from a mixture of material from the supernova shell and that ablated from a pre-supernova binary companion. Accretion onto the neutron star from this disk when the disk is still largely gaseous may result in a soft gamma-ray repeater phase. Much later, after the neutron star has moved away from its birthplace, solid bodies form in the disk, and some are perturbed into hitting the neutron star to create gamma-ray bursts. This model makes several predictions that are consistent with the observations. The observed combination of a high degree of isotropy on the sky coupled with the observed value of < V/V{sub max}> is not, at first glance, predicted, but is not impossible to attain in our model.

  15. TLUSTY: Stellar Atmospheres, Accretion Disks, and Spectroscopic Diagnostics

    NASA Astrophysics Data System (ADS)

    Hubeny, Ivan; Lanz, Thierry

    2011-09-01

    TLUSTY is a user-oriented package written in FORTRAN77 for modeling stellar atmospheres and accretion disks and wide range of spectroscopic diagnostics. In the program's maximum configuration, the user may start from scratch and calculate a model atmosphere of a chosen degree of complexity, and end with a synthetic spectrum in a wavelength region of interest for an arbitrary stellar rotation and an arbitrary instrumental profile. The user may also model the vertical structure of annuli of an accretion disk.

  16. Simulations of accretion disks in pseudo-complex General Relativity

    NASA Astrophysics Data System (ADS)

    Hess, P. O.; Algalán B., M.; Schönenbach, T.; Greiner, W.

    2015-11-01

    After a summary on pseudo-complex General Relativity (pc-GR), circular orbits and stable orbits in general are discussed, including predictions compared to observations. Using a modified version of a model for accretions disks, presented by Page and Thorne in 1974, we apply the raytracing technique in order to simulate the appearance of an accretion disk as it should be observed in a detector. In pc-GR we predict a dark ring near a very massive, rapidly rotating object.

  17. Angular Momentum Transport in Quasi-Keplerian Accretion Disks

    NASA Astrophysics Data System (ADS)

    Subramanian, Prasad; Pujari, B. S.; Becker, Peter A.

    2004-03-01

    We reexamine arguments advanced by Hayashi & Matsuda (2001), who claim that several simple, physically motivated derivations based on mean free path theory for calculating the viscous torque in a quasi-Keplerian accretion disk yield results that are inconsistent with the generally accepted model. If correct, the ideas proposed by Hayashi & Matsudawould radically alter our understanding of the nature of the angular momentum transport in the disk, which is a central feature of accretion disk theory. However, in this paper we point out several fallacies in their arguments and show that there indeed exists a simple derivation based on mean free path theory that yields an expression for the viscous torque that is proportional to the radial derivative of the angular velocity in the accretion disk, as expected. The derivation is based on the analysis of the epicyclic motion of gas parcels in adjacent eddies in the disk.

  18. Nonlinear dynamics of accretion disks with stochastic viscosity

    SciTech Connect

    Cowperthwaite, Philip S.; Reynolds, Christopher S.

    2014-08-20

    We present a nonlinear numerical model for a geometrically thin accretion disk with the addition of stochastic nonlinear fluctuations in the viscous parameter. These numerical realizations attempt to study the stochastic effects on the disk angular momentum transport. We show that this simple model is capable of reproducing several observed phenomenologies of accretion-driven systems. The most notable of these is the observed linear rms-flux relationship in the disk luminosity. This feature is not formally captured by the linearized disk equations used in previous work. A Fourier analysis of the dissipation and mass accretion rates across disk radii show coherence for frequencies below the local viscous frequency. This is consistent with the coherence behavior observed in astrophysical sources such as Cygnus X-1.

  19. Accretion disk emission from a BL Lacertae object

    NASA Technical Reports Server (NTRS)

    Urry, C. Megan; Wandel, Amri

    1990-01-01

    The accretion disk is an attractive model for BL Lac objects because of its preferred axis and high efficiency. While the smooth continuum spectra of BL Lacs do not show large UV bumps, in marked contrast to quasars, high quality simultaneous data do reveal deviations from smoothness. Using detailed calculations of cool accretion disk spectra, the best measured ultraviolet and soft x ray spectra of the BL Lac object PKS 2155-304 are fitted. The mass and accretion rate required are determined. A hot disk or corona could comptonize soft photons from the cool disk and produce the observed power law spectrum in the 1 to 10 keV range. The dynamic time scales in the disk regions that contribute most of the observed ultraviolet and soft x ray photons are consistent with the respective time scales for intensity variations. The mass derived from fitting the continuum spectrum is consistent with the limit derived from the fastest hard x ray variability.

  20. Disk Accretion of Tidally Disrupted Rocky Bodies onto White Dwarfs

    NASA Astrophysics Data System (ADS)

    Feng, Wanda; Desch, Steven; Turner, Neal; Kalyaan, Anusha

    2016-06-01

    About 1/3 of white dwarfs (WDs) are polluted with heavy elements (e.g., Koester et al., 2014; Zuckerman et al., 2010) that should sediment out of their atmospheres on astronomically short timescales unless replenished by accretion from a reservoir, at rates that for many WDs must exceed ~1010 g/s (Farihi et al., 2010). Direct accretion of planetesimals is too improbable and Poynting-Robertson drag of dust is too slow (due to the low luminosity of WDs) (Jura, 2003), so it is often assumed that WDs accrete from a disk of gas and solid particles, fed by tidal disruption of planeteismals inside the WD Roche limit (e.g. Debes et al., 2012; Rafikov, 2011a, 2011b). A few such gaseous disks have been directly observed, through emission from Ca II atoms in the disk (e.g. Manser et al., 2016; Wilson et al. 2014). Models successfully explain the accretion rates of metals onto the WD, provided the gaseous disk viscously spreads at rates consistent with a partially suppressed magnetorotational instability (Rafikov, 2011a, 2011b). However, these models currently do not explore the likely extent of the magnetorotational instability in disks by calculating the degree of ionization, or suppression by strong magnetic field.We present a 1-D model of a gaseous WD disk accretion, to assess the extent of the magnetorotational instability in WD disks. The composition of the disk, the ionization and recombination mechanisms, and the degree of ionization of the disk are explored. Magnetic field strengths consistent with WD dipolar magnetic fields are assumed. Elsasser numbers are calculated as a function of radius in the WD disk. The rate of viscous spreading is calculated, and the model of Rafikov (2011a, 2011b) updated to compute likely accretion rates of metals onto WDs.

  1. Electromagnetic signatures of thin accretion disks in wormhole geometries

    SciTech Connect

    Harko, Tiberiu; Kovacs, Zoltan; Lobo, Francisco S. N.

    2008-10-15

    In this paper, we study the physical properties and characteristics of matter forming thin accretion disks in static and spherically symmetric wormhole spacetimes. In particular, the time averaged energy flux, the disk temperature, and the emission spectra of the accretion disks are obtained for these exotic geometries and are compared with the Schwarzschild solution. It is shown that more energy is emitted from the disk in a wormhole geometry than in the case of the Schwarzschild potential and the conversion efficiency of the accreted mass into radiation is more than a factor of 2 higher for the wormholes than for static black holes. These effects in the disk radiation are confirmed in the radial profiles of temperature corresponding to theses flux distributions, and in the emission spectrum {omega}L({omega}) of the accretion disks. We conclude that specific signatures appear in the electromagnetic spectrum, thus leading to the possibility of distinguishing wormhole geometries by using astrophysical observations of the emission spectra from accretion disks.

  2. Vertical Structure of Magnetized Accretion Disks around Young Stars

    NASA Astrophysics Data System (ADS)

    Lizano, S.; Tapia, C.; Boehler, Y.; D'Alessio, P.

    2016-01-01

    We model the vertical structure of the magnetized accretion disks that are subject to viscous and resistive heating and irradiation by the central star. We apply our formalism to the radial structure of the magnetized accretion disks that are threaded by the poloidal magnetic field dragged during the process of star formation, which was developed by Shu and coworkers. We consider disks around low-mass protostars, T Tauri, and FU Orionis stars, as well as two levels of disk magnetization: {λ }{sys}=4 (strongly magnetized disks) and {λ }{sys}=12 (weakly magnetized disks). The rotation rates of strongly magnetized disks have large deviations from Keplerian rotation. In these models, resistive heating dominates the thermal structure for the FU Ori disk, and the T Tauri disk is very thin and cold because it is strongly compressed by magnetic pressure; it may be too thin compared with observations. Instead, in the weakly magnetized disks, rotation velocities are close to Keplerian, and resistive heating is always less than 7% of the viscous heating. In these models, the T Tauri disk has a larger aspect ratio, which is consistent with that inferred from observations. All the disks have spatially extended hot atmospheres where the irradiation flux is absorbed, although most of the mass (˜90%-95%) is in the disk midplane. With the advent of ALMA one expects direct measurements of magnetic fields and their morphology at disk scales. It will then be possible to determine the mass-to-flux ratio of magnetized accretion disks around young stars, an essential parameter for their structure and evolution. Our models contribute to the understanding of the vertical structure and emission of these disks.

  3. Vertical Structure of Magnetized Accretion Disks Around Young Stars

    NASA Astrophysics Data System (ADS)

    Tapia, Carlos; Lizano, Susana

    2016-01-01

    We model the vertical structure of magnetized accretion disks subject to viscous and resistive heating, and irradiation by the central star. We apply our formalism to the radial structure of magnetized accretion disks threaded by a poloidal magnetic field dragged during the process of star formation developed by Shu and coworkers. We consider disks around low mass protostars, T Tauri, and FU Orionis stars. We consider two levels of disk magnetization, λsys = 4 (strongly magnetized disks), and λsys = 12 (weakly magnetized disks). The rotation rates of strongly magnetized disks have large deviations from Keplerian rotation. In these models, resistive heating dominates the thermal structure for the FU Ori disk. The T Tauri disk is very thin and cold because it is strongly compressed by magnetic pressure; it may be too thin compared with observations. Instead, in the weakly magnetized disks, rotation velocities are close to Keplerian, and resistive heating is always less than 7% of the viscous heating. In these models, the T Tauri disk has a larger aspect ratio, consistent with that inferred from observations. All the disks have spatially extended hot atmospheres where the irradiation flux is absorbed, although most of the mass (~ 90 - 95 %) is in the disk midplane.

  4. Modeling Layered Accretion and the Magnetorotational Instability in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Lesniak, Michael V., III

    2012-05-01

    Understanding the temperature structure of protoplanetary disks (PPDs) is paramount to modeling disk evolution and future planet formation. PPDs around T Tauri stars have two primary heating sources, protostellar irradiation, which depends on the flaring of the disk, and accretional heating as viscous coupling between annuli dissipate energy. I have written a "1.5-D" radiative transfer code to calculate disk temperatures assuming hydrostatic and radiative equilibrium. The model solves for the temperature at all locations simultaneously using Rybicki's method, converges rapidly at high optical depth, and retains full frequency dependence. The likely cause of accretional heating in PPDs is the magnetorotational instability (MRI), which acts where gas ionization is sufficiently high for gas to couple to the magnetic field. This will occur in surface layers of the disk, leaving the interior portions of the disk inactive ("dead zone"). I calculate temperatures in PPDs undergoing such "layered accretion." Since the accretional heating is concentrated far from the midplane, temperatures in the disk's interior are lower than in PPDs modeled with vertically uniform accretion. The method is used to study for the first time disks evolving via the magnetorotational instability, which operates primarily in surface layers. I find that temperatures in layered accretion disks do not significantly differ from those of "passive disks," where no accretional heating exists. Emergent spectra are insensitive to active layer thickness, making it difficult to observationally identify disks undergoing layered vs. uniform accretion. I also calculate the ionization chemistry in PPDs, using an ionization network including multiple charge states of dust grains. Combined with a criterion for the onset of the MRI, I calculate where the MRI can be initiated and the extent of dead zones in PPDs. After accounting for feedback between temperature and active layer thickness, I find the surface

  5. ON THE STRUCTURE OF ACCRETION DISKS WITH OUTFLOWS

    SciTech Connect

    Jiao Chengliang; Wu Xuebing E-mail: wuxb@pku.edu.cn

    2011-06-01

    To study the outflows from accretion disks, we solve the set of hydrodynamic equations for accretion disks in spherical coordinates (r{theta}{phi}) to obtain the explicit structure along the {theta}-direction. Using self-similar assumptions in the radial direction, we change the equations to a set of ordinary differential equations about the {theta}-coordinate, which are then solved with symmetrical boundary conditions in the equatorial plane; the velocity field is then obtained. The {alpha} viscosity prescription is applied and an advective factor f is used to simplify the energy equation. The results display thinner, quasi-Keplerian disks for Shakura-Sunyaev disks; thicker, sub-Keplerian disks for advection-dominated accretion flows; and slim disks which are consistent with previous popular analytical models. However, an inflow region and an outflow region always exist, except when the viscosity parameter {alpha} is too large, which supports the results of some recent numerical simulation works. Our results indicate that the outflows should be common in various accretion disks and may be stronger in slim disks, where both advection and radiation pressure are dominant. We also present the structure's dependence on the input parameters and discuss their physical meanings. The caveats of this work and possible improvements for the future are discussed.

  6. ON HYDROMAGNETIC STRESSES IN ACCRETION DISK BOUNDARY LAYERS

    SciTech Connect

    Pessah, Martin E.; Chan, Chi-kwan E-mail: ckch@nordita.org

    2012-05-20

    Detailed calculations of the physical structure of accretion disk boundary layers, and thus their inferred observational properties, rely on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. The standard model for turbulent shear viscosity satisfies this assumption by construction. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI) is inefficient in disk regions where, as expected in boundary layers, the angular frequency increases with radius. In order to shed light on physically viable mechanisms for angular momentum transport in this inner disk region, we examine the generation of hydromagnetic stresses and energy density in differentially rotating backgrounds with angular frequencies that increase outward in the shearing-sheet framework. We isolate the modes that are unrelated to the standard MRI and provide analytic solutions for the long-term evolution of the resulting shearing MHD waves. We show that, although the energy density of these waves can be amplified significantly, their associated stresses oscillate around zero, rendering them an inefficient mechanism to transport significant angular momentum (inward). These findings are consistent with the results obtained in numerical simulations of MHD accretion disk boundary layers and challenge the standard assumption of efficient angular momentum transport in the inner disk regions. This suggests that the detailed structure of turbulent MHD accretion disk boundary layers could differ appreciably from those derived within the standard framework of turbulent shear viscosity.

  7. Gravitomagnetic acceleration of accretion disk matter to polar jets

    NASA Astrophysics Data System (ADS)

    Poirier, John; Mathews, Grant

    2016-03-01

    The motion of the masses of an accretion disk around a black hole creates a general relativistic, gravitomagnetic field (GEM) from the moving matter (be it charged or uncharged) of the accretion disk. This GEM field accelerates moving masses (neutral or charged) near the accretion disk vertically upward and away from the disk, and then inward toward the axis of the disk. As the accelerated material nears the axis with approximately vertical angles, a frame dragging effect contributes to the formation of narrow jets emanating from the poles. This GEM effect is numerically evaluated in the first post Newtonian (1PN) approximation from observable quantities like the mass and velocity of the disk. This GEM force is linear in the total mass of the accretion disk matter and quadratic in the velocity of matter near to the disk with approximately the same velocity. Since these masses and velocities can be quite high in astrophysical contexts, the GEM force, which in other contexts is weak, is quite significant. This GEM effect is compared to the ordinary electromagnetic effects applied to this problem in the past.

  8. Thermonuclear reactions in cool accreting neutron stars and burst phenomena

    NASA Technical Reports Server (NTRS)

    Miyaji, S.; Nomoto, K.

    1985-01-01

    The ignition of accreting materials on neutron stars is explored using strongly coupled plasma analytical techniques. The calculations cover the ignition temperature and density at the bottom of the accreted envelope of a neutron star. Emphasis is placed on low-temperature ignitions which take place at high densities. The investigation is extended to the accretion of material from a white dwarf in the form of pure He, C + O, or O + Ne + Mg. It is shown that electrons are strongly degenerate in low-temperature flashes, where the ignition is more dependent on density than on temperature. Precursor flashes 0.4-0.7 the intensity of the main burst will appear before the main bursts. The intensity relationship indicates that the appropriate model for an X-ray burst from a neutron star accreting from a white dwarf is a He shell flash in the presence of a hydrogen-rich atmosphere. The flash will have a maximum energy of 2 x 10 to the 43 ergs and could last as long as 40,000 sec.

  9. Accretion Disk Dynamics in X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Schulz, Norbert S.; Ji, Li; Nowak, M.; Canizares, C. R.; Kallman, T.

    2009-09-01

    The last decade of X-ray observations was an era of true discovery in the study of accretion phenomena in X-ray binaries. With the launch of high resolution X-ray spectrometers on board the Chandra X-ray Observatory and XMM Newton we gained novel insights in feedback processes in accretion disks. At the forefront are dynamics in winds and outflows. Recent observations now also not only reveal properties of accretion disk coronal phenomena but point us to highly variable activity in their appearance. Amongst others these include heating along the spectral branches in the Z-source Cyg X-2, short and longterm variations in the photo-ionized emissions in Cir X-1, highly variable and dynamic Ne edges in the ultra-compact binary 4U 0614+091. This presentation summarizes these recent developments and provides an outlook towards more dynamical accretion disk coronal models and perspectives for future missions.

  10. Accretion disk emission from a BL Lacertae object

    NASA Technical Reports Server (NTRS)

    Wandel, Amri; Urry, C. Megan

    1991-01-01

    It is suggested here that the UV and X-ray emission of BL Lac objects may originate in an accretion disk. Using detailed calculations of accretion disk spectra, the best-measured ultraviolet and soft X-ray spectra of the BL Lac object PKS 2155-304 are fitted, and the mass and accretion rate required is determined. The ultraviolet through soft X-ray continuum is well fitted by the spectrum of an accretion disk, but near-Eddington accretion rates are required to produce the soft X-ray excess. A hot disk or corona could Comptonize soft photons from the cool disk and produce the observed power-law spectrum in the 1-10 keV range. The dynamic time scale in the disk regions that contribute most of the observed ultraviolet and soft X-ray photons are consistent with the respective time scales for intensity variations observed in these two wave bands; the mass derived from fitting the continuum spectrum is consistent with the limit derived from the fastest hard X-ray variability.

  11. Evolution of Accretion Disks in Tidal Disruption Events

    NASA Astrophysics Data System (ADS)

    Shen, Rong-Feng; Matzner, Christopher D.

    2014-04-01

    During a stellar tidal disruption event (TDE), an accretion disk forms as stellar debris returns to the disruption site and circularizes. Rather than being confined within the circularizing radius, the disk can spread to larger radii to conserve angular momentum. A spreading disk is a source of matter for re-accretion at rates that may exceed the later stellar fallback rate, although a disk wind can suppress its contribution to the central black hole accretion rate. A spreading disk is detectible through a break in the central accretion rate history or, at longer wavelengths, by its own emission. We model the evolution of TDE disk size and accretion rate by accounting for the time-dependent fallback rate, for the influence of wind losses in the early advective stage, and for the possibility of thermal instability for accretion rates intermediate between the advection-dominated and gas-pressure-dominated states. The model provides a dynamic basis for modeling TDE light curves. All or part of a young TDE disk will precess as a solid body because of the Lense-Thirring effect, and precession may manifest itself as a quasi-periodic modulation of the light curve. The precession period increases with time. Applying our results to the jetted TDE candidate Swift J1644+57, whose X-ray light curve shows numerous quasi-periodic dips, we argue that the data best fit a scenario in which a main-sequence star was fully disrupted by an intermediate mass black hole on an orbit significantly inclined from the black hole equator, with the apparent jet shutoff at t = 500 days corresponding to a disk transition from the advective state to the gas-pressure-dominated state.

  12. Evolution of accretion disks in tidal disruption events

    SciTech Connect

    Shen, Rong-Feng; Matzner, Christopher D. E-mail: matzner@astro.utoronto.ca

    2014-04-01

    During a stellar tidal disruption event (TDE), an accretion disk forms as stellar debris returns to the disruption site and circularizes. Rather than being confined within the circularizing radius, the disk can spread to larger radii to conserve angular momentum. A spreading disk is a source of matter for re-accretion at rates that may exceed the later stellar fallback rate, although a disk wind can suppress its contribution to the central black hole accretion rate. A spreading disk is detectible through a break in the central accretion rate history or, at longer wavelengths, by its own emission. We model the evolution of TDE disk size and accretion rate by accounting for the time-dependent fallback rate, for the influence of wind losses in the early advective stage, and for the possibility of thermal instability for accretion rates intermediate between the advection-dominated and gas-pressure-dominated states. The model provides a dynamic basis for modeling TDE light curves. All or part of a young TDE disk will precess as a solid body because of the Lense-Thirring effect, and precession may manifest itself as a quasi-periodic modulation of the light curve. The precession period increases with time. Applying our results to the jetted TDE candidate Swift J1644+57, whose X-ray light curve shows numerous quasi-periodic dips, we argue that the data best fit a scenario in which a main-sequence star was fully disrupted by an intermediate mass black hole on an orbit significantly inclined from the black hole equator, with the apparent jet shutoff at t = 500 days corresponding to a disk transition from the advective state to the gas-pressure-dominated state.

  13. Evolution of Pre-Main Sequence Accretion Disks

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2000-01-01

    The aim of this project was to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, pre-main sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we: (1) Developed detailed calculations of disk structure to study physical conditions and investigate the observational effects of grain growth in T Tauri disks; (2) Studied the dusty emission and accretion rates in older disk systems, with ages closer to the expected epoch of (giant) planet formation at 3-10 Myr, and (3) Began a project to develop much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution.

  14. Viscous Instability Triggered by Layered Accretion in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yasuhiro; Takeuchi, Taku

    2015-12-01

    Layered accretion is one of the inevitable ingredients in protoplanetary disks when disk turbulence is excited by magnetorotational instabilities (MRIs). In the accretion, disk surfaces where MRIs fully operate have a high value of disk accretion rate (\\dot{M}), while the disk midplane where MRIs are generally quenched ends up with a low value of \\dot{M}. Significant progress on understanding MRIs has recently been made by a number of dedicated MHD simulations, which requires improvement of the classical treatment of α in 1D disk models. To this end, we obtain a new expression of α by utilizing an empirical formula that is derived from recent MHD simulations of stratified disks with ohmic diffusion. It is interesting that this new formulation can be regarded as a general extension of the classical α. Armed with the new α, we perform a linear stability analysis of protoplanetary disks that undergo layered accretion, and we find that a viscous instability can occur around the outer edge of dead zones. Disks become stable in using the classical α. We identify that the difference arises from Σ-dependence of \\dot{M}; whereas Σ is uniquely determined for a given value of \\dot{M} in the classical approach, the new approach leads to \\dot{M} that is a multivalued function of Σ. We confirm our finding both by exploring a parameter space and by performing the 1D, viscous evolution of disks. We finally discuss other nonideal MHD effects that are not included in our analysis but may affect our results.

  15. THERMAL EQUILIBRIA OF MAGNETICALLY SUPPORTED BLACK HOLE ACCRETION DISKS

    SciTech Connect

    Oda, H.; Machida, M.; Nakamura, K. E.; Matsumoto, R.

    2009-05-20

    We present new thermal equilibrium solutions for optically thin and optically thick disks incorporating magnetic fields. The purpose of this paper is to explain the bright hard state and the bright/slow transition observed in the rising phases of outbursts in black hole candidates. On the basis of the results of three-dimensional magnetohydrodynamic simulations, we assume that magnetic fields inside the disk are turbulent and dominated by the azimuthal component and that the azimuthally averaged Maxwell stress is proportional to the total (gas, radiation, and magnetic) pressure. We prescribe the magnetic flux advection rate to determine the azimuthal magnetic flux at a given radius. Local thermal equilibrium solutions are obtained by equating the heating, radiative cooling, and heat advection terms. We find magnetically supported ({beta} = (p {sub gas} + p {sub rad})/p {sub mag} < 1), thermally stable solutions for both optically thin disks and optically thick disks, in which the heating enhanced by the strong magnetic field balances the radiative cooling. The temperature in a low-{beta} disk (T {approx} 10{sup 7}-10{sup 11}K) is lower than that in an advection-dominated accretion flow (or radiatively inefficient accretion flow) but higher than that in a standard disk. We also study the radial dependence of the thermal equilibrium solutions. The optically thin, low-{beta} branch extends to M-dot{approx}>0.1 M-dot{sub Edd}, where M-dot is the mass accretion rate and M-dot{sub Edd} is the Eddington mass accretion rate, in which the temperature anticorrelates with the mass accretion rate. Thus, optically thin low-{beta} disks can explain the bright hard state. Optically thick, low-{beta} disks have the radial dependence of the effective temperature T {sub eff} {proportional_to} piv{sup -3/4}. Such disks will be observed as staying in a high/soft state. Furthermore, limit cycle oscillations between an optically thick low-{beta} disk and a slim disk will occur because

  16. Magnetohydrodynamic simulations of outflows from accretion disks

    NASA Technical Reports Server (NTRS)

    Ustyugova, G. V.; Koldoba, A. V.; Romanova, M. M.; Chechetkin, V. M.; Lovelace, R. V. E.

    1995-01-01

    Magnetohydrodynamic simulations have been made of the formation of outflows from a Keplerian disk threaded by a magnetic field. The disk is treated as a boundary condition, where matter is ejected with Keplerian azimuthal speed and poloidal speed less than the slow magnetosonic velocity, and where boundary conditions on the magnetic field correspond to a highly conducting disk. Initially, the space above the disk, the corona, is filled with high specific entropy plasma in thermal equilibrium in the gravitational potential of the central object. The initial magnetic field is poloidal and is represented by a superposition of monopoles located below the plane of the disk. The rotation of the disk twists the initial poloidal magnetic field, and this twist propagates into the corona pushing and collimating matter into jetlike outflow in a cylindrical region. Matter outflowing from the disk flows and accelerates in the z-direction owing to both the magnetic and pressure gradient forces. The flow accelerates through the slow magnetosonic and Alfven surfaces and at larger distances through the fast magnetosonic surface. The flow velocity of the jet is approximately parallel to the z-axis, and the collimation results from the pinching force of the toroidal magnetic field. For a nonrotating disk no collimation is observed.

  17. Accretion Disks Driven by External Radiation Drag around Central Luminous Sources

    NASA Astrophysics Data System (ADS)

    Fukue, Jun; Umemura, Masayuki

    1995-08-01

    Accretion disks/disk accretions (beta -disks) driven by the external radiation drag exerted by a central luminous source are presented under the steady and subrelativistic approximations. In a cold regime, where the gravity of the central object, the radiation force, and the radiation drag are included, but the pressure-gradient force is neglected, we find steady solutions such that the infalling velocity v_r is inversely proportional to radius r far from the center and becomes constant near to the center, while the rotation velocity v_ϕ is Keplerian far from the center and drops exponentially near to the center. In a warm regime, where the effect of the gas pressure is also taken into account, we find steady transonic solutions such that a flow accreting subsonically and rotating with the Keplerian velocity far from the center becomes, after passing a sonic point, an almost radially accreting supersonic flow with no angular momentum. Due to the effect of external radiation drag, the angular momentum of the gas is removed. In particular, it is quickly lost inside the characteristic radius r_0, which is expressed as r_0 = displaystyle (Gamma (2)/(1-Gamma )r_) g, where Gamma is the central luminosity normalized by the Eddington luminosity and r_g is the Schwarzschild radius of the central object. As a result, the nearly Keplerian rotating disk outside r_0 turns to a nearly radial flow inside r_0. Furthermore, in the vicinity of the central object the infall velocity attains a terminal value, at which the effective gravity is balanced by radiation drag. The terminal speed v_infty is found to be v_infty = - displaystyle (1-Gamma )/(2Gamma )c. Such accretion disks, where the angular momentum is removed via the external drag of radiation fields from the central source, are possible in several astrophysical contexts. For example, in the case of an X-ray burster the radiation density at the burst phases is very high in the inner region of the accretion disk, and therefore

  18. Accretion disk dynamics in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Peris, Charith Srian

    Accreting X-ray binaries consist of a normal star which orbits a compact object with the former transferring matter onto the later via an accretion disk. These accretion disks emit radiation across the entire electromagnetic spectrum. This thesis exploits two regions of the spectrum, exploring the (1) inner disk regions of an accreting black hole binary, GRS1915+105, using X-ray spectral analysis and (2) the outer accretion disks of a set of neutron star and black hole binaries using Doppler Tomography applied on optical observations. X-ray spectral analysis of black hole binary GRS1915+105: GRS1915+105 stands out as an exceptional black hole primarily due to the wild variability exhibited by about half of its X-ray observations. This study focused on the steady X-ray observations of the source, which were found to exhibit significant curvature in the harder coronal component within the RXTE/PCA band-pass. The roughly constant inner-disk radius seen in a majority of the steady-soft observations is strongly reminiscent of canonical soft state black-hole binaries. Remarkably, the steady-hard observations show the presence of growing truncation in the inner-disk. A majority of the steady observations of GRS1915+105 map to the states observed in canonical black hole binaries which suggests that within the complexity of this source is a simpler underlying basis of states. Optical tomography of X-ray binary systems: Doppler tomography was applied to the strong line features present in the optical spectra of X-ray binaries in order to determine the geometric structure of the systems' emitting regions. The point where the accretion stream hits the disk, also referred to as the "hotspot'', is clearly identified in the neutron star system V691 CrA and the black hole system Nova Muscae 1991. Evidence for stream-disk overflows exist in both systems, consistent with relatively high accretion rates. In contrast, V926 Sco does not show evidence for the presence of a hotspot which

  19. PARTICLE ACCELERATION DURING MAGNETOROTATIONAL INSTABILITY IN A COLLISIONLESS ACCRETION DISK

    SciTech Connect

    Hoshino, Masahiro

    2013-08-20

    Particle acceleration during the magnetorotational instability (MRI) in a collisionless accretion disk was investigated by using a particle-in-cell simulation. We discuss the important role that magnetic reconnection plays not only on the saturation of MRI but also on the relativistic particle generation. The plasma pressure anisotropy of p > p{sub ||} induced by the action of MRI dynamo leads to rapid growth in magnetic reconnection, resulting in the fast generation of nonthermal particles with a hard power-law spectrum. This efficient particle acceleration mechanism involved in a collisionless accretion disk may be a possible model to explain the origin of high-energy particles observed around massive black holes.

  20. Stability of general-relativistic accretion disks

    SciTech Connect

    Korobkin, Oleg; Abdikamalov, Ernazar B.; Schnetter, Erik; Stergioulas, Nikolaos; Zink, Burkhard

    2011-02-15

    Self-gravitating relativistic disks around black holes can form as transient structures in a number of astrophysical scenarios such as binary neutron star and black hole-neutron star coalescences, as well as the core collapse of massive stars. We explore the stability of such disks against runaway and nonaxisymmetric instabilities using three-dimensional hydrodynamics simulations in full general relativity using the Thor code. We model the disk matter using the ideal fluid approximation with a {Gamma}-law equation of state with {Gamma}=4/3. We explore three disk models around nonrotating black holes with disk-to-black hole mass ratios of 0.24, 0.17, and 0.11. Because of metric blending in our initial data, all of our initial models contain an initial axisymmetric perturbation which induces radial disk oscillations. Despite these oscillations, our models do not develop the runaway instability during the first several orbital periods. Instead, all of the models develop unstable nonaxisymmetric modes on a dynamical time scale. We observe two distinct types of instabilities: the Papaloizou-Pringle and the so-called intermediate type instabilities. The development of the nonaxisymmetric mode with azimuthal number m=1 is accompanied by an outspiraling motion of the black hole, which significantly amplifies the growth rate of the m=1 mode in some cases. Overall, our simulations show that the properties of the unstable nonaxisymmetric modes in our disk models are qualitatively similar to those in the Newtonian theory.

  1. Stability of general-relativistic accretion disks

    NASA Astrophysics Data System (ADS)

    Korobkin, Oleg; Abdikamalov, Ernazar B.; Schnetter, Erik; Stergioulas, Nikolaos; Zink, Burkhard

    2011-02-01

    Self-gravitating relativistic disks around black holes can form as transient structures in a number of astrophysical scenarios such as binary neutron star and black hole-neutron star coalescences, as well as the core collapse of massive stars. We explore the stability of such disks against runaway and nonaxisymmetric instabilities using three-dimensional hydrodynamics simulations in full general relativity using the Thor code. We model the disk matter using the ideal fluid approximation with a Γ-law equation of state with Γ=4/3. We explore three disk models around nonrotating black holes with disk-to-black hole mass ratios of 0.24, 0.17, and 0.11. Because of metric blending in our initial data, all of our initial models contain an initial axisymmetric perturbation which induces radial disk oscillations. Despite these oscillations, our models do not develop the runaway instability during the first several orbital periods. Instead, all of the models develop unstable nonaxisymmetric modes on a dynamical time scale. We observe two distinct types of instabilities: the Papaloizou-Pringle and the so-called intermediate type instabilities. The development of the nonaxisymmetric mode with azimuthal number m=1 is accompanied by an outspiraling motion of the black hole, which significantly amplifies the growth rate of the m=1 mode in some cases. Overall, our simulations show that the properties of the unstable nonaxisymmetric modes in our disk models are qualitatively similar to those in the Newtonian theory.

  2. ESTIMATION OF RELATIVISTIC ACCRETION DISK PARAMETERS FROM IRON LINE EMISSION

    SciTech Connect

    V. PARIEV; B. BROMLEY; W. MILLER

    2001-03-01

    The observed iron K{alpha} fluorescence lines in Seyfert I galaxies provide strong evidence for an accretion disk near a supermassive black hole as a source of the emission. Here we present an analysis of the geometrical and kinematic properties of the disk based on the extreme frequency shifts of a line profile as determined by measurable flux in both the red and blue wings. The edges of the line are insensitive to the distribution of the X-ray flux over the disk, and hence provide a robust alternative to profile fitting of disk parameters. Our approach yields new, strong bounds on the inclination angle of the disk and the location of the emitting region. We apply our method to interpret observational data from MCG-6-30-15 and find that the commonly assumed inclination 30{degree} for the accretion disk in MCG-6-30-15 is inconsistent with the position of the blue edge of the line at a 3{sigma} level. A thick turbulent disk model or the presence of highly ionized iron may reconcile the bounds on inclination from the line edges with the full line profile fits based on simple, geometrically thin disk models. The bounds on the innermost radius of disk emission indicate that the black hole in MCG-6-30-15 is rotating faster than 30% of theoretical maximum. When applied to data from NGC 4151, our method gives bounds on the inclination angle of the X-ray emitting inner disk of 50 {+-} 10{degree}, consistent with the presence of an ionization cone grazing the disk as proposed by Pedlar et al. (1993). The frequency extrema analysis also provides limits to the innermost disk radius in another Seyfert 1 galaxy, NGC 3516, and is suggestive of a thick disk model.

  3. NEUTRINO-COOLED ACCRETION MODEL WITH MAGNETIC COUPLING FOR X-RAY FLARES IN GAMMA-RAY BURSTS

    SciTech Connect

    Luo Yang; Gu Weimin; Liu Tong; Lu Jufu

    2013-08-20

    The neutrino-cooled accretion disk, which was proposed to work as the central engine of gamma-ray bursts, encounters difficulty in interpreting the X-ray flares after the prompt gamma-ray emission. In this paper, the magnetic coupling (MC) between the inner disk and the central black hole (BH) is taken into consideration. For mass accretion rates around 0.001 {approx} 0.1 M{sub Sun} s{sup -1}, our results show that the luminosity of neutrino annihilation can be significantly enhanced due to the coupling effects. As a consequence, after the gamma-ray emission, a remnant disk with mass M{sub disk} {approx}< 0.5 M{sub Sun} may power most of the observed X-ray flares with the rest frame duration less than 100 s. In addition, a comparison between the MC process and the Blandford-Znajek mechanism is shown on the extraction of BH rotational energy.

  4. Evolution of Pre-Main Sequence Accretion Disks

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2002-01-01

    The aim of this project is to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, pre-main sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we plan to: (1) Develop much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; (2) Study the dusty emission and accretion rates in these systems, with ages closer to the expected epoch of (giant) planet formation at 3-10 Myr; and (3) Develop detailed model disk structures consistent with observations to infer physical conditions in protoplanetary disks and to constrain possible grain growth as the first stage of planetesimal formation.

  5. Plasma (Accretion) Disks with High Magnetic Energy Densities

    NASA Astrophysics Data System (ADS)

    Rousseau, F.; Coppi, B.

    2006-04-01

    ``Corrugated'' plasma disks can form in the dominant gravity of a central object when the peak plasma pressure in the disk is of the same order as that of the pressure of the ``external'' magnetic field, while the magnetic field resulting from internal plasma currents is of the same order as the external field. The corrugation refers to a periodic variation of the plasma density in a region around the equatorial plane. The considered structure represents a transition between a ``classical'' accretion disk and a ``rings sequence'' configuration^2. The common feature of the ``corrugated'' and the ``rings sequence'' configurations is the ``crystal'' structure of the magnetic surfaces that consist of a sequence of pairs of oppositely directed toroidal current density filaments. The connection between the characteristics of these configurations and those of the marginally stable ballooning modes that can be found in a model accretion disk is pointed out and analyzed.

  6. Testing accretion disk instabilities in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Bagińska, Patrycja; Różańska, Agata; Janiuk, Agnieszka; Czerny, Bożena

    2014-12-01

    We study disk instabilities in black hole binaries in which X-ray novae outbursts were observed. Typically, one outburst occurs in each light curve, with total duration from 30 up to 400 days. The shape of an outburst can be very regular fast rise exponential decay (FRED) characteristic for ionisation instability mechanism that occurs in accretion disks, or irregular suggesting that, beside FRED, additional flickering occurs. We use the model which predicts time dependent evolution of ionisation instability in an accretion disk around black hole, assuming viscosity parameter to be proportional to the total pressure. We test it in detail for two objects: GX 339-4 and XTE J1818-245. The modelled light curves agree with the collected RXTE light curves, indicating that disk instability works in those objects.

  7. A model for neutrino emission from nuclear accretion disks

    NASA Astrophysics Data System (ADS)

    Deaton, Michael

    2015-04-01

    Compact object mergers involving at least one neutron star can produce short-lived black hole accretion engines. Over tens to hundreds of milliseconds such an engine consumes a disk of hot, nuclear-density fluid, and drives changes to its surrounding environment through luminous emission of neutrinos. The neutrino emission may drive an ultrarelativistic jet, may peel off the disk's outer layers as a wind, may irradiate those winds or other forms of ejecta and thereby change their composition, may change the composition and thermodynamic state of the disk itself, and may oscillate in its flavor content. We present the full spatial-, angular-, and energy-dependence of the neutrino distribution function around a realistic model of a nuclear accretion disk, to inform future explorations of these types of behaviors. Spectral Einstein Code (SpEC).

  8. Elliptical accretion disks in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Eracleous, Michael; Livio, Mario; Halpern, Jules P.; Storchi-Bergmann, Thaisa

    1995-01-01

    We present a calculation of the profiles of emission lines originating in a relativistic, eccentric disk, and show examples of the resulting model profiles. Our calculations are motivated by the fact that in about one-quarter of the double-peaked emission lines observed in radio-loud active galactic nuclei (and in the mildly active nucleus of NGC 1097), the red peak is stronger than the blue peak, which is contrary to the prediction of relativistic, circular disk models. Using the eccentric disk model we fit some of the observed profiles that cannot be fitted with a circular disk model. We propose two possible scenarios for the formation of an eccentric disk in an active galactic nucleus: (a) tidal perturbation of the disk around a supermassive black hole by a smaller binary companion, and (b) formation of an elliptical disk from the debris resulting from the tidal disruption of a star by the central black hole. In the former case we show that the eccentricity can be long-lived because of the presence of the binary companion. In the latter case, although the inner parts of the disk may circularize quickly, we estimate that the outer parts will maintain their eccentricity for times much longer than the local viscous time. We suggest that it may be possible to detect profile variability on much shorter timescales than those ranging from a decade to several centuries by comparing the evolution of the line profile with detailed model predictions. We argue that line-profile variability may also be the most promising discriminant among competing models for the origin of asymmetric, double-peaked emission lines.

  9. On the Gravitational Stability of Gravito-turbulent Accretion Disks

    NASA Astrophysics Data System (ADS)

    Lin, Min-Kai; Kratter, Kaitlin M.

    2016-06-01

    Low mass, self-gravitating accretion disks admit quasi-steady, “gravito-turbulent” states in which cooling balances turbulent viscous heating. However, numerical simulations show that gravito-turbulence cannot be sustained beyond dynamical timescales when the cooling rate or corresponding turbulent viscosity is too large. The result is disk fragmentation. We motivate and quantify an interpretation of disk fragmentation as the inability to maintain gravito-turbulence due to formal secondary instabilities driven by: (1) cooling, which reduces pressure support; and/or (2) viscosity, which reduces rotational support. We analyze the axisymmetric gravitational stability of viscous, non-adiabatic accretion disks with internal heating, external irradiation, and cooling in the shearing box approximation. We consider parameterized cooling functions in 2D and 3D disks, as well as radiative diffusion in 3D. We show that generally there is no critical cooling rate/viscosity below which the disk is formally stable, although interesting limits appear for unstable modes with lengthscales on the order of the disk thickness. We apply this new linear theory to protoplanetary disks subject to gravito-turbulence modeled as an effective viscosity, and cooling regulated by dust opacity. We find that viscosity renders the disk beyond ∼60 au dynamically unstable on radial lengthscales a few times the local disk thickness. This is coincident with the empirical condition for disk fragmentation based on a maximum sustainable stress. We suggest turbulent stresses can play an active role in realistic disk fragmentation by removing rotational stabilization against self-gravity, and that the observed transition in behavior from gravito-turbulent to fragmenting may reflect instability of the gravito-turbulent state itself.

  10. Magnetic Shearing Instablilities in Accretion Disks

    NASA Astrophysics Data System (ADS)

    Curran, D. B.; Vishniac, Ethan

    1994-12-01

    We modify the force equations of a weakly magnetized disk to include a diffusive term. This term is meant to approximate the effects of nonlinear turbulence in the disk. The Velikhov-Chandrasekhar instability appears as a local instability centered on a corotation radius. Imposing the natural boundary condition that the instability vanishes far from this radius eliminates the instability in the absence of noise or dissipation. The diffusive term restores it. We combine our equations to give a sixth order equation in the radial velocity. We examine this equation for meanful singularities using a local Taylor expansion. Real singularities in the complex frequency plane can imply the existence of branch lines, which will permit the existence of localized solutions corresponding to physically interesting instabilities. Having determined the singularities we plot their behavior as a function of the diffusion coeficient. Finally, we solve the original equation using the natural boundary conditions and discuss the application of our solutions to real, localized disk instabilities.

  11. Observational Signatures of Tilted Black Hole Accretion Disks from Simulations

    NASA Astrophysics Data System (ADS)

    Dexter, Jason; Fragile, P. Chris

    2011-03-01

    Geometrically thick accretion flows may be present in black hole X-ray binaries observed in the low/hard state and in low-luminosity active galactic nuclei. Unlike in geometrically thin disks, the angular momentum axis in these sources is not expected to align with the black hole spin axis. We compute images from three-dimensional general relativistic magnetohydrodynamic simulations of misaligned (tilted) accretion flows using relativistic radiative transfer and compare the estimated locations of the radiation edge with expectations from their aligned (untilted) counterparts. The radiation edge in the tilted simulations is independent of black hole spin for a tilt of 15°, in stark contrast to the results for untilted simulations, which agree with the monotonic dependence on spin expected from thin accretion disk theory. Synthetic emission line profiles from the tilted simulations depend strongly on the observer's azimuth and exhibit unique features such as broad "blue wings." Coupled with precession, the azimuthal variation could generate time fluctuations in observed emission lines, which would be a clear "signature" of a tilted accretion flow. Finally, we evaluate the possibility that the observed low- and high-frequency quasi-periodic oscillations (QPOs) from black hole binaries could be produced by misaligned accretion flows. Although low-frequency QPOs from precessing, tilted disks remains a viable option, we find little evidence for significant power in our light curves in the frequency range of high-frequency QPOs.

  12. The Sub-PC Scale Accretion Disk of NGC 4258

    NASA Astrophysics Data System (ADS)

    Humphreys, E. M. L.; Argon, A. L.; Greenhill, L. J.; Reid, M. J.; Moran, J. M.

    Water megamasers have been found to trace parsec/sub-parsec, circumnuclear accretion disks in several AGN (e.g., Circinus, NGC 1068 & NGC 4258). High-spatial (0.5 mas) and velocity resolution (0.2 km s-1) VLBA imaging of the disks reveals thin, warped `pannekoeken (pancake)'-style structures as opposed to thick tori in the inner regions of the central engines (40 000 Rsch). In this contribution, I will describe some current investigations into the dynamical and physical attributes of the water maser disk in NGC 4258, as revealed by VLBA, VLA and Effelsberg monitoring over 8 years.

  13. The Sub-Pc Scale Accretion Disk of Ngc 4258

    NASA Astrophysics Data System (ADS)

    Humphreys, E. M. L.; Argon, A. L.; Greenhill, L. J.; Reid, M. J.; Moran, J. M.

    2005-01-01

    Water megamasers have been found to trace parsec/sub-parsec, circumnuclear accretion disks in several AGN (e.g., Circinus, NGC 1068 & NGC 4258). High-spatial (0.5 mas) and velocity resolution (0.2 km s-1) VLBA imaging of the disks reveals thin, warped `pannekoeken (pancake)'-style structures as opposed to thick tori in the inner regions of the central engines (40 000 Rsch). In this contribution, I will describe some current investigations into the dynamical and physical attributes of the water maser disk in NGC 4258, as revealed by VLBA, VLA and Effelsberg monitoring over 8 years.

  14. MAGNETICALLY REGULATED GAS ACCRETION IN HIGH-REDSHIFT GALACTIC DISKS

    SciTech Connect

    Birnboim, Yuval

    2009-09-10

    Disk galaxies are in hydrostatic equilibrium along their vertical axis. The pressure allowing for this configuration consists of thermal, turbulent, magnetic, and cosmic-ray components. For the Milky Way the thermal pressure contributes {approx}10% of the total pressure near the plane, with this fraction dropping toward higher altitudes. Out of the rest, magnetic fields contribute {approx}1/3 of the pressure to distances of {approx}3 kpc above the disk plane. In this Letter, we attempt to extrapolate these local values to high-redshift, rapidly accreting, rapidly star-forming disk galaxies and study the effect of the extra pressure sources on the accretion of gas onto the galaxies. In particular, magnetic field tension may convert a smooth cold-flow accretion to clumpy, irregular star formation regions and rates. The infalling gas accumulates on the edge of the magnetic fields, supported by magnetic tension. When the mass of the infalling gas exceeds some threshold mass, its gravitational force cannot be balanced by magnetic tension anymore, and it falls toward the disk's plane, rapidly making stars. Simplified estimations of this threshold mass are consistent with clumpy star formation observed in SINS, UDF, GOODS, and GEMS surveys. We discuss the shortcomings of pure hydrodynamic codes in simulating the accretion of cold flows into galaxies, and emphasize the need for magnetohydrodynamic simulations.

  15. Structure and Spectroscopy of Black Hole Accretion Disks

    SciTech Connect

    Liedahl, D; Mauche, C

    2005-02-14

    The warped spacetime near black holes is one of the most exotic observable environments in the Universe. X-ray spectra from active galaxies obtained with the current generation of X-ray observatories reveal line emission that is modified by both special relativistic and general relativistic effects. The interpretation is that we are witnessing X-ray irradiated matter orbiting in an accretion disk around a supermassive black hole, as it prepares to cross the event horizon. This interpretation, however, is based upon highly schematized models of accretion disk structure. This report describes a project to design a detailed computer model of accretion disk atmospheres, with the goal of elucidating the high radiation density environments associated with mass flows in the curved spacetime near gravitationally collapsed objects. We have evolved the capability to generate realistic theoretical X-ray line spectra of accretion disks, thereby providing the means for a workable exploration of the behavior of matter in the strong-field limit of gravitation.

  16. Accretion, Disks, and Magnetic Activity in the TW Hya Association

    NASA Astrophysics Data System (ADS)

    Stelzer, B.; Frasca, A.; Alcalà, J. M.

    2016-01-01

    We present new photometric and spectroscopic data for the M-type members of the TW Hya association with the aim of a comprehensive study of accretion, disks and magnetic activity at the critical age of ~ 10 Myr where circumstellar matter disappears.

  17. Formation of primordial supermassive stars by burst accretion

    NASA Astrophysics Data System (ADS)

    Sakurai, Y.; Hosokawa, T.; Yoshida, N.; Yorke, H. W.

    2015-09-01

    Recent observations show that supermassive black holes (BHs) with ˜109 M⊙ exist at redshift z ≳ 6. A promising formation channel is the so-called direct collapse model, which posits that a massive seed BH forms through gravitational collapse of a ˜105 M⊙ supermassive star (SMS). We study the evolution of such an SMS growing by rapid mass accretion. In particular, we examine the impact of time-dependent mass accretion of repeating burst and quiescent phases expected to occur with a self-gravitating circumstellar disc. We show that protostars growing via episodic accretion can substantially contract during the quiescent phases, in contrast to the case of constant mass accretion, whereby the star expands roughly monotonically. The stellar effective temperature and ionizing photon emissivity increase accordingly, which can cause strong ionizing feedback and halt the mass accretion. With a fixed duration of the quiescent phase Δtq, this contraction occurs in early evolutionary phases, i.e. for M* ≲ 103 M⊙ with Δtq ≃ 103 yr. For later epochs and larger masses but the same Δtq, contraction is negligible even during quiescent phases. With larger Δtq, however, the star continues to contract during quiescent phases even for the higher stellar masses. We show that this behaviour is well understood by comparing the interval time and the thermal relaxation time for a bloated surface layer. We conclude that the feedback becomes effective, if Δtq ≳ 103 yr, which is possible in an accretion disc forming in the direct collapse model.

  18. NUCLEOSYNTHESIS IN THE OUTFLOWS ASSOCIATED WITH ACCRETION DISKS OF TYPE II COLLAPSARS

    SciTech Connect

    Banerjee, Indrani; Mukhopadhyay, Banibrata E-mail: bm@physics.iisc.ernet.in

    2013-11-20

    We investigate nucleosynthesis inside the outflows from gamma-ray burst (GRB) accretion disks formed by the Type II collapsars. In these collapsars, massive stars undergo core collapse to form a proto-neutron star initially, and a mild supernova (SN) explosion is driven. The SN ejecta lack momentum, and subsequently this newly formed neutron star gets transformed to a stellar mass black hole via massive fallback. The hydrodynamics and the nucleosynthesis in these accretion disks have been studied extensively in the past. Several heavy elements are synthesized in the disk, and much of these heavy elements are ejected from the disk via winds and outflows. We study nucleosynthesis in the outflows launched from these disks by using an adiabatic, spherically expanding outflow model, to understand which of these elements thus synthesized in the disk survive in the outflow. While studying this, we find that many new elements like isotopes of titanium, copper, zinc, etc., are present in the outflows. {sup 56}Ni is abundantly synthesized in most of the cases in the outflow, which implies that the outflows from these disks in a majority of cases will lead to an observable SN explosion. It is mainly present when outflow is considered from the He-rich, {sup 56}Ni/{sup 54}Fe-rich zones of the disks. However, outflow from the Si-rich zone of the disk remains rich in silicon. Although emission lines of many of these heavy elements have been observed in the X-ray afterglows of several GRBs by Chandra, BeppoSAX, XMM-Newton, etc., Swift seems to have not yet detected these lines.

  19. Tilted Thick-Disk Accretion onto a Kerr Black Hole

    SciTech Connect

    Fragile, P C; Anninos, P

    2003-12-12

    We present the first results from fully general relativistic numerical studies of thick-disk accretion onto a rapidly-rotating (Kerr) black hole with a spin axis that is tilted (not aligned) with the angular momentum vector of the disk. We initialize the problem with the solution for an aligned, constant angular momentum, accreting thick disk around a black hole with spin a/M = J/M{sup 2} = +0.9 (prograde disk). The black hole is then instantaneously tilted, through a change in the metric, by an angle {beta}{sub 0}. In this Letter we report results with {beta}{sub 0} = 0, 15, and 30{sup o}. The disk is allowed to respond to the Lense-Thirring precession of the tilted black hole. We find that the disk settles into a quasi-static, twisted, warped configuration with Lense-Thirring precession dominating out to a radius analogous to the Bardeen-Petterson transition in tilted Keplerian disks.

  20. Accreting protoplanets in the LkCa 15 transition disk.

    PubMed

    Sallum, S; Follette, K B; Eisner, J A; Close, L M; Hinz, P; Kratter, K; Males, J; Skemer, A; Macintosh, B; Tuthill, P; Bailey, V; Defrère, D; Morzinski, K; Rodigas, T; Spalding, E; Vaz, A; Weinberger, A J

    2015-11-19

    Exoplanet detections have revolutionized astronomy, offering new insights into solar system architecture and planet demographics. While nearly 1,900 exoplanets have now been discovered and confirmed, none are still in the process of formation. Transition disks, protoplanetary disks with inner clearings best explained by the influence of accreting planets, are natural laboratories for the study of planet formation. Some transition disks show evidence for the presence of young planets in the form of disk asymmetries or infrared sources detected within their clearings, as in the case of LkCa 15 (refs 8, 9). Attempts to observe directly signatures of accretion onto protoplanets have hitherto proven unsuccessful. Here we report adaptive optics observations of LkCa 15 that probe within the disk clearing. With accurate source positions over multiple epochs spanning 2009-2015, we infer the presence of multiple companions on Keplerian orbits. We directly detect Hα emission from the innermost companion, LkCa 15 b, evincing hot (about 10,000 kelvin) gas falling deep into the potential well of an accreting protoplanet. PMID:26581290

  1. UV line diagnostics of accretion disk winds in cataclysmic variables

    NASA Technical Reports Server (NTRS)

    Vitello, Peter; Shlosman, Isaac

    1992-01-01

    The IUE data base is used to analyze the UV line shapes of cataclysmic variables RW Sex, RW Tri, and V Sge. Observed lines are compared to synthetic line profiles computed using a model of rotating bi-conical winds from accretion disks. The wind model calculates the wind ionization structure self-consistently including photoionization from the disk and boundary layer and treats 3-D line radiation transfer in the Sobolev approximation. It is found that winds from accretion disks provide a good fit for reasonable parameters to the observed UV lines which include the P Cygni profiles for low inclination systems and pure emission at large inclination. Disk winds are preferable to spherical winds which originate on the white dwarf because they (1) require a much lower ratio of mass loss rate to accretion rate and are therefore more plausible energetically, (2) provide a natural source for a bi-conical distribution of mass outflow which produces strong scattering far above the disk leading to P Cygni profiles for low inclination systems, and pure line emission profiles at high inclination with the absence of eclipses in UV lines, and (3) produce rotation broadened pure emission lines at high inclination.

  2. Ultraviolet line diagnostics of accretion disk winds in cataclysmic variables

    NASA Technical Reports Server (NTRS)

    Vitello, Peter; Shlosman, Isaac

    1993-01-01

    The IUE data base is used to analyze the UV line shapes of the cataclysmic variables RW Sex, RW Tri, and V Sge. Observed lines are compared to synthetic line profiles computed using a model of rotating biconical winds from accretion disks. The wind model calculates the wind ionization structure self-consistently including photoionization from the disk and boundary layer and treats 3D line radiation transfer in the Sobolev approximation. It is found that winds from accretion disks provide a good fit for reasonable parameters to the observed UV lines which include the P Cygni profiles for low-inclination systems and pure emission at large inclination. Disk winds are preferable to spherical winds which originate on the white dwarf because they: (1) require a much lower ratio of mass-loss rate to accretion rate and are therefore more plausible energetically; (2) provide a natural source for a biconical distribution of mass outflow which produces strong scattering far above the disk leading to P Cygni profiles for low-inclination systems and pure line emission profiles at high inclination with the absence of eclipses in UV lines; and (3) produce rotation-broadened pure emission lines at high inclination.

  3. Accreting protoplanets in the LkCa 15 transition disk

    NASA Astrophysics Data System (ADS)

    Sallum, S.; Follette, K. B.; Eisner, J. A.; Close, L. M.; Hinz, P.; Kratter, K.; Males, J.; Skemer, A.; Macintosh, B.; Tuthill, P.; Bailey, V.; Defrère, D.; Morzinski, K.; Rodigas, T.; Spalding, E.; Vaz, A.; Weinberger, A. J.

    2015-11-01

    Exoplanet detections have revolutionized astronomy, offering new insights into solar system architecture and planet demographics. While nearly 1,900 exoplanets have now been discovered and confirmed, none are still in the process of formation. Transition disks, protoplanetary disks with inner clearings best explained by the influence of accreting planets, are natural laboratories for the study of planet formation. Some transition disks show evidence for the presence of young planets in the form of disk asymmetries or infrared sources detected within their clearings, as in the case of LkCa 15 (refs 8, 9). Attempts to observe directly signatures of accretion onto protoplanets have hitherto proven unsuccessful. Here we report adaptive optics observations of LkCa 15 that probe within the disk clearing. With accurate source positions over multiple epochs spanning 2009-2015, we infer the presence of multiple companions on Keplerian orbits. We directly detect Hα emission from the innermost companion, LkCa 15 b, evincing hot (about 10,000 kelvin) gas falling deep into the potential well of an accreting protoplanet.

  4. The magnetic-field structure in a stationary accretion disk

    NASA Astrophysics Data System (ADS)

    Piotrovich, M. Yu.; Silant'ev, N. A.; Gnedin, Yu. N.; Natsvlishvili, T. M.; Buliga, S. D.

    2016-05-01

    The magnetic-field structure in regions of stationary, planar accretion disks around active galactic nuclei where general-relativistic effects can be neglected (from 10 to 200 gravitational radii) is considered. It is assumed that the magnetic field in the outer edges of the disk, which forms in the magnetosphere of the central black hole during the creation of the relativisitic jets, corresponds to the field of a magnetic dipole perpendicular to the plane of the disk. In this case, the azimuthal field component B φ in the disk arises due to the presence of the radial field B ρ and the azimuthal velocity component U φ . The value of the magnetic field at the inner radius of the disk is taken to correspond to the solution of the induction equation in a diffusion approximation. Numerical solutions of the induction equation are given for a number of cases.

  5. A local instability of tidally distorted accretion disks

    NASA Technical Reports Server (NTRS)

    Goodman, Jeremy

    1993-01-01

    Hydrodynamic accretion disks in binary star systems have local, three-dimensional, approximately incompressible instabilities whose growth rate is linearly proportional to the tidal field of the secondary star. The instability occurs throughout the disk but is most rapid in the outer parts. The free energy for the instability derives from the tidal distortion of the disk rather than its differential rotation. The instability will excite m-parallel 1 internal waves of the type discussed by Vishniac et al. (1992), and it should facilitate return of angular momentum from the disk to the secondary star. It is closely related to a recently discovered instability that has been suggested as a mechanism for transition to turbulence in terrestrial and laboratory flows, but whether it will lead to strong turbulence in disks is as yet unclear.

  6. Electrodynamics of disk-accreting magnetic neutron stars

    NASA Technical Reports Server (NTRS)

    Miller, M. Coleman; Lamb, Frederick K.; Hamilton, Russell J.

    1994-01-01

    We have investigated the electrodynamics of magnetic neutron stars accreting from Keplerian disks and the implications for particle acceleration and gamma-ray emission by such systems. We argue that the particle density in the magnetospheres of such stars is larger by orders of magnitude than the Goldreich-Julian density, so that the formation of vacuum gaps is unlikely. We show that even if the star rotates slowly, electromotive forces (EMFs) of order 10(exp 15) V are produced by the interaction of plasma in the accretion disk with the magnetic field of the neutron star. The resistance of the disk-magnetosphere-star circuit is small, and hence these EMFs drive very large conduction currents. Such large currents are likely to produce magnetospheric instabilities, such as relativistic double layers and reconnection events, that can accelerate electrons or ions to very high energies.

  7. Where do Accretion Disks Around Black Holes End?

    NASA Astrophysics Data System (ADS)

    Asmus, D.; Duschl, W. J.

    2010-10-01

    Accretion disks around (supermassive) black holes act as "machines" which extract gravitational energy. In fact, the observed radiation allows to sample the physical conditions very close to the event horizon. For a test particle, the innermost stable circular orbit (ISCO) is located at 3 rS for a non-rotating hole (Schwarzschild metrics; at smaller radii for a rotating black hole). This ISCO is usually identified with the inner edge of the accretion disk. For a given black hole mass, it allows, in principle, to determine the Kerr parameter. In "real life," however, we deal not with test particles but with a viscous flow, which introduces additional forces. We have calculated the location of the inner edge in a more realistic environment. The results show that the true inner edge of the disk is no longer located at the ISCO, when radial advection of energy is taken into account with a careful treatment of the transonic nature of the flow.

  8. Gas accretion from halos to disks: observations, curiosities, and problems

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce G.

    2016-08-01

    Accretion of gas from the cosmic web to galaxy halos and ultimately their disks is a prediction of modern cosmological models but is rarely observed directly or at the full rate expected from star formation. Here we illustrate possible large-scale cosmic HI accretion onto the nearby dwarf starburst galaxy IC10, observed with the VLA and GBT. We also suggest that cosmic accretion is the origin of sharp metallicity drops in the starburst regions of other dwarf galaxies, as observed with the 10-m GTC. Finally, we question the importance of cosmic accretion in normal dwarf irregulars, for which a recent study of their far-outer regions sees no need for, or evidence of, continuing gas buildup.

  9. Exploring Stability of General Relativistic Accretion Disks

    NASA Astrophysics Data System (ADS)

    Korobkin, Oleg; Abdikamalov, Ernazar; Schnetter, Erik; Stergioulas, Nikolaos; Zink, Burkhard

    2011-04-01

    Self-gravitating relativistic disks around black holes can form as transient structures in a number of astrophysical scenarios, involving core collapse of massive stars and mergers of compact ob jects. I will present results on our recent study of the stability of such disks against runaway and non-axisymmetric instabilities, which we explore using three-dimensional hydrodynamics simulations in full general relativity. All of our models develop unstable non-axisymmetric modes on a dynamical timescale. We observe two distinct types of instabilities: the Papaloizou-Pringle and the so-called intermediate type instabilities. The development of the non-axisymmetric mode with azimuthal number m=1 is accompanied by an outspiraling motion of the black hole, which significantly amplifies the growth rate of the m=1 mode in some cases. We will discuss the types, growth rates and pattern speeds of the unstable modes, as well as the detectability of the gravitational waves from such objects.

  10. V1647 Orionis: The X-Ray Evolution of a Pre-Main-Sequence Accretion Burst

    NASA Astrophysics Data System (ADS)

    Kastner, Joel H.; Richmond, Michael; Grosso, Nicolas; Weintraub, David A.; Simon, Theodore; Henden, Arne; Hamaguchi, Kenji; Frank, Adam; Ozawa, Hideki

    2006-09-01

    We present Chandra X-Ray Observatory monitoring observations of the recent accretion outburst displayed by the pre-main-sequence (pre-MS) star V1647 Ori. The X-ray observations were obtained over a period beginning prior to outburst onset in late 2003 and continuing through its apparent cessation in late 2005, and demonstrate that the mean flux of the spatially coincident X-ray source closely tracked the near-infrared luminosity of V1647 Ori throughout its eruption. We find negligible likelihood that the correspondence between X-ray and infrared light curves over this period was the result of multiple X-ray flares unrelated to the accretion burst. The recent Chandra data confirm that the X-ray spectrum of V1647 Ori hardened during outburst, relative both to its preoutburst state and to the X-ray spectra of nearby pre-MS stars in the L1630 cloud. We conclude that the observed changes in the X-ray emission from V1647 Ori over the course of its 2003-2005 eruption were generated by a sudden increase and subsequent decline in its accretion rate. These results for V1647 Ori indicate that the flux of hard X-ray emission from erupting low-mass, pre-MS stars, and the duration and intensity of such eruptions, reflect the degree to which star-disk magnetic fields are reorganized before and during major accretion events.

  11. A study of variation in accretion disk parameters with phases of `heartbeats' in IGR J17091-3624

    NASA Astrophysics Data System (ADS)

    Rao, Anjali; Vadawale, Santosh V.

    The standard accretion disk model is based on a famous Shakura-Sunyaev viscosity prescription in which viscous stress is scaled with total pressure. Though the model has been very successful to explain various properties of accretion disk, it was known that Shakura-Sunyaev disk is inherently unstable in the radiation pressure dominated inner accretion disk region, particularly when local mass accretion rate is high. This instability, known as radiation pressure instability (RPI), is expected to give rise to a limit cycle behavior in which source may exhibit a series of quasi-periodic bursts. So far such behavior, popularly known as `heartbeats' was observed only in GRS 1915+105. Recently, IGR J17091-3624, a transient black hole candidate, became the second source showing 'heartbeat' type variability during its last outburst in 2011. Here we carry out a comparative study of the variation of accretion disk parameters during such variability in both IGR J17091-3624 and GRS 1915+105. We find that the radiation pressure instability alone may not be sufficient to explain the observed spectral variability in both the sources.

  12. Simulations of Accretion Disk Wind Models

    NASA Astrophysics Data System (ADS)

    Brooks, Craig L.; Yong, Suk Yee; O'Dowd, Matthew; Webster, Rachel L.; Bate, Nicholas

    2016-01-01

    The kinematics of the broad emission line region (BELR) in quasars is largely unknown, however there is strong evidence that outflows may be a key component. For example, in approximately 15% of quasars we observe broad, blue-shifted absorption features which may be ubiquitous based on line-of-sight arguments. We use a new mathematical description of an outflowing disk-wind with an initial rotational component to predict surface brightness distributions of this wind at different orientations. These surface brightness distributions will allow us to simulate gravitational microlensing of BELR light, with a view to mapping the structure and better understanding the kinematics of these flows.

  13. Tidal-Force-Induced Precessions of Accretion Disks

    NASA Astrophysics Data System (ADS)

    Inoue, Hajime

    2012-04-01

    The preccession of an accretion disk around a compact star in a close binary has been studied. When the accretion disk tilts, the tidal force from the companion star induces a torque on it, which causes a preccession of the disk. We firstly consider the properties of a preccessing motion of a ring, which is circularly rotating around a compact star, and is preccessing with a slightly tilting angle under the influence of a tidal force from a companion star. We next compare the predicted behaviors of the preccessing ring with observations, and find that several observational facts from Her X-1, SS 433, and some other X-ray binaries can be explained by a tidal-force-induced precession scheme quite reasonably. We further examine the energetics of the preccessing ring as a function of the tilting angle. It is shown that the kinetic and potential energies of the orbiting motions of the ring matter around the compact star increases as the tilting angle increases, while the thermal and effective potential energies for hydro-static balance in the meridian cross section of the ring decreases through adiabatic expansion. Quantitative estimations have shown that when the ring has sufficient thermal energy, the decrease of the energy for the hydro-static balance can be larger than the increase of the energy for circular motion around the compact star until the tilting angle reaches a certain value. It is strongly suggested that preccessions of accretion disks are often realized in close binaries.

  14. Constraints on r-process nucleosynthesis in accretion disks

    NASA Technical Reports Server (NTRS)

    Jin, Liping

    1991-01-01

    Systems in which accretion drives an outflow from a region near a compact object may enrich the interstellar medium in r-process elements. A detailed assessment of the efficacy of this mechanism for the r-process is presented here, taking into account the constraints imposed by typical accretion-disk conditions. It is concluded that r-process elements are unlikely to have been made in this way, largely because the total production is too low, by a factor of about 100,000, to explain the observed abundances.

  15. The average size and temperature profile of quasar accretion disks

    SciTech Connect

    Jiménez-Vicente, J.; Mediavilla, E.; Muñoz, J. A.; Motta, V.; Falco, E.

    2014-03-01

    We use multi-wavelength microlensing measurements of a sample of 10 image pairs from 8 lensed quasars to study the structure of their accretion disks. By using spectroscopy or narrowband photometry, we have been able to remove contamination from the weakly microlensed broad emission lines, extinction, and any uncertainties in the large-scale macro magnification of the lens model. We determine a maximum likelihood estimate for the exponent of the size versus wavelength scaling (r{sub s} ∝λ {sup p}, corresponding to a disk temperature profile of T∝r {sup –1/p}) of p=0.75{sub −0.2}{sup +0.2} and a Bayesian estimate of p = 0.8 ± 0.2, which are significantly smaller than the prediction of the thin disk theory (p = 4/3). We have also obtained a maximum likelihood estimate for the average quasar accretion disk size of r{sub s}=4.5{sub −1.2}{sup +1.5} lt-day at a rest frame wavelength of λ = 1026 Å for microlenses with a mean mass of M = 1 M {sub ☉}, in agreement with previous results, and larger than expected from thin disk theory.

  16. On the magnetic viscosity in Keplerian accretion disks

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.

    1981-01-01

    The paper develops a model for the anomalous viscosity in accretion disks based on the hypothesis that the hydrodynamic turbulence within the disk takes the form of spatially localized magnetic flux cells. The local shear flow due to Keplerian differential rotation distorts the flux cell topology, converting shear flow energy into magnetic energy. In the radial diffusion approximation, the kinematic viscosity is estimated from the radial displacement and is shown to maximize at flux cell scale lengths for which the shear flow stopping and reconnection times are equal.

  17. Line formation in accretion disks. 3D comoving frame calculations

    NASA Astrophysics Data System (ADS)

    Papkalla, R.

    1994-10-01

    The 3D radiative transfer equation is written in O(nu/c) in the comoving frame and solved by a short characteristics method for a two-level atom with complete redistribution. An Approximate-LAMBDA operator and various other acceleration techniques are applied to improve the rate of convergence. Line profiles and source functions are calculated for accretion disk models of cataclysmic variables (CV) and active galactic nuclei (AGN) homogeneous in density and temperature. We find that the velocity gradient in the disks makes it necessary for line transfer problems to use the full 3D radiative transfer equation.

  18. Accretion disks and particle emission from black holes

    NASA Astrophysics Data System (ADS)

    Saifullah, Khalid

    2014-07-01

    Black holes are among the most interesting predictions of the general theory of relativity. The Thirty Meter Telescope will extend our ability to measure the masses of central black holes more accurately and to study the orbits of stars in the vicinity of these supermassive dark objects and warping of spacetime around them. Thus they will provide further evidence in favour of general relativity. This will help us resolve the accretion disks for these black holes also. The study of interaction of these accretion disks and the production and emission of particles from black holes is significant from the point of view of investigating the environment surrounding the dark objects hosted in the centre of many galaxies. The emission probabilities of particles including scalars and Dirac particles from black holes are calculated.

  19. Irradiation instability at the inner edges of accretion disks

    SciTech Connect

    Fung, Jeffrey; Artymowicz, Pawel

    2014-07-20

    An instability can potentially operate in highly irradiated disks where the disk sharply transitions from being radially transparent to opaque (the 'transition region'). Such conditions may exist at the inner edges of transitional disks around T Tauri stars and accretion disks around active galactic nuclei. We derive the criterion for this instability, which we term the 'irradiation instability', or IRI. We also present the linear growth rate as a function of β, the ratio between radiation force and gravity, and c{sub s}, the sound speed of the disk, obtained using two methods: a semi-analytic analysis of the linearized equations and a numerical simulation using the GPU-accelerated hydrodynamical code PEnGUIn. In particular, we find that IRI occurs at β ∼ 0.1 if the transition region extends as wide as ∼0.05r, and at higher β values if it is wider. This threshold value applies to c{sub s} ranging from 3% of the Keplerian orbital speed to 5%, and becomes higher if c{sub s} is lower. Furthermore, in the nonlinear evolution of the instability, disks with a large β and small c{sub s} exhibit 'clumping', extreme local surface density enhancements that can reach over 10 times the initial disk surface density.

  20. Irradiation Instability at the Inner Edges of Accretion Disks

    NASA Astrophysics Data System (ADS)

    Fung, Jeffrey; Artymowicz, Pawel

    2014-07-01

    An instability can potentially operate in highly irradiated disks where the disk sharply transitions from being radially transparent to opaque (the "transition region"). Such conditions may exist at the inner edges of transitional disks around T Tauri stars and accretion disks around active galactic nuclei. We derive the criterion for this instability, which we term the "irradiation instability," or IRI. We also present the linear growth rate as a function of β, the ratio between radiation force and gravity, and c s, the sound speed of the disk, obtained using two methods: a semi-analytic analysis of the linearized equations and a numerical simulation using the GPU-accelerated hydrodynamical code PEnGUIn. In particular, we find that IRI occurs at β ~ 0.1 if the transition region extends as wide as ~0.05r, and at higher β values if it is wider. This threshold value applies to c s ranging from 3% of the Keplerian orbital speed to 5%, and becomes higher if c s is lower. Furthermore, in the nonlinear evolution of the instability, disks with a large β and small c s exhibit "clumping," extreme local surface density enhancements that can reach over 10 times the initial disk surface density.

  1. Tilted Accretion Disk Models of Sgr A* Flares

    NASA Astrophysics Data System (ADS)

    Dexter, Jason; Fragile, P. C.

    2013-01-01

    Sagittarius A* (Sgr A*), the Galactic center massive black hole candidate, is an unparalleled laboratory for low-luminosity accretion theory. First discovered as a compact radio source, Sgr A* has since been observed to undergo rapid, large amplitude NIR/X-ray flares. The many proposed phenomenological models cannot simultaneously explain both the flaring emission and the peak of the SED in the submillimeter. I will describe flares seen in numerical simulations of black hole accretion flows where the disk angular momentum is misaligned from that of the black hole. Eccentric fluid orbits driven by gravitational torques converge and form strong shocks, which can lead to significant particle heating. The resulting NIR emission can reproduce the observations, and is completely unrelated to the submillimeter emission, which is included in these models and is also in excellent agreement with observations. I will describe the prospects for testing accretion theory and constraining the properties of Sgr A* with exciting ongoing multi-wavelength observations.

  2. The link between coherent burst oscillations, burst spectral evolution and accretion state in 4U 1728-34

    NASA Astrophysics Data System (ADS)

    Zhang, Guobao; Méndez, Mariano; Zamfir, Michael; Cumming, Andrew

    2016-01-01

    Coherent oscillations and the evolution of the X-ray spectrum during thermonuclear X-ray bursts in accreting neutron-star X-ray binaries have been studied intensively but separately. We analysed all the X-ray bursts of the source 4U 1728-34 with the Rossi X-ray Timing Explorer. We found that the presence of burst oscillations can be used to predict the behaviour of the blackbody radius during the cooling phase of the bursts. If a burst shows oscillations, during the cooling phase the blackbody radius remains more or less constant for ˜2- ˜ 8 s, whereas in bursts that do not show oscillations the blackbody radius either remains constant for more than ˜2- ˜ 8 s or it shows a rapid (faster than ˜2 s) decrease and increase. Both the presence of burst oscillations and the time-dependent spectral behaviour of the bursts are affected by accretion rate. We also found that the rise time and convexity of the bursts' light curve are different in bursts with and without oscillations in 4U 1728-34. Bursts with oscillations have a short rise time (˜0.5 s) and show both positive and negative convexity, whereas bursts without oscillations have a long rise time (˜1 s) and mostly positive convexity. This is consistent with the idea that burst oscillations are associated with off-equator ignition.

  3. Physics-Based Spectra of Accretion Disks around Black Holes

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.

    2005-01-01

    The purpose of this grant was to begin the process of deriving the light output of accretion disks around black holes directly from the actual processes that inject heat into the accreting matter, rather than from guessed dependences of heating rate on physical parameters. At JHU, the effort has focussed so far on models of accretion onto "intermediate mass black holes", a possible class of black holes, examples of which may have recently been discovered in nearby galaxies. There, Krolik and his student (Yawei Hui) have computed stellar atmospheres for uniformly-heated disks around this class of black holes. Their models serve two purposes: they are the very first serious attempts to compute the spectrum from accreting black holes in this mass range; and a library of such models can be used later in this program as contrasts for those computed on the basis of real disk dynamics. The output from these local disk calculations has also been successfully coupled to a program that applies the appropriate relativistic transformations and computes photon trajectories in order to predict the spectrum received by observers located at different polar angles. The principal new result of these calculations is the discovery of potentially observable ionization edges of H-like C and O at frequencies near the peak in flux from these objects. Most of the grant money at UCSB was spent on supporting graduate student Shane Davis. In addition. some money was spent on supporting two other students: Ari Socrates (now a Hubble Fellow at Princeton), and Laura Melling. Davis spent the year constructing stellar atmosphere models of accretion disks appropriate for the high/soft (thermal) state of black hole X-ray binaries. As with AGN models published previously by our collaboration with NASA support. our models include a complete general relativistic treatment of both the disk structure and the propagation of photons from the disk to a distant observer. They also include all important

  4. ESTIMATION OF THE VISCOSITY PARAMETER IN ACCRETION DISKS OF BLAZARS

    SciTech Connect

    Xie, Z. H.; Ma, L.; Zhang, X.; Du, L. M.; Hao, J. M.; Yi, T. F.; Qiao, E. L.

    2009-12-20

    For an optical monitoring blazar sample set whose typical minimum variability timescale is about 1 hr, we estimate a mean value of the viscosity parameter in their accretion disk. We assume that optical variability on timescales of hours is caused by local instabilities in the inner accretion disk. Comparing the observed variability timescales to the thermal timescales of alpha-disk models, we could obtain constraints on the viscosity parameter (alpha) and the intrinsic Eddington ratio (L{sup in}/L{sub Edd}=m-dot), 0.104 <= alpha <= 0.337, and 0.0201 <= L {sup in}/L{sub Edd} <= 0.1646. These narrow ranges suggest that all these blazars are observed in a single state, and thus provide a new evidence for the unification of flat-spectrum radio quasars and BL Lacs into a single blazar population. The values of alpha we derive are consistent with the theoretical expectation alpha approx 0.1-0.3 of Narayan and Mcclintock for advection-dominated accretion flow and are also compatible with Pessah et al.'s predictions (alpha >= 0.1) by numerical simulations in which magnetohydrodynamic turbulence is driven by the saturated magnetorotational instability.

  5. Accretion disks and periodic outbursts of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Lin, D. N. C.; Shields, G. A.

    1986-01-01

    The local thermal stability of accretion disks around supermassive black holes in active galactic nuclei is examined. Such disks are unstable at radii where the surface temperature is several thousand degrees. Supermassive disks therefore should undergo limit-cycle outbursts similar to those believed to occur in dwarf novae. Operating on a time scale of about 10,000 to 10 million yr and at radii of about 10 to the 15th to 10 to the 16th cm, this mechanism will result in alternating periods of higher and lower accretion rate onto the black hole and, consequently, higher and lower luminosity. Quasi-periodic outbursts on this time scale may be recorded in the structure of extended radio sources, a possible example being 4C 29.47. For accretion rates greater than 0.1 solar masses/yr, the situation is complicated by instabilities caused by self-gravitation and by the dominance of radiation pressure and electron scattering opacity.

  6. Super-spinning compact objects generated by thick accretion disks

    SciTech Connect

    Li, Zilong; Bambi, Cosimo E-mail: bambi@fudan.edu.cn

    2013-03-01

    If astrophysical black hole candidates are the Kerr black holes predicted by General Relativity, the value of their spin parameter must be subject to the theoretical bound |a{sub *}| ≤ 1. In this work, we consider the possibility that these objects are either non-Kerr black holes in an alternative theory of gravity or exotic compact objects in General Relativity. We study the accretion process when their accretion disk is geometrically thick with a simple version of the Polish doughnut model. The picture of the accretion process may be qualitatively different from the one around a Kerr black hole. The inner edge of the disk may not have the typical cusp on the equatorial plane any more, but there may be two cusps, respectively above and below the equatorial plane. We extend previous work on the evolution of the spin parameter and we estimate the maximum value of a{sub *} for the super-massive black hole candidates in galactic nuclei. Since measurements of the mean radiative efficiency of AGNs require η > 0.15, we infer the ''observational'' bound |a{sub *}|∼<1.3, which seems to be quite independent of the exact nature of these objects. Such a bound is only slightly weaker than |a{sub *}|∼<1.2 found in previous work for thin disks.

  7. MAGNETIZED ACCRETION AND DEAD ZONES IN PROTOSTELLAR DISKS

    SciTech Connect

    Dzyurkevich, Natalia; Henning, Thomas; Turner, Neal J.; Kley, Wilhelm

    2013-03-10

    The edges of magnetically dead zones in protostellar disks have been proposed as locations where density bumps may arise, trapping planetesimals and helping form planets. Magneto-rotational turbulence in magnetically active zones provides both accretion of gas on the star and transport of mass to the dead zone. We investigate the location of the magnetically active regions in a protostellar disk around a solar-type star, varying the disk temperature, surface density profile, and dust-to-gas ratio. We also consider stellar masses between 0.4 and 2 M{sub Sun }, with corresponding adjustments in the disk mass and temperature. The dead zone's size and shape are found using the Elsasser number criterion with conductivities including the contributions from ions, electrons, and charged fractal dust aggregates. The charged species' abundances are found using the approach proposed by Okuzumi. The dead zone is in most cases defined by the ambipolar diffusion. In our maps, the dead zone takes a variety of shapes, including a fish tail pointing away from the star and islands located on and off the midplane. The corresponding accretion rates vary with radius, indicating locations where the surface density will increase over time, and others where it will decrease. We show that density bumps do not readily grow near the dead zone's outer edge, independently of the disk parameters and the dust properties. Instead, the accretion rate peaks at the radius where the gas-phase metals freeze out. This could lead to clearing a valley in the surface density, and to a trap for pebbles located just outside the metal freezeout line.

  8. The frequency of accretion disks around single stars: Chamaeleon I

    NASA Astrophysics Data System (ADS)

    Daemgen, Sebastian; Elliot Meyer, R.; Jayawardhana, Ray; Petr-Gotzens, Monika G.

    2016-02-01

    Context. It is well known that stellar companions can influence the evolution of a protoplanetary disk. Nevertheless, previous disk surveys did not - and could not - consistently exclude binaries from their samples. Aims: We present a study dedicated to investigating the frequency of ongoing disk accretion around single stars in a star-forming region. Methods: We obtained near-infrared spectroscopy of 54 low-mass stars selected from a high-angular resolution survey in the 2-3 Myr-old Chamaeleon I region to determine the presence of Brackett-γ emission, taking the residual chance of undetected multiplicity into account, which we estimate to be on the order of 30%. The result is compared with previous surveys of the same feature in binary stars of the same region to provide a robust estimate of the difference between the accretor fractions of single stars and individual components of binary systems. Results: We find Brγ emission among 39.5+ 14.0-9.9% of single stars, which is a significantly higher fraction than for binary stars in Chamaeleon I. In particular, close binary systems with separations <100 AU show emission in only 6.5+ 16.5-3.0% of the cases according to the same analysis. The emitter frequency of wider binaries appears consistent with the single star value. Interpreting Brγ emission as a sign of ongoing accretion and correcting for sensitivity bias, we infer an accretor fraction of single stars of Facc = 47.8+ 14.0-9.9%. This is slightly higher but consistent with previous estimates that do not clearly exclude binaries from their samples. Conclusions: Through our robust and consistent analysis, we confirm that the fraction of young single stars harboring accretion disks is much larger than that of close binaries at the same age. Our findings have important implications for the timescales of disk evolution and planet formation.

  9. CHEMICAL EVOLUTION OF PROTOPLANETARY DISKS-THE EFFECTS OF VISCOUS ACCRETION, TURBULENT MIXING, AND DISK WINDS

    SciTech Connect

    Heinzeller, D.; Nomura, H.; Walsh, C.; Millar, T. J.

    2011-04-20

    We calculate the chemical evolution of protoplanetary disks considering radial viscous accretion, vertical turbulent mixing, and vertical disk winds. We study the effects on the disk chemical structure when different models for the formation of molecular hydrogen on dust grains are adopted. Our gas-phase chemistry is extracted from the UMIST Database for Astrochemistry (Rate06) to which we have added detailed gas-grain interactions. We use our chemical model results to generate synthetic near- and mid-infrared local thermodynamic equilibrium line emission spectra and compare these with recent Spitzer observations. Our results show that if H{sub 2} formation on warm grains is taken into consideration, the H{sub 2}O and OH abundances in the disk surface increase significantly. We find that the radial accretion flow strongly influences the molecular abundances, with those in the cold midplane layers particularly affected. On the other hand, we show that diffusive turbulent mixing affects the disk chemistry in the warm molecular layers, influencing the line emission from the disk and subsequently improving agreement with observations. We find that NH{sub 3}, CH{sub 3}OH, C{sub 2}H{sub 2}, and sulfur-containing species are greatly enhanced by the inclusion of turbulent mixing. We demonstrate that disk winds potentially affect the disk chemistry and the resulting molecular line emission in a manner similar to that found when mixing is included.

  10. Structure of relativistic accretion disk with non-standard model

    NASA Astrophysics Data System (ADS)

    Khesali, A. R.; Salahshoor, K.

    2016-07-01

    The structure of stationary, axisymmetric advection-dominated accretion disk (ADAF) around rotating black hole, using non-standard model, was examined. In this model, the transport efficiency of the angular momentum α was dependent on the magnetic Prandtl number α ∝ Pm^{δ } . The full relativistic shear stress recently obtained by a new manner, was used. By considering black hole spin and Prandtl number instantaneously, the structure of ADAFs was changed in inner and outer region of the disk. It was discovered that the accretion flow was denser and hotter in the inner region, due to the black hole spin, and in the outer region, due to the presence of Prandtl parameter. Inasmuch as the rotation of the black hole affected the transport efficiency of angular momentum in parts of the disk very close to the even horizon, then in these regions, the viscosity depended on the rotation of black hole. Also, it was discovered that the effect of the black hole spin on the structure of the disk was related to the presence of Prandtl parameter.

  11. Rotation and emission lines in stars and accretion disks

    NASA Technical Reports Server (NTRS)

    Horne, Keith; Saar, Steven H.

    1991-01-01

    In the accretion disks of quiescent dwarf novae, Doppler mapping studies reveal that Balmer emission lines increase sharply toward the center of the disk, with surface brightnesses scaling roughly as R exp -3/2 varies as Omega(Kep). Similarly, among chromospherically active stars the H-alpha and Ca II H and K emission cores are stronger in the more rapidly rotating stars, with surface brightnesses scaling again roughly as Omega(rot). Since in both cases the emission lines scale linearly with the rotation frequency, it is proposed that the mechanism powering the emission lines in quiescent accretion disks is the same as that in chromospherically active stars, namely, the emergence of magnetic flux generated by the action of a dynamo, and its interaction with the atmosphere. If this empirical connection between disks and stars is in fact due to magnetic dynamos, the range of rotation rates available for testing dynamo theories expands from a factor of 1000 to 10 to the 7th.

  12. Ultraviolet observations of accretion disk in LMC X-3

    NASA Technical Reports Server (NTRS)

    Cowley, A. P.; Schmidthe, P. C.; Hutchings, J. B.; Crampton, D.

    1994-01-01

    We report information obtained from a series of International Ultraviolet Explorer (IUE) low-resolution spectra and two HST UV spectra of LMC X-3. The HST spectra are used to identify disk emission lines and interstellar absorptions as well as to fit continuum models, which indicate the presence of a hot disk component. The IUE observations, mainly taken over approximately 1.5 years, were intended to study how the observed characteristics of the accretion disk change through the precessional cycle. It is shown that although the emission line strengths and short-wavelength ultraviolet flux are well correlated, both optical and UV data show little long-term periodic modulation was present during our observations, indicating LMC X-3 had dropped into a 'low' state.

  13. IP Pegasi: Investigation of the accretion disk structure. Searching evidences for spiral shocks in the quiescent accretion disk

    NASA Astrophysics Data System (ADS)

    Neustroev, V. V.; Borisov, N. V.; Barwig, H.; Bobinger, A.; Mantel, K. H.; Šimić, D.; Wolf, S.

    2002-10-01

    We present the results of spectral investigations of the cataclysmic variable IP Peg in quiescence. Optical spectra obtained on the 6-m telescope at the Special Astrophysical Observatory (Russia), and on the 3.5-m telescope at the German-Spanish Astronomical Center (Calar Alto, Spain), have been analysed by means of Doppler tomography and Phase Modelling Technique. From this analysis we conclude that the quiescent accretion disk of IP Peg has a complex structure. There are also explicit indications of spiral shocks. The Doppler maps and the variations of the peak separation of the emission lines confirm this interpretation. We have detected that all the emission lines show a rather considerable asymmetry of their wings varying with time. The wing asymmetry shows quasi-periodic modulations with a period much shorter than the orbital one. This indicates the presence of an emission source in the binary rotating asynchronously with the binary system. We also have found that the brightness of the bright spot changes considerably during one orbital period. The spot becomes brightest at an inferior conjunction, whereas it is almost invisible when it is located on the distant half of the accretion disk. Probably, this phenomenon is due to an anisotropic radiation of the bright spot and an eclipse of the bright spot by the outer edge of the accretion disk. Based on observations made at the Special Astrophysical Observatory, Nizhnij Arkhyz, Russia, and at the German-Spanish Astronomical Center, Calar Alto, Spain.

  14. Asymmetric evolution of magnetic reconnection in collisionless accretion disk

    SciTech Connect

    Shirakawa, Keisuke Hoshino, Masahiro

    2014-05-15

    An evolution of a magnetic reconnection in a collisionless accretion disk is investigated using a 2.5 dimensional hybrid code simulation. In astrophysical disks, magnetorotational instability (MRI) is considered to play an important role by generating turbulence in the disk and contributes to an effective angular momentum transport through a turbulent viscosity. Magnetic reconnection, on the other hand, also plays an important role on the evolution of the disk through a dissipation of a magnetic field enhanced by a dynamo effect of MRI. In this study, we developed a hybrid code to calculate an evolution of a differentially rotating system. With this code, we first confirmed a linear growth of MRI. We also investigated a behavior of a particular structure of a current sheet, which would exist in the turbulence in the disk. From the calculation of the magnetic reconnection, we found an asymmetric structure in the out-of-plane magnetic field during the evolution of reconnection, which can be understood by a coupling of the Hall effect and the differential rotation. We also found a migration of X-point whose direction is determined only by an initial sign of J{sub 0}×Ω{sub 0}, where J{sub 0} is the initial current density in the neutral sheet and Ω{sub 0} is the rotational vector of the background Keplerian rotation. Associated with the migration of X-point, we also found a significant enhancement of the perpendicular magnetic field compared to an ordinary MRI. MRI-Magnetic reconnection coupling and the resulting magnetic field enhancement can be an effective process to sustain a strong turbulence in the accretion disk and to a transport of angular momentum.

  15. THE QUASAR ACCRETION DISK SIZE-BLACK HOLE MASS RELATION

    SciTech Connect

    Morgan, Christopher W.; Kochanek, C. S.; Morgan, Nicholas D.; Falco, Emilio E. E-mail: ckochanek@astronomy.ohio-state.ed E-mail: efalco@cfa.harvard.ed

    2010-04-01

    We use the microlensing variability observed for 11 gravitationally lensed quasars to show that the accretion disk size at a rest-frame wavelength of 2500 A is related to the black hole mass by log(R{sub 2500}/cm) = (15.78 +- 0.12) + (0.80 +- 0.17)log(M{sub BH}/10{sup 9} M{sub sun}). This scaling is consistent with the expectation from thin-disk theory (R {proportional_to} M {sup 2/3}{sub BH}), but when interpreted in terms of the standard thin-disk model (T {proportional_to} R {sup -3/4}), it implies that black holes radiate with very low efficiency, log(eta) = -1.77 +- 0.29 + log(L/L{sub E}), where eta=L/(M-dot c{sup 2}). Only by making the maximum reasonable shifts in the average inclination, Eddington factors, and black hole masses can we raise the efficiency estimate to be marginally consistent with typical efficiency estimates (eta {approx} 10%). With one exception, these sizes are larger by a factor of {approx}4 than the size needed to produce the observed 0.8 {mu}m quasar flux by thermal radiation from a thin disk with the same T {proportional_to} R {sup -3/4} temperature profile. While scattering a significant fraction of the disk emission on large scales or including a large fraction of contaminating line emission can reduce the size discrepancy, resolving it also appears to require that accretion disks have flatter temperature/surface brightness profiles.

  16. The Photoionized Accretion Disk in Her X-1

    NASA Astrophysics Data System (ADS)

    Ji, L.; Schulz, N.; Nowak, M.; Marshall, H. L.; Kallman, T.

    2009-08-01

    We present an analysis of several high-resolution Chandra grating observations of the X-ray binary pulsar Her X-1. With a total exposure of 170 ks, the observations are separated by years and cover three combinations of orbital and superorbital phases. Our goal is to determine distinct properties of the photoionized emission and its dependence on phase-dependent variations of the continuum. We find that the continua can be described by a partial covering model which above 2 keV is consistent with recent results from Rossi X-Ray Timing Explorer studies and at low energies is consistent with recent XMM-Newton and BeppoSAX studies. Besides a power law with fixed index, an additional thermal blackbody of 114 eV is required to fit wavelengths above 12 Å (~1 keV). We find that likely all the variability is caused by highly variable absorption columns in the range (1-3) × 1023 cm-2. Strong Fe K line fluorescence in almost all observations reveals that dense, cool material is present not only in the outer regions of the disk but interspersed throughout the disk. Most spectra show strong line emission stemming from a photoionized accretion disk corona (ADC). We model the line emission with generic thermal plasma models as well as with the photoionization code XSTAR and investigate changes of the ionization balance with orbital and superorbital phases. Most accretion disk coronal properties such as disk radii, temperatures, and plasma densities are consistent with previous findings for the low state. We find that these properties change negligibly with respect to orbital and superorbital phases. A couple of the higher energy lines exhibit emissivities that are significantly in excess of expectations from a static ADC.

  17. ACCRETION RATES OF MOONLETS EMBEDDED IN CIRCUMPLANETARY PARTICLE DISKS

    SciTech Connect

    Ohtsuki, Keiji; Yasui, Yuki; Daisaka, Hiroshi

    2013-08-01

    We examine the gravitational capture probability of colliding particles in circumplanetary particle disks and accretion rates of small particles onto an embedded moonlet, using analytic calculation, three-body orbital integrations, and N-body simulations. Expanding our previous work, we take into account the Rayleigh distribution of particles' orbital eccentricities and inclinations in our analytic calculation and orbital integration and confirm agreement between them when the particle velocity dispersion is comparable to or larger than their mutual escape velocity and the ratio of the sum of the physical radii of colliding particles to their mutual Hill radius (r-tilde{sub p}) is much smaller than unity. As shown by our previous work, the capture probability decreases significantly when the velocity dispersion is larger than the escape velocity and/or r-tilde{sub p}{approx}>0.7. Rough surfaces of particles can enhance the capture probability. We compare the results of three-body calculations with N-body simulations for accretion of small particles by an embedded moonlet and find agreement at the initial stage of accretion. However, when particles forming an aggregate on the moonlet surface nearly fill the Hill sphere, the aggregate reaches a quasi-steady state with a nearly constant number of particles covering the moonlet, and the accretion rate is significantly reduced compared to the three-body results.

  18. Neutrino Oscillations Effects in the Context of Accretion Disks

    NASA Astrophysics Data System (ADS)

    Malkus, Annelise

    2013-10-01

    Neutrino oscillation effects due to the interaction of neutrinos with one another are diverse and depend strongly on having high densities of neutrinos. Accretion disks, which can arise from neutron star mergers or certain supernovae, are a setting where neutrino emission is high enough to be home to many of the neutrino-neutrino interaction effects seen in the early universe and supernova settings. Meanwhile, they lend themselves to additional effects not seen in other settings. We look in depth at one such effect, where the neutrino-neutrino interaction occurs at the same scale as the neutrino-electron interaction that can also influence oscillation.

  19. Quiescent accretion disks in black hole X-ray novae

    NASA Technical Reports Server (NTRS)

    Orosz, Jerome A.; Bailyn, Charles D.; Remillard, Ronald A.; Mcclintock, Jeffrey E.; Foltz, Craig B.

    1994-01-01

    We present detailed time-resolved spectroscopy of the Balmer emission lines from two black hole binary systems in quiescence, A0620-00 and Nova Muscae 1991. We find extraordinary similarities between the two systems. There are 30-40 km/s velocity variations of the emission lines over the orbital period, the phases of which are not aligned with the expected phase of the motion of the compact primary. Detailed modeling of both systems is complicated by variable hot spot components, regions of optical thickness, and intermittent excess emission in the blue line wings of the H-alpha lines. Both sources also display low velocities at the outer edge of the accretion disk, implying a large primary Roche lobe and extreme mass ratios. These complications suggest that although simple optically thin, Keplerian alpha-disk models provide a useful parameterization of emission lines from these systems, the straightforward physical models they imply should be treated with great caution.

  20. Superhumps and Accretion Disk Precession in TT ARIETIS

    NASA Astrophysics Data System (ADS)

    Skillman, David R.; Harvey, David A.; Patterson, Joseph; Kemp, Jonathan; Jensen, Lasse; Fried, Robert E.; Garradd, Gordon; Gunn, Jerry; van Zyl, Liza; Kiyota, Seiichiro; Retter, Alon; Vanmunster, Tonny; Warhurst, Paul

    1998-08-01

    We have been conducting a long-term (1988-1998) photometric study of the nova-like variable TT Arietis. The main periodic signal in the star's light curve normally occurs at a period that varies but averages ~0.1329 days, which is about 3.5% shorter than the orbital period of the binary. In 1997, this signal disappeared and was replaced by a stronger signal 8.5% longer than the orbital period. This new wave strongly resembles the``superhumps'' commonly seen in SU UMa-type dwarf novae during superoutburst. In superhump parlance, we could say that a negative superhump was replaced by a positive superhump (P>Porb). This could signify the development of an eccentric instability in the accretion disk. The two superhumps probably signify two types of disk precession: apsidal advance and nodal regression. TT Ari is an excellent candidate for observational studies that probe the origin of superhumps.

  1. X-Ray Iron Line Constraints on the Inner Accretion Disk and Black Hole Spin

    NASA Technical Reports Server (NTRS)

    Reynolds, C. S.

    2000-01-01

    The broad iron line, seen in the X-ray spectra of many AGN, is thought to originate from the inner regions of the black hole accretion disk. I will summarize recent developments in using this line to probe the accretion disk structure, as well as the mass and spin of black holes n Seyfert galaxies. In particular, I will present observational evidence suggesting that the inner regions of the accretion disks in low-luminosity AGN (LLAGN) are distinctly different from those in higher-luminosity AGN. This tentative result lends support models of LLAGN based upon advective accretion disks.

  2. Accretion Disks around Young Stars: An Observational Perspective

    NASA Astrophysics Data System (ADS)

    Ménard, F.; Bertout, C.

    Accretion disks are pivotal elements in the formation and early evolution of solar-like stars. On top of supplying the raw material, their internal conditions also regulate the formation of planets. Their study therefore holds the key to solve this long standing mystery: how did our Solar System form? This chapter focuses on observational studies of the circumstellar environment, and in particular of circumstellar disks, associated with pre-main sequence solar-like stars. The direct measurement of disk parameters poses an obvious challenge: at the distance of the typical star forming regions ( e.g. 140 pc for Taurus), a planetary system like ours (with diameter simeq50 AU out to Pluto, but excluding the Kuiper belt which could extend much farther out) subtends only 0.35''. Yet its surface brightness is low in comparison to the bright central star and high angular and high contrast imaging techniques are required if one hopes to resolve and measure these protoplanetary disks. Fortunately, capable instruments providing 0.1'' resolution or better and high contrast have been available for just about 10 years now. They are covering a large part of the electromagnetic spectrum, from the UV/Optical with HST and the near-infrared from ground-based adaptive optics systems, to the millimetric range with long-baseline radio interferometers. It is therefore not surprising that our knowledge of the structure of the disks surrounding low-mass stars has made a gigantic leap forward in the last decade. In the following pages we will attempt to describe, in a historical perpective, the road that led to the idea that most solar-like stars are surrounded by an accretion disk at one point in their early life and how, nowadays, their structural and physical parameters can be estimated from direct observations. We will follow by a short discussion of a few of the constraints available regarding the evolution and dissipation of these disks. This last topic is particularly relevant today

  3. The Anomalous Accretion Disk of the Cataclysmic Variable RW Sextantis

    NASA Astrophysics Data System (ADS)

    Linnell, Albert P.; Godon, P.; Hubeny, I.; Sion, E. M.; Szkody, P.

    2011-01-01

    The standard model for stable Cataclysmic Variable (CV) accretion disks (Frank, King and Raine 1992) derives an explicit analytic expression for the disk effective temperature as function of radial distance from the white dwarf (WD). That model specifies that the effective temperature, Teff(R), varies with R as ()0.25, where () represents a combination of parameters including R, the mass transfer rate M(dot), and other parameters. It is well known that fits of standard model synthetic spectra to observed CV spectra find almost no instances of agreement. We have derived a generalized expression for the radial temperature gradient, which preserves the total disk luminosity as function of M(dot) but permits a different exponent from the theoretical value of 0.25, and have applied it to RW Sex (Linnell et al.,2010,ApJ, 719,271). We find an excellent fit to observed FUSE and IUE spectra for an exponent of 0.125, curiously close to 1/2 the theoretical value. Our annulus synthetic spectra, combined to represent the accretion disk, were produced with program TLUSTY, were non-LTE and included H, He, C, Mg, Al, Si, and Fe as explicit ions. We illustrate our results with a plot showing the failure to fit RW Sex for a range of M(dot) values, our model fit to the observations, and a chi2 plot showing the selection of the exponent 0.125 as the best fit for the M(dot) range shown. (For the final model parameters see the paper cited.)

  4. Crystalline structure of accretion disks: Features of a global model

    NASA Astrophysics Data System (ADS)

    Montani, Giovanni; Benini, Riccardo

    2011-08-01

    In this paper, we develop the analysis of a two-dimensional magnetohydrodynamical configuration for an axially symmetric and rotating plasma (embedded in a dipolelike magnetic field), modeling the structure of a thin accretion disk around a compact astrophysical object. Our study investigates the global profile of the disk plasma, in order to fix the conditions for the existence of a crystalline morphology and ring sequence, as outlined by the local analysis pursued in Coppi [Phys. PlasmasPHPAEN1070-664X10.1063/1.1883667 12, 7302 (2005)] and Coppi and Rousseau [Astrophys. J.AJLEEY0004-637X10.1086/500315 641, 458 (2006)]. In the linear regime, when the electromagnetic back-reaction of the plasma is small enough, we show the existence of an oscillating radial behavior for the flux surface function, which very closely resembles the one outlined in the local model, apart from a radial modulation of the amplitude. In the opposite limit, corresponding to a dominant back-reaction in the magnetic structure over the field of central object, we can recognize the existence of a ringlike decomposition of the disk, according to the same modulation of the magnetic flux surface, and a smoother radial decay of the disk density, with respect to the linear case. In this extreme nonlinear regime, the global model seems to predict a configuration very close to that of the local analysis, but here the thermostatic pressure, crucial for the equilibrium setting, is also radially modulated. Among the conditions requested for the validity of such a global model, the confinement of the radial coordinate within a given value sensitive to the disk temperature and to the mass of the central objet, stands; however, this condition corresponds to dealing with a thin disk configuration.

  5. Accretion Disks in Interacting Binaries: Simulations of the Stream-Disk Impact

    NASA Astrophysics Data System (ADS)

    Armitage, P. J.; Livio, M.

    1996-10-01

    We investigate the impact between the gas stream from the inner Lagrangian point and the accretion disk in interacting binaries using three-dimensional smoothed particle hydrodynamics simulations. We find that a significant fraction of the stream material can ricochet off the disk edge and overflow toward smaller radii and that this generates pronounced nonaxisymmetric structure in the absorption column toward the central object. We discuss the implications of our results for observations and timedependent models of low-mass X-ray binaries, cataclysmic variables, and supersoft X-ray sources.

  6. Chemical Evolution of Protoplanetary Disks: The Effects of Viscous Accretion, Turbulent Mixing, and Disk Winds

    NASA Astrophysics Data System (ADS)

    Nomura, H.; Heinzeller, D.; Walsh, C.; Millar, T.

    2011-05-01

    Recent infrared observations of molecular lines by the Spitzer Space Telescope have revealed the chemical properties in the surface layers of planet-forming regions in protoplanetary disks. These observations, together with (sub)millimetre molecular line observations, are useful tools for diagnosing the physical and chemical properties of disks, key to our understanding of the planet formation process and the origin of material in planetary systems, including our Solar System. In this work, we have studied the chemical evolution of a protoplanetary disk using a comprehensive astrochemical reaction network, extracted from the UMIST Database for Astrochemistry (Rate06), and a detailed model for the gas and dust temperature and density profiles. We especially focus on the effects of (i) molecular hydrogen formation on warm dust grains and (ii) gas motion, such as viscous accretion, turbulent mixing, and disk winds, on the chemical structure of the disk. As a result, we find that the former affects the H2O, OH and CO abundances in the hot disk surface, while the latter enhances NH3, CH3OH, C2H2, and sulphur species in the inner disk. Results from our turbulent mixing model are in best agreement with the Spitzer observations.

  7. Monitoring Accreting X-ray Pulsars with the GLAST Burst Monitor

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Finger, Mark H.; Patel, Sandeep K.; Bhat, P. Narayana; Preece, Robert D.; Meegan, Charles A.

    2007-01-01

    Accreting pulsars are exceptionally good laboratories for probing the detailed physics of accretion onto magnetic stars. While similar accretion flows also occur in other types of astrophysical systems, e.g. magnetic CVs, only neutron stars have a small enough moment of inertia for the accretion of angular momentum to result in measurable changes in spin-frequency in a timescale of days. Long-term monitoring of accreting pulsar spin-frequencies and fluxes was demonstrated with the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory. Here we present sample results from BATSE, discuss measurement techniques appropriate for GBM, and estimate the expected GBM sensitivity.

  8. Monitoring Accreting X-ray Pulsars with the GLAST Burst Monitor

    SciTech Connect

    Wilson-Hodge, Colleen A.; Finger, Mark H.; Patel, Sandeep K.; Bhat, P. Narayana; Preece, Robert D.; Meegan, Charles A.

    2007-07-12

    Accreting pulsars are exceptionally good laboratories for probing the detailed physics of accretion onto magnetic stars. While similar accretion flows also occur in other types of astrophysical systems, e.g. magnetic CVs, only neutron stars have a small enough moment of inertia for the accretion of angular momentum to result in measurable changes in spin-frequency in a timescale of days. Long-term monitoring of accreting pulsar spin-frequencies and fluxes was demonstrated with the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory. Here we present sample results from BATSE, discuss measurement techniques appropriate for GBM, and estimate the expected GBM sensitivity.

  9. Protoplanetary Disks Including Radiative Feedback from Accreting Planets

    NASA Astrophysics Data System (ADS)

    Montesinos, Matías; Cuadra, Jorge; Perez, Sebastian; Baruteau, Clément; Casassus, Simon

    2015-06-01

    While recent observational progress is converging on the detection of compact regions of thermal emission due to embedded protoplanets, further theoretical predictions are needed to understand the response of a protoplanetary disk to the radiative feedback from planet formation. This is particularly important to make predictions for the observability of circumplanetary regions. In this work we use 2D hydrodynamical simulations to examine the evolution of a viscous protoplanetary disk in which a luminous Jupiter-mass planet is embedded. We use an energy equation that includes the radiative heating of the planet as an additional mechanism for planet formation feedback. Several models are computed for planet luminosities ranging from 10-5 to 10-3 solar luminosities. We find that the planet radiative feedback enhances the disk’s accretion rate at the planet’s orbital radius, producing a hotter and more luminous environement around the planet, independently of the prescription used to model the disk’s turbulent viscosity. We also estimate the thermal signature of the planet feedback for our range of planet luminosities, finding that the emitted spectrum of a purely active disk, without passive heating, is appreciably modified in the infrared. We simulate the protoplanetary disk around HD 100546 where a planet companion is located at about 68 AU from the star. Assuming the planet mass is five Jupiter masses and its luminosity is ˜ 2.5× {10}-4 {L}⊙ , we find that the radiative feedback of the planet increases the luminosity of its ˜5 AU circumplanetary disk from {10}-5 {L}⊙ (without feedback) to {10}-3 {L}⊙ , corresponding to an emission of ˜ 1 {mJy} in the {L}\\prime band after radiative transfer calculations, a value that is in good agreement with HD 100546b observations.

  10. Convective overstability in radially stratified accretion disks under thermal relaxation

    SciTech Connect

    Klahr, Hubert; Hubbard, Alexander

    2014-06-10

    This paper expands the stability criterion for radially stratified, vertically unstratified accretion disks incorporating thermal relaxation. We find a linear amplification of epicyclic oscillations in these disks that depends on the effective cooling time, i.e., an overstability. The growth rates of the overstability vanish for both extreme cases, e.g., infinite cooling time and instantaneous cooling, i.e., the adiabatic and fully isothermal cases. However, for thermal relaxation times τ on the order of the orbital frequency, τΩ ∼ 1, modes grow at a rate proportional to the square of the Brunt-Väisälä frequency. The overstability is based on epicyclic motions, with the thermal relaxation causing gas to heat while radially displaced inward and cool while radially displaced outward. This causes the gas to have a lower density when moving outward compared to when it moves inward, so it feels the outward-directed pressure force more strongly on that leg of the journey. We suggest the term 'convective overstability' for the phenomenon which has already been studied numerically in the nonlinear regime in the context of amplifying vortices in disks under the name 'subcritical baroclinic instability'. The aim of the present paper is to make clear that vortex formation in three-dimensional disks is not necessarily subcritical, i.e., does not need a finite perturbation, nor is it baroclinic in the sense of geophysical fluid dynamics, which requires on vertical shear. We find that convective overstability is a linear instability that will operate under a wide range of physical conditions for circumstellar disks.

  11. Magnetohydrodynamic simulations of global accretion disks with vertical magnetic fields

    SciTech Connect

    Suzuki, Takeru K.; Inutsuka, Shu-ichiro

    2014-04-01

    We report results of three-dimensional magnetohydrodynamical (MHD) simulations of global accretion disks threaded with weak vertical magnetic fields. We perform the simulations in the spherical coordinates with different temperature profiles and accordingly different rotation profiles. In the cases with a spatially constant temperature, because the rotation frequency is vertically constant in the equilibrium condition, general properties of the turbulence excited by magnetorotational instability are quantitatively similar to those obtained in local shearing box simulations. On the other hand, in the cases with a radially variable temperature profile, the vertical differential rotation, which is inevitable in the equilibrium condition, winds up the magnetic field lines in addition to the usual radial differential rotation. As a result, the coherent wound magnetic fields contribute to the Maxwell stress in the surface regions. We obtain nondimensional density and velocity fluctuations ∼0.1-0.2 at the midplane. The azimuthal power spectra of the magnetic fields show shallower slopes, ∼m {sup 0} – m {sup –1}, than those of velocity and density. The Poynting flux associated with the MHD turbulence drives intermittent and structured disk winds as well as sound-like waves toward the midplane. The mass accretion mainly occurs near the surfaces, and the gas near the midplane slowly moves outward in the time domain of the present simulations. The vertical magnetic fields are also dragged inward in the surface regions, while they stochastically move outward and inward around the midplane. We also discuss an observational implication of induced spiral structure in the simulated turbulent disks.

  12. Imprint of accretion disk-induced migration on gravitational waves from extreme mass ratio inspirals.

    PubMed

    Yunes, Nicolás; Kocsis, Bence; Loeb, Abraham; Haiman, Zoltán

    2011-10-21

    We study the effects of a thin gaseous accretion disk on the inspiral of a stellar-mass black hole into a supermassive black hole. We construct a phenomenological angular momentum transport equation that reproduces known disk effects. Disk torques modify the gravitational wave phase evolution to detectable levels with LISA for reasonable disk parameters. The Fourier transform of disk-modified waveforms acquires a correction with a different frequency trend than post-Newtonian vacuum terms. Such inspirals could be used to detect accretion disks with LISA and to probe their physical parameters. PMID:22107500

  13. ON THE ROLE OF THE ACCRETION DISK IN BLACK HOLE DISK-JET CONNECTIONS

    SciTech Connect

    Miller, J. M.; Reis, R. C.; Pooley, G. G.; Fabian, A. C.; Cackett, E. M.; Nowak, M. A.; Pottschmidt, K.; Wilms, J.

    2012-09-20

    Models of jet production in black hole systems suggest that the properties of the accretion disk-such as its mass accretion rate, inner radius, and emergent magnetic field-should drive and modulate the production of relativistic jets. Stellar-mass black holes in the 'low/hard' state are an excellent laboratory in which to study disk-jet connections, but few coordinated observations are made using spectrometers that can incisively probe the inner disk. We report on a series of 20 Suzaku observations of Cygnus X-1 made in the jet-producing low/hard state. Contemporaneous radio monitoring was done using the Arcminute MicroKelvin Array radio telescope. Two important and simple results are obtained: (1) the jet (as traced by radio flux) does not appear to be modulated by changes in the inner radius of the accretion disk and (2) the jet is sensitive to disk properties, including its flux, temperature, and ionization. Some more complex results may reveal aspects of a coupled disk-corona-jet system. A positive correlation between the reflected X-ray flux and radio flux may represent specific support for a plasma ejection model of the corona, wherein the base of a jet produces hard X-ray emission. Within the framework of the plasma ejection model, the spectra suggest a jet base with v/c {approx_equal} 0.3 or the escape velocity for a vertical height of z {approx_equal} 20 GM/c {sup 2} above the black hole. The detailed results of X-ray disk continuum and reflection modeling also suggest a height of z {approx_equal} 20 GM/c {sup 2} for hard X-ray production above a black hole, with a spin in the range 0.6 {<=} a {<=} 0.99. This height agrees with X-ray time lags recently found in Cygnus X-1. The overall picture that emerges from this study is broadly consistent with some jet-focused models for black hole spectral energy distributions in which a relativistic plasma is accelerated at z = 10-100 GM/c {sup 2}. We discuss these results in the context of disk-jet connections

  14. Emission of gravitational waves by precession of slim accretion disks dynamically driven by the Bardeen-Petterson effect

    NASA Astrophysics Data System (ADS)

    Alfonso, W. D.; Sánchez, L. A.; Mosquera, H. J.

    2015-11-01

    The electromagnetic radiation emitted from some astrophysical objects such as active galactic nuclei (AGN), micro-quasars (M-QSRs), and central engines of gamma-ray burst (GRBs), seems to have a similar physical origin: a powerful jet of plasma ejected from a localized system, presumably composed of an accretion disk encircling a compact object. This radiation is generally beamed in the polar directions and in some cases, it appears to have a spiral-like structure that could be explained if the central system itself precesses. In this work, we use the slim disk accretion model, presented by Popham et al. (1999), to studying the gravitational waves (GWs) emitted by the precession of the accretion disk around a solar-mass Kerr black hole (KBH). For practical purposes, this model describes the central engine of a class of GRBs when some astrophysical constrains are fulfilled. The induced precession considered here is driven by the Bardeen-Petterson effect, which results from the combination of viscous effects in such disks and the relativistic frame-dragging effect. We evaluate the feasibility of direct detection of the GWs computed for such a model and show that the precession of this kind of systems could be detected by gravitational wave observatories like DECIGO, ultimate-DECIGO, and BBO, with higher probability if such a class of sources are placed at distances less than 1 Mpc.

  15. Burst Testing and Analysis of Superalloy Disks With a Dual Grain Microstructure

    NASA Technical Reports Server (NTRS)

    Gayda, John; Kantzos, Pete

    2006-01-01

    Elastic-plastic finite element analyses of room temperature burst tests on four superalloy disks were conducted and reported in this paper. Two alloys, Rene 104 (General Electric Aircraft Engines) and Alloy 10 (Honeywell Engines & Systems), were studied. For both alloys an advanced dual microstructure disk, fine grain bore and coarse grain rim, were analyzed and compared with conventional disks with uniform microstructures, coarse grain for Rene 104 and fine grain for Alloy 10. The analysis and experimental data were in good agreement up to burst. At burst, the analysis underestimated the speed and growth of the Rene 104 disks, but overestimated the speed and growth of the Alloy 10 disks. Fractography revealed that the Alloy 10 disks displayed significant surface microcracking and coalescence in comparison to Rene 104 disks. This phenomenon may help explain the differences between the Alloy 10 disks and the Rene 104 disks, as well as the observed deviations between analytical and experimental data at burst.

  16. Spectrally resolved eclipse maps of the accretion disk in UX Ursae Majoris

    NASA Technical Reports Server (NTRS)

    Rutten, Rene G. M.; Dhillon, V. S.; Horne, Keith; Kuulkers, E.; Van Paradijs, J.

    1993-01-01

    An effort is made to observationally constrain accretion disks on the basis of light curves from the eclipsing cataclysmic variable UX Ursae Majoris, reconstructing the spectral energy distribution across the face of an accretion disk. The spectral resolution obtained suffices to reveal not only the radial dependence of absorption and emission line features within the disk, but also the spectral details of the bright spot that is formed where the accretion stream from the secondary star collides with the disk. The importance of such constraints for theoretical models is noted.

  17. Effects of Accretion Disks on Spins and Eccentricities of Binaries, and Implications for Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Baker, John

    2012-01-01

    Effects of accretion disks on spins and eccentricities of binaries, and implications for gravitational waves. John Baker Space-based gravitational wave observations will allow exquisitely precise measurements of massive black hole binary properties. Through several recently suggested processes, these properties may depend on interactions with accretion disks through the merger process. I will discuss ways that accretion may influence those binary properties which may be probed by gravitational-wave observations.

  18. The Quiescent Accretion Disk in IP Pegasi at Near-Infrared Wavelengths

    NASA Astrophysics Data System (ADS)

    Froning, C. S.; Robinson, E. L.; Welsh, William F.; Wood, Janet H.

    1999-09-01

    We present near-infrared, H-band (1.45-1.85 μm) observations of an eclipsing dwarf nova, IP Peg, in quiescence. The light curves are composed of ellipsoidal variations from the late-type secondary star and emission from the accretion disk and the bright spot. The light curves have two eclipses: a primary eclipse of the accretion disk and the bright spot by the companion star, and a secondary eclipse of the companion star by the disk. The ellipsoidal variations of the secondary star were modeled and subtracted from the data. The resulting light curve shows a pronounced double-hump variation. The double-hump profile resembles those seen in the light curves of WZ Sge and AL Com and likely originates in the accretion disk. The primary eclipse was modeled using maximum entropy disk mapping techniques. The accretion disk has a flat intensity distribution and a cool brightness temperature (Tbr~=3000 K) in the near-infrared. Superimposed on the face of the disk is the bright spot (Tbr~=10,000 K); the position of the bright spot is different from the observed range of visible bright spot positions. The near-infrared accretion disk flux is dominated by optically thin emission. The secondary eclipse indicates the presence of some occulting medium in the disk, but the eclipse depth is too shallow to be caused by a fully opaque accretion disk.

  19. X-RAYING AN ACCRETION DISK IN REALTIME: THE EVOLUTION OF IONIZED REFLECTION DURING A SUPERBURST FROM 4U 1636-536

    SciTech Connect

    Keek, L.; Ballantyne, D. R.; Kuulkers, E.; Strohmayer, T. E.

    2014-12-20

    When a thermonuclear X-ray burst ignites on an accreting neutron star, the accretion disk undergoes sudden strong X-ray illumination, which can drive a range of processes in the disk. Observations of superbursts, with durations of several hours, provide the best opportunity to study these processes and to probe accretion physics. Using detailed models of X-ray reflection, we perform time resolved spectroscopy of the superburst observed from 4U 1636-536 in 2001 with the Rossi X-Ray Timing Explorer. The spectra are consistent with a blackbody reflecting off a photoionized accretion disk, with the ionization state dropping with time. The evolution of the reflection fraction indicates that the initial reflection occurs from a part of the disk at larger radius, subsequently transitioning to reflection from an inner region of the disk. Even though this superburst did not reach the Eddington limit, we find that a strong local absorber develops during the superburst. Including this event, only two superbursts have been observed by an instrument with sufficient collecting area to allow for this analysis. It highlights the exciting opportunity for future X-ray observatories to investigate the processes in accretion disks when illuminated by superbursts.

  20. Evidence for accretion disks in highly polarized quasars

    NASA Technical Reports Server (NTRS)

    Smith, Paul S.; Elston, Richard; Berriman, Graham; Allen, Richard G.; Balonek, Thomas J.

    1988-01-01

    The results of a search for thermal components in 11 highly polarized quasars (HPQs) using UVBRI polarimetry and photometry are reported. The 2000-2500 A luminosities of the thermal components are calculated and the estimated luminosities of the broad-line region (BLR) are given in the same wavelength for comparison. The observed optical continua are modeled as a combination of polarized synchrotron emission, unpolarized emission from the BLR, and an unpolarized flat spectral component that may be optically thick thermal emission from an accretion disk. Evidence for thermal emission components is found in three HPQs: PKS 0420-014, B2 1156+295, and 3C 454.3, with marginal evidence in another two, PKS 1510-089 and PKS 2345-167.

  1. Understanding Accretion Disks through Three Dimensional Radiation MHD Simulations

    NASA Astrophysics Data System (ADS)

    Jiang, Yan-Fei

    I study the structures and thermal properties of black hole accretion disks in the radiation pressure dominated regime. Angular momentum transfer in the disk is provided by the turbulence generated by the magneto-rotational instability (MRI), which is calculated self-consistently with a recently developed 3D radiation magneto-hydrodynamics (MHD) code based on Athena. This code, developed by my collaborators and myself, couples both the radiation momentum and energy source terms with the ideal MHD equations by modifying the standard Godunov method to handle the stiff radiation source terms. We solve the two momentum equations of the radiation transfer equations with a variable Eddington tensor (VET), which is calculated with a time independent short characteristic module. This code is well tested and accurate in both optically thin and optically thick regimes. It is also accurate for both radiation pressure and gas pressure dominated flows. With this code, I find that when photon viscosity becomes significant, the ratio between Maxwell stress and Reynolds stress from the MRI turbulence can increase significantly with radiation pressure. The thermal instability of the radiation pressure dominated disk is then studied with vertically stratified shearing box simulations. Unlike the previous results claiming that the radiation pressure dominated disk with MRI turbulence can reach a steady state without showing any unstable behavior, I find that the radiation pressure dominated disks always either collapse or expand until we have to stop the simulations. During the thermal runaway, the heating and cooling rates from the simulations are consistent with the general criterion of thermal instability. However, details of the thermal runaway are different from the predictions of the standard alpha disk model, as many assumptions in that model are not satisfied in the simulations. We also identify the key reasons why previous simulations do not find the instability. The thermal

  2. Kinetic axisymmetric gravitational equilibria in collisionless accretion disk plasmas

    SciTech Connect

    Cremaschini, Claudio; Miller, John C.; Tessarotto, Massimo

    2010-07-15

    A theoretical treatment is presented of kinetic equilibria in accretion disks (AD) around compact objects, for cases where the plasma can be considered as collisionless. The plasma is assumed to be axisymmetric and to be acted on by gravitational and electromagnetic fields; in this paper, the particular case is considered where the magnetic field admits a family of toroidal magnetic surfaces, which are locally mutually nested and closed. It is pointed out that there exist asymptotic kinetic equilibria represented by generalized bi-Maxwellian distribution functions and characterized by primarily toroidal differential rotation and temperature anisotropy. It is conjectured that kinetic equilibria of this type can exist which are able to sustain both toroidal and poloidal electric current densities, the latter being produced via finite Larmor-radius effects associated with the temperature anisotropy. This leads to the possibility of existence of a new kinetic effect - referred to here as a 'kinetic dynamo effect - resulting in the self-generation of toroidal magnetic field even by a stationary plasma, without any net radial accretion flow being required. The conditions for these equilibria to occur, their basic theoretical features, and their physical properties are all discussed in detail.

  3. Black hole accretion disks - Electrodynamic coupling of accretion-disk coronae and the partitioning of soft and hard X-ray emission

    NASA Technical Reports Server (NTRS)

    Kuperus, M.; Ionson, J. A.

    1985-01-01

    It is demonstrated that the observed large ratio of hard to soft X-ray emission and the bimodel behavior of black hole accreting X-ray sources such as Cygnus X-1 can be described in terms of a magnetically structured accretion disk corona which is electrodynamically coupled to the disk turbulent motions while the disk is thermodynamically coupled to the corona as described by a feedback parameter delta. The observed ratio of hard to soft X-ray emission is independent of the disk thickness, and weakly dependent of the disk parameter alpha relating the disk viscous stresses to the total pressure. Observed values of the luminosity ratio point towards strong differences of the feedback of the low state compared to the high state, in the sense that low state means small feedback (delta less than 0.2) and high state means strong feedback delta of about 0.5.

  4. Nonstationary magnetic microstructures in stellar thin accretion disks.

    PubMed

    Montani, Giovanni; Petitta, Jacopo

    2013-05-01

    We examine the morphology of magnetic structures in thin plasma accretion disks, generalizing a stationary ideal magnetohydrodynamics model for the time-dependent viscoresistive case. Our analysis deals with small-scale perturbations to a central dipolelike magnetic field, which give rise-as in the ideal case-to the periodic modulation of magnetic flux surfaces along the radial direction, corresponding to the formation of a toroidal current channel's sequence. These microstructures suffer an exponential damping in time because of the nonzero resistivity coefficient, allowing us to define a configuration lifetime which mainly depends on the midplane temperature and on the length scale of the structure itself. By means of this lifetime, we show that the microstructures can exist within the inner regions of stellar disks in a defined range of temperatures, precisely for radii of R

  5. Do Accretion Disks Exist in High Energy Astrophysics?

    NASA Astrophysics Data System (ADS)

    Coppi, B.

    2006-10-01

    The familiar concept of an accretion disk is based on its gas dynamic description where, in particular, the vertical equilibrium is maintained by the (weak) vertical component of the gravitational force due to the central object. When a plasma structure differentially rotating around the same kind of object is considered in which the magnetic field diffusion due to finite resistivity is realistically weak, a radially periodic sequence of pairs of opposite current channels is found. Moreover, the vertical confinement of the structure is maintained by the resulting Lorentz force rather than by gravity. Thus, a ``Lorentz compression'' occurs. In addition, sequences of plasma rings^2 rather than disks emerge. (Note that H. Alfvén had proposed that planetary rings may be ``fossils'' of pre- existing envisioned plasma rings. Moreover, a large ring is the most prominent feature emerging from the high resolution X- ray image of the Crab). The ``seed'' magnetic field in which the structure is immersed is considerably smaller than that produced by the internal toroidal currents. The magnetic pressure is of the order of the plasma pressure. Thus, ring sequence configurations can be suitable for the emergence of a jet from their center. Two coupled non-linear equations have been solved, representing the vertical and the horizontal equilibrium conditions for the structure.*Sponsored in part by the U.S. D.O.E. B. Coppi, Phys. Plasmas 12, 057301, (2005) B. Coppi and F. Rousseau, Ap. J. 641 (1), 458 (2006)

  6. The intrinsic quasar luminosity function: Accounting for accretion disk anisotropy

    SciTech Connect

    DiPompeo, M. A.; Myers, A. D.; Brotherton, M. S.; Runnoe, J. C.; Green, R. F.

    2014-05-20

    Quasar luminosity functions are a fundamental probe of the growth and evolution of supermassive black holes. Measuring the intrinsic luminosity function is difficult in practice, due to a multitude of observational and systematic effects. As sample sizes increase and measurement errors drop, characterizing the systematic effects is becoming more important. It is well known that the continuum emission from the accretion disk of quasars is anisotropic—in part due to its disk-like structure—but current luminosity function calculations effectively assume isotropy over the range of unobscured lines of sight. Here, we provide the first steps in characterizing the effect of random quasar orientations and simple models of anisotropy on observed luminosity functions. We find that the effect of orientation is not insignificant and exceeds other potential corrections such as those from gravitational lensing of foreground structures. We argue that current observational constraints may overestimate the intrinsic luminosity function by as much as a factor of ∼2 on the bright end. This has implications for models of quasars and their role in the universe, such as quasars' contribution to cosmological backgrounds.

  7. 1 Hz Flaring in the Accreting Millisecond Pulsar NGC 6440 X-2: Disk Trapping and Accretion Cycles

    NASA Astrophysics Data System (ADS)

    Patruno, Alessandro; D'Angelo, Caroline

    2013-07-01

    The dynamics of the plasma in the inner regions of an accretion disk around accreting millisecond X-ray pulsars (AMXPs) is controlled by the magnetic field of the neutron star. The interaction between an accretion disk and a strong magnetic field is not well understood, particularly at low accretion rates (the so-called propeller regime). This is due in part to the lack of clear observational diagnostics to constrain the physics of the disk-field interaction. Here, we associate the strong ~1 Hz modulation seen in the AMXP NGC 6440 X-2 with an instability that arises when the inner edge of the accretion disk is close to the corotation radius (where the stellar rotation rate matches the Keplerian speed in the disk). A similar modulation has previously been observed in another AMXP (SAX J1808.4-3658) and we suggest that the two phenomena are related and that this may be a common phenomenon among other magnetized systems. Detailed comparisons with theoretical models suggest that when the instability is observed, the interaction region between the disk and the field is very narrow—of the order of 1 km. Modeling further suggests that there is a transition region (~1-10 km) around the corotation radius where the disk-field torque changes sign from spin-up to spin-down. This is the first time that a direct observational constraint has been placed on the width of the disk-magnetosphere interaction region, in the frame of the trapped-disk instability model.

  8. Cooling Fronts in Accretion Disks and Constraints on the Disk Viscosity

    NASA Astrophysics Data System (ADS)

    Vishniac, E. T.; Wheeler, J. C.

    1996-12-01

    We examine the speed of inward traveling cooling fronts in accretion disks and the structure of the hot phase of the disk inside the cooling front. We show that the cooling front speed is determined by the rarefaction wave that precedes it and is approximately alpha_F c_F (H/r)(q) , where alpha_F is the dimensionless viscosity, c_F is the sound speed, r is the radial coordinate, H is the disk thickness, and all quantities are evaluated at the cooling front. The scaling exponent q lies in the interval [0,1], depending on the slope of the (T,Sigma ) relation in the hot state. For a Kramers law opacity and alpha ~ (H/r)(n) , where n is of order unity, we find that q ~ 1/2. In addition, we derive a similarity solution which is exact in the limit of a thin disk with power law opacities and allows us to predict the coefficient in the cooling front speed scaling law. Our results support the numerical work of Cannizzo, Chen, and Livio (1995) and their conclusion that n~ 3/2 is necessary to reproduce the exponential decay of luminosity in black hole X-ray binary systems. Our results are insensitive to the structure of the disk outside the radius where rapid cooling sets in. In particular, the width of the rapid cooling zone is a consequence of the cooling front speed rather than its cause. This implies that our conclusions depend only on the structure of the hot phase of the disk, which is relatively well understood. We discuss the implications of this result for theoretical models of disk viscosity.

  9. Smearing of mass accretion rate variation by viscous processes in accretion disks in compact binary systems

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Chakrabarti, Sandip K.

    2016-09-01

    Variation of mass supply rate from the companion can be smeared out by viscous processes inside an accretion disk. Hence, by the time the flow reaches the inner edge, the variation in X-rays need not reflect the true variation of the mass supply rate at the outer edge. However, if the viscosity fluctuates around a mean value, one would expect the viscous time scale t_{{visc}} also to spread around a mean value. In high mass X-ray binaries, which are thought to be primarily wind-fed, the size of the viscous Keplerian disk is smaller and thus such a spread could be lower as compared to the low mass X-ray binaries which are primarily fed by Roche lobe overflow. If there is an increasing or decreasing trend in viscosity, the interval between enhanced emission would be modified systematically. In the absence of a detailed knowledge about the variation of mass supply rates at the outer edge, we study ideal circumstances where modulation must take place exactly in orbital time scales, such as when there is an ellipticity in the orbit. We study a few compact binaries using long term All Sky monitor (ASM) data (1.5-12 keV) of Rossi X-ray Timing Explorer (RXTE) and all sky survey data (15-50 keV) of Swift satellites by different methods to look for such smearing effects and to infer what these results can tell us about the viscous processes inside the respective disks. We employ three different methods to seek imprints of periodicity on the X-ray variation and found that in all the cases, the location of the peak in the power density spectra is consistent with the orbital frequencies. Interestingly, in high mass X-ray binaries the peaks are sharp with high rms values, consistent with a small Keplerian disk in a wind fed system. However, in low mass X-ray binaries with larger Keplerian disk component, the peaks are spreaded out with much lower rms values. X-ray reflections, or superhump phenomena which may also cause such X-ray modulations would not be affected by the size of

  10. Burst Testing of a Superalloy Disk with a Dual Grain Structure

    NASA Technical Reports Server (NTRS)

    Gayda, John; Kantzos, Pete

    2002-01-01

    Room temperature burst testing of an advanced nickel-base superalloy disk with a dual grain structure was conducted. The disk had a fine grain bore and a coarse grain rim. The results of this test showed that the disk burst at 39,100 rpm in line with predictions based on a 2-D finite element analysis. Further, significant growth of the disk was observed before failure which was also in line with predictions.

  11. METAL ACCRETION ONTO WHITE DWARFS CAUSED BY POYNTING-ROBERTSON DRAG ON THEIR DEBRIS DISKS

    SciTech Connect

    Rafikov, Roman R.

    2011-05-01

    Recent discoveries of compact (sizes {approx}disks around more than a dozen metal-rich white dwarfs (WDs) suggest that pollution of these stars with metals may be caused by accretion of high-Z material from the disk. But the mechanism responsible for efficient transfer of mass from a particulate disk to the WD atmosphere has not yet been identified. Here we demonstrate that radiation of the WD can effectively drive accretion of matter through the disk toward the sublimation radius (located at several tens of WD radii), where particles evaporate, feeding a disk of metal gas accreting onto the WD. We show that, contrary to some previous claims, Poynting-Robertson (PR) drag on the debris disk is effective at providing metal accretion rate M-dot{sub PR}{approx}10{sup 8} g s{sup -1} and higher, scaling quadratically with WD effective temperature. We compare our results with observations and show that, as expected, no WD hosting a particulate debris disk shows evidence of metal accretion rate below that produced by the PR drag. Existence of WDs accreting metals at rates significantly higher than M-dot{sub PR} suggests that another mechanism in addition to the PR drag drives accretion of high-Z elements in these systems.

  12. New class of low frequency QPOs: Signature of nuclear burning or accretion disk instabilities?

    NASA Astrophysics Data System (ADS)

    Revnivtsev, M.; Churazov, E.; Gilfanov, M.; Sunyaev, R.

    2001-06-01

    We report the discovery of a new class of low frequency quasi-periodic variations of the X-ray flux in the X-ray bursters 4U1608-52 and 4U1636-536. We also report an occasional detection of a similar QPO in Aql X-1. The QPOs, associated with flux variations at the level of percents, are observed at a frequency of 7-9 x 10-3 Hz. While usually the relative amplitude of flux variations increases with energy, the newly discovered QPOs are limited to the softest energies (1-5 keV). The observations of 4U1608-52 suggest that these QPOs are present only when the source X-ray luminosity is within a rather narrow range and they disappear after X-ray bursts. Approximately at the same level of the source luminosity, type I X-ray bursts cease to exist. Judging from this complex of properties, we speculate that a special mode of nuclear burning at the neutron star surface is responsible for the observed flux variations. Alternatively, some instabilities in the accretion disk may be responsible for these QPOs.

  13. Brackett γ radiation from the inner gaseous accretion disk, magnetosphere, and disk wind region of Herbig AeBe stars

    NASA Astrophysics Data System (ADS)

    Tambovtseva, L. V.; Grinin, V. P.; Weigelt, G.

    2016-05-01

    Various disk and outflow components such as the magnetosphere, the disk wind, the gaseous accretion disk, and other regions may contribute to the hydrogen line emission of young Herbig AeBe stars. Non-LTE modeling was performed to show the influence of the model parameters of each emitting region on the intensity and shape of the Brγ line profile, to present the spatial brightness distribution of each component, and to compare the contribution of each component to the total line emission. The modeling shows that the disk wind is the dominant contributor to the Brγ line rather than the magnetosphere and inner gaseous accretion disk. The contribution of the disk wind region to the Hα line is also considered.

  14. Strong Field Effects on Emission Line Profiles: Kerr Black Holes and Warped Accretion Disks

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Li, Xiang-Dong

    2012-01-01

    If an accretion disk around a black hole is illuminated by hard X-rays from non-thermal coronae, fluorescent iron lines will be emitted from the inner region of the accretion disk. The emission line profiles will show a variety of strong field effects, which may be used as a probe of the spin parameter of the black hole and the structure of the accretion disk. In this paper, we generalize the previous relativistic line profile models by including both the black hole spinning effects and the non-axisymmetries of warped accretion disks. Our results show different features from the conventional calculations for either a flat disk around a Kerr black hole or a warped disk around a Schwarzschild black hole by presenting, at the same time, multiple peaks, rather long red tails, and time variations of line profiles with the precession of the disk. We show disk images as seen by a distant observer, which are distorted by the strong gravity. Although we are primarily concerned with the iron K-shell lines in this paper, the calculation is general and is valid for any emission lines produced from a warped accretion disk around a black hole.

  15. Strong Field Effects On Emission Line Profiles: Kerr Black Holes And Warped Accretion Disks

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Li, X.

    2012-01-01

    If an accretion disk around a black hole is illuminated by hard X-rays from non-thermal coronae, fluorescent iron lines will be emitted from the inner region of the accretion disk. The emission line profiles will show a variety of strong field effects, which may be used as a probe of the spin parameter of the black hole and the structure of the accretion disk. In this paper we generalize the previous relativistic line profile models by including both the black hole spinning effects and the non-axisymmetry of warped accretion disks. Our results show different features from the conventional calculations for either a flat disk around a Kerr black hole or a warped disk around a Schwarzschild black hole by presenting, at the same time, multiple peaks, rather long red tails and time variations of line profiles with the precession of the disk. We show disk images as seen by a distant observer, which are distorted by the strong gravity. Although we are primarily concerned with the iron K-shell lines in this paper, the calculation is general and is valid for any emission lines produced from a warped accretion disk around a black hole. This work was supported by the Natural Science Foundation of China (under grant number 10873008), and the National Basic Research Program of China (973 Program 2009CB824800).

  16. STRONG FIELD EFFECTS ON EMISSION LINE PROFILES: KERR BLACK HOLES AND WARPED ACCRETION DISKS

    SciTech Connect

    Wang Yan; Li Xiangdong

    2012-01-10

    If an accretion disk around a black hole is illuminated by hard X-rays from non-thermal coronae, fluorescent iron lines will be emitted from the inner region of the accretion disk. The emission line profiles will show a variety of strong field effects, which may be used as a probe of the spin parameter of the black hole and the structure of the accretion disk. In this paper, we generalize the previous relativistic line profile models by including both the black hole spinning effects and the non-axisymmetries of warped accretion disks. Our results show different features from the conventional calculations for either a flat disk around a Kerr black hole or a warped disk around a Schwarzschild black hole by presenting, at the same time, multiple peaks, rather long red tails, and time variations of line profiles with the precession of the disk. We show disk images as seen by a distant observer, which are distorted by the strong gravity. Although we are primarily concerned with the iron K-shell lines in this paper, the calculation is general and is valid for any emission lines produced from a warped accretion disk around a black hole.

  17. The Influence of Accretion Rate and Metallicity on Thermonuclear Bursts: Predictions from KEPLER Models

    NASA Astrophysics Data System (ADS)

    Lampe, Nathanael; Heger, Alexander; Galloway, Duncan K.

    2016-03-01

    Using the KEPLER hydrodynamics code, 464 models of thermonuclear X-ray bursters were performed across a range of accretion rates and compositions. We present the library of simulated burst profiles from this sample, and examine variations in the simulated light curve for different model conditions. We find that the recurrence time varies as a power law against accretion rate, and measure its slope while mixed H/He burning is occurring for a range of metallicities, finding the power law gradient to vary from η =1.1 to 1.24. We identify the accretion rates at which mixed H/He burning stops and a transition occurs to different burning regimes. We explore how varying the accretion rate and metallicity affects burst morphology in both the rise and tail.

  18. The LINER Nucleus of M87: A Shock-excited Dissipative Accretion Disk

    NASA Astrophysics Data System (ADS)

    Dopita, Michael A.; Koratkar, Anuradha P.; Allen, Mark G.; Tsvetanov, Zlatan I.; Ford, Holland C.; Bicknell, Geoffrey V.; Sutherland, Ralph S.

    1997-11-01

    We present long-baseline Faint Object Spectrograph (FOS) spectra of the nuclear accretion disk in M87 (NGC 4486), offset from the nucleus by 0.6" (42.7 pc) in order to avoid the nuclear continuum. Even so close to the nucleus, the optical spectrum has the appearance of a normal LINER galaxy. We show that the presence of strong UV emission lines provides a definitive test of the excitation mechanism; the disk is shock excited, not photoionized by a UV continuum from the central source. The shock velocity inferred (265 km s-1) is about one-half of the Keplerian rotation velocity found earlier by Ford et al. Since shock dissipation appears to be the principal means of increasing the binding energy of the accreting gas, we can use the FOS data and the luminosity profile of the accretion disk to estimate the rate of mass accretion as a function of radius. We find that this rate decreases with decreasing distance from the nucleus, as the material becomes organized into a cool and thin classical accretion disk in the inner regions. In the outer disk, the accretion rate (~4 M⊙ yr-1) is comparable to that determined for the X-ray-emitting cooling flow, showing that a large fraction of the cooling gas can find its way into the nuclear regions. The accretion rate near the nucleus (~3 × 10-2 M⊙ yr-1) is consistent with the properties of the relativistic jet and its associated radio emission. Over the lifetime of the jets, about 107 M⊙ of cool material may have accumulated in the nuclear regions, allowing the formation of a disk that is optically thick to Thomson scattering where it becomes ionized close to the nucleus. We speculate that LINER emission is a general property of the shocked dissipative regions of accretion disks in active galaxies with strongly sub-Eddington accretion and may therefore be used as a diagnostic of these dissipative accretion flows.

  19. NEUTRINO SPECTRA FROM ACCRETION DISKS: NEUTRINO GENERAL RELATIVISTIC EFFECTS AND THE CONSEQUENCES FOR NUCLEOSYNTHESIS

    SciTech Connect

    Caballero, O. L.; McLaughlin, G. C.; Surman, R. E-mail: olcaball@ncsu.edu E-mail: surmanr@union.edu

    2012-02-01

    Black hole (BH) accretion disks have been proposed as good candidates for a range of interesting nucleosynthesis, including the r-process. The presence of the BH influences the neutrino fluxes and affects the nucleosynthesis resulting from the interaction of the emitted neutrinos and hot outflowing material ejected from the disk. We study the impact of general relativistic effects on the neutrinos emitted from BH accretion disks. We present abundances obtained by considering null geodesics and energy shifts for two different disk models. We find that both the bending of the neutrino trajectories and the energy shifts have important consequences for the nucleosynthetic outcome.

  20. Accretion disk corona line emission from X0614+091

    NASA Technical Reports Server (NTRS)

    Christian, D. J.; White, N. E.; Swank, J. H.

    1994-01-01

    The low-mass X-ray binary X0614+091 was observed on 3 days in 1979 with the Einstein Observatory solid state spectrometer and the monitor proportional counter. During the observation with the highest measured flux, corresponding to an X-ray luminosity of 8 x 10(exp 36) erg/s (in the 0.5-20 keV band for an assumed distance of 5 kpc), significant low-energy emission was detected, centered at 0.77 keV, possibly due to line emission for O VII-O VIII and Fe XVII-Fe XIX. The other observations, which were at fluxes lower by a factor of 2, are consistent with the presence of the emission feature. The equivalent width of the feature, 37 +/- 6 eV, is of the same order as equivalent widths previously reported for more luminous low-mass X-ray binaries using grating spectrometer data. The soft X-ray lines could be emitted by gas expected to arise in an accretion disk corona excited by the central source. But to explain the observed feature, most of the corona needs to contribute, or other sources of emission are required.

  1. Workshop on Physics of Accretion Disks Around Compact and Young Stars

    NASA Technical Reports Server (NTRS)

    Liang, E (Editor); Stepinski, T. F. (Editor)

    1995-01-01

    The purpose of the two-day Workshop on Physics of Accretion Disks Around Compact and Young Stars was to bring together workers on accretion disks in the western Gulf region (Texas and Louisiana). Part 2 presents the workshop program, a list of poster presentations, and a list of workshop participants. Accretion disks are believed to surround many stars. Some of these disks form around compact stars, such as white dwarfs, neutron stars, or black holes that are members of binary systems and reveal themselves as a power source, especially in the x-ray and gamma regions of the spectrum. On the other hand, protostellar disks are believed to be accretion disks associated with young, pre-main-sequence stars and manifest themselves mostly in infrared and radio observations. These disks are considered to be a natural outcome of the star formation process. The focus of this workshop included theory and observations relevant to accretion disks around compact objects and newly forming stars, with the primary purpose of bringing the two communities together for intellectual cross-fertilization. The nature of the workshop was exploratory, to see how much interaction is possible between distinct communities and to better realize the local potential in this subject. A critical workshop activity was identification and documentation of key issues that are of mutual interest to both communities.

  2. Nonlinear calculations of the time evolution of black hole accretion disks

    NASA Technical Reports Server (NTRS)

    Luo, C.

    1994-01-01

    Based on previous works on black hole accretion disks, I continue to explore the disk dynamics using the finite difference method to solve the highly nonlinear problem of time-dependent alpha disk equations. Here a radially zoned model is used to develop a computational scheme in order to accommodate functional dependence of the viscosity parameter alpha on the disk scale height and/or surface density. This work is based on the author's previous work on the steady disk structure and the linear analysis of disk dynamics to try to apply to x-ray emissions from black candidates (i.e., multiple-state spectra, instabilities, QPO's, etc.).

  3. Episodic jet power extracted from a spinning black hole surrounded by a neutrino-dominated accretion flow in gamma-ray bursts

    SciTech Connect

    Cao, Xinwu; Liang, En-Wei; Yuan, Ye-Fei E-mail: lew@gxu.edu.cn

    2014-07-10

    It was suggested that the relativistic jets in gamma-ray bursts (GRBs) are powered via the Blandford-Znajek (BZ) mechanism or the annihilation of neutrinos and anti-neutrinos from a neutrino cooling-dominated accretion flow (NDAF). The advection and diffusion of the large-scale magnetic field of an NDAF is calculated, and the external magnetic field is found to be dragged inward efficiently by the accretion flow for a typical magnetic Prandtl number P{sub m}=η/ν∼1. The maximal BZ jet power can be ∼10{sup 53}-10{sup 54} erg s{sup –1} for an extreme Kerr black hole, if an external magnetic field with 10{sup 14} Gauss is advected by the NDAF. This is roughly consistent with the field strength of the disk formed after a tidal disrupted magnetar. The accretion flow near the black hole horizon is arrested by the magnetic field if the accretion rate is below than a critical value for a given external field. The arrested accretion flow fails to drag the field inward and the field strength decays, and then the accretion re-starts, which leads to oscillating accretion. The typical timescale of such episodic accretion is of an order of one second. This can qualitatively explain the observed oscillation in the soft extended emission of short-type GRBs.

  4. Episodic Jet Power Extracted from a Spinning Black Hole Surrounded by a Neutrino-dominated Accretion Flow in Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Cao, Xinwu; Liang, En-Wei; Yuan, Ye-Fei

    2014-07-01

    It was suggested that the relativistic jets in gamma-ray bursts (GRBs) are powered via the Blandford-Znajek (BZ) mechanism or the annihilation of neutrinos and anti-neutrinos from a neutrino cooling-dominated accretion flow (NDAF). The advection and diffusion of the large-scale magnetic field of an NDAF is calculated, and the external magnetic field is found to be dragged inward efficiently by the accretion flow for a typical magnetic Prandtl number \\mathscr{P}_m=η /ν ˜ 1. The maximal BZ jet power can be ~1053-1054 erg s-1 for an extreme Kerr black hole, if an external magnetic field with 1014 Gauss is advected by the NDAF. This is roughly consistent with the field strength of the disk formed after a tidal disrupted magnetar. The accretion flow near the black hole horizon is arrested by the magnetic field if the accretion rate is below than a critical value for a given external field. The arrested accretion flow fails to drag the field inward and the field strength decays, and then the accretion re-starts, which leads to oscillating accretion. The typical timescale of such episodic accretion is of an order of one second. This can qualitatively explain the observed oscillation in the soft extended emission of short-type GRBs.

  5. Tests and consequences of disk plus halo models of gamma-ray burst sources

    NASA Technical Reports Server (NTRS)

    Smith, I. A.

    1995-01-01

    The gamma-ray burst observations made by the Burst and Transient Source Experiment (BATSE) and by previous experiments are still consistent with a combined Galactic disk (or Galactic spiral arm) plus extended Galactic halo model. Testable predictions and consequences of the disk plus halo model are discussed here; tests performed on the expanded BATSE database in the future will constrain the allowed model parameters and may eventually rule out the disk plus halo model. Using examples, it is shown that if the halo has an appropriate edge, BATSE will never detect an anisotropic signal from the halo of the Andromeda galaxy. A prediction of the disk plus halo model is that the fraction of the bursts observed to be in the 'disk' population rises as the detector sensitivity improves. A careful reexamination of the numbers of bursts in the two populations for the pre-BATSE databases could rule out this class of models. Similarly, it is predicted that different satellites will observe different relative numbers of bursts in the two classes for any model in which there are two different spatial distribiutions of the sources, or for models in which there is one spatial distribution of the sources that is sampled to different depths for the two classes. An important consequence of the disk plus halo model is that for the birthrate of the halo sources to be small compared to the birthrate of the disk sources, it is necessary for the halo sources to release many orders of magnitude more energy over their bursting lifetime than the disk sources. The halo bursts must also be much more luminous than the disk bursts; if this disk-halo model is correct, it is necessary to explain why the disk sources do not produce halo-type bursts.

  6. The structure and appearance of winds from supercritical accretion disks. I - Numerical models

    NASA Technical Reports Server (NTRS)

    Meier, D. L.

    1979-01-01

    Equations for the structure and appearance of supercritical accretion disks and the radiation-driven winds which emanate from them are derived and solved by a steady-state hydrodynamic computer code with a relaxation technique used in stellar structure problems. The present model takes into account the mass of the accreting star, the total accretion rate, a generalization of the disk alpha parameter which accounts for heating by processes in addition to viscosity, and the ratio of the total luminosity to the Eddington luminosity. Solutions indicate that for accretion onto a hard-surfaced star, steady, optically thick winds result for even slightly supercritical accretion, and the object will appear as a supergiant star with a high mass loss rate and a nonblackbody spectrum. Winds from black hole accretion disks are expected to depend on the form of the accretion interior to the critical radius, possibly consisting of no ejection at all, a wind similar to that of a hard-surfaced star, or a column of material ejected from a hole in the accretion disk.

  7. Evaporation of Accretion Disks around Black Holes: The Disk-Corona Transition and the Connection to the Advection-dominated Accretion Flow.

    PubMed

    Liu; Yuan; Meyer; Meyer-Hofmeister; Xie

    1999-12-10

    We apply the disk-corona evaporation model (Meyer & Meyer-Hofmeister) originally derived for dwarf novae to black hole systems. This model describes the transition of a thin cool outer disk to a hot coronal flow. The mass accretion rate determines the location of this transition. For a number of well-studied black hole binaries, we take the mass flow rates derived from a fit of the advection-dominated accretion flow (ADAF) model to the observed spectra (for a review, see Narayan, Mahadevan, & Quataert) and determine where the transition of accretion via a cool disk to a coronal flow/ADAF would be located for these rates. We compare this with the observed location of the inner disk edge, as estimated from the maximum velocity of the Halpha emission line. We find that the transition caused by evaporation agrees with this determination in stellar disks. We also show that the ADAF and the "thin outer disk + corona" are compatible in terms of the physics in the transition region. PMID:10566989

  8. ACCRETION OF GAS ONTO GAP-OPENING PLANETS AND CIRCUMPLANETARY FLOW STRUCTURE IN MAGNETIZED TURBULENT DISKS

    SciTech Connect

    Uribe, A. L.; Klahr, H.; Henning, Th.

    2013-06-01

    We have performed three-dimensional magnetohydrodynamical simulations of stellar accretion disks, using the PLUTO code, and studied the accretion of gas onto a Jupiter-mass planet and the structure of the circumplanetary gas flow after opening a gap in the disk. We compare our results with simulations of laminar, yet viscous disks with different levels of an {alpha}-type viscosity. In all cases, we find that the accretion flow across the surface of the Hill sphere of the planet is not spherically or azimuthally symmetric, and is predominantly restricted to the mid-plane region of the disk. Even in the turbulent case, we find no significant vertical flow of mass into the Hill sphere. The outer parts of the circumplanetary disk are shown to rotate significantly below Keplerian speed, independent of viscosity, while the circumplanetary disk density (therefore the angular momentum) increases with viscosity. For a simulation of a magnetized turbulent disk, where the global averaged alpha stress is {alpha}{sub MHD} = 10{sup -3}, we find the accretion rate onto the planet to be M-dot {approx}2 Multiplication-Sign 10{sup -6}M{sub J} yr{sup -1} for a gap surface density of 12 g cm{sup -2}. This is about a third of the accretion rate obtained in a laminar viscous simulation with equivalent {alpha} parameter.

  9. Accretion of Gas onto Gap-opening Planets and Circumplanetary Flow Structure in Magnetized Turbulent Disks

    NASA Astrophysics Data System (ADS)

    Uribe, A. L.; Klahr, H.; Henning, Th.

    2013-06-01

    We have performed three-dimensional magnetohydrodynamical simulations of stellar accretion disks, using the PLUTO code, and studied the accretion of gas onto a Jupiter-mass planet and the structure of the circumplanetary gas flow after opening a gap in the disk. We compare our results with simulations of laminar, yet viscous disks with different levels of an α-type viscosity. In all cases, we find that the accretion flow across the surface of the Hill sphere of the planet is not spherically or azimuthally symmetric, and is predominantly restricted to the mid-plane region of the disk. Even in the turbulent case, we find no significant vertical flow of mass into the Hill sphere. The outer parts of the circumplanetary disk are shown to rotate significantly below Keplerian speed, independent of viscosity, while the circumplanetary disk density (therefore the angular momentum) increases with viscosity. For a simulation of a magnetized turbulent disk, where the global averaged alpha stress is αMHD = 10-3, we find the accretion rate onto the planet to be \\dot{M}\\approx 2\\times 10^{-6}M_{{J}}\\,yr^{-1} for a gap surface density of 12 g cm-2. This is about a third of the accretion rate obtained in a laminar viscous simulation with equivalent α parameter.

  10. Measuring the Relative Contributions of Viscous Accretion and Photoevaporation to the Dispersal of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Simon, M. N.; Pascucci, I.; Rigliaco, E.; Gorti, U.; Hollenbach, D.

    2014-03-01

    Models of protoplanetary disk evolution suggest that photoevaporation driven by the central star and viscous evolution via gas accretion onto the star are the main mechanisms that drive disk dispersal. Viscous evolution has the ability to smoothly decrease the disk surface density, but photoevaporation can drastically change it by creating gaps in planet-forming regions that widen quickly over time. This quick gas dispersal can stop the migration of giant planets whose location affects the final delivery of volatiles (including water) to terrestrial planets. We selected a sample of twenty protoplanetary disks around T. Tauri stars in the Taurus region spanning all three main disk evolutionary stages, with a range of mass accretion rates. For this sample we have acquired high-resolution optical spectra with Keck/HIRES covering gas lines that trace both accretion and photoevaporation. We will present an analysis of the forbidden OI, SII, and NII lines and provide empirically determined mass loss rates as a function of disk evolutionary stage and mass accretion rate. This will enhance our understanding of the disk stage at which photoevaporation starts to dominate over viscous accretion.

  11. THE STRUCTURE OF THE ACCRETION DISK IN THE ACCRETION DISK CORONA X-RAY BINARY 4U 1822-371 AT OPTICAL AND ULTRAVIOLET WAVELENGTHS

    SciTech Connect

    Bayless, Amanda J.; Robinson, Edward L.; Cornell, Mark E.; Hynes, Robert I.; Ashcraft, Teresa A.

    2010-01-20

    The eclipsing low-mass X-ray binary 4U 1822-371 is the prototypical accretion disk corona (ADC) system. We have obtained new time-resolved UV spectroscopy of 4U 1822-371 with the Advanced Camera for Surveys/Solar Blind Channel on the Hubble Space Telescope and new V- and J-band photometry with the 1.3 m SMARTS telescope at Cerro Tololo Inter-American Observatory. We use the new data to construct its UV/optical spectral energy distribution and its orbital light curve in the UV, V, and J bands. We derive an improved ephemeris for the optical eclipses and confirm that the orbital period is changing rapidly, indicating extremely high rates of mass flow in the system, and we show that the accretion disk in the system has a strong wind with projected velocities up to 4000 km s{sup -1}. We show that the disk has a vertically extended, optically thick component at optical wavelengths. This component extends almost to the edge of the disk and has a height equal to approx0.5 of the disk radius. As it has a low brightness temperature, we identify it as the optically thick base of a disk wind, not as the optical counterpart of the ADC. Like previous models of 4U 1822-371, ours needs a tall obscuring wall near the edge of the accretion disk, but we interpret the wall as a layer of cooler material at the base of the disk wind, not as a tall, luminous disk rim.

  12. Constraints on black hole spins with a general relativistic accretion disk corona model

    NASA Astrophysics Data System (ADS)

    You, Bei; Cao, Xin-Wu; Yuan, Ye-Fei

    2016-04-01

    The peaks in the spectra of the accretion disks surrounding massive black holes in quasars are in the far-UV or soft X-ray band, which are usually not observed. However, in the disk corona model, soft photons from the disk are Comptonized to high energy in the hot corona, and the hard X-ray spectra (luminosity and spectral shape) contain information on the incident spectra from the disk. The values of black hole spin parameter a* are inferred from the spectral fitting, which are spread over a large range, ∼ ‑0.94 to 0.998. We find that the inclination angles and mass accretion rates are well determined by the spectral fitting, but the results are sensitive to the accuracy of black hole mass estimates. No tight constraints on the black hole spins are achieved, if the uncertainties in black hole mass measurements are a factor of four, which are typical for the single-epoch reverberation mapping method. Recently, the accuracy of black hole mass measurement has been significantly improved to 0.2 – 0.4 dex with the velocity resolved reverberation mapping method. The black hole spin can be well constrained if the mass measurement accuracy is ≲ 50%. In the accretion disk corona scenario, a fraction of power dissipated in the disk is transported into the corona, and therefore the accretion disk is thinner than a bare disk for the same mass accretion rate, because the radiation pressure in the disk is reduced. We find that the thin disk approximation, H/R ≲ 0.1, is still valid if 0.3 < ṁ < 0.5, provided half of the dissipated power is radiated in the corona above the disk.

  13. Lunar volatile depletion due to incomplete accretion within an impact-generated disk

    NASA Astrophysics Data System (ADS)

    Canup, Robin M.; Visscher, Channon; Salmon, Julien; Fegley, Bruce, Jr.

    2015-12-01

    The Moon may have formed from an Earth-orbiting disk of vapour and melt produced by a giant impact. The mantles of the Moon and Earth have similar compositions. However, it is unclear why lunar samples are more depleted in volatile elements than terrestrial mantle rocks, given that an evaporative escape mechanism seems inconsistent with expected disk conditions. Dynamical models suggest that the Moon initially accreted from the outermost disk, but later acquired up to 60% of its mass from melt originating from the inner disk. Here we combine dynamical, thermal and chemical models to show that volatile depletion in the Moon can be explained by preferential accretion of volatile-rich melt in the inner disk to the Earth, rather than to the growing Moon. Melt in the inner disk is initially hot and volatile poor, but volatiles condense as the disk cools. In our simulations, the delivery of inner disk melt to the Moon effectively ceases when gravitational interactions cause the Moon’s orbit to expand away from the disk, and this termination of lunar accretion occurs before condensation of potassium and more volatile elements. Thus, the portion of the Moon derived from the inner disk is expected to be volatile depleted. We suggest that this mechanism may explain part or all of the Moon’s volatile depletion, depending on the degree of mixing within the lunar interior.

  14. Self-collimated electromagnetic jets from magnetized accretion disks - The even-symmetry case

    NASA Technical Reports Server (NTRS)

    Wang, J. C. L.; Sulkanen, M. E.; Lovelace, R. V. E.

    1990-01-01

    This paper extends the previous treatment (Lovelace et al., 1987) of the origin of self-collimated EM jets to the case of even field symmetry, where the magnetic flux function Psi(r, z) is an even function of z. A viscous resistive accretion disk is assumed to surround a black hole with a force-free plasma outside of the disk. Inside the disk, the induction equation is solved for Psi(r, z) and the toroidal magnetic field. Outside the disk, previous results are used to study the formation of self-collimated EM jets. In contrast with the odd-symmetry case, for even symmetry the toroidal magnetic field acts to vertically compress the disk; a comparatively large toroidal magnetic field can exist inside the disk; and an appreciable fraction (possibly all) of the available accretion power can go into the jets.

  15. Black hole accretion disks - Coronal stabilization of the Lightman-Eardley instability

    NASA Technical Reports Server (NTRS)

    Ionson, J. A.; Kuperus, M.

    1984-01-01

    Physical processes by which the presence of a corona around a black hole can raise the threshold of onset of the Lightman-Eardley (L-E, 1976) instability are explored analytically. The L-E model predicts that an optically thick disk becomes unstable when the disk radiation pressure exceeds the disk gas pressure. The model has important implications for the validity of either the coronal disk or two-temperature disk models for accretion zones around black holes. It is shown that a corona can dissipate accreting gravitational energy through radiative cooling. Specific ratios of hard/soft X-rays are quantified for stable and unstable conditions. X-ray spectra from Cyg X-1 are cited as residing below the instability threshold value and thus are supportive of the coronal disk model.

  16. Timescales for planetary accretion and the structure of the protoplanetary disk

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    1987-01-01

    Models of planetary accretion which assume the mass of condensable matter in the protoplanetary disk was equal to that present in the planets today predict accretion timescales for the outer planets approximately or less than 10 to the 8th years. Such timescales are inconsistent with observations of star forming regions, which suggest that most of the gas in disks around one solar mass is removed in a few x 10 to the 6th years. A unified scenario was outlined for solar system formation consistent with astrophysical constraints. Jupiter's core could have grown by runaway accretion of planetesimals to a mass sufficient to initiate rapid accretion of gas in times of order of 500,000 to 5,000,000 years, provided the surface density of solids in its accretion zone was at least 5 to 10 times greater than that required by minimum mass models of the protoplanetary disk. The inner planets and the asteroids can be accounted for in this picture if the surface density of the solar nebula was relatively uniform out to Jupiter's orbit. The formation of such a protoplanetary disk requires significant transport of mass and angular momentum, and is consistent with viscous accretion disk models of the solar nebula.

  17. Keplerian Circumbinary Disk and Accretion Streams around the Protostellar Binary System L1551 NE

    NASA Astrophysics Data System (ADS)

    Takakuwa, S.; Saito, M.; Lim, J.; Saigo, K.; Hanawa, T.; Matsumoto, T.

    2013-10-01

    We show our recent observational results of L1551 NE, an archetypal binary protostellar system, in the 0.9-mm dust continuum emission and the C18O (J=3-2) emission with the SubMillimeter Array (SMA). The SMA results show firm evidence for a Keplerian circumbinary disk, circumstellar disks, and an inner clearing in the circumbinary disk, in L1551 NE. We demonstrate that future observations of L1551 NE with Atacama Large Millimeter and submillimeter Array (ALMA) have the potential to unveil the theoretically-predicted “accretion streams” that channel material from the circumbinary disk to the individual circumstellar disks.

  18. Tangled Magnetic Fields in Black Hole Accretion Disks: Implications for Viscosity and Particle Acceleration

    NASA Astrophysics Data System (ADS)

    Subramanian, Prasad

    1997-12-01

    There is a substantial amount of observational evidence for the presence of relativistic outflows from blazars and also from some galactic black hole candidates, hut there has been little, if any, work done to explain the origin of these jets from the underlying accretion disks. In particular, proton-initiated radiation processes in jets have been invoked recently (e.g., Mannheim 1993; Mannheim et al. 1996; Dar & Laor 1997) in order to account for TeV emission from blazars like Mrk 421 and Mrk 521. The origin of the energetic protons in the jet in such models is somewhat unclear, and the work done in this thesis makes a significant contribution in that direction. Specifically, this work is concerned with the general scenario of hot, two temperature accretion disks around black holes. Such accretion disks are attractive candidates for explaining high energy emission from active galactic nuclei that are believed to contain black holes. The two principal issues addressed here are: (1) The structure of the disk as determined by the microphysical viscosity mechanism; (2) The connection between the jets (relativistic outflows) and the physics of the underlying disk. The first issue is important from the point of view of understanding the physical processes governing the disk structure. Matter fed into such disks invariably has angular momentum associated with it, and a viscosity mechanism is essential for the removal of angular momentum so that matter can accrete onto the central object. While there has been some work done in the past on identifying physical processes that give rise to viscosity in accretion disks, none of the previous models give satisfactory results for conditions prevalent in hot accretion disks. There is evidence from simulations of the magnetic shearing instability by the groups of Hawley et al. (1995), Brandenburg et al. (1995) and Matsumoto & Tajima (1995) for the existence of turbulent, tangled magnetic fields embedded in accretion disks. In hot

  19. On the effects of tidal interaction on thin accretion disks: An analytic study

    NASA Technical Reports Server (NTRS)

    Dgani, R.; Livio, M.; Regev, O.

    1994-01-01

    We calculate tidal effects on two-dimensional thin accretion disks in binary systems. We apply a perturbation expansion to obtain an analytic solution of the tidally induced waves. We obtain spiral waves that are stronger at the inner parts of the disks, in addition to a local disturbance which scales like the strength of the local tidal force. Our results agree with recent calculations of the linear response of the disk to tidal interaction.

  20. CONSTRAINTS ON COMPTON-THICK WINDS FROM BLACK HOLE ACCRETION DISKS: CAN WE SEE THE INNER DISK?

    SciTech Connect

    Reynolds, Christopher S.

    2012-11-01

    Strong evidence is emerging that winds can be driven from the central regions of accretion disks in both active galactic nuclei and Galactic black hole binaries. Direct evidence for highly ionized, Compton-thin inner-disk winds comes from observations of blueshifted (v {approx} 0.05-0.1c) iron-K X-ray absorption lines. However, it has been suggested that the inner regions of black hole accretion disks can also drive Compton-thick winds-such winds would enshroud the inner disk, preventing us from seeing direct signatures of the accretion disk (i.e., the photospheric thermal emission, or the Doppler/gravitationally broadened iron K{alpha} line). Here, we show that, provided the source is sub-Eddington, the well-established wind-driving mechanisms fail to launch a Compton-thick wind from the inner disk. For the accelerated region of the wind to be Compton-thick, the momentum carried in the wind must exceed the available photon momentum by a factor of at least 2/{lambda}, where {lambda} is the Eddington ratio of the source, ruling out radiative acceleration unless the source is very close to the Eddington limit. Compton-thick winds also carry large mass fluxes, and a consideration of the connections between the wind and the disk shows this to be incompatible with magneto-centrifugal driving. Finally, thermal driving of the wind is ruled out on the basis of the large Compton radii that typify black hole systems. In the absence of some new acceleration mechanisms, we conclude that the inner regions of sub-Eddington accretion disks around black holes are indeed naked.

  1. Long-term Evolution of Protostellar and Protoplanetary Disks. II. Layered Accretion with Infall

    NASA Astrophysics Data System (ADS)

    Zhu, Zhaohuan; Hartmann, Lee; Gammie, Charles

    2010-04-01

    We use one-dimensional two-zone time-dependent accretion disk models to study the long-term evolution of protostellar disks subject to mass addition from the collapse of a rotating cloud core. Our model consists of a constant surface density magnetically coupled active layer, with transport and dissipation in inactive regions only via gravitational instability. We start our simulations after a central protostar has formed, containing ~10% of the mass of the protostellar cloud. Subsequent evolution depends on the angular momentum of the accreting envelope. We find that disk accretion matches the infall rate early in the disk evolution because much of the inner disk is hot enough to couple to the magnetic field. Later infall reaches the disk beyond ~10 AU, and the disk undergoes outbursts of accretion in FU Ori-like events as described by Zhu et al. If the initial cloud core is moderately rotating, most of the central star's mass is built up by these outburst events. Our results suggest that the protostellar "luminosity problem" is eased by accretion during these FU Ori-like outbursts. After infall stops, the disk enters the T Tauri phase. An outer, viscously evolving disk has a structure that is in reasonable agreement with recent submillimeter studies and its surface density evolves from Σ vprop R -1 to R -1.5. An inner, massive belt of material—the "dead zone"—would not have been observed yet but should be seen in future high angular resolution observations by EVLA and ALMA. This high surface density belt is a generic consequence of low angular momentum transport efficiency at radii where the disk is magnetically decoupled, and would strongly affect planet formation and migration.

  2. BIPOLAR JETS LAUNCHED FROM ACCRETION DISKS. II. THE FORMATION OF ASYMMETRIC JETS AND COUNTER JETS

    SciTech Connect

    Fendt, Christian; Sheikhnezami, Somayeh E-mail: nezami@mpia.de

    2013-09-01

    We investigate the jet launching from accretion disks, in particular the formation of intrinsically asymmetric jet/counter jet systems. We perform axisymmetric MHD simulations of the disk-jet structure on a bipolar computational domain covering both hemispheres. We apply various models such as asymmetric disks with (initially) different scale heights in each hemisphere, symmetric disks into which a local disturbance is injected, and jets launched into an asymmetric disk corona. We consider both a standard global magnetic diffusivity distribution and a novel local diffusivity model. Typical disk evolution first shows substantial disk warping and then results in asymmetric outflows with a 10%-30% mass flux difference. We find that the magnetic diffusivity profile is essential for establishing a long-term outflow asymmetry. We conclude that bipolar asymmetry in protostellar and extragalactic jets can indeed be generated intrinsically and maintained over a long time by disk asymmetries and the standard jet launching mechanism.

  3. Inner Accretion Disk Regions of Black Hole X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Salvesen, Greg

    2015-01-01

    The innermost regions of accretion disks in black hole X-ray binaries dominate the observed X-ray emission, which is the main diagnostic that one uses to gain insights into the physics of black holes and accretion. The standard spectrum predicted from a geometrically thin, optically thick disk experiences non-trivial modification due to conspiring physical effects operating within the vertical disk structure such as Comptonization, free-free emission/absorption, bound-free opacities, and energy dissipation by magnetic processes. The complicated interplay of these effects cause the seed accretion disk spectrum to become hardened and it is this hardened emergent spectrum that we observe. To zeroth order, this hardening can be described by a phenomenological parameter called the spectral hardening factor.In practice, the adopted degree of spectral hardening is confined to lie within a rather restrictive range. I will discuss the following consequences of relaxing this criterion, while still requiring the spectral hardening factor to take on physically plausible values. Examining multiple state transitions of the black hole X-ray binary GX 339-4 with archival data from the Rossi X-ray Timing Explorer, I will show that appealing to a spectral hardening factor that varies during state transitions provides a viable alternative to a truncated disk model for the evolution of the inner accretion disk. Having demonstrated that moderate degrees of accretion disk spectral hardening cannot be ruled out by observations, I will explore this possibility from a theoretical standpoint. Extending previous work on radiative transfer modeling coupled to the vertical disk structure, I present the impacts on the emergent accretion disk spectrum caused by disk inclination and by allowing accretion power to be dissipated in the corona. Using magnetohydrodynamic simulations of a localized patch of the accretion disk (i.e., shearing box) performed with the Athena code, I will present the

  4. Integrated accretion disk angular momentum removal and astrophysical jet acceleration mechanism

    NASA Astrophysics Data System (ADS)

    Bellan, Paul

    2015-11-01

    A model has been developed for how accretion disks discard angular momentum while powering astrophysical jets. The model depends on the extremely weak ionization of disks. This causes disk ions to be collisionally locked to adjacent disk neutrals so a clump of disk ions and neutrals has an effective cyclotron frequency αωci where α is the fractional ionization. When αωci is approximately twice the Kepler orbital frequency, conservation of canonical momentum shows that the clump spirals radially inwards producing a radially inward disk electric current as electrons cannot move radially in the disk. Upon reaching the jet radius, this current then flows axially away from the disk plane along the jet, producing a toroidal magnetic field that drives the jet. Electrons remain frozen to poloidal flux surfaces everywhere and electron motion on flux surfaces in the ideal MHD region outside the disk completes the current path. Angular momentum absorbed from accreting material in the disk by magnetic counter-torque -JrBz is transported by the electric circuit and ejected at near infinite radius in the disk plane. This is like an electric generator absorbing angular momentum and wired to a distant electric motor that emits angular momentum. Supported by USDOE/NSF Partnership in Plasma Science.

  5. A Hot and Massive Accretion Disk around the High-mass Protostar IRAS 20126+4104

    NASA Astrophysics Data System (ADS)

    Chen, Huei-Ru Vivien; Keto, Eric; Zhang, Qizhou; Sridharan, T. K.; Liu, Sheng-Yuan; Su, Yu-Nung

    2016-06-01

    We present new spectral line observations of the CH3CN molecule in the accretion disk around the massive protostar IRAS 20126+4104 with the Submillimeter Array, which, for the first time, measure the disk density, temperature, and rotational velocity with sufficient resolution (0.″37, equivalent to ∼600 au) to assess the gravitational stability of the disk through the Toomre-Q parameter. Our observations resolve the central 2000 au region that shows steeper velocity gradients with increasing upper state energy, indicating an increase in the rotational velocity of the hotter gas nearer the star. Such spin-up motions are characteristics of an accretion flow in a rotationally supported disk. We compare the observed data with synthetic image cubes produced by three-dimensional radiative transfer models describing a thin flared disk in Keplerian motion enveloped within the centrifugal radius of an angular-momentum-conserving accretion flow. Given a luminosity of 1.3 × 104 L ⊙, the optimized model gives a disk mass of 1.5 M ⊙ and a radius of 858 au rotating about a 12.0 M ⊙ protostar with a disk mass accretion rate of 3.9 × 10‑5 M ⊙ yr‑1. Our study finds that, in contrast to some theoretical expectations, the disk is hot and stable to fragmentation with Q > 2.8 at all radii which permits a smooth accretion flow. These results put forward the first constraints on gravitational instabilities in massive protostellar disks, which are closely connected to the formation of companion stars and planetary systems by fragmentation.

  6. Occurrence of instability through the protostellar accretion disks by landing of low-mass condensations

    NASA Astrophysics Data System (ADS)

    Elyasi, Mahjubeh; Nejad-Asghar, Mohsen

    2016-06-01

    Low-mass condensations (LMCs) are observed inside the envelope of the collapsing molecular cloud cores. In this research, we investigate the effects of landing LMCs for occurrence of instability through the protostellar accretion disks. We consider some regions of the disk where duration of infalling and landing of the LMCs are shorter than the orbital period. In this way, we can consider the landing LMCs as density bumps and grooves in the azimuthal direction of an initial thin axisymmetric steady state self-gravitating protostellar accretion disk (nearly Keplerian). Using the linear effects of the bump quantities, we obtain a characteristic equation for growth/decay rate of bumps; we numerically solve it to find occurrence of instability. We also evaluate the minimum-growth-time-scale (MGTS) and the enhanced mass accretion rate. The results show that infalling and landing of the LMCs in the inner regions of the protostellar accretion disks can cause faster unstable modes and less enhanced accretion rates relative to the outer regions. Also, more fragmentation of landed LMCs in the azimuthal direction have less chance for instability, and then can produce more values of enhanced mass accretion rate.

  7. Binary black hole accretion from a circumbinary disk: Gas dynamics inside the central cavity

    SciTech Connect

    Farris, Brian D.; Duffell, Paul; MacFadyen, Andrew I.; Haiman, Zoltan

    2014-03-10

    We present the results of two-dimensional (2D) hydrodynamical simulations of circumbinary disk accretion using the finite-volume code DISCO. This code solves the 2D viscous Navier-Stokes equations on a high-resolution moving mesh which shears with the fluid flow, greatly reducing advection errors in comparison with a fixed grid. We perform a series of simulations for binary mass ratios in the range 0.026 ≤ q ≤ 1.0, each lasting longer than a viscous time so that we reach a quasi-steady accretion state. In each case, we find that gas is efficiently stripped from the inner edge of the circumbinary disk and enters the cavity along accretion streams, which feed persistent 'mini disks' surrounding each black hole. We find that for q ≳ 0.1, the binary excites eccentricity in the inner region of the circumbinary disk, creating an overdense lump which gives rise to enhanced periodicity in the accretion rate. The dependence of the periodicity on mass ratio may provide a method for observationally inferring mass ratios from measurements of the accretion rate. We also find that for all mass ratios studied, the magnitude of the accretion onto the secondary is sufficient to drive the binary toward larger mass ratio. This suggests a mechanism for biasing mass-ratio distributions toward equal mass.

  8. Binary Black Hole Accretion from a Circumbinary Disk: Gas Dynamics inside the Central Cavity

    NASA Astrophysics Data System (ADS)

    Farris, Brian D.; Duffell, Paul; MacFadyen, Andrew I.; Haiman, Zoltan

    2014-03-01

    We present the results of two-dimensional (2D) hydrodynamical simulations of circumbinary disk accretion using the finite-volume code DISCO. This code solves the 2D viscous Navier-Stokes equations on a high-resolution moving mesh which shears with the fluid flow, greatly reducing advection errors in comparison with a fixed grid. We perform a series of simulations for binary mass ratios in the range 0.026 <= q <= 1.0, each lasting longer than a viscous time so that we reach a quasi-steady accretion state. In each case, we find that gas is efficiently stripped from the inner edge of the circumbinary disk and enters the cavity along accretion streams, which feed persistent "mini disks" surrounding each black hole. We find that for q >~ 0.1, the binary excites eccentricity in the inner region of the circumbinary disk, creating an overdense lump which gives rise to enhanced periodicity in the accretion rate. The dependence of the periodicity on mass ratio may provide a method for observationally inferring mass ratios from measurements of the accretion rate. We also find that for all mass ratios studied, the magnitude of the accretion onto the secondary is sufficient to drive the binary toward larger mass ratio. This suggests a mechanism for biasing mass-ratio distributions toward equal mass.

  9. Accretion disk boundary layers in cataclysmic variables. 1: Optically thick boundary layers

    NASA Technical Reports Server (NTRS)

    Popham, Robert; Narayan, Ramesh

    1995-01-01

    We develop numerical models of accretions disks in cataclysmic variables (CVs), including and emphasizing the boundary layer region where the accretion disk meets the accreting white dwarf. We confine ourselves to solutions where the boundary layer region is vertically optically thick, and find that these solutions share several common features. The angular and radial velocities of the accreting material drop rapidly in a dynamical boundary layer, which has a radial width approximately 1%-3% of the white dwarf radius. The energy dissipated in this region diffuses through the inner part of the disk and is radiated from the disk surface in a thermal boundary layer, which has a radial width comparable to the disk thickness, approximately 5%-15% of the white dwarf radius. We examine the dependence of the boundary layer structure on the mass accretion rate, the white dwarf mass and rotation rate, and the viscosity parameter alpha. We delineate the boundary between optically thick and optically thin boundary layer solutions as a function of these parameters and suggest that by means of a careful comparison with observations it may be possible to estimate alpha in CVs. We derive an expression for the total boundary layer luminosities as a function of the parameters and show that it agrees well with the luminosites of our numerical solutions. Finally, we calcuate simple blackbody continuum spectra of the boundary layer and disk emission for our solutions and compare these to soft X-ray, EUV, and He II emission-line observations of CVs. We show that, through such comparisons, it may be possible to determine the rotation rates of the accreting stars in CVs, and perhaps also the white dwarf masses and the accretion rates. The spectra are quite insensitive to alpha, so the uncertainty in this parameter does not affect such comparisons.

  10. Dynamics of accretion disks in a constant curvature f(R)-gravity

    NASA Astrophysics Data System (ADS)

    Alipour, N.; Khesali, A. R.; Nozari, K.

    2016-07-01

    So far the basic physical properties of matter forming a thin accretion disc in the static and spherically symmetric space-time metric of the vacuum f(R) modified gravity models (Pun et al. in Phys. Rev. D 78:024043, 2008) and building radiative models of thin accretion disks for both Schwarzschild and Kerr black holes in f(R) gravity (Perez et al. in Astron. Astrophys. 551:4, 2013) were addressed properly. Also von Zeipel surfaces and convective instabilities in f(R)-Schwarzschild(Kerr) background have been investigated recently (Alipour et al. in Mon. Not. R. Astron. Soc. 454:1992, 2015). In this streamline, here we study the effects of radial and angular pressure gradients on thick accretion disks in Schwarzschild geometries in a constant curvature f(R) modified gravity. Since thick accretion disks have high accretion rate, we study configuration and structure of thick disks by focusing on the effect of pressure gradient on formation of the disks. We clarify our study by assuming two types of equation of state: polytropic and Clapeyron equation of states.