Science.gov

Sample records for bzip scf5 transcription

  1. bZIPs and WRKYs: two large transcription factor families executing two different functional strategies

    PubMed Central

    Llorca, Carles M.; Potschin, Maren; Zentgraf, Ulrike

    2014-01-01

    bZIPs and WRKYs are two important plant transcription factor (TF) families regulating diverse developmental and stress-related processes. Since a partial overlap in these biological processes is obvious, it can be speculated that they fulfill non-redundant functions in a complex regulatory network. Here, we focus on the regulatory mechanisms that are so far described for bZIPs and WRKYs. bZIP factors need to heterodimerize for DNA-binding and regulation of transcription, and based on a bioinformatics approach, bZIPs can build up more than the double of protein interactions than WRKYs. In contrast, an enrichment of the WRKY DNA-binding motifs can be found in WRKY promoters, a phenomenon which is not observed for the bZIP family. Thus, the two TF families follow two different functional strategies in which WRKYs regulate each other’s transcription in a transcriptional network whereas bZIP action relies on intensive heterodimerization. PMID:24817872

  2. System-wide characterization of bZIP transcription factor proteins involved in infection-related morphogenesis of Magnaporthe oryzae

    PubMed Central

    Tang, Wei; Ru, Yanyan; Hong, Li; Zhu, Qian; Zuo, Rongfang; Guo, Xianxian; Wang, Jingzhen; Zhang, Haifeng; Zheng, Xiaobo; Wang, Ping; Zhang, Zhengguang

    2014-01-01

    The basic-leucine zipper (bZIP) domain-containing transcription factors (TFs) function as key regulators of cellular growth and differentiation in eukaryotic organisms including fungi. We have previously identified MoAp1 and MoAtf1 as bZIP TFs in Magnaporthe oryzae and demonstrated that they regulate the oxidative stress response and are critical in conidiogenesis and pathogenicity. Studies of bZIP proteins could provide a novel strategy for controlling rice blast, but a systematic examination of the bZIP proteins has not been carried out. Here, we identified 19 additional bZIP TFs and characterized their functions. We found that the majority of these TFs exhibit active functions, most notably, in conidiogenesis. We showed that MoHac1 regulates the endoplasmic reticulum (ER)-stress response through a conserved unfolded protein response (UPR) pathway, MoMetR controls amino acid metabolism to govern growth and differentiation, and MoBzip10 governs appressorium function and invasive hyphal growth. Moreover, MoBzip5 participates in appressorium formation through a pathway distinct from that MoBzip10, and MoMeaB appears to exert a regulatory role through nutrient uptake and nitrogen utilization. Collectively, our results provide insights into shared and specific functions associated with each of these TFs and link the regulatory roles to the fungal growth, conidiation, appressorium formation, host penetration, and pathogenicity. PMID:25186614

  3. Expression analysis of bZIP transcription factor encoding genes in response to water deficit stress in rice.

    PubMed

    Ali, Kishwar; Rai, R D; Tyagi, Aruna

    2016-05-01

    In plants, basic region/leucine zipper motif (bZIP) transcription factors regulate several developmental processes and activate genes in response to biotic and abiotic stresses. Role of stress responsive bZIP transcription factors was studied in paddy in relation to different stages of development and water deficit stress (WDS) in a drought tolerant cultivar N22 and susceptible IR 64. Further, relative water content (RWC), membrane stability index (MSI) and abscisic acid (ABA) content were measured as indices of WDS at different stages of development and levels of stress. Expression of stress responsive bZIP transcription factors was directly correlated to developmental stage and WDS and indirectly to RWC, MSI and ABA content. PMID:27319052

  4. The Role of bZIP Transcription Factors in Green Plant Evolution: Adaptive Features Emerging from Four Founder Genes

    PubMed Central

    Schrago, Carlos Guerra; dos Santos, Renato Vicentini; Mueller-Roeber, Bernd; Vincentz, Michel

    2008-01-01

    Background Transcription factors of the basic leucine zipper (bZIP) family control important processes in all eukaryotes. In plants, bZIPs are regulators of many central developmental and physiological processes including photomorphogenesis, leaf and seed formation, energy homeostasis, and abiotic and biotic stress responses. Here we performed a comprehensive phylogenetic analysis of bZIP genes from algae, mosses, ferns, gymnosperms and angiosperms. Methodology/Principal Findings We identified 13 groups of bZIP homologues in angiosperms, three more than known before, that represent 34 Possible Groups of Orthologues (PoGOs). The 34 PoGOs may correspond to the complete set of ancestral angiosperm bZIP genes that participated in the diversification of flowering plants. Homologous genes dedicated to seed-related processes and ABA-mediated stress responses originated in the common ancestor of seed plants, and three groups of homologues emerged in the angiosperm lineage, of which one group plays a role in optimizing the use of energy. Conclusions/Significance Our data suggest that the ancestor of green plants possessed four bZIP genes functionally involved in oxidative stress and unfolded protein responses that are bZIP-mediated processes in all eukaryotes, but also in light-dependent regulations. The four founder genes amplified and diverged significantly, generating traits that benefited the colonization of new environments. PMID:18698409

  5. Functional dissection of a small anaerobically induced bZIP transcription factor from tomato.

    PubMed

    Sell, Simone; Hehl, Reinhard

    2004-11-01

    A small anaerobically induced tomato transcription factor was isolated from a subtractive library. This factor, designated ABZ1 (anaerobic basic leucine zipper), is anaerobically induced in fruits, leaves and roots and encodes a nuclear localized protein. ABZ1 shares close structural and sequence homology with the S-family of small basic leucine zipper (bZIP) transcription factors that are implicated in stress response. Nuclear localization of ABZ1 is mediated by the basic region and occurs under normoxic conditions. ABZ1 binds to G-box-like target sites as a dimer. Binding can be abolished by heterodimerization with a truncated protein retaining the leucine zipper but lacking the DNA binding domain. The protein binds in a sequence specific manner to the CaMV 35S promoter which is down regulated when ABZ1 is coexpressed. This correlates with the anaerobic down regulation of the 35S promoter in tomato and tobacco. These results may suggest that small bZIP proteins are involved in the negative regulation of gene expression under anaerobic conditions. PMID:15560794

  6. The phylogeny of C/S1 bZIP transcription factors reveals a shared algal ancestry and the pre-angiosperm translational regulation of S1 transcripts

    PubMed Central

    Peviani, Alessia; Lastdrager, Jeroen; Hanson, Johannes; Snel, Berend

    2016-01-01

    Basic leucine zippers (bZIPs) form a large plant transcription factor family. C and S1 bZIP groups can heterodimerize, fulfilling crucial roles in seed development and stress response. S1 sequences also harbor a unique regulatory mechanism, termed Sucrose-Induced Repression of Translation (SIRT). The conservation of both C/S1 bZIP interactions and SIRT remains poorly characterized in non-model species, leaving their evolutionary origin uncertain and limiting crop research. In this work, we explored recently published plant sequencing data to establish a detailed phylogeny of C and S1 bZIPs, investigating their intertwined role in plant evolution, and the origin of SIRT. Our analyses clarified C and S1 bZIP orthology relationships in angiosperms, and identified S1 sequences in gymnosperms. We experimentally showed that the gymnosperm orthologs are regulated by SIRT, tracing back the origin of this unique regulatory mechanism to the ancestor of seed plants. Additionally, we discovered an earlier S ortholog in the charophyte algae Klebsormidium flaccidum, together with a C ortholog. This suggests that C and S groups originated by duplication from a single algal proto-C/S ancestor. Based on our observations, we propose a model wherein the C/S1 bZIP dimer network evolved in seed plants from pre-existing C/S bZIP interactions. PMID:27457880

  7. The phylogeny of C/S1 bZIP transcription factors reveals a shared algal ancestry and the pre-angiosperm translational regulation of S1 transcripts.

    PubMed

    Peviani, Alessia; Lastdrager, Jeroen; Hanson, Johannes; Snel, Berend

    2016-01-01

    Basic leucine zippers (bZIPs) form a large plant transcription factor family. C and S1 bZIP groups can heterodimerize, fulfilling crucial roles in seed development and stress response. S1 sequences also harbor a unique regulatory mechanism, termed Sucrose-Induced Repression of Translation (SIRT). The conservation of both C/S1 bZIP interactions and SIRT remains poorly characterized in non-model species, leaving their evolutionary origin uncertain and limiting crop research. In this work, we explored recently published plant sequencing data to establish a detailed phylogeny of C and S1 bZIPs, investigating their intertwined role in plant evolution, and the origin of SIRT. Our analyses clarified C and S1 bZIP orthology relationships in angiosperms, and identified S1 sequences in gymnosperms. We experimentally showed that the gymnosperm orthologs are regulated by SIRT, tracing back the origin of this unique regulatory mechanism to the ancestor of seed plants. Additionally, we discovered an earlier S ortholog in the charophyte algae Klebsormidium flaccidum, together with a C ortholog. This suggests that C and S groups originated by duplication from a single algal proto-C/S ancestor. Based on our observations, we propose a model wherein the C/S1 bZIP dimer network evolved in seed plants from pre-existing C/S bZIP interactions. PMID:27457880

  8. Transcriptome analysis of newly classified bZIP transcription factors of Brassica rapa in cold stress response.

    PubMed

    Hwang, Indeok; Jung, Hee-Jeong; Park, Jong-In; Yang, Tae-Jin; Nou, Ill-Sup

    2014-09-01

    Plant bZIP transcription factors play crucial roles in biological processes. In this study, 136 putative bZIP transcription members were identified in Brassica rapa. The bZIP family can be divided into nine groups according to the specific amino acid rich domain in B. rapa and Arabidopsis thaliana. To screen the cold stress responsive BrbZIP genes, we evaluated whether the transcription patterns of the BrbZIP genes were enhanced by cold treatment in the inbred lines, Chiifu and Kenshin, by microarray data analysis and qRT-PCR. The expression level of six genes increased significantly in Kenshin, but these genes were unchanged in Chiifu. These findings suggest that the six genes that encoded proteins containing N-rich regions might be involved in cold stress response. The results presented herein provide valuable information regarding the molecular basis of the bZIP transcription factors and their potential function in regulation growth and development, particularly in cold stress response. PMID:25075938

  9. Arabidopsis IRE1 catalyses unconventional splicing of bZIP60 mRNA to produce the active transcription factor

    PubMed Central

    Nagashima, Yukihiro; Mishiba, Kei-ichiro; Suzuki, Eiji; Shimada, Yukihisa; Iwata, Yuji; Koizumi, Nozomu

    2011-01-01

    IRE1 plays an essential role in the endoplasmic reticulum (ER) stress response in yeast and mammals. We found that a double mutant of Arabidopsis IRE1A and IRE1B (ire1a/ire1b) is more sensitive to the ER stress inducer tunicamycin than the wild-type. Transcriptome analysis revealed that genes whose induction was reduced in ire1a/ire1b largely overlapped those in the bzip60 mutant. We observed that the active form of bZIP60 protein detected in the wild-type was missing in ire1a/ire1b. We further demonstrated that bZIP60 mRNA is spliced by ER stress, removing 23 ribonucleotides and therefore causing a frameshift that replaces the C-terminal region of bZIP60 including the transmembrane domain (TMD) with a shorter region without a TMD. This splicing was detected in ire1a and ire1b single mutants, but not in the ire1a/ire1b double mutant. We conclude that IRE1A and IRE1B catalyse unconventional splicing of bZIP60 mRNA to produce the active transcription factor. PMID:22355548

  10. Coupling of folding and DNA-binding in the bZIP domains of Jun-Fos heterodimeric transcription factor.

    PubMed

    Seldeen, Kenneth L; McDonald, Caleb B; Deegan, Brian J; Farooq, Amjad

    2008-05-01

    In response to mitogenic stimuli, the heterodimeric transcription factor Jun-Fos binds to the promoters of a diverse array of genes involved in critical cellular responses such as cell growth and proliferation, cell cycle regulation, embryogenic development and cancer. In so doing, Jun-Fos heterodimer regulates gene expression central to physiology and pathology of the cell in a specific and timely manner. Here, using the technique of isothermal titration calorimetry (ITC), we report detailed thermodynamics of the bZIP domains of Jun-Fos heterodimer to synthetic dsDNA oligos containing the TRE and CRE consensus promoter elements. Our data suggest that binding of the bZIP domains to both TRE and CRE is under enthalpic control and accompanied by entropic penalty at physiological temperatures. Although the bZIP domains bind to both TRE and CRE with very similar affinities, the enthalpic contributions to the free energy of binding to CRE are more favorable than TRE, while the entropic penalty to the free energy of binding to TRE is smaller than CRE. Despite such differences in their thermodynamic signatures, enthalpy and entropy of binding of the bZIP domains to both TRE and CRE are highly temperature-dependent and largely compensate each other resulting in negligible effect of temperature on the free energy of binding. From the plot of enthalpy change versus temperature, the magnitude of heat capacity change determined is much larger than that expected from the direct association of bZIP domains with DNA. This observation is interpreted to suggest that the basic regions in the bZIP domains are largely unstructured in the absence of DNA and only become structured upon interaction with DNA in a coupled folding and binding manner. Our new findings are rationalized in the context of 3D structural models of bZIP domains of Jun-Fos heterodimer in complex with dsDNA oligos containing the TRE and CRE consensus sequences. Taken together, our study demonstrates that enthalpy is

  11. Molecular cloning of a putative novel human bZIP transcription factor on chromosome 17q22

    SciTech Connect

    Luna, L.; Johnsen, O.; Skartlien, A.H.

    1994-08-01

    We have cloned and characterized cDNA clones representing several mRNA isoforms generated by alternative splicing of a single gene localized to chromosome 17q22. Sequence analysis showed that the predicted translational product of the longest open reading frame (2316 nucleotides, 772 amino acids) is related to transcription factors of the basic elucine zipper (bZIP) class. The sequence contained several regions characteristic of transcriptional regulatory domains. A cluster of amino acids flanking the bZIP region on both sides was highly conserved between TCF11 and p45 NF-E2, a subunit of the human globin locus control region-binding protein, NF-E2. These same regions showed remarkable homology to two invertebrate proteins, CNC and skn-1, postulated to regulate embryonic development in Drosophila melanogaster and Caenorhabditis elegans, respectively. 46 refs., 7 figs., 1 tab.

  12. The bZIP Transcription Factor PERIANTHIA: A Multifunctional Hub for Meristem Control

    PubMed Central

    Maier, Annette T.; Stehling-Sun, Sandra; Offenburger, Sarah-Lena; Lohmann, Jan U.

    2011-01-01

    As sessile organisms, plants are exposed to extreme variations in environmental conditions over the course of their lives. Since plants grow and initiate new organs continuously, they have to modulate the underlying developmental program accordingly to cope with this challenge. At the heart of this extraordinary developmental plasticity are pluripotent stem cells, which are maintained during the entire life-cycle of the plant and that are embedded within dynamic stem cell niches. While the complex regulatory principles of plant stem cell control under artificial constant growth conditions begin to emerge, virtually nothing is known about how this circuit adapts to variations in the environment. In addition to the local feedback system constituted by the homeodomain transcription factor WUSCHEL (WUS) and the CLAVATA signaling cascade in the center of the shoot apical meristem (SAM), the bZIP transcription factor PERIANTHIA (PAN) not only has a broader expression domain in SAM and flowers, but also carries out more diverse functions in meristem maintenance: pan mutants show alterations in environmental response, shoot meristem size, floral organ number, and exhibit severe defects in termination of floral stem cells in an environment dependent fashion. Genetic and genomic analyses indicate that PAN interacts with a plethora of developmental pathways including light, plant hormone, and meristem control systems, suggesting that PAN is as an important regulatory node in the network of plant stem cell control. PMID:22645551

  13. Functional analysis of a light-responsive plant bZIP transcriptional regulator.

    PubMed Central

    Feldbrügge, M; Sprenger, M; Dinkelbach, M; Yazaki, K; Harter, K; Weisshaar, B

    1994-01-01

    Common plant regulatory factor 1 (CPRF1) is a parsley basic region/leucine zipper (bZIP) transcription factor that recognizes specific nucleotide sequences containing ACGT cores. Such a sequence is contained within LRU1, the composite light regulatory unit that is necessary and sufficient for light-dependent activity of the parsley chalcone synthase (CHS) promoter. After light treatment of both etiolated and green seedlings, CPRF1 mRNA levels increased prior to CHS mRNA accumulation. The change in CPRF1 mRNA leads to a light-responsive increase in CPRF1 protein. Transient expression analysis in parsley protoplasts using the CPRF1 promoter fused to the beta-glucuronidase (GUS) open reading frame indicated that light-dependent CPRF1 mRNA accumulation was under transcriptional control. The 5' untranslated region of the CPRF1 gene includes a cis-acting nucleotide sequence that contains two ACGT elements at a distance of 12 bp between their palindromic centers. This feature is reminiscent of as-1 and octopine synthase (ocs) elements identified in promoters from plant pathogens. This double ACGT Element element, designated dACECPRF1, stimulated transcription when placed 5' to a heterologous core promoter. CPRF1 bound to dACECPRF1 DNA as well as to the ACGT element from the CHS promoter in vitro. Cotransfection experiments demonstrated that CPRF1 interacts with these elements in vivo and that overexpression of CPRF1 actually reduced light-dependent transcription from the CHS promoter. CPRF1 thus appears to contribute to the regulation of the CPRF1 gene and to interfere with the activities of light-regulated promoters. PMID:7827494

  14. Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava.

    PubMed

    Hu, Wei; Yang, Hubiao; Yan, Yan; Wei, Yunxie; Tie, Weiwei; Ding, Zehong; Zuo, Jiao; Peng, Ming; Li, Kaimian

    2016-01-01

    The basic leucine zipper (bZIP) transcription factor family plays crucial roles in various aspects of biological processes. Currently, no information is available regarding the bZIP family in the important tropical crop cassava. Herein, 77 bZIP genes were identified from cassava. Evolutionary analysis indicated that MebZIPs could be divided into 10 subfamilies, which was further supported by conserved motif and gene structure analyses. Global expression analysis suggested that MebZIPs showed similar or distinct expression patterns in different tissues between cultivated variety and wild subspecies. Transcriptome analysis of three cassava genotypes revealed that many MebZIP genes were activated by drought in the root of W14 subspecies, indicating the involvement of these genes in the strong resistance of cassava to drought. Expression analysis of selected MebZIP genes in response to osmotic, salt, cold, ABA, and H2O2 suggested that they might participate in distinct signaling pathways. Our systematic analysis of MebZIPs reveals constitutive, tissue-specific and abiotic stress-responsive candidate MebZIP genes for further functional characterization in planta, yields new insights into transcriptional regulation of MebZIP genes, and lays a foundation for understanding of bZIP-mediated abiotic stress response. PMID:26947924

  15. Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava

    PubMed Central

    Hu, Wei; Yang, Hubiao; Yan, Yan; Wei, Yunxie; Tie, Weiwei; Ding, Zehong; Zuo, Jiao; Peng, Ming; Li, Kaimian

    2016-01-01

    The basic leucine zipper (bZIP) transcription factor family plays crucial roles in various aspects of biological processes. Currently, no information is available regarding the bZIP family in the important tropical crop cassava. Herein, 77 bZIP genes were identified from cassava. Evolutionary analysis indicated that MebZIPs could be divided into 10 subfamilies, which was further supported by conserved motif and gene structure analyses. Global expression analysis suggested that MebZIPs showed similar or distinct expression patterns in different tissues between cultivated variety and wild subspecies. Transcriptome analysis of three cassava genotypes revealed that many MebZIP genes were activated by drought in the root of W14 subspecies, indicating the involvement of these genes in the strong resistance of cassava to drought. Expression analysis of selected MebZIP genes in response to osmotic, salt, cold, ABA, and H2O2 suggested that they might participate in distinct signaling pathways. Our systematic analysis of MebZIPs reveals constitutive, tissue-specific and abiotic stress-responsive candidate MebZIP genes for further functional characterization in planta, yields new insights into transcriptional regulation of MebZIP genes, and lays a foundation for understanding of bZIP-mediated abiotic stress response. PMID:26947924

  16. Genomic identification of group A bZIP transcription factors and their responses to abiotic stress in carrot.

    PubMed

    Que, F; Wang, G L; Huang, Y; Xu, Z S; Wang, F; Xiong, A S

    2015-01-01

    The basic-region/leucine-zipper (bZIP) family is one of the major transcription factor (TF) families associated with responses to abiotic stresses. Many members of group A in this family have been extensively examined and are reported to perform significant functions in ABA signaling as well as in responses to abiotic stresses. In this study, 10 bZIP factors in carrot were classified into group A based on their DNA-binding domains. The cis-acting regulatory elements and folding states of these 10 factors were analyzed. Evolutionary analysis of the group A members suggested their importance during the course of evolution in plants. In addition, cis-acting elements and the folding state of proteins were important for DNA binding and could affect gene expression. Quantitative RT-PCR was conducted to investigate the stress response of 10 genes encoding the group A factors. Six genes showed responses to abiotic stresses, while four genes showed other special phenomenon. The current analysis on group A bZIP family TFs in carrot is the first to investigate the TFs of Apiaceae via genome analysis. These results provide new information for future studies on carrot. PMID:26535641

  17. Genome-Wide Identification and Characterization of bZIP Transcription Factors in Brassica oleracea under Cold Stress.

    PubMed

    Hwang, Indeok; Manoharan, Ranjith Kumar; Kang, Jong-Goo; Chung, Mi-Young; Kim, Young-Wook; Nou, Ill-Sup

    2016-01-01

    Cabbages (Brassica oleracea L.) are an important vegetable crop around world, and cold temperature is among the most significant abiotic stresses causing agricultural losses, especially in cabbage crops. Plant bZIP transcription factors play diverse roles in biotic/abiotic stress responses. In this study, 119 putative BolbZIP transcription factors were identified using amino acid sequences from several bZIP domain consensus sequences. The BolbZIP members were classified into 63 categories based on amino acid sequence similarity and were also compared with BrbZIP and AtbZIP transcription factors. Based on this BolbZIP identification and classification, cold stress-responsive BolbZIP genes were screened in inbred lines, BN106 and BN107, using RNA sequencing data and qRT-PCR. The expression level of the 3 genes, Bol008071, Bol033132, and Bol042729, was significantly increased in BN107 under cold conditions and was unchanged in BN106. The upregulation of these genes in BN107, a cold-susceptible inbred line, suggests that they might be significant components in the cold response. Among three identified genes, Bol033132 has 97% sequence similarity to Bra020735, which was identified in a screen for cold-related genes in B. rapa and a protein containing N-rich regions in LCRs. The results obtained in this study provide valuable information for understanding the potential function of BolbZIP transcription factors in cold stress responses. PMID:27314020

  18. Genome-Wide Identification and Characterization of bZIP Transcription Factors in Brassica oleracea under Cold Stress

    PubMed Central

    Hwang, Indeok; Manoharan, Ranjith Kumar; Kang, Jong-Goo; Chung, Mi-Young; Kim, Young-Wook; Nou, Ill-Sup

    2016-01-01

    Cabbages (Brassica oleracea L.) are an important vegetable crop around world, and cold temperature is among the most significant abiotic stresses causing agricultural losses, especially in cabbage crops. Plant bZIP transcription factors play diverse roles in biotic/abiotic stress responses. In this study, 119 putative BolbZIP transcription factors were identified using amino acid sequences from several bZIP domain consensus sequences. The BolbZIP members were classified into 63 categories based on amino acid sequence similarity and were also compared with BrbZIP and AtbZIP transcription factors. Based on this BolbZIP identification and classification, cold stress-responsive BolbZIP genes were screened in inbred lines, BN106 and BN107, using RNA sequencing data and qRT-PCR. The expression level of the 3 genes, Bol008071, Bol033132, and Bol042729, was significantly increased in BN107 under cold conditions and was unchanged in BN106. The upregulation of these genes in BN107, a cold-susceptible inbred line, suggests that they might be significant components in the cold response. Among three identified genes, Bol033132 has 97% sequence similarity to Bra020735, which was identified in a screen for cold-related genes in B. rapa and a protein containing N-rich regions in LCRs. The results obtained in this study provide valuable information for understanding the potential function of BolbZIP transcription factors in cold stress responses. PMID:27314020

  19. bZIP Transcription Factors in the Oomycete Phytophthora infestans with Novel DNA-Binding Domains Are Involved in Defense against Oxidative Stress

    PubMed Central

    Gamboa-Meléndez, Heber; Huerta, Apolonio I.

    2013-01-01

    Transcription factors of the basic leucine zipper (bZIP) family control development and stress responses in eukaryotes. To date, only one bZIP has been described in any oomycete; oomycetes are members of the stramenopile kingdom. In this study, we describe the identification of 38 bZIPs from the Phytophthora infestans genome. Half contain novel substitutions in the DNA-binding domain at a site that in other eukaryotes is reported to always be Asn. Interspecific comparisons indicated that the novel substitutions (usually Cys, but also Val and Tyr) arose after oomycetes diverged from other stramenopiles. About two-thirds of P. infestans bZIPs show dynamic changes in mRNA levels during the life cycle, with many of the genes being upregulated in sporangia, zoospores, or germinated zoospore cysts. One bZIP with the novel Cys substitution was shown to reside in the nucleus throughout growth and development. Using stable gene silencing, the functions of eight bZIPs with the Cys substitution were tested. All but one were found to play roles in protecting P. infestans from hydrogen peroxide-induced injury, and it is proposed that the novel Cys substitution serves as a redox sensor. A ninth bZIP lacking the novel Asn-to-Cys substitution, but having Cys nearby, was also shown through silencing to contribute to defense against peroxide. Little effect on asexual development, plant pathogenesis, or resistance to osmotic stress was observed in transformants silenced for any of the nine bZIPs. PMID:23975888

  20. Phosphorylation Affects DNA-Binding of the Senescence-Regulating bZIP Transcription Factor GBF1

    PubMed Central

    Smykowski, Anja; Fischer, Stefan M.; Zentgraf, Ulrike

    2015-01-01

    Massive changes in the transcriptome of Arabidopsis thaliana during onset and progression of leaf senescence imply a central role for transcription factors. While many transcription factors are themselves up- or down-regulated during senescence, the bZIP transcription factor G-box-binding factor 1 (GBF1/bZIP41) is constitutively expressed in Arabidopsis leaf tissue but at the same time triggers the onset of leaf senescence, suggesting posttranscriptional mechanisms for senescence-specific GBF1 activation. Here we show that GBF1 is phosphorylated by the threonine/serine CASEIN KINASE II (CKII) in vitro and that CKII phosphorylation had a negative effect on GBF1 DNA-binding to G-boxes of two direct target genes, CATALASE2 and RBSCS1a. Phosphorylation mimicry at three serine positions in the basic region of GBF1 also had a negative effect on DNA-binding. Kinase assays revealed that CKII phosphorylates at least one serine in the basic domain but has additional phosphorylation sites outside this domain. Two different ckII α subunit1 and one α subunit2 T-DNA insertion lines showed no visible senescence phenotype, but in all lines the expression of the senescence marker gene SAG12 was remarkably diminished. A model is presented suggesting that senescence-specific GBF1 activation might be achieved by lowering the phosphorylation of GBF1 by CKII. PMID:27135347

  1. The bZIP repressor proteins, c-Jun dimerization protein 2 and activating transcription factor 3, recruit multiple HDAC members to the ATF3 promoter.

    PubMed

    Darlyuk-Saadon, Ilona; Weidenfeld-Baranboim, Keren; Yokoyama, Kazunari K; Hai, Tsonwin; Aronheim, Ami

    2012-01-01

    JDP2, is a basic leucine zipper (bZIP) protein displaying a high degree of homology with the stress inducible transcription factor, ATF3. Both proteins bind to cAMP and TPA response elements and repress transcription by multiple mechanisms. Histone deacetylases (HDACs) play a key role in gene inactivation by deacetylating lysine residues on histones. Here we describe the association of JDP2 and ATF3 with HDACs 1, 2-6 and 10. Association of HDAC3 and HDAC6 with JDP2 and ATF3 occurs via direct protein-protein interactions. Only part of the N-terminal bZIP motif of JDP2 and ATF3 basic domain is necessary and sufficient for the interaction with HDACs in a manner that is independent of coiled-coil dimerization. Class I HDACs associate with the bZIP repressors via the DAC conserved domain whereas the Class IIb HDAC6 associates through its C-terminal unique binder of ubiquitin Zn finger domain. Both JDP2 and ATF3 are known to bind and repress the ATF3 promoter. MEF cells treated with histone deacetylase inhibitor, trichostatin A (TSA) display enhanced ATF3 transcription. ATF3 enhanced transcription is significantly reduced in MEF cells lacking both ATF3 and JDP2. Collectively, we propose that the recruitment of multiple HDAC members to JDP2 and ATF3 is part of their transcription repression mechanism. PMID:22989952

  2. Identification of Two bZIP Transcription Factors Interacting with the Promoter of Soybean Rubisco Activase Gene (GmRCAα)

    PubMed Central

    Zhang, Jinyu; Du, Hongyang; Chao, Maoni; Yin, Zhitong; Yang, Hui; Li, Yakai; Huang, Fang; Yu, Deyue

    2016-01-01

    Rubisco activase (RCA), a key photosynthetic protein, catalyses the activation of Rubisco and thus plays an important role in photosynthesis. Although the RCA gene has been characterized in a variety of species, the molecular mechanism regulating its transcription remains unclear. Our previous studies on RCA gene expression in soybean suggested that expression of this gene is regulated by trans-acting factors. In the present study, we verified activity of the GmRCAα promoter in both soybean and Arabidopsis and used a yeast one-hybrid (Y1H) system for screening a leaf cDNA expression library to identify transcription factors (TFs) interacting with the GmRCAα promoter. Four basic leucine zipper (bZIP) TFs, GmbZIP04g, GmbZIP07g, GmbZIP1, and GmbZIP71, were isolated, and GmbZIP04g and GmbZIP07g were confirmed as able to bind to a 21-nt G-box-containing sequence. Additionally, the expression patterns of GmbZIP04g, GmbZIp07g, and GmRCAα were analyzed in response to abiotic stresses and during a 24-h period. Our study will help to advance elucidation of the network regulating GmRCAα transcription. PMID:27242832

  3. FASCIATED EAR4 encodes a bZIP transcription factor that regulates shoot meristem size in maize.

    PubMed

    Pautler, Michael; Eveland, Andrea L; LaRue, Therese; Yang, Fang; Weeks, Rebecca; Lunde, China; Je, Byoung Il; Meeley, Robert; Komatsu, Mai; Vollbrecht, Erik; Sakai, Hajime; Jackson, David

    2015-01-01

    Plant architecture is dictated by precise control of meristematic activity. In the shoot, an imbalance in positive or negative maintenance signals can result in a fasciated or enlarged meristem phenotype. fasciated ear4 (fea4) is a semidwarfed mutant with fasciated ears and tassels as well as greatly enlarged vegetative and inflorescence meristems. We identified FEA4 as a bZIP transcription factor, orthologous to Arabidopsis thaliana PERIANTHIA. FEA4 was expressed in the peripheral zone of the vegetative shoot apical meristem and in the vasculature of immature leaves and conspicuously excluded from the stem cell niche at the tip of the shoot apical meristem and from incipient leaf primordia. Following the transition to reproductive fate, FEA4 was expressed throughout the entire inflorescence and floral meristems. Native expression of a functional YFP:FEA4 fusion recapitulated this pattern of expression. We used chromatin immunoprecipitation-sequencing to identify 4060 genes proximal to FEA4 binding sites, including ones that were potentially bound and modulated by FEA4 based on transcriptional changes in fea4 mutant ears. Our results suggest that FEA4 promotes differentiation in the meristem periphery by regulating auxin-based responses and genes associated with leaf differentiation and polarity, potentially in opposition to factors such as KNOTTED1 and WUSCHEL. PMID:25616871

  4. bZIP transcription factor zip-2 mediates an early response to Pseudomonas aeruginosa infection in Caenorhabditis elegans

    PubMed Central

    Estes, Kathleen A.; Dunbar, Tiffany L.; Powell, Jennifer R.; Ausubel, Frederick M.; Troemel, Emily R.

    2010-01-01

    Very little is known about how animals discriminate pathogens from innocuous microbes. To address this question, we examined infection-response gene induction in the nematode Caenorhabditis elegans. We focused on genes that are induced in C. elegans by infection with the bacterial pathogen Pseudomonas aeruginosa, but are not induced by an isogenic attenuated gacA mutant. Most of these genes are induced independently of known immunity pathways. We generated a GFP reporter for one of these genes, infection response gene 1 (irg-1), which is induced strongly by wild-type P. aeruginosa strain PA14, but not by other C. elegans pathogens or by other wild-type P. aeruginosa strains that are weakly pathogenic to C. elegans. To identify components of the pathway that induces irg-1 in response to infection, we performed an RNA interference screen of C. elegans transcription factors. This screen identified zip-2, a bZIP transcription factor that is required for inducing irg-1, as well as several other genes, and is important for defense against infection by P. aeruginosa. These data indicate that zip-2 is part of a specialized pathogen response pathway that is induced by virulent strains of P. aeruginosa and provides defense against this pathogen. PMID:20133860

  5. Nuclear Import of the Parsley bZIP Transcription Factor CPRF2 Is Regulated by Phytochrome Photoreceptors

    PubMed Central

    Kircher, Stefan; Wellmer, Frank; Nick, Peter; Rügner, Alexander; Schäfer, Eberhard; Harter, Klaus

    1999-01-01

    In plants, light perception by photoreceptors leads to differential expression of an enormous number of genes. An important step for differential gene expression is the regulation of transcription factor activities. To understand these processes in light signal transduction we analyzed the three well-known members of the common plant regulatory factor (CPRF) family from parsley (Petroselinum crispum). Here, we demonstrate that these CPRFs, which belong to the basic- region leucine-zipper (bZIP) domain-containing transcription factors, are differentially distributed within parsley cells, indicating different regulatory functions within the regulatory networks of the plant cell. In particular, we show by cell fractionation and immunolocalization approaches that CPRF2 is transported from the cytosol into the nucleus upon irradiation due to action of phytochrome photoreceptors. Two NH2-terminal domains responsible for cytoplasmic localization of CPRF2 in the dark were characterized by deletion analysis using a set of CPRF2-green fluorescent protein (GFP) gene fusion constructs transiently expressed in parsley protoplasts. We suggest that light-induced nuclear import of CPRF2 is an essential step in phytochrome signal transduction. PMID:9922448

  6. Rite of passage: a bZIP transcription factor must transit the cell apex to become competent.

    PubMed

    Momany, Michelle

    2015-11-01

    In the filamentous fungus Aspergillus nidulans BrlA triggers the central developmental pathway that controls the transition from vegetative growth to asexual reproduction. Upstream regulators including the bZIP transcription factor FlbB activate the expression of brlA. Previous work has established that FlbB localizes to both the apex of the hypha, where it interacts with and is anchored by FlbE, and to nuclei, with highest levels in the nucleus closest to the apex and successively lower levels in nuclei further away from the apex. In this issue, Herrero-Garcia et al. dissect the roles of these two FlbB pools and the mechanisms underlying their localization and activity. Using a photoactivatable tag, they demonstrate that FlbB moves from the tip into the apical nucleus. Through a series of deletion constructs, they show that import of FlbB into the nucleus requires a bipartite NLS, that FlbB localization at the tip requires actin and that the FlbB tip-high gradient appears to be mass action dependent as the gradient is lost with FlbB constitutive upregulation. They show that while the pool of FlbB at the apex is required for triggering asexual development, the tip high nuclear gradient is not required. PMID:26387769

  7. Identification of an Arabidopsis transmembrane bZIP transcription factor involved in the endoplasmic reticulum stress response

    SciTech Connect

    Tajima, Hiromi; Iwata, Yuji; Iwano, Megumi; Takayama, Seiji; Koizumi, Nozomu

    2008-09-19

    Among 75 bZIP transcription factors identified in Arabidopsis, 3 (AtbZIP17, AtbZIP28, and AtbZIP49) possess a putative transmembrane domain (TMD) in addition to AtbZIP60, which was characterized previously. In the present study, cDNAs of AtbZIP17 and AtbZIP28 were isolated. Truncated forms of AtbZIP17 and AtbZIP28 lacking the C-terminal domain including TMD were examined as putative active forms. One of them, AtbZIP28{delta}C, activated BiP1 and BiP3 promoters through the cis-elements P-UPRE and ERSE responsible for the ER stress response. Subsequently, a fusion protein of green fluorescent protein (GFP) and AtbZIP28 was expressed in Arabidopsis cultured cells. Under non-stress conditions, GFP fluorescence localization almost overlapped with an ER marker; however, tunicamycin and dithiothreitol treatment clearly increased GFP fluorescence in the nucleus suggesting that the N-terminal fragment of AtbZIP28 translocates to the nucleus in response to ER stress.

  8. The vrille gene of Drosophila is a maternal enhancer of decapentaplegic and encodes a new member of the bZIP family of transcription factors.

    PubMed

    George, H; Terracol, R

    1997-08-01

    We report here the genetical and molecular characterization of a new Drosophila zygotic lethal locus, vrille (vri). Vri alleles act not only as dominant maternal enhancers of embryonic dorsoventral patterning defects caused by easter and decapentaplegic (dpp) mutations, but also as dominant zygotic enhancers of dpp alleles for phenotypes in wing. The vri gene encodes a new member of the bZIP family of transcription factors closely related to gene 9 of Xenopus laevis, induced by thyroid hormone during the tadpole tail resorption program, and NF-IL3A, a human T cell transcription factor that transactivates the interleukin-3 promoter. NF-IL3A shares 93% similarity and 60% identity with Vri for a stretch of 68 amino acids that includes the bZIP domain. Although all the alleles tested behave like antimorphs, the dominant enhancement is also seen with a nonsense mutation allele that prevents translation of the bZIP domain. Because of the strong domainant enhancement of dpp phenotypes by vri alleles in both embryo and wing, and also the similarity between the wing vein phenotypes caused by the vri and shortvein dpp alleles, we postulate that vri interacts either directly or indirectly with certain components of the dpp (a TGF beta homologue) signal transduction pathway. PMID:9258679

  9. Multiple PAR and E4BP4 bZIP transcription factors in zebrafish: diverse spatial and temporal expression patterns.

    PubMed

    Ben-Moshe, Zohar; Vatine, Gad; Alon, Shahar; Tovin, Adi; Mracek, Philipp; Foulkes, Nicholas S; Gothilf, Yoav

    2010-09-01

    Circadian rhythms of physiology and behavior are generated by an autonomous circadian oscillator that is synchronized daily with the environment, mainly by light input. The PAR subfamily of transcriptional activators and the related E4BP4 repressor belonging to the basic leucine zipper (bZIP) family are clock-controlled genes that are suggested to mediate downstream circadian clock processes and to feedback onto the core oscillator. Here, the authors report the characterization of these genes in the zebrafish, an increasingly important model in the field of chronobiology. Five novel PAR and six novel e4bp4 zebrafish homolog genes were identified using bioinformatic tools and their coding sequences were cloned. Based on their evolutionary relationships, these genes were annotated as ztef2, zhlf1 and zhlf2, zdbp1 and zdbp2, and ze4bp4-1 to -6. The spatial and temporal mRNA expression pattern of each of these factors was characterized in zebrafish embryos in the context of a functional circadian clock and regulation by light. Nine of the factors exhibited augmented and rhythmic expression in the pineal gland, a central clock organ in zebrafish. Moreover, these genes were found to be regulated, to variable extents, by the circadian clock and/or by light. Differential expression patterns of multiple paralogs in zebrafish suggest multiple roles for these factors within the vertebrate circadian clock. This study, in the genetically accessible zebrafish model, lays the foundation for further research regarding the involvement and specific roles of PAR and E4BP4 transcription factors in the vertebrate circadian clock mechanism. PMID:20854132

  10. The bZIP transcription factor PfZipA regulates secondary metabolism and oxidative stress response in the plant endophytic fungus Pestalotiopsis fici.

    PubMed

    Wang, Xiuna; Wu, Fan; Liu, Ling; Liu, Xingzhong; Che, Yongsheng; Keller, Nancy P; Guo, Liyun; Yin, Wen-Bing

    2015-08-01

    The bZIP transcription factors are conserved in all eukaryotes and play critical roles in organismal responses to environmental challenges. In filamentous fungi, several lines of evidence indicate that secondary metabolism (SM) is associated with oxidative stress mediated by bZIP proteins. Here we uncover a connection with a bZIP protein and oxidative stress induction of SM in the plant endophytic fungus Pestalotiopsis fici. A homology search of the P. fici genome with the bZIP protein RsmA, involved in SM and the oxidative stress response in Aspergillus nidulans, identified PfZipA. Deletion of PfzipA resulted in a strain that displayed resistant to the oxidative reagents tert-butylhydroperoxide (tBOOH), diamide, and menadione sodium bisulfite (MSB), but increased sensitivity to H2O2 as compared to wild type (WT). Secondary metabolite production presented a complex pattern dependent on PfzipA and oxidative reagents. Without oxidative treatment, the ΔPfzipA strain produced less isosulochrin and ficipyroneA than WT; addition of tBOOH further decreased production of iso-A82775C and pestaloficiol M in ΔPfzipA; diamide treatment resulted in equivalent production of isosulochrin and ficipyroneA in the two strains; MSB treatment further decreased production of RES1214-1 and iso-A82775C but increased pestaloficiol M production in the mutant; and H2O2 treatment resulted in enhanced production of isosulochrin, RES1214-1 and pestheic acid but decreased ficipyroneA and pestaloficiol M in ΔPfzipA compared to WT. Our results suggest that PfZipA regulation of SM is modified by oxidative stress pathways and provide insights into a possible role of PfZipA in mediating SM synthesis in the endophytic lifestyle of P. fici. PMID:25847004

  11. Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis.

    PubMed

    Ying, Sheng; Zhang, Deng-Feng; Fu, Jing; Shi, Yun-Su; Song, Yan-Chun; Wang, Tian-Yu; Li, Yu

    2012-02-01

    In plants, the bZIP (basic leucine zipper) transcription factors regulate diverse functions, including processes such as plant development and stress response. However, few have been functionally characterized in maize (Zea mays). In this study, we cloned ZmbZIP72, a bZIP transcription factor gene from maize, which had only one copy in the maize genome and harbored three introns. Analysis of the amino acid sequence of ZmbZIP72 revealed a highly conserved bZIP DNA-binding domain in its C-terminal region, and four conserved sequences distributed in N- or C-terminal region. The ZmbZIP72 gene expressed differentially in various organs of maize plants and was induced by abscisic acid, high salinity, and drought treatment in seedlings. Subcellular localization analysis in onion epidermal cells indicated that ZmbZIP72 was a nuclear protein. Transactivation assay in yeast demonstrated that ZmbZIP72 functioned as a transcriptional activator and its N terminus (amino acids 23-63) was necessary for the transactivation activity. Heterologous overexpression of ZmbZIP72 improved drought and partial salt tolerance of transgenic Arabidopsis plants, as determined by physiological analyses of leaf water loss, electrolyte leakage, proline content, and survival rate under stress. In addition, the seeds of ZmbZIP72-overexpressing transgenic plants were hypersensitive to ABA and osmotic stress. Moreover, overexpression of ZmbZIP72 enhanced the expression of ABA-inducible genes such as RD29B, RAB18, and HIS1-3. These results suggest that the ZmbZIP72 protein functions as an ABA-dependent transcription factor in positive modulation of abiotic stress tolerance and may be a candidate gene with potential application in molecular breeding to enhance stress tolerance in crops. PMID:21866346

  12. Arabidopsis GARP transcriptional activators interact with the Pro-rich activation domain shared by G-box-binding bZIP factors.

    PubMed

    Tamai, Hiroki; Iwabuchi, Masaki; Meshi, Tetsuo

    2002-01-01

    The Pro-rich regions, found in a subset of plant bZIP transcription factors, including G-box-binding factors (GBFs) of Arabidopsis thaliana, are thought to be deeply involved in transcriptional regulation. However, the molecular mechanisms of the Pro-rich region-mediated transcriptional regulation are still largely unknown. Here we report evidence showing that two closely related Arabidopsis proteins, designated GPRI1 and GPRI2, containing a GARP DNA-binding domain, are likely partners of one or more GBFs. The results of yeast two-hybrid assays and in vitro binding assays indicated that GPRI1 can interact with the Pro-rich regions of GBF1 and GBF3. GPRI2 interacted with the Pro-rich region of GBF1. GPRI1 and GPRI2 transactivated transcription in yeast. In GPRI1 the region responsible for this activation was mapped in the N-terminal third of the protein. Transient assays showed that in Arabidopsis cells not only the N-terminal but also the C-terminal regions of GPRI1 can function as a separable activation domain. GPRI1 and GPRI2 may function in some promoters in concert with a GBF through interaction with its Pro-rich region to enhance the transcriptional level of the corresponding genes. PMID:11828027

  13. Role of the C-terminal domains of rice (Oryza sativa L.) bZIP proteins RF2a and RF2b in regulating transcription

    PubMed Central

    Liu, Yi; Dai, Shunhong; Beachy, Roger N.

    2007-01-01

    Rice (Oryza sativa L.) transcription factors RF2a and RF2b are bZIP (basic leucine zipper) proteins that interact with, and activate transcription from the RTBV (rice tungro bacilliform virus) promoter. Here we characterize the C-terminal domains of RF2a and RF2b: these domains are rich in glutamine and proline/glutamine, respectively. Affinity pull-down assays demonstrated that the C-terminal domains of RF2a and RF2b can associate to form either homodimers or heterodimers; however, they do not interact with other domains of RF2a or RF2b. Results of in vitro transcription assays using a rice whole-cell extract demonstrate that the C-terminal domains of both RF2a and RF2b activate transcription from the RTBV promoter. In addition, dimerization of the RF2a C-terminal domain is involved in regulating the transcription activation function of RF2a. The predicted helical region within the RF2a C-terminal glutamine-rich domain was determined to be involved in inter-molecular dimerization, and contributed to the regulatory functions of RF2a in these assays. PMID:17371296

  14. In vivo binding of hot pepper bZIP transcription factor CabZIP1 to the G-box region of pathogenesis-related protein 1 promoter

    SciTech Connect

    Lee, Boo-Ja; Park, Chang-Jin; Kim, Sung-Kyu; Kim, Ki-Jeong; Paek, Kyung-Hee . E-mail: khpaek95@korea.ac.kr

    2006-05-26

    We find that salicylic acid and ethephon treatment in hot pepper increases the expression of a putative basic/leucine zipper (bZIP) transcription factor gene, CabZIP1. CabZIP1 mRNA is expressed ubiquitously in various organs. The green fluorescent protein-fused transcription factor, CabZIP1::GFP, can be specifically localized to the nucleus, an action that is consistent with the presence of a nuclear localization signal in its protein sequence. Transient overexpression of the CabZIP1 transcription factor results in an increase in PR-1 transcripts level in Nicotiana benthamiana leaves. Using chromatin immunoprecipitation, we demonstrate that CabZIP1 binds to the G-box elements in native promoter of the hot pepper pathogenesis-related protein 1 (CaPR-1) gene in vivo. Taken together, our results suggest that CabZIP1 plays a role as a transcriptional regulator of the CaPR-1 gene.

  15. Genome-Wide Analysis of the bZIP Gene Family Identifies Two ABI5-Like bZIP Transcription Factors, BrABI5a and BrABI5b, as Positive Modulators of ABA Signalling in Chinese Cabbage.

    PubMed

    Bai, Yili; Zhu, Wenbo; Hu, Xiaochen; Sun, Congcong; Li, Yanlin; Wang, Dandan; Wang, Qinhu; Pei, Guoliang; Zhang, Yanfeng; Guo, Aiguang; Zhao, Huixian; Lu, Haibin; Mu, Xiaoqian; Hu, Jingjiang; Zhou, Xiaona; Xie, Chang Gen

    2016-01-01

    bZIP (basic leucine zipper) transcription factors coordinate plant growth and development and control responses to environmental stimuli. The genome of Chinese cabbage (Brassica rapa) encodes 136 putative bZIP transcription factors. The bZIP transcription factors in Brassica rapa (BrbZIP) are classified into 10 subfamilies. Phylogenetic relationship analysis reveals that subfamily A consists of 23 BrbZIPs. Two BrbZIPs within subfamily A, Bra005287 and Bra017251, display high similarity to ABI5 (ABA Insensitive 5). Expression of subfamily A BrbZIPs, like BrABI5a (Bra005287/BrbZIP14) and BrABI5b (Bra017251/BrbZIP13), are significantly induced by the plant hormone ABA. Subcellular localization assay reveal that both BrABI5a and BrABI5b have a nuclear localization. BrABI5a and BrABI5b could directly stimulate ABA Responsive Element-driven HIS (a HIS3 reporter gene, which confers His prototrophy) or LUC (LUCIFERASE) expression in yeast and Arabidopsis protoplast. Deletion of the bZIP motif abolished BrABI5a and BrABI5b transcriptional activity. The ABA insensitive phenotype of Arabidopsis abi5-1 is completely suppressed in transgenic lines expressing BrABI5a or BrABI5b. Overall, these results suggest that ABI5 orthologs, BrABI5a and BrABI5b, have key roles in ABA signalling in Chinese cabbage. PMID:27414644

  16. Genome-Wide Analysis of the bZIP Gene Family Identifies Two ABI5-Like bZIP Transcription Factors, BrABI5a and BrABI5b, as Positive Modulators of ABA Signalling in Chinese Cabbage

    PubMed Central

    Hu, Xiaochen; Sun, Congcong; Li, Yanlin; Wang, Dandan; Wang, Qinhu; Pei, Guoliang; Zhang, Yanfeng; Guo, Aiguang; Zhao, Huixian; Lu, Haibin; Mu, Xiaoqian; Hu, Jingjiang; Zhou, Xiaona; Xie, Chang Gen

    2016-01-01

    bZIP (basic leucine zipper) transcription factors coordinate plant growth and development and control responses to environmental stimuli. The genome of Chinese cabbage (Brassica rapa) encodes 136 putative bZIP transcription factors. The bZIP transcription factors in Brassica rapa (BrbZIP) are classified into 10 subfamilies. Phylogenetic relationship analysis reveals that subfamily A consists of 23 BrbZIPs. Two BrbZIPs within subfamily A, Bra005287 and Bra017251, display high similarity to ABI5 (ABA Insensitive 5). Expression of subfamily A BrbZIPs, like BrABI5a (Bra005287/BrbZIP14) and BrABI5b (Bra017251/BrbZIP13), are significantly induced by the plant hormone ABA. Subcellular localization assay reveal that both BrABI5a and BrABI5b have a nuclear localization. BrABI5a and BrABI5b could directly stimulate ABA Responsive Element-driven HIS (a HIS3 reporter gene, which confers His prototrophy) or LUC (LUCIFERASE) expression in yeast and Arabidopsis protoplast. Deletion of the bZIP motif abolished BrABI5a and BrABI5b transcriptional activity. The ABA insensitive phenotype of Arabidopsis abi5-1 is completely suppressed in transgenic lines expressing BrABI5a or BrABI5b. Overall, these results suggest that ABI5 orthologs, BrABI5a and BrABI5b, have key roles in ABA signalling in Chinese cabbage. PMID:27414644

  17. Expression and Functional Roles of the Pepper Pathogen-Induced bZIP Transcription Factor CabZIP2 in Enhanced Disease Resistance to Bacterial Pathogen Infection.

    PubMed

    Lim, Chae Woo; Baek, Woonhee; Lim, Sohee; Han, Sang-Wook; Lee, Sung Chul

    2015-07-01

    A pepper bZIP transcription factor gene, CabZIP2, was isolated from pepper leaves infected with a virulent strain of Xanthomonas campestris pv. vesicatoria. Transient expression analysis of the CabZIP2-GFP fusion protein in Nicotiana benthamiana revealed that the CabZIP2 protein is localized in the cytoplasm as well as the nucleus. The acidic domain in the N-terminal region of CabZIP2 that is fused to the GAL4 DNA-binding domain is required to activate the transcription of reporter genes in yeast. Transcription of CabZIP2 is induced in pepper plants inoculated with virulent or avirulent strains of X. campestris pv. vesicatoria. The CabZIP2 gene is also induced by defense-related hormones such as salicylic acid, methyl jasmonate, and ethylene. To elucidate the in vivo function of the CabZIP2 gene in plant defense, virus-induced gene silencing in pepper and overexpression in Arabidopsis were used. CabZIP2-silenced pepper plants were susceptible to infection by the virulent strain of X. campestris pv. vesicatoria, which was accompanied by reduced expression of defense-related genes such as CaBPR1 and CaAMP1. CabZIP2 overexpression in transgenic Arabidopsis plants conferred enhanced resistance to Pseudomonas syringae pv. tomato DC3000. Together, these results suggest that CabZIP2 is involved in bacterial disease resistance. PMID:25738319

  18. A novel bZIP transcription factor ClrC positively regulates multiple stress responses, conidiation and cellulase expression in Penicillium oxalicum.

    PubMed

    Lei, Yunfeng; Liu, Guodong; Yao, Guangshan; Li, Zhonghai; Qin, Yuqi; Qu, Yinbo

    2016-06-01

    Cellulase production in filamentous fungi is largely regulated at the transcriptional level, and several transcription factors have been reported to be involved in this process. In this study, we identified ClrC, a novel transcription factor in cellulase production in Penicillium oxalicum. ClrC and its orthologs have a highly conserved basic leucine zipper (bZIP) DNA binding domain, and their biological functions have not been explored. Deletion of clrC resulted in pleiotropic effects, including altered growth, reduced conidiation and increased sensitivity to oxidative and cell wall stresses. In particular, the clrC deletion mutant ΔclrC showed 46.1% ± 8.1% and 58.0% ± 8.7% decreases in production of filter paper enzyme and xylanase activities in cellulose medium, respectively. In contrast, 57.4% ± 10.0% and 70.9% ± 19.4% increased production of filter paper enzyme, and xylanase was observed in the clrC overexpressing strain, respectively. The transcription levels of major cellulase genes, as well as two cellulase transcriptional activator genes, clrB and xlnR, were significantly downregulated in ΔclrC, but substantially upregulated in clrC overexpressing strains. Furthermore, we observed that the absence of ClrC reduced full induction of cellulase expression even in the clrB overexpressing strain. These results indicated that ClrC is a novel and efficient engineering target for improving cellulolytic enzyme production in filamentous fungi. PMID:27012606

  19. Orphan nuclear receptor Errγ induces C-reactive protein gene expression through induction of ER-bound Bzip transmembrane transcription factor CREBH.

    PubMed

    Misra, Jagannath; Chanda, Dipanjan; Kim, Don-Kyu; Cho, Seung-Rye; Koo, Seung-Hoi; Lee, Chul-Ho; Back, Sung Hoon; Choi, Hueng-Sik

    2014-01-01

    The orphan nuclear receptor estrogen-related receptor-γ (ERRγ) is a constitutively active transcription factor regulating genes involved in several important cellular processes, including hepatic glucose metabolism, alcohol metabolism, and the endoplasmic reticulum (ER) stress response. cAMP responsive element-binding protein H (CREBH) is an ER-bound bZIP family transcription factor that is activated upon ER stress and regulates genes encoding acute-phase proteins whose expression is increased in response to inflammation. Here, we report that ERRγ directly regulates CREBH gene expression in response to ER stress. ERRγ bound to the ERRγ response element (ERRE) in the CREBH promoter. Overexpression of ERRγ by adenovirus significantly increased expression of CREBH as well as C-reactive protein (CRP), whereas either knockdown of ERRγ or inhibition of ERRγ by ERRγ specific inverse agonist, GSK5182, substantially inhibited ER stress-mediated induction of CREBH and CRP. The transcriptional coactivator PGC1α was required for ERRγ mediated induction of the CREBH gene as demonstrated by the chromatin immunoprecipitation (ChIP) assay showing binding of both ERRγ and PGC1α on the CREBH promoter. The ChIP assay also revealed that histone H3 and H4 acetylation occurred at the ERRγ and PGC1α binding site. Moreover, chronic alcoholic hepatosteatosis, as well as the diabetic obese condition significantly increased CRP gene expression, and this increase was significantly attenuated by GSK5182 treatment. We suggest that orphan nuclear receptor ERRγ directly regulates the ER-bound transcription factor CREBH in response to ER stress and other metabolic conditions. PMID:24466039

  20. Orphan Nuclear Receptor Errγ Induces C-Reactive Protein Gene Expression through Induction of ER-Bound Bzip Transmembrane Transcription Factor CREBH

    PubMed Central

    Misra, Jagannath; Chanda, Dipanjan; Kim, Don-Kyu; Cho, Seung-Rye; Koo, Seung-Hoi; Lee, Chul-Ho; Back, Sung Hoon; Choi, Hueng-Sik

    2014-01-01

    The orphan nuclear receptor estrogen-related receptor-γ (ERRγ) is a constitutively active transcription factor regulating genes involved in several important cellular processes, including hepatic glucose metabolism, alcohol metabolism, and the endoplasmic reticulum (ER) stress response. cAMP responsive element-binding protein H (CREBH) is an ER-bound bZIP family transcription factor that is activated upon ER stress and regulates genes encoding acute-phase proteins whose expression is increased in response to inflammation. Here, we report that ERRγ directly regulates CREBH gene expression in response to ER stress. ERRγ bound to the ERRγ response element (ERRE) in the CREBH promoter. Overexpression of ERRγ by adenovirus significantly increased expression of CREBH as well as C-reactive protein (CRP), whereas either knockdown of ERRγ or inhibition of ERRγ by ERRγ specific inverse agonist, GSK5182, substantially inhibited ER stress-mediated induction of CREBH and CRP. The transcriptional coactivator PGC1α was required for ERRγ mediated induction of the CREBH gene as demonstrated by the chromatin immunoprecipitation (ChIP) assay showing binding of both ERRγ and PGC1α on the CREBH promoter. The ChIP assay also revealed that histone H3 and H4 acetylation occurred at the ERRγ and PGC1α binding site. Moreover, chronic alcoholic hepatosteatosis, as well as the diabetic obese condition significantly increased CRP gene expression, and this increase was significantly attenuated by GSK5182 treatment. We suggest that orphan nuclear receptor ERRγ directly regulates the ER-bound transcription factor CREBH in response to ER stress and other metabolic conditions. PMID:24466039

  1. AtTGA4, a bZIP transcription factor, confers drought resistance by enhancing nitrate transport and assimilation in Arabidopsis thaliana.

    PubMed

    Zhong, Li; Chen, Dandan; Min, Donghong; Li, Weiwei; Xu, Zhaoshi; Zhou, Yongbin; Li, Liancheng; Chen, Ming; Ma, Youzhi

    2015-02-13

    To cope with environmental stress caused by global climate change and excessive nitrogen application, it is important to improve water and nitrogen use efficiencies in crop plants. It has been reported that higher nitrogen uptake could alleviate the damaging impact of drought stress. However, there is scant evidence to explain how nitrogen uptake affects drought resistance. In this study we observed that bZIP transcription factor AtTGA4 (TGACG motif-binding factor 4) was induced by both drought and low nitrogen stresses, and that overexpression of AtTGA4 simultaneously improved drought resistance and reduced nitrogen starvation in Arabidopsis. Following drought stress there were higher nitrogen and proline contents in transgenic AtTGA4 plants than in wild type controls, and activity of the key enzyme nitrite reductase (NIR) involved in nitrate assimilation processes was also higher. Expressions of the high-affinity nitrate transporter genes NRT2.1 and NRT2.2 and nitrate reductase genes NIA1 and NIA2 in transgenic plants were all higher than in wild type indicating that higher levels of nitrate transport and assimilation activity contributed to enhanced drought resistance of AtTGA4 transgenic plants. Thus genetic transformation with AtTGA4 may provide a new approach to simultaneously improve crop tolerance to drought and low nitrogen stresses. PMID:25596127

  2. Influence of the Valine Zipper Region on the Structure and Aggregation of the Basic Leucine Zipper (bZIP) Domain of Activating Transcription Factor 5 (ATF5)

    PubMed Central

    Ciaccio, Natalie A.; Reynolds, T. Steele; Middaugh, C. Russell; Laurence, Jennifer S.

    2012-01-01

    Protein aggregation is a major problem for biopharmaceuticals. While the control of aggregation is critically important for the future of protein pharmaceuticals, mechanisms of aggregate assembly, particularly the role that structure plays, are still poorly understood. Increasing evidence indicates that partially folded intermediates critically influence the aggregation pathway. We have previously reported the use of the basic leucine zipper (bZIP) domain of Activating Transcription Factor 5 (ATF5) as a partially folded model system to investigate protein aggregation. This domain contains three regions with differing structural propensity: a N-terminal polybasic region, a central helical leucine zipper region, and a C-terminal extended valine zipper region. Additionally, a centrally positioned cysteine residue readily forms an intermolecular disulfide bond that reduces aggregation. Computational analysis of ATF5 predicts that the valine zipper region facilitates self-association. Here we test this hypothesis using a truncated mutant lacking the C-terminal valine zipper region. We compare the structure and aggregation of this mutant to the wild-type (WT) form under both reducing and non-reducing conditions. Our data indicate that removal of this region results in a loss of alpha-helical structure in the leucine zipper and a change in the mechanism of self-association. The mutant form displays increased association at low temperature but improved resistance to thermally induced aggregation. PMID:23067245

  3. Basic Leucine Zipper (bZIP) Domain Transcription Factor MBZ1 Regulates Cell Wall Integrity, Spore Adherence, and Virulence in Metarhizium robertsii *

    PubMed Central

    Huang, Wei; Shang, Yanfang; Chen, Peilin; Cen, Kai; Wang, Chengshu

    2015-01-01

    Transcription factors (TFs) containing the basic leucine zipper (bZIP) domain are widely distributed in eukaryotes and display an array of distinct functions. In this study, a bZIP-type TF gene (MBZ1) was deleted and functionally characterized in the insect pathogenic fungus Metarhizium robertsii. The deletion mutant (ΔMBZ1) showed defects in cell wall integrity, adhesion to hydrophobic surfaces, and topical infection of insects. Relative to the WT, ΔMBZ1 was also impaired in growth and conidiogenesis. Examination of putative target gene expression indicated that the genes involved in chitin biosynthesis were differentially transcribed in ΔMBZ1 compared with the WT, which led to the accumulation of a higher level of chitin in mutant cell walls. MBZ1 exhibited negative regulation of subtilisin proteases, but positive control of an adhesin gene, which is consistent with the observation of effects on cell autolysis and a reduction in spore adherence to hydrophobic surfaces in ΔMBZ1. Promoter binding assays indicated that MBZ1 can bind to different target genes and suggested the possibility of heterodimer formation to increase the diversity of the MBZ1 regulatory network. The results of this study advance our understanding of the divergence of bZIP-type TFs at both intra- and interspecific levels. PMID:25673695

  4. Calcium-dependent protein kinases responsible for the phosphorylation of a bZIP transcription factor FD crucial for the florigen complex formation

    PubMed Central

    Kawamoto, Nozomi; Sasabe, Michiko; Endo, Motomu; Machida, Yasunori; Araki, Takashi

    2015-01-01

    Appropriate timing of flowering is critical for reproductive success and necessarily involves complex genetic regulatory networks. A mobile floral signal, called florigen, is a key molecule in this process, and FLOWERING LOCUS T (FT) protein is its major component in Arabidopsis. FT is produced in leaves, but promotes the floral transition in the shoot apex, where it forms a complex with a basic region/leucine-zipper (bZIP) transcription factor, FD. Formation of the florigen complex depends on the supposed phosphorylation of FD; hitherto, however, the responsible protein kinase(s) have not been identified. In this study, we prepared protein extracts from shoot apices of plants around the floral transition, and detected a protein kinase activity that phosphorylates a threonine residue at position 282 of FD (FD T282), which is a crucial residue for the complex formation with FT via 14-3-3. The kinase activity was calcium-dependent. Subsequent biochemical, cellular, and genetic analyses showed that three calcium-dependent protein kinases (CDPKs) efficiently phosphorylate FD T282. Two of them (CPK6 and CPK33) are expressed in shoot apical meristem and directly interact with FD, suggesting they have redundant functions. The loss of function of one CDPK (CPK33) resulted in a weak but significant late-flowering phenotype. PMID:25661797

  5. A tobacco bZip transcription activator (TAF-1) binds to a G-box-like motif conserved in plant genes.

    PubMed Central

    Oeda, K; Salinas, J; Chua, N H

    1991-01-01

    Tobacco nuclear extract contains a factor that binds specifically to the motif I sequence (5'-GTACGTGGCG-3') conserved among rice rab genes and cotton lea genes. We isolated from a tobacco cDNA expression library, a partial cDNA clone encoding a truncated derivative of a protein designated as TAF-1. The truncated TAF-1 (Mr = 26,000) contains an acidic region at its N-terminus and a bZip motif at its C-terminus. Using a panel of motif I mutants as probes, we showed that the truncated TAF-1 and the tobacco nuclear factor for motif I have similar, it not identical, binding specificities. In particular, both show high-affinity binding to the perfect palindrome 5'-GCCACGTGGC-3' which is also known as the G-box motif. TAF-1 mRNA is highly expressed in root, but the level is at least 10 times lower in stem and leaf. Consistent with this observation, we found that a motif I tetramer, when fused to the -90 derivative of the CaMV 35S promoter, is inactive in leaf of transgenic tobacco. The activity, however, can be elevated by transient expression of the truncated TAF-1. We conclude from these results that TAF-1 can bind to the G-box and related motifs and that it functions as a transcription activator. Images PMID:2050116

  6. Feedback Regulation of ABA Signaling and Biosynthesis by a bZIP Transcription Factor Targets Drought-Resistance-Related Genes.

    PubMed

    Zong, Wei; Tang, Ning; Yang, Jun; Peng, Lei; Ma, Siqi; Xu, Yan; Li, Guoliang; Xiong, Lizhong

    2016-08-01

    The OsbZIP23 transcription factor has been characterized for its essential role in drought resistance in rice (Oryza sativa), but the mechanism is unknown. In this study, we first investigated the transcriptional activation of OsbZIP23. A homolog of SnRK2 protein kinase (SAPK2) was found to interact with and phosphorylate OsbZIP23 for its transcriptional activation. SAPK2 also interacted with OsPP2C49, an ABI1 homolog, which deactivated the SAPK2 to inhibit the transcriptional activation activity of OsbZIP23. Next, we performed genome-wide identification of OsbZIP23 targets by immunoprecipitation sequencing and RNA sequencing analyses in the OsbZIP23-overexpression, osbzip23 mutant, and wild-type rice under normal and drought stress conditions. OsbZIP23 directly regulates a large number of reported genes that function in stress response, hormone signaling, and developmental processes. Among these targets, we found that OsbZIP23 could positively regulate OsPP2C49, and overexpression of OsPP2C49 in rice resulted in significantly decreased sensitivity of the abscisic acid (ABA) response and rapid dehydration. Moreover, OsNCED4 (9-cis-epoxycarotenoid dioxygenase4), a key gene in ABA biosynthesis, was also positively regulated by OsbZIP23. Together, our results suggest that OsbZIP23 acts as a central regulator in ABA signaling and biosynthesis, and drought resistance in rice. PMID:27325665

  7. Overexpression of the bZIP transcription factor OsbZIP79 suppresses the production of diterpenoid phytoalexin in rice cells.

    PubMed

    Miyamoto, Koji; Nishizawa, Yoko; Minami, Eiichi; Nojiri, Hideaki; Yamane, Hisakazu; Okada, Kazunori

    2015-01-15

    Phytoalexins are antimicrobial specialised metabolites that are produced by plants in response to pathogen attack. Momilactones and phytocassanes are major diterpenoid phytoalexins in rice that are synthesised from geranylgeranyl diphosphate that is derived from the methylerythritol phosphate (MEP) pathway. We have previously reported that rice cells overexpressing the basic leucine zipper (bZIP) transcription factor OsTGAP1 exhibit a hyperaccumulation of momilactones and phytocassanes, with hyperinductive expression of momilactone and phytocassane biosynthetic genes and MEP pathway genes, upon response to a chitin oligosaccharide elicitor. For a better understanding of OsTGAP1-mediated regulation of diterpenoid phytoalexin production, we identified OsTGAP1-interacting proteins using yeast two-hybrid screening. Among the OsTGAP1-interacting protein candidates, a TGA factor OsbZIP79 was investigated to verify its physical interaction with OsTGAP1 and involvement in the regulation of phytoalexin production. An in vitro pull-down assay demonstrated that OsTGAP1 and OsbZIP79 exhibited a heterodimeric as well as a homodimeric interaction. A bimolecular fluorescence complementation analysis also showed the interaction between OsTGAP1 and OsbZIP79 in vivo. Intriguingly, whereas OsbZIP79 transactivation activity was observed in a transient reporter assay, the overexpression of OsbZIP79 resulted in suppression of the elicitor-inducible expression of diterpenoid phytoalexin biosynthetic genes, and thus caused a decrease in the accumulation of phytoalexin in rice cells. These results suggest that OsbZIP79 functions as a negative regulator of phytoalexin production triggered by a chitin oligosaccharide elicitor in rice cells, although it remains open under which conditions OsbZIP79 can work with OsTGAP1. PMID:25462074

  8. A novel strategy to produce sweeter tomato fruits with high sugar contents by fruit-specific expression of a single bZIP transcription factor gene.

    PubMed

    Sagor, G H M; Berberich, Thomas; Tanaka, Shun; Nishiyama, Manabu; Kanayama, Yoshinori; Kojima, Seiji; Muramoto, Koji; Kusano, Tomonobu

    2016-04-01

    Enhancement of sugar content and sweetness is desirable in some vegetables and in almost all fruits; however, biotechnological methods to increase sugar content are limited. Here, a completely novel methodological approach is presented that produces sweeter tomato fruits but does not have any negative effects on plant growth. Sucrose-induced repression of translation (SIRT), which is mediated by upstream open reading frames (uORFs), was initially reported in Arabidopsis AtbZIP11, a class S basic region leucine zipper (bZIP) transcription factor gene. Here, two AtbZIP11 orthologous genes, SlbZIP1 and SlbZIP2, were identified in tomato (Solanum lycopersicum). SlbZIP1 and SlbZIP2 contained four and three uORFs, respectively, in the cDNA 5'-leader regions. The second uORFs from the 5' cDNA end were conserved and involved in SIRT. Tomato plants were transformed with binary vectors in which only the main open reading frames (ORFs) of SlbZIP1 and SlbZIP2, without the SIRT-responsive uORFs, were placed under the control of the fruit-specific E8 promoter. Growth and morphology of the resulting transgenic tomato plants were comparable to those of wild-type plants. Transgenic fruits were approximately 1.5-fold higher in sugar content (sucrose/glucose/fructose) than nontransgenic tomato fruits. In addition, the levels of several amino acids, such as asparagine and glutamine, were higher in transgenic fruits than in wild-type fruits. This was expected because SlbZIP transactivates the asparagine synthase and proline dehydrogenase genes. This 'sweetening' technology is broadly applicable to other plants that utilize sucrose as a major translocation sugar. PMID:26402509

  9. Transcriptional control of spliced and unspliced human T-cell leukemia virus type 1 bZIP factor (HBZ) gene.

    PubMed

    Yoshida, Mika; Satou, Yorifumi; Yasunaga, Jun-Ichirou; Fujisawa, Jun-Ichi; Matsuoka, Masao

    2008-10-01

    The human T-cell leukemia virus type 1 (HTLV-1) basic leucine zipper factor (HBZ) gene is encoded by the minus strand of the HTLV-1 provirus and transcribed from the 3' long terminal repeat (LTR). HBZ gene expression not only inhibits the Tax-mediated activation of viral gene transcription through the 5' LTR but also promotes the proliferation of infected cells. However, the HBZ promoter region and the transcriptional regulation of the gene have not been studied. In this study, we characterize the promoters of the spliced version of the HBZ gene (sHBZ) and the unspliced version of the HBZ gene (usHBZ) by luciferase assay. Both promoters were TATA-less and contained initiators and downstream promoter elements. Detailed studies of the promoter for the sHBZ gene showed that Sp1 sites were critical for its activity. The activities of the sHBZ and usHBZ gene promoters were upregulated by Tax through Tax-responsible elements in the 3' LTR. We compared the functions of the proteins derived from the sHBZ and usHBZ transcripts. sHBZ showed a stronger suppression of Tax-mediated transcriptional activation through the 5' LTR than did usHBZ; the level of suppression correlated with the level of protein produced. The expression of sHBZ had a growth-promoting function in a T-cell line, while usHBZ expression did not. This study demonstrates that Sp1 is critical for sHBZ transcription, which accounts for the constitutive expression of the sHBZ gene. Functional differences between sHBZ and usHBZ suggest that the sHBZ gene plays a significant role in the proliferation of infected cells. PMID:18653454

  10. The DNA-binding domain of two bZIP transcription factors, the Epstein-Barr virus switch gene product EB1 and Jun, is a bipartite nuclear targeting sequence.

    PubMed Central

    Mikaélian, I; Drouet, E; Marechal, V; Denoyel, G; Nicolas, J C; Sergeant, A

    1993-01-01

    The Epstein-Barr virus BZLF1 gene product EB1 (also called ZEBRA and Zta), is a transcription factor belonging to the bZIP (basic domain leucine zipper) family of nuclear proteins. Translocation to the nucleus of EB1 (J. Becker, U. Leser, M. Marschall, A. Langford, W. Jilg, H. Gelderblom, P. Reichart, and H. Wolf, Proc. Natl. Acad. Sci. USA 88:8332-8336, 1991) and of two other bZIP proteins, c-Jun and c-Fos (P. Roux, J.-M. Blanchard, A. Fernandez, N. Lamb, P. Jeanteur, and M. Piechaczyk, Cell 63:341-351, 1990), has been shown to be subject to regulation. We show here that for both EB1 and Jun the nuclear targeting signals (NTS) in the proteins' primary sequences are two clusters of positively charged amino acids. These clusters, called BRA and BRB, are necessary and sufficient to direct beta-galactosidase to the nuclear compartment and act as a bipartite NTS. They are conserved among all the bZIP proteins, and although they are not identical, they probably share the same function. Site-directed mutagenesis studies made on these basic clusters suggest that they also act as a bipartite NTS in the EB1 protein. Our results also demonstrate that in EB1 and Jun, these bipartite NTS are superimposed with bipartite DNA-binding domains, since BRA and BRB are required in vitro for direct and specific contact between these proteins and their DNA-binding sites. Images PMID:8380464

  11. Genome-wide expression analysis upon constitutive activation of the HacA bZIP transcription factor in Aspergillus niger reveals a coordinated cellular response to counteract ER stress

    PubMed Central

    2012-01-01

    Background HacA/Xbp1 is a conserved bZIP transcription factor in eukaryotic cells which regulates gene expression in response to various forms of secretion stress and as part of secretory cell differentiation. In the present study, we replaced the endogenous hacA gene of an Aspergillus niger strain with a gene encoding a constitutively active form of the HacA transcription factor (HacACA). The impact of constitutive HacA activity during exponential growth was explored in bioreactor controlled cultures using transcriptomic analysis to identify affected genes and processes. Results Transcription profiles for the wild-type strain (HacAWT) and the HacACA strain were obtained using Affymetrix GeneChip analysis of three replicate batch cultures of each strain. In addition to the well known HacA targets such as the ER resident foldases and chaperones, GO enrichment analysis revealed up-regulation of genes involved in protein glycosylation, phospholipid biosynthesis, intracellular protein transport, exocytosis and protein complex assembly in the HacACA mutant. Biological processes over-represented in the down-regulated genes include those belonging to central metabolic pathways, translation and transcription. A remarkable transcriptional response in the HacACA strain was the down-regulation of the AmyR transcription factor and its target genes. Conclusions The results indicate that the constitutive activation of the HacA leads to a coordinated regulation of the folding and secretion capacity of the cell, but with consequences on growth and fungal physiology to reduce secretion stress. PMID:22846479

  12. Feedback Regulation of ABA Signaling and Biosynthesis by a bZIP Transcription Factor Targets Drought-Resistance-Related Genes1[OPEN

    PubMed Central

    Tang, Ning; Yang, Jun; Peng, Lei; Ma, Siqi; Xu, Yan; Li, Guoliang

    2016-01-01

    The OsbZIP23 transcription factor has been characterized for its essential role in drought resistance in rice (Oryza sativa), but the mechanism is unknown. In this study, we first investigated the transcriptional activation of OsbZIP23. A homolog of SnRK2 protein kinase (SAPK2) was found to interact with and phosphorylate OsbZIP23 for its transcriptional activation. SAPK2 also interacted with OsPP2C49, an ABI1 homolog, which deactivated the SAPK2 to inhibit the transcriptional activation activity of OsbZIP23. Next, we performed genome-wide identification of OsbZIP23 targets by immunoprecipitation sequencing and RNA sequencing analyses in the OsbZIP23-overexpression, osbzip23 mutant, and wild-type rice under normal and drought stress conditions. OsbZIP23 directly regulates a large number of reported genes that function in stress response, hormone signaling, and developmental processes. Among these targets, we found that OsbZIP23 could positively regulate OsPP2C49, and overexpression of OsPP2C49 in rice resulted in significantly decreased sensitivity of the abscisic acid (ABA) response and rapid dehydration. Moreover, OsNCED4 (9-cis-epoxycarotenoid dioxygenase4), a key gene in ABA biosynthesis, was also positively regulated by OsbZIP23. Together, our results suggest that OsbZIP23 acts as a central regulator in ABA signaling and biosynthesis, and drought resistance in rice. PMID:27325665

  13. Frequency-Dependent Regulation of Follicle-Stimulating Hormone β by Pulsatile Gonadotropin-Releasing Hormone Is Mediated by Functional Antagonism of bZIP Transcription Factors ▿

    PubMed Central

    Ciccone, Nick A.; Xu, Shuyun; Lacza, Charlemagne T.; Carroll, Rona S.; Kaiser, Ursula B.

    2010-01-01

    Oscillatory synthesis and secretion of the gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), under the control of pulsatile hypothalamic gonadotropin-releasing hormone (GnRH), is essential for normal reproductive development and fertility. The molecular mechanisms by which various patterns of pulsatile GnRH regulate gonadotrope responsiveness remain poorly understood. In contrast to the α and LHβ subunit genes, FSHβ subunit transcription is preferentially stimulated at low rather than high frequencies of pulsatile GnRH. In this study, mutation of a cyclic AMP response element (CRE) within the FSHβ promoter resulted in the loss of preferential GnRH stimulation at low pulse frequencies. We hypothesized that high GnRH pulse frequencies might stimulate a transcriptional repressor(s) to attenuate the action of CRE binding protein (CREB) and show that inducible cAMP early repressor (ICER) fulfills such a role. ICER was not detected under basal conditions, but pulsatile GnRH stimulated ICER to a greater extent at high than at low pulse frequencies. ICER binds to the FSHβ CRE site to reduce CREB occupation and abrogates both maximal GnRH stimulation and GnRH pulse frequency-dependent effects on FSHβ transcription. These data suggest that ICER production antagonizes the stimulatory action of CREB to attenuate FSHβ transcription at high GnRH pulse frequencies, thereby playing a critical role in regulating cyclic reproductive function. PMID:20008557

  14. Tobacco bZIP transcription factor TGA2.2 and related factor TGA2.1 have distinct roles in plant defense responses and plant development.

    PubMed

    Thurow, Corinna; Schiermeyer, Andreas; Krawczyk, Stefanie; Butterbrodt, Thomas; Nickolov, Kaloian; Gatz, Christiane

    2005-10-01

    Salicylic acid (SA) is a crucial internal signaling molecule needed for the induction of plant defense responses upon attack of a variety of pathogens. Basic leucine zipper transcription factors of the TGA family bind to activating sequence-1 (as-1)-like elements which are SA-responsive cis elements found in promoters of 'immediate early' and 'late' SA-inducible genes. TGA2.2 constitutes the main component of tobacco as-1-binding factor-1 (ASF-1). TGA2.1, which differs from TGA2.2 by being able to activate transcription in yeast, constitutes a minor fraction of the complex. Both proteins interact with NPR1, a protein essential for SA inducibility of 'late' genes. Here we demonstrate using dsRNAi mediated gene silencing that reducing the amount of TGA2.2 and TGA2.1 correlates with a significant decrease in ASF-1 activity and with a decreased inducibility of both 'immediate early' and 'late' genes. In contrast, reducing the amount of TGA2.1 alone had no effect on the expression of these target genes suggesting that TGA2.1 is dispensable for SA-inducible gene expression from the as-1 element. Expression of a TGA2.2 mutant unable to form heterodimers with the endogenous pool of TGA factors led to reduced SA-inducibility of 'immediate early' gene Nt103, indicating that the native leucine zipper is important for the protein to act positively on transcription. Plants with reduced amounts of TGA2.1 developed petal like stamens indicating a regulatory role of TGA2.1 in defining organ identity in tobacco flowers. A model is suggested that unifies conflicting results on the function of tobacco TGA factors with respect to activation of the 'late' PR-1a promoter. PMID:16167899

  15. bZIP transcription factor CgAP1 is essential for oxidative stress tolerance and full virulence of the poplar anthracnose fungus Colletotrichum gloeosporioides.

    PubMed

    Sun, Yingjiao; Wang, Yonglin; Tian, Chengming

    2016-10-01

    Yeast AP1 transcription factor is a regulator of oxidative stress response. Here, we report the identification and characterization of CgAP1, an ortholog of YAP1 in poplar anthracnose fungus Colletotrichum gloeosporioides. The expression of CgAP1 was highly induced by reactive oxygen species. CgAP1 deletion mutants displayed enhanced sensitivity to oxidative stress compared with the wild-type strain, and their poplar leaf virulence was obviously reduced. However, the mutants exhibited no obvious defects in aerial hyphal growth, conidia production, and appressoria formation. CgAP1::eGFP fusion protein localized to the nucleus after TBH (tert-Butyl hydroperoxide) treatment, suggesting that CgAP1 functions as a redox sensor in C. gloeosporioides. In addition, CgAP1 prevented the accumulation of ROS during early stages of biotrophic growth. CgAP1 also acted as a positive regulator of several ROS-related genes (i.e., Glr1, Hyr1, and Cyt1) involved in the antioxidative response. These results highlight the key regulatory role of CgAP1 transcription factor in oxidative stress response and provide insights into the function of ROS detoxification in virulence of C. gloeosporioides. PMID:27544415

  16. Trafficking of the bZIP transmembrane transcription factor CREB-H into alternate pathways of ERAD and stress-regulated intramembrane proteolysis.

    PubMed

    Bailey, Daniel; Barreca, Cristina; O'Hare, Peter

    2007-12-01

    CREB-H is an ATF6-related, transmembrane transcription factor that, in response to endoplasmic reticulum (ER)-associated stress, is cleaved by Golgi proteases and transported to the nucleus to effect appropriate adaptive responses. We characterize the ER processing and turnover of CREB-H with results which have important implications for ER stress regulation and signalling. We show that CREB-H is glycosylated and demonstrate that both the ER and nuclear forms of CREB-H have short half-lives. We also show that CREB-H is subject to cycles of retrotranslocation, deglycosylation and degradation through the ER-associated degradation (ERAD) pathway. Proteasome inhibition resulted in accumulation of a cytosolic intermediate but additionally, in contrast to inhibition of glycosylation, promoted specific cleavage of CREB-H and nuclear transport of the N-terminal-truncated product. Our data indicate that under normal conditions CREB-H is transported back from the ER to the cytosol, where it is subject to ERAD, but under conditions that repress proteasome function or promote load CREB-H is diverted from this pathway instead undergoing cleavage and nuclear transport. Finally, we identify a cytoplasmic determinant involved in CREB-H ER retention, deletion of which results in constitutive Golgi transport and corresponding cleavage. We present a model where cellular stresses may be sensed at different levels by different members of the basic and leucine zipper domain transmembrane proteins. PMID:17875199

  17. The bZIP Transcription Factor HAC-1 Is Involved in the Unfolded Protein Response and Is Necessary for Growth on Cellulose in Neurospora crassa

    PubMed Central

    Larrondo, Luis F.

    2015-01-01

    High protein secretion capacity in filamentous fungi requires an extremely efficient system for protein synthesis, folding and transport. When the folding capacity of the endoplasmic reticulum (ER) is exceeded, a pathway known as the unfolded protein response (UPR) is triggered, allowing cells to mitigate and cope with this stress. In yeast, this pathway relies on the transcription factor Hac1, which mediates the up-regulation of several genes required under these stressful conditions. In this work, we identified and characterized the ortholog of the yeast HAC1 gene in the filamentous fungus Neurospora crassa. We show that its mRNA undergoes an ER stress-dependent splicing reaction, which in N. crassa removes a 23 nt intron and leads to a change in the open reading frame. By disrupting the N. crassa hac-1 gene, we determined it to be crucial for activating UPR and for proper growth in the presence of ER stress-inducing chemical agents. Neurospora is naturally found growing on dead plant material, composed primarily by lignocellulose, and is a model organism for the study of plant cell wall deconstruction. Notably, we found that growth on cellulose, a substrate that requires secretion of numerous enzymes, imposes major demands on ER function and is dramatically impaired in the absence of hac-1, thus broadening the range of physiological functions of the UPR in filamentous fungi. Growth on hemicellulose however, another carbon source that necessitates the secretion of various enzymes for its deconstruction, is not impaired in the mutant nor is the amount of proteins secreted on this substrate, suggesting that secretion, as a whole, is unaltered in the absence of hac-1. The characterization of this signaling pathway in N. crassa will help in the study of plant cell wall deconstruction by fungi and its manipulation may result in important industrial biotechnological applications. PMID:26132395

  18. The bZIP Transcription Factor Fgap1 Mediates Oxidative Stress Response and Trichothecene Biosynthesis But Not Virulence in Fusarium graminearum

    PubMed Central

    Montibus, Mathilde; Ducos, Christine; Bonnin-Verdal, Marie-Noelle; Bormann, Jorg; Ponts, Nadia; Richard-Forget, Florence; Barreau, Christian

    2013-01-01

    Redox sensing is of primary importance for fungi to cope with oxidant compounds found in their environment. Plant pathogens are particularly subject to the oxidative burst during the primary steps of infection. In the budding yeast Saccharomyces cerevisiae, it is the transcription factor Yap1 that mediates the response to oxidative stress via activation of genes coding for detoxification enzymes. In the cereal pathogen Fusarium graminearum, Fgap1 a homologue of Yap1 was identified and its role was investigated. During infection, this pathogen produces mycotoxins belonging to the trichothecenes family that accumulate in the grains. The global regulation of toxin biosynthesis is not completely understood. However, it is now clearly established that an oxidative stress activates the production of toxins by F. graminearum. The involvement of Fgap1 in this activation was investigated. A deleted mutant and a strain expressing a truncated constitutive form of Fgap1 were constructed. None of the mutants was affected in pathogenicity. The deleted mutant showed higher level of trichothecenes production associated with overexpression of Tri genes. Moreover activation of toxin accumulation in response to oxidative stress was no longer observed. Regarding the mutant with the truncated constitutive form of Fgap1, toxin production was strongly reduced. Expression of oxidative stress response genes was not activated in the deleted mutant and expression of the gene encoding the mitochondrial superoxide dismutase MnSOD1 was up-regulated in the mutant with the truncated constitutive form of Fgap1. Our results demonstrate that Fgap1 plays a key role in the link between oxidative stress response and F. graminearum secondary metabolism. PMID:24349499

  19. Crosstalk between Two bZIP Signaling Pathways Orchestrates Salt-Induced Metabolic Reprogramming in Arabidopsis Roots

    PubMed Central

    Hartmann, Laura; Pedrotti, Lorenzo; Weiste, Christoph; Fekete, Agnes; Schierstaedt, Jasper; Göttler, Jasmin; Kempa, Stefan; Krischke, Markus; Dietrich, Katrin; Mueller, Martin J.; Vicente-Carbajosa, Jesus; Hanson, Johannes; Dröge-Laser, Wolfgang

    2015-01-01

    Soil salinity increasingly causes crop losses worldwide. Although roots are the primary targets of salt stress, the signaling networks that facilitate metabolic reprogramming to induce stress tolerance are less understood than those in leaves. Here, a combination of transcriptomic and metabolic approaches was performed in salt-treated Arabidopsis thaliana roots, which revealed that the group S1 basic leucine zipper transcription factors bZIP1 and bZIP53 reprogram primary C- and N-metabolism. In particular, gluconeogenesis and amino acid catabolism are affected by these transcription factors. Importantly, bZIP1 expression reflects cellular stress and energy status in roots. In addition to the well-described abiotic stress response pathway initiated by the hormone abscisic acid (ABA) and executed by SnRK2 (Snf1-RELATED-PROTEIN-KINASE2) and AREB-like bZIP factors, we identify a structurally related ABA-independent signaling module consisting of SnRK1s and S1 bZIPs. Crosstalk between these signaling pathways recruits particular bZIP factor combinations to establish at least four distinct gene expression patterns. Understanding this signaling network provides a framework for securing future crop productivity. PMID:26276836

  20. Crosstalk between Two bZIP Signaling Pathways Orchestrates Salt-Induced Metabolic Reprogramming in Arabidopsis Roots.

    PubMed

    Hartmann, Laura; Pedrotti, Lorenzo; Weiste, Christoph; Fekete, Agnes; Schierstaedt, Jasper; Göttler, Jasmin; Kempa, Stefan; Krischke, Markus; Dietrich, Katrin; Mueller, Martin J; Vicente-Carbajosa, Jesus; Hanson, Johannes; Dröge-Laser, Wolfgang

    2015-08-01

    Soil salinity increasingly causes crop losses worldwide. Although roots are the primary targets of salt stress, the signaling networks that facilitate metabolic reprogramming to induce stress tolerance are less understood than those in leaves. Here, a combination of transcriptomic and metabolic approaches was performed in salt-treated Arabidopsis thaliana roots, which revealed that the group S1 basic leucine zipper transcription factors bZIP1 and bZIP53 reprogram primary C- and N-metabolism. In particular, gluconeogenesis and amino acid catabolism are affected by these transcription factors. Importantly, bZIP1 expression reflects cellular stress and energy status in roots. In addition to the well-described abiotic stress response pathway initiated by the hormone abscisic acid (ABA) and executed by SnRK2 (Snf1-RELATED-PROTEIN-KINASE2) and AREB-like bZIP factors, we identify a structurally related ABA-independent signaling module consisting of SnRK1s and S1 bZIPs. Crosstalk between these signaling pathways recruits particular bZIP factor combinations to establish at least four distinct gene expression patterns. Understanding this signaling network provides a framework for securing future crop productivity. PMID:26276836

  1. The Elucidation of the Interactome of 16 Arabidopsis bZIP Factors Reveals Three Independent Functional Networks

    PubMed Central

    Llorca, Carles Marco; Berendzen, Kenneth Wayne; Malik, Waqas Ahmed; Mahn, Stefan; Piepho, Hans-Peter; Zentgraf, Ulrike

    2015-01-01

    The function of the bZIP transcription factors is strictly dependent on their ability to dimerize. Heterodimerization has proven to be highly specific and is postulated to operate as a combinatorial mechanism allowing the generation of a large variety of dimers with unique qualities by specifically combining a small set of monomers; an assumption that has not yet been tested systematically. Here, the interaction pattern and the transactivation properties of 16 Arabidopsis thaliana bZIPs are examined in transiently transformed Arabidopsis protoplasts to deliver a perspective on the relationship between bZIP dimerization and function. An interaction matrix of bZIPs belonging to the C, G, H, and S1 bZIP groups was resolved by Bimolecular Fluorescent Complementation (BiFC) coupled to quantitative flow cytometric analysis, while an extensive GUS reporter gene assay was carried out to determine the effect of different bZIP pairs on the expression of four different known bZIP-targeted promoters. Statistical data treatment and complementary bioinformatic analysis were performed to substantiate the biological findings. According to these results, the 16 bZIPs interact in three isolated networks, within which their members dimerize non-specifically and exhibit a significant level of functional redundancy. A coherent explanation for these results is supported by in silico analysis of differences in the length, structure and composition of their leucine zippers and appears to explain their dimerization specificity and dynamics observed in vivo quite well. A model in which the bZIP networks act as functional units is proposed. PMID:26452049

  2. Divergence of the bZIP Gene Family in Strawberry, Peach, and Apple Suggests Multiple Modes of Gene Evolution after Duplication

    PubMed Central

    Wang, Xiao-Long; Zhong, Yan; Cheng, Zong-Ming; Xiong, Jin-Song

    2015-01-01

    The basic leucine zipper (bZIP) transcription factors are the most diverse members of dimerizing transcription factors. In the present study, 50, 116, and 47 bZIP genes were identified in Malus domestica (apple), Prunus persica (peach), and Fragaria vesca (strawberry), respectively. Species-specific duplication was the main contributor to the large number of bZIPs observed in apple. After WGD in apple genome, orthologous bZIP genes corresponding to strawberry on duplicated regions in apple genome were retained. However, in peach ancestor, these syntenic regions were quickly lost or deleted. Maybe the positive selection contributed to the expansion of clade S to adapt to the development and environment stresses. In addition, purifying selection was mainly responsible for bZIP sequence-specific DNA binding. The analysis of orthologous pairs between chromosomes indicates that these orthologs derived from one gene duplication located on one of the nine ancient chromosomes in the Rosaceae. The comparative analysis of bZIP genes in three species provides information on the evolutionary fate of bZIP genes in apple and peach after they diverged from strawberry. PMID:26770968

  3. Divergence of the bZIP Gene Family in Strawberry, Peach, and Apple Suggests Multiple Modes of Gene Evolution after Duplication.

    PubMed

    Wang, Xiao-Long; Zhong, Yan; Cheng, Zong-Ming; Xiong, Jin-Song

    2015-01-01

    The basic leucine zipper (bZIP) transcription factors are the most diverse members of dimerizing transcription factors. In the present study, 50, 116, and 47 bZIP genes were identified in Malus domestica (apple), Prunus persica (peach), and Fragaria vesca (strawberry), respectively. Species-specific duplication was the main contributor to the large number of bZIPs observed in apple. After WGD in apple genome, orthologous bZIP genes corresponding to strawberry on duplicated regions in apple genome were retained. However, in peach ancestor, these syntenic regions were quickly lost or deleted. Maybe the positive selection contributed to the expansion of clade S to adapt to the development and environment stresses. In addition, purifying selection was mainly responsible for bZIP sequence-specific DNA binding. The analysis of orthologous pairs between chromosomes indicates that these orthologs derived from one gene duplication located on one of the nine ancient chromosomes in the Rosaceae. The comparative analysis of bZIP genes in three species provides information on the evolutionary fate of bZIP genes in apple and peach after they diverged from strawberry. PMID:26770968

  4. Human T-cell leukemia virus type 2 produces a spliced antisense transcript encoding a protein that lacks a classic bZIP domain but still inhibits Tax2-mediated transcription

    PubMed Central

    Halin, Marilène; Douceron, Estelle; Clerc, Isabelle; Journo, Chloé; Ko, Nga Ling; Landry, Sébastien; Murphy, Edward L.; Gessain, Antoine; Lemasson, Isabelle; Mesnard, Jean-Michel

    2009-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) and type 2 (HTLV-2) retroviruses infect T lymphocytes. The minus strand of the HTLV-1 genome encodes HBZ, a protein that could play a role in the development of leukemia in infected patients. Herein, we demonstrate that the complementary strand of the HTLV-2 genome also encodes a protein that we named APH-2 for “antisense protein of HTLV-2.” APH-2 mRNA is spliced, polyadenylated, and initiates in the 3′-long terminal repeat at different positions. This transcript was detected in all HTLV-2–infected cell lines and short-term culture of lymphocytes obtained from HTLV-2 African patients tested and in 4 of 15 HTLV-2–infected blood donors. The APH-2 protein is 183 amino acids long, is localized in the cell nucleus, and is detected in vivo. Despite the lack of a consensus basic leucine zipper domain, APH-2 interacts with cyclic adenosine monophosphate-response element binding protein (CREB) and represses Tax2-mediated transcription in Tax2-expressing cells and in cells transfected with an HTLV-2 molecular clone. Altogether, our results demonstrate the existence of an antisense strand–encoded protein in HTLV-2, which could represent an important player in the development of disorders, such as lymphocytosis, which is frequently observed in HTLV-2 patients. PMID:19602711

  5. Human T-cell leukemia virus type 2 produces a spliced antisense transcript encoding a protein that lacks a classic bZIP domain but still inhibits Tax2-mediated transcription.

    PubMed

    Halin, Marilène; Douceron, Estelle; Clerc, Isabelle; Journo, Chloé; Ko, Nga Ling; Landry, Sébastien; Murphy, Edward L; Gessain, Antoine; Lemasson, Isabelle; Mesnard, Jean-Michel; Barbeau, Benoît; Mahieux, Renaud

    2009-09-17

    Human T-cell leukemia virus type 1 (HTLV-1) and type 2 (HTLV-2) retroviruses infect T lymphocytes. The minus strand of the HTLV-1 genome encodes HBZ, a protein that could play a role in the development of leukemia in infected patients. Herein, we demonstrate that the complementary strand of the HTLV-2 genome also encodes a protein that we named APH-2 for "antisense protein of HTLV-2." APH-2 mRNA is spliced, polyadenylated, and initiates in the 3'-long terminal repeat at different positions. This transcript was detected in all HTLV-2-infected cell lines and short-term culture of lymphocytes obtained from HTLV-2 African patients tested and in 4 of 15 HTLV-2-infected blood donors. The APH-2 protein is 183 amino acids long, is localized in the cell nucleus, and is detected in vivo. Despite the lack of a consensus basic leucine zipper domain, APH-2 interacts with cyclic adenosine monophosphate-response element binding protein (CREB) and represses Tax2-mediated transcription in Tax2-expressing cells and in cells transfected with an HTLV-2 molecular clone. Altogether, our results demonstrate the existence of an antisense strand-encoded protein in HTLV-2, which could represent an important player in the development of disorders, such as lymphocytosis, which is frequently observed in HTLV-2 patients. PMID:19602711

  6. Data-Driven Prediction and Design of bZIP Coiled-Coil Interactions

    PubMed Central

    Potapov, Vladimir; Kaplan, Jenifer B.; Keating, Amy E.

    2015-01-01

    Selective dimerization of the basic-region leucine-zipper (bZIP) transcription factors presents a vivid example of how a high degree of interaction specificity can be achieved within a family of structurally similar proteins. The coiled-coil motif that mediates homo- or hetero-dimerization of the bZIP proteins has been intensively studied, and a variety of methods have been proposed to predict these interactions from sequence data. In this work, we used a large quantitative set of 4,549 bZIP coiled-coil interactions to develop a predictive model that exploits knowledge of structurally conserved residue-residue interactions in the coiled-coil motif. Our model, which expresses interaction energies as a sum of interpretable residue-pair and triplet terms, achieves a correlation with experimental binding free energies of R = 0.68 and significantly out-performs other scoring functions. To use our model in protein design applications, we devised a strategy in which synthetic peptides are built by assembling 7-residue native-protein heptad modules into new combinations. An integer linear program was used to find the optimal combination of heptads to bind selectively to a target human bZIP coiled coil, but not to target paralogs. Using this approach, we designed peptides to interact with the bZIP domains from human JUN, XBP1, ATF4 and ATF5. Testing more than 132 candidate protein complexes using a fluorescence resonance energy transfer assay confirmed the formation of tight and selective heterodimers between the designed peptides and their targets. This approach can be used to make inhibitors of native proteins, or to develop novel peptides for applications in synthetic biology or nanotechnology. PMID:25695764

  7. bZIP67 Regulates the Omega-3 Fatty Acid Content of Arabidopsis Seed Oil by Activating FATTY ACID DESATURASE3[W][OPEN

    PubMed Central

    Mendes, Ana; Kelly, Amélie A.; van Erp, Harrie; Shaw, Eve; Powers, Stephen J.; Kurup, Smita; Eastmond, Peter J.

    2013-01-01

    Arabidopsis thaliana seed maturation is accompanied by the deposition of storage oil, rich in the essential ω-3 polyunsaturated fatty acid α-linolenic acid (ALA). The synthesis of ALA is highly responsive to the level of FATTY ACID DESATURASE3 (FAD3) expression, which is strongly upregulated during embryogenesis. By screening mutants in LEAFY COTYLEDON1 (LEC1)–inducible transcription factors using fatty acid profiling, we identified two mutants (lec1-like and bzip67) with a seed lipid phenotype. Both mutants share a substantial reduction in seed ALA content. Using a combination of in vivo and in vitro assays, we show that bZIP67 binds G-boxes in the FAD3 promoter and enhances FAD3 expression but that activation is conditional on bZIP67 association with LEC1-LIKE (L1L) and NUCLEAR FACTOR-YC2 (NF-YC2). Although FUSCA3 and ABSCISIC ACID INSENSITIVE3 are required for L1L and bZIP67 expression, neither protein is necessary for [bZIP67:L1L:NF-YC2] to activate FAD3. We conclude that a transcriptional complex containing L1L, NF-YC2, and bZIP67 is induced by LEC1 during embryogenesis and specifies high levels of ALA production for storage oil by activating FAD3 expression. PMID:23995083

  8. An Aspergillus nidulans bZIP response pathway hardwired for defensive secondary metabolism operates through aflR

    PubMed Central

    Yin, Wenbing; Amaike, Saori; Wohlbach, Dana J.; Gasch, Audrey P.; Chiang, Yi-Ming; Wang, Clay C.; Bok, JinWoo; Rohlfs, Marko; Keller, Nancy P.

    2012-01-01

    Summary The eukaryotic bZIP transcription factors are critical players in organismal response to environmental challenges. In fungi, the production of secondary metabolites (SMs) is hypothesized as one of the responses to environmental insults, e.g. attack by fungivorous insects, yet little data to support this hypothesis exists. Here we establish a mechanism of bZIP regulation of SMs through RsmA, a recently discovered YAP-like bZIP protein. RsmA greatly increases SM production by binding to two sites in the A. nidulans AflR promoter region, a C6 transcription factor known for activating production of the carcinogenic and anti-predation SM, sterigmatocystin (ST). Deletion of aflR in an overexpression rsmA (OE::rsmA) background not only eliminates ST production but also significantly reduces asperthecin synthesis. Furthermore, the fungivore, Folsomia candida, exhibited a distinct preference for feeding on wild type rather than an OE::rsmA strain. RsmA may thus have a critical function in mediating direct chemical resistance against predation. Taken together, these results suggest RsmA represents a bZIP pathway hardwired for defensive SM production. PMID:22283524

  9. SnRK1-triggered switch of bZIP63 dimerization mediates the low-energy response in plants

    PubMed Central

    Mair, Andrea; Pedrotti, Lorenzo; Wurzinger, Bernhard; Anrather, Dorothea; Simeunovic, Andrea; Weiste, Christoph; Valerio, Concetta; Dietrich, Katrin; Kirchler, Tobias; Nägele, Thomas; Vicente Carbajosa, Jesús; Hanson, Johannes; Baena-González, Elena; Chaban, Christina; Weckwerth, Wolfram; Dröge-Laser, Wolfgang; Teige, Markus

    2015-01-01

    Metabolic adjustment to changing environmental conditions, particularly balancing of growth and defense responses, is crucial for all organisms to survive. The evolutionary conserved AMPK/Snf1/SnRK1 kinases are well-known metabolic master regulators in the low-energy response in animals, yeast and plants. They act at two different levels: by modulating the activity of key metabolic enzymes, and by massive transcriptional reprogramming. While the first part is well established, the latter function is only partially understood in animals and not at all in plants. Here we identified the Arabidopsis transcription factor bZIP63 as key regulator of the starvation response and direct target of the SnRK1 kinase. Phosphorylation of bZIP63 by SnRK1 changed its dimerization preference, thereby affecting target gene expression and ultimately primary metabolism. A bzip63 knock-out mutant exhibited starvation-related phenotypes, which could be functionally complemented by wild type bZIP63, but not by a version harboring point mutations in the identified SnRK1 target sites. DOI: http://dx.doi.org/10.7554/eLife.05828.001 PMID:26263501

  10. Novel DNA binding specificities of a putative herpesvirus bZIP oncoprotein.

    PubMed Central

    Qian, Z; Brunovskis, P; Lee, L; Vogt, P K; Kung, H J

    1996-01-01

    Marek's disease virus is a highly oncogenic herpesvirus that can cause T lymphomas and peripheral nerve demyelination in chickens. meq, a candidate oncogene of Marek's disease virus, encodes a basic leucine zipper (bZIP) transcription factor which contains a large proline-rich domain in its C terminus. On the basis of its bZIP structural homology, meq is perhaps the only member of the jun-fos gene family completely viral in origin. We previously showed that Meq's C-terminal domain has potent transactivation activity and that its bZIP domain can dimerize with itself and with c-Jun also. In an effort to identify viral and cellular targets of Meq, we have determined the optimal binding sites for Meq-Jun heterodimers and Meq-Meq homodimers. By a PCR-based approach using cyclic amplification of selected targets, Meq-Jun heterodimers were found to optimally bind tetradecanoylphorbol acetate response element (TRE) and cyclic AMP response element (CRE) consensus sequences. This result was consistent with the results of our previous functional analysis implicating Meq-Jun heterodimers in the transactivation of the Meq promoter through a TRE- or CRE-like sequence. Interestingly, Meq-Meq homodimers were found to bind two distinct motif elements. The first [GAGTGATG AC(G)TCATC] has a consensus which includes a TRE or CRE core flanked by additional nucleotides critical for tight binding. Methylation interference and mutational analyses confirmed the importance of the flanking residues. The sequences of a subset of TRE and CRE sites selected by Meq-Meq are closely related to the binding motif of Maf, another bZIP oncoprotein. The second putative Meq binding site (RACACACAY) bears a completely different consensus not shared by other bZIP proteins. Binding to this consensus sequence also requires secondary structure characteristics associated with DNA bending. CACA motifs are known to promote DNA curvature and function in a number of special biological processes. Our results lend

  11. IRE1/bZIP60-Mediated Unfolded Protein Response Plays Distinct Roles in Plant Immunity and Abiotic Stress Responses

    PubMed Central

    Blanco, Francisca; Boatwright, Jon Lucas; Moreno, Ignacio; Jordan, Melissa R.; Chen, Yani; Brandizzi, Federica; Dong, Xinnian

    2012-01-01

    Endoplasmic reticulum (ER)-mediated protein secretion and quality control have been shown to play an important role in immune responses in both animals and plants. In mammals, the ER membrane-located IRE1 kinase/endoribonuclease, a key regulator of unfolded protein response (UPR), is required for plasma cell development to accommodate massive secretion of immunoglobulins. Plant cells can secrete the so-called pathogenesis-related (PR) proteins with antimicrobial activities upon pathogen challenge. However, whether IRE1 plays any role in plant immunity is not known. Arabidopsis thaliana has two copies of IRE1, IRE1a and IRE1b. Here, we show that both IRE1a and IRE1b are transcriptionally induced during chemically-induced ER stress, bacterial pathogen infection and treatment with the immune signal salicylic acid (SA). However, we found that IRE1a plays a predominant role in the secretion of PR proteins upon SA treatment. Consequently, the ire1a mutant plants show enhanced susceptibility to a bacterial pathogen and are deficient in establishing systemic acquired resistance (SAR), whereas ire1b is unaffected in these responses. We further demonstrate that the immune deficiency in ire1a is due to a defect in SA- and pathogen-triggered, IRE1-mediated cytoplasmic splicing of the bZIP60 mRNA, which encodes a transcription factor involved in the expression of UPR-responsive genes. Consistently, IRE1a is preferentially required for bZIP60 splicing upon pathogen infection, while IRE1b plays a major role in bZIP60 processing upon Tunicamycin (Tm)-induced stress. We also show that SA-dependent induction of UPR-responsive genes is altered in the bzip60 mutant resulting in a moderate susceptibility to a bacterial pathogen. These results indicate that the IRE1/bZIP60 branch of UPR is a part of the plant response to pathogens for which the two Arabidopsis IRE1 isoforms play only partially overlapping roles and that IRE1 has both bZIP60-dependent and bZIP60-independent functions in

  12. A Measurable Activation of the bZIP Transcription Factor Atf1 in a Fission Yeast Strain Devoid of Stress-activated and Cell Integrity Mitogen-activated Protein Kinase (MAPK) Activities*

    PubMed Central

    Zhou, Xin; Ma, Yan; Kato, Toshiaki; Kuno, Takayoshi

    2012-01-01

    In Schizosaccharomyces pombe, the stress-activated Sty1 MAPK pathway is essential for cell survival under stress conditions. The Sty1 MAPK regulates Atf1 transcription factor to elicit stress responses in extreme conditions of osmolarity and reactive oxygen species-generating agents such as hydrogen peroxide, heat, low glucose, and heavy metal. Herein, using a newly developed Renilla luciferase reporter assay with enhanced detection sensitivity and accuracy, we show that distinct signaling pathways respond to cadmium and other reactive oxygen species-generating agents for the activation of Atf1. Also, surprisingly, a measurable activation of Atf1 transcription factor was still observed devoid of Sty1 MAPK activity. Further genetic and biological analyses revealed that the residual activation is caused by the activation of the cell wall integrity Pmk1 MAPK pathway and a redox-mediated activation of Atf1. PMID:22661707

  13. Deciphering the Combinatorial DNA-binding Code of the CCAAT-binding Complex and the Iron-regulatory Basic Region Leucine Zipper (bZIP) Transcription Factor HapX*

    PubMed Central

    Hortschansky, Peter; Ando, Eriko; Tuppatsch, Katja; Arikawa, Hisashi; Kobayashi, Tetsuo; Kato, Masashi; Haas, Hubertus; Brakhage, Axel A.

    2015-01-01

    The heterotrimeric CCAAT-binding complex (CBC) is evolutionarily conserved in eukaryotic organisms, including fungi, plants, and mammals. The CBC consists of three subunits, which are named in the filamentous fungus Aspergillus nidulans HapB, HapC, and HapE. HapX, a fourth CBC subunit, was identified exclusively in fungi, except for Saccharomyces cerevisiae and the closely related Saccharomycotina species. The CBC-HapX complex acts as the master regulator of iron homeostasis. HapX belongs to the class of basic region leucine zipper transcription factors. We demonstrated that the CBC and HapX bind cooperatively to bipartite DNA motifs with a general HapX/CBC/DNA 2:1:1 stoichiometry in a class of genes that are repressed by HapX-CBC in A. nidulans during iron limitation. This combinatorial binding mode requires protein-protein interaction between the N-terminal domain of HapE and the N-terminal CBC binding domain of HapX as well as sequence-specific DNA binding of both the CBC and HapX. Initial binding of the CBC to CCAAT boxes is mandatory for DNA recognition of HapX. HapX specifically targets the minimal motif 5′-GAT-3′, which is located at a distance of 11–12 bp downstream of the respective CCAAT box. Single nucleotide substitutions at the 5′- and 3′-end of the GAT motif as well as different spacing between the CBC and HapX DNA-binding sites revealed a remarkable promiscuous DNA-recognition mode of HapX. This flexible DNA-binding code may have evolved as a mechanism for fine-tuning the transcriptional activity of CBC-HapX at distinct target promoters. PMID:25589790

  14. The IRE1/bZIP60 pathway and Bax inhibitor 1 suppress systemic accumulation of potyviruses and potexviruses in Arabidopsis and N. benthamiana plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The inositol requiring enzyme (IRE1) is an endoplasmic reticulum (ER) stress sensor and when activated it splices the bZIP60 mRNA producing a truncated transcription factor that upregulates expression of genes involved in the unfolded protein response (UPR). Bax inhibitor 1 (BI-1) is another ER stre...

  15. Genomic surveys and expression analysis of bZIP gene family in castor bean (Ricinus communis L.).

    PubMed

    Jin, Zhengwei; Xu, Wei; Liu, Aizhong

    2014-02-01

    The basic leucine zipper (bZIP) transcription factors comprise a family of transcriptional regulators present extensively in plants, involved in regulating diverse biological processes such as flower and vascular development, seed maturation, stress signaling and pathogen defense. Castor bean (Ricinus communis L. Euphorbiaceae) is one of the most important non-edible oilseed crops and its seed oil is broadly used for industrial applications. We performed a comprehensive genome-wide identification and analysis of the bZIP transcription factors that exist in the castor bean genome in this study. In total, 49 RcbZIP transcription factors were identified, characterized and categorized into 11 groups (I-XI) based on their gene structure, DNA-binding sites, conserved motifs, and phylogenetic relationships. The dimerization properties of 49 RcbZIP proteins were predicted on the basis of the characteristic features in the leucine zipper. Global expression profiles of 49 RcbZIP genes among different tissues were examined using high-throughput sequencing of digital gene expression profiles, and resulted in diverse expression patterns that may provide basic information to further reveal the function of the 49 RcbZIP genes in castor bean. The results obtained from this study would provide valuable information in understanding the molecular basis of the RcbZIP transcription factor family and their potential function in regulating the growth and development, particularly in seed filling of castor bean. PMID:24165825

  16. The dynamic of the splicing of bZIP60 and the proteins encoded by the spliced and unspliced mRNAs reveals some unique features during the activation of UPR in Arabidopsis thaliana.

    PubMed

    Parra-Rojas, Juan; Moreno, Adrian A; Mitina, Irina; Orellana, Ariel

    2015-01-01

    The unfolded protein response (UPR) is a signaling pathway that is activated when the workload of the endoplasmic reticulum (ER) is surpassed. IRE1 is a sensor involved in triggering the UPR and plays a key role in the unconventional splicing of an mRNA leading to the formation of a transcription factor that up-regulates the transcription of genes that play a role in restoring the homeostasis in the ER. In plants, bZIP60 is the substrate for IRE1; however, questions such as what is the dynamics of the splicing of bZIP60 and the fate of the proteins encoded by the spliced and unspliced forms of the mRNA, remain unanswered. In the present work, we analyzed the processing of bZIP60 by determining the levels of the spliced form mRNA in plants exposed to different conditions that trigger UPR. The results show that induction of ER stress increases the content of the spliced form of bZIP60 (bZIP60s) reaching a maximum, that depending on the stimuli, varied between 30 min or 2 hrs. In most cases, this was followed by a decrease in the content. In contrast to other eukaryotes, the splicing never occurred to full extent. The content of bZIP60s changed among different organs upon induction of the UPR suggesting that splicing is regulated differentially throughout the plant. In addition, we analyzed the distribution of a GFP-tagged version of bZIP60 when UPR was activated. A good correlation between splicing of bZIP60 and localization of the protein in the nucleus was observed. No fluorescence was observed under basal conditions, but interestingly, the fluorescence was recovered and found to co-localize with an ER marker upon treatment with an inhibitor of the proteasome. Our results indicate that the dynamics of bZIP60, both the mRNA and the protein, are highly dynamic processes which are tissue-specific and stimulus-dependent. PMID:25860807

  17. Genome-wide analyses of the bZIP family reveal their involvement in the development, ripening and abiotic stress response in banana

    PubMed Central

    Hu, Wei; Wang, Lianzhe; Tie, Weiwei; Yan, Yan; Ding, Zehong; Liu, Juhua; Li, Meiying; Peng, Ming; Xu, Biyu; Jin, Zhiqiang

    2016-01-01

    The leucine zipper (bZIP) transcription factors play important roles in multiple biological processes. However, less information is available regarding the bZIP family in the important fruit crop banana. In this study, 121 bZIP transcription factor genes were identified in the banana genome. Phylogenetic analysis showed that MabZIPs were classified into 11 subfamilies. The majority of MabZIP genes in the same subfamily shared similar gene structures and conserved motifs. The comprehensive transcriptome analysis of two banana genotypes revealed the differential expression patterns of MabZIP genes in different organs, in various stages of fruit development and ripening, and in responses to abiotic stresses, including drought, cold, and salt. Interaction networks and co-expression assays showed that group A MabZIP-mediated networks participated in various stress signaling, which was strongly activated in Musa ABB Pisang Awak. This study provided new insights into the complicated transcriptional control of MabZIP genes and provided robust tissue-specific, development-dependent, and abiotic stress-responsive candidate MabZIP genes for potential applications in the genetic improvement of banana cultivars. PMID:27445085

  18. Genome-wide analyses of the bZIP family reveal their involvement in the development, ripening and abiotic stress response in banana.

    PubMed

    Hu, Wei; Wang, Lianzhe; Tie, Weiwei; Yan, Yan; Ding, Zehong; Liu, Juhua; Li, Meiying; Peng, Ming; Xu, Biyu; Jin, Zhiqiang

    2016-01-01

    The leucine zipper (bZIP) transcription factors play important roles in multiple biological processes. However, less information is available regarding the bZIP family in the important fruit crop banana. In this study, 121 bZIP transcription factor genes were identified in the banana genome. Phylogenetic analysis showed that MabZIPs were classified into 11 subfamilies. The majority of MabZIP genes in the same subfamily shared similar gene structures and conserved motifs. The comprehensive transcriptome analysis of two banana genotypes revealed the differential expression patterns of MabZIP genes in different organs, in various stages of fruit development and ripening, and in responses to abiotic stresses, including drought, cold, and salt. Interaction networks and co-expression assays showed that group A MabZIP-mediated networks participated in various stress signaling, which was strongly activated in Musa ABB Pisang Awak. This study provided new insights into the complicated transcriptional control of MabZIP genes and provided robust tissue-specific, development-dependent, and abiotic stress-responsive candidate MabZIP genes for potential applications in the genetic improvement of banana cultivars. PMID:27445085

  19. Nucleolar and nuclear localization properties of a herpesvirus bZIP oncoprotein, MEQ.

    PubMed Central

    Liu, J L; Lee, L F; Ye, Y; Qian, Z; Kung, H J

    1997-01-01

    Marek's disease virus (MDV) is one of the most oncogenic herpesviruses and induces T lymphomas in chickens within weeks after infection. Only a limited number of viral transcripts are detected in MDV tumor samples and cell lines. One of the major transcripts encodes MEQ, a 339-amino-acid bZIP protein which is homologous to the Jun/Fos family of transcription factors. The C-terminal half of MEQ contains proline-rich repeats and, when fused to the DNA-binding domain of a yeast transcription factor, Gal4 (residues 1 to 147), exhibits transactivation function. MEQ can dimerize with itself and with c-Jun. The MEQ-c-Jun heterodimers bind to an AP-1-like enhancer within the MEQ promoter region with greater affinity than do homodimers of either protein, and they transactivate MEQ expression. Here we show that MEQ is expressed in the nucleus but, interestingly, with a predominant fraction in the nucleoli and coiled bodies. This makes MEQ the first bZIP protein to be identified in the nucleoli. MEQ contains two stretches of basic residues, designated basic region 1 (BR1) and basic region 2 (BR2). Using a series of deletion mutants, we have mapped the primary nuclear localization signal (NLS) and the sole nucleolar localization signal (NoLS) to the BR2 region. BR1 was shown to provide an auxiliary signal in nuclear translocation. To demonstrate that BR2 is an authentic NoLS, BR2 was fused to cytoplasmic v-Raf (delta gag) kinase. The BR2-Raf fusion protein was observed to migrate into the nucleoplasm and the nucleolus. The BR2 region can be further divided into two long arginine-lysine stretches, BR2N and BR2C, which are separated by the five amino acids Asn-Arg-Asp-Ala-Ala (NRDAA). We provide evidence that the requirement for nuclear translocation is less stringent than that for nucleolar translocation, as either BR2N or BR2C alone is sufficient to translocate the cytoplasmic v-Raf (delta gag) into the nucleus, but only in combination can they translocate v-Raf (delta gag

  20. A light-regulated bZIP module, photozipper, induces the binding of fused proteins to the target DNA sequence in a blue light-dependent manner.

    PubMed

    Hisatomi, Osamu; Furuya, Keigo

    2015-11-01

    Aureochrome-1 (AUREO1) has been identified as a blue light (BL) receptor responsible for the BL-induced blanching of a stramenopile alga, Vaucheria frigida. BL induces the dimerization of monomeric AUREO1, which subsequently increases its affinity for the target sequence. We made a synthetic gene encoding N-terminally truncated monomeric AUREO1 (Photozipper protein) containing a basic region/leucine zipper (bZIP) domain and a light-oxygen-voltage-sensing domain. In the present study, yellow fluorescent protein or mCherry protein was fused with the Photozipper (PZ) protein, and their oligomeric structures and DNA-binding were compared in the dark and light states. Dynamic light scattering and size exclusion chromatography demonstrated that the hydrodynamic radii and molecular masses of the fusion proteins increased upon BL illumination, suggesting that fusion PZs underwent BL-induced dimerization. Moreover, BL-induced dimerization enhanced their affinities for the target sequence. Taken together, PZ likely functions as a BL-regulated bZIP module in fusion proteins, and can possibly provide a new approach for controlling bZIP transcription factors. PMID:26441326

  1. The bZIP Protein VIP1 Is Involved in Touch Responses in Arabidopsis Roots.

    PubMed

    Tsugama, Daisuke; Liu, Shenkui; Takano, Tetsuo

    2016-06-01

    VIP1 is a bZIP transcription factor in Arabidopsis (Arabidopsis thaliana). VIP1 transiently accumulates in the nucleus when cells are exposed to hypoosmotic conditions, but its physiological relevance is unclear. This is possibly because Arabidopsis has approximately 10 close homologs of VIP1 and they function redundantly. To examine their physiological roles, transgenic plants overexpressing a repression domain-fused form of VIP1 (VIP1-SRDXox plants), in which the gene activation mediated by VIP1 is expected to be repressed, were generated. Because hypoosmotic stress can mimic mechanical stimuli (e.g. touch), the touch-induced root-waving phenotypes and gene expression patterns in those transgenic plants were examined. VIP1-SRDXox plants exhibited more severe root waving and lower expression of putative VIP1 target genes. The expression of the VIP1-green fluorescent protein (GFP) fusion protein partially suppressed the VIP1-SRDX-induced increase in root waving when expressed in the VIP1-SRDXox plants. These results suggest that VIP1 can suppress the touch-induced root waving. The VIP1-SRDX-induced increase in root waving was also suppressed when the synthetic auxin 2,4-dichlorophenoxy acetic acid or the ethylene precursor 1-aminocyclopropane-1-carboxylic acid, which is known to activate auxin biosynthesis, was present in the growth medium. Root cap cells with the auxin marker DR5rev::GFP were more abundant in the VIP1-SRDXox background than in the wild-type background. Auxin is transported via the root cap, and the conditions of outermost root cap layers were abnormal in VIP1-SRDXox plants. These results raise the possibility that VIP1 influences structures of the root cap and thereby regulates the local auxin responses in roots. PMID:27208231

  2. N-terminal segments modulate the α-helical propensities of the intrinsically disordered basic regions of bZIP proteins.

    PubMed

    Das, Rahul K; Crick, Scott L; Pappu, Rohit V

    2012-02-17

    Basic region leucine zippers (bZIPs) are modular transcription factors that play key roles in eukaryotic gene regulation. The basic regions of bZIPs (bZIP-bRs) are necessary and sufficient for DNA binding and specificity. Bioinformatic predictions and spectroscopic studies suggest that unbound monomeric bZIP-bRs are uniformly disordered as isolated domains. Here, we test this assumption through a comparative characterization of conformational ensembles for 15 different bZIP-bRs using a combination of atomistic simulations and circular dichroism measurements. We find that bZIP-bRs have quantifiable preferences for α-helical conformations in their unbound monomeric forms. This helicity varies from one bZIP-bR to another despite a significant sequence similarity of the DNA binding motifs (DBMs). Our analysis reveals that intramolecular interactions between DBMs and eight-residue segments directly N-terminal to DBMs are the primary modulators of bZIP-bR helicities. We test the accuracy of this inference by designing chimeras of bZIP-bRs to have either increased or decreased overall helicities. Our results yield quantitative insights regarding the relationship between sequence and the degree of intrinsic disorder within bZIP-bRs, and might have general implications for other intrinsically disordered proteins. Understanding how natural sequence variations lead to modulation of disorder is likely to be important for understanding the evolution of specificity in molecular recognition through intrinsically disordered regions (IDRs). PMID:22226835

  3. AtbZIP16 and AtbZIP68, two new members of GBFs, can interact with other G group bZIPs in Arabidopsis thaliana.

    PubMed

    Shen, Huaishun; Cao, Kaiming; Wang, Xiping

    2008-02-29

    AtbZIP16 and AtbZIP68 are two putative G group bZIP transcription factors in Arabidopsis thaliana, the other three members of G group bZIPs are GBF1-3 which can bind G-box. Members of G group have conservative protein structure: highly homological basic region and a proline-rich domain in the N-terminal region. Here, we report that AtbZIP16 and AtbZIP68 could bind cis elements with ACGT core, such as G-box, Hex, C-box and As-1, but with different binding affinities which from high to low were G-box > Hex > C-box > As-1; AtbZIP16 and AtbZIP68 could form homodimer and form heterodimer with other members of G group; N-terminal proline rich domain of AtbZIP16 had transactivation activity in yeast cells while that of AtbZIP68 did not; AtbZIP16 and AtbZIP68 GFP fusion protein localized in the nucleus of onion epidermal cells. These results indicated that AtbZIP16 and AtbZIP68 were two new members of GBFs. In Arabidopsis, AtbZIP16 and AtbZIP68 may also participate in light-responsive process in which GBF1-3 are involved. PMID:18315949

  4. Evolutionary and Expression Analyses of the Apple Basic Leucine Zipper Transcription Factor Family

    PubMed Central

    Zhao, Jiao; Guo, Rongrong; Guo, Chunlei; Hou, Hongmin; Wang, Xiping; Gao, Hua

    2016-01-01

    Transcription factors (TFs) play essential roles in the regulatory networks controlling many developmental processes in plants. Members of the basic leucine (Leu) zipper (bZIP) TF family, which is unique to eukaryotes, are involved in regulating diverse processes, including flower and vascular development, seed maturation, stress signaling, and defense responses to pathogens. The bZIP proteins have a characteristic bZIP domain composed of a DNA-binding basic region and a Leu zipper dimerization region. In this study, we identified 112 apple (Malus domestica Borkh) bZIP TF-encoding genes, termed MdbZIP genes. Synteny analysis indicated that segmental and tandem duplication events, as well as whole genome duplication, have contributed to the expansion of the apple bZIP family. The family could be divided into 11 groups based on structural features of the encoded proteins, as well as on the phylogenetic relationship of the apple bZIP proteins to those of the model plant Arabidopsis thaliana (AtbZIP genes). Synteny analysis revealed that several paired MdbZIP genes and AtbZIP gene homologs were located in syntenic genomic regions. Furthermore, expression analyses of group A MdbZIP genes showed distinct expression levels in 10 different organs. Moreover, changes in these expression profiles in response to abiotic stress conditions and various hormone treatments identified MdbZIP genes that were responsive to high salinity and drought, as well as to different phytohormones. PMID:27066030

  5. Molecular Mechanism of Photozipper, a Light-Regulated Dimerizing Module Consisting of the bZIP and LOV Domains of Aureochrome-1.

    PubMed

    Nakatani, Yoichi; Hisatomi, Osamu

    2015-06-01

    Aureochrome-1 (AUREO1) is a blue light (BL) receptor responsible for the BL-induced blanching of a stramenopile alga, Vaucheria frigida. The AUREO1 protein contains a central basic region/leucine zipper (bZIP) domain, and a C-terminal light-oxygen-voltage-sensing (LOV) domain. BL induces the dimerization of monomeric AUREO1, which subsequently increases the affinity of this transcription factor for its target DNA [Hisatomi, O., et al. (2014) J. Biol. Chem. 289, 17379-17391]. We constructed a synthetic gene encoding N-terminally truncated monomeric AUREO1 (designated Photozipper) to elucidate the molecular mechanism of this BL-regulated transcription factor and to develop it as an optogenetic tool. In this study, four different Photozipper (PZ) protein constructs were prepared comprising different N-terminal truncations. The monomer-dimer equilibria of the PZ constructs were investigated in the dark and light states. Dynamic light scattering and size-exclusion chromatography analyses revealed that the apparent dissociation constants of PZ dimers with and without the ZIP region were ~100 and 30 μM, respectively, indicating that the ZIP region stabilized the monomeric form in the dark state. In the light state, fluorescence resonance energy transfer analyses demonstrated that deletion of the ZIP region increased the dissociation constant from ~0.15 to 0.6 μM, suggesting that intermolecular LOV-LOV and ZIP-ZIP interactions stabilized the dimeric forms. Our results suggest that synergistic interactions between the LOV and bZIP domains stabilize the monomeric form in the dark state and the dimeric form in the light state, which possibly contributes to the function of PZ as a BL-regulated molecular switch. PMID:25932652

  6. Molecular cloning and characterization of a tomato cDNA encoding a systemically wound-inducible bZIP DNA-binding protein

    NASA Technical Reports Server (NTRS)

    Stankovic, B.; Vian, A.; Henry-Vian, C.; Davies, E.

    2000-01-01

    Localized wounding of one leaf in intact tomato (Lycopersicon esculentum Mill.) plants triggers rapid systemic transcriptional responses that might be involved in defense. To better understand the mechanism(s) of intercellular signal transmission in wounded tomatoes, and to identify the array of genes systemically up-regulated by wounding, a subtractive cDNA library for wounded tomato leaves was constructed. A novel cDNA clone (designated LebZIP1) encoding a DNA-binding protein was isolated and identified. This clone appears to be encoded by a single gene, and belongs to the family of basic leucine zipper domain (bZIP) transcription factors shown to be up-regulated by cold and dark treatments. Analysis of the mRNA levels suggests that the transcript for LebZIP1 is both organ-specific and up-regulated by wounding. In wounded wild-type tomatoes, the LebZIP1 mRNA levels in distant tissue were maximally up-regulated within only 5 min following localized wounding. Exogenous abscisic acid (ABA) prevented the rapid wound-induced increase in LebZIP1 mRNA levels, while the basal levels of LebZIP1 transcripts were higher in the ABA mutants notabilis (not), sitiens (sit), and flacca (flc), and wound-induced increases were greater in the ABA-deficient mutants. Together, these results suggest that ABA acts to curtail the wound-induced synthesis of LebZIP1 mRNA.

  7. HTLV-1 bZIP Factor RNA and Protein Impart Distinct Functions on T-cell Proliferation and Survival.

    PubMed

    Mitobe, Yuichi; Yasunaga, Jun-ichirou; Furuta, Rie; Matsuoka, Masao

    2015-10-01

    Infection of T cells with human T-cell leukemia virus type-1 (HTLV-1) induces clonal proliferation and is closely associated with the onset of adult T-cell leukemia-lymphoma (ATL) and inflammatory diseases. Although Tax expression is frequently suppressed in HTLV-1-infected cells, the accessory gene, HTLV-1 bZIP factor (HBZ), is continuously expressed and has been implicated in HTLV-1 pathogenesis. Here, we report that transduction of mouse T cells with specific mutants of HBZ that distinguish between its RNA and protein activity results in differential effects on T-cell proliferation and survival. HBZ RNA increased cell number by attenuating apoptosis, whereas HBZ protein induced apoptosis. However, both HBZ RNA and protein promoted S-phase entry of T cells. We further identified that the first 50 bp of the HBZ coding sequence are required for RNA-mediated cell survival. Transcriptional profiling of T cells expressing wild-type HBZ, RNA, or protein revealed that HBZ RNA is associated with genes involved in cell cycle, proliferation, and survival, while HBZ protein is more closely related to immunological properties of T cells. Specifically, HBZ RNA enhances the promoter activity of survivin, an inhibitor of apoptosis, to upregulate its expression. Inhibition of survivin using YM155 resulted in impaired proliferation of several ATL cell lines as well as a T-cell line expressing HBZ RNA. The distinct functions of HBZ RNA and protein may have several implications for the development of strategies to control the proliferation and survival mechanisms associated with HTLV-1 infection and ATL. PMID:26383166

  8. The bZIP Protein VIP1 Is Involved in Touch Responses in Arabidopsis Roots1[OPEN

    PubMed Central

    Liu, Shenkui; Takano, Tetsuo

    2016-01-01

    VIP1 is a bZIP transcription factor in Arabidopsis (Arabidopsis thaliana). VIP1 transiently accumulates in the nucleus when cells are exposed to hypoosmotic conditions, but its physiological relevance is unclear. This is possibly because Arabidopsis has approximately 10 close homologs of VIP1 and they function redundantly. To examine their physiological roles, transgenic plants overexpressing a repression domain-fused form of VIP1 (VIP1-SRDXox plants), in which the gene activation mediated by VIP1 is expected to be repressed, were generated. Because hypoosmotic stress can mimic mechanical stimuli (e.g. touch), the touch-induced root-waving phenotypes and gene expression patterns in those transgenic plants were examined. VIP1-SRDXox plants exhibited more severe root waving and lower expression of putative VIP1 target genes. The expression of the VIP1-green fluorescent protein (GFP) fusion protein partially suppressed the VIP1-SRDX-induced increase in root waving when expressed in the VIP1-SRDXox plants. These results suggest that VIP1 can suppress the touch-induced root waving. The VIP1-SRDX-induced increase in root waving was also suppressed when the synthetic auxin 2,4-dichlorophenoxy acetic acid or the ethylene precursor 1-aminocyclopropane-1-carboxylic acid, which is known to activate auxin biosynthesis, was present in the growth medium. Root cap cells with the auxin marker DR5rev::GFP were more abundant in the VIP1-SRDXox background than in the wild-type background. Auxin is transported via the root cap, and the conditions of outermost root cap layers were abnormal in VIP1-SRDXox plants. These results raise the possibility that VIP1 influences structures of the root cap and thereby regulates the local auxin responses in roots. PMID:27208231

  9. Transcriptional factors, Mafs and their biological roles

    PubMed Central

    Tsuchiya, Mariko; Misaka, Ryoichi; Nitta, Kosaku; Tsuchiya, Ken

    2015-01-01

    The Maf family of transcription factors is characterized by a typical bZip structure; these transcription factors act as important regulators of the development and differentiation of many organs and tissues, including the kidney. The Maf family consists of two subgroups that are characterized according to their structure: large Maf transcription factors and small Maf transcription factors. The large Maf subgroup consists of four proteins, designated as MAFA, MAFB, c-MAF and neural retina-specific leucine zipper. In particular, MAFA is a distinct molecule that has been attracting the attention of researchers because it acts as a strong transactivator of insulin, suggesting that Maf transcription factors are likely to be involved in systemic energy homeostasis. In this review, we focused on the regulation of glucose/energy balance by Maf transcription factors in various organs. PMID:25685288

  10. Production and Testing of Transgenic Cotton that Expresses Transcription Factors for Enhanced Seed and Fiber Traits and Productivity Under Drought Stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abscisic acid (ABA) is a plant hormone involved in abiotic and biotic stress adaptation and seed development. We have previously shown that Basic3 (B3) domain and basic leucine zipper (b-ZIP) transcription factors from the model plant species maize and Arabidopsis thaliana can transactivate monocot...

  11. Divergence and Conservation of the Major UPR Branch IRE1-bZIP Signaling Pathway across Eukaryotes.

    PubMed

    Zhang, Lingrui; Zhang, Changwei; Wang, Aiming

    2016-01-01

    The unfolded protein response (UPR) is crucial to life by regulating the cellular response to the stress in the endoplasmic reticulum (ER) imposed by abiotic and biotic cues such as heat shock and viral infection. The inositol requiring enzyme 1 (IRE1) signaling pathway activated by the IRE1-mediated unconventional splicing of HAC1 in yeast, bZIP60 in plants and XBP1 in metazoans, is the most ancient branch of the UPR. In this study, we systematically examined yeast IRE1p-HAC1, plant IRE1A/IRE1B-bZIP60 and human hIRE1-XBP1 pairs. We found that, unlike bZIP60, XBP1 is unable to functionally swap HAC1p in yeast, and that the inter-species heterotypic interactions among HAC1p, bZIP60 and XBP1 are not permitted. These data demonstrate evolutionary divergence of the downstream signaling of IRE1-bZIP. We also discovered that the dual cytosolic domains of plant IRE1s act in vivo in a mechanism consistent with IRE1p and hIRE1, and that plant IRE1B not only interacts with IRE1p but also forms typical IRE1 dynamic foci in yeast. Thus, the upstream components of the IRE1 signaling branch including IRE1 activation and action mechanisms are highly conserved. Taken together these data advance the molecular understanding of evolutionary divergence and conservation of the IRE1 signaling pathway across kingdoms. PMID:27256815

  12. DNA binding of Jun and Fos bZip domains: homodimers and heterodimers induce a DNA conformational change in solution.

    PubMed Central

    John, M; Leppik, R; Busch, S J; Granger-Schnarr, M; Schnarr, M

    1996-01-01

    We constructed plasmids encoding the sequences for the bZip modules of c-Jun and c-Fos which could then be expressed as soluble proteins in Escherichia coli. The purified bZip modules were tested for their binding capacities of synthetic oligonucleotides containing either TRE or CRE recognition sites in electrophoretic mobility shift assays and circular dichroism (CD). Electrophoretic mobility shift assays showed that bZip Jun homodimers and bZip Jun/Fos heterodimers bind a collagenase-like TRE (CTGACTCAT) with dissociation constants of respectively 1.4 x 10(-7) M and 5 x 10(-8) M. As reported earlier [Patel et al. (1990) Nature 347, 572-575], DNA binding induces a marked change of the protein structure. However, we found that the DNA also undergoes a conformational change. This is most clearly seen with small oligonucleotides of 13 or 14 bp harboring respectively a TRE (TGACTCA) or a CRE (TGACGTCA) sequence. In this case, the positive DNA CD signal at 280 nm increases almost two-fold with a concomitant blue-shift of 3-4 nm. Within experimental error the same spectral changes are observed for TRE and CRE containing DNA fragments. The spectral changes observed with a non-specific DNA fragment are weaker and the signal of free DNA is recovered upon addition of much smaller salt concentrations than required for a specific DNA fragment. Surprisingly the spectral changes induced by Jun/Jun homodimers are not identical to those induced by Jun/Fos heterodimers. However, in both cases the increase of the positive CD band and the concomitant blue shift would be compatible with a B to A-transition of part of the binding site or a DNA conformation intermediate between the canonical A and B structures. PMID:8948639

  13. Divergence and Conservation of the Major UPR Branch IRE1-bZIP Signaling Pathway across Eukaryotes

    PubMed Central

    Zhang, Lingrui; Zhang, Changwei; Wang, Aiming

    2016-01-01

    The unfolded protein response (UPR) is crucial to life by regulating the cellular response to the stress in the endoplasmic reticulum (ER) imposed by abiotic and biotic cues such as heat shock and viral infection. The inositol requiring enzyme 1 (IRE1) signaling pathway activated by the IRE1-mediated unconventional splicing of HAC1 in yeast, bZIP60 in plants and XBP1 in metazoans, is the most ancient branch of the UPR. In this study, we systematically examined yeast IRE1p-HAC1, plant IRE1A/IRE1B-bZIP60 and human hIRE1-XBP1 pairs. We found that, unlike bZIP60, XBP1 is unable to functionally swap HAC1p in yeast, and that the inter-species heterotypic interactions among HAC1p, bZIP60 and XBP1 are not permitted. These data demonstrate evolutionary divergence of the downstream signaling of IRE1-bZIP. We also discovered that the dual cytosolic domains of plant IRE1s act in vivo in a mechanism consistent with IRE1p and hIRE1, and that plant IRE1B not only interacts with IRE1p but also forms typical IRE1 dynamic foci in yeast. Thus, the upstream components of the IRE1 signaling branch including IRE1 activation and action mechanisms are highly conserved. Taken together these data advance the molecular understanding of evolutionary divergence and conservation of the IRE1 signaling pathway across kingdoms. PMID:27256815

  14. Membrane-associated transcription factor peptidase, site-2 protease, antagonizes ABA signaling in Arabidopsis.

    PubMed

    Zhou, Shun-Fan; Sun, Le; Valdés, Ana Elisa; Engström, Peter; Song, Ze-Ting; Lu, Sun-Jie; Liu, Jian-Xiang

    2015-10-01

    Abscisic acid plays important roles in maintaining seed dormancy while gibberellins (GA) and other phytohormones antagonize ABA to promote germination. However, how ABA signaling is desensitized during the transition from dormancy to germination is still poorly understood. We functionally characterized the role of membrane-associated transcription factor peptidase, site-2 protease (S2P), in ABA signaling during seed germination in Arabidopsis. Genetic analysis showed that loss-of-function of S2P conferred high ABA sensitivity during seed germination, and expression of the activated form of membrane-associated transcription factor bZIP17, in which the transmembrane domain and endoplasmic reticulum (ER) lumen-facing C-terminus were deleted, in the S2P mutant rescued its ABA-sensitive phenotype. MYC and green fluorescent protein (GFP)-tagged bZIP17 were processed and translocated from the ER to the nucleus in response to ABA treatment. Furthermore, genes encoding negative regulators of ABA signaling, such as the transcription factor ATHB7 and its target genes HAB1, HAB2, HAI1 and AHG3, were up-regulated in seeds of the wild-type upon ABA treatment; this up-regulation was impaired in seeds of S2P mutants. Our results suggest that S2P desensitizes ABA signaling during seed germination through regulating the activation of the membrane-associated transcription factor bZIP17 and therefore controlling the expression level of genes encoding negative regulators of ABA signaling. PMID:25919792

  15. The Arabidopsis bZIP Gene AtbZIP63 Is a Sensitive Integrator of Transient Abscisic Acid and Glucose Signals1[W][OA

    PubMed Central

    Matiolli, Cleverson Carlos; Tomaz, Juarez Pires; Duarte, Gustavo Turqueto; Prado, Fernanda Manso; Del Bem, Luiz Eduardo Vieira; Silveira, Amanda Bortolini; Gauer, Luciane; Corrêa, Luiz Gustavo Guedes; Drumond, Rodrigo Duarte; Viana, Américo José Carvalho; Di Mascio, Paolo; Meyer, Christian; Vincentz, Michel

    2011-01-01

    Glucose modulates plant metabolism, growth, and development. In Arabidopsis (Arabidopsis thaliana), Hexokinase1 (HXK1) is a glucose sensor that may trigger abscisic acid (ABA) synthesis and sensitivity to mediate glucose-induced inhibition of seedling development. Here, we show that the intensity of short-term responses to glucose can vary with ABA activity. We report that the transient (2 h/4 h) repression by 2% glucose of AtbZIP63, a gene encoding a basic-leucine zipper (bZIP) transcription factor partially involved in the Snf1-related kinase KIN10-induced responses to energy limitation, is independent of HXK1 and is not mediated by changes in ABA levels. However, high-concentration (6%) glucose-mediated repression appears to be modulated by ABA, since full repression of AtbZIP63 requires a functional ABA biosynthetic pathway. Furthermore, the combination of glucose and ABA was able to trigger a synergistic repression of AtbZIP63 and its homologue AtbZIP3, revealing a shared regulatory feature consisting of the modulation of glucose sensitivity by ABA. The synergistic regulation of AtbZIP63 was not reproduced by an AtbZIP63 promoter-5′-untranslated region::β-glucuronidase fusion, thus suggesting possible posttranscriptional control. A transcriptional inhibition assay with cordycepin provided further evidence for the regulation of mRNA decay in response to glucose plus ABA. Overall, these results indicate that AtbZIP63 is an important node of the glucose-ABA interaction network. The mechanisms by which AtbZIP63 may participate in the fine-tuning of ABA-mediated abiotic stress responses according to sugar availability (i.e., energy status) are discussed. PMID:21844310

  16. HTLV-1 bZIP factor protein targets the Rb/E2F-1 pathway to promote proliferation and apoptosis of primary CD4(+) T cells.

    PubMed

    Kawatsuki, A; Yasunaga, J-I; Mitobe, Y; Green, P L; Matsuoka, M

    2016-08-25

    Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus that induces a fatal T-cell malignancy, adult T-cell leukemia (ATL). Among several regulatory/accessory genes in HTLV-1, HTLV-1 bZIP factor (HBZ) is the only viral gene constitutively expressed in infected cells. Our previous study showed that HBZ functions in two different molecular forms, HBZ protein and HBZ RNA. In this study, we show that HBZ protein targets retinoblastoma protein (Rb), which is a critical tumor suppressor in many types of cancers. HBZ protein interacts with the Rb/E2F-1 complex and activates the transcription of E2F-target genes associated with cell cycle progression and apoptosis. Mouse primary CD4(+) T cells transduced with HBZ show accelerated G1/S transition and apoptosis, and importantly, T cells from HBZ transgenic (HBZ-Tg) mice also demonstrate enhanced cell proliferation and apoptosis. To evaluate the functions of HBZ protein alone in vivo, we generated a new transgenic mouse strain that expresses HBZ mRNA altered by silent mutations but encoding intact protein. In these mice, the numbers of effector/memory and Foxp3(+) T cells were increased, and genes associated with proliferation and apoptosis were upregulated. This study shows that HBZ protein promotes cell proliferation and apoptosis in primary CD4(+) T cells through activation of the Rb/E2F pathway, and that HBZ protein also confers onto CD4(+) T-cell immunophenotype similar to those of ATL cells, suggesting that HBZ protein has important roles in dysregulation of CD4(+) T cells infected with HTLV-1. PMID:26804169

  17. Role of basic leucine zipper proteins in transcriptional regulation of the steroidogenic acute regulatory protein gene

    PubMed Central

    Manna, Pulak R.; Dyson, Matthew T.; Stocco, Douglas M.

    2016-01-01

    The regulation of steroidogenic acute regulatory protein (StAR) gene transcription by cAMP-dependent mechanisms occurs in the absence of a consensus cAMP response element (CRE, TGACGTGA). This regulation is coordinated by multiple transcription factors that bind to sequence-specific elements located approximately 150 bp upstream of the transcription start site. Among the proteins that bind within this region, the basic leucine zipper (bZIP) family of transcription factors, i.e. CRE binding protein (CREB)/CRE modulator (CREM)/activating transcription factor (ATF), activator protein 1 (AP-1; Fos/Jun), and CCAAT enhancer binding protein β (C/EBPβ), interact with an overlapping region (−81/−72 bp) in the StAR promoter, mediate stimulus-transcription coupling of cAMP signaling and play integral roles in regulating StAR gene expression. These bZIP proteins are structurally similar and bind to DNA sequences as dimers; however, they exhibit discrete transcriptional activities, interact with several transcription factors and other properties that contribute in their regulatory functions. The 5′-flanking −81/−72 bp region of the StAR gene appears to function as a key element within a complex cAMP response unit by binding to different bZIP members, and the StAR promoter displays variable states of cAMP responsivity contingent upon the occupancy of these cis-elements with these transcription factors. The expression and activities of CREB/CREM/ATF, Fos/Jun and C/EBPβ have been demonstrated to be mediated by a plethora of extracellular signals, and the phosphorylation of these proteins at several Ser and Thr residues allows recruitment of the transcriptional coactivator CREB binding protein (CBP) or its functional homolog p300 to the StAR promoter. This review will focus on the current level of understanding of the roles of selective bZIP family proteins within the complex series of processes involved in regulating StAR gene transcription. PMID:19150388

  18. The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis.

    PubMed

    Hai, T; Hartman, M G

    2001-07-25

    The mammalian ATF/CREB family of transcription factors represents a large group of basic region-leucine zipper (bZip) proteins which was originally defined in the late 1980s by their ability to bind to the consensus ATF/CRE site 'TGACGTCA'. Over the past decade, cDNA clones encoding identical or homologous proteins have been isolated by different laboratories and given different names. These proteins can be grouped into subgroups according to their amino acid similarity. In this review, we will briefly describe the classification of these proteins with a historical perspective of their nomenclature. We will then review three members of the ATF/CREB family of proteins: ATF3, ATF4 and ATF6. We will address four issues for each protein: (a) homologous proteins and alternative names, (b) dimer formation with other bZip proteins, (c) transcriptional activity, and (d) potential physiological functions. Although the name Activating Transcription Factor (ATF) implies that they are transcriptional activators, some of these proteins are transcriptional repressors. ATF3 homodimer is a transcriptional repressor and ATF4 has been reported to be either an activator or a repressor. We will review the reports on the transcriptional activities of ATF4, and propose potential explanations for the discrepancy. Although the physiological functions of these proteins are not well understood, some clues can be gained from studies with different approaches. When the data are available, we will address the following questions. (a) How is the expression (at the mRNA level or protein level) regulated? (b) How are the transcriptional activities regulated? (c) What are the interacting proteins (other than bZip partners)? (d) What are the consequences of ectopically expressing the gene (gain-of-function) or deleting the gene (loss-of-function)? Although answers to these questions are far from being complete, together they provide clues to the functions of these ATF proteins. Despite the

  19. The AP-1 transcription factor homolog Pf-AP-1 activates transcription of multiple biomineral proteins and potentially participates in Pinctada fucata biomineralization

    PubMed Central

    Zheng, Xiangnan; Cheng, Minzhang; Xiang, Liang; Liang, Jian; Xie, Liping; Zhang, Rongqing

    2015-01-01

    Activator protein-1 (AP-1) is an important bZIP transcription factor that regulates a series of physiological processes by specifically activating transcription of several genes, and one of its well-chartered functions in mammals is participating in bone mineralization. We isolated and cloned the complete cDNA of a Jun/AP-1 homolog from Pinctada fucata and called it Pf-AP-1. Pf-AP-1 had a highly conserved bZIP region and phosphorylation sites compared with those from mammals. A tissue distribution analysis showed that Pf-AP-1 was ubiquitously expressed in P. fucata and the mRNA level of Pf-AP-1 is extremely high in mantle. Pf-AP-1 expression was positively associated with multiple biomineral proteins in the mantle. The luciferase reporter assay in a mammalian cell line showed that Pf-AP-1 significantly up-regulates the transcriptional activity of the promoters of KRMP, Pearlin, and Prisilkin39. Inhibiting the activity of Pf-AP-1 depressed the expression of multiple matrix proteins. Pf-AP-1 showed a unique expression pattern during shell regeneration and pearl sac development, which was similar to the pattern observed for biomineral proteins. These results suggest that the Pf-AP-1 AP-1 homolog is an important transcription factor that regulates transcription of several biomineral proteins simultaneously and plays a role in P. fucata biomineralization, particularly during pearl and shell formation. PMID:26404494

  20. Regulating expression of cell and tissue-specific genes by modifying transcription

    SciTech Connect

    Beachy, Roger N; Dai, Shunhong

    2010-06-14

    Transcriptional regulation is the primary step to control gene expression, therefore function. Such regulation is achieved primarily via a combination of the activities of the promoter cis regulatory DNA elements and trans regulatory proteins that function through binding to these DNA elements. Rice bZIP transcription factors RF2a, RF2b and RLP1 play key roles in regulating the activity of a vascular tissue specific promoter isolated from Rice Tungro Bacilliform Virus (RTBV), through their interactions with the Box II essential cis element located in the promoter (Dai et al., 2006., Dai et al., 2004., Yin et al., 1997). RF2a, RF2b and RLP1 possess multiple regulatory domains. Functional characterization reveals that those domains can activate or repress the activity of the RTBV promoter. It is equally as important to recognize that these proteins control plant development by regulating differentiation and/or function of the vascular tissues. Studies of transcriptional regulation of the RTBV promoter by this group of bZIP proteins will not only provide insights about gene expression in the vascular tissue, but also insights about general mechanisms of transcription activation and repression. The knowledge gained from this research will also enable us to develop a well-described set of tools that can be used to control expression of multiple genes in transgenic plants. We have proposed characterize the function domains of RF2a, RF2b and RLP1 and explore the biological function of the transcription repressor RLP1.

  1. ABF transcription factors of Thellungiella salsuginea

    PubMed Central

    Vysotskii, Denis A.; de Vries-van Leeuwen, Ingrid J.; Souer, Erik; Babakov, Alexei V.; de Boer, Albertus H.

    2013-01-01

    ABF transcription factors are the key regulators of ABA signaling. Using RACE-PCR, we identified and sequenced the coding regions of four genes that encode ABF transcription factors in the extremophile plant Thellungiella salsuginea, a close relative of Arabidopsis thaliana that possesses high tolerance to abiotic stresses. An analysis of the deduced amino acid sequences revealed that the similarity between Thellungiella and Arabidopsis ABFs ranged from 71% to 88%. Similar to their Arabidopsis counterparts, Thellungiella ABFs share a bZIP domain and four conservative domains, including a highly conservative motif at the C-terminal tail, which was reported to be a canonical site for binding by 14-3-3 regulatory proteins. Gene expression analysis by real-time PCR revealed a rapid transcript induction of three of the ABF genes in response to salt stress. To check whether Thellungiella ABF transcription factors can interact with abundant 14-3-3 proteins, multiple constructs were designed, and yeast two-hybrid experiments were conducted. Six of the eight tested Ts14-3-3 proteins were able to bind the TsABFs in an isoform-specific manner. A serine-to-alanine substitution in the putative 14-3-3 binding motif resulted in the complete loss of interaction between the 14-3-3 proteins and the ABFs. The role of 14-3-3 interaction with ABFs in the salt and ABA signaling pathways is discussed in the context of Thellungiella survivability. PMID:23221757

  2. Regulating expressin of cell and tissue-specific genes by modifying transcription

    SciTech Connect

    Beachy, R N; Dai, Shunhong

    2009-12-15

    Transcriptional regulation is the primary step to control gene expression, therefore function. Such regulation is achieved primarily via a combination of the activities of the promoter cis regulatory DNA elements and trans regulatory proteins that function through binding to these DNA elements. Our research supported by this program has led to the identification of rice bZIP transcription factors RF2a, RF2b and RLP1 that play key roles in regulating the activity of a vascular tissue specific promoter isolated from Rice Tungro Bacilliform Virus (RTBV) through their interactions with the Box II essential cis element located in the promoter. RF2a, RF2b and RLP1 possess multiple regulatory domains. Functional characterization reveals that those domains can activate or repress the activity of the RTBV promoter. Studies of transcriptional regulation of the RTBV promoter by this group of bZIP proteins not only provide insights about gene expression in the vascular tissue, but also insights about general mechanisms of transcription activation and repression. The knowledge gained from this research will also enable us to develop a well-described set of tools that can be used to control expression of multiple genes in transgenic plants and to improve biofuel feedstock.

  3. Unraveling transcription factor interactions with heterochromatin protein 1 using fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Siegel, Amanda P.; Hays, Nicole M.; Day, Richard N.

    2013-02-01

    The epigenetic control of heterochromatin deposition is achieved through a network of protein interactions mediated by the heterochromatin protein 1 (HP1). In earlier studies, we showed that the CCAAT/enhancer-binding protein alpha (C/EBPα), a transcription factor that controls cell differentiation, localizes to heterochromatin, and interacts with HP1α. Here, deletion and mutagenesis are combined with live-cell imaging approaches to characterize these protein interactions. The results demonstrate that the basic region and leucine zipper (BZip) domain of C/EBPα is sufficient for the interaction with HP1α in regions of heterochromatin. Fluorescence correlation spectroscopy and cross-correlation (FCS and FCCS) revealed very different diffusion profiles for HP1α and the BZip protein, and co-expression studies indicated that the mobile fractions of these nuclear proteins diffuse independently of one another. The steady-state interactions of these proteins in regions of heterochromatin were monitored using Förster resonance energy transfer (FRET). A point mutation in HP1α, W174A, which disrupts the interactions with proteins containing the common PxVxL motif did not affect the interaction with the BZip protein. In contrast, the HP1α W41A mutation, which prevents binding to methylated histones, exhibited greatly reduced FRET efficiency when compared to the wild type HP1α or HP1αW174A. The functional significance of these interactions is discussed.

  4. The transcriptional basis of adipocyte development.

    PubMed

    Rosen, Evan D

    2005-07-01

    Adipogenesis is the developmental process by which a multipotent mesenchymal stem cell differentiates into a mature adipocyte. This process involves a highly regulated and coordinated cascade of transcription factors that together lead to the establishment of the differentiated state. In the presence of the correct hormonal cues, committed pre-adipocytes express the bZIP factors C/EBPb and C/EBPd. These factors in turn induce the expression of C/EBPa and peroxisome proliferator-activated receptor g (PPARg). C/EBPa and PPARg together promote differentiation by activating adipose-specific gene expression and by maintaining each others expression at high levels. We have investigated the relative contributions of PPARg and C/EBPa to adipogenesis by selectively ablating these genes in mouse embryonic fibroblasts (MEFs). MEFs that lack C/EBPa are able to undergo adipogenesis, but only when PPARg is ectopically expressed. Interestingly, these cells are not sensitive to the metabolic actions of insulin. By way of contrast, cells that lack PPARg are utterly incapable of adipogenic conversion, even when supplemented with high levels of C/EBPa. Our current investigations are centered on the identification of novel adipogenic transcription factors, utilizing a variety of techniques, ranging from BAC transgenics to computational approaches. These approaches will be discussed, along with the roles of some new transcriptional players in adipogenesis, including the O/E family of proteins. PMID:15936931

  5. Cooperative DNA binding and sequence discrimination by the Opaque2 bZIP factor.

    PubMed Central

    Yunes, J A; Vettore, A L; da Silva, M J; Leite, A; Arruda, P

    1998-01-01

    The maize Opaque2 (O2) protein is a basic leucine zipper transcription factor that controls the expression of distinct classes of endosperm genes through the recognition of different cis-acting elements in their promoters. The O2 target region in the promoter of the alpha-coixin gene was analyzed in detail and shown to comprise two closely adjacent binding sites, named O2u and O2d, which are related in sequence to the GCN4 binding site. Quantitative DNase footprint analysis indicated that O2 binding to alpha-coixin target sites is best described by a cooperative model. Transient expression assays showed that the two adjacent sites act synergistically. This synergy is mediated in part by cooperative DNA binding. In tobacco protoplasts, O2 binding at the O2u site is more important for enhancer activity than is binding at the O2d site, suggesting that the architecture of the O2-DNA complex is important for interaction with the transcriptional machinery. PMID:9811800

  6. Wheat Transcription Factor TaAREB3 Participates in Drought and Freezing Tolerances in Arabidopsis.

    PubMed

    Wang, Jingyi; Li, Qian; Mao, Xinguo; Li, Ang; Jing, Ruilian

    2016-01-01

    AREB (ABA response element binding) proteins in plants play direct regulatory roles in response to multiple stresses, but their functions in wheat (Triticum aestivum L.) are not clear. In the present study, TaAREB3, a new member of the AREB transcription factor family, was isolated from wheat. Sequence analysis showed that the TaAREB3 protein is composed of three parts, a conserved N-terminal, a variable M region, and a conserved C-terminal with a bZIP domain. It belongs to the group A subfamily of bZIP transcription factors. TaAREB3 was constitutively expressed in stems, leaves, florets, anthers, pistils, seeds, and most highly, in roots. TaAREB3 gene expression was induced with abscisic acid (ABA) and low temperature stress, and its protein was localized in the nucleus when transiently expressed in tobacco epidermal cells and stably expressed in transgenic Arabidopsis. TaAREB3 protein has transcriptional activation activity, and can bind to the ABRE cis-element in vitro. Overexpression of TaAREB3 in Arabidopsis not only enhanced ABA sensitivity, but also strengthened drought and freezing tolerances. TaAREB3 also activated RD29A, RD29B, COR15A, and COR47 by binding to their promoter regions in transgenic Arabidopsis. These results demonstrated that TaAREB3 plays an important role in drought and freezing tolerances in Arabidopsis. PMID:26884722

  7. Wheat Transcription Factor TaAREB3 Participates in Drought and Freezing Tolerances in Arabidopsis

    PubMed Central

    Wang, Jingyi; Li, Qian; Mao, Xinguo; Li, Ang; Jing, Ruilian

    2016-01-01

    AREB (ABA response element binding) proteins in plants play direct regulatory roles in response to multiple stresses, but their functions in wheat (Triticum aestivum L.) are not clear. In the present study, TaAREB3, a new member of the AREB transcription factor family, was isolated from wheat. Sequence analysis showed that the TaAREB3 protein is composed of three parts, a conserved N-terminal, a variable M region, and a conserved C-terminal with a bZIP domain. It belongs to the group A subfamily of bZIP transcription factors. TaAREB3 was constitutively expressed in stems, leaves, florets, anthers, pistils, seeds, and most highly, in roots. TaAREB3 gene expression was induced with abscisic acid (ABA) and low temperature stress, and its protein was localized in the nucleus when transiently expressed in tobacco epidermal cells and stably expressed in transgenic Arabidopsis. TaAREB3 protein has transcriptional activation activity, and can bind to the ABRE cis-element in vitro. Overexpression of TaAREB3 in Arabidopsis not only enhanced ABA sensitivity, but also strengthened drought and freezing tolerances. TaAREB3 also activated RD29A, RD29B, COR15A, and COR47 by binding to their promoter regions in transgenic Arabidopsis. These results demonstrated that TaAREB3 plays an important role in drought and freezing tolerances in Arabidopsis. PMID:26884722

  8. Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response.

    PubMed Central

    Haze, K; Okada, T; Yoshida, H; Yanagi, H; Yura, T; Negishi, M; Mori, K

    2001-01-01

    Eukaryotic cells control the levels of molecular chaperones and folding enzymes in the endoplasmic reticulum (ER) by a transcriptional induction process termed the unfolded protein response (UPR). The mammalian UPR is mediated by the cis-acting ER stress response element consisting of 19 nt (CCAATN(9)CCACG), the CCACG part of which is considered to provide specificity. We recently identified the basic leucine zipper (bZIP) protein ATF6 as a mammalian UPR-specific transcription factor; ATF6 is activated by ER stress-induced proteolysis and binds directly to CCACG. Here we report that eukaryotic cells express another bZIP protein closely related to ATF6 in both structure and function. This protein encoded by the G13 (cAMP response element binding protein-related protein) gene is constitutively synthesized as a type II transmembrane glycoprotein anchored in the ER membrane and processed into a soluble form upon ER stress as occurs with ATF6. The proteolytic processing of ATF6 and the G13 gene product is accompanied by their relocation from the ER to the nucleus; their basic regions seem to function as a nuclear localization signal. Overexpression of the soluble form of the G13 product constitutively activates the UPR, whereas overexpression of a mutant lacking the activation domain exhibits a strong dominant-negative effect. Furthermore, the soluble forms of ATF6 and the G13 gene product are unable to bind to several point mutants of the cis-acting ER stress response element in vitro that hardly respond to ER stress in vivo. We thus concluded that the two related bZIP proteins are crucial transcriptional regulators of the mammalian UPR, and propose calling the ATF6 gene product ATF6alpha and the G13 gene product ATF6beta. PMID:11256944

  9. The Importance of Being Flexible: The Case of Basic Region Leucine Zipper Transcriptional Regulators

    PubMed Central

    Miller, Maria

    2009-01-01

    Large volumes of protein sequence and structure data acquired by proteomic studies led to the development of computational bioinformatic techniques that made possible the functional annotation and structural characterization of proteins based on their primary structure. It has become evident from genome-wide analyses that many proteins in eukaryotic cells are either completely disordered or contain long unstructured regions that are crucial for their biological functions. The content of disorder increases with evolution indicating a possibly important role of disorder in the regulation of cellular systems. Transcription factors are no exception and several proteins of this class have recently been characterized as premolten/molten globules. Yet, mammalian cells rely on these proteins to control expression of their 30,000 or so genes. Basic region:leucine zipper (bZIP) DNA-binding proteins constitute a major class of eukaryotic transcriptional regulators. This review discusses how conformational flexibility “built” into the amino acid sequence allows bZIP proteins to interact with a large number of diverse molecular partners and to accomplish their manifold cellular tasks in a strictly regulated and coordinated manner. PMID:19519454

  10. The CREB Transcription Factor Controls Transcriptional Activity of the Human RIC8B Gene.

    PubMed

    Maureira, Alejandro; Sánchez, Rodolfo; Valenzuela, Nicole; Torrejón, Marcela; Hinrichs, María V; Olate, Juan; Gutiérrez, José L

    2016-08-01

    Proper regulation of gene expression is essential for normal development, cellular growth, and differentiation. Differential expression profiles of mRNA coding for vertebrate Ric-8B during embryo and adult stages have been observed. In addition, Ric-8B is expressed in few cerebral nuclei subareas. These facts point to a dynamic control of RIC8B gene expression. In order to understand the transcriptional regulation of this gene, we searched for cis-elements in the sequence of the human RIC8B promoter region, identifying binding sites for the basic/leucine zipper (bZip) CREB transcription factor family (CRE sites) and C/EBP transcription factor family (C/EBP sites). CRE sites were found clustered near the transcription start site, while the C/EBP sites were found clustered at around 300 bp upstream the CRE sites. Here, we demonstrate the ability of CREB1 and C/EBPβ to bind their respective elements identified in the RIC8B promoter. Comparative protein-DNA interaction analyses revealed only the proximal elements as high affinity sites for CREB1 and only the distal elements as high affinity sites for C/EBPβ. Chromatin immunoprecipitation analyses, carried out using a human neuroblastoma cell line, confirmed the preferential association of CREB to the proximal region of the RIC8B promoter. By performing luciferase reporter assays, we found the CRE sites as the most relevant elements for its transcriptional activity. Taken together, these data show the existence of functional CREB and C/EBP binding sites in the human RIC8B gene promoter, a particular distribution of these sites and demonstrate a relevant role of CREB in stimulating transcriptional activity of this gene. J. Cell. Biochem. 117: 1797-1805, 2016. © 2016 Wiley Periodicals, Inc. PMID:26729411

  11. ABI-like transcription factor gene TaABL1 from wheat improves multiple abiotic stress tolerances in transgenic plants.

    PubMed

    Xu, Dong-Bei; Gao, Shi-Qing; Ma, You-Zhi; Xu, Zhao-Shi; Zhao, Chang-Ping; Tang, Yi-Miao; Li, Xue-Yin; Li, Lian-Cheng; Chen, Yao-Feng; Chen, Ming

    2014-12-01

    The phytohormone abscisic acid (ABA) plays crucial roles in adaptive responses of plants to abiotic stresses. ABA-responsive element binding proteins (AREBs) are basic leucine zipper transcription factors that regulate the expression of downstream genes containing ABA-responsive elements (ABREs) in promoter regions. A novel ABI-like (ABA-insensitive) transcription factor gene, named TaABL1, containing a conserved basic leucine zipper (bZIP) domain was cloned from wheat. Southern blotting showed that three copies were present in the wheat genome. Phylogenetic analyses indicated that TaABL1 belonged to the AREB subfamily of the bZIP transcription factor family and was most closely related to ZmABI5 in maize and OsAREB2 in rice. Expression of TaABL1 was highly induced in wheat roots, stems, and leaves by ABA, drought, high salt, and low temperature stresses. TaABL1 was localized inside the nuclei of transformed wheat mesophyll protoplast. Overexpression of TaABL1 enhanced responses of transgenic plants to ABA and hastened stomatal closure under stress, thereby improving tolerance to multiple abiotic stresses. Furthermore, overexpression of TaABL1 upregulated or downregulated the expression of some stress-related genes controlling stomatal closure in transgenic plants under ABA and drought stress conditions, suggesting that TaABL1 might be a valuable genetic resource for transgenic molecular breeding. PMID:25344442

  12. Deregulation of Sucrose-Controlled Translation of a bZIP-Type Transcription Factor Results in Sucrose Accumulation in Leaves

    PubMed Central

    Lee, Sung Shin; Yang, Seung Hwan; Zhu, XuJun; Imai, Ryozo; Takahashi, Yoshihiro; Kusano, Tomonobu

    2012-01-01

    Sucrose is known to repress the translation of Arabidopsis thaliana AtbZIP11 transcript which encodes a protein belonging to the group of S (S - stands for small) basic region-leucine zipper (bZIP)-type transcription factor. This repression is called sucrose-induced repression of translation (SIRT). It is mediated through the sucrose-controlled upstream open reading frame (SC-uORF) found in the AtbZIP11 transcript. The SIRT is reported for 4 other genes belonging to the group of S bZIP in Arabidopsis. Tobacco tbz17 is phylogenetically closely related to AtbZIP11 and carries a putative SC-uORF in its 5′-leader region. Here we demonstrate that tbz17 exhibits SIRT mediated by its SC-uORF in a manner similar to genes belonging to the S bZIP group of the Arabidopsis genus. Furthermore, constitutive transgenic expression of tbz17 lacking its 5′-leader region containing the SC-uORF leads to production of tobacco plants with thicker leaves composed of enlarged cells with 3–4 times higher sucrose content compared to wild type plants. Our finding provides a novel strategy to generate plants with high sucrose content. PMID:22457737

  13. Ab initio prediction of transcription factor binding sites.

    PubMed

    Liu, L Angela; Bader, Joel S

    2007-01-01

    Transcription factors are DNA-binding proteins that control gene transcription by binding specific short DNA sequences. Experiments that identify transcription factor binding sites are often laborious and expensive, and the binding sites of many transcription factors remain unknown. We present a computational scheme to predict the binding sites directly from transcription factor sequence using all-atom molecular simulations. This method is a computational counterpart to recent high-throughput experimental technologies that identify transcription factor binding sites (ChIP-chip and protein-dsDNA binding microarrays). The only requirement of our method is an accurate 3D structural model of a transcription factor-DNA complex. We apply free energy calculations by thermodynamic integration to compute the change in binding energy of the complex due to a single base pair mutation. By calculating the binding free energy differences for all possible single mutations, we construct a position weight matrix for the predicted binding sites that can be directly compared with experimental data. As water-bridged hydrogen bonds between the transcription factor and DNA often contribute to the binding specificity, we include explicit solvent in our simulations. We present successful predictions for the yeast MAT-alpha2 homeodomain and GCN4 bZIP proteins. Water-bridged hydrogen bonds are found to be more prevalent than direct protein-DNA hydrogen bonds at the binding interfaces, indicating why empirical potentials with implicit water may be less successful in predicting binding. Our methodology can be applied to a variety of DNA-binding proteins. PMID:17990512

  14. Temporal kinetics of the transcriptional response to carbon depletion and sucrose readdition in Arabidopsis seedlings.

    PubMed

    Cookson, Sarah Jane; Yadav, Umesh Prasad; Klie, Sebastian; Morcuende, Rosa; Usadel, Björn; Lunn, John Edward; Stitt, Mark

    2016-04-01

    To investigate whether the transcriptional response to carbon (C) depletion and sucrose resupply depends on the duration and severity of the C depletion, Arabidopsis seedlings were grown in liquid culture and harvested 3, 6, 12, 24, 48 and 72 h after removing sucrose from the medium and 30 min after resupplying sucrose at each time. Expression profiling revealed early transcriptional inhibition of cell wall synthesis and remodelling of signalling, followed by induction of C recycling and photosynthesis and general inhibition of growth. The temporal sequence differed from the published response to progressive exhaustion of C during a night and extended night in vegetatively growing plants. The response to sucrose readdition was conserved across the C-depletion time course. Intriguingly, the vast majority of rapidly responding transcripts decreased rather than increased. The majority of transcripts that respond rapidly to sucrose and many transcripts that respond during C depletion also decrease after treating seedlings with the transcriptional inhibitor cordycepin A. Comparison with published responses to overexpression of otsA, AKIN10 and bZIP11 revealed that many genes that respond to C depletion, and especially sucrose resupply, respond to one or more of these C-signalling components. Thus, multiple factors contribute to C responsiveness, including many signalling components, transcriptional regulation and transcript turnover. PMID:26386165

  15. Hexokinase 1 is required for glucose-induced repression of bZIP63, At5g22920, and BT2 in Arabidopsis

    PubMed Central

    Kunz, Sabine; Gardeström, Per; Pesquet, Edouard; Kleczkowski, Leszek A.

    2015-01-01

    Simple sugars, like glucose (Glc) and sucrose (Suc), act as signals to modulate the expression of hundreds of genes in plants. Frequently, however, it remains unclear whether this regulation is induced by the sugars themselves or by their derivatives generated in the course of carbohydrate (CH) metabolism. In the present study, we tested the relevance of different CH metabolism and allocation pathways affecting expression patterns of five selected sugar-responsive genes (bZIP63, At5g22920, BT2, MGD2, and TPS9) in Arabidopsis thaliana. In general, the expression followed diurnal changes in the overall sugar availability. However, under steady growth conditions, this response was hardly impaired in the mutants for CH metabolizing/ transporting proteins (adg1, sex1, sus1-4, sus5/6, and tpt2), including also hexokinase1 (HXK1) loss- and gain-of-function plants—gin2.1 and oe3.2, respectively. In addition, transgenic plants carrying pbZIP63::GUS showed no changes in reporter-gene-expression when grown on sugar under steady-state conditions. In contrast, short-term treatments of agar-grown seedlings with 1% Glc or Suc induced pbZIP63::GUS repression, which became even more apparent in seedlings grown in liquid media. Subsequent analyses of liquid-grown gin2.1 and oe3.2 seedlings revealed that Glc -dependent regulation of the five selected genes was not affected in gin2.1, whereas it was enhanced in oe3.2 plants for bZIP63, At5g22920, and BT2. The sugar treatments had no effect on ATP/ADP ratio, suggesting that changes in gene expression were not linked to cellular energy status. Overall, the data suggest that HXK1 does not act as Glc sensor controlling bZIP63, At5g22920, and BT2 expression, but it is nevertheless required for the production of a downstream metabolic signal regulating their expression. PMID:26236323

  16. Identification and characterization a novel transcription factor activator protein-1 in the sea cucumber Apostichopus japonicus.

    PubMed

    Yang, Limeng; Li, Chenghua; Chang, Yaqing; Gao, Yinxue; Wang, Yi; Wei, Jing; Song, Jian; Sun, Ping

    2015-08-01

    The transcription factor activator protein-1 (AP-1) is an important gene expression regulator with typical Jun and region-leucine zipper (bZIP) domains and can respond to a plethora of physiological and pathological stimulus. In this study, we identified a novel AP-1 gene in Apostichopus japonicus by transcriptome sequencing and RACE approaches (designated as AjAP-1). The full-length of AjAP-1 was of 2944 bp including a 5' untranslated region (UTR) of 201 bp, a 3' UTR of 1753 bp and a putative open reading frame of 990 bp encoding a polypeptide of 329 amino acid residues. Two representative domains of Jun and bZIP as well as two nuclear localization signals (NLSs) were also detected in deduced amino acid of AjAP-1. Spatial distribution expression indicated that AjAP-1 was ubiquitously expressed in all examined tissues with predominant expression in the body wall, moderate in the tube feet, respiratory tree and colemocytes and slightly weak in the intestine and longitudinal muscle. Time-course expression analysis in intestine and coelomocytes revealed that AjAP-1 both reached its peak expression at 4 h after Vibrio splendidus challenge with a 2.6 and 8.2-fold increase compared to their control groups, respectively. Taken together, all these results suggested that AjAP-1 was a novel immune factor and might be involved in the processes of anti-bacteria response in sea cucumber. PMID:26093208

  17. Transcriptional cross talk between orphan nuclear receptor ERRγ and transmembrane transcription factor ATF6α coordinates endoplasmic reticulum stress response

    PubMed Central

    Misra, Jagannath; Kim, Don-Kyu; Choi, Woogyun; Koo, Seung-Hoi; Lee, Chul-Ho; Back, Sung-Hoon; Kaufman, Randal J.; Choi, Hueng-Sik

    2013-01-01

    Orphan nuclear receptor ERRγ is a member of nuclear receptor superfamily that regulates several important cellular processes including hepatic glucose and alcohol metabolism. However, mechanistic understanding of transcriptional regulation of the ERRγ gene remains to be elucidated. Here, we report that activating transcription factor 6α (ATF6α), an endoplasmic reticulum (ER)-membrane–bound basic leucine zipper (bZip) transcription factor, directly regulates ERRγ gene expression in response to ER stress. ATF6α binds to ATF6α responsive element in the ERRγ promoter. The transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) is required for this transactivation. Chromatin immunoprecipitation (ChIP) assay confirmed the binding of both ATF6α and PGC1α on the ERRγ promoter. ChIP assay demonstrated histone H3 and H4 acetylation occurs at the ATF6α and PGC1α binding site. Of interest, ERRγ along with PGC1α induce ATF6α gene transcription upon ER stress. ERRγ binds to an ERRγ responsive element in the ATF6α promoter. ChIP assay confirmed that both ERRγ and PGC1α bind to a site in the ATF6α promoter that exhibits histone H3 and H4 acetylation. Overall, for the first time our data show a novel pathway of cross talk between nuclear receptors and ER-membrane–bound transcription factors and suggest a positive feed-forward loop regulates ERRγ and ATF6α gene transcription. PMID:23716639

  18. Transcriptional cross talk between orphan nuclear receptor ERRγ and transmembrane transcription factor ATF6α coordinates endoplasmic reticulum stress response.

    PubMed

    Misra, Jagannath; Kim, Don-Kyu; Choi, Woogyun; Koo, Seung-Hoi; Lee, Chul-Ho; Back, Sung-Hoon; Kaufman, Randal J; Choi, Hueng-Sik

    2013-08-01

    Orphan nuclear receptor ERRγ is a member of nuclear receptor superfamily that regulates several important cellular processes including hepatic glucose and alcohol metabolism. However, mechanistic understanding of transcriptional regulation of the ERRγ gene remains to be elucidated. Here, we report that activating transcription factor 6α (ATF6α), an endoplasmic reticulum (ER)-membrane-bound basic leucine zipper (bZip) transcription factor, directly regulates ERRγ gene expression in response to ER stress. ATF6α binds to ATF6α responsive element in the ERRγ promoter. The transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) is required for this transactivation. Chromatin immunoprecipitation (ChIP) assay confirmed the binding of both ATF6α and PGC1α on the ERRγ promoter. ChIP assay demonstrated histone H3 and H4 acetylation occurs at the ATF6α and PGC1α binding site. Of interest, ERRγ along with PGC1α induce ATF6α gene transcription upon ER stress. ERRγ binds to an ERRγ responsive element in the ATF6α promoter. ChIP assay confirmed that both ERRγ and PGC1α bind to a site in the ATF6α promoter that exhibits histone H3 and H4 acetylation. Overall, for the first time our data show a novel pathway of cross talk between nuclear receptors and ER-membrane-bound transcription factors and suggest a positive feed-forward loop regulates ERRγ and ATF6α gene transcription. PMID:23716639

  19. Contributions of transcription and mRNA decay to gene expression dynamics of fission yeast in response to oxidative stress

    PubMed Central

    Marguerat, Samuel; Lawler, Katherine; Brazma, Alvis; Bähler, Jürg

    2014-01-01

    The cooperation of transcriptional and post-transcriptional levels of control to shape gene regulation is only partially understood. Here we show that a combination of two simple and non-invasive genomic techniques, coupled with kinetic mathematical modeling, affords insight into the intricate dynamics of RNA regulation in response to oxidative stress in the fission yeast Schizosaccharomyces pombe. This study reveals a dominant role of transcriptional regulation in response to stress, but also points to the first minutes after stress induction as a critical time when the coordinated control of mRNA turnover can support the control of transcription for rapid gene regulation. In addition, we uncover specialized gene expression strategies associated with distinct functional gene groups, such as simultaneous transcriptional repression and mRNA destabilization for genes encoding ribosomal proteins, delayed mRNA destabilization with varying contribution of transcription for ribosome biogenesis genes, dominant roles of mRNA stabilization for genes functioning in protein degradation, and adjustment of both transcription and mRNA turnover during the adaptation to stress. We also show that genes regulated independently of the bZIP transcription factor Atf1p are predominantly controlled by mRNA turnover, and identify putative cis-regulatory sequences that are associated with different gene expression strategies during the stress response. This study highlights the intricate and multi-faceted interplay between transcription and RNA turnover during the dynamic regulatory response to stress. PMID:25007214

  20. The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants.

    PubMed

    Gao, Shi-Qing; Chen, Ming; Xu, Zhao-Shi; Zhao, Chang-Ping; Li, Liancheng; Xu, Hui-jun; Tang, Yi-miao; Zhao, Xin; Ma, You-Zhi

    2011-04-01

    Abscisic acid (ABA)-responsive element binding proteins (AREBs) are basic domain/leucine zipper transcription factors that bind to the ABA-responsive element (ABRE) in the promoter regions of ABA-inducible genes in plants. A novel bZIP transcription factor gene, GmbZIP1, encoding 438 amino acids with a conserved bZIP domain composed of 60 amino acids was isolated from salt-tolerant soybean cv. Tiefeng 8. Southern blotting showed that only one copy was present in the soybean genome. Phylogenetic analyses showed that GmbZIP1 belonged to the AREB subfamily of the bZIP family and was most closely related to AtABF2 and OsTRAB1. The expression of GmbZIP1 was highly induced by ABA, drought, high salt and low temperature; and GmbZIP1 was expressed in soybean roots, stems and leaves under different stress conditions. GmbZIP1 was localized inside the nuclei of transformed onion epidermal cells. Overexpression of GmbZIP1 enhanced the responses of transgenic plants to ABA and triggered stomatal closure under stresses, potentially leading to improved tolerances to several abiotic stresses such as high salt, low temperature and drought in transgenic plants. Furthermore, overexpression of GmbZIP1 affected the expression of some ABA or stress-related genes involved in regulating stomatal closure in Arabidopsis under ABA, drought and high salt stress conditions. A few AREB elements were detected in the promoter region of those ABA or stress-related genes, suggesting that GmbZIP1 regulates the ABA response or stomatal closure mediated by those downstream genes in transgenic Arabidopsis. Moreover, GmbZIP1 was used to improve the drought tolerance trait of Chinese wheat varieties BS93. Functional analysis showed that overexpression of GmbZIP1 enhanced the drought tolerance of transgenic wheat, and transcripts of GmbZIP1 were detected in transgenic wheat using RT-PCR. In addition, GmbZIP1 overexpression did not result in growth retardation in all transgenic plants, suggesting that Gmb

  1. Diverse expression pattern of wheat transcription factors against abiotic stresses in wheat species.

    PubMed

    Baloglu, Mehmet Cengiz; Inal, Behcet; Kavas, Musa; Unver, Turgay

    2014-10-15

    Abiotic stress including drought and salinity affects quality and yield of wheat varieties used for the production of both bread and pasta flour. bZIP, MBF1, WRKY, MYB and NAC transcription factor (TF) genes are the largest transcriptional regulators which are involved in growth, development, physiological processes, and biotic/abiotic stress responses in plants. Identification of expression profiling of these TFs plays a crucial role to understand the response of different wheat species against severe environmental changes. In the current study, expression analysis of TaWLIP19 (wheat version of bZIP), TaMBF1, TaWRKY10, TaMYB33 and TaNAC69 genes was examined under drought and salinity stress conditions in Triticum aestivum cv. (Yuregir-89), Triticum turgidum cv. (Kiziltan-91), and Triticum monococcum (Siyez). After drought stress application, all five selected genes in Kiziltan-91 were induced. However, TaMBF1 and TaWLIP19 were the only downregulated genes in Yuregir-89 and Siyez, respectively. Except TaMYB33 in Siyez, expression level of the remaining genes increased under salt stress condition in all Triticum species. For determination of drought response to selected TF members, publicly available RNA-seq data were also analyzed in this study. TaMBF1, TaWLIP19 and TaNAC69 transcripts were detected through in silico analysis. This comprehensive gene expression analysis provides valuable information for understanding the roles of these TFs under abiotic stresses in modern wheat cultivars and ancient einkorn wheat. In addition, selected TFs might be used for determination of drought or salinity-tolerant and susceptible cultivars for molecular breeding studies. PMID:25130909

  2. Plastidial metabolite MEcPP induces a transcriptionally centered stress-response hub via the transcription factor CAMTA3.

    PubMed

    Benn, Geoffrey; Bjornson, Marta; Ke, Haiyan; De Souza, Amancio; Balmond, Edward I; Shaw, Jared T; Dehesh, Katayoon

    2016-08-01

    The general stress response (GSR) is an evolutionarily conserved rapid and transient transcriptional reprograming of genes central for transducing environmental signals into cellular responses, leading to metabolic and physiological readjustments to cope with prevailing conditions. Defining the regulatory components of the GSR will provide crucial insight into the design principles of early stress-response modules and their role in orchestrating master regulators of adaptive responses. Overaccumulation of methylerythritol cyclodiphosphate (MEcPP), a bifunctional chemical entity serving as both a precursor of isoprenoids produced by the plastidial methylerythritol phosphate (MEP) pathway and a stress-specific retrograde signal, in ceh1 (constitutively expressing hydroperoxide lyase1)-mutant plants leads to large-scale transcriptional alterations. Bioinformatic analyses of microarray data in ceh1 plants established the overrepresentation of a stress-responsive cis element and key GSR marker, the rapid stress response element (RSRE), in the promoters of robustly induced genes. ceh1 plants carrying an established 4×RSRE:Luciferase reporter for monitoring the GSR support constitutive activation of the response in this mutant background. Genetics and pharmacological approaches confirmed the specificity of MEcPP in RSRE induction via the transcription factor CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR 3 (CAMTA3), in a calcium-dependent manner. Moreover, CAMTA3-dependent activation of IRE1a (inositol-requiring protein-1) and bZIP60 (basic leucine zipper 60), two RSRE containing unfolded protein-response genes, bridges MEcPP-mediated GSR induction to the potentiation of protein-folding homeostasis in the endoplasmic reticulum. These findings introduce the notion of transcriptional regulation by a key plastidial retrograde signaling metabolite that induces nuclear GSR, thereby offering a window into the role of interorgannellar communication in shaping cellular adaptive

  3. Molecular cloning and functional characterization of the NFIL3/E4BP4 transcription factor of grass carp, Ctenopharyngodon idella.

    PubMed

    Yu, Hongyan; Shen, Yubang; Sun, Junlong; Xu, Xiaoyan; Wang, Rongquan; Xuan, Yunfeng; Lu, Liqun; Li, Jiale

    2014-12-01

    NFIL3 (nuclear factor interleukin 3-regulated) is an important bZIP transcription factor in the immune response and immune cells' development. Here, we identified the NFIL3 gene from grass carp (Ctenopharyngodon idella; gcNFIL3). The deduced amino acid sequence of gcNFIL3 is 468 residues with a typical bZIP domain. Phylogenetics demonstrated that gcNFIL3 clustered closely with NFIL3 of zebrafish. Real-time PCR revealed gcNFIL3 is constitutively expressed in all tissues examined. Its expression was significantly upregulated in head kidney and trunk kidney after stimulation by bacteria. Immunofluorescence microscopy revealed that gcNFIL3 is mainly expressed in the nucleus. Overexpression of gcNFIL3 reduces Aeromonas hydrophila invasion and proliferation. In CIK cells, gcNFIL3 could induce the activation of NF-kappa B and upregulates the expression of IL10 and IFN. These results indicated that gcNFIL3 has immunoregulatory properties and might play a role in the immune response of fish. PMID:25083807

  4. Ectopic expression of a hot pepper bZIP-like transcription factor in potato enhances drought tolerance without decreasing tuber yield.

    PubMed

    Moon, Seok-Jun; Han, Se-Youn; Kim, Dool-Yi; Yoon, In Sun; Shin, Dongjin; Byun, Myung-Ok; Kwon, Hawk-Bin; Kim, Beom-Gi

    2015-11-01

    Over-expression of group A bZIP transcription factor genes in plants improves abiotic stress tolerance but usually reduces yields. Thus, there have been several efforts to overcome yield penalty in transgenic plants. In this study, we characterized that expression of the hot pepper (Capsicum annuum) gene CaBZ1, which encodes a group S bZIP transcription factor, was induced by salt and osmotic stress as well as abscisic acid (ABA). Transgenic potato (Solanum tuberosum) plants over-expressing CaBZ1 exhibited reduced rates of water loss and faster stomatal closure than non transgenic potato plants under drought and ABA treatment conditions. CaBZ1 over-expression in transgenic potato increased the expression of ABA- and stress-related genes (such as CYP707A1, CBF and NAC-like genes) and improved drought stress tolerance. Interestingly, over-expression of CaBZ1 in potato did not produce undesirable growth phenotypes in major agricultural traits such as plant height, leaf size and tuber formation under normal growth conditions. The transgenic potato plants also had higher tuber yields than non transgenic potato plants under drought stress conditions. Thus, CaBZ1 may be useful for improving drought tolerance in tuber crops. This might be the first report of the production of transgenic potato with improved tuber yields under drought conditions. PMID:26394867

  5. Screen Identifying Arabidopsis Transcription Factors Involved in the Response to 9-Lipoxygenase-Derived Oxylipins

    PubMed Central

    Walper, Elisabeth; Weiste, Christoph; Mueller, Martin J.; Hamberg, Mats; Dröge-Laser, Wolfgang

    2016-01-01

    13-Lipoxygenase-derived oxylipins, such as jasmonates act as potent signaling molecules in plants. Although experimental evidence supports the impact of oxylipins generated by the 9-Lipoxygenase (9-LOX) pathway in root development and pathogen defense, their signaling function in plants remains largely elusive. Based on the root growth inhibiting properties of the 9-LOX-oxylipin 9-HOT (9-hydroxy-10,12,15-octadecatrienoic acid), we established a screening approach aiming at identifying transcription factors (TFs) involved in signaling and/or metabolism of this oxylipin. Making use of the AtTORF-Ex (Arabidopsis thaliana Transcription Factor Open Reading Frame Expression) collection of plant lines overexpressing TF genes, we screened for those TFs which restore root growth on 9-HOT. Out of 6,000 lines, eight TFs were recovered at least three times and were therefore selected for detailed analysis. Overexpression of the basic leucine Zipper (bZIP) TF TGA5 and its target, the monoxygenase CYP81D11 reduced the effect of added 9-HOT, presumably due to activation of a detoxification pathway. The highly related ETHYLENE RESPONSE FACTORs ERF106 and ERF107 induce a broad detoxification response towards 9-LOX-oxylipins and xenobiotic compounds. From a set of 18 related group S-bZIP factors isolated in the screen, bZIP11 is known to participate in auxin-mediated root growth and may connect oxylipins to root meristem function. The TF candidates isolated in this screen provide starting points for further attempts to dissect putative signaling pathways involving 9-LOX-derived oxylipins. PMID:27073862

  6. The grapevine VvibZIPC22 transcription factor is involved in the regulation of flavonoid biosynthesis

    PubMed Central

    Malacarne, Giulia; Coller, Emanuela; Czemmel, Stefan; Vrhovsek, Urska; Engelen, Kristof; Goremykin, Vadim; Bogs, Jochen; Moser, Claudio

    2016-01-01

    In grapevine, flavonoids constitute one of the most abundant subgroups of secondary metabolites, influencing the quality, health value, and typicity of wines. Their synthesis in many plant species is mainly regulated at the transcriptional level by modulation of flavonoid pathway genes either by single regulators or by complexes of different regulators. In particular, bZIP and MYB factors interact synergistically in the recognition of light response units present in the promoter of some genes of the pathway, thus mediating light-dependent flavonoid biosynthesis. We recently identified VvibZIPC22, a member of clade C of the grapevine bZIP family, in a quantitative trait locus (QTL) specifically associated with kaemperol content in mature berries. Here, to validate the involvement of this candidate gene in the fine regulation of flavonol biosynthesis, we characterized its function by in vitro and in vivo experiments. A role for this gene in the control of flavonol biosynthesis was indeed confirmed by its highest expression at flowering and during UV light-mediated induction, paralleled by accumulation of the flavonol synthase 1 transcript and flavonol compounds. The overexpression of VvibZIPC22 in tobacco caused a significant increase in several flavonoids in the flower, via induction of general and specific genes of the pathway. In agreement with this evidence, VvibZIPC22 was able to activate the promoters of specific genes of the flavonoid pathway, alone or together with other factors, as revealed by transient reporter assays. These findings, supported by in silico indications, allowed us to propose VvibZIPC22 as a new regulator of flavonoid biosynthesis in grapevine. PMID:27194742

  7. Screen Identifying Arabidopsis Transcription Factors Involved in the Response to 9-Lipoxygenase-Derived Oxylipins.

    PubMed

    Walper, Elisabeth; Weiste, Christoph; Mueller, Martin J; Hamberg, Mats; Dröge-Laser, Wolfgang

    2016-01-01

    13-Lipoxygenase-derived oxylipins, such as jasmonates act as potent signaling molecules in plants. Although experimental evidence supports the impact of oxylipins generated by the 9-Lipoxygenase (9-LOX) pathway in root development and pathogen defense, their signaling function in plants remains largely elusive. Based on the root growth inhibiting properties of the 9-LOX-oxylipin 9-HOT (9-hydroxy-10,12,15-octadecatrienoic acid), we established a screening approach aiming at identifying transcription factors (TFs) involved in signaling and/or metabolism of this oxylipin. Making use of the AtTORF-Ex (Arabidopsis thaliana Transcription Factor Open Reading Frame Expression) collection of plant lines overexpressing TF genes, we screened for those TFs which restore root growth on 9-HOT. Out of 6,000 lines, eight TFs were recovered at least three times and were therefore selected for detailed analysis. Overexpression of the basic leucine Zipper (bZIP) TF TGA5 and its target, the monoxygenase CYP81D11 reduced the effect of added 9-HOT, presumably due to activation of a detoxification pathway. The highly related ETHYLENE RESPONSE FACTORs ERF106 and ERF107 induce a broad detoxification response towards 9-LOX-oxylipins and xenobiotic compounds. From a set of 18 related group S-bZIP factors isolated in the screen, bZIP11 is known to participate in auxin-mediated root growth and may connect oxylipins to root meristem function. The TF candidates isolated in this screen provide starting points for further attempts to dissect putative signaling pathways involving 9-LOX-derived oxylipins. PMID:27073862

  8. Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress.

    PubMed

    Yoshida, Takuya; Fujita, Yasunari; Maruyama, Kyonoshin; Mogami, Junro; Todaka, Daisuke; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2015-01-01

    Under osmotic stress conditions such as drought and high salinity, the plant hormone abscisic acid (ABA) plays important roles in stress-responsive gene expression mainly through three bZIP transcription factors, AREB1/ABF2, AREB2/ABF4 and ABF3, which are activated by SNF1-related kinase 2s (SnRK2s) such as SRK2D/SnRK2.2, SRK2E/SnRK2.6 and SRK2I/SnRK2.3 (SRK2D/E/I). However, since the three AREB/ABFs are crucial, but not exclusive, for the SnRK2-mediated gene expression, transcriptional pathways governed by SRK2D/E/I are not fully understood. Here, we show that a bZIP transcription factor, ABF1, is a functional homolog of AREB1, AREB2 and ABF3 in ABA-dependent gene expression in Arabidopsis. Despite lower expression levels of ABF1 than those of the three AREB/ABFs, the areb1 areb2 abf3 abf1 mutant plants displayed increased sensitivity to drought and decreased sensitivity to ABA in primary root growth compared with the areb1 areb2 abf3 mutant. Genome-wide transcriptome analyses revealed that expression of downstream genes of SRK2D/E/I, which include many genes functioning in osmotic stress responses and tolerance such as transcription factors and LEA proteins, was mostly impaired in the quadruple mutant. Thus, these results indicate that the four AREB/ABFs are the predominant transcription factors downstream of SRK2D/E/I in ABA signalling in response to osmotic stress during vegetative growth. PMID:24738645

  9. Metabolic and transcriptional regulatory mechanisms underlying the anoxic adaptation of rice coleoptile.

    PubMed

    Lakshmanan, Meiyappan; Mohanty, Bijayalaxmi; Lim, Sun-Hyung; Ha, Sun-Hwa; Lee, Dong-Yup

    2014-01-01

    The ability of rice to germinate under anoxia by extending the coleoptile is a highly unusual characteristic and a key feature underpinning the ability of rice seeds to establish in such a stressful environment. The process has been a focal point for research for many years. However, the molecular mechanisms underlying the anoxic growth of the coleoptile still remain largely unknown. To unravel the key regulatory mechanisms of rice germination under anoxic stress, we combined in silico modelling with gene expression data analysis. Our initial modelling analysis via random flux sampling revealed numerous changes in rice primary metabolism in the absence of oxygen. In particular, several reactions associated with sucrose metabolism and fermentation showed a significant increase in flux levels, whereas reaction fluxes across oxidative phosphorylation, the tricarboxylic acid cycle and the pentose phosphate pathway were down-regulated. The subsequent comparative analysis of the differences in calculated fluxes with previously published gene expression data under air and anoxia identified at least 37 reactions from rice central metabolism that are transcriptionally regulated. Additionally, cis-regulatory content analyses of these transcriptionally controlled enzymes indicate a regulatory role for transcription factors such as MYB, bZIP, ERF and ZnF in transcriptional control of genes that are up-regulated during rice germination and coleoptile elongation under anoxia. PMID:24894389

  10. Interferon-γ Promotes Inflammation and Development of T-Cell Lymphoma in HTLV-1 bZIP Factor Transgenic Mice

    PubMed Central

    Mitagami, Yu; Yasunaga, Jun-ichirou; Kinosada, Haruka; Ohshima, Koichi; Matsuoka, Masao

    2015-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) is an etiological agent of several inflammatory diseases and a T-cell malignancy, adult T-cell leukemia (ATL). HTLV-1 bZIP factor (HBZ) is the only viral gene that is constitutively expressed in HTLV-1-infected cells, and it has multiple functions on T-cell signaling pathways. HBZ has important roles in HTLV-1-mediated pathogenesis, since HBZ transgenic (HBZ-Tg) mice develop systemic inflammation and T-cell lymphomas, which are similar phenotypes to HTLV-1-associated diseases. We showed previously that in HBZ-Tg mice, HBZ causes unstable Foxp3 expression, leading to an increase in regulatory T cells (Tregs) and the consequent induction of IFN-γ-producing cells, which in turn leads to the development of inflammation in the mice. In this study, we show that the severity of inflammation is correlated with the development of lymphomas in HBZ-Tg mice, suggesting that HBZ-mediated inflammation is closely linked to oncogenesis in CD4+ T cells. In addition, we found that IFN-γ-producing cells enhance HBZ-mediated inflammation, since knocking out IFN-γ significantly reduced the incidence of dermatitis as well as lymphoma. Recent studies show the critical roles of the intestinal microbiota in the development of Tregs in vivo. We found that even germ-free HBZ-Tg mice still had an increased number of Tregs and IFN-γ-producing cells, and developed dermatitis, indicating that an intrinsic activity of HBZ evokes aberrant T-cell differentiation and consequently causes inflammation. These results show that immunomodulation by HBZ is implicated in both inflammation and oncogenesis, and suggest a causal connection between HTLV-1-associated inflammation and ATL. PMID:26296091

  11. The Bach Family of Transcription Factors: A Comprehensive Review.

    PubMed

    Zhou, Yin; Wu, Haijing; Zhao, Ming; Chang, Christopher; Lu, Qianjin

    2016-06-01

    The transcription factors Bach1 and Bach2, which belong to a basic region-leucine zipper (bZip) family, repress target gene expression by forming heterodimers with small Maf proteins. With the ability to bind to heme, Bach1 and Bach2 are important in maintaining heme homeostasis in response to oxidative stress, which is characterized by high levels of reactive oxygen species (ROS) in cells and thereby induces cellular damage and senescence. The inactivation of Bach1 exerts an antioxidant effect. Thus, Bach1 may be a potential therapeutic target of oxidative stress-related diseases. Bach2 participates in oxidative stress-mediated apoptosis and is involved in macrophage-mediated innate immunity as well as the adaptive immune response. Bach1 and Bach2 promote the differentiation of common lymphoid progenitors to B cells by repressing myeloid-related genes. Bach2 is able to regulate class-switch recombination and plasma cell differentiation by altering the concentration of mitochondrial ROS during B cell differentiation. Furthermore, Bach2 maintains T cell homeostasis, influences the function of macrophages, and plays a role in autoimmunity. Bach2-controlling genes with super enhancers in T cells play a key role in immune regulation. However, in spite of new research, the role of Bach1 and Bach2 in immune cells and immune response is not completely clear, nor are their respective roles of in oxidative stress and the immune response, in particular with regard to the clinical phenotypes of autoimmune diseases. The anti-immunosenescence action of Bach and the role of epigenetic modifications of these transcription factors may be important in the mechanism of Bach transcription factors in mediating oxidative stress and cellular immunity. PMID:27052415

  12. Blue-light-regulated transcription factor, Aureochrome, in photosynthetic stramenopiles.

    PubMed

    Takahashi, Fumio

    2016-03-01

    During the course of evolution through various endosymbiotic processes, diverse photosynthetic eukaryotes acquired blue light (BL) responses that do not use photosynthetic pathways. Photosynthetic stramenopiles, which have red algae-derived chloroplasts through secondary symbiosis, are principal primary producers in aquatic environments, and play important roles in ecosystems and aquaculture. Through secondary symbiosis, these taxa acquired BL responses, such as phototropism, chloroplast photo-relocation movement, and photomorphogenesis similar to those which green plants acquired through primary symbiosis. Photosynthetic stramenopile BL receptors were undefined until the discovery in 2007, of a new type of BL receptor, the aureochrome (AUREO), from the photosynthetic stramenopile alga, Vaucheria. AUREO has a bZIP domain and a LOV domain, and thus BL-responsive transcription factor. AUREO orthologs are only conserved in photosynthetic stramenopiles, such as brown algae, diatoms, and red tide algae. Here, a brief review is presented of the role of AUREOs as photoreceptors for these diverse BL responses and their biochemical properties in photosynthetic stramenopiles. PMID:26781435

  13. Transcription Factor ADS-4 Regulates Adaptive Responses and Resistance to Antifungal Azole Stress

    PubMed Central

    Wang, Kangji; Zhang, Zhenying; Chen, Xi; Sun, Xianyun; Jin, Cheng

    2015-01-01

    Azoles are commonly used as antifungal drugs or pesticides to control fungal infections in medicine and agriculture. Fungi adapt to azole stress by rapidly activating the transcription of a number of genes, and transcriptional increases in some azole-responsive genes can elevate azole resistance. The regulatory mechanisms that control transcriptional responses to azole stress in filamentous fungi are not well understood. This study identified a bZIP transcription factor, ADS-4 (antifungal drug sensitive-4), as a new regulator of adaptive responses and resistance to antifungal azoles. Transcription of ads-4 in Neurospora crassa cells increased when they were subjected to ketoconazole treatment, whereas the deletion of ads-4 resulted in hypersensitivity to ketoconazole and fluconazole. In contrast, the overexpression of ads-4 increased resistance to fluconazole and ketoconazole in N. crassa. Transcriptome sequencing (RNA-seq) analysis, followed by quantitative reverse transcription (qRT)-PCR confirmation, showed that ADS-4 positively regulated the transcriptional responses of at least six genes to ketoconazole stress in N. crassa. The gene products of four ADS-4-regulated genes are known contributors to azole resistance, including the major efflux pump CDR4 (Pdr5p ortholog), an ABC multidrug transporter (NcAbcB), sterol C-22 desaturase (ERG5), and a lipid transporter (NcRTA2) that is involved in calcineurin-mediated azole resistance. Deletion of the ads-4-homologous gene Afads-4 in Aspergillus fumigatus caused hypersensitivity to itraconazole and ketoconazole, which suggested that ADS-4 is a functionally conserved regulator of adaptive responses to azoles. This study provides important information on a new azole resistance factor that could be targeted by a new range of antifungal pesticides and drugs. PMID:26100701

  14. Functional interaction of CCAAT/enhancer-binding-protein-α basic region mutants with E2F transcription factors and DNA.

    PubMed

    Kowenz-Leutz, Elisabeth; Schuetz, Anja; Liu, Qingbin; Knoblich, Maria; Heinemann, Udo; Leutz, Achim

    2016-07-01

    The transcription factor CCAAT/enhancer-binding protein α (C/EBPα) regulates cell cycle arrest and terminal differentiation of neutrophils and adipocytes. Mutations in the basic leucine zipper domain (bZip) of C/EBPα are associated with acute myeloid leukemia. A widely used murine transforming C/EBPα basic region mutant (BRM2) entails two bZip point mutations (I294A/R297A). BRM2 has been discordantly described as defective for DNA binding or defective for interaction with E2F. We have separated the two BRM2 mutations to shed light on the intertwined reciprocity between C/EBPα-E2F-DNA interactions. Both, C/EBPα I294A and R297A retain transactivation capacity and interaction with E2F-DP. The C/EBPα R297A mutation destabilized DNA binding, whereas the C/EBPα I294A mutation enhanced binding to DNA. The C/EBPα R297A mutant, like BRM2, displayed enhanced interaction with E2F-DP but failed to repress E2F-dependent transactivation although both mutants were readily suppressed by E2F1 for transcription through C/EBP cis-regulatory sites. In contrast, the DNA binding enhanced C/EBPα I294A mutant displayed increased repression of E2F-DP mediated transactivation and resisted E2F-DP mediated repression. Thus, the efficient repression of E2F dependent S-phase genes and the activation of differentiation genes reside in the balanced DNA binding capacity of C/EBPα. PMID:27131901

  15. The HY5-PIF Regulatory Module Coordinates Light and Temperature Control of Photosynthetic Gene Transcription

    PubMed Central

    Toledo-Ortiz, Gabriela; Johansson, Henrik; Lee, Keun Pyo; Bou-Torrent, Jordi; Stewart, Kelly; Steel, Gavin; Rodríguez-Concepción, Manuel; Halliday, Karen J.

    2014-01-01

    The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of PHYTOCHROME INTERACTING FACTORS (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis. While the bZIP transcription factor LONG HYPOCOTYL 5 (HY5), a potent PIF antagonist, promotes photosynthetic pigment accumulation in response to light. Here we demonstrate that by directly targeting a common promoter cis-element (G-box), HY5 and PIFs form a dynamic activation-suppression transcriptional module responsive to light and temperature cues. This antagonistic regulatory module provides a simple, direct mechanism through which environmental change can redirect transcriptional control of genes required for photosynthesis and photoprotection. In the regulation of photopigment biosynthesis genes, HY5 and PIFs do not operate alone, but with the circadian clock. However, sudden changes in light or temperature conditions can trigger changes in HY5 and PIFs abundance that adjust the expression of common target genes to optimise photosynthetic performance and growth. PMID:24922306

  16. HTLV-1 bZIP Factor Impairs Anti-viral Immunity by Inducing Co-inhibitory Molecule, T Cell Immunoglobulin and ITIM Domain (TIGIT).

    PubMed

    Yasuma, Keiko; Yasunaga, Jun-ichirou; Takemoto, Keiko; Sugata, Kenji; Mitobe, Yuichi; Takenouchi, Norihiro; Nakagawa, Masanori; Suzuki, Yutaka; Matsuoka, Masao

    2016-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) infects CD4+ T cells and induces proliferation of infected cells in vivo, which leads to the onset of adult T-cell leukemia (ATL) in some infected individuals. The HTLV-1 bZIP factor (HBZ) gene, which is encoded in the minus strand of HTLV-1, plays critical roles in pathogenesis. In this study, RNA-seq and ChIP-seq analyses using HBZ transduced T cells revealed that HBZ upregulates the expression and promoter acetylation levels of a co-inhibitory molecule, T cell immunoglobulin and ITIM domain (TIGIT), in addition to those of regulatory T cells related genes, Foxp3 and Ccr4. TIGIT was expressed on CD4+ T cells from HBZ-transgenic (HBZ-Tg) mice, and on ATL cells and HTLV-1 infected CD4+ T cells of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in vivo. Expression of Blimp1 and IL-10 was upregulated in TIGIT+CD4+ cells of HBZ-Tg mice compared with TIGIT-CD4+ T cells, suggesting the correlation between TIGIT expression and IL-10 production. When CD4+ T cells from HBZ-Tg mice were stimulated with TIGIT's ligand, CD155, their production of the inhibitory cytokine IL-10 was enhanced. Furthermore, dendritic cells from HBZ-Tg mice produced high levels of IL-10 after stimulation. These data suggest that HBZ alters immune system to suppressive state via TIGIT and IL-10. Importantly, TIGIT suppressed T-cell responses to another HTLV-1 virus protein, Tax, in vitro. Blocking of TIGIT and PD-1 slightly increased anti-Tax T-cell activity in some HAM/TSP patients. These results suggest that HBZ-induced TIGIT on HTLV-1 infected cells impairs T-cell responses to viral antigens. This study shows that HBZ-induced TIGIT plays a pivotal role in attenuating host immune responses and shaping a microenvironment favorable to HTLV-1. PMID:26735971

  17. HTLV-1 bZIP Factor Impairs Anti-viral Immunity by Inducing Co-inhibitory Molecule, T Cell Immunoglobulin and ITIM Domain (TIGIT)

    PubMed Central

    Yasuma, Keiko; Yasunaga, Jun-ichirou; Takemoto, Keiko; Sugata, Kenji; Mitobe, Yuichi; Takenouchi, Norihiro; Nakagawa, Masanori; Suzuki, Yutaka; Matsuoka, Masao

    2016-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) infects CD4+ T cells and induces proliferation of infected cells in vivo, which leads to the onset of adult T-cell leukemia (ATL) in some infected individuals. The HTLV-1 bZIP factor (HBZ) gene, which is encoded in the minus strand of HTLV-1, plays critical roles in pathogenesis. In this study, RNA-seq and ChIP-seq analyses using HBZ transduced T cells revealed that HBZ upregulates the expression and promoter acetylation levels of a co-inhibitory molecule, T cell immunoglobulin and ITIM domain (TIGIT), in addition to those of regulatory T cells related genes, Foxp3 and Ccr4. TIGIT was expressed on CD4+ T cells from HBZ-transgenic (HBZ-Tg) mice, and on ATL cells and HTLV-1 infected CD4+ T cells of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in vivo. Expression of Blimp1 and IL-10 was upregulated in TIGIT+CD4+ cells of HBZ-Tg mice compared with TIGIT-CD4+ T cells, suggesting the correlation between TIGIT expression and IL-10 production. When CD4+ T cells from HBZ-Tg mice were stimulated with TIGIT’s ligand, CD155, their production of the inhibitory cytokine IL-10 was enhanced. Furthermore, dendritic cells from HBZ-Tg mice produced high levels of IL-10 after stimulation. These data suggest that HBZ alters immune system to suppressive state via TIGIT and IL-10. Importantly, TIGIT suppressed T-cell responses to another HTLV-1 virus protein, Tax, in vitro. Blocking of TIGIT and PD-1 slightly increased anti-Tax T-cell activity in some HAM/TSP patients. These results suggest that HBZ-induced TIGIT on HTLV-1 infected cells impairs T-cell responses to viral antigens. This study shows that HBZ-induced TIGIT plays a pivotal role in attenuating host immune responses and shaping a microenvironment favorable to HTLV-1. PMID:26735971

  18. Fungal Morphology, Iron Homeostasis, and Lipid Metabolism Regulated by a GATA Transcription Factor in Blastomyces dermatitidis

    PubMed Central

    Marty, Amber J.; Broman, Aimee T.; Zarnowski, Robert; Dwyer, Teigan G.; Bond, Laura M.; Lounes-Hadj Sahraoui, Anissa; Fontaine, Joël; Ntambi, James M.; Keleş, Sündüz; Kendziorski, Christina; Gauthier, Gregory M.

    2015-01-01

    In response to temperature, Blastomyces dermatitidis converts between yeast and mold forms. Knowledge of the mechanism(s) underlying this response to temperature remains limited. In B. dermatitidis, we identified a GATA transcription factor, SREB, important for the transition to mold. Null mutants (SREBΔ) fail to fully complete the conversion to mold and cannot properly regulate siderophore biosynthesis. To capture the transcriptional response regulated by SREB early in the phase transition (0–48 hours), gene expression microarrays were used to compare SREB∆ to an isogenic wild type isolate. Analysis of the time course microarray data demonstrated SREB functioned as a transcriptional regulator at 37°C and 22°C. Bioinformatic and biochemical analyses indicated SREB was involved in diverse biological processes including iron homeostasis, biosynthesis of triacylglycerol and ergosterol, and lipid droplet formation. Integration of microarray data, bioinformatics, and chromatin immunoprecipitation identified a subset of genes directly bound and regulated by SREB in vivo in yeast (37°C) and during the phase transition to mold (22°C). This included genes involved with siderophore biosynthesis and uptake, iron homeostasis, and genes unrelated to iron assimilation. Functional analysis suggested that lipid droplets were actively metabolized during the phase transition and lipid metabolism may contribute to filamentous growth at 22°C. Chromatin immunoprecipitation, RNA interference, and overexpression analyses suggested that SREB was in a negative regulatory circuit with the bZIP transcription factor encoded by HAPX. Both SREB and HAPX affected morphogenesis at 22°C; however, large changes in transcript abundance by gene deletion for SREB or strong overexpression for HAPX were required to alter the phase transition. PMID:26114571

  19. Identification of novel transcriptional regulators of Zat12 using comprehensive yeast one-hybrid screens.

    PubMed

    Ben Daniel, Bat-Hen; Cattan, Esther; Wachtel, Chaim; Avrahami, Dorit; Glick, Yair; Malichy, Asaf; Gerber, Doron; Miller, Gad

    2016-08-01

    To appropriately acclimate to environmental stresses, plants have to rapidly activate a specific transcriptional program. Yet, the identity and function of many of the transcriptional regulators that mediate early responses to abiotic stress stimuli is still unknown. In this work we employed the promoter of the multi-stress-responsive zinc-finger protein Zat12 in yeast one-hybrid (Y1H) screens to identify early abiotic stress-responsive transcriptional regulators. Analysis of Zat12 promoter fragments fused to luciferase underlined an approximately 200 bp fragment responsive to NaCl and to reactive oxygen species (ROS). Using these segments and others as baits against Y1H control or stress Arabidopsis prey libraries, we identified 15 potential Zat12 transcriptional regulators. Among the prominent proteins identified were known transcription factors including bZIP29 and ANAC91 as well as unknown function proteins such as a homolog of the human USB1, a U6 small nuclear RNA (snRNA) processing protein, and dormancy/auxin-associated family protein 2 (DRM2). Altered expression of Zat12 during high light stress in the knockout mutants further indicated the involvement of these proteins in the regulation of Zat12. Using a state of the art microfluidic approach we showed that AtUSB1 and DRM2 can specifically bind dsDNA and were able to identify the preferred DNA-binding motif of all four proteins. Overall, the proteins identified in this work provide an important start point for charting the earliest signaling network of Zat12 and of other genes required for acclimation to abiotic stresses. PMID:26923089

  20. A Drought-Inducible Transcription Factor Delays Reproductive Timing in Rice.

    PubMed

    Zhang, Chunyu; Liu, Jun; Zhao, Tao; Gomez, Adam; Li, Cong; Yu, Chunsheng; Li, Hongyu; Lin, Jianzhong; Yang, Yuanzhu; Liu, Bin; Lin, Chentao

    2016-05-01

    The molecular mechanisms underlying photoperiod or temperature control of flowering time have been recently elucidated, but how plants regulate flowering time in response to other external factors, such as water availability, remains poorly understood. Using a large-scale Hybrid Transcription Factor approach, we identified a bZIP transcriptional factor, O. sativa ABA responsive element binding factor 1 (OsABF1), which acts as a suppressor of floral transition in a photoperiod-independent manner. Simultaneous knockdown of both OsABF1 and its closest homologous gene, OsbZIP40, in rice (Oryza sativa) by RNA interference results in a significantly earlier flowering phenotype. Molecular and genetic analyses demonstrate that a drought regime enhances expression of the OsABF1 gene, which indirectly suppresses expression of the Early heading date 1 (Ehd1) gene that encodes a key activator of rice flowering. Furthermore, we identified a drought-inducible gene named OsWRKY104 that is under the direct regulation of OsABF1 Overexpression of OsWRKY104 can suppress Ehd1 expression and confers a later flowering phenotype in rice. Together, these findings reveal a novel pathway by which rice modulates heading date in response to the change of ambient water availability. PMID:26945049

  1. Transcriptional regulation of neuropeptide and peptide hormone expression by the Drosophila dimmed and cryptocephal genes.

    PubMed

    Gauthier, Sebastien A; Hewes, Randall S

    2006-05-01

    The regulation of neuropeptide and peptide hormone gene expression is essential for the development and function of neuroendocrine cells in integrated physiological networks. In insects, a decline in circulating ecdysteroids triggers the activation of a neuroendocrine system to stimulate ecdysis, the behaviors used to shed the old cuticle at the culmination of each molt. Here we show that two evolutionarily conserved transcription factor genes, the basic helix-loop-helix (bHLH) gene dimmed (dimm) and the basic-leucine zipper (bZIP) gene cryptocephal (crc), control expression of diverse neuropeptides and peptide hormones in Drosophila. Central nervous system expression of three neuropeptide genes, Dromyosuppressin, FMRFamide-related and Leucokinin, is activated by dimm. Expression of Ecdysis triggering hormone (ETH) in the endocrine Inka cells requires crc; homozygous crc mutant larvae display markedly reduced ETH levels and corresponding defects in ecdysis. crc activates ETH expression though a 382 bp enhancer, which completely recapitulates the ETH expression pattern. The enhancer contains two evolutionarily conserved regions, and both are imperfect matches to recognition elements for activating transcription factor-4 (ATF-4), the vertebrate ortholog of the CRC protein and an important intermediate in cellular responses to endoplasmic reticulum stress. These regions also contain a putative ecdysteroid response element and a predicted binding site for the products of the E74 ecdysone response gene. These results suggest that convergence between ATF-related signaling and an important intracellular steroid response pathway may contribute to the neuroendocrine regulation of insect molting. PMID:16651547

  2. A Drought-Inducible Transcription Factor Delays Reproductive Timing in Rice1[OPEN

    PubMed Central

    Zhang, Chunyu; Zhao, Tao; Gomez, Adam; Li, Cong; Yu, Chunsheng; Lin, Jianzhong; Lin, Chentao

    2016-01-01

    The molecular mechanisms underlying photoperiod or temperature control of flowering time have been recently elucidated, but how plants regulate flowering time in response to other external factors, such as water availability, remains poorly understood. Using a large-scale Hybrid Transcription Factor approach, we identified a bZIP transcriptional factor, O. sativa ABA responsive element binding factor 1 (OsABF1), which acts as a suppressor of floral transition in a photoperiod-independent manner. Simultaneous knockdown of both OsABF1 and its closest homologous gene, OsbZIP40, in rice (Oryza sativa) by RNA interference results in a significantly earlier flowering phenotype. Molecular and genetic analyses demonstrate that a drought regime enhances expression of the OsABF1 gene, which indirectly suppresses expression of the Early heading date 1 (Ehd1) gene that encodes a key activator of rice flowering. Furthermore, we identified a drought-inducible gene named OsWRKY104 that is under the direct regulation of OsABF1. Overexpression of OsWRKY104 can suppress Ehd1 expression and confers a later flowering phenotype in rice. Together, these findings reveal a novel pathway by which rice modulates heading date in response to the change of ambient water availability. PMID:26945049

  3. The negative transcription factor E4BP4 is associated with circadian clock protein PERIOD2.

    PubMed

    Ohno, Tomoya; Onishi, Yoshiaki; Ishida, Norio

    2007-03-23

    The bZIP transcription factor E4BP4, is a mammalian homologue of vrille that functions as a key negative component of the circadian clock. We have shown that the E4BP4-binding site (B-site) is required in addition to a non-canonical E-box (E2 enhancer) for robust circadian Period2 (Per2) expression in the cell-autonomous clock. While the E2 enhancer and the B-site are closely situated, correlations between each component bound to the E2 enhancer and the B-site remain obscure. Here, we show that E4BP4 interacts with PER2, which represses transcriptional activity via the E-box enhancer. Interaction with PER2 required the carboxyl-terminal region that contains the repression domain of E4BP4. We also found that E4BP4 interacts with CRYPTOCHROME2 (CRY2), a key negative regulator in the mammalian circadian clock. These results suggest that E4BP4 is a component of the negative regulator complex of mammalian circadian clocks. PMID:17274955

  4. Light-specific transcriptional regulation of the accumulation of carotenoids and phenolic compounds in rice leaves.

    PubMed

    Mohanty, Bijayalaxmi; Lakshmanan, Meiyappan; Lim, Sun-Hyung; Kim, Jae Kwang; Ha, Sun-Hwa; Lee, Dong-Yup

    2016-06-01

    Carotenoids and phenolic compounds are important subgroups of secondary metabolites having an array of functional roles in the growth and development of plants. They are also major sources for health and pharmaceutical benefits, and industrially relevant biochemicals. The control of the biosynthesis of these compounds depends mainly on the quality and quantity of different light sources. Thus, to unravel their light-specific transcriptional regulation in rice leaves, we performed promoter analysis of genes upregulated in response to blue and red lights. The analysis results suggested a crosstalk between different phytohormones and the involvement of key transcription factors such as bHLH, bZIP, MYB, WRKY, ZnF and ERF [jasmonic acid inducible], in the regulation of higher accumulation of carotenoids and phenolic compounds upon blue light. Overall, the current analysis could improve our understanding of the light-specific regulatory mechanism involved in the biosynthesis of secondary metabolites via possible critical links between different TFs in rice leaves. PMID:27172458

  5. Phosphorylation at threonine-235 by a ras-dependent mitogen-activated protein kinase cascade is essential for transcription factor NF-IL6.

    PubMed Central

    Nakajima, T; Kinoshita, S; Sasagawa, T; Sasaki, K; Naruto, M; Kishimoto, T; Akira, S

    1993-01-01

    NF-IL6, a member of the basic leucine zipper (bZIP) family transcription factors, is involved in expression of inducible genes involved in immune and inflammatory responses. We observed that coexpression of oncogenic p21ras stimulated the transactivating activity of NF-IL6 and induced phosphorylation of Thr-235 located just N-terminal to the DNA binding domain of NF-IL6. Recently, mitogen-activated protein (MAP) kinases have been shown to be implicated in the cellular response to activated ras. Purified MAP kinases specifically phosphorylated Thr-235 of NF-IL6 in vitro. Mutation of Thr-235 abolished the ras-dependent activation of NF-IL6. From these results, we conclude that NF-IL6 is regulated through phosphorylation by MAP kinases in response to activated ras. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8384717

  6. Boosting transcription by transcription: enhancer-associated transcripts.

    PubMed

    Darrow, Emily M; Chadwick, Brian P

    2013-12-01

    Enhancers are traditionally viewed as DNA sequences located some distance from a promoter that act in cis and in an orientation-independent fashion to increase utilization of specific promoters and thereby regulate gene expression. Much progress has been made over the last decade toward understanding how these distant elements interact with target promoters, but how transcription is enhanced remains an object of active inquiry. Recent reports convey the prevalence and diversity of enhancer transcription and transcripts and support both as key factors with mechanistically distinct, but not mutually exclusive roles in enhancer function. Decoupling the causes and effects of transcription on the local chromatin landscape and understanding the role of enhancer transcripts in the context of long-range interactions are challenges that require additional attention. In this review, we focus on the possible functions of enhancer transcription by highlighting several recent enhancer RNA papers and, within the context of other enhancer studies, speculate on the role of enhancer transcription in regulating differential gene expression. PMID:24178450

  7. Transcription in archaea

    NASA Technical Reports Server (NTRS)

    Kyrpides, N. C.; Ouzounis, C. A.; Woese, C. R. (Principal Investigator)

    1999-01-01

    Using the sequences of all the known transcription-associated proteins from Bacteria and Eucarya (a total of 4,147), we have identified their homologous counterparts in the four complete archaeal genomes. Through extensive sequence comparisons, we establish the presence of 280 predicted transcription factors or transcription-associated proteins in the four archaeal genomes, of which 168 have homologs only in Bacteria, 51 have homologs only in Eucarya, and the remaining 61 have homologs in both phylogenetic domains. Although bacterial and eukaryotic transcription have very few factors in common, each exclusively shares a significantly greater number with the Archaea, especially the Bacteria. This last fact contrasts with the obvious close relationship between the archaeal and eukaryotic transcription mechanisms per se, and in particular, basic transcription initiation. We interpret these results to mean that the archaeal transcription system has retained more ancestral characteristics than have the transcription mechanisms in either of the other two domains.

  8. Master regulator for chondrogenesis, Sox9, regulates transcriptional activation of the endoplasmic reticulum stress transducer BBF2H7/CREB3L2 in chondrocytes.

    PubMed

    Hino, Kenta; Saito, Atsushi; Kido, Miori; Kanemoto, Soshi; Asada, Rie; Takai, Tomoko; Cui, Min; Cui, Xiang; Imaizumi, Kazunori

    2014-05-16

    The endoplasmic reticulum (ER) stress transducer, box B-binding factor 2 human homolog on chromosome 7 (BBF2H7), is a basic leucine zipper (bZIP) transmembrane transcription factor. This molecule is activated in response to ER stress during chondrogenesis. The activated BBF2H7 accelerates cartilage matrix protein secretion through the up-regulation of Sec23a, which is responsible for protein transport from the ER to the Golgi apparatus and is a target of BBF2H7. In the present study, we elucidated the mechanisms of the transcriptional activation of Bbf2h7 in chondrocytes. The transcription of Bbf2h7 is regulated by Sex determining region Y-related high-mobility group box 9 (Sox9), a critical factor for chondrocyte differentiation that facilitates the expression of one of the major cartilage matrix proteins Type II collagen (Col2), through binding to the Sox DNA-binding motif in the Bbf2h7 promoter. BBF2H7 is activated as a transcription factor in response to physiological ER stress caused by abundant synthesis of cartilage matrix proteins, and consequently regulates the secretion of cartilage matrix proteins. Taken together, our findings demonstrate novel regulatory mechanisms of Sox9 for controlling the secretion of cartilage matrix proteins through the activation of BBF2H7-Sec23a signaling during chondrogenesis. PMID:24711445

  9. Enhancement by lithium of cAMP-induced CRE/CREB-directed gene transcription conferred by TORC on the CREB basic leucine zipper domain

    PubMed Central

    Böer, Ulrike; Eglins, Julia; Krause, Doris; Schnell, Susanne; Schöfl, Christof; Knepel, Willhart

    2007-01-01

    The molecular mechanism of the action of lithium salts in the treatment of bipolar disorder is not well understood. As their therapeutic action requires chronic treatment, adaptive neuronal processes are suggested to be involved. The molecular basis of this are changes in gene expression regulated by transcription factors such as CREB (cAMP-response-element-binding protein). CREB contains a transactivation domain, in which Ser119 is phosphorylated upon activation, and a bZip (basic leucine zipper domain). The bZip is involved in CREB dimerization and DNA-binding, but also contributes to CREB transactivation by recruiting the coactivator TORC (transducer of regulated CREB). In the present study, the effect of lithium on CRE (cAMP response element)/CREB-directed gene transcription was investigated. Electrically excitable cells were transfected with CRE/CREB-driven luciferase reporter genes. LiCl (6 mM or higher) induced an up to 4.7-fold increase in 8-bromo-cAMP-stimulated CRE/CREB-directed transcription. This increase was not due to enhanced Ser119 phosphorylation or DNA-binding of CREB. Also, the known targets inositol monophosphatase and GSK3β (glycogen-synthase-kinase 3β) were not involved as specific GSK3β inhibitors and inositol replenishment did not mimic and abolish respectively the effect of lithium. However, lithium no longer enhanced CREB activity when the CREB-bZip was deleted or the TORC-binding site inside the CREB-bZip was specifically mutated (CREB-R300A). Otherwise, TORC overexpression conferred lithium responsiveness on CREB-bZip or the CRE-containing truncated rat somatostatin promoter. This indicates that lithium enhances cAMP-induced CRE/CREB-directed transcription, conferred by TORC on the CREB-bZip. We thus support the hypothesis that lithium salts modulate CRE/CREB-dependent gene transcription and suggest the CREB coactivator TORC as a new molecular target of lithium. PMID:17696880

  10. Genome-Wide Targets Regulated by the OsMADS1 Transcription Factor Reveals Its DNA Recognition Properties.

    PubMed

    Khanday, Imtiyaz; Das, Sanjukta; Chongloi, Grace L; Bansal, Manju; Grossniklaus, Ueli; Vijayraghavan, Usha

    2016-09-01

    OsMADS1 controls rice (Oryza sativa) floral fate and organ development. Yet, its genome-wide targets and the mechanisms underlying its role as a transcription regulator controlling developmental gene expression are unknown. We identify 3112 gene-associated OsMADS1-bound sites in the floret genome. These occur in the vicinity of transcription start sites, within gene bodies, and in intergenic regions. Majority of the bound DNA contained CArG motif variants or, in several cases, only A-tracts. Sequences flanking the binding peak had a higher AT nucleotide content, implying that broader DNA structural features may define in planta binding. Sequences for binding by other transcription factor families like MYC, AP2/ERF, bZIP, etc. are enriched in OsMADS1-bound DNAs. Target genes implicated in transcription, chromatin remodeling, cellular processes, and hormone metabolism were enriched. Combining expression data from OsMADS1 knockdown florets with these DNA binding data, a snapshot of a gene regulatory network was deduced where targets, such as AP2/ERF and bHLH transcription factors and chromatin remodelers form nodes. We show that the expression status of these nodal factors can be altered by inducing the OsMADS1-GR fusion protein and present a model for a regulatory cascade where the direct targets of OsMADS1, OsbHLH108/SPT, OsERF034, and OsHSF24, in turn control genes such as OsMADS32 and OsYABBY5 This cascade, with other similar relationships, cumulatively contributes to floral organ development. Overall, OsMADS1 binds to several regulatory genes and, probably in combination with other factors, controls a gene regulatory network that ensures rice floret development. PMID:27457124

  11. Identification of transcriptional regulatory nodes in soybean defense networks using transient co-transactivation assays

    PubMed Central

    Wang, Yongli; Wang, Hui; Ma, Yujie; Du, Haiping; Yang, Qing; Yu, Deyue

    2015-01-01

    Plant responses to major environmental stressors, such as insect feeding, not only occur via the functions of defense genes but also involve a series of regulatory factors. Our previous transcriptome studies proposed that, in addition to two defense-related genes, GmVSPβ and GmN:IFR, a high proportion of transcription factors (TFs) participate in the incompatible soybean-common cutworm interaction networks. However, the regulatory mechanisms and effects of these TFs on those induced defense-related genes remain unknown. In the present work, we isolated and identified 12 genes encoding MYB, WRKY, NAC, bZIP, and DREB TFs from a common cutworm-induced cDNA library of a resistant soybean line. Sequence analysis of the promoters of three co-expressed genes, including GmVSPα, GmVSPβ, and GmN:IFR, revealed the enrichment of various TF-binding sites for defense and stress responses. To further identify the regulatory nodes composed of these TFs and defense gene promoters, we performed extensive transient co-transactivation assays to directly test the transcriptional activity of the 12 TFs binding at different levels to the three co-expressed gene promoters. The results showed that all 12 TFs were able to transactivate the GmVSPβ and GmN:IFR promoters. GmbZIP110 and GmMYB75 functioned as distinct regulators of GmVSPα/β and GmN:IFR expression, respectively, while GmWRKY39 acted as a common central regulator of GmVSPα/β and GmN:IFR expression. These corresponding TFs play crucial roles in coordinated plant defense regulation, which provides valuable information for understanding the molecular mechanisms involved in insect-induced transcriptional regulation in soybean. More importantly, the identified TFs and suitable promoters can be used to engineer insect-resistant plants in molecular breeding studies. PMID:26579162

  12. Recent Advances in Utilizing Transcription Factors to Improve Plant Abiotic Stress Tolerance by Transgenic Technology

    PubMed Central

    Wang, Hongyan; Wang, Honglei; Shao, Hongbo; Tang, Xiaoli

    2016-01-01

    Agricultural production and quality are adversely affected by various abiotic stresses worldwide and this will be exacerbated by the deterioration of global climate. To feed a growing world population, it is very urgent to breed stress-tolerant crops with higher yields and improved qualities against multiple environmental stresses. Since conventional breeding approaches had marginal success due to the complexity of stress tolerance traits, the transgenic approach is now being popularly used to breed stress-tolerant crops. So identifying and characterizing the critical genes involved in plant stress responses is an essential prerequisite for engineering stress-tolerant crops. Far beyond the manipulation of single functional gene, engineering certain regulatory genes has emerged as an effective strategy now for controlling the expression of many stress-responsive genes. Transcription factors (TFs) are good candidates for genetic engineering to breed stress-tolerant crop because of their role as master regulators of many stress-responsive genes. Many TFs belonging to families AP2/EREBP, MYB, WRKY, NAC, bZIP have been found to be involved in various abiotic stresses and some TF genes have also been engineered to improve stress tolerance in model and crop plants. In this review, we take five large families of TFs as examples and review the recent progress of TFs involved in plant abiotic stress responses and their potential utilization to improve multiple stress tolerance of crops in the field conditions. PMID:26904044

  13. Shoot-to-Root Mobile Transcription Factor HY5 Coordinates Plant Carbon and Nitrogen Acquisition.

    PubMed

    Chen, Xiangbin; Yao, Qinfang; Gao, Xiuhua; Jiang, Caifu; Harberd, Nicholas P; Fu, Xiangdong

    2016-03-01

    Coordination of shoot photosynthetic carbon fixation with root inorganic nitrogen uptake optimizes plant performance in a fluctuating environment [1]. However, the molecular basis of this long-distance shoot-root coordination is little understood. Here we show that Arabidopsis ELONGATED HYPOCOTYL5 (HY5), a bZIP transcription factor that regulates growth in response to light [2, 3], is a shoot-to-root mobile signal that mediates light promotion of root growth and nitrate uptake. Shoot-derived HY5 auto-activates root HY5 and also promotes root nitrate uptake by activating NRT2.1, a gene encoding a high-affinity nitrate transporter [4]. In the shoot, HY5 promotes carbon assimilation and translocation, whereas in the root, HY5 activation of NRT2.1 expression and nitrate uptake is potentiated by increased carbon photoassimilate (sucrose) levels. We further show that HY5 function is fluence-rate modulated and enables homeostatic maintenance of carbon-nitrogen balance in different light environments. Thus, mobile HY5 coordinates light-responsive carbon and nitrogen metabolism, and hence shoot and root growth, in a whole-organismal response to ambient light fluctuations. PMID:26877080

  14. Biliverdin reductase, a novel regulator for induction of activating transcription factor-2 and heme oxygenase-1.

    PubMed

    Kravets, Anatoliy; Hu, Zhenbo; Miralem, Tihomir; Torno, Michael D; Maines, Mahin D

    2004-05-01

    Biliverdin IXalpha reductase (BVR) catalyzes reduction of the HO activity product, biliverdin, to bilirubin. hBVR is a serine/threonine kinase that contains a bZip domain. Presently, regulation of gene expression by hBVR was examined. 293A cells were infected with adenovirus-doxycycline (Ad-Dox)-inducible hBVR cDNA. High level expression of hBVR was determined at mRNA, protein, and activity levels 8 h after induction. Cell signal transduction microarray analysis of cells infected with expression or with the control Ad-inverted (INV)-hBVR vector identified ATF-2 among several up-regulated genes. ATF-2 is a bZip transcription factor for activation of cAMP response element (CRE) and a dimeric partner to c-jun in MAPK pathway that regulates the stress protein, HO-1, expression. Northern and Western blot analyses showed increases of approximately 10-fold in ATF-2 mRNA and protein at 16 and 24 h after Dox addition. Ad-INV-hBVR did not effect ATF-2 expression. In hBVR-infected cells, levels of HO-1 mRNA and protein were increased. In vitro translated hBVR and nuclear extract containing hBVR in gel mobility-shift assay bound to AP-1 sites in the ATF-2 promoter region and to an oligonucleotide containing the CRE site. Both bindings could be competed out by excess unlabeled probe; in the presence of hBVR antibody, they displayed shifted bands. Co-transfection of hBVR with ATF-2 or c-jun promoters caused a severalfold increase in luciferase activity. hBVR modulation of ATF-2 and HO-1 expression suggests it has a potential role in regulation of AP-1 and cAMP-regulated genes and a role in cell signaling. We propose that increased expression of the protein can be used to alter the gene expression profile in the cell. PMID:14988408

  15. Transcription factor AtbZIP60 regulates expression of Ca2+ -dependent protein kinase genes in transgenic cells.

    PubMed

    Tang, Wei; Page, Michael

    2013-03-01

    The Arabidopsis thaliana bZIP60 (AtbZIP60) transcription factor regulates stress signaling. However, its molecular mechanism remains to be elucidated. In this investigation, cell suspension cultures of two different plant species rice (Oryza sativa L.) and white pine (Pinus strobes L.) were transformed using Agrobacterium tumefaciens strain LBA4404 harboring pBI-AtZIP60. Integration of the AtbZIP60 gene into the genome of rice and white pine has been confirmed by polymerase chain reaction (PCR), southern blotting, and northern blotting analyses. Six transgenic cell lines from O. sativa and three transgenic cell lines from P. strobus were used to analyze the salt, drought, and cold tolerance conferred by the overexpression of the AtbZIP60 gene. Our results demonstrated that expression of the AtbZIP60 gene enhanced salt, drought, and cold tolerance in rice and white pine transgenic cell lines. In rice, transcription factor AtbZIP60 increased expression of Ca(2+)-dependent protein kinase genes OsCPK6, OsCPK9, OsCPK10, OsCPK19, OsCPK25, and OsCPK26 under treatment of salt, drought, and cold. These results demonstrated that overexpression of the AtbZIP60 gene in transgenic cell lines improved salt, drought, and cold stress tolerances by regulating expression of Ca(2+)-dependent protein kinase genes. Overexpression of the AtbZIP60 gene could be an alternative choice for engineering plant abiotic stress tolerance. PMID:23275191

  16. Epstein-Barr virus transcription factor Zta acts through distal regulatory elements to directly control cellular gene expression.

    PubMed

    Ramasubramanyan, Sharada; Osborn, Kay; Al-Mohammad, Rajaei; Naranjo Perez-Fernandez, Ijiel B; Zuo, Jianmin; Balan, Nicolae; Godfrey, Anja; Patel, Harshil; Peters, Gordon; Rowe, Martin; Jenner, Richard G; Sinclair, Alison J

    2015-04-20

    Lytic replication of the human gamma herpes virus Epstein-Barr virus (EBV) is an essential prerequisite for the spread of the virus. Differential regulation of a limited number of cellular genes has been reported in B-cells during the viral lytic replication cycle. We asked whether a viral bZIP transcription factor, Zta (BZLF1, ZEBRA, EB1), drives some of these changes. Using genome-wide chromatin immunoprecipitation coupled to next-generation DNA sequencing (ChIP-seq) we established a map of Zta interactions across the human genome. Using sensitive transcriptome analyses we identified 2263 cellular genes whose expression is significantly changed during the EBV lytic replication cycle. Zta binds 278 of the regulated genes and the distribution of binding sites shows that Zta binds mostly to sites that are distal to transcription start sites. This differs from the prevailing view that Zta activates viral genes by binding exclusively at promoter elements. We show that a synthetic Zta binding element confers Zta regulation at a distance and that distal Zta binding sites from cellular genes can confer Zta-mediated regulation on a heterologous promoter. This leads us to propose that Zta directly reprograms the expression of cellular genes through distal elements. PMID:25779048

  17. The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development.

    PubMed

    Gascoyne, Duncan M; Long, Elaine; Veiga-Fernandes, Henrique; de Boer, Jasper; Williams, Owen; Seddon, Benedict; Coles, Mark; Kioussis, Dimitris; Brady, Hugh J M

    2009-10-01

    Natural killer (NK) cells are a subset of lymphocytes crucial for innate immunity and modification of adaptive immune responses. In contrast to commitment to the T cell or B cell lineage, little is known about NK cell lineage commitment. Here we show that the basic leucine zipper (bZIP) transcription factor E4BP4 (also called NFIL3) is essential for generation of the NK cell lineage. E4BP4-deficient mice (Nfil3(-/-); called 'E4bp4(-/-)' here) had B cells, T cells and NKT cells but specifically lack NK cells and showed severely impaired NK cell-mediated cytotoxicity. Overexpression of E4bp4 was sufficient to increase NK cell production from hematopoietic progenitor cells. E4BP4 acted in a cell-intrinsic manner 'downstream' of the interleukin 15 receptor (IL-15R) and through the transcription factor Id2. E4bp4(-/-) mice may provide a model for definitive analysis of the contribution of NK cells to immune responses and pathologies. PMID:19749763

  18. “Related to ABA-Insensitive3(ABI3)/Viviparous1 and AtABI5 transcription factor co-expression in cotton enhances drought stress adaptation”

    PubMed Central

    Mittal, Amandeep; Gampala, Srinivas S. L.; Ritchie, Glen L.; Payton, Paxton; Burke, John J.; Rock, Christopher D.

    2014-01-01

    Drought tolerance is an important trait being pursued by the agbiotech industry. Abscisic acid (ABA) is a stress hormone that mediates a multitude of processes in growth and development, water use efficiency (WUE), and gene expression during seed development and in response to environmental stresses. Arabidopsis B3-domain transcription factor Related to ABA-Insensitive3 (ABI3)/Viviparous1 (namely, AtRAV2) and basic leucine zipper (bZIPs) AtABI5 or AtABF3 transactivated ABA- inducible promoter: GUS reporter expression in a maize mesophyll protoplast transient assay and showed synergies in reporter transactivation when co-expressed. Transgenic cotton (Gossypium hirsutum) expressing AtRAV1/2 and/or AtABI5 showed resistance to imposed drought stress under field and greenhouse conditions and exhibited improved photosynthetic and WUEs associated with absorption through larger root system and greater leaf area. We observed synergy for root biomass accumulation in the greenhouse, intrinsic WUE in the field, and drought tolerance in stacked AtRAV and AtABI5 double-transgenic cotton. We assessed AtABI5 and AtRAV1/2 involvement in drought stress adaptations though reactive oxygen species scavenging and osmotic adjustment by marker gene expression in cotton. Deficit irrigation-grown AtRAV1/2 and AtABI5 transgenics had “less stressed” molecular and physiological phenotypes under drought, likely due to improved photoassimilation and root and shoot sink strengths and enhanced expression of endogenous GhRAV and genes for antioxidant and osmolyte biosynthesis. Over-expression of bZIP and RAV TFs could impact sustainable cotton agriculture and potentially other crops under limited irrigation conditions. PMID:24483851

  19. Related to ABA-Insensitive3(ABI3)/Viviparous1 and AtABI5 transcription factor coexpression in cotton enhances drought stress adaptation.

    PubMed

    Mittal, Amandeep; Gampala, Srinivas S L; Ritchie, Glen L; Payton, Paxton; Burke, John J; Rock, Christopher D

    2014-06-01

    Drought tolerance is an important trait being pursued by the agbiotech industry. Abscisic acid (ABA) is a stress hormone that mediates a multitude of processes in growth and development, water use efficiency (WUE) and gene expression during seed development and in response to environmental stresses. Arabidopsis B3-domain transcription factor Related to ABA-Insensitive3 (ABI3)/Viviparous1 (namely AtRAV2) and basic leucine zipper (bZIPs) AtABI5 or AtABF3 transactivated ABA-inducible promoter:GUS reporter expression in a maize mesophyll protoplast transient assay and showed synergies in reporter transactivation when coexpressed. Transgenic cotton (Gossypium hirsutum) expressing AtRAV1/2 and/or AtABI5 showed resistance to imposed drought stress under field and greenhouse conditions and exhibited improved photosynthesis and WUEs associated with absorption through larger root system and greater leaf area. We observed synergy for root biomass accumulation in the greenhouse, intrinsic WUE in the field and drought tolerance in stacked AtRAV and AtABI5 double-transgenic cotton. We assessed AtABI5 and AtRAV1/2 involvement in drought stress adaptations through reactive oxygen species scavenging and osmotic adjustment by marker gene expression in cotton. Deficit irrigation-grown AtRAV1/2 and AtABI5 transgenics had 'less-stressed' molecular and physiological phenotypes under drought, likely due to improved photoassimilation and root and shoot sink strengths and enhanced expression of endogenous GhRAV and genes for antioxidant and osmolyte biosynthesis. Overexpression of bZIP and RAV TFs could impact sustainable cotton agriculture and potentially other crops under limited irrigation conditions. PMID:24483851

  20. Transcription Regulation in Archaea.

    PubMed

    Gehring, Alexandra M; Walker, Julie E; Santangelo, Thomas J

    2016-07-15

    The known diversity of metabolic strategies and physiological adaptations of archaeal species to extreme environments is extraordinary. Accurate and responsive mechanisms to ensure that gene expression patterns match the needs of the cell necessitate regulatory strategies that control the activities and output of the archaeal transcription apparatus. Archaea are reliant on a single RNA polymerase for all transcription, and many of the known regulatory mechanisms employed for archaeal transcription mimic strategies also employed for eukaryotic and bacterial species. Novel mechanisms of transcription regulation have become apparent by increasingly sophisticated in vivo and in vitro investigations of archaeal species. This review emphasizes recent progress in understanding archaeal transcription regulatory mechanisms and highlights insights gained from studies of the influence of archaeal chromatin on transcription. PMID:27137495

  1. Plant transcription factors.

    PubMed

    Meshi, T; Iwabuchi, M

    1995-12-01

    Transcriptional regulation of gene expression relies on the recognition of promoter elements by transcription factors. In the past several years, a considerable number of (putative) transcription factors have been identified in plants. Some genes coding for these factors were isolated by south-western screening with oligonucleotides as a probe or by homology-based screening, and others were initially isolated by genetic means and subsequently identified as the genes for transcription factors. These transcription factors often form families of structurally related proteins with similar DNA-binding specificities and in addition, they are sometimes involved in related phenomena. Some groups of factors homo- and/or heterodimerize to increase the length and variability of the target sequences. Transcriptional activators, in general, comprise a modular activation domain. The activities of the transcription factors are controlled by post-translational modification, like phosphorylation and glycosylation, as well as at the levels of nuclear transport, oligomerization, etc. In this review, we will summarize the current knowledge of plant transcription factors to help understand the mechanistic aspects of the transcriptional regulation of genes. PMID:8589926

  2. Transcriptional activators in yeast

    PubMed Central

    2006-01-01

    Eukaryotic transcription activation domains (ADs) are not well defined on the proteome scale. We systematicallly tested ∼6000 yeast proteins for transcriptional activity using a yeast one-hybrid system and identified 451 transcriptional activators. We then determined their transcription activation strength using fusions to the Gal4 DNA-binding domain and a His3 reporter gene which contained a promoter with a Gal4-binding site. Among the 132 strongest activators 32 are known transcription factors while another 35 have no known function. Although zinc fingers, helix–loop–helix domains and several other domains are highly overrepresented among the activators, only few contain characterized ADs. We also found some striking correlations: the stronger the activation activity, the more acidic, glutamine-rich, proline-rich or asparagine-rich the activators were. About 29% of the activators have been found previously to specifically interact with the transcription machinery, while 10% are known to be components of transcription regulatory complexes. Based on their transcriptional activity, localization and interaction patterns, at least six previously uncharacterized proteins are suggested to be bona fide transcriptional regulators (namely YFL049W, YJR070C, YDR520C, YGL066W/Sgf73, YKR064W and YCR082W/Ahc2). PMID:16464826

  3. WRKY transcription factors

    PubMed Central

    Bakshi, Madhunita; Oelmüller, Ralf

    2014-01-01

    WRKY transcription factors are one of the largest families of transcriptional regulators found exclusively in plants. They have diverse biological functions in plant disease resistance, abiotic stress responses, nutrient deprivation, senescence, seed and trichome development, embryogenesis, as well as additional developmental and hormone-controlled processes. WRKYs can act as transcriptional activators or repressors, in various homo- and heterodimer combinations. Here we review recent progress on the function of WRKY transcription factors in Arabidopsis and other plant species such as rice, potato, and parsley, with a special focus on abiotic, developmental, and hormone-regulated processes. PMID:24492469

  4. Regulation of flavonol content and composition in (Syrah×Pinot Noir) mature grapes: integration of transcriptional profiling and metabolic quantitative trait locus analyses

    PubMed Central

    Malacarne, Giulia; Costantini, Laura; Coller, Emanuela; Battilana, Juri; Velasco, Riccardo; Vrhovsek, Urska; Grando, Maria Stella; Moser, Claudio

    2015-01-01

    Flavonols are a ubiquitous class of flavonoids that accumulate preferentially in flowers and mature berries. Besides their photo-protective function, they play a fundamental role during winemaking, stabilizing the colour by co-pigmentation with anthocyanins and contributing to organoleptic characteristics. Although the general flavonol pathway has been genetically and biochemically elucidated, the genetic control of flavonol content and composition at harvest is still not clear. To this purpose, the grapes of 170 segregating F1 individuals from a ‘Syrah’×’Pinot Noir’ population were evaluated at the mature stage for the content of six flavonol aglycons in four seasons. Metabolic data in combination with genetic data enabled the identification of 16 mQTLs (metabolic quantitative trait loci). For the first time, major genetic control by the linkage group 2 (LG 2)/MYBA region on flavonol variation, in particular of tri-hydroxylated flavonols, is demonstrated. Moreover, seven regions specifically associated with the fine control of flavonol biosynthesis are identified. Gene expression profiling of two groups of individuals significantly divergent for their skin flavonol content identified a large set of differentially modulated transcripts. Among these, the transcripts coding for MYB and bZIP transcription factors, methyltranferases, and glucosyltranferases specific for flavonols, proteins, and factors belonging to the UV-B signalling pathway and co-localizing with the QTL regions are proposed as candidate genes for the fine regulation of flavonol content and composition in mature grapes. PMID:26071529

  5. Regulation of flavonol content and composition in (Syrah×Pinot Noir) mature grapes: integration of transcriptional profiling and metabolic quantitative trait locus analyses.

    PubMed

    Malacarne, Giulia; Costantini, Laura; Coller, Emanuela; Battilana, Juri; Velasco, Riccardo; Vrhovsek, Urska; Grando, Maria Stella; Moser, Claudio

    2015-08-01

    Flavonols are a ubiquitous class of flavonoids that accumulate preferentially in flowers and mature berries. Besides their photo-protective function, they play a fundamental role during winemaking, stabilizing the colour by co-pigmentation with anthocyanins and contributing to organoleptic characteristics. Although the general flavonol pathway has been genetically and biochemically elucidated, the genetic control of flavonol content and composition at harvest is still not clear. To this purpose, the grapes of 170 segregating F1 individuals from a 'Syrah'×'Pinot Noir' population were evaluated at the mature stage for the content of six flavonol aglycons in four seasons. Metabolic data in combination with genetic data enabled the identification of 16 mQTLs (metabolic quantitative trait loci). For the first time, major genetic control by the linkage group 2 (LG 2)/MYBA region on flavonol variation, in particular of tri-hydroxylated flavonols, is demonstrated. Moreover, seven regions specifically associated with the fine control of flavonol biosynthesis are identified. Gene expression profiling of two groups of individuals significantly divergent for their skin flavonol content identified a large set of differentially modulated transcripts. Among these, the transcripts coding for MYB and bZIP transcription factors, methyltranferases, and glucosyltranferases specific for flavonols, proteins, and factors belonging to the UV-B signalling pathway and co-localizing with the QTL regions are proposed as candidate genes for the fine regulation of flavonol content and composition in mature grapes. PMID:26071529

  6. Divergent RNA transcription

    PubMed Central

    Naughton, Catherine; Corless, Samuel; Gilbert, Nick

    2013-01-01

    New approaches using biotinylated-psoralen as a probe for investigating DNA structure have revealed new insights into the relationship between DNA supercoiling, transcription and chromatin compaction. We explore a hypothesis that divergent RNA transcription generates negative supercoiling at promoters facilitating initiation complex formation and subsequent promoter clearance. PMID:23863199

  7. Induction of metallothionein I by phenolic antioxidants requires metal-activated transcription factor 1 (MTF-1) and zinc.

    PubMed Central

    Bi, Yongyi; Palmiter, Richard D; Wood, Kristi M; Ma, Qiang

    2004-01-01

    Phenolic antioxidants, such as tBHQ [2,5-di-(t-butyl)-1,4-hydroquinone], induce Mt1 (metallothionein 1) gene expression and accumulation of MT protein. Induction of Mt1 mRNA does not depend on protein synthesis, and correlates with oxidation-reduction functions of the antioxidants. In the present study, we analysed the biochemical pathway of the induction. Induction depends on the presence of MTF-1 (metal-activated transcription factor 1), a transcription factor that is required for metal-induced transcription of Mt1, but does not require nuclear factor erythroid 2-related factor 2, a tBHQ-activated CNC bZip (cap 'n' collar basic leucine zipper) protein, that is responsible for regulating genes encoding phase II drug-metabolizing enzymes. Moreover, tBHQ induces the expression of MRE-beta Geo, a reporter gene driven by five metal response elements that constitute an optimal MTF-1 binding site. Reconstitution of Mtf1 -null cells with MTF-1 restores induction by both zinc and tBHQ. Unlike activation of phase II genes by tBHQ, induction of Mt1 expression does not occur in the presence of EDTA, when cells are cultured in zinc-depleted medium, or in cells with reduced intracellular 'free' zinc due to overexpression of ZnT1, a zinc-efflux transporter, indicating that induction requires zinc. In addition, fluorescence imaging reveals that tBHQ increases cytoplasmic free zinc concentration by mobilizing intracellular zinc pools. These findings establish that phenolic antioxidants activate Mt1 transcription by a zinc-dependent mechanism, which involves MTF-1 binding to metal regulator elements in the Mt1 gene promoter. PMID:14998373

  8. In silico cloning and characterization of the TGA (TGACG MOTIF-BINDING FACTOR) transcription factors subfamily in Carica papaya.

    PubMed

    Idrovo Espín, Fabio Marcelo; Peraza-Echeverria, Santy; Fuentes, Gabriela; Santamaría, Jorge M

    2012-05-01

    The TGA transcription factors belong to the subfamily of bZIP group D that play a major role in disease resistance and development. Most of the TGA identified in Arabidopsis interact with the master regulator of SAR, NPR1 that controls the expression of PR genes. As a first approach to determine the possible involvement of these transcription factors in papaya defense, we characterized Arabidopsis TGA orthologs from the genome of Carica papaya cv. SunUp. Six orthologs CpTGA1 to CpTGA6, were identified. The predicted CpTGA proteins were highly similar to AtTGA sequences and probably share the same DNA binding properties and transcriptional regulation features. The protein sequences alignment evidenced the presence of conserved domains, characteristic of this group of transcription factors. The phylogeny showed that CpTGA evolved into three different subclades associated with defense and floral development. This is the first report of basal expression patterns assessed by RT-PCR, from the whole subfamily of CpTGA members in different tissues from papaya cv. Maradol mature plants. Overall, CpTGA1, CpTGA3 CpTGA6 and CpTGA4 showed a basal expression in all tissues tested; CpTGA2 expressed strongly in all tissues except in petioles while CpTGA5 expressed only in petals and to a lower extent in petioles. Although more detailed studies in anthers and other floral structures are required, we suggest that CpTGA5 might be tissue-specific, and it might be involved in papaya floral development. On the other hand, we report here for the first time, the expression of the whole family of CpTGA in response to salicylic acid (SA). The expression of CpTGA3, CpTGA4 and CpTGA6 increased in response to SA, what would suggest its involvement in the SAR response in papaya. PMID:22410205

  9. Inhibition of IL-1β Transcription by Peptides Derived from the hCMV IE2 Transactivator

    PubMed Central

    Listman, James; Race, JoAnne E.; Walker-Kopp, Nancy; Unlu, Sebnem; Auron, Philip E.

    2008-01-01

    The immediate early (IE) proteins of human cytomegalovirus (hCMV) have diverse roles in directing viral and host cell transcription. Among these is the ability of IE2 to induce transcription of the IL1B gene that codes for IL-1β in monocytes. This function is partially explained by interaction between IE2 and the host cell transcription factor Spi-1/PU.1 (Spi-1). We now show that maximal IE2 function also depends on productive interactions localizing to two C/EBP sites on the IL1B promoter suggesting either bi- or tri-molecular interactions between IE2, Spi-1 and C/EBPβ at two different locations on the promoter. The IE2 interaction region on Spi-1 was previously mapped to the DNA-binding ETS domain and overlaps the region of Spi-1 that interacts with the transcription factor C/EBPβ, a factor known to be critical for the induction of IL1B in response to Toll/IL-1 receptor (TIR) family signal transduction. The Spi-1 interacting region of IE2 maps to amino acids 315–328, a sequence that also interacts with the bZIP domain of C/EBPβ. An expression vector coding for amino acids 291–364 of IE2 can suppress LPS induction of a cotransfected IL1B enhancer-promoter fragment in a monocyte cell line. This inhibition is likely the result of competition between Spi-1 and C/EBPβ, thus blunting gene induction. PMID:18308397

  10. ASTP Onboard Voice Transcription

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The transcription is presented of the Apollo-Soyuz Test Project voice communications as recorded on the command module data storage equipment. Data from this recorder are telemetered (dumped) to Space Tracking and Data Network sites for retransmission to the Johnson Space Center. The transcript is divided into three columns -- time, speaker, and text. The Greenwich mean time column consists of three two-digit numbers representing hours, minutes, and seconds (e.g., 22 34 14) for the Julian dates shown at the top of the page on which a new day begins. The speaker column indicates the source of a transmission; the text column contains the verbatim transcript of the communications.

  11. HDAC inhibitors suppress c-Jun/Fra-1-mediated proliferation through transcriptionally downregulating MKK7 and Raf1 in neuroblastoma cells

    PubMed Central

    Tang, Xiaomei; Xia, Yong; He, Guozhen; Min, Zhiqun; Li, Chun; Xiong, Shiqiu; Shi, Zhi; Lu, Yongjian; Yuan, Zhongmin

    2016-01-01

    Activator protein 1 (AP-1) is a transcriptional factor composed of the dimeric members of bZIP proteins, which are frequently deregulated in human cancer cells. In this study, we aimed to identify an oncogenic AP-1 dimer critical for the proliferation of neuroblastoma cells and to investigate whether histone deacetylase inhibitors (HDACIs), a new generation of anticancer agents, could target the AP-1 dimer. We report here that HDACIs including trichostatin A, suberoylanilidehydroxamic acid, valproic acid and M344 can transcriptionally suppress both c-Jun and Fra-1, preceding their inhibition of cell growth. c-Jun preferentially interacting with Fra-1 as a heterodimer is responsible for AP-1 activity and critical for cell growth. Mechanistically, HDACIs suppress Fra-1 expression through transcriptionally downregulating Raf1 and subsequently decreasing MEK1/2-ERK1/2 activity. Unexpectedly, HDACI treatment caused MKK7 downregulation at both the protein and mRNA levels. Deletion analysis of the 5′-flanking sequence of the MKK7 gene revealed that a major element responsible for the downregulation by HDACI is located at −149 to −3 relative to the transcriptional start site. Knockdown of MKK7 but not MKK4 remarkably decreased JNK/c-Jun activity and proliferation, whereas ectopic MKK7-JNK1 reversed HDACI-induced c-Jun suppression. Furthermore, suppression of both MKK-7/c-Jun and Raf-1/Fra-1 activities was involved in the tumor growth inhibitory effects induced by SAHA in SH-SY5Y xenograft mice. Collectively, these findings demonstrated that c-Jun/Fra-1 dimer is critical for neuroblastoma cell growth and that HDACIs act as effective suppressors of the two oncogenes through transcriptionally downregulating MKK7 and Raf1. PMID:26734995

  12. Characterization of Citrus sinensis transcription factors closely associated with the non-host response to Xanthomonas campestris pv. vesicatoria.

    PubMed

    Daurelio, Lucas D; Romero, María S; Petrocelli, Silvana; Merelo, Paz; Cortadi, Adriana A; Talón, Manuel; Tadeo, Francisco R; Orellano, Elena G

    2013-07-01

    Plants, when exposed to certain pathogens, may display a form of genotype-independent resistance, known as non-host response. In this study, the response of Citrus sinensis (sweet orange) leaves to Xanthomonas campestris pv. vesicatoria (Xcv), a pepper and tomato pathogenic bacterium, was analyzed through biochemical assays and cDNA microarray hybridization and compared with Asiatic citrus canker infection caused by Xanthomonas citri subsp. citri. Citrus leaves exposed to the non-host bacterium Xcv showed hypersensitive response (HR) symptoms (cell death), a defense mechanism common in plants but poorly understood in citrus. The HR response was accompanied by differentially expressed genes that are associated with biotic stress and cell death. Moreover, 58 transcription factors (TFs) were differentially regulated by Xcv in citrus leaves, including 26 TFs from the stress-associated families AP2-EREBP, bZip, Myb and WRKY. Remarkably, in silico analysis of the distribution of expressed sequence tags revealed that 10 of the 58 TFs, belonging to C2C2-GATA, C2H2, CCAAT, HSF, NAC and WRKY gene families, were specifically over-represented in citrus stress cDNA libraries. This study identified candidate TF genes for the regulation of key steps during the citrus non-host HR. Furthermore, these TFs might be useful in future strategies of molecular breeding for citrus disease resistance. PMID:23453188

  13. The nuclear protein GmbZIP110 has transcription activation activity and plays important roles in the response to salinity stress in soybean

    PubMed Central

    Xu, Zhaolong; Ali, Zulfiqar; Xu, Ling; He, Xiaolan; Huang, Yihong; Yi, Jinxin; Shao, Hongbo; Ma, Hongxiang; Zhang, Dayong

    2016-01-01

    Plant basic-leucine zipper (bZIP) transcription factors play important roles in many biological processes and are involved in the regulation of salt stress tolerance. Previously, our lab generated digital gene expression profiling (DGEP) data to identify differentially expressed genes in a salt-tolerant genotype of Glycine soja (STGoGS) and a salt-sensitive genotype of Glycine max (SSGoGM). This DGEP data revealed that the expression (log2 ratio) of GmbZIP110 was up-regulated 2.76-fold and 3.38-fold in SSGoGM and STGoGS, respectively. In the present study, the salt inducible gene GmbZIP110 was cloned and characterized through phylogenetic analysis, subcellular localization and in silico transcript abundance analysis in different tissues. The functional role of this gene in salt tolerance was studied through transactivation analysis, DNA binding ability, expression in soybean composite seedlings and transgenic Arabidopsis, and the effect of GmbZIP110 on the expression of stress-related genes in transgenic Arabidopsis was investigated. We found that GmbZIP110 could bind to the ACGT motif, impact the expression of many stress-related genes and the accumulation of proline, Na+ and K+, and enhanced the salt tolerance of composite seedlings and transgenic Arabidopsis. Integrating all these results, we propose that GmbZIP110 plays a critical role in the response to salinity stress in soybean and has high potential usefulness in crop improvement. PMID:26837841

  14. The nuclear protein GmbZIP110 has transcription activation activity and plays important roles in the response to salinity stress in soybean.

    PubMed

    Xu, Zhaolong; Ali, Zulfiqar; Xu, Ling; He, Xiaolan; Huang, Yihong; Yi, Jinxin; Shao, Hongbo; Ma, Hongxiang; Zhang, Dayong

    2016-01-01

    Plant basic-leucine zipper (bZIP) transcription factors play important roles in many biological processes and are involved in the regulation of salt stress tolerance. Previously, our lab generated digital gene expression profiling (DGEP) data to identify differentially expressed genes in a salt-tolerant genotype of Glycine soja (STGoGS) and a salt-sensitive genotype of Glycine max (SSGoGM). This DGEP data revealed that the expression (log2 ratio) of GmbZIP110 was up-regulated 2.76-fold and 3.38-fold in SSGoGM and STGoGS, respectively. In the present study, the salt inducible gene GmbZIP110 was cloned and characterized through phylogenetic analysis, subcellular localization and in silico transcript abundance analysis in different tissues. The functional role of this gene in salt tolerance was studied through transactivation analysis, DNA binding ability, expression in soybean composite seedlings and transgenic Arabidopsis, and the effect of GmbZIP110 on the expression of stress-related genes in transgenic Arabidopsis was investigated. We found that GmbZIP110 could bind to the ACGT motif, impact the expression of many stress-related genes and the accumulation of proline, Na(+) and K(+), and enhanced the salt tolerance of composite seedlings and transgenic Arabidopsis. Integrating all these results, we propose that GmbZIP110 plays a critical role in the response to salinity stress in soybean and has high potential usefulness in crop improvement. PMID:26837841

  15. Activation of an AP1-Like Transcription Factor of the Maize Pathogen Cochliobolus heterostrophus in Response to Oxidative Stress and Plant Signals

    SciTech Connect

    Lev, Sophie; hadar, Ruthi; Amedeo, Paolo; Baker, Scott E.; Yoder, Olen; Horwitz, Benjamin A.

    2005-02-01

    Redox sensing is a ubiquitous mechanism regulating cellular activity. Fungal pathogens face reactive oxygen species produced by the host plant's oxidative burst in addition to endogenous reactive oxygen species produced during aerobic metabolism. An array of preformed and induced detoxifying enzymes, including superoxide dismutase, catalases, and peroxidases, could allow fungi to infect plants despite the oxidative burst. We isolated a gene (CHAP1) encoding a redox-regulated transcription factor in Cochliobolus heterostrophus, a fungal pathogen of maize. CHAP1 is a bZIP protein that possesses two cysteine-rich domains structurally and functionally related to Saccharomyces cerevisiae YAP1. Deletion of CHAP1 in C. heterostrophus resulted in decreased resistance to oxidative stress caused by hydrogen peroxide and menadione, but the virulence of chap1 mutants was unaffected. Upon activation by oxidizing agents or plant signals, a green fluorescent protein (GFP)-CHAP1 fusion protein became localized in the nucleus. Expression of genes encoding antioxidant proteins was induced in the wild type but not in chap1 mutants. Activation of CHAP1 occurred from the earliest stage of plant infection, in conidial germ tubes on the leaf surface, and persisted during infection. Late in the course of infection, after extensive necrotic lesions were formed, GFP-CHAP1 redistributed to the cytosol in hyphae growing on the leaf surface. Localization of CHAP1 to the nucleus may, through changes in the redox state of the cell, provide a mechanism linking extracellular cues to transcriptional regulation during the plant-pathogen interaction.

  16. The Transcription Factor Encyclopedia

    PubMed Central

    2012-01-01

    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe. PMID:22458515

  17. The transcription factor encyclopedia.

    PubMed

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I; Bolotin, Eugene; Ticoll, Amy; Cheung, Warren A; Zhang, Xiao Yu Cindy; Dickman, Christopher T D; Fulton, Debra L; Lim, Jonathan S; Schnabl, Jake M; Ramos, Oscar H P; Vasseur-Cognet, Mireille; de Leeuw, Charles N; Simpson, Elizabeth M; Ryffel, Gerhart U; Lam, Eric W-F; Kist, Ralf; Wilson, Miranda S C; Marco-Ferreres, Raquel; Brosens, Jan J; Beccari, Leonardo L; Bovolenta, Paola; Benayoun, Bérénice A; Monteiro, Lara J; Schwenen, Helma D C; Grontved, Lars; Wederell, Elizabeth; Mandrup, Susanne; Veitia, Reiner A; Chakravarthy, Harini; Hoodless, Pamela A; Mancarelli, M Michela; Torbett, Bruce E; Banham, Alison H; Reddy, Sekhar P; Cullum, Rebecca L; Liedtke, Michaela; Tschan, Mario P; Vaz, Michelle; Rizzino, Angie; Zannini, Mariastella; Frietze, Seth; Farnham, Peggy J; Eijkelenboom, Astrid; Brown, Philip J; Laperrière, David; Leprince, Dominique; de Cristofaro, Tiziana; Prince, Kelly L; Putker, Marrit; del Peso, Luis; Camenisch, Gieri; Wenger, Roland H; Mikula, Michal; Rozendaal, Marieke; Mader, Sylvie; Ostrowski, Jerzy; Rhodes, Simon J; Van Rechem, Capucine; Boulay, Gaylor; Olechnowicz, Sam W Z; Breslin, Mary B; Lan, Michael S; Nanan, Kyster K; Wegner, Michael; Hou, Juan; Mullen, Rachel D; Colvin, Stephanie C; Noy, Peter John; Webb, Carol F; Witek, Matthew E; Ferrell, Scott; Daniel, Juliet M; Park, Jason; Waldman, Scott A; Peet, Daniel J; Taggart, Michael; Jayaraman, Padma-Sheela; Karrich, Julien J; Blom, Bianca; Vesuna, Farhad; O'Geen, Henriette; Sun, Yunfu; Gronostajski, Richard M; Woodcroft, Mark W; Hough, Margaret R; Chen, Edwin; Europe-Finner, G Nicholas; Karolczak-Bayatti, Magdalena; Bailey, Jarrod; Hankinson, Oliver; Raman, Venu; LeBrun, David P; Biswal, Shyam; Harvey, Christopher J; DeBruyne, Jason P; Hogenesch, John B; Hevner, Robert F; Héligon, Christophe; Luo, Xin M; Blank, Marissa Cathleen; Millen, Kathleen Joyce; Sharlin, David S; Forrest, Douglas; Dahlman-Wright, Karin; Zhao, Chunyan; Mishima, Yuriko; Sinha, Satrajit; Chakrabarti, Rumela; Portales-Casamar, Elodie; Sladek, Frances M; Bradley, Philip H; Wasserman, Wyeth W

    2012-01-01

    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe. PMID:22458515

  18. Mapping Yeast Transcriptional Networks

    PubMed Central

    Hughes, Timothy R.; de Boer, Carl G.

    2013-01-01

    The term “transcriptional network” refers to the mechanism(s) that underlies coordinated expression of genes, typically involving transcription factors (TFs) binding to the promoters of multiple genes, and individual genes controlled by multiple TFs. A multitude of studies in the last two decades have aimed to map and characterize transcriptional networks in the yeast Saccharomyces cerevisiae. We review the methodologies and accomplishments of these studies, as well as challenges we now face. For most yeast TFs, data have been collected on their sequence preferences, in vivo promoter occupancy, and gene expression profiles in deletion mutants. These systematic studies have led to the identification of new regulators of numerous cellular functions and shed light on the overall organization of yeast gene regulation. However, many yeast TFs appear to be inactive under standard laboratory growth conditions, and many of the available data were collected using techniques that have since been improved. Perhaps as a consequence, comprehensive and accurate mapping among TF sequence preferences, promoter binding, and gene expression remains an open challenge. We propose that the time is ripe for renewed systematic efforts toward a complete mapping of yeast transcriptional regulatory mechanisms. PMID:24018767

  19. Automatic Music Transcription

    NASA Astrophysics Data System (ADS)

    Klapuri, Anssi; Virtanen, Tuomas

    Written musical notation describes music in a symbolic form that is suitable for performing a piece using the available musical instruments. Traditionally, musical notation indicates the pitch, target instrument, timing, and duration of each sound to be played. The aim of music transcription either by humans or by a machine is to infer these musical parameters, given only the acoustic recording of a performance.

  20. The Potential of Transcription Factor-Based Genetic Engineering in Improving Crop Tolerance to Drought

    PubMed Central

    Tripathi, Prateek

    2014-01-01

    Abstract Drought is one of the major constraints in crop production and has an effect on a global scale. In order to improve crop production, it is necessary to understand how plants respond to stress. A good understanding of regulatory mechanisms involved in plant responses during drought will enable researchers to explore and manipulate key regulatory points in order to enhance stress tolerance in crops. Transcription factors (TFs) have played an important role in crop improvement from the dawn of agriculture. TFs are therefore good candidates for genetic engineering to improve crop tolerance to drought because of their role as master regulators of clusters of genes. Many families of TFs, such as CCAAT, homeodomain, bHLH, NAC, AP2/ERF, bZIP, and WRKY have members that may have the potential to be tools for improving crop tolerance to drought. In this review, the roles of TFs as tools to improve drought tolerance in crops are discussed. The review also focuses on current strategies in the use of TFs, with emphasis on several major TF families in improving drought tolerance of major crops. Finally, many promising transgenic lines that may have improved drought responses have been poorly characterized and consequently their usefulness in the field is uncertain. New advances in high-throughput phenotyping, both greenhouse and field based, should facilitate improved phenomics of transgenic lines. Systems biology approaches should then define the underlying changes that result in higher yields under water stress conditions. These new technologies should help show whether manipulating TFs can have effects on yield under field conditions. PMID:25118806

  1. CREB-H: a novel mammalian transcription factor belonging to the CREB/ATF family and functioning via the box-B element with a liver-specific expression.

    PubMed

    Omori, Y; Imai, J; Watanabe, M; Komatsu, T; Suzuki, Y; Kataoka, K; Watanabe, S; Tanigami, A; Sugano, S

    2001-05-15

    The expression of liver-specific genes is regulated by unequivocally allocated transcription factors via proper responsible elements within their promoters. We identified a novel transcription factor, CREB-H, and found that its expression was restricted in the liver among 16 human tissues tested. A region of CREB-H exhibited significant homology to the basic leucine zipper (b-Zip) domain of members of the CREB/ATF family: mammalian LZIP and Drosophila BBF-2 that binds to box-B, a Drosophila enhancer modulating the fat-body-specific gene expression. CREB-H contained a hydrophobic region representing a putative transmembrane domain, like LZIP. Constructing a variety of CREB-H fusion proteins with the GAL4 DNA-binding domain disclosed that CREB-H functioned as a transcriptional activator and its N-terminal 149 amino acids accounted for the activation ability. Gel mobility sift assays revealed that CREB-H did not bind to the C/EBP, AP-1 and NF-kappaB elements but specifically bound to CRE and the box-B element. Luciferase reporter assays demonstrated that like BBF-2, CREB-H activated transcription via the box-B element and that a deletion of the putative transmembrane domain increased the activation of reporter expression significantly. Furthermore, a fusion protein of GFP and full-length CREB-H was localized in reticular structures surrounding the nucleus, whereas a fusion protein of GFP and a deletion mutant lacking the putative transmembrane domain was mainly in the nucleus. These findings suggest that CREB-H plays an important role in transcriptional regulation of genes specifically expressed in the liver, and that the putative transmembrane domain may be associated with modulation of its function as the transcriptional activator. PMID:11353085

  2. Vaccinia virus transcription.

    PubMed

    Broyles, Steven S

    2003-09-01

    Vaccinia virus replication takes place in the cytoplasm of the host cell. The nearly 200 kbp genome owes part of its complexity to encoding most of the proteins involved in genome and mRNA synthesis. The multisubunit vaccinia virus RNA polymerase requires a separate set of virus-encoded proteins for the transcription of the early, intermediate and late classes of genes. Cell fractionation studies have provided evidence for a role for host cell proteins in the initiation and termination of vaccinia virus intermediate and late gene transcription. Vaccinia virus resembles nuclear DNA viruses in the integration of viral and host proteins for viral mRNA synthesis, yet is markedly less reliant on host proteins than its nuclear counterparts. PMID:12917449

  3. Intrinsic disorder in transcription factors†

    PubMed Central

    Liu, Jiangang; Perumal, Narayanan B.; Oldfield, Christopher J.; Su, Eric W.; Uversky, Vladimir N.; Dunker, A. Keith

    2008-01-01

    Intrinsic disorder (ID) is highly abundant in eukaryotes, which reflect the greater need for disorder-associated signaling and transcriptional regulation in nucleated cells. Although several well-characterized examples of intrinsically disordered proteins in transcriptional regulation have been reported, no systematic analysis has been reported so far. To test for a general prevalence of intrinsic disorder in transcriptional regulation, we used the Predictor Of Natural Disorder Regions (PONDR) to analyze the abundance of intrinsic disorder in three transcription factor datasets and two control sets. This analysis revealed that from 94.13% to 82.63% of transcription factors posses extended regions of intrinsic disorder, relative to 54.51% and 18.64% of the proteins in two control datasets, which indicates the significant prevalence of intrinsic disorder in transcription factors. This propensity of transcription factors for intrinsic disorder was confirmed by cumulative distribution function analysis and charge-hydropathy plots. The amino acid composition analysis showed that all three transcription factor datasets were substantially depleted in order-promoting residues, and significantly enriched in disorder-promoting residues. Our analysis of the distribution of disorder within the transcription factor datasets revealed that: (a) The AT-hooks and basic regions of transcription factor DNA-binding domains are highly disordered; (b) The degree of disorder in transcription factor activation regions is much higher than that in DNA-binding domains; (c) The degree of disorder is significantly higher in eukaryotic transcription factors than in prokaryotic transcription factors; (d) The level of α-MoRFs (molecular recognition feature) prediction is much higher in transcription factors. Overall, our data reflected the fact that the eukaryotes with well-developed gene transcription machinery require transcription factor flexibility to be more efficient. PMID:16734424

  4. The regulator of MAT2 (ROM2) protein binds to early maturation promoters and represses PvALF-activated transcription.

    PubMed Central

    Chern, M S; Bobb, A J; Bustos, M M

    1996-01-01

    The regulation of maturation (MAT)- and late embryogenesis (LEA)-specific gene expression in dicots involves factors related to ABI3, a seed-specific component of the abscisic acid signal transduction pathways from Arabidopsis. In French bean (Phaseolus vulgaris), the ABI3-like factor, PvALF, activates transcription from MAT promoters of phytohemagglutinin (DLEC2) and beta-phaseolin (PHS beta) genes. We describe the regulator of MAT2 (ROM2) as a basic leucine zipper (bZIP) DNA binding protein that recognizes motifs with symmetric (ACGT) and asymmetric (ACCT) core elements present in both MAT promoters. ROM2 antagonizes trans-activation of the DLEC2 promoter by PvALF in transient expression assays. Repression was abolished by mutations that prevented binding of ROM2 to the DLEC2 seed enhancer region. Moreover, a hybrid protein composed of a PvALF activation domain and the DNA binding and dimerization domain of ROM2 activated gene expression, indicating that ROM2 recognizes the DLEC2 enhancer in vivo; consequently, ROM2 functions as a DNA binding site-dependent repressor. Supershift analysis of nuclear proteins, using a ROM2-specific antibody, revealed an increase in ROM2 DNA binding activity during seed desiccation. A corresponding increase in ROM2 mRNA coincided with the period when DLEC2 mRNA levels declined in embryos. These results demonstrate developmental regulation of the ROM2 repressor and point to a role for this factor in silencing DLEC2 transcription during late embryogenesis. PMID:8742714

  5. Dissection of the wheat transcription factor HBP-1a(17) reveals a modular structure for the activation domain.

    PubMed

    Nakayama, T; Okanami, M; Meshi, T; Iwabuchi, M

    1997-02-20

    The wheat bZIP protein HBP-1a(17) is a putative transcription factor regulating histone gene expression. To delineate the functional domain(s) of this factor, we made a series of effector constructs expressing fusion proteins, in which various portions of HBP-1a(17) are fused to the DNA-binding domain of the yeast transcriptional activator GAL4, in plant cells. When the beta-glucuronidase (GUS) reporter gene, driven by the wheat histone H3 core promoter harboring the GAL4-binding sequence, was co-transfected with such effector genes into tobacco protoplasts, several portions of HBP-1a(17) influenced reporter gene expression. The N-terminal one-third of HBP-1a(17), termed the P region (residues 1-118) due to its Pro content, did not activate the reporter gene, in contrast to the corresponding Pro-rich region of Arabidopsis GBF1 (residues 1-110), which functions as an activation domain. When the P region was divided into two, however, both its N-terminal (1-56; termed NP) and C-terminal (58-118; termed PC) halves were able to enhance expression of the reporter gene. When the NP region was further divided into NP(5-30) and NP(30-56), both regions still retained activating ability. These results suggest that the P region of HBP-1a(17) is composed of several modules each having activating function, and modification and/or conformational changes of the P region might influence its function. PMID:9065688

  6. Zea mays Taxilin protein negatively regulates opaque-2 transcriptional activity by causing a change in its sub-cellular distribution.

    PubMed

    Zhang, Nan; Qiao, Zhenyi; Liang, Zheng; Mei, Bing; Xu, Zhengkai; Song, Rentao

    2012-01-01

    Zea mays (maize) Opaque-2 (ZmO2) protein is an important bZIP transcription factor that regulates the expression of major storage proteins (22-kD zeins) and other important genes during maize seed development. ZmO2 is subject to functional regulation through protein-protein interactions. To unveil the potential regulatory network associated with ZmO2, a protein-protein interaction study was carried out using the truncated version of ZmO2 (O2-2) as bait in a yeast two-hybrid screen with a maize seed cDNA library. A protein with homology to Taxilin was found to have stable interaction with ZmO2 in yeast and was designated as ZmTaxilin. Sequence analysis indicated that ZmTaxilin has a long coiled-coil domain containing three conserved zipper motifs. Each of the three zipper motifs is individually able to interact with ZmO2 in yeast. A GST pull-down assay demonstrated the interaction between GST-fused ZmTaxilin and ZmO2 extracted from developing maize seeds. Using onion epidermal cells as in vivo assay system, we found that ZmTaxilin could change the sub-cellular distribution of ZmO2. We also demonstrated that this change significantly repressed the transcriptional activity of ZmO2 on the 22-kD zein promoter. Our study suggests that a Taxilin-mediated change in sub-cellular distribution of ZmO2 may have important functional consequences for ZmO2 activity. PMID:22937104

  7. Involvement of DkTGA1 Transcription Factor in Anaerobic Response Leading to Persimmon Fruit Postharvest De-Astringency

    PubMed Central

    Zhu, Qing-gang; Wang, Miao-miao; Gong, Zi-yuan; Fang, Fang; Sun, Ning-jing; Li, Xian; Grierson, Donald; Yin, Xue-ren; Chen, Kun-song

    2016-01-01

    Persimmon fruit are unique in accumulating proanthocyanidins (tannins) during development, which cause astringency in mature fruit. In ‘Mopanshi’ persimmon, astringency can be removed by treatment with 95% CO2, which increases the concentrations of ethanol and acetaldehyde by glycolysis, and precipitates the soluble tannin. A TGA transcription factor, DkTGA1, belonging to the bZIP super family, was isolated from an RNA-seq database and real-time quantitative PCR indicated that DkTGA1 was up-regulated by CO2 treatment, in concert with the removal of astringency from persimmon fruit. Dual-luciferase assay revealed that DkTGA1 had a small (less than 2-fold), but significant effect on the promoters of de-astringency-related genes DkADH1, DkPDC2 and DkPDC3, which encode enzymes catalyzing formation of acetaldehyde and ethanol. A combination of DkTGA1 and a second transcription factor, DkERF9, shown previously to be related to de-astringency, showed additive effects on the activation of the DkPDC2 promoter. Yeast one-hybrid assay showed that DkERF9, but not DkTGA1, could bind to the DkPDC2 promoter. Thus, although DkTGA1 expression is positively associated with persimmon fruit de-astringency, trans-activation analyses with DkPDC2 indicates it is likely to act by binding indirectly DkPDC2 promoter, might with helps of DkERF9. PMID:27196670

  8. Involvement of DkTGA1 Transcription Factor in Anaerobic Response Leading to Persimmon Fruit Postharvest De-Astringency.

    PubMed

    Zhu, Qing-Gang; Wang, Miao-Miao; Gong, Zi-Yuan; Fang, Fang; Sun, Ning-Jing; Li, Xian; Grierson, Donald; Yin, Xue-Ren; Chen, Kun-Song

    2016-01-01

    Persimmon fruit are unique in accumulating proanthocyanidins (tannins) during development, which cause astringency in mature fruit. In 'Mopanshi' persimmon, astringency can be removed by treatment with 95% CO2, which increases the concentrations of ethanol and acetaldehyde by glycolysis, and precipitates the soluble tannin. A TGA transcription factor, DkTGA1, belonging to the bZIP super family, was isolated from an RNA-seq database and real-time quantitative PCR indicated that DkTGA1 was up-regulated by CO2 treatment, in concert with the removal of astringency from persimmon fruit. Dual-luciferase assay revealed that DkTGA1 had a small (less than 2-fold), but significant effect on the promoters of de-astringency-related genes DkADH1, DkPDC2 and DkPDC3, which encode enzymes catalyzing formation of acetaldehyde and ethanol. A combination of DkTGA1 and a second transcription factor, DkERF9, shown previously to be related to de-astringency, showed additive effects on the activation of the DkPDC2 promoter. Yeast one-hybrid assay showed that DkERF9, but not DkTGA1, could bind to the DkPDC2 promoter. Thus, although DkTGA1 expression is positively associated with persimmon fruit de-astringency, trans-activation analyses with DkPDC2 indicates it is likely to act by binding indirectly DkPDC2 promoter, might with helps of DkERF9. PMID:27196670

  9. β-TrCP-mediated ubiquitination and degradation of liver-enriched transcription factor CREB-H

    PubMed Central

    Cheng, Yun; Gao, Wei-Wei; Tang, Hei-Man Vincent; Deng, Jian-Jun; Wong, Chi-Ming; Chan, Chi-Ping; Jin, Dong-Yan

    2016-01-01

    CREB-H is an endoplasmic reticulum-resident bZIP transcription factor which critically regulates lipid homeostasis and gluconeogenesis in the liver. CREB-H is proteolytically activated by regulated intramembrane proteolysis to generate a C-terminally truncated form known as CREB-H-ΔTC, which translocates to the nucleus to activate target gene expression. CREB-H-ΔTC is a fast turnover protein but the mechanism governing its destruction was not well understood. In this study, we report on β-TrCP-dependent ubiquitination and proteasomal degradation of CREB-H-ΔTC. The degradation of CREB-H-ΔTC was mediated by lysine 48-linked polyubiquitination and could be inhibited by proteasome inhibitor. CREB-H-ΔTC physically interacted with β-TrCP, a substrate recognition subunit of the SCFβ-TrCP E3 ubiquitin ligase. Forced expression of β-TrCP increased the polyubiquitination and decreased the stability of CREB-H-ΔTC, whereas knockdown of β-TrCP had the opposite effect. An evolutionarily conserved sequence, SDSGIS, was identified in CREB-H-ΔTC, which functioned as the β-TrCP-binding motif. CREB-H-ΔTC lacking this motif was stabilized and resistant to β-TrCP-induced polyubiquitination. This motif was a phosphodegron and its phosphorylation was required for β-TrCP recognition. Furthermore, two inhibitory phosphorylation sites close to the phosphodegron were identified. Taken together, our work revealed a new intracellular signaling pathway that controls ubiquitination and degradation of the active form of CREB-H transcription factor. PMID:27029215

  10. β-TrCP-mediated ubiquitination and degradation of liver-enriched transcription factor CREB-H.

    PubMed

    Cheng, Yun; Gao, Wei-Wei; Tang, Hei-Man Vincent; Deng, Jian-Jun; Wong, Chi-Ming; Chan, Chi-Ping; Jin, Dong-Yan

    2016-01-01

    CREB-H is an endoplasmic reticulum-resident bZIP transcription factor which critically regulates lipid homeostasis and gluconeogenesis in the liver. CREB-H is proteolytically activated by regulated intramembrane proteolysis to generate a C-terminally truncated form known as CREB-H-ΔTC, which translocates to the nucleus to activate target gene expression. CREB-H-ΔTC is a fast turnover protein but the mechanism governing its destruction was not well understood. In this study, we report on β-TrCP-dependent ubiquitination and proteasomal degradation of CREB-H-ΔTC. The degradation of CREB-H-ΔTC was mediated by lysine 48-linked polyubiquitination and could be inhibited by proteasome inhibitor. CREB-H-ΔTC physically interacted with β-TrCP, a substrate recognition subunit of the SCF(β-TrCP) E3 ubiquitin ligase. Forced expression of β-TrCP increased the polyubiquitination and decreased the stability of CREB-H-ΔTC, whereas knockdown of β-TrCP had the opposite effect. An evolutionarily conserved sequence, SDSGIS, was identified in CREB-H-ΔTC, which functioned as the β-TrCP-binding motif. CREB-H-ΔTC lacking this motif was stabilized and resistant to β-TrCP-induced polyubiquitination. This motif was a phosphodegron and its phosphorylation was required for β-TrCP recognition. Furthermore, two inhibitory phosphorylation sites close to the phosphodegron were identified. Taken together, our work revealed a new intracellular signaling pathway that controls ubiquitination and degradation of the active form of CREB-H transcription factor. PMID:27029215

  11. Single Molecule Transcription Elongation

    PubMed Central

    Galburt, Eric A.; Grill, Stephan W.; Bustamante, Carlos

    2009-01-01

    Single molecule optical trapping assays have now been applied to a great number of macromolecular systems including DNA, RNA, cargo motors, restriction enzymes, DNA helicases, chromosome remodelers, DNA polymerases and both viral and bacterial RNA polymerases. The advantages of the technique are the ability to observe dynamic, unsynchronized molecular processes, to determine the distributions of experimental quantities and to apply force to the system while monitoring the response over time. Here, we describe the application of these powerful techniques to study the dynamics of transcription elongation by RNA polymerase II from Saccharomyces cerevisiae. PMID:19426807

  12. Transcriptome Profiling and Identification of Transcription Factors in Ramie (Boehmeria nivea L. Gaud) in Response to PEG Treatment, Using Illumina Paired-End Sequencing Technology

    PubMed Central

    An, Xia; Chen, Jie; Zhang, Jingyu; Liao, Yiwen; Dai, Lunjin; Wang, Bo; Liu, Lijun; Peng, Dingxiang

    2015-01-01

    Ramie (Boehmeria nivea L. Gaud), commonly known as China grass, is a perennial bast fiber plant of the Urticaceae. In China, ramie farming, industry, and trade provide income for about five million people. Drought stress severely affects ramie stem growth and causes a dramatic decrease in ramie fiber production. There is a need to enhance ramie’s tolerance to drought stress. However, the drought stress regulatory mechanism in ramie remains unknown. Water stress imposed by polyethylene glycol (PEG) is a common and convenient method to evaluate plant drought tolerance. In this study, transcriptome analysis of cDNA collections from ramie subjected to PEG treatment was conducted using Illumina paired-end sequencing, which generated 170 million raw sequence reads. Between leaves and roots subjected to 24 (L2 and R2) and 72 (L3 and R3) h of PEG treatment, 16,798 genes were differentially expressed (9281 in leaves and 8627 in roots). Among these, 25 transcription factors (TFs) from the AP2 (3), MYB (6), NAC (9), zinc finger (5), and bZIP (2) families were considered to be associated with drought stress. The identified TFs could be used to further investigate drought adaptation in ramie. PMID:25658800

  13. Imaging Transcription in Living Cells

    PubMed Central

    Darzacq, Xavier; Yao, Jie; Larson, Daniel R.; Causse, Sebastien Z.; Bosanac, Lana; de Turris, Valeria; Ruda, Vera M.; Lionnet, Timothee; Zenklusen, Daniel; Guglielmi, Benjamin; Tjian, Robert; Singer, Robert H.

    2011-01-01

    The advent of new technologies for the imaging of living cells has made it possible to determine the properties of transcription, the kinetics of polymerase movement, the association of transcription factors, and the progression of the polymerase on the gene. We report here the current state of the field and the progress necessary to achieve a more complete understanding of the various steps in transcription. Our Consortium is dedicated to developing and implementing the technology to further this understanding. PMID:19416065

  14. Transcriptional Regulation: a Genomic Overview

    PubMed Central

    Riechmann, José Luis

    2002-01-01

    The availability of the Arabidopsis thaliana genome sequence allows a comprehensive analysis of transcriptional regulation in plants using novel genomic approaches and methodologies. Such a genomic view of transcription first necessitates the compilation of lists of elements. Transcription factors are the most numerous of the different types of proteins involved in transcription in eukaryotes, and the Arabidopsis genome codes for more than 1,500 of them, or approximately 6% of its total number of genes. A genome-wide comparison of transcription factors across the three eukaryotic kingdoms reveals the evolutionary generation of diversity in the components of the regulatory machinery of transcription. However, as illustrated by Arabidopsis, transcription in plants follows similar basic principles and logic to those in animals and fungi. A global view and understanding of transcription at a cellular and organismal level requires the characterization of the Arabidopsis transcriptome and promoterome, as well as of the interactome, the localizome, and the phenome of the proteins involved in transcription. PMID:22303220

  15. Deregulated transcription factors in leukemia.

    PubMed

    Shima, Yutaka; Kitabayashi, Issay

    2011-08-01

    Specific chromosomal translocations and other mutations associated with acute myeloblastic leukemia (AML) often involve transcription factors and transcriptional coactivators. Such target genes include AML1, C/EBPα, RARα, MOZ, p300/CBP, and MLL, all of which are important in the regulation of hematopoiesis. The resultant fusion or mutant proteins deregulate the transcription of the affected genes and disrupt their essential role in hematopoiesis, causing differentiation block and abnormal proliferation and/or survival. This review focuses on such transcription factors and coactivators, and describes their roles in leukemogenesis and hematopoiesis. PMID:21823042

  16. Mechanosensitive mechanisms in transcriptional regulation

    PubMed Central

    Mammoto, Akiko; Mammoto, Tadanori; Ingber, Donald E.

    2012-01-01

    Summary Transcriptional regulation contributes to the maintenance of pluripotency, self-renewal and differentiation in embryonic cells and in stem cells. Therefore, control of gene expression at the level of transcription is crucial for embryonic development, as well as for organogenesis, functional adaptation, and regeneration in adult tissues and organs. In the past, most work has focused on how transcriptional regulation results from the complex interplay between chemical cues, adhesion signals, transcription factors and their co-regulators during development. However, chemical signaling alone is not sufficient to explain how three-dimensional (3D) tissues and organs are constructed and maintained through the spatiotemporal control of transcriptional activities. Accumulated evidence indicates that mechanical cues, which include physical forces (e.g. tension, compression or shear stress), alterations in extracellular matrix (ECM) mechanics and changes in cell shape, are transmitted to the nucleus directly or indirectly to orchestrate transcriptional activities that are crucial for embryogenesis and organogenesis. In this Commentary, we review how the mechanical control of gene transcription contributes to the maintenance of pluripotency, determination of cell fate, pattern formation and organogenesis, as well as how it is involved in the control of cell and tissue function throughout embryogenesis and adult life. A deeper understanding of these mechanosensitive transcriptional control mechanisms should lead to new approaches to tissue engineering and regenerative medicine. PMID:22797927

  17. Structural basis of transcription activation.

    PubMed

    Feng, Yu; Zhang, Yu; Ebright, Richard H

    2016-06-10

    Class II transcription activators function by binding to a DNA site overlapping a core promoter and stimulating isomerization of an initial RNA polymerase (RNAP)-promoter closed complex into a catalytically competent RNAP-promoter open complex. Here, we report a 4.4 angstrom crystal structure of an intact bacterial class II transcription activation complex. The structure comprises Thermus thermophilus transcription activator protein TTHB099 (TAP) [homolog of Escherichia coli catabolite activator protein (CAP)], T. thermophilus RNAP σ(A) holoenzyme, a class II TAP-dependent promoter, and a ribotetranucleotide primer. The structure reveals the interactions between RNAP holoenzyme and DNA responsible for transcription initiation and reveals the interactions between TAP and RNAP holoenzyme responsible for transcription activation. The structure indicates that TAP stimulates isomerization through simple, adhesive, stabilizing protein-protein interactions with RNAP holoenzyme. PMID:27284196

  18. Mitotic bookmarking by transcription factors

    PubMed Central

    2013-01-01

    Mitosis is accompanied by dramatic changes in chromatin organization and nuclear architecture. Transcription halts globally and most sequence-specific transcription factors and co-factors are ejected from mitotic chromatin. How then does the cell maintain its transcriptional identity throughout the cell division cycle? It has become clear that not all traces of active transcription and gene repression are erased within mitotic chromatin. Many histone modifications are stable or only partially diminished throughout mitosis. In addition, some sequence-specific DNA binding factors have emerged that remain bound to select sites within mitotic chromatin, raising the possibility that they function to transmit regulatory information through the transcriptionally silent mitotic phase, a concept that has been termed “mitotic bookmarking.” Here we review recent approaches to studying potential bookmarking factors with regards to their mitotic partitioning, and summarize emerging ideas concerning the in vivo functions of mitotically bound nuclear factors. PMID:23547918

  19. RNA polymerase and the regulation of transcription

    SciTech Connect

    Reznikoff, W.S.; Gross, C.A.; Burgess, R.R.; Record, M.T.; Dahlberg, J.E.; Wickens, M.P.

    1987-01-01

    This book consists of eight sections, each containing several papers. The section titles are: RNA Polymerases; Transcription Initiation - Bacterial; Regulation of Bacterial Transcription Initiation; Stable RNA Synthesis in Eukaryotes: Chromatin Structure; Promoters; Enhancers; and the Global Control of Eukaryotic Transcription; Specific Eukaryotic Transcription Factors; Termination of Transcription; and Short Communications.

  20. Transcription of Trypanosoma brucei maxicircles

    SciTech Connect

    Michelotti, E.F.; Hajduk, S.L.

    1987-05-01

    Trypanosoma brucei is a protozoan parasite which developmentally regulates mitochondrial activity. In the mammal T. brucei produces ATP entirely by glycolysis while cytochrome mediated respiration resumes in the life-stage in the midgut of the insect vector. Using quantitative S1 nuclease protection assays two types of regulation of the steady state levels of the mitochondrial transcripts were found. Transcription of cytochrome b, cytochrome oxidase, and the rRNA genes is repressed in early bloodstream developmental stages, undergoes dramatic activation in later bloodstream stages, and finally a lesser activation in the insect developmental stage. Transcription of NADH dehydrogenase genes, however, is unregulated. Mitochondrial transcripts with a 5' triphosphate terminus, representing the site of transcription initiation, were capped using guanylyl transferase. The in vitro capped RNA hybridized to only one of eight mitochondrial restriction fragments on a Southern blot, however, hybridization of Southern blots with RNA from ..cap alpha..-/sup 32/P-UTP pulsed mitochondria labelled all restriction fragments equally. These results suggest that each DNA strand has a single promoter which directs the transcription of a full-length RNA which is subsequently processed. Different mitochondrial genes, despite being expressed on the same precursor RNA molecule, are independently regulated by both transcription initiation and RNA processing.

  1. AthaMap, integrating transcriptional and post-transcriptional data

    PubMed Central

    Bülow, Lorenz; Engelmann, Stefan; Schindler, Martin; Hehl, Reinhard

    2009-01-01

    The AthaMap database generates a map of predicted transcription factor binding sites (TFBS) for the whole Arabidopsis thaliana genome. AthaMap has now been extended to include data on post-transcriptional regulation. A total of 403 173 genomic positions of small RNAs have been mapped in the A. thaliana genome. These identify 5772 putative post-transcriptionally regulated target genes. AthaMap tools have been modified to improve the identification of common TFBS in co-regulated genes by subtracting post-transcriptionally regulated genes from such analyses. Furthermore, AthaMap was updated to the TAIR7 genome annotation, a graphic display of gene analysis results was implemented, and the TFBS data content was increased. AthaMap is freely available at http://www.athamap.de/. PMID:18842622

  2. AthaMap, integrating transcriptional and post-transcriptional data.

    PubMed

    Bülow, Lorenz; Engelmann, Stefan; Schindler, Martin; Hehl, Reinhard

    2009-01-01

    The AthaMap database generates a map of predicted transcription factor binding sites (TFBS) for the whole Arabidopsis thaliana genome. AthaMap has now been extended to include data on post-transcriptional regulation. A total of 403,173 genomic positions of small RNAs have been mapped in the A. thaliana genome. These identify 5772 putative post-transcriptionally regulated target genes. AthaMap tools have been modified to improve the identification of common TFBS in co-regulated genes by subtracting post-transcriptionally regulated genes from such analyses. Furthermore, AthaMap was updated to the TAIR7 genome annotation, a graphic display of gene analysis results was implemented, and the TFBS data content was increased. AthaMap is freely available at http://www.athamap.de/. PMID:18842622

  3. The transcriptional foundation of pluripotency.

    PubMed

    Chambers, Ian; Tomlinson, Simon R

    2009-07-01

    A fundamental goal in biology is to understand the molecular basis of cell identity. Pluripotent embryonic stem (ES) cell identity is governed by a set of transcription factors centred on the triumvirate of Oct4, Sox2 and Nanog. These proteins often bind to closely localised genomic sites. Recent studies have identified additional transcriptional modulators that bind to chromatin near sites occupied by Oct4, Sox2 and Nanog. This suggests that the combinatorial control of gene transcription might be fundamental to the ES cell state. Here we discuss how these observations advance our understanding of the transcription factor network that controls pluripotent identity and highlight unresolved issues that arise from these studies. PMID:19542351

  4. Transcriptional Regulation of Hepatic Lipogenesis

    PubMed Central

    Wang, Yuhui; Viscarra, Jose; Kim, Sun-Joong; Sul, Hei Sook

    2016-01-01

    Fatty acid and fat synthesis in liver is a highly regulated metabolic pathway critical for energy distribution. Having common features at their promoter regions, lipogenic genes are coordinately regulated at the transcription level. Transcription factors, such as USF, SREBP-1c, LXR and ChREBP play critical roles in this process. Recently, insights have been gained into how various signaling pathways regulate these transcription factors. After feeding, high blood glucose and insulin induce lipogenic genes through several pathways, including DNA-PK, aPKC and Akt-mTOR. Various transcription factors and coregulators undergo specific modifications, such as phosphorylation, acetylation, or ubiquitination, which affect their function, stability, or localization. Dysregulation of lipogenesis can contribute to hepatosteatosis, which is associated with obesity and insulin resistance. PMID:26490400

  5. Zooming in on Transcription Preinitiation.

    PubMed

    Gupta, Kapil; Sari-Ak, Duygu; Haffke, Matthias; Trowitzsch, Simon; Berger, Imre

    2016-06-19

    Class II gene transcription commences with the assembly of the Preinitiation Complex (PIC) from a plethora of proteins and protein assemblies in the nucleus, including the General Transcription Factors (GTFs), RNA polymerase II (RNA pol II), co-activators, co-repressors, and more. TFIID, a megadalton-sized multiprotein complex comprising 20 subunits, is among the first GTFs to bind the core promoter. TFIID assists in nucleating PIC formation, completed by binding of further factors in a highly regulated stepwise fashion. Recent results indicate that TFIID itself is built from distinct preformed submodules, which reside in the nucleus but also in the cytosol of cells. Here, we highlight recent insights in transcription factor assembly and the regulation of transcription preinitiation. PMID:27067110

  6. RNA-guided transcriptional regulation

    DOEpatents

    Church, George M.; Mali, Prashant G.; Esvelt, Kevin M.

    2016-02-23

    Methods of modulating expression of a target nucleic acid in a cell are provided including introducing into the cell a first foreign nucleic acid encoding one or more RNAs complementary to DNA, wherein the DNA includes the target nucleic acid, introducing into the cell a second foreign nucleic acid encoding a nuclease-null Cas9 protein that binds to the DNA and is guided by the one or more RNAs, introducing into the cell a third foreign nucleic acid encoding a transcriptional regulator protein or domain, wherein the one or more RNAs, the nuclease-null Cas9 protein, and the transcriptional regulator protein or domain are expressed, wherein the one or more RNAs, the nuclease-null Cas9 protein and the transcriptional regulator protein or domain co-localize to the DNA and wherein the transcriptional regulator protein or domain regulates expression of the target nucleic acid.

  7. Forcing FAK into Transcriptional Activity.

    PubMed

    Lietha, Daniel

    2016-08-01

    Focal adhesion kinase (FAK) has known signaling roles in cytoplasmic adhesion structures, but was recently shown to act as a transcriptional regulator in the nucleus. In this issue of Structure, Cardoso et al. (2016) report that mechanical forces translocate FAK to the nucleus of cardiomyocytes, and provide structural insights into how FAK interacts with the MEF2 transcription factor to control cardiac hypertrophy. PMID:27486913

  8. TATA-binding protein and transcription factor IIB induce transcript slipping during early transcription by RNA polymerase II.

    PubMed

    Gilman, Benjamin; Drullinger, Linda F; Kugel, Jennifer F; Goodrich, James A

    2009-04-01

    To better understand the mechanism of steps in early transcription by RNA polymerase II (pol II), we investigated the molecular determinants of transcript slipping within complexes assembled on promoters containing a pre-melted transcription bubble from -9 to +3. Transcript slippage occurs when an RNA transcript contains a repetitive sequence that allows the transcript to slip back and pair with the template strand of the DNA at a new register before transcription continues. We established the contributions of individual transcription factors, DNA elements, and RNA length to slipping on a heteroduplex template using a highly purified human pol II transcription system. We found that transcripts slip at a very defined point in the transcription reaction, after pol II completes phosphodiester bond synthesis at register +5. This point is set by the position of the polymerase active site on the DNA template, as opposed to the length of the transcript, as well as by a repetitive CUCU sequence that must occur from +2 to +5. Interestingly, slipping at this juncture is induced by TATA-binding protein and transcription factor IIB and requires a TATA box but not a transcription factor IIB recognition sequence. We propose a model in which transcribing complexes, upon completing phosphodiester bond synthesis at register +5, enter one of two branches in which they either complete productive synthesis of the transcript or undergo multiple rounds of transcript slipping. PMID:19193635

  9. Phylogenetic and Transcription Analysis of Chrysanthemum WRKY Transcription Factors

    PubMed Central

    Song, Aiping; Li, Peiling; Jiang, Jiafu; Chen, Sumei; Li, Huiyun; Zeng, Jun; Shao, Yafeng; Zhu, Lu; Zhang, Zhaohe; Chen, Fadi

    2014-01-01

    WRKY transcription factors are known to function in a number of plant processes. Here we have characterized 15 WRKY family genes of the important ornamental species chrysanthemum (Chrysanthemum morifolium). A total of 15 distinct sequences were isolated; initially internal fragments were amplified based on transcriptomic sequence, and then the full length cDNAs were obtained using RACE (rapid amplification of cDNA ends) PCR. The transcription of these 15 genes in response to a variety of phytohormone treatments and both biotic and abiotic stresses was characterized. Some of the genes behaved as would be predicted based on their homology with Arabidopsis thaliana WRKY genes, but others showed divergent behavior. PMID:25196345

  10. Transcriptional gene silencing in humans.

    PubMed

    Weinberg, Marc S; Morris, Kevin V

    2016-08-19

    It has been over a decade since the first observation that small non-coding RNAs can functionally modulate epigenetic states in human cells to achieve functional transcriptional gene silencing (TGS). TGS is mechanistically distinct from the RNA interference (RNAi) gene-silencing pathway. TGS can result in long-term stable epigenetic modifications to gene expression that can be passed on to daughter cells during cell division, whereas RNAi does not. Early studies of TGS have been largely overlooked, overshadowed by subsequent discoveries of small RNA-directed post-TGS and RNAi. A reappraisal of early work has been brought about by recent findings in human cells where endogenous long non-coding RNAs function to regulate the epigenome. There are distinct and common overlaps between the proteins involved in small and long non-coding RNA transcriptional regulatory mechanisms, suggesting that the early studies using small non-coding RNAs to modulate transcription were making use of a previously unrecognized endogenous mechanism of RNA-directed gene regulation. Here we review how non-coding RNA plays a role in regulation of transcription and epigenetic gene silencing in human cells by revisiting these earlier studies and the mechanistic insights gained to date. We also provide a list of mammalian genes that have been shown to be transcriptionally regulated by non-coding RNAs. Lastly, we explore how TGS may serve as the basis for development of future therapeutic agents. PMID:27060137

  11. Transcriptional Landscape of Cardiomyocyte Maturation

    PubMed Central

    Uosaki, Hideki; Cahan, Patrick; Lee, Dong I.; Wang, Songnan; Miyamoto, Matthew; Fernandez, Laviel; Kass, David A.; Kwon, Chulan

    2015-01-01

    SUMMARY Decades of progress in developmental cardiology has advanced our understanding of the early aspects of heart development, including cardiomyocyte (CM) differentiation. However, control of CM maturation which is subsequently required to generate adult myocytes, remains elusive. Here, we analyzed over 200 microarray datasets from early embryonic to adult hearts and identified a large number of genes whose expression shifts gradually and continuously during maturation. We generated an atlas of integrated gene expression, biological pathways, transcriptional regulators, and gene regulatory networks (GRNs), which show discrete sets of key transcriptional regulators and pathways activated or suppressed during CM maturation. We developed a GRN-based program named MatStatCM that indexes CM maturation status. MatStatCM reveals that pluripotent stem cell-derived CMs mature early in culture, but are arrested at the late embryonic stage with aberrant regulation of key transcription factors. Our study provides a foundation for understanding CM maturation. PMID:26586429

  12. Creating small transcription activating RNAs.

    PubMed

    Chappell, James; Takahashi, Melissa K; Lucks, Julius B

    2015-03-01

    We expanded the mechanistic capability of small RNAs by creating an entirely synthetic mode of regulation: small transcription activating RNAs (STARs). Using two strategies, we engineered synthetic STAR regulators to disrupt the formation of an intrinsic transcription terminator placed upstream of a gene in Escherichia coli. This resulted in a group of four highly orthogonal STARs that had up to 94-fold activation. By systematically modifying sequence features of this group, we derived design principles for STAR function, which we then used to forward engineer a STAR that targets a terminator found in the Escherichia coli genome. Finally, we showed that STARs could be combined in tandem to create previously unattainable RNA-only transcriptional logic gates. STARs provide a new mechanism of regulation that will expand our ability to use small RNAs to construct synthetic gene networks that precisely control gene expression. PMID:25643173

  13. Circadian Control of Global Transcription

    PubMed Central

    Li, Shujing; Zhang, Luoying

    2015-01-01

    Circadian rhythms exist in most if not all organisms on the Earth and manifest in various aspects of physiology and behavior. These rhythmic processes are believed to be driven by endogenous molecular clocks that regulate rhythmic expression of clock-controlled genes (CCGs). CCGs consist of a significant portion of the genome and are involved in diverse biological pathways. The transcription of CCGs is tuned by rhythmic actions of transcription factors and circadian alterations in chromatin. Here, we review the circadian control of CCG transcription in five model organisms that are widely used, including cyanobacterium, fungus, plant, fruit fly, and mouse. Comparing the similarity and differences in the five organisms could help us better understand the function of the circadian clock, as well as its output mechanisms adapted to meet the demands of diverse environmental conditions. PMID:26682214

  14. Dnmt1/Transcription Factor Interactions

    PubMed Central

    Hervouet, Eric; Vallette, François M.; Cartron, Pierre-François

    2010-01-01

    DNA methylation inheritance is the process of copying, via the DNA methyltransferase 1 (Dnmt1), the pre-existing methylation patterns onto the new DNA strand during DNA replication. Experiments of chromatin immunoprecipitation, measurement of maintenance methyltransferase activity, proximity ligation in situ assays (P-LISA, Duolink/Olink), and transcription factor arrays demonstrate that Dnmt1 interacts with transcription factors to promote site-specific DNA methylation inheritance, while the Dnmt1-PCNA-UHRF1 complex promotes the DNA methylation inheritance without site preference. We also show that the Dnmt1-PCNA-UHRF1 and Dnmt1/transcription factor complexes methylate DNA by acting as a single player or in cooperation. Thus, our data establish that the copying of the pre-existing methylation pattern is governed by the orchestration of the untargeted and the targeted mechanisms of DNA methylation inheritance, which are themselves dictated by the partners of Dnmt1. PMID:21779454

  15. Transcriptional activation in yeast cells lacking transcription factor IIA.

    PubMed Central

    Chou, S; Chatterjee, S; Lee, M; Struhl, K

    1999-01-01

    The general transcription factor IIA (TFIIA) forms a complex with TFIID at the TATA promoter element, and it inhibits the function of several negative regulators of the TATA-binding protein (TBP) subunit of TFIID. Biochemical experiments suggest that TFIIA is important in the response to transcriptional activators because activation domains can interact with TFIIA, increase recruitment of TFIID and TFIIA to the promoter, and promote isomerization of the TFIID-TFIIA-TATA complex. Here, we describe a double-shut-off approach to deplete yeast cells of Toa1, the large subunit of TFIIA, to <1% of the wild-type level. Interestingly, such TFIIA-depleted cells are essentially unaffected for activation by heat shock factor, Ace1, and Gal4-VP16. However, depletion of TFIIA causes a general two- to threefold decrease of transcription from most yeast promoters and a specific cell-cycle arrest at the G2-M boundary. These results indicate that transcriptional activation in vivo can occur in the absence of TFIIA. PMID:10581267

  16. Making Sense of Transcription Networks

    PubMed Central

    Sorrells, Trevor R; Johnson, Alexander D

    2015-01-01

    When transcription regulatory networks are compared among distantly related eukaryotes, a number of striking similarities are observed: a larger-than-expected number of genes, extensive overlapping connections, and an apparently high degree of functional redundancy. It is often assumed that the complexity of these networks represents optimized solutions, precisely sculpted by natural selection; their common features are often asserted to be adaptive. Here, we discuss support for an alternative hypothesis: the common structural features of transcription networks arise from evolutionary trajectories of “least resistance,” that is, the relative ease by which certain types of network structures are formed during their evolution. PMID:25957680

  17. Transcription rates in DNA brushes.

    PubMed

    Yamamoto, Tetsuya; Safran, S A

    2015-04-21

    We theoretically predict the rate of transcription (TX) in DNA brushes by introducing the concept of TX dipoles that takes into account the unidirectional motion of enzymes (RNAP) along DNA during transcription as correlated pairs of sources and sinks in the relevant diffusion equation. Our theory predicts that the TX rates dramatically change upon the inversion of the orientation of the TX dipoles relative to the substrate because TX dipoles modulate the concentrations of RNAP in the solution. Comparing our theory with experiments suggests that, in some cases, DNA chain segments are relatively uniformly distributed in the brush, in contrast to the parabolic profile expected for flexible polymer brushes. PMID:25736601

  18. Interplay among Drosophila transcription factors Ets21c, Fos and Ftz-F1 drives JNK-mediated tumor malignancy

    PubMed Central

    Külshammer, Eva; Mundorf, Juliane; Kilinc, Merve; Frommolt, Peter; Wagle, Prerana; Uhlirova, Mirka

    2015-01-01

    ABSTRACT Cancer initiation and maintenance of the transformed cell state depend on altered cellular signaling and aberrant activities of transcription factors (TFs) that drive pathological gene expression in response to cooperating genetic lesions. Deciphering the roles of interacting TFs is therefore central to understanding carcinogenesis and for designing cancer therapies. Here, we use an unbiased genomic approach to define a TF network that triggers an abnormal gene expression program promoting malignancy of clonal tumors, generated in Drosophila imaginal disc epithelium by gain of oncogenic Ras (RasV12) and loss of the tumor suppressor Scribble (scrib1). We show that malignant transformation of the rasV12scrib1 tumors requires TFs of distinct families, namely the bZIP protein Fos, the ETS-domain factor Ets21c and the nuclear receptor Ftz-F1, all acting downstream of Jun-N-terminal kinase (JNK). Depleting any of the three TFs improves viability of tumor-bearing larvae, and this positive effect can be enhanced further by their combined removal. Although both Fos and Ftz-F1 synergistically contribute to rasV12scrib1 tumor invasiveness, only Fos is required for JNK-induced differentiation defects and Matrix metalloprotease (MMP1) upregulation. In contrast, the Fos-dimerizing partner Jun is dispensable for JNK to exert its effects in rasV12scrib1 tumors. Interestingly, Ets21c and Ftz-F1 are transcriptionally induced in these tumors in a JNK- and Fos-dependent manner, thereby demonstrating a hierarchy within the tripartite TF network, with Fos acting as the most upstream JNK effector. Of the three TFs, only Ets21c can efficiently substitute for loss of polarity and cooperate with RasV12 in inducing malignant clones that, like rasV12scrib1 tumors, invade other tissues and overexpress MMP1 and the Drosophila insulin-like peptide 8 (Dilp8). While rasV12ets21c tumors require JNK for invasiveness, the JNK activity is dispensable for their growth. In conclusion, our study

  19. Interplay among Drosophila transcription factors Ets21c, Fos and Ftz-F1 drives JNK-mediated tumor malignancy.

    PubMed

    Külshammer, Eva; Mundorf, Juliane; Kilinc, Merve; Frommolt, Peter; Wagle, Prerana; Uhlirova, Mirka

    2015-10-01

    Cancer initiation and maintenance of the transformed cell state depend on altered cellular signaling and aberrant activities of transcription factors (TFs) that drive pathological gene expression in response to cooperating genetic lesions. Deciphering the roles of interacting TFs is therefore central to understanding carcinogenesis and for designing cancer therapies. Here, we use an unbiased genomic approach to define a TF network that triggers an abnormal gene expression program promoting malignancy of clonal tumors, generated in Drosophila imaginal disc epithelium by gain of oncogenic Ras (Ras(V12)) and loss of the tumor suppressor Scribble (scrib(1)). We show that malignant transformation of the ras(V12)scrib(1) tumors requires TFs of distinct families, namely the bZIP protein Fos, the ETS-domain factor Ets21c and the nuclear receptor Ftz-F1, all acting downstream of Jun-N-terminal kinase (JNK). Depleting any of the three TFs improves viability of tumor-bearing larvae, and this positive effect can be enhanced further by their combined removal. Although both Fos and Ftz-F1 synergistically contribute to ras(V12)scrib(1) tumor invasiveness, only Fos is required for JNK-induced differentiation defects and Matrix metalloprotease (MMP1) upregulation. In contrast, the Fos-dimerizing partner Jun is dispensable for JNK to exert its effects in ras(V12)scrib(1) tumors. Interestingly, Ets21c and Ftz-F1 are transcriptionally induced in these tumors in a JNK- and Fos-dependent manner, thereby demonstrating a hierarchy within the tripartite TF network, with Fos acting as the most upstream JNK effector. Of the three TFs, only Ets21c can efficiently substitute for loss of polarity and cooperate with Ras(V12) in inducing malignant clones that, like ras(V12)scrib(1) tumors, invade other tissues and overexpress MMP1 and the Drosophila insulin-like peptide 8 (Dilp8). While ras(V12)ets21c tumors require JNK for invasiveness, the JNK activity is dispensable for their growth. In

  20. Redox Regulation of an AP-1-Like Transcription Factor, YapA, in the Fungal Symbiont Epichloë festucae

    PubMed Central

    Cartwright, Gemma M.

    2013-01-01

    One of the central regulators of oxidative stress in Saccharomyces cerevisiae is Yap1, a bZIP transcription factor of the AP-1 family. In unstressed cells, Yap1 is reduced and cytoplasmic, but in response to oxidative stress, it becomes oxidized and accumulates in the nucleus. To date, there have been no reports on the role of AP-1-like transcription factors in symbiotic fungi. An ortholog of Yap1, named YapA, was identified in the genome of the grass symbiont Epichloë festucae and shown to complement an S. cerevisiae Δyap1 mutant. Hyphae of the E. festucae ΔyapA strain were sensitive to menadione and diamide but resistant to H2O2, KO2, and tert-butyl hydroperoxide (t-BOOH). In contrast, conidia of the ΔyapA strain were very sensitive to H2O2 and failed to germinate. Using a PcatA-eGFP degron-tagged reporter, YapA was shown to be required for expression of a spore-specific catalase gene, catA. Although YapA-EGFP localized to the nucleus in response to host reactive oxygen species during seedling infection, there was no difference in whole-plant and cellular phenotypes of plants infected with the ΔyapA strain compared to the wild-type strain. Homologs of the S. cerevisiae and Schizosaccharomyces pombe redox-sensing proteins (Gpx3 and Tpx1, respectively) did not act as redox sensors for YapA in E. festucae. In response to oxidative stress, YapA-EGFP localized to the nuclei of E. festucae ΔgpxC, ΔtpxA, and ΔgpxC ΔtpxA cells to the same degree as that in wild-type cells. These results show that E. festucae has a robust system for countering oxidative stress in culture and in planta but that Gpx3- or Tpx1-like thiol peroxidases are dispensable for activation of YapA. PMID:23893078

  1. GATA Transcription Factors and Cancer

    PubMed Central

    Zheng, Rena; Blobel, Gerd A.

    2010-01-01

    It has been almost a quarter century since it was first appreciated that a class of oncogenes contained in rapidly transforming avian retroviruses encoded DNA-binding transcription factors. As with other oncogenes, genetic recombination with the viral genome led to their overexpression or functional alteration. In the years that followed, alterations of numerous transcription factors were shown to be causatively involved in various cancers in human patients and model organisms. Depending on their normal cellular functions, these factors were subsequently categorized as proto-oncogenes or tumor suppressor genes. This review focuses on the role of GATA transcription factors in carcinogenesis. GATA factors are zinc finger DNA binding proteins that control the development of diverse tissues by activating or repressing transcription. GATA factors thus coordinate cellular maturation with proliferation arrest and cell survival. Therefore, a role of this family of genes in human cancers is not surprising. Prominent examples include structural mutations in GATA1 that are found in almost all megakaryoblastic leukemias in patients with Down syndrome; loss of GATA3 expression in aggressive, dedifferentiated breast cancers; and silencing of GATA4 and GATA5 expression in colorectal and lung cancers. Here, we discuss possible mechanisms of carcinogenesis vis-à-vis the normal functions of GATA factors as they pertain to human patients and mouse models of cancer. PMID:21779441

  2. Transcription factor-based biosensor

    SciTech Connect

    Dietrich, Jeffrey A; Keasling, Jay D

    2013-10-08

    The present invention provides for a system comprising a BmoR transcription factor, a .sigma..sup.54-RNA polymerase, and a pBMO promoter operatively linked to a reporter gene, wherein the pBMO promoter is capable of expression of the reporter gene with an activated form of the BmoR and the .sigma..sup.54-RNA polymerase.

  3. Transcription Blockage Leads to New Beginnings

    PubMed Central

    Andrade-Lima, Leonardo C.; Veloso, Artur; Ljungman, Mats

    2015-01-01

    Environmental agents are constantly challenging cells by damaging DNA, leading to the blockage of transcription elongation. How do cells deal with transcription-blockage and how is transcription restarted after the blocking lesions are removed? Here we review the processes responsible for the removal of transcription-blocking lesions, as well as mechanisms of transcription restart. We also discuss recent data suggesting that blocked RNA polymerases may not resume transcription from the site of the lesion following its removal but, rather, are forced to start over from the beginning of genes. PMID:26197343

  4. Contribution of myocyte enhancer factor 2 family transcription factors to BZLF1 expression in Epstein-Barr virus reactivation from latency.

    PubMed

    Murata, Takayuki; Narita, Yohei; Sugimoto, Atsuko; Kawashima, Daisuke; Kanda, Teru; Tsurumi, Tatsuya

    2013-09-01

    Reactivation of Epstein-Barr virus (EBV) from latency is dependent on expression of the viral transactivator BZLF1 protein, whose promoter (Zp) normally exhibits only low basal activity but is activated in response to chemical or biological inducers. Using a reporter assay system, we screened for factors that can activate Zp and isolated genes, including those encoding MEF2B, KLF4, and some cellular b-Zip family transcription factors. After confirming their importance and functional binding sites in reporter assays, we prepared recombinant EBV-BAC, in which the binding sites were mutated. Interestingly, the MEF2 mutant virus produced very low levels of BRLF1, another transactivator of EBV, in addition to BZLF1 in HEK293 cells. The virus failed to induce a subset of early genes, such as that encoding BALF5, upon lytic induction, and accordingly, could not replicate to produce progeny viruses in HEK293 cells, but this restriction could be completely lifted by exogenous supply of BRLF1, together with BZLF1. In B cells, induction of BZLF1 by chemical inducers was inhibited by point mutations in the ZII or the three SP1/KLF binding sites of EBV-BAC Zp, while leaky BZLF1 expression was less affected. Mutation of MEF2 sites severely impaired both spontaneous and induced expression of not only BZLF1, but also BRLF1 in comparison to wild-type or revertant virus cases. We also observed that MEF2 mutant EBV featured relatively high repressive histone methylation, such as H3K27me3, but CpG DNA methylation levels were comparable around Zp and the BRLF1 promoter (Rp). These findings shed light on BZLF1 expression and EBV reactivation from latency. PMID:23843637

  5. Evidence for coronavirus discontinuous transcription.

    PubMed Central

    Jeong, Y S; Makino, S

    1994-01-01

    Coronavirus subgenomic mRNA possesses a 5'-end leader sequence which is derived from the 5' end of genomic RNA and is linked to the mRNA body sequence. This study examined whether coronavirus transcription involves a discontinuous transcription step; the possibility that a leader sequence from mouse hepatitis virus (MHV) genomic RNA could be used for MHV subgenomic defective interfering (DI) RNA transcription was examined. This was tested by using helper viruses and DI RNAs that were easily distinguishable. MHV JHM variant JHM(2), which synthesizes a subgenomic mRNA encoding the HE gene, and variant JHM(3-9), which does not synthesize this mRNA, were used. An MHV DI RNA, DI(J3-9), was constructed to contain a JHM(3-9)-derived leader sequence and an inserted intergenic region derived from the region preceding the MHV JHM HE gene. DI(J3-9) replicated efficiently in JHM(2)- or JHM(3-9)-infected cells, whereas synthesis of subgenomic DI RNAs was observed only in JHM(2)-infected cells. Sequence analyses demonstrated that the 5' regions of both helper virus genomic RNAs and genomic DI RNAs maintained their original sequences in DI RNA-replicating cells, indicating that the genomic leader sequences derived from JHM(2) functioned for subgenomic DI RNA transcription. Replication and transcription of DI(J3-9) were observed in cells infected with an MHV A59 strain whose leader sequence was similar to that of JHM(2), except for one nucleotide substitution within the leader sequence. The 5' region of the helper virus genomic RNA and that of the DI RNA were the same as their original structures in virus-infected cells, and the leader sequence of DI(J3-9) subgenomic DI RNA contained the MHV A59-derived leader sequence. The leader sequence of subgenomic DI RNA was derived from that of helper virus; therefore, the genomic leader sequence had a trans-acting property indicative of a discontinuous step in coronavirus transcription. Images PMID:8139040

  6. Replication and transcription. Silence of the ORCs.

    PubMed

    Kelly, T J; Jallepalli, P V; Clyne, R K

    1994-03-01

    The origin recognition complex, a multi-protein complex known to bind to replication origins, has now been implicated in transcriptional silencing, providing another link between DNA replication and transcription. PMID:7857395

  7. Drugging the Undruggable: Transcription Therapy for Cancer

    PubMed Central

    Yan, Chunhong; Higgins, Paul J.

    2012-01-01

    Transcriptional regulation is often the convergence point of oncogenic signaling. It is not surprising, therefore, that aberrant gene expression is a hallmark of cancer. Transformed cells often develop a dependency on such a reprogramming highlighting the therapeutic potential of rectifying cancer-associated transcriptional abnormalities in malignant cells. Although transcription is traditionally considered as undruggable, agents have been developed that target various levels of transcriptional regulation including DNA binding by transcription factors, protein-protein interactions, and epigenetic alterations. Some of these agents have been approved for clinical use or entered clinical trials. While artificial transcription factors have been developed that can theoretically modulate expression of any given gene, the emergence of reliable reporter assays greatly facilitate the search for transcription-targeted agents. This review provides a comprehensive overview of these developments, and discusses various strategies applicable for developing transcription-targeted therapeutic agents. PMID:23147197

  8. Rethinking transcription coupled DNA repair.

    PubMed

    Kamarthapu, Venu; Nudler, Evgeny

    2015-04-01

    Nucleotide excision repair (NER) is an evolutionarily conserved, multistep process that can detect a wide variety of DNA lesions. Transcription coupled repair (TCR) is a subpathway of NER that repairs the transcribed DNA strand faster than the rest of the genome. RNA polymerase (RNAP) stalled at DNA lesions mediates the recruitment of NER enzymes to the damage site. In this review we focus on a newly identified bacterial TCR pathway in which the NER enzyme UvrD, in conjunction with NusA, plays a major role in initiating the repair process. We discuss the tradeoff between the new and conventional models of TCR, how and when each pathway operates to repair DNA damage, and the necessity of pervasive transcription in maintaining genome integrity. PMID:25596348

  9. Transcriptional Control of NK Cells.

    PubMed

    Sun, Joseph C

    2016-01-01

    Natural killer (NK) cells are innate lymphocytes that survey the environment and protect the host from infected and cancerous cells. As their name implies, NK cells represent an early line of defense during pathogen invasion by directly killing infected cells and secreting inflammatory cytokines. Although the function of NK cells was first described more than four decades ago, the development of this cytotoxic lineage is not well understood. In recent years, we have begun to identify specific transcription factors that control each stage of development and maturation, from ontogeny of the NK cell progenitor to the effector functions of activated NK cells in peripheral organs. This chapter highlights the transcription factors that are unique to NK cells, or shared between NK cells and other hematopoietic cell lineages, but govern the biology of this cytolytic lymphocyte. PMID:26177585

  10. Production of the 2400 kb Duchenne muscular dystrophy (DMD) gene transcript; transcription time and cotranscriptional splicing

    SciTech Connect

    Tennyson, C.N.; Worton, R.G.

    1994-09-01

    The largest known gene in any organism is the human DMD gene which has 79 exons that span 2400 kb. The extreme nature of the DMD gene raises questions concerning the time required for transcription and whether splicing begins before transcription is complete. DMD gene transcription is induced as cultured human myoblasts differentiate to form multinucleated myotubes, providing a system for studying the kinetics of transcription and splicing. Using quantitative RT-PCR, transcript accumulation was monitored from four different regions within the gene following induction of expression. By comparing the accumulation of transcripts from the 5{prime} and 3{prime} ends of the gene we have shown that approximately 12 hours are required to transcribe 1770 kb of the gene, extrapolating to a time of 16 hours for the transcription unit expressed in muscle. Comparison of accumulation profiles for spliced and total transcript demonstrated that transcripts are spliced at the 5{prime} end before transcription is complete, providing strong evidence for cotranscriptional splicing of DMD gene transcripts. Finally, the rate of transcript accumulation was reduced at the 3{prime} end of the gene relative to the 5{prime} end, perhaps due to premature termination of transcription complexes as they traverse this enormous transcription unit. The lag between transcription initiation and the appearance of complete transcripts could be important in limiting transcript production in dividing cells and to the timing of mRNA appearance in differentiating muscle.

  11. Synthetic in vitro transcriptional oscillators.

    PubMed

    Kim, Jongmin; Winfree, Erik

    2011-02-01

    The construction of synthetic biochemical circuits from simple components illuminates how complex behaviors can arise in chemistry and builds a foundation for future biological technologies. A simplified analog of genetic regulatory networks, in vitro transcriptional circuits, provides a modular platform for the systematic construction of arbitrary circuits and requires only two essential enzymes, bacteriophage T7 RNA polymerase and Escherichia coli ribonuclease H, to produce and degrade RNA signals. In this study, we design and experimentally demonstrate three transcriptional oscillators in vitro. First, a negative feedback oscillator comprising two switches, regulated by excitatory and inhibitory RNA signals, showed up to five complete cycles. To demonstrate modularity and to explore the design space further, a positive-feedback loop was added that modulates and extends the oscillatory regime. Finally, a three-switch ring oscillator was constructed and analyzed. Mathematical modeling guided the design process, identified experimental conditions likely to yield oscillations, and explained the system's robust response to interference by short degradation products. Synthetic transcriptional oscillators could prove valuable for systematic exploration of biochemical circuit design principles and for controlling nanoscale devices and orchestrating processes within artificial cells. PMID:21283141

  12. Linking Smads and transcriptional activation.

    PubMed

    Inman, Gareth J

    2005-02-15

    TGF-beta1 (transforming growth factor-beta1) is the prototypical member of a large family of pleiotropic cytokines that regulate diverse biological processes during development and adult tissue homoeostasis. TGF-beta signals via membrane bound serine/threonine kinase receptors which transmit their signals via the intracellular signalling molecules Smad2, Smad3 and Smad4. These Smads contain conserved MH1 and MH2 domains separated by a flexible linker domain. Smad2 and Smad3 act as kinase substrates for the receptors, and, following phosphorylation, they form complexes with Smad4 and translocate to the nucleus. These Smad complexes regulate gene expression and ultimately determine the biological response to TGF-beta. In this issue of the Biochemical Journal, Wang et al. have shown that, like Smad4, the linker domain of Smad3 contains a Smad transcriptional activation domain. This is capable of recruiting the p300 transcriptional co-activator and is required for Smad3-dependent transcriptional activation. This study raises interesting questions about the nature and regulation of Smad-regulated gene activation and elevates the status of the linker domain to rival that of the much-lauded MH1 and MH2 domains. PMID:15702493

  13. Transcriptional Mechanisms of Drug Addiction

    PubMed Central

    2012-01-01

    Regulation of gene expression is considered a plausible mechanism of drug addiction given the stability of behavioral abnormalities that define an addicted state. Numerous transcription factors, proteins that bind to regulatory regions of specific genes and thereby control levels of their expression, have been implicated in the addiction process over the past decade or two. Here we review the growing evidence for the role played by several prominent transcription factors, including a Fos family protein (ΔFosB), cAMP response element binding protein (CREB), and nuclear factor kappa B (NFκB), among several others, in drug addiction. As will be seen, each factor displays very different regulation by drugs of abuse within the brain's reward circuitry, and in turn mediates distinct aspects of the addiction phenotype. Current efforts are geared toward understanding the range of target genes through which these transcription factors produce their functional effects and the underlying molecular mechanisms involved. This work promises to reveal fundamentally new insight into the molecular basis of addiction, which will contribute to improved diagnostic tests and therapeutics for addictive disorders. PMID:23430970

  14. Transcriptional Regulation and its Misregulation in Disease

    PubMed Central

    Lee, Tong Ihn; Young, Richard A.

    2013-01-01

    The gene expression programs that establish and maintain specific cell states in humans are controlled by thousands of transcription factors, cofactors and chromatin regulators. Misregulation of these gene expression programs can cause a broad range of diseases. Here we review recent advances in our understanding of transcriptional regulation and discuss how these have provided new insights into transcriptional misregulation in disease. PMID:23498934

  15. 49 CFR 1012.5 - Transcripts; minutes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 8 2012-10-01 2012-10-01 false Transcripts; minutes. 1012.5 Section 1012.5 Transportation Other Regulations Relating to Transportation (Continued) SURFACE TRANSPORTATION BOARD, DEPARTMENT OF TRANSPORTATION GENERAL RULES AND REGULATIONS MEETINGS OF THE BOARD § 1012.5 Transcripts; minutes. (a) A verbatim transcript, sound...

  16. 18 CFR 1b.12 - Transcripts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Transcripts. 1b.12 Section 1b.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.12 Transcripts. Transcripts, if any,...

  17. Electronic Transcripts: Past, Present, and Future

    ERIC Educational Resources Information Center

    Harris, Sarah; Hannah, Andrew; Stones, Dave; Morley, Robert

    2011-01-01

    Electronic transcripts are no longer a concept awaiting definition. They are here to stay. Although paper transcripts remain the standard--at least in terms of volume--an ever-increasing number and eventual majority of students and alumni will expect if not require electronic transcripts. College registrars and admissions officers' obligation to…

  18. Contributions of in vitro transcription to the understanding of human RNA polymerase III transcription

    PubMed Central

    Dumay-Odelot, Hélène; Durrieu-Gaillard, Stéphanie; El Ayoubi, Leyla; Parrot, Camila; Teichmann, Martin

    2014-01-01

    Human RNA polymerase III transcribes small untranslated RNAs that contribute to the regulation of essential cellular processes, including transcription, RNA processing and translation. Analysis of this transcription system by in vitro transcription techniques has largely contributed to the discovery of its transcription factors and to the understanding of the regulation of human RNA polymerase III transcription. Here we review some of the key steps that led to the identification of transcription factors and to the definition of minimal promoter sequences for human RNA polymerase III transcription. PMID:25764111

  19. Switch Transcripts in Immunoglobulin Class Switching

    NASA Astrophysics Data System (ADS)

    Lorenz, Matthias; Jung, Steffen; Radbruch, Andreas

    1995-03-01

    B cells can exchange gene segments for the constant region of the immunoglobulin heavy chain, altering the class and effector function of the antibodies that they produce. Class switching is directed to distinct classes by cytokines, which induce transcription of the targeted DNA sequences. These transcripts are processed, resulting in spliced "switch" transcripts. Switch recombination can be directed to immunoglobulin G1 (IgG1) by the heterologous human metallothionein II_A promoter in mutant mice. Induction of the structurally conserved, spliced switch transcripts is sufficient to target switch recombination to IgG1, whereas transcription alone is not.

  20. Transcriptional coregulators: fine-tuning metabolism

    PubMed Central

    Mouchiroud, Laurent; Eichner, Lillian J.; Shaw, Reuben; Auwerx, Johan

    2014-01-01

    Metabolic homeostasis requires that cellular energy levels are adapted to environmental cues. This adaptation is largely regulated at the transcriptional level, through the interaction between transcription factors, coregulators, and the basal transcriptional machinery. Coregulators, which function both as metabolic sensors and transcriptional effectors, are ideally positioned to synchronize metabolic pathways to environmental stimuli. The balance between inhibitory actions of corepressors and stimulatory effects of coactivators enables the fine-tuning of metabolic processes. The tight regulation opens therapeutic opportunities to manage metabolic dysfunction, by directing the activity of cofactors towards specific transcription factors, pathways, or cells/tissues, thereby restoring whole body metabolic homeostasis. PMID:24794975

  1. Transcriptional Regulation of Heart Development in Zebrafish

    PubMed Central

    Lu, Fei; Langenbacher, Adam D.; Chen, Jau-Nian

    2016-01-01

    Cardiac transcription factors orchestrate the complex cellular and molecular events required to produce a functioning heart. Misregulation of the cardiac transcription program leads to embryonic developmental defects and is associated with human congenital heart diseases. Recent studies have expanded our understanding of the regulation of cardiac gene expression at an additional layer, involving the coordination of epigenetic and transcriptional regulators. In this review, we highlight and discuss discoveries made possible by the genetic and embryological tools available in the zebrafish model organism, with a focus on the novel functions of cardiac transcription factors and epigenetic and transcriptional regulatory proteins during cardiogenesis. PMID:27148546

  2. Effects of elongation delay in transcription dynamics.

    PubMed

    Zhang, Xuan; Jin, Huiqin; Yang, Zhuoqin; Lei, Jinzhi

    2014-12-01

    In the transcription process, elongation delay is induced by the movement of RNA polymerases (RNAP) along the DNA sequence, and can result in changes in the transcription dynamics. This paper studies the transcription dynamics that involved the elongation delay and effects of cell division and DNA replication. The stochastic process of gene expression is modeled with delay chemical master equation with periodic coefficients, and is studied numerically through the stochastic simulation algorithm with delay. We show that the average transcription level approaches to a periodic dynamics over cell cycles at homeostasis, and the elongation delay can reduce the transcription level and increase the transcription noise. Moreover, the transcription elongation can induce bimodal distribution of mRNA levels that can be measured by the techniques of flow cytometry. PMID:25365608

  3. mRNA quality control goes transcriptional

    PubMed Central

    Kilchert, Cornelia; Vasiljeva, Lidia

    2013-01-01

    Eukaryotic mRNAs are extensively processed to generate functional transcripts, which are 5′ capped, spliced and 3′ polyadenylated. Accumulation of unprocessed (aberrant) mRNAs can be deleterious for the cell, hence processing fidelity is closely monitored by QC (quality control) mechanisms that identify erroneous transcripts and initiate their selective removal. Nucleases including Xrn2/Rat1 and the nuclear exosome have been shown to play an important role in the turnover of aberrant mRNAs. Recently, with the growing appreciation that mRNA processing occurs concomitantly with polII (RNA polymerase II) transcription, it has become evident that QC acts at the transcriptional level in addition to degrading aberrant RNAs. In the present review, we discuss mechanisms that allow cells to co-transcriptionally initiate the removal of RNAs as well as down-regulate transcription of transcripts where processing repeatedly fails. PMID:24256272

  4. Mammalian Transcription-Coupled Excision Repair

    PubMed Central

    Vermeulen, Wim; Fousteri, Maria

    2013-01-01

    Transcriptional arrest caused by DNA damage is detrimental for cells and organisms as it impinges on gene expression and thereby on cell growth and survival. To alleviate transcriptional arrest, cells trigger a transcription-dependent genome surveillance pathway, termed transcription-coupled nucleotide excision repair (TC-NER) that ensures rapid removal of such transcription-impeding DNA lesions and prevents persistent stalling of transcription. Defective TC-NER is causatively linked to Cockayne syndrome, a rare severe genetic disorder with multisystem abnormalities that results in patients’ death in early adulthood. Here we review recent data on how damage-arrested transcription is actively coupled to TC-NER in mammals and discuss new emerging models concerning the role of TC-NER-specific factors in this process. PMID:23906714

  5. Targeting Transcription Factors in Cancer

    PubMed Central

    Bhagwat, Anand S.; Vakoc, Christopher R.

    2015-01-01

    Transcription factors (TFs) are commonly deregulated in the pathogenesis of human cancer and are a major class of cancer cell dependencies. Consequently, targeting of TFs can be highly effective in treating particular malignancies, as highlighted by the clinical efficacy of agents that target nuclear hormone receptors. In this review we discuss recent advances in our understanding of TFs as drug targets in oncology, with an emphasis on the emerging chemical approaches to modulate TF function. The remarkable diversity and potency of TFs as drivers of cell transformation justifies a continued pursuit of TFs as therapeutic targets for drug discovery. PMID:26645049

  6. The N-Terminus of the Floral Arabidopsis TGA Transcription Factor PERIANTHIA Mediates Redox-Sensitive DNA-Binding

    PubMed Central

    Gutsche, Nora; Zachgo, Sabine

    2016-01-01

    The Arabidopsis TGA transcription factor (TF) PERIANTHIA (PAN) regulates the formation of the floral organ primordia as revealed by the pan mutant forming an abnormal pentamerous arrangement of the outer three floral whorls. The Arabidopsis TGA bZIP TF family comprises 10 members, of which PAN and TGA9/10 control flower developmental processes and TGA1/2/5/6 participate in stress-responses. For the TGA1 protein it was shown that several cysteines can be redox-dependently modified. TGA proteins interact in the nucleus with land plant-specific glutaredoxins, which may alter their activities posttranslationally. Here, we investigated the DNA-binding of PAN to the AAGAAT motif under different redox-conditions. The AAGAAT motif is localized in the second intron of the floral homeotic regulator AGAMOUS (AG), which controls stamen and carpel development as well as floral determinacy. Whereas PAN protein binds to this regulatory cis-element under reducing conditions, the interaction is strongly reduced under oxidizing conditions in EMSA studies. The redox-sensitive DNA-binding is mediated via a special PAN N-terminus, which is not present in other Arabidopsis TGA TFs and comprises five cysteines. Two N-terminal PAN cysteines, Cys68 and Cys87, were shown to form a disulfide bridge and Cys340, localized in a C-terminal putative transactivation domain, can be S-glutathionylated. Comparative land plant analyses revealed that the AAGAAT motif exists in asterid and rosid plant species. TGA TFs with N-terminal extensions of variable length were identified in all analyzed seed plants. However, a PAN-like N-terminus exists only in the rosids and exclusively Brassicaceae homologs comprise four to five of the PAN N-terminal cysteines. Redox-dependent modifications of TGA cysteines are known to regulate the activity of stress-related TGA TFs. Here, we show that the N-terminal PAN cysteines participate in a redox-dependent control of the PAN interaction with a highly conserved

  7. A compendium of Caenhorabditis elegans regulatory transcription factors: a resource for mapping transcription regulatory networks

    PubMed Central

    Reece-Hoyes, John S; Deplancke, Bart; Shingles, Jane; Grove, Christian A; Hope, Ian A; Walhout, Albertha JM

    2005-01-01

    Background Transcription regulatory networks are composed of interactions between transcription factors and their target genes. Whereas unicellular networks have been studied extensively, metazoan transcription regulatory networks remain largely unexplored. Caenorhabditis elegans provides a powerful model to study such metazoan networks because its genome is completely sequenced and many functional genomic tools are available. While C. elegans gene predictions have undergone continuous refinement, this is not true for the annotation of functional transcription factors. The comprehensive identification of transcription factors is essential for the systematic mapping of transcription regulatory networks because it enables the creation of physical transcription factor resources that can be used in assays to map interactions between transcription factors and their target genes. Results By computational searches and extensive manual curation, we have identified a compendium of 934 transcription factor genes (referred to as wTF2.0). We find that manual curation drastically reduces the number of both false positive and false negative transcription factor predictions. We discuss how transcription factor splice variants and dimer formation may affect the total number of functional transcription factors. In contrast to mouse transcription factor genes, we find that C. elegans transcription factor genes do not undergo significantly more splicing than other genes. This difference may contribute to differences in organism complexity. We identify candidate redundant worm transcription factor genes and orthologous worm and human transcription factor pairs. Finally, we discuss how wTF2.0 can be used together with physical transcription factor clone resources to facilitate the systematic mapping of C. elegans transcription regulatory networks. Conclusion wTF2.0 provides a starting point to decipher the transcription regulatory networks that control metazoan development and function

  8. Informational requirements for transcriptional regulation.

    PubMed

    O'Neill, Patrick K; Forder, Robert; Erill, Ivan

    2014-05-01

    Transcription factors (TFs) regulate transcription by binding to specific sites in promoter regions. Information theory provides a useful mathematical framework to analyze the binding motifs associated with TFs but imposes several assumptions that limit their applicability to specific regulatory scenarios. Explicit simulations of the co-evolution of TFs and their binding motifs allow the study of the evolution of regulatory networks with a high degree of realism. In this work we analyze the impact of differential regulatory demands on the information content of TF-binding motifs by means of evolutionary simulations. We generalize a predictive index based on information theory, and we validate its applicability to regulatory scenarios in which the TF binds significantly to the genomic background. Our results show a logarithmic dependence of the evolved information content on the occupancy of target sites and indicate that TFs may actively exploit pseudo-sites to modulate their occupancy of target sites. In regulatory networks with differentially regulated targets, we observe that information content in TF-binding motifs is dictated primarily by the fraction of total probability mass that the TF assigns to its target sites, and we provide a predictive index to estimate the amount of information associated with arbitrarily complex regulatory systems. We observe that complex regulatory patterns can exert additional demands on evolved information content, but, given a total occupancy for target sites, we do not find conclusive evidence that this effect is because of the range of required binding affinities. PMID:24689750

  9. In vitro transcription of adenovirus.

    PubMed Central

    Fire, A; Baker, C C; Manley, J L; Ziff, E B; Sharp, P A

    1981-01-01

    A series of recombinants of adenovirus DNA fragments and pBR322 was used to test the transcriptional activity of the nine known adenovirus promoters in a cell-free extract. Specific initiation was seen at all five early promoters as well as at the major late promotor and at the intermediate promoter for polypeptide IX. The system failed to recognize the two other adenovirus promoters, which were prominent in vivo only at intermediate and late stages in infection. Microheterogeneity of 5' termini at several adenovirus promoters, previously shown in vivo, was reproduced in the in vitro reaction and indeed appeared to result from heterogeneous initiation rather than 5' processing. To test for the presence of soluble factors involved in regulation of nRNA synthesis, the activity of extracts prepared from early and late stages of infection was compared on an assortment of viral promoter sites. Although mock and early extracts showed identical transcription patterns, extracts prepared from late stages gave 5- to 10-fold relative enhancement of the late and polypeptide IX promoters as compared with early promoters. Images PMID:7321101

  10. Informational Requirements for Transcriptional Regulation

    PubMed Central

    O'Neill, Patrick K.; Forder, Robert

    2014-01-01

    Abstract Transcription factors (TFs) regulate transcription by binding to specific sites in promoter regions. Information theory provides a useful mathematical framework to analyze the binding motifs associated with TFs but imposes several assumptions that limit their applicability to specific regulatory scenarios. Explicit simulations of the co-evolution of TFs and their binding motifs allow the study of the evolution of regulatory networks with a high degree of realism. In this work we analyze the impact of differential regulatory demands on the information content of TF-binding motifs by means of evolutionary simulations. We generalize a predictive index based on information theory, and we validate its applicability to regulatory scenarios in which the TF binds significantly to the genomic background. Our results show a logarithmic dependence of the evolved information content on the occupancy of target sites and indicate that TFs may actively exploit pseudo-sites to modulate their occupancy of target sites. In regulatory networks with differentially regulated targets, we observe that information content in TF-binding motifs is dictated primarily by the fraction of total probability mass that the TF assigns to its target sites, and we provide a predictive index to estimate the amount of information associated with arbitrarily complex regulatory systems. We observe that complex regulatory patterns can exert additional demands on evolved information content, but, given a total occupancy for target sites, we do not find conclusive evidence that this effect is because of the range of required binding affinities. PMID:24689750