Science.gov

Sample records for butyrate induces cell

  1. Transcriptome characterization by deep-RNA-sequencing underlies the mechanisms of butyrate-induced epigenomic regulation in bovine cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile short-chain fatty acids (SCFAs, acetate, propionate, and butyrate), especially butyrate, alter cell differentiation, proliferation, motility, and in particular, induce cell cycle arrest and apoptosis through its histone deacetylase (HDAC) inhibition activity. Butyrate is a great inducer of ...

  2. Activation of PPAR{gamma} is not involved in butyrate-induced epithelial cell differentiation

    SciTech Connect

    Ulrich, S.; Waechtershaeuser, A.; Loitsch, S.; Knethen, A. von; Bruene, B.; Stein, J. . E-mail: j.stein@em.uni-frankfurt.de

    2005-10-15

    Histone deacetylase-inhibitors affect growth and differentiation of intestinal epithelial cells by inducing expression of several transcription factors, e.g. Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) or vitamin D receptor (VDR). While activation of VDR by butyrate mainly seems to be responsible for cellular differentiation, the activation of PPAR{gamma} in intestinal cells remains to be elucidated. The aim of this study was to determine the role of PPAR{gamma} in butyrate-induced cell growth inhibition and differentiation induction in Caco-2 cells. Treatment with PPAR{gamma} ligands ciglitazone and BADGE (bisphenol A diglycidyl) enhanced butyrate-induced cell growth inhibition in a dose- and time-dependent manner, whereas cell differentiation was unaffected after treatment with PPAR{gamma} ligands rosiglitazone and MCC-555. Experiments were further performed in dominant-negative PPAR{gamma} mutant cells leading to an increase in cell growth whereas butyrate-induced cell differentiation was again unaffected. The present study clearly demonstrated that PPAR{gamma} is involved in butyrate-induced inhibition of cell growth, but seems not to play an essential role in butyrate-induced cell differentiation.

  3. Sodium Butyrate Induces Endoplasmic Reticulum Stress and Autophagy in Colorectal Cells: Implications for Apoptosis

    PubMed Central

    Zhang, Jintao; Yi, Man; Zha, Longying; Chen, Siqiang; Li, Zhijia; Li, Cheng; Gong, Mingxing; Deng, Hong; Chu, Xinwei; Chen, Jiehua; Zhang, Zheqing; Mao, Limei; Sun, Suxia

    2016-01-01

    Purpose Butyrate, a short-chain fatty acid derived from dietary fiber, inhibits proliferation and induces cell death in colorectal cancer cells. However, clinical trials have shown mixed results regarding the anti-tumor activities of butyrate. We have previously shown that sodium butyrate increases endoplasmic reticulum stress by altering intracellular calcium levels, a well-known autophagy trigger. Here, we investigated whether sodium butyrate-induced endoplasmic reticulum stress mediated autophagy, and whether there was crosstalk between autophagy and the sodium butyrate-induced apoptotic response in human colorectal cancer cells. Methods Human colorectal cancer cell lines (HCT-116 and HT-29) were treated with sodium butyrate at concentrations ranging from 0.5–5mM. Cell proliferation was assessed using MTT tetrazolium salt formation. Autophagy induction was confirmed through a combination of Western blotting for associated proteins, acridine orange staining for acidic vesicles, detection of autolysosomes (MDC staining), and electron microscopy. Apoptosis was quantified by flow cytometry using standard annexinV/propidium iodide staining and by assessing PARP-1 cleavage by Western blot. Results Sodium butyrate suppressed colorectal cancer cell proliferation, induced autophagy, and resulted in apoptotic cell death. The induction of autophagy was supported by the accumulation of acidic vesicular organelles and autolysosomes, and the expression of autophagy-associated proteins, including microtubule-associated protein II light chain 3 (LC3-II), beclin-1, and autophagocytosis-associated protein (Atg)3. The autophagy inhibitors 3-methyladenine (3-MA) and chloroquine inhibited sodium butyrate induced autophagy. Furthermore, sodium butyrate treatment markedly enhanced the expression of endoplasmic reticulum stress-associated proteins, including BIP, CHOP, PDI, and IRE-1a. When endoplasmic reticulum stress was inhibited by pharmacological (cycloheximide and mithramycin

  4. MicroRNA (miRNA) expression is regulated by butyrate induced epigenetic modulation of gene expression in bovine cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We present evidence that butyrate induced histone acetylation regulates miRNA expression. MicroRNA expression microarray profiling revealed that 35 miRNA transcripts are significantly (p <0.05) differentially expressed after cells were treated with 10 mM butyrate. Among them, 11 transcripts are dif...

  5. Specific cell cycle synchronization with butyrate and cell cycle analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synchronized cells have been invaluable for many kinds of cell cycle and cell proliferation studies. Butyrate induces cell cycle arrest and apoptosis in MDBK cells. To explore the possibility of using butyrate-blocked cells to obtain synchronized cells, we investigated the property of the cell cyc...

  6. Butyrate produced by commensal bacteria potentiates phorbol esters induced AP-1 response in human intestinal epithelial cells.

    PubMed

    Nepelska, Malgorzata; Cultrone, Antonietta; Béguet-Crespel, Fabienne; Le Roux, Karine; Doré, Joël; Arulampalam, Vermulugesan; Blottière, Hervé M

    2012-01-01

    The human intestine is a balanced ecosystem well suited for bacterial survival, colonization and growth, which has evolved to be beneficial both for the host and the commensal bacteria. Here, we investigated the effect of bacterial metabolites produced by commensal bacteria on AP-1 signaling pathway, which has a plethora of effects on host physiology. Using intestinal epithelial cell lines, HT-29 and Caco-2, stably transfected with AP-1-dependent luciferase reporter gene, we tested the effect of culture supernatant from 49 commensal strains. We observed that several bacteria were able to activate the AP-1 pathway and this was correlated to the amount of short chain fatty acids (SCFAs) produced. Besides being a major source of energy for epithelial cells, SCFAs have been shown to regulate several signaling pathways in these cells. We show that propionate and butyrate are potent activators of the AP-1 pathway, butyrate being the more efficient of the two. We also observed a strong synergistic activation of AP-1 pathway when using butyrate with PMA, a PKC activator. Moreover, butyrate enhanced the PMA-induced expression of c-fos and ERK1/2 phosphorylation, but not p38 and JNK. In conclusion, we showed that SCFAs especially butyrate regulate the AP-1 signaling pathway, a feature that may contribute to the physiological impact of the gut microbiota on the host. Our results provide support for the involvement of butyrate in modulating the action of PKC in colon cancer cells. PMID:23300800

  7. Protective activity of butyrate on hydrogen peroxide-induced DNA damage in isolated human colonocytes and HT29 tumour cells.

    PubMed

    Rosignoli, P; Fabiani, R; De Bartolomeo, A; Spinozzi, F; Agea, E; Pelli, M A; Morozzi, G

    2001-10-01

    Epidemiological studies support the involvement of short-chain fatty acids (SCFA) in colon physiology and the protective role of butyrate on colon carcinogenesis. Among the possible mechanisms by which butyrate may exert its anti-carcinogenicity an antioxidant activity has been recently suggested. We investigated the effects of butyrate and mixtures of SCFA (butyrate, propionate and acetate) on DNA damage induced by H(2)O(2) in isolated human colonocytes and in two human colon tumour cell lines (HT29 and HT29 19A). Human colonocytes were isolated from endoscopically obtained samples and the DNA damage was assessed by the comet assay. H(2)O(2) induced DNA damage in normal colonocytes in a dose-dependent manner which was statistically significant at concentrations over 10 microM. At 15 microM H(2)O(2) DNA damage in HT29 and HT29 19A cells was significantly lower than that observed in normal colonocytes (P < 0.01). Pre-incubation of the cells with physiological concentrations of butyrate (6.25 and 12.5 mM) reduced H(2)O(2) (15 microM) induced damage by 33 and 51% in human colonocytes, 45 and 75% in HT29 and 30 and 80% in HT29 19A, respectively. Treatment of cells with a mixture of 25 mM acetate + 10.4 mM propionate + 6.25 mM butyrate did not induce DNA damage, while a mixture of 50 mM acetate + 20.8 mM propionate + 12.5 mM butyrate was weakly genotoxic only towards normal colonocytes. However, both mixtures were able to reduce the H(2)O(2)-induced DNA damage by about 50% in all cell types. The reported protective effect of butyrate might be important in pathogenetic mechanisms mediated by reactive oxygen species, and aids understanding of the apparent protection toward colorectal cancer exerted by dietary fibres, which enhance the butyrate bioavailability in the colonic mucosa. PMID:11577008

  8. Butyrate attenuates lipopolysaccharide-induced inflammation in intestinal cells and Crohn's mucosa through modulation of antioxidant defense machinery.

    PubMed

    Russo, Ilaria; Luciani, Alessandro; De Cicco, Paola; Troncone, Edoardo; Ciacci, Carolina

    2012-01-01

    Oxidative stress plays an important role in the pathogenesis of inflammatory bowel disease (IBD), including Crohn's disease (CrD). High levels of Reactive Oxygen Species (ROS) induce the activation of the redox-sensitive nuclear transcription factor kappa-B (NF-κB), which in turn triggers the inflammatory mediators. Butyrate decreases pro-inflammatory cytokine expression by the lamina propria mononuclear cells in CrD patients via inhibition of NF-κB activation, but how it reduces inflammation is still unclear. We suggest that butyrate controls ROS mediated NF-κB activation and thus mucosal inflammation in intestinal epithelial cells and in CrD colonic mucosa by triggering intracellular antioxidant defense systems. Intestinal epithelial Caco-2 cells and colonic mucosa from 14 patients with CrD and 12 controls were challenged with or without lipopolysaccaride from Escherichia coli (EC-LPS) in presence or absence of butyrate for 4 and 24 h. The effects of butyrate on oxidative stress, p42/44 MAP kinase phosphorylation, p65-NF-κB activation and mucosal inflammation were investigated by real time PCR, western blot and confocal microscopy. Our results suggest that EC-LPS challenge induces a decrease in Gluthation-S-Transferase-alpha (GSTA1/A2) mRNA levels, protein expression and catalytic activity; enhanced levels of ROS induced by EC-LPS challenge mediates p65-NF-κB activation and inflammatory response in Caco-2 cells and in CrD colonic mucosa. Furthermore butyrate treatment was seen to restore GSTA1/A2 mRNA levels, protein expression and catalytic activity and to control NF-κB activation, COX-2, ICAM-1 and the release of pro-inflammatory cytokine. In conclusion, butyrate rescues the redox machinery and controls the intracellular ROS balance thus switching off EC-LPS induced inflammatory response in intestinal epithelial cells and in CrD colonic mucosa. PMID:22412931

  9. SKW 6.4 cell differentiation induced by interleukin 6 is stimulated by butyrate.

    PubMed

    Kawamoto, T; Gohda, E; Iji, H; Fujiwara, M; Yamamoto, I

    1998-08-01

    We investigated if sodium butyrate (NaBu), an inhibitor of histone deacetylase, and its analogs modulate cytokine-induced differentiation of the human B cell line SKW 6.4 transformed by the Epstein-Barr virus. NaBu markedly enhanced interleukin (IL)-6-induced IgM production with an accompanying increase in the level of histone H4 acetylation and augmented IgM production induced by IL-4 and phorbol 12-myristate 13-acetate. From both the enhancing effect of cell differentiation and the effect of inducing histone hyperacetylation in SKW 6.4 cells, other histone deacetylase inhibitors and NaBu analogs were divided into three groups: those that increased both IL-6-induced antibody production and histone acetylation, those that caused histone hyperacetylation, but failed to induce the differentiation, and those that were ineffective at inducing either activity. No agent that enhanced IgM production without inducing histone hyperacetylation was found among the inhibitors and analogs we tested. These results suggest that the increase in the histone acetylation is necessary, but it is insufficient to augment differentiation of SKW 6.4 cells. Thus another activity of NaBu in addition to the inhibition of histone deacetylase may be involved in promoting IL-6-induced differentiation. Our results also suggest that fatty acids that have a straight chain of four carbon atoms or are branched with four and five carbon atoms, which contain no hydrophilic substituents, or those with similar structures, show this other activity. PMID:9826026

  10. ChIp-seq of bovine cells (MDBK) to study butyrate-induced histone modification with 10 datasets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Next-generation sequencing was combined with chromatin immunoprecipitation (ChIP) technology to analyze histone modification (acetylation) induced by butyrate and to map the epigenomic landscape of normal histone H3, H4 in rumen cells of the cow. Ten variants of histone H3 and H4 modification were m...

  11. Butyrate-induced proapoptotic and antiangiogenic pathways in EAT cells require activation of CAD and downregulation of VEGF

    SciTech Connect

    Belakavadi, Madesh . E-mail: belakama@umdnj.edu; Prabhakar, B.T.; Salimath, Bharathi P.

    2005-10-07

    Butyrate, a short-chain fatty acid produced in the colon, induces cell cycle arrest, differentiation, and apoptosis in transformed cell lines. In this report, we study the effects of butyrate (BuA) on the growth of Ehrlich ascites tumor (EAT) cells in vivo. BuA, when injected intraperitoneally (i.p) into mice, inhibited proliferation of EAT cells. Further, induction of apoptosis in EAT cells was monitored by nuclear condensation, annexin-V staining, DNA fragmentation, and translocation of caspase-activated DNase into nucleus upon BuA-treatment. Ac-DEVD-CHO, a caspase-3 inhibitor, completely inhibited BuA-induced apoptosis, indicating that activation of caspase-3 mediates the apoptotic pathway in EAT cells. The proapoptotic effect of BuA also reflects on the antiangiogenic pathway in EAT cells. The antiangiogenic effect of BuA in vivo was demonstrated by the downregulation of the secretion of VEGF in EAT cells. CD31 immunohistochemical staining of peritoneum sections clearly indicated a potential angioinhibitory effect of BuA in EAT cells. These results suggest that BuA, besides regulating other fundamental cellular processes, is able to modulate the expression/secretion of the key angiogenic growth factor VEGF in EAT cells.

  12. Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes.

    PubMed

    Mali, Prashant; Chou, Bin-Kuan; Yen, Jonathan; Ye, Zhaohui; Zou, Jizhong; Dowey, Sarah; Brodsky, Robert A; Ohm, Joyce E; Yu, Wayne; Baylin, Stephen B; Yusa, Kosuke; Bradley, Allan; Meyers, David J; Mukherjee, Chandrani; Cole, Philip A; Cheng, Linzhao

    2010-04-01

    We report here that butyrate, a naturally occurring fatty acid commonly used as a nutritional supplement and differentiation agent, greatly enhances the efficiency of induced pluripotent stem (iPS) cell derivation from human adult or fetal fibroblasts. After transient butyrate treatment, the iPS cell derivation efficiency is enhanced by 15- to 51-fold using either retroviral or piggyBac transposon vectors expressing 4 to 5 reprogramming genes. Butyrate stimulation is more remarkable (>100- to 200-fold) on reprogramming in the absence of either KLF4 or MYC transgene. Butyrate treatment did not negatively affect properties of iPS cell lines established by either 3 or 4 retroviral vectors or a single piggyBac DNA transposon vector. These characterized iPS cell lines, including those derived from an adult patient with sickle cell disease by either the piggyBac or retroviral vectors, show normal karyotypes and pluripotency. To gain insights into the underlying mechanisms of butyrate stimulation, we conducted genome-wide gene expression and promoter DNA methylation microarrays and other epigenetic analyses on established iPS cells and cells from intermediate stages of the reprogramming process. By days 6 to 12 during reprogramming, butyrate treatment enhanced histone H3 acetylation, promoter DNA demethylation, and the expression of endogenous pluripotency-associated genes, including DPPA2, whose overexpression partially substitutes for butyrate stimulation. Thus, butyrate as a cell permeable small molecule provides a simple tool to further investigate molecular mechanisms of cellular reprogramming. Moreover, butyrate stimulation provides an efficient method for reprogramming various human adult somatic cells, including cells from patients that are more refractory to reprogramming. PMID:20201064

  13. Butyrate Induced Cell Cycle Arrest in Bovine Cells through Targeting Gene Expression relevance to DNA Replication Apparatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using both real-time RT-PCR and Western blot analysis in bovine kidney epithelial cells, we systematically investigated the gene expression relevance to DNA replication apparatus targeted by butyrate. The real-time PCR and Western blot data generally confirmed the microarray analysis. From the quan...

  14. Butyrate induces profound changes in gene expression related to multiple signal pathways in bovine kidney epithelial cells

    PubMed Central

    Li, Robert W; Li, CongJun

    2006-01-01

    Background Global gene expression profiles of bovine kidney epithelial cells regulated by sodium butyrate were investigated with high-density oligonucleotide microarrays. The bovine microarray with 86,191 distinct 60mer oligonucleotides, each with 4 replicates, was designed and produced with Maskless Array Synthesizer technology. These oligonucleotides represent approximately 45,383 unique cattle sequences. Results 450 genes significantly regulated by butyrate with a median False Discovery Rate (FDR) = 0 % were identified. The majority of these genes were repressed by butyrate and associated with cell cycle control. The expression levels of 30 selected genes identified by the microarray were confirmed using real-time PCR. The results from real-time PCR positively correlated (R = 0.867) with the results from the microarray. Conclusion This study presented the genes related to multiple signal pathways such as cell cycle control and apoptosis. The profound changes in gene expression elucidate the molecular basis for the pleiotropic effects of butyrate on biological processes. These findings enable better recognition of the full range of beneficial roles butyrate may play during cattle energy metabolism, cell growth and proliferation, and possibly in fighting gastrointestinal pathogens. PMID:16972989

  15. Pathways analysis identifies perturbation of genetic networks induced by butyrate in a bovine kidney epithelial cell line

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ruminant species have evolved to metabolize the short-chain volatile fatty acids (VFA), acetate, propionate, and butyrate to fulfill up to 70% of their nutrient energy requirements. The inherent VFA dependence of ruminant cells was exploited in order to add a level of increased sensitivity to the s...

  16. Zinc Sensing Receptor Signaling, Mediated by GPR39, Reduces Butyrate-Induced Cell Death in HT29 Colonocytes via Upregulation of Clusterin

    PubMed Central

    Cohen, Limor; Azriel-Tamir, Hagit; Arotsker, Natan; Sekler, Israel; Hershfinkel, Michal

    2012-01-01

    Zinc enhances epithelial proliferation, protects the digestive epithelial layer and has profound antiulcerative and antidiarrheal roles in the colon. Despite the clinical significance of this ion, the mechanisms linking zinc to these cellular processes are poorly understood. We have previously identified an extracellular Zn2+ sensing G-protein coupled receptor (ZnR) that activates Ca2+ signaling in colonocytes, but its molecular identity as well as its effects on colonocytes' survival remained elusive. Here, we show that Zn2+, by activation of the ZnR, protects HT29 colonocytes from butyrate induced cell death. Silencing of the G-protein coupled receptor GPR39 expression abolished ZnR-dependent Ca2+ release and Zn2+-dependent survival of butyrate-treated colonocytes. Importantly, GPR39 also mediated ZnR-dependent upregulation of Na+/H+ exchange activity as this activity was found in native colon tissue but not in tissue obtained from GPR39 knock-out mice. Although ZnR-dependent upregulation of Na+/H+ exchange reduced the cellular acid load induced by butyrate, it did not rescue HT29 cells from butyrate induced cell death. ZnR/GPR39 activation however, increased the expression of the anti-apoptotic protein clusterin in butyrate-treated cells. Furthermore, silencing of clusterin abolished the Zn2+-dependent survival of HT29 cells. Altogether, our results demonstrate that extracellular Zn2+, acting through ZnR, regulates intracellular pH and clusterin expression thereby enhancing survival of HT29 colonocytes. Moreover, we identify GPR39 as the molecular moiety of ZnR in HT29 and native colonocytes. PMID:22545109

  17. Green tea phenolics inhibit butyrate-induced differentiation of colon cancer cells by interacting with monocarboxylate transporter 1

    PubMed Central

    Sánchez-Tena, S.; Vizán, P.; Dudeja, P.K.; Centelles, J.J.; Cascante, M.

    2016-01-01

    Diet has a significant impact on colorectal cancer and both dietary fiber and plant-derived compounds have been independently shown to be inversely related to colon cancer risk. Butyrate (NaB), one of the principal products of dietary fiber fermentation, induces differentiation of colon cancer cell lines by inhibiting histone deacetylases (HDACs). On the other hand, (−)-epicatechin (EC) and (−)-epigallocatechin gallate (EGCG), two abundant phenolic compounds of green tea, have been shown to exhibit antitumoral properties. In this study we used colon cancer cell lines to study the cellular and molecular events that take place during co-treatment with NaB, EC and EGCG. We found that (i) polyphenols EC and EGCG fail to induce differentiation of colon adenocarcinoma cell lines; (ii) polyphenols EC and EGCG reduce NaB-induced differentiation; (iii) the effect of the polyphenols is specific for NaB, since differentiation induced by other agents, such as trichostatin A (TSA), was unaltered upon EC and EGCG treatment, and (iv) is independent of the HDAC inhibitory activity of NaB. Also, (v) polyphenols partially reduce cellular NaB; and (vi) on a molecular level, reduction of cellular NaB uptake by polyphenols is achieved by impairing the capacity of NaB to relocalize its own transporter (monocarboxylate transporter 1, MCT1) in the plasma membrane. Our findings suggest that beneficial effects of NaB on colorectal cancer may be reduced by green tea phenolic supplementation. This valuable information should be of assistance in choosing a rational design for more effective diet-driven therapeutic interventions in the prevention or treatment of colorectal cancer. PMID:23994611

  18. Genome-wide ChIP-seq mapping and analysis of butyrate-induced H3K9 and H3K27 acetylation and epigenomic landscapes alteration in bovine cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile short-chain fatty acids (VFAs, acetate, propionate, and butyrate) are nutrients especially critical to ruminants. Beyond their nutritional impact, clear evidence is beginning to link modifications in chromatin structure induced by butyrate to cell cycle progression, DNA replication and over...

  19. Butyrate-induced changes in nuclease sensitivity of chromatin cannot be correlated with transcriptional activation

    SciTech Connect

    Birren, B.W.; Taplitz, S.J.; Herschman, H.R.

    1987-11-01

    The authors examined in the H4IIE rat heptoma cell line the relationship between butyrate-induced changes in the nuclease sensitivity of chromatin and changes in transcriptional activity of specific genes. The butyrate-inducible metallothionein I (MT-I) gene underwent a dramatic increase in DNase I sensitivity after 3 h of butyrate treatment. However, genes not transcribed in H4IIE cells underwent the same changes in DNase I sensitivity. Thus, butyrate-induced increases in DNase I sensitivity are not sufficient for the transcriptional activation of a gene. Butyrate treatment has also been reported to alter the sensitivity of sequence to micrococcal nuclease (MNase) in a manner reflecting their tissue-specific expression. Butyrate exposure caused increased digestion of the MT-I gene by MNase. However, butyrate-induced MNase sensitivity also occurred for genes which are neither transcribed in untreated cells nor butyrate inducible. Moreover, cadmium, a potent transcriptional activator of the MT-I gene, does not alter the sensitivity of the MT-I gene to MNase. Thus, the butyrate-induced alterations in MNase sensitivity are neither sufficient for, necessary for, nor indicative of transcriptional activation.

  20. Transcriptomic Sequencing Reveals a Set of Unique Genes Activated by Butyrate-Induced Histone Modification.

    PubMed

    Li, Cong-Jun; Li, Robert W; Baldwin, Ransom L; Blomberg, Le Ann; Wu, Sitao; Li, Weizhong

    2016-01-01

    Butyrate is a nutritional element with strong epigenetic regulatory activity as a histone deacetylase inhibitor. Based on the analysis of differentially expressed genes in the bovine epithelial cells using RNA sequencing technology, a set of unique genes that are activated only after butyrate treatment were revealed. A complementary bioinformatics analysis of the functional category, pathway, and integrated network, using Ingenuity Pathways Analysis, indicated that these genes activated by butyrate treatment are related to major cellular functions, including cell morphological changes, cell cycle arrest, and apoptosis. Our results offered insight into the butyrate-induced transcriptomic changes and will accelerate our discerning of the molecular fundamentals of epigenomic regulation. PMID:26819550

  1. Transcriptomic Sequencing Reveals a Set of Unique Genes Activated by Butyrate-Induced Histone Modification

    PubMed Central

    Li, Cong-Jun; Li, Robert W.; Baldwin, Ransom L.; Blomberg, Le Ann; Wu, Sitao; Li, Weizhong

    2016-01-01

    Butyrate is a nutritional element with strong epigenetic regulatory activity as a histone deacetylase inhibitor. Based on the analysis of differentially expressed genes in the bovine epithelial cells using RNA sequencing technology, a set of unique genes that are activated only after butyrate treatment were revealed. A complementary bioinformatics analysis of the functional category, pathway, and integrated network, using Ingenuity Pathways Analysis, indicated that these genes activated by butyrate treatment are related to major cellular functions, including cell morphological changes, cell cycle arrest, and apoptosis. Our results offered insight into the butyrate-induced transcriptomic changes and will accelerate our discerning of the molecular fundamentals of epigenomic regulation. PMID:26819550

  2. Bioinformatic dissecting of TP53 regulation pathway underlying butyrate-induced histone modification in epigenetic regulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butyrate affects cell proliferation, differentiation and motility. Butyrate inhibits histone deacetylase (HDAC) activities and induces cell cycle arrest and apoptosis. TP53 is one of the most active upstream regulators discovered by IPA in our RNA sequencing data set. The TP53 signaling pathway pl...

  3. Transcriptomic sequencing reveals a set of unique genes activated by butyrate-induced histone modification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butyrate is a nutritional element with strong epigenetic regulatory activity as an inhibitor of histone deacetylases (HDACs). Based on the analysis of differentially expressed genes induced by butyrate in the bovine epithelial cell using deep RNA-sequencing technology (RNA-seq), a set of unique gen...

  4. Acetylcarnitine potentiates the anticarcinogenic effects of butyrate on SW480 colon cancer cells.

    PubMed

    Elimrani, Ihsan; Dionne, Serge; Saragosti, Dan; Qureshi, Ijaz; Levy, Emile; Delvin, Edgar; Seidman, Ernest G

    2015-08-01

    Butyrate is a potent anticarcinogenic compound against colon cancer cells in vitro. However, its rapid metabolism is hypothesized to limit its anticancer benefits in colonic epithelial cells. Carnitine, a potent antioxidant, is essential to fatty acid oxidation. The aims of this study were to identify a colon cancer cell line capable of transporting carnitine. We evaluated the effect of carnitine and acetylcarnitine (ALCAR) on the response of colon carcinoma cells to butyrate. We explored the mechanisms underlying the anticarcinogenic benefit. SW480 cells were incubated with butyrate ± carnitine or ALCAR. Carnitine uptake was assessed using [3H]-carnitine. Apoptosis and cell viability were assessed using an ELISA kit and flow cytometry, respectively. Modulation of proteins implicated in carnitine transport, cell death and proliferation were assessed by western blotting. SW480 cells were found to transport carnitine primarily via the OCTN2 transporter. Butyrate induced SW480 cell death occurred at concentrations of 2 mM and higher. Cells treated with the combination of butyrate (3 mM) with ALCAR exhibited increased mortality. The addition of carnitine or ALCAR also increased butyrate-induced apoptosis. Butyrate increased levels of cyclin D1, p21 and PARP p86, but decreased Bcl-XL and survivin levels. Butyrate also downregulated dephospho-β-catenin and increased acetylated histone H4 levels. Butyrate and carnitine decreased survivin levels by ≥25%. ALCAR independently induced a 20% decrease in p21. These results demonstrate that butyrate and ALCAR are potentially beneficial anticarcinogenic nutrients that inhibit colon cancer cell survival in vitro. The combination of both agents may have superior anticarcinogenic properties than butyrate alone. PMID:26043725

  5. Butyrate enhances antibacterial effects while suppressing other features of alternative activation in IL-4-induced macrophages.

    PubMed

    Fernando, Maria R; Saxena, Alpana; Reyes, José-Luis; McKay, Derek M

    2016-05-15

    The short-chain fatty acid butyrate is produced by fermentation of dietary fiber by the intestinal microbiota; butyrate is the primary energy source of colonocytes and has immunomodulatory effects. Having shown that macrophages differentiated with IL-4 [M(IL-4)s] can suppress colitis, we hypothesized that butyrate would reinforce an M(IL-4) phenotype. Here, we show that in the presence of butyrate M(IL-4)s display reduced expression of their hallmark markers Arg1 and Ym1 and significantly suppressed LPS-induced nitric oxide, IL-12p40, and IL-10 production. Butyrate treatment likely altered the M(IL-4) phenotype via inhibition of histone deacetylation. Functionally, M(IL-4)s treated with butyrate showed increased phagocytosis and killing of bacteria, compared with M(IL-4) and this was not accompanied by enhanced proinflammatory cytokine production. Culture of regulatory T cells with M(IL-4)s and M(IL-4 + butyrate)s revealed that both macrophage subsets suppressed expression of the regulatory T-cell marker Foxp3. However, Tregs cocultured with M(IL-4 + butyrate) produced less IL-17A than Tregs cocultured with M(IL-4). These data illustrate the importance of butyrate, a microbial-derived metabolite, in the regulation of gut immunity: the demonstration that butyrate promotes phagocytosis in M(IL-4)s that can limit T-cell production of IL-17A reveals novel aspects of bacterial-host interaction in the regulation of intestinal homeostasis. PMID:27012776

  6. Sensitization of human colon cancer cells to sodium butyrate-induced apoptosis by modulation of sphingosine kinase 2 and protein kinase D

    SciTech Connect

    Xiao, Min; Liu, Yungang; Zou, Fei

    2012-01-01

    Sphingosine kinases (SphKs) have been recognized as important proteins regulating cell proliferation and apoptosis. Of the two isoforms of SphK (SphK1 and SphK2), little is known about the functions of SphK2. Sodium butyrate (NaBT) has been established as a promising chemotherapeutic agent, but the precise mechanism for its effects is unknown. In this study, we investigated the role of SphK2 in NaBT-induced apoptosis of HCT116 colon cancer cells. The results indicated that following NaBT treatment SphK2 was translocated from the nucleus to the cytoplasm, leading to its accumulation in the cytoplasm; in the meantime, only mild apoptosis occurred. However, downregulation of SphK2 resulted in sensitized apoptosis, and overexpression of SphK2 led to even lighter apoptosis; these strongly indicate an inhibitory role of SphK2 in cell apoptosis induced by NaBT. After knocking down protein kinase D (PKD), another protein reported to be critical in cell proliferation/apoptosis process, by using siRNA, blockage of cytoplasmic accumulation of SphK2 and sensitized apoptosis following NaBT treatment were observed. The present study suggests that PKD and SphK2 may form a mechanism for the resistance of cancer cells to tumor chemotherapies, such as HCT116 colon cancer cells to NaBT, and these two proteins may become molecular targets for designation of new tumor-therapeutic drugs. -- Highlights: Black-Right-Pointing-Pointer In the present study sodium butyrate (10 mM) induced mild apoptosis of cancer cells. Black-Right-Pointing-Pointer The apoptosis was negatively regulated by cytoplasmic Sphingosine Kinase 2 (SphK2). Black-Right-Pointing-Pointer Translocation of SphK2 from nucleus to cytoplasm was mediated by protein kinase D. Black-Right-Pointing-Pointer Downregulation of SphK2 or protein kinase D leads to sensitized cell apoptosis.

  7. Short-chain fatty acids and colon cancer cells: the vitamin D receptor--butyrate connection.

    PubMed

    Gaschott, Tanja; Stein, Jürgen

    2003-01-01

    Butyrate and its prodrug tributyrin, as well as 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3), have important physiological effects on proliferation and differentiation in a variety of malignant cells. The aim of this study was to elucidate the role of the vitamin D receptor (VDR) in butyrate-induced cell differentiation and cell cycle arrest in Caco-2 cells, a human colon cancer cell line. Cell differentiation was evaluated by analyzing the activity of alkaline phosphatase (AP). Protein of VDR, cyclins, cyclin-dependent kinases (cdks) and of cdk inhibitors was quantified by Western blot analysis, VDR-mRNA by PCR. Pre- and postconfluent cells were assessed for VDR binding activity. Cell cycle was analyzed by flow cytometry. Tributyrin significantly increased VDR-mRNA level (250% vs. control) and VDR binding activity. Butyrate also enhanced VDR protein content in the nucleus in a time- and dose-dependent manner and more potently than other short-chain fatty acids of a related structure. Both butyrate (640% vs. control) and 1,25-(OH)2D3 (350% vs. control) significantly stimulated differentiation, whereas combined treatment with butyrate and 1,25-(OH)2D3 resulted in a synergistic amplification of AP activity (1400% vs. control). In the presence of the VDR antagonist ZK 191732, butyrate-induced differentiation was completely abolished (150% vs. control). While butyrate alone increased p21Waf1/Cip1 expression and down-regulated cdk 6 and cyclin A, and combined exposure with 1,25-(OH)2D3 resulted in a synergistic enhancement of butyrate-induced changes, expressions did not change from control level after treatment with butyrate and ZK 191732. G1 cell cycle arrest induced by butyrate was also abolished after combined treatment with butyrate and ZK 191732. In conclusion, differentiation and cell cycle arrest of Caco-2 cells induced by butyrate are mediated by up-regulation of VDR, followed by a stimulation of the negative cell cycle regulator p21Waf1/Cip1 and by a down

  8. Butyrate regulates the expression of inflammatory and chemotactic cytokines in human acute leukemic cells during apoptosis.

    PubMed

    Pulliam, Stephanie R; Pellom, Samuel T; Shanker, Anil; Adunyah, Samuel E

    2016-08-01

    Butyrate is a histone deacetylase inhibitor implicated in many studies as a potential therapy for various forms of cancer. High concentrations of butyrate (>1.5mM) have been shown to activate apoptosis in several cancer cell lines including prostate, breast, and leukemia. Butyrate is also known to influence multiple signaling pathways that are mediators of cytokine production. The purpose of this study was to evaluate the impact of high concentrations of butyrate on the cancer microenvironment vis-à-vis apoptosis, cellular migration, and capacity to modulate cytokine expression in cancer cells. The results indicate that high concentrations of butyrate induced a 2-fold activation of caspase-3 and reduced cell viability by 60% in U937 leukemia cells. Within 24h, butyrate significantly decreased the levels of chemokines CCL2 and CCL5 in HL-60 and U937 cells, and decreased CCL5 in THP-1 leukemia cells. Differential effects were observed in treatments with valproic acid for CCL2 and CCL5 indicating butyrate-specificity. Many of the biological effects examined in this study are linked to activation of the AKT and MAPK signaling pathways; therefore, we investigated whether butyrate alters the levels of phosphorylated forms of these signaling proteins and how it correlated with the expression of chemokines. The results show that butyrate may partially regulate CCL5 production via p38 MAPK. The decrease in p-ERK1/2 and p-AKT levels correlated with the decrease in CCL2 production. These data suggest that while promoting apoptosis, butyrate has the potential to influence the cancer microenvironment by inducing differential expression of cytokines. PMID:27253488

  9. Butyrate-mediated acquisition of chemoresistance by human colon cancer cells.

    PubMed

    Kang, Hyang Ri; Choi, Hyeon Gyeom; Jeon, Chae Kyung; Lim, Soo-Jeong; Kim, So Hee

    2016-08-01

    Butyrate is a short-chain fatty acid produced by the intestinal microflora and it not only induces apoptosis but also inhibits the proliferation of cancer cells. Recently, it has been reported that butyrate may cause resistance in colon cancer cells. Therefore, we investigated the effects of increased resistance to butyrate in HCT116 colon cancer cells. We established HCT116 cells resistant to butyrate (HCT116/BR) by treating HCT116 parental cells (HCT116/PT) with increasing concentrations of butyrate to a maximum of 1.6 mM for 3 months. The butyrate concentrations that inhibited cell growth by 50% (IC50) were 0.508 and 5.50 mM in HCT116/PT and HCT116/BR cells. The values after treatment with paclitaxel, 5-fluorouracil (5-FU), doxorubicin and trichostatin A (TSA) were 2.42, 2.36, 4.31 and 11.3-fold higher, respectively, in HCT116/BR cells compared with HCT116/PT cells. The protein expression of drug efflux pumps, such as P-glycoprotein (P-gp), breast cancer-resistant protein (BCRP) and the multidrug resistance associated protein 1 (MRP1), did not differ between HCT116/PT and HCT116/BR cells. The expression level of the anti-apoptotic Bcl-xL protein was increased while those of pro-apoptotic Bax and Bim proteins were reduced in HCT116/BR cells. There were no significant differences in cell motility and invasion. This study suggests that exposure of colon cancer cells to butyrate results in development of resistance to butyrate, which may play a role in the acquisition of chemoresistance in colon cancer. PMID:27277338

  10. Butyrate downregulates α2β1 integrin: a possible role in the induction of apoptosis in colorectal cancer cell lines

    PubMed Central

    Buda, A; Qualtrough, D; Jepson, M A; Martines, D; Paraskeva, C; Pignatelli, M

    2003-01-01

    Background: Integrins mediate cell matrix adhesion and regulate cell growth and survival. In colonic epithelial cells, α2β1 integrin controls glandular differentiation and proliferation. Butyrate stimulates differentiation and induces apoptosis in vitro. Aims: We investigated whether butyrate induction of apoptosis was associated with perturbation of integrin mediated cell matrix adhesion. Methods: Three colonic cancer cell lines (SW1222, SW620, LS174T) were studied. Adhesion to extracellular matrix proteins, expression of α2β1 integrin, and apoptosis were studied in adherent cells after treatment with 4 mM butyrate. Results: Butyrate decreased the attachment to type I collagen in SW620 cells and type I and IV collagen in LS174T cells. The decreased cell attachment was associated with downregulation of α2β1 integrin and increased apoptosis in adherent cells. No changes in α2β1 expression or matrix adhesion were seen in SW1222 cells, which were also found to be less sensitive to butyrate induction of apoptosis. Downregulation of α2β1 integrin preceded the detection of apoptosis. Conclusion: Apoptosis induced by butyrate is associated with downregulation of expression and functional activity of α2β1 integrin. Perturbation of cell matrix adhesion may be a novel mechanism by which butyrate induces apoptosis in colorectal cancer cells. PMID:12692060

  11. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells

    SciTech Connect

    Chiaro, Christopher; Lazarova, Darina L.; Bordonaro, Michael

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer We investigate mechanisms responsible for butyrate resistance in colon cancer cells. Black-Right-Pointing-Pointer Tcf3 modulates butyrate's effects on Wnt activity and cell growth in resistant cells. Black-Right-Pointing-Pointer Tcf3 modulation of butyrate's effects differ by cell context. Black-Right-Pointing-Pointer Cell cycle factors are overexpressed in the resistant cells. Black-Right-Pointing-Pointer Reversal of altered gene expression can enhance the anti-cancer effects of butyrate. -- Abstract: Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G{sub 1} to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that prevent or

  12. Mechanism of Butyrate Stimulation of Triglyceride Storage and Adipokine Expression during Adipogenic Differentiation of Porcine Stromovascular Cells.

    PubMed

    Yan, Hui; Ajuwon, Kolapo M

    2015-01-01

    Short chain fatty acids (SCFA), products of microbial fermentation of dietary fiber, exert multiple metabolic effects in cells. Previously, we had demonstrated that soluble fiber influenced fat mass accumulation, gut microbial community structure and SCFA production in pigs. The current study was designed to identify effects of SCFA treatment during adipogenic differentiation of porcine stromovascular cells on lipid metabolism and adipokine expression. Differentiating cells were treated with varying concentrations of butyrate. Results show that butyrate treatment enhanced adipogenesis and lipid accumulation, perhaps through upregulation of glucose uptake and de novo lipogenesis and other mechanisms that include induction of SREBP-1c, C/EBPα/β, GLUT4, LPL, PPARγ, GPAT4, DGAT1 and DGAT2 expression. In addition, butyrate induced adiponectin expression, resulting in activation of downstream target genes, such as AMPK and AKT. Activation of AMPK by butyrate led to phosphorylation of ACC. Although increased ACO gene expression was seen with butyrate treatment, experiments with the peroxisomal fatty acid inhibitor, thioridazine, suggest that butyrate may have an inhibitory effect on peroxisomal fatty acid oxidation. Our studies also provide evidence that butyrate may inhibit lipolysis, perhaps in an FFAR3-dependent manner. Therefore, this study presents a novel paradigm for butyrate action in adipocytes and shows that adipocytes are capable of utilizing butyrate, leading to increased expression of adiponectin for enhanced glucose uptake and improved insulin sensitivity. PMID:26713737

  13. Alternate splicing regulated by butyrate in the bovine epithelial cell

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a signaling molecule and a potent inhibitor of histone deacetylases (HADCs), butyrate exerts its impacts on a broad range of biological processes, such as apoptosis and cell proliferation, in addition to its critical role in energy metabolism in ruminants. In this study, we examined the effect of...

  14. Butyrate modulates bacterial adherence on LS174T human colorectal cells by stimulating mucin secretion and MAPK signaling pathway

    PubMed Central

    Jung, Tae-Hwan; Park, Jeong Hyeon; Han, Kyoung-Sik

    2015-01-01

    BACKGROUND/OBJECTIVES Fermentation of dietary fiber results in production of various short chain fatty acids in the colon. In particular, butyrate is reported to regulate the physical and functional integrity of the normal colonic mucosa by altering mucin gene expression or the number of goblet cells. The objective of this study was to investigate whether butyrate modulates mucin secretion in LS174T human colorectal cells, thereby influencing the adhesion of probiotics such as Lactobacillus and Bifidobacterium strains and subsequently inhibiting pathogenic bacteria such as E. coli. In addition, possible signaling pathways involved in mucin gene regulation induced by butyrate treatment were also investigated. MATERIALS/METHODS Mucin protein content assay and periodic acid-Schiff (PAS) staining were performed in LS174T cells treated with butyrate at various concentrations. Effects of butyrate on the ability of probiotics to adhere to LS174T cells and their competition with E. coli strains were examined. Real time polymerase chain reaction for mucin gene expression and Taqman array 96-well fast plate-based pathway analysis were performed on butyrate-treated LS174T cells. RESULTS Treatment with butyrate resulted in a dose-dependent increase in mucin protein contents in LS174T cells with peak effects at 6 or 9 mM, which was further confirmed by PAS staining. Increase in mucin protein contents resulted in elevated adherence of probiotics, which subsequently reduced the adherent ability of E. coli. Treatment with butyrate also increased transcriptional levels of MUC3, MUC4, and MUC12, which was accompanied by higher gene expressions of signaling kinases and transcription factors involved in mitogen-activated protein kinase (MAPK) signaling pathways. CONCLUSIONS Based on our results, butyrate is an effective regulator of modulation of mucin protein production at the transcriptional and translational levels, resulting in changes in the adherence of gut microflora. Butyrate

  15. Comparison of the butyrate effects on neurotransmitter receptors in neurohybrids NG108-15 and NCB-20 cells

    SciTech Connect

    Zhu, X.Z.; Chuang, D.M.

    1987-08-31

    The authors previous study demonstrated that long term treatment of NCB-20 cells with sodium butyrate resulted in a marked increase in the density of delta-opioid receptors with a much lesser effect on muscarinic cholinergic and no effect on alpha/sub 2/-adrenergic receptors. In the present study the authors investigated the effect of sodium butyrate on these three types of receptors in NG108-15 cells whose neuroblastoma parent is the same as that of NCB-20 cells. Long term treatment of NG108-15 cells with sodium butyrate (0.5 mM) induced a 2-fold increase in the density of the specific binding of /sup 3/H-clonidine. A comparable increase in the number of binding sites was detected when /sup 3/H-yohimbine was used as the receptor ligand. The butyrate-induced increase in the alpha/sub 2/-adrenergic receptor binding could be totally abolished by treatment with a protein synthesis inhibitor, cycloheximide, suggesting that synthesis of receptor protein is involved. The same butyrate treatment had no significant effect on opioid and muscarinic cholinergic receptor bindings. Thus, butyrate effects on the expression of these three types of receptors in NG108-15 and NCB-20 cells are dramatically different. These data suggest that induction by butyrate of neurotransmitter receptors requires concerted action of genetic factors of both parents of the neurohybrids. 22 references, 2 figures, 2 tables.

  16. Effects of 5-azacytidine and butyrate on differentiation and apoptosis of hepatic cancer cell lines.

    PubMed Central

    Wang, X M; Wang, X; Li, J; Evers, B M

    1998-01-01

    OBJECTIVE: To determine the cellular effects of 5-azacytidine (5-azaC) and sodium butyrate on two human liver cancers, HepG2 and Hep3B. SUMMARY BACKGROUND DATA: Primary liver cancer is a significant health problem; treatment options are limited and prognosis is poor. Recent studies have focused on the role that programmed cell death (i.e., apoptosis) plays in both normal and neoplastic growth: certain genes can either suppress (e.g., Bcl-2, Bcl-xL) or promote (e.g., Bik, Bax, Bak) apoptosis. The identification of novel agents targeted to specific molecular pathways may be beneficial in the treatment of this disease. METHODS: Human liver cancer cell lines HepG2 and Hep3B were treated with 5-azaC alone, butyrate alone, or 5-azaC and butyrate. Morphologic and proliferative changes were assessed by light microscopy and 5-bromo-2'-deoxyuridine staining; flow cytometry was used to determine cell cycle characteristics. Apoptosis was assessed by DNA laddering and the in situ apoptosis detection assay using the TdT-mediated dUTP nick end labeling method. In addition, total RNA and protein were analyzed by ribonuclease protection and Western blot, respectively, to assess changes in the expression of apoptosis-related genes. RESULTS: Treatment with either 5-azaC or butyrate inhibited cell growth and induced apoptosis in both HepG2 and Hep3B cells; the combination of 5-azaC and butyrate was not more effective than either agent alone. 5-azaC alone resulted in a more differentiated-appearing morphology and G2 cell cycle arrest in both cell lines. Treatment with 5-azaC or butyrate affected the expression levels of proteins of the Bcl-2 family. CONCLUSIONS: Both 5-azaC and butyrate induced apoptosis in the HepG2 and Hep3B liver cancer cells; 5-azaC treatment alone produced G2 arrest in both cell lines. Proteins of the Bcl-2 family may play a role in the cellular changes that occur with treatment, but further studies are required to define this potential role. Products of the

  17. Involvement of the Antioxidant Effect and Anti-inflammatory Response in Butyrate-Inhibited Vascular Smooth Muscle Cell Proliferation

    PubMed Central

    Mathew, Omana P.; Ranganna, Kasturi; Milton, Shirlette G.

    2014-01-01

    Epigenetic mechanisms by altering the expression and, in turn, functions of target genes have potential to modify cellular processes that are characteristics of atherosclerosis, including inflammation, proliferation, migration and apoptosis/cell death. Butyrate, a natural epigenetic modifier and a histone deacetylase inhibitor (HDACi), is an inhibitor of vascular smooth muscle cell (VSMC) proliferation, a critical event in atherogenesis. Here, we examined whether glutathione peroxidases (GPxs), a family of antioxidant enzymes, are modulated by butyrate, contributing to its antiproliferation action on VSMC through the regulation of the inflammatory response by using western blotting, immunostaining methods and activity assay. Treatment of VSMC with butyrate not only upregulates glutathione peroxidase (GPx) 3 and GPx4, but also increases the overall catalytic activity of GPx supporting involvement of antioxidant effect in butyrate arrested VSMC proliferation. Moreover, analysis of the redox-sensitive NF-κB transcription factor system, the target of GPx, reveals that butyrate causes downregulation of IKKα, IKKβ, IkBα and NF-κBp65 expression and prevents NF-κBp65 phosphorylation at serine536 causing inhibition of the expression NF-κB target inflammatory genes, including inducible nitric oxide synthase, VCAM-1 and cyclooxygenase-2. Overall, these observations suggest a link between the antioxidant effect and anti-inflammatory response in butyrate-arrested VSMC proliferation, accentuating the atheroprotective and therapeutic potential of natural products, like butyrate, in vascular proliferative diseases. PMID:25390157

  18. Control of placental alkaline phosphatase gene expression in HeLa cells: induction of synthesis by prednisolone and sodium butyrate

    SciTech Connect

    Chou, J.Y.; Takahashi, S.

    1987-06-16

    HeLa S/sub 3/ cells produce an alkaline phosphatase indistinguishable from the enzyme from human term placenta. The phosphatase activity in these cells was induced by both prednisolone and sodium butyrate. Both agents stimulated de novo synthesis of the enzyme. The increase in phosphatase activity paralleled the increase in immunoactivity and biosynthesis of placental alkaline phosphatase. The fully processed phosphatase monomer in control, prednisolone-treated or butyrate-treated cells was a 64.5 K polypeptide, measured by both incorporation of L-(/sup 35/S)methionine into enzyme protein and active-site labeling. The 64.5K polypeptide was formed by the incorporation of additional N-acetylneuraminic acid moieties to a precursor polypeptide of 61.5K. However, this biosynthetic pathway was identified only in butyrate-treated cells. In prednisolone-treated cells, the processing of 61.5K to 64.5K monomer was accelerated, and the presence of the 61.5 precursor could only be detected by either neuraminidase or monensin treatment. Phosphatase mRNA which comigrated with the term placental alkaline phosphatase mRNA of 2.7 kilobases was induced in the presence of either prednisolone or butyrate. Alkaline phosphatase mRNA is untreated HeLa S/sub 3/ cells migrated slightly faster than the term placental alkaline phosphatase mRNA. Butyrate also induced a second still faster migrating alkaline phosphatase mRNA. Both prednisolone and butyrate increased the steady-state levels of placental alkaline phosphatase mRNA. The data indicate that the increase in phosphatase mRNA by prednisolone and butyrate resulted in the induction of alkaline phosphatase activity and biosynthesis in HeLa S/sub 3/ cells. Furthermore, both agents induced the expression of different alkaline phosphatase gene transcripts without altering its protein product.

  19. Effects of butyrate on the expression of insulin-like growth factor binding proteins in bovine kidney epithelial cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sodium butyrate induces cell cycle arrest and apoptosis in bovine kidney epithelial cells primarily via down-regulating cell cycle-related gene expression and enhancing expression of pro-apoptotic genes. The insulin-like growth factor (IGF) system plays an essential role in these processes as well a...

  20. Varying butyric acid amounts induce different stress- and cell death-related signals in nerve growth factor-treated PC12 cells: implications in neuropathic pain absence during periodontal disease progression.

    PubMed

    Seki, Keisuke; Cueno, Marni E; Kamio, Noriaki; Saito, Yuko; Kamimoto, Atsushi; Kurita-Ochiai, Tomoko; Ochiai, Kuniyasu

    2016-06-01

    Neuropathic pain is absent from the early stages of periodontal disease possibly due to neurite retraction. Butyric acid (BA) is a periodontopathic metabolite that activates several stress-related signals and, likewise, induce neurite retraction. Neuronal cell death is associated to neurite retraction which would suggest that BA-induced neurite retraction is ascribable to neuronal cell death. However, the underlying mechanism of BA-related cell death signaling remains unknown. In this study, we exposed NGF-treated PC12 cells to varying BA concentrations [0 (control), 0.5, 1.0, 5.0 mM] and determined selected stress-related (H2O2, glutathione reductase, calcium (Ca(2+)), plasma membrane Ca(2+) ATPase (PMCA), and GADD153/CHOPS) and cell death-associated (extrinsic: FasL, TNF-α, TWEAK, and TRAIL; intrinsic: cytochrome C (CytC), NF-kB, CASP8, CASP9, CASP10, and CASP3) signals. Similarly, we confirmed cell death execution by chromatin condensation. Our results showed that low (0.5 mM) and high (1.0 and 5.0 mM) BA levels differ in stress and cell death signaling. Moreover, at periodontal disease-level BA concentration (5 mM), we observed that only FasL amounts were affected and occurred concurrently with chromatin condensation insinuating that cells have fully committed to neurodegeneration. Thus, we believe that both stress and cell death signaling in NGF-treated PC12 cells are affected differently depending on BA concentration. In a periodontal disease scenario, we hypothesize that during the early stages, low BA amounts accumulate resulting to both stress- and cell death-related signals that favor neurite non-proliferation, whereas, during the later stages, high BA amounts accumulate resulting to both stress- and cell death-related signals that favor neurodegeneration. More importantly, we propose that neuropathic pain absence at any stage of periodontal disease progression is ascribable to BA accumulation regardless of amount. PMID:26994613

  1. Induction of cellular deoxyribonucleic acid synthesis in butyrate-treated cells by simian virus 40 deoxyribonucleic acid

    SciTech Connect

    Kawasaki, S.; Diamond, L.; Baserga, R.

    1981-11-01

    Sodium butyrate (3mM) inhibited the entry into the S phase of quiescent 3T3 cells stimulated by serum, but had no effect on the accumulation of cellular ribonucleic acid. Simian virus 40 infection or manual microinjection of cloned fragments from the simian virus 40 A gene caused quiescent 3T3 cells to enter the S phase even in the presence of butyrate. NGI cells, a line of 3T3 cells transformed by simian virus 40, grew vigorously in 3 mM butyrate. Homokaryons were formed between G/sub 1/ and S-phase 3T3 cells. Butyrate inhibited the induction of deoxyribonucleic acid synthesis that usually occurs in G/sub 1/ nuclei when G/sub 1/ cells are fused with S-phase cells. However, when G/sub 1/ 3T3 cells were fused with exponentially growing NGI cells, the 3T3 nuclei were induced to enter deoxyribonucleic acid synthesis. In tsAF8 cells, a ribonucleic acid polymerase II mutant that stops in the G/sub 1/ phase of the cell cycle, no temporal sequence was demonstrated between the butyrate block and the temperature-sensitive block. These results confirm previous reports that certain virally coded proteins can induce cell deoxyribonucleic acid synthesis in the absence of cellular functions that are required by serum-stimulated cells. The author's interpretation of these data is that butyrate inhibited cell growth by inhibiting the expression of genes required for the G/sub o/ ..-->.. G/sub 1/ ..-->.. S transition and that the product of the simian virus 40 A gene overrode this inhibition by providing all of the necessary functions for the entry into the S phase.

  2. Comparative Analysis of Dibutyric cAMP and Butyric Acid on the Differentiation of Human Eosinophilic Leukemia EoL-1 Cells

    PubMed Central

    2015-01-01

    Purification of enough numbers of circulating eosinophils is difficult because eosinophils account for less than 5% peripheral blood leukocytes. Human eosinophilic leukemia EoL-1 cells have been considered an in vitro source of eosinophils as they can differentiate into mature eosinophil-like cells when incubated with dibutyryl cAMP (dbcAMP) or butyric acid. In this study, the viability and phenotypic maturation of EoL-1 cells stimulated by either dbcAMP or butyric acid were comparatively analyzed. After treatment with 100 µM dbcAMP or 0.5 µM butyric acid, EoL-1 cells showed morphological signs of differentiation, although the number of nonviable EoL-1 cells was significantly increased following butyric acid treatment. Stimulation of EoL-1 cells with 0.5 µM butyric acid more effectively induced the expression of mature eosinophil markers than stimulation with dbcAMP. These results suggest that treatment of EoL-1 cells with 0.5 µM butyric acid for limited duration could be an effective strategy for inducing their differentiation. Considering that expression of CCR3 was not sufficient in EoL-1 cells stimulated with 0.5 µM butyric acid, treatment of the chemically stimulated EoL-1 cells with cytokines, which primarily support eosinophil maturation, would help to obtain differentiated EoL-1 cells with greater functional maturity. PMID:26770185

  3. Genome-wide ChIP-seq mapping and analysis of butyrate-induced H3K9 and H3K27 acetylation and epigenomic landscape alteration in bovine cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Utilizing next-generation sequencing technology, combined with ChIP (Chromatin Immunoprecipitation) technology, we analyzed histone modification (acetylation) induced by butyrate and the large-scale mapping of the epigenomic landscape of normal histone H3 and acetylated histone H3K9 and H3K27. To d...

  4. Butyrate-rich colonic microenvironment is a relevant selection factor for metabolically adapted tumor cells.

    PubMed

    Serpa, Jacinta; Caiado, Francisco; Carvalho, Tânia; Torre, Cheila; Gonçalves, Luís G; Casalou, Cristina; Lamosa, Pedro; Rodrigues, Margarida; Zhu, Zhenping; Lam, Eric W F; Dias, Sérgio

    2010-12-10

    The short chain fatty acid (SCFA) butyrate is a product of colonic fermentation of dietary fibers. It is the main source of energy for normal colonocytes, but cannot be metabolized by most tumor cells. Butyrate also functions as a histone deacetylase (HDAC) inhibitor to control cell proliferation and apoptosis. In consequence, butyrate and its derived drugs are used in cancer therapy. Here we show that aggressive tumor cells that retain the capacity of metabolizing butyrate are positively selected in their microenvironment. In the mouse xenograft model, butyrate-preselected human colon cancer cells gave rise to subcutaneous tumors that grew faster and were more angiogenic than those derived from untreated cells. Similarly, butyrate-preselected cells demonstrated a significant increase in rates of homing to the lung after intravenous injection. Our data showed that butyrate regulates the expression of VEGF and its receptor KDR at the transcriptional level potentially through FoxM1, resulting in the generation of a functional VEGF:KDR autocrine growth loop. Cells selected by chronic exposure to butyrate express higher levels of MMP2, MMP9, α2 and α3 integrins, and lower levels of E-cadherin, a marker for epithelial to mesenchymal transition. The orthotopic model of colon cancer showed that cells preselected by butyrate are able to colonize the animals locally and at distant organs, whereas control cells can only generate a local tumor in the cecum. Together our data shows that a butyrate-rich microenvironment may select for tumor cells that are able to metabolize butyrate, which are also phenotypically more aggressive. PMID:20926374

  5. Biosynthesis of heparin. Effects of n-butyrate on cultured mast cells

    SciTech Connect

    Jacobsson, K.G.; Riesenfeld, J.; Lindahl, U.

    1985-10-05

    Murine mastocytoma cells were incubated in vitro with inorganic (TVS)sulfate, in the absence or presence of 2.5 mM n-butyrate, and labeled heparin was isolated. The polysaccharide produced in the presence of butyrate showed a lower charge density on anion exchange chromatography than did the control material and a 3-fold increased proportion of components with high affinity for antithrombin. Structural analysis of heparin labeled with (TH) glucosamine in the presence of butyrate showed that approximately 35% of the glucosamine units were N-acetylated, as compared to approximately 10% in the control material; the nonacetylated glucosamine residues were N-sulfated. The presence of butyrate thus leads to an inhibition of the N-deacetylation/N-sulfation process in heparin biosynthesis, along with an augmented formation of molecules with high affinity for antithrombin. Preincubation of the mastocytoma cells with butyrate was required for manifestation of either effect; when the preincubation period was reduced from 24 to 10 h the effects of butyrate were no longer observed. A polysaccharide formed on incubating mastocytoma microsomal fraction with UDP-(TH)glucuronic acid, UDP-N-acetylglucosamine, and 3'-phosphoadenylylsulfate in the presence of 5 mM butyrate showed the same N-acetyl/N-sulfate ratio as did the corresponding control polysaccharide, produced in the absence of butyrate. These findings suggest that the effect of butyrate on heparin biosynthesis depends on the integrity of the cell.

  6. Cholesteryl butyrate solid lipid nanoparticles as a butyric acid pro-drug: effects on cell proliferation, cell-cycle distribution and c-myc expression in human leukemic cells.

    PubMed

    Serpe, Loredana; Laurora, Stefano; Pizzimenti, Stefania; Ugazio, Elena; Ponti, Renata; Canaparo, Roberto; Briatore, Federica; Barrera, Giuseppina; Gasco, Maria Rosa; Bernengo, Maria Grazia; Eandi, Mario; Zara, Gian Paolo

    2004-06-01

    Cholesteryl butyrate solid lipid nanoparticles (chol-but SLN) have been proposed as a pro-drug to deliver butyric acid. We compared the effects on cell growth, cell-cycle distribution and c-myc expression of chol-but SLN and sodium butyrate (Na-but) in the human leukemic cell lines Jurkat, U937 and HL-60. In all the cell lines 0.5 and 1.0 mM chol-but SLN provoked a complete block of cell growth. Cell-cycle analysis demonstrated in Jurkat cells that 0.25 mM chol-but SLN caused a pronounced increase of G2/M cells and a decrease of G0/G1 cells, whereas in U937 and HL-60 cells chol-but SLN led to a dose-dependent increase of G0/G1 cells, with a decrease of G2/M cells. In Jurkat and HL-60 cells 0.5 mM chol-but SLN induced a significant increase of sub-G0/G1 apoptotic cells. Cell growth and cell-cycle distribution were unaffected by the same concentrations of Na-but. A concentration of 0.25 mM chol-but SLN was able to cause a rapid and transient down-regulation of c-myc expression in all the cell lines, whereas 1 mM Na-but caused a slight reduction of c-myc expression only in U937 cells. The results show how chol-but SLN affects the proliferation pattern of both myeloid and lymphoid cells to an extent greater than the natural butyrate. PMID:15166628

  7. Comparative Analysis of Protocols to Induce Human CD4+Foxp3+ Regulatory T Cells by Combinations of IL-2, TGF-beta, Retinoic Acid, Rapamycin and Butyrate

    PubMed Central

    Schmidt, Angelika; Eriksson, Matilda; Shang, Ming-Mei; Weyd, Heiko; Tegnér, Jesper

    2016-01-01

    Regulatory T cells (Tregs) suppress other immune cells and are critical mediators of peripheral tolerance. Therapeutic manipulation of Tregs is subject to numerous clinical investigations including trials for adoptive Treg transfer. Since the number of naturally occurring Tregs (nTregs) is minute, it is highly desirable to develop a complementary approach of inducing Tregs (iTregs) from naïve T cells. Mouse studies exemplify the importance of peripherally induced Tregs as well as the applicability of iTreg transfer in different disease models. Yet, procedures to generate iTregs are currently controversial, particularly for human cells. Here we therefore comprehensively compare different established and define novel protocols of human iTreg generation using TGF-β in combination with other compounds. We found that human iTregs expressed several Treg signature molecules, such as Foxp3, CTLA-4 and EOS, while exhibiting low expression of the cytokines Interferon-γ, IL-10 and IL-17. Importantly, we identified a novel combination of TGF-β, retinoic acid and rapamycin as a robust protocol to induce human iTregs with superior suppressive activity in vitro compared to currently established induction protocols. However, iTregs generated by these protocols did not stably retain Foxp3 expression and did not suppress in vivo in a humanized graft-versus-host-disease mouse model, highlighting the need for further research to attain stable, suppressive iTregs. These results advance our understanding of the conditions enabling human iTreg generation and may have important implications for the development of adoptive transfer strategies targeting autoimmune and inflammatory diseases. PMID:26886923

  8. Comparative Analysis of Protocols to Induce Human CD4+Foxp3+ Regulatory T Cells by Combinations of IL-2, TGF-beta, Retinoic Acid, Rapamycin and Butyrate.

    PubMed

    Schmidt, Angelika; Eriksson, Matilda; Shang, Ming-Mei; Weyd, Heiko; Tegnér, Jesper

    2016-01-01

    Regulatory T cells (Tregs) suppress other immune cells and are critical mediators of peripheral tolerance. Therapeutic manipulation of Tregs is subject to numerous clinical investigations including trials for adoptive Treg transfer. Since the number of naturally occurring Tregs (nTregs) is minute, it is highly desirable to develop a complementary approach of inducing Tregs (iTregs) from naïve T cells. Mouse studies exemplify the importance of peripherally induced Tregs as well as the applicability of iTreg transfer in different disease models. Yet, procedures to generate iTregs are currently controversial, particularly for human cells. Here we therefore comprehensively compare different established and define novel protocols of human iTreg generation using TGF-β in combination with other compounds. We found that human iTregs expressed several Treg signature molecules, such as Foxp3, CTLA-4 and EOS, while exhibiting low expression of the cytokines Interferon-γ, IL-10 and IL-17. Importantly, we identified a novel combination of TGF-β, retinoic acid and rapamycin as a robust protocol to induce human iTregs with superior suppressive activity in vitro compared to currently established induction protocols. However, iTregs generated by these protocols did not stably retain Foxp3 expression and did not suppress in vivo in a humanized graft-versus-host-disease mouse model, highlighting the need for further research to attain stable, suppressive iTregs. These results advance our understanding of the conditions enabling human iTreg generation and may have important implications for the development of adoptive transfer strategies targeting autoimmune and inflammatory diseases. PMID:26886923

  9. Melatonin and its precursors in Y79 human retinoblastoma cells: Effect of sodium butyrate

    NASA Technical Reports Server (NTRS)

    Deng, Mei Hua; Coviella, Ignacio Lopez G.; Lynch, Harry J.; Wurtman, Richard J.

    1991-01-01

    The release of melatonin and the production of its precursors, S-hydroxytryptophan and serotonin, in cultured Y79 human retinoblastoma cells were studied. This biosynthetic capability was found to be dependent on cell differentiation, which was initiated by culturing Y79 cells for 7 days in dishes coated with poly-D-lysine to promote cell adhesion to the surface of the culture dishes. Differentiation was further induced by exposing the cell monolayer to sodium butyrate (3 mM) for 3 days. This protocol dramatically increased the release of melatonin, and the syntheses of 5-hydroxytryptophan and serotonin in response to forskolin stimulation. Exposure to dopamine (10 micro-M) or L-DOPA (100 micro-M) markedly diminished the forskolin-stimulated release of melatonin, as well as the production of 5-hydroxytryptophan and serotonin. These observations indicate that Y79 cells represent a primitive cell line which, following appropriate differentiation (e.g. treatment with sodium butyrate) can display biochemical characteristics similar to those of the human retina. Moreover, serotonin synthesis and melatonin release appear to be coupled in Y79 cells. The inhibition of melatonin release by dopamine supports the hypothesis that in these cells, melatonin and dopamine are components of a retinal feedback loop.

  10. Butyrate Induced IGF2 Activation Correlated with Distinct Chromatin Signatures Due to Histone Modification.

    PubMed

    Shin, Joo Heon; Li, Robert W; Gao, Yuan; Bickhart, Derek M; Liu, George E; Li, Weizhong; Wu, Sitao; Li, Cong-Jun

    2013-01-01

    Histone modification has emerged as a very important mechanism regulating the transcriptional status of the genome. Insulin-like growth factor 2 (IGF2) is a peptide hormone controlling various cellular processes, including proliferation and apoptosis. H19 gene is closely linked to IGF2 gene, and IGF2 and H19 are reciprocally regulated imprinted genes. The epigenetic signature of H19 promoter (hypermethylation) on the paternal allele plays a vital role in allowing the expression of the paternal allele of IGF2.46 Our previous studies demonstrate that butyrate regulates the expression of IGF2 as well as genes encoding IGF Binding proteins. To obtain further understanding of histone modification and its regulatory potentials in controlling IGF2/H19 gene expression, we investigated the histone modification status of some key histones associated with the expression of IGF2/H19 genes in bovine cells using RNA-seq in combination with Chip-seq technology. A high-resolution map of the major chromatin modification at the IGF2/H19 locus induced by butyrate was constructed to illustrate the fundamental association of the chromatin modification landscape that may play a role in the activation of the IGF2 gene. High-definition epigenomic landscape mapping revealed that IGF2 and H19 have distinct chromatin modification patterns at their coding and promoter regions, such as TSSs and TTSs. Moreover, the correlation between the differentially methylated regions (DMRs) of IGF2/H19 locus and histone modification (acetylation and methylation) indicated that epigenetic signatures/markers of DNA methylation, histone methylation and histone acetylation were differentially distributed on the expressed IGF2 and silenced H19 genes. Our evidence also suggests that butyrate-induced regional changes of histone acetylation statusin the upstream regulation domain of H19 may be related to the reduced expression of H19 and strong activation of IGF2. Our results provided insights into the mechanism

  11. The proteomic study of sodium butyrate antiproliferative/cytodifferentiation effects on K562 cells.

    PubMed

    Grebenová, Dana; Kuzelová, Katerina; Pluskalová, Michaela; Peslová, Gabriela; Halada, Petr; Hrkal, Zbynek

    2006-01-01

    Employing methods of cell biology and proteome analysis tools, we examined effects of an inhibitor of histone deacetylases, sodium butyrate (SB), on the proliferation/differentiation characteristics of chronic myelogenous leukemia (CML)-derived cells K562. SB suppressed proliferation of K562 cells by inducing cell cycle arrest in G1 phase, which was followed by their transition to G0 phase (decrease of Ki-67 antigen-positive cells) and erythroid differentiation (increased glycophorin A expression and synthesis of hemoglobins). Neither terminal apoptosis (low counts of TUNEL-positive cells) nor necrosis (moderate counts of propidium iodide-positive cells) occurred. Importantly, SB attenuated protein expression of CML-related chimeric kinase BCR-ABL that is responsible for the deregulated proliferation of CML cells. The proteomic analysis (2-D electrophoresis combined with MALDI-TOF mass spectrometry and/or Western blotting) revealed several proteins that were differentially expressed or their mobility was altered due to butyrate treatment, namely, HSP90, HSP70, p23, cyclophilin A (CYPA), prefoldin2 (PFD2) and alpha-, gamma-, epsilon-human globin chains. Perturbation of HSP90 multichaperone complex of which BCR-ABL is the client protein is presumably a cause of BCR-ABL suppression. Changes in other proteins with chaperonic functions, CYPA and PFD2, may reflect SB antiproliferative and cytodifferentiation effects. PMID:16978890

  12. Destructive effects of butyrate on the cell envelope of Helicobacter pylori.

    PubMed

    Yonezawa, Hideo; Osaki, Takako; Hanawa, Tomoko; Kurata, Satoshi; Zaman, Cynthia; Woo, Timothy Derk Hoong; Takahashi, Motomichi; Matsubara, Sachie; Kawakami, Hayato; Ochiai, Kuniyasu; Kamiya, Shigeru

    2012-04-01

    Helicobacter pylori can be found in the oral cavity and is mostly detected by the use of PCR techniques. Growth of H. pylori is influenced by various factors in the mouth, such as the oral microflora, saliva and other antimicrobial substances, all of which make colonization of the oral cavity by H. pylori difficult. In the present study, we analysed the effect of the cell supernatant of a representative periodontal bacterium Porphyromonas gingivalis on H. pylori and found that the cell supernatant destroyed the H. pylori cell envelope. As P. gingivalis produces butyric acid, we focused our research on the effects of butyrate and found that it significantly inhibited the growth of H. pylori. H. pylori cytoplasmic proteins and DNA were detected in the extracellular environment after treatment with butyrate, suggesting that the integrity of the cell envelope was compromised and indicating that butyrate has a bactericidal effect on H. pylori. In addition, levels of extracellular H. pylori DNA increased following treatment with the cell supernatant of butyric acid-producing bacteria, indicating that the cell supernatant also has a bactericidal effect and that this may be due to its butyric acid content. In conclusion, butyric acid-producing bacteria may play a role in affecting H. pylori colonization of the oral cavity. PMID:22194341

  13. Butyrate plays differential roles in cellular signaling in cancerous HCT116 and noncancerous NCM460 colon cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butyrate, an intestinal microbiota metabolite of dietary fiber, exhibits chemoprevention effects in colon. However, the mechanistic action of butyrate at the cellular level remains to be determined. We hypothesize that butyrate plays differential roles in cancerous and non-cancerous cells through si...

  14. n-Butyrate inhibits Jun NH(2)-terminal kinase activation and cytokine transcription in mast cells

    SciTech Connect

    Diakos, Christos; Prieschl, Eva E.; Saeemann, Marcus D.; Boehmig, Georg A.; Csonga, Robert; Sobanov, Yury; Baumruker, Thomas; Zlabinger, Gerhard J. . E-mail: gerhard.zlabinger@meduniwien.ac.at

    2006-10-20

    Mast cells are well known to contribute to type I allergic conditions but only recently have been brought in association with chronic relapsing/remitting autoimmune diseases such as celiac disease and ulcerative colitis. Since the bacterial metabolite n-butyrate is considered to counteract intestinal inflammation we investigated the effects of this short chain fatty acid on mast cell activation. Using RNAse protection assays and reporter gene technology we show that n-butyrate downregulates TNF-{alpha} transcription. This correlates with an impaired activation of the Jun NH(2)-terminal kinase (JNK) but not other MAP kinases such as ERK and p38 that are largely unaffected by n-butyrate. As a consequence, we observed a decreased nuclear activity of AP-1 and NF-AT transcription factors. These results indicate that n-butyrate inhibits critical inflammatory mediators in mast cells by relatively selectively targeting the JNK signalling.

  15. Retinoid- and sodium-butyrate-induced decrease in heat shock protein 70 membrane-positive tumor cells is associated with reduced sensitivity to natural killer cell lysis, growth delay, and altered growth morphology.

    PubMed

    Gehrmann, Mathias; Schönberger, Johann; Zilch, Tanja; Rossbacher, Lydia; Thonigs, Gerald; Eilles, Christoph; Multhoff, Gabriele

    2005-01-01

    Human tumors frequently present heat shock protein 70 (Hsp70) on their cell membranes, whereas corresponding normal tissues fail to do so. Therefore, an Hsp70 membrane-positive phenotype provided a tumor-specific marker. Moreover, membrane-bound Hsp70 provides a target structure for the cytolytic attack mediated by natural killer (NK) cells. Vitamin A derivatives 13-cis retinoic acid (13-RA) and all-trans retinoic acid (ATRA) and sodium-butyrate (SBU) are known for their redifferentiating capacity. Therefore, we asked the question whether loss in tumorigenicity might be associated with a reduced Hsp70 membrane expression. For our studies we used epithelial colon (CX+/CX-) and thyroid (ML-1) cancer cells, with initially different Hsp70 cell surface expression pattern. After treatment up to 7 weeks with freshly prepared 13-RA, ATRA, and SBU at nonlethal concentrations of 10 microM, 1 microM, and 0.5 mM, respectively, growth morphology, Hsp70 levels, and sensitivity toward Hsp70-specific NK cells were compared with that of untreated tumor cells. Significant growth delay was determined in CX+ tumor cells after 6 weeks treatment with 13-RA. Concomitantly, growth morphology changed from spheroid cell clusters to monolayers. Despite a weak increase in cytosolic Hsp70, the percentage of Hsp70 membrane-positive cells dropped significantly after repeated treatments with 13-RA and ATRA in CX+ and ML-1 but not in CX- tumor cells. Similar results were observed with SBU. Functionally, the decrease in Hsp70 membrane-positive CX+ and ML-1 cells correlated with a reduced sensitivity to lysis mediated by NK cells. In summary, redifferentiating agents predominantly affected Hsp70 membrane-positive tumors. The decrease in Hsp70 membrane positivity correlated with a lower sensitivity to NK lysis, growth delay, and altered growth morphology. PMID:16038410

  16. Cellular Metabolism and Dose Reveal Carnitine-Dependent and -Independent Mechanisms of Butyrate Oxidation in Colorectal Cancer Cells.

    PubMed

    Han, Anna; Bennett, Natalie; MacDonald, Amber; Johnstone, Megan; Whelan, Jay; Donohoe, Dallas R

    2016-08-01

    Dietary fiber has been suggested to suppress colorectal cancer development, although the mechanisms contributing to this beneficial effect remain elusive. Butyrate, a fermentation product of fiber, has been shown to have anti-proliferative and pro-apoptotic effects on colorectal cancer cells. The metabolic fate of butyrate in the cell is important in determining whether, it acts as an HDAC inhibitor or is consumed as a short-chain fatty acid. Non-cancerous colonocytes utilize butyrate as the primary energy source whereas cancerous colonocytes increase glucose utilization through the Warburg effect. In this study, we show that butyrate oxidation is decreased in cancerous colonocytes compared to non-cancerous colonocytes. We demonstrate that colorectal cancer cells utilize both a carnitine-dependent and carnitine-independent mechanism that contributes to butyrate oxidation. The carnitine-dependent mechanism is contingent on butyrate concentration. Knockdown of CPT1A in colorectal cancer cells abolishes butyrate oxidation. In terms of selectivity, the carnitine-dependent mechanism only regulated butyrate oxidation, as acetate and propionate oxidation were carnitine-independent. Carnitine decreased the action of butyrate as an HDAC inhibitor and suppressed induction of H3 acetylation by butyrate in colorectal cancer cells. Thus, diminished oxidation of butyrate is associated with decreased HDAC inhibition and histone acetylation. In relation to the mechanism, we find that dichloroacetate, which decreases phosphorylation of pyruvate dehydrogenase, increased butyrate oxidation and that this effect was carnitine-dependent. In conclusion, these data suggest that colorectal cancer cells decrease butyrate oxidation through inhibition of pyruvate dehydrogenase, which is carnitine-dependent, and provide insight into why butyrate shows selective effects toward colorectal cancer cells. J. Cell. Physiol. 231: 1804-1813, 2016. © 2015 Wiley Periodicals, Inc. PMID:26661480

  17. Butyrate activates the monocarboxylate transporter MCT4 expression in breast cancer cells and enhances the antitumor activity of 3-bromopyruvate.

    PubMed

    Queirós, Odília; Preto, Ana; Pacheco, António; Pinheiro, Céline; Azevedo-Silva, João; Moreira, Roxana; Pedro, Madalena; Ko, Young H; Pedersen, Peter L; Baltazar, Fátima; Casal, Margarida

    2012-02-01

    Most malignant tumors exhibit the Warburg effect, which consists in increased glycolysis rates with production of lactate, even in the presence of oxygen. Monocarboxylate transporters (MCTs), maintain these glycolytic rates, by mediating the influx and/or efflux of lactate and are overexpressed in several cancer cell types. The lactate and pyruvate analogue 3-bromopyruvate (3-BP) is an inhibitor of the energy metabolism, which has been proposed as a specific antitumor agent. In the present study, we aimed at determining the effect of 3-BP in breast cancer cells and evaluated the putative role of MCTs on this effect. Our results showed that the three breast cancer cell lines used presented different sensitivities to 3-BP: ZR-75-1 ER (+)>MCF-7 ER (+)>SK-BR-3 ER (-). We also demonstrated that 3-BP reduced lactate production, induced cell morphological alterations and increased apoptosis. The effect of 3-BP appears to be cytotoxic rather than cytostatic, as a continued decrease in cell viability was observed after removal of 3-BP. We showed that pre-incubation with butyrate enhanced significantly 3-BP cytotoxicity, especially in the most resistant breast cancer cell line, SK-BR-3. We observed that butyrate treatment induced localization of MCT1 in the plasma membrane as well as overexpression of MCT4 and its chaperone CD147. Our results thus indicate that butyrate pre-treatment potentiates the effect of 3-BP, most probably by increasing the rates of 3-BP transport through MCT1/4. This study supports the potential use of butyrate as adjuvant of 3-BP in the treatment of breast cancer resistant cells, namely ER (-). PMID:22350013

  18. Melatonin and its precursors in Y79 human retinoblastoma cells - Effect of sodium butyrate

    NASA Technical Reports Server (NTRS)

    Deng, Mei H.; Lopez G.-Coviella, Ignacio; Lynch, Harry J.; Wurtman, Richard J.

    1991-01-01

    We studied the release of melatonin and the production of its precursors, 5-hydroxytryptophan and serotonin, in cultured Y79 human retinoblastoma cells. This biosynthetic capability was found to be dependent on cell differentiation, which was initiated by culturing Y79 cells for 7 days in dishes coated with poly-D-lysine to promote cell adhesion to the surface of the culture dishes. Differentiation was further induced by exposing the cell monolayer to sodium butyrate (3 mM) for three days. This protocol dramatically increased the release of melatonin, and the syntheses of 5-hydroxytryptophan and serotonin in response to forskolin stimulation. Exposure to dopamine or L-DOPA markedly diminished the forskolin-stimulated release of melatonin, as well as the production of 5-hydroxytryptophan and serotonin. These observations indicate that Y79 cells represent a primitive cell line which, following appropriate differentiation can display biochemical characteristics similar to those of the human retina. Moreover, serotonin synthesis and melatonin release appear to be coupled in Y79 ceils.

  19. The effect of short-chain fatty acids butyrate, propionate, and acetate on urothelial cell kinetics in vitro: potential therapy in augmentation cystoplasty.

    PubMed

    Dyer, J P; Featherstone, J M; Solomon, L Z; Crook, T J; Cooper, A J; Malone, P S

    2005-07-01

    The intestinal element of enterocystoplasty is affected by chronic inflammatory changes, which lead to excess mucus production, urinary tract infections, and stone formation. There is also an increased risk of malignancy. These inflammatory changes may be due to diversion colitis, which affects colonic segments excluded from the faecal stream and likewise may respond to intraluminal short-chain fatty acid (SCFA) therapy. The SCFAs have interesting antiproliferative, differentiating, and pro-apoptotic effects, which are protective against colorectal cancer and may influence the risk of malignancy in enterocystoplasty. Before intravesical therapy can be considered, the effect on normal urothelium must be investigated. Primary urothelial cells cultured from biopsy specimens and transformed urothelial (RT112 and MGH-U1) and intestinal cell lines (HT29 and CaCo-2) were incubated with SCFAs. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to measure the residual viable biomass to assess cell proliferation. Proliferation of primary and transformed urothelial cells in culture was inhibited by all SCFAs in a similar time- and dose-dependent manner. The concentration of SCFA required to inhibit growth of primary cells by 50% (IC50) was 20 mM of butyrate, 120 mM of propionate, and 240 mM of acetate after incubation for 1 h. After 72 h the IC50 was 2 mM of butyrate, 4 mM of propionate, and 20 mM of acetate. Transformed urothelial and colon cancer cell lines demonstrated similar growth inhibition. Butyrate was the most potent inhibitor of cell proliferation, followed by propionate and then acetate. Growth inhibition is not an immediate cytotoxic effect, and urothelial cells show a degree of adaptation to butyrate and growth recovery after incubation with butyrate. In conclusion, butyrate- and propionate-induced growth inhibition is potentially clinically significant and may have therapeutically beneficial implications in vivo. PMID:15864601

  20. The niacin/butyrate receptor GPR109A suppresses mammary tumorigenesis by inhibiting cell survival

    PubMed Central

    Elangovan, Selvakumar; Pathania, Rajneesh; Ramachandran, Sabarish; Ananth, Sudha; Padia, Ravi N.; Lan, Ling; Singh, Nagendra; Martin, Pamela M.; Hawthorn, Lesleyann; Prasad, Puttur D.; Ganapathy, Vadivel; Thangaraju, Muthusamy

    2014-01-01

    GPR109A, a G-protein-coupled receptor, is activated by niacin and butyrate. Upon activation in colonocytes, GPR109A potentiates anti-inflammatory pathways, induces apoptosis, and protects against inflammation-induced colon cancer. In contrast, GPR109A activation in keratinocytes induces flushing by activation of Cox-2-dependent inflammatory signaling and, the receptor expression is upregulated in human epidermoid carcinoma. Thus, depending on the cellular context and tissue, GPR109A functions either as a tumor suppressor or a tumor promoter. However, the expression status and the functional implications of this receptor in the mammary epithelium are not known. Here we show that GPR109A is expressed in normal mammary tissue and, irrespective of the hormone receptor status, its expression is silenced in human primary breast tumor tissues, breast cancer cell lines, and in tumor tissues of three different murine mammary tumor models. Functional expression of this receptor in human breast cancer cell lines decreases cAMP production, induces apoptosis, and blocks colony formation and mammary tumor growth. Transcriptome analysis revealed that GPR109A activation inhibits genes, which are involved in cell survival and anti-apoptotic signaling, in human breast cancer cells. In addition, deletion of Gpr109a in mice increased tumor incidence and triggered early onset of mammary tumorigenesis with increased lung metastasis in MMTV-Neu mouse model of spontaneous breast cancer. These findings suggest that GPR109A is a tumor suppressor in mammary gland and that pharmacological induction of this gene in tumor tissues followed by its activation with agonists could be an effective therapeutic strategy to treat breast cancer. PMID:24371223

  1. INDUCTION OF APOPTOSIS BY BUTYRATE CORRELATES WITH INCREASING LEVEL OF PROTEIN UBIQUITINATION IN BOVINE KIDNEY EPITHELIAL CELLS (MDBK)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While butyrate (BT) is largely regarded as the minor short-chain fatty acid ([butyrate]< [acetate] or [proiponate]) formed during microbial fermatation in ruminants, an increasing body of evidence has clearly shown effects beyond those attributable to its function in nutrition. BT modulates cell d...

  2. HMG-CoA reductase inhibitor mevastatin enhances the growth inhibitory effect of butyrate in the colorectal carcinoma cell line Caco-2.

    PubMed

    Wächtershäuser, A; Akoglu, B; Stein, J

    2001-07-01

    Mevastatin is an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, the rate-limiting enzyme in cholesterol synthesis. Butyrate, a short-chain fatty acid, reduces proliferation and induces differentiation of human colon cancer cells. The aim of our study was to determine the effect of mevastatin, alone or in combination with butyrate, on proliferation, the cell cycle and apoptosis in the human colorectal carcinoma cell line Caco-2. In this report we show that mevastatin combined with butyrate synergistically suppressed growth of Caco-2 cells in a dose- and time-dependent manner. In addition, incubation with mevastatin arrested cells in the G1 phase of the cell cycle after 24 h with a switch to the G2/M phase after 72 h. This was accompanied by a down-regulation of cyclin-dependent kinases (cdk) 4 and cdk 6 as well as cyclin D1, while cdk 2 and cyclin E protein levels remained unchanged during mevastatin treatment. Cell cycle inhibitors p21 and p27 were significantly upregulated by mevastatin. The proapoptotic properties of mevastatin were further enhanced by co-incubation with butyrate. Lastly, the effects of mevastatin could be reversed by addition of mevalonate, but not farnesyl- or geranylgeranylpyrophosphate, intermediate products of cholesterol synthesis, to the medium. These results suggest that HMG-CoA reductase inhibitors like mevastatin may enhance the antiproliferative effect of butyrate in colon cancer cells via induction of apoptosis together with a G0/G1 cell cycle arrest. PMID:11408350

  3. Butyrate alleviates metabolic impairments and protects pancreatic β cell function in pregnant mice with obesity

    PubMed Central

    Li, Hua-Ping; Chen, Xuan; Li, Ming-Qing

    2013-01-01

    The relative or absolute deficiency of pancreatic β-cell mass function underlies the pathogenesis of diabetes. It is necessary to alleviate the metabolic stress and reduce the demand for insulin to decrease the effects of mutations affecting β-cell expansion. Butyrate is a natural nutrient existed in food and can also be produced physiologically through the intestinal fermentation of fiber. Pregnancy and obesity model would be helpful for understanding how β-cell adapt to insulin resistance and how butyrate alleviate the metabolic impairment and protect pancreatic β cell function in pregnant mice with obesity. C57BL/6J female mice were divided into three groups and fed with high fat food (HF group, 40% energy from fat), high fat with sodium butyrate food (HSF group, 95% HF with 5% butyrate), or control food (CF group, 14% energy from fat), respectively. The feeding would last for 14 weeks before mating and throughout the gestation period. A subset of dams were sacrificed at gestational day (GD) 14.5 to evaluate the changes of metabolism and β-cell function, mass, proliferation and apoptosis, inflammatory reaction of islet from different diet. Pancreases were double immuno-labeled to assess the islet morphology, insulin expression, expression of proliferation gene PCNA and anti-apoptosis gene bcl-2. Moreover, we detected the expression of NF-κB, phosphorylated NF-κB (pNF-κB) to evaluate the islet inflammatory response with immunohistochemistry. Mice fed with HSF showed obviously changes including the decreased values of weight gain, glucose, insulin, triglyceride and total cholesterol level of blood compared with high fat diet group, and the reduced circulating maternal pro-inflammation factors at GD14.5. Mice fed with HF displayed β-cell hyperplasia with a greater β-cell size and β-cell area in pancreas. Furthermore, the higher ratio of apoptosis and inflammatory response were found in HF group compared with HSF and CF group, while the proliferation

  4. Accelerated dysbiosis of gut microbiota during aggravation of DSS-induced colitis by a butyrate-producing bacterium.

    PubMed

    Zhang, Qianpeng; Wu, Yanqiu; Wang, Jing; Wu, Guojun; Long, Wenmin; Xue, Zhengsheng; Wang, Linghua; Zhang, Xiaojun; Pang, Xiaoyan; Zhao, Yufeng; Zhao, Liping; Zhang, Chenhong

    2016-01-01

    Butyrate-producing bacteria (BPB) are potential probiotic candidates for inflammatory bowel diseases as they are often depleted in the diseased gut microbiota. However, here we found that augmentation of a human-derived butyrate-producing strain, Anaerostipes hadrus BPB5, significantly aggravated colitis in dextran sulphate sodium (DSS)-treated mice while exerted no detrimental effect in healthy mice. We explored how the interaction between BPB5 and gut microbiota may contribute to this differential impact on the hosts. Butyrate production and severity of colitis were assessed in both healthy and DSS-treated mice, and gut microbiota structural changes were analysed using high-throughput sequencing. BPB5-inoculated healthy mice showed no signs of colitis, but increased butyrate content in the gut. In DSS-treated mice, BPB5 augmentation did not increase butyrate content, but induced significantly more severe disease activity index and much higher mortality. BPB5 didn't induce significant changes of gut microbiota in healthy hosts, but expedited the structural shifts 3 days earlier toward the disease phase in BPB5-augmented than DSS-treated animals. The differential response of gut microbiota in healthy and DSS-treated mice to the same potentially beneficial bacterium with drastically different health consequences suggest that animals with dysbiotic gut microbiota should also be employed for the safety assessment of probiotic candidates. PMID:27264309

  5. Accelerated dysbiosis of gut microbiota during aggravation of DSS-induced colitis by a butyrate-producing bacterium

    PubMed Central

    Zhang, Qianpeng; Wu, Yanqiu; Wang, Jing; Wu, Guojun; Long, Wenmin; Xue, Zhengsheng; Wang, Linghua; Zhang, Xiaojun; Pang, Xiaoyan; Zhao, Yufeng; Zhao, Liping; Zhang, Chenhong

    2016-01-01

    Butyrate-producing bacteria (BPB) are potential probiotic candidates for inflammatory bowel diseases as they are often depleted in the diseased gut microbiota. However, here we found that augmentation of a human-derived butyrate-producing strain, Anaerostipes hadrus BPB5, significantly aggravated colitis in dextran sulphate sodium (DSS)-treated mice while exerted no detrimental effect in healthy mice. We explored how the interaction between BPB5 and gut microbiota may contribute to this differential impact on the hosts. Butyrate production and severity of colitis were assessed in both healthy and DSS-treated mice, and gut microbiota structural changes were analysed using high-throughput sequencing. BPB5-inoculated healthy mice showed no signs of colitis, but increased butyrate content in the gut. In DSS-treated mice, BPB5 augmentation did not increase butyrate content, but induced significantly more severe disease activity index and much higher mortality. BPB5 didn’t induce significant changes of gut microbiota in healthy hosts, but expedited the structural shifts 3 days earlier toward the disease phase in BPB5-augmented than DSS-treated animals. The differential response of gut microbiota in healthy and DSS-treated mice to the same potentially beneficial bacterium with drastically different health consequences suggest that animals with dysbiotic gut microbiota should also be employed for the safety assessment of probiotic candidates. PMID:27264309

  6. Radiation induces acid tolerance of Clostridium tyrobutyricum and enhances bioproduction of butyric acid through a metabolic switch

    PubMed Central

    2014-01-01

    Background Butyric acid as a renewable resource has become an increasingly attractive alternative to petroleum-based fuels. Clostridium tyrobutyricum ATCC 25755T is well documented as a fermentation strain for the production of acids. However, it has been reported that butyrate inhibits its growth, and the accumulation of acetate also inhibits biomass synthesis, making production of butyric acid from conventional fermentation processes economically challenging. The present study aimed to identify whether irradiation of C. tyrobutyricum cells makes them more tolerant to butyric acid inhibition and increases the production of butyrate compared with wild type. Results In this work, the fermentation kinetics of C. tyrobutyricum cultures after being classically adapted for growth at 3.6, 7.2 and 10.8 g·L-1 equivalents were studied. The results showed that, regardless of the irradiation used, there was a gradual inhibition of cell growth at butyric acid concentrations above 10.8 g·L-1, with no growth observed at butyric acid concentrations above 3.6 g·L-1 for the wild-type strain during the first 54 h of fermentation. The sodium dodecyl sulfate polyacrylamide gel electrophoresis also showed significantly different expression levels of proteins with molecular mass around the wild-type and irradiated strains. The results showed that the proportion of proteins with molecular weights of 85 and 106 kDa was much higher for the irradiated strains. The specific growth rate decreased by 50% (from 0.42 to 0.21 h-1) and the final concentration of butyrate increased by 68% (from 22.7 to 33.4 g·L-1) for the strain irradiated at 114 AMeV and 40 Gy compared with the wild-type strains. Conclusions This study demonstrates that butyric acid production from glucose can be significantly improved and enhanced by using 12C6+ heavy ion-irradiated C. tyrobutyricum. The approach is economical, making it competitive compared with similar fermentation processes. It may prove useful as

  7. Discoloration of poly(vinyl butyral) in cells exposed to real and simulated solar environments

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Shumka, A.

    1984-01-01

    The discoloration of poly(vinl butyral) (PVB) films used in solar cell modules is described. Transmission absorption, Fourier transformation IR absorption and atomic absorption spectroscopy as well as scanning electron microscopy were used for this study. The discoloration of the PVB has been found to be affected by oxygen, moisture, temperature and light. However, the most severe discoloration observed is clearly associated with the migration of positive silver ions, which can be accelerated in the presence of electric fields. The metallization is the source of the silver, and the data are consistent with an interfacial reaction between the silver and PVB followed by transport into the polymer.

  8. Regulation of T-type calcium channel expression by sodium butyrate in prostate cancer cells.

    PubMed

    Weaver, Erika M; Zamora, Francis J; Puplampu-Dove, Yvonne A; Kiessu, Ezechielle; Hearne, Jennifer L; Martin-Caraballo, Miguel

    2015-02-15

    Several cellular mechanisms contribute to the neuroendocrine differentiation of prostate cancer cells, including exposure to sodium butyrate (NaBu), a naturally occurring salt of the short chain fatty acid n-butyric acid. NaBu belongs to a class of histone deacetylase inhibitors with potential anticancer function. T-type calcium channel expression constitutes an important route for calcium influx in tumor cells that may trigger changes in cell proliferation and differentiation. In this work we investigated the role NaBu on the differentiation of lymph node carcinoma of the prostate (LNCaP) cells and its effect on T-type Ca(2+) channel expression. NaBu stimulates the morphological and molecular differentiation of LNCaP cells. Stimulation of LNCaP cells with NaBu evokes a significant increase in the expression of the Cav3.2 T-type channel subunits. Furthermore, the increased Cav3.2 expression promotes membrane insertion of T-type Ca(2+) channels capable of generating fast inactivating Ca(2+) currents, sensitive to 100μM Ni(2+) ions. Inhibition of T-type Ca(2+) channel function reduces the outgrowth of neurite-like processes in LNCaP cells. NaBu-evoked expression of T-type Ca(2+) channels is also involved in the regulation of cell viability. Inhibition of T-type Ca(2+) channels causes a significant reduction in the viability of LNCaP cells treated with 1mM NaBu, suggesting that Ca(2+) influx via T-type channels can promote cell proliferation. However, increased expression of T-type Ca(2+) channels enhanced the cytotoxic effect of thapsigargin and paclitaxel on cell proliferation. These findings demonstrate that NaBu stimulates T-type Ca(2+) channel expression, thereby regulating both the morphological differentiation and growth of prostate cancer cells. PMID:25557765

  9. BUTYRATE DIFFERENTIALLY REGULATES CYTOKINES AND PROLIFERATION IN PORCINE PERIPHERAL BLOOD MONONUCLEAR CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although butyrate modulates proliferation and cytokine production by PBMC in some species, the role of butyrate as a regulator of immunocyte function in the pig has not been studied. Therefore, the primary objective of this study was to determine whether butyrate influences peripheral blood mononuc...

  10. Cytoarchitecture of Kirsten sarcoma virus-transformed rat kidney fibroblasts: butyrate-induced reorganization within the actin microfilament network.

    PubMed

    Ryan, M P; Higgins, P J

    1988-10-01

    Murine sarcoma virus-transformed rat fibroblasts (KNRK cells) undergo marked cytoarchitectural reorganization during in vitro exposure to sodium-n-butyrate (NaB) resulting in restoration of (1) a more typical fibroblastoid morphology, (2) proper cell-to-cell orientation, and (3) substratum adherence. Augmented cell spreading, involving greater than 90% of the population, was a function of culture density and time of exposure to NaB (2 mM final concentration). Induced cell spreading reflected a 2.5- to 3.0-fold increase in both total cellular actin content and deposition of actin into the detergent-resistant cytoskeleton. Cytoskeletal actin deposition in response to NaB was accompanied by the formation of occasionally dense, parallel alignments of F-actin-containing microfilaments and by a dramatic increase in the size and incidence of actin-enriched membrane ruffles. Long-term NaB-treated cells exhibited parallel orientations of microfilaments similar to those found in untransformed fibroblasts. Increased cytoskeletal actin occurred within 24 hr of NaB exposure, correlating with the initial reorganization of actin-containing microfilaments detected microscopically, and reflected concomitant 3-fold increases in cellular alpha-actinin and fibronectin content. In contrast, the amount of vimentin, tropomyosin, and tubulin in NaB-treated cells was significantly decreased. NaB-induced morphologic restructuring of sarcoma virus-transformed fibroblasts, thus, impacts on all three basic cytoskeletal systems. Selective increases, however, were evident in particular cytoskeletal proteins (actin, alpha-actinin, fibronectin) implicated in microfilament networking and cell spreading. PMID:2844835

  11. Exposure to sodium butyrate leads to functional downregulation of calcium-activated potassium channels in human airway epithelial cells.

    PubMed

    Roy, Jeremy; Denovan-Wright, Eileen M; Linsdell, Paul; Cowley, Elizabeth A

    2006-11-01

    Cystic fibrosis (CF) is caused by genetic mutations that lead to dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel. The most common mutation, DeltaF508, causes inefficient trafficking of mutant CFTR protein from the endoplasmic reticulum to the cell membrane. Therapeutic efforts have been aimed at increasing the level of DeltaF508-CFTR protein in the membrane using agents such as sodium butyrate. In this study, we investigated the effects of culturing a human airway epithelial cell line, Calu-3, in the presence of 5 mM sodium butyrate. Within 24 h, butyrate exposure caused a significant decrease in the basal, as well as Ca(2+)-activated, anion secretion by Calu-3 cell monolayers, determined by the change in transepithelial short-circuit current in response to the Ca(2+)-elevating agent thapsigargin. The secretory response to 1-ethyl-2-benzimidazolinone, an activator of the basolateral Ca(2+)-activated K(+) channel KCNN4, was similarly reduced by butyrate treatment. Quantitative PCR revealed that these functional effects were associated with dramatic decreases in mRNA for both KCNN4 and CFTR. Furthermore, the KCNQ1 K(+) channel was upregulated after butyrate treatment. We suggest that prolonged exposure to sodium butyrate downregulates the expression of both KCNN4 and CFTR, leading to a functional loss of Ca(2+)-activated anion secretion. Thus, butyrate may inhibit, rather than stimulate, the anion secretory capacity of human epithelial cells that express wild-type CFTR, particularly in tissues that normally exhibit robust Ca(2+)-activated secretion. PMID:17047984

  12. Fed-batch strategies using butyrate for high cell density cultivation of Pseudomonas putida and its use as a biocatalyst.

    PubMed

    Cerrone, Federico; Duane, Gearoid; Casey, Eoin; Davis, Reeta; Belton, Ian; Kenny, Shane T; Guzik, Maciej W; Woods, Trevor; Babu, Ramesh P; O'Connor, Kevin

    2014-11-01

    A mathematically based fed-batch bioprocess demonstrated the suitability of using a relatively cheap and renewable substrate (butyric acid) for Pseudomonas putida CA-3 high cell density cultivation. Butyric acid fine-tuned addition is critical to extend the fermentation run and avoid oxygen consumption while maximising the biomass volumetric productivity. A conservative submaximal growth rate (μ of 0.25 h(-1)) achieved 71.3 g L(-1) of biomass after 42 h of fed-batch growth. When a more ambitious feed rate was supplied in order to match a μ of 0.35 h(-1), the volumetric productivity was increased to 2.0 g L(-1) h(-1), corresponding to a run of 25 h and 50 g L(-1) of biomass. Both results represent the highest biomass and the best biomass volumetric productivity with butyrate as a sole carbon source. However, medium chain length polyhydroxyalkanoate (mcl-PHA) accumulation with butyrate grown cells is low (4 %). To achieve a higher mcl-PHA volumetric productivity, decanoate was supplied to butyrate grown cells. This strategy resulted in a PHA volumetric productivity of 4.57 g L(-1) h(-1) in the PHA production phase and 1.63 g L(-1) h(-1)over the lifetime of the fermentation, with a maximum mcl-PHA accumulation of 65 % of the cell dry weight. PMID:25104034

  13. Beneficial effects of sodium butyrate in 6-OHDA induced neurotoxicity and behavioral abnormalities: Modulation of histone deacetylase activity.

    PubMed

    Sharma, Sorabh; Taliyan, Rajeev; Singh, Sumel

    2015-09-15

    Parkinson's disease (PD) is the second most common neurodegenerative disorder. Recent studies have investigated the involvement of epigenetic modifications in PD. Histone deacetylase (HDAC) inhibitors have been reported to be beneficial in cognitive and motor deficit states. The present study was designed to investigate the effect of sodium butyrate, a HDAC inhibitor in 6-hydroxydopamine (6-OHDA) - induced experimental PD like symptoms in rats. To produce motor deficit, 6-OHDA was administered unilaterally in the right medial forebrain bundle. Three weeks after 6-OHDA administration, the rats were challenged with apomorphine. Following this, the animals were treated with sodium butyrate (150 and 300 mg/kg i.p.) once daily for 14 days. Movement abnormalities were assessed by battery of behavioral tests. Biochemically, oxidative stress markers, neuroinflammation and dopamine were measured in striatal brain homogenate. Further, to explore the molecular mechanism(s), we measured the level of global H3 histone acetylation and brain derived neurotrophic factor (BDNF). 6-OHDA administration results in significant motor deficit along with reduction in striatal dopamine level. 6-OHDA treated rats showed elevated oxidative stress and neuroinflammatory markers. Treatment with sodium butyrate results in significant attenuation of motor deficits and increased striatal dopamine level. Moreover, sodium butyrate treatment attenuated the oxidative stress and neuroinflammatory markers. These effects occur concurrently with increased global H3 histone acetylation and BDNF levels. Thus, the observed results of the present study are indicative for the therapeutic potential of HDAC inhibitors in PD. PMID:26048426

  14. Reciprocal modulation of histone deacetylase inhibitors sodium butyrate and trichostatin A on the energy metabolism of breast cancer cells.

    PubMed

    Rodrigues, Mariana Figueiredo; Carvalho, Érika; Pezzuto, Paula; Rumjanek, Franklin David; Amoêdo, Nivea Dias

    2015-05-01

    Tumor cells display different bioenergetic profiles when compared to normal cells. In the present work we showed metabolic reprogramming by means of inhibitors of histone deacetylase (HDACis), sodium butyrate and trichostatin A in breast cancer cells representing different stages of aggressiveness and metabolic profile. When testing the effect of NaB and TSA on viability of cells, it was shown that non-tumorigenic MCF-10A cells were less affected by increasing doses of the drugs than the tumorigenic, hormone dependent, tightly cohesive MCF-7, T-47D and the highly metastatic triple-negative MDA-MB 231 cells. T-47D cells were the most sensitive to treatment with both, NaB and TSA. Experiments measuring anchorage- independent growth of tumor cells showed that MCF-7, T-47D, and MDA-MB-231 cells were equally sensitive to the treatment with NaB. The NaB induced an attenuation of glycolysis, reflected by a decrease in lactate release in MCF-7 and T47D lines. Pyruvate kinase activity was significantly enhanced by NaB in MDA-MB-231 cells only. In contrast, the inhibitor enhanced lactate dehydrogenase activity specifically in T-47 D cells. Glucose-6-phosphate dehydrogenase activity was shown to be differentially modulated by NaB in the cell lines investigated: the enzyme was inhibited in MCF-7 cells, whereas in T-47D and MDA-MB-231 cells, G6PDH was activated. NaB and TSA were able to significantly increase the oxygen consumption by MDA-MB-231 and T-47D cells. Collectively the results show that epigenetic changes associated to acetylation of proteins in general affect the energy metabolism in all cancer cell lines and that mitochondria may occupy a central role in metastasis. PMID:25510910

  15. Structural alterations of adhesion mediating components in cells cultured on poly-beta-hydroxy butyric acid.

    PubMed

    Nebe, B; Forster, C; Pommerenke, H; Fulda, G; Behrend, D; Bernewski, U; Schmitz, K P; Rychly, J

    2001-09-01

    Polymers may serve as a biodegradable material in tissue engineering. To assess the biocompatibility of poly-beta-hydroxy butyric acid (PHB), we studied the structural organization of cellular molecules involved in adhesion using osteoblastic and epithelial cell lines. On PHB, both cell lines revealed a rounded cell shape due to reduced spreading. The filamentous organization of the actin cytoskeleton was impaired. In double immunofluorescence analyses we demostrated that the colocalization of the fibronectin fibrils with the actin filaments was lost in cultures on PHB. Similarly, collagen II distribution was altered, whereas the organization of collagen I was not obviously affected. Further evidence for impaired structural organization was obtained for the beta1-integrin receptor and vinculin which mediate the interaction of the cytoskeleton with the extracellular matrix. In confluent epithelial cells, the tight junction protein ZO-1 showed a larger lateral extension in the cell-cell contacts when cells were grown on PHB. Because structural organization of components which mediate cell-matrix and cell-cell adhesion controls cell physiology these parameters could be a sensitive indicator for the biocompatibility of implant materials. PMID:11511040

  16. Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate

    PubMed Central

    Saldanha, Sabita N.; Kala, Rishabh; Tollefsbol, Trygve O.

    2014-01-01

    Bioactive compounds are considered safe and have been shown to alter genetic and epigenetic profiles of tumor cells. However, many of these changes have been reported at molecular concentrations higher than physiologically achievable levels. We investigated the role of the combinatorial effects of epigallocatechin gallate (EGCG), a predominant polyphenol in green tea, and sodium butyrate (NaB), a dietary microbial fermentation product of fiber, in the regulation of survivin, which is an overexpressed anti-apoptotic protein in colon cancer cells. For the first time, our study showed that the combination treatment induced apoptosis and cell cycle arrest in RKO, HCT-116 and HT-29 colorectal cancer cells. This was found to be regulated by the decrease in HDAC1, DNMT1, survivin and HDAC activity in all three cell lines. A G2/M arrest was observed for RKO and HCT-116 cells, and G1 arrest for HT-29 colorectal cancer cells for combinatorial treatment. Further experimentation of the molecular mechanisms in RKO colorectal cancer cells revealed a p53-dependent induction of p21 and an increase in nuclear factor kappa B (NF-κB)-p65. An increase in double strand breaks as determined by gamma-H2A histone family member X (γ-H2AX) protein levels and induction of histone H3 hyperacetylation was also observed with combination treatment. Further, we observed a decrease in global CpG methylation. Taken together, these findings suggest that at low and physiologically achievable concentrations, combinatorial EGCG and NaB are effective in promoting apoptosis, inducing cell cycle arrest and DNA-damage in colorectal cancer cells. PMID:24518414

  17. Transcriptome Analysis of Indole-3-Butyric Acid-Induced Adventitious Root Formation in Nodal Cuttings of Camellia sinensis (L.)

    PubMed Central

    Wei, Kang; Wang, Li-Yuan; Wu, Li-Yun; Zhang, Cheng-Cai; Li, Hai-Lin; Tan, Li-Qiang; Cao, Hong-Li; Cheng, Hao

    2014-01-01

    Tea (Camellia sinensis L.) is a popular world beverage, and propagation of tea plants chiefly depends on the formation of adventitious roots in cuttings. To better understand potential mechanisms involved in adventitious root formation, we performed transcriptome analysis of single nodal cuttings of C. sinensis treated with or without indole-3-butyric acid (IBA) using the Illumina sequencing method. Totally 42.5 million RNA-Seq reads were obtained and these were assembled into 59,931 unigenes, with an average length of 732 bp and an N50 of 1292 bp. In addition, 1091 differentially expressed unigenes were identified in the tea cuttings treated with IBA compared to controls, including 656 up- and 435 down-regulated genes. Further real time RT-PCR analysis confirmed RNA-Seq data. Functional annotation analysis showed that many genes were involved in plant hormone signal transduction, secondary metabolism, cell wall organization and glutathione metabolism, indicating potential contributions to adventitious rooting. Our study presents a global view of transcriptome profiles of tea cuttings in response to IBA treatment and provides new insights into the fundamental mechanisms associated with auxin-induced adventitious rooting. Our data will be a valuable resource for genomic research about adventitious root formation in tea cuttings, which can be used to improve rooting for difficult-to-root varieties. PMID:25216187

  18. Transcriptome analysis of indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.).

    PubMed

    Wei, Kang; Wang, Li-Yuan; Wu, Li-Yun; Zhang, Cheng-Cai; Li, Hai-Lin; Tan, Li-Qiang; Cao, Hong-Li; Cheng, Hao

    2014-01-01

    Tea (Camellia sinensis L.) is a popular world beverage, and propagation of tea plants chiefly depends on the formation of adventitious roots in cuttings. To better understand potential mechanisms involved in adventitious root formation, we performed transcriptome analysis of single nodal cuttings of C. sinensis treated with or without indole-3-butyric acid (IBA) using the Illumina sequencing method. Totally 42.5 million RNA-Seq reads were obtained and these were assembled into 59,931 unigenes, with an average length of 732 bp and an N50 of 1292 bp. In addition, 1091 differentially expressed unigenes were identified in the tea cuttings treated with IBA compared to controls, including 656 up- and 435 down-regulated genes. Further real time RT-PCR analysis confirmed RNA-Seq data. Functional annotation analysis showed that many genes were involved in plant hormone signal transduction, secondary metabolism, cell wall organization and glutathione metabolism, indicating potential contributions to adventitious rooting. Our study presents a global view of transcriptome profiles of tea cuttings in response to IBA treatment and provides new insights into the fundamental mechanisms associated with auxin-induced adventitious rooting. Our data will be a valuable resource for genomic research about adventitious root formation in tea cuttings, which can be used to improve rooting for difficult-to-root varieties. PMID:25216187

  19. Oral butyrate reduces oxidative stress in atherosclerotic lesion sites by a mechanism involving NADPH oxidase down-regulation in endothelial cells.

    PubMed

    Aguilar, Edenil C; Santos, Lana Claudinez Dos; Leonel, Alda J; de Oliveira, Jamil Silvano; Santos, Elândia Aparecida; Navia-Pelaez, Juliana M; da Silva, Josiane Fernandes; Mendes, Bárbara Pinheiro; Capettini, Luciano S A; Teixeira, Lilian G; Lemos, Virginia S; Alvarez-Leite, Jacqueline I

    2016-08-01

    Butyrate is a 4-carbon fatty acid that has antiinflammatory and antioxidative properties. It has been demonstrated that butyrate is able to reduce atherosclerotic development in animal models by reducing inflammatory factors. However, the contribution of its antioxidative effects of butyrate on atherogenesis has not yet been studied. We investigated the influence of butyrate on oxidative status, reactive oxygen species (ROS) release and oxidative enzymes (NADPH oxidase and iNOS) in atherosclerotic lesions of ApoE(-/-) mice and in oxLDL-stimulated peritoneal macrophages and endothelial cells (EA.hy926). The lesion area in aorta was reduced while in the aortic valve, although lesion area was unaltered, superoxide production and protein nitrosylation were reduced in butyrate-supplemented mice. Peritoneal macrophages from the butyrate group presented a lower free radical release after zymosan stimulus. When endothelial cells were pretreated with butyrate before oxLDL stimulus, the CCL-2 and superoxide ion productions and NADPH oxidase subunit p22phox were reduced. In macrophage cultures, in addition to a reduction in ROS release, nitric oxide and iNOS expression were down-regulated. The data suggest that one mechanism related to the effect of butyrate on atherosclerotic development is the reduction of oxidative stress in the lesion site. The reduction of oxidative stress related to NADPH oxidase and iNOS expression levels associated to butyrate supplementation attenuates endothelium dysfunction and macrophage migration and activation in the lesion site. PMID:27261536

  20. Effect of butyrate on immune response of a chicken macrophage cell line

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butyric acid is a major short chain fatty acid (SCFA) produced in the gastrointestinal tract by anaerobic bacterial fermentation which has been demonstrated to have beneficial health effects in many species including poultry. To understand the immunomodulating effects of butyrate on chicken macropha...

  1. A kinetic-metabolic model based on cell energetic state: study of CHO cell behavior under Na-butyrate stimulation.

    PubMed

    Ghorbaniaghdam, Atefeh; Henry, Olivier; Jolicoeur, Mario

    2013-04-01

    A kinetic-metabolic model approach describing and simulating Chinese hamster ovary (CHO) cell behavior is presented. The model includes glycolysis, pentose phosphate pathway, TCA cycle, respiratory chain, redox state and energetic metabolism. Growth kinetic is defined as a function of the major precursors for the synthesis of cell building blocks. Michaelis-Menten type kinetic is used for metabolic intermediates as well as for regulatory functions from energy shuttles (ATP/ADP) and cofactors (NAD/H and NADP/H). Model structure and parameters were first calibrated using results from bioreactor cultures of CHO cells expressing recombinant t-PA. It is shown that the model can simulate experimental data for all available experimental data, such as extracellular glucose, glutamine, lactate and ammonium concentration time profiles, as well as cell energetic state. A sensitivity analysis allowed identifying the most sensitive parameters. The model was then shown to be readily adaptable for studying the effect of sodium butyrate on CHO cells metabolism, where it was applied to the cases with sodium butyrate addition either at mid-exponential growth phase (48 h) or at the early plateau phase (74 h). In both cases, a global optimization routine was used for the simultaneous estimation of the most sensitive parameters, while the insensitive parameters were considered as constants. Finally, confidence intervals for the estimated parameters were calculated. Results presented here further substantiate our previous findings that butyrate treatment at mid-exponential phase may cause a shift in cellular metabolism toward a sustained and increased efficiency of glucose utilization channeled through the TCA cycle. PMID:22976819

  2. The short chain fatty acid, butyrate, stimulates MUC2 mucin production in the human colon cancer cell line, LS174T

    SciTech Connect

    Hatayama, Hajime; Iwashita, Jun; Kuwajima, Akiko; Abe, Tatsuya . E-mail: abetats@akita-pu.ac.jp

    2007-05-11

    The short fatty acid, butyrate, which is produced by intestinal anaerobic bacteria in the colon, has inhibitory activity on histone deacetylases (HDACs). Treatment of the human colon cancer cell line, LS174T, with 1-2 mM sodium butyrate stimulated MUC2 mucin production, as determined by histological PAS staining of carbohydrate chains of mucin, and confirmed at the protein and mRNA levels by immunoblotting with anti-MUC2 antibody and real-time RT-PCR, respectively. Increases in acetylated histone H3 in the LS174T cells treated with butyrate suggest inhibition of HDACs in these cells. Butyrate-stimulated MUC2 production in the LS174T cells was inhibited by the MEK inhibitor, U0126, implicating the involvement of extracellular signal-regulated kinase (ERK) cascades in this process. Proliferation of the LS174T cells was inhibited by butyrate treatment. Although apoptotic nuclear DNA fragmentation could not be detected, cell-cycle arrest at the G0/G1 phase in the butyrate-treated cells was demonstrated by flow cytometry. Thus butyrate, an HDAC inhibitor, inhibits proliferation of LS174T cells but stimulates MUC2 production in individual cells.

  3. Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate

    SciTech Connect

    Saldanha, Sabita N.; Kala, Rishabh; Tollefsbol, Trygve O.

    2014-05-15

    Bioactive compounds are considered safe and have been shown to alter genetic and epigenetic profiles of tumor cells. However, many of these changes have been reported at molecular concentrations higher than physiologically achievable levels. We investigated the role of the combinatorial effects of epigallocatechin gallate (EGCG), a predominant polyphenol in green tea, and sodium butyrate (NaB), a dietary microbial fermentation product of fiber, in the regulation of survivin, which is an overexpressed anti-apoptotic protein in colon cancer cells. For the first time, our study showed that the combination treatment induced apoptosis and cell cycle arrest in RKO, HCT-116 and HT-29 colorectal cancer cells. This was found to be regulated by the decrease in HDAC1, DNMT1, survivin and HDAC activity in all three cell lines. A G2/M arrest was observed for RKO and HCT-116 cells, and G1 arrest for HT-29 colorectal cancer cells for combinatorial treatment. Further experimentation of the molecular mechanisms in RKO colorectal cancer (CRC) cells revealed a p53-dependent induction of p21 and an increase in nuclear factor kappa B (NF-κB)-p65. An increase in double strand breaks as determined by gamma-H2A histone family member X (γ-H2AX) protein levels and induction of histone H3 hyperacetylation was also observed with the combination treatment. Further, we observed a decrease in global CpG methylation. Taken together, these findings suggest that at low and physiologically achievable concentrations, combinatorial EGCG and NaB are effective in promoting apoptosis, inducing cell cycle arrest and DNA-damage in CRC cells. - Highlights: • EGCG and NaB as a combination inhibits colorectal cancer cell proliferation. • The combination treatment induces DNA damage, G2/M and G1 arrest and apoptosis. • Survivin is effectively down-regulated by the combination treatment. • p21 and p53 expressions are induced by the combination treatment. • Epigenetic proteins DNMT1 and HDAC1 are

  4. Dose-dependent stimulatory and inhibitory effects of luminal and serosal n-butyric acid on epithelial cell proliferation of pig distal colonic mucosa.

    PubMed

    Inagaki, Akiko; Sakata, Takashi

    2005-06-01

    Large bowel bacteria convert various carbohydrates into short-chain fatty acids (SCFA). SCFA stimulate epithelial cell proliferation of the large intestine in vivo and inhibit that of various cells in vitro. Supposing that too high concentration of SCFA on the serosal side is responsible for their inhibitory effect in vitro, we studied effects of luminal and serosal n-butyric acid (0, 0.1, 1, or 10 mmol/L, adjusted to neutral pH) on the epithelial cell proliferation rate of pig colonic mucosa in organ culture taking crypt cell production rate (CCPR) as the measure of proliferative activity. With 0 or 0.1 mmol/L n-butyric acid on the serosal side, luminal n-butyric acid increased CCPR at 1.0 mmol/L, and decreased CCPR at 10 mmol/L when compared to the luminal 0 mmol/L control. With 1.0 or 10 mmol/L serosal n-butyric acid, luminal n-butyric acid depressed CCPR dose-dependently. The above results indicated that n-butyric acid stimulated colonic epithelial cell proliferation at low concentration and inhibit it at high concentration with interaction effect to enhance the inhibitory action. The stimulatory effect of a low dose of serosal n-butyric acid may be responsible for the distant trophic effect of SCFA. PMID:16161765

  5. Cell-associated alpha-amylases of butyrate-producing Firmicute bacteria from the human colon.

    PubMed

    Ramsay, Alan G; Scott, Karen P; Martin, Jenny C; Rincon, Marco T; Flint, Harry J

    2006-11-01

    Selected butyrate-producing bacteria from the human colon that are related to Roseburia spp. and Butyrivibrio fibrisolvens showed a good ability to utilize a variety of starches for growth when compared with the Gram-negative amylolytic anaerobe Bacteroides thetaiotaomicron. A major cell-associated amylase of high molecular mass (140-210 kDa) was detected in each strain by SDS-PAGE zymogram analysis, and genes corresponding to these enzymes were analysed for two representative strains. Amy13B from But. fibrisolvens 16/4 is a multi-domain enzyme of 144.6 kDa that includes a family 13 glycoside hydrolase domain, and duplicated family 26 carbohydrate-binding modules. Amy13A (182.4 kDa), from Roseburia inulinivorans A2-194, also includes a family 13 domain, which is preceded by two repeat units of approximately 116 aa rich in aromatic residues, an isoamylase N-terminal domain, a pullulanase-associated domain, and an additional unidentified domain. Both Amy13A and Amy13B have N-terminal signal peptides and C-terminal cell-wall sorting signals, including a modified LPXTG motif similar to that involved in interactions with the cell surface in other Gram-positive bacteria, a hydrophobic transmembrane segment, and a basic C terminus. The overexpressed family 13 domains showed an absolute requirement for Mg2+ or Ca2+ for activity, and functioned as 1,4-alpha-glucanohydrolases (alpha-amylases; EC 3.2.1.1). These major starch-degrading enzymes thus appear to be anchored to the cell wall in this important group of human gut bacteria. PMID:17074899

  6. Nanostructured, highly aligned poly(hydroxy butyrate) electrospun fibers for differentiation of skeletal and cardiac muscle cells.

    PubMed

    Ricotti, Leonardo; Polini, Alessandro; Genchi, Giada G; Ciofani, Gianni; Iandolo, Donata; Mattoli, Virgilio; Menciassi, Arianna; Dario, Paolo; Pisignano, Dario

    2011-01-01

    The influence of novel nanostructured anisotropically electrospun poly(hydroxy butyrate) matrices on skeletal and cardiac muscle-like cell proliferation and differentiation was investigated, in comparison with isotropic and no-topographically cues-provided substrates. After the matrix characterization, in terms of surface SEM imaging and mechanical properties, cell differentiation on the different substrates was evaluated. Myogenin and F-actin staining at several differentiation time-points suggested that aligned nanofibers promote differentiation of both cell types. Moreover, quantitative parameters for each cell line are provided to clarify which aspects of the differentiation process are influenced by the different matrix topographies. PMID:22255117

  7. Efficacy of the dietary histone deacetylase inhibitor butyrate alone or in combination with vitamin A against proliferation of MCF-7 human breast cancer cells.

    PubMed

    Andrade, F O; Nagamine, M K; Conti, A De; Chaible, L M; Fontelles, C C; Jordão Junior, A A; Vannucchi, H; Dagli, M L Z; Bassoli, B K; Moreno, F S; Ong, T P

    2012-09-01

    The combined treatment with histone deacetylase inhibitors (HDACi) and retinoids has been suggested as a potential epigenetic strategy for the control of cancer. In the present study, we investigated the effects of treatment with butyrate, a dietary HDACi, combined with vitamin A on MCF-7 human breast cancer cells. Cell proliferation was evaluated by the crystal violet staining method. MCF-7 cells were plated at 5 x 10(4) cells/mL and treated with butyrate (1 mM) alone or combined with vitamin A (10 µM) for 24 to 120 h. Cell proliferation inhibition was 34, 10 and 46% following treatment with butyrate, vitamin A and their combination, respectively, suggesting that vitamin A potentiated the inhibitory activities of butyrate. Furthermore, exposure to this short-chain fatty acid increased the level of histone H3K9 acetylation by 9.5-fold (Western blot), but not of H4K16, and increased the expression levels of p21WAF1 by 2.7-fold (Western blot) and of RARβ by 2.0-fold (quantitative real-time PCR). Our data show that RARβ may represent a molecular target for butyrate in breast cancer cells. Due to its effectiveness as a dietary HDACi, butyrate should be considered for use in combinatorial strategies with more active retinoids, especially in breast cancers in which RARβ is epigenetically altered. PMID:22714808

  8. Vimentin, colon cancer progression and resistance to butyrate and other HDACis.

    PubMed

    Lazarova, Darina L; Bordonaro, Michael

    2016-06-01

    Dietary fibre protects against colorectal cancer (CRC) most likely through the activity of its fermentation product, butyrate. Butyrate functions as a histone deacetylase inhibitor (HDACi) that hyperactivates Wnt signalling and induces apoptosis of CRC cells. However, individuals who consume a high-fibre diet may still develop CRC; therefore, butyrate resistance may develop over time. Furthermore, CRC cells that are resistant to butyrate are cross-resistant to clinically relevant therapeutic HDACis, suggesting that the development of butyrate resistance in vivo can result in HDACi-resistant CRCs. Butyrate/HDACi-resistant CRC cells differ from their butyrate/HDACi-sensitive counterparts in the expression of many genes, including the gene encoding vimentin (VIM) that is usually expressed in normal mesenchymal cells and is involved in cancer metastasis. Interestingly, vimentin is overexpressed in butyrate/HDACi-resistant CRC cells although Wnt signalling is suppressed in such cells and that VIM is a Wnt activity-targeted gene. The expression of vimentin in colonic neoplastic cells could be correlated with the stage of neoplastic progression. For example, comparative analyses of LT97 microadenoma cells and SW620 colon carcinoma cells revealed that although vimentin is not detectable in LT97 cells, it is highly expressed in SW620 cells. Based upon these observations, we propose that the differential expression of vimentin contributes to the phenotypic differences between butyrate-resistant and butyrate-sensitive CRC cells, as well as to the differences between early-stage and metastatic colorectal neoplastic cells. We discuss the hypothesis that vimentin is a key factor integrating epithelial to mesenchymal transition, colonic neoplastic progression and resistance to HDACis. PMID:27072512

  9. Butyrate inhibits inflammatory responses through NFκB inhibition: implications for Crohn's disease

    PubMed Central

    Segain, J; de la Bletiere, D R.; Bourreille, A; Leray, V; Gervois, N; Rosales, C; Ferrier, L; Bonnet, C; Blottiere, H; Galmiche, J

    2000-01-01

    BACKGROUND/AIM—Proinflammatory cytokines are key factors in the pathogenesis of Crohn's disease (CD). Activation of nuclear factor kappa B (NFκB), which is involved in their gene transcription, is increased in the intestinal mucosa of CD patients. As butyrate enemas may be beneficial in treating colonic inflammation, we investigated if butyrate promotes this effect by acting on proinflammatory cytokine expression.
METHODS—Intestinal biopsy specimens, isolated lamina propria cells (LPMC), and peripheral blood mononuclear cells (PBMC) were cultured with or without butyrate for assessment of secretion of tumour necrosis factor (TNF) and mRNA levels. NFκB p65 activation was determined by immunofluorescence and gene reporter experiments. Levels of NFκB inhibitory protein (IκBα) were analysed by western blotting. The in vivo efficacy of butyrate was assessed in rats with trinitrobenzene sulphonic acid (TNBS) induced colitis.
RESULTS—Butyrate decreased TNF production and proinflammatory cytokine mRNA expression by intestinal biopsies and LPMC from CD patients. Butyrate abolished lipopolysaccharide (LPS) induced expression of cytokines by PBMC and transmigration of NFκB from the cytoplasm to the nucleus. LPS induced NFκB transcriptional activity was decreased by butyrate while IκBα levels were stable. Butyrate treatment also improved TNBS induced colitis.
CONCLUSIONS—Butyrate decreases proinflammatory cytokine expression via inhibition of NFκB activation and IκBα degradation. These anti-inflammatory properties provide a rationale for assessing butyrate in the treatment of CD.


Keywords: inflammation; butyrate; Crohn's disease; nuclear factor kappa B; cytokines PMID:10940278

  10. Butyrate and deoxycholic acid play common and distinct roles in HCT116 human colon cell proliferation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of a high fat diet causes an increase in bile acid deoxycholic acid (DCA) in colon lumen and colon cancer risk while butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit colon cancer preventive effects. To distinguish these opposing effects of DCA and...

  11. Butyrate and deoxycholic acid play common and distinct roles in HCT116 human colon cell proliferation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of a high fat diet causes an increase in bile acid deoxycholic acid (DCA) in colon lumen and colon cancer risk while butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit colon cancer preventive effects. To distinguish these opposing effects of D...

  12. Sodium Butyrate, a Histone Deacetylase Inhibitor, Reverses Behavioral and Mitochondrial Alterations in Animal Models of Depression Induced by Early- or Late-life Stress.

    PubMed

    Valvassori, Samira S; Resende, Wilson R; Budni, Josiane; Dal-Pont, Gustavo C; Bavaresco, Daniela V; Réus, Gislaine Z; Carvalho, André F; Gonçalves, Cinara L; Furlanetto, Camila B; Streck, Emilio L; Quevedo, João

    2015-01-01

    The aim of the present study was to evaluate the effects of sodium butyrate on depressive-like behavior and mitochondrial alteration parameters in animal models of depression induced by maternal deprivation or chronic mild stress in Wistar rats. maternal deprivation was established by separating pups from their mothers for 3 h daily from postnatal day 1 to day 10. Chronic mild stress was established by water deprivation, food deprivation, restraint stress, isolation and flashing lights. Sodium butyrate or saline was administered twice a day for 7 days before the behavioral tests. Depressive behavior was evaluated using the forced swim test. The activity of tricarboxylic acid cycle enzymes (succinate dehydrogenase and malate dehydrogenase) and of mitochondrial chain complexes (I, II, II-III and IV) was measured in the striatum of rats. From these analyses it can be observed that sodium butyrate reversed the depressive-like behavior observed in both animal models of depression. Additionally, maternal deprivation and chronic mild stress inhibited mitochondrial respiratory chain complexes and increased the activity of tricarboxylic acid cycle enzymes. Sodium butyrate treatment reversed -maternal deprivation and chronic mild stress- induced dysfunction in the striatum of rats. In conclusion, sodium butyrate showed antidepressant effects in maternal deprivation and chronic mild stress-treated rats, and this effect can be attributed to its action on the neurochemical pathways related to depression. PMID:26216027

  13. Effects of Sodium Butyrate and Its Synthetic Amide Derivative on Liver Inflammation and Glucose Tolerance in an Animal Model of Steatosis Induced by High Fat Diet

    PubMed Central

    Mattace Raso, Giuseppina; Simeoli, Raffaele; Russo, Roberto; Iacono, Anna; Santoro, Anna; Paciello, Orlando; Ferrante, Maria Carmela; Canani, Roberto Berni; Calignano, Antonio; Meli, Rosaria

    2013-01-01

    Background & Aims Nonalcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease. Insulin resistance (IR) appears to be critical in its pathogenesis. We evaluated the effects of sodium butyrate (butyrate) and its synthetic derivative N-(1-carbamoyl-2-phenyl-ethyl) butyramide (FBA) in a rat model of insulin resistance and steatosis induced by high-fat diet (HFD). Methods After weaning, young male Sprague-Dawley rats were divided into 4 groups receiving different diets for 6 weeks: 1. control group (standard diet); 2. HFD; 3. HFD plus butyrate (20 mg/kg/die) and 4. HFD plus FBA (42.5 mg/Kg/die, the equimolecular dose of butyrate). Liver tissues of the rats were analyzed by Western blot and real-time PCR. Insulin resistance, liver inflammation and Toll-like pattern modifications were determined. Results Evaluation of these two preparations of butyrate showed a reduction of liver steatosis and inflammation in HFD fed animals. The compounds showed a similar potency in the normalisation of several variables, such as transaminases, homeostasis model assessment for insulin resistance index, and glucose tolerance. Both treatments significantly reduced hepatic TNF-α expression and restored GLUTs and PPARs, either in liver or adipose tissue. Finally, FBA showed a higher potency in reducing pro-inflammatory parameters in the liver, via suppression of Toll-like receptors and NF-κB activation. Conclusions Our results demonstrated a protective effect of butyrate in limiting molecular events underlying the onset of IR and NAFLD, suggesting a potential clinical relevance for this substance. In particular, its derivative, FBA, could represent an alternative therapeutic option to sodium butyrate, sharing a comparable efficacy, but a better palatability and compliance. PMID:23861927

  14. Indolyl-3-butyric acid-induced Arabidopsis stomatal opening mediated by 3',5'-cyclic guanosine-monophosphate.

    PubMed

    Cousson, A

    2010-12-01

    It has been pharmacologically suggested that 3',5'-cyclic guanosine-monophosphate (cGMP) mediates indolyl-3-butyric acid (IBA)-induced stomatal opening. In Arabidopsis thaliana (L.) Heynh., such investigations compared the wild type (Columbia and Ws ecotypes) to mutants knockout for either GTP-binding protein (G protein) α subunit 1 (gpa1-4), putative G protein-coupled receptor 1 (gcr1-5), calcineurin B-like isoform 1 (cbl1) or 9 (cbl9), or the NADPH oxidases AtrbohD and AtrbohF (atrbohD/F). Stomatal opening to IBA or the permeant cGMP analogue, 8-bromo-cGMP (8-Br-cGMP) was abolished in the atrbohD/F mutant. The IBA response was fully or partially suppressed, respectively, in the gcr1-5 mutant, or the gpa1-4 and cbl1 mutants. In the cbl9 mutant, the response to IBA or 8-Br-cGMP, respectively, was partially or fully suppressed. Phenylarsine oxide (PAO) affected the IBA response, which the cbl1 mutant overlapped or the gpa1-4 and cbl9 mutants increased up to 100% inhibition. 6-anilino-5,8-quinolinedione, mas17, the (Rp)-diastereomer of 8-bromo-3',5'-cyclic guanosine monophosphorothioate (Rp-8-Br-cGMPS), nicotinamide, ruthenium red (RRed), 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), cyclosporine A (CsA) and FK506 converged to affect the IBA response, which the gpa1-4 and cbl9 mutants overlapped or the cbl1 mutant and PAO increased up to 100% inhibition. Rp-8-Br-cGMPS, nicotinamide, RRed, BAPTA, CsA or FK506 paralled the cbl9 and atrbohD/F mutants to abolish the 8-Br-cGMP response. Based on so far revealed features of these mutants and pharmacological compounds, these results confirmed cGMP as a Ca(2+)-mobilizing second messenger for apoplastic auxin whose perception and transduction would implicate a seven-transmembrane receptor - G protein - guanylyl cyclase unit at the guard cell plasma membrane. PMID:20951600

  15. Microbial metabolite butyrate facilitates M2 macrophage polarization and function

    PubMed Central

    Ji, Jian; Shu, Dingming; Zheng, Mingzhu; Wang, Jie; Luo, Chenglong; Wang, Yan; Guo, Fuyou; Zou, Xian; Lv, Xiaohui; Li, Ying; Liu, Tianfei; Qu, Hao

    2016-01-01

    Metabolites from intestinal microbes modulate the mucosal immune system by regulating the polarization and expansion of T cells. Whether the microbial metabolites influence macrophage polarization, however, is poorly understood. Here, we show that the large bowel microbial fermentation product, butyrate, facilitates M2 macrophage polarization, in vitro and in vivo. The supernatant from butyrate-treated M2 macrophage increased the migration and enhanced the wound closure rate of MLE-12 cells. Butyrate attenuated intestinal inflammation in mice with dextran sulfate sodium (DSS)-induced colitis, with a significant increase in colonic expression of the M2 macrophage-associated protein, Arg1. M2 macrophage treated with butyrate, had increased activation of the H3K9/STAT6 signaling pathway, suggesting a mechanism for butyrate facilitated M2 macrophage polarization. Collectively, our study indicated that commensal microbe-derived butyrate is a novel activator of STAT6-mediated transcription through H3K9 acetylation driving M2 macrophage polarization, and delineated new insights into the immune interplay underlying inflammatory bowel disease. PMID:27094081

  16. Microbial metabolite butyrate facilitates M2 macrophage polarization and function.

    PubMed

    Ji, Jian; Shu, Dingming; Zheng, Mingzhu; Wang, Jie; Luo, Chenglong; Wang, Yan; Guo, Fuyou; Zou, Xian; Lv, Xiaohui; Li, Ying; Liu, Tianfei; Qu, Hao

    2016-01-01

    Metabolites from intestinal microbes modulate the mucosal immune system by regulating the polarization and expansion of T cells. Whether the microbial metabolites influence macrophage polarization, however, is poorly understood. Here, we show that the large bowel microbial fermentation product, butyrate, facilitates M2 macrophage polarization, in vitro and in vivo. The supernatant from butyrate-treated M2 macrophage increased the migration and enhanced the wound closure rate of MLE-12 cells. Butyrate attenuated intestinal inflammation in mice with dextran sulfate sodium (DSS)-induced colitis, with a significant increase in colonic expression of the M2 macrophage-associated protein, Arg1. M2 macrophage treated with butyrate, had increased activation of the H3K9/STAT6 signaling pathway, suggesting a mechanism for butyrate facilitated M2 macrophage polarization. Collectively, our study indicated that commensal microbe-derived butyrate is a novel activator of STAT6-mediated transcription through H3K9 acetylation driving M2 macrophage polarization, and delineated new insights into the immune interplay underlying inflammatory bowel disease. PMID:27094081

  17. N-Butyrate alters chromatin accessibility to DNA repair enzymes

    SciTech Connect

    Smith, P.J.

    1986-03-01

    Current evidence suggests that the complex nature of mammalian chromatin can result in the concealment of DNA damage from repair enzymes and their co-factors. Recently it has been proposed that the acetylation of histone proteins in chromatin may provide a surveillance system whereby damaged regions of DNA become exposed due to changes in chromatin accessibility. This hypothesis has been tested by: (i) using n-butyrate to induce hyperacetylation in human adenocarcinoma (HT29) cells; (ii) monitoring the enzymatic accessibility of chromatin in permeabilised cells; (iii) measuring u.v. repair-associated nicking of DNA in intact cells and (iv) determining the effects of n-butyrate on cellular sensitivity to DNA damaging agents. The results indicate that the accessibility of chromatin to Micrococcus luteus u.v. endonuclease is enhanced by greater than 2-fold in n-butyrate-treated cells and that there is a corresponding increase in u.v. repair incision rates in intact cells exposed to the drug. Non-toxic levels of n-butyrate induce a block to G1 phase transit and there is a significant growth delay on removal of the drug. Resistance of HT29 cells to u.v.-radiation and adriamycin is enhanced in n-butyrate-treated cells whereas X-ray sensitivity is increased. Although changes in the responses of cells to DNA damaging agents must be considered in relation to the effects of n-butyrate on growth rate and cell-cycle distribution, the results are not inconsistent with the proposal that increased enzymatic-accessibility/repair is biologically favourable for the resistance of cells to u.v.-radiation damage. Overall the results support the suggested operation of a histone acetylation-based chromatin surveillance system in human cells.

  18. Li-Ion Cells Employing Electrolytes With Methyl Propionate and Ethyl Butyrate Co-Solvents

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2011-01-01

    Future NASA missions aimed at exploring Mars and the outer planets require rechargeable batteries that can operate at low temperatures to satisfy the requirements of such applications as landers, rovers, and penetrators. A number of terrestrial applications, such as hybrid electric vehicles (HEVs) and electric vehicles (EVs) also require energy storage devices that can operate over a wide temperature range (i.e., -40 to +70 C), while still providing high power capability and long life. Currently, the state-of-the-art lithium-ion system has been demonstrated to operate over a wide range of temperatures (-30 to +40 C); however, the rate capability at the lower temperatures is very poor. These limitations at very low temperatures are due to poor electrolyte conductivity, poor lithium intercalation kinetics over the electrode surface layers, and poor ionic diffusion in the electrode bulk. Two wide-operating-temperature-range electrolytes have been developed based on advances involving lithium hexafluorophosphate-based solutions in carbonate and carbonate + ester solvent blends, which have been further optimized in the context of the technology and targeted applications. The approaches employed include further optimization of electrolytes containing methyl propionate (MP) and ethyl butyrate (EB), which are effective co-solvents, to widen the operating temperature range beyond the baseline systems. Attention was focused on further optimizing ester-based electrolyte formulations that have exhibited the best performance at temperatures ranging from -60 to +60 C, with an emphasis upon improving the rate capability at -20 to -40 C. This was accomplished by increasing electrolyte salt concentration to 1.20M and increasing the ester content to 60 percent by volume to increase the ionic conductivity at low temperatures. Two JPL-developed electrolytes 1.20M LiPF6 in EC+EMC+MP (20:20:60 v/v %) and 1.20M LiPF6 in EC+EMC+EB (20:20:60 v/v %) operate effectively over a wide

  19. Intraperitoneal administration of butyrate prevents the severity of acetic acid colitis in rats

    PubMed Central

    Malago, Joshua J.; Sangu, Catherine L.

    2015-01-01

    Intrarectal infusion of butyrate improves colorectal disorders including ulcerative colitis (UC). However, it is not established whether systemically administered butyrate benefits such patients. The current study aimed at exploring and comparing the potential of intraperitoneally, intrarectally, and orally administered butyrate against acetic acid (AA)-induced UC in rats. Intrarectal administration of 2 ml of 50% AA was done after or without prior treatment of rats for 7 consecutive days with 100 mg/kg sodium butyrate (SB) intraperitoneally, intrarectally, or orally. Rats were sacrificed after 48 h of AA-treatment. Subsequently, colon sections were processed routinely for histopathological examination. We clinically observed diarrhea, loose stools, and hemoccult-positive stools, and histologically, epithelial loss and ulceration, crypt damage, goblet cell depletion, hemorrhage, and mucosal infiltration of inflammatory cells. The changes were significantly reduced by intraperitoneal, intrarectal, or oral butyrate, with intraperitoneal butyrate exhibiting the highest potency. It is concluded that intraperitoneal administration of butyrate abrogates the lesions of AA-induced UC and its potency surpasses that of intrarectal or oral butyrate. PMID:25743124

  20. Solid lipid nanoparticles of cholesteryl butyrate inhibit the proliferation of cancer cells in vitro and in vivo models

    PubMed Central

    Minelli, R; Occhipinti, S; Gigliotti, C L; Barrera, G; Gasco, P; Conti, L; Chiocchetti, A; Zara, G P; Fantozzi, R; Giovarelli, M; Dianzani, U; Dianzani, C

    2013-01-01

    BACKGROUND AND PURPOSE Solid lipid nanoparticles containing cholesteryl butyrate (cholbut SLN) can be a delivery system for the anti-cancer drug butyrate. These nanoparticles inhibit adhesion of polymorphonuclear and tumour cells to endothelial cells and migration of tumour cells, suggesting that they may act as anti-inflammatory and anti-tumour agents. Here we have evaluated the effects of cholbut SLN on tumour cell growth using in vitro and in vivo models. EXPERIMENTAL APPROACH Cholbut SLNs were incubated with cultures of four tumour cell lines, and cell growth was analysed by assessing viability, clonogenic capacity and cell cycle. Effects on intracellular signalling was assessed by Western blot analysis of Akt expression. The in vivo anti-tumour activity was measured in two models of PC-3 cell xenografts in SCID/Beige mice. KEY RESULTS Cholbut SLN inhibited tumour cell line viability, clonogenic activity, Akt phosphorylation and cell cycle progression. In mice injected i.v. with PC3-Luc cells and treated with cholbut SLN, . in vivo optical imaging and histological analysis showed no metastases in the lungs of the treated mice. In another set of mice injected s.c. with PC-3 cells and treated with cholbut SLN when the tumour diameter reached 2 mm, analysis of the tumour dimensions showed that treatment with cholbut SLN substantially delayed tumour growth. CONCLUSION AND IMPLICATIONS Cholbut SLN were effective in inhibiting tumour growth in vitro and in vivo. These effects may involve, in part, inhibition of Akt phosphorylation, which adds another mechanism to the activity of this multipotent drug. PMID:23713413

  1. Sodium Butyrate Ameliorates L-Arginine-Induced Pancreatitis and Associated Fibrosis in Wistar Rat: Role of Inflammation and Nitrosative Stress.

    PubMed

    Kanika, Gayathri; Khan, Sabbir; Jena, Gopabandhu

    2015-08-01

    Several reports indicated that histone deacetylases (HDACs) play a crucial role in inflammation and fibrogenesis. Sodium butyrate (SB) is a short-chain fatty acid having HDAC inhibition potential. The present study aimed to evaluate the protective effect of SB against L-arginine (L-Arg)-induced pancreatic fibrosis in Wistar rats. Pancreatic fibrosis was induced by twice intraperitoneal (i.p.) injections of 20% L-Arg (250 mg/100 g) at 2-h interval on day 1, 4, 7, and 10, whereas SB (800 mg/kg/day) was administrated for 10 days. At the end of the study, biochemical estimations, histological alterations, DNA damage, and the expression of various proteins were evaluated. Posttreatment of SB decreased L-Arg-induced oxidative and nitrosative stress, DNA damage, histological alterations, and fibrosis. Interestingly, posttreatment of SB significantly decreased the expression of α-smooth muscle actin, interleukin-1β, inducible nitric oxide synthase, and 3-nitrotyrosine. The present study demonstrated that posttreatment of SB alleviates L-Arg-induced pancreatic damage and fibrosis in rat. PMID:25774002

  2. Histone deacetylase inhibitor sodium butyrate suppresses proliferation and promotes apoptosis in osteosarcoma cells by regulation of the MDM2–p53 signaling

    PubMed Central

    Xie, Chuhai; Wu, Boyi; Chen, Binwei; Shi, Qunwei; Guo, Jianhong; Fan, Ziwen; Huang, Yan

    2016-01-01

    Histone deacetylase inhibitors have been reported to induce tumor cell growth arrest, differentiation, and apoptosis. This study aimed to investigate the effects of one histone deacetylase inhibitor – sodium butyrate (SB) – on osteosarcoma (OS) cell proliferation and apoptosis and also the molecular mechanisms by which SB exerts regulatory effects on OS cells. U2OS and MG63 cells were treated with SB at various concentrations. Then, cell proliferation and apoptosis were determined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide and flow cytometry assays, respectively; the expression of Ki67, Bax, Bcl-2, MDM2, and p53 proteins was determined by using Western blot assay. The results showed that SB suppressed proliferation in a concentration-dependent manner and promoted apoptosis of OS cells. In addition, SB enhanced p53 expression and decreased MDM2 expression, indicating that SB can regulate MDM2–p53 feedback loop. p53 inhibited proliferation and promoted apoptosis, whereas MDM2 promoted proliferation and suppressed apoptosis, which indicated that functional effect of SB on OS cell lines at least in part depended on the MDM2–p53 signaling. We also explored the effect of SB on OS cells in vivo and found that SB suppressed the growth of OS cells with no noticeable effect on activity and body weight of mice in vivo. These findings will offer new clues for OS development and progression and offer SB as a potent targeted agent for OS treatment. PMID:27445491

  3. Histone deacetylase inhibitor sodium butyrate suppresses proliferation and promotes apoptosis in osteosarcoma cells by regulation of the MDM2-p53 signaling.

    PubMed

    Xie, Chuhai; Wu, Boyi; Chen, Binwei; Shi, Qunwei; Guo, Jianhong; Fan, Ziwen; Huang, Yan

    2016-01-01

    Histone deacetylase inhibitors have been reported to induce tumor cell growth arrest, differentiation, and apoptosis. This study aimed to investigate the effects of one histone deacetylase inhibitor - sodium butyrate (SB) - on osteosarcoma (OS) cell proliferation and apoptosis and also the molecular mechanisms by which SB exerts regulatory effects on OS cells. U2OS and MG63 cells were treated with SB at various concentrations. Then, cell proliferation and apoptosis were determined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide and flow cytometry assays, respectively; the expression of Ki67, Bax, Bcl-2, MDM2, and p53 proteins was determined by using Western blot assay. The results showed that SB suppressed proliferation in a concentration-dependent manner and promoted apoptosis of OS cells. In addition, SB enhanced p53 expression and decreased MDM2 expression, indicating that SB can regulate MDM2-p53 feedback loop. p53 inhibited proliferation and promoted apoptosis, whereas MDM2 promoted proliferation and suppressed apoptosis, which indicated that functional effect of SB on OS cell lines at least in part depended on the MDM2-p53 signaling. We also explored the effect of SB on OS cells in vivo and found that SB suppressed the growth of OS cells with no noticeable effect on activity and body weight of mice in vivo. These findings will offer new clues for OS development and progression and offer SB as a potent targeted agent for OS treatment. PMID:27445491

  4. Osteogenesis from Dental Pulp Derived Stem Cells: A Novel Conditioned Medium Including Melatonin within a Mixture of Hyaluronic, Butyric, and Retinoic Acids

    PubMed Central

    Maioli, Margherita; Basoli, Valentina; Santaniello, Sara; Cruciani, Sara; Delitala, Alessandro Palmerio; Pinna, Roberto; Milia, Egle; Grillari-Voglauer, Regina; Fontani, Vania; Rinaldi, Salvatore; Muggironi, Roberta; Pigliaru, Gianfranco; Ventura, Carlo

    2016-01-01

    Human dental pulp stem cells (hDPSCs) have shown relevant potential for cell therapy in the orthopedic and odontoiatric fields. The optimization of their osteogenic potential is currently a major challenge. Vascular endothelial growth factor A (VEGF A) has been recently reported to act as a major conductor of osteogenesis in vitro and in vivo. Here, we attempted to prime endogenous VEGF A expression without the need for viral vector mediated gene transfer technologies. We show that hDPSCs exposure to a mixture of hyaluronic, butyric, and retinoic acids (HA + BU + RA) induced the transcription of a gene program of osteogenesis and the acquirement of an osteogenic lineage. Such response was also elicited by cell exposure to melatonin, a pleiotropic agent that recently emerged as a remarkable osteogenic inducer. Interestingly, the commitment to the osteogenic fate was synergistically enhanced by the combinatorial exposure to a conditioned medium containing both melatonin and HA + BU + RA. These in vitro results suggest that in vivo osteogenesis might be improved and further studies are needed. PMID:26880937

  5. Butyrate upregulates endogenous host defense peptides to enhance disease resistance in piglets via histone deacetylase inhibition.

    PubMed

    Xiong, Haitao; Guo, Bingxiu; Gan, Zhenshun; Song, Deguang; Lu, Zeqing; Yi, Hongbo; Wu, Yueming; Wang, Yizhen; Du, Huahua

    2016-01-01

    Butyrate has been used to treat different inflammatory disease with positive outcomes, the mechanisms by which butyrate exerts its anti-inflammatory effects remain largely undefined. Here we proposed a new mechanism that butyrate manipulate endogenous host defense peptides (HDPs) which contributes to the elimination of Escherichia coli O157:H7, and thus affects the alleviation of inflammation. An experiment in piglets treated with butyrate (0.2% of diets) 2 days before E. coli O157:H7 challenge was designed to investigate porcine HDP expression, inflammation and E. coli O157:H7 load in feces. The mechanisms underlying butyrate-induced HDP gene expression and the antibacterial activity and bacterial clearance of macrophage 3D4/2 cells in vitro were examined. Butyrate treatment (i) alleviated the clinical symptoms of E. coli O157:H7-induced hemolytic uremic syndrome (HUS) and the severity of intestinal inflammation; (ii) reduced the E. coli O157:H7 load in feces; (iii) significantly upregulated multiple, but not all, HDPs in vitro and in vivo via histone deacetylase (HDAC) inhibition; and (iv) enhanced the antibacterial activity and bacterial clearance of 3D4/2 cells. Our findings indicate that butyrate enhances disease resistance, promotes the clearance of E. coli O157:H7, and alleviates the clinical symptoms of HUS and inflammation, partially, by affecting HDP expression via HDAC inhibition. PMID:27230284

  6. Butyrate upregulates endogenous host defense peptides to enhance disease resistance in piglets via histone deacetylase inhibition

    PubMed Central

    Xiong, Haitao; Guo, Bingxiu; Gan, Zhenshun; Song, Deguang; Lu, Zeqing; Yi, Hongbo; Wu, Yueming; Wang, Yizhen; Du, Huahua

    2016-01-01

    Butyrate has been used to treat different inflammatory disease with positive outcomes, the mechanisms by which butyrate exerts its anti-inflammatory effects remain largely undefined. Here we proposed a new mechanism that butyrate manipulate endogenous host defense peptides (HDPs) which contributes to the elimination of Escherichia coli O157:H7, and thus affects the alleviation of inflammation. An experiment in piglets treated with butyrate (0.2% of diets) 2 days before E. coli O157:H7 challenge was designed to investigate porcine HDP expression, inflammation and E. coli O157:H7 load in feces. The mechanisms underlying butyrate-induced HDP gene expression and the antibacterial activity and bacterial clearance of macrophage 3D4/2 cells in vitro were examined. Butyrate treatment (i) alleviated the clinical symptoms of E. coli O157:H7-induced hemolytic uremic syndrome (HUS) and the severity of intestinal inflammation; (ii) reduced the E. coli O157:H7 load in feces; (iii) significantly upregulated multiple, but not all, HDPs in vitro and in vivo via histone deacetylase (HDAC) inhibition; and (iv) enhanced the antibacterial activity and bacterial clearance of 3D4/2 cells. Our findings indicate that butyrate enhances disease resistance, promotes the clearance of E. coli O157:H7, and alleviates the clinical symptoms of HUS and inflammation, partially, by affecting HDP expression via HDAC inhibition. PMID:27230284

  7. Histone deacetylase inhibitors sodium butyrate and valproic acid delay spontaneous cell death in purified rat retinal ganglion cells

    PubMed Central

    Boyle, Jennifer; Pielen, Amelie; Lagrèze, Wolf Alexander

    2011-01-01

    Purpose Histone deacetylase inhibitors (HDACi) have neuroprotective effects under various neurodegenerative conditions, e.g., after optic nerve crush (ONC). HDACi-mediated protection of central neurons by increased histone acetylation has not previously been demonstrated in rat retinal ganglion cells (RGCs), although epigenetic changes were shown to be associated with cell death after ONC. We investigated whether HDACi can delay spontaneous cell death in purified rat RGCs and analyzed concomitant histone acetylation levels. Methods RGCs were purified from newborn (postnatal day [P] 0–P2) rat retinas by immunopanning with antibodies against Thy-1.1 and culturing in serum-free medium for 2 days. RGCs were treated with HDACi, each at several different concentrations: 0.1–10 mM sodium butyrate (SB), 0.1–2 mM valproic acid (VPA), or 0.5–10 nM trichostatin A (TSA). Negative controls were incubated in media alone, while positive controls were incubated in 0.05–0.4 IU/µl erythropoietin. Survival was quantified by counting viable cells using phase-contrast microscopy. The expression of acetylated histone proteins (AcH) 3 and 4 was analyzed in RGCs by immunohistochemistry. Results SB and VPA enhanced RGC survival in culture, with both showing a maximum effect at 0.1 mM (increase in survival to 188% and 163%, respectively). Their neuroprotective effect was comparable to that of erythropoietin at 0.05 IU/µl. TSA 0.5–1.0 nM showed no effect on RGC survival, and concentrations ≥5 nM increased RGC death. AcH3 and AcH4 levels were only significantly increased in RGCs treated with 0.1 mM SB. VPA 0.1 mM produced only a slight effect on histone acetylation. Conclusions Millimolar concentrations of SB and VPA delayed spontaneous cell death in purified RGCs; however, significantly increased histone acetylation levels were only detectable in RGCs after SB treatment. As the potent HDACi TSA was not neuroprotective, mechanisms other than histone acetylation may be the

  8. Butyric acid in irritable bowel syndrome.

    PubMed

    Załęski, Andrzej; Banaszkiewicz, Aleksandra; Walkowiak, Jarosław

    2013-01-01

    Butyric acid (butanoic acid) belongs to a group of short-chain fatty acids and is thought to play several beneficial roles in the gastrointestinal tract. Butyric anion is easily absorbed by enteric cells and used as a main source of energy. Moreover, butyric acid is an important regulator of colonocyte proliferation and apoptosis, gastrointestinal tract motility and bacterial microflora composition in addition to its involvement in many other processes including immunoregulation and anti-inflammatory activity. The pathogenesis of irritable bowel syndrome (IBS), the most commonly diagnosed functional gastrointestinal condition, is complex, and its precise mechanisms are still unclear. This article describes the potential benefits of butyric acid in IBS. PMID:24868283

  9. Butyric acid in irritable bowel syndrome

    PubMed Central

    Załęski, Andrzej; Walkowiak, Jarosław

    2013-01-01

    Butyric acid (butanoic acid) belongs to a group of short-chain fatty acids and is thought to play several beneficial roles in the gastrointestinal tract. Butyric anion is easily absorbed by enteric cells and used as a main source of energy. Moreover, butyric acid is an important regulator of colonocyte proliferation and apoptosis, gastrointestinal tract motility and bacterial microflora composition in addition to its involvement in many other processes including immunoregulation and anti-inflammatory activity. The pathogenesis of irritable bowel syndrome (IBS), the most commonly diagnosed functional gastrointestinal condition, is complex, and its precise mechanisms are still unclear. This article describes the potential benefits of butyric acid in IBS. PMID:24868283

  10. Enteric Bacterial Metabolites Propionic and Butyric Acid Modulate Gene Expression, Including CREB-Dependent Catecholaminergic Neurotransmission, in PC12 Cells - Possible Relevance to Autism Spectrum Disorders

    PubMed Central

    Nankova, Bistra B.; Agarwal, Raj; MacFabe, Derrick F.; La Gamma, Edmund F.

    2014-01-01

    Alterations in gut microbiome composition have an emerging role in health and disease including brain function and behavior. Short chain fatty acids (SCFA) like propionic (PPA), and butyric acid (BA), which are present in diet and are fermentation products of many gastrointestinal bacteria, are showing increasing importance in host health, but also may be environmental contributors in neurodevelopmental disorders including autism spectrum disorders (ASD). Further to this we have shown SCFA administration to rodents over a variety of routes (intracerebroventricular, subcutaneous, intraperitoneal) or developmental time periods can elicit behavioral, electrophysiological, neuropathological and biochemical effects consistent with findings in ASD patients. SCFA are capable of altering host gene expression, partly due to their histone deacetylase inhibitor activity. We have previously shown BA can regulate tyrosine hydroxylase (TH) mRNA levels in a PC12 cell model. Since monoamine concentration is known to be elevated in the brain and blood of ASD patients and in many ASD animal models, we hypothesized that SCFA may directly influence brain monoaminergic pathways. When PC12 cells were transiently transfected with plasmids having a luciferase reporter gene under the control of the TH promoter, PPA was found to induce reporter gene activity over a wide concentration range. CREB transcription factor(s) was necessary for the transcriptional activation of TH gene by PPA. At lower concentrations PPA also caused accumulation of TH mRNA and protein, indicative of increased cell capacity to produce catecholamines. PPA and BA induced broad alterations in gene expression including neurotransmitter systems, neuronal cell adhesion molecules, inflammation, oxidative stress, lipid metabolism and mitochondrial function, all of which have been implicated in ASD. In conclusion, our data are consistent with a molecular mechanism through which gut related environmental signals such as

  11. Searching for Synbiotics to increase Colonic Butyrate Concentration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butyrate is produced by microbial fermentation of plant fiber in the gut and a preferred substrate for gut epithelial cells. In ruminants, butyrate contributes to 70% of energy metabolism. In monogastric species, butyrate also plays an important role in energy metabolism in the hindgut. Moreover, bu...

  12. Butyrate enemas upregulate Muc genes expression but decrease adherent mucus thickness in mice colon.

    PubMed

    Gaudier, E; Rival, M; Buisine, M-P; Robineau, I; Hoebler, C

    2009-01-01

    Colonic mucosal protection is provided by the mucus gel, mainly composed of mucins. Several factors can modulate the formation and the secretion of mucins, and among them butyrate, an end-product of carbohydrate fermentation. However, the specific effect of butyrate on the various colonic mucins, and the consequences in terms of the mucus layer thickness are not known. Our aim was to determine whether butyrate modulates colonic MUC genes expression in vivo and whether this results in changes in mucus synthesis and mucus layer thickness. Mice received daily for 7 days rectal enemas of butyrate (100 mM) versus saline. We demonstrated that butyrate stimulated the gene expression of both secreted (Muc2) and membrane-linked (Muc1, Muc3, Muc4) mucins. Butyrate especially induced a 6-fold increase in Muc2 gene expression in proximal colon. However, butyrate enemas did not modify the number of epithelial cells containing the protein Muc2, and caused a 2-fold decrease in the thickness of adherent mucus layer. Further studies should help understanding whether this last phenomenon, i.e. the decrease in adherent mucus gel thickness, results in a diminished protective function or not. PMID:18198997

  13. Expression profiling of sodium butyrate (NaB)-treated cells: identification of regulation of genes related to cytokine signaling and cancer metastasis by NaB.

    PubMed

    Joseph, Jeena; Mudduluru, Giridhar; Antony, Sini; Vashistha, Surabhi; Ajitkumar, Parthasarathi; Somasundaram, Kumaravel

    2004-08-19

    Histone deacetylase (HDAC) inhibitors induce growth arrest and apoptosis in a variety of human cancer cells. Sodium butyrate (NaB), a short chain fatty acid, is a HDAC inhibitor and is produced in the colonic lumen as a consequence of microbial degradation of dietary fibers. In order to dissect out the mechanism of NaB-induced growth inhibition of cancer cells, we carried out expression profiling of a human lung carcinoma cell line (H460) treated with NaB using a cDNA microarray. Of the total 1728 genes analysed, there were 32 genes with a mean expression value of 2.0-fold and higher and 66 genes with a mean expression value 3.0-fold and lower in NaB-treated cells. For a few selected genes, we demonstrate that their expression pattern by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis is matching with the results obtained by microarray analysis. Closer view at the expression profile of NaB-treated cells revealed the downregulation of a total of 16 genes associated with cytokine signaling, in particular, interferon gamma (IFNgamma) pathway. In good correlation, NaB-pretreated cells failed to induce interferon regulatory factor 1, an INFgamma target gene, efficiently upon IFNgamma addition. These results suggest that NaB inhibits proinflammatory cytokine signaling pathway, thus providing proof of mechanism for its anti-inflammatory activity. We also found that NaB induced three genes, which are known metastatic suppressors, and downregulated 11 genes, which have been shown to promote metastasis. Upregulation of metastatic suppressor Kangai 1 (KAI1) by NaB in a time-dependent manner was confirmed by RT-PCR analysis. The differential regulation of metastasis-associated genes by NaB provides explanation for the anti-invasive properties of NaB. Therefore, our study presents new evidence for pathways regulated by NaB, thus providing evidence for the mechanism behind anti-inflammatory and antimetastatic activities of NaB. PMID:15318170

  14. Retraction: Open and closed conformations reveal induced fit movements in butyrate kinase 2 activation. J. Diao, Y. D. Ma, and M. S. Hasson.

    PubMed

    2012-06-01

    The following article from Proteins: Structure, Function, and Bioinformatics, "Open and closed conformations reveal induced fit movements in butyrate kinase 2 activation," by Jiasheng Diao, Yunglin D. Ma, and Miriam S. Hasson, published online on 21 October 2010 in Wiley Online Library (onlinelibrary.wiley.com), has been retracted by agreement between the journal Editor in Chief, Bertrand Garcia-Moreno, and Wiley Periodicals. The retraction has been agreed because it was established by internal investigation performed by Purdue University that the authors of this article are not the owners of the data and have no right to publication. PMID:19847916

  15. Butyrate and glucose metabolism by colonocytes in experimental colitis in mice

    PubMed Central

    Ahmad, M; Krishnan, S; Ramakrishna, B; Mathan, M; Pulimood, A; Murthy, S

    2000-01-01

    BACKGROUND/AIMS—Impaired colonocyte metabolism of butyrate has been implicated in the aetiopathogenesis of ulcerative colitis. Colonocyte butyrate metabolism was investigated in experimental colitis in mice.
METHODS—Colitis was induced in Swiss outbred white mice by oral administration of 4% dextran sulphate sodium (DSS). Colonocytes isolated from colitic and normal control mice were incubated with [14C]butyrate or glucose, and production of 14CO2, as well as of intermediate metabolites (acetoacetate, β-hydroxybutyrate and lactate), was measured. The effect of different substrate concentrations on oxidation was also examined.
RESULTS—Butyrate oxidation (µmol/h per mg protein; mean (SEM)) was significantly reduced in DSS colitis, values on day 7 of DSS administration being 0.177 (0.007) compared with 0.406 (0.035) for control animals (p<0.001). Glucose oxidation (µmol/h per mg protein; mean (SEM)) on day 7 of DSS administration was significantly higher than in controls (0.06 (0.006) v 0.027 (0.004), p<0.001). Production of β-hydroxybutyrate was decreased and production of lactate increased in DSS colitis compared with controls. Increasing butyrate concentration from 10 to 80 mM enhanced oxidation in DSS colitis (0.036 (0.002) to 0.285 (0.040), p<0.001), although it continued to remain lower than in controls. Surface and crypt epithelial cells showed similar ratios of butyrate to glucose oxidation. When 1 mM DSS was added to normal colonocytes in vitro, it did not alter butyrate oxidation. The initial histological lesion of DSS administration was very patchy and involved crypt cells. Abnormal butyrate oxidation became apparent only after six days of DSS administration, at which time histological abnormalities were more widespread.
CONCLUSIONS—Colonocyte metabolism of butyrate, but not of glucose, is impaired in DSS colitis, and may be important in pathophysiology. Histological abnormalities preceded measurable defects in butyrate

  16. The activation of the TLR2/p38 pathway by sodium butyrate in bovine mammary epithelial cells is involved in the reduction of Staphylococcus aureus internalization.

    PubMed

    Alva-Murillo, Nayeli; Medina-Estrada, Ivan; Báez-Magaña, Marisol; Ochoa-Zarzosa, Alejandra; López-Meza, Joel E

    2015-12-01

    Staphylococcus aureus is an etiological agent of human and animal diseases, and it is able to internalize into non-professional phagocytic cells (i.e. bovine mammary epithelial cells, bMECs), which is an event that is related to chronic and recurrent infections. bMECs contribute to host innate immune responses (IIR) through TLR pathogen recognition, whereby TLR2 is the most relevant for S. aureus. In a previous report, we showed that sodium butyrate (NaB, 0.5mM), which is a short chain fatty acid (SCFA), reduced S. aureus internalization into bMECs by modulating their IIR. However, the molecular mechanism of this process has not been described, which was the aim of this study. The results showed that the TLR2 membrane abundance (MA) and mRNA expression were induced by 0.5mM NaB ∼1.6-fold and ∼1.7-fold, respectively. Additionally, 0.5mM NaB induced p38 phosphorylation, but not JNK1/2 or ERK1/2 phosphorylation in bMECs, which reached the baseline when the bMECs were S. aureus-challenged. Additionally, bMECs that were treated with 0.5mM NaB (24h) showed activation of 8 transcriptional factors (AP-1, E2F-1, FAST-1, MEF-1, EGR, PPAR, ER and CBF), which were partially reverted when the bMECs were S. aureus-challenged. Additionally, 0.5mM NaB (24h) up-regulated mRNA expression of the antimicrobial peptides, TAP (∼4.8-fold), BNBD5 (∼3.2-fold) and BNBD10 (∼2.6-fold). Notably, NaB-treated and S. aureus-challenged bMECs increased the mRNA expression of all of the antimicrobial peptides that were evaluated, and this was evident for LAP and BNBD5. In the NaB-treated bMECs, we did not detect significant expression changes for IL-1β and IL-6 and only TNF-α, IL-10 and IL-8 were induced. Interestingly, the NaB-treated and S. aureus-challenged bMECs maintained the anti-inflammatory response that was induced by this SCFA. In conclusion, our results suggest that 0.5mM NaB activates bMECs via TLR2/p38, which leads to improved antimicrobial defense before/after pathogen

  17. Molecular pathways: gene-environment interactions regulating dietary fiber induction of proliferation and apoptosis via butyrate for cancer prevention.

    PubMed

    Bultman, Scott J

    2014-02-15

    Gene-environment interactions are so numerous and biologically complicated that it can be challenging to understand their role in cancer. However, dietary fiber and colorectal cancer prevention may represent a tractable model system. Fiber is fermented by colonic bacteria into short-chain fatty acids such as butyrate. One molecular pathway that has emerged involves butyrate having differential effects depending on its concentration and the metabolic state of the cell. Low-moderate concentrations, which are present near the base of colonic crypts, are readily metabolized in the mitochondria to stimulate cell proliferation via energetics. Higher concentrations, which are present near the lumen, exceed the metabolic capacity of the colonocyte. Unmetabolized butyrate enters the nucleus and functions as a histone deacetylase (HDAC) inhibitor that epigenetically regulates gene expression to inhibit cell proliferation and induce apoptosis as the colonocytes exfoliate into the lumen. Butyrate may therefore play a role in normal homeostasis by promoting turnover of the colonic epithelium. Because cancerous colonocytes undergo the Warburg effect, their preferred energy source is glucose instead of butyrate. Consequently, even moderate concentrations of butyrate accumulate in cancerous colonocytes and function as HDAC inhibitors to inhibit cell proliferation and induce apoptosis. These findings implicate a bacterial metabolite with metaboloepigenetic properties in tumor suppression. PMID:24270685

  18. Cytokine responses of intestinal epithelial-like Caco-2 cells to non-pathogenic and opportunistic pathogenic yeasts in the presence of butyric acid.

    PubMed

    Saegusa, Shizue; Totsuka, Mamoru; Kaminogawa, Shuichi; Hosoi, Tomohiro

    2007-10-01

    Candida albicans, Saccharomyces cerevisiae and their cell wall components, zymosan and glucan, have been shown to stimulate interleukin-8 (IL-8/CXCL-8) production by intestinal epithelial cell-like Caco-2 cells pre-cultured with 10 mM butyric acid. We examined in this study whether these yeasts also altered the production of other cytokines and cyclooxygenases (COXs) by Caco-2 cells. Culturing Caco-2 cells with 10 mM butyric acid and 15% FBS for 4 days enhanced the basal levels of mRNA encoding IL-6, IL-8, IL-18, monocyte chemoattractant protein (MCP)-1, stem cell factor, transforming growth factor (TGF)-beta1, TGF-beta3, tumor necrosis factor (TNF)-alpha, COX-1, and COX-2, but not of granulocyte-macrophage colony-stimulating factor (GM-CSF) and TGF-beta2. The inclusion of live S. cerevisiae or C. albicans further enhanced the production of IL-8, but not of the other cytokines and COXs. The non-pathogenic yeasts, C. kefyr, C. utilis, C. versatilis, Kluyveromyces lactis, K. marxianus, Schizosaccharomyces pombe and Zygosaccharomyces rouxii, used for the production of fermented foods and probiotics, and the opportunistic pathogens, C. glabrata, C. krusei, C. parapsilosis and C. tropicalis, isolated from human tissue samples also enhanced IL-8 secretion by Caco-2 cells. PMID:17928716

  19. Efficacy of sodium butyrate adjunct therapy in shigellosis: a randomized, double-blind, placebo-controlled clinical trial

    PubMed Central

    2012-01-01

    Background Treatment of shigellosis in rabbits with butyrate reduces clinical severity and counteracts the downregulation of cathelicidin (CAP-18) in the large intestinal epithelia. Here, we aimed to evaluate whether butyrate can be used as an adjunct to antibiotics in the treatment of shigellosis in patients. Methods A randomized, double-blind, placebo-controlled, parallel-group designed clinical trial was conducted. Eighty adult patients with shigellosis were randomized to either the Intervention group (butyrate, n = 40) or the Placebo group (normal saline, n = 40). The Intervention group was given an enema containing sodium butyrate (80 mM), twice daily for 3 days, while the Placebo group received the same dose of normal saline. The primary endpoint of the trial was to assess the efficacy of butyrate in improving clinical, endoscopic and histological features of shigellosis. The secondary endpoint was to study the effect of butyrate on the induction of antimicrobial peptides in the rectum. Clinical outcomes were assessed and concentrations of antimicrobial peptides (LL-37, human beta defensin1 [HBD-1] and human beta defensin 3 [HBD-3]) and pro-inflammatory cytokines (interleukin-1β [IL-1β] and interleukin-8 [IL-8]) were measured in the stool. Sigmoidoscopic and histopathological analyses, and immunostaining of LL-37 in the rectal mucosa were performed in a subgroup of patients. Results Compared with placebo, butyrate therapy led to the early reduction of macrophages, pus cells, IL-8 and IL-1β in the stool and improvement in rectal histopathology. Butyrate treatment induced LL-37 expression in the rectal epithelia. Stool concentration of LL-37 remained significantly higher in the Intervention group on days 4 and 7. Conclusion Adjunct therapy with butyrate during shigellosis led to early reduction of inflammation and enhanced LL-37 expression in the rectal epithelia with prolonged release of LL-37 in the stool. Trial Registration Clinical

  20. Periodontal disease level-butyric acid amounts locally administered in the rat gingival mucosa induce ER stress in the systemic blood.

    PubMed

    Cueno, Marni E; Saito, Yuko; Ochiai, Kuniyasu

    2016-05-01

    Periodontal diseases have long been postulated to contribute to systemic diseases and, likewise, it has been proposed that periodontal disease treatment may ameliorate certain systemic diseases. Short-chain fatty acids (SCFA) are major secondary metabolites produced by oral anaerobic bacteria and, among the SCFAs, butyric acid (BA) in high amounts contribute to periodontal disease development. Periodontal disease level-butyric acid (PDL-BA) is found among patients suffering from periodontal disease and has previously shown to induce oxidative stress, whereas, oxidative stress is correlated to endoplasmic reticulum (ER) stress. This would imply that PDL-BA may likewise stimulate ER stress, however, this was never elucidated. A better understanding of the correlation between PDL-BA and systemic ER stress stimulation could shed light on the possible systemic effects of PDL-BA-related periodontal diseases. Here, PDL-BA was injected into the gingival mucosa and the systemic blood obtained from the rat jugular was collected at 0, 15, 60, and 180 min post-injection. Collected blood samples were purified and only the blood cytosol was used throughout this study. Subsequently, we measured blood cytosolic GADD153, Ca(2+), representative apoptotic and inflammatory caspases, and NF-κB amounts. We found that PDL-BA presence increased blood cytosolic GADD153 and Ca(2+) amounts. Moreover, we observed that blood cytosolic caspases and NF-κB were activated only at 60 and 180 min post-injection in the rat gingival mucosa. This suggests that PDL-BA administered through the gingival mucosa may influence the systemic blood via ER stress stimulation and, moreover, prolonged PDL-BA retention in the gingival mucosa may play a significant role in ER stress-related caspase and NF-κB activation. In a periodontal disease scenario, we propose that PDL-BA-related ER stress stimulation leading to the simultaneous activation of apoptosis and inflammation may contribute to periodontal disease

  1. Modeling of Open-Circuit Voltage of Phenyl-C61-Butyric Acid Methyl Ester-Like Based Bulk-Heterojunction Solar Cells.

    PubMed

    Ferreira, Rodrigo M; Batagin-Neto, Augusto; Lavarda, Francisco C

    2015-12-01

    New materials are currently being sought for use in active layers of bulk-heterojunction organic solar cells, and computational modeling plays an important role in this search. Although open circuit voltage (V(oc)) is one of the fundamental quantities that determine the efficiency of a solar cell, there is no consensus on the best way to estimate this magnitude for new materials from calculations of the electronic structure. In this paper, we compare ways of predicting V(oc) values employing a diverse group of blends and conclude that it is possible to have a good prediction tool for organic solar cells based on phenyl-C61-butyric acid methyl ester (PCBM) acceptor molecules. PMID:26682440

  2. The Intestinal Epithelial Cell Differentiation Marker Intestinal Alkaline Phosphatase (ALPi) Is Selectively Induced by Histone Deacetylase Inhibitors (HDACi) in Colon Cancer Cells in a Kruppel-like Factor 5 (KLF5)-dependent Manner*

    PubMed Central

    Shin, Joongho; Carr, Azadeh; Corner, Georgia A.; Tögel, Lars; Dávaos-Salas, Mercedes; Tran, Hoanh; Chueh, Anderly C.; Al-Obaidi, Sheren; Chionh, Fiona; Ahmed, Naseem; Buchanan, Daniel D.; Young, Joanne P.; Malo, Madhu S.; Hodin, Richard A.; Arango, Diego; Sieber, Oliver M.; Augenlicht, Leonard H.; Dhillon, Amardeep S.; Weber, Thomas K.; Mariadason, John M.

    2014-01-01

    The histone deacetylase inhibitor (HDACi) sodium butyrate promotes differentiation of colon cancer cells as evidenced by induced expression and enzyme activity of the differentiation marker intestinal alkaline phosphatase (ALPi). Screening of a panel of 33 colon cancer cell lines identified cell lines sensitive (42%) and resistant (58%) to butyrate induction of ALP activity. This differential sensitivity was similarly evident following treatment with the structurally distinct HDACi, MS-275. Resistant cell lines were significantly enriched for those harboring the CpG island methylator phenotype (p = 0.036, Chi square test), and resistant cell lines harbored methylation of the ALPi promoter, particularly of a CpG site within a critical KLF/Sp regulatory element required for butyrate induction of ALPi promoter activity. However, butyrate induction of an exogenous ALPi promoter-reporter paralleled up-regulation of endogenous ALPi expression across the cell lines, suggesting the presence or absence of a key transcriptional regulator is the major determinant of ALPi induction. Through microarray profiling of sensitive and resistant cell lines, we identified KLF5 to be both basally more highly expressed as well as preferentially induced by butyrate in sensitive cell lines. KLF5 overexpression induced ALPi promoter-reporter activity in resistant cell lines, KLF5 knockdown attenuated butyrate induction of ALPi expression in sensitive lines, and butyrate selectively enhanced KLF5 binding to the ALPi promoter in sensitive cells. These findings demonstrate that butyrate induction of the cell differentiation marker ALPi is mediated through KLF5 and identifies subsets of colon cancer cell lines responsive and refractory to this effect. PMID:25037223

  3. Butyrate production from high-fiber diet protects against lymphoma tumor.

    PubMed

    Wei, Wei; Sun, Wei; Yu, Shanshan; Yang, Yu; Ai, Limei

    2016-10-01

    Gut microbiota and dietary fiber are critical for protecting body from obesity, diabetes and cancer. Butyrate, produced in the gut by bacterial fermentation of dietary fibers, is demonstrated to be protective against the development of colorectal cancer as a histone deacetylase (HDAC) inhibitor. We report that high-fiber diet and butyrate significantly inhibited the growth lymphoma tumors. Butyrate induced apoptosis of lymphoma tumor cells and significantly up-regulated histone 3 acetylation (H3ac) level and target genes such as Fas, P21, P27. Our results unravel an instrumental role of fiber diet and their metabolites on lymphoma tumor and demonstrate an intervention potential on the prevention and therapy of lymphoma. PMID:26885564

  4. Combinatorial chemopreventive effect of butyric acid, nicotinamide and calcium glucarate against the 7,12-dimethylbenz(a)anthracene induced mouse skin tumorigenesis attained by enhancing the induction of intrinsic apoptotic events.

    PubMed

    Tiwari, Prakash; Sahay, Satya; Pandey, Manuraj; Qadri, Syed S Y H; Gupta, Krishna P

    2015-01-25

    We explored the basis of the combinatorial chemopreventive effect of butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG) on mouse skin exposed to 7,12-dimethylbenz(a)anthracene (DMBA). We studied the effects of topical application of DMBA in the presence or absence of BA, NA and CAG on the regulators of apoptosis. DMBA treatment suppressed Bax, Bax/Bcl-2 ratio, release of cyt c, Apaf1, caspase-9, -3 mediated apoptosis. Downregulation of p21 and upregulation of Bcl-2, mut p53 were also observed in only DMBA treated mice. Simultaneous application of BA, NA and CAG induced a mitochondria-mediated apoptosis, characterized by a rise in the Bax, Bax/Bcl-2 ratio, release of cyt c, upregulation of Apaf1 with down-stream activation of caspase-9, -3. Furthermore treatment with BA, NA and CAG demonstrated an upregulation of p21 and downregulation of Bcl-2, mut p53. But this effect was enhanced in the presence of all the three compounds together in combination. Chemoprevention by a combination of BA, NA and CAG by inducing the apoptosis, the natural cell death, suggest the importance of the potential combinational strategies capable of preventing skin tumor development. PMID:25478867

  5. The SCFA butyrate stimulates the epithelial production of retinoic acid via inhibition of epithelial HDAC.

    PubMed

    Schilderink, Ronald; Verseijden, Caroline; Seppen, Jurgen; Muncan, Vanesa; van den Brink, Gijs R; Lambers, Tim T; van Tol, Eric A; de Jonge, Wouter J

    2016-06-01

    In the intestinal mucosa, retinoic acid (RA) is a critical signaling molecule. RA is derived from dietary vitamin A (retinol) through conversion by aldehyde dehydrogenases (aldh). Reduced levels of short-chain fatty acids (SCFAs) are associated with pathological microbial dysbiosis, inflammatory disease, and allergy. We hypothesized that SCFAs contribute to mucosal homeostasis by enhancing RA production in intestinal epithelia. With the use of human and mouse epithelial cell lines and primary enteroids, we studied the effect of SCFAs on the production of RA. Functional RA conversion was analyzed by Adlefluor activity assays. Butyrate (0-20 mM), in contrast to other SCFAs, dose dependently induced aldh1a1 or aldh1a3 transcript expression and increased RA conversion in human and mouse epithelial cells. Epithelial cell line data were replicated in intestinal organoids. In these organoids, butyrate (2-5 mM) upregulated aldh1a3 expression (36-fold over control), whereas aldh1a1 was not significantly affected. Butyrate enhanced maturation markers (Mucin-2 and villin) but did not consistently affect stemness markers or other Wnt target genes (lgr5, olfm4, ascl2, cdkn1). In enteroids, the stimulation of RA production by SCFA was mimicked by inhibitors of histone deacetylase 3 (HDAC3) but not by HDAC1/2 inhibitors nor by agonists of butyrate receptors G-protein-coupled receptor (GPR)43 or GPR109A, indicating that butyrate stimulates RA production via HDAC3 inhibition. We conclude that the SCFA butyrate inhibits HDAC3 and thereby supports epithelial RA production. PMID:27151945

  6. Sodium butyrate epigenetically modulates high-fat diet-induced skeletal muscle mitochondrial adaptation, obesity and insulin resistance through nucleosome positioning

    PubMed Central

    Henagan, Tara M; Stefanska, Barbara; Fang, Zhide; Navard, Alexandra M; Ye, Jianping; Lenard, Natalie R; Devarshi, Prasad P

    2015-01-01

    Background and Purpose Sodium butyrate (NaB), an epigenetic modifier, is effective in promoting insulin sensitivity. The specific genomic loci and mechanisms underlying epigenetically induced obesity and insulin resistance and the targets of NaB are not fully understood. Experimental Approach The anti-diabetic and anti-obesity effects of NaB treatment were measured by comparing phenotypes and physiologies of C57BL/6J mice fed a low-fat diet (LF), high-fat diet (HF) or high-fat diet plus NaB (HF + NaB) for 10 weeks. We determined a possible mechanism of NaB action through induction of beneficial skeletal muscle mitochondrial adaptations and applied microccocal nuclease digestion with sequencing (MNase-seq) to assess whole genome differences in nucleosome occupancy or positioning and to identify associated epigenetic targets of NaB. Key Results NaB prevented HF diet-induced increases in body weight and adiposity without altering food intake or energy expenditure, improved insulin sensitivity as measured by glucose and insulin tolerance tests, and decreased respiratory exchange ratio. In skeletal muscle, NaB increased the percentage of type 1 fibres, improved acylcarnitine profiles as measured by metabolomics and produced a chromatin structure, determined by MNase-seq, similar to that seen in LF. Targeted analysis of representative nuclear-encoded mitochondrial genes showed specific repositioning of the −1 nucleosome in association with altered gene expression. Conclusions and Implications NaB treatment may be an effective pharmacological approach for type 2 diabetes and obesity by inducing −1 nucleosome repositioning within nuclear-encoded mitochondrial genes, causing skeletal muscle mitochondrial adaptations that result in more complete β-oxidation and a lean, insulin sensitive phenotype. PMID:25559882

  7. Glucocorticoid receptor-dependent disruption of a specific nucleosome on the mouse mammary tumor virus promoter is prevented by sodium butyrate.

    PubMed Central

    Bresnick, E H; John, S; Berard, D S; LeFebvre, P; Hager, G L

    1990-01-01

    Our laboratory has previously developed cell lines derived from mouse NIH 3T3 fibroblasts and C127 mammary tumor cells that stably express mouse mammary tumor virus (MMTV) long terminal repeat fusion genes in bovine papillomavirus-based episomes. Glucocorticoid hormone strongly activates transcription from episomes and induces the disruption of a single nucleosome in an array of phased nucleosomes on the MMTV promoter. Sodium butyrate inhibits the glucocorticoid hormone-dependent development of a nuclease-hypersensitive site that is due to the displacement of this nucleosome, and inhibits induction of RNA transcripts from episomes. Saturation binding studies show that butyrate treatment does not significantly affect the amount or the hormone-binding affinity of the glucocorticoid receptor. In a transient transfection assay, glucocorticoid hormone can activate transcription from a MMTV long terminal repeat-driven luciferase gene construct equivalently in untreated and butyrate-treated cells, indicating that the soluble factors necessary for transactivation of the MMTV promoter are unaffected by butyrate. The differential effect of butyrate on the induction of stable chromatin templates and transiently expressed plasmids suggests that butyrate prevents nucleosome displacement and represses transcription by inducing a modification of chromatin. Images PMID:2160080

  8. Swine Intestinal Tract Harbors a High Diversity of Butyrate-Producing Bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butyrate is a preferred energy source of human colonic epithelial cells, and changes in the communities of butyrate-producing bacteria have been associated with adverse health. We hypothesize that in swine, like in humans, butyrate-producing bacteria contribute to a healthy intestinal ecosystem. T...

  9. Protective role of sodium butyrate, a HDAC inhibitor on beta-cell proliferation, function and glucose homeostasis through modulation of p38/ERK MAPK and apoptotic pathways: study in juvenile diabetic rat.

    PubMed

    Khan, S; Jena, G B

    2014-04-25

    Type 1 diabetes (T1D) also known as juvenile diabetes is a chronic autoimmune disorder that precipitates in genetically susceptible individuals by environmental factors particularly during early age. Both genetic and epigenetic factors are implicated in the beta-cell development, proliferation, differentiation and function. Recent evidences suggested that there is a link between diabetes and histone deacetylases (HDACs), because HDAC inhibitors promote beta-cell development, proliferation and function as well as improve glucose homeostasis. Sodium butyrate (NaB) is a short chain fatty acid having HDAC inhibition activity. The present study was aimed to investigate the protective role of NaB treatment on the beta-cell proliferation, function and glucose homeostasis as well as apoptosis in juvenile diabetic rat. Diabetes was induced by single injection of STZ (60 mg/kg, i.p.) in chilled citrate buffer, while NaB (500 mg/kg/day) was administrated by i.p. route for 21 days as pre- and post-treatment schedule. Plasma glucose and insulin levels, HbA1c, glucose tolerance, apoptosis, and expression of proliferating cell nuclear antigen (PCNA), p38, p53, caspase-3, extracellular signal-regulated kinase-1/2 (ERK-1/2), forkhead box protein O1 (FOXO1) and insulin receptor substrate-1 (IRS-1) as well as histone acetylation were evaluated. NaB treatment decreased plasma glucose, HbA1c, beta-cell apoptosis and improved plasma insulin level and glucose homeostasis through HDAC inhibition and histone acetylation in diabetic animal as compared to control. NaB treatment improved the beta-cell proliferation, function and glucose homeostasis as well as reduced beta-cell apoptosis in juvenile diabetic rat by the modulation of p38/ERK MAPK and apoptotic pathway. PMID:24530320

  10. Digital mRNA profiling of N-glycosylation gene expression in recombinant Chinese hamster ovary cells treated with sodium butyrate.

    PubMed

    Lee, Sang Min; Kim, Yeon-Gu; Lee, Eun Gyo; Lee, Gyun Min

    2014-02-10

    To understand the effects of sodium butyrate (NaBu) on protein glycosylation, recombinant Chinese hamster ovary (rCHO) cells producing Fc-fusion glycoprotein were subjected to 3mM NaBu. The addition of NaBu to the cultures reduced the relative proportion of acidic isoforms and sialic acid content of the glycoprotein. Fifty-two N-glycosylation-related gene expressions were also assessed by the NanoString nCounter system, which can provide a direct digital readout using custom-designed color-coded probes. Among them, ten genes (ugp, slc35a2, ganc, man1a, man1c, mgat5a, st3gal5, glb1, neu1, and neu3) were up-regulated and three genes (b4galt2, st3gal3, and neu2) were down-regulated significantly. Altered expression patterns in st3gal3, neu1, and neu3, which have roles in the sialic acid biosynthesis pathway, correlated with reduced sialic acid content of the glycoprotein by NaBu. Taken together, the results obtained in this study provide a better understanding of the detrimental effect of NaBu on N-glycosylation in rCHO cells. PMID:24333461

  11. Investigation of TiO2 Surface Modification with [6,6]-Phenyl-C61-butyric Acid for Titania/Polymer Hybrid Solar Cells

    NASA Astrophysics Data System (ADS)

    Ma, Teng; Zhang, Jinyu; Kojima, Ryota; Tadaki, Daisuke; Kimura, Yasuo; Niwano, Michio

    2013-11-01

    We have investigated modification of TiO2 surfaces with [6,6]-phenyl-C61-butyric acid (PCBA) used for fabrication of TiO2/poly(3-hexylthiophene-2,5-diyl) (P3HT) hybrid solar cells. The surface modification process was monitored using in-situ infrared absorption spectroscopy in the multiple-internal reflection geometry (MIR-IRAS). IR data showed that longer exposure of TiO2 surfaces to an organic solution of PCBA leads to undesirable formation of a physisorbed PCBA overlayer that cannot be removed by rinsing the surface in pure solvent. We found that ultrasonic cleaning of the TiO2 surface removed most of the physisorbed PCBA molecules. Modification of TiO2 surfaces with PCBA molecules drastically increased the short circuit current of TiO2/P3HT-based hybrid solar cells, which is ascribed to improved charge separation efficiency at the TiO2/P3HT interface. The physisorbed PCBA molecules decreased the open circuit voltage and the fill factor. We demonstrated that the power conversion efficiency is improved by ultrasonic cleaning following PCBA deposition.

  12. Selective oxidation of trimethylolpropane to 2,2-bis(hydroxymethyl)butyric acid using growing cells of Corynebacterium sp. ATCC 21245.

    PubMed

    Sayed, Mahmoud; Dishisha, Tarek; Sayed, Waiel F; Salem, Wesam M; Temerk, Hanan A; Pyo, Sang-Hyun

    2016-03-10

    Multifunctional chemicals including hydroxycarboxylic acids are gaining increasing interest due to their growing applications in the polymer industry. One approach for their production is a biological selective oxidation of polyols, which is difficult to achieve by conventional chemical catalysis. In the present study, trimethylolpropane (TMP), a trihydric alcohol, was subjected to selective oxidation using growing cells of Corynebacterium sp. ATCC 21245 as a biocatalyst and yielding the dihydroxy-monocarboxylic acid, 2,2-bis(hydroxymethyl)butyric acid (BHMB). The study revealed that co-substrates are crucial for this reaction. Among the different evaluated co-substrates, a mixture of glucose, xylose and acetate at a ratio of 5:5:2 was found optimum. The optimal conditions for biotransformation were pH 8, 1v/v/m airflow and 500rpm stirring speed. In batch mode of operation, 70.6% of 5g/l TMP was converted to BHMB in 10 days. For recovery of the product the adsorption pattern of BHMB to the anion exchange resin, Ambersep(®) 900 (OH(-)), was investigated in batch and column experiments giving maximum static and dynamic binding capacities of 135 and 144mg/g resin, respectively. BHMB was separated with 89.7% of recovery yield from the fermentation broth. The approach is applicable for selective oxidation of other highly branched polyols by biotransformation. PMID:26804932

  13. Strategies for production of butanol and butyl-butyrate through lipase-catalyzed esterification.

    PubMed

    Xin, Fengxue; Basu, Anindya; Yang, Kun-Lin; He, Jianzhong

    2016-02-01

    In this study, a fermentation process for production of butanol and butyl-butyrate by using Clostridium sp. strain BOH3 is developed. This strain is able to produce butyric acid and butanol when it ferments 60 g/L xylose. Meanwhile, it also excreted indigenous lipases (induced by olive oil) which naturally convert butyric acid and butanol into 1.2 g/L of butyl-butyrate. When Bio-OSR was used as both an inducer for lipase and extractant for butyl-butyrate, the butyl-butyrate concentration can reach 6.3 g/L. To further increase the yield, additional lipases and butyric acid are added to the fermentation system. Moreover, kerosene was used as an extractant to remove butyl-butyrate in situ. When all strategies are combined, 22.4 g/L butyl-butyrate can be produced in a fed-batch reactor spiked with 70 g/L xylose and 7.9 g/L butyric acid, which is 4.5-fold of that in a similar system (5 g/L) with hexadecane as the extractant. PMID:26710347

  14. Rationale for the luminal provision of butyrate in intestinal diseases.

    PubMed

    Wächtershäuser, A; Stein, J

    2000-08-01

    Short chain fatty acids (SCFA), especially butyrate, play central metabolic roles in maintaining the mucosal barrier in the gut. A lack of SCFA, leading to endogenous starvation of enterocytes, may be the cause of ulcerative colitis and other inflammatory conditions. The main source of SCFA is dietary fibre, but they can also be derived from structured lipids, e. g. tributyrin. Once absorbed by non-ionic diffusion or carrier-mediated anion exchanges, SCFA are either used locally as fuel for the enterocytes or enter the portal bloodstream. Butyrate has been shown to increase wound healing and to reduce inflammation in the small intestine. In the colon, butyrate is the dominant energy source for epithelial cells and affects cellular proliferation and differentiation by yet unknown mechanisms. Recent data suggest that the luminal provision of butyrate may be an appropriate means to improve wound healing in intestinal surgery and to ameliorate symptoms of inflammatory bowel diseases. PMID:11079736

  15. Concentration of clobetasone butyrate in aqueous humour.

    PubMed Central

    Debnath, S C; Richards, A B

    1983-01-01

    The concentrations of clobetasone butyrate and betamethasone were measured in aqueous humour of patients undergoing cataract extraction 12.5 to 18.5 hours after application into the lower conjunctival sac of an ointment containing 0.1% of the steroid. Samples were assayed from 10 patients receiving clobetasone butyrate and 13 patients receiving betamethasone phosphate. There were measurable concentrations in only 2 samples in the former group, and both were 0.1 ng/ml. In the betamethasone group measurable concentrations were found in 11 samples, and the concentrations ranged from 0.5 to 20.3 ng/ml, with the highest concentrations between 12.5 and 13.5 hours after application. The concentration of betamethasone in the aqueous humour decreased by about 90% in the 6 hours from 12.5 to 18.5 hours after application. It is speculative as to whether it is these differences in pharmacokinetic behaviour, or other differences in biological or physicochemical properties, which are responsible for the minimal effect on intraocular pressure induced by clobetasone butyrate compared with betamethasone. PMID:6824626

  16. In vitro dissolution and in vivo absorption of calcium [1-14C]butyrate in free or protected forms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butyrate is a by-product of microbial carbohydrate fermentation that occurs primarily in the large intestine. When added to feed, butyrate quickly disappears in the upper digestive tract. Because butyrate is important for the epithelial cell development and for mucosal integrity, and for animal grow...

  17. The microbe-derived short chain fatty acid butyrate targets miRNA-dependent p21 gene expression in human colon cancer.

    PubMed

    Hu, Shien; Dong, Tien Sy; Dalal, Sushila R; Wu, Feng; Bissonnette, Marc; Kwon, John H; Chang, Eugene B

    2011-01-01

    Colonic microbiota ferment non-absorbed dietary fiber to produce prodigious amounts of short chain fatty acids (SCFAs) that benefit the host through a myriad of metabolic, trophic, and chemopreventative effects. The chemopreventative effects of the SCFA butyrate are, in part, mediated through induction of p21 gene expression. In this study, we assessed the role of microRNA(miRNA) in butyrate's induction of p21 expression. The expression profiles of miRNAs in HCT-116 cells and in human sporadic colon cancers were assessed by microarray and quantitative PCR. Regulation of p21 gene expression by miR-106b was assessed by 3' UTR luciferase reporter assays and transfection of specific miRNA mimics. Butyrate changed the expression of 44 miRNAs in HCT-116 cells, many of which were aberrantly expressed in colon cancer tissues. Members of the miR-106b family were decreased in the former and increased in the latter. Butyrate-induced p21 protein expression was dampened by treatment with a miR-106b mimic. Mutated p21 3'UTR-reporter constructs expressed in HCT-116 cells confirmed direct miR-106b targeting. Butyrate decreased HCT-116 proliferation, an effect reversed with the addition of the miR-106b mimic. We conclude that microbe-derived SCFAs regulate host gene expression involved in intestinal homeostasis as well as carcinogenesis through modulation of miRNAs. PMID:21283757

  18. Untangling the fiber yarn: butyrate feeds Warburg to suppress colorectal cancer.

    PubMed

    Sebastián, Carlos; Mostoslavsky, Raul

    2014-12-01

    Dietary composition has an important role in shaping the gut microbiota. In turn, changes in the diet directly impinge on bacterial metabolites present in the intestinal lumen. Whether such metabolites play a role in intestinal cancer has been a topic of hot debate. In this issue of Cancer Discovery, Donohoe and colleagues show that dietary fiber protects against colorectal carcinoma in a microbiota-dependent manner. Furthermore, fiber-derived butyrate acts as a histone deacetylase inhibitor, inhibiting cell proliferation and inducing apoptosis in colorectal cancer cells experiencing the Warburg effect. PMID:25477104

  19. Butyric acid stimulates bovine neutrophil functions and potentiates the effect of platelet activating factor.

    PubMed

    Carretta, M D; Hidalgo, A I; Burgos, J; Opazo, L; Castro, L; Hidalgo, M A; Figueroa, C D; Taubert, A; Hermosilla, C; Burgos, R A

    2016-08-01

    Increased short-chain fatty acid (SCFA) production is associated with subacute ruminal acidosis (SARA) and activation of inflammatory processes. In humans and rodents, SCFAs modulate inflammatory responses in the gut via free fatty acid receptor 2 (FFA2). In bovines, butyric acid is one of the most potent FFA2 agonists. Its expression in bovine neutrophils has recently been demonstrated, suggesting a role in innate immune response in cattle. This study aimed to evaluate if butyric acid modulates oxidative and non-oxidative functions or if it can potentiate other inflammatory mediators in bovine neutrophils. Our results showed that butyric acid can activate bovine neutrophils, inducing calcium (Ca(2+)) influx and mitogen-activated protein kinase (MAPK) phosphorylation, two second messengers involved in FFA2 activation. Ca(2+) influx induced by butyric acid was dependent on the extracellular and intracellular Ca(2+) source and phospholipase C (PLC) activation. Butyric acid alone had no significant effect on reactive oxygen species (ROS) production and chemotaxis; however, a priming effect on platelet-activating factor (PAF), a potent inflammatory mediator, was observed. Butyric acid increased CD63 expression and induced the release of neutrophil granule markers matrix metalloproteinase-9 (MMP-9) and lactoferrin. Finally, we observed that butyric acid induced neutrophil extracellular trap (NET) formation without affecting cellular viability. These findings suggest that butyric acid, a component of the ruminal fermentative process, can modulate the innate immune response of ruminants. PMID:27288853

  20. Microbial electrosynthesis of butyrate from carbon dioxide.

    PubMed

    Ganigué, R; Puig, S; Batlle-Vilanova, P; Balaguer, M D; Colprim, J

    2015-02-21

    This work proves for the first time the bioelectrochemical production of butyrate from CO2 as a sole carbon source. The highest concentration of butyrate achieved was 20.2 mMC, with a maximum butyrate production rate of 1.82 mMC d(-1). The electrochemical characterisation demonstrated that the CO2 reduction to butyrate was hydrogen driven. Production of ethanol and butanol was also observed opening up the potential for biofuel production. PMID:25608945

  1. ALA-Butyrate prodrugs for Photo-Dynamic Therapy

    NASA Astrophysics Data System (ADS)

    Berkovitch, G.; Nudelman, A.; Ehenberg, B.; Rephaeli, A.; Malik, Z.

    2010-05-01

    The use of 5-aminolevulinic acid (ALA) administration has led to many applications of photodynamic therapy (PDT) in cancer. However, the hydrophilic nature of ALA limits its ability to penetrate the cells and tissues, and therefore the need for ALA derivatives became an urgent research target. In this study we investigated the activity of novel multifunctional acyloxyalkyl ester prodrugs of ALA that upon metabolic hydrolysis release active components such as, formaldehyde, and the histone deacetylase inhibitory moiety, butyric acid. Evaluation of these prodrugs under photo-irradiation conditions showed that butyryloxyethyl 5-amino-4-oxopentanoate (ALA-BAC) generated the most efficient photodynamic destruction compared to ALA. ALA-BAC stimulated a rapid biosynthesis of protoporphyrin IX (PpIX) in human glioblastoma U-251 cells which resulted in generation of intracellular ROS, reduction of mitochondrial activity, leading to apoptotic and necrotic death of the cells. The apoptotic cell death induced by ALA / ALA-BAC followed by PDT equally activate intrinsic and extrinsic apoptotic signals and both pathways may occur simultaneously. The main advantage of ALA-BAC over ALA stems from its ability to induce photo-damage at a significantly lower dose than ALA.

  2. [Pharmacological study on hydrocortisone 17-butyrate 21-propionate (author's transl)].

    PubMed

    Otomo, S; Higuchi, S; Nakaike, S; Takeshita, K; Tanaka, M; Gotoh, Y; Osada, Y; Tsuchida, K; Inoue, K; Kyogoku, K; Tarumoto, Y; Sasajima, M; Ohzeki, M

    1981-12-01

    The topical and systemic anti-inflammatory activities of hydrocortisone 17-butyrate 21-propionate (HBP) were studied. The systemic anti-inflammatory activities of HBP and reference steroids were examined for their effects on dinitrochlorobenzene dermatitis, carrageenin edema, cotton pellet granuloma and adjuvant arthritis in rats and by the delayed allergic edema test in mice. The topical anti-inflammatory activities of these steroids were examined for their effects on croton oil dermatitis, croton oil ear edema, carrageenin edema and cotton pellet granuloma in rats. Furthermore, effects of these steroids on liver glycogen deposition in mice, thymolysis, and decrease of serum corticosterone level in rats were examined. Systemically administered HBP was less potent than betamethasone 17-valerate (BV), but was almost equal to hydrocortisone 17-butyrate (HB) in anti-inflammatory activity, and its effects on liver glycogen deposition, thymolysis, and the decrease of serum corticosterone level. However, the topical anti-inflammatory activity of HBP was more potent than that of BV and HB, although in the same experiment, thymolytic activity of HBP was less potent than that of BV, but was almost equal to HB. The inhibitory effect of HBP on hypotonic induced hemolysis was weaker than that of BV, but was stronger than that of HB in vitro. The affinity of HBP was higher than that of BV and HB to polymorphonuclear leucocytes used as the inflammatory cells in vitro. On the other hand no marked difference was observed in the affinity to erythrocytes used as the non-inflammatory cells in vitro. These results suggest that HBP is a useful drug which has superior topical anti-inflammatory activity, but has a weak systemic effect. PMID:7333567

  3. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition.

    PubMed

    Chang, Pamela V; Hao, Liming; Offermanns, Stefan; Medzhitov, Ruslan

    2014-02-11

    Given the trillions of microbes that inhabit the mammalian intestines, the host immune system must constantly maintain a balance between tolerance to commensals and immunity against pathogens to avoid unnecessary immune responses against otherwise harmless bacteria. Misregulated responses can lead to inflammatory bowel diseases such as ulcerative colitis or Crohn's disease. The mechanisms by which the immune system maintains this critical balance remain largely undefined. Here, we demonstrate that the short-chain fatty acid n-butyrate, which is secreted in high amounts by commensal bacteria, can modulate the function of intestinal macrophages, the most abundant immune cell type in the lamina propria. Treatment of macrophages with n-butyrate led to the down-regulation of lipopolysaccharide-induced proinflammatory mediators, including nitric oxide, IL-6, and IL-12, but did not affect levels of TNF-α or MCP-1. These effects were independent of toll-like receptor signaling and activation of G-protein-coupled receptors, two pathways that could be affected by short-chain fatty acids. In this study, we provide several lines of evidence that suggest that these effects are due to the inhibition of histone deacetylases by n-butyrate. These findings elucidate a pathway in which the host may maintain tolerance to intestinal microbiota by rendering lamina propria macrophages hyporesponsive to commensal bacteria through the down-regulation of proinflammatory effectors. PMID:24390544

  4. Thalidomide is more efficient than sodium butyrate in enhancing GATA-1 and EKLF gene expression in erythroid progenitors derived from HSCs with β-globin gene mutation

    PubMed Central

    Jalali Far, Mohammad Ali; Dehghani Fard, Ali; Hajizamani, Saiedeh; Mossahebi-Mohammadi, Majid; Yaghooti, Hamid; Saki, Najmaldin

    2016-01-01

    Background: Efficient induction of fetal hemoglobin (HbF) is considered as an effective therapeutic approach in beta thalassemia. HbF inducer agents can induce the expression of γ-globin gene and produce high levels of HbF via different epigenetic and molecular mechanisms. Thalidomide and sodium butyrate are known as HbF inducer drugs. Material and methods: CD133+ stem cells were isolated from umbilical cord blood of a newborn with minor β-thalassemia in order to evaluate the effects of these two drugs on the in vitro expression of GATA-1 and EKLF genes as erythroid transcription factors. CD133+ stem cells were expanded and differentiated into erythroid lineage and then treated with thalidomide and sodium butyrate and finally analyzed by quantitative real-time PCR. Statistical analysis was performed using student’s t-test by SPSS software. Results: Thalidomide and sodium butyrate increased GATA-1 and EKLF gene expression, compared to the non-treated control (P<0.05). Conclusion: Thalidomide was more efficient than sodium butyrate in augmenting expression of GATA-1 and EKLF genes. It seems that GATA-1 and EKLF have crucial roles in the efficient induction of HbF by thalidomide. PMID:27047649

  5. Oncogenic ras alters sensitivity of mouse colonocytes to butyrate and fatty acid mediated growth arrest and apoptosis.

    PubMed

    Turner, Nancy D; Zhang, Jianhu; Davidson, Laurie A; Lupton, Joanne R; Chapkin, Robert S

    2002-12-01

    Docosahexaenoic acid (DHA) and butyrate favorably modulate colonocyte proliferation and apoptosis. In order to elucidate how oncogenic Ras modulates responses to these chemopreventive nutrients, we incubated isogenic non-transformed and Ras malignant transformed mouse colon cells with butyrate and DHA or linoleic acid (LA). Combining DHA with 1mM butyrate decreased proliferation relative to LA or no PUFA treatment in both cell lines. At a higher butyrate dose (5mM), caspase 3 activity was elevated to a greater extent in Ras transformed cells. Only non-transformed cells were sensitive to the apoptogenic effects of DHA, indicating that Ras transformation alters sensitivity to dietary chemopreventive agents. PMID:12183072

  6. Identification of genes involved in indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.) by suppression subtractive hybridization.

    PubMed

    Wei, Kang; Wang, Liyuan; Cheng, Hao; Zhang, Chengcai; Ma, Chunlei; Zhang, Liqun; Gong, Wuyun; Wu, Liyun

    2013-02-10

    The plant hormone auxin plays a key role in adventitious rooting. To increase our understanding of genes involved in adventitious root formation, we identified transcripts differentially expressed in single nodal cuttings of Camellia sinensis treated with or without indole-3-butyric acid (IBA) by suppressive subtractive hybridization (SSH). A total of 77 differentially expressed transcripts, including 70 up-regulated and 7 down-regulated sequences, were identified in tea cuttings under IBA treatment. Seven candidate transcripts were selected and analyzed for their response to IBA, and IAA by real time RT-PCR. All these transcripts were up regulated by at least two folds one day after IBA treatment. Meanwhile, IAA showed less positive effects on the expression of candidate transcripts. The full-length cDNA of a F-box/kelch gene was also isolated and found to be similar to a group of At1g23390 like genes. These unigenes provided a new source for mining genes related to adventitious root formation, which facilitate our understanding of relative fundamental metabolism. PMID:23201417

  7. Epidermal cell DNA content and intermediate filaments keratin 10 and vimentin after treatment of psoriasis with calcipotriol cream once daily, twice daily and in combination with clobetasone 17-butyrate cream or betamethasone 17-valerate cream: a comparative flow cytometric study.

    PubMed

    Glade, C P; Van Erp, P E; Van De Kerkhof, P C

    1996-09-01

    Calcipotriol and corticosteroids, two therapy modalities frequently prescribed in the treatment of psoriasis, are often used in combination. The aim of the present study was to determine whether the cell biological response pattern of concurrent use of calcipotriol and corticosteroids is different from calcipotriol monotherapy. Forty patients with chronic plaque psoriasis were divided at random in four parallel groups and treated for 8 weeks with: (1) calcipotriol cream (50 micrograms/g once daily); (2) calcipotriol cream twice daily; (3) calcipotriol and clobetasone 17-butyrate (0.5 mg/g) creams; and (4) calcipotriol and betamethasone 17-valerate (1 mg/g) creams. Before and after treatment keratotome biopsies were taken and single cell suspensions prepared for flow cytometric analysis. Flow cytometric multiparameter quantification of markers for proliferation (TO-PRO-3), differentiation (antikeratin 10) and inflammation (antivimentin) was used to evaluate all four therapy modalities. A statistically significant decrease of the percentage of basal cells in S- and G2M-phase (proliferation) was obtained with all therapy modalities, except for calcipotriol monotherapy applied once daily. A significant reduction of the number of vimentin-positive cells (non-keratinocytes) was observed following combined treatment with calcipotriol and clobetasone butyrate. In contrast, monotherapy with calcipotriol had virtually no effect on the number of vimentin-positive cells. It can be concluded that: (i) calcipotriol monotherapy, applied once daily was less antiproliferative compared with twice daily applications of calcipotriol or the combined treatment with corticosteroids and that (ii) the combination of calcipotriol and corticosteroids proved to have a marked effect on the percentage of non-keratinocytes, in contrast to the modest effect of calcipotriol. PMID:8949429

  8. Improved in vivo antitumor effect of a daunorubicin - GnRH-III bioconjugate modified by apoptosis inducing agent butyric acid on colorectal carcinoma bearing mice.

    PubMed

    Kapuvári, Bence; Hegedüs, Rózsa; Schulcz, Ákos; Manea, Marilena; Tóvári, József; Gacs, Alexandra; Vincze, Borbála; Mező, Gábor

    2016-08-01

    Compared to classical chemotherapy, peptide-based drug targeting is a promising therapeutic approach for cancer, which can provide increased selectivity and decreased side effects to anticancer drugs. Among various homing devices, gonadotropin-releasing hormone-III (GnRH-III) peptide represents a suitable targeting moiety, in particular in the treatment of hormone independent tumors that highly express GnRH receptors (e.g. colon carcinoma). We have previously shown that GnRH-III[(4)Lys(Ac),(8)Lys(Dau = Aoa)] bioconjugate, in which daunorubicin was attached via oxime linkage to the (8)Lys of a GnRH-III derivative, exerted significant in vivo antitumor effect on subcutaneously developed HT-29 colon tumor. In contrast, results of the study reported here indicated that this compound was not active on an orthotopically developed tumor. However, if Lys in position 4 was acylated with butyric acid instead of acetic acid, the resulting bioconjugate GnRH-III[(4)Lys(Bu),(8)Lys(Dau = Aoa)] had significant tumor growth inhibitory effect. Furthermore, it prevented tumor neovascularization, without detectable side effects. Nevertheless, the development of metastases could not be inhibited by the bioconjugate; therefore, its application in combination with a metastasis preventive agent might be necessary in order to achieve complete tumor remission. In spite of this result, the treatment with GnRH-III[(4)Lys(Bu),(8)Lys(Dau = Aoa)] bioconjugate proved to have significant benefits over the administration of free daunorubicin, which was used at the maximum tolerated dose. PMID:27146514

  9. Graphene composite for improvement in the conversion efficiency of flexible poly 3-hexyl-thiophene:[6,6]-phenyl C{sub 71} butyric acid methyl ester polymer solar cells

    SciTech Connect

    Chauhan, A. K. E-mail: akc.barc@gmail.com; Gusain, Abhay; Jha, P.; Koiry, S. P.; Saxena, Vibha; Veerender, P.; Aswal, D. K.; Gupta, S. K.

    2014-03-31

    The solution of thin graphene-sheets obtained from a simple ultrasonic exfoliation process was found to chemically interact with [6,6]-phenyl C{sub 71} butyric acid methyl ester (PCBM) molecules. The thinner graphene-sheets have significantly altered the positions of highest occupied molecular orbital and lowest unoccupied molecular orbital of PCBM, which is beneficial for the enhancement of the open circuit voltage of the solar cells. Flexible bulk heterojunction solar cells fabricated using poly 3-hexylthiophene (P3HT):PCBM-graphene exhibited a power conversion efficiency of 2.51%, which is a ∼2-fold increase as compared to those fabricated using P3HT:PCBM. Inclusion of graphene-sheets not only improved the open-circuit voltage but also enhanced the short-circuit current density owing to an improved electron transport.

  10. Butyrate enema therapy stimulates mucosal repair in experimental colitis in the rat.

    PubMed Central

    Butzner, J D; Parmar, R; Bell, C J; Dalal, V

    1996-01-01

    BACKGROUND--The short chain fatty acid (SCFA) butyrate provides energy for colonocytes, stimulates colonic fluid and electrolyte absorption and is recognised as an effective treatment for multiple types of colitis. AIM--To examine the impact of butyrate enema therapy on the clinical course, severity of inflammation, and SCFA stimulated Na+ absorption in a chronic experimental colitis. METHODS--Distal colitis was induced in rats with a trinitrobenzenesulphonic acid (TNBS) enema. Five days after induction, rats were divided into groups to receive: no treatment, saline enemas, or 100 mM Na-butyrate enemas daily. On day 24, colonic damage score and tissue myeloperoxidase (MPO) activity were evaluated. Colon was mounted in Ussing chambers and Na+ transport and electrical activities were measured during a basal period and after stimulation with 25 mM butyrate. RESULTS--In the untreated and the saline enema treated TNBS groups, diarrhoea and extensive colonic damage were seen, associated with increased tissue MPO activities and absent butyrate stimulated Na+ absorption. In contrast, in the butyrate enema treated TNBS group, diarrhoea ceased, colonic damage score improved, and tissue MPO activity as well as butyrate stimulated Na+ absorption recovered to control values. CONCLUSION--Butyrate enema therapy stimulated colonic repair, as evidenced by clinical recovery, decreased inflammation, and restoration of SCFA stimulated electrolyte absorption. PMID:8707089

  11. Induction of peroxisomes by butyrate-producing probiotics.

    PubMed

    Weng, Huachun; Endo, Kosuke; Li, Jiawei; Kito, Naoko; Iwai, Naoharu

    2015-01-01

    We previously found that peroxisomal biogenesis factor 11a (Pex11a) deficiency is associated with a reduction in peroxisome abundance and impaired fatty acid metabolism in hepatocytes, and results in steatosis. In the present study, we investigated whether butyrate induces Pex11a expression and peroxisome proliferation, and studied its effect on lipid metabolism. C57BL/6 mice fed standard chow or a high-fat diet (HFD) were treated with tributyrin, 4-phelybutyrate acid (4-PBA), or the butyrate-producing probiotics (Clostridium butyricum MIYAIRI 588 [CBM]) plus inulin (dietary fiber), and the body weight, white adipose tissue, serum triglycerides, mRNA expression, and peroxisome abundance were evaluated. Tributyrin or 4-PBA treatment significantly decreased body weight and increased hepatic mRNA expression of peroxisome proliferator-activated receptor-α (PPARα) and Pex11a. In addition, 4-PBA treatment increased peroxisome abundance and the expression of genes involved in peroxisomal fatty acid β-oxidation (acyl-coenzyme A oxidase 1 and hydroxysteroid [17-beta] dehydrogenase 4). CBM and inulin administration reduced adipose tissue mass and serum triglycerides, induced Pex11a, acyl-coenzyme A oxidase 1, and hydroxysteroid (17-beta) dehydrogenase 4 genes, and increased peroxisome abundance in mice fed standard chow or an HFD. In conclusion, elevation of butyrate availability (directly through administration of butyrate or indirectly via administration of butyrate-producing probiotics plus fiber) induces PPARα and Pex11a and the genes involved in peroxisomal fatty acid β-oxidation, increases peroxisome abundance, and improves lipid metabolism. These results may provide a new therapeutic strategy against hyperlipidemia and obesity. PMID:25659146

  12. Butyrate production from dietary fibre and protection against large bowel cancer in a rat model.

    PubMed Central

    McIntyre, A; Gibson, P R; Young, G P

    1993-01-01

    Butyrate slows the growth of cancer cells cultured in vitro. To determine the relevance of the fermentative production of butyrate in vivo, colonic butyrate concentrations were manipulated by feeding different dietary fibres and were related to tumour development in the rat dimethylhydrazine model of large bowel cancer. It has previously been shown that guar gum and oat bran, while highly fermentable, are associated with low butyrate levels in the distal colon, while wheat bran causes significantly higher concentrations. Diets containing these fibres (nominally 10% w:w) were administered for 3 weeks before, for 10 weeks during, and for 20 weeks after dimethylhydrazine administration, after which animals were killed and examined for tumours. Significantly fewer tumours were seen in the rats fed wheat bran compared with those fed guar or oat bran, and the total tumour mass was lowest in rats fed wheat bran. Rats on a 'no added fibre diet' had an intermediate tumour mass. Regression analysis, performed regardless of dietary group, showed that the concentration in stools of butyrate but not of acetate or stool volume, correlated significantly (and negatively) with tumour mass. These findings indicate that fibre which is associated with high butyrate concentrations in the distal large bowel is protective against large bowel cancer, while soluble fibres that do not raise distal butyrate concentrations, are not protective. Thus, butyrate production in vivo does bear a significant relationship to suppression of tumour formation. PMID:8386131

  13. Proliferative effects of gamma-amino butyric acid on oral squamous cell carcinoma cells are associated with mitogen-activated protein kinase signaling pathways.

    PubMed

    Ma, Jing; Zhang, Yan; Wang, Jun; Zhao, Tianyu; Ji, Ping; Song, Jinlin; Zhang, Hongmei; Luo, Wenping

    2016-07-01

    Gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the adult mammalian central nervous system, has been reported to play an important physiological role in peripheral non-neuronal tissues, such as tumors. However, whether deregulated GABA is associated with oral squamous cell carcinoma (OSCC) is currently unknown. In this study, we investigated the effects of GABA on the proliferation of the OSCC cell line, Tca8113. Immunohistochemical analyses were performed to examine the expression of GABA A type receptor pi subunit (GABRP) in human OSCC tissues, and reverse transcription polymerase chain reaction, immunofluorescence staining and western blot analysis were performed to examine the expression of GABRP in Tca8113 cells. The proliferative effects of GABA on Tca8113 cells were analyzed by CCK-8 assay and flow cytometry. The activation status of mitogen-activated protein kinases (MAPKs) was examined by western blot analysis. GABRP expression was observed in the cytoplasm with a higher level in poorly differentiated OSCC tissues. The mRNA and protein expression levels of GABRP were detected in the Tca8113 cells. The addition of GABA and the GABA A type receptor agonist, Muscimol, promoted cell proliferation and inhibited cell apoptosis through the activation of the p38 MAPK and the inhibition of the JNK MAPK signaling pathways. These results imply a novel role of GABA in OSCC. PMID:27222045

  14. Effects of orally applied butyrate bolus on histone acetylation and cytochrome P450 enzyme activity in the liver of chicken – a randomized controlled trial

    PubMed Central

    2013-01-01

    Background Butyrate is known as histone deacetylase inhibitor, inducing histone hyperacetylation in vitro and playing a predominant role in the epigenetic regulation of gene expression and cell function. We hypothesized that butyrate, endogenously produced by intestinal microbial fermentation or applied as a nutritional supplement, might cause similar in vivo modifications in the chromatin structure of the hepatocytes, influencing the expression of certain genes and therefore modifying the activity of hepatic microsomal drug-metabolizing cytochrome P450 (CYP) enzymes. Methods An animal study was carried out in chicken as a model to investigate the molecular mechanisms of butyrate’s epigenetic actions in the liver. Broiler chicks in the early post-hatch period were treated once daily with orally administered bolus of butyrate following overnight starvation with two different doses (0.25 or 1.25 g/kg body weight per day) for five days. After slaughtering, cell nucleus and microsomal fractions were separated by differential centrifugation from the livers. Histones were isolated from cell nuclei and acetylation of hepatic core histones was screened by western blotting. The activity of CYP2H and CYP3A37, enzymes involved in biotransformation in chicken, was detected by aminopyrine N-demethylation and aniline-hydroxylation assays from the microsomal suspensions. Results Orally added butyrate, applied in bolus, had a remarkable impact on nucleosome structure of hepatocytes: independently of the dose, butyrate caused hyperacetylation of histone H2A, but no changes were monitored in the acetylation state of H2B. Intensive hyperacetylation of H3 was induced by the higher administered dose, while the lower dose tended to increase acetylation ratio of H4. In spite of the observed modification in histone acetylation, no significant changes were observed in the hepatic microsomal CYP2H and CYP3A37 activity. Conclusion Orally added butyrate in bolus could cause in vivo

  15. Genotype-dependency of butyrate efficacy in children with congenital chloride diarrhea

    PubMed Central

    2013-01-01

    Background Congenital chloride diarrhea (CLD) is an autosomal recessive disorder characterized by life-long, severe diarrhea with intestinal Cl- malabsorption. It results from a reduced activity of the down regulated in adenoma exchanger (DRA), due to mutations in the solute carrier family 26, member 3 (SLC26A3) gene. Currently available therapies are not able to limit the severity of diarrhea in CLD. Conflicting results have been reported on the therapeutic efficacy of oral butyrate. Methods We investigated the effect of oral butyrate (100 mg/kg/day) in seven CLD children with different SLC26A3 genotypes. Nasal epithelial cells were obtained to assess the effect of butyrate on the expression of the two main Cl- transporters: DRA and putative anion transporter-1 (PAT-1). Results A variable clinical response to butyrate was observed regarding the stool pattern and fecal ion loss. The best response was observed in subjects with missense and deletion mutations. Variable response to butyrate was also observed on SLC26A3 (DRA) and SLC26A6 (PAT1) gene expression in nasal epithelial cells of CLD patients. Conclusions We demonstrate a genotype-dependency for butyrate therapeutic efficacy in CLD. The effect of butyrate is related in part on a different modulation of the expression of the two main apical membrane Cl- exchangers of epithelial cells, members of the SLC26 anion family. Trial registration Australian New Zealand Clinical trial Registry ACTRN12613000450718. PMID:24350656

  16. The Future of Butyric Acid in Industry

    PubMed Central

    Dwidar, Mohammed; Park, Jae-Yeon; Mitchell, Robert J.; Sang, Byoung-In

    2012-01-01

    In this paper, the different applications of butyric acid and its current and future production status are highlighted, with a particular emphasis on the biofuels industry. As such, this paper discusses different issues regarding butyric acid fermentations and provides suggestions for future improvements and their approaches. PMID:22593687

  17. Preventive effects of butyric acid, nicotinamide, calcium glucarate alone or in combination during the 7, 12-dimethylbenz (a) anthracene induced mouse skin tumorigenesis via modulation of K-Ras-PI3K-AKTpathway and associated micro RNAs.

    PubMed

    Tiwari, Prakash; Sahay, Satya; Pandey, Manuraj; Qadri, Syed S Y H; Gupta, Krishna P

    2016-02-01

    Skin cancer is among the most common cancers worldwide and identifiable molecular changes for early and late stage of skin tumorigenesis can suggest the better targets for its control. In this study, we investigated the status of K-Ras-PI3K-AKTpathway followed by NF-κB, cyclin D1, MMP-9 and regulatory micro RNA during 7, 12-dimethylbenz[a]anthracene (DMBA) induced mouse skin tumorigenesis and its prevention by butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG), individually or in combination with respect to time. DMBA upregulated the K-Ras, PI3K, Akt, NF-κB, cyclin D1 and MMP-9, but downregulated the PTEN in a time dependent manner. DMBA also reduced the levels of micoRNA let-7a but induced the levels of miR-21 and miR-20a as a function of time. BA, NA and CAG were found to prevent DMBA induced changes, but they were most effective when used together in a combination. Reduced let-7a and miR-211 were correlated with the overexpression of K-Ras and MMP-9. Overexpression of miR-21 and miR-20a was correlated with the down regulation of PTEN and overexpression of Cyclin D1. Collectively, the enhanced chemopreventive potential of natural compound in combination via regulation of K-Ras-PI3K-AKTpathway along with regulatory micro RNAs provide a newer and effective mean for cancer management. PMID:26655363

  18. Butyrate and bioactive proteolytic form of Wnt-5a regulate colonic epithelial proliferation and spatial development.

    PubMed

    Uchiyama, Kazuhiko; Sakiyama, Toshio; Hasebe, Takumu; Musch, Mark W; Miyoshi, Hiroyuki; Nakagawa, Yasushi; He, Tong-Chuan; Lichtenstein, Lev; Naito, Yuji; Itoh, Yoshito; Yoshikawa, Toshikazu; Jabri, Bana; Stappenbeck, Thaddeus; Chang, Eugene B

    2016-01-01

    Proliferation and spatial development of colonic epithelial cells are highly regulated along the crypt vertical axis, which, when perturbed, can result in aberrant growth and carcinogenesis. In this study, two key factors were identified that have important and counterbalancing roles regulating these processes: pericrypt myofibroblast-derived Wnt-5a and the microbial metabolite butyrate. Cultured YAMC cell proliferation and heat shock protein induction were analzyed after butryate, conditioned medium with Wnt5a activity, and FrzB containing conditioned medium. In vivo studies to modulate Hsp25 employed intra-colonic wall Hsp25 encoding lentivirus. To silence Wnt-5a in vivo, intra-colonic wall Wnt-5a silencing RNA was used. Wnt-5a, secreted by stromal myofibroblasts of the lower crypt, promotes proliferation through canonical β-catenin activation. Essential to this are two key requirements: (1) proteolytic conversion of the highly insoluble ~40 kD Wnt-5a protein to a soluble 36 mer amino acid peptide that activates epithelial β-catenin and cellular proliferation, and (2) the simultaneous inhibition of butyrate-induced Hsp25 by Wnt-5a which is necessary to arrest the proliferative process in the upper colonic crypt. The interplay and spatial gradients of these factors insures that crypt epithelial cell proliferation and development proceed in an orderly fashion, but with sufficient plasticity to adapt to physiological perturbations including inflammation. PMID:27561676

  19. Butyrate and bioactive proteolytic form of Wnt-5a regulate colonic epithelial proliferation and spatial development

    PubMed Central

    Uchiyama, Kazuhiko; Sakiyama, Toshio; Hasebe, Takumu; Musch, Mark W.; Miyoshi, Hiroyuki; Nakagawa, Yasushi; He, Tong-Chuan; Lichtenstein, Lev; Naito, Yuji; Itoh, Yoshito; Yoshikawa, Toshikazu; Jabri, Bana; Stappenbeck, Thaddeus; Chang, Eugene B.

    2016-01-01

    Proliferation and spatial development of colonic epithelial cells are highly regulated along the crypt vertical axis, which, when perturbed, can result in aberrant growth and carcinogenesis. In this study, two key factors were identified that have important and counterbalancing roles regulating these processes: pericrypt myofibroblast-derived Wnt-5a and the microbial metabolite butyrate. Cultured YAMC cell proliferation and heat shock protein induction were analzyed after butryate, conditioned medium with Wnt5a activity, and FrzB containing conditioned medium. In vivo studies to modulate Hsp25 employed intra-colonic wall Hsp25 encoding lentivirus. To silence Wnt-5a in vivo, intra-colonic wall Wnt-5a silencing RNA was used. Wnt-5a, secreted by stromal myofibroblasts of the lower crypt, promotes proliferation through canonical β-catenin activation. Essential to this are two key requirements: (1) proteolytic conversion of the highly insoluble ~40 kD Wnt-5a protein to a soluble 36 mer amino acid peptide that activates epithelial β-catenin and cellular proliferation, and (2) the simultaneous inhibition of butyrate-induced Hsp25 by Wnt-5a which is necessary to arrest the proliferative process in the upper colonic crypt. The interplay and spatial gradients of these factors insures that crypt epithelial cell proliferation and development proceed in an orderly fashion, but with sufficient plasticity to adapt to physiological perturbations including inflammation. PMID:27561676

  20. Nutrient-induced modulation of gene expression and cellular functions: modeling epigenetic regulation in bovine cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile fatty acids (VFA), especially butyrate, participate in metabolism both as nutrients and as regulators of histone deacetylation. The major biochemical change that occurs in cells treated with butyrate is the global hyperacetylation of histones. One paradigmatic example of the nutrient-epige...

  1. Actinomyces naeslundii GroEL-dependent initial attachment and biofilm formation in a flow cell system.

    PubMed

    Arai, Toshiaki; Ochiai, Kuniyasu; Senpuku, Hidenobu

    2015-02-01

    Actinomyces naeslundii is an early colonizer with important roles in the development of the oral biofilm. The effects of butyric acid, one of short chain fatty acids in A. naeslundii biofilm formation was observed using a flow cell system with Tryptic soy broth without dextrose and with 0.25% sucrose (TSB sucrose). Significant biofilms were established involving live and dead cells in TSB sucrose with 60mM butyric acid but not in concentrations of 6, 30, 40, and 50mM. Biofilm formation failed in 60mM sodium butyrate but biofilm level in 60mM sodium butyrate (pH4.7) adjusted with hydrochloric acid as 60mM butyric media (pH4.7) was similar to biofilm levels in 60mM butyric acid. Therefore, butyric acid and low pH are required for significant biofilm formation in the flow cell. To determine the mechanism of biofilm formation, we investigated initial A. naeslundii colonization in various conditions and effects of anti-GroEL antibody. The initial colonization was observed in the 60mM butyric acid condition and anti-GroEL antibody inhibited the initial colonization. In conclusion, we established a new biofilm formation model in which butyric acid induces GroEL-dependent initial colonization of A. naeslundii resulting in significant biofilm formation in a flow system. PMID:25555820

  2. Restricted Distribution of the Butyrate Kinase Pathway among Butyrate-Producing Bacteria from the Human Colon

    PubMed Central

    Louis, Petra; Duncan, Sylvia H.; McCrae, Sheila I.; Millar, Jacqueline; Jackson, Michelle S.; Flint, Harry J.

    2004-01-01

    The final steps in butyrate synthesis by anaerobic bacteria can occur via butyrate kinase and phosphotransbutyrylase or via butyryl-coenzyme A (CoA):acetate CoA-transferase. Degenerate PCR and enzymatic assays were used to assess the presence of butyrate kinase among 38 anaerobic butyrate-producing bacterial isolates from human feces that represent three different clostridial clusters (IV, XIVa, and XVI). Only four strains were found to possess detectable butyrate kinase activity. These were also the only strains to give PCR products (verifiable by sequencing) with degenerate primer pairs designed within the butyrate kinase gene or between the linked butyrate kinase/phosphotransbutyrylase genes. Further analysis of the butyrate kinase/phosphotransbutyrylase genes of one isolate, L2-50, revealed similar organization to that described previously from different groups of clostridia, along with differences in flanking sequences and phylogenetic relationships. Butyryl-CoA:acetate CoA-transferase activity was detected in all 38 strains examined, suggesting that it, rather than butyrate kinase, provides the dominant route for butyrate formation in the human colonic ecosystem that contains a constantly high concentration of acetate. PMID:15028695

  3. Inhibition of IL-8 gene expression in Caco-2 cells by compounds which induce histone hyperacetylation.

    PubMed

    Huang, N; Katz, J P; Martin, D R; Wu, G D

    1997-01-01

    Ulcerative colitis, an idiopathic inflammatory disease of the colonic mucosa, can be effectively treated by enemas containing short chain fatty acids (SCFA) such as butyrate, propionate, and acetate. The molecular mechanisms that lead to this response have not been well characterized. It is well known that intestinal inflammation leads to an alteration in patterns of epithelial differentiation with an increase in epithelial proliferation and an expansion of cell populations in an undifferentiated state. SCFAs such as butyrate are capable of inhibiting cell proliferation and inducing a differentiated phenotype in vitro. The Caco-2 colon cancer cell line was used to study the effect of SCFAs and the process of cellular differentiation on the expression of the pro-inflammatory cytokine, interleukin 8 (IL-8). SCFAs and trichostatin A, structurally unrelated compounds which both induce histone hyperacetylation, both led to a dose-dependent inhibition of IL-8 gene expression. Furthermore, spontaneous differentiation of Caco-2 cells by growth to a post-confluent state also inhibited the expression of IL-8. A possible mechanism by which SCFAs may be effective in the treatment of ulcerative colitis may be through their ability to increase histone acetylation states and inhibit the production of pro-inflammatory substances by the intestinal epithelium. PMID:9067093

  4. The Dependence of Donor:Acceptor Ratio on the Photovoltaic Performances of Blended poly (3-octylthiophene-2,5-diyl) and (6,6)-phenyl C{sub 71} butyric acid methyl ester Bulk Heterojunction Organic Solar Cells

    SciTech Connect

    Fauzia, Vivi; Umar, Akrajas Ali; Salleh, Muhamad Mat; Yahya, Muhammad

    2010-10-24

    Bulk heterojunction organic solar cells using blended poly (3-octylthiophene-2,5-diyl)(P3OT) and (6,6)-phenyl C{sub 71} butyric acid methyl ester (PC{sub 71}BM) have been fabricated. P3OT and PC{sub 71}BM were used as the electron donor (D) and acceptor (A), respectively. Both materials were mixed and dissolved in dichlorobenzene with three different D:A ratios i.e. 1:3, 1:1 and 3:1 (weight) while maintained at the concentration of 2 wt%(26 mg/ml). The blended thin films were sandwiched between the indium tin oxide (ITO) coated glass and the aluminum film. This paper reports the influence of donor:acceptor ratio on the performance of solar cell devices measured by current-voltage measurement both in the dark and under 1.5 AM solar illumination. It was found that all devices showed the photovoltaic effect with poor diode behavior and the donor:acceptor ratio significantly influenced on the performance of bulk heterojunction organic solar cells.

  5. The Dependence of Donor:Acceptor Ratio on the Photovoltaic Performances of Blended poly (3-octylthiophene-2,5-diyl) and (6,6)-phenyl C71 butyric acid methyl ester Bulk Heterojunction Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Fauzia, Vivi; Umar, Akrajas Ali; Salleh, Muhamad Mat; Yahya, Muhammad

    2010-10-01

    Bulk heterojunction organic solar cells using blended poly (3-octylthiophene-2,5-diyl)(P3OT) and (6,6)-phenyl C71 butyric acid methyl ester (PC71BM) have been fabricated. P3OT and PC71BM were used as the electron donor (D) and acceptor (A), respectively. Both materials were mixed and dissolved in dichlorobenzene with three different D:A ratios i.e. 1:3, 1:1 and 3:1 (weight) while maintained at the concentration of 2 wt% (26 mg/ml). The blended thin films were sandwiched between the indium tin oxide (ITO) coated glass and the aluminum film. This paper reports the influence of donor:acceptor ratio on the performance of solar cell devices measured by current-voltage measurement both in the dark and under 1.5 AM solar illumination. It was found that all devices showed the photovoltaic effect with poor diode behavior and the donor:acceptor ratio significantly influenced on the performance of bulk heterojunction organic solar cells.

  6. The Bacterial Fermentation Product Butyrate Influences Epithelial Signaling via Reactive Oxygen Species-Mediated Changes in Cullin-1 Neddylation1

    PubMed Central

    Kumar, Amrita; Wu, Huixia; Collier-Hyams, Lauren S.; Kwon, Young-Man; Hanson, Jason M.; Neish, Andrew S.

    2010-01-01

    The human enteric flora plays a significant role in intestinal health and disease. Populations of enteric bacteria can inhibit the NF-κB pathway by blockade of IκB-α ubiquitination, a process catalyzed by the E3-SCFβ-TrCP ubiquitin ligase. The activity of this ubiquitin ligase is regulated via covalent modification of the Cullin-1 subunit by the ubiquitin-like protein NEDD8. We previously reported that interaction of viable commensal bacteria with mammalian intestinal epithelial cells resulted in a rapid and reversible generation of reactive oxygen species (ROS) that modulated neddylation of Cullin-1 and resulted in suppressive effects on the NF-κB pathway. Herein, we demonstrate that butyrate and other short chain fatty acids supplemented to model human intestinal epithelia in vitro and human tissue ex vivo results in loss of neddylated Cul-1 and show that physiological concentrations of butyrate modulate the ubiquitination and degradation of a target of the E3-SCFβ-TrCP ubiquitin ligase, the NF-κB inhibitor IκB-α. Mechanistically, we show that physiological concentrations of butyrate induces reactive oxygen species that transiently alters the intracellular redox balance and results in inactivation of the NEDD8-conjugating enzyme Ubc12 in a manner similar to effects mediated by viable bacteria. Because the normal flora produces significant amounts of butyrate and other short chain fatty acids, these data provide a functional link between a natural product of the intestinal normal flora and important epithelial inflammatory and proliferative signaling pathways. PMID:19109186

  7. The dietary histone deacetylase inhibitor sulforaphane induces human β-defensin-2 in intestinal epithelial cells

    PubMed Central

    Schwab, Markus; Reynders, Veerle; Loitsch, Stefan; Steinhilber, Dieter; Schröder, Oliver; Stein, Jürgen

    2008-01-01

    Antimicrobial peptides like human β-defensin-2 (HBD-2) play an important role in the innate immune system protecting the intestinal mucosa against bacterial invasion. The dietary histone deacetylase (HDAC) inhibitors sulforaphane (SFN) and butyrate have received a great deal of attention because of their ability to simultaneously modulate multiple cellular targets involved in cellular protection. In this study the influence of SFN and butyrate on HBD-2 expression as well as the molecular pathways involved in SFN-mediated induction of HBD-2 were scrutinized. Treatment of Caco-2, HT-29 and SW480 cells with SFN led to a time- and dose-dependent upregulation of HBD-2 mRNA expression as determined by semi-quantitative reverse transcription–polymerase chain reaction. Moreover, HBD-2 protein production increased in response to SFN, measured by enzyme-linked immunosorbent assay. Induction of HBD-2 was also observed in response to butyrate. Immunofluorescence analysis revealed that the protein was localized in the cytosol. Coincubation of SFN with a vitamin D receptor (VDR), or an extracellular-regulated kinase 1/2 or a nuclear factor-κB inhibitor all reduced HBD-2 mRNA upregulation. In contrast, transfection of cells with a dominant-negative peroxisome proliferator-activated receptor γ (PPARγ) mutant vector to inhibit PPARγ wild-type action and inhibition of p38 mitogen-activated protein kinase (MAPK) signalling did not affect SFN-mediated upregulation of HBD-2 mRNA. Moreover, SFN induced the expression of VDR, PPARγ and phosphorylated ERK1/2 but did not affect p38 MAPK activation. The data clearly demonstrate for the first time that the dietary HDAC inhibitor SFN is able to induce antimicrobial peptides in colonocytes. In this process HBD-2 expression is regulated via VDR, mitogen-activated protein kinase kinase/extracellular-regulated kinase and nuclear factor-κB signalling. PMID:18373608

  8. Functional and Molecular Effects of Arginine Butyrate and Prednisone on Muscle and Heart in the mdx Mouse Model of Duchenne Muscular Dystrophy

    PubMed Central

    Guerron, Alfredo D.; Rawat, Rashmi; Sali, Arpana; Spurney, Christopher F.; Pistilli, Emidio; Cha, Hee-Jae; Pandey, Gouri S.; Gernapudi, Ramkishore; Francia, Dwight; Farajian, Viken; Escolar, Diana M.; Bossi, Laura; Becker, Magali; Zerr, Patricia; de la Porte, Sabine; Gordish-Dressman, Heather; Partridge, Terence; Hoffman, Eric P.; Nagaraju, Kanneboyina

    2010-01-01

    Background The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD) is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin. Methodology/Principal Findings In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model. Arginine butyrate treatment improved grip strength and decreased fibrosis in the gastrocnemius muscle, but did not produce significant improvement in muscle and cardiac histology, heart function, behavioral measurements, or serum creatine kinase levels. In contrast, 6 months of chronic continuous prednisone treatment resulted in deterioration in functional, histological, and biochemical measures. Arginine butyrate-treated mice gene expression profiling experiments revealed that several genes that control cell proliferation, growth and differentiation are differentially expressed consistent with its histone deacetylase inhibitory activity when compared to control (saline-treated) mdx mice. Prednisone and combination treated groups showed alterations in the expression of genes that control fibrosis, inflammation, myogenesis and atrophy. Conclusions/Significance These data indicate that 6 months treatment with arginine butyrate can produce modest beneficial effects on dystrophic pathology in mdx mice by reducing fibrosis and promoting muscle function while chronic continuous treatment with prednisone showed deleterious effects to skeletal and cardiac muscle. Our results clearly indicate the usefulness of multiple assays systems to monitor both beneficial and toxic effects of drugs with broad range of in vivo

  9. An induced junction photovoltaic cell

    NASA Technical Reports Server (NTRS)

    Call, R. L.

    1974-01-01

    Silicon solar cells operating with induced junctions rather than diffused junctions have been fabricated and tested. Induced junctions were created by forming an inversion layer near the surface of the silicon by supplying a sheet of positive charge above the surface. Measurements of the response of the inversion layer cell to light of different wavelengths indicated it to be more sensitive to the shorter wavelengths of the sun's spectrum than conventional cells. The greater sensitivity occurs because of the shallow junction and the strong electric field at the surface.

  10. Anti-inflammatory effect of sodium butyrate preconditioning during myocardial ischemia/reperfusion

    PubMed Central

    HU, XIAORONG; ZHANG, KAI; XU, CHANGWU; CHEN, ZHIQAING; JIANG, HONG

    2014-01-01

    High mobility group box 1 protein (HMGB1) has an important role in myocardial ischemia/reperfusion (I/R) injury. Sodium butyrate, an inhibitor of histone deacetylase, has been shown to inhibit HMGB1 expression. In the present study, the effect of sodium butyrate on myocardial I/R injury in rats was investigated. Anesthetized male rats were intraperitoneally administered sodium butyrate (100 or 300 mg/kg) 30 min prior to the induction of ischemia. The rats were then subjected to ischemia for 30 min followed by reperfusion for 4 h. Infarct size, lactate dehydrogenase (LDH), creatine kinase (CK) and superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels were then measured. The expression of HMGB1 was assessed using western blot analysis. The results demonstrated that pretreatment with sodium butyrate (300 mg/kg) significantly reduced the infarct size, as well as the levels of LDH and CK (P<0.05). In addition, sodium butyrate (300 mg/kg) was shown to significantly inhibit the I/R-induced increase in the level of MDA and reduction in the level of SOD (P<0.05). Furthermore, treatment with sodium butyrate (300 mg/kg) was found to significantly inhibit the expression of TNF-α, IL-6 and HMGB1 induced by I/R injury (P<0.05). In conclusion, the results from the present study suggest that preconditioning with sodium butyrate may attenuate myocardial I/R injury by inhibition of the expression of inflammatory mediators during myocardial I/R. PMID:24944626

  11. The hypophagic response to heat stress is not mediated by GPR109A or peripheral β-OH butyrate.

    PubMed

    Hepler, Chelsea; Foy, Caroline E; Higgins, Mark R; Renquist, Benjamin J

    2016-05-15

    Rising temperatures resulting from climate change will increase the incidence of heat stress, negatively impacting the labor force and food animal production. Heat stress elevates circulating β-OH butyrate, which induces vasodilation through GPR109a. Interestingly, both heat stress and intraperitoneal β-OH butyrate administration induce hypophagia. Thus, we aimed to investigate the role of β-OH butyrate in heat stress hypophagia in mice. We found that niacin, a β-OH butyrate mimetic that cannot be oxidized to generate ATP, also reduces food intake. Interestingly, the depression in food intake as a result of 8-h intraperitoneal niacin or 48-h heat exposure did not result from changes in hypothalamic expression of orexigenic or anorexigenic signals (AgRP, NPY, or POMC). Genetically eliminating GPR109a expression did not prevent the hypophagic response to heat exposure, intraperitoneal β-OH butyrate (5.7 mmol/kg), or niacin (0.8 mmol/kg). Hepatic vagotomy eliminated the hypophagic response to β-OH butyrate and niacin but did not affect the hypophagic response to heat exposure. We subsequently hypothesized that the hypophagic response to heat stress may depend on direct effects of β-OH butyrate at the central nervous system: β-OH butyrate induced hormonal changes (hyperinsulinemia, hypercorticosteronemia, and hyperleptinemia), or gene expression changes. To test these possibilities, we blocked expression of hepatic hydroxyl methyl glutaryl CoA synthase II (HMGCS2) to prevent hepatic β-OH butyrate synthesis. Mice that lack HMGCS2 maintain a hypophagic response to heat stress. Herein, we establish that the hypophagia of heat stress is independent of GPR109a, the hepatic vagus afferent nerve, and hepatic ketone body synthesis. PMID:26936786

  12. Short Chain Fatty Acids (SCFA) Reprogram Gene Expression in Human Malignant Epithelial and Lymphoid Cells.

    PubMed

    Astakhova, Lidiia; Ngara, Mtakai; Babich, Olga; Prosekov, Aleksandr; Asyakina, Lyudmila; Dyshlyuk, Lyubov; Midtvedt, Tore; Zhou, Xiaoying; Ernberg, Ingemar; Matskova, Liudmila

    2016-01-01

    The effect of short chain fatty acids (SCFAs) on gene expression in human, malignant cell lines was investigated, with a focus on signaling pathways. The commensal microbial flora produce high levels of SCFAs with established physiologic effects in humans. The most abundant SCFA metabolite in the human microflora is n-butyric acid. It is well known to activate endogenous latent Epstein-Barr virus (EBV), that was used as a reference read out system and extended to EBV+ epithelial cancer cell lines. N-butyric acid and its salt induced inflammatory and apoptotic responses in tumor cells of epithelial and lymphoid origin. Epithelial cell migration was inhibited. The n-butyric gene activation was reduced by knock-down of the cell membrane transporters MCT-1 and -4 by siRNA. N-butyric acid show biologically significant effects on several important cellular functions, also with relevance for tumor cell phenotype. PMID:27441625

  13. Short Chain Fatty Acids (SCFA) Reprogram Gene Expression in Human Malignant Epithelial and Lymphoid Cells

    PubMed Central

    Astakhova, Lidiia; Ngara, Mtakai; Babich, Olga; Prosekov, Aleksandr; Asyakina, Lyudmila; Dyshlyuk, Lyubov; Midtvedt, Tore; Zhou, Xiaoying; Ernberg, Ingemar; Matskova, Liudmila

    2016-01-01

    The effect of short chain fatty acids (SCFAs) on gene expression in human, malignant cell lines was investigated, with a focus on signaling pathways. The commensal microbial flora produce high levels of SCFAs with established physiologic effects in humans. The most abundant SCFA metabolite in the human microflora is n-butyric acid. It is well known to activate endogenous latent Epstein-Barr virus (EBV), that was used as a reference read out system and extended to EBV+ epithelial cancer cell lines. N-butyric acid and its salt induced inflammatory and apoptotic responses in tumor cells of epithelial and lymphoid origin. Epithelial cell migration was inhibited. The n-butyric gene activation was reduced by knock-down of the cell membrane transporters MCT-1 and -4 by siRNA. N-butyric acid show biologically significant effects on several important cellular functions, also with relevance for tumor cell phenotype. PMID:27441625

  14. Histone deacetylase inhibitors and aspirin interact synergistically to induce cell death in ovarian cancer cells.

    PubMed

    Sonnemann, Jürgen; Hüls, Isabel; Sigler, Michael; Palani, Chithra D; Hong, Le Thi Thu; Völker, Uwe; Kroemer, Heyo K; Beck, James F

    2008-07-01

    Histone deacetylase inhibitors (HDIs) as well as non-steroidal anti-inflammatory drugs including aspirin show promise as antineoplastic agents. The treatment with both HDIs and aspirin can result in hyperacetylation of proteins. In this study, we investigated whether HDIs and aspirin interacted in inducing anticancer activity and histone acetylation. We found that the HDIs, suberoylanilide hydroxamic acid and sodium butyrate, and aspirin cooperated to induce cell death in the ovarian cancer cell line, A2780. The effect was synergistic, as evidenced by CI-isobologram analysis. However, aspirin had no effect on histone acetylation, neither in the absence nor presence of HDIs. To gain insight into the mechanism underlying the synergistic action of HDIs and aspirin, we employed the deacetylated metabolite of aspirin, salicylic acid, and the cyclooxygenase-1- and -2-selective inhibitors, SC-560 and NS-398, respectively. We found that HDIs and salicylic acid interacted synergistically, albeit less efficiently than HDIs and aspirin, to induce cancer cell death, suggesting that the acetyl and the salicyl moiety contributed to the cooperative interaction of aspirin with HDIs. SC-560 and NS-398 had little effect both when applied alone or in conjunction with HDIs, indicating that the combinatorial effect of HDIs and aspirin was not the result of cyclo-oxygenase inhibition. In conclusion, our study demonstrates that HDIs and aspirin synergize to induce cancer cell death and, thus, provides a rationale for a more in-depth exploration into the potential of combining HDIs and aspirin as a strategy for anticancer therapy. PMID:18575740

  15. Butyrate delivered by butyrylated starch increases distal colonic epithelial apoptosis in carcinogen-treated rats.

    PubMed

    Clarke, Julie M; Young, Graeme P; Topping, David L; Bird, Anthony R; Cobiac, Lynne; Scherer, Benjamin L; Winkler, Jessica G; Lockett, Trevor J

    2012-01-01

    Animal studies show that increasing large bowel butyrate concentration through ingestion of butyrylated or resistant starches opposes carcinogen-induced tumorigenesis, which is consistent with population data linking greater fiber consumption with lowered colorectal cancer (CRC) risk. Butyrate has been shown to regulate the apoptotic response to DNA damage. This study examined the impact of increasing large bowel butyrate concentration by dietary butyrylated starch on the colonic epithelium of rats treated with the genotoxic carcinogen azoxymethane (AOM). Four groups of 10 male rats were fed AIN-93G based-diets containing either low amylose maize starch (LAMS), LAMS with 3% tributyrin, 10% high amylose maize starch (HAMS) or 10% butyrylated HAMS (HAMSB). HAMS and HAMSB starches were cooked by heating in water. After 4 weeks, rats were injected once with AOM and killed 6 h later. Rates of apoptosis and proliferation were measured in colonic epithelium. Short-chain fatty acid concentrations in large bowel digesta and hepatic portal venous plasma were higher in HAMSB than all other groups. Apoptotic rates in the distal colon were increased by HAMSB and correlated with luminal butyrate concentrations but cellular proliferation rates were unaffected by diet. The increase in apoptosis was most marked in the base and proliferative zone of the crypt. Regulation of luminal butyrate using HAMSB increases the rates of apoptotic deletion of DNA-damaged colonocytes. We propose this pro-apoptotic function of butyrate plays a major role reducing tumour formation in the AOM-treated rat and that these data support a potential protective role of butyrate in CRC. PMID:22080572

  16. Catalytic upgrading of butyric acid towards fine chemicals and biofuels

    PubMed Central

    Sjöblom, Magnus; Matsakas, Leonidas; Christakopoulos, Paul; Rova, Ulrika

    2016-01-01

    Fermentation-based production of butyric acid is robust and efficient. Modern catalytic technologies make it possible to convert butyric acid to important fine chemicals and biofuels. Here, current chemocatalytic and biocatalytic conversion methods are reviewed with a focus on upgrading butyric acid to 1-butanol or butyl-butyrate. Supported Ruthenium- and Platinum-based catalyst and lipase exhibit important activities which can pave the way for more sustainable process concepts for the production of green fuels and chemicals. PMID:26994015

  17. Multi-scale Modeling Study of poly(3-hexylthiophene) and [6 6]-phenyl-C61-butyric acid methyl ester Towards Organic Photovoltaic Cell Application

    NASA Astrophysics Data System (ADS)

    Yoo, Hanjong; Kim, Ki Chul; Jang, Seung Soon

    2015-03-01

    To date, organic photovoltaic cells have gained attention due to their promising potential in the industry. Its efficiency needs to be improved through constructing better morphologies. There are three morphological quantities that affect the efficiency. The domain size of the electron donor phase has to be small and the interface-to-volume ratio of the blend must be large. The percolation ratio has to be high. To investigate the morphological properties of the active layer systems, the state-of-the-art multi-scale modeling is employed. In this study, P3HT and PCBM blends have used as our active layer candidates. We have developed our own force field parameters to accurately describe potential energy surfaces in the layer systems. Subsequently, coarse-grained force field for P3HT and PCBM have been developed based on the improved atomistic force field parameters in order to simulate larger systems. The results from coarse-grained models are validated through the comparison with those from the full atomistic models. Using the molecular dynamics simulations, the newly developed coarse-grained models will be further used to study how the crystallinity of P3HT affects the morphological properties in the active layers.

  18. Feed-drug interaction of orally applied butyrate and phenobarbital on hepatic cytochrome P450 activity in chickens.

    PubMed

    Mátis, G; Kulcsár, A; Petrilla, J; Hermándy-Berencz, K; Neogrády, Zs

    2016-08-01

    The expression of hepatic drug-metabolizing cytochrome P450 (CYP) enzymes may be affected by several nutrition-derived compounds, such as by the commonly applied feed additive butyrate, possibly leading to feed-drug interactions. The aim of this study was to provide some evidence if butyrate can alter the activity of hepatic CYPs in chickens exposed to CYP-inducing xenobiotics, monitoring for the first time the possibility of such interaction. Ross 308 chickens in the grower phase were treated with daily intracoelomal phenobarbital (PB) injection (80 mg/kg BW), applied as a non-specific CYP-inducer, simultaneously with two different doses of intra-ingluvial sodium butyrate boluses (0.25 and 1.25 g/kg BW) for 5 days. Activity of CYP2H and CYP3A subfamilies was assessed by specific enzyme assays from isolated liver microsomes. According to our results, the lower dose of orally administered butyrate significantly attenuated the PB-triggered elevation of both hepatic CYP2H and CYP3A activities, which might be in association with the partly common signalling pathways of butyrate and CYP-inducing drugs, such as that of PB. Based on these data, butyrate may take part in pharmacoepigenetic interactions with simultaneously applied drugs or other CYP-inducing xenobiotics, with possible consequences for food safety and pharmacotherapy. Butyrate was found to be capable to maintain physiological CYP activity by attenuating CYP induction, underlining the safety of butyrate application in poultry nutrition. PMID:26614344

  19. Butyrate modulates antioxidant enzyme expression in malignant and non-malignant human colon tissues.

    PubMed

    Jahns, Franziska; Wilhelm, Anne; Jablonowski, Nadja; Mothes, Henning; Greulich, Karl Otto; Glei, Michael

    2015-04-01

    The induction of antioxidant enzymes is an important mechanism in colon cancer chemoprevention, but the response of human colon tissue to butyrate, a gut fermentation product derived from dietary fiber, remains largely unknown. Therefore, our study investigated the effect of a butyrate treatment on catalase (CAT) and superoxide dismutase (SOD2) in matched human colon tissues of different transformation stages (n = 3-15 in each group) ex vivo. By performing quantitative real-time PCR, Western blot, and spectrophotometric measurements, we found an increase in SOD2 at expression and activity level in colonic adenocarcinomas (mRNA: 1.96-fold; protein: 1.41-fold, activity: 1.8-fold; P < 0.05). No difference was detectable for CAT between normal, adenoma, and carcinoma colon tissues. Treatment of normal colon epithelium (12 h) with a physiologically relevant concentration of butyrate (10 mM) resulted in a significant increase (P < 0.05) in CAT mRNA (1.24-fold) and protein (1.39-fold), without affecting the enzymatic activity. Consequently, preliminary experiments failed to show any protective effect of butyrate against H2 O2 -mediated DNA damage. Despite a significantly lowered SOD2 transcript (0.51-fold, P < 0.01) and, to a lesser extent, protein level (0.86-fold) after butyrate exposure of normal colon cells, the catalytic activity was significantly enhanced (1.19-fold, P < 0.05), suggesting an increased protection against tissue superoxide radicals. In malignant tissues, greater variations in response to butyrate were observed. Furthermore, both enzymes showed an age-dependent decrease in activity in normal colon epithelium (CAT: r = -0.49, P = 0.09; SOD2: r = -0.58, P = 0.049). In conclusion, butyrate exhibited potential antioxidant features ex vivo but cellular consequences need to be investigated more in depth. PMID:24677319

  20. Biogas Production on Demand Regulated by Butyric Acid Addition

    NASA Astrophysics Data System (ADS)

    Kasper, K.; Schiffels, J.; Krafft, S.; Kuperjans, I.; Elbers, G.; Selmer, T.

    2016-03-01

    Investigating effects of volatile fatty acids on the biogas process it was observed that butyric acid can be used for transient stimulation of the methane production in biogas plants operating with low energy substrates like cattle manure. Upon addition of butyrate the methane output of the reactors doubled within 24 h and reached almost 3-times higher methane yields within 3-4 days. Butyrate was quantitatively eliminated and the reactors returned to the original productivity state within 3 days when application of butyrate was stopped. The opportunity to use butyrate feeding for increased biogas production on demand is discussed.

  1. New holographic polymeric composition based on plexiglass, polyvinyl butyral, and phenanthrenquinone

    NASA Astrophysics Data System (ADS)

    Matusevich, Vladislav; Tolstik, Elen; Kowarschik, Richard; Egorova, Elena; Matusevich, Yuri I.; Krul, Leonid

    2013-05-01

    The newly developed Plexiglas films containing polyvinyl butyral resins and phenanthrenequinone molecules as photosensitive dopant, which are proposed for the practical application as interlayer of laminated safety glass, are shown for the first time. The injection of the phenanthrenequinone-poly(methyl methacrylate) into the polyvinyl butyral protective interlayer provides a homogenous distribution of the recording holographic medium in the layer and allows fixing the entire surface grating in the laminated glass. In addition, the original properties of polyvinyl butyral as a connecting material were preserved during manufacturing of the laminated glass. This allows a recording of holographic structures directly after baking of the laminated glass, thus reducing the destruction of the gratings due to the elevated temperatures. The diffractive structures in phenanthrenequinone-poly(methyl methacrylate)-polyvinyl butyral polymeric layers with thicknesses of hundreds of microns are sealed between two panels of glass (so-called laminated glass) and are generated by illumination with an Argon-laser of 514 nm. Efficiently fixed and long-term stable holographic gratings recorded in the phenanthrenequinone-poly(methyl methacrylate)-polyvinyl butyral layer enable to produce transparent laminated glass with inserted diffractive elements, which can be used e.g. for Head-up Displays in automobile windshields or as holographic light concentrators for solar cells.

  2. Ciprofloxacin Affects Host Cells by Suppressing Expression of the Endogenous Antimicrobial Peptides Cathelicidins and Beta-Defensin-3 in Colon Epithelia

    PubMed Central

    Sarker, Protim; Mily, Akhirunnesa; Mamun, Abdullah Al; Jalal, Shah; Bergman, Peter; Raqib, Rubhana; Gudmundsson, Gudmundur H.; Agerberth, Birgitta

    2014-01-01

    Antibiotics exert several effects on host cells including regulation of immune components. Antimicrobial peptides (AMPs), e.g., cathelicidins and defensins display multiple functions in innate immunity. In colonic mucosa, cathelicidins are induced by butyrate, a bacterial fermentation product. Here, we investigated the effect of antibiotics on butyrate-induced expression of cathelicidins and beta-defensins in colon epithelial cells. Real-time PCR analysis revealed that ciprofloxacin and clindamycin reduce butyrate-induced transcription of the human cathelicidin LL-37 in the colonic epithelial cell line HT-29. Suppression of LL-37 peptide/protein by ciprofloxacin was confirmed by Western blot analysis. Immunohistochemical analysis demonstrated that ciprofloxacin suppresses the rabbit cathelicidin CAP-18 in rectal epithelia of healthy and butyrate-treated Shigella-infected rabbits. Ciprofloxacin also down-regulated butyrate-induced transcription of the human beta-defensin-3 in HT-29 cells. Microarray analysis of HT-29 cells revealed upregulation by butyrate with subsequent down-regulation by ciprofloxacin of additional genes encoding immune factors. Dephosphorylation of histone H3, an epigenetic event provided a possible mechanism of the suppressive effect of ciprofloxacin. Furthermore, LL-37 peptide inhibited Clostridium difficile growth in vitro. In conclusion, ciprofloxacin and clindamycin exert immunomodulatory function by down-regulating AMPs and other immune components in colonic epithelial cells. Suppression of AMPs may contribute to the overgrowth of C. difficile, causing antibiotic-associated diarrhea. PMID:27025750

  3. Direct block of the cystic fibrosis transmembrane conductance regulator Cl(-) channel by butyrate and phenylbutyrate.

    PubMed

    Linsdell, P

    2001-01-12

    Chloride permeation through the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel is inhibited by a broad range of intracellular organic anions. Here it is shown, using patch clamp recording from CFTR-transfected mammalian cell lines, that the fatty acids butyrate and 4-phenylbutyrate cause a voltage-dependent block of CFTR Cl(-) currents when applied to the cytoplasmic face of membrane patches, with apparent K(d)s (at 0 mV) of 29.6 mM for butyrate and 6.6 mM for 4-phenylbutyrate. At the single channel level, both these fatty acids caused an apparent reduction in CFTR current amplitude, suggesting a kinetically fast blocking mechanism. The concentration-dependence of block suggests that CFTR-mediated Cl(-) currents in vivo may be affected by both 4-phenylbutyrate used in the treatment of various diseases, including cystic fibrosis, and by butyrate produced endogenously within the colonic lumen. PMID:11164382

  4. Inhibition of HDAC increases the senescence induced by natural polyphenols in glioma cells.

    PubMed

    Vargas, José E; Filippi-Chiela, Eduardo C; Suhre, Tais; Kipper, Franciele C; Bonatto, Diego; Lenz, Guido

    2014-08-01

    Cellular senescence is an irreversible block of cellular division, and induction of senescence is being considered for treatment of many cancer types, mainly those resistant to classical pro-apoptotic therapies. Resveratrol (Rsv) and quercetin (Quer), two natural polyphenols, are able to induce senescence in different cancer models, including gliomas, the most common and aggressive primary brain tumor. These polyphenols modulate the activity of several proteins involved in cell growth and death in cancer cells, including histone deacetylases (HDAC), but the role of HDAC in senescence induced by Rsv and Quer is unclear. The HDAC inhibitor sodium butyrate (NaB) potentiated the pro-senescent effect of Rsv and Quer in human and rat glioma cell lines but not in normal rat astrocytes. Furthermore, the increment of Quer-induced senescence by NaB was accompanied by an increase of reactive oxygen species levels and an increment of the number of cells with nuclear abnormalities. Altogether, these data support a positive role of HDAC inhibition on the senescence induced by these polyphenols, and therefore co-treatment of HDAC inhibitors and polyphenols emerges as a potential alternative for gliomas. PMID:25070040

  5. Addition of 2-deoxyglucose enhances growth inhibition but reverses acidification in colon cancer cells treated with phenformin.

    PubMed

    Lea, Michael A; Chacko, Jerel; Bolikal, Sandhya; Hong, Ji Y; Chung, Ryan; Ortega, Andres; desbordes, Charles

    2011-02-01

    A report that effects of butyrate on some cells may be mediated by activation of AMP-activated protein kinase (AMPK) prompted this study which examines if other AMPK activators can induce differentiation and inhibit proliferation of colon cancer cells in a manner similar to butyrate. Using induction of alkaline phosphatase as a marker, it was observed that compound C, an AMPK inhibitor, is able to reduce the differentiating effect of butyrate on SW1116 and Caco-2 colon cancer cells. Metformin was observed to be less effective than butyrate in the induction of alkaline phosphatase but was more effective as a growth inhibitor. Phenformin was found to be a more potent growth inhibitor than metformin and both compounds cause acidification of the medium when incubated with colon cancer cells. Combined incubation of 2-deoxyglucose with either of the biguanides prevented the acidification of the medium but enhanced the growth inhibitory effects. PMID:21378320

  6. Increased growth of Bifidobacterium and Eubacterium by germinated barley foodstuff, accompanied by enhanced butyrate production in healthy volunteers.

    PubMed

    Kanauchi, O; Fujiyama, Y; Mitsuyama, K; Araki, Y; Ishii, T; Nakamura, T; Hitomi, Y; Agata, K; Saiki, T; Andoh, A; Toyonaga, A; Bamba, T

    1999-02-01

    Germinated barley foodstuff (GBF) derived from the aleurone and scutellum fractions of germinated barley mainly consists of low-lignified hemicellulose and glutamine-rich protein. GBF improves the proliferation of intestinal epithelial cells and defecation, through the bacterial production of short chain fatty acids (SCFA), especially butyrate. In this study we investigated the mechanism of production of butyrate by microflora in humans and in vitro. Daily administration of 9 g GBF for 14 successive days significantly increased fecal butyrate content. Fecal Bifidobacterium and Eubacterium were also significantly increased by GBF administration in healthy volunteers. Ten anaerobic micro-organisms selected from intestinal microflora were cultured in vitro in the medium containing GBF as a sole carbon source (GBF medium). After a 3-day incubation, 7 strains (Bifidobacterium breve, Bifidobacterium longum, Lactobacillus acidophilus, Lactobacillus casei subsp. casei, Bacteroides ovatus, Clostridium butyricum, and Eubacterium limosum) lowered the medium pH producing SCFA. Eubacterium grown together with Bifidobacterium in GBF medium efficiently produced butyrate. On the other hand, GBF changed the intestinal microflora and increased probiotics such as Bifidobacterium in the intestinal tract. As a result, butyrate was produced by the mutual action of Eubacterium and Bifidobacterium. This butyrate is considered to enhance the proliferation of colonic epithelial cells. PMID:9917526

  7. Propionic acid secreted from propionibacteria induces NKG2D ligand expression on human-activated T lymphocytes and cancer cells.

    PubMed

    Andresen, Lars; Hansen, Karen Aagaard; Jensen, Helle; Pedersen, Stine Falsig; Stougaard, Peter; Hansen, Helle Rüsz; Jurlander, Jesper; Skov, Søren

    2009-07-15

    We found that propionic acid secreted from propionibacteria induces expression of the NKG2D ligands MICA/B on activated T lymphocytes and different cancer cells, without affecting MICA/B expression on resting peripheral blood cells. Growth supernatant from propionibacteria or propionate alone could directly stimulate functional MICA/B surface expression and MICA promoter activity by a mechanism dependent on intracellular calcium. Deletion and point mutations further demonstrated that a GC-box motif around -110 from the MICA transcription start site is essential for propionate-mediated MICA promoter activity. Other short-chain fatty acids such as lactate, acetate, and butyrate could also induce MICA/B expression. We observed a striking difference in the molecular signaling pathways that regulate MICA/B. A functional glycolytic pathway was essential for MICA/B expression after exposure to propionate and CMV. In contrast, compounds with histone deacetylase-inhibitory activity such as butyrate and FR901228 stimulated MICA/B expression through a pathway that was not affected by inhibition of glycolysis, clearly suggesting that MICA/B is regulated through different molecular mechanisms. We propose that propionate, produced either by bacteria or during cellular metabolism, has significant immunoregulatory function and may be cancer prophylactic. PMID:19553547

  8. Parvovirus infection-induced cell death and cell cycle arrest

    PubMed Central

    Chen, Aaron Yun; Qiu, Jianming

    2011-01-01

    The cytopathic effects induced during parvovirus infection have been widely documented. Parvovirus infection-induced cell death is often directly associated with disease outcomes (e.g., anemia resulting from loss of erythroid progenitors during parvovirus B19 infection). Apoptosis is the major form of cell death induced by parvovirus infection. However, nonapoptotic cell death, namely necrosis, has also been reported during infection of the minute virus of mice, parvovirus H-1 and bovine parvovirus. Recent studies have revealed multiple mechanisms underlying the cell death during parvovirus infection. These mechanisms vary in different parvoviruses, although the large nonstructural protein (NS)1 and the small NS proteins (e.g., the 11 kDa of parvovirus B19), as well as replication of the viral genome, are responsible for causing infection-induced cell death. Cell cycle arrest is also common, and contributes to the cytopathic effects induced during parvovirus infection. While viral NS proteins have been indicated to induce cell cycle arrest, increasing evidence suggests that a cellular DNA damage response triggered by an invading single-stranded parvoviral genome is the major inducer of cell cycle arrest in parvovirus-infected cells. Apparently, in response to infection, cell death and cell cycle arrest of parvovirus-infected cells are beneficial to the viral cell lifecycle (e.g., viral DNA replication and virus egress). In this article, we will discuss recent advances in the understanding of the mechanisms underlying parvovirus infection-induced cell death and cell cycle arrest. PMID:21331319

  9. Recent Developments in β-Cell Differentiation of Pluripotent Stem Cells Induced by Small and Large Molecules

    PubMed Central

    Kumar, S. Suresh; Alarfaj, Abdullah A.; Munusamy, Murugan A.; Singh, A. J. A. Ranjith; Peng, I-Chia; Priya, Sivan Padma; Hamat, Rukman Awang; Higuchi, Akon

    2014-01-01

    Human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold promise as novel therapeutic tools for diabetes treatment because of their self-renewal capacity and ability to differentiate into beta (β)-cells. Small and large molecules play important roles in each stage of β-cell differentiation from both hESCs and hiPSCs. The small and large molecules that are described in this review have significantly advanced efforts to cure diabetic disease. Lately, effective protocols have been implemented to induce hESCs and human mesenchymal stem cells (hMSCs) to differentiate into functional β-cells. Several small molecules, proteins, and growth factors promote pancreatic differentiation from hESCs and hMSCs. These small molecules (e.g., cyclopamine, wortmannin, retinoic acid, and sodium butyrate) and large molecules (e.g. activin A, betacellulin, bone morphogentic protein (BMP4), epidermal growth factor (EGF), fibroblast growth factor (FGF), keratinocyte growth factor (KGF), hepatocyte growth factor (HGF), noggin, transforming growth factor (TGF-α), and WNT3A) are thought to contribute from the initial stages of definitive endoderm formation to the final stages of maturation of functional endocrine cells. We discuss the importance of such small and large molecules in uniquely optimized protocols of β-cell differentiation from stem cells. A global understanding of various small and large molecules and their functions will help to establish an efficient protocol for β-cell differentiation. PMID:25526563

  10. Enhanced production of IL-18 in butyrate-treated intestinal epithelium by stimulation of the proximal promoter region.

    PubMed

    Kalina, Uwe; Koyama, Noriko; Hosoda, Tomoko; Nuernberger, Heike; Sato, Kazuto; Hoelzer, Dieter; Herweck, Frank; Manigold, Tobias; Singer, Manfred V; Rossol, Siegbert; Böcker, Ulrich

    2002-09-01

    Expression of IL-18 in intestinal epithelial cells (IEC) has been implicated in Th1 cell-mediated chronic intestinal inflammation and anti-tumor immunity. However, physiological regulatory factors have not been identified. Besides their effects on proliferation and restitution, immunomodulatory functions have been attributed to short chain fatty acids (SCFA). We investigated the effect of SCFA (butyrate, propionate, acetate) on expression of IL-18 in IEC in vitro and in vivo. Expression of IL-18 mRNA and protein in human carcinoma-derived HT-29 and Caco-2 cells was analyzed by reverse transcription-PCR and Western blot. Transcriptional regulation of IL-18 gene expression was determined by transient transfection of wild-type and mutated IL-18 promoter. Further, in vivo expression of IL-18 in the intestine from butyrate-treated and untreated mice was assessed by immunohistochemistry. IL-18 mRNA and the IL-18 protein were expressed in IEC, while IL-18 secretion was not observed. Butyrate and acetate increased intracellular IL-18 content in a time- and dose-dependent fashion. In contrast to proinflammatory stimuli butyrate potently activated the IL-18 promoter, indicating that IL-18 is regulated at the transcriptional level by SCFA. Furthermore, a 108-bp sequence in the proximal region was identified to be essential for IL-18 promoter activation by butyrate. As proof of principle butyrate effects were confirmed in vivo by demonstration of increased IL-18 protein expression in IEC from butyrate-treated mice. In conclusion, SCFA up-regulate IL-18 protein expression in IEC, suggesting a potential regulatory contribution of these luminal constituents to T cell mediated inflammatory and neoplastic intestinal conditions. PMID:12207348

  11. Proteins implicated in the increase of adhesivity induced by suberoylanilide hydroxamic acid in leukemic cells.

    PubMed

    Grebeňová, D; Röselová, P; Pluskalová, M; Halada, P; Rösel, D; Suttnar, J; Brodská, B; Otevřelová, P; Kuželová, K

    2012-12-21

    We have previously shown that suberoylanilide hydroxamic acid (SAHA) treatment increases the adhesivity of leukemic cells to fibronectin at clinically relevant concentrations. Now, we present the results of the proteomic analysis of SAHA effects on leukemic cell lines using 2-DE and ProteomLab PF2D system. Histone acetylation at all studied acetylation sites reached the maximal level after 5 to 10 h of SAHA treatment. No difference in histone acetylation between subtoxic and toxic SAHA doses was observed. SAHA treatment induced cofilin phosphorylation at Ser3, an increase in vimentin and paxillin expression and a decrease in stathmin expression as confirmed by western-blotting and immunofluorescence microscopy. The interaction of cofilin with 14-3-3 epsilon was documented using both Duolink system and coimmunoprecipitation. However, this interaction was independent of cofilin Ser3 phosphorylation and the amount of 14-3-3-ε-bound cofilin did not rise following SAHA treatment. SAHA-induced increase in the cell adhesivity was associated with an increase in PAK phosphorylation in CML-T1 cells and was abrogated by simultaneous treatment with IPA-3, a PAK inhibitor. The effects of SAHA on JURL-MK1 cells were similar to those of other histone deacetylase inhibitors, tubastatin A and sodium butyrate. The proteome analysis also revealed several potential non-histone targets of histone deacetylases. PMID:23022583

  12. Protective role of taurine against morphine-induced neurotoxicity in C6 cells via inhibition of oxidative stress.

    PubMed

    Zhou, Jiaqing; Li, Yan; Yan, Guangyan; Bu, Qian; Lv, Lei; Yang, Yanzhu; Zhao, Jinxuan; Shao, Xue; Deng, Yi; Zhu, Ruimin; Zhao, Yinglan; Cen, Xiaobo

    2011-11-01

    This study was carried out to investigate the protective role of taurine (2-aminoethanesulphonicacid) against morphine-induced neurotoxicity in C6 cells. It was found that taurine significantly increased the viability of C6 cells treated by morphine, showing the neuroprotective role against morphine-induced neurotoxicity. However, such neuroprotective effect of taurine could not be blocked by bicuculline, an antagonist of gamma-amino butyrate (GABA) receptor. To determine the oxidative damage induced by morphine, the superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were measured in C6 cells. The decreased activities of SOD, CAT, and GPx in C6 cells were observed after morphine treatment for 48 h. However, taurine administration effectively ameliorated morphine-induced oxidative insult. To estimate anti-apoptosis effect of taurine, flow cytometry analysis as well as detection for caspase-3 and Bcl-2 expressions was performed after morphine exposure for 48 h. It was found that Bcl-2 expression was down regulated by morphine, whereas taurine could reverse morphine-induced decrease in Bcl-2 expression. Taurine showed no effect on caspase-3 expression. Collectively, the results show that taurine possesses the capability to ameliorate morphine-induced oxidative insult and apoptosis in C6 cells, probably due to its antioxidant activity rather than activation of GABA receptors. PMID:21611853

  13. Fibrinogen induces endothelial cell permeability

    PubMed Central

    Tyagi, Neetu; Roberts, Andrew M.; Dean, William L.; Tyagi, Suresh C.

    2010-01-01

    Many cardiovascular and cerebrovascular disorders are accompanied by an increased blood content of fibrinogen (Fg), a high molecular weight plasma adhesion protein. Fg is a biomarker of inflammation and its degradation products have been associated with microvascular leakage. We tested the hypothesis that at pathologically high levels, Fg increases endothelial cell (EC) permeability through extracellular signal regulated kinase (ERK) signaling and by inducing F-actin formation. In cultured ECs, Fg binding to intercellular adhesion molecule-1 and to α5β1 integrin, caused phosphorylation of ERK. Subsequently, F-actin formation increased and coincided with formation of gaps between ECs, which corresponded with increased permeability of ECs to albumin. Our data suggest that formation of F-actin and gaps may be the mechanism for increased albumin leakage through the EC monolayer. The present study indicates that elevated un-degraded Fg may be a factor causing microvascular permeability that typically accompanies cardiovascular and cerebrovascular disorders. PMID:17849175

  14. Short-chain fatty acids induce cytoskeletal and extracellular protein modifications associated with modulation of proliferation on primary culture of rat intestinal smooth muscle cells.

    PubMed

    Le Blay, G; Blottière, H M; Ferrier, L; Le Foll, E; Bonnet, C; Galmiche, J P; Cherbut, C

    2000-08-01

    Short-chain fatty acids are the main end products of bacterial fermentation of carbohydrates. Their role on the metabolism and biology of colonocytes is now well characterized. However, the functional consequences of their presence on intestinal smooth muscle cells remain poorly studied. We aimed to assess the effect of different short-chain fatty acids on ileal and colonic smooth muscle cells in primary culture and on A7R5 line. Butyrate (above 0.1 mM) inhibited A7R5 cell proliferation, while at low concentration (0.05 to 0.5 mM) butyrate significantly stimulated the proliferation of ileal and colonic myocytes in primary culture. An inhibition was observed at higher concentrations. Collagenous and noncollagenous protein synthesis was stimulated by butyrate. Moreover, butyrate stimulated actin and myosin expression. Thus, butyrate, which is produced by dietary fiber fermentation, may affect intestinal muscles by directly acting at the molecular level on myocytes. PMID:11007115

  15. HIV transcription is induced in dying cells

    SciTech Connect

    Woloschak, G.E.; Chang-Liu, Chin-Mei; Schreck, S. |; Panozzo, J.; Libertin, C.R.

    1996-02-01

    Using HeLa cells stably transfected with an HIV-LTR-CAT construct, we demonstrated a peak in CAT induction that occurs in viable (but not necessarily cell-division-competent) cells 24 h following exposure to some cell-killing agents. {gamma} rays were the only cell-killing agent which did not induce HIV transcription; this can be attributed to the fact that {gamma}-ray-induced apoptotic death requires functional p53, which is not present in HeLa cells. For all other agents, HIV-LTR induction was dose-dependent and correlated with the amount of cell killing that occurred in the culture. Doses which caused over 99% cell killing induced HIV-LTR transcription maximally, demonstrating that cells that will go on to die by 14 days are the cells expressing HIV-LTR-CAT.

  16. Human c-fgr induces a monocyte-specific enzyme in NIH 3T3 cells

    SciTech Connect

    Inoue, Kazushi; Akiyama, Tetsu; Toyoshima, Kumao ); Wongsasant, Budsaba )

    1991-12-01

    The mutant c-fgr protein (p58{sup c-fgr/F523}) containing Phe-523 instead of Tyr-523 exhibited transforming activity in NIH 3T3 cells like other protein-tyrosine kinases of the src family, but normal p58{sup c-fgr} (p58{sup c-fgr/wt}) did not. The mutant protein showed tyrosine kinase activity threefold higher than that of the normal protein in vitro. Surprisingly, transfection of the normal c-fgr gene into NIH 3T3 cells resulted in induction of sodium fluoride (NaF)-sensitive {alpha}-naphthyl butyrate esterase ({alpha}-NBE), marker enzyme of cells of monocytic origin, which was not induced in v-src-, v-fgr-, or lyn-transfected NIH 3T3 cells. The NaF-sensitive {alpha}-NBE induced in c-fgr transfectants was shown by isoelectric focusing to have a pI of 5.2 to 5.4, a range which was the same as those for thioglycolate-induced murine peritoneal macrophages and 1{alpha}, 25-dihydroxyvitamin D{sub 3}-treated WEHI-3B cells. Immunoblotting studies with antophosphotyrosine antibodies revealed that 58-, 62-, 75-, 120-, 200-, and 230-kDa proteins were commonly phosphorylated at tyrosine residues in NIH 3T3 cells transfected with normal and mutated c-fgr, while 95-kDa protein was significantly phosphorylated at tyrosine residues in NIH 3T3 cells transfected with normal and mutated c-fgr, while 95-kDa protein was significantly phosphorylated at tyrosine residues in cells transfected with the mutated c-fgr. These findings suggest that tyrosine phosphorylation of specific cellular substrate proteins is important in induction of NaF-sensitive {alpha}-NBE and cell transformation by p58{sup c-fgr}.

  17. Capsaicin induces immunogenic cell death in human osteosarcoma cells

    PubMed Central

    Jin, Tao; Wu, Hongyan; Wang, Yanlin; Peng, Hao

    2016-01-01

    Immunogenic cell death (ICD) is characterized by the early surface exposure of calreticulin (CRT). As a specific signaling molecule, CRT on the surface of apoptotic tumor cells mediates the recognition and phagocytosis of tumor cells by antigen presenting cells. To date, only a small quantity of anti-cancer chemicals have been found to induce ICD, therefore it is clinically important to identify novel chemicals that may induce ICD. The purpose of the present study is to explore the function of capsaicin in inducing ICD. In the current study, MTT assays were used to examine the growth inhibiting effects of MG-63 cells when they were treated with capsaicin or cisplatin. Mitochondrial membrane potential and western blot analysis were used to investigate capsaicin- and cisplatin-induced apoptosis. In addition, the effects of capsaicin and cisplatin were evaluated for their abilities in inducing calreticulin membrane translocation and mediating ICD in human osteosarcoma cells (MG-63). The results demonstrated that capsaicin and cisplatin can induce the apoptosis of MG-63 cells. However, only capsaicin induced a rapid translocation of CRT from the intracellular space to the cell surface. Treatment with capsaicin increased phagocytosis of MG-63 cells by dendritic cells (DCs), and these MG-63-loaded DCs could efficiently stimulate the secretion of IFN-γ by lymphocytes. These results identify capsaicin as an anti-cancer agent capable of inducing ICD in human osteosarcoma cells in vitro. PMID:27446273

  18. Simultaneous Clostridial fermentation, lipase-catalyzed esterification, and ester extraction to enrich diesel with butyl butyrate.

    PubMed

    van den Berg, Corjan; Heeres, Arjan S; van der Wielen, Luuk A M; Straathof, Adrie J J

    2013-01-01

    The recovery of 1-butanol from fermentation broth is energy-intensive since typical concentrations in fermentation broth are below 20 g L(-1). To prevent butanol inhibition and high downstream processing costs, we aimed at producing butyl esters instead of 1-butanol. It is shown that it is possible to perform simultaneously clostridial fermentation, esterification of the formed butanol to butyl butyrate, and extraction of this ester by hexadecane. The very high partition coefficient of butyl butyrate pulls the esterification towards the product side even at fermentation pH and relatively low butanol concentrations. The hexadecane extractant is a model diesel compound and is nontoxic to the cells. If butyl butyrate enriched diesel can directly be used as car fuel, no product recovery is required. A proof-of-principle experiment for the one-pot bio-ester production from glucose led to 5 g L(-1) butyl butyrate in the hexadecane phase. The principle may be extended to a wide range of esters, especially to longer chain ones. PMID:22833369

  19. Short-chain fatty acid-initiated cell cycle arrest and apoptosis of colonic epithelial cells is linked to mitochondrial function.

    PubMed

    Heerdt, B G; Houston, M A; Augenlicht, L H

    1997-05-01

    Butyrate, a short-chain fatty acid produced during microbial fermentation of fiber, induces growth arrest, differentiation, and apoptosis of colonic epithelial cells in vitro, and our prior work has shown that this induction is tightly linked to mitochondrial activity. Here we demonstrate that 12 h following induction, SW620 human colonic carcinoma cells accumulate simultaneously in G0-G1 and G2-M of the cell cycle. Four h later, during this G0-G1 to G2-M arrest, cells begin to undergo apoptosis. Using a series of unrelated agents that modulate mitochondrial functions, we demonstrate that mitochondrial electron transport and membrane potential are critical in initiation of this butyrate-mediated growth arrest and apoptosis. Colonic tumorigenesis is characterized by abnormalities in proliferation, apoptosis, and mitochondrial activities. Thus, butyrate may reduce risk for colon cancer by inducing a pathway that enhances mitochondrial function, ultimately resulting in initiation of growth arrest and apoptosis of colonic epithelial cells. PMID:9149903

  20. Reductive Carboxylation of Propionate to Butyrate in Methanogenic Ecosystems

    PubMed Central

    Tholozan, J. L.; Samain, E.; Grivet, J. P.; Moletta, R.; Dubourguier, H. C.; Albagnac, G.

    1988-01-01

    During the batch degradation of sodium propionate by the anaerobic sludge from an industrial digestor, we observed a significant amount of butyrate formation. Varying the initial propionate concentrations did not alter the ratio of maximal butyrate accumulation to initial propionate concentration within a large range. By measuring the decrease in the radioactivity of [1-14C]butyrate during propionate degradation, we estimated that about 20% of the propionate was converted to butyrate. Labeled butyrate was formed from [1-14C]propionate with the same specific radioactivity, suggesting a possible direct pathway from propionate to butyrate. We confirmed this hypothesis by nuclear magnetic resonance studies with [13C]propionate. The results showed that [1-13C]-, [2-13C]-, and [3-13C]propionate were converted to [2-13C]-, [3-13C]-, and [4-13C]butyrate, respectively, demonstrating the direct carboxylation on the carboxyl group of propionate without randomization of the other two carbons. In addition, we observed an exchange reaction between C-2 and C-3 of the propionate, indicating that acetogensis may proceed through a randomizing pathway. The physiological significance and importance of various metabolic pathways involved in propionate degradation are discussed, and an unusual pathway of butyrate synthesis is proposed. PMID:16347557

  1. Isolation of unique butyrate-producing bacteria from swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butyrate-producing bacteria in humans contribute to a healthy gastrointestinal tract and are known to be species from clostridial clusters IV, IX, XIVa, and XVI - with the community dominated by clusters XIVa and IV. However, the composition of the butyrate-producing bacterial community in swine is...

  2. Increased Systolic and Diastolic Blood Pressure Is Associated With Altered Gut Microbiota Composition and Butyrate Production in Early Pregnancy.

    PubMed

    Gomez-Arango, Luisa F; Barrett, Helen L; McIntyre, H David; Callaway, Leonie K; Morrison, Mark; Dekker Nitert, Marloes

    2016-10-01

    The risk of developing pregnancy-induced hypertension and preeclampsia is higher in obese pregnant women. In obesity, the composition of the gut microbiota is altered. Obesity is also associated with low-grade inflammation. Metabolites from the gut microbiota may contribute to both hypertension and inflammation. The aim of this study is to investigate whether the composition of the gut microbiota in overweight and obese pregnant women is associated with blood pressure and levels of plasminogen activator inhibitor-1. The composition of the gut microbiota was determined with 16S ribosomal RNA sequencing in 205 women at 16 weeks gestation from the SPRING study (the Study of Probiotics in Gestational Diabetes). Expression of butyrate-producing genes in the gut microbiota was assessed by real-time polymerase chain reaction. Plasminogen activator inhibitor-1 levels were measured in fasting serum of a subset of 70 women. Blood pressure was slightly but significantly higher in obese compared with overweight women. The abundance of the butyrate-producing genus Odoribacter was inversely correlated with systolic blood pressure. Butyrate production capacity was decreased, but plasminogen activator inhibitor-1 concentrations increased in obese pregnant women. Plasminogen activator inhibitor-1 levels were inversely correlated with expression of butyrate kinase and Odoribacter abundance. This study shows that in overweight and obese pregnant women at 16 weeks gestation, the abundance of butyrate-producing bacteria and butyrate production in the gut microbiota is significantly negatively associated with blood pressure and with plasminogen activator inhibitor-1 levels. Increasing butyrate-producing capacity may contribute to maintenance of normal blood pressure in obese pregnant women. PMID:27528065

  3. Sodium butyrate alleviates adipocyte inflammation by inhibiting NLRP3 pathway.

    PubMed

    Wang, Xukai; He, Gang; Peng, Yan; Zhong, Weitian; Wang, Yan; Zhang, Bo

    2015-01-01

    Insulin resistance (IR) is a common feature of Type II diabetes, metabolic disorders, hypertension and other vascular diseases. Recent studies showed that obesity-induced inflammation may be critical for IR. To investigate the anti-inflammatory effect of sodium butyrate (NaB) on obesity-induced inflammation, the db/db mice were intraperitoneally injected with NaB for 6 weeks. Glucose control was evaluated by glucose tolerance test (GTT) and insulin tolerance test (ITT). Adipose tissue was harvested for gene expression analysis. 3T3-L1 adipocytes were treated with Tnf-α to mimic the inflammatory state and gene expression was detected by realtime PCR and Western blotting. Our results showed that NaB treatment improved glucose control in db/db mice as determined by GTT and ITT tests. Gene expression analysis showed that NaB inhibited cytokines and immunological markers including CD68, Interferon-γ and Mcp in adipose tissues in db/db mice. Moreover, NaB inhibited cytokine releasing in 3T3-L1 adipocytes treated with TNF-α. Further analysis of inflammation pathway showed that NLRP3 was activated in db/db mice, which was efficiently inhibited by NaB treatment. Our data suggest that inhibition of obesity-induced inflammation alleviates IR, and NaB might be a potential anti-inflammatory agent for obesity. PMID:26234821

  4. Sodium butyrate alleviates adipocyte inflammation by inhibiting NLRP3 pathway

    PubMed Central

    Wang, Xukai; He, Gang; Peng, Yan; Zhong, Weitian; Wang, Yan; Zhang, Bo

    2015-01-01

    Insulin resistance (IR) is a common feature of Type II diabetes, metabolic disorders, hypertension and other vascular diseases. Recent studies showed that obesity-induced inflammation may be critical for IR. To investigate the anti-inflammatory effect of sodium butyrate (NaB) on obesity-induced inflammation, the db/db mice were intraperitoneally injected with NaB for 6 weeks. Glucose control was evaluated by glucose tolerance test (GTT) and insulin tolerance test (ITT). Adipose tissue was harvested for gene expression analysis. 3T3-L1 adipocytes were treated with Tnf-α to mimic the inflammatory state and gene expression was detected by realtime PCR and Western blotting. Our results showed that NaB treatment improved glucose control in db/db mice as determined by GTT and ITT tests. Gene expression analysis showed that NaB inhibited cytokines and immunological markers including CD68, Interferon-γ and Mcp in adipose tissues in db/db mice. Moreover, NaB inhibited cytokine releasing in 3T3-L1 adipocytes treated with TNF-α. Further analysis of inflammation pathway showed that NLRP3 was activated in db/db mice, which was efficiently inhibited by NaB treatment. Our data suggest that inhibition of obesity-induced inflammation alleviates IR, and NaB might be a potential anti-inflammatory agent for obesity. PMID:26234821

  5. Chronically Elevated Levels of Short-Chain Fatty Acids Induce T Cell-Mediated Ureteritis and Hydronephrosis.

    PubMed

    Park, Jeongho; Goergen, Craig J; HogenEsch, Harm; Kim, Chang H

    2016-03-01

    Short-chain fatty acids (SCFAs) are major products of gut microbial fermentation and profoundly affect host health and disease. SCFAs generate IL-10(+) regulatory T cells, which may promote immune tolerance. However, SCFAs can also induce Th1 and Th17 cells upon immunological challenges and, therefore, also have the potential to induce inflammatory responses. Because of the seemingly paradoxical SCFA activities in regulating T cells, we investigated, in depth, the impact of elevated SCFA levels on T cells and tissue inflammation in mice. Orally administered SCFAs induced effector (Th1 and Th17) and regulatory T cells in ureter and kidney tissues, and they induced T cell-mediated ureteritis, leading to kidney hydronephrosis (hereafter called acetate-induced renal disease, or C2RD). Kidney hydronephrosis in C2RD was caused by ureteral obstruction, which was, in turn, induced by SCFA-induced inflammation in the ureteropelvic junction and proximal ureter. Oral administration of all major SCFAs, such as acetate, propionate, and butyrate, induced the disease. We found that C2RD development is dependent on mammalian target of rapamycin activation, T cell-derived inflammatory cytokines such as IFN-γ and IL-17, and gut microbiota. Young or male animals were more susceptible than old or female animals, respectively. However, SCFA receptor (GPR41 or GPR43) deficiency did not affect C2RD development. Thus, SCFAs, when systemically administered at levels higher than physiological levels, cause dysregulated T cell responses and tissue inflammation in the renal system. The results provide insights into the immunological and pathological effects of chronically elevated SCFAs. PMID:26819206

  6. Forced chromatin looping raises fetal hemoglobin in adult sickle cells to higher levels than pharmacologic inducers.

    PubMed

    Breda, Laura; Motta, Irene; Lourenco, Silvia; Gemmo, Chiara; Deng, Wulan; Rupon, Jeremy W; Abdulmalik, Osheiza Y; Manwani, Deepa; Blobel, Gerd A; Rivella, Stefano

    2016-08-25

    Overcoming the silencing of the fetal γ-globin gene has been a long-standing goal in the treatment of sickle cell disease (SCD). The major transcriptional enhancer of the β-globin locus, called the locus control region (LCR), dynamically interacts with the developmental stage-appropriate β-type globin genes via chromatin looping, a process requiring the protein Ldb1. In adult erythroid cells, the LCR can be redirected from the adult β- to the fetal γ-globin promoter by tethering Ldb1 to the human γ-globin promoter with custom-designed zinc finger (ZF) proteins (ZF-Ldb1), leading to reactivation of γ-globin gene expression. To compare this approach to pharmacologic reactivation of fetal hemoglobin (HbF), hematopoietic cells from patients with SCD were treated with a lentivirus expressing the ZF-Ldb1 or with chemical HbF inducers. The HbF increase in cells treated with ZF-Ldb1 was more than double that observed with decitabine and pomalidomide; butyrate had an intermediate effect whereas tranylcypromine and hydroxyurea showed relatively low HbF reactivation. ZF-Ldb1 showed comparatively little toxicity, and reduced sickle hemoglobin (HbS) synthesis as well as sickling of SCD erythroid cells under hypoxic conditions. The efficacy and low cytotoxicity of lentiviral-mediated ZF-Ldb1 gene transfer compared with the drug regimens support its therapeutic potential for the treatment of SCD. PMID:27405777

  7. Vancomycin treatment and butyrate supplementation modulate gut microbe composition and severity of neointimal hyperplasia after arterial injury.

    PubMed

    Ho, Karen J; Xiong, Liqun; Hubert, Nathaniel J; Nadimpalli, Anuradha; Wun, Kelly; Chang, Eugene B; Kibbe, Melina R

    2015-12-01

    Gut microbial metabolites are increasingly recognized as determinants of health and disease. However, whether host -: microbe crosstalk influences peripheral arteries is not understood. Neointimal hyperplasia, a proliferative and inflammatory response to arterial injury, frequently limits the long-term benefits of cardiovascular interventions such as angioplasty, stenting, and bypass surgery. Our goal is to assess the effect of butyrate, one of the principal short chain fatty acids produced by microbial fermentation of dietary fiber, on neointimal hyperplasia development after angioplasty. Treatment of male Lewis Inbred rats with oral vancomycin for 4 weeks changed the composition of gut microbes as assessed by 16S rRNA-based taxonomic profiling and decreased the concentration of circulating butyrate by 69%. In addition, rats treated with oral vancomycin had exacerbated neointimal hyperplasia development after carotid angioplasty. Oral supplementation of butyrate reversed these changes. Butyrate also inhibited vascular smooth muscle cell proliferation, migration, and cell cycle progression in a dose-dependent manner in vitro. Our results suggest for the first time that gut microbial composition is associated with the severity of arterial remodeling after injury, potentially through an inhibitory effect of butyrate on VSMC. PMID:26660548

  8. Improved In Vitro Antileukemic Activity of All-Trans Retinoic Acid Loaded in Cholesteryl Butyrate Solid Lipid Nanoparticles.

    PubMed

    Silva, Elton Luiz; Lima, Flávia Alves; Carneiro, Guilherme; Ramos Jonas Periera; Gomes, Dawidson Assis; de Souza-Fagundes, Elaine Maria; Ferreira, Lucas Antônio Miranda

    2016-02-01

    All-trans retinoic acid, a hydrophobic drug, has become one of the most successful examples of differentiation agents used for treatment of acute promyelocytic leukemia. On the other hand, histone deacetylase inhibitors, such as cholesteryl butyrate, present differentiating activity and.can potentiate action of drugs such as all-trans retinoic acid. Solid lipid nanoparticles represent a promising alternative for administration of hydrophobic drugs such as ATRA. This study aimed to develop, characterize, and evaluate the cytotoxicity of all-trans retinoic acid-loaded solid lipid nanoparticles for leukemia treatment. The influence of in situ formation of an ion pairing between all-trans retinoic acid and lipophilic amines on the characteristics of the particles (size, zeta potential, encapsulation efficiency) was evaluated. Cholesteryl butyrate, a butyric acid donor, was used as a component of the lipid matrix. In vitro activity on cell viability and distribution of cell cycle phases were evaluated for HL-60, Jurkat, and THP-1 cell lines. The encapsulation efficiency of all-trans retinoic acid in cholesteryl butyrate-solid lipid nanoparticles was significantly increased by the presence of the amine. Inhibition of cell viability by all-trans retinoic acid-loaded solid lipid nanoparticles was more pronounced than the free drug. Analysis of the distribution of cell cycle phases also showed increased activity for all-trans retinoic acid-loaded cholesteryl butyrate-solid lipid nanoparticles, with a clear increase in subdiploid DNA content. The ion pair formation in SLN containing cholesteryl butyrate can be explored as a simple and inexpensive strategy to improve the efficacy and bioavail-ability of ATRA in the treatment of the cancer and metabolic diseases in which this retinoid plays an important role. PMID:27433579

  9. Plasmonic-based colorimetric and spectroscopic discrimination of acetic and butyric acids produced by different types of Escherichia coli through the different assembly structures formation of gold nanoparticles.

    PubMed

    La, Ju A; Lim, Sora; Park, Hyo Jeong; Heo, Min-Ji; Sang, Byoung-In; Oh, Min-Kyu; Cho, Eun Chul

    2016-08-24

    We present a plasmonic-based strategy for the colourimetric and spectroscopic differentiation of various organic acids produced by bacteria. The strategy is based on our discovery that particular concentrations of dl-lactic, acetic, and butyric acids induce different assembly structures, colours, and optical spectra of gold nanoparticles. We selected wild-type (K-12 W3110) and genetically-engineered (JHL61) Escherichia coli (E. coli) that are known to primarily produce acetic and butyric acid, respectively. Different assembly structures and optical properties of gold nanoparticles were observed when different organic acids, obtained after the removal of acid-producing bacteria, were mixed with gold nanoparticles. Moreover, at moderate cell concentrations of K-12 W3110 E. coli, which produce sufficient amounts of acetic acid to induce the assembly of gold nanoparticles, a direct estimate of the number of bacteria was possible based on time-course colour change observations of gold nanoparticle aqueous suspensions. The plasmonic-based colourimetric and spectroscopic methods described here may enable onsite testing for the identification of organic acids produced by bacteria and the estimation of bacterial numbers, which have applications in health and environmental sciences. PMID:27497013

  10. Valeric acid induces cell cycle arrest at G1 phase in CHO cell cultures and improves recombinant antibody productivity.

    PubMed

    Park, Jin Hyoung; Noh, Soo Min; Woo, Ju Rang; Kim, Jong Won; Lee, Gyun Min

    2016-03-01

    To find a more effective chemical reagent for improved monoclonal antibody (mAb) production, eight chemical reagents (curcumin, quercein, DL-sulforaphane, thymidine, valeric acid, phenyl butyrate, valproic acid, and lithium chloride) known to induce cell cycle arrest were examined individually as chemical additives to recombinant CHO (rCHO) cell cultures producing mAb. Among these chemical additives, valeric acid showed the best production performance. Valeric acid decreased specific growth rate (μ), but increased culture longevity and specific mAb productivity (qmAb ) in a dose-dependent manner. The beneficial effect of valeric acid on culture longevity and qmAb outweighed its detrimental effect on μ, resulting in 2.9-fold increase in the maximum mAb concentration when 1.5 mM valeric acid was added to the cultures. Furthermore, valeric acid did not negatively affect the mAb quality attributes with regard to aggregation, charge variation, and galactosylation. Unexpectedly, galactosylation of the mAb increased by the 1.5 mM valeric acid addition. Taken together, the results obtained here demonstrate that valeric acid is an effective chemical reagent to increase mAb production in rCHO cells. PMID:26663903

  11. Clinical evaluation of clobetasone butyrate: a comparative study of its effects in postoperative inflammation and on intraocular pressure.

    PubMed Central

    Ramsell, T G; Bartholomew, R S; Walker, S R

    1980-01-01

    Clobetasone butyrate, a new corticosteroid with a high topical activity, has been compared with prednisolone phosphate and a placebo in the treatment of inflammation following cataract extraction. These 2 steroids were more effective in relieving postoperative inflammation than placebo (P less than 0.05), though no obvious clinical differences between the 2 compounds emerged from this investigation. However, a single-blind comparative study against betamethasone phosphate in patients suspected of having steroid-induced glaucoma showed that, while betamethasone phosphate significantly raised intraocular pressure, clobetasone butyrate had only a minimal effect, and this difference was statistically significant (P less than 0.02). PMID:6986899

  12. Effects of dietary humic and butyric acid on growth performance and response to lipopolysaccharide in young pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Humic acid (MFG) and fat protected butyric acid (BA) has been shown to modulate energy metabolism and inflammation. Therefore, the objectives of this study were to determine the effects of MFG and BA, alone and in combination, on growth performance and response to lipopolysaccharide (LPS) induced in...

  13. Histone Hyperacetylation Up-regulates Protein Kinase Cδ in Dopaminergic Neurons to Induce Cell Death

    PubMed Central

    Jin, Huajun; Kanthasamy, Arthi; Harischandra, Dilshan S.; Kondru, Naveen; Ghosh, Anamitra; Panicker, Nikhil; Anantharam, Vellareddy; Rana, Ajay; Kanthasamy, Anumantha G.

    2014-01-01

    The oxidative stress-sensitive protein kinase Cδ (PKCδ) has been implicated in dopaminergic neuronal cell death. However, little is known about the epigenetic mechanisms regulating PKCδ expression in neurons. Here, we report a novel mechanism by which the PKCδ gene can be regulated by histone acetylation. Treatment with histone deacetylase (HDAC) inhibitor sodium butyrate (NaBu) induced PKCδ expression in cultured neurons, brain slices, and animal models. Several other HDAC inhibitors also mimicked NaBu. The chromatin immunoprecipitation analysis revealed that hyperacetylation of histone H4 by NaBu is associated with the PKCδ promoter. Deletion analysis of the PKCδ promoter mapped the NaBu-responsive element to an 81-bp minimal promoter region. Detailed mutagenesis studies within this region revealed that four GC boxes conferred hyperacetylation-induced PKCδ promoter activation. Cotransfection experiments and Sp inhibitor studies demonstrated that Sp1, Sp3, and Sp4 regulated NaBu-induced PKCδ up-regulation. However, NaBu did not alter the DNA binding activities of Sp proteins or their expression. Interestingly, a one-hybrid analysis revealed that NaBu enhanced transcriptional activity of Sp1/Sp3. Overexpression of the p300/cAMP-response element-binding protein-binding protein (CBP) potentiated the NaBu-mediated transactivation potential of Sp1/Sp3, but expressing several HDACs attenuated this effect, suggesting that p300/CBP and HDACs act as coactivators or corepressors in histone acetylation-induced PKCδ up-regulation. Finally, using genetic and pharmacological approaches, we showed that NaBu up-regulation of PKCδ sensitizes neurons to cell death in a human dopaminergic cell model and brain slice cultures. Together, these results indicate that histone acetylation regulates PKCδ expression to augment nigrostriatal dopaminergic cell death, which could contribute to the progressive neuropathogenesis of Parkinson disease. PMID:25342743

  14. HIV transcription is induced with cell killing

    SciTech Connect

    Woloschak, G.E.; Schreck, S.; Chang-Liu, Chin-Mei; Panozzo, J.; Libertin, C.R.

    1993-11-01

    In this report, we demonstrate that this induction of HIV-LTR transcription occurs when stably transfected HeLa cells are exposed to agents which mediate cell killing, such as UV radiation, electroporation of sucrose buffer, prolonged heating, and low and high pH. Cells cultured following UV exposure demonstrated a peak in CAT expression that is evident in viable (but not necessarily cell division-competent) cells 24 h after exposure; this inductive response continued until at least 72 h after exposure. HIV-LTR induction was dose-dependent, and the amount of CAT transcription induced was correlated with the amount of cell killing that occurred in the culture.

  15. HIV transcription is induced in dying cells

    SciTech Connect

    Woloschak, G.E.; Chang-Liu, Chin-Mei; Schreck, S. |

    1995-06-01

    Using HeLa cells stably transfected with an HIV-LTR-CAT construct, we demonstrated a peak in CAT induction that occurs in viable (but not necessarily cell-division-competent) cells 24 h following exposure to some cell-killing agents. {gamma} rays were the only cell-killing agent which did not induce HIV transcription; this can be attributed to the fact that {gamma}-ray-induced apoptotic death requires functional p53, which is not present in HeLa cells. For all other agents, HIV-LTR induction was dose-dependent and correlated with the amount of cell killing that occurred in the culture. 14 refs., 4 figs., 1 tab.

  16. Impact of butyric acid on butanol formation by Clostridium pasteurianum.

    PubMed

    Regestein, Lars; Doerr, Eric Will; Staaden, Antje; Rehmann, Lars

    2015-11-01

    The butanol yield of the classic fermentative acetone-butanol-ethanol (ABE) process has been enhanced in the past decades through the development of better strains and advanced process design. Nevertheless, by-product formation and the incomplete conversion of intermediates still decrease the butanol yield. This study demonstrates the potential of increasing the butanol yield from glycerol though the addition of small amounts of butyric acid. The impact of butyric acid was investigated in a 7L stirred tank reactor. The results of this study show the positive impact of butyric acid on butanol yield under pH controlled conditions and the metabolic stages were monitored via online measurement of carbon dioxide formation, pH value and redox potential. Butyric acid could significantly increase the butanol yield at low pH values if sufficient quantities of primary carbon source (glycerol) were present. PMID:26233327

  17. Clinical evaluation of clobetasone butyrate eye drops in episcleritis.

    PubMed Central

    Lloyd-Jones, D; Tokarewicz, A; Watson, P G

    1981-01-01

    Thirty-nine patients took part in a double-blind, between-patient clinical trial to compare clobetasone butyrate, betamethasone phosphate, and placebo eye drops in the treatment of episcleritis. Although from the symptom scores the patients given placebo appeared to do as well as the other patients in the first week of treatment, they did significantly less well after this time. Clobetasone butyrate and betamethasone phosphate eye drops seemed to be equally effective in the treatment of this disease. PMID:7028088

  18. Comparison of desoximetasone and hydrocortisone butyrate in psoriasis.

    PubMed

    Zachariae, H

    1976-01-01

    Thirty psoriatics were treated for 2 weeks on a double-blind controlled basis with desoximetasone (0.25%) and with hydrocortisone butyrate (0.1%). It was a randomised left-right comparative trial. Thirteen out of 27 patients preferred desoximetasone, 3 patients preferred hydrocortisone butyrate. There was also a significantly better effect of desoximetasone as judged by the observer after the second week of treatment. PMID:60029

  19. Fuel cells: Hydrogen induced insulation

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Shao, Zongping

    2016-06-01

    Coupling high ionic and low electronic conductivity in the electrolyte of low-temperature solid-oxide fuel cells remains a challenge. Now, the electronic conductivity of a perovskite electrolyte, which has high proton conductivity, is shown to be heavily suppressed when exposed to hydrogen, leading to high fuel cell performance.

  20. Induced pluripotency of human prostatic epithelial cells.

    PubMed

    Zhao, Hongjuan; Sun, Ning; Young, Sarah R; Nolley, Rosalie; Santos, Jennifer; Wu, Joseph C; Peehl, Donna M

    2013-01-01

    Induced pluripotent stem (iPS) cells are a valuable resource for discovery of epigenetic changes critical to cell type-specific differentiation. Although iPS cells have been generated from other terminally differentiated cells, the reprogramming of normal adult human basal prostatic epithelial (E-PZ) cells to a pluripotent state has not been reported. Here, we attempted to reprogram E-PZ cells by forced expression of Oct4, Sox2, c-Myc, and Klf4 using lentiviral vectors and obtained embryonic stem cell (ESC)-like colonies at a frequency of 0.01%. These E-PZ-iPS-like cells with normal karyotype gained expression of pluripotent genes typical of iPS cells (Tra-1-81, SSEA-3, Nanog, Sox2, and Oct4) and lost gene expression characteristic of basal prostatic epithelial cells (CK5, CK14, and p63). E-PZ-iPS-like cells demonstrated pluripotency by differentiating into ectodermal, mesodermal, and endodermal cells in vitro, although lack of teratoma formation in vivo and incomplete demethylation of pluripotency genes suggested only partial reprogramming. Importantly, E-PZ-iPS-like cells re-expressed basal epithelial cell markers (CD44, p63, MAO-A) in response to prostate-specific medium in spheroid culture. Androgen induced expression of androgen receptor (AR), and co-culture with rat urogenital sinus further induced expression of prostate-specific antigen (PSA), a hallmark of secretory cells, suggesting that E-PZ-iPS-like cells have the capacity to differentiate into prostatic basal and secretory epithelial cells. Finally, when injected into mice, E-PZ-iPS-like cells expressed basal epithelial cell markers including CD44 and p63. When co-injected with rat urogenital mesenchyme, E-PZ-iPS-like cells expressed AR and expression of p63 and CD44 was repressed. DNA methylation profiling identified epigenetic changes in key pathways and genes involved in prostatic differentiation as E-PZ-iPS-like cells converted to differentiated AR- and PSA-expressing cells. Our results suggest that

  1. Colonic mucin synthesis is increased by sodium butyrate.

    PubMed

    Finnie, I A; Dwarakanath, A D; Taylor, B A; Rhodes, J M

    1995-01-01

    The effects of sodium butyrate and sodium bromo-octanoate (an inhibitor of beta oxidation) on colonic mucus glycoprotein (mucin) synthesis have been assessed using tissue from colonic resection samples. Epithelial biopsy specimens were incubated for 16 hours in RPMI 1640 with glutamine, supplemented with 10% fetal calf serum and N-acetyl-[3H]-glucosamine ([3H]-Glc NAc), and differing concentrations of sodium butyrate. Incorporation of [3H] Glc NAc into mucin by normal epithelium at least 10 cm distant from colonic cancer was increased in the presence of sodium butyrate in a dose dependent manner, with maximum effect (476%) at a concentration of 0.1 mM (number of specimens = 24 from six patients, p < 0.001). The increase in response to butyrate was not seen when specimens were incubated in the presence of the beta oxidation inhibitor sodium bromo-octanoate 0.05 M. The striking increase in mucin synthesis that results when butyrate is added to standard nutrient medium suggests that this may be an important mechanism affecting the rate of mucin synthesis in vivo and may also explain the therapeutic effect of butyrate in colitis. PMID:7890244

  2. Select forms of tumor cell apoptosis induce dendritic cell maturation.

    PubMed

    Demaria, Sandra; Santori, Fabio R; Ng, Bruce; Liebes, Leonard; Formenti, Silvia C; Vukmanovic, Stanislav

    2005-03-01

    Dendritic cells (DC) play a crucial role in initiating immune responses to tumors. DC can efficiently present antigens from apoptotic tumor cells, but apoptotic cells are thought to lack the inflammatory signals required to induce DC maturation. Here, we show that apoptosis of 67NR mouse carcinoma cells via the Fas (CD95) pathway or induced by the anticancer drug bortezomib (PS-341) but not by ultraviolet irradiation is associated with the production of maturation signals for DC. These data have important implications for the effects of chemotherapy on antitumor immunity in solid and hematologic malignancies. PMID:15569694

  3. Sodium butyrate protects the intestinal barrier function in peritonitic mice

    PubMed Central

    Han, Xiaofeng; Song, Huimin; Wang, Yunlei; Sheng, Yingmo; Chen, Jie

    2015-01-01

    Objective: Peritonitis is a commonly seen disease with high morbidity and mortality. It is prevalently considered that the impaired intestinal barrier during peritonitis is the access point of gut microbes into the blood system, and acts as the engine of the following systemic infection. In our previous study, we found that Sodium Butyrate (NaB) was protective on intestinal barrier function. In this study, we aim to evaluate the effects of NaB on overwhelming infection animal models of peritonitis. Methods: Mouse cecal ligation and puncture (CLP) model was used to study the effects of NaB on the intestinal barrier. Experimental animals were fed of NaB by gavage. Post-CLP mortality, gut permeability and intestinal histological alterations were studied. Results: Gastrointestinal NaB pharmacodynamics profiles after medication were studied. Measurements of NaB concentration in chyme showed significantly higher intestinal concentration of NaB in the NaB treated group than that of the control group. CLP-induced mortality was significantly decreased by oral NaB treatments. Gut permeability was largely increased after CLP, which was partially prevented by NaB feeding. Histological study showed that intestinal, especially ileal injury following peritonitis was substantially alleviated by NaB treatments. Moreover, tissue regeneration was also prompted by NaB. Conclusion: NaB has a potential protective effect on intestinal barrier function in peritonitis. PMID:26064302

  4. Histone deacetylase inhibitors and transforming growth factor-beta induce 15-hydroxyprostaglandin dehydrogenase expression in human lung adenocarcinoma cells.

    PubMed

    Tong, Min; Ding, Yunfei; Tai, Hsin-Hsiung

    2006-09-14

    Histone deacetylase (HDAC) inhibitors have been actively exploited as potential anticancer agents. To identify gene targets of HDAC inhibitors, we found that HDAC inhibitors such as sodium butyrate, scriptaid, apicidin and oxamflatin induced the expression of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a potential cyclooxygenase-2 (COX-2) antagonist and tumor suppressor, in a time and concentration dependent manner in A549 and H1435 lung adenocarcinoma cells. Detailed analyses indicated that HDAC inhibitors activated the 15-PGDH promoter-luciferase reporter construct in transfected A549 cells. A representative HDAC inhibitor, scriptaid, and its negative structural analog control, nullscript, were further evaluated at the chromatin level. Scriptaid but not nullscript induced a significant accumulation of acetylated histones H3 and H4 which were associated with the 15-PGDH promoter as determined by chromatin immunoprecipitation assay. Transforming growth factor-beta1 (TGF-beta1) also induced the expression of 15-PGDH in a time and concentration dependent manner in A549 and H1435 cells. Induction of 15-PGDH expression by TGF-beta1 was synergistically stimulated by the addition of Wnt3A which was inactive by itself. However, combination of TGF-beta and an HDAC inhibitor, scriptaid, only resulted in an additive effect. Together, our results indicate that 15-PGDH is one of the target genes that HDAC inhibitors and TGF-beta may induce to exhibit tumor suppressive effects. PMID:16844092

  5. Nonviral Methods for Inducing Pluripotency to Cells

    PubMed Central

    O'Doherty, Ryan; Wang, Wenxin

    2013-01-01

    The concept of inducing pluripotency to adult somatic cells by introducing reprogramming factors to them is one that has recently emerged, gained widespread acclaim and garnered much attention among the scientific community. The idea that cells can be reprogrammed, and are not unidirectionally defined opens many avenues for study. With their clear potential for use in the clinic, these reprogrammed cells stand to have a huge impact in regenerative medicine. This realization did not occur overnight but is, however, the product of many decades worth of advancements in researching this area. It was a combination of such research that led to the development of induced pluripotent stem cells as we know it today. This review delivers a brief insight in to the roots of iPS research and focuses on succinctly describing current nonviral methods of inducing pluripotency using plasmid vectors, small molecules and chemicals, and RNAs. PMID:23841088

  6. Nonviral methods for inducing pluripotency to cells.

    PubMed

    O'Doherty, Ryan; Greiser, Udo; Wang, Wenxin

    2013-01-01

    The concept of inducing pluripotency to adult somatic cells by introducing reprogramming factors to them is one that has recently emerged, gained widespread acclaim and garnered much attention among the scientific community. The idea that cells can be reprogrammed, and are not unidirectionally defined opens many avenues for study. With their clear potential for use in the clinic, these reprogrammed cells stand to have a huge impact in regenerative medicine. This realization did not occur overnight but is, however, the product of many decades worth of advancements in researching this area. It was a combination of such research that led to the development of induced pluripotent stem cells as we know it today. This review delivers a brief insight in to the roots of iPS research and focuses on succinctly describing current nonviral methods of inducing pluripotency using plasmid vectors, small molecules and chemicals, and RNAs. PMID:23841088

  7. Enhancing Butanol Production under the Stress Environments of Co-Culturing Clostridium acetobutylicum/Saccharomyces cerevisiae Integrated with Exogenous Butyrate Addition

    PubMed Central

    Luo, Hongzhen; Ge, Laibing; Zhang, Jingshu; Zhao, Yanli; Ding, Jian; Li, Zhigang; He, Zhenni; Chen, Rui; Shi, Zhongping

    2015-01-01

    In this study, an efficient acetone-butanol-ethanol (ABE) fermentation strategy integrating Clostridium acetobutylicum/Saccharomyces cerevisiae co-culturing system with exogenous butyrate addition, was proposed and experimentally conducted. In solventogenic phase, by adding 0.2 g-DCW/L-broth viable S. cerevisiae cells and 4.0 g/L-broth concentrated butyrate solution into C. acetobutylicum culture broth, final butanol concentration and butanol/acetone ratio in a 7 L anaerobic fermentor reached the highest levels of 15.74 g/L and 2.83 respectively, with the increments of 35% and 43% as compared with those of control. Theoretical and experimental analysis revealed that, the proposed strategy could, 1) extensively induce secretion of amino acids particularly lysine, which are favorable for both C. acetobutylicum survival and butanol synthesis under high butanol concentration environment; 2) enhance the utilization ability of C. acetobutylicum on glucose and over-produce intracellular NADH for butanol synthesis in C. acetobutylicum metabolism simultaneously; 3) direct most of extra consumed glucose into butanol synthesis route. The synergetic actions of effective amino acids assimilation, high rates of substrate consumption and NADH regeneration yielded highest butanol concentration and butanol ratio in C. acetobutylicum under this stress environment. The proposed method supplies an alternative way to improve ABE fermentation performance by traditional fermentation technology. PMID:26489085

  8. Cell Chirality Induces Collective Cell Migration in Epithelial Sheets

    NASA Astrophysics Data System (ADS)

    Sato, Katsuhiko; Hiraiwa, Tetsuya; Shibata, Tatsuo

    2015-10-01

    During early development, epithelial cells form a monolayer sheet and migrate in a uniform direction. Here, we address how this collective migration can occur without breaking the cell-to-cell attachments. Repeated contraction and expansion of the cell-to-cell interfaces enables the cells to rearrange their positions autonomously within the sheet. We show that when the interface tension is strengthened in a direction that is tilted from the body axis, cell rearrangements occur in such a way that unidirectional movement is induced. We use a vertex model to demonstrate that such anisotropic tension can generate the unidirectional motion of cell sheets. Our results suggest that cell chirality facilitates collective cell migration during tissue morphogenesis.

  9. Effects of Sodium Butyrate on Methamphetamine-Sensitized Locomotor Activity

    PubMed Central

    Harkness, John H.; Hitzemann, Robert J.; Edmunds, Stephanie; Phillips, Tamara J.

    2012-01-01

    Neuroadaptations associated with behavioral sensitization induced by repeated exposure to methamphetamine (MA) appear to be involved in compulsive drug pursuit and use. Increased histone acetylation, an epigenetic effect resulting in altered gene expression, may promote sensitized responses to psychostimulants. The role of histone acetylation in the expression and acquisition of MA-induced locomotor sensitization was examined by measuring the effect of histone deacetylase inhibition by sodium butyrate (NaB). For the effect on expression, vehicle or NaB (630 mg/kg, intraperitoneally) was administered 30 min prior to MA challenge in mice treated repeatedly with MA (10 days of 2 mg/kg MA) or saline (10 days), and then locomotor response to MA challenge was measured. NaB treatment increased the locomotor response to MA in both acutely MA treated and sensitized animals. For acquisition, NaB was administered 30 min prior to each MA exposure (10 days of 1 or 2 mg/kg), but not prior to the MA challenge test. Treatment with NaB during the sensitization acquisition period significantly increased locomotor activation by MA in sensitized mice only. NaB alone did not significantly alter locomotor activity. Acute NaB or MA, but not the combination, appeared to increase striatal acetylation at histone H4. Repeated treatment with MA, but not NaB or MA plus NaB, increased striatal acetylation at histone H3. Although increased histone acetylation may alter the expression of genes involved in acute locomotor response to MA and in the acquisition of MA-induced sensitization, results for acetylation at H3 and H4 showed little correspondence with behavior. PMID:23137698

  10. Gemcitabine induces cell senescence in human pancreatic cancer cell lines.

    PubMed

    Song, Yao; Baba, Tomohisa; Mukaida, Naofumi

    2016-08-26

    Patients with pancreatic ductal adenocarcinoma (PDAC) commonly require chemotherapy because they frequently develop metastatic disease or locally advanced tumors. Gemcitabine, an analogue of cytosine arabinoside, is commonly used for PDAC treatment. We observed that gemcitabine induced senescence phenotypes characterized by enhanced senescence-associated β-galactosidase (SA β-Gal) staining and increased expression of senescence-associated molecules in two human pancreatic cancer cell lines, Miapaca-2 and Panc-1, which exhibit resistance to gemcitabine but not L3.pl cells with a high sensitivity to gemcitabine. Gemcitabine-induced cell senescence can be inhibited by reactive oxygen species inhibitor, N-acetyl cysteine. Although gemcitabine also enhanced CXCL8 expression, anti-CXCL8 antibody failed to reduce gemcitabine-induced increases in SA β-Gal-positive cell numbers. These observations would indicate that cell senescence can proceed independently of CXCL8 expression, a characteristic feature of senescence-associated secretion phenotype. PMID:27311854

  11. A comparison of three pH control methods for revealing effects of undissociated butyric acid on specific butanol production rate in batch fermentation of Clostridium acetobutylicum

    PubMed Central

    2013-01-01

    pH control has been essential for butanol production with Clostridium acetobutylicum. However, it is not very clear at what pH level the acid crash will occur, at what pH level butanol production will be dominant, and at what pH level butyric acid production will be prevailing. Furthermore, contradictory results have been reported about required acidic conditions for initiation of solventogenesis. In this study, with the aim of further understanding the role of undissociated butyric acid in butanol production, we investigated the correlation between undissociated butyric acid concentration and specific butanol production rate in batch fermentation of Clostridium acetobutylicum by comparing three pH control approaches: NaOH neutralization (at 12, 24 or 36 h), CaCO3 supplementation (2, 5, or 8 g/l) and NaOAc buffering (pH 4.6, 5.0 or 5.6). By neutralizing the fermentation pH to ~5.0 at different time, we observed that neutralization should take place at the beginning of exponential phase (12 h), and otherwise resulting in lower concentrations of undissociated butyric acid, cell biomass and final butanol. CaCO3 supplementation extended cell growth to 36 h and resulted in higher butyrate yield under 8 g/L of CaCO3. In the NaOAc buffering, the highest specific butanol rate (0.58 h−1) was associated with the highest undissociated butyric acid (1.92 g/L). The linear correlation of the undissociated butyric acid with the specific butanol production rates suggested the undissociated butyric acid could be the major driving force for butanol production. PMID:23294525

  12. HIV transcription is induced with cell killing

    SciTech Connect

    Woloschak, G.E.; Schreck, S.; Chang-Liu, Chin Mei; Panozzo, J.; Libertin, C.R.

    1994-01-01

    Previous work has shown that HeLa cells stably transfected with an HIV-LTR-CAT construct are induced to express chloramphenicol acetyl transferase (CAT) following exposure to DNA-damaging agents such as ultraviolet radiation, {gamma} rays, neutrons, and others. In this report, the authors demonstrate that this induction of HIV-LTR transcription occurs when stably transfected HeLa cells are exposed to agents which mediate cell killing, such as UV radiation, electroporation of sucrose buffer, prolonged heating, and low and high pH. Cells cultured following UV exposure demonstrated a peak in CAT expression that is evidence in viable (but not necessarily cell division-competent) cells 24 h after exposure; this inductive response continued until at least 72 h after exposure. HIV-LTR induction was dose-dependent, and the amount of CAT transcription induced was correlated with the amount of cell killing that occurred in the culture. Other agents which caused no cell killing (such as heat-shock for up to 2 h, treatment with metronidazole, exposure to sunlight, vitamin C treatment, and others) had no effect on HIV-LTR induction. These results suggest that HIV transcription is induced as a consequence of the turn on of a cellular death or apoptotic pathway.

  13. Relationship of Enhanced Butyrate Production by Colonic Butyrate-Producing Bacteria to Immunomodulatory Effects in Normal Mice Fed an Insoluble Fraction of Brassica rapa L.

    PubMed

    Tanaka, Sachi; Yamamoto, Kana; Yamada, Kazuki; Furuya, Kanon; Uyeno, Yutaka

    2016-05-01

    This study was performed to determine the effects of feeding a fiber-rich fraction of Brassica vegetables on the immune response through changes in enteric bacteria and short-chain fatty acid (SCFA) production in normal mice. The boiled-water-insoluble fraction of Brassica rapa L. (nozawana), which consists mainly of dietary fiber, was chosen as a test material. A total of 31 male C57BL/6J mice were divided into two groups and housed in a specific-pathogen-free facility. The animals were fed either a control diet or the control diet plus the insoluble B. rapa L. fraction for 2 weeks and sacrificed to determine microbiological and SCFA profiles in lower-gut samples and immunological molecules. rRNA-based quantification indicated that the relative population of Bacteroidetes was markedly lower in the colon samples of the insoluble B. rapa L. fraction-fed group than that in the controls. Populations of the Eubacterium rectale group and Faecalibacterium prausnitzii, both of which are representative butyrate-producing bacteria, doubled after 2 weeks of fraction intake, accompanying a marginal increase in the proportion of colonic butyrate. In addition, feeding with the fraction significantly increased levels of the anti-inflammatory cytokine interleukin-10 (IL-10) and tended to increase splenic regulatory T cell numbers but significantly reduced the population of cells expressing activation markers. We demonstrated that inclusion of the boiled-water-insoluble fraction of B. rapa L. can alter the composition of the gut microbiota to decrease the numbers of Bacteroidetes and to increase the numbers of butyrate-producing bacteria, either of which may be involved in the observed shift in the production of splenic IL-10. PMID:26921420

  14. Umbelliprenin Induces Apoptosis in CLL Cell Lines

    PubMed Central

    Ziai, Seyed Ali; Gholami, Omid; Iranshahi, Mehrdad; Zamani, Amir Hassan; Jeddi-Tehrani, Mahmood

    2012-01-01

    Chronic lymphocytic leukemia (CLL) remains an incurable disease that requires innovative new approaches to improve therapeutic outcome. Many Ferula species, including F. asa-foetida, synthesize terpenyloxy coumarins. One of these coumarins is umbelliprenin, which has been implicated with induction of apoptosis in some cancer cell lines. In this study induction of apoptosis by umbelliprenin on Jurkat T-CLL and Raji B-CLL cell lines was studied. In this regard, cells were incubated with various concentrations of umbelliprenin in-vitro for different times and assayed for apoptosis with annexin V–FITC/PI double staining flowcytometry method. Results showed that umbelliprenin induced apoptosis in leukemic cells in a dose- and time-dependent manner and that CLL cells were more susceptible to umbelliprenin induced cell death than normal peripheral blood mononuclear cell (PBMCs). Moreover, we study the induction of apoptosis in Jurkat cells by umbelliprenin in the presence of interleukin 4 (IL-4) as an agent that causes resistance to apoptosis in CLL cells, was also student. We showed that IL-4 can not reduce apoptotic effect of umbelliprenin. The preferential toxicity of umbelliprenin for CLL cells, supports the hypothesis that oral administration of umbelliprenin in the form of foods or folk medicines containing this coumarin, might enhance protection against the development of CLL in man with little side effects. In conclusion, umbelliprenin may be an effective therapeutic agent in the treatment of CLL, and thus clinical studies with umbelliprenin may be appropriate. PMID:24250490

  15. TWEAK induces liver progenitor cell proliferation.

    PubMed

    Jakubowski, Aniela; Ambrose, Christine; Parr, Michael; Lincecum, John M; Wang, Monica Z; Zheng, Timothy S; Browning, Beth; Michaelson, Jennifer S; Baetscher, Manfred; Baestcher, Manfred; Wang, Bruce; Bissell, D Montgomery; Burkly, Linda C

    2005-09-01

    Progenitor ("oval") cell expansion accompanies many forms of liver injury, including alcohol toxicity and submassive parenchymal necrosis as well as experimental injury models featuring blocked hepatocyte replication. Oval cells can potentially become either hepatocytes or biliary epithelial cells and may be critical to liver regeneration, particularly when hepatocyte replication is impaired. The regulation of oval cell proliferation is incompletely understood. Herein we present evidence that a TNF family member called TWEAK (TNF-like weak inducer of apoptosis) stimulates oval cell proliferation in mouse liver through its receptor Fn14. TWEAK has no effect on mature hepatocytes and thus appears to be selective for oval cells. Transgenic mice overexpressing TWEAK in hepatocytes exhibit periportal oval cell hyperplasia. A similar phenotype was obtained in adult wild-type mice, but not Fn14-null mice, by administering TWEAK-expressing adenovirus. Oval cell expansion induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) was significantly reduced in Fn14-null mice as well as in adult wild-type mice with a blocking anti-TWEAK mAb. Importantly, TWEAK stimulated the proliferation of an oval cell culture model. Finally, we show increased Fn14 expression in chronic hepatitis C and other human liver diseases relative to its expression in normal liver, which suggests a role for the TWEAK/Fn14 pathway in human liver injury. We conclude that TWEAK has a selective mitogenic effect for liver oval cells that distinguishes it from other previously described growth factors. PMID:16110324

  16. Schwann cells induce cancer cell dispersion and invasion

    PubMed Central

    Deborde, Sylvie; Lyubchik, Anna; Zhou, Yi; He, Shizhi; McNamara, William F.; Chernichenko, Natalya; Lee, Sei-Young; Barajas, Fernando; Chen, Chun-Hao; Bakst, Richard L.; Vakiani, Efsevia; He, Shuangba; Hall, Alan; Wong, Richard J.

    2016-01-01

    Nerves enable cancer progression, as cancers have been shown to extend along nerves through the process of perineural invasion, which carries a poor prognosis. Furthermore, the innervation of some cancers promotes growth and metastases. It remains unclear, however, how nerves mechanistically contribute to cancer progression. Here, we demonstrated that Schwann cells promote cancer invasion through direct cancer cell contact. Histological evaluation of murine and human cancer specimens with perineural invasion uncovered a subpopulation of Schwann cells that associates with cancer cells. Coculture of cancer cells with dorsal root ganglion extracts revealed that Schwann cells direct cancer cells to migrate toward nerves and promote invasion in a contact-dependent manner. Upon contact, Schwann cells induced the formation of cancer cell protrusions in their direction and intercalated between the cancer cells, leading to cancer cell dispersion. The formation of these processes was dependent on Schwann cell expression of neural cell adhesion molecule 1 (NCAM1) and ultimately promoted perineural invasion. Moreover, NCAM1-deficient mice showed decreased neural invasion and less paralysis. Such Schwann cell behavior reflects normal Schwann cell programs that are typically activated in nerve repair but are instead exploited by cancer cells to promote perineural invasion and cancer progression. PMID:26999607

  17. Analysis of the key enzymes of butyric and acetic acid fermentation in biogas reactors

    PubMed Central

    Gabris, Christina; Bengelsdorf, Frank R; Dürre, Peter

    2015-01-01

    This study aimed at the investigation of the mechanisms of acidogenesis, which is a key process during anaerobic digestion. To expose possible bottlenecks, specific activities of the key enzymes of acidification, such as acetate kinase (Ack, 0.23–0.99 U mg−1 protein), butyrate kinase (Buk, < 0.03 U mg−1 protein) and butyryl-CoA:acetate-CoA transferase (But, 3.24–7.64 U mg−1 protein), were determined in cell free extracts of biogas reactor content from three different biogas reactors. Furthermore, the detection of Ack was successful via Western blot analysis. Quantification of corresponding functional genes encoding Buk (buk) and But (but) was not feasible, although an amplification was possible. Thus, phylogenetic trees were constructed based on respective gene fragments. Four new clades of possible butyrate-producing bacteria were postulated, as well as bacteria of the genera Roseburia or Clostridium identified. The low Buk activity was in contrast to the high specific But activity in the analysed samples. Butyrate formation via Buk activity does barely occur in the investigated biogas reactor. Specific enzyme activities (Ack, Buk and But) in samples drawn from three different biogas reactors correlated with ammonia and ammonium concentrations (NH3 and NH4+-N), and a negative dependency can be postulated. Thus, high concentrations of NH3 and NH4+-N may lead to a bottleneck in acidogenesis due to decreased specific acidogenic enzyme activities. PMID:26086956

  18. Analysis of the key enzymes of butyric and acetic acid fermentation in biogas reactors.

    PubMed

    Gabris, Christina; Bengelsdorf, Frank R; Dürre, Peter

    2015-09-01

    This study aimed at the investigation of the mechanisms of acidogenesis, which is a key process during anaerobic digestion. To expose possible bottlenecks, specific activities of the key enzymes of acidification, such as acetate kinase (Ack, 0.23-0.99 U mg(-1) protein), butyrate kinase (Buk, < 0.03 U mg(-1) protein) and butyryl-CoA:acetate-CoA transferase (But, 3.24-7.64 U mg(-1) protein), were determined in cell free extracts of biogas reactor content from three different biogas reactors. Furthermore, the detection of Ack was successful via Western blot analysis. Quantification of corresponding functional genes encoding Buk (buk) and But (but) was not feasible, although an amplification was possible. Thus, phylogenetic trees were constructed based on respective gene fragments. Four new clades of possible butyrate-producing bacteria were postulated, as well as bacteria of the genera Roseburia or Clostridium identified. The low Buk activity was in contrast to the high specific But activity in the analysed samples. Butyrate formation via Buk activity does barely occur in the investigated biogas reactor. Specific enzyme activities (Ack, Buk and But) in samples drawn from three different biogas reactors correlated with ammonia and ammonium concentrations (NH₃ and NH₄(+)-N), and a negative dependency can be postulated. Thus, high concentrations of NH₃ and NH₄(+)-N may lead to a bottleneck in acidogenesis due to decreased specific acidogenic enzyme activities. PMID:26086956

  19. Optically-Induced Cell Fusion on Cell Pairing Microstructures.

    PubMed

    Yang, Po-Fu; Wang, Chih-Hung; Lee, Gwo-Bin

    2016-01-01

    Cell fusion is a critical operation for numerous biomedical applications including cell reprogramming, hybridoma formation, cancer immunotherapy, and tissue regeneration. However, unstable cell contact and random cell pairings have limited efficiency and yields when utilizing traditional methods. Furthermore, it is challenging to selectively perform cell fusion within a group of cells. This study reports a new approach called optically-induced cell fusion (OICF), which integrates cell-pairing microstructures with an optically-induced, localized electrical field. By projecting light patterns onto a photoconductive film (hydrogen-rich, amorphous silicon) coated on an indium-tin-oxide (ITO) glass while an alternating current electrical field was applied between two such ITO glass slides, "virtual" electrodes could be generated that could selectively fuse pairing cells. At 10 kHz, a 57% cell paring rate and an 87% fusion efficiency were successfully achieved at a driving voltage of 20  V(pp), suggesting that this new technology could be promising for selective cell fusion within a group of cells. PMID:26912054

  20. Optically-Induced Cell Fusion on Cell Pairing Microstructures

    PubMed Central

    Yang, Po-Fu; Wang, Chih-Hung; Lee, Gwo-Bin

    2016-01-01

    Cell fusion is a critical operation for numerous biomedical applications including cell reprogramming, hybridoma formation, cancer immunotherapy, and tissue regeneration. However, unstable cell contact and random cell pairings have limited efficiency and yields when utilizing traditional methods. Furthermore, it is challenging to selectively perform cell fusion within a group of cells. This study reports a new approach called optically-induced cell fusion (OICF), which integrates cell-pairing microstructures with an optically-induced, localized electrical field. By projecting light patterns onto a photoconductive film (hydrogen-rich, amorphous silicon) coated on an indium-tin-oxide (ITO) glass while an alternating current electrical field was applied between two such ITO glass slides, “virtual” electrodes could be generated that could selectively fuse pairing cells. At 10 kHz, a 57% cell paring rate and an 87% fusion efficiency were successfully achieved at a driving voltage of 20  Vpp, suggesting that this new technology could be promising for selective cell fusion within a group of cells. PMID:26912054

  1. Optically-Induced Cell Fusion on Cell Pairing Microstructures

    NASA Astrophysics Data System (ADS)

    Yang, Po-Fu; Wang, Chih-Hung; Lee, Gwo-Bin

    2016-02-01

    Cell fusion is a critical operation for numerous biomedical applications including cell reprogramming, hybridoma formation, cancer immunotherapy, and tissue regeneration. However, unstable cell contact and random cell pairings have limited efficiency and yields when utilizing traditional methods. Furthermore, it is challenging to selectively perform cell fusion within a group of cells. This study reports a new approach called optically-induced cell fusion (OICF), which integrates cell-pairing microstructures with an optically-induced, localized electrical field. By projecting light patterns onto a photoconductive film (hydrogen-rich, amorphous silicon) coated on an indium-tin-oxide (ITO) glass while an alternating current electrical field was applied between two such ITO glass slides, “virtual” electrodes could be generated that could selectively fuse pairing cells. At 10 kHz, a 57% cell paring rate and an 87% fusion efficiency were successfully achieved at a driving voltage of 20  Vpp, suggesting that this new technology could be promising for selective cell fusion within a group of cells.

  2. OSKM Induce Extraembryonic Endoderm Stem Cells in Parallel to Induced Pluripotent Stem Cells

    PubMed Central

    Parenti, Anthony; Halbisen, Michael A.; Wang, Kai; Latham, Keith; Ralston, Amy

    2016-01-01

    Summary The reprogramming factors OCT4, SOX2, KLF4, and MYC (OSKM) can reactivate the pluripotency network in terminally differentiated cells, but also regulate expression of non-pluripotency genes in other contexts, such as the mouse primitive endoderm. The primitive endoderm is an extraembryonic lineage established in parallel to the pluripotent epiblast in the blastocyst, and is the progenitor pool for extraembryonic endoderm stem (XEN) cells. We show that OSKM induce expression of endodermal genes, leading to formation of induced XEN (iXEN) cells, which possess key properties of blastocyst-derived XEN cells, including morphology, transcription profile, self-renewal, and multipotency. Our data show that iXEN cells arise in parallel to induced pluripotent stem cells, indicating that OSKM drive cells to two distinct cell fates during reprogramming. PMID:26947975

  3. MicroRNA (miRNA) expression is regulated by butyrate-induced epigenetic modulation of gene expression in bovine cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNAs (miRNAs) are a class of highly conserved, small non-coding RNAs (~22 nucleotides) that regulate gene expression post-transcriptionally. MicroRNAs are encoded by specific genes in the genome, which are transcribed as primary transcripts called primary miRNA. MicroRNAs (miRNAs) bind to compl...

  4. Induced DNA repair pathway in mammalian cells

    SciTech Connect

    Overberg, R.

    1985-01-01

    The survival of cultured rat kangaroo cells (PtK-2) and human xeroderma pigmentosum cells incubated with 5 ..mu..M cycloheximide subsequent to ultraviolet irradiation is lower than that of cells incubated without cycloheximide. The drop in survival is considerably larger than that produced by incubation of unirradiated cells with cycloheximide. The phenomenon was also observed when PtK-2 cells were incubated with emetine, another protein synthesis inhibitor, or with 5,6-dichloro-1-..beta..-D-ribofuranosylbenzimidazole, a RNA synthesis inhibitor. PtK cells which received a preliminary UV treatment followed by an incubation period without cycloheximide and then a second irradiation and 24 hour incubation with cycloheximide, survived the effects of the second irradiation better than cells which were incubated in the presence of cycloheximide after the first and second UV irradiation. The application of cycloheximide for 24 hours after UV irradiation of PtK cells resulted in one-half as many 6-thioguanine resistant cells as compared to the number of 6-thioguanine resistant cells found when cycloheximide was not used. These experiments indicate that a UV-inducible cycloheximide-sensitive DNA repair pathway is present in PtK and xeroderma pigmentosum cells, which is error-prone in PtK cells.

  5. Radiation-induced hypomethylation triggers urokinase plasminogen activator transcription in meningioma cells.

    PubMed

    Velpula, Kiran Kumar; Gogineni, Venkateswara Rao; Nalla, Arun Kumar; Dinh, Dzung H; Rao, Jasti S

    2013-02-01

    Our previous studies have shown the role of radiation-induced urokinase plasminogen activator (uPA) expression in the progression of meningioma. In the present study, we investigated whether modulation of DNA methylation profiles could regulate uPA expression. Initially, radiation treatment was found to induce hypomethylation in meningioma cells with a decrease in DNA (cytosine-5)-methyltransferase 1 (DNMT1) and methyl-CpG binding domain protein (MBD) expression. However, oxidative damage by H(2)O(2) or pretreatment of irradiated cells with N-acetyl cysteine (NAC) did not show any influence on these proteins, thereby indicating a radiation-specific change in the methylation patterns among meningioma cells. Further, we identified that hypomethylation is coupled to an increase in uPA expression in these cells. Azacytidine treatment induced a dose-dependent surge of uPA expression, whereas pre-treatment with sodium butyrate inhibited radiation-induced uPA expression, which complemented our prior results. Methylation-specific polymerase chain reaction on bisulfite-treated genomic DNA revealed a diminished methylation of uPA promoter in irradiated cells. Transfection with small hairpin RNA (shRNA)-expressing plasmids targeting CpG islands of the uPA promoter showed a marked decline in uPA expression with subsequent decrease in invasion and proliferation of meningioma cells. Further, radiation treatment was found to recruit SP1 transcription factor, which was abrogated by shRNA treatment. Analysis on signaling events demonstrated the activation of MAP kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) in radiation-treated cells, while U0126 (MEK/ERK inhibitor) blocked hypomethylation, recruitment of SP1, and uPA expression. In agreement with our in vitro data, low DNMT1 levels and high uPA were found in intracranial tumors treated with radiation compared to untreated tumors. In conclusion, our data suggest that radiation-mediated hypomethylation triggers u

  6. Radiation-Induced Hypomethylation Triggers Urokinase Plasminogen Activator Transcription in Meningioma Cells1

    PubMed Central

    Velpula, Kiran Kumar; Gogineni, Venkateswara Rao; Nalla, Arun Kumar; Dinh, Dzung H; Rao, Jasti S

    2013-01-01

    Our previous studies have shown the role of radiation-induced urokinase plasminogen activator (uPA) expression in the progression of meningioma. In the present study, we investigated whether modulation of DNA methylation profiles could regulate uPA expression. Initially, radiation treatment was found to induce hypomethylation in meningioma cells with a decrease in DNA (cytosine-5)-methyltransferase 1 (DNMT1) and methyl-CpG binding domain protein (MBD) expression. However, oxidative damage by H2O2 or pretreatment of irradiated cells with N-acetyl cysteine (NAC) did not show any influence on these proteins, thereby indicating a radiation-specific change in the methylation patterns among meningioma cells. Further, we identified that hypomethylation is coupled to an increase in uPA expression in these cells. Azacytidine treatment induced a dose-dependent surge of uPA expression, whereas pre-treatment with sodium butyrate inhibited radiation-induced uPA expression, which complemented our prior results. Methylation-specific polymerase chain reaction on bisulfite-treated genomic DNA revealed a diminished methylation of uPA promoter in irradiated cells. Transfection with small hairpin RNA (shRNA)-expressing plasmids targeting CpG islands of the uPA promoter showed a marked decline in uPA expression with subsequent decrease in invasion and proliferation of meningioma cells. Further, radiation treatment was found to recruit SP1 transcription factor, which was abrogated by shRNA treatment. Analysis on signaling events demonstrated the activation of MAP kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) in radiation-treated cells, while U0126 (MEK/ERK inhibitor) blocked hypomethylation, recruitment of SP1, and uPA expression. In agreement with our in vitro data, low DNMT1 levels and high uPA were found in intracranial tumors treated with radiation compared to untreated tumors. In conclusion, our data suggest that radiation-mediated hypomethylation triggers u

  7. Induced pluripotent stem cells in cartilage repair

    PubMed Central

    Lietman, Steven A

    2016-01-01

    Articular cartilage repair techniques are challenging. Human embryonic stem cells and induced pluripotent stem cells (iPSCs) theoretically provide an unlimited number of specialized cells which could be used in articular cartilage repair. However thus far chondrocytes from iPSCs have been created primarily by viral transfection and with the use of cocultured feeder cells. In addition chondrocytes derived from iPSCs have usually been formed in condensed cell bodies (resembling embryoid bodies) that then require dissolution with consequent substantial loss of cell viability and phenotype. All of these current techniques used to derive chondrocytes from iPSCs are problematic but solutions to these problems are on the horizon. These solutions will make iPSCs a viable alternative for articular cartilage repair in the near future. PMID:27004161

  8. Cell Death Mechanisms Induced by Cytotoxic Lymphocytes

    PubMed Central

    Chávez-Galán, L; Arenas-Del Angel, M C; Zenteno, E; Chávez, R; Lascurain, R

    2009-01-01

    One of the functions of the immune system is to recognize and destroy abnormal or infected cells to maintain homeostasis. This is accomplished by cytotoxic lymphocytes. Cytotoxicity is a highly organized multifactor process. Here, we reviewed the apoptosis pathways induced by the two main cytotoxic lymphocyte subsets, natural killer (NK) cells and CD8+ T cells. In base to recent experimental evidence, we reviewed NK receptors involved in recognition of target-cell, as well as lytic molecules such as perforin, granzymes-A and -B, and granulysin. In addition, we reviewed the Fas-FasL intercellular linkage mediated pathway, and briefly the cross-linking of tumor necrosis factor (TNF) and TNF receptor pathway. We discussed three models of possible molecular interaction between lytic molecules from effector cytotoxic cells and target-cell membrane to induction of apoptosis. PMID:19254476

  9. Induced pluripotent stem cells in cartilage repair.

    PubMed

    Lietman, Steven A

    2016-03-18

    Articular cartilage repair techniques are challenging. Human embryonic stem cells and induced pluripotent stem cells (iPSCs) theoretically provide an unlimited number of specialized cells which could be used in articular cartilage repair. However thus far chondrocytes from iPSCs have been created primarily by viral transfection and with the use of cocultured feeder cells. In addition chondrocytes derived from iPSCs have usually been formed in condensed cell bodies (resembling embryoid bodies) that then require dissolution with consequent substantial loss of cell viability and phenotype. All of these current techniques used to derive chondrocytes from iPSCs are problematic but solutions to these problems are on the horizon. These solutions will make iPSCs a viable alternative for articular cartilage repair in the near future. PMID:27004161

  10. Patterns of indole alkaloids synthesis in response to heat shock, 5-azacytidine and Na-butyrate treatment of cultured catharanthus roseus mesophyll protoplasts

    SciTech Connect

    Saleem, M.; Cutler, A.J.

    1986-04-01

    Alkaloids of C. roseus are in high demand for therapeutic and other reasons. Cultured Catharanthus cells can produce limited quantities of these alkaloids. The authors have found that cultured mesophyll protoplasts in the presence of /sup 14/C-Tryptamine are capable of synthesizing alkaloids. The pattern of alkaloids synthesis changes when protoplasts are subjected to a heat shock at 37/sup 0/C. The heat shocked protoplasts incorporated 33% more /sup 14/C-Tryptamine and produced 3 new types of alkaloids. Treatment of protoplasts with 5-azacytidine, a DNA hypomethylating agent and Na-butyrate which induces hyperacetylation of histones produced qualitative and quantitative changes in the alkaloid pattern. Four new alkaloids following the above treatments were detected by TLC and HPLC of the extracts. It is suggested that the alkaloid pattern of the cultured protoplasts can be altered by treatment with compounds known as regulators of gene expression. Work is in progress to isolate and identify these new alkaloids.

  11. Trophoblast lineage cells derived from human induced pluripotent stem cells

    SciTech Connect

    Chen, Ying; Wang, Kai; Chandramouli, Gadisetti V.R.; Knott, Jason G.; Leach, Richard

    2013-07-12

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.

  12. Preparation of chitin butyrate by using phosphoryl mixed anhydride system.

    PubMed

    Bhatt, Lok Ranjan; Kim, Bo Mi; Hyun, Kim; Kang, Kyung Hee; Lu, Chichong; Chai, Kyu Yun

    2011-04-01

    Acylation of chitin with butyric acid was performed in the presence of trifluoroacetic anhydride/phosphoric acid mediated system. The products were characterized by (1)H NMR and FT-IR spectroscopy and their solubility was tested in different organic solvents. Inclusion of butyric acid moieties into the parent molecule was confirmed from the (1)H NMR and FT-IR spectra. FT-IR analysis revealed that the degree of acid substitution (DS) of the products was in a range of 1.9-2.38, which increased with increasing the amounts of butyric acid added to the reaction system. Degree of N-deacetylation (DD) of the products, as determined by (1)H NMR was between 54.2% and 65.6%. The products with DS >2.0 were soluble in dimethyl sulfoxide, N,N-dimethylformamide, tetrahydrofuran, methanol, acetone, chloroform, and acetic acid. PMID:21353204

  13. Heat induces gene amplification in cancer cells

    SciTech Connect

    Yan, Bin; Ouyang, Ruoyun; Huang, Chenghui; Liu, Franklin; Neill, Daniel; Li, Chuanyuan; Dewhirst, Mark

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer This study discovered that heat exposure (hyperthermia) results in gene amplification in cancer cells. Black-Right-Pointing-Pointer Hyperthermia induces DNA double strand breaks. Black-Right-Pointing-Pointer DNA double strand breaks are considered to be required for the initiation of gene amplification. Black-Right-Pointing-Pointer The underlying mechanism of heat-induced gene amplification is generation of DNA double strand breaks. -- Abstract: Background: Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. Materials and methods: (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44 Degree-Sign C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) {gamma}H2AX immunostaining to detect {gamma}H2AX foci as an indication for DNA double strand breaks. Results: (1) Heat exposure at 42 or 44 Degree-Sign C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44 Degree-Sign C for 30 min induces DNA double strand breaks in HCT116 cells as shown by {gamma}H2AX immunostaining. Conclusion: This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and

  14. Resistant starch induces catabolic but suppresses immune and cell division pathways and changes the microbiome in the proximal colon of male pigs.

    PubMed

    Haenen, Daniëlle; Souza da Silva, Carol; Zhang, Jing; Koopmans, Sietse Jan; Bosch, Guido; Vervoort, Jacques; Gerrits, Walter J J; Kemp, Bas; Smidt, Hauke; Müller, Michael; Hooiveld, Guido J E J

    2013-12-01

    Consumption of resistant starch (RS) has been associated with various intestinal health benefits, but knowledge of its effects on global gene expression in the colon is limited. The main objective of the current study was to identify genes affected by RS in the proximal colon to infer which biologic pathways were modulated. Ten 17-wk-old male pigs, fitted with a cannula in the proximal colon for repeated collection of tissue biopsy samples and luminal content, were fed a digestible starch (DS) diet or a diet high in RS (34%) for 2 consecutive periods of 14 d in a crossover design. Analysis of the colonic transcriptome profiles revealed that, upon RS feeding, oxidative metabolic pathways, such as the tricarboxylic acid cycle and β-oxidation, were induced, whereas many immune response pathways, including adaptive and innate immune system, as well as cell division were suppressed. The nuclear receptor peroxisome proliferator-activated receptor γ was identified as a potential key upstream regulator. RS significantly (P < 0.05) increased the relative abundance of several butyrate-producing microbial groups, including the butyrate producers Faecalibacterium prausnitzii and Megasphaera elsdenii, and reduced the abundance of potentially pathogenic members of the genus Leptospira and the phylum Proteobacteria. Concentrations in carotid plasma of the 3 main short-chain fatty acids acetate, propionate, and butyrate were significantly higher with RS consumption compared with DS consumption. Overall, this study provides novel insights on effects of RS in proximal colon and contributes to our understanding of a healthy diet. PMID:24132577

  15. Liquid chromatographic determination of clobetasone-17-butyrate in ointments.

    PubMed

    Patel, A G; Patel, R B; Patel, M R

    1990-01-01

    A liquid chromatographic (LC) method has been developed for determination of clobetasone-17-butyrate in ointment using clobetasone propionate as an internal standard. Separation was carried out on a C18 reverse-phase column using water-methanol as a mobile phase. Methylparaben and propylparaben (both sodium salt) used as preservatives did not interfere with separation. Compounds are detected photometrically at 235 nm. Mean assay results for 0.05% commercial ointments were 100.36% (n = 5). Mean recovery of clobetasone-17-butyrate added to commercial ointment was 99.89%. PMID:2289922

  16. Short-chain fatty acid (SCFA) uptake into Caco-2 cells by a pH-dependent and carrier mediated transport mechanism.

    PubMed

    Stein, J; Zores, M; Schröder, O

    2000-06-01

    The short-chain fatty acids, acetate, propionate, and butyrate, are the most abundant organic anions in the human colon. SCFA play a pivotal role in maintaining homeostasis in the colon. Particularly butyrate induces cell differentiation and regulates growth and proliferation of colonic mucosal epithelial cells, whereas it reduces the growth rate of colorectal cancer cell. Previous studies by several groups, including our own, using isolated membrane vesicles have demonstrated that the uptake of butyrate is at least in part mediated by a non-electrogenic SCFA-/HCO3- antiporter. The purpose of the present study was to determine (1) whether Caco-2 cells could serve as an experimental model to assess the mechanisms of SCFA transport, and (2) whether monocarboxlate transporters could play a role in SCFA transport in these cells. Caco-2 cells were found to transport 14C-butyrate in a concentration and time dependent manner. The uptake was sodium independent, but was stimulated by lowering extracellular pH. The uptake of 500 microM butyrate was reduced by 49.6% +/- 3.3% in the presence of propionate and by 57.2% +/- 4.8% in the presence of 10 mM L-lactate. The addition of 1 mM alpha-cyano-4-hydroxycinnamate and phloretin, both known to be potent inhibitors of MCT1, decreased the uptake of 500 microM 14C-butyrate by 59.4% +/- 4.1% and 48.9% +/- 3.3%, respectively, whereas similar concentrations of DIDS did not have any effect. These data suggest that the uptake of butyrate in Caco-2 cells occurs via a carrier mediated transport system specific for monocarboxylic acids, which is in accordance with characteristics of the MCT 1. PMID:10918994

  17. Perinatal exposure to germinated brown rice and its gamma amino-butyric acid-rich extract prevents high fat diet-induced insulin resistance in first generation rat offspring

    PubMed Central

    Adamu, Hadiza Altine; Imam, Mustapha Umar; Ooi, Der-Jiun; Esa, Norhaizan Mohd; Rosli, Rozita; Ismail, Maznah

    2016-01-01

    Background Evidence suggests perinatal environments influence the risk of developing insulin resistance. Objective The present study was aimed at determining the effects of intrauterine exposure to germinated brown rice (GBR) and GBR-derived gamma (γ) aminobutyric acid (GABA) extract on epigenetically mediated high fat diet–induced insulin resistance. Design Pregnant Sprague Dawley rats were fed high-fat diet (HFD), HFD+GBR, or HFD+GABA throughout pregnancy until 4 weeks postdelivery. The pups were weighed weekly and maintained on normal pellet until 8 weeks postdelivery. After sacrifice, biochemical markers of obesity and insulin resistance including oral glucose tolerance test, adiponectin, leptin, and retinol binding protein-4 (RBP4) were measured. Hepatic gene expression changes and the global methylation and histone acetylation levels were also evaluated. Results Detailed analyses revealed that mothers given GBR and GABA extract, and their offspring had increased adiponectin levels and reduced insulin, homeostasis model assessment of insulin resistance, leptin, oxidative stress, and RBP4 levels, while their hepatic mRNA levels of GLUT2 and IPF1 were increased. Furthermore, GBR and GABA extract lowered global DNA methylation levels and modulated H3 and H4 acetylation levels. Conclusions These results showed that intrauterine exposure to GBR-influenced metabolic outcomes in offspring of rats with underlying epigenetic changes and transcriptional implications that led to improved glucose homeostasis. PMID:26842399

  18. Microlens array induced light absorption enhancement in polymer solar cells.

    PubMed

    Chen, Yuqing; Elshobaki, Moneim; Ye, Zhuo; Park, Joong-Mok; Noack, Max A; Ho, Kai-Ming; Chaudhary, Sumit

    2013-03-28

    Over the last decade, polymer solar cells (PSCs) have attracted a lot of attention and highest power conversion efficiencies (PCE) are now close to 10%. Here we employ an optical structure - the microlens array (MLA) - to increase light absorption inside the active layer, and PCE of PSCs increased even for optimized devices. Normal incident light rays are refracted at the MLA and travel longer optical paths inside the active layers. Two PSC systems - poly(3-hexylthiophene-2,5-diyl):(6,6)-phenyl C61 butyric acid methyl ester (P3HT:PCBM) and poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]:(6,6)-phenyl C71 butyric acid methyl ester (PCDTBT:PC70BM) - were investigated. In the P3HT:PCBM system, MLA increased the absorption, absolute external quantum efficiency, and the PCE of an optimized device by ∼4.3%. In the PCDTBT:PC70BM system, MLA increased the absorption, absolute external quantum efficiency, and PCE by more than 10%. In addition, simulations incorporating optical parameters of all structural layers were performed and they support the enhancement of absorption in the active layer with the assistance of MLA. Our results show that utilizing MLA is an effective strategy to further increase light absorption in PSCs, in which optical losses account for ∼40% of total losses. MLA also does not pose materials processing challenges to the active layers since it is on the other side of the transparent substrate. PMID:23407762

  19. Apoptotic cells induce dendritic cell-mediated suppression via interferon-γ-induced IDO

    PubMed Central

    Williams, Charlotte A; Harry, Rachel A; McLeod, Julie D

    2008-01-01

    Dendritic cells (DC) are sensitive to their local environment and are affected by proximal cell death. This study investigated the modulatory effect of cell death on DC function. Monocyte-derived DC exposed to apoptotic Jurkat or primary T cells failed to induce phenotypic maturation of the DC and were unable to support CD4+ allogeneic T-cell proliferation compared with DC exposed to lipopolysaccharide (LPS) or necrotic cells. Apoptotic cells coincubated with LPS- or necrotic cell-induced mature DC significantly suppressed CD80, CD86 and CD83 and attenuated LPS-induced CD4+ T-cell proliferation. Reduced levels of interleukin-12 (IL-12), IL-10, IL-6, tumour necrosis factor-α and interferon-γ (IFN-γ) were found to be concomitant with the suppressive activity of apoptotic cells upon DC. Furthermore, intracellular staining confirmed IFN-γ expression by DC in association with apoptotic environments. The specific generation of IFN-γ by DC within apoptotic environments is suggestive of an anti-inflammatory role by the induction of indoleamine 2,3-dioxygenase (IDO). Both neutralization of IFN-γ and IDO blockade demonstrated a role for IFN-γ and IDO in the suppression of CD4+ T cells. Moreover, we demonstrate that IDO expression within the DC was found to be IFN-γ-dependent. Blocking transforming growth factor-β (TGF-β) also produced a partial release in T-cell proliferation. Our study strongly suggests that apoptosis-induced DC suppression is not an immunological null event and two prime mediators underpinning these functional effects are IFN-γ-induced IDO and TGF-β. PMID:18067553

  20. Apoptotic cell death induced by intracellular proteolysis.

    PubMed

    Williams, M S; Henkart, P A

    1994-11-01

    To mimic the injection of granzymes into target cells by cytotoxic lymphocytes or the activation of endogenous proteases in programmed cell death, the proteases chymotrypsin, proteinase K, or trypsin were loaded into the cytoplasm of several different cell types using the osmotic lysis of pinosomes technique. Internalization of these proteases caused cell lysis within several hours, accompanied by extensive nuclear damage in most but not all combinations of target cells and proteases. This nuclear damage, quantitated by DNA release from nuclei, was associated with apoptotic features including DNA fragmentation into nucleosomal ladders, chromatin condensation, nuclear fragmentation, and membrane blebbing. Agents reported to block programmed cell death, including aurintricarboxylic acid, inhibitors of energy metabolism, and protein or RNA synthesis, failed to block this protease-induced death, although some inhibited nuclear damage. In separate experiments, introduction of staphylococcal nuclease into cells led to near complete (at least 75% of total) nucleosomal DNA fragmentation within 6 to 8 h. Condensation of chromatin did not accompany this fragmentation to the same extent, and there was approximately a 10-h lag between half-maximal DNA fragmentation and 50% loss of membrane integrity. The results suggest that activation of intracellular proteases during cell death by any molecular pathway could give rise to apoptotic morphology and DNA fragmentation. PMID:7930626

  1. 4-(2-Methyl-4-chlorophenoxy) butyric acid (MCPB)

    Integrated Risk Information System (IRIS)

    4 - ( 2 - Methyl - 4 - chlorophenoxy ) butyric acid ( MCPB ) ; CASRN 94 - 81 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Hea

  2. Development of a specific radioimmunoassay for cortisol 17-butyrate

    SciTech Connect

    Smith, G.N.; Lee, Y.F.; Bu'Lock, D.E.; August, P.; Anderson, D.C.

    1983-07-01

    We describe the development and validation of an assay for cortisol 17-butyrate in blood in which there is no significant cross reaction with endogenous corticosteroids at levels encountered normally in man. Preliminary data on blood levels of the drug in absorption studies are presented.

  3. EFFECT OF LEAD ON GAMMA AMINO BUTYRIC ACID SYNTHESIS

    EPA Science Inventory

    The project studies the inhibitory effect of lead on the enzymatic activity of brain glutamic amino acid decarboxylase (GADC). The enzyme is responsible for the catalytic formation of gamma amino butyric acid (GABA) inhibitory neurons which is believed to be involved with the tra...

  4. Induced Pluripotent Stem Cells Meet Genome Editing.

    PubMed

    Hockemeyer, Dirk; Jaenisch, Rudolf

    2016-05-01

    It is extremely rare for a single experiment to be so impactful and timely that it shapes and forecasts the experiments of the next decade. Here, we review how two such experiments-the generation of human induced pluripotent stem cells (iPSCs) and the development of CRISPR/Cas9 technology-have fundamentally reshaped our approach to biomedical research, stem cell biology, and human genetics. We will also highlight the previous knowledge that iPSC and CRISPR/Cas9 technologies were built on as this groundwork demonstrated the need for solutions and the benefits that these technologies provided and set the stage for their success. PMID:27152442

  5. Quantification of transcriptome responses of the rumen epithelium to butyrate infusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Short-chain fatty acids (SCFAs), such as butyrate, produced by gut microorganisms play an important role in energy metabolism and physiology in ruminants as well as in human health. Butyrate is a preferred substrate in the rumen epithelium where approximately 90% of butyrate is metabolized. Additi...

  6. Role of rumen butyrate in regulation of nitrogen utilization and urea nitrogen kinetics in growing sheep

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butyrate, a major rumen VFA, has been indirectly linked to enhancement of urea recycling based on increased expression of urea transporter (UT-B) in the rumen epithelia of steers fed a rumen butyrate-enhancing diet. Two studies were conducted to quantify the effect of elevated rumen butyrate concent...

  7. Phenytoin Induced Cutaneous B Cell Pseudolymphoma.

    PubMed

    Riyaz, Najeeba; Sasidharanpillai, Sarita; Aravindan, Karumathil P; Nobin, Babu K; Raghavan, Nisha T; Nikhila, Pappinissery K

    2015-01-01

    Cutaneous pseudolymphomas are benign lymphoproliferative processes mimicking lymphomas clinically and histologically. One of the precipitating factors for pseudolymphoma is drugs like anticonvulsants, antidepressants and angiotensin-converting enzyme inhibitors. According to existing literature phenytoin-induced cutaneous pseudolymphomas are usually T-cell predominant. Most often withdrawal of the drug with or without short-course systemic steroids can attain a cure. Rarely malignant transformation has been reported years later despite withdrawal of the offending drug, which necessitates a long-term follow up of the affected. We report an 80-year-old male patient who was receiving phenytoin sodium and who presented with diffuse erythema and infiltrated skin lesions which histologically resembled cutaneous B-cell lymphoma. Substituting phenytoin with levetiracetam achieved resolution of symptoms. Further evaluation was suggestive of a reactive process. A detailed drug history is of paramount importance in differentiating drug-induced pseudolymphoma from lymphoma. Searching literature we could not find any previous reports of phenytoin-induced cutaneous B-cell pseudolymphoma. PMID:26538730

  8. Phenytoin Induced Cutaneous B Cell Pseudolymphoma

    PubMed Central

    Riyaz, Najeeba; Sasidharanpillai, Sarita; Aravindan, Karumathil P; Nobin, Babu K; Raghavan, Nisha T; Nikhila, Pappinissery K

    2015-01-01

    Cutaneous pseudolymphomas are benign lymphoproliferative processes mimicking lymphomas clinically and histologically. One of the precipitating factors for pseudolymphoma is drugs like anticonvulsants, antidepressants and angiotensin-converting enzyme inhibitors. According to existing literature phenytoin-induced cutaneous pseudolymphomas are usually T-cell predominant. Most often withdrawal of the drug with or without short-course systemic steroids can attain a cure. Rarely malignant transformation has been reported years later despite withdrawal of the offending drug, which necessitates a long-term follow up of the affected. We report an 80-year-old male patient who was receiving phenytoin sodium and who presented with diffuse erythema and infiltrated skin lesions which histologically resembled cutaneous B-cell lymphoma. Substituting phenytoin with levetiracetam achieved resolution of symptoms. Further evaluation was suggestive of a reactive process. A detailed drug history is of paramount importance in differentiating drug-induced pseudolymphoma from lymphoma. Searching literature we could not find any previous reports of phenytoin-induced cutaneous B-cell pseudolymphoma. PMID:26538730

  9. Induced pluripotent stem cells: advances to applications

    PubMed Central

    Nelson, Timothy J; Martinez-Fernandez, Almudena; Yamada, Satsuki; Ikeda, Yasuhiro; Perez-Terzic, Carmen; Terzic, Andre

    2010-01-01

    Induced pluripotent stem cell (iPS) technology has enriched the armamentarium of regenerative medicine by introducing autologous pluripotent progenitor pools bioengineered from ordinary somatic tissue. Through nuclear reprogramming, patient-specific iPS cells have been derived and validated. Optimizing iPS-based methodology will ensure robust applications across discovery science, offering opportunities for the development of personalized diagnostics and targeted therapeutics. Here, we highlight the process of nuclear reprogramming of somatic tissues that, when forced to ectopically express stemness factors, are converted into bona fide pluripotent stem cells. Bioengineered stem cells acquire the genuine ability to generate replacement tissues for a wide-spectrum of diseased conditions, and have so far demonstrated therapeutic benefit upon transplantation in model systems of sickle cell anemia, Parkinson’s disease, hemophilia A, and ischemic heart disease. The field of regenerative medicine is therefore primed to adopt and incorporate iPS cell-based advancements as a next generation stem cell platforms. PMID:21165156

  10. Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments.

    PubMed

    Li, Huijuan; Chang, Jiali; Liu, Pengfei; Fu, Li; Ding, Dewen; Lu, Yahai

    2015-05-01

    Syntrophic interaction occurs during anaerobic fermentation of organic substances forming methane as the final product. H2 and formate are known to serve as the electron carriers in this process. Recently, it has been shown that direct interspecies electron transfer (DIET) occurs for syntrophic CH4 production from ethanol and acetate. Here, we constructed paddy soil enrichments to determine the involvement of DIET in syntrophic butyrate oxidation and CH4 production. The results showed that CH4 production was significantly accelerated in the presence of nanoFe3 O4 in all continuous transfers. This acceleration increased with the increase of nanoFe3 O4 concentration but was dismissed when Fe3 O4 was coated with silica that insulated the mineral from electrical conduction. NanoFe3 O4 particles were found closely attached to the cell surfaces of different morphology, thus bridging cell connections. Molecular approaches, including DNA-based stable isotope probing, revealed that the bacterial Syntrophomonadaceae and Geobacteraceae, and the archaeal Methanosarcinaceae, Methanocellales and Methanobacteriales, were involved in the syntrophic butyrate oxidation and CH4 production. Among them, the growth of Geobacteraceae strictly relied on the presence of nanoFe3 O4 and its electrical conductivity in particular. Other organisms, except Methanobacteriales, were present in enrichments regardless of nanoFe3 O4 amendment. Collectively, our study demonstrated that the nanoFe3 O4 -facilitated DIET occurred in syntrophic CH4 production from butyrate, and Geobacter species played the key role in this process in the paddy soil enrichments. PMID:25059331

  11. Neuroprotective Effects of Clostridium butyricum against Vascular Dementia in Mice via Metabolic Butyrate

    PubMed Central

    Liu, Jiaming; Sun, Jing; Wang, Fangyan; Yu, Xichong; Ling, Zongxin; Li, Haixiao; Zhang, Huiqing; Jin, Jiangtao; Chen, Wenqian; Pang, Mengqi; Yu, Junjie; He, Yiwen; Xu, Jiru

    2015-01-01

    Probiotics actively participate in neuropsychiatric disorders. However, the role of gut microbiota in brain disorders and vascular dementia (VaD) remains unclear. We used a mouse model of VaD induced by a permanent right unilateral common carotid arteries occlusion (rUCCAO) to investigate the neuroprotective effects and possible underlying mechanisms of Clostridium butyricum. Following rUCCAO, C. butyricum was intragastrically administered for 6 successive weeks. Cognitive function was estimated. Morphological examination was performed by electron microscopy and hematoxylin-eosin (H&E) staining. The BDNF-PI3K/Akt pathway-related proteins were assessed by western blot and immunohistochemistry. The diversity of gut microbiota and the levels of butyrate in the feces and the brains were determined. The results showed that C. butyricum significantly attenuated the cognitive dysfunction and histopathological changes in VaD mice. C. butyricum not only increased the levels of BDNF and Bcl-2 and decreased level of Bax but also induced Akt phosphorylation (p-Akt) and ultimately reduced neuronal apoptosis. Moreover, C. butyricum could regulate the gut microbiota and restore the butyrate content in the feces and the brains. These results suggest that C. butyricum might be effective in the treatment of VaD by regulating the gut-brain axis and that it can be considered a new therapeutic strategy against VaD. PMID:26523278

  12. Use of Additives to Improve Performance of Methyl Butyrate-Based Lithium-Ion Electrolytes

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2011-01-01

    This work addresses the need for robust rechargeable batteries that can operate well over a wide temperature range. To this end, a number of electrolyte formulations have been developed that incorporate the use of electrolyte additives to improve the high-temperature resilience, low-temperature power capability, and life characteristics of methyl butyrate-based electrolyte solutions. These electrolyte additives include mono-fluoroethylene carbonate (FEC), lithium oxalate, vinylene carbonate (VC), and lithium bis(oxalato)borate (LiBOB), which have been shown to result in improved high-temperature resilience of all carbonate-based electrolytes. Improved performance has been demonstrated of Li-ion cells with methyl butyrate-based electrolytes, including 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %); 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 2% FEC; 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 4% FEC; 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + lithium oxalate; 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 2% VC; and 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 0.10M LiBOB. These electrolytes have been shown to improve performance in MCMB-LiNiCoO2 and graphite-LiNi1/3Co1/3Mn1/3O2 experimental Li-ion cells. A number of LiPF6-based mixed carbonate electrolyte formulations have been developed that contain ester co-solvents, which have been optimized for operation at low temperature, while still providing reasonable performance at high temperature. For example, a number of ester co-solvents were investigated, including methyl propionate (MP), ethyl propionate (EP), methyl butyrate (MB), ethyl butyrate (EB), propyl butyrate (PB), and butyl butyrate (BB) in multi-component electrolytes of the following composition: 1.0M LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC) + X (20:60:20 v/v %) [where X = ester co-solvent]. ["Optimized Car bon ate and Ester-Based Li-Ion Electrolytes", NASA Tech Briefs, Vol. 32, No. 4 (April 2008), p. 56.] Focusing upon improved rate

  13. Generation of induced pluripotent stem cells.

    PubMed

    Deyle, David R

    2015-01-01

    Induced pluripotent stem cells (iPSCs) are generated from somatic cells that have been reprogrammed by the ectopic expression of defined embryonic transcription factors. This technology has provided investigators with a powerful tool for modelling disease and developing treatments for human disorders. This chapter provides the researcher with some background on iPSCs and details on how to produce MEF-conditioned medium, prepare mitotically arrested mouse embryonic fibroblasts (MEFs), create iPSCs using viral vectors, passage iPSCs, and cryopreserve iPSCs. The methods offered here have been used in many laboratories around the world and the reader can initially follow these methods. However, not all cell types are easily transduced using viral vectors and other methods of delivering the reprogramming transcription factors may need to be tested. PMID:25331042

  14. Cell signalling pathways underlying induced pluripotent stem cell reprogramming

    PubMed Central

    Hawkins, Kate; Joy, Shona; McKay, Tristan

    2014-01-01

    Induced pluripotent stem (iPS) cells, somatic cells reprogrammed to the pluripotent state by forced expression of defined factors, represent a uniquely valuable resource for research and regenerative medicine. However, this methodology remains inefficient due to incomplete mechanistic understanding of the reprogramming process. In recent years, various groups have endeavoured to interrogate the cell signalling that governs the reprogramming process, including LIF/STAT3, BMP, PI3K, FGF2, Wnt, TGFβ and MAPK pathways, with the aim of increasing our understanding and identifying new mechanisms of improving safety, reproducibility and efficiency. This has led to a unified model of reprogramming that consists of 3 stages: initiation, maturation and stabilisation. Initiation of reprogramming occurs in almost all cells that receive the reprogramming transgenes; most commonly Oct4, Sox2, Klf4 and cMyc, and involves a phenotypic mesenchymal-to-epithelial transition. The initiation stage is also characterised by increased proliferation and a metabolic switch from oxidative phosphorylation to glycolysis. The maturation stage is considered the major bottleneck within the process, resulting in very few “stabilisation competent” cells progressing to the final stabilisation phase. To reach this stage in both mouse and human cells, pre-iPS cells must activate endogenous expression of the core circuitry of pluripotency, comprising Oct4, Sox2, and Nanog, and thus reach a state of transgene independence. By the stabilisation stage, iPS cells generally use the same signalling networks that govern pluripotency in embryonic stem cells. These pathways differ between mouse and human cells although recent work has demonstrated that this is context dependent. As iPS cell generation technologies move forward, tools are being developed to interrogate the process in more detail, thus allowing a greater understanding of this intriguing biological phenomenon. PMID:25426259

  15. Induction of Germ Cell-like Cells from Porcine Induced Pluripotent Stem Cells

    PubMed Central

    Wang, Hanning; Xiang, Jinzhu; Zhang, Wei; Li, Junhong; Wei, Qingqing; Zhong, Liang; Ouyang, Hongsheng; Han, Jianyong

    2016-01-01

    The ability to generate germ cells from pluripotent stem cells (PSCs) is valuable for human regenerative medicine and animal breeding. Germ cell-like cells (GCLCs) have been differentiated from mouse and human PSCs, but not from porcine PSCs, which are considered an ideal model for stem cell applications. Here, we developed a defined culture system for the induction of primordial germ cell-like cells (PGCLCs) from porcine induced PSCs (piPSCs). The identity of the PGCLCs was characterized by observing cell morphology, detecting germ cell marker gene expression and evaluating epigenetic properties. PGCLCs could further differentiate into spermatogonial stem cell-like cells (SSCLCs) in vitro. Importantly, meiosis occurred during SSCLC induction. Xenotransplantation of GCLCs into seminiferous tubules of infertile immunodeficient mice resulted in immunohistochemically identifiable germ cells in vivo. Overall, our study provides a feasible strategy for directing piPSCs to the germ cell fate and lays a foundation for exploring germ cell development mechanisms. PMID:27264660

  16. Induction of Germ Cell-like Cells from Porcine Induced Pluripotent Stem Cells.

    PubMed

    Wang, Hanning; Xiang, Jinzhu; Zhang, Wei; Li, Junhong; Wei, Qingqing; Zhong, Liang; Ouyang, Hongsheng; Han, Jianyong

    2016-01-01

    The ability to generate germ cells from pluripotent stem cells (PSCs) is valuable for human regenerative medicine and animal breeding. Germ cell-like cells (GCLCs) have been differentiated from mouse and human PSCs, but not from porcine PSCs, which are considered an ideal model for stem cell applications. Here, we developed a defined culture system for the induction of primordial germ cell-like cells (PGCLCs) from porcine induced PSCs (piPSCs). The identity of the PGCLCs was characterized by observing cell morphology, detecting germ cell marker gene expression and evaluating epigenetic properties. PGCLCs could further differentiate into spermatogonial stem cell-like cells (SSCLCs) in vitro. Importantly, meiosis occurred during SSCLC induction. Xenotransplantation of GCLCs into seminiferous tubules of infertile immunodeficient mice resulted in immunohistochemically identifiable germ cells in vivo. Overall, our study provides a feasible strategy for directing piPSCs to the germ cell fate and lays a foundation for exploring germ cell development mechanisms. PMID:27264660

  17. Effects of supplementary butyrate on butanol production and the metabolic switch in Clostridium beijerinckii NCIMB 8052: genome-wide transcriptional analysis with RNA-Seq

    PubMed Central

    2013-01-01

    Background Butanol (n-butanol) has high values as a promising fuel source and chemical feedstock. Biobutanol is usually produced by the solventogenic clostridia through a typical biphasic (acidogenesis and solventogenesis phases) acetone-butanol-ethanol (ABE) fermentation process. It is well known that the acids produced in the acidogenic phase are significant and play important roles in the switch to solventogenesis. However, the mechanism that triggers the metabolic switch is still not clear. Results Sodium butyrate (40 mM) was supplemented into the medium for the ABE fermentation with Clostridium beijerinckii NCIMB 8052. With butyrate addition (reactor R1), solvent production was triggered early in the mid-exponential phase and completed quickly in < 50 h, while in the control (reactor R2), solventogenesis was initiated during the late exponential phase and took > 90 h to complete. Butyrate supplementation led to 31% improvement in final butanol titer, 58% improvement in sugar-based yield, and 133% improvement in butanol productivity, respectively. The butanol/acetone ratio was 2.4 versus 1.8 in the control, indicating a metabolic shift towards butanol production due to butyrate addition. Genome-wide transcriptional dynamics was investigated with RNA-Seq analysis. In reactor R1, gene expression related to solventogenesis was induced about 10 hours earlier when compared to that in reactor R2. Although the early sporulation genes were induced after the onset of solventogenesis in reactor R1 (mid-exponential phase), the sporulation events were delayed and uncoupled from the solventogenesis. In contrast, in reactor R2, sporulation genes were induced at the onset of solventogenesis, and highly expressed through the solventogenesis phase. The motility genes were generally down-regulated to lower levels prior to stationary phase in both reactors. However, in reactor R2 this took much longer and gene expression was maintained at comparatively higher levels

  18. Reprogramming T cell Lymphocytes to Induced Pluripotent Stem Cells

    NASA Astrophysics Data System (ADS)

    Bared, Kalia

    The discovery of induced pluripotent stem cells (iPSC) provided a novel technology for the study of development and pharmacology and complement embryonic stem cells (ES) for cell therapy applications. Though iPSC are derived from adult tissue they are comparable to ES cells in their behavior; multi-lineage differentiation and self-renewal. This makes iPSC research appealing because they can be studied in great detail and expanded in culture broadly. Fibroblasts were the first cell type reprogrammed to an iPSC using a retrovirus vector, since then alternative cell types including lymphocytes have been used to generate iPSC. Different types of vectors have also been developed to enhance iPSC formation and quality. However, specific T lymphocyte subsets have not been shown to reprogram to a pluripotent state to date. Here, we proposed to derive iPSC from peripheral blood effector and central memory T cells, reasoning that the resultant iPSC will maintain the epigenetic memory of a T lymphocyte, including the T cell receptor (TCR) gene rearrangement. This epigenetic memory will enable the differentiation and expansion of T cell iPSC into professional T cells containing a specific TCR. These could then be used for cell therapy to target specific antigens, as well as to improve culture techniques to expand T cells in vitro. We studied different gene delivery methods to derive iPSC from different types of T lymphocytes. We assessed the viability of viral transduction using flow cytometry to detect green fluorescent marker contained in the viral construct and quantitative real time polymerase chain reaction (qRT-PCR) to detect Oct4, Klf4, Sox2, and c-Myc gene expression. Our results demonstrate that the Sendai virus construct is the most feasible platform to reprogram T lymphocytes. We anticipate that this platform will provide an efficient and safe approach to derive iPSC from different T cell subsets, including memory T cells.

  19. Craniofacial Reconstruction with Induced Pluripotent Stem Cells

    PubMed Central

    Wan, Derrick C.; Wong, Victor W.; Longaker, Michael T.

    2012-01-01

    Induced pluripotent stem cells (iPSCs) hold enormous promise for the treatment of complex tissue defects throughout the entire body. The ability for iPSCs to form all tissue types makes them an ideal autogenous cellular building block for tissue engineering strategies designed to replace any combination of skin, muscle, nerve, and bone deficiencies in the craniofacial region. Several obstacles to their use remain, however, chief among which include concerns over insertional mutagenesis and tumorigenicity. As studies continue to develop strategies minimizing these risks, the potential for development of patient-specific regenerative therapies has become tantalizingly close. PMID:22627398

  20. How tolerogenic dendritic cells induce regulatory T cells

    PubMed Central

    Maldonado, Roberto A.; von Andrian, Ulrich H.

    2010-01-01

    Since their discovery by Steinman and Cohn in 1973, dendritic cells (DCs) have become increasingly recognized for their crucial role as regulators of innate and adaptive immunity. DCs are exquisitely adept at acquiring, processing and presenting antigens to T cells. They also adjust the context (and hence the outcome) of antigen presentation in response to a plethora of environmental inputs that signal the occurence of pathogens or tissue damage. Such signals generally boost DC maturation, which promotes their migration from peripheral tissues into and within secondary lymphoid organs and their capacity to induce and regulate effector T cell responses. Conversely, more recent observations indicate that DCs are also crucial to ensure immunological peace. Indeed, DCs constantly present innocuous self and non-self antigens in a fashion that promotes tolerance, at least in part, through the control of regulatory T cells (Tregs). Tregs are specialized T cells that exert their immuno-suppressive function through a variety of mechanisms affecting both DCs and effector cells. Here, we review recent advances in our understanding of the relationship between tolerogenic DCs and Tregs. PMID:21056730

  1. Generation of Avian Induced Pluripotent Stem Cells.

    PubMed

    Lu, Yangqing; West, Franklin D; Jordan, Brian J; Beckstead, Robert B; Jordan, Erin T; Stice, Steven L

    2015-01-01

    Avian species are among the most diverse vertebrates on our planet and significantly contribute to the balance of the ecology. They are also important food source and serve as a central animal model to decipher developmental biology and disease principles. Derivation of induced pluripotent stem cells (iPSCs) from avian species would enable conservation of genetic diversity as well as offer a valuable cell source that facilitates the use of avian models in many areas of basic and applied research. In this chapter, we describe methods used to successfully reprogram quail fibroblasts into iPSCs by using human transcription factors and the techniques critical to the characterization of their pluripotency. PMID:26621592

  2. Capsaicin induces NKCC1 internalization and inhibits chloride secretion in colonic epithelial cells independently of TRPV1

    PubMed Central

    Tang, Xu; Weber, Christopher R.; Shen, Le; Turner, Jerrold R.; Matthews, Jeffrey B.

    2013-01-01

    Colonic chloride secretion is regulated via the neurohormonal and immune systems. Exogenous chemicals (e.g., butyrate, propionate) can affect chloride secretion. Capsaicin, the pungent ingredient of the chili peppers, exerts various effects on gastrointestinal function. Capsaicin is known to activate the transient receptor potential vanilloid type 1 (TRPV1), expressed in the mesenteric nervous system. Recent studies have also demonstrated its presence in epithelial cells but its role remains uncertain. Because capsaicin has been reported to inhibit colonic chloride secretion, we tested whether this effect of capsaicin could occur by direct action on epithelial cells. In mouse colon and model T84 human colonic epithelial cells, we found that capsaicin inhibited forskolin-dependent short-circuit current (FSK-Isc). Using PCR and Western blot, we demonstrated the presence of TRPV1 in colonic epithelial cells. In T84 cells, TRPV1 localized at the basolateral membrane and in vesicular compartments. In permeabilized monolayers, capsaicin activated apical chloride conductance, had no effect on basolateral potassium conductance, but induced NKCC1 internalization demonstrated by immunocytochemistry and basolateral surface biotinylation. AMG-9810, a potent inhibitor of TRPV1, did not prevent the inhibition of the FSK-Isc by capsaicin. Neither resiniferatoxin nor N-oleoyldopamine, two selective agonists of TRPV1, blocked the FSK-Isc. Conversely capsaicin, resiniferatoxin, and N-oleoyldopamine raised intracellular calcium ([Ca2+]i) in T84 cells and AMG-9810 blocked the rise in [Ca2+]i induced by capsaicin and resiniferatoxin suggesting the presence of a functional TRPV1 channel. We conclude that capsaicin inhibits chloride secretion in part by causing NKCC1 internalization, but by a mechanism that appears to be independent of TRPV1. PMID:23139219

  3. Capsaicin induces NKCC1 internalization and inhibits chloride secretion in colonic epithelial cells independently of TRPV1.

    PubMed

    Bouyer, Patrice G; Tang, Xu; Weber, Christopher R; Shen, Le; Turner, Jerrold R; Matthews, Jeffrey B

    2013-01-15

    Colonic chloride secretion is regulated via the neurohormonal and immune systems. Exogenous chemicals (e.g., butyrate, propionate) can affect chloride secretion. Capsaicin, the pungent ingredient of the chili peppers, exerts various effects on gastrointestinal function. Capsaicin is known to activate the transient receptor potential vanilloid type 1 (TRPV1), expressed in the mesenteric nervous system. Recent studies have also demonstrated its presence in epithelial cells but its role remains uncertain. Because capsaicin has been reported to inhibit colonic chloride secretion, we tested whether this effect of capsaicin could occur by direct action on epithelial cells. In mouse colon and model T84 human colonic epithelial cells, we found that capsaicin inhibited forskolin-dependent short-circuit current (FSK-I(sc)). Using PCR and Western blot, we demonstrated the presence of TRPV1 in colonic epithelial cells. In T84 cells, TRPV1 localized at the basolateral membrane and in vesicular compartments. In permeabilized monolayers, capsaicin activated apical chloride conductance, had no effect on basolateral potassium conductance, but induced NKCC1 internalization demonstrated by immunocytochemistry and basolateral surface biotinylation. AMG-9810, a potent inhibitor of TRPV1, did not prevent the inhibition of the FSK-I(sc) by capsaicin. Neither resiniferatoxin nor N-oleoyldopamine, two selective agonists of TRPV1, blocked the FSK-I(sc). Conversely capsaicin, resiniferatoxin, and N-oleoyldopamine raised intracellular calcium ([Ca(2+)](i)) in T84 cells and AMG-9810 blocked the rise in [Ca(2+)](i) induced by capsaicin and resiniferatoxin suggesting the presence of a functional TRPV1 channel. We conclude that capsaicin inhibits chloride secretion in part by causing NKCC1 internalization, but by a mechanism that appears to be independent of TRPV1. PMID:23139219

  4. Brucella suis Vaccine Strain 2 Induces Endoplasmic Reticulum Stress that Affects Intracellular Replication in Goat Trophoblast Cells In vitro

    PubMed Central

    Wang, Xiangguo; Lin, Pengfei; Li, Yang; Xiang, Caixia; Yin, Yanlong; Chen, Zhi; Du, Yue; Zhou, Dong; Jin, Yaping; Wang, Aihua

    2016-01-01

    Brucella has been reported to impair placental trophoblasts, a cellular target where Brucella efficiently replicates in association with the endoplasmic reticulum (ER), and ultimately trigger abortion in pregnant animals. However, the precise effects of Brucella on trophoblast cells remain unclear. Here, we describe the infection and replication of Brucella suis vaccine strain 2 (B.suis.S2) in goat trophoblast cells (GTCs) and the cellular and molecular responses induced in vitro. Our studies demonstrated that B.suis.S2 was able to infect and proliferate to high titers, hamper the proliferation of GTCs and induce apoptosis due to ER stress. Tunicamycin (Tm), a pharmacological chaperone that strongly mounts ER stress-induced apoptosis, inhibited B.suis.S2 replication in GTCs. In addition, 4 phenyl butyric acid (4-PBA), a pharmacological chaperone that alleviates ER stress-induced apoptosis, significantly enhanced B.suis.S2 replication in GTCs. The Unfolded Protein Response (UPR) chaperone molecule GRP78 also promoted B.suis.S2 proliferation in GTCs by inhibiting ER stress-induced apoptosis. We also discovered that the IRE1 pathway, but not the PERK or ATF6 pathway, was activated in the process. However, decreasing the expression of phosphoIRE1α and IRE1α proteins with Irestatin 9389 (IRE1 antagonist) in GTCs did not affect the proliferation of B.suis.S2. Although GTC implantation was not affected upon B.suis.S2 infection, progesterone secretion was suppressed, and prolactin and estrogen secretion increased; these effects were accompanied by changes in the expression of genes encoding key steroidogenic enzymes. This study systematically explored the mechanisms of abortion in Brucella infection from the viewpoint of pathogen invasion, ER stress and reproductive endocrinology. Our findings may provide new insight for understanding the mechanisms involved in goat abortions caused by Brucella infection. PMID:26904517

  5. Brucella suis Vaccine Strain 2 Induces Endoplasmic Reticulum Stress that Affects Intracellular Replication in Goat Trophoblast Cells In vitro.

    PubMed

    Wang, Xiangguo; Lin, Pengfei; Li, Yang; Xiang, Caixia; Yin, Yanlong; Chen, Zhi; Du, Yue; Zhou, Dong; Jin, Yaping; Wang, Aihua

    2016-01-01

    Brucella has been reported to impair placental trophoblasts, a cellular target where Brucella efficiently replicates in association with the endoplasmic reticulum (ER), and ultimately trigger abortion in pregnant animals. However, the precise effects of Brucella on trophoblast cells remain unclear. Here, we describe the infection and replication of Brucella suis vaccine strain 2 (B.suis.S2) in goat trophoblast cells (GTCs) and the cellular and molecular responses induced in vitro. Our studies demonstrated that B.suis.S2 was able to infect and proliferate to high titers, hamper the proliferation of GTCs and induce apoptosis due to ER stress. Tunicamycin (Tm), a pharmacological chaperone that strongly mounts ER stress-induced apoptosis, inhibited B.suis.S2 replication in GTCs. In addition, 4 phenyl butyric acid (4-PBA), a pharmacological chaperone that alleviates ER stress-induced apoptosis, significantly enhanced B.suis.S2 replication in GTCs. The Unfolded Protein Response (UPR) chaperone molecule GRP78 also promoted B.suis.S2 proliferation in GTCs by inhibiting ER stress-induced apoptosis. We also discovered that the IRE1 pathway, but not the PERK or ATF6 pathway, was activated in the process. However, decreasing the expression of phosphoIRE1α and IRE1α proteins with Irestatin 9389 (IRE1 antagonist) in GTCs did not affect the proliferation of B.suis.S2. Although GTC implantation was not affected upon B.suis.S2 infection, progesterone secretion was suppressed, and prolactin and estrogen secretion increased; these effects were accompanied by changes in the expression of genes encoding key steroidogenic enzymes. This study systematically explored the mechanisms of abortion in Brucella infection from the viewpoint of pathogen invasion, ER stress and reproductive endocrinology. Our findings may provide new insight for understanding the mechanisms involved in goat abortions caused by Brucella infection. PMID:26904517

  6. Mast cell chymase in experimentally induced psoriasis.

    PubMed

    Suttle, Mireille-Maria; Harvima, Ilkka T

    2016-06-01

    Mast cell chymase can have a pro-inflammatory or an immunosuppressive function in psoriasis, but the outcome may depend on the level of chymase activity. Therefore, mast cells showing chymase activity (Chyact ) and immunoreactivity (Chyprot ) were studied during the Köbner reaction (0 days, 2 h, 1 day, 3 days and 7 days) of psoriasis induced by the tape-stripping technique. Also, the effect of recombinant human chymase (rh-chymase) or human LAD2 mast cells (LAD2) on the (3) H-thymidine uptake of psoriatic peripheral blood mononuclear cells (PBMC) or total T cells was studied. The Chyact /Chyprot ratio tended to be higher in all time-point biopsies in the Köbner-negative (n = 10) than -positive (n = 8) group (P = 0.073), although chymase activity decreased significantly at 2 h to 1 day only in the Köbner-negative group. rh-chymase (0.05-0.5 μg/mL) stimulated to a varying extent PBMC in eight out of nine cultures, but in all cultures 5 μg/mL rh-chymase turned the stimulation towards inhibition. The effect of rh-chymase on T cells varied from stimulation to inhibition, but in 11 of 15 cultures rh-chymase, at least at 5 μg/mL, produced a change to inhibition. In co-cultures, LAD2 inhibited PBMC in the absence of soybean trypsin inhibitor (SBTI). In the presence of SBTI, LAD2 stimulated PBMC in the majority of seven cultures. In summary, the psoriatic immunopathogenesis may be promoted at low, but controlled at high, activity status of chymase. PMID:26703925

  7. Supplementation of sodium butyrate protects mice from the development of non-alcoholic steatohepatitis (NASH).

    PubMed

    Jin, Cheng Jun; Sellmann, Cathrin; Engstler, Anna Janina; Ziegenhardt, Doreen; Bergheim, Ina

    2015-12-14

    Overnutrition, insulin resistance and an impaired intestinal barrier function are discussed as critical factors in the development of non-alcoholic fatty liver disease. Not only butyrate-producing probiotics as well as supplementation of sodium butyrate (SoB) have been suggested to bear protective effects on liver damage of various aetiologies. However, whether an oral consumption of SoB has a protective effect on Western-style diet (WSD)-induced non-alcoholic steatohepatitis (NASH) and if so molecular mechanism involved has not yet been determined. Eight-week-old C57BL/6J mice were pair-fed either a liquid control or WSD±0·6 g/kg body weight SoB. After 6 weeks, markers of liver damage, inflammation, toll-like receptor (TLR)-4 signalling, lipid peroxidation and glucose as well as lipid metabolism were determined in the liver tissue. Tight junction protein levels were determined in the duodenal tissue. SoB supplementation had no effects on the body weight gain or liver weight of WSD-fed mice, whereas liver steatosis and hepatic inflammation were significantly decreased (e.g. less inflammatory foci and neutrophils) when compared with mice fed only a WSD. Tight junction protein levels in duodenum, hepatic mRNA expression of TLR-4 and sterol regulatory element-binding protein 1c were altered similarly in both WSD groups when compared with controls, whereas protein levels of myeloid differentiation primary response gene 88, inducible nitric oxide synthase, 4-hydroxynonenal protein adducts and F4/80 macrophages were only significantly induced in livers of mice fed only the WSD. In summary, these data suggest that an oral supplementation of SoB protects mice from inflammation in the liver and thus from the development of WSD-induced NASH. PMID:26450277

  8. Measles Virus Induces Functional TRAIL Production by Human Dendritic Cells

    PubMed Central

    Vidalain, Pierre-Olivier; Azocar, Olga; Lamouille, Barbara; Astier, Anne; Rabourdin-Combe, Chantal; Servet-Delprat, Christine

    2000-01-01

    Measles virus infection induces a profound immunosuppression that can lead to serious secondary infections. Here we demonstrate that measles virus induces tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mRNA and protein expression in human monocyte-derived dendritic cells. Moreover, measles virus-infected dendritic cells are shown to be cytotoxic via the TRAIL pathway. PMID:10590149

  9. Conductive Fe3O4 Nanoparticles Accelerate Syntrophic Methane Production from Butyrate Oxidation in Two Different Lake Sediments

    PubMed Central

    Zhang, Jianchao; Lu, Yahai

    2016-01-01

    Syntrophic methanogenesis is an essential link in the global carbon cycle and a key bioprocess for the disposal of organic waste and production of biogas. Recent studies suggest direct interspecies electron transfer (DIET) is involved in electron exchange in methanogenesis occurring in paddy soils, anaerobic digesters, and specific co-cultures with Geobacter. In this study, we evaluate the possible involvement of DIET in the syntrophic oxidation of butyrate in the enrichments from two lake sediments (an urban lake and a natural lake). The results showed that the production of CH4 was significantly accelerated in the presence of conductive nanoscale Fe3O4 or carbon nanotubes in the sediment enrichments. Observations made with fluorescence in situ hybridization and scanning electron microscope indicated that microbial aggregates were formed in the enrichments. It appeared that the average cell-to-cell distance in aggregates in nanomaterial-amended enrichments was larger than that in aggregates in the non-amended control. These results suggested that DIET-mediated syntrophic methanogenesis could occur in the lake sediments in the presence of conductive materials. Microbial community analysis of the enrichments revealed that the genera of Syntrophomonas, Sulfurospirillum, Methanosarcina, and Methanoregula were responsible for syntrophic oxidation of butyrate in lake sediment samples. The mechanism for the conductive-material-facilitated DIET in butyrate syntrophy deserves further investigation. PMID:27597850

  10. Conductive Fe3O4 Nanoparticles Accelerate Syntrophic Methane Production from Butyrate Oxidation in Two Different Lake Sediments.

    PubMed

    Zhang, Jianchao; Lu, Yahai

    2016-01-01

    Syntrophic methanogenesis is an essential link in the global carbon cycle and a key bioprocess for the disposal of organic waste and production of biogas. Recent studies suggest direct interspecies electron transfer (DIET) is involved in electron exchange in methanogenesis occurring in paddy soils, anaerobic digesters, and specific co-cultures with Geobacter. In this study, we evaluate the possible involvement of DIET in the syntrophic oxidation of butyrate in the enrichments from two lake sediments (an urban lake and a natural lake). The results showed that the production of CH4 was significantly accelerated in the presence of conductive nanoscale Fe3O4 or carbon nanotubes in the sediment enrichments. Observations made with fluorescence in situ hybridization and scanning electron microscope indicated that microbial aggregates were formed in the enrichments. It appeared that the average cell-to-cell distance in aggregates in nanomaterial-amended enrichments was larger than that in aggregates in the non-amended control. These results suggested that DIET-mediated syntrophic methanogenesis could occur in the lake sediments in the presence of conductive materials. Microbial community analysis of the enrichments revealed that the genera of Syntrophomonas, Sulfurospirillum, Methanosarcina, and Methanoregula were responsible for syntrophic oxidation of butyrate in lake sediment samples. The mechanism for the conductive-material-facilitated DIET in butyrate syntrophy deserves further investigation. PMID:27597850

  11. Prolonged conversion of n-butyrate to n-butanol with Clostridium saccharoperbutylacetonicum in a two-stage continuous culture with in-situ product removal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 2-stage process was described for continuous bioconversion of n-butyrate into n-butanol with planktonic cells of Clostridium saccharoperbutylacetonicum N1-4. Online product removal via gas stripping was integrated within the system. Our work focused on a continuous fermentation system specifically...

  12. Butyric acid increases transepithelial transport of ferulic acid through upregulation of the monocarboxylate transporters SLC16A1 (MCT1) and SLC16A3 (MCT4).

    PubMed

    Ziegler, Kerstin; Kerimi, Asimina; Poquet, Laure; Williamson, Gary

    2016-06-01

    Ferulic acid is released by microbial hydrolysis in the colon, where butyric acid, a major by-product of fermentation, constitutes the main energy source for colonic enterocytes. We investigated how varying concentrations of this short chain fatty acid may influence the absorption of the phenolic acid. Chronic treatment of Caco-2 cells with butyric acid resulted in increased mRNA and protein abundance of the monocarboxylate transporters SLC16A1 (MCT1) and SLC16A3 (MCT4), previously proposed to facilitate ferulic acid absorption in addition to passive diffusion. Short term incubation with butyric acid only led to upregulation of MCT4 while both conditions increased transepithelial transport of ferulic acid in the apical to basolateral, but not basolateral to apical, direction. Chronic treatment also elevated intracellular concentrations of ferulic acid, which in turn gave rise to increased concentrations of ferulic acid metabolites. Immunofluorescence staining of cells revealed uniform distribution of MCT1 protein in the cell membrane, whereas MCT4 was only detected in the lateral plasma membrane sections of Caco-2 cells. We therefore propose that MCT1 may be acting as an uptake transporter and MCT4 as an efflux system across the basolateral membrane for ferulic acid, and that this process is stimulated by butyric acid. PMID:26854723

  13. Induced pluripotent stem cells from goat fibroblasts.

    PubMed

    Song, Hui; Li, Hui; Huang, Mingrui; Xu, Dan; Gu, Chenghao; Wang, Ziyu; Dong, Fulu; Wang, Feng

    2013-12-01

    Embryonic stem cells (ESCs) are a powerful model for genetic engineering, studying developmental biology, and modeling disease. To date, ESCs have been established from the mouse (Evans and Kaufman, 1981, Nature 292:154-156), non-human primates (Thomson et al., , Proc Nat Acad Sci USA 92:7844-7848), humans (Thomson et al., 1998, Science 282:1145-1147), and rats (Buehr et al., , Cell 135:1287-1298); however, the derivation of ESCs from domesticated ungulates such as goats, sheep, cattle, and pigs have not been successful. Alternatively, induced pluripotent stem cells (iPSCs) can be generated by reprogramming somatic cells with several combinations of genes encoding transcription factors (OCT3/4, SOX2, KLF4, cMYC, LIN28, and NANOG). To date, iPSCs have been isolated from various species, but only limited information is available regarding goat iPSCs (Ren et al., 2011, Cell Res 21:849-853). The objectives of this study were to generate goat iPSCs from fetal goat primary ear fibroblasts using lentiviral transduction of four human transcription factors: OCT4, SOX2, KLF4, and cMYC. The goat iPSCs were successfully generated by co-culture with mitomycin C-treated mouse embryonic fibroblasts using medium supplemented with knockout serum replacement and human basic fibroblast growth factor. The goat iPSCs colonies are flat, compact, and closely resemble human iPSCs. They have a normal karyotype; stain positive for alkaline phosphatase, OCT4, and NANOG; express endogenous pluripotency genes (OCT4, SOX2, cMYC, and NANOG); and can spontaneously differentiate into three germ layers in vitro and in vivo. PMID:24123501

  14. Postnatal development of the myenteric glial network and its modulation by butyrate.

    PubMed

    Cossais, François; Durand, Tony; Chevalier, Julien; Boudaud, Marie; Kermarrec, Laetitia; Aubert, Philippe; Neveu, Isabelle; Naveilhan, Philippe; Neunlist, Michel

    2016-06-01

    The postnatal period is crucial for the development of gastrointestinal (GI) functions. The enteric nervous system is a key regulator of GI functions, and increasing evidences indicate that 1) postnatal maturation of enteric neurons affect the development of GI functions, and 2) microbiota-derived short-chain fatty acids can be involved in this maturation. Although enteric glial cells (EGC) are central regulators of GI functions, the postnatal evolution of their phenotype remains poorly defined. We thus characterized the postnatal evolution of EGC phenotype in the colon of rat pups and studied the effect of short-chain fatty acids on their maturation. We showed an increased expression of the glial markers GFAP and S100β during the first postnatal week. As demonstrated by immunohistochemistry, a structured myenteric glial network was observed at 36 days in the rat colons. Butyrate inhibited EGC proliferation in vivo and in vitro but had no effect on glial marker expression. These results indicate that the EGC myenteric network continues to develop after birth, and luminal factors such as butyrate endogenously produced in the colon may affect this development. PMID:27056724

  15. Long-Term Culture of Porcine Induced Pluripotent Stem-Like Cells Under Feeder-Free Conditions in the Presence of Histone Deacetylase Inhibitors.

    PubMed

    Petkov, Stoyan; Glage, Silke; Nowak-Imialek, Monika; Niemann, Heiner

    2016-03-01

    The reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) is a complex process that involves significant epigenetic alterations in the reprogrammed cells. Epigenetic modifiers such as histone deacetylase (HDAC) inhibitors have been shown to increase the efficiency of derivation of iPSCs in humans and mice. In this study, we used three HDAC inhibitors, valproic acid, sodium butyrate, and suberoylanilide hydroxamic acid, together with ascorbic acid, for derivation and long-term feeder-free culture of porcine iPS-like cells. In the absence of exogenous growth factors and/or small molecules, these inhibitors were able to maintain the expression of key pluripotency markers, including genes known to be specific for naive pluripotent state in mouse stem cells, for over 60 passages under feeder-free conditions. Surprisingly, the cells became dependent on HDAC inhibitors for the maintenance of proliferation. Moreover, despite showing successful integration into blastocysts upon injection, the cells were unable to undergo normal differentiation in vitro and in vivo in the form of teratomas. Our results suggest that HDAC inhibitors maintain pluripotency gene expression of porcine iPSC-like cells in long-term culture, but prevent lineage specification, requiring further optimization of culture conditions for porcine iPSC derivation. PMID:26691930

  16. Experimental and Pathalogical study of Pistacia atlantica, butyrate, Lactobacillus casei and their combination on rat ulcerative colitis model.

    PubMed

    Gholami, Mahdi; Ghasemi-Niri, Seyedeh Farnaz; Maqbool, Faheem; Baeeri, Maryam; Memariani, Zahra; Pousti, Iraj; Abdollahi, Mohammad

    2016-06-01

    This study evaluated the effects of Pistacia atlantica (P. atlantica), butyrate, Lactobacillus casei (L. casei) and especially their combination therapy on 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced rat colitis model. Rats were divided into seven groups. Four groups received oral P. atlantica, butyrate, L. casei and the combination of three agents for 10 consecutive days. The remaining groups were negative and positive controls and a sham group. Macroscopic and histopathological examinations were carried out along with determination of the specific biomarker of colonic oxidative stress, the myeloperoxidase (MPO). Compared with controls, the combination therapy exhibited a significant alleviation of colitis in terms of pathological scores and reduction of MPO activity (55%, p=0.0009). Meanwhile, the macroscopic appearance such as stool consistency, tissue and histopathological scores (edema, necrosis and neutrophil infiltration) were improved. Although single therapy by each P. atlantica, butyrate, and L. casei was partially beneficial in reduction of colon oxidative stress markers, the combination therapy was much more effective. In conclusion, the combination therapy was able to reduce the severity of colitis that is clear from biochemical markers. Future studies have to focus on clinical effects of this combination in management of human ulcerative colitis. Further molecular and signaling pathway studies will help to understand the mechanisms involved in the treatment of colitis and inflammatory diseases. PMID:26972417

  17. PDGF upregulates CLEC-2 to induce T regulatory cells

    PubMed Central

    Agrawal, Sudhanshu; Ganguly, Sreerupa; Hajian, Pega; Cao, Jia-Ning; Agrawal, Anshu

    2015-01-01

    The effect of platelet derived growth factor (PDGF) on immune cells is not elucidated. Here, we demonstrate PDGF inhibited the maturation of human DCs and induced IL-10 secretion. Culture of PDGF-DCs with T cells induced the polarization of T cells towards FoxP3 expressing T regulatory cells that secreted IL-10. Gene expression studies revealed that PDGF induced the expression of C-type lectin like receptor member 2, (CLEC-2) receptor on DCs. Furthermore, DCs transfected with CLEC-2 induced T regulatory cells in DC-T cell co-culture. CLEC-2 is naturally expressed on platelets. Therefore, to confirm whether CLEC-2 is responsible for inducing the T regulatory cells, T cells were cultured with either CLEC-2 expressing platelets or soluble CLEC-2. Both conditions resulted in the induction of regulatory T cells. The generation of T regulatory cells was probably due to the binding of CLEC-2 with its ligand podoplanin on T cells, since crosslinking of podoplanin on the T cells also resulted in the induction of T regulatory cells. These data demonstrate that PDGF upregulates the expression of CLEC-2 on cells to induce T regulatory cells. PMID:26416420

  18. Artesunate induces AIF-dependent apoptosis in A549 cells

    NASA Astrophysics Data System (ADS)

    Zhou, Chen-juan; Chen, Tong-Sheng

    2012-03-01

    Artesunate (ART), a semi-synthetic derivative of the sesquiterpene artemisinin extracted from the Chinese herb Artemisia annua, exerts a broad spectrum of clinical activity against human cancers. It has been shown that ART induces cancer cells death through apoptosis pathway. This study investigated whether ART treatment induced reactive oxygen species (ROS)-dependent cell death in the apoptosis fashion in human lung adenocarconoma A549 cell line and the proapoptotic protein apoptosis inducing factor (AIF) is involved in ART-induced apoptosis. Cells treated with ART exhibited typical apoptotic morphology as chromatin condensation, margination and shrunken nucleus. ART treatment also induced a loss of mitochondrial membrane potential and AIF release from mitochondria. Silencing AIF can remarkable attenuated ART-induced apoptosis. Collectively, ART induces apoptosis by caspase-independent intrinsic pathway in A549 cells.

  19. c-myc regulation during retinoic acid-induced differentiation of F9 cells is posttranscriptional and associated with growth arrest.

    PubMed Central

    Dean, M; Levine, R A; Campisi, J

    1986-01-01

    We have shown that c-myc mRNA levels decrease more than 20-fold when F9 teratocarcinoma stem cells are induced to arrest growth and terminally differentiate to parietal endoderm after exposure to retinoic acid and cyclic AMP (Campisi et al., Cell 36:241-247, 1984). Here, we demonstrate that although growth arrest and full expression of the differentiated phenotype required about 3 days, c-myc mRNA declined abruptly between 8 and 16 h after the addition of retinoic acid and cyclic AMP. The decline was independent of cyclic AMP. We found little or no change in the level of c-myc transcription during differentiation, although two other genes showed marked transcriptional regulation. Thus, decreased c-myc mRNA is a consequence of very early posttranscriptional regulation directed by retinoic acid. Differentiation was not fundamental to this regulation. We have shown that sodium butyrate blocks expression of the differentiated phenotype if added within 8 h of retinoic acid and cyclic AMP (Levine et al., Dev. Biol. 105:443-450, 1984). However, butyrate did not inhibit the decrease in c-myc mRNA. Furthermore, F9 cells partially arrested growth without differentiating when grown in isoleucine-deficient medium. Under these conditions, c-myc mRNA levels also declined. Our results suggest that induction of differentiation-specific genes may be under retinoic acid-mediated control dissimilar from that responsible for the decay of c-myc mRNA. In addition, they raise the possibility that growth arrest may be initiated by reduced c-myc expression. Images PMID:3785153

  20. Successful differentiation to T cells, but unsuccessful B-cell generation, from B-cell-derived induced pluripotent stem cells.

    PubMed

    Wada, Haruka; Kojo, Satoshi; Kusama, Chie; Okamoto, Naoki; Sato, Yorino; Ishizuka, Bunpei; Seino, Ken-ichiro

    2011-01-01

    Forced expression of certain transcription factors in somatic cells results in generation of induced pluripotent stem (iPS) cells, which differentiate into various cell types. We investigated T-cell and B-cell lineage differentiation from iPS cells in vitro. To evaluate the impact of iPS cell source, murine splenic B-cell-derived iPS (B-iPS) cells were generated after retroviral transduction of four transcription factors (Oct4, Sox2, Klf4 and c-Myc). B-iPS cells were identical to embryonic stem (ES) cells and mouse embryonic fibroblast (MEF)-derived iPS cells in morphology, ES cell marker expression as well as teratoma and chimera mouse formation. Both B-iPS and MEF-derived iPS cells differentiated into lymphocytes in OP9 co-culture systems. Both efficiently differentiated into T-cell lineage that produced IFN-γ on T-cell receptor stimulation. However, iPS cells including B-iPS cells were relatively resistant to B-cell lineage differentiation. One of the reasons of the failure of B-cell lineage differentiation seemed due to a defect of Pax5 expression in the differentiated cells. Therefore, current in vitro differentiation systems using iPS cells are sufficient for inducing T-cell but not B-cell lineage. PMID:21135032

  1. Activation-induced and damage-induced cell death in aging human T cells.

    PubMed

    Sikora, Ewa

    2015-11-01

    In multicellular organisms the proper system functionality is ensured by the balance between cell division, differentiation, senescence and death. This balance is changed during aging. Immunosenescence plays a crucial role in aging and leads to the shrinkage of T cell repertoire and the propensity to apoptosis. The elimination of expanded T cells at the end of immune response is crucial to maintain homeostasis and avoid any uncontrolled inflammation. Resting mature T lymphocytes, when activated via their antigen-specific receptor (TCR) and CD28 co-receptor, start to proliferate and then undergo the so called activation induced cell death (AICD), which mechanistically is triggered by the death receptor and leads to apoptosis. T lymphocytes, like other cells, are also exposed to damage, which can trigger the so called damage-induced cell death (DICD). It was hypothesized that oxidative stress and chronic antigenic load increasing with age reduced lymphocyte susceptibility to DICD and enhanced a proinflamatory status leading to increased AICD. However, data collected so far are inconsistent and does not support this assumption. Systematic and comprehensive studies are still needed for conclusive elucidation of the role of AICD and DICD in human immunosenescence, including the role of autophagy and necroptosis in the processes. PMID:25843236

  2. α-Mangostin Induces Apoptosis and Cell Cycle Arrest in Oral Squamous Cell Carcinoma Cell

    PubMed Central

    Kwak, Hyun-Ho; Park, Bong-Soo

    2016-01-01

    Mangosteen has long been used as a traditional medicine and is known to have antibacterial, antioxidant, and anticancer effects. Although the effects of α-mangostin, a natural compound extracted from the pericarp of mangosteen, have been investigated in many studies, there is limited data on the effects of the compound in human oral squamous cell carcinoma (OSCC). In this study, α-mangostin was assessed as a potential anticancer agent against human OSCC cells. α-Mangostin inhibited cell proliferation and induced cell death in OSCC cells in a dose- and time-dependent manner with little to no effect on normal human PDLF cells. α-Mangostin treatment clearly showed apoptotic evidences such as nuclear fragmentation and accumulation of annexin V and PI-positive cells on OSCC cells. α-Mangostin treatment also caused the collapse of mitochondrial membrane potential and the translocation of cytochrome c from the mitochondria into the cytosol. The expressions of the mitochondria-related proteins were activated by α-mangostin. Treatment with α-mangostin also induced G1 phase arrest and downregulated cell cycle-related proteins (CDK/cyclin). Hence, α-mangostin specifically induces cell death and inhibits proliferation in OSCC cells via the intrinsic apoptosis pathway and cell cycle arrest at the G1 phase, suggesting that α-mangostin may be an effective agent for the treatment of OSCC. PMID:27478478

  3. Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin

    PubMed Central

    Dorn, Isabel; Klich, Katharina; Arauzo-Bravo, Marcos J.; Radstaak, Martina; Santourlidis, Simeon; Ghanjati, Foued; Radke, Teja F.; Psathaki, Olympia E.; Hargus, Gunnar; Kramer, Jan; Einhaus, Martin; Kim, Jeong Beom; Kögler, Gesine; Wernet, Peter; Schöler, Hans R.; Schlenke, Peter; Zaehres, Holm

    2015-01-01

    Epigenetic memory in induced pluripotent stem cells, which is related to the somatic cell type of origin of the stem cells, might lead to variations in the differentiation capacities of the pluripotent stem cells. In this context, induced pluripotent stem cells from human CD34+ hematopoietic stem cells might be more suitable for hematopoietic differentiation than the commonly used fibroblast-derived induced pluripotent stem cells. To investigate the influence of an epigenetic memory on the ex vivo expansion of induced pluripotent stem cells into erythroid cells, we compared induced pluripotent stem cells from human neural stem cells and human cord blood-derived CD34+ hematopoietic stem cells and evaluated their potential for differentiation into hematopoietic progenitor and mature red blood cells. Although genome-wide DNA methylation profiling at all promoter regions demonstrates that the epigenetic memory of induced pluripotent stem cells is influenced by the somatic cell type of origin of the stem cells, we found a similar hematopoietic induction potential and erythroid differentiation pattern of induced pluripotent stem cells of different somatic cell origin. All human induced pluripotent stem cell lines showed terminal maturation into normoblasts and enucleated reticulocytes, producing predominantly fetal hemoglobin. Differences were only observed in the growth rate of erythroid cells, which was slightly higher in the induced pluripotent stem cells derived from CD34+ hematopoietic stem cells. More detailed methylation analysis of the hematopoietic and erythroid promoters identified similar CpG methylation levels in the induced pluripotent stem cell lines derived from CD34+ cells and those derived from neural stem cells, which confirms their comparable erythroid differentiation potential. PMID:25326431

  4. The effects of short-chain fatty acids on human colon cancer cell phenotype are associated with histone hyperacetylation.

    PubMed

    Hinnebusch, Brian F; Meng, Shufen; Wu, James T; Archer, Sonia Y; Hodin, Richard A

    2002-05-01

    The short-chain fatty acid (SCFA) butyrate is produced via anaerobic bacterial fermentation within the colon and is thought to be protective in regard to colon carcinogenesis. Although butyrate (C4) is considered the most potent of the SCFA, a variety of other SCFA also exist in the colonic lumen. Butyrate is thought to exert its cellular effects through the induction of histone hyperacetylation. We sought to determine the effects of a variety of the SCFA on colon carcinoma cell growth, differentiation and apoptosis. HT-29 or HCT-116 (wild-type and p21-deleted) cells were treated with physiologically relevant concentrations of various SCFA, and histone acetylation state was assayed by acid-urea-triton-X gel electrophoresis and immunoblotting. Growth and apoptotic effects were studied by flow cytometry, and differentiation effects were assessed using transient transfections and Northern blotting. Propionate (C3) and valerate (C5) caused growth arrest and differentiation in human colon carcinoma cells. The magnitude of their effects was associated with a lesser degree of histone hyperacetylation compared with butyrate. Acetate (C2) and caproate (C6), in contrast, did not cause histone hyperacetylation and also had no appreciable effects on cell growth or differentiation. SCFA-induced transactivation of the differentiation marker gene, intestinal alkaline phosphatase (IAP), was blocked by histone deacetylase (HDAC), further supporting the critical link between SCFA and histones. Butyrate also significantly increased apoptosis, whereas the other SCFA studied did not. The growth arrest induced by the SCFA was characterized by an increase in the expression of the p21 cell-cycle inhibitor and down-regulation of cyclin B1 (CB1). In p21-deleted HCT-116 colon cancer cells, the SCFA did not alter the rate of proliferation. These data suggest that the antiproliferative, apoptotic and differentiating properties of the various SCFA are linked to the degree of induced histone

  5. Laser-induced lipolysis on adipose cells

    NASA Astrophysics Data System (ADS)

    Solarte, Efrain; Gutierrez, O.; Neira, Rodrigo; Arroyave, J.; Isaza, Carolina; Ramirez, Hugo; Rebolledo, Aldo F.; Criollo, Willian; Ortiz, C.

    2004-10-01

    Recently, a new liposuction technique, using a low-level laser (LLL) device and Ultrawet solution prior to the procedure, demonstrated the movement of fat from the inside to the outside of the adipocyte (Neira et al., 2002). To determine the mechanisms involved, we have performed Scanning and Transmission Electron Microscopy studies; Light transmittance measurements on adipocyte dilutions; and a study of laser light propagation in adipose tissue. This studies show: 1. Cellular membrane alterations. 2. LLL is capable to reach the deep adipose tissue layer, and 3. The tumescence solution enhances the light propagation by clearing the tissue. MRI studies demonstrated the appearance of fat on laser treated abdominal tissue. Besides, adipocytes were cultivated and irradiated to observe the effects on isolated cells. These last studies show: 1. 635 nm-laser alone is capable of mobilizing cholesterol from the cell membrane; this action is enhanced by the presence of adrenaline and lidocaine. 2. Intracellular fat is released from adipocytes by co joint action of adrenaline, aminophyline and 635 nm-laser. Results are consistent with a laser induced cellular process, which causes fat release from the adipocytes into the intercellular space, besides the modification of the cellular membranes.

  6. HIV transcription is induced with some forms of cell killing

    SciTech Connect

    Woloschak, G.E.; Schreck, S.; Panozzo, J.; Chang-Liu, C.-M.; Libertin, C.R.

    1996-11-01

    Using HeLa cells stably transfected with an HIV-LTR-CAT construct`, we demonstrated a peak in CAT induction that occurs in viable (but not necessarily cell-division-competent) cells 24 h following exposure to some cell-killing agents. {Gamma} rays were the only cell-killing agent which did not induce HIV transcription; this can be attributed to the fact that {gamma}-ray-induced apoptotic death requires function p53, which is missing in HeLa cells. For all other agents, HIV-LTR induction was dose-dependent and correlated with the amount of cell killing that occurred in the culture.

  7. The efficacy of Na-butyrate encapsulated in palm fat on performance of broilers infected with necrotic enteritis with gene expression analysis

    PubMed Central

    Eshak, M. G.; Elmenawey, M. A.; Atta, A.; Gharib, H. B.; Shalaby, B.; Awaad, M. H. H.

    2016-01-01

    Aim: To study the efficacy of Na-butyrate encapsulated in palm fat on performance of broiler chickens experimentally infected with necrotic enteritis (NE) with the determination of its protective effect against the changes in the gene expression profiles and deoxyribonucleic acid (DNA) fragmentation. Materials and Methods: A total of 800 one-day-old male Arbor Acres Plus broiler chickens were randomly allocated into four groups for 5 weeks. Na-butyrate was supplemented at dosages of 1 kg/ton for starter diet, 0.5 kg/ton for grower diet, and 0.25 kg/ton for finisher diet (presence or absence). Birds of groups 1 and 2 were inoculated by crop gavages with 4×108 CFU/ml/bird of Clostridium perfringens in phosphate buffered saline for 4 successive days, from 14 to 17 days of age to produce NE. Results: Addition of Na-butyrate, encapsulated in palm fat, to ration of experimentally infected broilers with NE resulted in increased final body weight, at 35 days of age, reduced total feed consumption, improved feed conversion ratio, reduced cumulative mortality, and increased production number. There were increased intestinal diameter, intestinal length, and significantly increased the weight of bursa of Fabricius(BF) with higher hemagglutination inhibition titers against Newcastle disease (ND) vaccination versus untreated infected and untreated negative control birds. The results showed increased expression levels of alpha-toxin and glyceraldehyde-3-phosphate dehydrogenase in the bursa tissues of broilers infected with C. perfringens. However, the expression levels of these genes in broilers treated with Na-butyrate were similar to the non-infected control group. Supplementation of broilers with Na-butyrate increased the expression level of insulin-like growth factor-1 (IGF-1) and decreased the DNA fragmentation induced by C. perfringens. Conclusion: Na-butyrate significantly improved chicken broiler body weights, increased relative weights of BF, increased antibody titers

  8. Hepatic Differentiation of Human Induced Pluripotent Stem Cells in a Perfused Three-Dimensional Multicompartment Bioreactor

    PubMed Central

    Freyer, Nora; Knöspel, Fanny; Strahl, Nadja; Amini, Leila; Schrade, Petra; Bachmann, Sebastian; Damm, Georg; Seehofer, Daniel; Jacobs, Frank; Monshouwer, Mario; Zeilinger, Katrin

    2016-01-01

    Abstract The hepatic differentiation of human induced pluripotent stem cells (hiPSC) holds great potential for application in regenerative medicine, pharmacological drug screening, and toxicity testing. However, full maturation of hiPSC into functional hepatocytes has not yet been achieved. In this study, we investigated the potential of a dynamic three-dimensional (3D) hollow fiber membrane bioreactor technology to improve the hepatic differentiation of hiPSC in comparison to static two-dimensional (2D) cultures. A total of 100 × 106 hiPSC were seeded into each 3D bioreactor (n = 3). Differentiation into definitive endoderm (DE) was induced by adding activin A, Wnt3a, and sodium butyrate to the culture medium. For further maturation, hepatocyte growth factor and oncostatin M were added. The same differentiation protocol was applied to hiPSC maintained in 2D cultures. Secretion of alpha-fetoprotein (AFP), a marker for DE, was significantly (p < 0.05) higher in 2D cultures, while secretion of albumin, a typical characteristic for mature hepatocytes, was higher after hepatic differentiation of hiPSC in 3D bioreactors. Functional analysis of multiple cytochrome P450 (CYP) isoenzymes showed activity of CYP1A2, CYP2B6, and CYP3A4 in both groups, although at a lower level compared to primary human hepatocytes (PHH). CYP2B6 activities were significantly (p < 0.05) higher in 3D bioreactors compared with 2D cultures, which is in line with results from gene expression. Immunofluorescence staining showed that the majority of cells was positive for albumin, cytokeratin 18 (CK18), and hepatocyte nuclear factor 4-alpha (HNF4A) at the end of the differentiation process. In addition, cytokeratin 19 (CK19) staining revealed the formation of bile duct-like structures in 3D bioreactors similar to native liver tissue. The results indicate a better maturation of hiPSC in the 3D bioreactor system compared to 2D cultures and emphasize the potential of dynamic 3D culture

  9. Hepatic Differentiation of Human Induced Pluripotent Stem Cells in a Perfused Three-Dimensional Multicompartment Bioreactor.

    PubMed

    Freyer, Nora; Knöspel, Fanny; Strahl, Nadja; Amini, Leila; Schrade, Petra; Bachmann, Sebastian; Damm, Georg; Seehofer, Daniel; Jacobs, Frank; Monshouwer, Mario; Zeilinger, Katrin

    2016-01-01

    The hepatic differentiation of human induced pluripotent stem cells (hiPSC) holds great potential for application in regenerative medicine, pharmacological drug screening, and toxicity testing. However, full maturation of hiPSC into functional hepatocytes has not yet been achieved. In this study, we investigated the potential of a dynamic three-dimensional (3D) hollow fiber membrane bioreactor technology to improve the hepatic differentiation of hiPSC in comparison to static two-dimensional (2D) cultures. A total of 100 × 10(6) hiPSC were seeded into each 3D bioreactor (n = 3). Differentiation into definitive endoderm (DE) was induced by adding activin A, Wnt3a, and sodium butyrate to the culture medium. For further maturation, hepatocyte growth factor and oncostatin M were added. The same differentiation protocol was applied to hiPSC maintained in 2D cultures. Secretion of alpha-fetoprotein (AFP), a marker for DE, was significantly (p < 0.05) higher in 2D cultures, while secretion of albumin, a typical characteristic for mature hepatocytes, was higher after hepatic differentiation of hiPSC in 3D bioreactors. Functional analysis of multiple cytochrome P450 (CYP) isoenzymes showed activity of CYP1A2, CYP2B6, and CYP3A4 in both groups, although at a lower level compared to primary human hepatocytes (PHH). CYP2B6 activities were significantly (p < 0.05) higher in 3D bioreactors compared with 2D cultures, which is in line with results from gene expression. Immunofluorescence staining showed that the majority of cells was positive for albumin, cytokeratin 18 (CK18), and hepatocyte nuclear factor 4-alpha (HNF4A) at the end of the differentiation process. In addition, cytokeratin 19 (CK19) staining revealed the formation of bile duct-like structures in 3D bioreactors similar to native liver tissue. The results indicate a better maturation of hiPSC in the 3D bioreactor system compared to 2D cultures and emphasize the potential of dynamic 3D culture systems

  10. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    PubMed

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments. PMID:27026484

  11. Effect of chaetocin on renal cell carcinoma cells and cytokine-induced killer cells

    PubMed Central

    Rombo, Roman; Weiher, Hans; Schmidt-Wolf, Ingo G.H.

    2016-01-01

    We examined the cytotoxic effects of chaetocin on clear cell renal cell carcinoma (ccRCC) cells and the possibility to combine the effects of chaetocin with the effects of cytokine-induced killer cells (CIK) assayed by MTT assay and FACS analysis. Chaetocin is a thiodioxopiperazine produced by fungi belonging to the chaetomiaceae family. In 2007, it was first reported that chaetocin shows potent and selective ex vivo anti-cancer activity by inducing reactive oxygen species. CIK cells are generated from CD3+/CD56- T lymphocytes with double negative CD4-/CD8- phenotype that are isolated from human blood. The addition of distinct interleukins and antibodies results in the generation of CIK cells that are able to specifically target and destroy renal carcinoma cells. The results of this research state that the anti-ccRCC activity of chaetocin is weak and does not show a high grade of selectivity on clear cell renal cell carcinoma cells. Although the CIK cells show a high grade of selective anti-ccRCC activity, this effect could not be improved by the addition of chaetocin. So chaetocin seems to be no suitable agent for specific targeting ccRCC cells or for the combination therapy with CIK cells in renal cancer. PMID:27141211

  12. Cannabinoids induce incomplete maturation of cultured human leukemia cells

    SciTech Connect

    Murison, G.; Chubb, C.B.H.; Maeda, S.; Gemmell, M.A.; Huberman, E.

    1987-08-01

    Monocyte maturation markers were induced in cultured human myeloblastic ML-2 leukemia cells after treatment for 1-6 days with 0.03-30 ..mu..M ..delta../sup 9/-tetrahydrocannabinol (THC), the major psychoactive component of marijuana. After a 2-day or longer treatment, 2- to 5-fold increases were found in the percentages of cells exhibiting reactivity with either the murine OKM1 monoclonal antibody of the Leu-M5 monoclonal antibody, staining positively for nonspecific esterase activity, and displaying a promonocyte morphology. The increases in these differentiation markers after treatment with 0.03-1 ..mu..M THC were dose dependent. At this dose range, THC did not cause an inhibition of cell growth. The THC-induced cell maturation was also characterized by specific changes in the patterns of newly synthesized proteins. The THC-induced differentiation did not, however, result in cells with a highly developed mature monocyte phenotype. However, treatment of these incompletely matured cells with either phorbol 12-myristate 13-acetate of 1..cap alpha..,25-dihydroxycholecalciferol, which are inducers of differentiation in myeloid leukemia cells (including ML-2 cells), produced cells with a mature monocyte morphology. The ML-2 cell system described here may be a useful tool for deciphering critical biochemical events that lead to the cannabinoid-induced incomplete cell differentiation of ML-2 cells and other related cell types. Findings obtained from this system may have important implications for studies of cannabinoid effects on normal human bone-marrow progenitor cells.

  13. Timing determines dexamethasone and rituximab induced synergistic cell death.

    PubMed

    Adem, Jemal; Eray, Mine; Eeva, Jonna; Nuutinen, Ulla; Pelkonen, Jukka

    2016-07-01

    Dysregulation of cell death signaling pathways in many cell types such as B lymphocytes (B-cells) can lead to cancer, for example to B-cell lymphomas. Rituximab (RTX) and glucocorticoids such as dexamethasone (Dex) are widely used to treat hematological malignancies including B-cell lymphomas. Although the combination of Dex and RTX improves the treatment outcome of lymphoma patients, most lymphomas remain incurable diseases. Therefore, a detailed investigation of Dex- and RTX-induced signaling might provide new insights into the therapeutic benefits of these drugs. In this paper, we describe Dex- and RTX-induced signaling pathways and their downstream target proteins/cells. In addition, we also overview how the signaling initiated by Dex and RTX modulate the outcome of Dex- and RTX-mediated cell death in lymphoma cells. The combination of Dex and RTX results in massive cell death in lymphoma cells. However, pretreatment of lymphoma cells or mononuclear cytotoxic cells with Dex followed by RTX leads to a decrease in apoptosis or it impairs antibody-dependent cellular cytotoxicity (ADCC). RTX-mediated ADCC is impaired by Dex-induced depletion of cytotoxic cells, whereas RTX-mediated short-term ERK1/2 activation decreases Dex-induced apoptosis. Therefore, the timing of the combination of Dex and RTX is a determining factor for the synergistic effect of these cell death inducing agents. PMID:27290654

  14. A Novel High-Content Immunofluorescence Assay as a Tool to Identify at the Single Cell Level γ-Globin Inducing Compounds

    PubMed Central

    Durlak, Marta; Fugazza, Cristina; Elangovan, Sudharshan; Marini, Maria Giuseppina; Marongiu, Maria Franca; Moi, Paolo; Fraietta, Ivan; Cappella, Paolo; Barbarani, Gloria; Font-Monclus, Isaura; Mauri, Mario; Ottolenghi, Sergio; Gasparri, Fabio; Ronchi, Antonella

    2015-01-01

    The identification of drugs capable of reactivating γ-globin to ameliorate β-thalassemia and Sickle Cell anemia is still a challenge, as available γ-globin inducers still have limited clinical indications. High-throughput screenings (HTS) aimed to identify new potentially therapeutic drugs require suitable first-step-screening methods combining the possibility to detect variation in the γ/β globin ratio with the robustness of a cell line. We took advantage of a K562 cell line variant expressing β-globin (β-K562) to set up a new multiplexed high-content immunofluorescence assay for the quantification of γ- and β-globin content at single-cell level. The assay was validated by using the known globin inducers hemin, hydroxyurea and butyric acid and further tested in a pilot screening that confirmed HDACs as targets for γ-globin induction (as proved by siRNA-mediated HDAC3 knockdown and by treatment with HDACs inhibitors entinostat and dacinostat) and identified Heme-oxygenases as novel candidate targets for γ-globin induction. Indeed, Heme-oxygenase2 siRNA knockdown as well as its inhibition by Tin protoporphyrin-IX (TinPPIX) greatly increased γ-globin expression. This result is particularly interesting as several metalloporphyrins have already been developed for clinical uses and could be tested (alone or in combination with other drugs) to improve pharmacological γ-globin reactivation for the treatment of β-hemoglobinopathies. PMID:26509275

  15. Induced stem cells as a novel multiple sclerosis therapy

    PubMed Central

    Xie, Chong; Liu, Yan-qun; Guan, Yang-tai; Zhang, Guang-Xian

    2016-01-01

    Stem cell replacement is providing hope for many degenerative diseases that lack effective therapeutic methods including multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system. Transplantation of neural stem cells or mesenchymal stem cells is a potential therapy for MS thanks to their capacity for cell repopulation as well as for their immunomodulatory and neurotrophic properties. Induced pluripotent stem cell (iPSC), an emerging cell source in regenerative medicine, is also being tested for the treatment of MS. Remarkable improvement in mobility and robust remyelination have been observed after transplantation of iPSC-derived neural cells into demyelinated models. Direct reprogramming of somatic cells into induced neural cells, such as induced neural stem cells (iNSCs) and induced oligodendrocyte progenitor cells (iOPCs), without passing through the pluripotency stage, is an alternative for transplantation that has been proved effective in the congenital hypomyelination model. iPSC technology is rapidly progressing as efforts are being made to increase the efficiency of iPSC therapy and reduce its potential side effects. In this review, we discuss the recent advances in application of stem cells, with particular focus on induced stem/progenitor cells (iPSCs, iNSC, iOPCs), which are promising in the treatment of MS. PMID:25732737

  16. Induced Stem Cells as a Novel Multiple Sclerosis Therapy.

    PubMed

    Xie, Chong; Liu, Yan-Qun; Guan, Yang-Tai; Zhang, Guang-Xian

    2016-01-01

    Stem cell replacement is providing hope for many degenerative diseases that lack effective therapeutic methods including multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system. Transplantation of neural stem cells or mesenchymal stem cells is a potential therapy for MS thanks to their capacity for cell repopulation as well as for their immunomodulatory and neurotrophic properties. Induced pluripotent stem cell (iPSC), an emerging cell source in regenerative medicine, is also being tested for the treatment of MS. Remarkable improvement in mobility and robust remyelination have been observed after transplantation of iPSC-derived neural cells into demyelinated models. Direct reprogramming of somatic cells into induced neural cells, such as induced neural stem cells (iNSCs) and induced oligodendrocyte progenitor cells (iOPCs), without passing through the pluripotency stage, is an alternative for transplantation that has been proved effective in the congenital hypomyelination model. iPSC technology is rapidly progressing as efforts are being made to increase the efficiency of iPSC therapy and reduce its potential side effects. In this review, we discuss the recent advances in application of stem cells, with particular focus on induced stem/progenitor cells (iPSCs, iNSC, iOPCs), which are promising in the treatment of MS. PMID:25732737

  17. T cells induce terminal differentiation of transformed B cells to mature plasma cell tumors.

    PubMed

    Hilbert, D M; Shen, M Y; Rapp, U R; Rudikoff, S

    1995-01-31

    Major interest in the analysis of mature plasma cell neoplasias of mice and humans has focused on identification of precursor cells that give rise to mature malignant plasma cells. Although several laboratories have recently suggested that such cells are present in the granulomas of pristane-treated mice and the bone marrow of some multiple myeloma patients, the in vivo cellular interactions required for their differentiation into mature plasma cell tumors remains unclear. Given the extensive interactions of peripheral T cells and normal B cells, we assessed the potential role of T cells in plasma-cell tumor development, by using a myc, raf-containing retrovirus, J3V1, to induce plasmacytomas in normal BALB/c mice, T-cell-deficient nude mice, and T-cell-reconstituted nude mice. The B-lineage tumors arising in normal BALB/c mice were uniformly mature plasmacytomas, most of which secreted immunoglobulin. In contrast, nude mice yielded predominantly non-immunoglobulin-secreting B-cell lymphomas with a phenotype characteristic of peripheral B cells. T-cell reconstitution of nude mice prior to tumor induction resulted in a shift from B-cell lymphomas to plasmacytomas. These results imply that transformation can occur prior to terminal differentiation of B cells and that such transformed cells can be driven to terminal differentiation by peripheral T cells. These findings further suggest that, in human multiple myeloma, the ability of T cells to influence the differentiation state of transformed B cells may provide a mechanism by which malignant plasma cells found in the bone marrow could arise from clonotypically related less-mature B cells found in both the bone marrow and periphery. PMID:7846031

  18. Regulation of cell proliferation by hypoxia-inducible factors.

    PubMed

    Hubbi, Maimon E; Semenza, Gregg L

    2015-12-15

    Hypoxia is a physiological cue that impacts diverse physiological processes, including energy metabolism, autophagy, cell motility, angiogenesis, and erythropoiesis. One of the key cell-autonomous effects of hypoxia is as a modulator of cell proliferation. For most cell types, hypoxia induces decreased cell proliferation, since an increased number of cells, with a consequent increase in O2 demand, would only exacerbate hypoxic stress. However, certain cell populations maintain cell proliferation in the face of hypoxia. This is a common pathological hallmark of cancers, but can also serve a physiological function, as in the maintenance of stem cell populations that reside in a hypoxic niche. This review will discuss major molecular mechanisms by which hypoxia regulates cell proliferation in different cell populations, with a particular focus on the role of hypoxia-inducible factors. PMID:26491052

  19. Induced Pluripotent Stem Cells: Development in the Ophthalmologic Field

    PubMed Central

    2016-01-01

    Human induced pluripotent stem cells (iPSCs) are a type of stem cells that can be derived from human somatic cells by introducing certain transcription factors. Induced pluripotent stem cells can divide indefinitely and are able to differentiate into every cell type, which make them viable for transplantation and individual disease modeling. Recently, various ocular cells, including corneal epithelial-like cells, retinal pigment epithelium (RPE) cells displaying functions similar to native RPE, photoreceptors, and retinal ganglion cells, have all been successfully derived from iPSCs. Transplantation of these cells in animal models showed great promise for reversing blindness, and the first clinical trial on humans started in 2013. Despite these promising results, more research is in demand for preventing inadvertent tumor growth, developing precise functionality of the cells, and promoting integration into the host tissue. PMID:27594887

  20. Induced Pluripotent Stem Cells: Development in the Ophthalmologic Field.

    PubMed

    Wu, Nan; Doorenbos, Marianne; Chen, Dong Feng

    2016-01-01

    Human induced pluripotent stem cells (iPSCs) are a type of stem cells that can be derived from human somatic cells by introducing certain transcription factors. Induced pluripotent stem cells can divide indefinitely and are able to differentiate into every cell type, which make them viable for transplantation and individual disease modeling. Recently, various ocular cells, including corneal epithelial-like cells, retinal pigment epithelium (RPE) cells displaying functions similar to native RPE, photoreceptors, and retinal ganglion cells, have all been successfully derived from iPSCs. Transplantation of these cells in animal models showed great promise for reversing blindness, and the first clinical trial on humans started in 2013. Despite these promising results, more research is in demand for preventing inadvertent tumor growth, developing precise functionality of the cells, and promoting integration into the host tissue. PMID:27594887

  1. Mechanistic insights into UV-induced electron transfer from PCBM to titanium oxide in inverted-type organic thin film solar cells using AC impedance spectroscopy.

    PubMed

    Kuwabara, Takayuki; Iwata, Chiaki; Yamaguchi, Takahiro; Takahashi, Kohshin

    2010-08-01

    An inverted organic bulk-heterojunction solar cell containing amorphous titanium oxide (TiOx) as an electron collection electrode with the structure ITO/TiO(x)/[6,6]-phenyl C(61) butyric acid methyl ester (PCBM): regioregular poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxylenethiophene):poly(4-styrene sulfonic acid)/Au (TiO(x) cell) was fabricated. Its complicated photovoltaic properties were investigated by photocurrent-voltage and alternating current impedance spectroscopy measurements. The TiO(x) cell required a significant amount of time (approximately 60 min) to reach its maximum power conversion efficiency (PCE) of 2.6%. To investigate the reason for this slow photoresponse, we investigated the influences of UV light and water molecules adsorbed on the TiO(x) layer. Surface treatment of the TiO(x) cell with water induced a rapid photoresponse and enhanced the performance, giving a PCE of 2.97%. However, the durability of the treated cell was considerably inferior that of the untreated cell because of UV-induced photodegradation. The cause of the rapid photoresponse of the treated cell was attributed to the formation of hydrogen bonds between adsorbed water molecules and carbonyl oxygen atoms in PCBM close to the TiO(x) surface. When the TiO(x) surface was positively charged by UV-induced holes, the carbonyl oxygen in PCBM close to the TiO(x) surface can quickly join to the TiO(x) surface, rapidly transporting photogenerated electrons from PCBM to TiO(x) in competition with the photocatalyzed degradation. The experimental results suggested that the slow photoresponse of the untreated TiO(x) cell was because the morphology of the photoactive organic layer changed gradually upon irradiation to improve the transport of photocarriers at the TiO(x)/PCBM:P3HT interface. PMID:20735096

  2. X-ray-induced cell death: Apoptosis and necrosis

    SciTech Connect

    Nakano, Hisako; Shinohara, Kunio

    1994-10-01

    X-ray-induced cell death in MOLT-4N1, a subclone of MOLT-4 cells, and M10 cells was studied with respect to their modes of cell death, apoptosis and necrosis. MOLT-4N1 cells showed radiosensitivity similar to that of M10 cells, a radiosensitive mutant of L5178Y, as determined by the colony formation assay. Analysis of cell size demonstrated that MOLT-4N1 cells increased in size at an early stage after irradiation and then decreased to a size smaller than that of control cells, whereas the size of irradiated M10 cells increased continuously. Apoptosis detected by morphological changes and DNA ladder formation (the cleavage of DNA into oligonucleosomal fragments) occurred in X-irradiated MOLT-4N1 cells but not in M10 cells. Pulsed-field gel electrophoresis showed that the ladder formation involved an intermediate-sized DNA (about 20 kbp). Most of the DNA was detected at the origin in both methods of electrophoresis in the case of M10 cells, though a trace amount of ladder formation was observed. Heat treatment of M10 cells induced apoptosis within 30 min after treatment, in contrast to MOLT-4N1 cells. The results suggest that apoptosis and necrosis are induced by X rays in a manner which is dependent on the cell line irrespective of the capability of the cells to develop apoptosis. DNA fragmentation was the earliest change observed in the development of apoptosis. 27 refs., 8 figs., 1 tab.

  3. YM155 suppresses cell proliferation and induces cell death in human adult T-cell leukemia/lymphoma cells.

    PubMed

    Sasaki, Ryousei; Ito, Shigeki; Asahi, Maki; Ishida, Yoji

    2015-12-01

    Adult T-cell leukemia (ATL) is an aggressive malignancy of peripheral T cells infected with human T-cell leukemia virus type 1 (HTLV-1). The prognosis of patients with aggressive ATL remains poor because ATL cells acquire resistance to conventional cytotoxic agents. Therefore, development of novel agents is urgently needed. We examined the effects of YM155, sepantronium bromide, on cell proliferation and survival of ATL or HTLV-1-infected T-cell lines, S1T, MT-1, and MT-2. We found that YM155 suppressed cell proliferation in these cells and induced cell death in S1T and MT-1 cells. Both real-time quantitative polymerase chain reaction and immunoblot analyses showed suppression of survivin expression in S1T, MT-1, and MT-2 cells. In addition, we observed the cleavage of caspase-3 and poly(ADP-ribose) polymerase in YM155-treated S1T and MT-1 cells, indicating that YM155 induces caspase-dependent apoptosis in these cells. To clarify the mechanism of drug tolerance of MT-2 cells in terms of YM155-induced cell death, we examined intracellular signaling status in these cells. We found that STAT3, STAT5, and AKT were constitutively phosphorylated in MT-2 cells but not in S1T and MT-1 cells. Treatment with YM155 combined with the STAT3 inhibitor S3I-201 significantly suppressed cell proliferation compared to that with either YM155 or S3I-201 in MT-2 cells, indicating that STAT3 may play a role in tolerance of MT-2 cells to YM155 and that STAT3 may therefore be a therapeutic target for YM155-resistant ATL cells. These results suggest that YM155 presents potent antiproliferative and apoptotic effects via suppression of survivin in ATL cells in which STAT3 is not constitutively phosphorylated. YM155 merits further investigation as a potential chemotherapeutic agent for ATL. PMID:26547260

  4. Chrysophanic Acid Induces Necrosis but not Necroptosis in Human Renal Cell Carcinoma Caki-2 Cells

    PubMed Central

    Choi, Joon-Seok

    2016-01-01

    Background: Chrysophanic acid, also known as chrysophanol, has a number of biological activities. It enhances memory and learning abilities, raises superoxide dismutase activity, and has anti-cancer effects in several model systems. According to previous reports, chrysophanic acid-induced cell death shares features of necrotic cell death. However, the molecular and cellular processes underlying chrysophanic acid-induced cell death remain poorly understood. Methods: Chrysophanic acid-induced cell death was monitored by cell viability assay and Annexin V-propidium iodide (PI) staining of renal cell carcinoma Caki-2 cells. The induction of intracellular reactive oxygen species (ROS) by chrysophanic acid and the suppression of ROS by anti-oxidants were evaluated by 2′,7′-dichlorofluorescin diacetate staining. The expression and phosphorylation of proteins that are involved in apoptosis and necroptosis were detected by immunoblotting. Results: The extent of chrysophanic acid-induced cell death was concentration and time dependent, and dead cells mainly appeared in the PI-positive population, which is a major feature of necrosis, upon fluorescence-activated cell sorting analysis. Chrysophanic acid-induced cell death was associated with the generation of intracellular ROS, and this effect was reversed by pretreatment with N-acetyl cysteine. Chrysophanic acid-induced cell death was not associated with changes in apoptotic or necroptotic marker proteins. Conclusions: The cell death induced by chrysophanic acid resembled neither apoptotic nor necroptotic cell death in human renal cell carcinoma Caki-2 cells. PMID:27390736

  5. Effect of butyric acid on the performance and carcass yield of broiler chickens.

    PubMed

    Leeson, S; Namkung, H; Antongiovanni, M; Lee, E H

    2005-09-01

    Short-chain fatty acids such as butyrate are considered potential alternatives to antibiotic growth promoters. The efficacy of butyric acid on performance and carcass characteristics of broiler chickens was tested in two studies. The effect of dietary butyrate on the ability to withstand coccidial oocyte challenge also was investigated. In experiment 1, male broiler chickens were fed diets supplemented with 0 or 11 ppm virginiamycin or 0.2 or 0.4% butyric acid (as mono-, di-, and triglyceride). In experiment 2, broilers were fed bacitracin methylene disalicylate or 0.1 or 0.2% butyric acid. In another trial, birds vaccinated against coccidiosis were challenged with oocytes at 21 d and examined 6 d later. In experiment 1, diet treatments had no effect on body weight gain. Feed intake of the birds fed 0.4% butyric acid was decreased (P < 0.01) compared with birds fed the nonmedicated diet during the starter period, whereas birds fed 0.2% butyric acid had similar feed intake to the control birds. In experiment 2, diet treatments did not affect the performance of broiler chicks while carcass weight and breast meat yield increased (P < 0.01) in birds fed 0.2% butyric acid. With oocyte challenge, birds that had received butyric acid before challenge showed higher growth rate following the challenge compared with birds that received nonmedicated feed. Bacitracin decreased (P < 0.05%) duodenal villi crypt depth, whereas villus length was similar in birds fed butyric acid or the nonmedicated control diet. These results show that 0.2% butyric acid can help to maintain the performance and carcass quality of broilers, especially in vaccinated birds challenged with coccidiosis. PMID:16206563

  6. Low doses of arginine butyrate derivatives improve dystrophic phenotype and restore membrane integrity in DMD models.

    PubMed

    Vianello, Sara; Consolaro, Francesca; Bich, Claudia; Cancela, José-Manuel; Roulot, Morgane; Lanchec, Erwan; Touboul, David; Brunelle, Alain; Israël, Maurice; Benoit, Evelyne; de la Porte, Sabine

    2014-06-01

    A new approach to treating Duchenne muscular dystrophy was investigated by using the ester or amide covalent association of arginine [nitric oxide (NO) pathway] and butyrate [histone deacetylase (HDAC) inhibition] in mdx mice and patient myotubes. Two prodrugs were synthesized, and the beneficial effects on dystrophic phenotype were studied. Nerve excitability abnormalities detected in saline-treated mice were almost totally rescued in animals treated at low doses (50-100 mg/kg/d). Force and fatigue resistance were improved ≈60% and 3.5-fold, respectively, and the percentage of necrosis in heart sections was reduced ≈90% in the treated mice. A decrease of >50% in serum creatine kinase indicated an overall improvement in the muscles. Restoration of membrane integrity was studied directly by measuring the reduction (≈74%) of Evans blue incorporation in the limb muscles of the treated animals, the increase in utrophin level, and the normalization of lipid composition of the heart. In cultures of human myotubes (primary cells and cell line), both prodrugs and HDAC inhibitors increased by 2- to 4-fold the utrophin level, which was correctly localized at the membrane. β-Dystroglycan and embryonic myosin protein levels were also increased. Finally, a 50% reduction in the number of spontaneous Ca(2+) spikes was observed after treatment with NO synthase substrate and HDAC inhibitors. Overall, the beneficial effects were obtained with doses 10 (in vivo) and 5 (in vitro) times lower than those of the salt formulation. Altogether, these data constitute proof of principle of the beneficial effects of low doses of arginine butyrate derivatives on muscular dystrophy, enhancing the NO pathway and inhibiting HDAC. PMID:24604079

  7. Radiation exposure induces inflammasome pathway activation in immune cells.

    PubMed

    Stoecklein, Veit M; Osuka, Akinori; Ishikawa, Shizu; Lederer, Madeline R; Wanke-Jellinek, Lorenz; Lederer, James A

    2015-02-01

    Radiation exposure induces cell and tissue damage, causing local and systemic inflammatory responses. Because the inflammasome pathway is triggered by cell death and danger-associated molecular patterns, we hypothesized that the inflammasome may signal acute and chronic immune responses to radiation. Using a mouse radiation model, we show that radiation induces a dose-dependent increase in inflammasome activation in macrophages, dendritic cells, NK cells, T cells, and B cells as judged by cleaved caspase-1 detection in cells. Time course analysis showed the appearance of cleaved caspase-1 in cells by day 1 and sustained expression until day 7 after radiation. Also, cells showing inflammasome activation coexpressed the cell surface apoptosis marker annexin V. The role of caspase-1 as a trigger for hematopoietic cell losses after radiation was studied in caspase-1(-/-) mice. We found less radiation-induced cell apoptosis and immune cell loss in caspase-1(-/-) mice than in control mice. Next, we tested whether uric acid might mediate inflammasome activation in cells by treating mice with allopurinol and discovered that allopurinol treatment completely blocked caspase-1 activation in cells. Finally, we demonstrate that radiation-induced caspase-1 activation occurs by a Nod-like receptor family protein 3-independent mechanism because radiation-exposed Nlrp3(-/-) mice showed caspase-1 activation profiles that were indistinguishable from those of wild-type mice. In summary, our data demonstrate that inflammasome activation occurs in many immune cell types following radiation exposure and that allopurinol prevented radiation-induced inflammasome activation. These results suggest that targeting the inflammasome may help control radiation-induced inflammation. PMID:25539818

  8. Polyphosphate induces matrix metalloproteinase-3-mediated proliferation of odontoblast-like cells derived from induced pluripotent stem cells

    SciTech Connect

    Ozeki, Nobuaki; Hase, Naoko; Yamaguchi, Hideyuki; Hiyama, Taiki; Kawai, Rie; Kondo, Ayami; Nakata, Kazuhiko; Mogi, Makio

    2015-05-01

    Inorganic polyphosphate [Poly(P)] may represent a physiological source of phosphate and has the ability to induce bone differentiation in osteoblasts. We previously reported that cytokine-induced matrix metalloproteinase (MMP)-3 accelerates the proliferation of purified odontoblast-like cells. In this study, MMP-3 small interfering RNA (siRNA) was transfected into odontoblast-like cells derived from induced pluripotent stem cells to investigate whether MMP-3 activity is induced by Poly(P) and/or is associated with cell proliferation and differentiation into odontoblast-like cells. Treatment with Poly(P) led to an increase in both cell proliferation and additional odontoblastic differentiation. Poly(P)-treated cells showed a small but significant increase in dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1) mRNA expression, which are markers of mature odontoblasts. The cells also acquired additional odontoblast-specific properties including adoption of an odontoblastic phenotype typified by high alkaline phosphatase (ALP) activity and a calcification capacity. In addition, Poly(P) induced expression of MMP-3 mRNA and protein, and increased MMP-3 activity. MMP-3 siRNA-mediated disruption of the expression of these effectors potently suppressed the expression of odontoblastic biomarkers ALP, DSPP, and DMP-1, and blocked calcification. Interestingly, upon siRNA-mediated silencing of MMP-3, we noted a potent and significant decrease in cell proliferation. Using specific siRNAs, we revealed that a unique signaling cascade, Poly(P)→MMP-3→DSPP and/or DMP-1, was intimately involved in the proliferation of odontoblast-like cells. - Highlights: • Polyphosphate increases proliferation of iPS cell-derived odontoblast-like cells. • Polyphosphate-induced MMP-3 results in an increase of cell proliferation. • Induced cell proliferation involves MMP-3, DSPP, and/or DMP-1 sequentially. • Induced MMP-3 also results in an increase of odontoblastic

  9. Porcine circovirus-2 capsid protein induces cell death in PK15 cells

    SciTech Connect

    Walia, Rupali; Dardari, Rkia Chaiyakul, Mark; Czub, Markus

    2014-11-15

    Studies have shown that Porcine circovirus (PCV)-2 induces apoptosis in PK15 cells. Here we report that cell death is induced in PCV2b-infected PK15 cells that express Capsid (Cap) protein and this effect is enhanced in interferon gamma (IFN-γ)-treated cells. We further show that transient PCV2a and 2b-Cap protein expression induces cell death in PK15 cells at rate similar to PCV2 infection, regardless of Cap protein localization. These data suggest that Cap protein may have the capacity to trigger different signaling pathways involved in cell death. Although further investigation is needed to gain deeper insights into the nature of the pathways involved in Cap-induced cell death, this study provides evidence that PCV2-induced cell death in kidney epithelial PK15 cells can be mapped to the Cap protein and establishes the need for future research regarding the role of Cap-induced cell death in PCV2 pathogenesis. - Highlights: • IFN-γ enhances PCV2 replication that leads to cell death in PK15 cells. • IFN-γ enhances nuclear localization of the PCV2 Capsid protein. • Transient PCV2a and 2b-Capsid protein expression induces cell death. • Cell death is not dictated by specific Capsid protein sub-localization.

  10. Interferon induces natural killer cell blastogenesis in vivo

    NASA Technical Reports Server (NTRS)

    Biron, C. A.; Sonnenfeld, G.; Welsh, R. M.

    1984-01-01

    Interferon (IFN), types beta and gamma, and IFN inducers polyinosinic-polycytidylic acid and lymphocytic choriomeningitis virus, all stimulated the generation of blast-natural killer (NK) cells in mouse spleens, Blast-NK cells were characterized on the basis of size, 3H-thymidine uptake, and NK cell markers These data indicate that in addition to augmenting NK cell-mediated lysis, IFN may regulate NK cell proliferation in vivo.

  11. Regulation of 3-hydroxyhexanoate composition in PHBH synthesized by recombinant Cupriavidus necator H16 from plant oil by using butyrate as a co-substrate.

    PubMed

    Sato, Shunsuke; Maruyama, Hiroyuki; Fujiki, Tetsuya; Matsumoto, Keiji

    2015-09-01

    A (R)-3-hydroxyhexanoate (3HH) composition-regulating technology for poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) production was developed using recombinant Cupriavidus necator H16 with butyrate as a co-substrate. A new (R)-3-hydroxyhexanoyl-CoA ((R)-3HH-CoA) synthesis pathway was designed and enhanced by replacing the PHA synthase gene (phaC1) of C. necator by the phaCAcNSDG (encoding the N149S and D171G mutant of PHA synthase from Aeromonas caviae) and deactivation of the phaA gene (encoding (β-ketothiolase) from C. necator H16 chromosome). The effect of butyrate as co-substrate was assessed in high-cell-density fed-batch cultures of several C. necator mutants, and the 3HH fraction was successfully increased by adding butyrate to the culture. Moreover, overexpression of BktB (encoding the second β-ketothiolase with broad substrate specificity) enhanced the (R)-3HH-CoA synthesis pathway in the phaA deactivated mutant of C. necator by promoting the condensation of acetyl-CoA and butyryl-CoA into 3-ketohexanoyl-CoA. Consequently, PHBH containing 4.2-13.0 mol% 3HH was produced from butyrate and palm kernel oil by the genetically modified C. necator H16 strains. PMID:25805434

  12. A Dynamic Model for Induced Reactivation of Latent Virus

    PubMed Central

    Kepler, G.M.; Nguyen, H.K.; Webster-Cyriaque, J.; Banks, H.T.

    2007-01-01

    We develop a deterministic mathematical model to describe reactivation of latent virus by chemical inducers. This model is applied to the reactivation of latent KSHV in BCBL-1 cell cultures with butyrate as the inducing agent. Parameters for the model are first estimated from known properties of the exponentially growing, uninduced cell cultures. Additional parameters that are necessary to describe induction are determined from fits to experimental data from the literature. Our initial model provides good agreement with two independent sets of experimental data, but also points to the need for a new class of experiments which are required for further understanding of the underlying mechanisms. PMID:17045614

  13. Production of Butyric Acid and Butanol from Biomass

    SciTech Connect

    David E. Ramey; Shang-Tian Yang

    2005-08-25

    Environmental Energy Inc has shown that BUTANOL REPLACES GASOLINE - 100 pct and has no pollution problems, and further proved it is possible to produce 2.5 gallons of butanol per bushel corn at a production cost of less than $1.00 per gallon. There are 25 pct more Btu-s available and an additional 17 pct more from hydrogen given off, from the same corn when making butanol instead of ethanol that is 42 pct more Btu-s more energy out than it takes to make - that is the plow to tire equation is positive for butanol. Butanol is far safer to handle than gasoline or ethanol. Butanol when substituted for gasoline gives better gas mileage and does not pollute as attested to in 10 states. Butanol should now receive the same recognition as a fuel alcohol in U.S. legislation as ethanol. There are many benefits to this technology in that Butanol replaces gasoline gallon for gallon as demonstrated in a 10,000 miles trip across the United States July-August 2005. No modifications at all were made to a 1992 Buick Park Avenue; essentially your family car can go down the road on Butanol today with no modifications, Butanol replaces gasoline. It is that simple. Since Butanol replaces gasoline more Butanol needs to be made. There are many small farms across America which can grow energy crops and they can easily apply this technology. There is also an abundance of plant biomass present as low-value agricultural commodities or processing wastes requiring proper disposal to avoid pollution problems. One example is in the corn refinery industry with 10 million metric tons of corn byproducts that pose significant environmental problems. Whey lactose presents another waste management problem, 123,000 metric tons US, which can now be turned into automobile fuel. The fibrous bed bioreactor - FBB - with cells immobilized in the fibrous matrix packed in the reactor has been successfully used for several organic acid fermentations, including butyric and propionic acids with greatly increased

  14. TRAPPING YELLOWJACKETS (HYMENOPTERA: VESPIDAE) WITH HEPTYL BUTYRATE EMITTED FROM CONTROLLED-RELEASE DISPENSERS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numbers of workers of Vespula pensylvanica (Saussure) (western yellowjacket) and V. atropilosa (Sladen) trapped with heptyl butyrate in Washington increased with increased release of the attractant from vial dispensers, up to an estimated 2.3 milligrams heptyl butyrate per hour. Vespula germanica F...

  15. Butyric acid from anaerobic fermentation of lignocellulosic biomass hydrolysates by Clostridium sp. strain RPT-4213

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel Clostridium sp. strain RPT-4213 was found producing butyrate under strict anaerobic conditions. This strain produced 9.47 g L-1 butyric acid from MRS media (0.48 g/g glucose). RPT-4213 was also used to ferment dilute acid pretreated hydrolysates including wheat straw (WSH), corn fiber (CFH...

  16. FLOW CYTOMETRIC EVALUATION OF THE EFFECTS OF SODIUM BUTYRATE ON APOPTOSIS OF BOVINE NEUTROPHILS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine blood neutrophils(PMN) from four clinically healthy cows were suspended in Dulbecco's minimal essential medium and incubated at 37C for 0, 2 or 6 hours in medium alone, with 100ng/ml bacterial endotoxin, 160nM sodium butyrate, 16uM actinomycin D, mixture of sodium butyrate and bacterial endot...

  17. Conversion of N-butyrate to N-butanol with Continuous Fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of our study is to optimize n-butanol production from n-butyrate, using pure cultures of solventogenic Clostridia. In addition to butyrate as a substrate, glucose was used as a source of energy and to provide reducing equivalents to facilitate the conversion. To prevent product inhibition...

  18. Butyric acid from anaerobic fermentation of lignocellulosic biomass hydrolysates by Clostridium tyrobutyricum strain RPT-4213

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A newly isolated Clostridium sp. strain RPT-4213 was found to produce butyrate under anaerobic conditions. Fermentations using Lactobacilli MRS Broth produced 9.47 g L-1 butyric acid from glucose (0.48 g/g glucose). However, the strain was not capable of utilizing five carbon sugars. To assess the a...

  19. Effect of Sodium Butyrate on Growth Performance and Response to Lipopolysaccharide in Weanling Pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two experiments were conducted to determine the effects of dietary sodium butyrate on growth performance and response to E. coli. lipopolysaccharide (LPS) in weanling pigs. In the first 28 d experiment, 180 pigs (initial BW 6.3 kg) were fed 0, 0.05, 0.1, 0.2, and 0.4% sodium butyrate, or 110 mg/kg d...

  20. Butyric acid production from softwood hydrolysate by acetate-consuming Clostridium sp. S1 with high butyric acid yield and selectivity.

    PubMed

    Kim, Minsun; Kim, Ki-Yeon; Lee, Kyung Min; Youn, Sung Hun; Lee, Sun-Mi; Woo, Han Min; Oh, Min-Kyu; Um, Youngsoon

    2016-10-01

    The aim of this work was to study the butyric acid production from softwood hydrolysate by acetate-consuming Clostridium sp. S1. Results showed that Clostridium sp. S1 produced butyric acid by simultaneously utilizing glucose and mannose in softwood hydrolysate and, more remarkably, it consumed acetic acid in hydrolysate. Clostridium sp. S1 utilized each of glucose, mannose, and xylose as well as mixed sugars simultaneously with partially repressed xylose utilization. When softwood (Japanese larch) hydrolysate containing glucose and mannose as the main sugars was used, Clostridium sp. S1 produced 21.17g/L butyric acid with the yield of 0.47g/g sugar and the selectivity of 1 (g butyric acid/g total acids) owing to the consumption of acetic acid in hydrolysate. The results demonstrate potential of Clostridium sp. S1 to produce butyric acid selectively and effectively from hydrolysate not only by utilizing mixed sugars simultaneously but also by converting acetic acid to butyric acid. PMID:27474955

  1. Duramycin-induced calcium release in cancer cells.

    PubMed

    Broughton, Laura J; Crow, Chris; Maraveyas, Anthony; Madden, Leigh A

    2016-03-01

    Duramycin, through binding with phosphatidylethanolamine (PE), has shown potential to be an effective antitumour agent. However, its mode of action in relation to tumour cells is not fully understood. PE expression on the surface of a panel of cancer cell lines was analysed using duramycin and subsequent antibody labelling, and then analysed by flow cytometry. Cell viability was also assessed by flow cytometry using annexin V and propidium iodide. Calcium ion (Ca) release by tumour cells in response to duramycin was determined by spectrofluorometry following incubation with Fluo-3, AM. Confocal microscopy was performed on the cancer cell line AsPC-1 to assess real-time cell response to duramycin treatment. Duramycin could detect cell surface PE expression on all 15 cancer cell lines screened, which was shown to be duramycin concentration dependent. However, higher concentrations induced necrotic cell death. Duramycin induced calcium ion (Ca) release from the cancer cell lines also in a concentration-dependent and time-dependent manner. Confocal microscopy showed an influx of propidium iodide into the cells over time and induced morphological changes. Duramycin induces Ca release from cancer cell lines in a time-dependent and concentration-dependent manner. PMID:26512767

  2. Hexavalent chromium induces chromosome instability in human urothelial cells.

    PubMed

    Wise, Sandra S; Holmes, Amie L; Liou, Louis; Adam, Rosalyn M; Wise, John Pierce

    2016-04-01

    Numerous metals are well-known human bladder carcinogens. Despite the significant occupational and public health concern of metals and bladder cancer, the carcinogenic mechanisms remain largely unknown. Chromium, in particular, is a metal of concern as incidences of bladder cancer have been found elevated in chromate workers, and there is an increasing concern for patients with metal hip implants. However, the impact of hexavalent chromium (Cr(VI)) on bladder cells has not been studied. We compared chromate toxicity in two bladder cell lines; primary human urothelial cells and hTERT-immortalized human urothelial cells. Cr(VI) induced a concentration- and time-dependent increase in chromosome damage in both cell lines, with the hTERT-immortalized cells exhibiting more chromosome damage than the primary cells. Chronic exposure to Cr(VI) also induced a concentration-dependent increase in aneuploid metaphases in both cell lines which was not observed after a 24h exposure. Aneuploidy induction was higher in the hTERT-immortalized cells. When we correct for uptake, Cr(VI) induces a similar amount of chromosome damage and aneuploidy suggesting that the differences in Cr(VI) sensitivity between the two cells lines were due to differences in uptake. The increase in chromosome instability after chronic chromate treatment suggests this may be a mechanism for chromate-induced bladder cancer, specifically, and may be a mechanism for metal-induced bladder cancer, in general. PMID:26908176

  3. Arsenic exposure induces the Warburg effect in cultured human cells

    SciTech Connect

    Zhao, Fei; Severson, Paul; Pacheco, Samantha; Futscher, Bernard W.; Klimecki, Walter T.

    2013-08-15

    Understanding how arsenic exacts its diverse, global disease burden is hampered by a limited understanding of the particular biological pathways that are disrupted by arsenic and underlie pathogenesis. A reductionist view would predict that a small number of basic pathways are generally perturbed by arsenic, and manifest as diverse diseases. Following an initial observation that arsenite-exposed cells in culture acidify their media more rapidly than control cells, the report here shows that low level exposure to arsenite (75 ppb) is sufficient to induce aerobic glycolysis (the Warburg effect) as a generalized phenomenon in cultured human primary cells and cell lines. Expanded studies in one such cell line, the non-malignant pulmonary epithelial line, BEAS-2B, established that the arsenite-induced Warburg effect was associated with increased accumulation of intracellular and extracellular lactate, an increased rate of extracellular acidification, and inhibition by the non-metabolized glucose analog, 2-deoxy-D-glucose. Associated with the induction of aerobic glycolysis was a pathway-wide induction of glycolysis gene expression, as well as protein accumulation of an established glycolysis master-regulator, hypoxia-inducible factor 1A. Arsenite-induced alteration of energy production in human cells represents the type of fundamental perturbation that could extend to many tissue targets and diseases. - Highlights: • Chronic arsenite exposure induces aerobic glycolysis, dubbed the “Warburg effect”. • Arsenite-induced Warburg effect is a general phenomenon in cultured human cells. • HIF-1A may mediate arsenite induced Warburg effect.

  4. Ionizing Radiation-Induced Endothelial Cell Senescence and Cardiovascular Diseases.

    PubMed

    Wang, Yingying; Boerma, Marjan; Zhou, Daohong

    2016-08-01

    Exposure to ionizing radiation induces not only apoptosis but also senescence. While the role of endothelial cell apoptosis in mediating radiation-induced acute tissue injury has been extensively studied, little is known about the role of endothelial cell senescence in the pathogenesis of radiation-induced late effects. Senescent endothelial cells exhibit decreased production of nitric oxide and expression of thrombomodulin, increased expression of adhesion molecules, elevated production of reactive oxygen species and inflammatory cytokines and an inability to proliferate and form capillary-like structures in vitro. These findings suggest that endothelial cell senescence can lead to endothelial dysfunction by dysregulation of vasodilation and hemostasis, induction of oxidative stress and inflammation and inhibition of angiogenesis, which can potentially contribute to radiation-induced late effects such as cardiovascular diseases (CVDs). In this article, we discuss the mechanisms by which radiation induces endothelial cell senescence, the roles of endothelial cell senescence in radiation-induced CVDs and potential strategies to prevent, mitigate and treat radiation-induced CVDs by targeting senescent endothelial cells. PMID:27387862

  5. Ionizing Radiation-Induced Endothelial Cell Senescence and Cardiovascular Diseases

    PubMed Central

    Wang, Yingying; Boerma, Marjan; Zhou, Daohong

    2016-01-01

    Exposure to ionizing radiation induces not only apoptosis but also senescence. While the role of endothelial cell apoptosis in mediating radiation-induced acute tissue injury has been extensively studied, little is known about the role of endothelial cell senescence in the pathogenesis of radiation-induced late effects. Senescent endothelial cells exhibit decreased production of nitric oxide and expression of thrombomodulin, increased expression of adhesion molecules, elevated production of reactive oxygen species and inflammatory cytokines and an inability to proliferate and form capillary-like structures in vitro. These findings suggest that endothelial cell senescence can lead to endothelial dysfunction by dysregulation of vasodilation and hemostasis, induction of oxidative stress and inflammation and inhibition of angiogenesis, which can potentially contribute to radiation-induced late effects such as cardiovascular diseases (CVDs). In this article, we discuss the mechanisms by which radiation induces endothelial cell senescence, the roles of endothelial cell senescence in radiation-induced CVDs and potential strategies to prevent, mitigate and treat radiation-induced CVDs by targeting senescent endothelial cells. PMID:27387862

  6. Sorafenib-induced defective autophagy promotes cell death by necroptosis

    PubMed Central

    Kharaziha, Pedram; Chioureas, Dimitris; Baltatzis, George; Fonseca, Pedro; Rodriguez, Patricia; Gogvadze, Vladimir; Lennartsson, Lena; Björklund, Ann-Charlotte; Zhivotovsky, Boris; Grandér, Dan; Egevad, Lars; Nilsson, Sten; Panaretakis, Theocharis

    2015-01-01

    Autophagy is one of the main cytoprotective mechanisms that cancer cells deploy to withstand the cytotoxic stress and survive the lethal damage induced by anti-cancer drugs. However, under specific conditions, autophagy may, directly or indirectly, induce cell death. In our study, treatment of the Atg5-deficient DU145 prostate cancer cells, with the multi-tyrosine kinase inhibitor, sorafenib, induces mitochondrial damage, autophagy and cell death. Molecular inhibition of autophagy by silencing ULK1 and Beclin1 rescues DU145 cells from cell death indicating that, in this setting, autophagy promotes cell death. Re-expression of Atg5 restores the lipidation of LC3 and rescues DU145 and MEF atg5−/− cells from sorafenib-induced cell death. Despite the lack of Atg5 expression and LC3 lipidation, DU145 cells form autophagosomes as demonstrated by transmission and immuno-electron microscopy, and the formation of LC3 positive foci. However, the lack of cellular content in the autophagosomes, the accumulation of long-lived proteins, the presence of GFP-RFP-LC3 positive foci and the accumulated p62 protein levels indicate that these autophagosomes may not be fully functional. DU145 cells treated with sorafenib undergo a caspase-independent cell death that is inhibited by the RIPK1 inhibitor, necrostatin-1. Furthermore, treatment with sorafenib induces the interaction of RIPK1 with p62, as demonstrated by immunoprecipitation and a proximity ligation assay. Silencing of p62 decreases the RIPK1 protein levels and renders necrostatin-1 ineffective in blocking sorafenib-induced cell death. In summary, the formation of Atg5-deficient autophagosomes in response to sorafenib promotes the interaction of p62 with RIPK leading to cell death by necroptosis. PMID:26416459

  7. CD46-induced human Tregs enhance B cell responses

    PubMed Central

    Fuchs, Anja; Atkinson, John P.; Fremeaux-Bacchi, Veronique; Kemper, Claudia

    2010-01-01

    Summary Regulatory CD4+ T cells (Tregs) are important modulators of the immune response. Different types of Tregs have been identified based on whether they are thymically derived (natural Tregs) or induced in the periphery (adaptive Tregs). We recently reported on an adaptive Treg phenotype that can be induced by the concomitant stimulation of human CD4+ T cells through CD3 and the membrane complement regulator CD46. These complement-induced Treg cells (cTreg) potently inhibit bystander T cell proliferation through high-level secretion of IL-10. In addition, cTreg express granzyme B and exhibit cytotoxic effects towards activated effector T cells. Here we analyzed the effect of cTreg on B cell functions in a co-culture system. We found that cTreg enhance B cell antibody production. This B cell support is dependent on cell/cell contact as well as cTreg-derived IL-10. In addition, we show that T cells from a CD46-deficient patient are not capable of promoting B cell responses, whereas CD46-deficient B cells have no intrinsic defect in Ig production. This finding may relate to a subset of CD46-deficient patients who present with common variable immunodeficiency (CVID). Thus, the lack of cTreg function in optimizing B cell responses could explain why some CD46-deficient patients develop CVID. PMID:19784949

  8. Dexamethasone Suppresses Oxysterol-Induced Differentiation of Monocytic Cells

    PubMed Central

    Son, Yonghae; Kim, Bo-Young; Eo, Seong-Kug; Park, Young Chul; Kim, Koanhoi

    2016-01-01

    Oxysterol like 27-hydroxycholesterol (27OHChol) has been reported to induce differentiation of monocytic cells into a mature dendritic cell phenotype. We examined whether dexamethasone (Dx) affects 27OHChol-induced differentiation using THP-1 cells. Treatment of monocytic cells with Dx resulted in almost complete inhibition of transcription and surface expression of CD80, CD83, and CD88 induced by 27OHChol. Elevated surface levels of MHC class I and II molecules induced by 27OHChol were reduced to basal levels by treatment with Dx. A decreased endocytosis ability caused by 27OHChol was recovered by Dx. We also examined effects of Dx on expression of CD molecules involved in atherosclerosis. Increased levels of surface protein and transcription of CD105, CD137, and CD166 by treatment with 27OHChol were significantly inhibited by cotreatment with Dx. These results indicate that Dx inhibits 27OHChol-induced differentiation of monocytic cells into a mature dendritic cell phenotype and expression of CD molecules whose levels are associated with atherosclerosis. In addition, we examined phosphorylation of AKT induced by 27OHChol and effect of Dx, where cotreatment with Dx inhibited the phosphorylation of AKT. The current study reports that Dx regulates oxysterol-mediated dendritic cell differentiation of monocytic cells. PMID:27340507

  9. Type I collagen gel protects murine fibrosarcoma L929 cells from TNFα-induced cell death

    SciTech Connect

    Wang, Hong-Ju; He, Wen-Qi; Chen, Ling; Liu, Wei-Wei; Xu, Qian; Xia, Ming-Yu; Hayashi, Toshihiko; Fujisaki, Hitomi; Hattori, Shunji; Tashiro, Shin-ichi; Onodera, Satoshi; Ikejima, Takashi

    2015-02-20

    Murine fibrosarcoma L929 cells have been used to test efficacy of proinflammatory cytokine TNFα. In the present study, we reported on protective effect of type I collagen gel used as L929 cell culture. L929 cell grew and proliferated well on collagen gel. However, the L929 cells exhibited cobblestone-like morphology which was much different from the spread fusiform shape when cultured on conventional cell dishes as well as the cells tended to aggregate. On conventional cell culture dishes, the cells treated with TNFα became round in shape and eventually died in a necroptotic manner. The cells cultured on collagen gel, however, were completely unaffected. TNFα treatment was reported to induce autophagy in L929 cells on the plastic dish, and therefore we investigated the effect of collagen gel on induction of autophagy. The results indicated that autophagy induced by TNFα treatment was much reduced when the cells were cultured on collagen gel. In conclusion, type I collagen gel protected L929 cell from TNFα-induced cell death. - Highlights: • Collagen gel culture changed the morphology of L929 cells. • L929 cell cultured on collagen gel were resistant to TNFα-induced cell death. • Collagen gel culture inhibited TNFα-induced autophagy in L929 cells.

  10. IARS2 silencing induces non-small cell lung cancer cells proliferation inhibition, cell cycle arrest and promotes cell apoptosis.

    PubMed

    Yin, J; Liu, W; Li, R; Liu, J; Zhang, Y; Tang, W; Wang, K

    2016-01-01

    The purpose of this study was to investigate the potential role of Ileucyl-tRNA synthetase (IARS2) silencing in non-small cell lung cancer (NSCLC). The silencing of IARS2 in H1299 cells and A549 cells were performed by lentivirus encoding shRNAs. The efficiency of IARS2 silencing was detected by quantitative real time PCR and western blot. The effects of IARS2 silencing on cell growth, cell apoptosis, cell cycle and cell colony formation ability were assessed by cells counting, MTT assay, flow cytometer analysis and soft agar colony formation assay, respectively. Compared with negative control group, IARS2 was significantly knockdown by transfection with lentivirus encoding shRNA of IARS2. The IARS2 silencing significantly inhibited the cells proliferation and cells colony formation ability, induced cell cycle arrest at G1/S phase and promoted cell apoptosis. IARS2 silencing induced NSCLC cells growth inhibition, cell cycle arrest and promoted cell apoptosis. These results suggest that IARS2 may be a novel target for the treatment of NSCLC. PMID:26639235

  11. Maduramicin Inhibits Proliferation and Induces Apoptosis in Myoblast Cells

    PubMed Central

    Chen, Xin; Gu, Ying; Singh, Karnika; Shang, Chaowei; Barzegar, Mansoureh; Jiang, Shanxiang; Huang, Shile

    2014-01-01

    Maduramicin, a polyether ionophore antibiotic derived from the bacterium Actinomadura yumaensis, is currently used as a feed additive against coccidiosis in poultry worldwide. It has been clinically observed that maduramicin can cause skeletal muscle and heart cell damage, resulting in skeletal muscle degeneration, heart failure, and even death in animals and humans, if improperly used. However, the mechanism of its toxic action in myoblasts is not well understood. Using mouse myoblasts (C2C12) and human rhabdomyosarcoma (RD and Rh30) cells as an experimental model for myoblasts, here we found that maduramicin inhibited cell proliferation and induced cell death in a concentration-dependent manner. Further studies revealed that maduramicin induced accumulation of the cells at G0/G1 phase of the cell cycle, and induced apoptosis in the cells. Concurrently, maduramicin downregulated protein expression of cyclin D1, cyclin-dependent kinases (CDK4 and CDK6), and CDC25A, and upregulated expression of the CDK inhibitors (p21Cip1 and p27Kip1), resulting in decreased phosphorylation of Rb. Maduramicin also induced expression of BAK, BAD, DR4, TRADD and TRAIL, leading to activation of caspases 8, 9 and 3 as well as cleavage of poly ADP ribose polymerase (PARP). Taken together, our results suggest that maduramicin executes its toxicity in myoblasts at least by inhibiting cell proliferation and inducing apoptotic cell death. PMID:25531367

  12. Maduramicin inhibits proliferation and induces apoptosis in myoblast cells.

    PubMed

    Chen, Xin; Gu, Ying; Singh, Karnika; Shang, Chaowei; Barzegar, Mansoureh; Jiang, Shanxiang; Huang, Shile

    2014-01-01

    Maduramicin, a polyether ionophore antibiotic derived from the bacterium Actinomadura yumaensis, is currently used as a feed additive against coccidiosis in poultry worldwide. It has been clinically observed that maduramicin can cause skeletal muscle and heart cell damage, resulting in skeletal muscle degeneration, heart failure, and even death in animals and humans, if improperly used. However, the mechanism of its toxic action in myoblasts is not well understood. Using mouse myoblasts (C2C12) and human rhabdomyosarcoma (RD and Rh30) cells as an experimental model for myoblasts, here we found that maduramicin inhibited cell proliferation and induced cell death in a concentration-dependent manner. Further studies revealed that maduramicin induced accumulation of the cells at G0/G1 phase of the cell cycle, and induced apoptosis in the cells. Concurrently, maduramicin downregulated protein expression of cyclin D1, cyclin-dependent kinases (CDK4 and CDK6), and CDC25A, and upregulated expression of the CDK inhibitors (p21Cip1 and p27Kip1), resulting in decreased phosphorylation of Rb. Maduramicin also induced expression of BAK, BAD, DR4, TRADD and TRAIL, leading to activation of caspases 8, 9 and 3 as well as cleavage of poly ADP ribose polymerase (PARP). Taken together, our results suggest that maduramicin executes its toxicity in myoblasts at least by inhibiting cell proliferation and inducing apoptotic cell death. PMID:25531367

  13. Chemically Induced Reprogramming of Somatic Cells to Pluripotent Stem Cells and Neural Cells

    PubMed Central

    Biswas, Dhruba; Jiang, Peng

    2016-01-01

    The ability to generate transplantable neural cells in a large quantity in the laboratory is a critical step in the field of developing stem cell regenerative medicine for neural repair. During the last few years, groundbreaking studies have shown that cell fate of adult somatic cells can be reprogrammed through lineage specific expression of transcription factors (TFs)-and defined culture conditions. This key concept has been used to identify a number of potent small molecules that could enhance the efficiency of reprogramming with TFs. Recently, a growing number of studies have shown that small molecules targeting specific epigenetic and signaling pathways can replace all of the reprogramming TFs. Here, we provide a detailed review of the studies reporting the generation of chemically induced pluripotent stem cells (ciPSCs), neural stem cells (ciNSCs), and neurons (ciN). We also discuss the main mechanisms of actions and the pathways that the small molecules regulate during chemical reprogramming. PMID:26861316

  14. β-Amino-n-butyric Acid Regulates Seedling Growth and Disease Resistance of Kimchi Cabbage

    PubMed Central

    Kim, Yeong Chae; Kim, Yeon Hwa; Lee, Young Hee; Lee, Sang Woo; Chae, Yun-Soek; Kang, Hyun-Kyung; Yun, Byung-Wook; Hong, Jeum Kyu

    2013-01-01

    Non-protein amino acid, β-amino-n-butyric acid (BABA), has been involved in diverse physiological processes including seedling growth, stress tolerance and disease resistance of many plant species. In the current study, treatment of kimchi cabbage seedlings with BABA significantly reduced primary root elongation and cotyledon development in a dose-dependent manner, which adverse effects were similar to the plant response to exogenous abscisic acid (ABA) application. BABA was synergistically contributing ABA-induced growth arrest during the early seedling development. Kimchi cabbage leaves were highly damaged and seedling growth was delayed by foliar spraying with high concentrations of BABA (10 to 20 mM). BABA played roles differentially in in vitro fungal conidial germination, mycelial growth and conidation of necrotroph Alternaria brassicicola causing black spot disease and hemibiotroph Colletotrichum higginsianum causing anthracnose. Pretreatment with BABA conferred induced resistance of the kimchi cabbage against challenges by the two different classes of fungal pathogens in a dose-dependent manner. These results suggest that BABA is involved in plant development, fungal development as well as induced fungal disease resistance of kimchi cabbage plant. PMID:25288957

  15. Generation of induced pluripotent stem cells from human blood.

    PubMed

    Loh, Yuin-Han; Agarwal, Suneet; Park, In-Hyun; Urbach, Achia; Huo, Hongguang; Heffner, Garrett C; Kim, Kitai; Miller, Justine D; Ng, Kitwa; Daley, George Q

    2009-05-28

    Human dermal fibroblasts obtained by skin biopsy can be reprogrammed directly to pluripotency by the ectopic expression of defined transcription factors. Here, we describe the derivation of induced pluripotent stem cells from CD34+ mobilized human peripheral blood cells using retroviral transduction of OCT4/SOX2/KLF4/MYC. Blood-derived human induced pluripotent stem cells are indistinguishable from human embryonic stem cells with respect to morphology, expression of surface antigens, and pluripotency-associated transcription factors, DNA methylation status at pluripotent cell-specific genes, and the capacity to differentiate in vitro and in teratomas. The ability to reprogram cells from human blood will allow the generation of patient-specific stem cells for diseases in which the disease-causing somatic mutations are restricted to cells of the hematopoietic lineage. PMID:19299331

  16. Cell therapy using induced pluripotent stem cells or somatic stem cells: this is the question.

    PubMed

    Somoza, Rodrigo A; Rubio, Francisco J

    2012-05-01

    A lot of effort has been developed to bypass the use of embryonic stem cells (ES) in human therapies, because of several concerns and ethical issues. Some unsolved problems of using stem cells for human therapies, excluding the human embryonic origin, are: how to regulate cell plasticity and proliferation, immunological compatibility, potential adverse side-effects when stem cells are systemically administrated, and the in vivo signals to rule out a specific cell fate after transplantation. Currently, it is known that almost all tissues of an adult organism have somatic stem cells (SSC). Whereas ES are primary involved in the genesis of new tissues and organs, SSC are involved in regeneration processes, immuno-regulatory and homeostasis mechanisms. Although the differentiating potential of ES is higher than SSC, several studies suggest that some types of SSC, such as mesenchymal stem cells (MSC), can be induced epigenetically to differentiate into tissue-specific cells of different lineages. This unexpected pluripotency and the variety of sources that they come from, can make MSC-like cells suitable for the treatment of diverse pathologies and injuries. New hopes for cell therapy came from somatic/mature cells and the discovery that could be reprogrammed to a pluripotent stage similar to ES, thus generating induced pluripotent stem cells (iPS). For this, it is necessary to overexpress four main reprogramming factors, Sox2, Oct4, Klf4 and c-Myc. The aim of this review is to analyze the potential and requirements of cellular based tools in human therapy strategies, focusing on the advantage of using MSC over iPS. PMID:22329581

  17. Hydrophobic statins induce autophagy in cultured human rhabdomyosarcoma cells.

    PubMed

    Araki, Makoto; Motojima, Kiyoto

    2008-03-01

    Statins are widely used to treat hypercholesterolemia, but they are associated with muscle-related adverse events, by as yet, inadequately resolved mechanisms. In this study, we report that statins induced autophagy in cultured human rhabdomyosarcoma A204 cells. Potency differed widely among the statins: cerivastatin induced autophagy at 0.1muM, simvastatin at 10muM but none was induced by pravastatin. Addition of mevalonate, but not cholesterol, blocked induction of autophagy by cerivastatin, suggesting that this induction is dependent on modulation of isoprenoid metabolic pathways. The statin-induced autophagy was not observed in other types of cells, such as human hepatoma HepG2 or embryonic kidney HEK293 cells. Muscle-specific abortive induction of autophagy by hydrophobic statins is a possible mechanism for statin-induced muscle-related side effects. PMID:18178158

  18. Chemically induced bidirectional differentiation of embryonal carcinoma cells in vitro.

    PubMed Central

    Speers, W. C.; Birdwell, C. R.; Dixon, F. J.

    1979-01-01

    N,N-dimethylacetamide, hexamethylene bisacetamide, and Polybrene induced rapid and extensive differentiation in vitro in an otherwise slowly differentiating subline of embryonal carcinoma cells. The type of differentiated cell induced was dependent on the spatial organization of the stem cells during drug treatment. In monalayer culture "epithelial" cells were produced exclusively. However, treatment of aggregated suspension cultures yielded predominantly "fibroblast-like" cells. The undifferentiated embryonal carcinoma cells and the two differentiated cell types were morphologically distinct when examined by light microscopy, scanning electron microscopy, and transmission electron microscopy; and they had differences in cell surface antigens. Both differential cell types produced large amounts of fibronectin, whereas the embryonal carcinoma cells produced only minimal amounts. This system provides a convenient way to induce relatively synchronous differentiation of embryonal carcinoma cells into specific differentiated cell types. Images Figure 5 Figure 6 Figure 1 Figure 2 Figure 3 Figure 4 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 PMID:507191

  19. Induced pluripotent stem cells: origins, applications, and future perspectives.

    PubMed

    Zhao, Jing; Jiang, Wen-jie; Sun, Chen; Hou, Cong-zhe; Yang, Xiao-Mei; Gao, Jian-gang

    2013-12-01

    Embryonic stem (ES) cells are widely used for different purposes, including gene targeting, cell therapy, tissue repair, organ regeneration, and so on. However, studies and applications of ES cells are hindered by ethical issues regarding cell sources. To circumvent ethical disputes, great efforts have been taken to generate ES cell-like cells, which are not derived from the inner cell mass of blastocyst-stage embryos. In 2006, Yamanaka et al. first reprogrammed mouse embryonic fibroblasts into ES cell-like cells called induced pluripotent stem (iPS) cells. About one year later, Yamanaka et al. and Thomson et al. independently reprogrammed human somatic cells into iPS cells. Since the first generation of iPS cells, they have now been derived from quite a few different kinds of cell types. In particular, the use of peripheral blood facilitates research on iPS cells because of safety, easy availability, and plenty of cell sources. Now iPS cells have been used for cell therapy, disease modeling, and drug discovery. In this review, we describe the generations, applications, potential issues, and future perspectives of iPS cells. PMID:24302707

  20. Suppression of T cell-induced osteoclast formation

    SciTech Connect

    Karieb, Sahar; Fox, Simon W.

    2013-07-12

    Highlights: •Genistein and coumestrol prevent activated T cell induced osteoclast formation. •Anti-TNF neutralising antibodies prevent the pro-osteoclastic effect of activated T cells. •Phytoestrogens inhibit T cell derived TNF alpha and inflammatory cytokine production. •Phytoestrogens have a broader range of anti-osteoclastic actions than other anti-resorptives. -- Abstract: Inhibition of T cell derived cytokine production could help suppress osteoclast differentiation in inflammatory skeletal disorders. Bisphosphonates are typically prescribed to prevent inflammatory bone loss but are not tolerated by all patients and are associated with an increased risk of osteonecrosis of the jaw. In light of this other anti-resorptives such as phytoestrogens are being considered. However the effect of phytoestrogens on T cell-induced osteoclast formation is unclear. The effect of genistein and coumestrol on activated T cell-induced osteoclastogenesis and cytokine production was therefore examined. Concentrations of genistein and coumestrol (10{sup −7} M) previously shown to directly inhibit osteoclast formation also suppressed the formation of TRAP positive osteoclast induced by con A activated T cells, which was dependent on inhibition of T cell derived TNF-α. While both reduced osteoclast formation their mechanism of action differed. The anti-osteoclastic effect of coumestrol was associated with a dual effect on con A induced T cell proliferation and activation; 10{sup −7} M coumestrol significantly reducing T cell number (0.36) and TNF-α (0.47), IL-1β (0.23) and IL-6 (0.35) expression, whereas genistein (10{sup −7} M) had no effect on T cell number but a more pronounced effect on T cell differentiation reducing expression of TNF-α (0.49), IL-1β (0.52), IL-6 (0.71) and RANKL (0.71). Phytoestrogens therefore prevent the pro-osteoclastic action of T cells suggesting they may have a role in the control of inflammatory bone loss.

  1. MiR-122 Induces Radiosensitization in Non-Small Cell Lung Cancer Cell Line

    PubMed Central

    Ma, Debin; Jia, Hui; Qin, Mengmeng; Dai, Wenjie; Wang, Tao; Liang, Erguang; Dong, Guofu; Wang, Zuojun; Zhang, Zhiyuan; Feng, Fan

    2015-01-01

    MiR-122 is a novel tumor suppresser and its expression induces cell cycle arrest, or apoptosis, and inhibits cell proliferation in multiple cancer cells, including non-small cell lung cancer (NSCLC) cells. Radioresistance of cancer cell leads to the major drawback of radiotherapy for NSCLC and the induction of radiosensitization could be a useful strategy to fix this problem. The present work investigates the function of miR-122 in inducing radiosensitization in A549 cell, a type of NSCLC cells. MiR-122 induces the radiosensitization of A549 cells. MiR-122 also boosts the inhibitory activity of ionizing radiation (IR) on cancer cell anchor-independent growth and invasion. Moreover, miR-122 reduced the expression of its targeted genes related to tumor-survival or cellular stress response. These results indicate that miR-122 would be a novel strategy for NSCLC radiation-therapy. PMID:26389880

  2. MiR-122 Induces Radiosensitization in Non-Small Cell Lung Cancer Cell Line.

    PubMed

    Ma, Debin; Jia, Hui; Qin, Mengmeng; Dai, Wenjie; Wang, Tao; Liang, Erguang; Dong, Guofu; Wang, Zuojun; Zhang, Zhiyuan; Feng, Fan

    2015-01-01

    MiR-122 is a novel tumor suppresser and its expression induces cell cycle arrest, or apoptosis, and inhibits cell proliferation in multiple cancer cells, including non-small cell lung cancer (NSCLC) cells. Radioresistance of cancer cell leads to the major drawback of radiotherapy for NSCLC and the induction of radiosensitization could be a useful strategy to fix this problem. The present work investigates the function of miR-122 in inducing radiosensitization in A549 cell, a type of NSCLC cells. MiR-122 induces the radiosensitization of A549 cells. MiR-122 also boosts the inhibitory activity of ionizing radiation (IR) on cancer cell anchor-independent growth and invasion. Moreover, miR-122 reduced the expression of its targeted genes related to tumor-survival or cellular stress response. These results indicate that miR-122 would be a novel strategy for NSCLC radiation-therapy. PMID:26389880

  3. Mast Cell-Nerve Cell Interaction at Acupoint: Modeling Mechanotransduction Pathway Induced by Acupuncture

    PubMed Central

    Yao, Wei; Yang, Hongwei; Yin, Na; Ding, Guanghong

    2014-01-01

    Mast cells are found abundant at sites of acupoints. Nerve cells share perivascular localization with mast cells. Acupuncture (mechanical stimuli) can activate mast cells to release adenosine triphosphate (ATP) which can activate nerve cells and modulates pain-processing pathways in response to acupuncture. In this paper, a mathematical model was constructed for describing intracellular Ca2+ signal and ATP release in a coupled mast cell and nerve cell system induced by mechanical stimuli. The results showed mechanical stimuli lead to a intracellular Ca2+ rise in the mast cell and ATP release, ATP diffuses in the extracellular space (ECS) and activates the nearby nerve cells, then induces electrical current in the nerve cell which spreads in the neural network. This study may facilitate our understanding of the mechanotransduction process induced by acupuncture and provide a methodology for quantitatively analyzing acupuncture treatment. PMID:24910530

  4. Cell death and cytokine production induced by autoimmunogenic hydrocarbon oils.

    PubMed

    Herman, Sonja; Kny, Angelika; Schorn, Christine; Pfatschbacher, Jürgen; Niederreiter, Birgit; Herrmann, Martin; Holmdahl, Rikard; Steiner, Günter; Hoffmann, Markus H

    2012-12-01

    Hydrocarbon oils such as pristane or hexadecane induce arthritis and lupus in rodents sharing clinical and pathological features with the human diseases rheumatoid arthritis and systemic lupus erythematosus, respectively. In pristane-induced lupus in the mouse induction of apoptosis and augmentation of type-I Interferon signalling by pristane have been suggested to contribute to pathology, whereas in pristane-induced arthritis (PIA) in the rat the pathological mechanisms are still elusive. Here we show that pristane induces cell death in rat and human cells. Increased numbers of apoptotic cells were found in draining lymph nodes of pristane-injected rats and increased percentages of apoptotic and necrotic cells were observed in peripheral blood. In addition, neutrophil extracellular trap formation was triggered by pristane and hexadecane in neutrophils. Because levels of interleukin (IL)-1β were elevated in sera of pristane-injected rats, with levels mirroring the course of PIA, we examined the effect of pristane at single cell level in vitro, using rat splenocytes and the human monocytic cell line THP-1. Pristane and other hydrocarbon oils induced IL-1β secretion in THP-1 cells as well as in rat splenocytes. The potassium channel inhibitor glibenclamide partly inhibited IL-1β induction, suggesting involvement of the inflammasome. Elevated levels of IL-1α were also found in supernatants of cells treated with pristane and hexadecane. In conclusion, autoimmunogenic hydrocarbon oils induce various forms of cell death in rat and human cells. The higher serum IL-1β levels in pristane-injected animals might be caused by both inflammasome-dependent and -independent mechanisms, such as passive release from dying-cells and probably extracellular maturation of pro-IL-1β. PMID:22917079

  5. Substrate Induced Osteoblast-Like Differentiation of Stromal Stem Cells

    NASA Astrophysics Data System (ADS)

    Belizar, Jacqueline; Glaser, Reena; Hung, Matthew; Simon, Marcia; Jurukovski, Vladimir; Rafailovich, Miriam; Shih, Alice

    2009-03-01

    We have demonstrated that Adipose-derived stem cells (ASCs) can be induced to biomineralize on a polybutadiene (PB) coated Si substrate. The cells began to generate calcium phosphate deposits after a five-day incubation period in the absence of dexamethasone. Control cells plated on tissue culture PS culture dish (TCP) did not biomineralize. In addition, the biomineralizing culture retained proliferative cells In order to determine whether the induction was transient, we transferred the cells exposed to polybutadiene after 14 and 28-day incubation periods to TCP dishes. These cells continued to biominerlize. Genetic testing is underway which will determine whether differentiation is maintained after transfer.

  6. Hypoxia-Inducible Factors in Cancer Stem Cells and Inflammation

    PubMed Central

    Peng, Gong; Liu, Yang

    2015-01-01

    Hypoxia-inducible factors (HIF) mediate metabolic switch in cells in hypoxic environments, including those in both normal and malignant tissues with limited supplies of oxygen. Paradoxically, recent studies have shown that cancer stem cells and activated immune effector cells exhibit high HIF activity in normoxic environments and that HIF activity is critical in maintenance of cancer stem cells as well as differentiation and function of inflammatory cells. Since inflammation and cancer stem cells are two major barriers to effective cancer therapy, targeting HIF may provide a new approach for the ultimate challenges. PMID:25857287

  7. How Kidney Cell Death Induces Renal Necroinflammation.

    PubMed

    Mulay, Shrikant R; Kumar, Santhosh V; Lech, Maciej; Desai, Jyaysi; Anders, Hans-Joachim

    2016-05-01

    The nephrons of the kidney are independent functional units harboring cells of a low turnover during homeostasis. As such, physiological renal cell death is a rather rare event and dead cells are flushed away rapidly with the urinary flow. Renal cell necrosis occurs in acute kidney injuries such as thrombotic microangiopathies, necrotizing glomerulonephritis, or tubular necrosis. All of these are associated with intense intrarenal inflammation, which contributes to further renal cell loss, an autoamplifying process referred to as necroinflammation. But how does renal cell necrosis trigger inflammation? Here, we discuss the role of danger-associated molecular patterns (DAMPs), mitochondrial (mito)-DAMPs, and alarmins, as well as their respective pattern recognition receptors. The capacity of DAMPs and alarmins to trigger cytokine and chemokine release initiates the recruitment of leukocytes into the kidney that further amplify necroinflammation. Infiltrating neutrophils often undergo neutrophil extracellular trap formation associated with neutrophil death or necroptosis, which implies a release of histones, which act not only as DAMPs but also elicit direct cytotoxic effects on renal cells, namely endothelial cells. Proinflammatory macrophages and eventually cytotoxic T cells further drive kidney cell death and inflammation. Dissecting the molecular mechanisms of necroinflammation may help to identify the best therapeutic targets to limit nephron loss in kidney injury. PMID:27339382

  8. Triptolide induces apoptotic cell death of human cholangiocarcinoma cells through inhibition of myeloid cell leukemia-1

    PubMed Central

    2014-01-01

    Background Cholangiocarcinoma (CCA), a devastating neoplasm, is highly resistant to current chemotherapies. CCA cells frequently overexpress the antiapoptotic protein myeloid cell leukemia-1(Mcl-1), which is responsible for its extraordinary ability to evade cell death. Triptolide, a bioactive ingredient extracted from Chinese medicinal plant, has been shown to inhibit cell proliferation and induce apoptosis in several cancers. Methods CCK-8 assay was performed to detect cell survival rate in vitro. DAPI staining and Flow cytometry were used to analyze apoptosis. Western blot was performed to determine the expression levels of caspase-3, caspase-7, caspase-9, PARP, and Mcl-1. Quantitative real-time PCR and immunofluorescence were used to detect the expression levels of Mcl-1. The nude mice xenograft model was used to evaluate the antitumor effect of triptolide in vivo. Results Triptolide reduced cell viability in cholangiocarcinoma cell lines in a dose- and time-dependent manner, with IC50 values of 12.6 ± 0.6 nM, 20.5 ± 4.2 nM, and 18.5 ± 0.7 nM at 48 h for HuCCT1, QBC939, and FRH0201 respectively. Triptolide induced apoptosis in CCA cell lines in part through mitochondrial pathway. Using quantitative real-time PCR, western blot and immunofluorescence, we have shown that triptolide downregulates Mcl-1 mRNA and protein levels. Furthermore, triptolide inhibited the CCA growth in vivo. Conclusions Triptolide has profound antitumor effect on CCA, probably by inducing apoptosis through inhibition of Mcl-1. Triptolide would be a promising therapeutic agent for CCA. PMID:24742042

  9. Generation of Human Induced Pluripotent Stem Cells from Peripheral Blood Mononuclear Cells Using Sendai Virus.

    PubMed

    Soares, Filipa A C; Pedersen, Roger A; Vallier, Ludovic

    2016-01-01

    This protocol describes the efficient isolation of peripheral blood mononuclear cells from circulating blood via density gradient centrifugation and subsequent generation of integration-free human induced pluripotent stem cells. Peripheral blood mononuclear cells are cultured for 9 days to allow expansion of the erythroblast population. The erythroblasts are then used to derive human induced pluripotent stem cells using Sendai viral vectors, each expressing one of the four reprogramming factors Oct4, Sox2, Klf4, and c-Myc. PMID:25687300

  10. Characterization of radiation-induced Apoptosis in rodent cell lines

    SciTech Connect

    Guo, Min; Chen, Changhu; Ling, C.C.

    1997-03-01

    For REC:myc(ch1), Rat1 and Rat1:myc{sub b} cells, we determined the events in the development of radiation-induced apoptosis to be in the following order: cell division followed by chromatin condensation, membrane blebbing, loss of adhesion and the uptake of vital dye. Experimental data which were obtained using {sup 4}He ions of well defined energies and which compared the dependence of apoptosis and clonogenic survival on {sup 4}He range strongly suggested that in our cells both apoptosis and loss of clonogenic survival resulted from radiation damage to the cell nucleus. Corroboratory evidence was that BrdU incorporation sensitized these cells to radiation-induced apoptosis. Comparing the dose response for apoptosis and the clonogenic survival curves for Rat1 and Rat1:myc{sub b} cells, we concluded that radiation-induced cell inactivation as assayed by clonogenic survival, and that a modified linear-quadratic model, proposed previously, modeled such a contribution effectively. In the same context, the selective increase in radiation-induced apoptosis. Comparing the dose response for apoptosis and the clonogenic survival curves for Rat1 and Rat1:myc{sub b} cells, we concluded that radiation-induced apoptosis contributed to the overall radiation-induced cell inactivation as assayed by clonogenic survival, and that a modified linear-quadratic model, proposed previously, modeled such a contribution effectively. In the same context, the selective increase in radiation-induced apoptosis during late S and G{sub 2} phases reduced the relative radioresistance observed for clonogenic survival during late S and G{sub 2} phases. 30 refs., 8 figs.

  11. Akebia saponin PA induces autophagic and apoptotic cell death in AGS human gastric cancer cells.

    PubMed

    Xu, Mei-Ying; Lee, Dong Hwa; Joo, Eun Ji; Son, Kun Ho; Kim, Yeong Shik

    2013-09-01

    In this study, we investigated the anticancer mechanism of akebia saponin PA (AS), a natural product isolated from Dipsacus asperoides in human gastric cancer cell lines. It was shown that AS-induced cell death is caused by autophagy and apoptosis in AGS cells. The apoptosis-inducing effect of AS was characterized by annexin V/propidium (PI) staining, increase of sub-G1 phase and caspase-3 activation, while the autophagy-inducing effect was indicated by the formation of cytoplasmic vacuoles and microtubule-associated protein 1 light chain-3 II (LC3-II) conversion. The autophagy inhibitor bafilomycin A1 (BaF1) decreased AS-induced cell death and caspase-3 activation, but caspase-3 inhibitor Ac-DEVD-CHO did not affect LC3-II accumulation or AS-induced cell viability, suggesting that AS induces autophagic cell death and autophagy contributes to caspase-3-dependent apoptosis. Furthermore, AS activated p38/c-Jun N-terminal kinase (JNK), which could be inhibited by BaF1, and caspase-3 activation was attenuated by both SB202190 and SP600125, indicating that AS-induced autophagy promotes mitogen-activated protein kinases (MAPKs)-mediated apoptosis. Taken together, these results demonstrate that AS induces autophagic and apoptotic cell death and autophagy plays the main role in akebia saponin PA-induced cell death. PMID:23850994

  12. Irradiation-induced changes in nuclear shape and cell cycle

    SciTech Connect

    Iwata, M.; Sasaki, H.; Kishino, Y.; Tsuboi, T.; Sugishita, T.; Hosokawa, T.

    1982-03-01

    Using human uterine cervical carcinoma cells transplanted in nude mice and mice leukemia L5178Y cells, changes in the cell cycle following irradiation were observed by flow cytometry (FCM), and changes in the cell nuclei during the course of irradiation were measured by FCM. Experiments in vivo as well as in vitro caused accumulation of cells in the G2 to M populations, resulting in the so-called G2 block phenomenon as revealed by FCM analysis of DNA distributions. The radiation-induced changes of nuclear shapes were dependent on abnormal mitoses, which occurred more frequently in the G2 to M phases. Therefore it is suggested that the G2 block phenomenon plays an important role in radiation-induced cell death because the process of cell death by irradiation has been shown to proceed via these abnormal mitoses.

  13. Clostridium perfringens Iota-Toxin b Induces Rapid Cell Necrosis▿

    PubMed Central

    Nagahama, Masahiro; Umezaki, Mariko; Oda, Masataka; Kobayashi, Keiko; Tone, Shigenobu; Suda, Taiji; Ishidoh, Kazumi; Sakurai, Jun

    2011-01-01

    Clostridium perfringens iota-toxin is a binary toxin composed of an enzyme component (Ia) and a binding component (Ib). Each component alone lacks toxic activity, but together they produce cytotoxic effects. We examined the cytotoxicity of iota-toxin Ib in eight cell lines. A431 and A549 cells were susceptible to Ib, but MDCK, Vero, CHO, Caco-2, HT-29, and DLD-1 cells were not. Ib bound and formed oligomers in the membranes of A431 and MDCK cells. However, Ib entered MDCK cells but not A431 cells, suggesting that uptake is essential for cellular survival. Ib also induced cell swelling and the rapid depletion of cellular ATP in A431 and A549 cells but not the insensitive cell lines. In A431 cells, Ib binds and oligomerizes mainly in nonlipid rafts in the membranes. Disruption of lipid rafts by methyl-β-cyclodextrin did not impair ATP depletion or cell death caused by Ib. Ib induced permeabilization by propidium iodide without DNA fragmentation in A431 cells. Ultrastructural studies revealed that A431 cells undergo necrosis after treatment with Ib. Ib caused a disruption of mitochondrial permeability and the release of cytochrome c. Staining with active-form-specific antibodies showed that the proapoptotic Bcl-2-family proteins Bax and Bak were activated and colocalized with mitochondria in Ib-treated A431 cells. We demonstrate that Ib by itself produces cytotoxic activity through necrosis. PMID:21911469

  14. Turkish propolis supresses MCF-7 cell death induced by homocysteine.

    PubMed

    Tartik, Musa; Darendelioglu, Ekrem; Aykutoglu, Gurkan; Baydas, Giyasettin

    2016-08-01

    Elevated plasma homocysteine (Hcy) level is a most important risk factor for various vascular diseases including coronary, cerebral and peripheral arterial and venous thrombosis. Propolis is produced by honeybee from various oils, pollens and wax materials. Therefore, it has various biological properties including antioxidant, antitumor and antimicrobial activities. This study investigated the effects of propolis and Hcy on apoptosis in cancer cells. According to our findings, Hcy induced apoptosis in human breast adenocarcinoma (MCF-7) cells by regulating numerous genes and proteins involved in the apoptotic signal transduction pathway. In contrast, treatment with propolis inhibited caspase- 3 and -9 induced by Hcy in MCF-7 cells. It can be concluded that Hcy may augment the activity of anticancer agents that induce excessive reactive oxygen species (ROS) generation and apoptosis in their target cells. In contrast to the previous studies herein we found that propolis in low doses protected cancer cells inhibiting cellular apoptosis mediated by intracellular ROS-dependent mitochondrial pathway. PMID:27470414

  15. Expression of Hyaluronidase by Tumor Cells Induces Angiogenesis in vivo

    NASA Astrophysics Data System (ADS)

    Liu, Dacai; Pearlman, Eric; Diaconu, Eugenia; Guo, Kun; Mori, Hiroshi; Haqqi, Tariq; Markowitz, Sanford; Willson, James; Sy, Man-Sun

    1996-07-01

    Hyaluronic acid is a proteoglycan present in the extracellular matrix and is important for the maintenance of tissue architecture. Depolymerization of hyaluronic acid may facilitate tumor invasion. In addition, oligosaccharides of hyaluronic acid have been reported to induce angiogenesis. We report here that a hyaluronidase similar to the one on human sperm is expressed by metastatic human melanoma, colon carcinoma, and glioblastoma cell lines and by tumor biopsies from patients with colorectal carcinomas, but not by tissues from normal colon. Moreover, angiogenesis is induced by hyaluronidase+ tumor cells but not hyaluronidase- tumor cells and can be blocked by an inhibitor of hyaluronidase. Tumor cells thus use hyaluronidase as one of the ``molecular saboteurs'' to depolymerize hyaluronic acid to facilitate invasion. As a consequence, breakdown products of hyaluronic acid can further promote tumor establishment by inducing angiogenesis. Hyaluronidase on tumor cells may provide a target for anti-neoplastic drugs.

  16. Shear-induced Volume Decrease in MDCK Cells

    PubMed Central

    Heo, Jinseok; Sachs, Frederick; Wang, Jianbin; Hua, Susan Z.

    2013-01-01

    Using a microfluidic cell volume sensor we measured the change in the cell volume of Madin-Darby Canine Kidney (MDCK) cells induced by shear stress. An increase in shear stress from 0.2 to 2.0 dyn/cm2 resulted in a volume decrease to a steady state volume ~ 20 – 30 % smaller than the initial resting cell volume. Independent experiments based on fluorescence quenching confirmed the volume reduction. This shear-induced cell shrinkage was irreversible on the time scale of the experiment (~ 30 min). Treatment of 0.1 μM Hg2+ significantly inhibited the volume decrease, suggesting that the shear-induced cell shrinkage is associated with water efflux through aquaporins. The volume decrease cannot be inhibited by 75 mM TEA, 100 μM DIDS, or 100 μM Gd3+ suggesting that volume reduction is not directly mediated by K+ and Cl− channels that typically function during regulatory volume decrease (RVD), nor is it through cationic stretch-activated ion channels (SACs). The process also appears to be Ca2+ independent because it was insensitive to intracellular Ca2+ level. Since cell volume is determined by the intracellular water content, we postulate that the shear induced reductions in cell volume may arise from increased intracellular hydrostatic pressure as the cell is deformed under flow, which promotes the efflux of water. The increase in internal pressure in a deformable object under the flow is supported by the finite element mechanical model. PMID:22759987

  17. Regulation of somatic cell reprogramming through inducible mir-302 expression.

    PubMed

    Lin, Shi-Lung; Chang, Donald C; Lin, Chun-Hung; Ying, Shao-Yao; Leu, Davey; Wu, David T S

    2011-02-01

    Global demethylation is required for early zygote development to establish stem cell pluripotency, yet our findings reiterate this epigenetic reprogramming event in somatic cells through ectopic introduction of mir-302 function. Here, we report that induced mir-302 expression beyond 1.3-fold of the concentration in human embryonic stem (hES) H1 and H9 cells led to reprogramming of human hair follicle cells (hHFCs) to induced pluripotent stem (iPS) cells. This reprogramming mechanism functioned through mir-302-targeted co-suppression of four epigenetic regulators, AOF2 (also known as KDM1 or LSD1), AOF1, MECP1-p66 and MECP2. Silencing AOF2 also caused DNMT1 deficiency and further enhanced global demethylation during somatic cell reprogramming (SCR) of hHFCs. Re-supplementing AOF2 in iPS cells disrupted such global demethylation and induced cell differentiation. Given that both hES and iPS cells highly express mir-302, our findings suggest a novel link between zygotic reprogramming and SCR, providing a regulatory mechanism responsible for global demethylation in both events. As the mechanism of conventional iPS cell induction methods remains largely unknown, understanding this microRNA (miRNA)-mediated SCR mechanism may shed light on the improvements of iPS cell generation. PMID:20870751

  18. Butyrate protects rat liver against total hepatic ischemia reperfusion injury with bowel congestion.

    PubMed

    Liu, Bin; Qian, Jianmin; Wang, Qingbao; Wang, Fangrui; Ma, Zhenyu; Qiao, Yingli

    2014-01-01

    Hepatic ischemia/reperfusion (I/R) injury is an unavoidable consequence of major liver surgery, especially in liver transplantation with bowel congestion, during which endotoxemia is often evident. The inflammatory response aggravated by endotoxin after I/R contributes to liver dysfunction and failure. The purpose of the present study was to investigate the protective effect of butyrate, a naturally occurring four-carbon fatty acid in the body and a dietary component of foods such as cheese and butter, on hepatic injury complicated by enterogenous endotoxin, as well as to examine the underlying mechanisms involved. SD rats were subjected to a total hepatic ischemia for 30 min after pretreatment with either vehicle or butyrate, followed by 6 h and 24 h of reperfusion. Butyrate preconditioning markedly improved hepatic function and histology, as indicated by reduced transaminase levels and ameliorated tissue pathological changes. The inflammatory factors levels, macrophages activation, TLR4 expression, and neutrophil infiltration in live were attenuated by butyrate. Butyrate also maintained the intestinal barrier structures, reversed the aberrant expression of ZO-1, and decreased the endotoxin translocation. We conclude that butyrate inhibition of endotoxin translocation, macrophages activation, inflammatory factors production, and neutrophil infiltration is involved in the alleviation of total hepatic I/R liver injury in rats. This suggests that butyrate should potentially be utilized in liver transplantation. PMID:25171217

  19. In vivo measurement of colonic butyrate metabolism in patients with quiescent ulcerative colitis

    PubMed Central

    Simpson, E; Chapman, M; Dawson, J; Berry, D; Macdonald, I; Cole, A

    2000-01-01

    BACKGROUND—Butyrate, a short chain fatty acid produced by bacterial fermentation, is a major fuel source for the colonocyte. In vitro work has shown that ulcerative colitis may be characterised by a metabolic defect in colonocyte butyrate oxidation.
AIMS—To investigate the rate of metabolism of rectally administered butyrate in patients with quiescent colitis.
METHODS—[1-13C]-butyrate enemas were administered to 11 patients with long standing quiescent ulcerative colitis and to 10 control patients. The rate of production of 13CO2 in exhaled breath over four hours was measured by isotope ratio mass spectrometry combined with indirect calorimetry in order to measure CO2 production. This allowed calculation of the patients' resting energy expenditure and respiratory quotient.
RESULTS—Over a four hour period, 325 (SEM 21) µmol 13CO2 was recovered in breath samples from the colitis group compared with 322 (17) µmol from the control group (NS). The respiratory quotient of the colitic group was significantly lower than that of the control group.
CONCLUSION—There was no difference in the rate of metabolism of butyrate between the two groups. It is unlikely that there is a primary metabolic defect of butyrate metabolism in patients with quiescent ulcerative colitis.


Keywords: ulcerative colitis; in vivo butyrate metabolism PMID:10601058

  20. Diarachidonoylphosphoethanolamine induces necrosis/necroptosis of malignant pleural mesothelioma cells.

    PubMed

    Kaku, Yoshiko; Tsuchiya, Ayako; Kanno, Takeshi; Nakano, Takashi; Nishizaki, Tomoyuki

    2015-09-01

    The present study investigated 1,2-diarachidonoyl-sn-glycero-3-phosphoethanolamine (DAPE)-induced cell death in malignant pleural mesothelioma (MPM) cells. DAPE reduced cell viability in NCI-H28, NCI-H2052, NCI-H2452, and MSTO-211H MPM cell lines in a concentration (1-100μM)-dependent manner. In the flow cytometry using propidium iodide (PI) and annexin V (AV), DAPE significantly increased the population of PI-positive and AV-negative cells, corresponding to primary necrosis, and that of PI-positive and AV-positive cells, corresponding to late apoptosis/secondary necrosis, in NCI-H28 cells. DAPE-induced reduction of NCI-H28 cell viability was partially inhibited by necrostatin-1, an inhibitor of RIP1 kinase to induce necroptosis, or knocking-down RIP1. DAPE generated reactive oxygen species (ROS) followed by disruption of mitochondrial membrane potentials in NCI-H28 cells. DAPE-induced mitochondrial damage was attenuated by cyclosporin A, an inhibitor of cyclophilin D (CypD). DAPE did not affect expression and mitochondrial localization of p53 protein in NCI-H28 cells. DAPE significantly decreased intracellular ATP concentrations in NCI-H28 cells. Overall, the results of the present study indicate that DAPE induces necroptosis and necrosis of MPM cells; the former is mediated by RIP1 kinase and the latter is caused by generating ROS and opening CypD-dependent mitochondrial permeability transition pore, to reduce intracellular ATP concentrations. PMID:26004138

  1. Progesterone induces adult mammary stem cell expansion.

    PubMed

    Joshi, Purna A; Jackson, Hartland W; Beristain, Alexander G; Di Grappa, Marco A; Mote, Patricia A; Clarke, Christine L; Stingl, John; Waterhouse, Paul D; Khokha, Rama

    2010-06-10

    Reproductive history is the strongest risk factor for breast cancer after age, genetics and breast density. Increased breast cancer risk is entwined with a greater number of ovarian hormone-dependent reproductive cycles, yet the basis for this predisposition is unknown. Mammary stem cells (MaSCs) are located within a specialized niche in the basal epithelial compartment that is under local and systemic regulation. The emerging role of MaSCs in cancer initiation warrants the study of ovarian hormones in MaSC homeostasis. Here we show that the MaSC pool increases 14-fold during maximal progesterone levels at the luteal dioestrus phase of the mouse. Stem-cell-enriched CD49fhi cells amplify at dioestrus, or with exogenous progesterone, demonstrating a key role for progesterone in propelling this expansion. In aged mice, CD49fhi cells display stasis upon cessation of the reproductive cycle. Progesterone drives a series of events where luminal cells probably provide Wnt4 and RANKL signals to basal cells which in turn respond by upregulating their cognate receptors, transcriptional targets and cell cycle markers. Our findings uncover a dynamic role for progesterone in activating adult MaSCs within the mammary stem cell niche during the reproductive cycle, where MaSCs are putative targets for cell transformation events leading to breast cancer. PMID:20445538

  2. Transcriptome Analysis Reveals Regulation of Gene Expression for Lipid Catabolism in Young Broilers by Butyrate Glycerides

    PubMed Central

    Yin, Fugui; Yu, Hai; Lepp, Dion; Shi, Xuejiang; Yang, Xiaojian; Hu, Jielun; Leeson, Steve; Yang, Chengbo; Nie, Shaoping; Hou, Yongqing; Gong, Joshua

    2016-01-01

    Background & Aims Butyrate has been shown to potently regulate energy expenditure and lipid metabolism in animals, yet the underlying mechanisms remain to be fully understood. The aim of this study was to investigate the molecular mechanisms of butyrate (in the form of butyrate glycerides, BG)-induced lipid metabolism at the level of gene expression in the jejunum and liver of broilers. Methodology/Principal Findings Two animal experiments were included in this study. In Experiment 1, two hundred and forty male broiler chickens were equally allocated into two groups: 1) basal diet (BD), 2) BG diets (BD + BG). Growth performance was compared between treatments for the 41-day trial. In Experiment 2, forty male broiler chickens were equally allocated into two groups. The general experimental design, group and management were the same as described in Experiment 1 except for reduced bird numbers and 21-day duration of the trial. Growth performance, abdominal fat deposition, serum lipid profiles as well as serum and tissue concentrations of key enzymes involved in lipid metabolism were compared between treatments. RNA-seq was employed to identify both differentially expressed genes (DEGs) and treatment specifically expressed genes (TSEGs). Functional clustering of DEGs and TSEGs and signaling pathways associated with lipid metabolism were identified using Ingenuity Pathways Analysis (IPA) and DAVID Bioinformatics Resources 6.7 (DAVID-BR). Quantitative PCR (qPCR) assays were subsequently conducted to further examine the expression of genes in the peroxisome proliferator-activated receptors (PPAR) signaling pathway identified by DAVID-BR. Dietary BG intervention significantly reduced abdominal fat ratio (abdominal fat weight/final body weight) in broilers. The decreased fat deposition in BG-fed chickens was in accordance with serum lipid profiles as well as the level of lipid metabolism-related enzymes in the serum, abdominal adipose, jejunum and liver. RNA-seq analysis

  3. Sodium butyrate mitigates in vitro ammonia generation in cecal content of laying hens.

    PubMed

    Wang, Anping; Wang, Yan; Di Liao, Xin; Wu, Yinbao; Liang, Juan Boo; Laudadio, Vito; Tufarelli, Vincenzo

    2016-08-01

    One of the environmental challenges that modern poultry industry faced is odor pollution caused by ammonia emission. The objectives of the study were to determine the effect of sodium butyrate on the production of ammonia in the cecal contents of laying hens using in vitro gas production study and to elucidate the mechanism behind it. The study consisted of a control (without sodium butyrate), and three experimental groups added with 10, 15, and 20 mg of sodium butyrate, respectively. Results showed that ammonia production in headspace of the syringe decreased by 8.2, 23, and 23 %, respectively, while ammonium production from the fermentation broth decreased by 6.3, 14.4, and 13.7 %, respectively. Sodium butyrate had no significant effect on the contents of uric acid and urea, nitrate-N, or total N in all treatments. However, sodium butyrate decreased the urease and uricase activities (P < 0.05) in the fermentation broth. Sodium butyrate also altered volatile fatty acids profile of the fermentation broth by decreasing the production of isovalerate (P < 0.05) and increasing those of acetate, butyrate, and isobutyrate (P < 0.05). The MiSeq System Sequencing results showed that sodium butyrate increased the relative abundance of Bacteroides and Faecalibacterium (P < 0.05) and decreased the relative abundance of Desulfovibrio, Helicobacter, and Campylobacter (P < 0.05).Our results concluded that sodium butyrate changes the diversity and relative abundance of the microbes which altered the fermentation characteristics leading to reduction in ammonia production. PMID:27154844

  4. Bioactive compounds from crocodile (Crocodylus siamensis) white blood cells induced apoptotic cell death in hela cells.

    PubMed

    Patathananone, Supawadee; Thammasirirak, Sompong; Daduang, Jureerut; Chung, Jing Gung; Temsiripong, Yosapong; Daduang, Sakda

    2016-08-01

    Crocodile (Crocodylus siamensis) white blood cell extracts (WBCex) were examined for anticancer activity in HeLa cell lines using the MTT assay. The percentage viability of HeLa cells significantly deceased after treatment with WBCex in a dose- and time-dependent manner. The IC50 dose was suggested to be approximately 225 μg/mL protein. Apoptotic cell death occurred in a time-dependent manner based on investigation by flow cytometry using annexin V-FITC and PI staining. DAPI nucleic acid staining indicated increased chromatin condensation. Caspase-3, -8 and -9 activities also increased, suggesting the induction of the caspase-dependent apoptotic pathway. Furthermore, the mitochondrial membrane potential (ΔΨm ) of HeLa cells was lost as a result of increasing levels of Bax and reduced levels of Bcl-2, Bcl-XL, Bcl-Xs, and XIAP. The decreased ΔΨm led to the release of cytochrome c and the activation of caspase-9 and -3. Apoptosis-inducing factor translocated into the nuclei, and endonuclease G (Endo G) was released from the mitochondria. These results suggest that anticancer agents in WBCex can induce apoptosis in HeLa cells via both caspase-dependent and -independent pathways. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 986-997, 2016. PMID:25691005

  5. Cell membrane potentials induced during exposure to EMP fields

    SciTech Connect

    Gailey, P.C.; Easterly, C.E.

    1994-09-01

    Internal current densities and electric fields induced in the human body during exposure to EMP fields are reviewed and used to predict resulting cell membrane potentials. Using several different approaches, membrane potentials of about 100 mV are predicted. These values are comparable to the static membrane potentials maintained by cells as a part of normal physiological function, but the EMP-induced potentials persist for only about 10 ns. Possible biological implications of EMP-induced membrane potentials including conformational changes and electroporation are discussed.

  6. Solvent-induced autolysis of cells

    SciTech Connect

    Hopkins, T.R.

    1989-01-03

    A process is described for the recovery of alcohol oxidase from whole cells of Pichia pastoris grown on methanol which comprises (a) forming an aqueous mixture of the whole cells, wherein the cells are present in an amount of from 85 to 150 grams per liter of aqueous mixture and from 0.8 to 6 volume percent of a treating agent selected from the group consisting of chloroform, 1,1,1-trichloroethane and methylene chloride or mixtures thereof, and wherein, the aqueous mixture has a pH of about 6.5 to about 8.5; (b) incubating the aqueous mixture at a temperature of about 20/sup 0/ to 35/sup 0/C for a time of about 16 to 90 hours whereby at least a portion of the alcohol oxidase is released from the cells thereby forming a alcohol oxidase-containing aqueous liquor; and (c) separating alcohol oxidase-containing liquor liquid from solid cell material.

  7. Human placenta-derived adherent cells induce tolerogenic immune responses.

    PubMed

    Liu, Wei; Morschauser, Andrew; Zhang, Xin; Lu, Xiaohua; Gleason, Joseph; He, Shuyang; Chen, Hong-Jung; Jankovic, Vladimir; Ye, Qian; Labazzo, Kristen; Herzberg, Uri; Albert, Vivian R; Abbot, Stewart E; Liang, Bitao; Hariri, Robert

    2014-05-01

    Human placenta-derived adherent cells (PDAC cells) are a culture expanded, undifferentiated mesenchymal-like population derived from full-term placental tissue, with immunomodulatory and anti-inflammatory properties. PDA-001 (cenplacel-L), an intravenous formulation of PDAC cells, is in clinical development for the treatment of autoimmune and inflammatory diseases. To elucidate the mechanisms underlying the immunoregulatory properties of PDAC cells, we investigated their effects on immune cell populations, including T cells and dendritic cells (DC) in vitro and in vivo. PDAC cells suppressed T-cell proliferation in an OT-II T-cell adoptive transfer model, reduced the severity of myelin oligodendrocyte glycoprotein peptide-induced experimental autoimmune encephalomyelitis and ameliorated inflammation in a delayed type hypersensitivity response model. In vitro, PDAC cells suppressed T-cell proliferation and inhibited Th1 and Th17 differentiation. Analysis of tissues derived from PDAC cell-treated animals revealed diminished CD86 expression on splenic DC, suggesting that they can also modulate DC populations. Furthermore, PDAC cells modulate the differentiation and maturation of mouse bone marrow-derived DC. Similarly, human DC differentiated from CD14(+) monocytes in the presence of PDAC cells acquired a tolerogenic phenotype. These tolerogenic DC failed to induce allogeneic T-cell proliferation and differentiation toward Th1, but skewed T-cell differentiation toward Th2. Inhibition of cyclo-oxygenase-2 activity resulted in a significant, but not complete, abrogation of PDAC cells' effects on DC phenotype and function, implying a role for prostaglandin E2 in PDAC-mediated immunomodulation. This study identifies modulation of DC differentiation toward immune tolerance as a key mechanism underlying the immunomodulatory activities of PDAC cells. PMID:25505962

  8. Identification of a Hematopoietic Cell Dedifferentiation-Inducing Factor.

    PubMed

    Li, Yunyuan; Adomat, Hans; Guns, Emma Tomlinson; Hojabrpour, Payman; Duronio, Vincent; Curran, Terry-Ann; Jalili, Reza Baradar; Jia, William; Delwar, Zahid; Zhang, Yun; Elizei, Sanam Salimi; Ghahary, Aziz

    2016-06-01

    It has long been realized that hematopoietic cells may have the capacity to trans-differentiate into non-lymphohematopoietic cells under specific conditions. However, the mechanisms and the factors for hematopoietic cell trans-differentiation remain unknown. In an in vitro culture system, we found that using a conditioned medium from proliferating fibroblasts can induce a subset of hematopoietic cells to become adherent fibroblast-like cells (FLCs). FLCs are not fibroblasts nor other mesenchymal stromal cells, based on their expression of type-1 collagen, and other stromal cell marker genes. To identify the active factors in the conditioned medium, we cultured fibroblasts in a serum-free medium and collected it for further purification. Using the fractions from filter devices of different molecular weight cut-offs, and ammonium sulfate precipitation collected from the medium, we found the active fraction is a protein. We then purified this fraction by using fast protein liquid chromatography (FPLC) and identified it by mass spectrometer as macrophage colony-stimulating factor (M-CSF). The mechanisms of M-CSF-inducing trans-differentiation of hematopoietic cells seem to involve a tyrosine kinase signalling pathway and its known receptor. The FLCs express a number of stem cell markers including SSEA-1 and -3, OCT3/4, NANOG, and SOX2. Spontaneous and induced differentiation experiments confirmed that FLCs can be further differentiated into cell types of three germ layers. These data indicate that hematopoietic cells can be induced by M-CSF to dedifferentiate to multipotent stem cells. This study also provides a simple method to generate multipotent stem cells for clinical applications. PMID:26529564

  9. How does ethanol induce apoptotic cell death of SK-N-SH neuroblastoma cells.

    PubMed

    Moon, Yong; Kwon, Yongil; Yu, Shun

    2013-07-15

    A body of evidence suggests that ethanol can lead to damage of neuronal cells. However, the mechanism underlying the ethanol-induced damage of neuronal cells remains unclear. The role of mitogen-activated protein kinases in ethanol-induced damage was investigated in SK-N-SH neuroblastoma cells. 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide cell viability assay, DNA fragmentation detection, and flow cytometric analysis showed that ethanol induced apoptotic cell death and cell cycle arrest, characterized by increased caspase-3 activity, DNA fragmentation, nuclear disruption, and G1 arrest of cell cycle of the SK-N-SH neuroblastoma cells. In addition, western blot analysis indicated that ethanol induced a lasting increase in c-Jun N-terminal protein kinase activity and a transient increase in p38 kinase activity of the neuroblastoma cells. c-Jun N-terminal protein kinase or p38 kinase inhibitors significantly reduced the ethanol-induced cell death. Ethanol also increased p53 phosphorylation, followed by an increase in p21 tumor suppressor protein and a decrease in phospho-Rb (retinoblastoma) protein, leading to alterations in the expressions and activity of cyclin dependent protein kinases. Our results suggest that ethanol mediates apoptosis of SK-N-SH neuroblastoma cells by activating p53-related cell cycle arrest possibly through activation of the c-Jun N-terminal protein kinase-related cell death pathway. PMID:25206494

  10. Bee Venom Protects against Rotenone-Induced Cell Death in NSC34 Motor Neuron Cells.

    PubMed

    Jung, So Young; Lee, Kang-Woo; Choi, Sun-Mi; Yang, Eun Jin

    2015-09-01

    Rotenone, an inhibitor of mitochondrial complex I of the mitochondrial respiratory chain, is known to elevate mitochondrial reactive oxygen species and induce apoptosis via activation of the caspase-3 pathway. Bee venom (BV) extracted from honey bees has been widely used in oriental medicine and contains melittin, apamin, adolapin, mast cell-degranulating peptide, and phospholipase A₂. In this study, we tested the effects of BV on neuronal cell death by examining rotenone-induced mitochondrial dysfunction. NSC34 motor neuron cells were pretreated with 2.5 μg/mL BV and stimulated with 10 μM rotenone to induce cell toxicity. We assessed cell death by Western blotting using specific antibodies, such as phospho-ERK1/2, phospho-JNK, and cleaved capase-3 and performed an MTT assay for evaluation of cell death and mitochondria staining. Pretreatment with 2.5 μg/mL BV had a neuroprotective effect against 10 μM rotenone-induced cell death in NSC34 motor neuron cells. Pre-treatment with BV significantly enhanced cell viability and ameliorated mitochondrial impairment in rotenone-treated cellular model. Moreover, BV treatment inhibited the activation of JNK signaling and cleaved caspase-3 related to cell death and increased ERK phosphorylation involved in cell survival in rotenone-treated NSC34 motor neuron cells. Taken together, we suggest that BV treatment can be useful for protection of neurons against oxidative stress or neurotoxin-induced cell death. PMID:26402700

  11. Derivation of hair-inducing cell from human pluripotent stem cells.

    PubMed

    Gnedeva, Ksenia; Vorotelyak, Ekaterina; Cimadamore, Flavio; Cattarossi, Giulio; Giusto, Elena; Terskikh, Vasiliy V; Terskikh, Alexey V

    2015-01-01

    Dermal Papillae (DP) is a unique population of mesenchymal cells that was shown to regulate hair follicle formation and growth cycle. During development most DP cells are derived from mesoderm, however, functionally equivalent DP cells of cephalic hairs originate from Neural Crest (NC). Here we directed human embryonic stem cells (hESCs) to generate first NC cells and then hair-inducing DP-like cells in culture. We showed that hESC-derived DP-like cells (hESC-DPs) express markers typically found in adult human DP cells (e.g., p-75, nestin, versican, SMA, alkaline phosphatase) and are able to induce hair follicle formation when transplanted under the skin of immunodeficient NUDE mice. Engineered to express GFP, hESC-derived DP-like cells incorporate into DP of newly formed hair follicles and express appropriate markers. We demonstrated that BMP signaling is critical for hESC-DP derivation since BMP inhibitor dorsomorphin completely eliminated hair-inducing activity from hESC-DP cultures. DP cells were proposed as the cell-based treatment for hair loss diseases. Unfortunately human DP cells are not suitable for this purpose because they cannot be obtained in necessary amounts and rapidly loose their ability to induce hair follicle formation when cultured. In this context derivation of functional hESC-DP cells capable of inducing a robust hair growth for the first time shown here can become an important finding for the biomedical science. PMID:25607935

  12. Derivation of Hair-Inducing Cell from Human Pluripotent Stem Cells

    PubMed Central

    Gnedeva, Ksenia; Vorotelyak, Ekaterina; Cimadamore, Flavio; Cattarossi, Giulio; Giusto, Elena; Terskikh, Vasiliy V.; Terskikh, Alexey V.

    2015-01-01

    Dermal Papillae (DP) is a unique population of mesenchymal cells that was shown to regulate hair follicle formation and growth cycle. During development most DP cells are derived from mesoderm, however, functionally equivalent DP cells of cephalic hairs originate from Neural Crest (NC). Here we directed human embryonic stem cells (hESCs) to generate first NC cells and then hair-inducing DP-like cells in culture. We showed that hESC-derived DP-like cells (hESC-DPs) express markers typically found in adult human DP cells (e.g. p-75, nestin, versican, SMA, alkaline phosphatase) and are able to induce hair follicle formation when transplanted under the skin of immunodeficient NUDE mice. Engineered to express GFP, hESC-derived DP-like cells incorporate into DP of newly formed hair follicles and express appropriate markers. We demonstrated that BMP signaling is critical for hESC-DP derivation since BMP inhibitor dorsomorphin completely eliminated hair-inducing activity from hESC-DP cultures. DP cells were proposed as the cell-based treatment for hair loss diseases. Unfortunately human DP cells are not suitable for this purpose because they cannot be obtained in necessary amounts and rapidly loose their ability to induce hair follicle formation when cultured. In this context derivation of functional hESC-DP cells capable of inducing a robust hair growth for the first time shown here can become an important finding for the biomedical science. PMID:25607935

  13. Bee Venom Protects against Rotenone-Induced Cell Death in NSC34 Motor Neuron Cells

    PubMed Central

    Jung, So Young; Lee, Kang-Woo; Choi, Sun-Mi; Yang, Eun Jin

    2015-01-01

    Rotenone, an inhibitor of mitochondrial complex I of the mitochondrial respiratory chain, is known to elevate mitochondrial reactive oxygen species and induce apoptosis via activation of the caspase-3 pathway. Bee venom (BV) extracted from honey bees has been widely used in oriental medicine and contains melittin, apamin, adolapin, mast cell-degranulating peptide, and phospholipase A2. In this study, we tested the effects of BV on neuronal cell death by examining rotenone-induced mitochondrial dysfunction. NSC34 motor neuron cells were pretreated with 2.5 μg/mL BV and stimulated with 10 μM rotenone to induce cell toxicity. We assessed cell death by Western blotting using specific antibodies, such as phospho-ERK1/2, phospho-JNK, and cleaved capase-3 and performed an MTT assay for evaluation of cell death and mitochondria staining. Pretreatment with 2.5 μg/mL BV had a neuroprotective effect against 10 μM rotenone-induced cell death in NSC34 motor neuron cells. Pre-treatment with BV significantly enhanced cell viability and ameliorated mitochondrial impairment in rotenone-treated cellular model. Moreover, BV treatment inhibited the activation of JNK signaling and cleaved caspase-3 related to cell death and increased ERK phosphorylation involved in cell survival in rotenone-treated NSC34 motor neuron cells. Taken together, we suggest that BV treatment can be useful for protection of neurons against oxidative stress or neurotoxin-induced cell death. PMID:26402700

  14. FOXL2-induced follistatin attenuates activin A-stimulated cell proliferation in human granulosa cell tumors

    SciTech Connect

    Cheng, Jung-Chien; Chang, Hsun-Ming; Qiu, Xin; Fang, Lanlan; Leung, Peter C.K.

    2014-01-10

    Highlights: •Activin A stimulates cell proliferation in KGN human granulosa cell tumor-derived cell line. •Cyclin D2 mediates activin A-induced KGN cell proliferation. •FOXL2 induces follistatin expression in KGN cells. •FOXL2-induced follistatin attenuates activin A-stimulated KGN cell proliferation. -- Abstract: Human granulosa cell tumors (GCTs) are rare, and their etiology remains largely unknown. Recently, the FOXL2 402C > G (C134W) mutation was found to be specifically expressed in human adult-type GCTs; however, its function in the development of human GCTs is not fully understood. Activins are members of the transforming growth factor-beta superfamily, which has been shown to stimulate normal granulosa cell proliferation; however, little is known regarding the function of activins in human GCTs. In this study, we examined the effect of activin A on cell proliferation in the human GCT-derived cell line KGN. We show that activin A treatment stimulates KGN cell proliferation. Treatment with the activin type I receptor inhibitor SB431542 blocks activin A-stimulated cell proliferation. In addition, our results show that cyclin D2 is induced by treatment with activin A and is involved in activin A-stimulated cell proliferation. Moreover, the activation of Smad signaling is required for activin A-induced cyclin D2 expression. Finally, we show that the overexpression of the wild-type FOXL2 but not the C134W mutant FOXL2 induced follistatin production. Treatment with exogenous follistatin blocks activin A-stimulated cell proliferation, and the overexpression of wild-type FOXL2 attenuates activin A-stimulated cell proliferation. These results suggest that FOXL2 may act as a tumor suppressor in human adult-type GCTs by inducing follistatin expression, which subsequently inhibits activin-stimulated cell proliferation.

  15. Generation of induced pluripotent stem cells from the pig

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The value of stem cells has become increasingly evident in recent years with the advent of genetic engineering tools that allow site-specific modifications to the genome. The use of stem cells to induce modifications has several potential benefits for the livestock industry including improving anim...

  16. Redox regulation of Smac mimetic-induced cell death.

    PubMed

    Fulda, Simone

    2015-01-01

    Cell death and survival programs are controlled by the cellular redox state, which is typically dysregulated during oncogenesis. A recent study reports that the inhibition of antioxidant defenses resulting from glutathione depletion can prime acute lymphoblastic leukemia cells for death induced by Smac mimetics. PMID:27308489

  17. Vaccinia Virus Induces Programmed Necrosis in Ovarian Cancer Cells

    PubMed Central

    Whilding, Lynsey M; Archibald, Kyra M; Kulbe, Hagen; Balkwill, Frances R; Öberg, Daniel; McNeish, Iain A

    2013-01-01

    The mechanisms by which oncolytic vaccinia virus induces tumor cell death are poorly understood. We have evaluated cell death pathways following infection of ovarian cancer cells with both wild-type and thymidine kinase-deleted (dTK) Lister strain vaccinia. We show that death does not rely upon classical apoptosis despite the appearances of some limited apoptotic features, including phosphatidylserine externalization and appearance of sub-G1 DNA populations. Vaccinia infection induces marked lipidation of LC3 proteins, but there is no general activation of the autophagic process and cell death does not rely upon autophagy induction. We show that vaccinia induces necrotic morphology on transmission electron microscopy, accompanied by marked by reductions in intracellular adenosine triphosphate, altered mitochondrial metabolism, and release of high mobility group box 1 (HMGB1) protein. This necrotic cell death appears regulated, as infection induces formation of a receptor interacting protein (RIP1)/caspase-8 complex. In addition, pharmacological inhibition of both RIP1 and substrates downstream of RIP1, including MLKL, significantly attenuate cell death. Blockade of TNF-α, however, does not alter virus efficacy, suggesting that necrosis does not result from autocrine cytokine release. Overall, these results show that, in ovarian cancer cells, vaccinia virus causes necrotic cell death that is mediated through a programmed series of events. PMID:23985697

  18. Baicalein Inhibits MCF-7 Cell Proliferation In Vitro, Induces Radiosensitivity, and Inhibits Hypoxia Inducible Factor.

    PubMed

    Gade, Shruti; Gandhi, Nitin Motilal

    2015-01-01

    Hypoxia inducible factor (HIF) is a key transcription factor responsible for imparting adaptability to the cancer cells growing in tumors. HIF induces the modulation of glucose metabolism, angiogenesis, and prosurvival signaling. Therefore, HIF is one of the attractive targets to treat solid tumors. Results presented in this study indicate that Baicalein (BA) inhibits HIF stabilization and also reduces its transcription activity in MCF-7 cells in vitro. Furthermore, BA was found to have antiproliferative ability as determined by the MTT assay and clonogenic survival. BA also induces apoptosis in MCF-7 cells at the concentration of 50 µM. We also report the radiosensitization of MCF-7 cells when they are treated with BA, resulting in higher γ-radiation-induced DNA damage. BA is extensively used in Chinese medicine and is known to be nontoxic at pharmacological doses. Our studies indicate that BA is one of the attractive natural compounds suitable for further evaluation as an adjuvant therapy. PMID:26756423

  19. Anti-apoptotic effect of clusterin on cisplatin-induced cell death of retinoblastoma cells.

    PubMed

    Song, Hyun Beom; Jun, Hyoung-Oh; Kim, Jin Hyoung; Yu, Young Suk; Kim, Kyu-Won; Min, Bon Hong; Kim, Jeong Hun

    2013-12-01

    Clusterin is a cytoprotective chaperone protein that is known to protect various retinal cells. It was also reported to be overexpressed in several types of malignant tumors, whose chemoresistance correlates with the expression of clusterin. Herein, we investigated the effect of clusterin on cisplatin-induced cell death of retinoblastoma cells. Firstly, evaluation of clusterin expression demonstrated that it was highly expressed in human retinoblastoma tissues and cell lines (SNUOT-Rb1 and Y79) particularly in the area between viable cells around vessels and necrotic zones in the relatively avascular area in human retinoblastoma tissues. Furthermore, the effects of cisplatin on retinoblastoma cells were evaluated. Cisplatin (1 µg/ml) significantly affected cell viability of SNUOT-Rb1 cells by inducing caspase-3-dependent apoptosis. Notably, the cell death due to cisplatin was prevented by 5 µg/ml of clusterin administered 4 h prior to cisplatin treatment by inhibiting cisplatin-induced apoptosis. Furthermore, overexpression of clusterin exerted its anti-apoptotic effect on cisplatin-induced apoptosis, and effectively prevented cisplatin-induced cell death. These data suggest that clusterin, found to be expressed in human retinoblastoma, may exert anti-apoptotic effects on cisplatin-induced apoptosis and prevent cell death. Therefore, clusterin can contribute to cisplatin resistance of retinoblastoma. PMID:24085287

  20. Induced pluripotent stem cells generated without viral integration.

    PubMed

    Stadtfeld, Matthias; Nagaya, Masaki; Utikal, Jochen; Weir, Gordon; Hochedlinger, Konrad

    2008-11-01

    Pluripotent stem cells have been generated from mouse and human somatic cells by viral expression of the transcription factors Oct4, Sox2, Klf4, and c-Myc. A major limitation of this technology is the use of potentially harmful genome-integrating viruses. We generated mouse induced pluripotent stem (iPS) cells from fibroblasts and liver cells by using nonintegrating adenoviruses transiently expressing Oct4, Sox2, Klf4, and c-Myc. These adenoviral iPS (adeno-iPS) cells show DNA demethylation characteristic of reprogrammed cells, express endogenous pluripotency genes, form teratomas, and contribute to multiple tissues, including the germ line, in chimeric mice. Our results provide strong evidence that insertional mutagenesis is not required for in vitro reprogramming. Adenoviral reprogramming may provide an improved method for generating and studying patient-specific stem cells and for comparing embryonic stem cells and iPS cells. PMID:18818365

  1. Targeting Mitochondria with Avocatin B Induces Selective Leukemia Cell Death.

    PubMed

    Lee, Eric A; Angka, Leonard; Rota, Sarah-Grace; Hanlon, Thomas; Mitchell, Andrew; Hurren, Rose; Wang, Xiao Ming; Gronda, Marcela; Boyaci, Ezel; Bojko, Barbara; Minden, Mark; Sriskanthadevan, Shrivani; Datti, Alessandro; Wrana, Jeffery L; Edginton, Andrea; Pawliszyn, Janusz; Joseph, Jamie W; Quadrilatero, Joe; Schimmer, Aaron D; Spagnuolo, Paul A

    2015-06-15

    Treatment regimens for acute myeloid leukemia (AML) continue to offer weak clinical outcomes. Through a high-throughput cell-based screen, we identified avocatin B, a lipid derived from avocado fruit, as a novel compound with cytotoxic activity in AML. Avocatin B reduced human primary AML cell viability without effect on normal peripheral blood stem cells. Functional stem cell assays demonstrated selectivity toward AML progenitor and stem cells without effects on normal hematopoietic stem cells. Mechanistic investigations indicated that cytotoxicity relied on mitochondrial localization, as cells lacking functional mitochondria or CPT1, the enzyme that facilitates mitochondria lipid transport, were insensitive to avocatin B. Furthermore, avocatin B inhibited fatty acid oxidation and decreased NADPH levels, resulting in ROS-dependent leukemia cell death characterized by the release of mitochondrial proteins, apoptosis-inducing factor, and cytochrome c. This study reveals a novel strategy for selective leukemia cell eradication based on a specific difference in mitochondrial function. PMID:26077472

  2. Human B cells induce dendritic cell maturation and favour Th2 polarization by inducing OX-40 ligand

    PubMed Central

    Maddur, Mohan S.; Sharma, Meenu; Hegde, Pushpa; Stephen-Victor, Emmanuel; Pulendran, Bali; Kaveri, Srini V.; Bayry, Jagadeesh

    2015-01-01

    Dendritic cells (DCs) play a critical role in immune homeostasis by regulating the functions of various immune cells, including T and B cells. Notably, DCs also undergo education on reciprocal signalling by these immune cells and environmental factors. Various reports demonstrated that B cells have profound regulatory functions, although only few reports have explored the regulation of human DCs by B cells. Here we demonstrate that activated but not resting B cells induce maturation of DCs with distinct features to polarize Th2 cells that secrete interleukin (IL)-5, IL-4 and IL-13. B-cell-induced maturation of DCs is contact dependent and implicates signalling of B-cell activation molecules CD69, B-cell-activating factor receptor, and transmembrane activator and calcium-modulating cyclophilin ligand interactor. Mechanistically, differentiation of Th2 cells by B-cell-matured DCs is dependent on OX-40 ligand. Collectively, our results suggest that B cells have the ability to control their own effector functions by enhancing the ability of human DCs to mediate Th2 differentiation. PMID:24910129

  3. Dissociation of NSC606985 induces atypical ER-stress and cell death in prostate cancer cells.

    PubMed

    Wang, Liping; Fu, Pengcheng; Zhao, Yuan; Wang, Guo; Yu, Richard; Wang, Xin; Tang, Zehai; Imperato-McGinley, Julianne; Zhu, Yuan-Shan

    2016-08-01

    Castration-resistant prostate cancer (CRPC) is a major cause of prostate cancer (Pca) death. Chemotherapy is able to improve the survival of CRPC patients. We previously found that NSC606985 (NSC), a highly water-soluble camptothecin analog, induced cell death in Pca cells via interaction with topoisomerase 1 and activation of the mitochondrial apoptotic pathway. To further elucidate the role of NSC, we studied the effect of NSC on ER-stress and its association with NSC-induced cell death in Pca cells. NSC produced a time- and dose-dependent induction of GRP78, CHOP and XBP1s mRNA, and CHOP protein expression in Pca cells including DU145, indicating an activation of ER-stress. However, unlike conventional ER-stress in which GRP78 protein is increased, NSC produced a time- and dose-dependent U-shape change in GRP78 protein in DU145 cells. The NSC-induced decrease in GRP78 protein was blocked by protease inhibitors, N-acetyl-L-leucyl-L-leucylnorleucinal (ALLN), a lysosomal protease inhibitor, and epoxomicin (EPO), a ubiquitin-protease inhibitor. ALLN, but not EPO, also partially inhibited NSC-induced cell death. However, both 4-PBA and TUDCA, two chemical chaperons that effectively reduced tunicamycin-induced ER-stress, failed to attenuate NSC-induced GRP78, CHOP and XBP1s mRNA expression and cell death. Moreover, knockdown of NSC induction of CHOP expression using a specific siRNA had no effect on NSC-induced cytochrome c release and NSC-induced cell death. These results suggest that NSC produced an atypical ER-stress that is dissociated from NSC-induced activation of the mitochondrial apoptotic pathway and NSC-induced cell death in DU145 prostate cancer cells. PMID:27277821

  4. Rationale and Methodology of Reprogramming for Generation of Induced Pluripotent Stem Cells and Induced Neural Progenitor Cells

    PubMed Central

    Tian, Zuojun; Guo, Fuzheng; Biswas, Sangita; Deng, Wenbin

    2016-01-01

    Great progress has been made regarding the capabilities to modify somatic cell fate ever since the technology for generation of induced pluripotent stem cells (iPSCs) was discovered in 2006. Later, induced neural progenitor cells (iNPCs) were generated from mouse and human cells, bypassing some of the concerns and risks of using iPSCs in neuroscience applications. To overcome the limitation of viral vector induced reprogramming, bioactive small molecules (SM) have been explored to enhance the efficiency of reprogramming or even replace transcription factors (TFs), making the reprogrammed cells more amenable to clinical application. The chemical induced reprogramming process is a simple process from a technical perspective, but the choice of SM at each step is vital during the procedure. The mechanisms underlying cell transdifferentiation are still poorly understood, although, several experimental data and insights have indicated the rationale of cell reprogramming. The process begins with the forced expression of specific TFs or activation/inhibition of cell signaling pathways by bioactive chemicals in defined culture condition, which initiates the further reactivation of endogenous gene program and an optimal stoichiometric expression of the endogenous pluri- or multi-potency genes, and finally leads to the birth of reprogrammed cells such as iPSCs and iNPCs. In this review, we first outline the rationale and discuss the methodology of iPSCs and iNPCs in a stepwise manner; and then we also discuss the chemical-based reprogramming of iPSCs and iNPCs. PMID:27104529

  5. Methylglyoxal induces mitochondrial dysfunction and cell death in liver.

    PubMed

    Seo, Kyuhwa; Ki, Sung Hwan; Shin, Sang Mi

    2014-09-01

    Degradation of glucose is aberrantly increased in hyperglycemia, which causes various harmful effects on the liver. Methylglyoxal is produced during glucose degradation and the levels of methylglyoxal are increased in diabetes patients. In this study we investigated whether methylglyoxal induces mitochondrial impairment and apoptosis in HepG2 cells and induces liver toxicity in vivo. Methylglyoxal caused apoptotic cell death in HepG2 cells. Moreover, methylglyoxal significantly promoted the production of reactive oxygen species (ROS) and depleted glutathione (GSH) content. Pretreatment with antioxidants caused a marked decrease in methylglyoxal-induced apoptosis, indicating that oxidant species are involved in the apoptotic process. Methylglyoxal treatment induced mitochondrial permeability transition, which represents mitochondrial impairment. However, pretreatment with cyclosporin A, an inhibitor of the formation of the permeability transition pore, partially inhibited methylglyoxal-induced cell death. Furthermore, acute treatment of mice with methylglyoxal increased the plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), indicating liver toxicity. Collectively, our results showed that methylglyoxal increases cell death and induces liver toxicity, which results from ROS-mediated mitochondrial dysfunction and oxidative stress. PMID:25343013

  6. Caspase-1 induced pyroptotic cell death

    PubMed Central

    Miao, Edward A.; Rajan, Jayant V.; Aderem, Alan

    2013-01-01

    Summary Programmed cell death is a necessary part of development and tissue homeostasis enabling the removal of unwanted cells. In the setting of infectious disease, cells that have been commandeered by microbial pathogens become detrimental to the host. When macrophages and dendritic cells are compromised in this way, they can be lysed by pyroptosis, a cell death mechanism that is distinct from apoptosis and oncosis/necrosis. Pyroptosis is triggered by Caspase-1 after its activation by various inflammasomes, and results in lysis of the affected cell. Both pyroptosis and apoptosis are programmed cell death mechanisms, but are dependent on different caspases, unlike oncosis. Similar to oncosis, and unlike apoptosis, pyroptosis results in cellular lysis and release of the cytosolic contents to the extracellular space. This event is predicted to be inherently inflammatory, and additionally coincides with IL-1β and IL-18 secretion. We discuss the role of distinct inflammasomes, including NLRC4, NLRP3 and AIM2, as well as the role of the ASC focus in Caspase-1 signaling. We further review the importance of pyroptosis in vivo as a potent mechanism to clear intracellular pathogens. PMID:21884178

  7. Metformin prevents methylglyoxal-induced apoptosis of mouse Schwann cells

    SciTech Connect

    Ota, Kimiko; Nakamura, Jiro; Li, Weiguo; Kozakae, Mika; Watarai, Atsuko; Nakamura, Nobuhisa; Yasuda, Yutaka; Nakashima, Eirtaro; Naruse, Keiko; Watabe, Kazuhiko; Kato, Koichi; Oiso, Yutaka; Hamada, Yoji . E-mail: yhama@med.nagoya-u.ac.jp

    2007-05-25

    Methylglyoxal (MG) is involved in the pathogenesis of diabetic complications via the formation of advanced glycation end products (AGEs) and reactive oxygen species (ROS). To clarify whether the antidiabetic drug metformin prevents Schwann cell damage induced by MG, we cultured mouse Schwann cells in the presence of MG and metformin. Cell apoptosis was evaluated using Hoechst 33342 nuclear staining, caspase-3 activity, and c-Jun-N-terminal kinase (JNK) phosphorylation. Intracellular ROS formation was determined by flow cytometry, and AMP-activated kinase (AMPK) phosphorylation was also examined. MG treatment resulted in blunted cell proliferation, an increase in the number of apoptotic cells, and the activation of caspase-3 and JNK along with enhanced intracellular ROS formation. All of these changes were significantly inhibited by metformin. No significant activation of AMPK by MG or metformin was observed. Taken together, metformin likely prevents MG-induced apoptotic signals in mouse Schwann cells by inhibiting the formation of AGEs and ROS.

  8. T8 cell suppression of antigen- and mitogen-induced T4 cell dependent immunoglobulin production.

    PubMed Central

    Nilsson, E; von Stedingk, L V; Biberfeld, G

    1986-01-01

    The suppressor effect of T8 cells on antigen-induced, as compared to pokeweed mitogen-induced, T4 cell dependent immunoglobulin (Ig) production by B cells of healthy subjects was studied. The antigens used were purified protein derivative of tuberculin (PPD) and tetanus toxoid (TT). The suppressor effect of T8 cells on IgG, IgM and IgA responses in co-cultures of T4 cells and B cells was significantly stronger in the pokeweed mitogen driven system than in PPD- and TT-driven cultures under the same experimental conditions. PMID:2948744

  9. UV-induced changes in cell cycle and gene expression within rabbit lens epithelial cells

    SciTech Connect

    Sidjanin, D.; Grdina, D.; Woloschak, G.E.

    1994-11-01

    Damage to lens epithelial cells is a probable initiation process in cataract formation induced by ultraviolet radiation. These experiments investigated the ability of 254 nm radiation on cell cycle progression and gene expression in rabbit lens epithelial cell line N/N1003A. No changes in expression of c-fos, c-jun, alpha- tubulin, or vimentin was observed following UV exposure. Using flow cytometry, an accumulation of cells in G1/S phase of the cell cycle 1 hr following exposure. The observed changes in gene expression, especially the decreased histone transcripts reported here may play a role in UV induced inhibition of cell cycle progression.

  10. Lysophosphatidic acid-induced chemotaxis of bone cells.

    SciTech Connect

    Karagiosis, Sue A.; Masiello, Lisa M.; Bollinger, Nikki; Karin, Norm J.

    2006-07-01

    Lysophosphatidic acid (LPA) is a platelet-derived bioactive lipid that is postulated to regulate wound healing. LPA activates G protein-coupled receptors to induce Ca2+ signaling in MC3T3-E1 pre-osteoblasts, and is a potent chemotactic stimulus for these cells. Since bone fracture healing requires the migration of osteoblast progenitors, we postulate that LPA is among the factors that stimulate bone repair. UMR 106-01 cells, which express a more mature osteoblastic phenotype than MC3T3-E1 cells, did not migrate in response to LPA, although they express LPA receptors and exhibit LPA-induced Ca2+ signals. This suggests that LPA differentially induces pre-osteoblast chemotaxis, consistent with our hypothesis that LPA stimulates the motility of osteoblast progenitors during bone healing. LPA-stimulated MC3T3-E1 cells exhibit striking changes in morphology and F-actin architecture, and phosphatidylinositol-3 kinase (PI3K) is required for motility-associated cytoskeletal rearrangements in many cell types. We found a dose-dependent reduction in LPA-induced osteoblast migration when cells also were treated with the PI3K inhibitor, LY294002. Treatment of many cell types with LPA is associated with an autocrine/paracrine transactivation of the EGF receptor (EGFR) via shedding of surface-tethered EGFR ligands, a phenomenon often required for LPA-induced chemotaxis. MC3T3-E1 cells express multiple EGFR ligands (epigen, epiregulin, HB-EGF and amphiregulin) and migrated in response to EGF. However, while EGF-stimulated motility in MC3T3-E1 cells was blocked by an EGFR inhibitor, there was no significant effect on LPA-induced chemotaxis. Activation of MAP kinases is a hallmark of EGFR-mediated signaling, and EGF treatment of MC3T3-E1 cells led to a strong stimulation of ERK1/2 kinase. In contrast, LPA induced only a minor elevation in ERK activity. Thus, it is likely that the increase in ERK activity by LPA is related to cell proliferation associated with lipid treatment. We

  11. Dasatinib Induces Autophagic Cell Death in Human Ovarian Cancer*

    PubMed Central

    Le, Xiao-Feng; Mao, Weiqun; Lu, Zhen; Carter, Bing Z.; Bast, Robert C.

    2010-01-01

    BACKGROUND Dasatinib, an inhibitor of Src/Abl family kinases, can inhibit tumor growth of a number of solid tumors. However, the effect and mechanism of action of dasatinib in human ovarian cancer cells remains unknown. METHODS Dasatinib-induced autophagy was determined by acridine orange staining, punctate localization of GFP-LC3, LC3 protein blotting and electron microscopy. Significance of Beclin-1, AKT and Bcl-2 in dasatinib-induced autophagy and growth inhibition was assayed by small interfering RNA silencing and/or overexpression of gene of interest. RESULTS Dasatinib inhibited cell growth by inducing little apoptosis, but substantial autophagy in SKOv3 and HEY ovarian cancer cells. In vivo studies showed dasatinib inhibited tumor growth and induced both autophagy and apoptosis in a HEY xenograft model. Knockdown of Beclin 1 and Atg12 expression with their respective siRNAs diminished dasatinib-induced autophagy, whereas knockdown of p27Kip1 with specific siRNAs did not. shRNA knockdown of Beclin-1 expression reduced dasatinib-induced autophagy and growth inhibition. Dasatinib reduced the phosphorylation of AKT, mTOR, p70S6K and S6 kinase expression. Constitutive expression of AKT1 and AKT2 inhibited dasatinib-induced autophagy in both HEY and SKOv3 cells. Dasatinib also reduced Bcl-2 expression and activity. Overexpression of Bcl-2 partially prevented dasatinib-induced autophagy. CONCLUSIONS We conclude that dasatinib induces autophagic cell death in ovarian cancer that partially depends on Beclin-1, AKT and Bcl-2. These results may have implications for clinical use of dasatinib. PMID:20629079

  12. Generation of Induced Pluripotent Stem Cells from Conjunctiva

    PubMed Central

    Yang, Jin; Li, Yao; Erol, Deniz; Wu, Wen-Hsuan; Tsai, Yi-Ting; Li, Xiao-Rong; Davis, Richard J.; Tsang, Stephen H.

    2014-01-01

    Purpose The objective of this study was to determine whether cells from the conjunctiva could be reprogrammed into induced pluripotent stem (iPS) cells, providing an alternative source of stem cells. Methods We employed a doxycycline induced reprogrammable mouse strain to generate iPS cells from conjunctiva. The identity of the stem cells was confirmed by Reverse transcription polymerase chain reaction (RT-PCR) and immunofluorescence assays. Immunocytochemistry and teratoma assays are established means for scoring stem cell pluripotency. The reprogramming efficiencies of conjunctiva cells and ear fibroblasts were compared. Results We confirmed the identity of the stem cells and demonstrated expression of pluripotency markers (OCT4, SOX2, NANOG, and SSEA1), as tested by RT-PCR and immunofluorescence assays. In addition, derived iPS cells differentiated successfully into embryoid bodies and showed teratoma formation when injected into immunodeficient mice. Reprogramming conjunctival tissue is as efficient as reprogramming ear fibroblasts. Conjunctiva-iPS exhibited classic features of embryonic stem (ES) cells with respect to morphology, expression of surface antigens and pluripotency-associated transcription factors, capacity to differentiate in vitro, and the ability to form all three germ layers in vivo. Conclusion The present study demonstrated that conjunctival cells, which are readily obtained during the course of many routine conjunctival biopsies and ophthalmic procedures, can be another reliable source of iPS cells. PMID:24492934

  13. Cisplatin-induced Casepase-3 activation in different tumor cells

    NASA Astrophysics Data System (ADS)

    Shi, Hua; Li, Xiao; Su, Ting; Zhang, Yu-Hai

    2008-12-01

    Apoptosis plays an essential role in normal organism development which is one of the main types of programmed cell death to help tissues maintain homeostasis. Defective apoptosis can result in cell accumulation and therefore effects on tumor pathogenesis, progression and therapy resistance. A family of proteins, known as caspases, is typically activated in the early stages of apoptosis. Therefore, studying the kinetics of activation of caspases induced by antitumor drugs can contribute to antitumor drug discovery and explanation of the molecular mechanisms. This paper detected the Caspase-3 activity induced by cisplatin in human adenoid cystic carcinoma cell line (ACC-M), human hepatocellular liver carcinoma cell line (HepG2) and human epithelial carcinoma cell line (Hela) with stably expressing ECFP-DEVDDsRed (CD3) probe, a fluorescent probe consisting of Enhanced Cyan Fluorescent Protein (ECFP), red fluorescent protein (DsRed) and a linker with a recognition site of Caspase-3, by using the capillary electrophoresis (CE) and fluorescence resonance energy transfer (FRET) imaging system. Under the same concentration of cisplatin, ACC-M cells responded the most rapidly, and then HepG2 cells and Hela cells, respectively, in the early 30 hours. Later, HepG2 cells represented acceleration in the Caspase-3 activation speed and reached full activation the earliest comparing to other two cell types. The results demonstrated that ACC-M cell is more sensitive than the other two cell types under the treatment of cisplatin.

  14. Material-induced shunts in multicrystalline silicon solar cells

    SciTech Connect

    Breitenstein, O. Bauer, J.; Rakotoniaina, J. P.

    2007-04-15

    By applying lock-in thermography imaging, light-beam-induced current imaging, electron-beam-induced current imaging at different stages of sample preparation, and infrared light microscopy in transmission mode, the physical nature of the dominant material-induced shunts in multicrystalline solar cells made from p-type silicon material has been investigated. It turns out that these shunts are due to silicon carbide (SiC) filaments, which grow preferentially in grain boundaries and cross the whole cell. These filaments are highly n-type doped, like the emitter layer on the surface of the cells. They are electrically connected both with the emitter and with the back contact, thereby producing internal shunts in the solar cell.

  15. Bi-functional prodrugs of 5-aminolevulinic acid and butyric acid increase erythropoiesis in anemic mice in an erythropoietin-independent manner.

    PubMed

    Rephaeli, Ada; Tarasenko, Nataly; Fibach, Eitan; Rozic, Gabriela; Lubin, Ido; Lipovetsky, Julia; Furman, Svetlana; Malik, Zvi; Nudelman, Abraham

    2016-08-25

    Anemia is a major cause of morbidity and mortality worldwide resulting from a wide variety of pathological conditions. In severe cases it is treated by blood transfusions or injection of erythroid stimulating agents, e.g., erythropoietin (Epo), which can be associated with serious adverse effects. Therefore, there is a need to develop new treatment modalities. We recently reported that treatment of erythroleukemic cells with the novel the bi-functional prodrugs of 5-aminolevulinic acid (ALA) and butyric acid (BA), AN233 and AN908, enhanced hemoglobin (Hb) synthesis to a substantially higher level than did ALA and BA individually or their mixture. Herein, we describe that these prodrugs when given orally to mice induced histone deacetylase inhibition in the kidneys, bone marrow and spleen, thus, indicating good penetrability to the tissues. In mice where anemia was chemically induced, treatment with the prodrugs increased the Hb, the number of red blood cells (RBCs) and the percentage of reticulocytes to normal levels. The prodrugs had no adverse effects even after repeated treatment at 100-200mg/kg for 50days. The lack of increased levels of Epo in the blood of mice that were treated with the prodrugs suggests that AN233 and AN908 affected the Hb and RBC levels in an Epo-independent manner. Taken together with our previous studies, we propose that the prodrugs increase globin expression by BA inhibition of histone deacetylase and elevation heme synthesis by ALA. These results support an Epo-independent approach for treating anemia with these prodrugs. PMID:27283485

  16. Temperature dependence of optically induced cell deformations

    NASA Astrophysics Data System (ADS)

    Fritsch, Anatol; Kiessling, Tobias R.; Stange, Roland; Kaes, Josef A.

    2012-02-01

    The mechanical properties of any material change with temperature, hence this must be true for cellular material. In biology many functions are known to undergo modulations with temperature, like myosin motor activity, mechanical properties of actin filament solutions, CO2 uptake of cultured cells or sex determination of several species. As mechanical properties of living cells are considered to play an important role in many cell functions it is surprising that only little is known on how the rheology of single cells is affected by temperature. We report the systematic temperature dependence of single cell deformations in Optical Stretcher (OS) measurements. The temperature is changed on a scale of about 20 minutes up to hours and compared to defined temperature shocks in the range of milliseconds. Thereby, a strong temperature dependence of the mechanics of single suspended cells is revealed. We conclude that the observable differences arise rather from viscosity changes of the cytosol than from structural changes of the cytoskeleton. These findings have implications for the interpretation of many rheological measurements, especially for laser based approaches in biological studies.

  17. Activated microglia cause reversible apoptosis of pheochromocytoma cells, inducing their cell death by phagocytosis

    PubMed Central

    Hornik, Tamara C.; Vilalta, Anna; Brown, Guy C.

    2016-01-01

    ABSTRACT Some apoptotic processes, such as phosphatidylserine exposure, are potentially reversible and do not necessarily lead to cell death. However, phosphatidylserine exposure can induce phagocytosis of a cell, resulting in cell death by phagocytosis: phagoptosis. Phagoptosis of neurons by microglia might contribute to neuropathology, whereas phagoptosis of tumour cells by macrophages might limit cancer. Here, we examined the mechanisms by which BV-2 microglia killed co-cultured pheochromocytoma (PC12) cells that were either undifferentiated or differentiated into neuronal cells. We found that microglia activated by lipopolysaccharide rapidly phagocytosed PC12 cells. Activated microglia caused reversible phosphatidylserine exposure on and reversible caspase activation in PC12 cells, and caspase inhibition prevented phosphatidylserine exposur and decreased subsequent phagocytosis. Nitric oxide was necessary and sufficient to induce the reversible phosphatidylserine exposure and phagocytosis. The PC12 cells were not dead at the time they were phagocytised, and inhibition of their phagocytosis left viable cells. Cell loss was inhibited by blocking phagocytosis mediated by phosphatidylserine, MFG-E8, vitronectin receptors or P2Y6 receptors. Thus, activated microglia can induce reversible apoptosis of target cells, which is insufficient to cause apoptotic cell death, but sufficient to induce their phagocytosis and therefore cell death by phagoptosis. PMID:26567213

  18. Dracorhodin perchlorate induces the apoptosis of glioma cells.

    PubMed

    Chen, Xin; Luo, Junjie; Meng, Linghu; Pan, Taifeng; Zhao, Binjie; Tang, Zhen-Gang; Dai, Yongjian

    2016-04-01

    Dracorhodin perchlorate (Dp), a synthetic analogue of the antimicrobial anthocyanin red pigment, has recently been shown to induce apoptotic cell death in various types of cancer cells. Yet, the inhibitory effect of Dp on human glioma cells remains uninvestigated. Therefore, in the present study, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry were used to detect cell viability and cell cycle progression in glioma U87MG and T98G cells, respectively. Annexin V-FITC/propidium iodide double staining and JC-1 staining were separately applied to determine cellular apoptosis and mitochondrial membrane potential damage in the cells. The expression levels of associated proteins involved in cell cycle progression and apoptosis were measured by western blotting. The activities of caspase‑9/-3 were determined by Caspase-Glo-9/3 assay. The results indicated that Dp treatment significantly inhibited cell proliferation in a dose- and time-dependent manner, and blocked cell cycle progression at the G1/S phase in the U87MG and T98G cells via the upregulation of p53 and p21 protein expression, and simultaneous downregulation of Cdc25A, Cdc2 and P-Cdc2 protein expression. Additionally, Dp treatment led to the loss of cellular mitochondrial membrane potential, and the release of cytochrome c, and strongly induced the occurence of apoptosis. Increased expression levels of Bim and Bax protein and the downregulated expression of Bcl-2 protein were observed. Caspase-9/-3 were activated and their activities were elevated after Dp treatment. These findings indicate that Dp inhibits cell proliferation, induces cell cycle arrest and apoptosis in glioma cells, and is a possible candidate for glioma treatment. PMID:26846469

  19. Dexamethasone induced ultrastructural changes in cultured human trabecular meshwork cells.

    PubMed

    Wilson, K; McCartney, M D; Miggans, S T; Clark, A F

    1993-09-01

    Glucocorticoid-induced ocular hypertension has been demonstrated in both animals and humans. It is possible that glucocorticoid-induced changes in trabecular meshwork (TM) cells are responsible for this hypertension. In order to elaborate further the effect of glucocorticoids on the trabecular meshwork, the ultrastructural consequences of dexamethasone (DEX) treatment were examined in three different human TM cell lines. Confluent TM cells were treated with 0.1 microM of DEX for 14 days, and then processed for light, epifluorescent microscopy or transmission electron microscopy (TEM). The effect of DEX treatment on TM cell and nuclear size was quantified using computer assisted morphometrics. Morphometric analysis showed a significant increase in both TM cell and nuclear size after 14 days of DEX treatment. Epifluorescent microscopy of rhodamine-phalloidin stained, control TM cells showed the normal arrangement of stress fibers. In contrast, DEX-treated TM cells showed unusual geodesic dome-like cross-linked actin networks. Control TM cells had the normal complement and arrangement of organelles as well as electron dense inclusions and large vacuoles. DEX-treated TM cells showed stacked arrangements of smooth and rough endoplasmic reticulum, proliferation of the Golgi apparatus, pleomorphic nuclei and increased amounts of extracellular matrix material. The DEX-induced alterations observed in the present study may be an indication of the processes that are occurring in the in vivo disease process. PMID:8261790

  20. Minerval induces apoptosis in Jurkat and other cancer cells

    PubMed Central

    Llado, Victoria; Gutierrez, Antonio; Martínez, Jordi; Casas, Jesús; Terés, Silvia; Higuera, Mónica; Galmés, Antonio; Saus, Carles; Besalduch, Joan; Busquets, Xavier; Escribá, Pablo V

    2010-01-01

    Abstract Minerval is an oleic acid synthetic analogue that impairs lung cancer (A549) cell proliferation upon modulation of the plasma membrane lipid structure and subsequent regulation of protein kinase C localization and activity. However, this mechanism does not fully explain the regression of tumours induced by this drug in animal models of cancer. Here we show that Minerval also induced apoptosis in Jurkat T-lymphoblastic leukaemia and other cancer cells. Minerval inhibited proliferation of Jurkat cells, concomitant with a decrease of cyclin D3 and cdk2 (cyclin-dependent kinase2). In addition, the changes that induced on Jurkat cell membrane organization caused clustering (capping) of the death receptor Fas (CD95), caspase-8 activation and initiation of the extrinsic apoptosis pathway, which finally resulted in programmed cell death. The present results suggest that the intrinsic pathway (associated with caspase-9 function) was activated downstream by caspase-8. In a xenograft model of human leukaemia, Minerval also inhibited tumour progression and induced tumour cell death. Studies carried out in a wide variety of cancer cell types demonstrated that apoptosis was the main molecular mechanism triggered by Minerval. This is the first report on the pro-apoptotic activity of Minerval, and in part explains the effectiveness of this non-toxic anticancer drug and its wide spectrum against different types of cancer. PMID:19413889

  1. Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis.

    PubMed

    Strilic, Boris; Yang, Lida; Albarrán-Juárez, Julián; Wachsmuth, Laurens; Han, Kang; Müller, Ulrike C; Pasparakis, Manolis; Offermanns, Stefan

    2016-08-11

    Metastasis is the leading cause of cancer-related death in humans. It is a complex multistep process during which individual tumour cells spread primarily through the circulatory system to colonize distant organs. Once in the circulation, tumour cells remain vulnerable, and their metastatic potential largely depends on a rapid and efficient way to escape from the blood stream by passing the endothelial barrier. Evidence has been provided that tumour cell extravasation resembles leukocyte transendothelial migration. However, it remains unclear how tumour cells interact with endothelial cells during extravasation and how these processes are regulated on a molecular level. Here we show that human and murine tumour cells induce programmed necrosis (necroptosis) of endothelial cells, which promotes tumour cell extravasation and metastasis. Treatment of mice with the receptor-interacting serine/threonine-protein kinase 1 (RIPK1)-inhibitor necrostatin-1 or endothelial-cell-specific deletion of RIPK3 reduced tumour-cell-induced endothelial necroptosis, tumour cell extravasation and metastasis. In contrast, pharmacological caspase inhibition or endothelial-cell-specific loss of caspase-8 promoted these processes. We furthermore show in vitro and in vivo that tumour-cell-induced endothelial necroptosis leading to extravasation and metastasis requires amyloid precursor protein expressed by tumour cells and its receptor, death receptor 6 (DR6), on endothelial cells as the primary mediators of these effects. Our data identify a new mechanism underlying tumour cell extravasation and metastasis, and suggest endothelial DR6-mediated necroptotic signalling pathways as targets for anti-metastatic therapies. PMID:27487218

  2. Interleukin-13 induces goblet cell differentiation in primary cell culture from Guinea pig tracheal epithelium.

    PubMed

    Kondo, Mitsuko; Tamaoki, Jun; Takeyama, Kiyoshi; Nakata, Junko; Nagai, Atsushi

    2002-11-01

    The Th2 cytokines, interleukin (IL)-4 and IL-13, bind to IL-4Ralpha, and cause goblet cell metaplasia/hyperplasia with increased mucin expression in vivo. However, there is not enough evidence that these cytokines directly induce mucin production in vitro. In this study, primary epithelial cells from guinea pig trachea were cultured at an air-liquid interface, and immediately after achieving confluence at Day 7 they were treated with human recombinant IL-4 or IL-13 for 14 d. IL-13-treated cells consisted of a large number of fully mature goblet cells with a smaller number of ciliated cells. Secretory granules of the goblet cells were positive for both periodic acid-Schiff and toluidine blue, and showed exocytosis. By contrast, IL-4 failed to induce goblet cell differentiation. The electric resistances of IL-13-treated cells were lower than those of IL-4-treated cells and nontreated cells, suggesting leaky epithelia. MUC5AC protein level in cell lysates measured by ELISA was several-fold higher in IL-13-treated cells than in nontreated cells, whereas the level in IL-4-treated cells was not changed. These data suggest that human recombinant IL-13, but not IL-4, can induce differentiation into mature goblet cells that produce MUC5AC protein in guinea pig tracheal epithelial cells in vitro. PMID:12397012

  3. Xylitol induces cell death in lung cancer A549 cells by autophagy.

    PubMed

    Park, Eunjoo; Park, Mi Hee; Na, Hee Sam; Chung, Jin

    2015-05-01

    Xylitol is a widely used anti-caries agent that has anti-inflammatory effects. We have evaluated the potential of xylitol in cancer treatment. It's effects on cell proliferation and cytotoxicity were measured by MTT assay and LDH assay. Cell morphology and autophagy were examined by immunostaining and immunoblotting. Xylitol inhibited cell proliferation in a dose-dependent manner in these cancer cells: A549, Caki, NCI-H23, HCT-15, HL-60, K562, and SK MEL-2. The IC50 of xylitol in human gingival fibroblast cells was higher than in cancer cells, indicating that it is more specific for cancer cells. Moreover, xylitol induced autophagy in A549 cells that was inhibited by 3-methyladenine, an autophagy inhibitor. These results indicate that xylitol has potential in therapy against lung cancer by inhibiting cell proliferation and inducing autophagy of A549 cells. PMID:25650339

  4. Inducible human immunodeficiency virus type 1 packaging cell lines.

    PubMed Central

    Yu, H; Rabson, A B; Kaul, M; Ron, Y; Dougherty, J P

    1996-01-01

    Packaging cell lines are important tools for transferring genes into eukaryotic cells. Human immunodeficiency virus type 1 (HIV-1)-based packaging cell lines are difficult to obtain, in part owing to the problem that some HIV-1 proteins are cytotoxic in a variety of cells. To overcome this, we have developed an HIV-1-based packaging cell line which has an inducible expression system. The tetracycline-inducible expression system was utilized to control the expression of the Rev regulatory protein, which in turn controls the expression of the late proteins including Gag, Pol, and Env. Western blotting (immunoblotting) demonstrated that the expression of p24gag and gp120env from the packaging cells peaked on days 6 and 7 postinduction. Reverse transcriptase activity could be detected by day 4 after induction and also peaked on days 6 and 7. Defective vector virus could be propagated, yielding titers as high as 7 x 10(3) CFU/ml, while replication-competent virus was not detectable at any time. Thus, the cell line should enable the transfer of specific genes into CD4+ cells and should be a useful tool for studying the biology of HIV-1. We have also established an inducible HIV-1 Env-expressing cell line which could be used to propagate HIV-1 vectors that require only Env in trans. The env-minus vector virus titer produced from the Env-expressing cells reached 2 x 10(4) CFU/ml. The inducible HIV-1 Env-expressing cell line should be a useful tool for the study of HIV-1 Env as well. PMID:8676479

  5. Mechanisms of radiation-induced neoplastic cell transformation

    SciTech Connect

    Yang, T.C.H.; Tobias, C.A.

    1984-04-01

    Studies with cultured mammalian cells demonstrated clearly that radiation can transform cells directly and can enhance the cell transformation by oncogenic DNA viruses. In general, high-LET heavy-ion radiation can be more effective than X and gamma rays in inducing neoplastic cell transformation. Various experimental results indicate that radiation-induced DNA damage, most likely double-strand breaks, is important for both the initiation of cell transformation and for the enhancement of viral transformation. Some of the transformation and enhancement lesions can be repaired properly in the cell, and the amount of irrepairable lesions produced by a given dose depends on the quality of radiation. An inhibition of repair processes with chemical agents can increase the transformation frequency of cells exposed to radiation and/or oncogenic viruses, suggesting that repair mechanisms may play an important role in the radiation transformation. The progression of radiation-transformed cells appears to be a long and complicated process that can be modulated by some nonmutagenic chemical agents, e.g., DMSO. Normal cells can inhibit the expression of transforming properties of tumorigenic cells through an as yet unknown mechanism. The progression and expression of transformation may involve some epigenetic changes in the irradiated cells. 38 references, 15 figures, 1 table.

  6. Chemostat Enrichments of Human Feces with Resistant Starch Are Selective for Adherent Butyrate-Producing Clostridia at High Dilution Rates

    PubMed Central

    Sharp, Richard; Macfarlane, George T.

    2000-01-01

    Resistant starch (RS) enrichments were made using chemostats inoculated with human feces from two individuals at two dilution rates (D = 0.03 h−1 and D = 0.30 h−1) to select for slow- and fast-growing amylolytic communities. The fermentations were studied by analysis of short-chain fatty acids, amylase and α-glucosidase activities, and viable counts of the predominant culturable populations and the use of 16S rRNA-targeted oligonucleotide probes. Considerable butyrate was produced at D = 0.30 h−1, which corresponded with reduced branched-chain fatty acid formation. At both dilution rates, high levels of extracellular amylase activity were produced, while α-glucosidase was predominantly cell associated. Bacteroides and bifidobacteria predominated at the low dilution rate, whereas saccharolytic clostridia became more important at D = 0.30 h−1. Microscopic examination showed that within 48 h of inoculation, one particular bacterial morphotype predominated in RS enrichments at D = 0.30 h−1. This organism attached apically to RS granules and formed rosette-like structures which, with glycocalyx formation, agglomerated to form biofilm networks in the planktonic phase. Attempts to isolate this bacterium in pure culture were repeatedly unsuccessful, although a single colony was eventually obtained. On the basis of its 16S rDNA sequence, this RS-degrading, butyrate-producing organism was identified as being a previously unidentified group I Clostridium sp. A 16S rRNA-targeted probe was designed using this sequence and used to assess the abundance of the population in the enrichments. At 240 h, its contributions to total rRNA in the chemostats were 5 and 23% at D = 0.03 and 0.30 h−1, respectively. This study indicates that bacterial populations with significant metabolic potential can be overlooked using culture-based methodologies. This may provide a paradigm for explaining the discrepancy between the low numbers of butyrate-producing bacteria that are

  7. Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut

    PubMed Central

    Rivière, Audrey; Selak, Marija; Lantin, David; Leroy, Frédéric; De Vuyst, Luc

    2016-01-01

    With the increasing amount of evidence linking certain disorders of the human body to a disturbed gut microbiota, there is a growing interest for compounds that positively influence its composition and activity through diet. Besides the consumption of probiotics to stimulate favorable bacterial communities in the human gastrointestinal tract, prebiotics such as inulin-type fructans (ITF) and arabinoxylan-oligosaccharides (AXOS) can be consumed to increase the number of bifidobacteria in the colon. Several functions have been attributed to bifidobacteria, encompassing degradation of non-digestible carbohydrates, protection against pathogens, production of vitamin B, antioxidants, and conjugated linoleic acids, and stimulation of the immune system. During life, the numbers of bifidobacteria decrease from up to 90% of the total colon microbiota in vaginally delivered breast-fed infants to <5% in the colon of adults and they decrease even more in that of elderly as well as in patients with certain disorders such as antibiotic-associated diarrhea, inflammatory bowel disease, irritable bowel syndrome, obesity, allergies, and regressive autism. It has been suggested that the bifidogenic effects of ITF and AXOS are the result of strain-specific yet complementary carbohydrate degradation mechanisms within cooperating bifidobacterial consortia. Except for a bifidogenic effect, ITF and AXOS also have shown to cause a butyrogenic effect in the human colon, i.e., an enhancement of colon butyrate production. Butyrate is an essential metabolite in the human colon, as it is the preferred energy source for the colon epithelial cells, contributes to the maintenance of the gut barrier functions, and has immunomodulatory and anti-inflammatory properties. It has been shown that the butyrogenic effects of ITF and AXOS are the result of cross-feeding interactions between bifidobacteria and butyrate-producing colon bacteria, such as Faecalibacterium prausnitzii (clostridial cluster IV

  8. Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut.

    PubMed

    Rivière, Audrey; Selak, Marija; Lantin, David; Leroy, Frédéric; De Vuyst, Luc

    2016-01-01

    With the increasing amount of evidence linking certain disorders of the human body to a disturbed gut microbiota, there is a growing interest for compounds that positively influence its composition and activity through diet. Besides the consumption of probiotics to stimulate favorable bacterial communities in the human gastrointestinal tract, prebiotics such as inulin-type fructans (ITF) and arabinoxylan-oligosaccharides (AXOS) can be consumed to increase the number of bifidobacteria in the colon. Several functions have been attributed to bifidobacteria, encompassing degradation of non-digestible carbohydrates, protection against pathogens, production of vitamin B, antioxidants, and conjugated linoleic acids, and stimulation of the immune system. During life, the numbers of bifidobacteria decrease from up to 90% of the total colon microbiota in vaginally delivered breast-fed infants to <5% in the colon of adults and they decrease even more in that of elderly as well as in patients with certain disorders such as antibiotic-associated diarrhea, inflammatory bowel disease, irritable bowel syndrome, obesity, allergies, and regressive autism. It has been suggested that the bifidogenic effects of ITF and AXOS are the result of strain-specific yet complementary carbohydrate degradation mechanisms within cooperating bifidobacterial consortia. Except for a bifidogenic effect, ITF and AXOS also have shown to cause a butyrogenic effect in the human colon, i.e., an enhancement of colon butyrate production. Butyrate is an essential metabolite in the human colon, as it is the preferred energy source for the colon epithelial cells, contributes to the maintenance of the gut barrier functions, and has immunomodulatory and anti-inflammatory properties. It has been shown that the butyrogenic effects of ITF and AXOS are the result of cross-feeding interactions between bifidobacteria and butyrate-producing colon bacteria, such as Faecalibacterium prausnitzii (clostridial cluster IV

  9. Human papillomavirus 16 E5 induces bi-nucleated cell formation by cell-cell fusion

    SciTech Connect

    Hu Lulin; Plafker, Kendra; Vorozhko, Valeriya; Zuna, Rosemary E.; Hanigan, Marie H.; Gorbsky, Gary J.; Plafker, Scott M.; Angeletti, Peter C.; Ceresa, Brian P.

    2009-02-05

    Human papillomaviruses (HPV) 16 is a DNA virus encoding three oncogenes - E5, E6, and E7. The E6 and E7 proteins have well-established roles as inhibitors of tumor suppression, but the contribution of E5 to malignant transformation is controversial. Using spontaneously immortalized human keratinocytes (HaCaT cells), we demonstrate that expression of HPV16 E5 is necessary and sufficient for the formation of bi-nucleated cells, a common characteristic of precancerous cervical lesions. Expression of E5 from non-carcinogenic HPV6b does not produce bi-nucleate cells. Video microscopy and biochemical analyses reveal that bi-nucleates arise through cell-cell fusion. Although most E5-induced bi-nucleates fail to propagate, co-expression of HPV16 E6/E7 enhances the proliferation of these cells. Expression of HPV16 E6/E7 also increases bi-nucleated cell colony formation. These findings identify a new role for HPV16 E5 and support a model in which complementary roles of the HPV16 oncogenes lead to the induction of carcinogenesis.

  10. Reversine Induced Multinucleated Cells, Cell Apoptosis and Autophagy in Human Non-Small Cell Lung Cancer Cells

    PubMed Central

    Lin, Ching-Yen; Chen, Yih-Yuan; Chen, Ping-Tzu; Tseng, Ya-Shih

    2016-01-01

    Reversine, an A3 adenosine receptor antagonist, has been shown to induce differentiated myogenic-lineage committed cells to become multipotent mesenchymal progenitor cells. We and others have reported that reversine has an effect on human tumor suppression. This study revealed anti-tumor effects of reversine on proliferation, apoptosis and autophagy induction in human non-small cell lung cancer cells. Treatment of these cells with reversine suppressed cell growth in a time- and dosage-dependent manner. Moreover, polyploidy occurred after reversine treatment. In addition, caspase-dependent apoptosis and activation of autophagy by reversine in a dosage-dependent manner were also observed. We demonstrated in this study that reversine contributes to growth inhibition, apoptosis and autophagy induction in human lung cancer cells. Therefore, reversine used as a potential therapeutic agent for human lung cancer is worthy of further investigation. PMID:27385117

  11. Oligogalacturonides induce flowers in tobacco thin cell layers

    SciTech Connect

    Marfa-Riera, V.; Gollin, D.; Mohnen, D.; Darvill, A.; Albersheim, P. )

    1989-04-01

    An optimized tobacco thin-cell-layer (TCL) bioassay was used to study the induction of flowers by plant oligosaccharins. Endopolygalacturonase (EPG)-released fragments of suspension-cultured sycamore cell walls induced flowers on TCLs grown on a medium containing 1.5 {mu}M IBA and 0.9 {mu}M kinetin. The EPG-released fragments were primarily composed of the polysaccharides rhamnogalacturonan I (RG-I), rhamnogalacturonan II (RG-II), and {alpha}-1,4-linked oligogalacturonides. The {alpha}-1,4-linked oligogalacturonides, subsequently purified from the EPG-released sycamore cell wall fragment mixture, induced flowers on TCLs. Purified RG-I and RG-II did not induce flowers. Oligosaccharide fragments, generated by partial acid hydrolysis of citrus pectin, were also capable of inducing flowers on the TCLs. The active components in the pectin fragment mixture were {alpha}-1,4-linked oligogalacturonides. Oligogalacturonides with a degree of polymerization (DP) of 8-16, at concentrations of {approx} 0.1 {mu}M, induced flowers, while oligogalacturonides with a DP 2-7, even at higher concentrations, did not. Oligogalacturonides have previously been shown to induce the synthesis of phytoalexins, protease inhibitors, lignin, and ethylene in other plant systems. Thus, the ability of {alpha}-1,4-linked oligogalacturonides to induce flower formation in the tobacco TCLs represents a new biological activity of these oligosaccharins.

  12. Ultrasound assisted synthesis of methyl butyrate using heterogeneous catalyst.

    PubMed

    Dange, P N; Kulkarni, A V; Rathod, V K

    2015-09-01

    Ultrasound assisted esterification of butyric acid with methanol was investigated in an ultrasound irradiated isothermal batch reactor using acid ion-exchange resin (amberlyst-15) as a catalyst. Effect of parameters such as temperature (323-353 K), catalyst loading (0-8.5%w/w), alcohol to acid ratio, M (2-6), ultrasound power (0-145 W), duty cycle (0-85%) and amount of molecular sieves added (0-11%w/w) on the rate of reaction was studied. At optimized parameters, a maximum conversion of 91.64% was obtained in 120 min in presence of ultrasound. Experimental kinetic data were correlated by using Eley-Rideal (ER) and Langmuir-Hinshelwood-Hougen-Watson (LHH W) models taking into account reverse reaction. Studies showed that single site LHHW with reactants and products both adsorbing on catalyst surface was most suited for the obtained experimental data. Activation energy determined based on heterogeneous kinetics was in the range 49.31-57.54 kJ/mol while it was 18.29 kJ/mol using homogeneous model. PMID:25825149

  13. Comparative pharmaceutical evaluation of brand and generic clobetasone butyrate ointments.

    PubMed

    Yamamoto, Yoshihisa; Fukami, Toshiro; Koide, Tatsuo; Onuki, Yoshinori; Suzuki, Toyofumi; Metori, Koichi; Katori, Noriko; Hiyama, Yukio; Tomono, Kazuo

    2014-03-10

    In the present study, we performed comprehensive pharmaceutical evaluation among an original clobetasone butyrate (CLB) ointment product and three generic products. Although spherocrystal images were observed under a polarizing microscope for only Kindavate®, the original product, distribution of active and inactive ingredients was chemically equivalent between the original and generic medicine by the attenuated total reflection infrared spectroscopy. These results suggest that the spherocrystals observed in Kindavate® are composed of hydrocarbon. On GC/MS, it was revealed that linear alkanes having 25-27 carbon atoms are densely present in Sun White®, the base used in Kindavate®. On the other hand, linear alkanes having 22-31 carbon atoms were broadly distributed in most other white petrolatums. In the CLB ointment products, the distribution equivalent of linear alkane to Sun White® was observed only in Kindavate®. Thus, the GC/MS method is extremely useful for identification of white petrolatum used in the ointment. A similar amount of CLB among the pharmaceutical products was detected in the skin tissue by skin accumulation test, although there were the differences in rheological properties and the quality of white petrolatum. The present results will be very useful for pharmacists in selecting medicine products that match the needs of the patient. Such pharmaceutical information will help spread objective knowledge about products in the future, and will contribute to the appropriate selection of medication. PMID:24406671

  14. CSR1 induces cell death through inactivation of CPSF3.

    PubMed

    Zhu, Z-H; Yu, Y P; Shi, Y-K; Nelson, J B; Luo, J-H

    2009-01-01

    CSR1 (cellular stress response 1), a newly characterized tumor-suppressor gene, undergoes hypermethylation in over 30% of prostate cancers. Re-expression of CSR1 inhibits cell growth and induces cell death, but the mechanism by which CSR1 suppresses tumor growth is not clear. In this study, we screened a prostate cDNA library using a yeast two-hybrid system and found that the cleavage and polyadenylation-specific factor 3 (CPSF3), an essential component for converting heteronuclear RNA to mRNA, binds with high affinity to the CSR1 C terminus. Further analyses determined that the binding motifs for CPSF3 are located between amino acids 440 and 543. The interaction between CSR1 and CPSF3 induced CPSF3 translocation from the nucleus to the cytoplasm, resulting in inhibition of polyadenylation both in vitro and in vivo. Downregulation of CPSF3 using small interfering RNA induced cell death in a manner similar to CSR1 expression. A CSR1 mutant unable to bind to CPSF3 did not alter CPSF3 subcellular distribution, did not inhibit its polyadenylation activity and did not induce cell death. In summary, CSR1 appears to induce cell death through a novel mechanism by hijacking a critical RNA processing enzyme. PMID:18806823

  15. Langerhans Cells Facilitate UVB-induced Epidermal Carcinogenesis

    PubMed Central

    Lewis, Julia M.; Bürgler, Christina D.; Freudzon, Marianna; Golubets, Kseniya; Gibson, Juliet F.; Filler, Renata B.; Girardi, Michael

    2015-01-01

    Ultraviolet B (UVB) light is considered the major environmental inducer of human keratinocyte DNA mutations, including within the tumor-suppressor gene p53, and chronic exposure is associated with cutaneous squamous cell carcinoma (SCC) formation. Langerhans cells (LC) comprise a dendritic network within the suprabasilar epidermis, yet the role of LC in UVB-induced carcinogenesis is largely unknown. Herein, we show that LC-intact epidermis develops UVB-induced tumors more readily than LC-deficient epidermis. While levels of epidermal cyclopyrimidine dimers (CPD) following acute UVB exposure are equivalent in the presence or absence of LC, chronic UVB-induced p53 mutant clonal islands expand more readily in association with LC which remain largely intact and are preferentially found in proximity to the expanding mutant keratinocyte populations. The observed LC facilitation of mutant p53 clonal expansion is completely αβ and γδ T-cell independent, and is associated with increased intraepidermal expression of interleukin (IL)-22 and the presence of group 3 innate lymphoid cells (ILC3). These data demonstrate that LC play a key role in UVB-induced cutaneous carcinogenesis, and suggest that LC locally stimulate keratinocyte proliferation and innate immune cells that provoke tumor outgrowth. PMID:26053049

  16. Unraveling the mechanism of cell death induced by chemical fibrils

    PubMed Central

    Julien, Olivier; Kampmann, Martin; Bassik, Michael C.; Zorn, Julie A.; Venditto, Vincent J.; Shimbo, Kazutaka; Agard, Nicholas J.; Shimada, Kenichi; Rheingold, Arnold L.; Stockwell, Brent R.; Weissman, Jonathan S.

    2014-01-01

    We previously discovered a small-molecule inducer of cell death, named 1541, that non-covalently self-assembles into chemical fibrils (“chemi-fibrils”) and activates procaspase-3 in vitro. We report here that 1541-induced cell death is caused by the fibrillar, rather than the soluble form of the drug. An shRNA screen reveals that knockdown of genes involved in endocytosis, vesicle trafficking, and lysosomal acidification causes partial 1541 resistance. We confirm the role of these pathways using pharmacological inhibitors. Microscopy shows that the fluorescent chemi-fibrils accumulate in punctae inside cells that partially co-localize with lysosomes. Notably, the chemi-fibrils bind and induce liposome leakage in vitro, suggesting they may do the same in cells. The chemi-fibrils induce extensive proteolysis including caspase substrates, yet modulatory profiling reveals that chemi-fibrils form a distinct class from existing inducers of cell death. The chemi-fibrils share similarities to proteinaceous fibrils and may provide insight into their mechanism of cellular toxicity. PMID:25262416

  17. Hinokitiol induces autophagy in murine breast and colorectal cancer cells.

    PubMed

    Wang, Wei-Kuang; Lin, Song-Tao; Chang, Wen-Wei; Liu, Li-Wen; Li, Tom Yu-Tung; Kuo, Chun-Yu; Hsieh, Jeng-Long; Lee, Che-Hsin

    2016-01-01

    Hinokitiol is found in the heartwood of cupressaceous plants and possesses several biological activities. Hinokitiol may play an important role in anti-inflammation and antioxidant processes, making it potentially useful in therapies for inflammatory-mediated disease. Previously, the suppression of tumor growth by hinokitiol has been shown to occur through apoptosis. Programmed cell death can also occur through autophagy, but the mechanism of hinokitiol-induced autophagy in tumor cells is poorly defined. We used an autophagy inhibitor (3-methyladenine) to demonstrate that hinokitiol can induce cell death via an autophagic pathway. Further, we suggest that hinokitiol induces autophagy in a dose-dependent manner. Markers of autophagy were increased after tumor cells were treated with hinokitiol. In addition, immunoblotting revealed that the levels of phosphoprotein kinase B (P-AKT), phosphomammalian target of rapamycin (P-mTOR), and phospho-p70 ribosomal s6 kinase (P-p70S6K) in tumor cells were decreased after hinokitiol treatment. In conclusion, our results indicate that hinokitiol induces the autophagic signaling pathway via downregulation of the AKT/mTOR pathway. Therefore, our findings show that hinokitiol may control tumor growth by inducing autophagic signaling. PMID:25044443

  18. Apoptosis induced by dioscin in Hela cells.

    PubMed

    Cai, Jing; Liu, Mingjie; Wang, Zhao; Ju, Yong

    2002-02-01

    Dioscin, a saponin extracted from the root of Polygonatum Zanlanscianense Pamp, markedly inhibited proliferation of Hela cells. The results indicated that Hela cells underwent apoptosis in dose- and time-dependent manners when treated with Dioscin. Caspase-3, -8 and -9 activities were also detected. The low enzymatic activity of caspase-8 and high activity of caspase-9 showed that the mitochondrial pathway was activated in apoptosis. The reduced expression of the survival protein Bcl-2 also confirmed this result. These studies may be significant in finding a new drug to treat human cervical cancer. PMID:11853164

  19. Linalool Induces Cell Cycle Arrest and Apoptosis in Leukemia Cells and Cervical Cancer Cells through CDKIs

    PubMed Central

    Chang, Mei-Yin; Shieh, Den-En; Chen, Chung-Chi; Yeh, Ching-Sheng; Dong, Huei-Ping

    2015-01-01

    Plantaginaceae, a popular traditional Chinese medicine, has long been used for treating various diseases from common cold to cancer. Linalool is one of the biologically active compounds that can be isolated from Plantaginaceae. Most of the commonly used cytotoxic anticancer drugs have been shown to induce apoptosis in susceptible tumor cells. However, the signaling pathway for apoptosis remains undefined. In this study, the cytotoxic effect of linalool on human cancer cell lines was investigated. Water-soluble tetrazolium salts (WST-1) based colorimetric cellular cytotoxicity assay, was used to test the cytotoxic ability of linalool against U937 and HeLa cells, and flow cytometry (FCM) and genechip analysis were used to investigate the possible mechanism of apoptosis. These results demonstrated that linalool exhibited a good cytotoxic effect on U937 and HeLa cells, with the IC50 value of 2.59 and 11.02 μM, respectively, compared with 5-FU with values of 4.86 and 12.31 μM, respectively. After treating U937 cells with linalool for 6 h, we found an increased sub-G1 peak and a dose-dependent phenomenon, whereby these cells were arrested at the G0/G1 phase. Furthermore, by using genechip analysis, we observed that linalool can promote p53, p21, p27, p16, and p18 gene expression. Therefore, this study verified that linalool can arrest the cell cycle of U937 cells at the G0/G1 phase and can arrest the cell cycle of HeLa cells at the G2/M phase. Its mechanism facilitates the expression of the cyclin-dependent kinases inhibitors (CDKIs) p53, p21, p27, p16, and p18, as well as the non-expression of cyclin-dependent kinases (CDKs) activity. PMID:26703569

  20. Shape anisotropy induces rotations in optically trapped red blood cells

    NASA Astrophysics Data System (ADS)

    Bambardekar, Kapil; Dharmadhikari, Jayashree A.; Dharmadhikari, Aditya K.; Yamada, Toshihoro; Kato, Tsuyoshi; Kono, Hirohiko; Fujimura, Yuichi; Sharma, Shobhona; Mathur, Deepak

    2010-07-01

    A combined experimental and theoretical study is carried out to probe the rotational behavior of red blood cells (RBCs) in a single beam optical trap. We induce shape changes in RBCs by altering the properties of the suspension medium in which live cells float. We find that certain shape anisotropies result in the rotation of optically trapped cells. Indeed, even normal (healthy) RBCs can be made to rotate using linearly polarized trapping light by altering the osmotic stress the cells are subjected to. Hyperosmotic stress is found to induce shape anisotropies. We also probe the effect of the medium's viscosity on cell rotation. The observed rotations are modeled using a Langevin-type equation of motion that takes into account frictional forces that are generated as RBCs rotate in the medium. We observe good correlation between our measured data and calculated results.

  1. Quantification of Depletion-Induced Adhesion of Red Blood Cells

    NASA Astrophysics Data System (ADS)

    Steffen, P.; Verdier, C.; Wagner, C.

    2013-01-01

    Red blood cells (RBCs) are known to form aggregates in the form of rouleaux due to the presence of plasma proteins under physiological conditions. The formation of rouleaux can also be induced in vitro by the addition of macromolecules to the RBC suspension. Current data on the adhesion strength between red blood cells in their natural discocyte shapes mostly originate from indirect measurements such as flow chamber experiments, but data is lacking at the single cell level. Here, we present measurements on the dextran-induced aggregation of red blood cells using atomic force microscopy-based single cell force spectroscopy. The effects of dextran concentration and molecular weight on the interaction energy of adhering RBCs were determined. The results on adhesion energy are in excellent agreement with a model based on the depletion effect and previous experimental studies. Furthermore, our method allowed to determine the adhesion force, a quantity that is needed in theoretical investigations on blood flow.

  2. Quantification of depletion-induced adhesion of red blood cells.

    PubMed

    Steffen, P; Verdier, C; Wagner, C

    2013-01-01

    Red blood cells (RBCs) are known to form aggregates in the form of rouleaux due to the presence of plasma proteins under physiological conditions. The formation of rouleaux can also be induced in vitro by the addition of macromolecules to the RBC suspension. Current data on the adhesion strength between red blood cells in their natural discocyte shapes mostly originate from indirect measurements such as flow chamber experiments, but data is lacking at the single cell level. Here, we present measurements on the dextran-induced aggregation of red blood cells using atomic force microscopy-based single cell force spectroscopy. The effects of dextran concentration and molecular weight on the interaction energy of adhering RBCs were determined. The results on adhesion energy are in excellent agreement with a model based on the depletion effect and previous experimental studies. Furthermore, our method allowed to determine the adhesion force, a quantity that is needed in theoretical investigations on blood flow. PMID:23383842

  3. Long-term maintenance of human induced pluripotent stem cells by automated cell culture system.

    PubMed

    Konagaya, Shuhei; Ando, Takeshi; Yamauchi, Toshiaki; Suemori, Hirofumi; Iwata, Hiroo

    2015-01-01

    Pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem (iPS) cells, are regarded as new sources for cell replacement therapy. These cells can unlimitedly expand under undifferentiated conditions and be differentiated into multiple cell types. Automated culture systems enable the large-scale production of cells. In addition to reducing the time and effort of researchers, an automated culture system improves the reproducibility of cell cultures. In the present study, we newly designed a fully automated cell culture system for human iPS maintenance. Using an automated culture system, hiPS cells maintained their undifferentiated state for 60 days. Automatically prepared hiPS cells had a potency of differentiation into three germ layer cells including dopaminergic neurons and pancreatic cells. PMID:26573336

  4. Fusarochromanone Induces G1 Cell Cycle Arrest and Apoptosis in COS7 and HEK293 Cells

    PubMed Central

    Gu, Ying; Chen, Xin; Shang, Chaowei; Singh, Karnika; Barzegar, Mansoureh; Mahdavian, Elahe; Salvatore, Brian A.; Jiang, Shanxiang; Huang, Shile

    2014-01-01

    Fusarochromanone (FC101), a mycotoxin produced by the fungus Fusarium equiseti, is frequently observed in the contaminated grains and feedstuffs, which is toxic to animals and humans. However, the underlying molecular mechanism remains to be defined. In this study, we found that FC101 inhibited cell proliferation and induced cell death in COS7 and HEK293 cells in a concentration-dependent manner. Flow cytometric analysis showed that FC101 induced G1 cell cycle arrest and apoptosis in the cells. Concurrently, FC101 downregulated protein expression of cyclin D1, cyclin-dependent kinases (CDK4 and CDK6), and Cdc25A, and upregulated expression of the CDK inhibitors (p21Cip1 and p27Kip1), resulting in hypophosphorylation of Rb. FC101 also inhibited protein expression of Bcl-2, Bcl-xL, Mcl-1 and survivin, and induced expression of BAD, leading to activation of caspase 3 and cleavage of PARP, indicating caspase-dependent apoptosis. However, Z-VAD-FMK, a pan-caspase inhibitor, only partially prevented FC101-induced cell death, implying that FC101 may induce cell death through both caspase-dependent and -independent mechanisms. Our results support the notion that FC101 executes its toxicity at least by inhibiting cell proliferation and inducing cell death. PMID:25384025

  5. Autophagonizer, a novel synthetic small molecule, induces autophagic cell death

    SciTech Connect

    Choi, In-Kwon; Cho, Yoon Sun; Jung, Hye Jin; Kwon, Ho Jeong

    2010-03-19

    Autophagy is an apoptosis-independent mechanism of cell death that protects the cell from environmental imbalances and infection by pathogens. We identified a novel small molecule, 2-(3-Benzyl-4-oxo-3,4,5,6,7,8-hexahydro-benzo[4,5]thieno[2,3-d] pyrimidin-2-ylsulfanylmethyl)-oxazole-4-carboxylic acid (2-pyrrolidin-1-yl-ethyl)-amide (referred as autophagonizer), using high-content cell-based screening and the autophagosome marker EGFP-LC3. Autophagonizer inhibited growth and induced cell death in the human tumor cell lines MCF7, HeLa, HCT116, A549, AGS, and HT1080 via a caspase-independent pathway. Conversion of cytosolic LC3-I to autophagosome-associated LC3-II was greatly enhanced by autophagonizer treatment. Transmission electron microscopy and acridine orange staining revealed increased autophagy in the cytoplasm of autophagonizer-treated cells. In conclusion, autophagonizer is a novel autophagy inducer with unique structure, which induces autophagic cell death in the human tumor cell lines.

  6. Th1 and Th17 Cells Induce Proliferative Glomerulonephritis

    PubMed Central

    Summers, Shaun A.; Steinmetz, Oliver M.; Li, Ming; Kausman, Joshua Y.; Semple, Timothy; Edgtton, Kristy L.; Borza, Dorin-Bogdan; Braley, Hal; Holdsworth, Stephen R.

    2009-01-01

    Th1 effector CD4+ cells contribute to the pathogenesis of proliferative and crescentic glomerulonephritis, but whether effector Th17 cells also contribute is unknown. We compared the involvement of Th1 and Th17 cells in a mouse model of antigen-specific glomerulonephritis in which effector CD4+ cells are the only components of adaptive immunity that induce injury. We planted the antigen ovalbumin on the glomerular basement membrane of Rag1−/− mice using an ovalbumin-conjugated non-nephritogenic IgG1 monoclonal antibody against α3(IV) collagen. Subsequent injection of either Th1- or Th17-polarized ovalbumin-specific CD4+ effector cells induced proliferative glomerulonephritis. Mice injected with Th1 cells developed progressive albuminuria over 21 d, histologic injury including 5.5 ± 0.9% crescent formation/segmental necrosis, elevated urinary nitrate, and increased renal NOS2, CCL2, and CCL5 mRNA. Mice injected with Th17 cells developed albuminuria by 3 d; compared with Th1-injected mice, their glomeruli contained more neutrophils and greater expression of renal CXCL1 mRNA. In conclusion, Th1 and Th17 effector cells can induce glomerular injury. Understanding how these two subsets mediate proliferative forms of glomerulonephritis may lead to targeted therapies. PMID:19820122

  7. Th1 and Th17 cells induce proliferative glomerulonephritis.

    PubMed

    Summers, Shaun A; Steinmetz, Oliver M; Li, Ming; Kausman, Joshua Y; Semple, Timothy; Edgtton, Kristy L; Borza, Dorin-Bogdan; Braley, Hal; Holdsworth, Stephen R; Kitching, A Richard

    2009-12-01

    Th1 effector CD4+ cells contribute to the pathogenesis of proliferative and crescentic glomerulonephritis, but whether effector Th17 cells also contribute is unknown. We compared the involvement of Th1 and Th17 cells in a mouse model of antigen-specific glomerulonephritis in which effector CD4+ cells are the only components of adaptive immunity that induce injury. We planted the antigen ovalbumin on the glomerular basement membrane of Rag1(-/-) mice using an ovalbumin-conjugated non-nephritogenic IgG1 monoclonal antibody against alpha3(IV) collagen. Subsequent injection of either Th1- or Th17-polarized ovalbumin-specific CD4+ effector cells induced proliferative glomerulonephritis. Mice injected with Th1 cells developed progressive albuminuria over 21 d, histologic injury including 5.5 +/- 0.9% crescent formation/segmental necrosis, elevated urinary nitrate, and increased renal NOS2, CCL2, and CCL5 mRNA. Mice injected with Th17 cells developed albuminuria by 3 d; compared with Th1-injected mice, their glomeruli contained more neutrophils and greater expression of renal CXCL1 mRNA. In conclusion, Th1 and Th17 effector cells can induce glomerular injury. Understanding how these two subsets mediate proliferative forms of glomerulonephritis may lead to targeted therapies. PMID:19820122

  8. SOCS3 induces neurite differentiation and promotes neuronal cell survival.

    PubMed

    Mishra, Kanchan Kumar; Gupta, Sakshi; Banerjee, Kakoli

    2016-06-01

    Cytokines and growth factors play an important role in neuronal survival as well as cell death. The family of suppressors of cytokine signalling (SOCS) proteins, which includes SOCS1-7 and cytokine-induced suppressor (CIS), has been shown to act as negative regulators of cytokine-induced signalling. In this report, we highlight the role of SOCS3 in regulating neuronal differentiation and survival. We observed increased SOCS3 expression upon differentiation of PC12 cells as well as neural stem cells. SOCS3 overexpression upregulated differentiation of both neural stem cells and PC12 cells even in the absence of NGF, as evidenced by enhanced neurite outgrowth and upregulation of GAP43, marker associated with neurite outgrowth. siRNA-mediated silencing of SOCS3 confirmed the potential role of SOCS3 in neuritogenesis. We observed that, SOCS3-induced neurite differentiation was mediated via the PI3 kinase pathway. Another interesting observation was that SOCS3 overexpression promoted neuronal cell survival under H2 O2 -mediated stress indicating its fundamental role in cell survival. In conclusion, our results indicate that SOCS3 promotes differentiation and survival of neural cells and could be potentially useful in future therapy for treatment of neurodegenerative disorders. © 2016 IUBMB Life, 68(6):468-476, 2016. PMID:27118613

  9. Induced pluripotent stem cells as a source of hepatocytes

    PubMed Central

    Sauer, Vanessa; Roy-Chowdhury, Namita; Guha, Chandan; Roy-Chowdhury, Jayanta

    2014-01-01

    During the past decade, a series of discoveries has established the potential of the so called terminally differentiated cells to transition to more primitive progenitor cells. The dramatic demonstration of the ability to reprogram differentiated somatic cells to induced pluripotent stem cells (iPSC) that can then give rise to cells of all three germ layers has opened the possibility of generating virtually any cell type in culture, from any given individual. Taking advantage of these concepts, researchers have generated iPSCs by reprogramming a wide variety of somatic cells. In addition to their practical implications, these studies have provided crucial insights into the mechanism of cell plasticity that underlies the transition from one cell type to another. Using concepts derived from research on embryological development, investigators have differentiated iPSCs to cells resembling hepatocytes in many ways. Such hepatocyte-like cells could be of enormous value in disease modeling, drug discovery and regenerative medicine. However, the currently available methods do not yield cells that fully reproduce the characteristics of adult primary hepatocytes. Thus generating hepatocytes from iPSCs is very much a work in progress. In addition to chronicling these exciting developments, this review will discuss the emergent new approaches to generating iPSCs, improving their differentiation to hepatocyte-like cells and maintaining the hepatocyte-like cells in culture for longer survival and better function. PMID:25650171

  10. Cadmium induces acidosis in maize root cells.

    PubMed

    Nocito, Fabio Francesco; Espen, Luca; Crema, Barbara; Cocucci, Maurizio; Sacchi, Gian Attilio

    2008-01-01

    * Cadmium (Cd) stress increases cell metabolic demand for sulfur, reducing equivalents, and carbon skeletons, to sustain phytochelatin biosynthesis for Cd detoxification. In this condition the induction of potentially acidifying anaplerotic metabolism in root tissues may be expected. For these reasons the effects of Cd accumulation on anaplerotic metabolism, glycolysis, and cell pH control mechanisms were investigated in maize (Zea mays) roots. * The study compared root apical segments, excised from plants grown for 24 h in a nutrient solution supplemented, or not, with 10 microM CdCl(2), using physiological, biochemical and (31)P-nuclear magnetic resonance (NMR) approaches. * Cadmium exposure resulted in a significant decrease in both cytosolic and vacuolar pH of root cells and in a concomitant increase in the carbon fluxes through anaplerotic metabolism leading to malate biosynthesis, as suggested by changes in dark CO2 fixation, metabolite levels and enzyme activities along glycolysis, and mitochondrial alternative respiration capacity. This scenario was accompanied by a decrease in the net H(+) efflux from the roots, probably related to changes in plasma membrane permeability. * It is concluded that anaplerotic metabolism triggered by Cd detoxification processes might lead to an imbalance in H(+) production and consumption, and then to cell acidosis. PMID:18537888

  11. Sulbutiamine counteracts trophic factor deprivation induced apoptotic cell death in transformed retinal ganglion cells.

    PubMed

    Kang, Kui Dong; Majid, Aman Shah Abdul; Kim, Kyung-A; Kang, Kyungsu; Ahn, Hong Ryul; Nho, Chu Won; Jung, Sang Hoon

    2010-11-01

    Sulbutiamine is a highly lipid soluble synthetic analogue of vitamin B(1) and is used clinically for the treatment of asthenia. The aim of our study was to demonstrate whether sulbutiamine is able to attenuate trophic factor deprivation induced cell death to transformed retinal ganglion cells (RGC-5). Cells were subjected to serum deprivation for defined periods and sulbutiamine at different concentrations was added to the cultures. Various procedures (e.g. cell viability assays, apoptosis assay, reactive oxygen species analysis, Western blot analysis, flow cytometric analysis, glutathione (GSH) and glutathione-S-transferase (GST) measurement) were used to demonstrate the effect of sulbutiamine. Sulbutiamine dose-dependently attenuated apoptotic cell death induced by serum deprivation and stimulated GSH and GST activity. Moreover, sulbutiamine decreased the expression of cleaved caspase-3 and AIF. This study demonstrates for the first time that sulbutiamine is able to attenuate trophic factor deprivation induced apoptotic cell death in neuronal cells in culture. PMID:20809085

  12. Difference of cell cycle arrests induced by lidamycin in human breast cancer cells.

    PubMed

    Liu, Xia; He, Hongwei; Feng, Yun; Zhang, Min; Ren, Kaihuan; Shao, Rongguang

    2006-02-01

    Lidamycin (LDM) is a member of the enediyne antibiotic family. It is undergoing phase I clinical trials in China as a potential chemotherapeutic agent. In the present study, we investigated the mechanism by which LDM induced cell cycle arrest in human breast cancer cells. The results showed that LDM induced G1 arrest in p53 wild-type MCF-7 cells at low concentrations, and caused both G1 and G2/M arrests at higher concentrations. In contrast, LDM induced only G2/M arrest in p53-mutant MCF-7/DOX cells. Western blotting analysis indicated that LDM-induced G1 and G2/M arrests in MCF-7 cells were associated with an increase of p53 and p21, and a decrease of phosphorylated retinoblastoma tumor suppressor protein, cyclin-dependent kinase (Cdk), Cdc2 and cyclin B1 protein levels. However, LDM-induced G2/M arrest in MCF-7/DOX cells was correlated with the reduction of cyclin B1 expression. Further study indicated that the downregulation of cyclin B1 by LDM in MCF-7 cells was associated with decreasing cyclin B1 mRNA levels and promoting protein degradation, whereas it was only due to inducing cyclin B1 protein degradation in MCF-7/DOX cells. In addition, activation of checkpoint kinases Chk1 or Chk2 maybe contributed to LDM-induced cell cycle arrest. Taken together, we provide the first evidence that LDM induces different cell cycle arrests in human breast cancer cells, which are dependent on drug concentration and p53 status. These findings are helpful in understanding the molecular anti-cancer mechanisms of LDM and support its clinical trials. PMID:16428935

  13. Serum-Induced Differentiation of Human Meibomian Gland Epithelial Cells

    PubMed Central

    Sullivan, David A.; Liu, Yang; Kam, Wendy R.; Ding, Juan; Green, Karin M.; Shaffer, Scott A.; Hatton, Mark P.; Liu, Shaohui

    2014-01-01

    Purpose. We hypothesize that culturing immortalized human meibomian gland epithelial cells in serum-containing medium will induce their differentiation. The purpose of this investigation was to begin to test our hypothesis, and explore the impact of serum on gene expression and lipid accumulation in human meibomian gland epithelial cells. Methods. Immortalized and primary human meibomian gland epithelial cells were cultured in the presence or absence of serum. Cells were evaluated for lysosome and lipid accumulation, polar and neutral lipid profiles, and gene expression. Results. Our results support our hypothesis that serum stimulates the differentiation of human meibomian gland epithelial cells. This serum-induced effect is associated with a significant increase in the expression of genes linked to cell differentiation, epithelium development, the endoplasmic reticulum, Golgi apparatus, vesicles, and lysosomes, and a significant decrease in gene activity related to the cell cycle, mitochondria, ribosomes, and translation. These cellular responses are accompanied by an accumulation of lipids within lysosomes, as well as alterations in the fatty acid content of polar and nonpolar lipids. Of particular importance, our results show that the molecular and biochemical changes of immortalized human meibomian gland epithelial cells during differentiation are analogous to those of primary cells. Conclusions. Overall, our findings indicate that immortalized human meibomian gland epithelial cells may serve as an ideal preclinical model to identify factors that control cellular differentiation in the meibomian gland. PMID:24867579

  14. Quinolinic acid induces cell apoptosis in PC12 cells through HIF-1-dependent RTP801 activation.

    PubMed

    Huang, Xiaojia; Yang, Kaiyong; Zhang, Yi; Wang, Qiang; Li, Yongjin

    2016-04-01

    Neurological disease comprises a series of disorders featuring brain dysfunction and neuronal cell death. Among the factors contributing to neuronal death, excitotoxicity induced by excitatory amino acids, such as glutamate, plays a critical role. However, the mechanisms about how the excitatory amino acids induce neuronal death remain elucidated. In this study, we investigated the role of HIF-1α (hypoxia inducible factor-1α) and RTP801 in cell apoptosis induced by quinolinic acid (QUIN), a glutamatergic agonist, in PC12 cells. We found that QUIN at 5 μM increased the expression of HIF-1α significantly with a peak at 24 h. After the treatment with QUIN (5-20 μM) for 24 h, the cells exhibited decreased viability and cell apoptosis with a concomitant increased expression of apoptosis related proteins. QUIN treatment also induced the generation of intracellular reactive oxygen species and RTP801 up-regulation in a HIF-1α-dependent manner that were inhibited by 2-methoxyestradiol, a HIF-1α inhibitor. Importantly, HIF-1 or RTP801 invalidation by siRNA rescued the cell apoptosis induced by QUIN or cobalt chloride, a chemical inducer of HIF-1. Taken together, these findings support the concept that neurotoxicity induced by QUIN is associated with HIF-1-dependent RTP801 activation and provide insight into the potential of RTP801 inhibitor in treatment of neurological disorders. PMID:26738727

  15. Actinobacillus actinomycetemcomitans induces apoptosis in human monocytic THP-1 cells.

    PubMed

    Kato, Satsuki; Sugimura, Norihiko; Nakashima, Keisuke; Nishihara, Tatsuji; Kowashi, Yusuke

    2005-03-01

    It has previously been reported that the murine macrophage cell line J774.1 and the human oral epithelial cell line KB undergo apoptosis as a result of Actinobacillus actinomycetemcomitans infection. Recent studies have demonstrated that apoptosis regulation is modulated by multiple phosphorylation of several different protein kinases, including the major subtypes of the mitogen-activated protein kinase (MAPK) family. The MAPK family promotes cell survival and/or proliferation in response to growth factor stimulation, or apoptosis in response to various stress stimuli. The primary objective of the present investigation was to clarify whether human immune cells undergo apoptosis following A. actinomycetemcomitans infection and, if so, to establish the involvement of the MAPK family. Human monocytic THP-1 cells were infected with A. actinomycetemcomitans in microtubes. Lactate dehydrogenase release into the culture supernatant and DNA fragmentation in the cells were monitored. DNA fragmentation was also identified by agarose gel electrophoresis. Cell death following A. actinomycetemcomitans infection occurred by apoptosis, shown by an increase in the proportion of fragmented DNA and the typical ladder pattern of DNA fragmentation indicative of apoptosis. Furthermore, p38 MAPK activity and tumour necrosis factor alpha (TNF-alpha) levels increased following A. actinomycetemcomitans infection. In contrast, cell death and TNF-alpha levels in infected cells decreased upon addition of a p38 inhibitor or an anti-TNF-alpha antibody. However, exogenous TNF-alpha could not induce apoptosis in uninfected THP-1 cells. Interestingly, p38 MAPK activity diminished in the presence of anti-TNF-alpha antibody. These findings indicated that A. actinomycetemcomitans infection induces apoptosis in THP-1 cells and that p38 MAPK activity is directly involved in apoptosis. TNF-alpha may play an indirect role in apoptosis via enhanced p38 MAPK activity. A. actinomycetemcomitans-induced

  16. NK Cells and γδ T Cells Mediate Resistance to Polyomavirus–Induced Tumors

    PubMed Central

    Mishra, Rabinarayan; Chen, Alex T.; Welsh, Raymond M.; Szomolanyi-Tsuda, Eva

    2010-01-01

    NK and γδ T cells can eliminate tumor cells in many experimental models, but their effect on the development of tumors caused by virus infections in vivo is not known. Polyomavirus (PyV) induces tumors in neonatally infected mice of susceptible strains and in adult mice with certain immune defi