Science.gov

Sample records for butyl radicals

  1. Butylate

    Integrated Risk Information System (IRIS)

    Butylate ; CASRN 2008 - 41 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  2. ATOM TRANSFER RADICAL POLYMERIZATION OF N-BUTYL METHACRYLATE IN AQUEOUS DISPERSED SYSTEMS: A MINIEMULSION APPROACH. (R826735)

    EPA Science Inventory

    Ultrasonication was applied in combination with a hydrophobe for the copper-mediated atom transfer radical polymerization of n-butyl methacrylate in an aqueous dispersed system. A controlled polymerization was successfully achieved, as demonstrated by a linear correlation between...

  3. Changes in oxygen consumption induced by t-butyl hydroperoxide in perfused rat liver. Effect of free-radical scavengers.

    PubMed Central

    Videla, L A; Villena, M I; Donoso, G; Giulivi, C; Boveris, A

    1984-01-01

    The addition of t-butyl hydroperoxide to perfused rat liver elicited a biphasic effect on hepatic respiration. A rapid fall in liver oxygen consumption was initially observed, followed by a recovery phase leading to respiratory rates higher than the initial steady-state values of oxygen uptake. This overshoot in hepatic oxygen uptake was abolished by free-radical scavengers such as (+)-cyanidanol-3 or butylated hydroxyanisole at concentrations that did not alter mitochondrial respiration. (+)-Cyanidanol-3 was also able to facilitate the recovery of respiration, the diminution in the calculated rate of hydroperoxide utilization and the decrease in liver GSH content produced by two consecutive pulses of t-butyl hydroperoxide. It is suggested that the t-butyl hydroperoxide-induced overshoot in liver respiration is related to increased utilization of oxygen for lipid peroxidation as a consequence of free radicals produced in the scission of the hydroperoxide by cellular haemoproteins. PMID:6508746

  4. Absolute rate constants of alkoxyl radical reactions in aqueous solution. [Tert-butyl hydroperoxide

    SciTech Connect

    Erben-Russ, M.; Michel, C.; Bors, W.; Saran, M.

    1987-04-23

    The pulse radiolysis technique was used to generate the alkoxyl radical derived from tert-butyl hydroperoxide (/sup t/BuOOH) in aqueous solution. The reactions of this radical with 2,2'-azinobis(3-ethyl-6-benzothiazolinesulfonate) (ABTS) and promethazine were monitored by kinetic spectroscopy. The unimolecular decay rate constant of the tert-butoxyl radical (/sup t/BuO) was determined to be 1.4 x 10/sup 6/ s/sup -1/. On the basis of this value, the rate constants for /sup t/BuO attack on quercetin, crocin, crocetin, ascorbate, isoascorbate, trolox c, glutathione, thymidine, adenosine, guanosine, and unsaturated fatty acids were determined. In addition, the reaction of /sup t/BuO with the polyunsaturated fatty acids (PUFA) was observed by directly monitoring the formation of the fatty acid pentadienyl radicals. Interestingly, the attack of /sup t/BuO on PUFA was found to be faster by about one order of magnitude as compared to the same reaction in a nonpolar solvent.

  5. Quantum mechanical investigation on bimolecular hydrogen abstractions in butyl acrylate-based free radical polymerization processes.

    PubMed

    Mavroudakis, Evangelos; Cuccato, Danilo; Moscatelli, Davide

    2014-03-13

    The present computational study focuses on the investigation of bimolecular hydrogen abstractions that can occur during free radical polymerization (FRP) processes. In particular, several hydrogen abstractions from four monomers (butyl acrylate, BA; styrene, ST; butyl methacrylate, BMA; vinyl acetate, VA) and three different backbone chains (poly-BA, poly-BA-co-VA, and poly-BA-co-ST) have been studied. The aim is to provide an overview of the kinetics for all possible intermolecular hydrogen abstraction reactions from all chemical species present in a bulk FRP as well as to support the understanding of the influence of chemical environment on hydrogen abstractions. All simulations were performed using density functional theory (DFT) with quantum tunneling factors estimated using the Eckart model. This study provides proof that the presence of an electron donating group in the chemical environment of the abstracted hydrogen atoms can lead to lower activation energies and higher rate coefficients for abstraction whereas the presence of an electron withdrawing group leads to opposite effects. PMID:24555565

  6. PRODUCTS OF THE GAS-PHASE REACTIONS OF THE OH RADICAL WITH N-BUTYL METHYL ETHER AND 2-ISOPROPOXYETHANOL: REACTIONS OF ROC(O)< RADICALS. (R825252)

    EPA Science Inventory

    The products of the gas-phase reactions of the OH radical with n-butyl methyl ether and 2-isopropoxyethanol in the presence of NO have been investigated at 298 ? 2 K and 740 Torr total pressure of air by gas chromatography and in situ atmospheric pressure ionization...

  7. PREPARATION OF BLOCK COPOLYMERS OF POLY(STYRENE) AND POLY(T-BUTYL ACRYLATE) OF VARIOUS MOLECULAR WEIGHTS AND ARCHITECTURES BY ATOM TRANSFER RADICAL POLYMERIZATION. (R826735)

    EPA Science Inventory

    Block copolymers of polystyrene and poly(t-butyl acrylate) were prepared using atom transfer radical polymerization techniques. These polymers were synthesized with a CuBr/N,N,N,NAllylic Oxidations Catalyzed by Dirhodium Caprolactamate via Aqueous tert-Butyl Hydroperoxide: The Role of the tert-Butylperoxy Radical

    PubMed Central

    McLaughlin, Emily C.; Choi, Hojae; Wang, Kan; Chiou, Grace; Doyle, Michael P.

    2009-01-01

    Dirhodium(II) caprolactamate exhibits optimal efficiency for the production of the tert-butylperoxy radical, which is a selective reagent for hydrogen atom abstraction. These oxidation reactions occur with aqueous tert-butyl hydroperoxide (TBHP) without rapid hydrolysis of the caprolactamate ligands on dirhodium. Allylic oxidations of enones yield the corresponding enedione in moderate to high yields, and applications include allylic oxidations of steroidal enones. Although methylene oxidation to a ketone is more effective, methyl oxidation to a carboxylic acid can also be achieved. The superior efficiency of dirhodium(II) caprolactamate as a catalyst for allylic oxidations by TBHP (mol % catalyst, % conversion) is described in comparative studies with other metal catalysts that are also reported to be effective for allylic oxidations. That different catalysts produce essentially the same mixture of products with the same relative yields suggests that the catalyst is not involved in product forming steps. Mechanistic implications arising from studies of allylic oxidation with enones provide new insights into factors that control product formation. A previously undisclosed disproportionation pathway, catalyzed by the tert-butoxy radical, of mixed peroxides for the formation of ketone products via allylic oxidation has been uncovered. PMID:19072696

  8. Reaction of carboranyl boron-centered radicals with phosphites and the addition of carborane-containing and some other phosphoranyl radicals to 3,6-di-tert-butyl-ortho-benzoquinone

    SciTech Connect

    Tumanskii, B.L.; Kampel', V.Ts.; Bregadze, VI.; Bubnov, N.N.; Solodovnikov, S.P.; Prokof'ev, A.I.; Kozlov, E.S.; Godovikov, N.N.; Kabachnik, M.I.

    1986-08-20

    The preparative photolysis of bis(m-carboran-9-yl)mercury and bis(p-carboran-2-yl)-mercury with trimethyl phosphite leads to the dimethyl esters of m- and p-B-carboranylphosphonic acids. The reaction of carboranyl boron-centered radicals with phosphites occurs through the formation of a phosphoranyl radical. The addition of the phosphoranyl radicals derived from 2,6,7-tris(trichloromethyl)-3,5,8-trioxo-1,4-diphosphabicyclo(2.2.2)octane to 3,6-di-tert-butyl-ortho-benzoquinone was detected. ESR spectroscopy was used to observe the tautomeric transfers of the phosphoranyl group between the ortho-benzoquinone oxygen atoms.

  9. Electron paramagnetic resonance study of free radicals in γ-irradiated L-glutamine and L-glutamine-t-butyl ester hydrochloride

    NASA Astrophysics Data System (ADS)

    Yeşim Dicle, Işık; Osmanğolu, Şemsettin; İpek, Nazenin

    2015-01-01

    Electron paramagnetic resonance (EPR) spectra of γ-irradiated single crystals of l-glutamine (LG) and l-glutamine-t-butyl ester hydrochloride (LGBESHCI) powders were studied and analyzed for different orientations of the crystals in the magnetic field, after γ-irradiation. The spectra were observed to be independent of temperature down to 130 K. The hyperfine interaction tensors for one α proton and two β protons of radical have been determined at 295 K. An analysis of the EPR of γ-irradiated single crystals of LG and LGBESHCI powders shows that the paramagnetic species produced by the radiation damage is CH2ĊH. The g values of the radical and the hyperfine structure constants of the free electron with nearby protons and 14N nucleus were determined. The results were found to be in good agreement with the existing literature data.

  10. RATE CONSTANTS FOR THE REACTIONS OF OH RADICALS AND CL ATOMS WITH DI-N-PROPYL ETHER AND DI-N-BUTYL ETHER AND THEIR DEUTERATED ANALOGS. (R825252)

    EPA Science Inventory

    Using relative rate methods, rate constants for the gas-phase reactions of OH radicals and Cl atoms with di-n-propyl ether, di-n-propyl ether-d14, di-n-butyl ether and di-n-butyl ether-d18 have been measured at 296 ? 2 K and atmos...

  11. Controlled/Living Radical Polymerization in the Undergraduate Laboratories. 1. Using ATRP to Prepare Block and Statistical Copolymers of n-Butyl Acrylate and Styrene

    NASA Astrophysics Data System (ADS)

    Beers, Kathryn L.; Woodworth, Brian; Matyjaszewski, Krzysztof

    2001-04-01

    A simple method of preparing well-defined (co)polymers has been developed for application in an advanced undergraduate laboratory. The method utilizes atom transfer radical polymerization (ATRP), a controlled/living radical polymerization, to prepare difunctional poly(n-butyl acrylate) with bromine end groups, which is chain-extended with styrene to yield an ABA triblock copolymer. Simultaneously, a statistical copolymer of the two monomers is prepared for comparison. The two copolymers are isolated and compositions and molecular weights are determined using 1H NMR and SEC, respectively. Optional additions to the experiment include performing a kinetic analysis of the homopolymerization using GC and SEC, and possibly comparing the results to those expected for conventional radical polymerization. Material differences in the copolymers can be observed qualitatively or measured using thermal or mechanical analysis. The lab is designed in such a way that several parts of the whole can be used to emphasize different areas of polymer science. A more synthetic course such as the organic synthesis lab can opt to investigate only the kinetic and composition analyses, whereas an engineering or materials science course may pursue more rigorous analysis of the materials' properties. Results included here are intended for application in an organic synthesis laboratory course.

  12. Generation and loss of radicals from the decomposition of methyl iodide, diallyl, and butyl halides on a silver catalyst

    SciTech Connect

    Garibyan, T.A.; Grigoryan, R.R.; Muradyan, A.A.; Nalbandyan, A.B.

    1987-12-01

    The stages of the generation and loss of CH/sub 3/O/sub 2/, C/sub 3/H/sub 5/O/sub 2/, and C/sub 4/H/sub 9/O/sub 2/ radicals in the decomposition of CH/sub 3/I, (C/sub 3/H/sub 5/)/sub 2/, C/sub 4/H/sub 9/Br, C/sub 4/H/sub 9/Cl, and C/sub 4/H/sub 9/I, respectively, have been studied in the presence of oxygen on Ag/pumice. Effective energies of activation for generation of these radicals have been calculated. It has been found that heterogeneously catalyzed decomposition of these compounds begins on the silver surface at low temperatures (400-590 K) and is accompanied by desorption of the radicals from the surface of the catalyst to the gas phase. It has also been demonstrated that in the indicated temperature range on the silver catalyst allyl peroxy radicals are stable, bu that the CH/sub 3/O/sub 2/ and C/sub 4/H/sub 9/O/sub 2/ radicals disappear to a small extent (10 and 23%, respectively).

  13. Free radical scavenging abilities of flavonoids as mechanism of protection against mutagenicity induced by tert-butyl hydroperoxide or cumene hydroperoxide in Salmonella typhimurium TA102.

    PubMed

    Edenharder, R; Grünhage, D

    2003-09-01

    Mutagenicity induced by tert-butyl hydroperoxide (BHP) or cumene hydroperoxide (CHP) in Salmonella typhimurium TA102 was effectively reduced by flavonols with 3',4'-hydroxyl groups such as fisetin, quercetin, rutin, isoquercitrin, hyperoxide, myricetin, myricitrin, robinetin, and to a lesser extent also by morin and kaempferol (ID50=0.25-1.05 micromol per plate). With the exception of isorhamnetin, rhamnetin, morin, and kaempferol, closely similar results were obtained with both peroxides. Hydrogenation of the double bond between carbons 2 and 3 (dihydroquercetin, dihydrorobinetin) as well as the additional elimination of the carbonyl function at carbon 4 (catechins) resulted in a loss of antimutagenicity with the notable exception of catechin itself. Again, all flavones and flavanones tested were inactive except luteolin, luteolin-7-glucoside, diosmetin, and naringenin. The typical radical scavenger butylated hydroxytoluene also showed strong antimutagenicity against CHP (ID50=5.4 micromol per plate) and BHP (ID50=11.4 micromol per plate). Other lipophilic scavengers such as alpha-tocopherol and N,N'-diphenyl-1,4-phenylenediamine exerted only moderate effects, the hydrophilic scavenger trolox was inactive. The metal chelating agent 1,10-phenanthroline strongly reduced mutagenicities induced by CHP and BHP (ID50=2.75 and 2.5 micromol per plate) at low concentrations but induced mutagenic activities at higher concentrations. The iron chelator deferoxamine mesylate, however, was less effective in both respects. The copper chelator neocuproine effectively inhibited mutagenicity induced by BHP (ID50=39.7 micromol per plate) and CHP (ID50=25.9 micrommol per plate), the iron chelator 2,2'-dipyridyl was less potent (ID50=6.25 mmol per plate against BHP, 0.42 mmol per plate against CHP). In the absence of BHP and CHP, yet not in the presence of these hydroperoxides, quercetin, rutin, catechin, epicatechin, and naringenin induced strong mutagenic activities in S

  14. Transition-metal-free oxychlorination of alkenyl oximes: in situ generated radicals with tert-butyl nitrite.

    PubMed

    Zhang, Xiao-Wei; Xiao, Zu-Feng; Wang, Mei-Mei; Zhuang, Yan-Jun; Kang, Yan-Biao

    2016-07-26

    Oxychlorination of alkenyl oximes is harder compared to the analogous oxybromination or oxyiodination because of the difficulty associated with the formation of chlorine cations or radicals. A transition-metal-free oxychlorination of alkenyl oximes has been developed, using t-BuONO as a dual oxidant and AlCl3 as a chlorine source. This convenient and practical method has been used to construct chloroisoxazolines in moderate to good yields, whereas N-chlorosuccinimide (NCS) failed to promote this reaction. PMID:27391419

  15. Protection against oxidative damage to CNS by alpha-phenyl-tert-butyl nitrone (PBN) and other spin-trapping agents: A novel series of nonlipid free radical scavengers

    SciTech Connect

    Carney, J.M.; Floyd, R.A. )

    1991-01-01

    Brain is extremely susceptible to oxidative damage. Utilizing a series of novel approaches, the authors have demonstrated that oxidative damage occurs during an ischemia/reperfusion insult (IRI) to brain. Thus, they have demonstrated that an IRI to Mongolian gerbil brain results in: (1) an enhanced rate of salicylate hydroxylation, implicating an increased flux of hydroxyl free radicals; (2) an enhanced flux of free radicals as determined by spin-trapping; (3) an enhanced level of endogenous protein oxidation; (4) a decrease in glutamine synthetase (GS) activity, an enzyme very sensitive to oxidative damage; and (5) demonstration of protection from an IRI by administering the spin-trapping agent alpha-phenyl-tert-butyl nitrone (PBN). The novel observation that PBN offers protection from the lethality brought on by a brain IRI appears to be clearly linked to the ability of the administered spin-trap to inhibit oxidative damage as evidenced by the decreased amount of brain protein oxidation and the prevention of an IRI-mediated loss of GS activity in treated animals. Aged gerbils are more sensitive to the lethal action of a brain IRI than younger animals, but they are protected by PBN administration as are the younger animals. Older gerbils have a significantly higher level of oxidized protein in the brain. Older gerbils have decreased activities of GS and neutral protease, the enzyme that removes oxidized protein, than younger animals. Chronic twice daily administration of PBN (32 mg/kg) for 14 days to older animals significantly lowered brain oxidized protein levels and raised GS and neutral protease activity to those observed in younger animals. Cessation of PBN administration resulted in a time-dependent restoration of protein oxidation levels and enzyme activities back to those observed prior to spin-trap administration.

  16. Controlled/Living Radical Polymerization in the Undergraduate Laboratories. 2. Using ATRP in Limited Amounts of Air to Prepare Block and Statistical Copolymers of n-Butyl Acrylate and Styrene

    NASA Astrophysics Data System (ADS)

    Matyjaszewski, Krzysztof; Beers, Kathryn L.; Woodworth, Brian; Metzner, Zachary

    2001-04-01

    Developments in controlled radical polymerization have facilitated the use of living polymer chemistry in the undergraduate laboratories. In the first paper of this series, a procedure for the use of atom transfer radical polymerization (ATRP) to prepare block and statistical copolymers was described and the use of kinetic analysis to differentiate between living and conventional processes was demonstrated. In this paper, the experiment is extended to polymerizations run in limited amounts of air so that the use of inert gases is unnecessary. The Cu(I) catalyst can be lost owing to oxidation or termination reactions; however, a scavenger, Cu(0), is added to react with oxidized catalyst to regenerate the Cu(I) complex. A difunctional macroinitiator of poly(n-butyl acrylate) is prepared and chain-extended with polystyrene. A statistical copolymer using the same monomer pair is also prepared. These copolymers are isolated and characterized along with the homopolymeric macroinitiator using 1H NMR and SEC. Kinetic analysis is also carried out using GC and SEC. The significant difference in these two approaches, in addition to slight variations in the reaction conditions, is apparent in the chain extension to yield the ABA triblock copolymer.

  17. Emulsion Polymerization of Butyl Acrylate: Spin Trapping and EPR Study

    NASA Technical Reports Server (NTRS)

    Kim, S.; Westmoreland, D.

    1994-01-01

    The propagating radical in the emulsion polymerization reaction of butyl acrylate was detected by Electron Paramagnetic Resonance spectroscopy using two spin trapping agents, 2-methyl-2nitrosopropane and alpha -N-tert-butylnitrone.

  18. Radical prostatectomy

    MedlinePlus

    Prostatectomy - radical; Radical retropubic prostatectomy; Radical perineal prostatectomy; Laparoscopic radical prostatectomy; LRP; Robotic-assisted laparoscopic prostatectomy; RALP; Pelvic lymphadenectomy; ...

  19. Butyl benzyl phthalate

    Integrated Risk Information System (IRIS)

    Butyl benzyl phthalate ; CASRN 85 - 68 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinog

  1. Automatic mechanism generation for pyrolysis of di-tert-butyl sulfide.

    PubMed

    Class, Caleb A; Liu, Mengjie; Vandeputte, Aäron G; Green, William H

    2016-08-01

    The automated Reaction Mechanism Generator (RMG), using rate parameters derived from ab initio CCSD(T) calculations, is used to build reaction networks for the thermal decomposition of di-tert-butyl sulfide. Simulation results were compared with data from pyrolysis experiments with and without the addition of a cyclohexene inhibitor. Purely free-radical chemistry did not properly explain the reactivity of di-tert-butyl sulfide, as the previous experimental work showed that the sulfide decomposed via first-order kinetics in the presence and absence of the radical inhibitor. The concerted unimolecular decomposition of di-tert-butyl sulfide to form isobutene and tert-butyl thiol was found to be a key reaction in both cases, as it explained the first-order sulfide decomposition. The computer-generated kinetic model predictions quantitatively match most of the experimental data, but the model is apparently missing pathways for radical-induced decomposition of thiols to form elemental sulfur. Cyclohexene has a significant effect on the composition of the radical pool, and this led to dramatic changes in the resulting product distribution. PMID:27431650

  2. Direct generation of oxygen-stabilized radicals by H• transfer from transition metal hydrides.

    PubMed

    Kuo, Jonathan L; Hartung, John; Han, Arthur; Norton, Jack R

    2015-01-28

    Transition-metal hydrides generate α-alkoxy radicals by H• transfer to enol ethers. We have measured the rate constant for transfer from CpCr(CO)3H to n-butyl vinyl ether and have examined the chemistry of radicals generated by such transfers. Radicals from appropriate substrates undergo 5-exo cyclization, with higher diastereoselectivity than the analogous all-carbon radicals. From such radicals it is straightforward to make substituted tetrahydrofurans. PMID:25569214

  3. 21 CFR 182.3173 - Butylated hydroxytoluene.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Butylated hydroxytoluene. 182.3173 Section 182.3173 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD....3173 Butylated hydroxytoluene. (a) Product. Butylated hydroxytoluene. (b) Tolerance. This substance...

  4. 21 CFR 582.3173 - Butylated hydroxytoluene.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Butylated hydroxytoluene. 582.3173 Section 582.3173 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... § 582.3173 Butylated hydroxytoluene. (a) Product. Butylated hydroxytol- uene. (b) Tolerance....

  5. Sprayed Coating Renews Butyl Rubber

    NASA Technical Reports Server (NTRS)

    Martin, R. B.

    1982-01-01

    Damaged butyl rubber products are renewed by spray technique originally developed for protective suits worn by NASA workers. A commercial two-part adhesive is mixed with Freon-113 (or equivalent) trichlorotrifluoroethane to obtain optimum viscosity for spraying. Mix is applied with an external-air-mix spray gun.

  6. Mechanistic insights into light-driven graphene-induced peroxide decomposition: radical generation and disproportionation.

    PubMed

    Chu, Ya-Lan; Chen, Yen-An; Li, Wei-Chin; Chu, Jean-Ho; Chen, Chun-Hu; Chiang, Chao-Ming

    2016-07-28

    Interaction between adsorbed t-butyl peroxybenzoate and photoexcited graphene rendered trapped phenyl and t-butoxy radicals. Post-irradiation thermal desorption showed benzene, t-butanol, and isobutylene oxide as the end products. The required hydrogen atoms were obtained via the radical disproportionation. Graphene enabled radical species to be captured and their on-surface chemistry to be revealed. PMID:27366795

  7. The photodissociation dynamics of alkyl radicals

    SciTech Connect

    Giegerich, Jens; Fischer, Ingo

    2015-01-28

    The photodisscociation dynamics of the alkyl radicals i-propyl (CH(CH{sub 3}){sub 2}) and t-butyl (C(CH{sub 3}){sub 3}) are investigated by H-atom photofragment imaging. While i-propyl is excited at 250 nm, the photodynamics of t-butyl are explored over a large energy range using excitation wavelengths between 347 nm and 233 nm. The results are compared to those obtained previously for ethyl, CH{sub 3}CH{sub 2}, and to those reported for t-butyl using 248 nm excitation. The translational energy (E{sub T}) distribution of the H-atom photofragments is bimodal and appears rather similar for all three radicals. The low E{sub T} part of the distribution shows an isotropic photofragment angular distribution, while the high E{sub T} part is associated with a considerable anisotropy. Thus, for t-butyl, two H-atom loss channels of roughly equal importance have been identified in addition to the CH{sub 3}-loss channel reported previously. A mechanism for the photodissociation of alkyl radicals is suggested that is based on interactions between Rydberg- and valence states.

  8. The photodissociation dynamics of alkyl radicals

    NASA Astrophysics Data System (ADS)

    Giegerich, Jens; Fischer, Ingo

    2015-01-01

    The photodisscociation dynamics of the alkyl radicals i-propyl (CH(CH3)2) and t-butyl (C(CH3)3) are investigated by H-atom photofragment imaging. While i-propyl is excited at 250 nm, the photodynamics of t-butyl are explored over a large energy range using excitation wavelengths between 347 nm and 233 nm. The results are compared to those obtained previously for ethyl, CH3CH2, and to those reported for t-butyl using 248 nm excitation. The translational energy (ET) distribution of the H-atom photofragments is bimodal and appears rather similar for all three radicals. The low ET part of the distribution shows an isotropic photofragment angular distribution, while the high ET part is associated with a considerable anisotropy. Thus, for t-butyl, two H-atom loss channels of roughly equal importance have been identified in addition to the CH3-loss channel reported previously. A mechanism for the photodissociation of alkyl radicals is suggested that is based on interactions between Rydberg- and valence states.

  9. Effect of xenobiotics on the respiratory activity of rat heart mitochondria and the concomitant formation of superoxide radicals

    SciTech Connect

    Stolze, K.; Nohl, H. . Inst. of Pharmacology and Toxicology)

    1994-03-01

    The effects of the xenobiotics atrazine, benzene, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lindane, toluene, and xylenol on the respiration of isolated rate heart mitochondria were studied. Bioenergetic parameters such as respiratory control (RC) and ATP/oxygen (P/O) values decreased considerably in the presence of these substances, and a concomitant increase of superoxide radical (O[sub 2][sup [minus

  10. 21 CFR 582.3169 - Butylated hydroxyanisole.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Butylated hydroxyanisole. 582.3169 Section 582.3169 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 582.3169 Butylated hydroxyanisole....

  11. Radical Hysterectomy

    MedlinePlus

    ... the base of her partner’s penis during intercourse. Orgasm after radical hysterectomy Women who have had a ... the surgery will affect their ability to have orgasms. This has not been studied a great deal, ...

  12. Radical-initiated reaction of methyl linoleate with dialkyl phosphites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The addition of dialkyl phosphite (methyl, ethyl and n-butyl) to methyl linoleate (MeLin) double bonds was investigated. The reaction proved to be more challenging than the analogous reaction with methyl oleate (MeOl), due to inhibition of the radical reaction by the bis-allylic hydrogens of MeLin a...

  13. RAPID MEASUREMENT OF AQUEOUS HYDROXYL RADICAL CONCENTRATIONS IN STEADY-STATE HO· FLUX SYSTEMS

    EPA Science Inventory

    The spin-trap compound a-(4-pyridyl-1-oxide)-N-tert-butyl-nitrone (4-POBN) is utilized for the detection and quantitation of the hydroxyl radical (HO·) in aqueous solution. Capillary electrophoresis enables rapid analysis of the probe compound. The thermally unstable HO· radical ...

  14. Specialty polymeric membranes. 8: Separation of benzene from benzene/cyclohexane mixtures with nylon 6-graft-poly(butyl methacrylate) membranes

    SciTech Connect

    Yoshikawa, Masakazu; Tsubouchi, Keisuke; Kitao, Toshio

    1999-02-01

    A novel pervaporation membrane was prepared by radical graft polymerization of butyl methacrylate onto nylon 6. The permselectivity toward benzene was increased by the introduction of poly(butyl methacrylate) onto a nylon 6 membrane. From pervaporation and sorption experiments, it was shown that the introduction of poly(butyl methacrylate) onto a nylon 6 membrane leads to the enhancement of permselectivity toward benzene. The solubility data for benzene were described by a combination of simple sorption and specific sorption, while cyclohexane solubility was described by simple sorption.

  15. Radiostability of butylated hydroxytoluene (BHT): An ESR study

    NASA Astrophysics Data System (ADS)

    Tuner, H.; Korkmaz, M.

    2007-05-01

    In the present work, the effects of gamma radiation on solid butylated hydroxytoluene (BHT), which is used as an antioxidant, were investigated by ESR spectroscopy. While unirradiated BHT presented no ESR signal, irradiated BHT exhibited an ESR spectrum with many resonance maxima and minima spread over a magnetic field range of 12 mT and centered at about g = 2.0026. Weak satellite and central intense resonance lines, likely, originated from radical species of different stabilities and ratios were observed to be responsible from experimental ESR spectrum of gamma irradiated BHT. Studies based on the variations of the observed line intensities and spectrum area under different experimental conditions were carried out and characteristic features of the radical species responsible from experimental ESR spectrum were determined. Mesomeric radical species of different stabilities providing to BHT a G value of 0.25 were believed to be induced in gamma irradiated BHT. While species responsible from weak satellite lines were unstable, the species causing central intense lines were found to be relatively stable. BHT belongs to a class of compounds with low radiosensitivity ( G = 0.25). This feature of BHT enables the feasibility of radiosterilizations of the products containing BHT as antioxidant without very much loss from its antioxidant benefit. BHT has been shown to provide an opportunity in the estimation of applied radiation dose with a reasonable accuracy if an appropriate mathematical function is used to describe experimental dose-response data.

  16. Electron-impact ionization of benzoic acid, nicotinic acid and their n-butyl esters

    NASA Astrophysics Data System (ADS)

    Opitz, Joachim

    2007-08-01

    Electron-impact ionization mass spectra, the decay of metastable ions, ionization and appearance energies and bond energies, as dissociation energies, are reported for the title compounds. An ionization energy of 9.47 eV was obtained for benzoic acid, 9.43 eV for benzoic acid n-butyl ester, 9.61 eV for nicotinic acid and 9.97 eV for nicotinic acid n-butyl ester. Molecular ions of both butyl esters show two common main fragmentation pathways: the first process is a McLafferty rearrangement, characterized by the transfer of one H-atom from the aliphatic ester chain, which leads to the ions of either the organic acid or 1-butene. From their appearance energies and known thermodynamic data, gas-phase formation enthalpies () of the parent n-butyl esters are calculated. Values of for benzoic acid n-butyl ester and for nicotinic acid n-butyl ester were obtained. The second process is characterized by the transfer of two H-atoms from the ester chain leading to a protonated form of the corresponding organic acids and C4H7 radicals. Good evidence is provided for the formation of methylallyl radicals. Appearance energies are used to calculate a proton affinity (PA) for benzoic acid. The obtained value of PA = (8.73 ± 0.3) eV, corresponding to a protonation of the carbonyl group, is in close corroboration with published data (PA = 8.51 eV). Activation energies for the intermediate H-transfers were found to be insignificant. This methodic gateway is applied to the system of nicotinic acid and its butyl ester. Adopting the formation of a methylallyl radical, the obtained proton affinity of nicotinic acid, PA = 8.58 eV, is very near to the published data of benzoic acid. An alternative fragmentation mechanism leading to a value of PA [approximate] 9.5 eV (typical for a protonation of the pyridine-nitrogen) is very unlikely. It is concluded that this transfer of two H-atoms from the ester chain is controlled by a charge switching between the carboxylic oxygen atoms which leads to

  17. Radicalization and Radical Catalysis of Biomass Sugars: Insights from First-principles Studies

    PubMed Central

    Yang, Gang; Zhu, Chang; Zou, Xianli; Zhou, Lijun

    2016-01-01

    Ab initio and density functional calculations are conducted to investigate the radicalization processes and radical catalysis of biomass sugars. Structural alterations due to radicalization generally focus on the radicalized sites, and radicalization affects H-bonds in D-fructofuranose more than in D-glucopyranose, potentially with outcome of new H-bonds. Performances of different functionals and basis sets are evaluated for all radicalization processes, and enthalpy changes and Gibbs free energies for these processes are presented with high accuracy, which can be referenced for subsequent experimental and theoretical studies. It shows that radicalization can be utilized for direct transformation of biomass sugars, and for each sugar, C rather than O sites are always preferred for radicalization, thus suggesting the possibility to activate C-H bonds of biomass sugars. Radical catalysis is further combined with Brønsted acids, and it clearly states that functionalization fundamentally regulates the catalytic effects of biomass sugars. In presence of explicit water molecules, functionalization significantly affects the activation barriers and reaction energies of protonation rather than dehydration steps. Tertiary butyl and phenyl groups with large steric hindrances or hydroxyl and amino groups resulting in high stabilities for protonation products drive the protonation steps to occur facilely at ambient conditions. PMID:27405843

  18. Radicalization and Radical Catalysis of Biomass Sugars: Insights from First-principles Studies

    NASA Astrophysics Data System (ADS)

    Yang, Gang; Zhu, Chang; Zou, Xianli; Zhou, Lijun

    2016-07-01

    Ab initio and density functional calculations are conducted to investigate the radicalization processes and radical catalysis of biomass sugars. Structural alterations due to radicalization generally focus on the radicalized sites, and radicalization affects H-bonds in D-fructofuranose more than in D-glucopyranose, potentially with outcome of new H-bonds. Performances of different functionals and basis sets are evaluated for all radicalization processes, and enthalpy changes and Gibbs free energies for these processes are presented with high accuracy, which can be referenced for subsequent experimental and theoretical studies. It shows that radicalization can be utilized for direct transformation of biomass sugars, and for each sugar, C rather than O sites are always preferred for radicalization, thus suggesting the possibility to activate C-H bonds of biomass sugars. Radical catalysis is further combined with Brønsted acids, and it clearly states that functionalization fundamentally regulates the catalytic effects of biomass sugars. In presence of explicit water molecules, functionalization significantly affects the activation barriers and reaction energies of protonation rather than dehydration steps. Tertiary butyl and phenyl groups with large steric hindrances or hydroxyl and amino groups resulting in high stabilities for protonation products drive the protonation steps to occur facilely at ambient conditions.

  19. Radicalization and Radical Catalysis of Biomass Sugars: Insights from First-principles Studies.

    PubMed

    Yang, Gang; Zhu, Chang; Zou, Xianli; Zhou, Lijun

    2016-01-01

    Ab initio and density functional calculations are conducted to investigate the radicalization processes and radical catalysis of biomass sugars. Structural alterations due to radicalization generally focus on the radicalized sites, and radicalization affects H-bonds in D-fructofuranose more than in D-glucopyranose, potentially with outcome of new H-bonds. Performances of different functionals and basis sets are evaluated for all radicalization processes, and enthalpy changes and Gibbs free energies for these processes are presented with high accuracy, which can be referenced for subsequent experimental and theoretical studies. It shows that radicalization can be utilized for direct transformation of biomass sugars, and for each sugar, C rather than O sites are always preferred for radicalization, thus suggesting the possibility to activate C-H bonds of biomass sugars. Radical catalysis is further combined with Brønsted acids, and it clearly states that functionalization fundamentally regulates the catalytic effects of biomass sugars. In presence of explicit water molecules, functionalization significantly affects the activation barriers and reaction energies of protonation rather than dehydration steps. Tertiary butyl and phenyl groups with large steric hindrances or hydroxyl and amino groups resulting in high stabilities for protonation products drive the protonation steps to occur facilely at ambient conditions. PMID:27405843

  20. tert-butyl-substituted cyclooctatetraenes

    SciTech Connect

    Miller, M.J.; Lyttle, M.H.; Streitwieser, A. Jr.

    1981-05-08

    Reaction of cyclooctatetraene (COT) with tert-butyllithium provides a convenient synthesis of tert-butylcyclooctatetraene, 4. As a byproduct of the reaction mixture, 1,4-di-tert-butylcyclooctatriene has been isolated and converted to 1,4-di-tert-butylcyclooctatetraene, 5, by deprotonation with potassium amide and oxidation with iodine. An independent synthesis of 5 was developed from 9-oxabicyclo(6.1.0)octa-2,4,6-triene (cyclooctatetraene oxide), 9. The highly substituted compound 1,3,5,7-tetra-tert-butylcyclooctatetraene (6) has been prepared in 24% overall yield in four steps. The acetylenic ketone 27, prepared from (tert-butylethynyl)copper and pivaloyl chloride, undergoes condensation with dimethyl malonate to give the pyrone ester 28. This ester undergoes facile hydrolysis and decarboxylation in hot concentrated sulfuric acid to yield 4,6-di-tert-butyl-2H-pyran-2-one (22) which is converted to 6 in one step by photolysis in dilute solution.

  1. Antioxidant and radical scavenging properties of curcumin.

    PubMed

    Ak, Tuba; Gülçin, Ilhami

    2008-07-10

    Curcumin (diferuoyl methane) is a phenolic compound and a major component of Curcuma longa L. In the present paper, we determined the antioxidant activity of curcumin by employing various in vitro antioxidant assays such as 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH*) scavenging, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, N,N-dimethyl-p-phenylenediamine dihydrochloride (DMPD) radical scavenging activity, total antioxidant activity determination by ferric thiocyanate, total reducing ability determination by the Fe(3+)-Fe(2+) transformation method, superoxide anion radical scavenging by the riboflavin/methionine/illuminate system, hydrogen peroxide scavenging and ferrous ions (Fe(2+)) chelating activities. Curcumin inhibited 97.3% lipid peroxidation of linoleic acid emulsion at 15 microg/mL concentration (20 mM). On the other hand, butylated hydroxyanisole (BHA, 123 mM), butylated hydroxytoluene (BHT, 102 mM), alpha-tocopherol (51 mM) and trolox (90 mM) as standard antioxidants indicated inhibition of 95.4, 99.7, 84.6 and 95.6% on peroxidation of linoleic acid emulsion at 45 microg/mL concentration, respectively. In addition, curcumin had an effective DPPH* scavenging, ABTS*(+) scavenging, DMPD*(+) scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe(3+)) reducing power and ferrous ions (Fe(2+)) chelating activities. Also, BHA, BHT, alpha-tocopherol and trolox, were used as the reference antioxidant and radical scavenger compounds. According to the present study, curcumin can be used in the pharmacological and food industry because of these properties. PMID:18547552

  2. Determination of reactions between free radicals and selected Chilean wines and transition metals by ESR and UV-vis technique

    NASA Astrophysics Data System (ADS)

    Espinoza, Mónica; Olea-Azar, Claudio; Speisky, Hernán; Rodríguez, Jorge

    2009-01-01

    Four different types of Chilean wines (Cabernet Sauvignon, Merlot, Carmenere and Syrah) were selected and examined in their free radical scavenging capacities by electron spin resonance (ESR) and spectrophotometric methods. The free radical scavenging properties were evaluated against 2,2-diphenyl-1-picrylhydrazyl (DPPH rad ) radical, 2,6-di- tert-butyl-alpha-(3,5-di- tert-butyl-4-oxo-2,5-cyclohexadien-1-ylidene)- p-tolyloxy (Galvinoxyl) radical and hydroxyl radical (HO rad ). The possible effect on these scavenging properties of added transition metals to these wines was evaluated. Among the wines evaluated, Cabernet Sauvignon was the one with the highest activity against all radicals tested. The presence of added copper or iron to wines resulted in a reduced free radical scavenging capacity for all type of wines studied. The formation of redox inactive complexes between polyphenols of wine and transition metals is the possible cause of this reduction in antioxidant activity.

  3. Roaming Radicals

    NASA Astrophysics Data System (ADS)

    Bowman, Joel M.; Shepler, Benjamin C.

    2011-05-01

    Roaming is a recently verified unusual pathway to molecular products from unimolecular dissociation of an energized molecule. Here we present the evidence for this pathway for H2CO and CH3CHO. Theoretical analysis shows that this path visits the plateau region of the potential energy surface near dissociation to radical products. It is not clear whether roaming is a distinct isolated pathway, in addition to the conventional one via the well-known molecular saddle-point transition state. Evidence is presented to suggest that the two pathways may originate from a single, but highly complicated, dividing surface. Other examples of unusual reaction dynamics are also reviewed.

  4. Free radical formation in vivo and hepatotoxicity due to anesthesia with halothane

    SciTech Connect

    Plummer, J.L.; Beckwith, A.L.; Bastin, F.N.; Adams, J.F.; Cousins, M.J.; Hall, P.

    1982-09-01

    In vivo studies were undertaken to determine whether free radical formation in the liver during administration of various halogenated anesthetics is associated with hepatotoxicity of these agents in an animal model. In addition to the anesthetics halothane, enflurane, and isoflurane, carbon tetrachloride was studied as an example of a hepatotoxic halogenated compound acting by a free radical mechanism. Free radicals were trapped in vivo during anesthesia as stable adducts using the spin trap, alpha-phenyl-t-butyl nitrone. These adducts were extracted from the liver and studied by electron spin resonance spectrometry. Free radicals were detected after administration of halothane or carbon tetrachloride, compounds which were hepatotoxic under the conditions of the experiment, but were not found after anesthesia induced with enflurane or isoflurane, anesthetics which were not hepatotoxic under identical conditions. The free radical trapped after alpha-phenyl-t-butyl nitrone treatment of halothane-anesthetized rats appeared to be a metabolic intermediate of halothane.

  5. Preparation and application of acidified/calcined red mud catalyst for catalytic degradation of butyl xanthate in Fenton-like process.

    PubMed

    Shao, Luhua; Wei, Guangtao; Wang, Yizhi; Li, Zhongmin; Zhang, Linye; Zhao, Shukai; Zhou, Ming

    2016-08-01

    Acidified/calcined red mud (ACRM), a novel catalyst used in Fenton-like process, was prepared by acidification and calcination of red mud (RM). Catalyst characterization showed that iron phase of ACRM was mainly α-Fe2O3 and ACRM was a porous material with rough surface and loose structure. Degradation of butyl xanthate in Fenton-like process catalyzed by ACRM was investigated. Butyl xanthate was effectively degraded, and the degradation of butyl xanthate was well fitted by second order kinetic model. ACRM had an excellent long-term stability in a Fenton-like process. The possible mechanisms of hydroxyl radical production and butyl xanthate degradation in a Fenton-like process catalyzed by ACRM were presented. PMID:27094281

  6. Peptide ligation from alkoxyamine based radical addition.

    PubMed

    Trimaille, Thomas; Autissier, Laurent; Rakotonirina, Mamy Daniel; Guillaneuf, Yohann; Villard, Claude; Bertin, Denis; Gigmes, Didier; Mabrouk, Kamel

    2014-03-14

    Intermolecular radical 1,2-addition (IRA) of N-tert-butyl-N-(1-diethylphosphono-2,2-dimethylpropyl)aminoxyl (SG1) based alkoxyamines onto activated olefins is used as a tool for peptide ligation. This strategy relies on simple peptide pre-derivatization to obtain (i) a SG1 nitroxide functionalized resin peptide at its N-terminus (SG1-peptide alkoxyamine), (ii) a vinyl functionalized peptide (either at its C-terminus or N-terminus), and does not require any coupling agents. PMID:24476638

  7. 40 CFR 721.4925 - Methyl n-butyl ketone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Methyl n-butyl ketone. 721.4925... Substances § 721.4925 Methyl n-butyl ketone. (a) Chemical substance and significant new use subject to reporting. (1) The chemical substance methyl n-butyl ketone, CAS Number 591-78-6, is subject to...

  8. 40 CFR 721.4925 - Methyl n-butyl ketone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Methyl n-butyl ketone. 721.4925... Substances § 721.4925 Methyl n-butyl ketone. (a) Chemical substance and significant new use subject to reporting. (1) The chemical substance methyl n-butyl ketone, CAS Number 591-78-6, is subject to...

  9. 40 CFR 721.4925 - Methyl n-butyl ketone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Methyl n-butyl ketone. 721.4925... Substances § 721.4925 Methyl n-butyl ketone. (a) Chemical substance and significant new use subject to reporting. (1) The chemical substance methyl n-butyl ketone, CAS Number 591-78-6, is subject to...

  10. 40 CFR 721.4925 - Methyl n-butyl ketone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Methyl n-butyl ketone. 721.4925... Substances § 721.4925 Methyl n-butyl ketone. (a) Chemical substance and significant new use subject to reporting. (1) The chemical substance methyl n-butyl ketone, CAS Number 591-78-6, is subject to...

  11. 21 CFR 520.260 - n-Butyl chloride capsules.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... body weight. Capsules containing 442 milligrams of n-butyl chloride are administered to dogs weighing... 21 Food and Drugs 6 2012-04-01 2012-04-01 false n-Butyl chloride capsules. 520.260 Section 520.260... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.260 n-Butyl chloride...

  12. 21 CFR 520.260 - n-Butyl chloride capsules.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... body weight. Capsules containing 442 milligrams of n-butyl chloride are administered to dogs weighing... 21 Food and Drugs 6 2011-04-01 2011-04-01 false n-Butyl chloride capsules. 520.260 Section 520.260... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.260 n-Butyl chloride...

  13. 21 CFR 520.260 - n-Butyl chloride capsules.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... body weight. Capsules containing 442 milligrams of n-butyl chloride are administered to dogs weighing... 21 Food and Drugs 6 2010-04-01 2010-04-01 false n-Butyl chloride capsules. 520.260 Section 520.260... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.260 n-Butyl chloride...

  14. 40 CFR 721.3438 - Chlorohydroxyalkyl butyl ether (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Chlorohydroxyalkyl butyl ether... Specific Chemical Substances § 721.3438 Chlorohydroxyalkyl butyl ether (generic). (a) Chemical substance... chlorohydroxyalkyl butyl ether (PMN P-99-1295) is subject to reporting under this section for the significant new...

  15. 40 CFR 721.3438 - Chlorohydroxyalkyl butyl ether (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Chlorohydroxyalkyl butyl ether... Specific Chemical Substances § 721.3438 Chlorohydroxyalkyl butyl ether (generic). (a) Chemical substance... chlorohydroxyalkyl butyl ether (PMN P-99-1295) is subject to reporting under this section for the significant new...

  16. Methyl tert-butyl ether (MTBE)

    Integrated Risk Information System (IRIS)

    Methyl tert - butyl ether ( MTBE ) ; CASRN 1634 - 04 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments f

  17. The sonolytic destruction of methyl tert-butyl ether present in contaminated groundwater.

    PubMed

    Hung, Hui-Ming; Kang, Joon-Wun; Hoffmann, Michael R

    2002-01-01

    Ultrasonic irradiation in the presence of ozone was used to efficiently eliminate methyl tert-butyl ether (MTBE) from groundwater. The sonolytic degradation of MTBE was investigated in three different reactor configurations and frequencies: vibrating-plate reactor (VPR, 358 kHz), near-field acoustical processor (NAP 20 and 16 kHz), and radial-tube resonator (RTR. 20 kHz). The sonochemical reactors can be ordered in terms of their efficiency with respect to the degradation of MTBE in the following way: VPR > RTR > NAP. The higher elimination rates of MTBE in groundwater by combined ultrasound-ozone systems are attributed to the effective conversion of ozone to the OH radical, even in the presence of high alkalinity. Carbonate radicals, which were formed from the oxidation of bicarbonate by hydroxyl radicals, are shown to react with MTBE via a hydrogen-atom abstraction pathway. Methyl-tert-butyl ether was also rapidly eliminated from the groundwater underlying a major intemational airport by direct chemical oxidation with a mixture of hydrogen peroxide and ozone. PMID:12540095

  18. Rate constants for the reactions of free radicals with oxygen in solution

    SciTech Connect

    Maillard, B.; Ingold, K.U.; Scaiano, J.C.

    1983-07-27

    The kinetics of the rections of several free radicals with oxygen have been examined in solution at 300 K using laser flash photolysis techniques. The reactions of resonance-stabilized radicals are only slightly slower than those of nonstabilized radicals: for example, for tert-butyl (in cyclohexane), 4.93 x 10/sup 9/; benzyl, 2.36 x 10/sup 9/ (in cyclohexane); cyclohexadienyl (in benzene), 1.64 x 10/sup 9/ M/sup -1/ s/sup -1/. The reaction of butyl-tin (n-Bu/sub 3/Sn.) radicals is unusually fast (7.5 x 10/sup 9/ M/sup -1/ s/sup -1/), a fact that has been tentatively attributed to a relaxation of spin selection rules due to heavy atom effects. 1 table.

  19. Free radicals, antioxidants and functional foods: Impact on human health

    PubMed Central

    Lobo, V.; Patil, A.; Phatak, A.; Chandra, N.

    2010-01-01

    In recent years, there has been a great deal of attention toward the field of free radical chemistry. Free radicals reactive oxygen species and reactive nitrogen species are generated by our body by various endogenous systems, exposure to different physiochemical conditions or pathological states. A balance between free radicals and antioxidants is necessary for proper physiological function. If free radicals overwhelm the body's ability to regulate them, a condition known as oxidative stress ensues. Free radicals thus adversely alter lipids, proteins, and DNA and trigger a number of human diseases. Hence application of external source of antioxidants can assist in coping this oxidative stress. Synthetic antioxidants such as butylated hydroxytoluene and butylated hydroxyanisole have recently been reported to be dangerous for human health. Thus, the search for effective, nontoxic natural compounds with antioxidative activity has been intensified in recent years. The present review provides a brief overview on oxidative stress mediated cellular damages and role of dietary antioxidants as functional foods in the management of human diseases. PMID:22228951

  20. Copper(I)-Catalyzed Radical Addition of Acetophenones to Alkynes in Furan Synthesis.

    PubMed

    Manna, Srimanta; Antonchick, Andrey P

    2015-09-01

    A synthesis of multisubstituted furans from readily available acetophenones and electron-deficient alkynes via direct C(sp(3))-H bond functionalization under radical reaction conditions is described. The developed transformation is catalyzed by copper(I) salts using di-tert-butyl peroxide as an external oxidant. This method offers an efficient access to biologically important scaffolds from simple compounds. PMID:26277912

  1. The mechanism of catalytic methylation of 2-phenylpyridine using di-tert-butyl peroxide.

    PubMed

    Sharma, Akhilesh K; Roy, Dipankar; Sunoj, Raghavan B

    2014-07-14

    The mechanism of palladium chloride-catalyzed direct methylation of arenes with peroxides is elucidated by using the energetics computed at the M06 density functional theory. The introduction of a methyl group by tert-butyl peroxides at the ortho-position of a prototypical 2-phenyl pyridine, a commonly used substrate in directed C-H functionalization reactions, is examined in detail by identifying the key intermediates and transition states involved in the reaction sequence. Different possibilities that differ in terms of the site of catalyst coordination with the substrate and the ensuing mechanism are presented. The important mechanistic events involved are (a) an oxidative or a homolytic cleavage of the peroxide O-O bond, (b) C-H bond activation, (c) C-C bond activation, and (d) reductive elimination involving methyl transfer to the aromatic ring. We have examined both radical and non-radical pathways. In the non-radical pathway, the lowest energy pathway involves C-H bond activation prior to the coordination of the peroxide to palladium, which is subsequently followed by the O-O bond cleavage of the peroxide and the C-C bond activation. Reductive elimination in the resulting intermediate leads to the vital C-C bond formation between methyl and aryl carbon atoms. In the non-radical pathway, the C-C bond activation is higher in energy and has been identified as the rate-limiting step of this reaction. In the radical pathway, however, the activation barrier for the C-C bond cleavage is lower than for the peroxide O-O bond cleavage. A combination of a radical pathway up to the formation of a palladium methyl intermediate and a subsequent non-radical pathway has been identified as the most favored pathway for the title reaction. The predicted mechanism is in good agreement with the experimental observations on PdCl2 catalyzed methylation of 2-phenyl pyridine using tert-butyl peroxide. PMID:24875675

  2. Polymerization rate and mechanism of ultrasonically initiated emulsion polymerization of n-butyl acrylate.

    PubMed

    Xia, Hesheng; Wang, Qi; Liao, Yongqin; Xu, Xi; Baxter, Steven M; Slone, Robert V; Wu, Shuguang; Swift, Graham; Westmoreland, David G

    2002-07-01

    The factors affecting the induction period and polymerization rate in ultrasonically initiated emulsion polymerization of n-butyl acrylate (BA) were investigated. The induction period takes only an instant in ultrasonically initiated emulsion polymerization of BA without any added initiator by enhancing the N2 flow rate. Increasing temperature, power output and SDS concentration, decreasing the monomer concentration results in further decreasing induction period and enhanced polymerization rate. Under optimized reaction conditions the conversion of BA reaches 92% in 11 min. The polymerization rate can be controlled by varying reaction parameters. The apparatus of ultrasonically initiated semi-continuous and continuous emulsion polymerization were set up and the feasibility was first studied. Based on the experimental results, a free radical polymerization mechanism for ultrasonically initiated emulsion polymerization was proposed, including the sources of the radicals, the process of radical formation, the locus of polymerization and the polymerization process. Compared with conventional emulsion polymerization, where the radicals come from thermal decomposition of a chemical initiator, ultrasonically initiated emulsion polymerization has attractive features such as no need for a chemical initiator, lower reaction temperature, faster polymerization rate, and higher molecular weight of the polymer prepared. PMID:12154689

  3. ESR spin trapping for characterization of radical formation in Lactobacillus acidophilus NCFM and Listeria innocua.

    PubMed

    Hougaard, Anni B; Arneborg, Nils; Andersen, Mogens L; Skibsted, Leif H

    2013-09-01

    In this study, radicals in pure cultures of Lactobacillus acidophilus NCFM and Listeria innocua were detected in a quantitative way by electron spin resonance spectroscopy using spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) or N-tert-butyl-α-phenylnitrone (PBN). No adverse effect of spin trap addition on viability was observed for any of the bacterial strains. L. acidophilus NCFM had a higher production of radicals than L. innocua when incubated in a growth medium. Furthermore, by using DMPO in a buffer system, the radicals produced by L. acidophilus NCFM could be identified as hydroxyl radicals. The presence of polyethylene glycol, impermeable for bacterial cells, decreased the signal intensity of the ESR spectrum of the DMPO-OH adduct in cultures of L. acidophilus NCFM and indicated quenching of hydroxyl radicals outside the bacteria. This suggests that radical production is an extracellular event for L. acidophilus NCFM. PMID:23811362

  4. Steric Effects in the Reaction of Aryl Radicals on Surfaces

    SciTech Connect

    Combellas, Catherine; Jiang, Deen; Kanoufi, Frederic; Pinson, Jean; Podvorica, Fetah

    2009-01-01

    Steric effects are investigated in the reaction of aryl radicals with surfaces. The electrochemical reduction of 2-, 3-, 4-methyl, 2-methoxy, 2-ethyl, 2,6-, 2,4-, and 3,5-dimethyl, 4-tert-butyl, 3,5-bis-tert-butyl benzenediazonium, 3,5-bis(trifluoromethyl), and pentafluoro benzenediazonium tetrafluoroborates is examined in acetonitrile solutions. It leads to the formation of grafted layers only if the steric hindrance at the 2- or 2,6-position(s) is small. When the 3,5-positions are crowded with tert-butyl groups, the growth of the organic layer is limited by steric effects and a monolayer is formed. The efficiency of the grafting process is assessed by cyclic voltammetry, X-ray photoelectron spectroscopy, infrared, and ellipsometry. These experiments, together with density functional computations of bonding energies of substituted phenyl groups on a copper surface, are discussed in terms of the reactivity of aryl radicals in the electrografting reaction and in the growth of the polyaryl layer.

  5. On the Reaction of FNO2 with CH3, t-butyl, and C13H21

    NASA Technical Reports Server (NTRS)

    Thuemmel, H. T.; Bauschlicher, Charles W., Jr.; Arnold, James O. (Technical Monitor)

    1996-01-01

    Theoretical studies are reported for the reaction of FN02 with the radicals CH3, t-butyl, and C13H21, which are templates for the radical site of a hydrogenated diamond surface. All structures axe fully optimized using density functional theory (DFT) based on the B3LYP functional. Calibration calculations axe performed for CH3 + FNO2 using the coupled cluster approach, the the internally contracted multireference configuration. interaction method, and second order perturbation theory based upon complete active space SCF (CASSCF) reference wave function. These calibration calculations support the B3LYP approach for the calculation of bond energies, but show the B3LYP barrier is too low. Combining the calibration calculations with the larger clusters yields our best estimate of a barrier of about 10 kcal/mol. for the reaction of FNO2 with a radical site on hydrogenated diamond.

  6. Radical prostatectomy - discharge

    MedlinePlus

    ... prostatectomy - discharge; Laparoscopic radical prostatectomy - discharge; LRP - discharge; Robotic-assisted laparoscopic prostatectomy - discharge ; RALP - discharge; Pelvic lymphadenectomy - ...

  7. Sunlight and free radicals

    NASA Astrophysics Data System (ADS)

    Tidwell, Thomas

    2013-08-01

    Thomas Tidwell reflects on the overlooked -- but prescient -- proposal by the British chemists Arthur Downes and Thomas Blunt for photochemical free-radical formation, decades before Moses Gomberg launched the field of radical chemistry by preparing triphenylmethyl, the first stable organic radical.

  8. 40 CFR 721.4925 - Methyl n-butyl ketone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Methyl n-butyl ketone. 721.4925 Section 721.4925 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4925 Methyl n-butyl ketone....

  9. 21 CFR 520.260 - n-Butyl chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... a dosage level of 1 capsule per 21/2 pounds body weight. Capsules containing 884 milligrams of n... 21 Food and Drugs 6 2014-04-01 2014-04-01 false n-Butyl chloride. 520.260 Section 520.260 Food and..., FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.260 n-Butyl chloride....

  10. 21 CFR 520.260 - n-Butyl chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... a dosage level of 1 capsule per 21/2 pounds body weight. Capsules containing 884 milligrams of n... 21 Food and Drugs 6 2013-04-01 2013-04-01 false n-Butyl chloride. 520.260 Section 520.260 Food and..., FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.260 n-Butyl chloride....

  11. From Molecules to Surfaces: Radical-Based Mechanisms of Si-S and Si-Se Bond Formation on Silicon.

    PubMed

    Buriak, Jillian M; Sikder, Md Delwar H

    2015-08-01

    The derivatization of silicon surfaces can have profound effects on the underlying electronic properties of the semiconductor. In this work, we investigate the radical surface chemistry of silicon with a range of organochalcogenide reagents (comprising S and Se) on a hydride-terminated silicon surface, to cleanly and efficiently produce surface Si-S and Si-Se bonds, at ambient temperature. Using a diazonium-based radical initiator, which induces formation of surface silicon radicals, a group of organochalcogenides were screened for reactivity at room temperature, including di-n-butyl disulfide, diphenyl disulfide, diphenyl diselenide, di-n-butyl sulfide, diphenyl selenide, diphenyl sulfide, 1-octadecanethiol, t-butyl disulfide, and t-butylthiol, which comprises the disulfide, diselenide, thiol, and thioether functionalities. The surface reactions were monitored by transmission mode Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary ionization mass spectrometry. Calculation of Si-Hx consumption, a semiquantitative measure of yield of production of surface-bound Si-E bonds (E = S, Se), was carried out via FTIR spectroscopy. Control experiments, sans the BBD diazonium radical initiator, were all negative for any evident incorporation, as determined by FTIR spectroscopy. The functional groups that did react with surface silicon radicals included the dialkyl/diphenyl disulfides, diphenyl diselenide, and 1-octadecanethiol, but not t-butylthiol, diphenyl sulfide/selenide, and di-n-butyl sulfide. Through a comparison with the rich body of literature regarding molecular radicals, and in particular, silyl radicals, reaction mechanisms were proposed for each. Armed with an understanding of the reaction mechanisms, much of the known chemistry within the extensive body of radical-based reactivity has the potential to be harnessed on silicon and could be extended to a range of technologically relevant semiconductor

  12. Protective effect of Pterostilbene against free radical mediated oxidative damage

    PubMed Central

    2013-01-01

    Background Pterostilbene, a methoxylated analog of Resveratrol, is gradually gaining more importance as a therapeutic drug owing to its higher lipophilicity, bioavailability and biological activity than Resveratrol. This study was undertaken to characterize its ability to scavenge free radicals such as superoxide, hydroxyl and hydrogen peroxide and to protect bio-molecules within a cell against oxidative insult. Methods Anti-oxidant activity of Pterostilbene was evaluated extensively by employing several in vitro radical scavenging/inhibiting assays and pulse radiolysis study. In addition, its ability to protect rat liver mitochondria against tertiary-butyl hydroperoxide (TBHP) and hydroxyl radical generated oxidative damage was determined by measuring the damage markers such as protein carbonyls, protein sulphydryls, lipid hydroperoxides, lipid peroxides and 8-hydroxy-2'-deoxyguanosine. Pterostilbene was also evaluated for its ability to inhibit •OH radical induced single strand breaks in pBR322 DNA. Result Pterostilbene exhibited strong anti-oxidant activity against various free radicals such as DPPH, ABTS, hydroxyl, superoxide and hydrogen peroxide in a concentration dependent manner. Pterostilbene conferred protection to proteins, lipids and DNA in isolated mitochondrial fractions against TBHP and hydroxyl radical induced oxidative damage. It also protected pBR322 DNA against oxidative assault. Conclusions Thus, present study provides an evidence for the strong anti-oxidant property of Pterostilbene, methoxylated analog of Resveratrol, thereby potentiating its role as an anti-oxidant. PMID:24070177

  13. Contemporary Radical Prostatectomy

    PubMed Central

    Fu, Qiang; Moul, Judd W.; Sun, Leon

    2011-01-01

    Purpose. Patients diagnosed with clinically localized prostate cancer have more surgical treatment options than in the past. This paper focuses on the procedures' oncological or functional outcomes and perioperative morbidities of radical retropubic prostatectomy, radical perineal prostatectomy, and robotic-assisted laparoscopic radical prostatectomy. Materials and Methods. A MEDLINE/PubMed search of the literature on radical prostatectomy and other new management options was performed. Results. Compared to the open procedures, robotic-assisted radical prostatectomy has no confirmed significant difference in most literatures besides less blood loss and blood transfusion. Nerve sparing is a safe means of preserving potency on well-selected patients undergoing radical prostatectomy. Positive surgical margin rates of radical prostatectomy affect the recurrence and survival of prostate cancer. The urinary and sexual function outcomes have been vastly improved. Neoadjuvant treatment only affects the rate of positive surgical margin. Adjuvant therapy can delay and reduce the risk of recurrence and improve the survival of the high risk prostate cancer. Conclusions. For the majority of patients with organ-confined prostate cancer, radical prostatectomy remains a most effective approach. Radical perineal prostatectomy remains a viable approach for patients with morbid obesity, prior pelvic surgery, or prior pelvic radiation. Robot-assisted laparoscopic prostatectomy (RALP) has become popular among surgeons but has not yet become the firmly established standard of care. Long-term data have confirmed the efficacy of radical retropubic prostatectomy with disease control rates and cancer-specific survival rates. PMID:22110994

  14. Toxic effects of butyl elastomers on aerobic methane oxidation

    NASA Astrophysics Data System (ADS)

    Niemann, Helge; Steinle, Lea I.; Blees, Jan H.; Krause, Stefan; Bussmann, Ingeborg; Lehmann, Moritz F.; Treude, Tina

    2013-04-01

    Large quantities of the potent greenhouse gas methane are liberated into the water column of marine and lacustrine environments where it may be consumed by aerobic methane oxidising bacteria before reaching the atmosphere.The reliable quantification of aerobic methane oxidation (MOx) rates is consequently of paramount importance for estimating methane budgets and to understand the controls on water column methane cycling. A widely used set of methods for measuring MOx rates is based on the incubation of water samples during which the consumption of methane is monitored, for instance with radio-tracer assays. Typically, incubation vessels are sealed with butyl rubber stoppers because these elastomers are essentially impermeable for gases at the relevant time scales. We tested the effect of different stopper materials (unmodified- and halogenated butyl rubber) on MOx activity in environmental samples and in cultures of methane oxidising bacteria. MOx rates in samples sealed with unmodified butyl rubber were > 75% lower compared to parallel incubations with halogenated butyl rubber seals, suggesting inhibiting/toxic effects associated with the use of unmodified butyl elastomers. To further explore the cause of these effects, we analysed aqueous extracts of the different stoppers. Halogenated butyl rubber stoppers appeared to bleed off comparably little amounts of organics. In stark contrast, extracts of unmodified butyl rubber were contaminated with various organic compounds including potential bactericides such as benzyltoluenes, phenylalkanes and benzuothiazoles. We also found tetramethylthiourea, a scavenger of active oxygen species, which may inhibit the MOx pathway.

  15. Electronic states of alkyl-radical-functionalized C20 fullerene using density functional theory

    NASA Astrophysics Data System (ADS)

    Abe, Shigeaki; Kawano, Shimpei; Toida, Yu; Nakamura, Mariko; Inoue, Satoshi; Sano, Hidehiko; Yoshida, Yasuhiro; Kawabata, Hiroshi; Tachikawa, Hiroto

    2016-03-01

    The structures and electronic states of alkyl-radical-functionalized C20 fullerenes (denoted by C20-R) have been investigated using density functional theory (DFT). The different alkyl radicals investigated were methyl, ethyl, propyl, and butyl radicals. The DFT calculation indicated that the alkyl radical binds to the carbon atom of C20 in the on-top site, thus forming a strong C-C single bond. The binding energies of the alkyl radicals to C20 were calculated to be 83.9-86.6 kcal/mol at the CAM-B3LYP/6-311G(d,p) level. The electronic states of the C20-R complex are discussed on the basis of the theoretical results.

  16. The reorientation of t-butyl groups in butylated hydroxytoluene: A deuterium nuclear magnetic resonance spectral and relaxation time study

    NASA Astrophysics Data System (ADS)

    Polson, James M.; Fyfe, J. D. Dean; Jeffrey, Kenneth R.

    1991-03-01

    Deuterium nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation times were determined in order to study the dynamics of t-butyl groups in butylated hydroxytoluene. The results are consistent with a model first proposed by Beckmann et al. [J. Magn. Reson. 36, 199 (1979)], where there is an inequivalence between the methyl groups within each t-butyl group. While two methyl groups reorient rapidly relative to the whole t-butyl rotation, the remaining methyl group is more restricted in its motion, reorienting at a rate comparable to that of the t-butyl group itself. The spin-lattice relaxation data show two T1 minima, the high temperature minimum (40 °C) corresponding to the combined t-butyl and ``slow'' methyl rotations, and the low temperature minimum corresponding to ``fast'' methyl group rotation. Using an explicitly defined T1 fitting function, the T1 data yield activation energies of 2.2 and 6.0 kcal/mol for the fast methyl and t-butyl rotations, respectively, both in agreement with Beckmann's values obtained from proton T1 experiments. It was also possible to simulate the low temperature deuterium NMR spectra from T=-160 °C to T=-80 °C using the aforementioned dynamical inequivalence between the t-butyl methyl groups. While the fast methyl group rotation was in the motional narrowing region for T>-160 °C, it was possible, from the simulations, to determine the t-butyl exchange rates to within 10%. The jump rates are remarkably close to the values predicted from the T1 results. Above -80 °C, the spectra could not be simulated, implying that a third motion must be present to further alter the high temperature line shapes. The effective axial asymmetry of the T>-20° spectra indicates that the additional motion involves a two site exchange.

  17. Kinetics and mechanism of alkane hydroperoxidation with tert-butyl hydroperoxide catalysed by a vanadate anion.

    PubMed

    Shul'pin, Georgiy B; Kozlov, Yuriy N

    2003-07-01

    tert-Butyl hydroperoxide oxidizes alkanes in acetonitrile at 60 degrees C if the soluble vanadium(v) salt, n-Bu4NVO3, is used as a catalyst. Alkyl hydroperoxides are formed as main products which decompose during the course of the reaction to produce the more stable corresponding alcohols and ketones. Turnover numbers (ie. numbers of moles of products per one mole of a catalyst) attained 250. The kinetics and selectivity of the reaction have been studied. The mechanism proposed involves the formation of a complex between the V(V) species and t-BuOOH (K5 was estimated to be 5 dm3 mol(-1)) followed by decomposition of this complex (k6 = 0.2 s(-1)). The generated V(IV) species reacts with another t-BuOOH molecule to produce an active t-BuO* radical which attacks the hydrocarbon. PMID:12945701

  18. Reassessing Radical Pedagogy.

    ERIC Educational Resources Information Center

    Sweet, Stephen

    1998-01-01

    Responds to comments about, and critiques of, his own article on radical pedagogy. Outlines major points of contention raised by other commentators and responds to them, including matters of definition, power relations in the classroom, and tempering radical theory with pragmatism. (DSK)

  19. [Alchemists' humid radical].

    PubMed

    Lafont, Olivier

    2007-01-01

    The term radical has been used by chemists since the beginnings and even when they still were alchemists. The term "humid radical" is present in numerous alchemists' texts. It was used to represent a kind of "humid", which was considered as different from what is nowadays called "humid", but was a sort of principle necessary for life. PMID:17575839

  20. NQR in tert-butyl chloride

    NASA Astrophysics Data System (ADS)

    Brunetti, Aldo H.

    2004-03-01

    Tert-butyl chloride has been broadly studied experimentally through various techniques such as X-ray crystallography, DTA, and NMR. It was also studied experimentally through nuclear quadrupole resonance (NQR), but this study was limited and incomplete. In this paper, we present a more detailed study of TBC through the NQR of 35Cl. Our results show that near 120 K, the onset of the CH 3 groups semirotations around symmetry axis C3 takes place with an activation energy U=16.1 kJ mol -1. This intramolecular movement produces a T1 minimum near 148 K and is the dominant mechanism of the nuclear spin-lattice relaxation in phase III of this compound. In phase II of TBC, we show that there are not only methyl groups semirotations, but also semirotations of the whole molecule around a different axis from the symmetry axis C' 3 (C-Cl bond) with an activation energy of E=10.4 kJ mol -1.

  1. Quantification of hypoglycin A as butyl ester.

    PubMed

    Sander, Johannes; Terhardt, Michael; Sander, Stefanie; Janzen, Nils

    2016-09-01

    L-α-amino-methylenecyclopropyl propionic acid (Hypoglycin A, HGA) has been found to be the toxic compound in fruits of the Sapindaceae family causing acute intoxication when ingested as food or feed. Clinical symptoms are consistent with acquired multiple acyl-CoA dehydrogenase deficiency (MADD). Ultra performance liquid chromatography-tandem mass spectrometry was used to measure HGA after butylation. Sample volumes were 10μL for serum and 20μL for urine. Internal standard for HGA was d3-leucine, samples were plotted on a 7-point linear calibration curve. Coefficients of variation were <15% at 0.01μmol HGA/L and ≤4.1% at 10μmol/L. R(2) values for linearity were ≥0.995. In order to quantify non-metabolized HGA together with some of its metabolites plus a spectrum of acyl glycines and acyl carnitines typical for acquired MADD in one single analysis HGA measurement was integrated into a method which we previously developed for metabolites of HGA and acyl conjugates. The new method is suitable for biochemical diagnosis of Ackee fruit poisoning or atypical myopathy in horses and for forensic purposes in cases of suspected HGA poisoning. PMID:27433981

  2. Involvement of free radicals in excitotoxicity in vivo.

    PubMed

    Schulz, J B; Henshaw, D R; Siwek, D; Jenkins, B G; Ferrante, R J; Cipolloni, P B; Kowall, N W; Rosen, B R; Beal, M F

    1995-05-01

    Recent evidence has linked excitotoxicity with the generation of free radicals. We examined whether free radical spin traps can attenuate excitotoxic lesions in vivo. Pretreatment with N-tert-butyl-alpha-(2-sulfophenyl)-nitrone (S-PBN) significantly attenuated striatal excitotoxic lesions in rats produced by N-methyl-D-aspartate (NMDA), kainic acid, and alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA). In a similar manner, striatal lesions produced by 1-methyl-4-phenylpyridinium (MPP+), malonate, and 3-acetylpyridine were significantly attenuated by either S-PBN or alpha-phenyl-N-tert-butylnitrone (PBN) treatment. Administration of S-PBN in combination with the NMDA antagonist MK-801 produced additive effects against malonate and 3-acetylpyridine toxicity. Malonate injections resulted in increased production of hydroxyl free radicals (.OH) as assessed by the conversion of salicylate to 2,3- and 2,5-dihydroxybenzoic acid (DHBA). This increase was significantly attenuated by S-PBN, consistent with a free radical scavenging effect. S-PBN had no effects on malonate-induced ATP depletions and had no significant effect on spontaneous striatal electrophysiologic activity. These results provide the first direct in vivo evidence for the involvement of free radicals in excitotoxicity and suggest that antioxidants may be useful in treating neurologic illnesses in which excitotoxic mechanisms have been implicated. PMID:7536809

  3. Photochemistry of dipenylketyl radicals: spectroscopy, kinetics, and mechanisms

    SciTech Connect

    Johnston, L.J.; Lougnot, D.J.; Wintgens, V.; Scaiano, J.C.

    1988-01-20

    The photochemistry of the diphenylketyl radical has been examined in nonpolar solutions. Transient studies using two-laser techniques yield an excited-state lifetime of 3.9 ns in toluene at room temperature, while for diphenylketyl-O-d the lifetime is 8.7 ns. Dye laser irradiation (515 nm) in the ketyl's visible absorption band leads to efficient photobleaching with Phi/sub bleach/ = 0.27 +/- 0.06 for the parent radical and 0.39 and 0.26 for the 4-methyl and 4-chloro derivatives, respectively. The photobleaching reaction involves the cleavage of the O-H ketyl bond to yield benzophenone and hydrogen atoms; in cyclohexane the latter abstract hydrogen from the solvent to produce molecular hydrogen which was characterized by Raman spectroscopy. In accordance with this mechanism, two-laser experiments produce lower yields of photoreduction products than the one-laser experiments in which the ketyls are not photobleached. When the ketyl radicals are generated by reaction of tert-butoxy radicals with benzhydrol, dye laser irradiation leads to a large increase in the yield of benzophenone (now a product), although the mechanism here is somewhat more complex due to the quenching of excited ketyl radicals by di-tert-butyl peroxide (k/sub q/ = 1.9 x 10/sup 9/ M/sup -1/ s/sup -1/). Detailed studies of the fluorescence, isotope effects, temperature effects, and products are also included.

  4. Instrumental laboratories based on the analysis of butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA)

    NASA Astrophysics Data System (ADS)

    Wiginton, John Franklin

    A semester-long series of instrumental analysis laboratory activities appropriate for advanced undergraduate and graduate students is described. The activities incorporate five analytical instruments commonly found in post-secondary educational, industrial, and governmental laboratories: a gas chromatograph with a flame ionization detector (GC), a gas chromatograph with a mass specific detector (GC/MS), a high-pressure liquid chromatograph with a UV-Visible detector (HPLC), a high-performance liquid chromatograph with a mass specific detector (LC/MS), and a nuclear magnetic resonance spectrometer (NMR). The series of activities utilizes two analytes, butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA), which are qualitatively and quantitatively analyzed, then structurally characterized. The protocol for each laboratory activity directs students to accomplish a specific analysis in the most efficient manner, but leaves the actual procedure vague enough to give the student a chance to experiment with the instrument. Student success is assessed by two means, having the student submit a detailed journal-style lab report and a class-wide discussion regarding the development of experimental protocols and individual instrument capabilities and limitations.

  5. Cytotoxicity of butylated hydroxyanisole and butylated hydroxytoluene in isolated rat hepatocytes.

    PubMed

    Thompson, D; Moldéus, P

    1988-06-01

    The effects of the antioxidants butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) on isolated rat hepatocytes were investigated. Both antioxidants were observed to be cytotoxic in a concentration-dependent manner at concentrations ranging from 100 to 750 microM. At equimolar concentrations BHT was more cytotoxic than BHA. Their toxicity appeared to be independent of their metabolism to reactive intermediates since inhibitors of cytochrome P-450 (metyrapone, SKF 525-A and piperonyl butoxide) had no effect on the cytotoxicity and N-acetylcysteine was also without protective effect. In addition, deuterated BHT was equitoxic with BHT. Only low temperature incubation (4 degrees), which has previously been shown to inhibit the insertion of these compounds into biomembranes, was effective in inhibiting the cytotoxic effects. Using isolated rat liver mitochondria we observed that both BHA and BHT inhibited respiratory control primarily by stimulating state 4 respiration and thus acting as membrane uncouplers. BHA and BHT also effectively dissipated membrane potential across the mitochondrial membrane and caused the release of calcium and mitochondrial swelling. These mitochondrial effects were reflected by a rapid decrease in ATP levels in intact hepatocytes which preceded cell death. These results suggest that the observed cytotoxicity of BHA and BHT to hepatocytes is related to their effects on biomembranes and mitochondrial bioenergetics. PMID:3377819

  6. In vivo copper-mediated free radical production: an ESR spin-trapping study

    NASA Astrophysics Data System (ADS)

    Kadiiska, Maria B.; Mason, Ronald P.

    2002-04-01

    Copper has been suggested to facilitate oxidative tissue injury through a free radical-mediated pathway analogous to the Fenton reaction. By applying the electron spin resonance (ESR) spin-trapping technique, evidence for hydroxyl radical formation in vivo was obtained in rats treated simultaneously with copper and ascorbic acid or paraquat. A secondary radical spin-trapping technique was used in which the hydroxyl radical formed the methyl radical upon reaction with dimethylsulfoxide. The methyl radical was then detected by ESR spectroscopy as its adduct with the spin trap phenyl- N- t-butyl- nitrone (PBN). In contrast, lipid derived radical was detected in vivo in copper-challenged, vitamin E and selenium-deficient rats. These findings support the proposal that dietary selenium and vitamin E can protect against lipid peroxidation and copper toxicity. Since copper excreted into the bile from treated animals is expected to be maintained in the Cu(I) state (by ascorbic acid or glutathione), a chelating agent that would redox-stablilize it in the Cu(I) state was used to prevent ex vivo redox chemistry. Bile samples were collected directly into solutions of bathocuproinedisulfonic acid, a Cu(I)-stabilizing agent, and 2,2'-dipyridyl, a Fe(II)-stabilizing agent. If these precautions were not taken, radical adducts generated ex vivo could be mistaken for radical adducts produced in vivo and excreted into the bile.

  7. Reaction products and mechanisms for the reaction of n-butyl vinyl ether with the oxidants OH and Cl: Atmospheric implications

    NASA Astrophysics Data System (ADS)

    Colmenar, Inmaculada; Martín, Pilar; Cabañas, Beatriz; Salgado, Sagrario; Tapia, Araceli; Martínez, Ernesto

    2015-12-01

    A reaction product study for the degradation of butyl vinyl ether (CH3(CH2)3OCHdbnd CH2) by reaction with chlorine atoms (Cl) and hydroxyl radicals (OH) has been carried out using Fourier Transform Infrared absorption spectroscopy (FTIR) and/or Gas Chromatography-Mass Spectrometry with a Time of Flight analyzer (GC-TOFMS). The rate coefficient for the reaction of butyl vinyl ether (BVE) with chlorine atoms has also been evaluated for the first time at room temperature (298 ± 2) K and atmospheric pressure (708 ± 8) Torr. The rate coefficient obtained was (9.9 ± 1.5) × 10-10 cm3 molecule-1 s-1 and this indicates the high reactivity of butyl vinyl ether with Cl atoms. However, this value may be affected by the dark reaction of BVE with Cl2. The results of a qualitative study of the Cl reaction show that the main oxidation products are butyl formate (CH3(CH2)3OC(O)H), butyl chloroacetate (CH3(CH2)3OC(O)CH2Cl and formyl chloride (HCOCl). Individual yields in the ranges ∼16-40% and 30-70% in the absence and presence of NOx, respectively, have been estimated for these products. In the OH reaction, butyl formate and formic acid were identified as the main products, with yields of around 50 and 20%, respectively. Based on the results of this work and a literature survey, the addition of OH radicals and Cl atoms at the terminal C atom of the double bond in CH3(CH2)3OCHdbnd CH2 has been proposed as the first step in the reaction mechanism for both of the studied oxidants. The tropospheric lifetime of butyl vinyl ether is very short and, as a consequence, it will be rapidly degraded and will only be involved in tropospheric chemistry at a local level. The degradation products of these reactions should be considered when evaluating the atmospheric impact.

  8. Radical chemistry of artemisinin

    NASA Astrophysics Data System (ADS)

    Denisov, Evgenii T.; Solodova, S. L.; Denisova, Taisa G.

    2010-12-01

    The review summarizes physicochemical characteristics of the natural sesquiterpene peroxide artemisinin. The kinetic schemes of transformations of artemisinin radicals under anaerobic conditions are presented and analyzed. The sequence of radical reactions of artemisinin in the presence of oxygen is considered in detail. Special emphasis is given to the intramolecular chain oxidation resulting in the transformation of artemisinin into polyatomic hydroperoxide. The kinetic characteristics of elementary reaction steps involving alkyl, alkoxyl, and peroxyl radicals generated from artemisinin are discussed. The results of testing of artemisinin and its derivatives for the antimalarial activity and the scheme of the biochemical synthesis of artemisinin in nature are considered.

  9. α-Tocopherol impact on oxy-radical induced free radical decomposition of DMSO: Spin trapping EPR and theoretical studies

    NASA Astrophysics Data System (ADS)

    Jerzykiewicz, Maria; Ćwieląg-Piasecka, Irmina; Witwicki, Maciej; Jezierski, Adam

    2011-05-01

    EPR spin trapping and theoretical methods such as density functional theory (DFT) as well as combined DFT and quadratic configuration interaction approach (DFT/QCISD) were used to identify the radicals produced in the reaction of oxy-radicals and dimethyl sulfoxide (DMSO) in the presence and absence of α-tocopherol. Additionally, the mixtures of α-tocopherol with linolenic acid and glyceryl trilinoleate as well as bioglycerols (glycerol fractions from biodiesel production) were tested. α-Tocopherol inhibited oxidation of the main decomposition product of DMSO, •CH 3 to •OCH 3 but did not prevent the transformation process of N-t-butyl- α-phenylnitrone (PBN) into 2-methyl-2-nitrosopropane (MNP). Theoretical investigations confirmed the structures of proposed spin adducts and allowed to correlate the EPR parameters observed in the experiment with the spin adducts electronic structure.

  10. Catalytic oxidation of butyl acetate over silver-loaded zeolites.

    PubMed

    Wong, Cheng Teng; Abdullah, Ahmad Zuhairi; Bhatia, Subhash

    2008-09-15

    The performance of silver-loaded zeolite (HY and HZSM-5) catalysts in the oxidation of butyl acetate as a model volatile organic compound (VOC) was studied. The objective was to find a catalyst with superior activity, selectivity towards deep oxidation product and stability. The catalyst activity was measured under excess oxygen condition in a packed bed reactor operated at gas hourly space velocity (GHSV)=15,000-32,000 h(-1), reaction temperature between 150 and 500 degrees C and butyl acetate inlet concentration of 1000-4000 ppm. Both AgY and AgZSM-5 catalysts exhibited high activity in the oxidation of butyl acetate. Despite lower silver content, AgY showed better activity, attributed to better metal dispersion, surface characteristics and acidity, and its pore system. Total conversion of butyl acetate was achieved at above 400 degrees C. The oxidation of butyl acetate followed a simple power law model. The reaction orders, n and m were evaluated under differential mode by varying the VOC partial pressure between 0.004 and 0.018 atm and partial pressure of oxygen between 0.05 and 0.20 atm. The reaction rate was independent of oxygen concentration and single order with respect to VOC concentration. The activation energies were 19.78 kJ/mol for AgY and 32.26 kJ/mol for AgZSM-5, respectively. PMID:18294771

  11. Hydroxyl radicals in indoor environments

    NASA Astrophysics Data System (ADS)

    Sarwar, Golam; Corsi, Richard; Kimura, Yosuke; Allen, David; Weschler, Charles J.

    Indoor hydroxyl radical concentrations were estimated using a new indoor air quality model which employs the SAPRC-99 atmospheric chemistry model to simulate indoor homogenous reactions. Model results indicate that typical indoor hydroxyl radical concentrations are lower than typical outdoor summertime urban hydroxyl radical levels of 5-10×10 6 molecules cm -3; however, indoor levels can be similar to or greater than typical nighttime outdoor hydroxyl radical levels of approximately 5×10 4 molecules cm -3. Effects of selected parameters on indoor hydroxyl radical concentrations are presented herein. Indoor hydroxyl radical concentrations are predicted to increase non-linearly with increasing outdoor ozone concentrations, indoor alkene emission rates, and air exchange rates. Indoor hydroxyl radical concentrations decrease with increasing outdoor nitric oxide concentrations. Indoor temperature and indoor light intensity have moderate impacts on indoor hydroxyl radical concentrations. Outdoor hydroxyl radical concentrations, outdoor nitrate (NO 3rad ) radical concentrations, outdoor hydroperoxy radical concentrations, and hydroxyl radical removal by indoor surfaces are predicted to have no appreciable impact on indoor hydroxyl radical concentrations. Production of hydroxyl radicals in indoor environments appears to be controlled primarily by reactions of alkenes with ozone, and nitric oxide with hydroperoxy radical. Estimated indoor hydroxyl radical levels may potentially affect indoor air quality. Two examples are presented in which reactions of d-limonene and α-pinene with indoor hydroxyl radicals produce aldehydes, which may be of greater concern than the original compounds.

  12. Electron paramagnetic resonance and computational studies of radicals derived from boron-substituted N-heterocyclic carbene boranes.

    PubMed

    Walton, John C; Brahmi, Malika Makhlouf; Monot, Julien; Fensterbank, Louis; Malacria, Max; Curran, Dennis P; Lacôte, Emmanuel

    2011-07-01

    Fifteen second-generation NHC-ligated boranes with aryl and alkyl substituents on boron were prepared, and their radical chemistry was explored by electron paramagnetic resonance (EPR) spectroscopy and calculations. Hydrogen atom abstraction from NHC-BH(2)Ar groups produced boryl radicals akin to diphenylmethyl with spin extensively delocalized across the NHC, BH, and aryl units. All of the NHC-B·HAr radicals studied abstracted Br-atoms from alkyl bromides. Radicals with bulky N,N'-dipp substituents underwent dimerization about 2 orders of magnitude more slowly than first-generation NHC-ligated trihydroborates. The evidence favored head-to-head coupling yielding ligated diboranes. The first ligated diboranyl radical, with a structure intermediate between that of ligated diboranes and diborenes, was spectroscopically characterized during photolysis of di-t-butyl peroxide with N,N'-di-t-butyl-imidazol-2-ylidene phenylborane. The reactive site of B-alkyl-substituted NHC-boranes switched from the boron center to the alkyl substituent for both linear and branched alkyl groups. The β-borylalkyl radicals obtained from N,N'-dipp-substituted boranes underwent exothermic β-scissions with production of dipp-Imd-BH(2)· radicals and alkenes. The reverse additions of NHC-boryl radicals to alkenes are probably endothermic for alkyl-substituted alkenes, but exothermic for conjugated alkenes (addition of an NHC-boryl radical to 1,1-diphenylethene was observed). A cyclopropylboryl radical was observed, but, unlike other α-cyclopropyl-substituted radicals, this showed no propensity for ring-opening. PMID:21619055

  13. Free Radical Reactions in Food.

    ERIC Educational Resources Information Center

    Taub, Irwin A.

    1984-01-01

    Discusses reactions of free radicals that determine the chemistry of many fresh, processed, and stored foods. Focuses on reactions involving ascorbic acid, myoglobin, and palmitate radicals as representative radicals derived from a vitamin, metallo-protein, and saturated lipid. Basic concepts related to free radical structure, formation, and…

  14. Structure properties relationship in electrospun thermoset butyl rubber

    NASA Astrophysics Data System (ADS)

    Viriyabanthorn, Nantiya

    Development of breathable elastomeric membranes based upon butyl rubber (IIR) compounds was investigated. These semi-permeable membranes were produced by electrospinning the compounded butyl rubber under appropriate conditions. They were designed to be selectively permeable. Specifically, these elastomeric membranes allowed moisture vapor transport, while maintaining a barrier against liquid water. Additionally, the conductive nature of carbon black in the compounds was shown to allow greater control over membrane thickness than generally observed in electrospun fabrics. Data were presented to show that the excellent chemical resistance of butyl rubber to organic solvents and toxic agents was maintained despite the porous nature of the membranes. Air flow resistance could also be adjusted as functions of processing conditions which related to fiber diameter and porosity of the membrane. Mechanical properties, in addition to various transport properties, are compared to a butyl rubber baseline. The moisture vapor transport properties are compared to expanded PTFE films. The results demonstrate the effectiveness of thermoset elastomeric membranes for producing flexible, selectively permeable barriers. Moreover, It also shows the capability to produce nonwoven materials for applications requiring high elongation (stretch) and porosity. In most elastomer formulations, carbon black is used as filler because of its reinforcing properties. The addition of carbon was also found to be important in the electrospinning of butyl rubber. Carbon black typically results in improved mechanical properties for rubber compounds, however, its conductive properties can also play a role in the resulting fiber structure during the electrospinning process. Carbon black loadings were varied from 0, 25, 50, and 75 parts per hundred rubber (phr). Increased carbon black loading resulted in a larger process window and reduced density and bead formation. Tensile modulus (corrected for changes

  15. Intercalation of stable organic radicals into layered saponite clay.

    PubMed

    Hemme, Wilhelm L; Fujita, Wataru; Awaga, Kunio; Eckert, Hellmut

    2009-10-14

    2-(3- and 4-N-methylpyridinium)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl 3-N-oxide (abbreviated as m- and p-MPYNN), the butyl derivative (m- and p-BuPYNN), 4-(N-ethylammonium)-2,2,5,5-tetramethylpiperidin-1-oxyl (ETEP) and N,N,N',N'-Tetramethyl-1,4-phenylenediamine radical cation (TMPD(+)) have been successfully intercalated into saponite clay. The amount of intercalated material has been determined via UV/VIS spectroscopy, elemental analysis and EPR spectroscopy, and the expansion of the layer distance from approximately 12.0 to ca. 15 A has been measured by X-ray powder diffraction. The magnetic properties of these materials, which result from the interplay of the modified intermolecular interactions between the guest species, and the additional interaction with the host lattice, have been characterized by magnetic susceptibility, EPR and solid state NMR measurements. While the (29)Si and (27)Al NMR spectra show little influence of the radical species on the local structural environments of the nuclei in the host lattice, the guest-host interaction manifests itself in significant line-broadening and (in some cases) resonance displacements of the (1)H NMR signals belonging to the molecular radical cations. In the case of TMPD(+) intercalates, the NMR and EPR data indicate predominant radical dimerization within the interlayer space. PMID:19771362

  16. Chemistry of carotenoid neutral radicals.

    PubMed

    Ligia Focsan, A; Magyar, Adam; Kispert, Lowell D

    2015-04-15

    Proton loss from the carotenoid radical cations (Car(+)) to form neutral radicals (#Car) was investigated by numerous electrochemical, EPR, ENDOR and DFT studies described herein. The radical cation and neutral radicals were formed in solution electrochemically and stabilized on solid silica-alumina and MCM-41 matrices. Carotenoid neutral radicals were recently identified in Arabidopsis thaliana plant and photosystem II samples. Deprotonation at the terminal ends of a zeaxanthin radical cation could provide a secondary photoprotection pathway which involves quenching excited state chlorophyll by the long-lived zeaxanthin neutral radicals formed. PMID:25687648

  17. Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate

    SciTech Connect

    Binder, Thomas; Erpelding, Michael; Schmid, Josef; Chin, Andrew; Sammons, Rhea; Rockafellow, Erin

    2015-04-10

    Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate. The purpose of Archer Daniels Midlands Integrated Biorefinery (IBR) was to demonstrate a modified acetosolv process on corn stover. It would show the fractionation of crop residue to distinct fractions of cellulose, hemicellulose, and lignin. The cellulose and hemicellulose fractions would be further converted to ethanol as the primary product and a fraction of the sugars would be catalytically converted to acrylic acid, with butyl acrylate the final product. These primary steps have been demonstrated.

  18. N-Butyl-4-butyl­imino-2-methyl­pentan-2-aminium (E)-quercetinate

    PubMed Central

    Grosu, Ioana-Georgeta; Borodi, Gheorghe; Pop, Mihaela Maria

    2012-01-01

    The title salt, C14H31N2 +·C15H9O7 −, was obtained in the reaction of quercetin with n-butyl­amine in a mixture of acetone and hexane. The crystal structure determination shows that the quercetin donates one of its phenol H atoms to the N-butyl-4-butyl­imino-2-methyl­pentan-2-amine mol­ecule. The crystal structure of the salt is stabilized by intramolecular (N—H⋯N for the cation and O—H⋯O for the anion) and intermolecular hydrogen bonding (N—H⋯O between cation–anion pairs and O—H⋯O between anions). Quercetin molecules form dimers connected into a two-dimensional network. The dihedral angle between the quercetin ring systems is 19.61 (8)°. PMID:22904895

  19. Recycling of gamma irradiated inner tubes in butyl based rubber compounds

    NASA Astrophysics Data System (ADS)

    Karaağaç, Bağdagül; Şen, Murat; Deniz, Veli; Güven, Olgun

    2007-12-01

    Recycling of gamma irradiated inner tubes made of butyl rubber in butyl based rubber compounds was studied. Gamma irradiated inner tube wastes and commercial butyl rubber crumbs devulcanized by conventional methods were replaced with butyl rubber up to 15 phr in the compound recipe. The rheological and mechanical properties and carbon black dispersion degree for both types of compounds were measured and then compared to those of virgin butyl rubber compound. It is well known that mechanical properties are deteriorated when rubber crumb is added to the virgin compound. The deterioration in the mechanical properties for the compounds prepared by recycling of irradiated inner tubes at 120 kGy is much lower than the compounds prepared by using commercial butyl crumbs. It has been observed that gamma irradiated used inner tubes were compatible with butyl rubber and could be recycled within butyl based rubber compounds.

  20. 40 CFR 180.576 - Cyhalofop-butyl; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of cyhalofop-butyl, including its metabolites and degradates, in or on the commodities listed in the... cyhalofop butyl , cyhalofop acid , and the di-acid metabolite . Commodity Parts per million Rice, grain...

  1. 40 CFR 180.576 - Cyhalofop-butyl; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of cyhalofop-butyl, including its metabolites and degradates, in or on the commodities listed in the... cyhalofop butyl , cyhalofop acid , and the di-acid metabolite . Commodity Parts per million Rice, grain...

  2. 40 CFR 180.576 - Cyhalofop-butyl; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of cyhalofop-butyl, including its metabolites and degradates, in or on the commodities listed in the... cyhalofop butyl , cyhalofop acid , and the di-acid metabolite . Commodity Parts per million Rice, grain...

  3. Roles of tert-butyl formate, tert-butyl alcohol and acetone in the regulation of methyl tert-butyl ether degradation by Mycobacterium austroafricanum IFP 2012.

    PubMed

    François, A; Garnier, L; Mathis, H; Fayolle, F; Monot, F

    2003-08-01

    Mycobacterium austroafricanum IFP 2012 is a Gram-positive strain able to grow on methyl tert-butyl ether (MTBE) as a sole carbon and energy source. The effect of two downstream metabolites of MTBE, tert-butyl formate (TBF) and tert-butyl alcohol (TBA) on MTBE degradation was investigated using resting cells. The addition of low concentrations of TBF decreased the MTBE degradation rate by about 30%. In contrast, the addition of TBA did not have a significant effect on MTBE degradation rate, even at high concentrations; and it was also shown that TBA degradation occurred only once MTBE was exhausted. At neutral pH, TBF hydrolysis involved mainly an esterase-type activity regulated by the presence of TBA. The TBF degradation rate was about four times lower than the MTBE degradation rate. Furthermore, acetone was identified as an intermediate during TBA degradation. An acetone mono-oxygenase activity, inhibited by methimazole but not by acetylene, was suggested. It was different from the MTBE/TBA mono-oxygenase and, thus, acetone did not appear to compete with MTBE and TBA for the same enzyme. These new results show that the metabolic regulation of the early steps of MTBE degradation by M. austroafricanum IFP 2012 is complex, involving inhibition and competition phenomena. PMID:12883872

  4. 27 CFR 21.100 - n-Butyl alcohol.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false n-Butyl alcohol. 21.100 Section 21.100 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants §...

  5. 27 CFR 21.100 - n-Butyl alcohol.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false n-Butyl alcohol. 21.100 Section 21.100 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants §...

  6. 27 CFR 21.101 - tert-Butyl alcohol.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false tert-Butyl alcohol. 21.101 Section 21.101 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants §...

  7. 27 CFR 21.101 - tert-Butyl alcohol.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false tert-Butyl alcohol. 21.101 Section 21.101 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants §...

  8. 21 CFR 172.270 - Sulfated butyl oleate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Coatings, Films and Related Substances...-butanol. Following sulfation, the reaction mixture is washed with water and neutralized with aqueous sodium or potassium hydroxide. Prior to sulfation, the butyl oleate reaction mixture meets the...

  9. 21 CFR 172.270 - Sulfated butyl oleate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN... transesterification of an edible vegetable oil using 1-butanol. Following sulfation, the reaction mixture is washed... oleate reaction mixture meets the following specifications: (1) Not less than 90 percent butyl oleate....

  10. 21 CFR 172.270 - Sulfated butyl oleate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN... transesterification of an edible vegetable oil using 1-butanol. Following sulfation, the reaction mixture is washed... oleate reaction mixture meets the following specifications: (1) Not less than 90 percent butyl oleate....

  11. 21 CFR 172.270 - Sulfated butyl oleate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN... transesterification of an edible vegetable oil using 1-butanol. Following sulfation, the reaction mixture is washed... oleate reaction mixture meets the following specifications: (1) Not less than 90 percent butyl oleate....

  12. 21 CFR 172.270 - Sulfated butyl oleate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION... edible vegetable oil using 1-butanol. Following sulfation, the reaction mixture is washed with water and neutralized with aqueous sodium or potassium hydroxide. Prior to sulfation, the butyl oleate reaction...

  13. 27 CFR 21.100 - n-Butyl alcohol.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false n-Butyl alcohol. 21.100 Section 21.100 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants §...

  14. 27 CFR 21.100 - n-Butyl alcohol.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false n-Butyl alcohol. 21.100 Section 21.100 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants §...

  15. 27 CFR 21.101 - tert-Butyl alcohol.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false tert-Butyl alcohol. 21.101 Section 21.101 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants §...

  16. 27 CFR 21.100 - n-Butyl alcohol.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false n-Butyl alcohol. 21.100 Section 21.100 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants §...

  17. 76 FR 59906 - Fluazifop-P-butyl; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-28

    ... Performance Liquid Chromatography/Ultra-Violet Spectrometry (HPLC/UV)) is available to enforce the tolerance... of fluazifop-P-butyl in or on cotton, gin byproducts; cotton, refined oil; and cotton, undelinted... Tolerance In the Federal Register of December 15, 2010 (75 FR 78240) (FRL- 8853-1), EPA issued a...

  18. Recombination of Photogenerated Lophyl Radicals in Imidazolium-Based Ionic Liquids

    SciTech Connect

    Strehmel, V.; Wishart, J.; Polyansky, D.E.; Strehmel, B.

    2009-10-20

    Laser flash photolysis is applied to study the recombination reaction of lophyl radicals in ionic liquids in comparison with dimethylsulfoxide as an example of a traditional organic solvent. The latter exhibits a similar micropolarity as the ionic liquids. The ionic liquids investigated are 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (1), 1-hexyl-3-methylimidazolium hexafluorophosphate (2), and 1-butyl-3-methylimidazolium tetafluoroborate (3). The recombination of the photolytic generated lophyl radicals occur significantly faster in the ionic liquids than expected from their macroscopic viscosities and is a specific effect of these ionic liquids. On the other hand, this reaction can be compared with the macroscopic viscosity in the case of dimethylsulfoxide. Activation parameters obtained for lophyl radical recombination suggest different, anion-dependent mechanistic effects. Quantum chemical calculations based on density functional theory provide a deeper insight of the molecular properties of the lophyl radical and its precursor. Thus, excitation energies, spin densities, molar volumes, and partial charges are calculated. Calculations show a spread of spin density over the three carbon atoms of the imidazolyl moiety, while only low spin density is calculated for the nitrogens.

  19. Radical School Reform.

    ERIC Educational Resources Information Center

    Gross, Beatrice, Ed.; Gross, Ronald, Ed.

    This book provides a comprehensive examination of the nature of the school crisis and the ways in which radical thinkers and educators are dealing with it. Excerpts from the writings of Jonathan Kozol, John Holt, Kenneth Clark, and others are concerned with the realities of education in ghettos and suburbs. Paul Goodman, Marshall McLuhan, Sylvia…

  20. [Aging and free radicals].

    PubMed

    Manso, C

    1992-02-01

    Several theories on aging are presented. All of them give important contributions but none explains all the aspects of the problem. Oxygen radicals produced during cellular combustion contribute to aging through multiple cumulative microlesions throughout life. The importance of glucose is emphasized; it forms early and late Maillard compounds. Other causes of aging are discussed. PMID:1595373

  1. Tyrosyl Radicals in Dehaloperoxidase

    PubMed Central

    Dumarieh, Rania; D'Antonio, Jennifer; Deliz-Liang, Alexandria; Smirnova, Tatyana; Svistunenko, Dimitri A.; Ghiladi, Reza A.

    2013-01-01

    Dehaloperoxidase (DHP) from Amphitrite ornata, having been shown to catalyze the hydrogen peroxide-dependent oxidation of trihalophenols to dihaloquinones, is the first oxygen binding globin that possesses a biologically relevant peroxidase activity. The catalytically competent species in DHP appears to be Compound ES, a reactive intermediate that contains both a ferryl heme and a tyrosyl radical. By simulating the EPR spectra of DHP activated by H2O2, Thompson et al. (Thompson, M. K., Franzen, S., Ghiladi, R. A., Reeder, B. J., and Svistunenko, D. A. (2010) J. Am. Chem. Soc. 132, 17501–17510) proposed that two different radicals, depending on the pH, are formed, one located on either Tyr-34 or Tyr-28 and the other on Tyr-38. To provide additional support for these simulation-based assignments and to deduce the role(s) that tyrosyl radicals play in DHP, stopped-flow UV-visible and rapid-freeze-quench EPR spectroscopic methods were employed to study radical formation in DHP when three tyrosine residues, Tyr-28, Tyr-34, and Tyr-38, were replaced either individually or in combination with phenylalanines. The results indicate that radicals form on all three tyrosines in DHP. Evidence for the formation of DHP Compound I in several tyrosine mutants was obtained. Variants that formed Compound I showed an increase in the catalytic rate for substrate oxidation but also an increase in heme bleaching, suggesting that the tyrosines are necessary for protecting the enzyme from oxidizing itself. This protective role of tyrosines is likely an evolutionary adaptation allowing DHP to avoid self-inflicted damage in the oxidative environment. PMID:24100039

  2. EPR Spin Trapping of an Oxalate-Derived Free Radical in the Oxalate Decarboxylase Reaction

    PubMed Central

    Imaram, Witcha; Saylor, Benjamin T.; Centonze, Christopher P.; Richards, Nigel G. J.; Angerhofer, Alexander

    2011-01-01

    EPR spin trapping experiments on bacterial oxalate decarboxylase from Bacillus subtilis under turn-over conditions are described. The use of doubly 13C-labeled oxalate leads to a characteristic splitting of the observed radical adducts using the spin trap N-tert-butyl-α-phenylnitrone linking them directly to the substrate. The radical was identified as the carbon dioxide radical anion which is a key intermediate in the hypothetical reaction mechanism of both decarboxylase and oxidase activities. X-ray crystallography had identified a flexible loop, SENS161-4, which acts as a lid to the putative active site. Site directed mutagenesis of the hinge amino acids, S161 and T165 was explored and showed increased radical trapping yields compared to the wild type. In particular, T165V shows approximately ten times higher radical yields while at the same time its decarboxylase activity was reduced by about a factor of ten. This mutant lacks a critical H-bond between T165 and R92 resulting in compromised control over its radical chemistry allowing the radical intermediate to leak into the surrounding solution. PMID:21277974

  3. Metabolism of ethanol to the 1-hydroxyethyl radical by rat heart microsomes

    SciTech Connect

    Reinke, L.A.; Rau, J.M.; Lai, E.K.; McCay, P.B. )

    1989-02-09

    Sarcoplasmic reticulum fractions were isolated from rat heart homogenates by differential centrifugation. The membrane fractions were incubated with ethanol (50 mM), an NADPH-generating system, and either 5,5-dimethyl-1-pyrroline N-oxide (DMPO) or N-t-butyl-phenylnitrone (PBN) as spin-trapping agents. Benzene extracts of the reactions were analyzed by electron spin resonance spectroscopy. The rat heart microsomes metabolized ethanol to a carbon-centered radical which formed adducts with both DMPO and PBN. When the experiments were performed with 1-{sup 13}C-ethanol, the spectra were split by the additional spin of the {sup 13}C, which demonstrates that the radical which had been trapped was the 1-hydroxyethyl radical. Heat inactivation of the microsomes resulted in loss of the signal. When the NAPH-generating system was replaced with NADH (1 mM), the intensity of the radical signal decreased by more than 50%. The intensity of the 1-hydroxyethyl radical was increased by more than two-fold by the addition of ADP-Fe{sup +3} or sodium azide, suggesting that iron-catalyzed formation of oxygen radicals may participate in the conversion of ethanol to a free radical under these conditions.

  4. Quantitative methods for studying the role of free radicals in biology

    NASA Astrophysics Data System (ADS)

    Jakus, Judit; Kriska, Tamas; Maximova, Tatjana K.; Nemeth, Andras; Korecz, Laszlo; Gal, Dezso

    1999-02-01

    The mechanism of the primary sensitization steps in Photodynamic Therapy could be of essential importance concerning the efficiency of the treatment. Besides the well known mechanisms there is a possibility that the interaction between the excited triplet state sensitizer and the doublet state free radicals generated by the cells adds a significant contribution to the overall photodynamic effect. To support this hypothesis the quantification and identification of free radicals would be required. For this purpose chemiluminescence studies and spin trapping seemed to be the most suitable methods due to the extremely short lifetime of free radicals in biological systems. We present data on the kinetics of accumulation of free radicals: (1) by measuring luminol- dependent chemiluminescence of stimulated macrophages both in the absence and in the presence of a free radical inhibitor 3,5 di-tert-butyl-4-hydroxyphenyl propionic acid; (2) by following the production of primary, secondary and tertiary radical adducts using DMPO (5,5-dimethyl-1-pyrroline N-oxide) as spin trapping agent in chemical model systems. The measured data are used to determine the effect of the excited sensitizers on the kinetics of accumulation of free radicals under biological conditions. These results would serve to design new and more effective sensitizers used for therapy based on the triplet-doublet mechanism of action.

  5. Mechanistic investigation of oxidative Mannich reaction with tert-butyl hydroperoxide. The role of transition metal salt.

    PubMed

    Ratnikov, Maxim O; Doyle, Michael P

    2013-01-30

    A general mechanism is proposed for transition metal-catalyzed oxidative Mannich reactions of N,N-dialkylanilines with tert-butyl hydroperoxide (TBHP) as the oxidant. The mechanism consists of a rate-determining single electron transfer (SET) that is uniform from 4-methoxy- to 4-cyano-N,N-dimethylanilines. The tert-butylperoxy radical is the major oxidant in the rate-determining SET step that is followed by competing backward SET and irreversible heterolytic cleavage of the carbon-hydrogen bond at the α-position to nitrogen. A second SET completes the conversion of N,N-dimethylaniline to an iminium ion that is subsequently trapped by the nucleophilic solvent or the oxidant prior to formation of the Mannich adduct. The general role of Rh(2)(cap)(4), RuCl(2)(PPh(3))(3), CuBr, FeCl(3), and Co(OAc)(2) in N,N-dialkylaniline oxidations by T-HYDRO is to initiate the conversion of TBHP to tert-butylperoxy radicals. A second pathway, involving O(2) as the oxidant, exists for copper, iron, and cobalt salts. Results from linear free-energy relationship (LFER) analyses, kinetic and product isotope effects (KIE and PIE), and radical trap experiments of N,N-dimethylaniline oxidation by T-HYDRO in the presence of transition metal catalysts are discussed. Kinetic studies of the oxidative Mannich reaction in methanol and toluene are also reported. PMID:23298175

  6. Shock tube study of the reactions of the hydroxyl radical with combustion species and pollutants. Final report

    SciTech Connect

    Cohen, N.; Koffend, J.B.

    1998-02-01

    Shock heating t-butyl hydroperoxide behind a reflected shock wave has proved to be as a convenient source of hydroxyl radicals at temperatures near 1000 K. We applied this technique to the measurement of reaction rate coefficients of OH with several species of interest in combustion chemistry, and developed a thermochemical kinetics/transition state theory (TK-TST) model for predicting the temperature dependence of OH rate coefficients.

  7. The carbomethylation of arylacrylamides leading to 3-ethyl-3-substituted indolin-2-one by cascade radical addition/cyclization.

    PubMed

    Dai, Qiang; Yu, Jintao; Jiang, Yan; Guo, Songjin; Yang, Haitao; Cheng, Jiang

    2014-04-14

    An FeCl2-promoted carbomethylation of arylacrylamides by di-tert-butyl peroxide (DTBP) is achieved, leading to 3-ethyl-3-substituted indolin-2-one in high yield. The reaction tolerates a series of functional groups, such as cyano, nitro, ethyloxy carbonyl, bromo, chloro, and trifluoromethyl groups. The radical methylation and arylation of the alkenyl group are involved in this reaction. PMID:24589915

  8. Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery

    SciTech Connect

    Wei, Xiaoliang; Xu, Wu; Huang, Jinhua; Zhang, Lu; Walter, Eric D.; Lawrence, Chad W.; Vijayakumar, M.; Henderson, Wesley A.; Liu, Tianbiao L.; Cosimbescu, Lelia; Li, Bin; Sprenkle, Vincent L.; Wang, Wei

    2015-07-20

    Nonaqueous redox flow batteries hold the promise to achieve higher energy density ascribed to the broader voltage window than their aqueous counterparts, but their current performance is limited by low redox material concentration, poor cell efficiency, and inferior cycling stability. We report a new nonaqueous total-organic flow battery based on high concentrations of 9-fluorenone as negative and 2,5-di-tert-butyl-1-methoxy-4-[2’-methoxyethoxy]benzene as positive redox materials. The supporting electrolytes are found to greatly affect the cycling stability of flow cells through varying chemical stabilities of the charged radical species, especially the 9-fluorenone radical anions, as confirmed by electron spin resonance. Such an electrolyte optimization sheds light on mechanistic understandings of capacity fading in flow batteries employing organic radical-based redox materials and demonstrates that rational design of supporting electrolyte is vital for stable cyclability.

  9. Free Radical Scavenging and Analgesic Activities of Cucumis sativus L. Fruit Extract

    PubMed Central

    Kumar, D; Kumar, S; Singh, J; Narender; Rashmi; Vashistha, BD; Singh, N

    2010-01-01

    The aqueous fruit extract of Cucumis sativus L. was screened for free radical scavenging and analgesic activities. The extract was subjected to in vitro antioxidant studies at 250 and 500 μg/ml and analgesic study at the doses 250 and 500 mg/kg, respectively. The free radical scavenging was compared with ascorbic acid, BHA (Butylated hydroxyl anisole), whereas, the analgesic effect was compared with Diclofenac sodium (50 mg/kg). The C. sativus fruit extract showed maximum antioxidant and analgesic effect at 500 μg/ml and 500 mg/kg, respectively. The presence of flavonoids and tannins in the extract as evidenced by preliminary phytochemical screening suggests that these compounds might be responsible for free radical scavenging and analgesic effects. PMID:21264095

  10. Toward Radicalizing Community Service Learning

    ERIC Educational Resources Information Center

    Sheffield, Eric C.

    2015-01-01

    This article advocates a radicalized theoretical construction of community service learning. To accomplish this radicalization, I initially take up a discussion of traditional understandings of CSL rooted in pragmatic/progressive thought. I then suggest that this traditional structural foundation can be radicalized by incorporating Deborah…

  11. In vitro radical scavenging activity of two Columbian Magnoliaceae

    NASA Astrophysics Data System (ADS)

    Puertas M., Miguel A.; Mesa v., Ana M.; Sáez v., Jairo A.

    2005-08-01

    The recent interest in the conservation of the tropical forest is due, at least in part, to the potential economic and health benefits that can be exploited from several plants. This report shows the in vitro antioxidant activity of some fractions isolated from leaves of two Columbian Magnoliaceae, Talauma hernandezii G. Lozano-C and Dugandiodendron yarumalense Lozano. The activity was determined using the radical monocation 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS·+) and the stable free radical 2-2-diphenyl-1-picrylhydrazyl (DPPH·), as part of general biological screening of these plants. The antioxidant capacity obtained from fractions was similar to those of α-tocopherol, tert-butylated hydroxyanisole (BHA), and ascorbic acid. The most active scavenger extract was the fraction 7 (TAA = 48.6 mmol Trolox/kg extract and IC50 ≤ 0.01 kg extract/mmol DPPH); and the least active was the fraction 1 (TAA = 11.23 mmol Trolox/kg extract and IC50 = 0.21 kg extract/mmol DPPH) all of them isolated from D. yarumalense. These results suggest that these plants can be attractive as source of antioxidant compounds with the ability to reduce radicals like ATBS and DPPH.

  12. 13 ENDOR studies of organic radicals in natural isotopic abundance

    NASA Astrophysics Data System (ADS)

    Kirste, Burkhard

    13C ENDOR studies of phenoxyls, galvinoxyls, triphenylmethyl radicals, nitroxides, and cyclosilane and semiquinone radical anions with natural isotopic distribution are reported. The method is described, and it is shown that 13C coupling constants can be measured precisely; in favorable cases even the determination of signs is possible by general TRIPLE resonance. Studies of the relaxation behavior of 13C ENDOR signals or measurements of hyperfine shifts in liquid-crystalline solutions yield information about dipolar hyperfine interactions and hence π spin populations which is of aid in assignments to molecular positions. Complete sets of 13C coupling constants have been determined for 2,4,6-tri- tert-butylphenoxyl and Coppinger's radical. For the central carbon atoms of tert-butyl groups, a Q parameter of Qτ-Bu C = -34 MHz is proposed, and for a 29Si atom in trimethylsilyl groups, QTMSSi = +49 MHz. Favorable conditions for natural-abundance 13C ENDOR experiments, e.g., small hyperfine anisotropies and use of deuterated compounds, and limitations of the method are discussed.

  13. Chitosan-graft-poly(n-butyl acrylate) copolymer: Synthesis and characterization of a natural/synthetic hybrid material.

    PubMed

    Anbinder, Pablo; Macchi, Carlos; Amalvy, Javier; Somoza, Alberto

    2016-07-10

    Two chitosan polymers with different deacetylation degree and molecular weight were subjected to grafting reactions with the aim to enhance the properties of these bio-based materials. Specifically, n-butyl acrylate in different proportions was grafted onto two different deacetylation degree (DD%) chitosan using radical initiation in a surfactant free emulsion system. Infrared spectroscopy was used to confirm grafting and products grafting percentage and efficiency were evaluated against acrylate/chitosan ratio and DD%. Thermal and structural properties and the behavior against water of the raw and grafted biopolymers were studied using several experimental techniques: differential scanning calorimetry, transmission electron microscopy, dynamic light scattering, water swelling, contact angle and positron annihilation lifetime spectroscopy. The influence of the grafting process on the morphological and physicochemical properties of the prepared natural/synthetic hybrid materials is discussed. PMID:27106155

  14. Free radical explosive composition

    DOEpatents

    Walker, Franklin E.; Wasley, Richard J.

    1979-01-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a getter additive comprising a compound or mixture of compounds capable of capturing or deactivating free radicals or ions under mechanical or electrical shock conditions and which is not an explosive. Exemplary getter additives are isocyanates, olefins and iodine.

  15. Laparoscopic radical cystectomy

    PubMed Central

    Fergany, Amr

    2012-01-01

    Objective Laparoscopic radical cystectomy (LRC) has emerged as a minimally invasive alternative to open radical cystectomy (ORC). This review focuses on patient selection criteria, technical aspects and postoperative outcomes of LRC. Methods Material for the review was obtained by a PubMed search over the last 10 years, using the keywords ‘laparoscopic radical cystectomy’ and ‘laparoscopic bladder cancer’ in human subjects. Results Twenty-two publications selected for relevance and content were used for this review from the total search yield. The level of evidence was IIb and III. LRC results in comparable short- and intermediate-range oncological outcomes to ORC, with generally longer operative times but decreased blood loss, postoperative pain and hospital stay. Overall operative and postoperative morbidity are equivalent. Conclusion In experienced hands, LRC is an acceptable minimally invasive alternative to ORC in selected patients, with the main advantage of decreased blood loss and postoperative pain, as well as a shorter hospital stay and recovery. PMID:26558003

  16. THERMOCHEMISTRY OF HYDROCARBON RADICALS

    SciTech Connect

    Kent M. Ervin, Principal Investigator

    2004-08-17

    Gas phase negative ion chemistry methods are employed to determine enthalpies of formation of hydrocarbon radicals that are important in combustion processes and to investigate the dynamics of ion-molecule reactions. Using guided ion beam tandem mass spectrometry, we measure collisional threshold energies of endoergic proton transfer and hydrogen atom transfer reactions of hydrocarbon molecules with negative reagent ions. The measured reaction threshold energies for proton transfer yield the relative gas phase acidities. In an alternative methodology, competitive collision-induced dissociation of proton-bound ion-molecule complexes provides accurate gas phase acidities relative to a reference acid. Combined with the electron affinity of the R {center_dot} radical, the gas phase acidity yields the RH bond dissociation energy of the corresponding neutral molecule, or equivalently the enthalpy of formation of the R{center_dot} organic radical, using equation: D(R-H) = {Delta}{sub acid}H(RH) + EA(R) - IE(H). The threshold energy for hydrogen abstraction from a hydrocarbon molecule yields its hydrogen atom affinity relative to the reagent anion, providing the RH bond dissociation energy directly. Electronic structure calculations are used to evaluate the possibility of potential energy barriers or dynamical constrictions along the reaction path, and as input for RRKM and phase space theory calculations. In newer experiments, we have measured the product velocity distributions to obtain additional information on the energetics and dynamics of the reactions.

  17. Free radical propulsion concept

    NASA Technical Reports Server (NTRS)

    Hawkins, C. E.; Nakanishi, S.

    1981-01-01

    The concept of a free radical propulsion system, utilizing the recombination energy of dissociated low molecular weight gases to produce thrust, is analyzed. The system, operating at a theoretical impulse with hydrogen, as high as 2200 seconds at high thrust to power ratio, is hypothesized to bridge the gap between chemical and electrostatic propulsion capabilities. A comparative methodology is outlined by which characteristics of chemical and electric propulsion for orbit raising mission can be investigated. It is noted that free radicals proposed in rockets previously met with difficulty and complexity in terms of storage requirements; the present study proposes to eliminate the storage requirements by using electric energy to achieve a continuous-flow product of free radicals which are recombined to produce a high velocity propellant. Microwave energy used to dissociate a continuously flowing gas is transferred to the propellant via three-body-recombination for conversion to propellant kinetic energy. Microwave plasma discharge was found in excess of 90 percent over a broad range of pressure in preliminary experiments, and microwave heating compared to electrothermal heating showed much higher temperatures in gasdynamic equations.

  18. The millimeter-wave rotational spectrum of tertiary butyl isocyanide

    NASA Astrophysics Data System (ADS)

    Kisiel, Z.

    1992-02-01

    The millimeter-wave rotational spectrum of tertiary butyl isocyanide, (CH 3) 3CNC, was measured in the ground state and in the first excited state of the doubly degenerate CNC bending mode vβ. Accurate spectroscopic constants for both states have been determined from frequency measurements spanning the range 146-333 GHz. The results are compared with those for tertiary butyl cyanide, for which improved ground state sextic distortion constants are reported. The experimental quartic centrifugal distortion constants and the Coriolis coupling constant ξβ are well reproduced by a rudimentary force field calculation. Coriolis coupling constants for bending modes of linear segments attached to symmetric top C3 v molecules based on a tetrahedrally substituted carbon atom are compared and factors responsible for changes in their values are identified and discussed.

  19. Room Temperature Aging Study of Butyl O-rings

    SciTech Connect

    Mark Wilson

    2009-08-07

    During testing under the Enhanced Surveillance Campaign in 2001, preliminary data detected a previously unknown and potentially serious concern with recently procured butyl o-rings. All butyl o-rings molded from a proprietary formulation throughout the period circa 1999 through 2001 had less than a full cure. Tests showed that sealing force values for these suspect o-rings were much lower than expected and their physical properties were very sensitive to further post curing at elevated temperatures. Further testing confirmed that these o-rings were approximately 50% cured versus the typical industry standard of > 90% cured. Despite this condition, all suspect o-rings fully conformed to their QC acceptance requirements, including their individual product drawing requirements.

  20. Chronic pulmonary dysfunction following acute inhalation of butyl acrylate.

    PubMed

    Bhardwaj, Ravindra; Ducatman, Alan; Finkel, Mitchell S; Petsonk, Edward; Hunt, Janet; Beto, Robert J

    2012-01-01

    Butyl Acrylate (BA) (2-propionic acid; CH2 = CHCOOC4H9) is a colorless liquid commonly used in impregnation agents and adhesives. Dermal contact with BA has previously been reported to cause moderate skin irritation with skin sensitizing potential in humans. Health effects of inhalation of BA have not been previously reported. Accordingly, we document the health conditions of a bystander, first responder and landfill worker exposed to butyl acrylate (BA) released to the atmosphere following a collision and roadside spill in October 1998. Retrospective data were collected via chart review and analyzed for exposure, symptoms, physical findings and radiological, laboratory and spirometry results over a ten-year period. All three patients had similar respiratory symptoms including a dramatic hacking cough and dyspnea. Findings included abnormal pulmonary function tests and breath sounds. These data underscore the potential hazards of BA inhalational exposure and the need to wear additional protective equipment. PMID:23472539

  1. tert-Butyl Hydroperoxide Mediated Cascade Synthesis of 3-Arylsulfonylquinolines.

    PubMed

    Zhang, Liangliang; Chen, Su; Gao, Yuzhen; Zhang, Pengbo; Wu, Yile; Tang, Guo; Zhao, Yufen

    2016-03-18

    3-Arylsulfonylquinoline derivatives play important roles as pharmaceutical drugs. A new method for the synthesis of 3-arylsulfonylquinoline derivatives has been achieved through tert-butyl hydroperoxide mediated cycloaddition between N-propargyl aromatic amine derivatives and arylsulfonylhydrazides without the addition of any metals. This transformation offers a straightforward route to the formation of a C-S bond and quinoline ring in one step via a sulfonylation-cyclization-aromatization process. PMID:26959409

  2. Effects of di-n-butyl phthalate on the physiology and ultrastructure of cucumber seedling roots.

    PubMed

    Zhang, Ying; Tao, Yue; Sun, Guoqiang; Wang, Lei

    2014-05-01

    Agricultural pollution caused by the use of plastic sheetings has been documented to be a widespread problem in most of the major crop-planting regions of the world. In order to better understand the phytotoxic mechanisms induced by phthalic acid esters involved with this problem, Cucumber sativus L. cv Jinyan No. 4 were sown in pots to the three-leaf-stage in the presence of di-n-butyl phthalate (DBP; 0, 30, 50, 100, and 200 mg L(-1)) for 1, 3, 5, or 7 days. Physiology, biochemistry, and ultrastructure of seedling roots were examined. The results indicated that activities of three antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD)) were stimulated at low-DBP treatments and decreased under higher levels (>100 mg L(-1)) compared to the controls. On the other hand, SOD and POD provided a better defense against DBP-induced oxidative damage in the roots of cucumber seeding, compared to CAT. The productions of both malondialdehyde (MDA) and proline (Pro) were promoted under DBP stress. Visible impact on the cytoderm, mitochondrion, and vacuole was detected, possibly as a consequence of free radical generation. These results suggested that activation of the antioxidant system by DBP led to the formation of reactive oxygen species that resulted in cellular damage. PMID:24573460

  3. Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): a review.

    PubMed

    Yehye, Wageeh A; Rahman, Noorsaadah Abdul; Ariffin, Azhar; Abd Hamid, Sharifah Bee; Alhadi, Abeer A; Kadir, Farkaad A; Yaeghoobi, Marzieh

    2015-08-28

    Hindered phenols find a wide variety of applications across many different industry sectors. Butylated hydroxytoluene (BHT) is a most commonly used antioxidant recognized as safe for use in foods containing fats, pharmaceuticals, petroleum products, rubber and oil industries. In the past two decades, there has been growing interest in finding novel antioxidants to meet the requirements of these industries. To accelerate the antioxidant discovery process, researchers have designed and synthesized a series of BHT derivatives targeting to improve its antioxidant properties to be having a wide range of antioxidant activities markedly enhanced radical scavenging ability and other physical properties. Accordingly, some structure-activity relationships and rational design strategies for antioxidants based on BHT structure have been suggested and applied in practice. We have identified 14 very sensitive parameters, which may play a major role on the antioxidant performance of BHT. In this review, we attempt to summarize the current knowledge on this topic, which is of significance in selecting and designing novel antioxidants using a well-known antioxidant BHT as a building-block molecule. Our strategy involved investigation on understanding the chemistry behind the antioxidant activities of BHT, whether through hydrogen or electron transfer mechanism to enable promising anti-oxidant candidates to be synthesized. PMID:26150290

  4. HIGH LEVELS OF MONOAROMATIC COMPOUNDS LIMIT THE USE OF SOLID-PHASE MICROEXTRACTION OF METHYL TERTIARY BUTYL ETHER AND TERTIARY BUTYL ALCOHOL

    EPA Science Inventory

    Recently, two papers reported the use of solid-phase microextraction (SPME) with polydimethylsiloxane(PDMS)/Carboxen fibers to determine trace levels of methyl tertiary butyl ether (MTBE) and tertiary butyl alcohol (tBA) in water. Attempts were made to apply this technique to th...

  5. Studies on the photolytic breakdown of hydroperoxides and peroxidized fatty acids by using electron spin resonance spectroscopy. Spin trapping of alkoxyl and peroxyl radicals in organic solvents.

    PubMed Central

    Davies, M J; Slater, T F

    1986-01-01

    Spin trapping using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) has been used to detect and distinguish between the carbon-centred, alkoxyl, and peroxyl radicals produced during the photolytic decomposition of hydroperoxides. Photolysis of tert-butyl and cumene hydroperoxides, and peroxidized fatty acids, in toluene, with low levels of u.v. light, is shown to lead to the initial production of alkoxyl radicals by homolysis of the oxygen-oxygen bond. Subsequent reaction of these radicals with excess hydroperoxide leads, by hydrogen abstraction, to the production of peroxyl radicals that can be detected as their corresponding adducts with the spin trap. Subsequent breakdown of these adducts produces alkoxyl radicals and a further species that is believed to be the oxidized spin-trap radical 5,5-dimethyl-1-pyrrolidone-2-oxyl. No evidence was obtained at low hydroperoxide concentrations, with either the cumene or lipid alkoxyl radicals, for the occurrence of beta-scission reactions; the production of low levels of carbon-centred radicals is believed to be due to the alternative reactions of hydrogen abstraction, ring closure, and/or 1,2 hydrogen shifts. Analogous experiments with 3,3,5,5-tetramethyl-1-pyrroline N-oxide (TMPO) led only to the trapping of alkoxyl radicals with no evidence for peroxyl radical adducts, this is presumably due to a decreased rate of radical addition because of increased steric hindrance. PMID:3030287

  6. Degradation of TAIC by water falling film dielectric barrier discharge--influence of radical scavengers.

    PubMed

    Rong, Shaopeng; Sun, Yabing

    2015-04-28

    This work describes the application of plasma generated by water falling film dielectric barrier discharge for the degradation of triallyl isocyanurate (TAIC). The results indicated that TAIC solution of 1000mg/L was effectively removed within 60min treatment at 120W output power. Six intermediates were identified and a possible evolution of the TAIC degradation process was continuously proposed basing on the results of mass spectrum analysis. The effects of metal ions and radical scavengers were investigated. Results showed that whatever hydrogen radical scavengers (carbon tetrachloride, perfluorooctane) or hydroxyl radical scavengers (iso-propyl alcohol, tert-butyl alcohol) all could further enhance the degradation processes, and both kings of radical scavengers could promote the generation of H2O2. In the present study, we employed a novel method by introducing the mixed additives of Fe(2+) and radical scavengers into the plasma. It was found that the reaction rate constant and energy efficiency were improved by 309.2% and 387.8%, respectively. Among the mixed additives, Fe(2+) could promote the decomposition and increase the oxidizing power of H2O2, which is generated from the plasma discharge and greatly enhanced by the radical scavengers. PMID:25668300

  7. Addition reaction of alkyl radical to C60 fullerene: Density functional theory study

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto; Kawabata, Hiroshi

    2016-02-01

    Functionalized fullerenes are known as a high-performance molecules. In this study, the alkyl-functionalized fullerenes (denoted by R-C60) have been investigated by means of the density functional theory (DFT) method to elucidate the effects of functionalization on the electronic states of fullerene. Also, the reaction mechanism of alkyl radicals with C60 was investigated. The methyl, ethyl, propyl, and butyl radicals (denoted by n = 1-4, where n means the number of carbon atoms in the alkyl radical) were examined as alkyl radicals. The DFT calculation showed that the alkyl radical binds to the carbon atom of C60 at the on-top site, and a strong C-C single bond is formed. The binding energies of alkyl radicals to C60 were distributed in the range of 31.8-35.1 kcal mol-1 at the CAM-B3LYP/6-311G(d,p) level. It was found that the activation barrier exists before alkyl addition, the barrier heights were calculated to be 2.1-2.8 kcal mol-1. The electronic states of R-C60 complexes were discussed on the basis of the theoretical results.

  8. Oxygen radicals in experimental shock: effects of spin-trapping nitrones in ameliorating shock pathophysiology (see comments)

    SciTech Connect

    Novelli, G.P. )

    1992-04-01

    Circulatory shock is accepted as a consequence of an acute oxygen radical overgeneration. Spin-trapping nitrones inactivate free radicals by forming relatively stable adducts. Three spin-trapping nitrones (N-tert-phenyl-butyl-nitrone; alpha-4-pyridyl-oxide-N-tert-butyl-nitrone; 5-5,dimethyl,1,pyrroline-N-oxide) were tested regarding their role in the pathophysiology and evolution of circulatory shock in rats. A prospective, randomized, controlled trial of spin-trapping nitrones in rats experiencing three different models of circulatory shock was designed. In the first group, endotoxic, traumatic, and mesenteric artery occlusion shock (all 100% lethal in control experiments) was prevented by the ip administration of N-tert-phenyl-butyl-nitrone (150 mg/kg); alpha-4-pyridyl-oxide-N-tert-butyl-nitrone (100 mg/kg); or 5-5,dimethyl,1,pyrroline-N-oxide (100 mg/kg). However, the evolution of shock was unaffected by the same compounds when all three nitrones had been previously inactivated by exposure to light and air. In the second group, microcirculatory derangements that were provoked by endotoxin and were observed in the mesocecum of rats were completely prevented by pretreatment with either peritoneal administration of each of the three nitrones or by their topical application to the microscopic field. While the rats survived after systemic treatment, those rats receiving topical nitrones died from endotoxic shock. In the third group, cell-membrane stiffness (a sign of peroxidative damage) was measured by spin-probes and electron-spin resonance in mitochondrial and microsomal membranes. Cell membranes obtained from shocked rats were more rigid than those membranes of controls. However, the membranes obtained from rats that were submitted to trauma or endotoxin after pretreatment with N-tert-phenyl-butyl-nitrone had normal stiffness.

  9. Radically innovative steelmaking technologies

    NASA Astrophysics Data System (ADS)

    Szekely, Julian

    1980-09-01

    The steel industry is faced with serious problems caused by the increasing cost of energy, labor and capital and by tough overseas competition, employing new highly efficient process plants. The very high cost of capital and of capital equipment renders the construction of new green field site plants, exemplifying the best available technology economically unattractive. For this reason, over the long term the development radically innovative steelmaking technologies appears to be the only satisfactory resolution of this dilemma. The purpose of this article is to present a critical review of some of the radically innovative steelmaking technologies that have been proposed during the past few years and to develop the argument that these indeed do deserve serious consideration at the present time. It should be stressed, however, that these innovative technologies can be implemented only as part of a carefully conceived long range plan, which contains as a subset short term solutions, such as trigger prices improved investment credits, and so forth and intermediate term solutions, such as more extensive use of continuous casting, external desulfurization and selective modernization in general.

  10. Oligorotaxane Radicals under Orders

    PubMed Central

    2016-01-01

    A strategy for creating foldameric oligorotaxanes composed of only positively charged components is reported. Threadlike components—namely oligoviologens—in which different numbers of 4,4′-bipyridinium (BIPY2+) subunits are linked by p-xylylene bridges, are shown to be capable of being threaded by cyclobis(paraquat-p-phenylene) (CBPQT4+) rings following the introduction of radical-pairing interactions under reducing conditions. UV/vis/NIR spectroscopic and electrochemical investigations suggest that the reduced oligopseudorotaxanes fold into highly ordered secondary structures as a result of the formation of BIPY•+ radical cation pairs. Furthermore, by installing bulky stoppers at each end of the oligopseudorotaxanes by means of Cu-free alkyne–azide cycloadditions, their analogous oligorotaxanes, which retain the same stoichiometries as their progenitors, can be prepared. Solution-state studies of the oligorotaxanes indicate that their mechanically interlocked structures lead to the enforced interactions between the dumbbell and ring components, allowing them to fold (contract) in their reduced states and unfold (expand) in their fully oxidized states as a result of Coulombic repulsions. This electrochemically controlled reversible folding and unfolding process, during which the oligorotaxanes experience length contractions and expansions, is reminiscent of the mechanisms of actuation associated with muscle fibers. PMID:27163033

  11. Oligorotaxane Radicals under Orders.

    PubMed

    Wang, Yuping; Frasconi, Marco; Liu, Wei-Guang; Sun, Junling; Wu, Yilei; Nassar, Majed S; Botros, Youssry Y; Goddard, William A; Wasielewski, Michael R; Stoddart, J Fraser

    2016-02-24

    A strategy for creating foldameric oligorotaxanes composed of only positively charged components is reported. Threadlike components-namely oligoviologens-in which different numbers of 4,4'-bipyridinium (BIPY(2+)) subunits are linked by p-xylylene bridges, are shown to be capable of being threaded by cyclobis(paraquat-p-phenylene) (CBPQT(4+)) rings following the introduction of radical-pairing interactions under reducing conditions. UV/vis/NIR spectroscopic and electrochemical investigations suggest that the reduced oligopseudorotaxanes fold into highly ordered secondary structures as a result of the formation of BIPY(•+) radical cation pairs. Furthermore, by installing bulky stoppers at each end of the oligopseudorotaxanes by means of Cu-free alkyne-azide cycloadditions, their analogous oligorotaxanes, which retain the same stoichiometries as their progenitors, can be prepared. Solution-state studies of the oligorotaxanes indicate that their mechanically interlocked structures lead to the enforced interactions between the dumbbell and ring components, allowing them to fold (contract) in their reduced states and unfold (expand) in their fully oxidized states as a result of Coulombic repulsions. This electrochemically controlled reversible folding and unfolding process, during which the oligorotaxanes experience length contractions and expansions, is reminiscent of the mechanisms of actuation associated with muscle fibers. PMID:27163033

  12. Radical-radical interactions among oxidized guanine bases including guanine radical cation and dehydrogenated guanine radicals.

    PubMed

    Zhao, Jing; Wang, Mei; Yang, Hongfang; Zhang, Meng; Liu, Ping; Bu, Yuxiang

    2013-09-19

    We present here a theoretical investigation of the structural and electronic properties of di-ionized GG base pairs (G(•+)G(•+),G(-H1)(•)G(•+), and G(-H1)(•)G(-H1)(•)) consisting of the guanine cation radical (G(•+)) and/or dehydrogenated guanine radical (G(-H1)(•)) using density functional theory calculations. Different coupling modes (Watson-Crick/WC, Hoogsteen/Hoog, and minor groove/min hydrogen bonding, and π-π stacking modes) are considered. We infer that a series of G(•+)G(•+) complexes can be formed by the high-energy radiation. On the basis of density functional theory and complete active space self-consistent (CASSCF) calculations, we reveal that in the H-bonded and N-N cross-linked modes, (G(•+)G(•+))WC, (G(-H1)(•)G(-H1)(•))WC, (G(-H1)(•)G(-H1)(•))minI, and (G(-H1)(•)G(-H1)(•))minIII have the triplet ground states; (G(•+)G(•+))HoogI, (G(-H1)(•)G(•+))WC, (G(-H1)(•)G(•+))HoogI, (G(-H1)(•)G(•+))minI, (G(-H1)(•)G(•+))minII, and (G(-H1)(•)G(-H1)(•))minII possess open-shell broken-symmetry diradical-characterized singlet ground states; and (G(•+)G(•+))HoogII, (G(•+)G(•+))minI, (G(•+)G(•+))minII, (G(•+)G(•+))minIII, (G(•+)G(•+))HoHo, (G(-H1)(•)G(•+))minIII, (G(-H1)(•)G(•+))HoHo, and (G(-H1)(•)G(-H1)(•))HoHo are the closed-shell systems. For these H-bonded diradical complexes, the magnetic interactions are weak, especially in the diradical G(•+)G(•+) series and G(-H1)(•)G(-H1)(•) series. The magnetic coupling interactions of the diradical systems are controlled by intermolecular interactions (H-bond, electrostatic repulsion, and radical coupling). The radical-radical interaction in the π-π stacked di-ionized GG base pairs ((G(•+)G(•+))ππ, (G(-H1)(•)G(•+))ππ, and (G(-H1)(•)G(-H1)(•))ππ) are also considered, and the magnetic coupling interactions in these π-π stacked base pairs are large. This is the first theoretical prediction that some di

  13. N-Butyl acrylate polymer composition for solar cell encapsulation and method

    NASA Technical Reports Server (NTRS)

    Gupta, Amitava (Inventor); Ingham, John D. (Inventor); Yavrouian, Andre H. (Inventor)

    1983-01-01

    A polymer syrup for encapsulating solar cell assemblies. The syrup includes uncrosslinked poly(n-butyl)acrylate dissolved in n-butyl acrylate monomer. Preparation of the poly(n-butyl)acrylate and preparation of the polymer syrup is disclosed. Methods for applying the polymer syrup to solar cell assemblies as an encapsulating pottant are described. Also included is a method for solar cell construction utilizing the polymer syrup as a dual purpose adhesive and encapsulating material.

  14. Enantioselective degradation and chiral stability of the herbicide fluazifop-butyl in soil and water.

    PubMed

    Qi, Yanli; Liu, Donghui; Luo, Mai; Jing, Xu; Wang, Peng; Zhou, Zhiqiang

    2016-03-01

    The stereoselective degradation and transformation of the enantiomers of the herbicide fluazifop-butyl in soil and water were studied to investigate the environmental behavior and chiral stability of the optical pure product. Its main chiral metabolite fluazifop was also monitored. LC/MS/MS with Chiralpak IC chiral column was used to separate the enantiomers of fluazifop-butyl and fluazifop. Validated enantioselective residue analysis methods were established with recoveries ranging from 77.1 to 115.4% and RSDs from 0.85 to 8.9% for the enantiomers. It was found the dissipation of fluazifop-butyl was rapid in the three studied soils (Beijing, Harbin and Anhui soil), and the degradation half-lives of the enantiomers ranged from 0.136 to 2.7 d. Enantioselective degradations were found in two soils. In Beijing soil, R-fluazifop-butyl was preferentially degraded leading to relative enrichment of S-enantiomer, but in Anhui soil, S-fluazifop-butyl dissipated faster. There was no conversion of the R-fluazifop-butyl into S-fluazifop-butyl or vice versa in the soils. The formation of fluazifop in the soils was rapidly accompanied with the fast degradation of fluazifop-butyl, and the enantioselectivity and the transformation of S-fluazifop to R-fluazifop were found. The degradation of fluazifop-butyl in water was also quick, with half-lives of the enantiomers ranging from 0.34 to 2.52 d, and there was no significant enantioselectivity of the degradation of fluazifop-butyl and the formation of fluazifop. The effects of pH on the degradation showed fluazifop-butyl enantiomers degraded faster in alkaline conditions. This study showed an evidence of enantioselective behavior and enantiomerization of the chiral herbicide fluazifop-butyl. PMID:26735732

  15. Oxygen radicals and renal diseases.

    PubMed

    Klahr, S

    1997-01-01

    Reactive oxygen metabolites (superoxide, hydrogen peroxide, hydroxyl radical, and hypochlorous acid) are important mediators of renal damage in acute renal failure and glomerular and tubulointerstitial diseases. The role of these oxygen metabolites in the above entities is discussed, and the effects of antioxidants and scavengers of O2 radicals are considered. The role of oxygen radicals in the regulation of gene transcription is also considered. PMID:9387104

  16. Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch.

    PubMed

    Wokadala, Obiro Cuthbert; Emmambux, Naushad Mohammad; Ray, Suprakas Sinha

    2014-11-01

    In this study, waxy and high amylose starches were modified through butyl-etherification to facilitate compatibility with polylactide (PLA). Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy and wettability tests showed that hydrophobic butyl-etherified waxy and high amylose starches were obtained with degree of substitution values of 2.0 and 2.1, respectively. Differential scanning calorimetry, tensile testing, and scanning electron microscopy (SEM) demonstrated improved PLA/starch compatibility for both waxy and high amylose starch after butyl-etherification. The PLA/butyl-etherified waxy and high amylose starch composite films had higher tensile strength and elongation at break compared to PLA/non-butyl-etherified composite films. The morphological study using SEM showed that PLA/butyl-etherified waxy starch composites had a more homogenous microstructure compared to PLA/butyl-etherified high amylose starch composites. Thermogravimetric analysis showed that PLA/starch composite thermal stability decreased with starch butyl-etherification for both waxy and high amylose starches. This study mainly demonstrates that PLA/starch compatibility can be improved through starch butyl-etherification. PMID:25129738

  17. Free radical propulsion concept

    NASA Technical Reports Server (NTRS)

    Hawkins, C. E.; Nakanishi, S.

    1981-01-01

    A free radical propulsion concept utilizing the recombination energy of dissociated low molecular weight gases to produce thrust was examined. The concept offered promise of a propulsion system operating at a theoretical impulse, with hydrogen, as high as 2200 seconds at high thrust to power ratio, thus filling the gas existing between chemical and electrostatic propulsion capabilities. Microwave energy used to dissociate a continuously flowing gas was transferred to the propellant via three body recombination for conversion to propellant kinetic energy. Power absorption by the microwave plasma discharge was in excess of 90 percent over a broad range of pressures. Gas temperatures inferred from gas dynamic equations showed much higher temperatures from microwave heating than from electrothermal heating. Spectroscopic analysis appeared to corroborate the inferred temperatures of one of the gases tested.

  18. Radicals in Berkeley?

    PubMed Central

    Linn, Stuart

    2015-01-01

    In a previous autobiographical sketch for DNA Repair (Linn, S. (2012) Life in the serendipitous lane: excitement and gratification in studying DNA repair. DNA Repair 11, 595–605), I wrote about my involvement in research on mechanisms of DNA repair. In this Reflections, I look back at how I became interested in free radical chemistry and biology and outline some of our bizarre (at the time) observations. Of course, these studies could never have succeeded without the exceptional aid of my mentors: my teachers; the undergraduate and graduate students, postdoctoral fellows, and senior lab visitors in my laboratory; and my faculty and staff colleagues here at Berkeley. I am so indebted to each and every one of these individuals for their efforts to overcome my ignorance and set me on the straight and narrow path to success in research. I regret that I cannot mention and thank each of these mentors individually. PMID:25713083

  19. Kinetics of the degradation of n-butyl benzyl phthalate using O₃/UV, direct photolysis, direct ozonation and UV effects.

    PubMed

    Lovato, María E; Gilliard, María B; Cassano, Alberto E; Martín, Carlos A

    2015-01-01

    The aim of this work is to study the degradation kinetics of the endocrine disruptor benzyl butyl phthalate using ozone and UV radiation. The model comprises four parallel subsystems that are identified and isolated: (1) direct photolysis, (2) direct ozonation in the absence of hydroxyl radicals, (3) complete ozonation (direct + indirect oxidation), and (4) ozone + UV. To determine the nature of ozone attacks and the influence of ·OH radicals on O3 activity, two sets of experiments were performed: (i) conventional ozonation and (ii) the same ozonation experiments in the presence of tert-butanol as radical scavenger, where only the reactions involving molecular ozone are present. The explored variables were (i) ozone concentration, (ii) incident radiation rate at the reactor windows, (iii) reaction pH, and (iv) the presence of radical scavengers. Major intermediates of BBP degradation were identified. Degradation kinetics was correctly modeled by a pseudo-second-order kinetic model based on the sum of all the effects occurring during the treatment. The corresponding kinetic constants were obtained, and the relative contributions of each of the considered subsystems were evaluated. PMID:24687792

  20. Radical Chemistry and Cytotoxicity of Bioreductive 3-Substituted Quinoxaline Di-N-Oxides.

    PubMed

    Anderson, Robert F; Yadav, Pooja; Shinde, Sujata S; Hong, Cho R; Pullen, Susan M; Reynisson, Jóhannes; Wilson, William R; Hay, Michael P

    2016-08-15

    The radical chemistry and cytotoxicity of a series of quinoxaline di-N-oxide (QDO) compounds has been investigated to explore the mechanism of action of this class of bioreductive drugs. A series of water-soluble 3-trifluoromethyl (4-10), 3-phenyl (11-19), and 3-methyl (20-21) substituted QDO compounds were designed to span a range of electron affinities consistent with bioreduction. The stoichiometry of loss of QDOs by steady-state radiolysis of anaerobic aqueous formate buffer indicated that one-electron reduction of QDOs generates radicals able to initiate chain reactions by oxidation of formate. The 3-trifluoromethyl analogues exhibited long chain reactions consistent with the release of the HO(•), as identified in EPR spin trapping experiments. Several carbon-centered radical intermediates, produced by anaerobic incubation of the QDO compounds with N-terminal truncated cytochrome P450 reductase (POR), were characterized using N-tert-butyl-α-phenylnitrone (PBN) and 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) spin traps and were observed by EPR. Experimental data were well simulated for the production of strongly oxidizing radicals, capable of H atom abstraction from methyl groups. The kinetics of formation and decay of the radicals produced following one-electron reduction of the parent compounds, both in oxic and anoxic solutions, were determined using pulse radiolysis. Back oxidation of the initially formed radical anions by molecular oxygen did not compete effectively with the breakdown of the radical anions to form oxidizing radicals. The QDO compounds displayed low hypoxic selectivity when tested against oxic and hypoxic cancer cell lines in vitro. The results from this study form a kinetic description and explanation of the low hypoxia-selective cytotoxicity of QDOs against cancer cells compared to the related benzotriazine 1,4-dioxide (BTO) class of compounds. PMID:27380897

  1. OKN-007 decreases free radical levels in a preclinical F98 rat glioma model.

    PubMed

    Coutinho de Souza, Patricia; Smith, Nataliya; Atolagbe, Oluwatomisin; Ziegler, Jadith; Njoku, Charity; Lerner, Megan; Ehrenshaft, Marilyn; Mason, Ronald P; Meek, Bill; Plafker, Scott M; Saunders, Debra; Mamedova, Nadezda; Towner, Rheal A

    2015-10-01

    Free radicals are associated with glioma tumors. Here, we report on the ability of an anticancer nitrone compound, OKN-007 [Oklahoma Nitrone 007; a disulfonyl derivative of α-phenyl-tert-butyl nitrone (PBN)] to decrease free radical levels in F98 rat gliomas using combined molecular magnetic resonance imaging (mMRI) and immunospin-trapping (IST) methodologies. Free radicals are trapped with the spin-trapping agent, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), to form DMPO macromolecule radical adducts, and then further tagged by immunospin trapping by an antibody against DMPO adducts. In this study, we combined mMRI with a biotin-Gd-DTPA-albumin-based contrast agent for signal detection with the specificity of an antibody for DMPO nitrone adducts (anti-DMPO probe), to detect in vivo free radicals in OKN-007-treated rat F98 gliomas. OKN-007 was found to significantly decrease (P < 0.05) free radical levels detected with an anti-DMPO probe in treated animals compared to untreated rats. Immunoelectron microscopy was used with gold-labeled antibiotin to detect the anti-DMPO probe within the plasma membrane of F98 tumor cells from rats administered anti-DMPO in vivo. OKN-007 was also found to decrease nuclear factor erythroid 2-related factor 2, inducible nitric oxide synthase, 3-nitrotyrosine, and malondialdehyde in ex vivo F98 glioma tissues via immunohistochemistry, as well as decrease 3-nitrotyrosine and malondialdehyde adducts in vitro in F98 cells via ELISA. The results indicate that OKN-007 effectively decreases free radicals associated with glioma tumor growth. Furthermore, this method can potentially be applied toward other types of cancers for the in vivo detection of macromolecular free radicals and the assessment of antioxidants. PMID:26119786

  2. Gas-Phase Reactivity of Protonated 2-, 3-, and 4-Dehydropyridine Radicals Toward Organic Reagents

    NASA Astrophysics Data System (ADS)

    Adeuya, Anthony; Price, Jason M.; Jankiewicz, Bartłomiej J.; Nash, John J.; Kenttämaa, Hilkka I.

    2009-11-01

    To explore the effects of the electronic nature of charged phenyl radicals on their reactivity, reactions of the three distonic isomers of n-dehydropyridinium cation (n = 2, 3, or 4) have been investigated in the gas phase by using Fourier-transform ion cyclotron resonance mass spectrometry. All three isomers react with cyclohexane, methanol, ethanol, and 1-pentanol exclusively via hydrogen atom abstraction and with allyl iodide mainly via iodine atom abstraction, with a reaction efficiency ordering of 2 > 3 > 4. The observed reactivity ordering correlates well with the calculated vertical electron affinities of the charged radicals (i.e., the higher the vertical electron affinity, the faster the reaction). Charged radicals 2 and 3 also react with tetrahydrofuran exclusively via hydrogen atom abstraction, but the reaction of 4 with tetrahydrofuran yields products arising from nonradical reactivity. The unusual reactivity of 4 is likely to result from the contribution of an ionized carbene-type resonance structure that facilitates nucleophilic addition to the most electrophilic carbon atom (C-4) in this charged radical. The influence of such a resonance structure on the reactivity of 2 is not obvious, and this may be due to stabilizing hydrogen-bonding interactions in the transition states for this molecule. Charged radicals 2 and 3 abstract a hydrogen atom from the substituent in both phenol and toluene, but 4 abstracts a hydrogen atom from the phenyl ring, a reaction that is unprecedented for phenyl radicals. Charged radical 4 reacts with tert-butyl isocyanide mainly by hydrogen cyanide (HCN) abstraction, whereas CN abstraction is the principal reaction for 2 and 3. The different reactivity observed for 4 (as compared to 2 and 3) is likely to result from different charge and spin distributions of the reaction intermediates for these charged radicals.

  3. Gas-phase reactivity of protonated 2-, 3-, and 4-dehydropyridine radicals toward organic reagents.

    PubMed

    Adeuya, Anthony; Price, Jason M; Jankiewicz, Bartłomiej J; Nash, John J; Kenttämaa, Hilkka I

    2009-12-10

    To explore the effects of the electronic nature of charged phenyl radicals on their reactivity, reactions of the three distonic isomers of n-dehydropyridinium cation (n = 2, 3, or 4) have been investigated in the gas phase by using Fourier-transform ion cyclotron resonance mass spectrometry. All three isomers react with cyclohexane, methanol, ethanol, and 1-pentanol exclusively via hydrogen atom abstraction and with allyl iodide mainly via iodine atom abstraction, with a reaction efficiency ordering of 2 > 3 > 4. The observed reactivity ordering correlates well with the calculated vertical electron affinities of the charged radicals (i.e., the higher the vertical electron affinity, the faster the reaction). Charged radicals 2 and 3 also react with tetrahydrofuran exclusively via hydrogen atom abstraction, but the reaction of 4 with tetrahydrofuran yields products arising from nonradical reactivity. The unusual reactivity of 4 is likely to result from the contribution of an ionized carbene-type resonance structure that facilitates nucleophilic addition to the most electrophilic carbon atom (C-4) in this charged radical. The influence of such a resonance structure on the reactivity of 2 is not obvious, and this may be due to stabilizing hydrogen-bonding interactions in the transition states for this molecule. Charged radicals 2 and 3 abstract a hydrogen atom from the substituent in both phenol and toluene, but 4 abstracts a hydrogen atom from the phenyl ring, a reaction that is unprecedented for phenyl radicals. Charged radical 4 reacts with tert-butyl isocyanide mainly by hydrogen cyanide (HCN) abstraction, whereas CN abstraction is the principal reaction for 2 and 3. The different reactivity observed for 4 (as compared to 2 and 3) is likely to result from different charge and spin distributions of the reaction intermediates for these charged radicals. PMID:19902945

  4. Kinetics and mechanism of the thermal dissociation of O,O'-bis(1,3,5-TRI-tert-butyl-4-oxo-2,5-cyclo-hexadienyl)-p-benzoquinone dioxime in solution

    SciTech Connect

    Khizhnyi, V.A.; Danilova, T.A.; Goloverda, G.Z.; Dobronravova, Z.A.

    1987-09-20

    The kinetics and mechanism of the thermal dissociation of O,O'-bis(1,3,5-tri-tert-butyl-4-oxo-2,5-cyclohexadienyl)-p-benzoquinone dioxime (quinol ether) in solutions in nonpolar solvents were investigated. The dissociation of the quinol ether is reversible two-stage process and involves the formation of an intermediate radical. In relation to the reaction conditions (initial concentration, temperature) the dissociation rate of the quinol ether obeys the kinetic equations omega = k/sub eff/ x c/sup 1/2/ or omega = k/sub 1/c. The change in the reaction order is due to the ratio of the rates of dissociation of the intermediate radical and of its reaction with the phenoxyl radical. The ESR spectra were recorded on a Varian E-9 radiospectrometer with high-frequency modulation of 100 kHz.

  5. Eosinophil peroxidase-dependent hydroxyl radical generation by human eosinophils.

    PubMed

    McCormick, M L; Roeder, T L; Railsback, M A; Britigan, B E

    1994-11-11

    Eosinophil production of superoxide (O2-.) and hydrogen peroxide (H2O2) is important in host defense. The present study assessed the potential of eosinophils to generate another potent cytotoxic species, the hydroxyl radical (.OH). .OH formation by phorbol myristate acetate (PMA)-stimulated eosinophils was demonstrated using an alpha-(4-pyridyl-1-oxide)-N-tert-butyl nitrone/ethanol spin trapping system. Additionally, .OH was spin trapped following the addition of purified eosinophil peroxidase (EPO) to a cell-free O2-./H2O2 generating systems. Effects of superoxide dismutase, catalase, azide, aminotriazole, chloride-depleted buffer, and extensive metal chelation were consistent with .OH formation via the reaction of O2-. and EPO-generated hypohalous acid. Under chloride-depleted conditions, physiologic concentrations of Br- increased .OH formation by both PMA-stimulated eosinophils and the cell-free EPO system. Physiologic concentrations of SCN-, however, did not increase .OH formation, and in the presence of both Br- and SCN-, .OH formation was similar to SCN- only. Eosinophils appear to form .OH via an EPO-dependent mechanism, the magnitude of which varies with the availability of various EPO substrates. Given the highly reactive nature of this radical and the ability of EPO to adhere to cell membranes, even small amounts of .OH formed at such sites could contribute to eosinophil-mediated cytotoxicity. PMID:7961724

  6. Radical scavenging activity and cytotoxicity of ferulic acid.

    PubMed

    Ogiwara, Takako; Satoh, Kazue; Kadoma, Yoshinori; Murakami, Yukio; Unten, Senwa; Atsumi, Toshiko; Sakagami, Hiroshi; Fujisawa, Seiichiro

    2002-01-01

    Ferulic acid and eugenol were examined for their superoxide (O2-), hydroxyl radical (.OH) and nitric oxide (NO)-scavenging ability, using ESR spectroscopy with spin trap agents DMPO and carboxy-PTIO/NOC-7. Ferulic acid more efficiently scavenged .OH and NO than eugenol. The O2- scavenging activity of ferulic acid was comparable with that of eugenol. Ferulic acid significantly reduced the NO production by lipopolysaccharide (LPS)-stimulated mouse macrophage-like cells (Raw 264.7 cells) compared to eugenol. The cytotoxic activity of ferulic acid against Raw 264.7 cells was comparable with that against human submandibular gland carcinoma (HSG) cells and the cytotoxicity of ferulic acid was about 10-fold smaller than that of eugenol. The stoichiometric factor (n) (number of moles of peroxy radical trapped by moles of the relevant phenol) of ferulic acid and eugenol was investigated, using the induction period methods of the methyl methacrylate polymerization system. The n-value of ferulic acid (1.5) was higher than that of eugenol (1.0) and was similar to that of 2, 6-di-t-butyl-4-methylphenol (BHT). Ferulic acid as well as eugenol may produce a dimer during the induction period due to an n-value less than 2. These results suggested that ferulic acid may be useful for preventing cell damage perhaps caused by O2-, and in particular by .OH and NO, in living systems. PMID:12529986

  7. Preliminary studies on the activities of spin traps as scavengers of free radicals

    SciTech Connect

    Ogunbiyi, P.O.; Washington, I. )

    1991-03-15

    The spin trapping agents, N-t-Butyl-a-phenyl-nitrone (PBN) and 5,5-Dimethyl-1-pyroline-N-oxide (DMPO) have been used to investigate the primary free radicals involved in various tissue injuries. Also, PBN and DMPO can provide some protection against free radical-induced lung injuries. However, their therapeutic potentials as free radical scavengers remained unexamined. In this study, the effects of PBN and DMPO on guinea pig lung microsomal lipid peroxidation were investigated using thiobarbituric acid-reactive substance assay. Superoxide anions (O{sup 2}{minus}) were generated in an enzymatic and a non-enzymatic system. PBN and DMPO each, significantly inhibited NADPH-stimulated lipid peroxidation irrespective of the presence of Fe{sup 3+}. Cytochrome c reduction by the enzymatic and nitro blue tetrazolium reduction by the non-enzymatic O{sup 2}{minus} generating systems were both inhibited by PBN and DMPO as well as superoxide dismutase and dimethyl sulfoxide when compared with the controls. The spin traps exhibited lower potencies in these systems than the reference compounds, SOD and DMSO, which are well established as O{sup 2}{minus} and hydroxyl radical scavengers respectively. Results demonstrate the free radical scavenging properties of PBN and DMPO. This is an indication of their possible usefulness as antioxidants.

  8. Antisickling activity of butyl stearate isolated from Ocimum basilicum (Lamiaceae)

    PubMed Central

    Tshilanda, Dorothée Dinangayi; Mpiana, Pius Tshimankinda; Onyamboko, Damase Nguwo Vele; Mbala, Blaise Mavinga; Ngbolua, Koto-te-Nyiwa; Tshibangu, Damien Sha Tshibey; Bokolo, Matthieu Kokengo; Taba, Kalulu Muzele; Kasonga, Teddy Kabeya

    2014-01-01

    Objective To perform phytochemical analyses on the leaves of Ocimum basilicum L. (O. basilicum), to elucidate the structure of isolate and then perform the antisickling activity on the crude extract and on the isolate. Methods The Emmel test performed on the acidified methanolic extract of this plant was used to evaluate the antisickling activity. The structure characterization of the active compound was performed using chromatographic techniques for the separation and the spectroscopic ones for structure elucidation (1H-NMR, 13C-NMR, COSY, HMBC). Results The chemical screening on the crude extract revealed the presence of polyphenols (flavonoids, anthocyanins, leucoanthocyanins, tannins, quinones) alkaloids, saponins, triterpenoids and steroids. The obtained extract after evaporation yielded 34.50 g (11.5%) out of 300 g of powdered leaves of O. basilicum. The acidified methanolic extract and butyl stearate showed an interesting antisickling activity. Conclusions The acidified methanolic extract and butyl stearate from O. basilicum displayed a good antisickling activity. To the best of our knowledge, this is the first time to report the antisickling activity of this compound in this plant. The synthesized compound presented the same spectroscopic characteristics than the natural one and the antisickling activities of its derivatives are understudying. PMID:25182725

  9. The Rotational Spectrum of Tertiary-Butyl Alcohol

    NASA Astrophysics Data System (ADS)

    Cohen, E. A.; Drouin, B. J.; Valenzuela, E. A.; Woods, R. C.; Caminati, W.; Maris, A.; Melandri, S.

    2009-06-01

    Tertiary-butyl alcohol is a nearly spherical rotor for which the internal rotation axis of the t-butyl group is close to the c molecular axis in the ac plane. Methyl group torsional spittings are not observed in the ground state. Its 8 to 40 GHz rotational spectrum was reported at this meeting by Valenzuela and Woods in 1974 and in more detail in 1975. The parameters derived at that time from a fit to the E states with J,K≤ 20 have provided the basis for extending the measurements to > 500 GHz. The combined data set extends to J,K > 50 and is fit with the program SPFIT using a common set of parameters for both the A and E states. The general features of the spectrum and the fitting procedure will be described. The resulting molecular constants and their interpretation will be discussed. E.A. Valenzuela, and R. C. Woods, Abstract MF6, International Symposium on Molecular Spectroscopy, Columbus, OH, 1974 E.A. Valenzuela, and R. C. Woods, Abstract RG15, International Symposium on Molecular Spectroscopy, Columbus, OH, 1975 E.A. Valenzuela, Ph.D. Thesis, University of Wisconsin-Madison, 1975. H. M. Pickett, J. Mol. Spectrosc. 148 (1991) 271-377.

  10. REDUCTIVE ACTIVATION OF DIOXYGEN FOR DEGRADATION OF METHYL TERT-BUTYL ETHER BY BIFUNCTION

    EPA Science Inventory

    Bifunctional aluminum is prepared by sulfating aluminum metal with sulfuric acid. The use of bifunctional aluminum to degrade methyl tert-butyl ether (MTBE) in the presence of dioxygen has been examined using batch systems. Primary degradation products were tert-butyl alcohol, ...

  11. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  12. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  13. Primary quantum yields of ketyl radicals in photoreduction by amines. Abstraction of H from N

    SciTech Connect

    Inbar, S.; Linschitz, H.; Cohen, S.G.

    1980-02-13

    Results of laser flash photolysis studies of the primary reaction of benzophenone triplet with aliphatic amines in benzene solution are reported. Quantum yield of formation of benzophenone ketyl radical was 0.9 - 1.0. Quantum yields for reduction of ketone also were determined for various amines, and the effects of tert-butyl alcohol on radical formation was investigated. Data indicated that H is not abstracted from -CH/sub 3/ but is abstracted efficiently from -NH/sub 2/. The very high quantum yields observed with tertiary and secondary amines were thought to imply exciplex formation, but lower quantum yields with primary amines were conditionally attributed to higher ionization potentials. (BLM)

  14. Effect of various concentrations of butylated hydroxyanisole and butylated hydroxytoluene on freezing capacity of Turkman stallion sperm.

    PubMed

    Seifi-Jamadi, Afshin; Kohram, Hamid; Zareh-Shahne, Ahmad; Dehghanizadeh, Parvaneh; Ahmad, Ejaz

    2016-07-01

    The present study aimed to determine the effect of different concentrations of butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) on post-thaw stallion sperm quality. The ejaculates collected from four healthy mature Turkmen stallions were pooled and divided into eight aliquots. The samples were diluted with extenders containing different concentrations (0.5, 1 or 2mM/mL) of BHA or BHT. The positive control (PC) samples were diluted with extender containing 0.5% ethanol (v/v) whereas; the negative control (NC) samples were diluted with basic extender only. Semen samples were frozen according to a standard protocol. After thawing of samples, sperm motility, viability, membrane integrity, total abnormality and lipid peroxidation were assessed. The greatest (P<0.05) values for total sperm motility, viability and plasma membrane functionality and least values for malonedialdehyde (MDA) concentration were observed in samples supplemented either with 1mM BHT or 2mM BHA. However, the progressive motility was greater (P<0.05) only in samples treated with 2mM BHA. In conclusion, the use of 1mM BHT or 2mM BHA in extender improves the freezing capacity of stallion sperm by reducing oxidative stress during freeze-thaw process. PMID:27112036

  15. Levels of synthetic antioxidants (ethoxyquin, butylated hydroxytoluene and butylated hydroxyanisole) in fish feed and commercially farmed fish.

    PubMed

    Lundebye, A-K; Hove, H; Måge, A; Bohne, V J B; Hamre, K

    2010-12-01

    Several synthetic antioxidants are authorized for use as feed additives in the European Union. Ethoxyquin (EQ) and butylated hydroxytoluene (BHT) are generally added to fish meal and fish oil, respectively, to limit lipid oxidation. The study was conducted to examine the concentrations of EQ, BHT and butylated hydroxyanisole (BHA) in several commercially important species of farmed fish, namely Atlantic salmon, halibut and cod and rainbow trout, as well as concentrations in fish feed. The highest levels of BHT, EQ and BHA were found in farmed Atlantic salmon fillets, and were 7.60, 0.17 and 0.07 mg kg(-1), respectively. The lowest concentrations of the synthetic antioxidants found were in cod. The concentration of the oxidation product ethoxyquin dimer (EQDM) was more than ten-fold higher than the concentration of parent EQ in Atlantic salmon halibut and rainbow trout, whereas this dimer was not detected in cod fillets. The theoretical consumer exposure to the synthetic antioxidants EQ, BHA and BHT from the consumption of farmed fish was calculated. The contribution of EQ from a single portion (300 g) of skinned fillets of the different species of farmed fish would contribute at most 15% of the acceptable daily intake (ADI) for a 60 kg adult. The consumption of farmed fish would not contribute measurably to the intake of BHA; however, a 300 g portion of farmed Atlantic salmon would contribute up to 75% of the ADI for BHT. PMID:20931417

  16. Peroxy radical partitioning during the AMMA radical intercomparison exercise

    NASA Astrophysics Data System (ADS)

    Andrés-Hernández, M. D.; Stone, D.; Brookes, D. M.; Commane, R.; Reeves, C. E.; Huntrieser, H.; Heard, D. E.; Monks, P. S.; Burrows, J. P.; Schlager, H.; Kartal, D.; Evans, M. J.; Floquet, C. F. A.; Ingham, T.; Methven, J.; Parker, A. E.

    2010-11-01

    Peroxy radicals were measured onboard two scientific aircrafts during the AMMA (African Monsoon Multidisciplinary Analysis) campaign in summer 2006. This paper reports results from the flight on 16 August 2006 during which measurements of HO2 by laser induced fluorescence spectroscopy at low pressure (LIF-FAGE) and total peroxy radicals (RO2* = HO2+ΣRO2, R = organic chain) by two similar instruments based on the peroxy radical chemical amplification (PeRCA) technique were subject of a blind intercomparison. The German DLR-Falcon and the British FAAM-BAe-146 flew wing tip to wing tip for about 30 min making concurrent measurements on 2 horizontal level runs at 697 and 485 hPa over the same geographical area in Burkina Faso. A full set of supporting measurements comprising photolysis frequencies, and relevant trace gases like CO, NO, NO2, NOy, O3 and a wider range of VOCs were collected simultaneously. Results are discussed on the basis of the characteristics and limitations of the different instruments used. Generally, no data bias are identified and the RO2* data available agree quite reasonably within the instrumental errors. The [RO2*]/[HO2] ratios, which vary between 1:1 and 3:1, as well as the peroxy radical variability, concur with variations in photolysis rates and in other potential radical precursors. Model results provide additional information about dominant radical formation and loss processes.

  17. Peroxy radical partitioning during the AMMA radical intercomparison exercise

    NASA Astrophysics Data System (ADS)

    Andrés-Hernández, M. D.; Stone, D.; Brookes, D. M.; Commane, R.; Reeves, C. E.; Huntrieser, H.; Heard, D. E.; Monks, P. S.; Burrows, J. P.; Schlager, H.; Kartal, D.; Evans, M. J.; Floquet, C. F. A.; Ingham, T.; Methven, J.; Parker, A. E.

    2010-04-01

    Peroxy radicals were measured onboard two scientific aircrafts during the AMMA (African Monsoon Multidisciplinary Analysis) campaign in summer 2006. This paper reports results from the flight on 16 August 2006 during which measurements of HO2 by laser induced fluorescence spectroscopy at low pressure (LIF-FAGE) and total peroxy radicals (RO2*=HO2+ΣRO2, R= organic chain) by two similar instruments based on the peroxy radical chemical amplification (PerCA) technique were subject of a blind intercomparison. The German DLR-Falcon and the British FAAM-BAe-146 flew wing tip to wing tip for about 30 min making concurrent measurements on 2 horizontal level runs at 697 and 485 hPa over the same geographical area in Burkina Faso. A full set of supporting measurements comprising photolysis frequencies, and relevant trace gases like CO, NO, NO2, NOy, O3 and a wider range of VOCs were collected simultaneously. Results are discussed on the basis of the characteristics and limitations of the different instruments used. Generally, no data bias are identified and the RO2* data available agree quite reasonably within the instrumental errors. The [RO2*]/[HO2] ratios, which vary between 1:1 and 3:1, as well as the peroxy radical variability, concur with variations in photolysis rates and in other potential radical precursors. Model results provide additional information about dominant radical formation and loss processes.

  18. A silver bullet: elemental silver as an efficient reducing agent for atom transfer radical polymerization of acrylates.

    PubMed

    Williams, Valerie A; Ribelli, Thomas G; Chmielarz, Pawel; Park, Sangwoo; Matyjaszewski, Krzysztof

    2015-02-01

    Elemental silver was used as a reducing agent in the atom transfer radical polymerization (ATRP) of acrylates. Silver wire, in conjunction with a CuBr(2)/TPMA catalyst, enabled the controlled, rapid preparation of polyacrylates with dispersity values down to Đ = 1.03. The silver wire in these reactions was reused several times in sequential reactions without a decline in performance, and the amount of copper catalyst used was reduced to 10 ppm without a large decrease in control. A poly(n-butyl acrylate)-block-poly(tert-butyl acrylate) diblock copolymer was synthesized with a molecular weight of 91 400 and Đ = 1.04, demonstrating good retention of chain-end functionality and a high degree of livingness in this ATRP system. PMID:25599253

  19. School Finance-Radical Departure.

    ERIC Educational Resources Information Center

    Kimple, James

    1983-01-01

    It is proposed that New Jersey assume approximately 70 percent of the cost of its public schools. Several other proposals are presented, all a radical departure from current school funding practices. (BW)

  20. Free radical inactivation of pepsin

    NASA Astrophysics Data System (ADS)

    Josimović, Lj; Ruvarac, I.; Janković, I.; Jovanović, S. V.

    1994-06-01

    Alkylperoxy radicals containing one, two or three chlorine atoms, CO -2, O 2 - were reacted with pepsin in aqueous solutions. It was found that only Cl 3COO and CO -2 inactive pepsin, attacking preferentially the disulfide bridge. Transient spectra obtained upon completion of the Cl 3COO + pepsin reaction at pH 5 indicate that 20% of initially produced Cl 3COO radicals oxidizes tryptophan residues, and 40% disulfide bridges. The inactivation induced by the Cl 3COO radical increases at lower pH, and the maximal inactivation, Gin = 5.8, was observed at pH 1.5. The inactivation of pepsin by CO -2 radicals depends on the absorbed dose. The maximal inactivation, Gin = 4.5, was determined in the dose range from 38 to 53 Gy.

  1. Redox Properties of Free Radicals.

    ERIC Educational Resources Information Center

    Neta, P.

    1981-01-01

    Describes pulse radiolysis as a useful means in studing one-electron redox potentials. This method allows the production of radicals and the determination of their concentration and rates of reaction. (CS)

  2. Interactions between water and 1-butyl-1-methylpyrrolidinium ionic liquids

    SciTech Connect

    Fadeeva, Tatiana A.; DeVine, Jessalyn A.; Castner, Edward W.; Husson, Pascale; Costa Gomes, Margarida F.; Greenbaum, Steven G.

    2015-08-14

    We report experimental results on the diffusivity of water in two ionic liquids obtained using the pulsed-gradient spin-echo NMR method. Both ionic liquids have the same cation, 1-butyl-1-methylpyrrolidinium, but different trifluoromethyl-containing anions. One has a strongly hydrophobic anion, bis(trifluoromethylsulfonyl)amide, while the second has a hydrophilic anion, trifluoromethylsulfonate. Transport of water in these ionic liquids is much faster than would be predicted from hydrodynamic laws, indicating that the neutral water molecules experience a very different friction than the anions and cations at the molecular level. Temperature-dependent viscosities, conductivities, and densities are reported as a function of water concentration to further analyze the properties of the ionic liquid-water mixtures. These results on the properties of water in ionic liquids should be of interest to researchers in diverse areas ranging from separations, solubilizing biomass and energy technologies.

  3. Interactions between water and 1-butyl-1-methylpyrrolidinium ionic liquids.

    PubMed

    Fadeeva, Tatiana A; Husson, Pascale; DeVine, Jessalyn A; Costa Gomes, Margarida F; Greenbaum, Steven G; Castner, Edward W

    2015-08-14

    We report experimental results on the diffusivity of water in two ionic liquids obtained using the pulsed-gradient spin-echo NMR method. Both ionic liquids have the same cation, 1-butyl-1-methylpyrrolidinium, but different trifluoromethyl-containing anions. One has a strongly hydrophobic anion, bis(trifluoromethylsulfonyl)amide, while the second has a hydrophilic anion, trifluoromethylsulfonate. Transport of water in these ionic liquids is much faster than would be predicted from hydrodynamic laws, indicating that the neutral water molecules experience a very different friction than the anions and cations at the molecular level. Temperature-dependent viscosities, conductivities, and densities are reported as a function of water concentration to further analyze the properties of the ionic liquid-water mixtures. These results on the properties of water in ionic liquids should be of interest to researchers in diverse areas ranging from separations, solubilizing biomass and energy technologies. PMID:26277141

  4. Interactions between water and 1-butyl-1-methylpyrrolidinium ionic liquids

    NASA Astrophysics Data System (ADS)

    Fadeeva, Tatiana A.; Husson, Pascale; DeVine, Jessalyn A.; Costa Gomes, Margarida F.; Greenbaum, Steven G.; Castner, Edward W.

    2015-08-01

    We report experimental results on the diffusivity of water in two ionic liquids obtained using the pulsed-gradient spin-echo NMR method. Both ionic liquids have the same cation, 1-butyl-1-methylpyrrolidinium, but different trifluoromethyl-containing anions. One has a strongly hydrophobic anion, bis(trifluoromethylsulfonyl)amide, while the second has a hydrophilic anion, trifluoromethylsulfonate. Transport of water in these ionic liquids is much faster than would be predicted from hydrodynamic laws, indicating that the neutral water molecules experience a very different friction than the anions and cations at the molecular level. Temperature-dependent viscosities, conductivities, and densities are reported as a function of water concentration to further analyze the properties of the ionic liquid-water mixtures. These results on the properties of water in ionic liquids should be of interest to researchers in diverse areas ranging from separations, solubilizing biomass and energy technologies.

  5. Endocrine disrupting effects of butylated hydroxyanisole (BHA - E320)

    PubMed Central

    POP, ANCA; KISS, BELA; LOGHIN, FELICIA

    2013-01-01

    Butylated hydroxyanisole (BHA) is extensively used as antioxidant in foods, food packaging, cosmetics and pharmaceuticals. In the past years, it raised concerns regarding its possible endocrine disrupting effect. The existing in vitro studies indicate that BHA presents a weak estrogenic effect and also anti-androgenic properties while an in vivo study found it to have antiestrogenic properties. There is no sufficient data available at the moment to draw a conclusion regarding the safety of BHA when referring to its endocrine disrupting effect. Since a fraction of the population might be exposed to doses superior to the acceptable daily intake (ADI), it is important to gather more in vitro and in vivo data concerning the potential effects that BHA might have alone, but also in mixtures with natural hormones or other endocrine disrupting compounds. PMID:26527908

  6. [Alcohol and free oxygen radicals].

    PubMed

    Mira, M L; Manso, C F

    1993-05-01

    Oxygen free radicals may be generated during ethanol metabolization by cytochrome P450, or due to the formation of xanthine oxidase by ethanol effect on xanthine dehydrogenase. After transformation into acetaldehyde, the metabolism of this compound by xanthine oxidase or by aldehyde oxidase also generates oxygen radicals. We present the hypothesis of a vicious cycle during ethanol metabolization by aldehyde oxidase, which would amplify the process and be responsible for an increased degree of lipid peroxidation. PMID:8393265

  7. Hydrogen Atom Reactivity toward Aqueous tert-Butyl Alcohol

    SciTech Connect

    Lymar S. V.; Schwarz, H.A.

    2012-02-09

    Through a combination of pulse radiolysis, purification, and analysis techniques, the rate constant for the H + (CH{sub 3}){sub 3}COH {yields} H{sub 2} + {sm_bullet}CH{sub 2}C(CH{sub 3}){sub 2}OH reaction in aqueous solution is definitively determined to be (1.0 {+-} 0.15) x 10{sup 5} M{sup -1} s{sup -1}, which is about half of the tabulated number and 10 times lower than the more recently suggested revision. Our value fits on the Polanyi-type, rate-enthalpy linear correlation ln(k/n) = (0.80 {+-} 0.05){Delta}H + (3.2 {+-} 0.8) that is found for the analogous reactions of other aqueous aliphatic alcohols with n equivalent abstractable H atoms. The existence of such a correlation and its large slope are interpreted as an indication of the mechanistic similarity of the H atom abstraction from {alpha}- and {beta}-carbon atoms in alcohols occurring through the late, product-like transition state. tert-Butyl alcohol is commonly contaminated by much more reactive secondary and primary alcohols (2-propanol, 2-butanol, ethanol, and methanol), whose content can be sufficient for nearly quantitative scavenging of the H atoms, skewing the H atom reactivity pattern, and explaining the disparity of the literature data on the H + (CH{sub 3}){sub 3}COH rate constant. The ubiquitous use of tert-butyl alcohol in pulse radiolysis for investigating H atom reactivity and the results of this work suggest that many other previously reported rate constants for the H atom, particularly the smaller ones, may be in jeopardy.

  8. A Combined Experimental and Theoretical Approach to the Photogeneration of 5,6-Dihydropyrimidin-5-yl Radicals in Nonaqueous Media.

    PubMed

    Aparici-Espert, Isabel; Francés-Monerris, Antonio; Rodríguez-Muñiz, Gemma M; Roca-Sanjuán, Daniel; Lhiaubet-Vallet, Virginie; Miranda, Miguel A

    2016-05-20

    The chemical fate of radical intermediates is relevant to understand the biological effects of radiation and to explain formation of DNA lesions. A direct approach to selectively generate the putative reactive intermediates is based on the irradiation of photolabile precursors. But, to date, radical formation and reactivity have only been studied in aqueous media, which do not completely mimic the microenvironment provided by the DNA structure and its complexes with proteins. Thus, it is also important to evaluate the photogeneration of nucleoside-based radicals in nonaqueous media. The attention here is focused on the independent generation of 5,6-dihydropyrimidin-5-yl radicals in organic solvent through the synthesis of new lipophilic tert-butyl ketone precursors. Formation of 5,6-dihydro-2'-deoxyuridin-5-yl and 5,6-dihydrothymidin-5-yl radicals has first been confirmed by using a new nitroxide-derived profluorescent radical trap. Further evidence has been obtained by nanosecond laser flash photolysis through detection of long-lived transients. Finally, the experimental data are corroborated by multiconfigurational ab initio CASPT2//CASSCF methodology. PMID:27088245

  9. Genotoxicity of di-butyl-phthalate and di-iso-butyl-phthalate in human lymphocytes and mucosal cells.

    PubMed

    Kleinsasser, N H; Wallner, B C; Kastenbauer, E R; Weissacher, H; Harréus, U A

    2001-01-01

    The genotoxicity of phthalates, widely used plasticizers, has been shown previously for di-butyl-phthalate (DBP) and di-iso-butyl-phthalate (DBP) in human mucosal cells of the upper aerodigestive tract in a previous study using the Comet assay. Furthermore, higher genotoxic sensitivities of patients with squamous cell carcinomas of either the larynx or the oropharynx compared to non-tumor patients were described. Other authors have demonstrated DNA damage by a different phthalate in human lymphocytes. It was the aim of the present study to determine whether there is a correlation between the genotoxic sensitivities to DBP and its isomer DiBP in either mucosal cells or lymphocytes. The single-cell microgel electrophoresis assay (Comet assay) was applied to detect DNA strand breaks in human epithelial cells of the upper aerodigestive tract (n=132 specimens). Human mucosa was harvested from the oropharynx in non-tumor patients and patients with squamous cell carcinomas of the oropharynx. Laryngeal mucosa of patients with laryngeal squamous cell carcinomas was harvested as well. Peripheral lymphocytes (n=49 specimens) were separated from peripheral blood. Xenobiotics investigated were DBP, DiBP, and N'methyl-N'-nitro-N-nitrosoguanidine (MNNG) as positive control, respectively. For statistical analysis, the SPSS correlation analysis according to Pearson and the Wilcoxon test were performed. Genotoxicity was found for DBP and DiBP in epithelial cells and lymphocytes (P<0.001). MNNG caused severe DNA damage. In analyzing DBP and DiBP results, genotoxic impacts in mucosal cells showed an intermediate correlation (r=0.570). Correlation in lymphocytes was the same (r=0.570). Phthalates have been investigated as a potential health hazard for a variety of reasons, including possible xenoestrogenic impact, peroxisome proliferation, and membrane destabilization. The present investigation suggests a correlated DNA-damaging impact of DBP and DiBP in human mucosal cells and in

  10. Hepatoprotective Activity of Water Extracts from Chaga Medicinal Mushroom, Inonotus obliquus (Higher Basidiomycetes) Against Tert-Butyl Hydroperoxide-Induced Oxidative Liver Injury in Primary Cultured Rat Hepatocytes.

    PubMed

    Hong, Ki Bae; Noh, Dong Ouk; Park, Yooheon; Suh, Hyung Joo

    2015-01-01

    We examined the hepatoprotective activity of Inonotus obliquus water extract (IO-W) against tert-butyl hydroperoxide (t-BHP)-induced oxidative liver injury in the primary cultured rat hepatocyte. The 50% radical scavenging concentrations (SC50s) of IO-W for radical-scavenging activity against 2,2'-azino-bis-(3-ethylbenzothi- azoline-6-sulfonic acid) (ABTS) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) were 5.19 mg/mL and 0.39 mg/mL, respectively. IO-W pretreatment to the primary cultured hepatocytes significantly (p<0.05) protected the cells from t-BHP-induced cytotoxic injury even at a low concentration of IO-W (10 µg/mL). The cellular leakage of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH), as well as malondialdehyde (MDA) formation caused by t-BHP were significantly (p<0.05) suppressed by IO-W pretreatment (>100 µg/ mL). In conclusion, this study demonstrates that IO-W exhibited hepatoprotective activity against t-BHP-induced oxidative liver injury in the primary cultured hepatocyte probably via its abilities of quenching free radicals, inhibiting the leakage of ALT, AST, and LDH, and decreasing MDA formation. PMID:26853962

  11. Rational Design and Synthesis of New, High Efficiency, Multipotent Schiff Base-1,2,4-triazole Antioxidants Bearing Butylated Hydroxytoluene Moieties.

    PubMed

    Yehye, Wageeh A; Abdul Rahman, Noorsaadah; Saad, Omar; Ariffin, Azhar; Abd Hamid, Sharifah Bee; Alhadi, Abeer A; Kadir, Farkaad A; Yaeghoobi, Marzieh; Matlob, Abdulsalam A

    2016-01-01

    A new series of multipotent antioxidants (MPAOs), namely Schiff base-1,2,4-triazoles attached to the oxygen-derived free radical scavenging moiety butylated hydroxytoluene (BHT) were designed and subsequently synthesized. The structure-activity relationship (SAR) of the designed antioxidants was established alongside the prediction of activity spectra for substances (PASS). The antioxidant activities of the synthesized compounds 4-10 were tested by the DPPH bioassay. The synthesized compounds 4-10 inhibited stable DPPH free radicals at a level that is 10(-4) M more than the well-known standard antioxidant BHT. Compounds 8-10 with para-substituents were less active than compounds 4 and 5 with trimethoxy substituents compared to those with a second BHT moiety (compounds 6 and 7). With an IC50 of 46.13 ± 0.31 µM, compound 6 exhibited the most promising in vitro inhibition at 89%. Therefore, novel MPAOs containing active triazole rings, thioethers, Schiff bases, and BHT moieties are suggested as potential antioxidants for inhibiting oxidative stress processes and scavenging free radicals, hence, this combination of functions is anticipated to play a vital role in repairing cellular damage, preventing various human diseases and in medical therapeutic applications. PMID:27367658

  12. Crystalline bipyridinium radical complexes and uses thereof

    DOEpatents

    Fahrenbach, Albert C.; Barnes, Jonathan C.; Li, Hao; Stoddart, J. Fraser; Basuray, Ashish Neil; Sampath, Srinivasan

    2015-09-01

    Described herein are methods of generating 4,4'-bipyridinium radical cations (BIPY.sup..cndot.+), and methods for utilizing the radical-radical interactions between two or more BIPY.sup..cndot.+ radical cations that ensue for the creation of novel materials for applications in nanotechnology. Synthetic methodologies, crystallographic engineering techniques, methods of physical characterization, and end uses are described.

  13. Voltammetric Determination of Dinonyl Diphenylamine and Butylated Hydroxytoluene in Mineral and Synthetic Oil

    PubMed Central

    Xiang, Yaling; Qian, Xuzheng; Hua, Meng; Cheng, Bingxue; Chen, Wu; Li, Jian

    2016-01-01

    ABSTRACT A method is reported for the determination of diphenylamine and butylated hydroxytoluene in mineral and synthetic oil. The procedure used differential pulse voltammetry with a glassy carbon electrode. This method was then used for determining these antioxidants in supporting electrolyte consisting of dilute sulfuric acid and sodium dodecyl sulfonate in ethanol. Anodic peaks were obtained for both analytes. Oxidation peaks at 250 mV were observed from a mixture of butylated hydroxytoluene and dinonyl diphenylamine, allowing their simultaneous determination. This approach was successfully used for the determination of dinonyl diphenylamine and butylated hydroxytoluene in fortified mineral and synthetic oils with good accuracy and precision. PMID:27365537

  14. Picosecond Spectroscopy of Reactive Intermediates: Generation and Dynamics of Arylmethyl Ions and Radicals in Solution.

    NASA Astrophysics Data System (ADS)

    Schmidt, Jeffrey Allan

    A detailed experimental description is presented of a practical and relatively inexpensive approach for two simultaneous and independent types of picosecond spectroscopic measurements. Two data collection subsystems, (1) a picosecond pump-probe transient absorption/emission spectrometer and (2) a streak camera system for time-dependent measurements of absorption and emission, were developed as independent subsystems within an integrated system based on a single mode-locked Nd:YAG laser which concurrently supplies each subsystem with picosecond pulses. Considerations concerning electrical and optical interfacing between the two subsystems are discussed. With these two subsystems, picosecond-pulsed photolyses of diphenylmethyl chloride, diphenylmethyl bromide, triphenylmethyl chloride, triphenylmethyl bromide, and triphenylacetyl chloride in acetonitrile, methylene chloride, and cyclohexane were studied. The dependence of the yields of radicals and ions are discussed with respect to the nature of the starting compound and the solvent. Ion-pair dynamics were monitored with subsystems 1 and 2. Microscopic rate constants for the collapse of the contact ion pair (CIP), separation of the CIP, and reformation of the CIP from the separated ions were calculated. The photophysics and photochemistry of the triphenylmethyl radical generated from triphenylmethyl chloride, and triphenylacetyl chloride, and tert-butyl triphenylperacetate in solution were studied by means of a unique three-pulse picosecond transient absorption technique. The emission lifetime of the excited triphenylmethyl radical was measured as a function of solvent polarity with subsystem 2. These data were collectively used to gain an understanding of the electronically excited triphenylmethyl radical.

  15. Catalase Expression Is Modulated by Vancomycin and Ciprofloxacin and Influences the Formation of Free Radicals in Staphylococcus aureus Cultures

    PubMed Central

    Wang, Ying; Hougaard, Anni B.; Paulander, Wilhelm; Skibsted, Leif H.

    2015-01-01

    Detection of free radicals in biological systems is challenging due to their short half-lives. We have applied electron spin resonance (ESR) spectroscopy combined with spin traps using the probes PBN (N-tert-butyl-α-phenylnitrone) and DMPO (5,5-dimethyl-1-pyrroline N-oxide) to assess free radical formation in the human pathogen Staphylococcus aureus treated with a bactericidal antibiotic, vancomycin or ciprofloxacin. While we were unable to detect ESR signals in bacterial cells, hydroxyl radicals were observed in the supernatant of bacterial cell cultures. Surprisingly, the strongest signal was detected in broth medium without bacterial cells present and it was mitigated by iron chelation or by addition of catalase, which catalyzes the decomposition of hydrogen peroxide to water and oxygen. This suggests that the signal originates from hydroxyl radicals formed by the Fenton reaction, in which iron is oxidized by hydrogen peroxide. Previously, hydroxyl radicals have been proposed to be generated within bacterial cells in response to bactericidal antibiotics. We found that when S. aureus was exposed to vancomycin or ciprofloxacin, hydroxyl radical formation in the broth was indeed increased compared to the level seen with untreated bacterial cells. However, S. aureus cells express catalase, and the antibiotic-mediated increase in hydroxyl radical formation was correlated with reduced katA expression and catalase activity in the presence of either antibiotic. Therefore, our results show that in S. aureus, bactericidal antibiotics modulate catalase expression, which in turn influences the formation of free radicals in the surrounding broth medium. If similar regulation is found in other bacterial species, it might explain why bactericidal antibiotics are perceived as inducing formation of free radicals. PMID:26150471

  16. Design, synthesis and characterization of neutral radical organic conductors: The spiro-bis (1,9-disubstituted phenalenyl) boron system

    NASA Astrophysics Data System (ADS)

    Chi, Xiaoliu

    2001-07-01

    Novel electronic devices (LED, FET, etc.) and room-temperature superconductivity are the most challenging fields in material science. Progress in these fields relies on the design and synthesis of new materials that have novel electronic properties in the solid state. Organic conductors and superconductors have focused on charge-transfer salts for more than 30 years. Although progress has been made, the transition temperatures of the majority of organic superconductors are far less than those of the ceramic-based superconductors. In 1975 Haddon predicted in a Nature article that neutral radicals, especially the phenalenyl system (PLY), could be used to make organic conductors and superconductors. Spiro-biphenalenyl boron radicals were proposed to be promising candidates in that they potentially form high-dimensional solids with a quarter-filled energy bands, which are thought to be important in stabilizing the metallic state. The synthesis of these radical crystals includes the preparation of various ligands and then their boron complexes, the purification of the precursors, the search for suitable reducing reagents and the crystallization of the radicals. Hexyl radical (27) is monomeric in the solid state, and shows Curie behavior throughout the temperature ranges 10--400 K. At room-temperature its conductivity sigma reaches 0.05 S/cm, the highest yet for a neutral organic molecular solid. Ethyl radical (23) has parallel PLY planes in the solid state, which form diamagnetic pi dimers below 150K, while butyl radical (25) forms a diamagnetic dimer at 340K. Surprisingly the conductivity increases sharply by two orders of magnitude at the transition to the dimerized state in both compounds. Interestingly, propyl radical (24) has a conductivity four orders of magnitude smaller than those of all other compounds mentioned. The location of the electrons in the radicals was studied. Several conductivity models were proposed based on the experimental results. By a careful

  17. Catalase Expression Is Modulated by Vancomycin and Ciprofloxacin and Influences the Formation of Free Radicals in Staphylococcus aureus Cultures.

    PubMed

    Wang, Ying; Hougaard, Anni B; Paulander, Wilhelm; Skibsted, Leif H; Ingmer, Hanne; Andersen, Mogens L

    2015-09-01

    Detection of free radicals in biological systems is challenging due to their short half-lives. We have applied electron spin resonance (ESR) spectroscopy combined with spin traps using the probes PBN (N-tert-butyl-α-phenylnitrone) and DMPO (5,5-dimethyl-1-pyrroline N-oxide) to assess free radical formation in the human pathogen Staphylococcus aureus treated with a bactericidal antibiotic, vancomycin or ciprofloxacin. While we were unable to detect ESR signals in bacterial cells, hydroxyl radicals were observed in the supernatant of bacterial cell cultures. Surprisingly, the strongest signal was detected in broth medium without bacterial cells present and it was mitigated by iron chelation or by addition of catalase, which catalyzes the decomposition of hydrogen peroxide to water and oxygen. This suggests that the signal originates from hydroxyl radicals formed by the Fenton reaction, in which iron is oxidized by hydrogen peroxide. Previously, hydroxyl radicals have been proposed to be generated within bacterial cells in response to bactericidal antibiotics. We found that when S. aureus was exposed to vancomycin or ciprofloxacin, hydroxyl radical formation in the broth was indeed increased compared to the level seen with untreated bacterial cells. However, S. aureus cells express catalase, and the antibiotic-mediated increase in hydroxyl radical formation was correlated with reduced katA expression and catalase activity in the presence of either antibiotic. Therefore, our results show that in S. aureus, bactericidal antibiotics modulate catalase expression, which in turn influences the formation of free radicals in the surrounding broth medium. If similar regulation is found in other bacterial species, it might explain why bactericidal antibiotics are perceived as inducing formation of free radicals. PMID:26150471

  18. An on-line normal-phase high performance liquid chromatography method for the rapid detection of radical scavengers in non-polar food matrixes.

    PubMed

    Zhang, Qiang; van der Klift, Elbert J C; Janssen, Hans-Gerd; van Beek, Teris A

    2009-10-23

    An on-line method for the rapid pinpointing of radical scavengers in non-polar mixtures like vegetable oils was developed. To avoid problems with dissolving the sample, normal-phase chromatography on bare silica gel was used with mixtures of hexane and methyl tert-butyl ether as the eluent. The high performance liquid chromatography-separated analytes are mixed post-column with a solution of stable free radicals in hexane. Reduced levels of the radical as a result of a reaction with a radical scavenger are detected as negative peaks by an absorbance detector. After investigating a number of different reagents, solvents, concentrations and solution flow rates an optimized instrumental set-up incorporating a superloop for pulse-free delivery of the reagent solution is presented. Both 2,2'-diphenyl-1-picrylhydrazyl (DPPH) and 2,6-di-tert-butyl-alpha-(3,5-di-tert-butyl-4-oxo-2,5-cyclohexadien-1-ylidene)-p-tolyloxy (galvinoxyl) were used as stable free radicals. The method is suitable for both isocratic and gradient HPLC operation. The method has a simple experimental protocol, uses standard instruments and inexpensive and stable reagents, and accepts any hexane-soluble sample. It can also be used for semi-quantitative analysis. The method was applied to several pure, non-polar natural antioxidants, vegetable oils and lipid-soluble rosemary extract. The limits of detection varied from 0.2 to 176 microg/ml, depending on the compound tested. PMID:19726044

  19. Standard Electrode Potentials Involving Radicals in Aqueous Solution: Inorganic Radicals

    SciTech Connect

    Armstrong, David A.; Huie, Robert E.; Koppenol, Willem H.; Lymar, Sergei V.; Merenyi, Gabor; Neta, Pedatsur; Ruscic, Branko; Stanbury, David M.; Steenken, Steen; Wardman, Peter

    2015-12-01

    Recommendations are made for standard potentials involving select inorganic radicals in aqueous solution at 25 °C. These recommendations are based on a critical and thorough literature review and also by performing derivations from various literature reports. The recommended data are summarized in tables of standard potentials, Gibbs energies of formation, radical pKa’s, and hemicolligation equilibrium constants. In all cases, current best estimates of the uncertainties are provided. An extensive set of Data Sheets is appended that provide original literature references, summarize the experimental results, and describe the decisions and procedures leading to each of the recommendations

  20. Mechanically Stabilized Tetrathiafulvalene Radical Dimers

    SciTech Connect

    Coskun, Ali; Spruell, Jason M.; Barin, Gokhan; Fahrenbach, Albert C.; Forgan, Ross S.; Colvin, Michael T.; Carmieli, Raanan; Benitez, Diego; Tkatchouk, Ekaterina; Friedman, Douglas C.; Sarjeant, Amy A.; Wasielewski, Michael R.; Goddard, William A.; Stoddart, J. Fraser

    2011-01-01

    Two donor-acceptor [3]catenanes—composed of a tetracationic molecular square, cyclobis(paraquat-4,4'-biphenylene), as the π-electron deficient ring and either two tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene (DNP) containing macrocycles or two TTF-butadiyne-containing macrocycles as the π-electron rich components—have been investigated in order to study their ability to form TTF radical dimers. It has been proven that the mechanically interlocked nature of the [3]catenanes facilitates the formation of the TTF radical dimers under redox control, allowing an investigation to be performed on these intermolecular interactions in a so-called “molecular flask” under ambient conditions in considerable detail. In addition, it has also been shown that the stability of the TTF radical-cation dimers can be tuned by varying the secondary binding motifs in the [3]catenanes. By replacing the DNP station with a butadiyne group, the distribution of the TTF radical-cation dimer can be changed from 60% to 100%. These findings have been established by several techniques including cyclic voltammetry, spectroelectrochemistry and UV-vis-NIR and EPR spectroscopies, as well as with X-ray diffraction analysis which has provided a range of solid-state crystal structures. The experimental data are also supported by high-level DFT calculations. The results contribute significantly to our fundamental understanding of the interactions within the TTF radical dimers.

  1. Alkoxyl radical-scavenging activity of edaravone in patients with traumatic brain injury.

    PubMed

    Dohi, Kenji; Satoh, Kazue; Mihara, Yuko; Nakamura, Shunsuke; Miyake, Yasuhumi; Ohtaki, Hirokazu; Nakamachi, Tomoya; Yoshikawa, Toshikazu; Shioda, Seiji; Aruga, Tohru

    2006-11-01

    Lipid peroxidation is caused by reactive oxygen species (ROS) and is involved in traumatic brain injury (TBI). Consequently, a therapeutic strategy for TBI may be to control lipid peroxidation. The only drug approved to date for blocking lipid peroxidation is edaravone (MCI-186), a novel free-radical scavenger shown to exert neuroprotective effects in acute ischemic stroke. Although edaravone scavenges hydroxyl and nitric oxide radicals, its effect on alkoxyl radicals (OR-), which also contribute to lipid peroxidation, is unknown. To date, the study of free radicals in blood has been severely hampered by technical difficulties in their detection. We used an in vitro and ex vivo electron spin resonance (ESR) method employing 5,5-dimethyl-1-pyrroline-N-oxide as a spin trap to investigate whether edaravone can scavenge OR-. By mixing either methemoglobin or human blood with tert-butyl hydroperoxide, we found that this technique can detect OR- generated in vitro. We also found that generated OR- can be completely absorbed by administration of edaravone in vitro (400 microM). Analysis of jugular venous blood collected from 17 TBI patients immediately before and 20 minutes after the administration of edaravone (30 mg, i.v.) revealed higher OR- levels in the untreated patients blood than in normal control blood samples. However, treatment with edaravone suppressed these OR- levels by 24.6% (radical intensity = 71.1 +/- 5.2-53.6 +/- 5.2; p < 0.01). Thus, edaravone can scavenge OR- and significantly reduce levels of these radicals in TBI patients. The novel ex vivo ESR method described here provides a valuable clinical measure of oxidative stress. PMID:17115906

  2. Radical-Mediated Enzymatic Polymerizations

    PubMed Central

    Zavada, Scott R.; Battsengel, Tsatsral; Scott, Timothy F.

    2016-01-01

    Polymerization reactions are commonly effected by exposing monomer formulations to some initiation stimulus such as elevated temperature, light, or a chemical reactant. Increasingly, these polymerization reactions are mediated by enzymes―catalytic proteins―owing to their reaction efficiency under mild conditions as well as their environmental friendliness. The utilization of enzymes, particularly oxidases and peroxidases, for generating radicals via reduction-oxidation mechanisms is especially common for initiating radical-mediated polymerization reactions, including vinyl chain-growth polymerization, atom transfer radical polymerization, thiol–ene step-growth polymerization, and polymerization via oxidative coupling. While enzyme-mediated polymerization is useful for the production of materials intended for subsequent use, it is especially well-suited for in situ polymerizations, where the polymer is formed in the place where it will be utilized. Such polymerizations are especially useful for biomedical adhesives and for sensing applications. PMID:26848652

  3. Radical-Mediated Enzymatic Polymerizations.

    PubMed

    Zavada, Scott R; Battsengel, Tsatsral; Scott, Timothy F

    2016-01-01

    Polymerization reactions are commonly effected by exposing monomer formulations to some initiation stimulus such as elevated temperature, light, or a chemical reactant. Increasingly, these polymerization reactions are mediated by enzymes--catalytic proteins--owing to their reaction efficiency under mild conditions as well as their environmental friendliness. The utilization of enzymes, particularly oxidases and peroxidases, for generating radicals via reduction-oxidation mechanisms is especially common for initiating radical-mediated polymerization reactions, including vinyl chain-growth polymerization, atom transfer radical polymerization, thiol-ene step-growth polymerization, and polymerization via oxidative coupling. While enzyme-mediated polymerization is useful for the production of materials intended for subsequent use, it is especially well-suited for in situ polymerizations, where the polymer is formed in the place where it will be utilized. Such polymerizations are especially useful for biomedical adhesives and for sensing applications. PMID:26848652

  4. Epistemological barriers to radical behaviorism

    PubMed Central

    O'Donohue, William T.; Callaghan, Glenn M.; Ruckstuhl, L. E.

    1998-01-01

    The historian and philosopher of science Gaston Bachelard proposed the concept of epistemological barriers to describe the intellectual challenges encountered by scientists in their work. In order to embrace novel ways of approaching a problem in science, scientists must overcome barriers or obstacles posed by their prior views. For example, Einsteinian physics presents scientists with claims that space is curved and that time and space are on the same continuum. We utilize Bachelard's concept of epistemological barriers to describe the differences between the intellectual journeys students pursuing advanced studies face when attempting to accept cognitive psychology or radical behaviorism. We contend that the folk psychological beliefs that students typically hold when entering these studies pose less challenge to cognitive psychology than to radical behaviorism. We also suggest that these barriers may also partly be involved in the problematic exegesis that has plagued radical behaviorism. In close, we offer some suggestions for dealing with these epistemological barriers. PMID:22478314

  5. Free radical decay in adamantane

    SciTech Connect

    Tegowski, A.T.; Pratt, D.W.

    1984-01-11

    Kinetic electron paramagnetic resonance (EPR) techniques have been used to characterize the decay behavior of the ''stable'' free radical 2-cyclohexanonyl in the plastic crystal phase f an adamantane matrix over the temperature range 257-313 K. Typical plots of the EPR signal intensity as a function of time are biexponential in nature, suggesting the existence of at least two channels for free radical decay. The activation parameters for both processes have been measured in both protonated and deuterated samples. A comparison of these results with those in other systems suggests that the host does, as expected, considerably reduce the pre-exponential factors for decay of the radical by bimolecular processes but has relatively little influence on the corresponding activation energies. 3 figures.

  6. Cerebral and splenic infarctions after injection of N-butyl-2-cyanoacrylate in esophageal variceal bleeding.

    PubMed

    Myung, Dae-Seong; Chung, Cho-Yun; Park, Hyung-Chul; Kim, Jong-Sun; Cho, Sung-Bum; Lee, Wan-Sik; Choi, Sung-Kyu; Joo, Young-Eun

    2013-09-14

    Variceal bleeding is the most serious complication of portal hypertension, and it accounts for approximately one fifth to one third of all deaths in liver cirrhosis patients. Currently, endoscopic treatment remains the predominant method for the prevention and treatment of variceal bleeding. Endoscopic treatments include band ligation and injection sclerotherapy. Injection sclerotherapy with N-butyl-2-cyanoacrylate has been successfully used to treat variceal bleeding. Although injection sclerotherapy with N-butyl-2-cyanoacrylate provides effective treatment for variceal bleeding, injection of N-butyl-2-cyanoacrylate is associated with a variety of complications, including systemic embolization. Herein, we report a case of cerebral and splenic infarctions after the injection of N-butyl-2-cyanoacrylate to treat esophageal variceal bleeding. PMID:24039373

  7. Cerebral and splenic infarctions after injection of N-butyl-2-cyanoacrylate in esophageal variceal bleeding

    PubMed Central

    Myung, Dae-Seong; Chung, Cho-Yun; Park, Hyung-Chul; Kim, Jong-Sun; Cho, Sung-Bum; Lee, Wan-Sik; Choi, Sung-Kyu; Joo, Young-Eun

    2013-01-01

    Variceal bleeding is the most serious complication of portal hypertension, and it accounts for approximately one fifth to one third of all deaths in liver cirrhosis patients. Currently, endoscopic treatment remains the predominant method for the prevention and treatment of variceal bleeding. Endoscopic treatments include band ligation and injection sclerotherapy. Injection sclerotherapy with N-butyl-2-cyanoacrylate has been successfully used to treat variceal bleeding. Although injection sclerotherapy with N-butyl-2-cyanoacrylate provides effective treatment for variceal bleeding, injection of N-butyl-2-cyanoacrylate is associated with a variety of complications, including systemic embolization. Herein, we report a case of cerebral and splenic infarctions after the injection of N-butyl-2-cyanoacrylate to treat esophageal variceal bleeding. PMID:24039373

  8. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... substituted methyl styrene, methyl methacrylate, and substituted silane. 721.6920 Section 721.6920 Protection... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  9. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... substituted methyl styrene, methyl methacrylate, and substituted silane. 721.6920 Section 721.6920 Protection... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  10. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... substituted methyl styrene, methyl methacrylate, and substituted silane. 721.6920 Section 721.6920 Protection... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  11. DETERMINATION OF THIOCARBAMATES IN INDUSTRIAL AND MUNICIPAL WASTEWATER - BUTYLATE, CYCLOATE, EPTC, MOLINATE, PEBULATE, AND VERNOLATE

    EPA Science Inventory

    A method was developed for the determination of six thiocarbamate compounds (butylate, cycloate, EPTC, molinate, pebulate, and vernolate) in wastewaters. The method development program consisted of a literature review; determination of extraction efficiency for each compound from...

  12. INFLUENCE OF METHYL TERT-BUTYL ETHER (MTBE) ON LAKE WATER ALGAE: JOURNAL ARTICLE

    EPA Science Inventory

    NRMRL-ADA-01209 Kampbell*, D.H., An, Y, and Williams, VR. Influence of Methyl tert-Butyl Ether (MTBE) on Lake Water Algae. Bulletin of Environmental Contamination and Toxicology 57 (4):675-681 (2001). ...

  13. Fenton-like degradation of MTBE: Effects of iron counter anion and radical scavengers.

    PubMed

    Hwang, Sangchul; Huling, Scott G; Ko, Saebom

    2010-01-01

    Fenton-driven oxidation of methyl tert-butyl ether (MTBE) (0.11-0.16mM) in batch reactors containing ferric iron (5mM) and hydrogen peroxide (H(2)O(2)) (6mM) (pH=3) was performed to investigate MTBE transformation mechanisms. Independent variables included the forms of iron (Fe) (Fe(2)(SO(4))(3).9H(2)O and Fe(NO(3))(3).9H(2)O), H(2)O(2) (6, 60mM), chloroform (CF) (0.2-2.4mM), isopropyl alcohol (IPA) (25, 50mM), and sulfate (7.5mM). MTBE, tert-butyl alcohol and acetone transformation were significantly greater when oxidation was carried out with Fe(NO(3))(3).9H(2)O than with Fe(2)(SO(4))(3).9H(2)O. Sulfate interfered in the formation of the ferro-peroxy intermediate species, inhibited H(2)O(2) reaction, hydroxyl radical (()OH) formation, and MTBE transformation. Transformation was faster and more complete at a higher [H(2)O(2)] (60mM), but resulted in lower oxidation efficiency which was attributed to ()OH scavenging by H(2)O(2). CF scavenging of the superoxide radical (()O(2)(-)) in the ferric nitrate system resulted in lower rates of ()O(2)(-) reduction of Fe(III) to Fe(II), ()OH production, and consequently lower rates of MTBE transformation. IPA, an excellent scavenger of ()OH, completely inhibited MTBE transformation in the ferric nitrate system indicating oxidation was predominantly by ()OH. ()OH scavenging by HSO(4)(-), formation of the sulfate radical (()SO(4)(-)), and oxidation of MTBE by ()SO(4)(-) was estimated to be negligible. The form of Fe (i.e., counter anion) selected for use in Fenton treatment systems impacts oxidative mechanisms, treatment efficiency, and post-oxidation treatment of residuals which may require additional handling and cost. PMID:19959205

  14. The reclaiming of butyl rubber and in-situ compatibilization of thermoplastic elastomer by power ultrasound

    NASA Astrophysics Data System (ADS)

    Feng, Wenlai

    This is a study of the continuous ultrasound aided extrusion process for the in-situ compatibilization of isotactic polypropylene (iPP)/ethylene-propylene diene rubber (EPDM) thermoplastic elastomer (TPE) using a newly developed ultrasonic treatment reactor. The rheological, mechanical properties and morphology of the TPE with and without ultrasonic treatment were studied. In-situ compatibilization in the ultrasonically treated blends was observed as evident by their more stable morphology after annealing, improved mechanical properties and IR spectra. The obtained results indicated that ultrasonic treatment induced the thermo-mechanical degradations and led to the possibility of enhanced molecular transport and chemical reactions at the interfaces. Processing conditions were established for enhanced in situ compatibilization of the PP/EPDM TPE. The ultrasonic treatments of butyl rubber gum and ultrasonic devulcanization of butyl rubber, tire-curing bladder during extrusion using a grooved barrel ultrasonic reactor were carried out. The ultrasonic treatment of gum caused degradation of the polymer main chain leading to lower molecular weight, broader molecular weight distribution, less unsaturation and changes in physical properties. The devulcanization of butyl rubber was successfully accomplished only at severe conditions of ultrasonic treatment. The mechanical properties of vulcanizates prepared from devulcanized butyl rubber are comparable to that of the virgin vulcanizate. The molecular characterization of sol fraction of devulcanized butyl rubber showed the devulcanization and degradation of butyl rubber occurred simultaneously. 1H NMR transverse relaxation was also used to study butyl rubber gum before and after ultrasonic treatment, and ultrasonically devulcanized unfilled butyl rubber. The T2 relaxation decays were successfully described using a two-component model. The recyclability of tire-curing bladder was also investigated. Gel fraction, crosslink

  15. Donor free radical explosive composition

    DOEpatents

    Walker, Franklin E. [15 Way Points Rd., Danville, CA 94526; Wasley, Richard J. [4290 Colgate Way, Livermore, CA 94550

    1980-04-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a donor additive comprising an organic compound or mixture of organic compounds capable of releasing low molecular weight free radicals or ions under mechanical or electrical shock conditions and which is not an explosive, or an inorganic compound or mixture of inorganic compounds capable of releasing low molecular weight free radicals or ions under mechanical or electrical shock conditions and selected from ammonium or alkali metal persulfates.

  16. Occupational exposures to new dry cleaning solvents: High-flashpoint hydrocarbons and butylal.

    PubMed

    Ceballos, Diana M; Whittaker, Stephen G; Lee, Eun Gyung; Roberts, Jennifer; Streicher, Robert; Nourian, Fariba; Gong, Wei; Broadwater, Kendra

    2016-10-01

    The dry cleaning industry is moving away from using perchloroethylene. Occupational exposures to two alternative dry cleaning solvents, butylal and high-flashpoint hydrocarbons, have not been well characterized. We evaluated four dry cleaning shops that used these alternative solvents. The shops were staffed by Korean- and Cantonese-speaking owners, and Korean-, Cantonese-, and Spanish-speaking employees. Because most workers had limited English proficiency we used language services in our evaluations. In two shops we collected personal and area air samples for butylal. We also collected air samples for formaldehyde and butanol, potential hydrolysis products of butylal. Because there are no occupational exposure limits for butylal, we assessed employee health risks using control banding tools. In the remaining two shops we collected personal and area air samples for high-flashpoint hydrocarbon solvents. In all shops the highest personal airborne exposures occurred when workers loaded and unloaded the dry cleaning machines and pressed dry cleaned fabrics. The air concentrations of formaldehyde and butanol in the butylal shops were well below occupational exposure limits. Likewise, the air concentrations of high-flashpoint hydrocarbons were also well below occupational exposure limits. However, we saw potential skin exposures to these chemicals. We provided recommendations on appropriate work practices and the selection and use of personal protective equipment. These recommendations were consistent with those derived using control banding tools for butylal. However, there is insufficient toxicological and health information to determine the safety of butylal in occupational settings. Independent evaluation of the toxicological properties of these alternative dry cleaning solvents, especially butylal, is urgently needed. PMID:27105306

  17. Permeability of noble gases through Kapton, butyl, nylon, and “Silver Shield”

    NASA Astrophysics Data System (ADS)

    Schowalter, Steven J.; Connolly, Colin B.; Doyle, John M.

    2010-04-01

    Noble gas permeabilities and diffusivities of Kapton, butyl, nylon, and "Silver Shield" are measured at temperatures between 22 and 115C. The breakthrough times and solubilities at 22C are also determined. The relationship of the room temperature permeabilities to the noble gas atomic radii is used to estimate radon permeability for each material studied. For the noble gases tested, Kapton and Silver Shield have the lowest permeabilities and diffusivities, followed by nylon and butyl, respectively.

  18. Etude de l'effet du gonflement par les solvants sur les proprietes du caoutchouc butyle

    NASA Astrophysics Data System (ADS)

    Nohile, Cedrick

    Polymers and in particular elastomers are widely used for personal protective equipment against chemical and biological hazards. Among them, butyl rubber is one of the most effective elastomers against chemicals. However, if this rubber has a very good resistance to a wide range of them, it is sensitive to non polar solvents. These solvents will easily swell the material and may dramatically affect its properties. This situation may involve a large risk for. butyl rubber protective equipment users. It is thus essential to improve the understanding of the effect of solvents on the properties of butyl rubber. The research that was carried out had two objectives: to identify the parameters controlling the resistance of butyl rubber to solvents and to study the effect of swelling on the properties of butyl rubber. The results show that the resistance of butyl rubber to solvents appears to be controlled by three main parameters: the chemical class of the solvent, its saturation vapor pressure and its molar volume. In addition, swelling affects butyl rubber mechanical properties in a permanent way. The effects can be attributed to the extraction of plasticizers by the solvent and to the degradation of the physico-chemical structure of the polymer network. This chemical degradation was linked to a phenomenon of differential swelling which seems to be controlled by the solvent flow inside the material. These results question some general beliefs within the field of protection against chemical risks. They also open new perspectives for the development of predictive tools relative to the behavior of butyl rubber in the presence of solvents

  19. Induction of cell proliferation in the rat liver by the short-term administration of ethyl tertiary-butyl ether

    PubMed Central

    Kakehashi, Anna; Hagiwara, Akihiro; Imai, Norio; Wei, Min; Fukushima, Shoji; Wanibuchi, Hideki

    2015-01-01

    In the present study, in continuation of our previous experiment in order to investigate the mode of action (MOA) of ethyl tertiary-butyl ether (ETBE) hepatotumorigenicity in rats, we aimed to examine alterations in cell proliferation, that are induced by short-term administration of ETBE. F344 rats were administered ETBE at doses of 0, and 1,000 mg/kg body weight twice a day by gavage for 3, 10, 17 and 28 days. It was found that the previously observed significant increase of P450 total content and hydroxyl radical levels after 7 days of ETBE administration, and 8-OHdG formation at day 14, accompanied by accumulation of CYP2B1/2B2, CYP3A1/3A2, CYP2C6, CYP2E1 and CYP1A1 and downregulation of DNA oxoguanine glycosylase 1, was preceded by induction of cell proliferation at day 3. Furthermore, we observed an increase in regenerative cell proliferation as a result of ETBE treatment at day 28, followed by induction of cell cycle arrest and apoptosis by day 14. These results indicated that short-term administration of ETBE led to a significant early increase in cell proliferation activity associated with induction of oxidative stress, and to a regenerative cell proliferation as an adaptive response, which could contribute to the hepatotumorigenicity of ETBE in rats. PMID:26023258

  20. Construction of wettability gradient surface on copper substrate by controlled hydrolysis of poly(methyl methacrylate-butyl acrylate) films

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Cheng, Jiang; Yang, Zhuo-ru

    2014-10-01

    We report a gradient wettability surface on copper slide prepared by a simple controlled ester group hydrolysis procedure of poly(methyl methacrylate-butyl acrylate) [P (MMA-BA)] films coated on the copper substrate. In the method, sodium hydroxide solutions are selected to prepare surface gradient wettability on P (MMA-BA) films. The P (MMA-BA) copolymers with different MMA contents are first synthesized by a conventional free atom radical solution polymerization method. The transfer of surface chemical composition from the ester group to acid salt is achieved by hydrolysis in NaOH solution. The effects of different concentrations of NaOH solution and reaction times on the physicochemical properties of the resulting surfaces are studied. The field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) results show that the varying concentration along the substrate length is only attributed to the hydrolysis reaction of ester groups. The hydrolysis causes insignificant change on the morphology of the original film on the copper substrate. In addition, it is found that the MMA copolymer content has a significant influence on the concentration of ester groups on the outermost surface and thus important for forming the slope gradients.

  1. The impact of groundwater quality on the removal of methyl tertiary-butyl ether (MTBE) using advanced oxidation technology.

    PubMed

    Tawabini, B; Fayad, N; Morsy, M

    2009-01-01

    In this study, the removal of methyl tertiary-butyl ether (MTBE) from contaminated groundwater using advanced oxidation technology was investigated. The UV/H(2)O(2) treatment process was applied to remove MTBE from two Saudi groundwater sources that have different quality characteristics with regard to their contents of inorganic species such as chloride, bromide, sulfates and alkalinity. MTBE was spiked into water samples collected from the two sources to a concentration level of about 250 microg/L. A 500 mL bench-scale forced-liquid circulation photoreactor was used to conduct the experiments. Two different UV lamps were utilized: 15 Watt low pressure (LP) and 150 Watt medium pressure (MP). Results of the study showed that the UV/H(2)O(2) process removed more than 90% of MTBE in 20 minutes when the MP lamp was used at an MTBE/H(2)O(2) molar ratio of 1:200. The results also showed that groundwater sources with higher levels of radical scavengers such as alkalinity, bromide, nitrate and sulfate showed lower rate of MTBE removal. PMID:19844063

  2. Photodynamic Therapy with Hexa(sulfo-n-butyl)[60]Fullerene Against Sarcoma In Vitro and In Vivo.

    PubMed

    Yu, Chi; Avci, Pinar; Canteenwala, Taizoon; Chiang, Long Y; Chen, Bao J; Hamblin, Michael R

    2016-01-01

    The hydrophilic molecular micellar hexa(sulfo-n-butyl)[60]fullerene (FC₄S), first synthesized in 1998 as a photosensitizer (PS) has been reported to exhibit high efficacy for singlet oxygen generation and antimicrobial photodynamic inactivation. The purpose of this study was to investigate the effects of photoactivated FC₄S for free radical generation and to mediate photodynamic therapy (PDT) of cancer in vitro and in vivo. The results demonstrated that following light irradiation, FC4S produced singlet oxygen, but after addition of electron donors such as ferrocytochrome c or NADH, FC4S also produced superoxide. The combination of FC4S with light irradiation was able to induce cytotoxicity to human fibrosarcoma cells and murine sarcoma 180 cells in vitro. Cell-killing was proportional to fluence as well as FC4S concentration. Photoirradiation by argon-ion laser after intraperitoneal injection of FC4S also resulted in inhibition of S180 tumor growth in vivo (up to 80% reduction of tumor volume). Hematological and blood biochemistry parameters of the cancer-bearing mice were improved by PDT. Based on these findings, we conclude that FC₄S has a great potential as a nanomedicine in PDT for cancer. PMID:27398442

  3. Review of the mutagenicity/genotoxicity of butylated hydroxytoluene.

    PubMed

    Bomhard, E M; Bremmer, J N; Herbold, B A

    1992-09-01

    Butylated hydroxytoluene (BHT) is an effective, widely used, low cost antioxidant. A host of studies examining the potential of BHT to cause point mutations have been published. They include in vitro studies on various bacterial species and strains and on various types of mammalian cell lines as well as in vivo studies on Drosophila melanogaster, silk worms and also the mouse specific locus test (involving long-term exposure). Together these studies convincingly show the absence of a potential for BHT to cause point mutations. A great number of studies on many cell types and species have also been carried out to examine the potential of BHT to cause chromosome aberrations. In vitro studies have been published using plant cells and the WI-38, CHL, CHO, and V79 mammalian cell lines. In vivo studies have been carried out on somatic and/or germ cells of Drosophila melanogaster, rats and mice. Nearly all studies, especially those using validated test systems, indicate that BHT lacks clastogenic potential. In vitro studies on bacterial, yeast and various mammalian cell lines including DON, CHO, CHL cells and primary hepatocytes demonstrate the absence of interactions with or damage to DNA. Taking all the existing data into account, the weight of evidence suggests that BHT does not represent a relevant mutagenic/genotoxic risk to man. PMID:1381049

  4. Strategies for production of butanol and butyl-butyrate through lipase-catalyzed esterification.

    PubMed

    Xin, Fengxue; Basu, Anindya; Yang, Kun-Lin; He, Jianzhong

    2016-02-01

    In this study, a fermentation process for production of butanol and butyl-butyrate by using Clostridium sp. strain BOH3 is developed. This strain is able to produce butyric acid and butanol when it ferments 60 g/L xylose. Meanwhile, it also excreted indigenous lipases (induced by olive oil) which naturally convert butyric acid and butanol into 1.2 g/L of butyl-butyrate. When Bio-OSR was used as both an inducer for lipase and extractant for butyl-butyrate, the butyl-butyrate concentration can reach 6.3 g/L. To further increase the yield, additional lipases and butyric acid are added to the fermentation system. Moreover, kerosene was used as an extractant to remove butyl-butyrate in situ. When all strategies are combined, 22.4 g/L butyl-butyrate can be produced in a fed-batch reactor spiked with 70 g/L xylose and 7.9 g/L butyric acid, which is 4.5-fold of that in a similar system (5 g/L) with hexadecane as the extractant. PMID:26710347

  5. Synthesis, Radical Reactivity, and Thermochemistry of Monomeric Cu(II) Alkoxide Complexes Relevant to Cu/Radical Alcohol Oxidation Catalysis.

    PubMed

    Porter, Thomas R; Capitao, Dany; Kaminsky, Werner; Qian, Zhaoshen; Mayer, James M

    2016-06-01

    Two new monomeric Cu(II) alkoxide complexes were prepared and fully characterized as models for intermediates in copper/radical mediated alcohol oxidation catalysis: Tp(tBuR)Cu(II)OCH2CF3 with Tp(tBu) = hydro-tris(3-tert-butyl-pyrazol-1-yl)borate 1 or Tp(tBuMe) = hydro-tris(3-tert-butyl-5-methyl-pyrazol-1-yl)borate 2. These complexes were made as models for potential intermediates in enzymatic and synthetic catalytic cycles for alcohol oxidation. However, the alkoxide ligands are not readily oxidized by loss of H; instead, these complexes were found to be hydrogen atom acceptors. They oxidize the hydroxylamine TEMPOH, 2,4,6-tri-t-butylphenol, and 1,4-cyclohexadiene to the nitroxyl radical, phenoxyl radical, and benzene, with formation of HOCH2CF3 (TFE) and the Cu(I) complexes Tp(tBuR)Cu(I)-MeCN in dichloromethane/1% MeCN or 1/2 [Tp(tBuR)Cu(I)]2 in toluene. On the basis of thermodynamics and kinetics arguments, these reactions likely proceed through concerted proton-electron transfer mechanisms. Thermochemical analyses give lower limits for the "effective bond dissociation free energies (BDFE)" of the O-H bonds in 1/2[Tp(tBuR)Cu(I)]2 + TFE and upper limits for the free energies associated with alkoxide oxidations via hydrogen atom transfer (effective alkoxide α-C-H BDFEs). These values are summations of the free energies of multiple chemical steps, which include the energetically favorable formation of 1/2[Tp(tBuR)Cu(I)]2. The effective alkoxide α-C-H bonds are very weak, BDFE ≤ 38 ± 4 kcal mol(-1) for 1 and ≤44 ± 5 kcal mol(-1) for 2 (gas-phase estimates), because C-H homolysis is thermodynamically coupled to one electron transfer to Cu(II) as well as the favorable formation of the 1/2[Tp(tBuR)Cu(I)]2 dimer. Treating 1 with the H atom acceptor (t)Bu3ArO(•) did not result in the expected alkoxide oxidation to an aldehyde, but rather net 2,2,2-trifluoroethoxyl radical transfer occurred to generate an unusual 2-substituted dienone-ether product. Treating 2

  6. Free radicals, antioxidants, and nutrition.

    PubMed

    Fang, Yun-Zhong; Yang, Sheng; Wu, Guoyao

    2002-10-01

    Radiation hazards in outer space present an enormous challenge for the biological safety of astronauts. A deleterious effect of radiation is the production of reactive oxygen species, which result in damage to biomolecules (e.g., lipid, protein, amino acids, and DNA). Understanding free radical biology is necessary for designing an optimal nutritional countermeasure against space radiation-induced cytotoxicity. Free radicals (e.g., superoxide, nitric oxide, and hydroxyl radicals) and other reactive species (e.g., hydrogen peroxide, peroxynitrite, and hypochlorous acid) are produced in the body, primarily as a result of aerobic metabolism. Antioxidants (e.g., glutathione, arginine, citrulline, taurine, creatine, selenium, zinc, vitamin E, vitamin C, vitamin A, and tea polyphenols) and antioxidant enzymes (e.g., superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidases) exert synergistic actions in scavenging free radicals. There has been growing evidence over the past three decades showing that malnutrition (e.g., dietary deficiencies of protein, selenium, and zinc) or excess of certain nutrients (e.g., iron and vitamin C) gives rise to the oxidation of biomolecules and cell injury. A large body of the literature supports the notion that dietary antioxidants are useful radioprotectors and play an important role in preventing many human diseases (e.g., cancer, atherosclerosis, stroke, rheumatoid arthritis, neurodegeneration, and diabetes). The knowledge of enzymatic and non-enzymatic oxidative defense mechanisms will serve as a guiding principle for establishing the most effective nutrition support to ensure the biological safety of manned space missions. PMID:12361782

  7. Students' Ideas and Radical Constructivism

    ERIC Educational Resources Information Center

    Sánchez Gómez, Pedro J.

    2016-01-01

    In this article, I study, from the point of view of the analytic philosophy of mind, the compatibility of students' ideas studies (SIS) with radical constructivism (RC). I demonstrate that RC is based on a psychology of "narrow mental states"; that is, the idea that the mental content of an individual can be fully characterised without…

  8. Robot-assisted radical cystectomy.

    PubMed

    Kurpad, Raj; Woods, Michael

    2015-12-01

    Robot-assisted radical cystectomy (RARC) has rapidly penetrated the field of urology since its inception in 2003. Several observational studies, retrospective reports, and three randomized controlled trials (RCT) have preliminarily demonstrated the safety and efficacy of (RARC). Additionally, results from the RAZOR RCT will be available in 2016-2017 to better substantiate the use of (RARC). PMID:26310514

  9. The Other Women: Radicalizing Feminism.

    ERIC Educational Resources Information Center

    Puigvert, Lidia; Darder, Antonia; Merrill, Barbara; de los Reyes, Eileen; Stromquist, Nelly

    A recent international symposium on radicalizing feminism explored ways of developing a dialogic feminism that emphasizes working in different settings under the common goal of including women who have been invisible in the dominant feminist literature by furthering theories and practices based on the principles of dialogic feminism. The seminar…

  10. Radical Coupling Mechanisms in Lignification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mechansim by which lignification, the polymerization process by which lignins are formed, is via combinatorial radical coupling reactions. Understanding such reactions allows the range of structures in lignins to be understood, and the ability of lignins to accommodate various phenolic precursor...

  11. Dimeric phenalenyl-based neutral radical molecular conductors.

    PubMed

    Chi, X; Itkis, M E; Kirschbaum, K; Pinkerton, A A; Oakley, R T; Cordes, A W; Haddon, R C

    2001-05-01

    We report the preparation, crystallization, and solid-state characterization of ethyl (3)- and butyl (4)-substituted spiro-biphenalenyl radicals. Both of these compounds are found to be conducting face-to-face pi-dimers in the solid state but with different room-temperature magnetic ground states. At room temperature, 4 exists as a diamagnetic pi-dimer (interplanar separation of approximately 3.1 A), whereas 3 is a paramagnetic pi-dimer (interplanar separation of approximately 3.3 A), and both compounds show phase transitions between the paramagnetic and diamagnetic forms. Electrical resistivity measurements of single crystals of 3 and 4 show that the transition from the high-temperature paramagnetic pi-dimer form to the low-temperature diamagnetic pi-dimer structure is accompanied by an increase in conductivity by about 2 orders of magnitude. This behavior is unprecedented and is very difficult to reconcile with the usual understanding of a Peierls dimerization, which inevitably leads to an insulating ground state. We tentatively assign the enhancement in the conductivity to a decrease in the on-site Coulombic correlation energy (U), as the dimers form a super-molecule with twice the amount of conjugation. PMID:11457155

  12. Trichloroethylene radicals generated by ionizing radiation. An EPR/spin trapping study.

    PubMed

    Carmichael, A J; Steel-Goodwin, L

    1997-06-01

    Trichloroethylene (TCE) was exposed in the presence of the spin trap N-tert-butyl-alpha-phenyl nitrone (PBN, 0.1 M) to ionizing radiation from two different sources in an attempt to determine the origin of the spin-trapped radicals generating the EPR spectra in precision cut liver slices. TCE samples were irradiated with 18 MeV electrons to a total dose of 1000 Gy in a linear accelerator (LINAC) or exposed to 60Co gamma-rays to total doses of 100 Gy and 1000 Gy. The results show that three PBN adducts were generated during the LINAC radiations. Two of these spin adducts correspond to the addition of carbon-centered radicals to PBN, and the third adduct is consistent with a decomposition product of PBN. The predominant carbon-entered radical yields a PBN adduct that is more stable, persists for over 24 h and has identical hyperfine coupling constants (aN = 1.61 mT, aH beta = 0.325 mT) to the PBN adduct obtained when precision-cut liver slices were exposed to TCE. Gamma radiation (100 Gy) of TCE yields PBN adducts with lower primary nitrogen hyperfine coupling constants (aN = 1.45 mT and aN = 1.54 mT). The results (gamma-radiation) suggest that the carbon-centered radical is formed on a single TCE carbon that is different than the predominant radical formed during LINAC radiations. This difference is confirmed by experiments using 13C-TCE. The results further suggest that, during gamma-radiation of TCE, the radicals are formed by dechlorination at the TCE carbon containing two chlorine atoms. The results obtained during LINAC radiations suggest that the predominant radical is formed by dechlorination at the TCE carbon containing a single chlorine and a single proton. In addition, it is possible that this radical is the initial TCE radical formed during exposure of liver slices to TCE. PMID:9219030

  13. Infectious Morbidity After Radical Vulvectomy

    PubMed Central

    Carson, Linda F.; Brooker, Doris C.; Carter, Jonathan R.; Twiggs, Leo B.

    1994-01-01

    Objective: This retrospective investigation describes the infectious morbidity of patients following radical vulvectomy with or without inguinal lymph node dissection. Methods: The charts of patients undergoing radical vulvectomy between January 1, 1986, and September 1, 1989, were reviewed for age, weight, cancer type, tumor stage, operative procedure(s), prophylactic antibiotic and its length of use, febrile morbidity, infection site, culture results, significant medical history, and length of use and number of drains or catheters used. Results: The study group was composed of 61 patients, 14 of whom underwent a radical vulvectomy and 47 who also had inguinal lymph node dissection performed. Twenty-nine patients (48%) had at least 1 postoperative infection. Five patients (8%) had 2 or more postoperative infections. The site and incidence of the infections were as follows: urinary tract 23%, wound 23%, lymphocyst 3%, lymphatics (lymphangitis) 5%, and bowel (pseudomembranous colitis) 3%. The most common pathogens isolated from both urine and wound sites were Pseudomonas aeruginosa, enterococcus, and Escherichia coli. A significant decrease in wound infection was demonstrated when separate incisions were made for inguinal lymph node dissection (P <0.05). The mean number of days to onset of postoperative infection for wound, urine, lymphatics, lymphocyst, and bowel were 11, 8, 57, 48, and 5, respectively. Conclusions: We conclude that the clinical appearance of post-radical vulvectomy infections is delayed when compared with other post-surgical wound infections. Second, utilizing separate inguinal surgical incisions may reduce infectious morbidity. Finally, tumor stage and type do not necessarily increase the infectious morbidity of radical vulvar surgery. PMID:18475379

  14. Formation and characterization of Co(III)-semiquinonate phenoxyl radical species.

    PubMed

    Shimazaki, Yuichi; Kabe, Ryota; Huth, Stefan; Tani, Fumito; Naruta, Yoshinori; Yamauchi, Osamu

    2007-07-23

    Co(III) complexes of N(3)O-donor tripodal ligands, 2,4-di(tert-butyl)-6-{[bis(2-pyridyl)methyl]aminomethyl}phenolate (tbuL), 2,4-di(tert-butyl)-6-{[bis(6-methyl-2-pyridyl)methyl]aminomethyl}phenolate (tbuL(Mepy)(2)), were prepared, and precursor Co(II) complexes, [Co(tbuL)Cl] (1) and [Co(tbuL(Mepy)(2))Cl] (2), and ternary Co(III) complexes, [Co(tbuL)(acac)]ClO(4) (3), [Co(tbuL)(tbu-cat)] (4), and [Co(tbuL(Mepy)(2))(tbu-SQ)]ClO(4) (5), where acac, tbu-cat, and tbu-SQ refer to pentane-2,4-dionate, 3,5-di(tert-butyl)catecholate, and 3,5-di(tert-butyl)semiquinonate, respectively, were structurally characterized by the X-ray diffraction method. Complexes 3 and 5 have a mononuclear structure with a fac-N(3)O(3) donor set, while 4 has a mer-N(3)O(3) structure. The cyclic voltammogram (CV) of complex 3 exhibited one reversible redox wave centered at 0.93 V (vs Ag/AgCl) in CH(3)CN. Complex 5 was converted to a phenoxyl radical species upon oxidation with Ce(IV), showing a characteristic pi-pi* transition band at 412 nm. The ESR spectrum at low temperature and the resonance Raman spectrum of 3 established that the radical species has a Co(III)-phenoxyl radical bond. On the other hand, the CVs showed two oxidation processes at E(1/2) = 0.01 and E(pa) = 0.92 V for 4 and E(1/2a) = 0.05 and E(1/2b) = 0.69 V for 5. The rest potential of 4 (-0.11 V) was lower than the E(1/2) value, whereas that of 5 (0.18 V) was higher, indicating that the first redox wave of 4 and 5 is assigned to the tbu-cat and the tbu-SQ redox process, respectively. One-electron oxidized 4 showed absorption, resonance Raman, and ESR spectra which are similar to those of 5, suggesting formation of a stable Co(III)-semiquinonate species, which has the same oxidation level of 5. The resonance Raman spectrum of two-electron oxidized 4 showed the nu(8a) bands of the semiquinonate and phenoxyl radical, which were absent in the spectrum of one-electron oxidized 5. Since both oxidized species were ESR inactive at 5 K

  15. Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems.

    PubMed

    Rajapakse, Niranjan; Mendis, Eresha; Byun, Hee-Guk; Kim, Se-Kwon

    2005-09-01

    Low molecular weight peptides obtained from ultrafiltration (UF) of giant squid (Dosidicus gigas) muscle protein were studied for their antioxidative effects in different in vitro oxidative systems. The most potent two peptides, Asn-Ala-Asp-Phe-Gly-Leu-Asn-Gly-Leu-Glu-Gly-Leu-Ala (1307 Da) and Asn-Gly-Leu-Glu-Gly-Leu-Lys (747 Da), exhibited their antioxidant potential to act as chain-breaking antioxidants by inhibiting radical-mediated peroxidation of linoleic acid, and their activities were closer to highly active synthetic antioxidant, butylated hydroxytoluene. Addition of these peptides could enhance the viability of cytotoxic embryonic lung fibroblasts significantly (P<.05) at a low concentration of 50 microg/ml, and it was presumed due to the suppression of radical-induced oxidation of membrane lipids. Electron spin trapping studies revealed that the peptides were potent scavengers of free radicals in the order of carbon-centered (IC(50) 396.04 and 304.67 microM), hydroxyl (IC(50) 497.32 and 428.54 microM) and superoxide radicals (IC(50) 669.34 and 573.83 microM). Even though the exact molecular mechanism for scavenging of free radicals was unclear, unusually high hydrophobic amino acid composition (more than 75%) of giant squid muscle peptides was presumed to be involved in the observed activities. PMID:16115545

  16. Metabolism of 3-tert-butyl-4-hydroxyanisole to 3-tert-butyl-4,5-dihydroxyanisole by rat liver microsomes.

    PubMed

    Armstrong, K E; Wattenberg, L W

    1985-04-01

    3-tert-Butylhydroxyanisole (3-BHA) is an antioxidant which can have a modulating effect on chemical carcinogenesis. Information concerning the metabolism of 3-BHA is incomplete. In the present study, the metabolites formed by incubating 3-BHA with liver microsomes from rats given beta-naphthoflavone by p.o. intubation were studied. Three metabolites were identified, two major metabolites and a minor metabolite. One of the major metabolites was the catechol of 3-BHA, i.e., 3-tert-butyl-4,5-dihydroxyanisole, which has not previously been reported. A characteristic of this compound is its capacity to be oxidized readily. The second major metabolite was tert-butyl hydroquinone which has been reported previously to be a liver microsomal metabolite of 3-BHA. The third metabolite, which occurred in small quantities, was 2,2'-dihydroxy-3,3'-di-tert-butyl-5,5'-dimethoxydiphenyl. 2,2'-Dihydroxy-3,3'-di-tert-butyl-5,5'-dimethoxydiphenyl has been identified previously as a major metabolite of 3-BHA in the rat intestine. An understanding of the metabolism of 3-BHA may assist in elucidating the mechanism(s) of its biological effects. PMID:3978617

  17. Transcatheter Embolotherapy with N-Butyl Cyanoacrylate for Ectopic Varices

    SciTech Connect

    Choi, Jin Woo; Kim, Hyo-Cheol Jae, Hwan Jun Jung, Hyun-Seok; Hur, Saebeom; Lee, Myungsu; Chung, Jin Wook

    2015-04-15

    PurposeTo address technical feasibility and clinical outcome of transcatheter embolotherapy with N-butyl cyanoacrylate (NBCA) for bleeding ectopic varices.MethodsThe institutional review board approved this retrospective study and waived informed consent. From January 2004 to June 2013, a total of 12 consecutive patients received transcatheter embolotherapy using NBCA for bleeding ectopic varices in our institute. Clinical and radiologic features of the endovascular procedures were comprehensively reviewed.ResultsPreprocedural computed tomography images revealed ectopic varices in the jejunum (n = 7), stoma (n = 2), rectum (n = 2), and duodenum (n = 1). The 12 procedures consisted of solitary embolotherapy (n = 8) and embolotherapy with portal decompression (main portal vein stenting in 3, transjugular intrahepatic portosystemic shunt in 1). With regard to vascular access, percutaneous transhepatic access (n = 7), transsplenic access (n = 4), and transjugular intrahepatic portosystemic shunt tract (n = 1) were used. There was no failure in either the embolotherapy or the vascular accesses (technical success rate, 100 %). Two patients died within 1 month from the procedure from preexisting fatal medical conditions. Only one patient, with a large varix that had been partially embolized by using coils and NBCA, underwent rebleeding 5.5 months after the procedure. The patient was retreated with NBCA and did not undergo any bleeding afterward for a follow-up period of 2.5 months. The remaining nine patients did not experience rebleeding during the follow-up periods (range 1.5–33.2 months).ConclusionTranscatheter embolotherapy using NBCA can be a useful option for bleeding ectopic varices.

  18. Carcinogenicity of methyl-tertiary butyl ether in gasoline.

    PubMed

    Mehlman, Myron A

    2002-12-01

    Methyl tertiary butyl ether (MTBE) was added to gasoline on a nationwide scale in 1992 without prior testing of adverse, toxic, or carcinogenic effects. Since that time, numerous reports have appeared describing adverse health effects of individuals exposed to MTBE, both from inhalation of fumes in the workplace and while pumping gasoline. Leakage of MTBE, a highly water-soluble compound, from underground storage tanks has led to contamination of the water supply in many areas of the United States. Legislation has been passed by many states to prohibit the addition of MTBE to gasoline. The addition of MTBE to gasoline has not accomplished its stated goal of decreasing air pollution, and it has posed serious health risks to a large portion of the population, particularly the elderly and those with respiratory problems, asthma, and skin sensitivity. Reports of animal studies of carcinogenicity of MTBE began to appear in the 1990s, prior to the widespread introduction of MTBE into gasoline. These reports were largely ignored. In ensuing years, further studies have shown that MTBE causes various types of malignant tumors in mice and rats. The National Toxicology Program (NTP) Board of Scientific Counselors' Report on Carcinogens Subcommittee met in December 1998 to consider listing MTBE as "reasonably anticipated to be a human carcinogen." In spite of recommendations from Dr. Bailer, the primary reviewer, and other scientists on the committee, the motion to list MTBE in the report was defeated by a six to five vote, with one abstention. On the basis of animal studies, it is widely accepted that if a chemical is carcinogenic in appropriate laboratory animal test systems, it must be treated as though it were carcinogenic in humans. In the face of compelling evidence, NTP Committee members who voted not to list MTBE as "reasonably anticipated to be a human carcinogen" did a disservice to the general public; this action may cause needless exposure of many to health risks

  19. Effects of simulant mixed waste on EPDM and butyl rubber

    SciTech Connect

    Nigrey, P.J.; Dickens, T.G.

    1997-11-01

    The authors have developed a Chemical Compatibility Testing Program for the evaluation of plastic packaging components which may be used in transporting mixed waste forms. In this program, they have screened 10 plastic materials in four liquid mixed waste simulants. These plastics were butadiene-acrylonitrile copolymer (Nitrile) rubber, cross-linked polyethylene, epichlorohydrin rubber, ethylene-propylene (EPDM) rubber, fluorocarbons (Viton and Kel-F{trademark}), polytetrafluoro-ethylene (Teflon), high-density polyethylene, isobutylene-isoprene copolymer (Butyl) rubber, polypropylene, and styrene-butadiene (SBR) rubber. The selected simulant mixed wastes were (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) a mixture of ketones. The screening testing protocol involved exposing the respective materials to approximately 3 kGy of gamma radiation followed by 14-day exposures to the waste simulants at 60 C. The rubber materials or elastomers were tested using Vapor Transport Rate measurements while the liner materials were tested using specific gravity as a metric. The authors have developed a chemical compatibility program for the evaluation of plastic packaging components which may be incorporated in packaging for transporting mixed waste forms. From the data analyses performed to date, they have identified the thermoplastic, polychlorotrifluoroethylene, as having the greatest chemical compatibility after having been exposed to gamma radiation followed by exposure to the Hanford Tank simulant mixed waste. The most striking observation from this study was the poor performance of polytetrafluoroethylene under these conditions. In the evaluation of the two elastomeric materials they have concluded that while both materials exhibit remarkable resistance to these environmental conditions, EPDM has a greater resistance to this corrosive simulant mixed waste.

  20. Electron attachment to fluorocarbon radicals

    NASA Astrophysics Data System (ADS)

    Shuman, Nicholas

    2014-10-01

    Most plasma environments contain populations of short-lived species such as radicals, the chemistry of which can have significant effects on the overall chemistry of the system. However, few experimental measurements of the kinetics of electron attachment to radicals exist due to the inherent difficulties of working with transient species. Calculations from first principles have been attempted, but are arduous and, because electron attachment is so sensitive to the specifics of the potential surface, their accuracy has not been established. Electron attachment to small fluorocarbon radicals is particularly important, as the data are needed for predictive modeling of plasma etching of semiconductor materials, a key process in the industrial fabrication of microelectronics. We have recently developed a novel flowing afterglow technique to measure several types of otherwise difficult to study plasma processes, including thermal electron attachment to radicals. Variable Electron and Neutral Density Attachment Mass Spectrometry (VENDAMS) exploits dissociative electron attachment in a weakly ionized plasma as a radical source. Here, we apply VENDAMS to a series of halofluorocarbon precursors in order to measure the kinetics of thermal electron attachment to fluorocarbon radicals. Results are presented for CF2, CF3, C2F5,C2F3,1-C3F7, 2-C3F7, and C3F5 from 300 K to 900 K. Both the magnitude and the temperature dependences of rate coefficients as well as product branching between associative and dissociative attachment are highly system specific; however, thermal attachment to all species is inefficient, never exceeding 5% of the collision rate. The data are analyzed using a recently developed kinetic modeling approach, which uses extended Vogt-Wannier theory as a starting point, accounts for dynamic effects such as coupling between the electron and nuclear motions through empirically validated functional forms, and finally uses statistical theory to determine the fate of

  1. Radical Puppets and the Language of Art

    ERIC Educational Resources Information Center

    Asher, Rikki

    2009-01-01

    Radical puppets are puppets with a social message. Radical puppets encourage creative ideas that lead toward understanding global and environmental aspects of society through the "art of the puppet," a phrase coined by American puppeteer Bill Baird (1965). There is a blending of performance and visual art in puppetry. Through radical puppetry,…

  2. Free-radical chemistry of sulfite.

    PubMed Central

    Neta, P; Huie, R E

    1985-01-01

    The free-radical chemistry of sulfite oxidation is reviewed. Chemical transformations of organic and biological molecules induced by sulfite oxidation are summarized. The kinetics of the free-radical oxidations of sulfite are discussed, as are the kinetics of the reactions of the sulfite-derived radicals SO3 and the peroxy derivative SO5 with organic compounds. PMID:3830699

  3. Antioxidant, Antimicrobial, and Free Radical Scavenging Potential of Aerial Parts of Periploca aphylla and Ricinus communis

    PubMed Central

    Iqbal, Jamshed; Zaib, Sumera; Farooq, Umar; Khan, Afsar; Bibi, Irum; Suleman, Saba

    2012-01-01

    Context. Many diseases are associated with oxidative stress caused by free radicals. Objective. The present study evaluated the in vitro antioxidant and antibacterial activities of various extracts of aerial parts of Periploca aphylla and Ricinus communis. Materials and Methods. In vitro antioxidant activities of the plant extract were determined by DPPH and NO scavenging method. Superoxide anion radical activity was measured by the reduction of nitro blue tetrazolium as compared with standard antioxidants. Total phenolic contents and antibacterial activities of these plants were determined by gallic acid equivalent (GAE) and serial tube dilution method, respectively. Results. Plants showed significant radical scavenging activity. The results were expressed as IC50. n-Propyl gallate and 3-t-butyl-4-hydroxyanisole were used as standards for antioxidant assay. All the extracts of both plants showed comparable IC50 to those of standards. Plants extract exhibited high phenolic contents and antibacterial activities were comparable with standard drug, Ciprofloxacin. Discussion and Conclusion. The present study provides evidence that Periploca aphylla and Ricinus communis prove to be potent natural antioxidants and could replace synthetic antioxidants. Plants can also be used against pathogenic bacterial strains. PMID:22919511

  4. Batch-injection analysis with amperometric detection of the DPPH radical for evaluation of antioxidant capacity.

    PubMed

    Oliveira, Gracy K F; Tormin, Thiago F; Sousa, Raquel M F; de Oliveira, Alberto; de Morais, Sérgio A L; Richter, Eduardo M; Munoz, Rodrigo A A

    2016-02-01

    This work proposes the application of batch-injection analysis with amperometric detection to determine the antioxidant capacity of real samples based on the measurement of DPPH radical consumption. The efficient concentration or EC50 value corresponds to the concentration of sample or standard required to scavenge 50% DPPH radicals. For the accurate determination of EC50, samples were incubated with DPPH radical for 1h because many polyphenolic compounds typically found in plants and responsible for the antioxidant activity exhibit slow kinetics. The BIA system with amperometric detection using a glassy-carbon electrode presented high precision (RSD = 0.7%, n = 12), low detection limit (1 μmol L(-1)) and selective detection of DPPH (free of interferences from antioxidants). These contributed to low detection limits for the antioxidant (0.015 and 0.19 μmol L(-1) for gallic acid and butylated hydroxytoluene, respectively). Moreover, BIA methods show great promise for portable analysis because battery-powered instrumentation (electronic micropipette and potentiostats) is commercially available. PMID:26304399

  5. Markers of protein oxidation by hydroxyl radical and reactive nitrogen species in tissues of aging rats.

    PubMed

    Leeuwenburgh, C; Hansen, P; Shaish, A; Holloszy, J O; Heinecke, J W

    1998-02-01

    Many lines of evidence implicate oxidative damage in aging. Possible pathways include reactions that modify aromatic amino acid residues on proteins. o-Tyrosine is a stable marker for oxidation of protein-bound phenylalanine by hydroxyl radical, whereas 3-nitrotyrosine is a marker for oxidation of protein-bound tyrosine by reactive nitrogen species. To test the hypothesis that proteins damaged by hydroxyl radical and reactive nitrogen accumulate with aging, we used isotope dilution gas chromatography-mass spectrometry to measure levels of o-tyrosine and 3-nitrotyrosine in heart, skeletal muscle, and liver from young adult (9 mo) and old (24 mo) female Long-Evans/Wistar hybrid rats. We also measured these markers in young adult and old rats that received antioxidant supplements (alpha-tocopherol, beta-carotene, butylated hydroxytoluene, and ascorbic acid) from the age of 5 mo. We found that aging did not significantly increase levels of protein-bound o-tyrosine or 3-nitrotyrosine in any of the tissues. Antioxidant supplementation had no effect on the levels of protein-bound o-tyrosine and 3-nitrotyrosine in either young or old animals. These observations indicate that the o-tyrosine and 3-nitrotyrosine do not increase significantly in heart, skeletal muscle, and liver in old rats, suggesting that proteins damaged by hydroxyl radical and reactive nitrogen species do not accumulate in these tissues with advancing age. PMID:9486304

  6. Radical scavenging and anti-lipoperoxidative activities of Smallanthus sonchifolius leaf extracts.

    PubMed

    Valentová, Katerina; Sersen, Frantisek; Ulrichová, Jitka

    2005-07-13

    Radical scavenging and anti-lipoperoxidative effects of two organic fractions and two aqueous extracts from the leaves of a neglected Andean crop-yacon (Smallanthus sonchifolius Poepp. & Endl., Asteraceae) were determined using various in vitro models. The extracts' total phenolic content was 10.7-24.6%. They exhibited DPPH (IC50 16.14-33.39 microg/mL) and HO* scavenging activities (4.49-6.51 mg/mL). The extracts did not scavenge phenylglyoxylic ketyl radicals, but they retarded their formation. In the xanthine/xanthine oxidase superoxide radical generating system, the extracts' activities were 26.10-37.67 superoxide dismutase equivalents/mg. As one of the extracts displayed xanthine oxidase inhibitory activity, the effect of the extracts on a nonenzymatically generated superoxide was determined (IC50 7.36-21.01 microg/mL). The extracts inhibited t-butyl hydroperoxide-induced lipoperoxidation of microsomal and mitochondrial membranes (IC50 22.15-465.3 microg/mL). These results make yacon leaves a good candidate for use as a food supplement in the prevention of chronic diseases involving oxidative stress. PMID:15998117

  7. Peroxyl Radical Reactions in Water Solution: A Gym for Proton-Coupled Electron-Transfer Theories.

    PubMed

    Amorati, Riccardo; Baschieri, Andrea; Morroni, Gloria; Gambino, Rossana; Valgimigli, Luca

    2016-06-01

    The reactions of alkylperoxyl radicals with phenols have remained difficult to investigate in water. We describe herein a simple and reliable method based on the inhibited autoxidation of water/THF mixtures, which we calibrated against pulse radiolysis. With this method we measured the rate constants kinh for the reactions of 2-tetrahydrofuranylperoxyl radicals with reference compounds: urate, ascorbate, ferrocenes, 2,2,5,7,8-pentamethyl-6-chromanol, Trolox, 6-hydroxy-2,5,7,8-tetramethylchroman-2-acetic acid, 2,6-di-tert-butyl-4-methoxyphenol, 4-methoxyphenol, catechol and 3,5-di-tert-butylcatechol. The role of pH was investigated: the value of kinh for Trolox and 4-methoxyphenol increased 11- and 50-fold from pH 2.1 to 12, respectively, which indicate the occurrence of a SPLET-like mechanism. H(D) kinetic isotope effects combined with pH and solvent effects suggest that different types of proton-coupled electron transfer (PCET) mechanisms are involved in water: less electron-rich phenols react at low pH by concerted electron-proton transfer (EPT) to the peroxyl radical, whereas more electron-rich phenols and phenoxide anions react by multi-site EPT in which water acts as proton relay. PMID:27111024

  8. [Erectile rehabilitation after radical prostatectomy].

    PubMed

    Droupy, S; Giuliano, F; Costa, P

    2009-12-01

    The concept of penile rehabilitation involves the procedures designed to improve oxygen delivery the penile erectile tissue to minimized tissue damage during the period of neural recovery following radical prostatectomy. Many basic research studies support the rationale and mechanism of the concept of penile rehabilitation, however they are few clinical studies in the literature that provide a clear medical evidence of its efficacy in patients. Waiting for new data, it is recommended to propose to the patients, following a radical prostatectomy, an active pharmacological penile rehabilitation. This rehabilitation involves counselling with the couple to have regular sexual activities, ideally 1 to 3 times a week. Penile erections could be induced by intracavernosal injections of PGE1 or improved by using PDE5 inhibitors on demand. The results of daily use of PDE5 inhibitor are conflicting and then it cannot be recommended systematically waiting for new data. The rehabilitation could be maintained for about 2 years as results improve with time. PMID:20123519

  9. Mutagenicity of Oxygen Free Radicals

    NASA Astrophysics Data System (ADS)

    Moody, Carmella S.; Hassan, Hosni M.

    1982-05-01

    Paraquat 1,1'-dimethyl-4,4'-bipyridinium dichloride) was used as an intracellular generator of oxygen free radicals and was found to be highly mutagenic for Salmonella typhimurium. It caused both base-pair substitution and frameshift mutations. Paraquat was much more toxic and mutagenic in a simple nutritionally restricted medium than in a rich complex medium. The mutagenicity of paraquat was dependent upon the presence of a supply of both electrons and oxygen. Cells containing high levels of superoxide dismutase (superoxide:superoxide oxidoreductase, EC 1.15.1.1) were more resistant to the toxicity and the mutagenicity of paraquat than were cells containing normal levels of this enzyme. The mutagenicity of paraquat thus appears to be due to its ability to exacerbate the intracellular production of superoxide radicals.

  10. Geoscientists and the Radical Middle

    NASA Astrophysics Data System (ADS)

    Tinker, S. W.

    2015-12-01

    Addressing the great challenges facing society requires industry, government, and academia to work together. I call this overlap space, where compromises are made and real solutions determined, the Radical Middle. Radical because it can appear at times as if the loudest and most publicly influential voices lie outside of the actual solution space, content to provoke but not problem-solve. One key area where geoscientists can play a lead role in the Radical Middle is in the overlap between energy, the environment, and the economy. Globally, fossil fuels still represent 85% of the aggregate energy mix. As existing conventional oil and natural-gas reservoir production continues to slowly decline, unconventional reservoirs, led today by shale and other more expensive resources, will represent a growing part of the oil and gas production mix. Many of these unconventional reservoirs require hydraulic fracturing. The positive economic impact of hydraulic fracturing and associated natural gas and oil production on the United States economy is well documented and undeniable. Yet there are environmental concerns about fracking, and some states and nations have imposed moratoria. This energy-environment-economy space is ideal for leadership from the geosciences. Another such overlap space is the potential for geoscience leadership in relations with China, whose economy and global presence continue to expand. Although China is building major hydropower and natural-gas power plants, as well as nuclear reactors, coal is still king—with the associated environmental impacts. Carbon sequestration—onshore in brine and to enhance oil recovery, as well as offshore—could prove viable. It is vital that educated and objective geoscientists from industry, government, and academia leave their corners and work together in the Radical Middle to educate the public and develop and deliver balanced, economically sensible energy and environmental strategies.