Science.gov

Sample records for c-c bond cleavage

  1. Synthesis of Biaryls via Benzylic C-C Bond Cleavage of Styrenes and Benzyl Alcohols.

    PubMed

    Kumar, Arvind; Shah, Bhahwal Ali

    2015-11-01

    A metal-free oxidative coupling of styrenes and benzyl alcohols with arenes has been developed for the synthesis of biaryls. The reaction features a conspicuous benzylic C-C bond cleavage of styrenes and benzyl alcohols. The reaction with both substrates proceeds through a common aldehydic intermediate formed through oxidative C-C bond cleavage of alkene and oxidation of benzyl alcohols. The reaction proceeds efficiently over a broad range of substrates with excellent functional group tolerance. PMID:26479321

  2. Copper-catalyzed aerobic radical C–C bond cleavage of N–H ketimines

    PubMed Central

    Tnay, Ya Lin; Ang, Gim Yean

    2015-01-01

    Summary We report herein studies on copper-catalyzed aerobic radical C–C bond cleavage of N–H ketimines. Treatment of N–H ketimines having an ?-sp3 hybridized carbon under Cu-catalyzed aerobic reaction conditions resulted in a radical fragmentation with C–C bond cleavage to give the corresponding carbonitrile and carbon radical intermediate. This radical process has been applied for the construction of oxaspirocyclohexadienones as well as in the electrophilic cyanation of Grignard reagents with pivalonitrile as a CN source. PMID:26664613

  3. Novel C?-C? Bond Cleavages of Tryptophan-Containing Peptide Radical Cations

    NASA Astrophysics Data System (ADS)

    Song, Tao; Hao, Qiang; Law, Chun-Hin; Siu, Chi-Kit; Chu, Ivan K.

    2012-02-01

    In this study, we observed unprecedented cleavages of the C?-C? bonds of tryptophan residue side chains in a series of hydrogen-deficient tryptophan-containing peptide radical cations (M•+) during low-energy collision-induced dissociation (CID). We used CID experiments and theoretical density functional theory (DFT) calculations to study the mechanism of this bond cleavage, which forms [M - 116]+ ions. The formation of an ?-carbon radical intermediate at the tryptophan residue for the subsequent C?-C? bond cleavage is analogous to that occurring at leucine residues, producing the same product ions; this hypothesis was supported by the identical product ion spectra of [LGGGH - 43]+ and [WGGGH - 116]+, obtained from the CID of [LGGGH]•+ and [WGGGH]•+, respectively. Elimination of the neutral 116-Da radical requires inevitable dehydrogenation of the indole nitrogen atom, leaving the radical centered formally on the indole nitrogen atom ([Ind]•-2), in agreement with the CID data for [WGGGH]•+ and [W1-CH3GGGH]•+; replacing the tryptophan residue with a 1-methyltryptophan residue results in a change of the base peak from that arising from a neutral radical loss (116 Da) to that arising from a molecule loss (131 Da), both originating from C?-C? bond cleavage. Hydrogen atom transfer or proton transfer to the ?-carbon atom of the tryptophan residue weakens the C?-C? bond and, therefore, decreases the dissociation energy barrier dramatically.

  4. Organic chemistry. Rh-catalyzed C-C bond cleavage by transfer hydroformylation.

    PubMed

    Murphy, Stephen K; Park, Jung-Woo; Cruz, Faben A; Dong, Vy M

    2015-01-01

    The dehydroformylation of aldehydes to generate olefins occurs during the biosynthesis of various sterols, including cholesterol in humans. Here, we implement a synthetic version that features the transfer of a formyl group and hydride from an aldehyde substrate to a strained olefin acceptor. A Rhodium (Xantphos)(benzoate) catalyst activates aldehyde carbon-hydrogen (C-H) bonds with high chemoselectivity to trigger carbon-carbon (C-C) bond cleavage and generate olefins at low loadings (0.3 to 2 mole percent) and temperatures (22° to 80°C). This mild protocol can be applied to various natural products and was used to achieve a three-step synthesis of (+)-yohimbenone. A study of the mechanism reveals that the benzoate counterion acts as a proton shuttle to enable transfer hydroformylation. PMID:25554782

  5. Rh-Catalyzed C–C Bond Cleavage by Transfer Hydroformylation

    PubMed Central

    Murphy, Stephen K.; Park, Jung-Woo; Cruz, Faben A.; Dong, Vy M.

    2015-01-01

    The dehydroformylation of aldehydes to generate olefins occurs during the biosynthesis of various sterols, including cholesterol in humans. Here, we implement a synthetic version that features the transfer of a formyl group and hydride from an aldehyde substrate to a strained olefin acceptor. A Rh(Xantphos)(benzoate) catalyst activates aldehyde C–H bonds with high chemoselectivity to trigger C–C bond cleavage and generate olefins at low loadings (0.3 to 2 mol%) and temperatures (22 to 80 °C). This mild protocol can be applied to various natural products and was used to achieve a three step synthesis of (+)-yohimbenone. A study of the mechanism reveals that the benzoate counterion acts as a proton-shuttle to enable transfer hydroformylation. PMID:25554782

  6. Structure sensitivity of hydrogenolytic cleavage of endocyclic and exocyclic C-C bonds in methylcyclohexane over supported iridium particles

    SciTech Connect

    Shi, Hui; Gutierrez, Oliver Y.; Haller, Gary L.; Mei, Donghai; Rousseau, Roger J.; Lercher, Johannes A.

    2013-01-02

    Structure sensitivities, H2 pressure effects and temperature dependencies for rates and selectivities of endo- and exocyclic C–C bond cleavage in methylcyclohexane were studied over supported Ir catalysts. The rate of endocyclic C–C bond cleavage first decreased and then increased with declining Ir dispersion from 0.65 to 0.035. The ring opening (RO) product distribution remained unchanged with varying H2 pressure on small Ir particles, while further shifting to methylhexanes with increasing H2 pressure on large particles. In contrast, the rate and selectivity of exocyclic C–C bond cleavage decreased monotonically with increasing H2 pressure and decreasing Ir particle size. The distinct dependencies of endocyclic and exocyclic C–C bond cleavage pathways on Ir dispersion and H2 pressure suggest that they are mediated by surface species with different ensemble size requirements. DFT calculations were performed on an Ir50 cluster and an Ir(111) surface, with or without pre-adsorbed hydrogen atoms, to provide insight into the observed effects of particle size and H2 pressure on RO pathways. On small Ir particles, the calculated dehydrogenation enthalpies for all endocyclic bonds were similar and affected to similar extents by H2 pressure; on large particles, the selectivity to n-heptane (via substituted C-C bond cleavage) was even lower than on small particles as a result of the least favorable adsorption and dehydrogenation energetics for hindered bonds. This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences under Contract DE-AC05-76RL01830. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The computing time is provided by the user project from EMSL, a national scientific user facility sponsored by the US Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  7. Alkynylation of Tertiary Cycloalkanols via Radical C-C Bond Cleavage: A Route to Distal Alkynylated Ketones.

    PubMed

    Wang, Shun; Guo, Li-Na; Wang, Hua; Duan, Xin-Hua

    2015-10-01

    An efficient Na2S2O8-promoted radical coupling of tertiary cycloalkanols with alkynyl hypervalent iodide reagents via C-C bond cleavage was developed. This tandem ring-opening/alkynylation procedure showed some advantages, including mild conditions and wide substrate scope, thus providing a simple synthetic method for ?-, ?- and ?-alkynylated ketones. PMID:26378463

  8. Mechanistic Examination of C?–C? Bond Cleavages of Tryptophan Residues during Dissociations of Molecular Peptide Radical Cations

    SciTech Connect

    Song, Tao; Ma, Ching-Yung; Chu, Ivan K.; Siu, Chi-Kit; Laskin, Julia

    2013-02-14

    In this study, we used collision-induced dissociation (CID) to examine the gas-phase fragmentations of [GnW]•+ (n = 2-4) and [GXW]•+ (X = C, S, L, F, Y, Q) species. The C?–C? bond cleavage of a C-terminal decarboxylated tryptophan residue ([M - CO2]•+) can generate [M - CO2 - 116]+, [M - CO2 - 117]•+, and [1H-indole]•+ (m/z 117) species as possible product ions. Competition between the formation of [M - CO2 - 116]+ and [1H-indole]•+ systems implies the existence of a proton-bound dimer formed between the indole ring and peptide backbone. Formation of such a proton-bound dimer is facile via a protonation of the tryptophan ?-carbon atom as suggested by density functional theory (DFT) calculations. DFT calculations also suggested the initially formed ion 2--the decarboxylated species that is active against C?–C? bond cleavage -can efficiently isomerize to form a more-stable -radical isomer (ion 9) as supported by Rice-Ramsperger-Kassel-Marcus (RRKM) modeling. The C?–C? bond cleavage of a tryptophan residue also can occur directly from peptide radical cations containing a basic residue. CID of [WGnR]•+ (n = 1-3) radical cations consistently resulted in predominant formation of [M-116]+ product ions. It appears that the basic arginine residue tightly sequesters the proton and allows the charge-remote C?–C? bond cleavage to prevail over the charge-directed one. DFT calculations predicted the barrier for the former is 6.2 kcal mol -1 lower than that of the latter. Furthermore, the pathway involving a salt-bridge intermediate also was accessible during such a bond cleavage event.

  9. Phenyliodonium diacetate mediated direct synthesis of benzonitriles from styrenes through oxidative cleavage of C?C bonds.

    PubMed

    Xu, Jin-Hui; Jiang, Qing; Guo, Can-Cheng

    2013-12-01

    A metal-free PhI(OAc)2 mediated nitrogenation of alkenes through C?C bond cleavage using inorganic ammonia salt as nitrogen source under mild conditions was developed, affording nitriles in moderate to good yields. The advantages of this reaction are mild reaction conditions, operational simplicity, and use of an ammonium salt as nitrogen source. Based upon experimental observations, a plausible reaction mechanism is proposed. PMID:24171555

  10. Deamination, oxidation, and C-C bond cleavage reactivity of 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine.

    PubMed

    Schiesser, Stefan; Pfaffeneder, Toni; Sadeghian, Keyarash; Hackner, Benjamin; Steigenberger, Barbara; Schröder, Arne S; Steinbacher, Jessica; Kashiwazaki, Gengo; Höfner, Georg; Wanner, Klaus T; Ochsenfeld, Christian; Carell, Thomas

    2013-10-01

    Three new cytosine derived DNA modifications, 5-hydroxymethyl-2'-deoxycytidine (hmdC), 5-formyl-2'-deoxycytidine (fdC) and 5-carboxy-2'-deoxycytidine (cadC) were recently discovered in mammalian DNA, particularly in stem cell DNA. Their function is currently not clear, but it is assumed that in stem cells they might be intermediates of an active demethylation process. This process may involve base excision repair, C-C bond cleaving reactions or deamination of hmdC to 5-hydroxymethyl-2'-deoxyuridine (hmdU). Here we report chemical studies that enlighten the chemical reactivity of the new cytosine nucleobases. We investigated their sensitivity toward oxidation and deamination and we studied the C-C bond cleaving reactivity of hmdC, fdC, and cadC in the absence and presence of thiols as biologically relevant (organo)catalysts. We show that hmdC is in comparison to mdC rapidly oxidized to fdC already in the presence of air. In contrast, deamination reactions were found to occur only to a minor extent. The C-C bond cleavage reactions require the presence of high concentration of thiols and are acid catalyzed. While hmdC dehydroxymethylates very slowly, fdC and especially cadC react considerably faster to dC. Thiols are active site residues in many DNA modifiying enzymes indicating that such enzymes could play a role in an alternative active DNA demethylation mechanism via deformylation of fdC or decarboxylation of cadC. Quantum-chemical calculations support the catalytic influence of a thiol on the C-C bond cleavage. PMID:23980549

  11. An asymmetric [3+2] cycloaddition of alkynes with oxiranes by selective C-C bond cleavage of epoxides: highly efficient synthesis of chiral furan derivatives.

    PubMed

    Chen, Weiliang; Fu, Xuan; Lin, Lili; Yuan, Xiao; Luo, Weiwei; Feng, Juhua; Liu, Xiaohua; Feng, Xiaoming

    2014-10-01

    An efficient enantioselective [3+2] cycloaddition of alkynes with oxiranes via selective C-C bond cleavage of epoxides was developed. A number of optically active 2,5-dihydrofurans were obtained in excellent yields (up to 99%) and enantioselectivities (up to 95% ee) under mild reaction conditions. Moreover, chiral tetrahydrofuran could also be obtained by cycloaddition of alkene and oxirane or hydrogenation of chiral 2,5-dihydrofuran. PMID:25133274

  12. Ab initio calculations on a novel mode for storing and releasing electrons via C-C bond formation and cleavage

    SciTech Connect

    Cambi, R.; Nottoli, R.; Rosi, M.; Sgamellotti, A. ); Floriani, C. )

    1992-12-23

    Ab initio Hartree-Fock and second-order Moeller-Plesset calculations have been performed on systems which can be viewed as models for [Ni(salophen)] and its reductive product. The results indicate that the metal does not change its oxidation state in the reductive process because no orbitals, localized on nickel and at low energy, are available to accept electrons, except the in-plane d orbital, whose occupation would imply a large increase in the repulsion. The added electrons prefer to form a C-C bond, which can be cleaved restoring the original product. Ni[sup 2+] is electrostatically bonded to the ligand and acts as a shield among the negative charges of the ligand itself. Correlation effects influence the energetic balance of the reductive process but not as heavily as expected for transition metal systems because the electronic distribution at the transition metal ion does not change in the reaction. 17 refs., 2 figs., 2 tabs.

  13. Iron-catalyzed aerobic oxidative cleavage of the C-C ?-bond using air as the oxidant: chemoselective synthesis of carbon chain-shortened aldehydes, ketones and 1,2-dicarbonyl compounds.

    PubMed

    Xing, Qi; Lv, Hui; Xia, Chungu; Li, Fuwei

    2016-01-11

    A simple iron-catalyzed aerobic oxidative C-C ?-bond cleavage of ketones has been developed. Readily available and environmentally benign air is used as the oxidant. This reaction avoids the use of noble metal catalysts or specialized oxidants, chemoselectively yielding carbon chain-shortened aldehydes, ketones and 1,2-dicarbonyl compounds without overoxidation. PMID:26529597

  14. DMSO/I2 mediated C-C bond cleavage of ?-ketoaldehydes followed by C-O bond formation: a metal-free approach for one-pot esterification.

    PubMed

    Venkateswarlu, Vunnam; Aravinda Kumar, K A; Gupta, Sorav; Singh, Deepika; Vishwakarma, Ram A; Sawant, Sanghapal D

    2015-08-01

    A novel and efficient I2/DMSO mediated metal-free strategy is presented for the direct C-C bond cleavage of aryl-/heteroaryl- or aliphatic ?-ketoaldehydes by C2-decarbonylation and C1-carbonyl oxidation to give the corresponding carboxylic acids followed by esterification in one pot, offering excellent yields in both the steps. Here, DMSO acts as the oxygen source/oxidant and this reaction works very well under both conventional heating and microwave irradiation. This is a very simple and convenient protocol. PMID:26110656

  15. How and Why Does Ni(0) Promote Smooth Etheric C?O Bond Cleavage and C?C Bond Formation? A Theoretical Study.

    PubMed

    Ogawa, Hiroyuki; Minami, Hiroki; Ozaki, Takashi; Komagawa, Shinsuke; Wang, Chao; Uchiyama, Masanobu

    2015-09-28

    Ni-catalyzed cross-coupling between aryl alkyl ethers (ArOR) and Grignard reagents (RMgBr), known since 1979, proceeds under mild conditions in many cases. Although the reaction routes of various synthetic protocols involving transition-metal-catalyzed C?O bond activation have been elucidated, the mechanism of this etheric Kumada-Tamao-Curriu reaction remains enigmatic. This is because oxidative addition of inert etheric C?O to Ni(0) is thermodynamically and kinetically unfavorable, making it hard to explain the observed high reactivity of ether toward Ni catalysts. In this work, we used DFT calculations to identify a plausible reaction pathway by the Ni(0) -ate complex, which enables smooth C?O bond cleavage and R-group transfer with reasonable activation barriers; this mechanism also accounts for the ineffectiveness of Pd catalysts. These results throw new light on both C?O activation and cross-coupling, and should be valuable for further rational development of the methodologies. PMID:26294322

  16. Aliphatic C-C Bond Cleavage of ?-Hydroxy Ketones by Non-Heme Iron(II) Complexes: Mechanistic Insight into the Reaction Catalyzed by 2,4'-Dihydroxyacetophenone Dioxygenase.

    PubMed

    Rahaman, Rubina; Paria, Sayantan; Paine, Tapan Kanti

    2015-11-16

    2,4'-Dihydroxyacetophenone dioxygenase (DAD) is a bacterial non-heme enzyme that carries out oxygenative aliphatic C-C bond cleavage of 2,4'-dihydroxyacetophenone (an ?-hydroxy ketone) with the incorporation of both the oxygen atoms of dioxygen into the cleavage products. The crystal structure of the iron enzyme DAD has recently been determined, but very little is known about the mechanism of the C-C bond cleavage reaction. With the objective of gaining insights into the mechanism of the reaction catalyzed by DAD, six new biomimetic iron(II)-?-hydroxy ketone complexes, [(Tp(Ph2))Fe(II)(PHAP)] (1), [(Tp(Ph2))Fe(II)(HCH)] (2), [(Tp(Ph2))Fe(II)(HBME)] (3), [(Tp(Ph2))Fe(II)(CHPE)] (4), [(6-Me3-TPA)Fe(II)(PHAP)](+) (5), and [(6-Me3-TPA)Fe(II)(HCH)](+) (6) (Tp(Ph2) = hydrotris(3,5-diphenylpyrazol-1-yl)borate, 6-Me3-TPA = tris(6-methyl-2-pyridylmethyl)amine, PHAP-H = 2-phenyl-2-hydroxyacetophenone, HCH-H = 2-hydroxycyclohexanone, HBME-H = 2-hydroxy-1,2-bis(4-methoxyphenyl)ethanone, and CHPE-H = 1-(4-chlorophenyl)-2-hydroxy-2-phenylethanone), have been isolated and characterized. The single-crystal X-ray structure of 2 shows a five-coordinate iron(II) complex with one tridentate facial ligand and a monoanionic bidentate ?-hydroxy ketone, resulting in a distorted-square-pyramidal coordination geometry at the iron center. The iron(II) complexes react with dioxygen to oxidatively cleave the aliphatic C-C bonds of the coordinated ?-hydroxy ketones to afford 2 equiv of carboxylic acids. Mechanistic studies reveal that the C-C bond cleavage reaction proceeds through an intradiol pathway. Additionally, the coordinated ?-hydroxy ketones in all of the complexes, except in complex 4, undergo two-electron oxidation to form the corresponding 1,2-diketones. However, the yields of 1,2-diketones are higher with the iron complexes of the tripodal N4 ligand (6-Me3-TPA) in comparison to the facial N3 ligand (Tp(Ph2)). These results strongly support the natural selection of a facial N3 environment at the active site of the iron enzyme DAD. PMID:26536067

  17. Journal of Molecular Catalysis A: Chemical 189 (2002) 157168 Cleavage of the carboncarbon bond in biphenylene

    E-print Network

    Jones, William D.

    2002-01-01

    Journal of Molecular Catalysis A: Chemical 189 (2002) 157­168 Cleavage of the carbon­carbon bond Biphenylene has proven to have a rich chemistry with transition metals. In many cases, the aryl­aryl C­C bond Elsevier Science B.V. All rights reserved. Keywords: C­C bond cleavage; Oxidative addition

  18. Understanding Rotation about a C=C Double Bond

    ERIC Educational Resources Information Center

    Barrows, Susan E.; Eberlein, Thomas H.

    2005-01-01

    The study focuses on the process and energetic cost of twisting around a C=C double bond and provides instructors with a simple vehicle for rectifying the common misrepresentation of C=C double bonds as rigid and inflexible. Discussions of cis and trans isomers of cycloalkenes are a good entry point for introducing students to the idea of a…

  19. Protocols for the selective cleavage of carbon-sulfur bonds in coal

    SciTech Connect

    Bausch, M.

    1991-01-01

    Removal of the organic sulfur in coal constitutes one of the major challenges facing fossil fuel scientists today. A cost--effective of desulfurizing Illinois coal is non-existent at the present time. Research in our group aims to develop a simple protocol for sulfur removal by gaining understanding of how various additives can enhance the rates of C-S bond cleavage in Illinois coal and coal model compounds, relative to fragmentation of the coal macromolecule via C-C, C-O, and C-N bond cleavage. During this funding period, we plan to carry out examinations of: (a) the effects of various reaction conditions on radical-initiated and Lewis acid-catalyzed C-S bond cleavages; (b) the effects of caustic impregnation and subsequent alcoholic reflux on C-S bond cleavage strategies; (c) the reactions of coal model compounds with electron-deficient substrates; (d) examinations of photooxidative C-S bond cleavage reactions; (e) the effects of moderate (300--400{degrees}C) temperatures and pressures as well as ultrasonic radiation on (a) - (c). Also planned are differential scanning calorimetric (DSC) examinations of selected C-S bond cleavage protocols, including those on Illinois coals that possess varying amounts of organic and inorganic sulfur.

  20. Carbon-Oxygen Bond Activation in Esters by Platinum(0): Cleavage of the Less Reactive Bond

    E-print Network

    Jones, William D.

    Carbon-Oxygen Bond Activation in Esters by Platinum(0): Cleavage of the Less Reactive Bond Kimberly, they typically exchange the OR group for another incoming nucleophile by acyl-oxygen cleavage: e.g., in acidic hydrolysis reactions. SN1 cleavage of the alkyl-oxygen RCOO-R bond is seen only when the ester is protonated

  1. Alkali metal mediated C–C bond coupling reaction

    SciTech Connect

    Tachikawa, Hiroto

    2015-02-14

    Metal catalyzed carbon-carbon (C–C) bond formation is one of the important reactions in pharmacy and in organic chemistry. In the present study, the electron and hole capture dynamics of a lithium-benzene sandwich complex, expressed by Li(Bz){sub 2}, have been investigated by means of direct ab-initio molecular dynamics method. Following the electron capture of Li(Bz){sub 2}, the structure of [Li(Bz){sub 2}]{sup ?} was drastically changed: Bz–Bz parallel form was rapidly fluctuated as a function of time, and a new C–C single bond was formed in the C{sub 1}–C{sub 1}? position of Bz–Bz interaction system. In the hole capture, the intermolecular vibration between Bz–Bz rings was only enhanced. The mechanism of C–C bond formation in the electron capture was discussed on the basis of theoretical results.

  2. Intramolecular, Pd/Cu-Co-catalyzed P-C Bond Cleavage and Addition onto an Alkyne: A Route to Benzophospholes.

    PubMed

    Zhou, Yang; Gan, Zhenjie; Su, Bo; Li, Jun; Duan, Zheng; Mathey, François

    2015-11-20

    Under Pd(II)/CuI cocatalysis, o-diarylphosphinophenylalkynes cyclize in boiling toluene via C-P bond cleavage and arylphosphination of the C?C bond. This protocol provides an unprecedented atom- and step-efficient access to optoelectronically and biologically interesting benzophospholes. PMID:26561234

  3. Carbon-Selenium Bond Cleavage by a Rhodium Complex

    E-print Network

    Jones, William D.

    Carbon-Selenium Bond Cleavage by a Rhodium Complex David A. Vicic, Andrew W. Myers, and William D with tel- lophene.4,5 As Angelici has pointed out,3 selenium is an attractive sulfur analog because of its

  4. Metal-Free Oxidative C?C Bond Formation through C?H Bond Functionalization.

    PubMed

    Narayan, Rishikesh; Matcha, Kiran; Antonchick, Andrey P

    2015-10-12

    The formation of C?C bonds embodies the core of organic chemistry because of its fundamental application in generation of molecular diversity and complexity. C?C bond-forming reactions are well-known challenges. To achieve this goal through direct functionalization of C?H bonds in both of the coupling partners represents the state-of-the-art in organic synthesis. Oxidative C?C bond formation obviates the need for prefunctionalization of both substrates. This Minireview is dedicated to the field of C?C bond-forming reactions through direct C?H bond functionalization under completely metal-free oxidative conditions. Selected important developments in this area have been summarized with representative examples and discussions on their reaction mechanisms. PMID:26239615

  5. Microbial cleavage of organic C-S bonds

    DOEpatents

    Kilbane, J.J. II.

    1994-10-25

    A microbial process is described for selective cleavage of organic C-S bonds which may be used for reducing the sulfur content of sulfur-containing organic carbonaceous materials. Microorganisms of Rhodococcus rhodochrous and Bacillus sphaericus have been found which have the ability of selective cleavage of organic C-S bonds. Particularly preferred microorganisms are Rhodococcus rhodochrous strain ATCC 53968 and Bacillus sphaericus strain ATCC 53969 and their derivatives.

  6. Microbial cleavage of organic C-S bonds

    DOEpatents

    Kilbane, II, John J. (Woodstock, IL)

    1994-01-01

    A microbial process for selective cleavage of organic C--S bonds which may be used for reducing the sulfur content of sulfur-containing organic carbonaceous materials, Microorganisms of Rhodococcus rhodochrous and Bacillus sphaericus have been found which have the ability of selective cleavage of organic C--S bonds. Particularly preferred microorganisms are Rhodococcus rhodochrous strain ATCC 53968 and Bacillus sphaericus strain ATCC 53969 and their derivatives.

  7. Protocols for the selective cleavage of carbon-sulfur bonds in coal. Quarterly report, September 1, 1991--November 30, 1991

    SciTech Connect

    Bausch, M.

    1991-12-31

    Removal of the organic sulfur in coal constitutes one of the major challenges facing fossil fuel scientists today. A cost--effective of desulfurizing Illinois coal is non-existent at the present time. Research in our group aims to develop a simple protocol for sulfur removal by gaining understanding of how various additives can enhance the rates of C-S bond cleavage in Illinois coal and coal model compounds, relative to fragmentation of the coal macromolecule via C-C, C-O, and C-N bond cleavage. During this funding period, we plan to carry out examinations of: (a) the effects of various reaction conditions on radical-initiated and Lewis acid-catalyzed C-S bond cleavages; (b) the effects of caustic impregnation and subsequent alcoholic reflux on C-S bond cleavage strategies; (c) the reactions of coal model compounds with electron-deficient substrates; (d) examinations of photooxidative C-S bond cleavage reactions; (e) the effects of moderate (300--400{degrees}C) temperatures and pressures as well as ultrasonic radiation on (a) - (c). Also planned are differential scanning calorimetric (DSC) examinations of selected C-S bond cleavage protocols, including those on Illinois coals that possess varying amounts of organic and inorganic sulfur.

  8. Activation of Propane C-H and C-C Bonds by Gas-Phase Pt Atom: A Theoretical Study

    PubMed Central

    Li, Fang-Ming; Yang, Hua-Qing; Ju, Ting-Yong; Li, Xiang-Yuan; Hu, Chang-Wei

    2012-01-01

    The reaction mechanism of the gas-phase Pt atom with C3H8 has been systematically investigated on the singlet and triplet potential energy surfaces at CCSD(T)//BPW91/6-311++G(d, p), Lanl2dz level. Pt atom prefers the attack of primary over secondary C-H bonds in propane. For the Pt + C3H8 reaction, the major and minor reaction channels lead to PtC3H6 + H2 and PtCH2 + C2H6, respectively, whereas the possibility to form products PtC2H4 + CH4 is so small that it can be neglected. The minimal energy reaction pathway for the formation of PtC3H6 + H2, involving one spin inversion, prefers to start at the triplet state and afterward proceed along the singlet state. The optimal C-C bond cleavages are assigned to C-H bond activation as the first step, followed by cleavage of a C-C bond. The C-H insertion intermediates are kinetically favored over the C-C insertion intermediates. From C-C to C-H oxidative insertion, the lowering of activation barrier is mainly caused by the more stabilizing transition state interaction ?E?int, which is the actual interaction energy between the deformed reactants in the transition state. PMID:22942766

  9. C—H Bond Cleavage with Reductants

    PubMed Central

    Parsell, Trenton H.; Yang, Meng-Yin; Borovik, A. S.

    2009-01-01

    The thermodynamic properties of structurally similar MnIII and MnIV complexes have been re-investigated to understand their reactivity with substrates having C—H bonds. The complexes have the general formula, [MnH3buea(O)]n-, where [H3buea]3- is the tripodal ligand, tris[(N’-tert-butylureaylato)-N-ethylene]aminato. These complexes are unique because of the intramolecular hydrogen-bonding (H-bond) network surrounding the Mn—oxo units. The redox potentials for the MnIII/IV (O) couple was incorrectly assigned in earlier reports: the corrected values is -1.0 V vs Cp2Fe+/Cp2Fe in DMSO, while the MnIV/V(O) process is ?0.076 under the same conditions. The oxo ligand in the MnIII(O) complexes is basic with a pKa of 28.3; the basicity of the terminal oxo ligand in the MnIV(O) complex is estimated to be ?15. These values were used to re-evaluate the O—H bond dissociation energy (BDEOH) of the corresponding MnII/III—OH complexes: BDEsOH values of 89 and 77 kcal/mol were determined for [MnIIIH3buea(OH)]- and [MnIIH3buea(OH)]2-, respectively. Both Mn(O) complexes react with 9,10-dihydroanthracene (DHA) to produce anthracene in nearly quantitative yields. This is surprising based on the low redox potiental of the complexes, suggesting the basicity of the oxo ligand is a major contributor to the observed reactivity. In contrast to the thermodynamic results, a comparative kinetic investigation found that the MnIII(O) complex reacts nearly 20 times faster than the MnIV(O) complex. Activation parameters, determined from an Eyring analysis, found that the entropy of activation is significantly different between the two systems (??S‡ = -35 eu, where ??S‡ = ?S‡(MnIV(O)) - ?S‡(MnIII(O)). This unusual kinetic behavior can be explained in the context of the basicity of the oxo ligands that leads to different mechanisms: for [MnIIIH3buea(O)]2- a proton transfer-electron transfer mechanism is proposed, whereas for [MnIVH3buea(O)]- a hydrogen-atom transfer pathway is likely. PMID:19196005

  10. Selective carbon-carbon bond cleavage for the stereoselective synthesis of acyclic systems.

    PubMed

    Marek, Ilan; Masarwa, Ahmad; Delaye, Pierre-Olivier; Leibeling, Markus

    2015-01-01

    Most of the efforts of organic chemists have been directed to the development of creative strategies to build carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. In this Review, we show an alternative approach where challenging molecular skeletons could be prepared through selective cleavage of carbon-carbon bonds. We demonstrate that it has the potential to be a general principle in organic synthesis for the regio-, diastereo-, and even enantioselective preparation of adducts despite the fact that C-C single bonds are among the least reactive functional groups. The development of such strategies may have an impact on synthesis design and can ultimately lead to new selective and efficient processes for the utilization of simple hydrocarbons. PMID:25266824

  11. Biotic and abiotic carbon to sulfur bond cleavage

    SciTech Connect

    Frost, J.W.

    1991-01-01

    Cleavage of aliphatic organosulfonate carbon to sulfur (C-S) bonds, a critical link in the global biogeochemical sulfur cycle, has been identified in Escherichia coli K-12. Enormous quantities of inorganic sulfate are continuously converted (Scheme I) into methanesulfonic acid 1 and acylated 3-(6-sulfo-{alpha}-D-quinovopyranosyl)-L-glycerol 2. Biocatalytic desulfurization (Scheme I) of 1 and 2, which share the structural feature of an aliphatic carbon bonded to a sulfonic acid sulfur, completes the cycle, Discovery of this desulfurization in E. coli provides an invaluable paradigm for study of a biotic process which, via the biogeochemical cycle, significantly influences the atmospheric concentration of sulfur-containing molecules.

  12. On the Relationship between the Enthalpy of Formation of Carbenes upon Cleavage of the Double Bond in Fluoroolefins and the Electron Density on the pi Bond: An Ab Initio Study

    SciTech Connect

    Borisov, Yurii A.; Garrett, Bruce C.; Kobanovskii, Y. A.; Bilera, I. V.; Buravtsev, N. N.

    2003-08-07

    In this study, we established a correlation between the enthalpy of cleavage of the C=C bond in fluorine-substituted olefins giving rise to two carbenes in the electronic ground state and the distribution of the electron density on this bond.

  13. Facile C(sp(2))-C(sp(2)) bond cleavage in oxalic acid-derived radicals.

    PubMed

    Molt, Robert W; Lecher, Alison M; Clark, Timothy; Bartlett, Rodney J; Richards, Nigel G J

    2015-03-11

    Oxalate decarboxylase (OxDC) catalyzes the Mn-dependent conversion of the oxalate monoanion into CO2 and formate. Many questions remain about the catalytic mechanism of OxDC although it has been proposed that the reaction proceeds via substrate-based radical intermediates. Using coupled cluster theory combined with implicit solvation models we have examined the effects of radical formation on the structure and reactivity of oxalic acid-derived radicals in aqueous solution. Our results show that the calculated solution-phase free-energy barrier for C-C bond cleavage to form CO2 is decreased from 34.2 kcal/mol for oxalic acid to only 9.3 kcal/mol and a maximum of 3.5 kcal/mol for the cationic and neutral oxalic acid-derived radicals, respectively. These studies also show that the C-C ? bonding orbital of the radical cation contains only a single electron, giving rise to an elongated C-C bond distance of 1.7 Å; a similar lengthening of the C-C bond is not observed for the neutral radical. This study provides new chemical insights into the structure and stability of plausible intermediates in the catalytic mechanism of OxDC, and suggests that removal of an electron to form a radical (with or without the concomitant loss of a proton) may be a general strategy for cleaving the unreactive C-C bonds between adjacent sp(2)-hybridized carbon atoms. PMID:25702589

  14. Photoinduced C-S Bond Cleavage of Thioglycosides and Glycosylation.

    PubMed

    Mao, Run-Ze; Guo, Fan; Xiong, De-Cai; Li, Qin; Duan, Jinyou; Ye, Xin-Shan

    2015-11-20

    A glycosyl coupling reaction via photoinduced direct activation of thioglycosides and subsequent O-glycosylation in the absence of photosensitizer was developed for the first time. This reaction underwent a selectively homolytic cleavage of a C-S bond to generate a glycosyl radical, which was oxidized to an oxacarbenium ion by Cu(OTf)2, and a sequential O-glycosylation. A wide range of glycosides were synthesized in moderate to excellent yield using sugars, amino acids, or cholesterol as the acceptors. PMID:26540490

  15. Carbon-carbon bond cleavage of 1,2-hydroxy ethers b7 vanadium(V) dipicolinate complexes

    SciTech Connect

    Hanson, Susan K; Gordon, John C; Thorn, David L; Scott, Brian L; Baker, R Tom

    2009-01-01

    The development of alternatives to current petroleum-based fuels and chemicals is becoming increasingly important due to concerns over climate change, growing world energy demand, and energy security issues. Using non-food derived biomass to produce renewable feedstocks for chemicals and fuels is a particularly attractive possibility. However, the majority of biomass is in the form of lignocellulose, which is often not fully utilized due to difficulties associated with breaking down both lignin and cellulose. Recently, a number of methods have been reported to transform cellulose directly into more valuable materials such as glucose, sorbitol, 5-(chloromethyl)furfural, and ethylene glycol. Less progress has been made with selective transformations of lignin, which is typically treated in paper and forest industries by kraft pulping (sodium hydroxide/sodium sulfide) or incineration. Our group has begun investigating aerobic oxidative C-C bond cleavage catalyzed by dipicolinate vanadium complexes, with the idea that a selective C-C cleavage reaction of this type could be used to produce valuable chemicals or intermediates from cellulose or lignin. Lignin is a randomized polymer containing methoxylated phenoxy propanol units. A number of different linkages occur naturally; one of the most prevalent is the {beta}-O-4 linkage shown in Figure 1, containing a C-C bond with 1,2-hydroxy ether substituents. While the oxidative C-C bond cleavage of 1,2-diols has been reported for a number of metals, including vanadium, iron, manganese, ruthenium, and polyoxometalate complexes, C-C bond cleavage of 1,2-hydroxy ethers is much less common. We report herein vanadium-mediated cleavage of C-C bonds between alcohol and ether functionalities in several lignin model complexes. In order to explore the scope and potential of vanadium complexes to effect oxidative C-C bond cleavage in 1,2-hydroxy ethers, we examined the reactivity of the lignin model complexes pinacol monomethyl ether (A), 2-phenoxyethanol (B), and 1,2-diphenyl-2-methoxyethanol (C) (Figure 1). Reaction of (dipic)V{sup V}(O)O{sup i}Pr (1a) or (dipic)V{sup v}(O)OEt (lb) with A, B, or C in acetonitrile yielded new vanadium(V) complexes where the alcohol-ether ligand was bound in a chelating fashion. From the reaction of 1b with pinacol monomethyl ether (A) in acetonitrile solution, (dipic)V{sup v}(O)(pinOMe) (2) (PinOMe = 2,3-dimethyl-3-methoxy-2-butanoxide) was isolated in 61 % yield. Reaction of 1b with 2-phenoxyethanol (B) in acetonitrile gave the new complex (dipic)V{sup v}(O)(OPE) (3) (OPE = 2-phenoxyethoxide), which was isolated in 76% yield. In a similar fashion, 1a reacted with 1,2-diphenyl-2-methoxyethanol (C) to give (dipic)V(O)(DPME) (4) (DPME = 1,2-diphenyl-2-methoxyethoxide), which was isolated in 39% yield. Complexes 2, 3, and 4 were characterized by {sup 1}H NMR and IR spectroscopy, elemental analysis, and X-ray crystallography. Compared to the previously reported vanadium(V) pinacolate complex (dipic)V(O)(pinOH) the X-ray structure of complex 2 reveals a slightly shorter V = O bond, 1.573(2) {angstrom} vs 1.588(2) {angstrom} for the pinOH structure. Complexes 3 and 4 display similar vanadium oxo bond distances of 1.568(2) {angstrom} and 1.576(2) {angstrom}, respectively. All three complexes show longer bonds to the ether-oxygen trans to the oxo (2.388(2) {angstrom} for 2, 2.547(2) {angstrom} for 3, and 2.438(2) {angstrom} for 4) than to the hydroxy-oxygen in the pinOH structure (2.252(2) {angstrom}).

  16. Gas-phase reaction of CeV2O7+ with C2H4: activation of C-C and C-H bonds.

    PubMed

    Ma, Jia-Bi; Yuan, Zhen; Meng, Jing-Heng; Liu, Qing-Yu; He, Sheng-Gui

    2014-12-15

    The reactivity of metal oxide clusters toward hydrocarbon molecules can be changed, tuned, or controlled by doping. Cerium-doped vanadium cluster cations CeV2O7(+) are generated by laser ablation, mass-selected by a quadrupole mass filter, and then reacted with C2H4 in a linear ion trap reactor. The reaction is characterized by a reflectron time-of-flight mass spectrometer. Three types of reaction channels are observed: 1) single oxygen-atom transfer , 2) double oxygen-atom transfer , and 3) C=C bond cleavage. This study provides the first bimetallic oxide cluster ion, CeV2O7(+), which gives rise to C=C bond cleavage of ethene. Neither Ce(x)O(y)(±) nor V(x)O(y)(±) alone possess the necessary topological and electronic properties to bring about such a reaction. PMID:25208512

  17. Cleavage of an amide bond by a ribozyme

    NASA Technical Reports Server (NTRS)

    Dai, X.; De Mesmaeker, A.; Joyce, G. F.; Miller, S. L. (Principal Investigator)

    1995-01-01

    A variant form of a group I ribozyme, optimized by in vitro evolution for its ability to catalyze magnesium-dependent phosphoester transfer reactions involving DNA substrates, also catalyzes the cleavage of an unactivated alkyl amide when that linkage is presented in the context of an oligodeoxynucleotide analog. Substrates containing an amide bond that joins either two DNA oligos, or a DNA oligo and a short peptide, are cleaved in a magnesium-dependent fashion to generate the expected products. The first-order rate constant, kcat, is 0.1 x 10(-5) min-1 to 1 x 10(-5) min-1 for the DNA-flanked substrates, which corresponds to a rate acceleration of more than 10(3) as compared with the uncatalyzed reaction.

  18. Catalytic C-C bond formation via capture of hydrogenation intermediates.

    PubMed

    Jang, Hye-Young; Krische, Michael J

    2004-09-01

    Although catalytic hydrogenation has been practiced for over a century, use of hydrogen as a terminal reductant in catalytic C-C bond formation has been restricted to processes involving migratory insertion of carbon monoxide, e.g., alkene hydroformylation and related Fischer-Tropsch-type reactions. In an effort to develop hydrogenation as a new method for catalytic cross-coupling, a catalytic system enabling capture of hydrogenation intermediates was recently developed in our lab. These results support the feasibility of developing a broad new family of hydrogen-mediated C-C bond formations. PMID:15379581

  19. Mass spectrometric and theoretical studies on dissociation of the Ssbnd S bond in the allicin: Homolytic cleavage vs heterolytic cleavage

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang

    2012-08-01

    On the basis of the tandem mass spectrometry (ESI-MS/MS) technique and DFT calculations, an experimental and theoretical investigation has been conducted into the gas-phase dissociation of the S1sbnd S1' bond in the allicin as well as that of the Ssbnd C (S1sbnd C2, S1'sbnd C2') bond. Meanwhile, the influence of protonation, alkali metal ion and electron transfer on the dissociation of the S1sbnd S1' bond has been taken into account. ESI-MS/MS experiments and DFT calculations show that in the neutral allicin, [allicin + Li]+ and [allicin + Na]+, the S1sbnd S1' bond favors homolytic cleavage, while in the allicin radical cation and protonated allicin, the S1sbnd S1' bond prefers heterolytic cleavage. In addition, alkali metal ions can strengthen the S1sbnd S1' bond in the allicin, while protonation or the loss of an electron will weaken the S1sbnd S1' bond.

  20. Rhodium-Catalyzed Activation and Functionalization of the C-C Bond of Biphenylene

    E-print Network

    Jones, William D.

    Rhodium-Catalyzed Activation and Functionalization of the C-C Bond of Biphenylene Carl N. Iverson August 29, 2001 Biphenylene reacts with the rhodium(I) dimer [(dtbpm)RhCl]2 (1) (dtbpm ) bis have been stoichiometric, although catalytic reactions are known.2 Rhodium complexes in particular have

  1. Formation of C–C Bonds via Iridium-Catalyzed Hydrogenation and Transfer Hydrogenation

    PubMed Central

    Bower, John F.; Krische, Michael J.

    2011-01-01

    The formation of C–C bonds via catalytic hydrogenation and transfer hydrogenation enables carbonyl and imine addition in the absence of stoichiometric organometallic reagents. In this review, iridium-catalyzed C–C bond-forming hydrogenations and transfer hydrogenations are surveyed. These processes encompass selective, atom-economic methods for the vinylation and allylation of carbonyl compounds and imines. Notably, under transfer hydrogenation conditions, alcohol dehydrogenation drives reductive generation of organoiridium nucleophiles, enabling carbonyl addition from the aldehyde or alcohol oxidation level. In the latter case, hydrogen exchange between alcohols and ?-unsaturated reactants generates electrophile–nucleophile pairs en route to products of hydro-hydroxyalkylation, representing a direct method for the functionalization of carbinol C–H bonds. PMID:21822399

  2. Brønsted-Evans-Polanyi relationships for C–C bond forming and C–C bond breaking reactions in thiamine-catalyzed decarboxylation of 2-keto acids using density functional theory

    SciTech Connect

    Assary, Rajeev Surendran; Broadbelt, Linda J.; Curtiss, Larry A.

    2011-04-27

    The concept of generalized enzyme reactions suggests that a wide variety of substrates can undergo enzymatic transformations, including those whose biotransformation has not yet been realized. The use of quantum chemistry to evaluate kinetic feasibility is an attractive approach to identify enzymes for the proposed transformation. However, the sheer number of novel transformations that can be generated makes this impractical as a screening approach. Therefore, it is essential to develop structure/activity relationships based on quantities that are more efficient to calculate. In this work, we propose a structure/activity relationship based on the free energy of binding or reaction of non-native substrates to evaluate the catalysis relative to that of native substrates. While Brønsted-Evans-Polanyi (BEP) relationships such as that proposed here have found broad application in heterogeneous catalysis, their extension to enzymatic catalysis is limited. We report here on density functional theory (DFT) studies for C–C bond formation and C–C bond cleavage associated with the decarboxylation of six 2-keto acids by a thiamine-containing enzyme (EC 1.2.7.1) and demonstrate a linear relationship between the free energy of reaction and the activation barrier. We then applied this relationship to predict the activation barriers of 17 chemically similar novel reactions. These calculations reveal that there is a clear correlation between the free energy of formation of the transition state and the free energy of the reaction, suggesting that this method can be further extended to predict the kinetics of novel reactions through our computational framework for discovery of novel biochemical transformations.

  3. Concerted heavy-atom bond cleavage and proton and electron transfers illustrated by proton-assisted reductive cleavage of an O–O bond

    PubMed Central

    Costentin, Cyrille; Hajj, Viviane; Robert, Marc; Savéant, Jean-Michel; Tard, Cédric

    2011-01-01

    Electron transfer may be concerted with proton transfer. It may also be concerted with the cleavage of a bond between heavy atoms. All three events may also be concerted. A model is presented to analyze the kinetics of these all-concerted reactions for homogeneous or electrochemical reduction or oxidation processes. It allows the estimation of the kinetic advantage that derives from the increase of the bond-breaking driving force resulting from the concerted proton transfer. Application of the model to the electrochemical reductive cleavage of the O–O bond of an organic peroxide in the presence of a proximal acid group illustrates the applicability of the model and provides an example demonstrating that electron transfer, heavy-atom bond breaking, and proton transfer may be all concerted. Such analyses are expected to be useful for the invention, analysis, and optimization of reactions involved in contemporary energy challenges as well as for the comprehension of major biochemical processes, a number of which involve electron and proton transfer together with cleavage of bonds between heavy atoms. PMID:21551101

  4. The Janus-faced role of external forces in mechanochemical disulfide bond cleavage.

    PubMed

    Dopieralski, Przemyslaw; Ribas-Arino, Jordi; Anjukandi, Padmesh; Krupicka, Martin; Kiss, Janos; Marx, Dominik

    2013-08-01

    Recent force microscopy measurements on the mechanically activated cleavage of a protein disulfide bond through reaction with hydroxide ions revealed that for forces greater than 0.5 nN, the acceleration of the reaction rate is substantially reduced. Here, using ab initio simulations, we trace this 'reactivity switch' back to a dual role played by the mechanical force, which leads to antagonistic effects. On the one hand, the force performs work on the system, and thereby accelerates the reaction. On the other hand, the force also induces a conformational distortion that involves the S-S-C-C dihedral angle, which drives the disulfide into a conformation that is shielded against nucleophilic attack because of steric hindrance. The discovery of force-induced conformational changes that steer chemical reactivity provides a new key concept that is expected to be relevant beyond this specific case, for example in understanding how 'disulfide switches' regulate protein function and for the rational design of mechanoresponsive materials. PMID:23881500

  5. Cleavage of thymine N3H bonds by low-energy electrons attached Magali Theodore 1

    E-print Network

    Simons, Jack

    Cleavage of thymine N3­H bonds by low-energy electrons attached to base p* orbitals Magali The. In earlier studies, we considered SSBs induced by low-energy electrons that attach to DNA bases' p* orbitals or to phosphate P@O p* orbitals to cleave sugar­phosphate C­O bonds or base­sugar N1­C bonds. We also studied

  6. Bond cleavage, fragment modification and reassembly in enantioselective three-component reactions

    PubMed Central

    Zhang, Dan; Zhou, Jun; Xia, Fei; Kang, Zhenghui; Hu, Wenhao

    2015-01-01

    Chemical bond cleavage and reconstruction are common processes in traditional rearrangement reactions. In contrast, the process that involves bond cleavage, fragment modification and then reconstruction of the modified fragment provides an efficient way to build structurally diversified molecules. Here, we report a palladium(II)/chiral phosphoric acid catalysed three-component reaction of aryldiazoacetates, enamines and imines to afford ?-amino-?-oxo pentanoic acid derivatives in good yields with excellent diastereoselectivities and high enantioselectivities. The stereoselective reaction went through a unique process that involves cleavage of a C–N bond, modification of the resulting amino fragment and selective reassembly of the modified fragment. This innovative multi-component process represents a highly efficient way to build structurally diversified polyfunctional molecules in an atom and step economic fashion. A keto-iminium is proposed as a key intermediate and a chiral palladium/phosphate complex is proposed as an active catalyst. PMID:25586817

  7. Metabolic Engineering to Develop a Pathway for the Selective Cleavage of Carbon-Nitrogen Bonds

    SciTech Connect

    John J. Kilbane II

    2005-10-01

    The objective of the project is to develop a biochemical pathway for the selective cleavage of C-N bonds in molecules found in petroleum. Specifically a novel biochemical pathway will be developed for the selective cleavage of C-N bonds in carbazole. The cleavage of the first C-N bond in carbazole is accomplished by the enzyme carbazole dioxygenase, that catalyzes the conversion of carbazole to 2-aminobiphenyl-2,3-diol. The genes encoding carbazole dioxygenase were cloned from Sphingomonas sp. GTIN11 and from Pseudomonas resinovorans CA10. The selective cleavage of the second C-N bond has been challenging, and efforts to overcome that challenge have been the focus of recent research in this project. Enrichment culture experiments succeeded in isolating bacterial cultures that can metabolize 2-aminobiphenyl, but no enzyme capable of selectively cleaving the C-N bond in 2-aminobiphenyl has been identified. Aniline is very similar to the structure of 2-aminobiphenyl and aniline dioxygenase catalyzes the conversion of aniline to catechol and ammonia. For the remainder of the project the emphasis of research will be to simultaneously express the genes for carbazole dioxygenase and for aniline dioxygenase in the same bacterial host and then to select for derivative cultures capable of using carbazole as the sole source of nitrogen.

  8. The computation of C-C and N-N bond dissociation energies for singly, doubly, and triply bonded systems

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.; Taylor, Peter R.

    1989-01-01

    The bond dissociation energies (D sub e) of C2H2, C2H4, C2H6, N2, N2H2, and N2H4 are studied at various levels of correlation treatment. The convergence of D sub e with respect to the one particle basis is studied at the single reference modified coupled-pair functional (MCPF) level. At all levels of correlation treatment, the errors in the bond dissociation energies increase with the degree of multiple bond character. The multireference configuration interaction (MRCI) D sub e values, corrected for an estimate of higher excitations, are in excellent agreement with those determined using the size extensive averaged coupled pair functional (ACPF) method. It was found that the full valence complete active space self consistent field (CASSCF)/MRCI calculations are reproduced very well by MRCI calculations based on a CASSCF calculation that includes in the active space only those electrons involved in the C-C or N-N bonds. To achieve chemical accuracy (1 kcal/mole) for the D sub e values of the doubly bonded species C2H4 and N2H2 requires one particle basis sets including up through h angular momentum functions (l = 5) and a multireference treatment of electron correlation: still higher levels of calculation are required to achieve chemical accuracy for the triply bonded species C2H2 and N2.

  9. Low-Energy (0.1 eV) Electron Attachment SS Bond Cleavage

    E-print Network

    Simons, Jack

    Low-Energy (0.1 eV) Electron Attachment S­S Bond Cleavage Assisted by Coulomb Stabilization the Rydberg radical H3C­S­S­CH2­CH2­NH3) or into the S­S antibonding * orbital is shown to be able to produce the same S­S bond fragmentation products H3C­S and HS­CH2­CH2­NH2, albeit by very different pathways

  10. Cleavage of Carbon-Carbon Bonds in Alkyl Cyanides Using Nickel(0)

    E-print Network

    Jones, William D.

    Cleavage of Carbon-Carbon Bonds in Alkyl Cyanides Using Nickel(0) Juventino J. Garci´a,*, Alma Are of alkyl cyanides afforded nickel(0) compounds of the type [(dippe)Ni(2 -RCN)], where R ) Me, Et, Pr, i Pr cyanides using [(dippe)NiH]2, leading to the formation of an 2- nitrile complex of nickel(0), which

  11. Formation of C–C bonds via ruthenium-catalyzed transfer hydrogenation*

    PubMed Central

    Moran, Joseph; Krische, Michael J.

    2013-01-01

    Ruthenium-catalyzed transfer hydrogenation of diverse ?-unsaturated reactants in the presence of aldehydes provides products of carbonyl addition. Dehydrogenation of primary alcohols in the presence of the same ?-unsaturated reactants provides identical products of carbonyl addition. In this way, carbonyl addition is achieved from the alcohol or aldehyde oxidation level in the absence of stoichiometric organometallic reagents or metallic reductants. In this account, the discovery of ruthenium-catalyzed C–C bond-forming transfer hydrogenations and the recent development of diastereo- and enantioselective variants are discussed. PMID:23430602

  12. Metalloenzyme-Like Zeolites as Lewis Acid Catalysts for C?C Bond Formation.

    PubMed

    Van de Vyver, Stijn; Román-Leshkov, Yuriy

    2015-10-19

    The use of metalloenzyme-like zeolites as Lewis acid catalysts for C?C bond formation reactions has received increasing attention over the past few years. In particular, the observation of direct aldol condensation reactions enabled by hydrophobic zeolites with isolated framework metal sites has encouraged the development of catalytic approaches for producing chemicals from biomass-derived compounds. The discovery of new Diels-Alder cycloaddition/dehydration routes and experimental and computational studies of Lewis acid catalyzed carbonyl-ene reactions have given a further boost to this rapidly evolving field. PMID:26465652

  13. Isomerization around a C N double bond and a C C double bond with a nitrogen atom attached: thermal and photochemical routes

    E-print Network

    Haas, Yehuda

    Isomerization around a C N double bond and a C C double bond with a nitrogen atom attached: thermal­trans isomerization around the double bond in the formaldiminium cation and vinylamine are shown to be possible state, leading to rapid photochemical isomerization following optical excitation. Detailed quantum

  14. Rhodium-Catalyzed C-C Bond Formation via Heteroatom-Directed C-H Bond Activation

    SciTech Connect

    Colby, Denise; Bergman, Robert; Ellman, Jonathan

    2010-05-13

    Once considered the 'holy grail' of organometallic chemistry, synthetically useful reactions employing C-H bond activation have increasingly been developed and applied to natural product and drug synthesis over the past decade. The ubiquity and relative low cost of hydrocarbons makes C-H bond functionalization an attractive alternative to classical C-C bond forming reactions such as cross-coupling, which require organohalides and organometallic reagents. In addition to providing an atom economical alternative to standard cross - coupling strategies, C-H bond functionalization also reduces the production of toxic by-products, thereby contributing to the growing field of reactions with decreased environmental impact. In the area of C-C bond forming reactions that proceed via a C-H activation mechanism, rhodium catalysts stand out for their functional group tolerance and wide range of synthetic utility. Over the course of the last decade, many Rh-catalyzed methods for heteroatom-directed C-H bond functionalization have been reported and will be the focus of this review. Material appearing in the literature prior to 2001 has been reviewed previously and will only be introduced as background when necessary. The synthesis of complex molecules from relatively simple precursors has long been a goal for many organic chemists. The ability to selectively functionalize a molecule with minimal pre-activation can streamline syntheses and expand the opportunities to explore the utility of complex molecules in areas ranging from the pharmaceutical industry to materials science. Indeed, the issue of selectivity is paramount in the development of all C-H bond functionalization methods. Several groups have developed elegant approaches towards achieving selectivity in molecules that possess many sterically and electronically similar C-H bonds. Many of these approaches are discussed in detail in the accompanying articles in this special issue of Chemical Reviews. One approach that has seen widespread success involves the use of a proximal heteroatom that serves as a directing group for the selective functionalization of a specific C-H bond. In a survey of examples of heteroatom-directed Rh catalysis, two mechanistically distinct reaction pathways are revealed. In one case, the heteroatom acts as a chelator to bind the Rh catalyst, facilitating reactivity at a proximal site. In this case, the formation of a five-membered metallacycle provides a favorable driving force in inducing reactivity at the desired location. In the other case, the heteroatom initially coordinates the Rh catalyst and then acts to stabilize the formation of a metal-carbon bond at a proximal site. A true test of the utility of a synthetic method is in its application to the synthesis of natural products or complex molecules. Several groups have demonstrated the applicability of C-H bond functionalization reactions towards complex molecule synthesis. Target-oriented synthesis provides a platform to test the effectiveness of a method in unique chemical and steric environments. In this respect, Rh-catalyzed methods for C-H bond functionalization stand out, with several syntheses being described in the literature that utilize C-H bond functionalization in a key step. These syntheses are highlighted following the discussion of the method they employ.

  15. The computation of C-C and N-N bond dissociation energies for singly, doubly, and triply bonded systems

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.; Taylor, Peter R.

    1991-01-01

    The bond dissociation energies (De) of C2H2, C2H4, C2H6, N2, N2H2, and N2H4 are studied at various levels of correlation treatment. The convergence of De with respect to the one-particle basis is studied at the single-reference modified coupled-pair-functional (MCPF)level. At all levels of correlation treatment, the errors in the bond dissociation energies increase with the degree of multiple bond character. The multireference configuration-interaction (MRCI) De values, corrected for an estimate of higher excitations, are in excellent agreement with those determined using the size-extensive averaged-coupled-pair-functional (ACPF) method. The full-valence complete-active-space self-consistent-field (CASSCF)/MRCI calculations are reproduced very well by MRCI calculations based on a CASSCF calculation that includes in the active space only those electrons involved in the C-C or N-N bonds.

  16. Biotic and abiotic carbon to sulfur bond cleavage. Final report

    SciTech Connect

    Frost, J.W.

    1994-05-01

    The microbial desulfurization of organosulfur compounds occurs by unprecedented and largely unexplored biochemical processes. A study of such biotic desulfurizations can be expected to give rise to new and useful chemistry and enzymology. The potential value of understanding and harnessing these processes is seen in relation to the need for methods for the removal of organically bound sulfur from coal and the degradation of organic sulfur-containing pollutants. This research effort has been directed towards an examination of desulfurization ability in well characterized microorganisms, the isolation of bacteria with desulfurization ability from natural sources, the characterization and mechanistic evaluation of the observed biocatalytic processes, the development of biomimetic synthetic organic chemistry based on biotic desulfurization mechanisms and the design and preparation of improved coal model compounds for use in microbial selection processes. A systematic approach to studying biodesulfurizations was undertaken in which organosulfur compounds have been broken down into classes based on the oxidation state of the sulfur atom and the structure of the rest of the organic material. Microbes have been evaluated in terms of ability to degrade organosulfur compounds with sulfur in its sulfonic acid oxidation state. These compounds are likely intermediates in coal desulfurization and are present in the environment as persistent pollutants in the form of detergents. It is known that oxygen bonded to sulfur lowers the carbon-sulfur bond energy, providing a thermodynamic basis for starting with this class of compounds.

  17. Characterization and Modeling of the Collision Induced Dissociation Patterns of Deprotonated Glycosphingolipids: Cleavage of the Glycosidic Bond

    NASA Astrophysics Data System (ADS)

    Rožman, Marko

    2015-08-01

    Glycosphingolipid fragmentation behavior was investigated by combining results from analysis of a series of negative ion tandem mass spectra and molecular modeling. Fragmentation patterns extracted from 75 tandem mass spectra of mainly acidic glycosphingolipid species (gangliosides) suggest prominent cleavage of the glycosidic bonds with retention of the glycosidic oxygen atom by the species formed from the reducing end (B and Y ion formation). Dominant product ions arise from dissociation of sialic acids glycosidic bonds whereas product ions resulting from cleavage of other glycosidic bonds are less abundant. Potential energy surfaces and unimolecular reaction rates of several low-energy fragmentation pathways leading to cleavage of glycosidic bonds were estimated in order to explain observed dissociation patterns. Glycosidic bond cleavage in both neutral (unsubstituted glycosyl group) and acidic glycosphingolipids was the outcome of the charge-directed intramolecular nucleophilic substitution (SN2) mechanism. According to the suggested mechanism, the nucleophile in a form of carboxylate or oxyanion attacks the carbon at position one of the sugar ring, simultaneously breaking the glycosidic bond and yielding an epoxide. For gangliosides, unimolecular reaction rates suggest that dominant product ions related to the cleavage of sialic acid glycosidic bonds are formed via direct dissociation channels. On the other hand, low abundant product ions related to the dissociation of other glycosidic bonds are more likely to be the result of sequential dissociation. Although results from this study mainly contribute to the understanding of glycosphingolipid fragmentation chemistry, some mechanistic findings regarding cleavage of the glycosidic bond may be applicable to other glycoconjugates.

  18. Reaction Pathways and Energetics of Etheric C?O Bond Cleavage Catalyzed by Lanthanide Triflates

    SciTech Connect

    Assary, Rajeev S.; Atesin, Abdurrahman C.; Li, Zhi; Curtiss, Larry A.; Marks, Tobin J.

    2013-07-15

    Efficient and selective cleavage of etheric C?O bonds is crucial for converting biomass into platform chemicals and liquid transportation fuels. In this contribution, computational methods at the DFT B3LYP level of theory are employed to understand the efficacy of lanthanide triflate catalysts (Ln(OTf)3, Ln = La, Ce, Sm, Gd, Yb, and Lu) in cleaving etheric C?O bonds. In agreement with experiment, the calculations indicate that the reaction pathway for C?O cleavage occurs via a C?H ? O?H proton transfer in concert with weakening of the C?O bond of the coordinated ether substrate to ultimately yield a coordinated alkenol. The activation energy for this process falls as the lanthanide ionic radius decreases, reflecting enhanced metal ion electrophilicity. Details of the reaction mechanism for Yb(OTf)3-catalyzed ring opening are explored in depth, and for 1-methyl-d3-butyl phenyl ether, the computed primary kinetic isotope effect of 2.4 is in excellent agreement with experiment (2.7), confirming that etheric ring-opening pathway involves proton transfer from the methyl group alpha to the etheric oxygen atom, which is activated by the electrophilic lanthanide ion. Calculations of the catalytic pathway using eight different ether substrates indicate that the more rapid cleavage of acyclic versus cyclic ethers is largely due to entropic effects, with the former C?O bond scission processes increasing the degrees of freedom/particles as the transition state is approached.

  19. Mercury Detoxification by Bacteria: Simulations of Transcription Activation and Mercury-Carbon Bond Cleavage

    SciTech Connect

    Guo, Hao-Bo; Parks, Jerry M; Johs, Alexander; Smith, Jeremy C

    2011-01-01

    In this chapter, we summarize recent work from our laboratory and provide new perspective on two important aspects of bacterial mercury resistance: the molecular mechanism of transcriptional regulation by MerR, and the enzymatic cleavage of the Hg-C bond in methylmercury by the organomercurial lyase, MerB. Molecular dynamics (MD) simulations of MerR reveal an opening-and-closing dynamics, which may be involved in initiating transcription of mercury resistance genes upon Hg(II) binding. Density functional theory (DFT) calculations on an active-site model of the enzyme reveal how MerB catalyzes the Hg-C bond cleavage using cysteine coordination and acid-base chemistry. These studies provide insight into the detailed mechanisms of microbial gene regulation and defense against mercury toxicity.

  20. A Homogeneous, Recyclable Polymer Support for Rh(I)-Catalyzed C-C Bond Formation

    PubMed Central

    Jana, Ranjan; Tunge, Jon A.

    2011-01-01

    A robust and practical polymer-supported, homogeneous, recyclable biphephos rhodium(I) catalyst has been developed for C-C bond formation reactions. Control of polymer molecular weight allowed tuning of the polymer solubility such that the polymer-supported catalyst is soluble in nonpolar solvents and insoluble in polar solvents. Using the supported rhodium catalysts, addition of aryl and vinylboronic acids to the electrophiles such as enones, aldehydes, N-sulfonyl aldimines, and alkynes occurs smoothly to provide products in high yields. Additions of terminal alkynes to enones and industrially relevant hydroformylation reactions have also been successfully carried out. Studies show that the leaching of Rh from the polymer support is low and catalyst recycle can be achieved by simple precipitation and filtration. PMID:21895010

  1. Reversible Cleavage of Carbon-Carbon Bonds in Benzonitrile Using Nickel(0)

    E-print Network

    Jones, William D.

    Reversible Cleavage of Carbon-Carbon Bonds in Benzonitrile Using Nickel(0) Juventino J. Garcia discovered that the reaction of [(dippe)NiH]2 with benzonitrile in THF- d8 solution leads to the rapid of the benzonitrile CtN carbon to 169.2 (dd, J ) 29.1, 8.8 Hz), compared to 119 in the free nitrile. These data

  2. Carbon–carbon bond cleavage for Cu-mediated aromatic trifluoromethylations and pentafluoroethylations

    PubMed Central

    Sugiishi, Tsuyuka; Aikawa, Kohsuke

    2015-01-01

    Summary This short review highlights the copper-mediated fluoroalkylation using perfluoroalkylated carboxylic acid derivatives. Carbon–carbon bond cleavage of perfluoroalkylated carboxylic acid derivatives takes place in fluoroalkylation reactions at high temperature (150–200 °C) or under basic conditions to generate fluoroalkyl anion sources for the formation of fluoroalkylcopper species. The fluoroalkylation reactions, which proceed through decarboxylation or tetrahedral intermediates, are useful protocols for the synthesis of fluoroalkylated aromatics.

  3. Nickel-Catalyzed Borylation of Aryl- and Benzyltrimethylammonium Salts via C-N Bond Cleavage.

    PubMed

    Hu, Jiefeng; Sun, Heqing; Cai, Wangshui; Pu, Xinghui; Zhang, Yemin; Shi, Zhuangzhi

    2016-01-01

    By developing a mild Ni-catalyzed system, a method for direct borylation of sp(2) and sp(3) C-N bonds has been established. The key to this hightly efficient C-N bond borylative cleavage depends on the appropriate choice of the nickel catalyst Ni(COD)2, ICy·HCl as a ligand, and the use of 2-ethoxyethanol as the cosolvent. This transformation shows good functional group compatibility and can serve as a powerful synthetic tool for gram-scale synthesis and late-stage C-N borylation of complex compounds. PMID:26628255

  4. Biotic and abiotic carbon to sulfur bond cleavage. Technical report, July 1, 1991--September 30, 1991

    SciTech Connect

    Frost, J.W.

    1991-12-31

    Cleavage of aliphatic organosulfonate carbon to sulfur (C-S) bonds, a critical link in the global biogeochemical sulfur cycle, has been identified in Escherichia coli K-12. Enormous quantities of inorganic sulfate are continuously converted (Scheme I) into methanesulfonic acid 1 and acylated 3-(6-sulfo-{alpha}-D-quinovopyranosyl)-L-glycerol 2. Biocatalytic desulfurization (Scheme I) of 1 and 2, which share the structural feature of an aliphatic carbon bonded to a sulfonic acid sulfur, completes the cycle, Discovery of this desulfurization in E. coli provides an invaluable paradigm for study of a biotic process which, via the biogeochemical cycle, significantly influences the atmospheric concentration of sulfur-containing molecules.

  5. Competition between Covalent and Noncovalent Bond Cleavages in Dissociation of Phosphopeptide-Amine Complexes

    SciTech Connect

    Laskin, Julia; Yang, Zhibo; Woods, Amina S.

    2011-04-21

    Interactions between quaternary amino or guanidino groups with anions are ubiquitous in nature. Here, we present a first study focused on quantifying such interactions using complexes of phosphorylated A3pXA3-NH2 (X=S, T, Y) peptides with decamethonium (DCM) or diaguanidinodecane (DGD) ligands as model systems. Time- and collision energy-resolved surface-induced dissociation (SID) of the singly charged complexes was examined using a specially configured Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS). Dissociation thresholds and activation energies were obtained from RRKM modeling of the experimental data that has been described and carefully characterized in our previous studies. We demonstrate that covalent bond cleavages resulting in phosphate abstraction by the cationic ligand are characterized by low dissociation thresholds and relatively tight transition states. In contrast, high dissociation barriers and large positive activation entropies were obtained for cleavages of non-covalent bonds. Dissociation parameters obtained from the modeling of the experimental data are in excellent agreement with the results of density functional theory (DFT) calculations. Comparison between the experimental data and theoretical calculations indicate that phosphate abstraction by the ligand is rather localized and mainly affected by the identity of the phosphorylated side chain. The hydrogen bonding in the peptide and ligand properties play a minor role in determining the energetics and dynamics of the phosphate abstraction channel

  6. RhI-Catalyzed Decarbonylative Spirocyclization via C–C Cleavage of Benzocyclobutenones: An Efficient Approach to Access Functionalized Spirocycles

    PubMed Central

    Xu, Tao; Savage, Nikolas A.; Dong, Guangbin

    2014-01-01

    We describe a rhodium-catalyzed all-carbon spirocenter formation through a decarbonylative coupling of trisubstituted cyclic olefins and benzocyclobutenones via C–C activation. A [Rh(CO)2Cl]2/P(C6F5)3 metal-ligand combination was found to catalyze this transformation most efficiently. A range of diverse spirocyclic rings were synthesized in good to excellent yields and many sensitive functional groups were tolerated. Mechanistic study supports the hydrogen-transfer process that occurs via a ?-H elimination/decarbonylation pathway. PMID:24446067

  7. Characterization and Modeling of the Collision Induced Dissociation Patterns of Deprotonated Glycosphingolipids: Cleavage of the Glycosidic Bond.

    PubMed

    Rožman, Marko

    2016-01-01

    Glycosphingolipid fragmentation behavior was investigated by combining results from analysis of a series of negative ion tandem mass spectra and molecular modeling. Fragmentation patterns extracted from 75 tandem mass spectra of mainly acidic glycosphingolipid species (gangliosides) suggest prominent cleavage of the glycosidic bonds with retention of the glycosidic oxygen atom by the species formed from the reducing end (B and Y ion formation). Dominant product ions arise from dissociation of sialic acids glycosidic bonds whereas product ions resulting from cleavage of other glycosidic bonds are less abundant. Potential energy surfaces and unimolecular reaction rates of several low-energy fragmentation pathways leading to cleavage of glycosidic bonds were estimated in order to explain observed dissociation patterns. Glycosidic bond cleavage in both neutral (unsubstituted glycosyl group) and acidic glycosphingolipids was the outcome of the charge-directed intramolecular nucleophilic substitution (SN2) mechanism. According to the suggested mechanism, the nucleophile in a form of carboxylate or oxyanion attacks the carbon at position one of the sugar ring, simultaneously breaking the glycosidic bond and yielding an epoxide. For gangliosides, unimolecular reaction rates suggest that dominant product ions related to the cleavage of sialic acid glycosidic bonds are formed via direct dissociation channels. On the other hand, low abundant product ions related to the dissociation of other glycosidic bonds are more likely to be the result of sequential dissociation. Although results from this study mainly contribute to the understanding of glycosphingolipid fragmentation chemistry, some mechanistic findings regarding cleavage of the glycosidic bond may be applicable to other glycoconjugates. Graphical Abstract ?. PMID:26297186

  8. 2698 Organometallics 1992,11, 2698-2700 Thiophene Carbon-Sulfur Bond Cleavage by Cobalt. Synthesis,

    E-print Network

    Jones, William D.

    2698 Organometallics 1992,11, 2698-2700 Thiophene Carbon-Sulfur Bond Cleavage by Cobalt. Synthesis a cobalt-containing mo- lybdenumsulfide catalyst.' Recent reviews have covered a variety."7 In this paper we report the first example of a cobalt complex that cleaves the C-S bond

  9. Amide Bond Cleavage: The Acceleration Due to a 1,3-Diaxial Interaction with a Carboxylic Acid

    PubMed Central

    Gerschler, Jared J.; Wier, Kevin A.; Hansen, David E.

    2008-01-01

    To independently assess the contribution of ground-state pseudoallylic strain to the enormous rates of amide bond cleavage in tertiary amide derivatives of Kemp’s triacid, we have studied four amide derivatives of (1?-3?-5?)-5-t-butyl-1,3-cyclohexanedicarboxylic acid. Our results confirm that absent pseudoallylic strain, a 1,3-diaxial interaction of an amide with a carboxylic acid leads to only a 2,400-fold increase in the rate of amide bond cleavage as compared with the rate of hydrolysis of an unactivated peptide bond. PMID:17221991

  10. P-C Bond Scission at the TRIPHOS Ligand and C-CN Bond Cleavage in 2-Methyl-3-butenenitrile with [Ni(COD)2

    E-print Network

    Jones, William D.

    P-C Bond Scission at the TRIPHOS Ligand and C-CN Bond Cleavage in 2-Methyl-3-butenenitrile with [Ni(COD The use of catalytic amounts of [Ni(COD)2] and TRIPHOS (bis(2-diphenylphosphinoethyl)phe- nylphosphine

  11. METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS

    SciTech Connect

    John J. Kilbane II

    2004-10-01

    The objective of the project is to develop biochemical pathways for the selective cleavage of C-N bonds in molecules found in petroleum. The initial phase of the project was focused on the isolation or development of an enzyme capable of cleaving the C-N bond in aromatic amides, specifically 2-aminobiphenyl. The objective of the second phase of the research will be to construct a biochemical pathway for the selective removal of nitrogen from carbazole by combining the carA genes from Sphingomonas sp. GTIN11 with the gene(s) encoding an appropriate deaminase. The objective of the final phase of the project will be to develop derivative C-N bond cleaving enzymes that have broader substrate ranges and to demonstrate the use of such strains to selectively remove nitrogen from petroleum. During the first year of the project (October, 2002-September, 2003) enrichment culture experiments resulted in the isolation of microbial cultures that utilize aromatic amides as sole nitrogen sources, several amidase genes were cloned and were included in directed evolution experiments to obtain derivatives that can cleave C-N bonds in aromatic amides, and the carA genes from Sphingomonas sp. GTIN11, and Pseudomonas resinovorans CA10 were cloned in vectors capable of replicating in Escherichia coli. During the second year of the project (October, 2003-September, 2004) enrichment culture experiments succeeded in isolating a mixed bacterial culture that can utilize 2-aminobiphenyl as a sole nitrogen source, directed evolution experiments were focused on the aniline dioxygenase enzyme that is capable of deaminating aniline, and expression vectors were constructed to enable the expression of genes encoding C-N bond cleaving enzymes in Rhodococcus hosts. The construction of a new metabolic pathway to selectively remove nitrogen from carbazole and other molecules typically found in petroleum should lead to the development of a process to improve oil refinery efficiency by reducing the poisoning, by nitrogen, of catalysts used in the hydrotreating and catalytic cracking of petroleum. Aromatic compounds such as carbazole are representative of the difficult-to-treat organonitrogen compounds most commonly encountered in petroleum. There are two C-N bonds in carbazole and the construction of a metabolic pathway for the removal of nitrogen from carbazole will require enzymes capable cleaving both C-N bonds. A multi-component enzyme, carbazole dioxygenase, which can selectively cleave the first C-N bond has been identified and the genes that encode this enzyme have been cloned, sequenced, and are being expressed in Rhodococcus erythropolis, a bacterial culture that tolerates exposure to petroleum. An enzyme capable of selectively cleaving the second C-N bond in carbazole has not yet been identified, but enrichment culture experiments have recently succeeded in isolating a bacterial culture that is a likely candidate and may possess a suitable enzyme. Research in the near future will verify if a suitable enzyme for the cleavage of the second C-N bond in carbazole has indeed been found, then the genes encoding a suitable enzyme will be identified, cloned, and sequenced. Ultimately genes encoding enzymes for selective cleavage of both C-N bonds in carbazole will be assembled into a new metabolic pathway and the ability of the resulting bacterial culture to remove nitrogen from petroleum will be determined.

  12. METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS

    SciTech Connect

    John J. Kilbane III

    2003-12-01

    The objective of the project is to develop biochemical pathways for the selective cleavage of C-N bonds in molecules found in petroleum. The initial phase of the project will focus on the isolation or development of an enzyme capable of cleaving the C-N bond in aromatic amides, specifically 2-aminobiphenyl. The objective of the second phase of the research will be to construct a biochemical pathway for the selective removal of nitrogen from carbazole by combining the carA genes from Sphingomonas sp. GTIN11 with the gene(s) encoding an appropriate amidase. The objective of the final phase of the project will be to develop derivative CN bond cleaving enzymes that have broader substrate ranges and to demonstrate the use of such strains to selectively remove nitrogen from petroleum. The project is on schedule and no major difficulties have been encountered. During the first year of the project (October, 2002-September, 2003) enrichment culture experiments have resulted in the isolation of promising cultures that may be capable of cleaving C-N bonds in aromatic amides, several amidase genes have been cloned and are currently undergoing directed evolution to obtain derivatives that can cleave C-N bonds in aromatic amides, and the carA genes from Sphingomonas sp. GTIN11, and Pseudomonas resinovorans CA10 were cloned in vectors capable of replicating in Escherichia coli. Future research will address expression of these genes in Rhodococcus erythropolis. Enrichment culture experiments and directed evolution experiments continue to be a main focus of research activity and further work is required to obtain an appropriate amidase that will selectively cleave C-N bonds in aromatic substrates. Once an appropriate amidase gene is obtained it must be combined with genes encoding an enzyme capable of converting carbazole to 2'aminobiphenyl-2,3-diol: specifically carA genes. The carA genes from two sources have been cloned and are ready for construction of C-N bond cleavage pathway. The construction of a new metabolic pathway to selectively remove nitrogen from carbazole and other molecules typically found in petroleum should lead to the development of a process to improve oil refinery efficiency by reducing the poisoning, by nitrogen, of catalysts used in the hydrotreating and catalytic cracking of petroleum.

  13. Protocols for the selective cleavage of carbon-sulfur bonds in coal. Technical report, December 1, 1992--February 28, 1993

    SciTech Connect

    Bausch, M.; Ho, K.K.

    1993-05-01

    Chemical reactions that result in carbon-sulfur bond cleavage are an essential aspect of any protocol designed to remove organic sulfur from coal. Planned in the second year of our project Protocols for the Selective Cleavage of Carbon-Sulfur Bonds in Coal are investigations of reactions in which organic sulfur-containing coal model compounds are subjected to different conditions of temperature, solvent mixtures and radiation. Other investigations that will result in analyses of the likelihood of C-S bond cleavages resulting from various oxidative processes will also be undertaken. Summarized in this quarterly report are results of our investigations of the following topics: (a) desulfurization of coal model sulfones; (b) desulfurization of coal model sulfides; (c) photooxidation of organic sulfides; and (d) photolytic desulfurization of coal.

  14. Gold-Catalyzed Oxidation of Propargylic Ethers with Internal C-C Triple Bonds: Impressive Regioselectivity Enabled by Inductive Effect

    PubMed Central

    Ji, Kegong; D’Souza, Brendan; Nelson, Jon; Zhang, Liming

    2014-01-01

    Inductive perturbations of C-C triple bonds are shown to dictate the regiochemistry of gold-catalyzed oxidation of internal C-C triple bonds in the cases of propargylic ethers, resulting in highly regioselective formation of ?-alkoxy-?,?-unsaturated ketones (up to >50/1 selectivity) via ?-oxo gold carbene intermediates. Ethers derived from primary propargylic alcohols can be reliably transformed in good yields, and various functional groups are tolerated. With substrates derived from secondary propargylic alcohols, the development of a new P,N-bidentate ligand enables the minimization of competing alkyl group migration to the gold carbene center over the desired hydride migration; the preferred migration of a phenyl group, however, results in efficient formation of a ?-phenyl-?-alkoxy-?,?-unsaturated ketone. These results further advance the surrogacy of a propargyl moiety to synthetically versatile enone function with reliable and readily predictable regioselectivity. PMID:25284890

  15. Stereoselective total synthesis of (-)-nupharamine utilizing an ?-chlorosulfide and a sulfinimine for C-C bond formation.

    PubMed

    Raghavan, Sadagopan; Rajendar, Sheelamanthula

    2016-01-01

    An efficient stereoselective synthesis of the nuphar alkaloid, (-)-nupharamine, is reported. The key features include the Lewis acid catalyzed reaction of an ?-chlorosulfide with a silyl ketene acetal for C-C bond formation, creation of the stereocenter at C2 by a diastereoselective reaction of allyl indium with a sulfinimine and reductive amination for the introduction of the C6 stereocenter of the piperidine ring. PMID:26490750

  16. Conceptual Basis for Understanding C-C Bond Activation in Ethane by Second Row Transition Metal Carbides.

    PubMed

    Sahoo, Sanjubala; Reber, Arthur C; Khanna, Shiv N

    2015-12-24

    It has been suggested that the addition of carbon to Mo and W may improve their catalytic properties and even grant these metal carbides behaviors similar to those of late transition metals such as Pd and Pt. First-principles studies on the C-C bond activation of ethane by 4d transition metal (TM) atoms and TMC molecules have been carried out to develop a conceptual model underlying the changes. We find that the addition of carbon to TM atoms leads to large variations in the activation barrier depending on the metal, and that MoC indeed reveals a pronounced reduction in the C-C bond activation energy. A critical examination of molecular orbitals shows that the changes in reactivity are not linked to a dramatic increase in the filling of 4d states as implied by the analogy with Pd. The reactivity is governed by the location and filling of the 5s and 4d orbitals, with the different orbitals controlling different facets of reactivity. The 5s state controls the initial binding of ethane, with a strong anticorrelation between the ethane binding energy and the 5s occupation, while the location of the 4dz(2) orbital controls the reaction barrier that controls the activation energy for cleaving the C-C bond. PMID:26616749

  17. Te-Te and Te-C bond cleavage reactions using a monovalent gallanediyl.

    PubMed

    Ganesamoorthy, Chelladurai; Bendt, Georg; Bläser, Dieter; Wölper, Christoph; Schulz, Stephan

    2015-03-21

    LGa (L = [(2,6-i-Pr2-C6H3)NC(Me)]2CH) reacts with elemental tellurium with formation of the Te-bridged compound [LGa-?-Te]2 1, whereas the reactions with Ph2Te2 and i-Pr2Te occurred with cleavage of the Te-Te and Te-C bond, respectively, and subsequent formation of LGa(TePh)2 2 and LGa(i-Pr)Tei-Pr 3. 1-3 were characterized by heteronuclear NMR ((1)H, (13)C, (125)Te) and IR spectroscopy and their solid state structures were determined by single crystal X-ray analyses. PMID:25680084

  18. {{text{C}}_{? }} - {text{C}} Bond Cleavage of the Peptide Backbone in MALDI In-Source Decay Using Salicylic Acid Derivative Matrices

    NASA Astrophysics Data System (ADS)

    Asakawa, Daiki; Takayama, Mitsuo

    2011-07-01

    The use of 5-formylsalicylic acid (5-FSA) and 5-nitrosalicylic acid (5-NSA) as novel matrices for in-source decay (ISD) of peptides in matrix-assisted laser desorption/ionization (MALDI) is described. The use of 5-FSA and 5-NSA generated a- and x-series ions accompanied by oxidized peptides [M - 2 H + H]+. The preferential formation of a- and x-series ions was found to be dependent on the hydrogen-accepting ability of matrix. The hydrogen-accepting ability estimated from the ratio of signal intensity of oxidized product [M - 2 H + H]+ to that of non-oxidized protonated molecule [M + H]+ of peptide was of the order 5-NSA > 5-FSA > 5-aminosalicylic acid (5-ASA) ? 2,5-dihydroxyl benzoic acid (2,5-DHB) ? 0. The results suggest that the hydrogen transfer reaction from peptide to 5-FSA and 5-NSA occurs during the MALDI-ISD processes. The hydrogen abstraction from peptides results in the formation of oxidized peptides containing a radical site on the amide nitrogen with subsequent radical-induced cleavage at the {{{C}}_{? }} - {{C}} bond, leading to the formation of a- and x-series ions. The most significant feature of MALDI-ISD with 5-FSA and 5-NSA is the specific cleavage of the {{{C}}_{? }} - {{C}} bond of the peptide backbone without degradation of side-chain and post-translational modifications (PTM). The matrix provides a useful complementary method to conventional MALDI-ISD for amino acid sequencing and site localization of PTMs in peptides.

  19. Protocols for the selective cleavage of carbon-sulfur bonds in coal. Technical report, March 1, 1992--May 30, 1992

    SciTech Connect

    Bausch, M.

    1992-10-01

    Chemical reactions that result in carbon-sulfur bond cleavage are an essential aspect of any protocol designed to remove organic sulfur from coal. Unfortunately, several classes of reactions that lead to carbon-sulfur bond cleavage are not well understood. Planned in ``Protocols for the Selective Cleavage of Carbon-Sulfur Bonds in Coal`` are reactions in which organic sulfur-containing coal model compounds are subjected to different conditions of temperature, solvent mixtures and radiation. Summarized in this quarterly report are results of our investigations of the following topics: (a) the reactions of coal model compounds, namely, benzyl phenyl sulfide (BPS), diphenyl sulfide (hereafter referred to as phenylsulfide, PS) and dibenzothiophene (DBT) with various reagents (Lewis acid catalysts, radical initiators, electron acceptors) using different solvents and temperature in an attempt to maximize the degree of carbon-sulfur (C-S) bond cleavage; and (b) the results of photooxidation of coal model compounds under controlled conditions. Quantitative product analyses are presented in this report.

  20. Palladium-catalyzed oxidative arylalkylation of activated alkenes: dual C-H bond cleavage of an arene and acetonitrile.

    PubMed

    Wu, Tao; Mu, Xin; Liu, Guosheng

    2011-12-23

    Not one but two: The title reaction proceeds through the dual C-H bond cleavage of both aniline and acetonitrile. The reaction affords a variety of cyano-bearing indolinones in excellent yield. Mechanistic studies demonstrate that this reaction involves a fast arylation of the olefin and a rate-determining C-H activation of the acetonitrile. PMID:22076660

  1. Nickel-Catalyzed Formal Homocoupling of Methoxyarenes for the Synthesis of Symmetrical Biaryls via C-O Bond Cleavage.

    PubMed

    Nakamura, Keisuke; Tobisu, Mamoru; Chatani, Naoto

    2015-12-18

    A new method has been developed for the nickel-catalyzed homocoupling of methoxyarenes via C-O bond cleavage using a diboron reagent. The use of 1,3-dicyclohexylimidazol-2-ylidene as a ligand was found to be critical to the success of the reaction. This new method allows the synthesis of a wide range of biaryl compounds. PMID:26624568

  2. Heterobimetallic Ti/Co Complexes That Promote Catalytic N-N Bond Cleavage.

    PubMed

    Wu, Bing; Gramigna, Kathryn M; Bezpalko, Mark W; Foxman, Bruce M; Thomas, Christine M

    2015-11-16

    Treatment of the tris(phosphinoamide) titanium precursor ClTi(XylNP(i)Pr2)3 (1) with CoI2 leads to the heterobimetallic complex (?(2)-(i)Pr2PNXyl)Ti(XylNP(i)Pr2)2(?-Cl)CoI (2). One-electron reduction of 2 affords (?(2)-(i)Pr2PNXyl)Ti(XylNP(i)Pr2)2CoI (3), which can be reduced by another electron under dinitrogen to generate the reduced diamagnetic complex (THF)Ti(XylNP(i)Pr2)3CoN2 (4). The removal of the dinitrogen ligand from 4 under vacuum affords (THF)Ti(XylNP(i)Pr2)3Co (5), which features a Ti-Co triple bond. Treatment of 4 with hydrazine or methyl hydrazine results in N-N bond cleavage and affords the new diamagnetic complexes (L)Ti(XylNP(i)Pr2)3CoN2 (L = NH3 (6), MeNH2 (7)). Complexes 4, 5, and 6 have been shown to catalyze the disproportionation of hydrazine into ammonia and dinitrogen gas through a mechanism involving a diazene intermediate. PMID:26492046

  3. An unusual carbon?carbon bond cleavage reaction during phosphinothricin biosynthesis

    SciTech Connect

    Cicchillo, Robert M.; Zhang, Houjin; Blodgett, Joshua A.V.; Whitteck, John T.; Li, Gongyong; Nair, Satish K.; van derDonk, Wilfred A.; Metcalf, William W.

    2010-01-12

    Natural products containing phosphorus-carbon bonds have found widespread use in medicine and agriculture. One such compound, phosphinothricin tripeptide, contains the unusual amino acid phosphinothricin attached to two alanine residues. Synthetic phosphinothricin (glufosinate) is a component of two top-selling herbicides (Basta and Liberty), and is widely used with resistant transgenic crops including corn, cotton and canola. Recent genetic and biochemical studies showed that during phosphinothricin tripeptide biosynthesis 2-hydroxyethylphosphonate (HEP) is converted to hydroxymethylphosphonate (HMP). Here we report the in vitro reconstitution of this unprecedented C(sp{sup 3})-C(sp{sup 3}) bond cleavage reaction and X-ray crystal structures of the enzyme. The protein is a mononuclear non-haem iron(II)-dependent dioxygenase that converts HEP to HMP and formate. In contrast to most other members of this family, the oxidative consumption of HEP does not require additional cofactors or the input of exogenous electrons. The current study expands the scope of reactions catalysed by the 2-His-1-carboxylate mononuclear non-haem iron family of enzymes.

  4. Proton-coupled electron transfer cleavage of heavy-atom bonds in electrocatalytic processes. Cleavage of a C-O bond in the catalyzed electrochemical reduction of CO2.

    PubMed

    Costentin, Cyrille; Drouet, Samuel; Passard, Guillaume; Robert, Marc; Savéant, Jean-Michel

    2013-06-19

    Most of the electrocatalytic processes of interest in the resolution of modern energy challenges are associated with proton transfer. In the cases where heavy atom bond cleavage occurs concomitantly, the question arises of the exact nature of its coupling with proton-electron transfer within the catalytic cycle. The cleavage of a C-O bond in the catalyzed electrochemical conversion of CO2 to CO offers the opportunity to address this question. Electrochemically generated iron(0) porphyrins are efficient, specific, and durable catalysts provided they are coupled with Lewis or Brönsted acids. The cocatalyst properties of four Brönsted acids of increasing strength, water, trifluoroethanol, phenol, and acetic acid, have been systematically investigated. Preparative-scale electrolyses showed that carbon monoxide is the only product of the catalytic reaction. Methodic application of a nondestructive technique, cyclic voltammetry, with catalyst and CO2 concentrations, as well as H/D isotope effect, as diagnostic parameters allowed the dissection of the reaction mechanism. It appears that the key step of the reaction sequence consists of an electron transfer from the catalyst concerted with the cleavage of a C-O bond and the transfer of one proton. This is the second example, and an intermolecular version of such a concerted proton-electron bond-breaking reaction after a similar electrochemical process involving the cleavage of O-O bonds has been identified. It is the first time that a proton-electron transfer concerted with bond breaking has been uncovered as the crucial step in a catalytic multistep reaction. PMID:23692448

  5. Unlocking Hydrogenation for C-C Bond Formation: A Brief Overview of Enantioselective Methods

    PubMed Central

    Hassan, Abbas; Krische, Michael J.

    2011-01-01

    Hydrogenation of ?-unsaturated reactants in the presence of carbonyl compounds or imines promotes reductive C-C coupling, providing a byproduct-free alternative to stoichiometric organometallic reagents in an ever-increasing range of C=X (X = O, NR) additions. Under transfer hydrogenation conditions, hydrogen exchange between alcohols and ?-unsaturated reactants triggers generation of electrophile-nucleophile pairs, enabling carbonyl addition directly from the alcohol oxidation level, bypassing discrete alcohol oxidation and generation of stoichiometric byproducts. PMID:22125398

  6. .c"'''''... '" ~:c c: '"o ':l

    E-print Network

    .c"'''''... '" '".c '-'"c: .c: .D '" ~:c c: '"o ':l '" 0E ':l'" VI 0 '" "'0 '- '" · ·· '" ·· ··"'''' · .>c '""-'".c .c .c'"'".ca> V' '" C1'· - - - 0 0'" >'0 '" _.w 0 "'0 a>.c W:i:E· ' 0 :> '" "VI ~ 3:"" >,c: c: Vl __ 0 · -a. .D '"'" VI'" '"' '" · '" '" C >, c: · '"'- ..., C .c

  7. Matching plasmon resonances to the C=C and C-H bonds in estradiol

    NASA Astrophysics Data System (ADS)

    Mbomson, Ifeoma G.; McMeekin, Scott; De La Rue, Richard; Johnson, Nigel P.

    2015-03-01

    We tune nanoantennas to resonate within mid-infrared wavelengths to match the vibrational resonances of C=C and C-H of the hormone estradiol. Modelling and fabrication of the nanoantennas produce plasmon resonances between 2 ?m to 7 ?m. The hormone estradiol was dissolved in ethanol and evaporated, leaving thickness of a few hundreds of nanometres on top of gold asymmetric split H-like shaped on a fused silica substrate. The reflectance was measured and a red-shift is recorded from the resonators plasmonic peaks. Fourier transform infrared spectroscopy is use to observe enhanced spectra of the stretching modes for the analyte which belongs to alkenyl biochemical group.

  8. Mechanisms for enzymatic cleavage of the N-glycosidic bond in DNA.

    PubMed

    Drohat, Alexander C; Maiti, Atanu

    2014-11-14

    DNA glycosylases remove damaged or enzymatically modified nucleobases from DNA, thereby initiating the base excision repair (BER) pathway, which is found in all forms of life. These ubiquitous enzymes promote genomic integrity by initiating repair of mutagenic and/or cytotoxic lesions that arise continuously due to alkylation, deamination, or oxidation of the normal bases in DNA. Glycosylases also perform essential roles in epigenetic regulation of gene expression, by targeting enzymatically-modified forms of the canonical DNA bases. Monofunctional DNA glycosylases hydrolyze the N-glycosidic bond to liberate the target base, while bifunctional glycosylases mediate glycosyl transfer using an amine group of the enzyme, generating a Schiff base intermediate that facilitates their second activity, cleavage of the DNA backbone. Here we review recent advances in understanding the chemical mechanism of monofunctional DNA glycosylases, with an emphasis on how the reactions are influenced by the properties of the nucleobase leaving-group, the moiety that varies across the vast range of substrates targeted by these enzymes. PMID:25181003

  9. Bioinspired Nonheme Iron Catalysts for C-H and C?C Bond Oxidation: Insights into the Nature of the Metal-Based Oxidants.

    PubMed

    Oloo, Williamson N; Que, Lawrence

    2015-09-15

    Recent efforts to design synthetic iron catalysts for the selective and efficient oxidation of C-H and C?C bonds have been inspired by a versatile family of nonheme iron oxygenases. These bioinspired nonheme (N4)Fe(II) catalysts use H2O2 to oxidize substrates with high regio- and stereoselectivity, unlike in Fenton chemistry where highly reactive but unselective hydroxyl radicals are produced. In this Account, we highlight our efforts to shed light on the nature of metastable peroxo intermediates, which we have trapped at -40 °C, in the reactions of the iron catalyst with H2O2 under various conditions and the high-valent species derived therefrom. Under the reaction conditions that originally led to the discovery of this family of catalysts, we have characterized spectroscopically an Fe(III)-OOH intermediate (EPR gmax = 2.19) that leads to the hydroxylation of substrate C-H bonds or the epoxidation and cis-dihydroxylation of C?C bonds. Surprisingly, these organic products show incorporation of (18)O from H2(18)O, thereby excluding the possibility of a direct attack of the Fe(III)-OOH intermediate on the substrate. Instead, a water-assisted mechanism is implicated in which water binding to the iron(III) center at a site adjacent to the hydroperoxo ligand promotes heterolytic cleavage of the O-O bond to generate an Fe(V)(O)(OH) oxidant. This mechanism is supported by recent kinetic studies showing that the Fe(III)-OOH intermediate undergoes exponential decay at a rate enhanced by the addition of water and retarded by replacement of H2O with D2O, as well as mass spectral evidence for the Fe(V)(O)(OH) species obtained by the Costas group. The nature of the peroxo intermediate changes significantly when the reactions are carried out in the presence of carboxylic acids. Under these conditions, spectroscopic studies support the formation of a (?(2)-acylperoxo)iron(III) species (EPR gmax = 2.58) that decays at -40 °C in the absence of substrate to form an oxoiron(IV) byproduct, along with a carboxyl radical that readily loses CO2. The alkyl radical thus formed either reacts with O2 to form benzaldehyde (as in the case of PhCH2COOH) or rebounds with the incipient Fe(IV)(O) moiety to form phenol (as in the case of C6F5COOH). Substrate addition leads to its 2-e(-) oxidation and inhibits these side reactions. The emerging mechanistic picture, supported by DFT calculations of Wang and Shaik, describes a rather flat reaction landscape in which the (?(2)-acylperoxo)iron(III) intermediate undergoes O-O bond homolysis reversibly to form an Fe(IV)(O)((•)OC(O)R) species that decays to Fe(IV)(O) and RCO2(•) or isomerizes to its Fe(V)(O)(O2CR) electromer, which effects substrate oxidation. Another short-lived S = 1/2 species just discovered by Talsi that has much less g-anisotropy (EPR gmax = 2.07) may represent either of these postulated high-valent intermediates. PMID:26280131

  10. Cyanoalkylation: Alkylnitriles in Catalytic C?C Bond-Forming Reactions.

    PubMed

    López, Rosa; Palomo, Claudio

    2015-11-01

    Alkylnitriles are one of the most ubiquitous nitrogen-containing chemicals and are widely employed in reactions which result in nitrile-group conversion into other functionalities. Nevertheless, their use as carbon pronucleophiles in carbon-carbon bond-forming reactions has been hampered by difficulties associated mainly with the catalytic generation of active species, that is, ?-cyano carbanions or metalated nitriles. Recent investigations have addressed this challenge and have resulted in different modes of alkylnitrile activation. This review illustrates these findings, which have set the foundation for the development of practical and conceptually new catalytic, direct cyanoalkylation methodologies. PMID:26387483

  11. Solvent Effects and Activation Parameters in the Competitive Cleavage of C-CN and C-H Bonds in 2-Methyl-3-Butenenitrile

    E-print Network

    Jones, William D.

    Solvent Effects and Activation Parameters in the Competitive Cleavage of C-CN and C-H Bonds in 2 significant differences in the ratio of C-H and C-CN activated products. C-H cleavage is favored in polar activation parameters for the C-CN activation and C-H activation mechanisms. The activation parameters

  12. Short Access to Belt Compounds with Spatially Close C=C Bonds and Their Transannular Reactions.

    PubMed

    Camps, Pelayo; Gómez, Tània; Otermin, Ane; Font-Bardia, Mercè; Estarellas, Carolina; Luque, Francisco Javier

    2015-09-28

    Two domino Diels-Alder adducts were obtained from 3,7-bis(cyclopenta-2,4-dien-1-ylidene)-cis-bicyclo[3.3.0]octane and dimethyl acetylenedicarboxylate or N-methylmaleimide under microwave irradiation. From the first adduct, a C20H24 diene with C2v symmetry was obtained by Zn/AcOH reduction, hydrolysis, oxidative decarboxylation, and selective hydrogenation. Photochemical [2+2] cycloaddition of this diene gave a thermally unstable cyclobutane derivative, which reverts to the diene. However, both the diene and the cyclobutane derivatives could be identified by X-ray diffraction analysis upon irradiation of the diene crystal. New six-membered rings are formed upon the transannular addition of bromine or iodine to the diene. The N-type selectivity of the addition was examined by theoretical calculations, which revealed the distinct susceptibility of the doubly bonded carbon atoms to the bromine attack. PMID:26376331

  13. Pathways and kinetics of methane and ethane C-H bond cleavage on PdO(101)

    NASA Astrophysics Data System (ADS)

    Antony, Abbin; Asthagiri, Aravind; Weaver, Jason F.

    2013-09-01

    We used conventional density functional theory (DFT) and dispersion-corrected DFT (DFT-D3) calculations to investigate C-H bond activation pathways for methane and ethane ?-complexes adsorbed on the PdO(101) surface. The DFT-D3 calculations predict lower and more physically realistic values of the apparent C-H bond cleavage barriers, which are defined relative to the gas-phase energy level, while giving nearly the same energy differences between stationary states as predicted by conventional DFT for a given reaction pathway. For the stable CH4 ?2 complex on PdO(101), DFT-D3 predicts that the C-H bond cleavage barriers are 55.2 and 16.1 kJ/mol relative to the initial molecularly adsorbed and gaseous states, respectively. We also predict that dehydrogenation of the resulting CH3 groups and conversion to CH3O species are significantly more energetically demanding than the initial C-H bond activation of CH4 on PdO(101). Using DFT-D3, we find that an ?2 and an ?1 ethane complex can undergo C-H bond cleavage on PdO(101) with intrinsic energy barriers that are similar to that of the methane complex, but with apparent barriers that are close to zero. We also investigated the dissociation kinetics of methane and ethane on PdO(101) using microkinetic models, with parameters derived from the DFT-D3 relaxed structures. We find that a so-called 3N - 2 model, in which two frustrated adsorbate motions are treated as free motions, predicts desorption pre-factors and alkane dissociation probabilities that agree well with estimates obtained from the literature. The microkinetic simulations demonstrate the importance of accurately describing entropic contributions in kinetic simulations of alkane dissociative chemisorption.

  14. TRANSITION METAL ACTIVATION AND FUNCTIONALIZATION OF CARBON-HYDROGEN BONDS

    E-print Network

    Jones, William D.

    TRANSITION METAL ACTIVATION AND FUNCTIONALIZATION OF CARBON-HYDROGEN BONDS William D. Jones-H and C-C bond functionalization, and (4) carbon-fluorine bond activation. We have made progress in each in our proposal where we have had success. These include: (1) carbon-carbon bond cleavage reactions, (2

  15. Iron(II)-Catalyzed Intermolecular Amino-Oxygenation of Olefins through the N–O Bond Cleavage of Functionalized Hydroxylamines

    PubMed Central

    2015-01-01

    An iron-catalyzed diastereoselective intermolecular olefin amino-oxygenation reaction is reported, which proceeds via an iron-nitrenoid generated by the N–O bond cleavage of a functionalized hydroxylamine. In this reaction, a bench-stable hydroxylamine derivative is used as the amination reagent and oxidant. This method tolerates a range of synthetically valuable substrates that have been all incompatible with existing amino-oxygenation methods. It can also provide amino alcohol derivatives with regio- and stereochemical arrays complementary to known amino-oxygenation methods. PMID:25166591

  16. Protocols for the selective cleavage of carbon-sulfur bonds in coal. Technical report, December 1, 1991--February 29, 1992

    SciTech Connect

    Bausch, M.

    1992-08-01

    Planned in this project ``Protocols for the Selective Cleavage of Carbon-Sulfur Bonds in Coal`` are reactions in which organic free radicals and/or organic anions are allowed to react with physically cleaned Illinois coal and sulfur-containing coal model compounds. This quarterly report contains the results of photooxidation of coal model compounds, namely, benzyl phenyl sulfide, phenylsulfide, dibenzothiophene, benzothiophene and thiophene, in the presence of 9,10-dicyanoanthracene or anthracene. Quantitative product analysis for the matrix of reactions whereby the coal model compounds are subjected to various solvents and temperature changes is presented in this quarterly report. Further quantitative analyses of the products are being undertaken.

  17. Heterogenised N-heterocyclic carbene complexes: synthesis, characterisation and application for hydroformylation and C-C bond formation reactions.

    PubMed

    Dastgir, Sarim; Coleman, Karl S; Green, Malcolm L H

    2011-01-21

    The imidazolium salts: 1-mesityl-3-(3-trimethoxysilylpropyl)imidazolium iodide and 1-tert-butyl-3-(3-trimethoxysilylpropyl)imidazolium iodide, abbreviated as (tmpMes)HI (3a) and (tmp(t)Bu)HI (3b), respectively, have been synthesised. The palladium(ii) complexes (?(3)-C(3)H(5)) (tmpMes)PdCl (5a) and (?(3)-C(3)H(5))(tmp(t)Bu)PdCl (5b), rhodium(i) and iridium(i) complexes (?(4)-1,5-COD) (tmpMes)MCl, M = Rh (6a), Ir (7a) and (?(4)-1,5-COD)(tmp(t)Bu)MCl, where M = Rh (6b), Ir (7b), were synthesised by silver transmetallation reactions using the silver(i) complexes (tmpMes)AgI (4a) and (tmp(t)Bu)AgI (4b). The iridium complex 7b has been structurally characterised. The Pd(ii) and Rh(i) complexes have been immobilised by attachment to chemically modified MCM-41. The immobilised palladium(ii) materials have been tested as recyclable catalysts for Suzuki type C-C bond formation reactions in water and the immobilised rhodium(i) materials have been examined for their catalytic ability for the hydroformylation of 1-octene. PMID:21116572

  18. Impact of reductive cleavage of an intramolecular disulfide bond containing cationic gemini surfactant in monolayers and bilayers.

    PubMed

    Säily, V Matti J; Ryhänen, Samppa J; Lankinen, Hilkka; Luciani, Paola; Mancini, Giovanna; Parry, Mikko J; Kinnunen, Paavo K J

    2006-01-31

    The properties of a novel disulfide-bond-containing gemini surfactant bis[N,N-dimethyl-N-hexadecyl-N-(2-mercaptoethyl)ammonium bromide] disulfide (DSP) were studied using a Langmuir balance, supported monolayers, differential scanning calorimetry, giant vesicles, and LUVs. In 150 mM NaCl the cmc for DSP was 7.5 microM whereas that of the monomer N,N-dimethyl-N-hexadecyl-N-(2-mercaptoethyl)ammonium bromide (MSP) was 12.1 microM. Both surfactants exhibited single endotherms upon DSC, with peak temperatures Tm at 21.7 and 20.1 degrees C for DSP and MSP, respectively. The endotherm for MSP was significantly broader indicating less cooperative melting. Both in monolayers and in vesicles reductive cleavage of the disulfide bond of DSP could be obtained by glutathione (GSH). For Langmuir films of DSP the addition of GSH into the subphase led to a decrease in surface pressure pi as well as surface dipole potential psi. Although the cleavage by GSH was significantly slower in the presence of a charge saturating concentration of DNA, it did not prevent the reaction. The resulting monomers detached from supported monolayers, leading to loss of affinity of the surface for DNA. Disruption of giant vesicles containing DSP within approximately 30 s following a local injection of GSH was observed, revealing membrane destabilization. PMID:16430254

  19. Glycosidic Bond Cleavage in DNA Nucleosides: Effect of Nucleobase Damage and Activation on the Mechanism and Barrier.

    PubMed

    Lenz, Stefan A P; Kellie, Jennifer L; Wetmore, Stacey D

    2015-12-24

    Although DNA damage can have a variety of deleterious effects on cells (e.g., senescence, death, and rapid growth), the base excision repair (BER) pathway combats the effects by removing several types of damaged DNA. Since the first BER step involves cleavage of the bond between the damaged nucleobase and the DNA sugar-phosphate backbone, we have used density functional theory to compare the intrinsic stability of the glycosidic bond in a number of common DNA oxidation, deamination, and alkylation products to the corresponding natural nucleosides. Our calculations predict that the dissociative (SN1) and associative (SN2) pathways are nearly isoenergetic, with the dissociative pathway only slightly favored on the Gibbs reaction surface for all canonical and damaged nucleosides, which suggests that DNA damage does not affect the inherently most favorable deglycosylation pathway. More importantly, with the exception of thymine glycol, all DNA lesions exhibit reduced glycosidic bond stability relative to the undamaged nucleosides. Furthermore, the trend in the magnitude of the deglycosylation barrier reduction directly correlates with the relative nucleobase acidity (at N9 for purines or N1 for pyrimidines), which thereby provides a computationally efficient, qualitative measure of the glycosidic bond stability in DNA damage. The effect of nucleobase activation (protonation) at different sites predicts that the positions leading to the largest reductions in the deglycosylation barrier are typically used by DNA glycosylases to facilitate base excision. Finally, deaza purine derivatives are found to have greater glycosidic bond stability than the canonical counterparts, which suggests that alterations to excision rates measured using these derivatives to probe DNA glycosylase function must be interpreted in reference to the inherent differences in the nucleoside reactivity. Combined with previous studies of the deglycosylation of DNA nucleosides, the current study provides a greater fundamental understanding about the reactivity of the glycosidic bond in damaged DNA, which has direct implications to the function of critical DNA repair enzymes. PMID:26618397

  20. Mechanisms of Selective Cleavage of C?O Bonds in Di-aryl Ethers in Aqueous Phase

    SciTech Connect

    He, Jiayue; Zhao, Chen; Mei, Donghai; Lercher, Johannes A.

    2014-01-02

    A novel route for cleaving the C?O aryl ether bonds of p-substituted H?, CH3?, and OH? diphenyl ethers has been explored over Ni/SiO2 catalysts at very mild conditions. The C?O bond of diphenyl ether is cleaved by parallel hydrogenolysis and hydrolysis (hydrogenolysis combined with HO* addition) on Ni. The rates as a function of H2 pressure from 0 to 10 MPa indicate that the rate-determining step is the C?O bond cleavage on Ni. H* atoms compete with the organic reactant for adsorption leading to a maximum in the rate with increasing H2 pressure. In contrast to diphenyl ether, hydrogenolysis is the exclusive route for cleaving an ether C?O bond of di-p-tolyl ether to form p-cresol and toluene. 4,4'-dihydroxydiphenyl ether undergoes sequential surface hydrogenolysis, first to phenol and HOC6H4O* (adsorbed), which is then cleaved to phenol (C6H5O* with added H*) and H2O (O* with two added H*) in a second step. Density function theory supports the operation of this pathway. Notably, addition of H* to HOC6H4O* is less favorable than a further hydrogenolytic C-O bond cleavage. The TOFs of three aryl ethers with Ni/SiO2 in water followed the order 4,4'-dihydroxydiphenyl ether (69 h-1) > diphenyl ether (26 h-1) > di-p-tolyl ether (1.3 h-1), in line with the increasing apparent activation energies, ranging from 93 kJ?mol-1 (4,4'-dihydroxydiphenyl ether) < diphenyl ether (98 kJ?mol-1) to di-p-tolyl ether (105 kJ?mol-1). D.M. thanks the support from the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.

  1. Protocols for the selective cleavage of carbon-sulfur bonds in coal. Interim final technical report, September 1, 1992--August 31, 1993

    SciTech Connect

    Bausch, M.

    1993-12-31

    This report presents results of research pertaining to chemical reactions that aim to selectively cleave C-S bonds in model compounds as well as Illinois coal. Chemical reactions that result in carbon-sulfur bond cleavage are an essential aspect of any protocol designed to remove organic sulfur from coal. In the second year of the project {open_quotes}Protocols for the Selective Cleavage of Carbon-Sulfur Bonds in Coal, the author has completed investigations of reactions in which organic sulfur-containing coal model compounds are subjected to different conditions of temperature, solvent mixtures, reagents, and radiation. He has also undertaken a series of reactions in which physically cleaned Illinois coal has been subjected to many of the same reaction conditions that were shown, via the use of model sulfides, to result in substantial C-S bond cleavage and or sulfur oxidation. Therefore, summarized in this interim final report are results of the investigations of the photooxidation reactions of coal model sulfones and sulfides; the photolytic desulfurization of coal; and various other topics, including a summary of the endeavors aimed at initiating C-S bond cleavage reactions using oxidation/chlorination/desulfurization protocols, and various tellurium reagents. Important experiments remain to be completed on this project; therefore, efforts in these areas will continue through the end of calendar year 1993.

  2. Protocols for the selective cleavage of carbon-sulfur bonds in coal. Final technical report, September 1, 1992--December 31, 1993

    SciTech Connect

    Bausch, M.

    1993-12-31

    Results of research pertaining to chemical reactions that aim to selectively cleave C-S bonds in model compounds as well as Illinois coal are summarized. Chemical reactions that result in carbon-sulfur bond cleavage are an essential aspect of any protocol designed to remove organic sulfur from coal. In the second year of the project ``Protocols for the Selective Cleavage of Carbon-Sulfur Bonds in Coal`` investigations of reactions in which organic sulfur-containing coal model compounds are subjected to different conditions of temperature, solvent mixtures, reagents, and radiation have been completed. A series of reactions have been undertaken in which physically cleaned Illinois coal has been subjected to many of the same reaction conditions that were shown, via the use of model sulfides, to result in substantial C-S bond cleavage and or sulfur oxidation. Therefore, summarized in this final report are results of the investigations of the photooxidation reactions of coal model sulfones and sulfides; the photolytic desulfurization of coal; and various other topics, including a summary of endeavors aimed at initiating C-S bond cleavage reactions using oxidation/chlorination/desulfurization protocols, and various tellurium reagents.

  3. Million-fold activation of the [Fe(2)(micro-O)(2)] diamond core for C-H bond cleavage.

    PubMed

    Xue, Genqiang; De Hont, Raymond; Münck, Eckard; Que, Lawrence

    2010-05-01

    In biological systems, the cleavage of strong C-H bonds is often carried out by iron centres-such as that of methane monooxygenase in methane hydroxylation-through dioxygen activation mechanisms. High valent species with [Fe(2)(micro-O)(2)] diamond cores are thought to act as the oxidizing moieties, but the synthesis of complexes that cleave strong C-H bonds efficiently has remained a challenge. We report here the conversion of a synthetic complex with a valence-delocalized [Fe(3.5)(micro-O)(2)Fe(3.5)](3+) diamond core (1) into a complex with a valence-localized [HO-Fe(III)-O-Fe(IV)=O](2+) open core (4), which cleaves C-H bonds over a million-fold faster. This activity enhancement results from three factors: the formation of a terminal oxoiron(iv) moiety, the conversion of the low-spin (S = 1) Fe(IV)=O centre to a high-spin (S = 2) centre, and the concentration of the oxidizing capability to the active terminal oxoiron(iv) moiety. This suggests that similar isomerization strategies might be used by nonhaem diiron enzymes. PMID:20414242

  4. NAD(P)H-Independent Asymmetric C=C Bond Reduction Catalyzed by Ene Reductases by Using Artificial Co-substrates as the Hydrogen Donor

    PubMed Central

    Winkler, Christoph K; Clay, Dorina; Entner, Marcello; Plank, Markus; Faber, Kurt

    2014-01-01

    To develop a nicotinamide-independent single flavoenzyme system for the asymmetric bioreduction of C=C bonds, four types of hydrogen donor, encompassing more than 50 candidates, were investigated. Six highly potent, cheap, and commercially available co-substrates were identified that (under the optimized conditions) resulted in conversions and enantioselectivities comparable with, or even superior to, those obtained with traditional two-enzyme nicotinamide adenine dinucleotide phosphate (NAD(P)H)-recycling systems. PMID:24382795

  5. C-H vs C-C Bond Activation of Acetonitrile and Benzonitrile via Oxidative Addition: Rhodium vs Nickel and Cp* vs Tp

    E-print Network

    Jones, William D.

    C-H vs C-C Bond Activation of Acetonitrile and Benzonitrile via Oxidative Addition: Rhodium vs@chem.rochester.edu Abstract: The photochemical reaction of (C5Me5)Rh(PMe3)H2 (1) in neat acetonitrile leads to formation of the C-H activation product, (C5Me5)Rh(PMe3)(CH2CN)H (2). Thermolysis of this product in acetonitrile

  6. Design and Synthesis of Chiral Zn2+ Complexes Mimicking Natural Aldolases for Catalytic C–C Bond Forming Reactions in Aqueous Solution

    PubMed Central

    Itoh, Susumu; Sonoike, Shotaro; Kitamura, Masanori; Aoki, Shin

    2014-01-01

    Extending carbon frameworks via a series of C–C bond forming reactions is essential for the synthesis of natural products, pharmaceutically active compounds, active agrochemical ingredients, and a variety of functional materials. The application of stereoselective C–C bond forming reactions to the one-pot synthesis of biorelevant compounds is now emerging as a challenging and powerful strategy for improving the efficiency of a chemical reaction, in which some of the reactants are subjected to successive chemical reactions in just one reactor. However, organic reactions are generally conducted in organic solvents, as many organic molecules, reagents, and intermediates are not stable or soluble in water. In contrast, enzymatic reactions in living systems proceed in aqueous solvents, as most of enzymes generally function only within a narrow range of temperature and pH and are not so stable in less polar organic environments, which makes it difficult to conduct chemoenzymatic reactions in organic solvents. In this review, we describe the design and synthesis of chiral metal complexes with Zn2+ ions as a catalytic factor that mimic aldolases in stereoselective C–C bond forming reactions, especially for enantioselective aldol reactions. Their application to chemoenzymatic reactions in aqueous solution is also presented. PMID:24481060

  7. Designed synthesis of size-tunable Ag2S nanoclusters via distinguishable C-S bond cleavage reaction of alkyl- and aryl-thiolates.

    PubMed

    Chen, Hang-Qing; He, Xin; Guo, Hui; Fu, Nan-Yan; Zhao, Liang

    2015-03-01

    We report herein the synthesis of two different silver clusters of aryl- and alkyl-thiolates. These two cluster complexes exhibited biased C-S bond cleavage reaction rates upon removing protective hexamethylazacalix[6]pyridine (Py[6]) ligands, which was applied in the fabrication of silver sulfide nanoclusters with variable and controllable sizes. PMID:25652650

  8. Rhodium-catalyzed coupling of 2-silylphenylboronic acids with alkynes leading to benzosiloles: catalytic cleavage of the carbon-silicon bond in trialkylsilyl groups.

    PubMed

    Tobisu, Mamoru; Onoe, Masahiro; Kita, Yusuke; Chatani, Naoto

    2009-06-10

    The reaction of 2-(trimethylsilyl)phenylboronic acid with alkynes in the presence of a rhodium catalyst affords benzosilole derivatives. The arylvinylrhodium intermediate undergoes formal substitution at a silicon center, resulting in the cleavage of a robust silicon-methyl bond in the trimethylsilyl group. PMID:19438242

  9. A cascade of acid-promoted C-O bond cleavage and redox reactions: from oxa-bridged benzazepines to benzazepinones.

    PubMed

    Zhang, Yuewei; Yang, Fengzhi; Zheng, Lianyou; Dang, Qun; Bai, Xu

    2014-12-01

    A sequence of C-O bond cleavage and redox reactions in oxa-bridged azepines was realized under acid promoted conditions. This protocol provides an atom-economical and straightforward approach to access benzo[b]azepin-5(2H)-ones in high yields. The formal synthesis of tolvaptan was achieved by exploiting this new transformation. PMID:25397583

  10. Characterization of carbon-sulfur bond cleavage by axenic and mixed cultures of Rhodococcus rhodochrous IGTS8

    SciTech Connect

    Kayser, K.J.; Bielaga, B.A.; Jackowski, K.; Oduson, O.; Kilbane, J. II

    1992-12-31

    Growth assays reveal that Rhodococcus rhodochrous IGTS8 can utilize a wide range of organosulfur compounds as the sole source of sulfur. Compounds that are utilized include thiophenes, sulfides, disulfides, mercaptans, sulfoxides, and sulfones. None of the organosulfur compounds tested can serve as a carbon source. A convenient spectrophotometric assay (Gibbs assay) based on the chromogenic reaction of 2,6-dichloroquinone-4-chloroimide with aromatic hydroxyl groups was developed and used in conjunction with GC/MS analysis to examine the kinetics of carbon-sulfur bond cleavage by axenic and mixed cell cultures of Rhodococcus rhodochrous IGTS8. The desulfurization trait is expressed at uniform levels during the mid-exponential phase, reaches a maximum during idiophase, and then declines in stationary-phase cells. Desulfurization rates for dibenzothiophene (DBT) range from 8 to 15 {mu}M of DBT/10{sup 12} cells/hour. Mixtures of genetically marked Rhodococcus rhodochrous IGTS8 and an organisms incapable of cleaning carbon-sulfur bonds in relevant test compounds, Enterobacter cloacae, were prepared in ratios that varied over six orders of magnitude. Growth studies revealed that Enterobacter cloacae was able to gain access to sulfur liberated from organosulfur compounds by IGTS8; however, cell-to-cell contact was required. These data also indicate that the desulfurization activity of IGTS8 cells in mixed cultures may be as much as 200-fold higher than in axenic cultures.

  11. Intramolecular C-C Bond Coupling of Nitriles to a Diimine Ligand in Group 7 Metal Tricarbonyl Complexes.

    PubMed

    Yempally, Veeranna; Fan, Wai Yip; Arndtsen, Bruce A; Bengali, Ashfaq A

    2015-12-01

    Dissolution of M(CO)3(Br)(L(Ar)) [L(Ar) = (2,6-Cl2-C6H3-NCMe)2CH2] in either acetonitrile [M = Mn, Re] or benzonitrile (M = Re) results in C-C coupling of the nitrile to the diimine ligand. When reacted with acetonitrile, the intermediate adduct [M(CO)3(NCCH3)(L(Ar))]Br forms and undergoes an intramolecular C-C coupling reaction between the nitrile carbon and the methylene carbon of the ?-diimine ligand. PMID:26554575

  12. Selective Bond Cleavage in Potassium Collisions with Pyrimidine Bases of DNA

    NASA Astrophysics Data System (ADS)

    Almeida, Diogo; Ferreira da Silva, Filipe; García, Gustavo; Limão-Vieira, Paulo

    2013-01-01

    Electron transfer in alkali-molecule collisions to gas phase thymine and uracil yielding H- formation is selectively controlled in the energy range between 5.3 and 66.1 eV. By tuning the collision energy, electron transfer from the alkali to partly deuterated thymine, methylated thymine at the N1 and methylated uracil at the N3 positions, H- loss proceeds not only through the breaking of the (C-H) against (N-H) bonds but also through N1 against N3 sites. Such selectivity, as far as bond and site are concerned, is here reported for the first time by electron transfer induced dissociation experiments in alkali-molecule collisions.

  13. A metal-free tandem C-C/C-O bond formation approach to densely functionalized indolyl 4H-chromenes catalyzed by polystyrene-supported p-toluenesulfonic acid under solvent-free conditions.

    PubMed

    Shinde, Vijay Vilas; Jeong, Yong Seok; Jeong, Yeon Tae

    2015-05-01

    A new environmentally benign and highly convergent protocol for the synthesis of indolyl 4H-chromene derivatives has been developed. This one-pot three-component condensation reaction of salicylaldehyde, cyclic 1,3-diketones, and indole is promoted by PS-PTSA as a reusable heterogeneous acid catalyst under solvent-free conditions. This protocol demonstrates several notable advantages such as that the catalyst is readily available and can be recovered and reused for at least five runs without any significant impact on product yields, high atom economy, excellent yields, and efficiency of producing three new bonds (two C-C and one C-O) and one stereo center in a single operation. PMID:25802172

  14. Mass Spectrometry and Theoretical Studies on N-C Bond Cleavages in the N-Sulfonylamidino Thymine Derivatives

    NASA Astrophysics Data System (ADS)

    Kobeti?, Renata; Kazazi?, Snježana; Kova?evi?, Borislav; Glasovac, Zoran; Krstulovi?, Luka; Baji?, Miroslav; Žini?, Biserka

    2015-05-01

    The reactivity of new biologically active thymine derivatives substituted with 2-(arylsulfonamidino)ethyl group at N1 and N3 position was investigated in the gas phase using CID experiments (ESI-MS/MS) and by density functional theory (DFT) calculations. Both derivatives show similar chemistry in the negative mode with a retro-Michael addition (Path A-) being the most abundant reaction channel, which correlate well with the fluoride induced retro-Michael addition observed in solution. The difference in the fragmentation of N-3 substituted thymine 5 and N-1 substituted thymine 1 in the positive mode relates to the preferred cleavage of the sulfonyl group ( m/z 155, Path B) in N-3 isomer and the formation of the acryl sulfonamidine 3 ( m/z 309) via Path A in N-1 isomer. Mechanistic studies of the cleavage reaction conducted by DFT calculations give the trend of the calculated activation energies that agree well with the experimental observations. A mechanism of the retro-Michael reaction was interpreted as a McLafferty type of fragmentation, which includes H? proton shift to one of the neighboring oxygen atoms in a 1,5-fashion inducing N1(N3)-C? bond scission. This mechanism was found to be kinetically favorable over other tested mechanisms. Significant difference in the observed fragmentation pattern of N-1 and N-3 isomers proves the ESI-MS/MS technique as an excellent method for tracking the fate of similar sulfonamidine drugs. Also, the observed N-1 and/or N-3 thymine alkylation with in situ formed reactive acryl sulfonamidine 3 as a Michael acceptor may open interesting possibilities for the preparation of other N-3 substituted pyrimidines.

  15. Chemistry of Materials 1989, 1,83-101 How C-C Bonds Are Formed and How They Influence

    E-print Network

    Li, Jing

    , or A, where R designates by convention a rare-earth metal, T, a transition metal, and Table I. C metallic, whereas the alkaline-earth metal carbide CaCz, a structure belonging to the same crystal family-C Distances in Some Selected Binary and Ternary Metal Carbides cryst struct c-c, A ref A, an alkaline-earth

  16. Intermediate in the O?O Bond Cleavage Reaction of an Extradiol Dioxygenase

    SciTech Connect

    Kovaleva, Elena G.; Lipscomb, John D.

    2009-02-16

    The reactive oxy intermediate of the catalytic cycle of extradiol aromatic ring-cleaving dioxygenases is formed by binding the catecholic substrate and O{sub 2} in adjacent ligand positions of the active site metal [usually Fe(II)]. This intermediate and the following Fe(II)-alkylperoxo intermediate resulting from oxygen attack on the substrate have been previously characterized in a crystal of homoprotocatechuate 2,3-dioxygenase (HPCD). Here a subsequent intermediate in which the O-O bond is broken to yield a gem diol species is structurally characterized. This new intermediate is stabilized in the crystal by using the alternative substrate, 4-sulfonylcatechol, and the Glu323Leu variant of HPCD, which alters the crystal packing.

  17. Reductive cleavage of carbon-chlorine bonds at catalytic and non-catalytic electrodes in 1-butyl-3-methylimidazolium tetrafluoroborate.

    PubMed

    Isse, Abdirisak A; Scarpa, Ludovico; Durante, Christian; Gennaro, Armando

    2015-11-18

    Dissociative electron transfer (DET) to a series of organic chlorides at glassy carbon (GC), silver and copper electrodes has been studied in 1-butyl-3-methylimidazolium tetrafluoroborate. The overall results of this study show that the ionic liquid behaves like molecular solvents such as acetonitrile and dimethylfomamide. It is found that aromatic chlorides follow a stepwise mechanism, whereas concerted electron transfer/bond cleavage is the preferred reaction mechanism for alkyl and benzyl chlorides. Ag and Cu show catalytic effects only when the DET follows a concerted mechanism, but Ag proves to be a much better electrocatalyst than Cu. A series of substituted benzyl chlorides (Z-C6H4CH2Cl, Z = H, 3-OCH3, 3-F, 4-Cl, and 3-CF3) show interesting results providing some insight into the reaction dynamics. The process occurs by a concerted mechanism and, albeit a constant standard potential for the whole series, Ep on GC and Cu, which does not show catalytic activity, is significantly affected by the substituents. In contrast, Ag shows good catalytic activity and, as expected, Ep does not change with the substituent. This difference in behavior may be rationalized by considering ion-dipole interactions between R? and Cl(-) as opposed to adsorption of the fragments on the electrode surface. PMID:26549620

  18. Substrate-triggered activation of a synthetic [Fe2(?-O)2] diamond core for C-H bond cleavage.

    PubMed

    Xue, Genqiang; Pokutsa, Alexander; Que, Lawrence

    2011-10-19

    An [Fe(IV)(2)(?-O)(2)] diamond core structure has been postulated for intermediate Q of soluble methane monooxygenase (sMMO-Q), the oxidant responsible for cleaving the strong C-H bond of methane and its hydroxylation. By extension, analogous species may be involved in the mechanisms of related diiron hydroxylases and desaturases. Because of the paucity of well-defined synthetic examples, there are few, if any, mechanistic studies on the oxidation of hydrocarbon substrates by complexes with high-valent [Fe(2)(?-O)(2)] cores. We report here that water or alcohol substrates can activate synthetic [Fe(III)Fe(IV)(?-O)(2)] complexes supported by tetradentate tris(pyridyl-2-methyl)amine ligands (1 and 2) by several orders of magnitude for C-H bond oxidation. On the basis of detailed kinetic studies, it is postulated that the activation results from Lewis base attack on the [Fe(III)Fe(IV)(?-O)(2)] core, resulting in the formation of a more reactive species with a [X-Fe(III)-O-Fe(IV)?O] ring-opened structure (1-X, 2-X, X = OH(-) or OR(-)). Treatment of 2 with methoxide at -80 °C forms the 2-methoxide adduct in high yield, which is characterized by an S = 1/2 EPR signal indicative of an antiferromagnetically coupled [S = 5/2 Fe(III)/S = 2 Fe(IV)] pair. Even at this low temperature, the complex undergoes facile intramolecular C-H bond cleavage to generate formaldehyde, showing that the terminal high-spin Fe(IV)?O unit is capable of oxidizing a C-H bond as strong as 96 kcal mol(-1). This intramolecular oxidation of the methoxide ligand can in fact be competitive with intermolecular oxidation of triphenylmethane, which has a much weaker C-H bond (D(C-H) 81 kcal mol(-1)). The activation of the [Fe(III)Fe(IV)(?-O)(2)] core is dramatically illustrated by the oxidation of 9,10-dihydroanthracene by 2-methoxide, which has a second-order rate constant that is 3.6 × 10(7)-fold larger than that for the parent diamond core complex 2. These observations provide strong support for the DFT-based notion that an S = 2 Fe(IV)?O unit is much more reactive at H-atom abstraction than its S = 1 counterpart and suggest that core isomerization could be a viable strategy for the [Fe(IV)(2)(?-O)(2)] diamond core of sMMO-Q to selectively attack the strong C-H bond of methane in the presence of weaker C-H bonds of amino acid residues that define the diiron active site pocket. PMID:21899336

  19. Identification and cleavage of breakable single bonds by selective oxidation, reduction, and hydrolysis. Quarterly report No. 6, January 1-March 31, 1980

    SciTech Connect

    Pavelka, L.A.; Mayo, F.R.

    1980-05-09

    Bituminous coal is assumed to consist mostly of an aggregate of condensed aromatic and aliphatic rings, connected and made insoluble (but swellable) by crosslinks containing only single bonds. The objective of this project is to determine the proportions of the various kinds of connecting links and how they can best be broken - in other words, to determine the structure of coal, with emphasis on the crosslinks and breakable single bond. This report summarizes progress during the past quarter of the following tasks: (1) cleavages and alkylations of pyridine TIPS 28-A which covers treatment with zinc chloride in THF, alkylation, fractionation with KOH/ETOH, and solubilization with KOH in toluene; (2) cleavages of pyridine-extracted coal 18-A which includes pyridine hydroiodide in pyridine, zinc chloride in THF; (3) cleavage of pyridine-extracted coal with phenol and p-toluene sulfonic acid; (4) oxidation of pyridine-extracted coal with nitric acid; and (5) cleavages of benzylamine extraction products. 5 references, 2 figures, 4 tables.

  20. Templated C-C and C-N Bond Formation Facilitated by a Molybdenum(VI) Metal Center.

    PubMed

    Zwettler, Niklas; Dupé, Antoine; Schachner, Jörg A; Belaj, Ferdinand; Mösch-Zanetti, Nadia C

    2015-12-21

    Preparation of molybdenum dioxido complexes with novel iminophenolate ligands bearing pendant secondary amide functionalities led to unprecedented C-C and C-N coupling reactions of two ?-iminoamides upon coordination. The diastereoselective cyclization to asymmetric imidazolidines occurs at the metal center in two consecutive steps via a monocoupled intermediate. A meaningful mechanism is proposed on the basis of full characterization of intermediate and final molybdenum-containing products by spectroscopic means and by single-crystal X-ray diffraction analyses. This process constitutes the first example of a diastereoselective self-cyclization of two ?-iminoamides. PMID:26646158

  1. Bonding and Integration of C-C Composite to Cu-Clad-Molybdenum for Thermal Management Applications

    NASA Technical Reports Server (NTRS)

    Asthana, R.; Singh, M.; Shpargel, T.P.

    2008-01-01

    Two- and three-dimensional carbon-carbon composites with either resin-derived matrix or CVI matrix were joined to Cu-clad-Mo using active Ag-Cu braze alloys for thermal management applications. The joint microstructure and composition were examined using Field-Emission Scanning Electron Microscopy and Energy-Dispersive Spectroscopy, and the joint hardness was characterized using the Knoop microhardness testing. Observations on the infiltration of the composite with molten braze, dissolution of metal substrate, and solute segregation at the C-C surface have been discussed. The thermal response of the integrated assembly is also briefly discussed.

  2. Active Metal Brazing and Adhesive Bonding of Titanium to C/C Composites for Heat Rejection System

    NASA Technical Reports Server (NTRS)

    Singh, M.; Shpargel, Tarah; Cerny, Jennifer

    2006-01-01

    Robust assembly and integration technologies are critically needed for the manufacturing of heat rejection system (HRS) components for current and future space exploration missions. Active metal brazing and adhesive bonding technologies are being assessed for the bonding of titanium to high conductivity Carbon-Carbon composite sub components in various shapes and sizes. Currently a number of different silver and copper based active metal brazes and adhesive compositions are being evaluated. The joint microstructures were examined using optical microscopy, and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). Several mechanical tests have been employed to ascertain the effectiveness of different brazing and adhesive approaches in tension and in shear that are both simple and representative of the actual system and relatively straightforward in analysis. The results of these mechanical tests along with the fractographic analysis will be discussed. In addition, advantages, technical issues and concerns in using different bonding approaches will also be presented.

  3. Identification and cleavage of breakable single bonds by selective oxidation, reduction, and hydrolysis. Quarterly report No. 5, October 1-December 31, 1979

    SciTech Connect

    Pavelka, L.A.; Mayo, F.R.

    1980-01-14

    Bituminous coal is assumed to consist mostly of an aggregate of condensed aromatic and aliphatic rings, connected and made insoluble (but swellable) by crosslinks containing only single bonds. The objective of this project is to determine the proportions of the various kinds of connecting links and how they can best be broken - in other words, to determine the structure of coal, with emphasis on the crosslinks and breakable single bonds. This report presents brief summaries and experimental details of the following tasks; acetylation of asphaltols and black acids; cleavages of asphatol 28-A; cleavages of benzylamine extraction products; investigations of black acids; oxidation and oxidation products of coal extracts and black acids; and gel permeation chromatography. 6 references, 1 figure, 5 tables.

  4. Copper-catalyzed aerobic oxidation and cleavage/formation of C-S bond: a novel synthesis of aryl methyl sulfones from aryl halides and DMSO.

    PubMed

    Yuan, Gaoqing; Zheng, Junhua; Gao, Xiaofang; Li, Xianwei; Huang, Liangbin; Chen, Huoji; Jiang, Huanfeng

    2012-08-01

    With atmospheric oxygen as the oxidant, a novel copper(I)-catalyzed synthesis of aryl methyl sulfones from aryl halides and widely available DMSO is described. The procedure tolerates aryl halides with various functional groups (such as methoxy, acetyl, chloro, fluoro and nitro groups), which could afford aryl methyl sulfones in moderate to high yields. The copper-catalyzed aerobic oxidation and the cleavage/formation of C-S bond are the key steps for this transformation. PMID:22728918

  5. Correlation between shape resonance energies and C-C bond length in carbon-containing molecules: Elastic electron scattering and carbon K-shell excitation by photons

    SciTech Connect

    Kimura, Mineo |

    1994-06-01

    We document the correlation of shape resonance energies resulting from (i) elastic electron scattering and (ii) carbon K-shell excitation with ic bond order (C-C bond length) for C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, C{sub 2}H{sub 6}, C{sub 3}H{sub 8}, C{sub 4}H{sub 10}, and C{sub 6}H{sub 6}. A relationship between K-shell {sigma} resonances and bond length was experimentally pointed out previously. These correlations are qualitatively interpreted to indicate that as molecular size increases (or as bond length increases), the configuration space available for valence electrons increases, reducing energy levels rather uniformly and mowing these correlations to emerge. The similarity of shape resonances in electron scattering and photoexcitation occurs because major events in the resonances take place slightly outside the molecular field and receive little influence from the inner structure of the molecule.

  6. Push-Pull Buta-1,2,3-trienes: exceptionally low rotational barriers of cumulenic C=C bonds and proacetylenic reactivity.

    PubMed

    Gawel, Przemyslaw; Wu, Yi-Lin; Finke, Aaron D; Trapp, Nils; Zalibera, Michal; Boudon, Corinne; Gisselbrecht, Jean-Paul; Schweizer, W Bernd; Gescheidt, Georg; Diederich, François

    2015-04-13

    A variety of asymmetrically donor-acceptor-substituted [3]cumulenes (buta-1,2,3-trienes) were synthesized by developed procedures. The activation barriers to rotation ?G(?) were measured by variable temperature NMR spectroscopy and found to be as low as 11.8?kcal?mol(-1) , in the range of the barriers for rotation around sterically hindered single bonds. The central C=C bond of the push-pull-substituted [3]cumulene moiety is shortened down to 1.22?Å as measured by X-ray crystallography, leading to a substantial bond length alternation (BLA) of up to 0.17?Å. All the experimental results are supported by DFT calculations. Zwitterionic transition states (TS) of bond rotation confirm the postulated proacetylenic character of donor-acceptor [3]cumulenes. Additional support for the proacetylenic character of these chromophores is provided by their reaction with tetracyanoethene (TCNE) in a cycloaddition-retroelectrocyclization (CA-RE) cascade characteristic of donor-polarized acetylenes. PMID:25765373

  7. Heme Carbonyls: Environmental Effects on ?C–O and Fe–C/C–O Bond Length Correlations

    PubMed Central

    Silvernail, Nathan J.; Roth, Arne; Noll, Bruce C.; Scheidt, W. Robert; Schulz, Charles E.

    2006-01-01

    The synthesis and characterization of four low-spin (carbonyl)iron(II) tetraphenylporphyrinates, [Fe(TPP)(CO)(L)], where L = 1-methylimidazole, 2-methylimidazole, 1,2-dimethylimidazole (unsolvated) and 1,2-dimethylimidazole (toluene solvate) are reported. The complexes show nearly the same value of ?C–O in toluene solution (1969–72 cm?1) but a large range of CO stretching frequencies in the solid-state (1926–1968 cm?1). The large solid-state variation results from CO interactions in the solid-state as shown by an examination of the crystal structures of the four complexes. The high precision of the four structures obtained allows us to make a number of structural and spectroscopic correlations that describe the Fe–C–O and NIm–Fe–CO units. The values of ?C–O and the Fe–C and C–O bond distances are strongly correlated and provide a structural as well as a spectroscopic correlation of the ? back-bonding model. The interactions of CO described are closely related to the large range of CO stretching frequencies observed in heme proteins and specific interactions observed in carbonylmyoglobin (MbCO). PMID:16218637

  8. Low energy electron induced cytosine base release in 2?-deoxycytidine-3?-monophosphate via glycosidic bond cleavage: A time-dependent wavepacket study

    SciTech Connect

    Bhaskaran, Renjith; Sarma, Manabendra

    2014-09-14

    Low energy electron (LEE) induced cytosine base release in a selected pyrimidine nucleotide, viz., 2?-deoxycytidine-3?-monophosphate is investigated using ab initio electronic structure methods and time dependent quantum mechanical calculations. It has been noted that the cytosine base scission is comparatively difficult process than the 3? C–O bond cleavage from the lowest ?{sup *} shape resonance in energy region <1 eV. This is mainly due to the high activation energy barrier associated with the electron transfer from the ?{sup *} orbital of the base to the ?{sup *} orbital of the glycosidic N–C bond. In addition, the metastable state formed after impinging LEE (0–1 eV) has very short lifetime (10 fs) which may decay in either of the two competing auto-detachment or dissociation process simultaneously. On the other hand, the selected N–C mode may cleave to form the cytosine base anion at higher energy regions (>2 eV) via tunneling of the glycosidic bond. Resonance states generated within this energy regime will exist for a duration of ?35–55 fs. Comparison of salient features of the two dissociation events, i.e., 3? C–O single strand break and glycosidic N–C bond cleavage in 3?-dCMPH molecule are also provided.

  9. Low energy electron induced cytosine base release in 2'-deoxycytidine-3'-monophosphate via glycosidic bond cleavage: A time-dependent wavepacket study

    NASA Astrophysics Data System (ADS)

    Bhaskaran, Renjith; Sarma, Manabendra

    2014-09-01

    Low energy electron (LEE) induced cytosine base release in a selected pyrimidine nucleotide, viz., 2'-deoxycytidine-3'-monophosphate is investigated using ab initio electronic structure methods and time dependent quantum mechanical calculations. It has been noted that the cytosine base scission is comparatively difficult process than the 3' C-O bond cleavage from the lowest ?* shape resonance in energy region <1 eV. This is mainly due to the high activation energy barrier associated with the electron transfer from the ?* orbital of the base to the ?* orbital of the glycosidic N-C bond. In addition, the metastable state formed after impinging LEE (0-1 eV) has very short lifetime (10 fs) which may decay in either of the two competing auto-detachment or dissociation process simultaneously. On the other hand, the selected N-C mode may cleave to form the cytosine base anion at higher energy regions (>2 eV) via tunneling of the glycosidic bond. Resonance states generated within this energy regime will exist for a duration of ˜35-55 fs. Comparison of salient features of the two dissociation events, i.e., 3' C-O single strand break and glycosidic N-C bond cleavage in 3'-dCMPH molecule are also provided.

  10. Metabolism of aloesin and related compounds by human intestinal bacteria: a bacterial cleavage of the C-glucosyl bond and the subsequent reduction of the acetonyl side chain.

    PubMed

    Che, Q M; Akao, T; Hattori, M; Kobashi, K; Namba, T

    1991-03-01

    By anaerobic incubation with a bacterial mixture from human feces, aloesin (aloeresin B; 1) was converted to 2-acetonyl-7-hydroxy-5-methylchromone (aloesone; 3) and dl-7-hydroxy-2-(2'-hydroxypropyl)-5-methylchromone (aloesol; 4a + 4b) through a cleavage of the C-glucosyl bond, followed by reduction of the acetonyl side chain. An analogous compound, aloeresin A (2), was converted to p-coumaric acid and aloesin (1), the latter being subsequently transformed to aloesone (3) and dl-aloesol (4a + 4b). On the other hand, 7-O-methylated derivatives (7, 5a and 5b) of aloesin and of 8-C-glucosylaloesol were not cleaved to the corresponding aglycones, suggesting the importance of a free hydroxy group adjacent to the C-glucosyl group in the molecule for the bacterial cleavage of aloesin derivatives. This is the first report on the cleavage of the C-glycosyl bond of chromone C-glucosides by intestinal bacteria. PMID:2070451

  11. Protocols for the selective cleavage of carbon-sulfur bonds in coal. Final technical report, September 1, 1991--August 31, 1992

    SciTech Connect

    Bausch, M.

    1992-12-31

    Summarized in the final technical report for our project ``Protocols for the Selective Cleavage of Carbon-Sulfur Bonds in Coal`` are results of research pertaining to chemical reactions that aim to selectively cleave C-S bonds in model compounds as well as Illinois coal. Removal of the organic sulfur in coal constitutes one of the major challenges facing fossil fuel scientists today. A cost-effective means of desulfurizing Illinois coal is, at present, non-existent. Research in our group aims to develop a simple protocol for sulfur removal by gaining understanding of how various additives and reaction conditions, including solvents, bases, added reagents, catalysts, oxidizing agents, electron acceptors, temperature, pressure, and light energy, can enhance the rates of C-S bond cleavage in Illinois coal and coal model compounds. These experiments have been at the focus of our research effort for the past twelve months. Previous quarterly reports described research results in which simple aromatic and aliphatic sulfides were allowed to react with (a) Lewis Acids such as zinc chloride and tin chloride; (b) electron accepting substrates such as 9-fluorenone and benzoquinone; (c) strong bases such as NaOH and KOH; (d) radical initiators such as AIBN; (e) neat solvents at reflux temperatures and higher temperatures; (f) molecular oxygen in the presence of dyes or sensitizers such as anthracene. In this final report, we report on additional experiments involving the photooxidation of organic sulfides, as well as some experiments aimed at evaluating and comparing the reactivities of simple organic sulfones with their sulfidyl analogues. Also contained in this final report is a brief summary of the research described in the previous three quarterly reports for ``Protocols for the Selective Cleavage of Carbon-Sulfur Bonds in Coal.``

  12. Identification and cleavage of breakable single bonds by selective oxidation, reduction, and hydrolysis. Quarterly report No. 7, April 1-June 30, 1980

    SciTech Connect

    Pavelka, L.A.; Mayo, F.R.

    1980-08-13

    The purpose is to determine the structure of bituminous coal with emphasis on the crosslinks and breakable single bonds. Most of our past cleavage efforts have been directed to the toluene-insoluble, pyridine-soluble (TIPS) fraction of pyridine-extracted coal itself. This report describes extensions of these investigations, as well as experiments with benzylamine extract and with benzylamine extracted coal. Many of our materials are not soluble enough in NMR solvents to give useful /sup 13/C NMR spectra, which are needed to follow changes in structure and composition. Efforts to increase the solubility of these fractions continue. Experimental details are presented for the following: (1) investigations of TIPS fraction of pyridine extract of coal; (2) cleavages and alkylations of pyridine-extracted coal; (3) fractionation of benzylamine extract 11-A; (4) oxidations of benzylamine-extracted coal; and (5) extractions of whole coal. 6 references, 1 figure, 3 tables.

  13. Identification and cleavage of breakable single bonds by selective oxidation, reduction, and hydrolysis. Quarterly report No. 13, October 1-December 31, 1981

    SciTech Connect

    Hirschon, A.S.; Zevely, J.; Mayo, F.R.

    1982-02-26

    Bituminous coal is assumed to consist mostly of aggregates of condensed aromatic and aliphatic rings which are connected and made soluble by crosslinks containing single bonds. The objective of this project is to determine the structure of bituminous coal with emphasis on the crosslinks and breakable single bonds. During this past quarter the following studies were conducted on Illinois No. 6 coal: extraction with benzylamine (BnH/sub 2/), ethanolamine, ethylenediamine (EDA), pyridine; saponification of some toluene-insoluble, pyridine-soluble (TIPS) fraction; cleavages by amines; oxidation with aqueous NaOCl of butylated and methylated pyridine-extracted coal; decarboxylation on black acids. The investigations dealt with two kinds of connecting links in coal, which are designated as ester and ether groups. The ester groups are cleaved by strongly basic amines (to give amides) at 25/sup 0/C and by alcoholic KOH at 100/sup 0/C (to give salts and alcohols or phenols). Both esters and ethers are cleaved by HI or ZnCL/sub 2/ in pyridine at or below 50/sup 0/C. The ethers are also cleaved by BnNH/sub 2/, EDA, and EDA/DMSO to nearly the same extent on several days heating at 100/sup 0/C. Although a cleavage of model ethers by amines were not established, the parallel easy reactions of HI and ZnCl/sub 2/ and the slow 100/sup 0/C reactions of amines on coal lead the authors to designate the non-ester cleavages as ether cleavages. (ATT)

  14. Characterization of protein contributions to cobalt-carbon bond cleavage catalysis in adenosylcobalamin-dependent ethanolamine ammonia-lyase by using photolysis in the ternary complex.

    PubMed

    Robertson, Wesley D; Wang, Miao; Warncke, Kurt

    2011-05-11

    Protein contributions to the substrate-triggered cleavage of the cobalt-carbon (Co-C) bond and formation of the cob(II)alamin-5'-deoxyadenosyl radical pair in the adenosylcobalamin (AdoCbl)-dependent ethanolamine ammonia-lyase (EAL) from Salmonella typhimurium have been studied by using pulsed-laser photolysis of AdoCbl in the EAL-AdoCbl-substrate ternary complex, and time-resolved probing of the photoproduct dynamics by using ultraviolet-visible absorption spectroscopy on the 10(-7)-10(-1) s time scale. Experiments were performed in a fluid dimethylsulfoxide/water cryosolvent system at 240 K, under conditions of kinetic competence for thermal cleavage of the Co-C bond in the ternary complex. The static ultraviolet-visible absorption spectra of holo-EAL and ternary complex are comparable, indicating that the binding of substrate does not labilize the cofactor cobalt-carbon (Co-C) bond by significantly distorting the equilibrium AdoCbl structure. Photolysis of AdoCbl in EAL at 240 K leads to cob(II)alamin-5'-deoxyadenosyl radical pair quantum yields of <0.01 at 10(-6) s in both holo-EAL and ternary complex. Three photoproduct states are populated following a saturating laser pulse, and labeled, P(f), P(s), and P(c). The relative amplitudes and first-order recombination rate constants of P(f) (0.4-0.6; 40-50 s(-1)), P(s) (0.3-0.4; 4 s(-1)), and P(c) (0.1-0.2; 0) are comparable in holo-EAL and in the ternary complex. Time-resolved, full-spectrum electron paramagnetic resonance (EPR) spectroscopy shows that visible irradiation alters neither the kinetics of thermal cob(II)alamin-substrate radical pair formation, nor the equilibrium between ternary complex and cob(II)alamin-substrate radical pair, at 246 K. The results indicate that substrate binding to holo-EAL does not "switch" the protein to a new structural state, which promptly stabilizes the cob(II)alamin-5'-deoxyadenosyl radical pair photoproduct, either through an increased barrier to recombination, a decreased barrier to further radical pair separation, or lowering of the radical pair state free energy, or a combination of these effects. Therefore, we conclude that such a change in protein structure, which is independent of changes in the AdoCbl structure, and specifically the Co-C bond length, is not a basis of Co-C bond cleavage catalysis. The results suggest that, following the substrate trigger, the protein interacts with the cofactor to contiguously guide the cleavage of the Co-C bond, at every step along the cleavage coordinate, starting from the equilibrium configuration of the ternary complex. The cleavage is thus represented by a diagonal trajectory across a free energy surface, that is defined by chemical (Co-C separation) and protein configuration coordinates. PMID:21491908

  15. Insights into the mechanism of X-ray-induced disulfide-bond cleavage in lysozyme crystals based on EPR, optical absorption and X-ray diffraction studies

    SciTech Connect

    Sutton, Kristin A.; Black, Paul J.; Mercer, Kermit R.; Garman, Elspeth F.; Owen, Robin L.; Snell, Edward H.; Bernhard, William A.

    2013-12-01

    Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage, to confirm a multi-track radiation-damage process and to develop a model of that process. Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV–visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5–0.8 MGy, in contrast to the saturating dose of ?0.2 MGy observed using EPR at much lower dose rates. The observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure.

  16. Metal ion-promoted cleavage of nucleoside diphosphosugars: a model for reactions of phosphodiester bonds in carbohydrates.

    PubMed

    Dano, Meisa; Elmeranta, Marjukka; Hodgson, David R W; Jaakkola, Juho; Korhonen, Heidi; Mikkola, Satu

    2015-12-01

    Cleavage of five different nucleoside diphosphosugars has been studied in the presence of Cu(2+) and Zn(2+) complexes. The results show that metal ion catalysts promote the cleavage via intramolecular transesterification whenever a neighbouring HO group can adopt a cis-orientation with respect to the phosphate. The HO group attacks the phosphate and two monophosphate products are formed. If such a nucleophile is not available, Cu(2+) complexes are able to promote a nucleophilic attack of an external nucleophile, e.g. a water molecule or metal ion coordinated HO ligand, on phosphate. With the Zn(2+) complex, this was not observed. PMID:26547748

  17. Cleavage of the C-O-C bond on size-selected subnanometer cobalt catalysts and on ALD-cobalt coated nanoporous membranes.

    SciTech Connect

    Deng, W.; Lee, S.; Libera, J. A.; Elam, J. W.; Vajda, S.; Marshall, C. L.; Yale Univ.

    2011-02-15

    The cleavage of the C-O-C bond was studied under oxidizing conditions on nanostructured membrane supported cobalt-based catalysts using a cellulose model surrogate, 1-methoxy-2-methyl-2-propanol. The cobalt catalysts were found to break the C-O-C bond, producing alcohols and/or ketones by further oxidation. The size-selected sub-nanometer size cobalt clusters exhibited a per metal activity of up to 5 orders of magnitude higher than the with atomic layer deposition uniformly coated membranes. The large difference in activity is attributed to the high fraction of the surface atoms of the subnanometer clusters. The positioning of the clusters at the entrance vs. exit of the catalytic membrane allows for a control of the contact time and consequently of the selectivity of the catalyst.

  18. Cleavage of the glycosidic C-O-C bond on size-selected subnanometer cobalt catalysts and on ALD-cobalt coated nanoporous membranes.

    SciTech Connect

    Deng, W.; Lee, S.; Libera, J. A.; Elam, J. W.; Vajda, S.; Marshall, C. L.

    2011-02-15

    The cleavage of the C-O-C bond was studied under oxidizing conditions on nanostructured membrane supported cobalt-based catalysts using a cellulose model surrogate, 1-methoxy-2-methyl-2-propanol. The cobalt catalysts were found to break the C-O-C bond, producing alcohols and/or ketones by further oxidation. The size-selected sub-nanometer size cobalt clusters exhibited a per metal activity of up to 5 orders of magnitude higher than the with atomic layer deposition uniformly coated membranes. The large difference in activity is attributed to the high fraction of the surface atoms of the subnanometer clusters. The positioning of the clusters at the entrance vs. exit of the catalytic membrane allows for a control of the contact time and consequently of the selectivity of the catalyst.

  19. Effect of thermal denaturation, inhibition, and cleavage of disulfide bonds on the low-frequency Raman and FTIR spectra of chymotrypsin and albumin

    NASA Astrophysics Data System (ADS)

    Brandt, Nikolay N.; Chikishev, Andrey Yu; Mankova, Anna A.; Sakodynskaya, Inna K.

    2015-05-01

    The analysis of the structure-function relationship is extremely important in the study of proteins. The importance of function-related motions of large parts or subglobules of protein molecules stimulates the spectroscopic study in the low-frequency (terahertz) domain. However, only tentative assignments are available and the spectroscopic data are insufficiently discussed in terms of structural changes. This work is aimed at the analysis of regularities of changes in the low-frequency (100 to 600 cm-1) FTIR and Raman spectra of proteins related to their structural modifications. We study the spectra of two proteins with substantially different structures (albumin and chymotrypsin) and the spectra of samples in which the structures of protein molecules are modified using inhibition, thermal denaturation, and cleavage of disulfide bonds. The results indicate that the low-frequency spectral interval can be used to characterize protein conformations. Correlated variations in the intensities of several low-frequency bands are revealed in the spectra of the modified proteins. The strongest spectral changes are caused by thermal denaturation of proteins, and the effect of cleavage of disulfide bonds is generally weaker. It is demonstrated that the inhibitor binding in the active site causes spectral changes that can be compared to the changes induced by thermal denaturation.

  20. Identification and cleavage of breakable single bonds by selective oxidation, reduction, and hydrolysis. Annual report, October 1, 1980-September 30, 1981

    SciTech Connect

    Hirschon, A.S.; Zevely, J.; Mayo, F.R.

    1981-11-12

    The objective of this project is to determine the structure of bituminous coal by determining the proportions of the various kinds of connecting bonds and how they can best be broken. Results obtained during the past quarter are presented for the following tasks: (1) extractions and fractionations of coal products which covers pyridine extraction, fractionation of TIPS fractions, EDA extraction of Illinois No. 6 coal and swelling ratios of coal samples; (2) experiments on breakable single bonds which cover reactions of ethylenediamine and model ethers, reaction of pyridine-extracted coal with Me/sub 3/SiI, Baeyer-Villiger oxidations, reaction to diphenylmethane with 15% HNO/sub 3/, cleavage of TIPS with ZnI/sub 2/, and cleavage of black acids; and (3) oxygen oxidation No. 18. Some of the highlights of these studies are: (1) some model ethers are not cleaved by EDA under extraction conditions; (2) oxidation of diaryl ketones with m-chloroperbenzoic acid and saponification of the resulting esters in promising for identifying ketones, (3) treatment of a black acid with pyridine hydroiodide reduced the acid's molecular weight and increased its solubility in pyridine, but treatment with ZnI/sub 2/ was ineffective; (4) in comparison with 0.1 M K/sub 2/S/sub 2/O/sub 8/, 0.01 M persulfate is relatively ineffective in accelerating oxidation of BnNH/sub 2/-extracted coal in water suspension. 2 figures, 3 tables.

  1. Discovery and Mechanistic Studies of Facile N-Terminal C?–C Bond Cleavages in the Dissociation of Tyrosine-Containing Peptide Radical Cations

    SciTech Connect

    Mu, Xiaoyan; Song, Tao; Xu, Minjie; Lai, Cheuk-Kuen; Siu, Chi-Kit; Laskin, Julia; Chu, Ivan K.

    2014-03-28

    Gas phase fragmentations of protein and peptide (M) ions in a mass spectrometer—induced by, for example, electron-capture dissociation1-2 and electron-transfer dissociation3-422 —form the foundation for top-down amino acid sequencing approaches for the rapid identification of protein components in complex biological samples. During these processes, protonated protein and peptide radicals ([M + nH]•(n – 1)+)5–8 are generated; their fragmentations are governed largely by the properties of the unpaired electron. Because of their importance in modern bioanalytical chemistry, considerable attention has been drawn recently toward understanding the radical cation chemistry behind the fragmentations of these odd-electron biomolecular ions in the gas phase.

  2. Metal-Catalyzed C-C Bond Cleavage in Alkanes: Effects of Methyl Substitution on Transition-State Structures and Stability

    E-print Network

    Iglesia, Enrique

    increase fuel octane values by converting n-alkanes into arenes, cycloalkanes, and branched acyclic alkanes more substituted (rates decrease as 1 C 2 C > 3 C > 4 C, where superscripts denote the number of C

  3. Acetaldehyde partial oxidation on the Au(111) model catalyst surface: C-C bond activation and formation of methyl acetate as an oxidative coupling product

    NASA Astrophysics Data System (ADS)

    Karatok, Mustafa; Vovk, Evgeny I.; Shah, Asad A.; Turksoy, Abdurrahman; Ozensoy, Emrah

    2015-11-01

    Partial oxidation of acetaldehyde (CH3CHO) on the oxygen pre-covered Au(111) single crystal model catalyst was investigated via Temperature Programmed Desorption (TPD) and Temperature Programmed Reaction Spectroscopy (TPRS) techniques, where ozone (O3) was utilized as the oxygen delivery agent providing atomic oxygen to the reacting surface. We show that for low exposures of O3 and small surface oxygen coverages, two partial oxidation products namely, methyl acetate (CH3COOCH3) and acetic acid (CH3COOH) can be generated without the formation of significant quantities of carbon dioxide. The formation of methyl acetate as the oxidative coupling reaction product implies that oxygen pre-covered Au(111) single crystal model catalyst surface can activate C-C bonds. In addition to the generation of these products; indications of the polymerization of acetaldehyde on the gold surface were also observed as an additional reaction route competing with the partial and total oxidation pathways. The interplay between the partial oxidation, total oxidation and polymerization pathways reveals the complex catalytic chemistry associated with the interaction between the acetaldehyde and atomic oxygen on catalytic gold surfaces.

  4. Solvent dependent branching between C-I and C-Br bond cleavage following 266 nm excitation of CH2BrI

    NASA Astrophysics Data System (ADS)

    Anderson, Christopher P.; Spears, Kenneth G.; Wilson, Kaitlynn R.; Sension, Roseanne J.

    2013-11-01

    It is well known that ultraviolet photoexcitation of halomethanes results in halogen-carbon bond cleavage. Each halogen-carbon bond has a dominant ultraviolet (UV) absorption that promotes an electron from a nonbonding halogen orbital (nX) to a carbon-halogen antibonding orbital (?*C-X). UV absorption into specific transitions in the gas phase results primarily in selective cleavage of the corresponding carbon-halogen bond. In the present work, broadband ultrafast UV-visible transient absorption studies of CH2BrI reveal a more complex photochemistry in solution. Transient absorption spectra are reported spanning the range from 275 nm to 750 nm and 300 fs to 3 ns following excitation of CH2BrI at 266 nm in acetonitrile, 2-butanol, and cyclohexane. Channels involving formation of CH2Br + I radical pairs, iso-CH2Br-I, and iso-CH2I-Br are identified. The solvent environment has a significant influence on the branching ratios, and on the formation and stability of iso-CH2Br-I. Both iso-CH2Br-I and iso-CH2I-Br are observed in cyclohexane with a ratio of ˜2.8:1. In acetonitrile this ratio is 7:1 or larger. The observation of formation of iso-CH2I-Br photoproduct as well as iso-CH2Br-I following 266 nm excitation is a novel result that suggests complexity in the dissociation mechanism. We also report a solvent and concentration dependent lifetime of iso-CH2Br-I. At low concentrations the lifetime is >4 ns in acetonitrile, 1.9 ns in 2-butanol and ˜1.4 ns in cyclohexane. These lifetimes decrease with higher initial concentrations of CH2BrI. The concentration dependence highlights the role that intermolecular interactions can play in the quenching of unstable isomers of dihalomethanes.

  5. Resonance Raman spectroscopy reveals pH-dependent active site structural changes of lactoperoxidase compound 0 and its ferryl heme O-O bond cleavage products.

    PubMed

    Mak, Piotr J; Thammawichai, Warut; Wiedenhoeft, Dennis; Kincaid, James R

    2015-01-14

    The first step in the enzymatic cycle of mammalian peroxidases, including lactoperoxidase (LPO), is binding of hydrogen peroxide to the ferric resting state to form a ferric-hydroperoxo intermediate designated as Compound 0, the residual proton temporarily associating with the distal pocket His109 residue. Upon delivery of this "stored" proton to the hydroperoxo fragment, it rapidly undergoes O-O bond cleavage, thereby thwarting efforts to trap it using rapid mixing methods. Fortunately, as shown herein, both the peroxo and the hydroperoxo (Compound 0) forms of LPO can be trapped by cryoradiolysis, with acquisition of their resonance Raman (rR) spectra now permitting structural characterization of their key Fe-O-O fragments. Studies were conducted under both acidic and alkaline conditions, revealing pH-dependent differences in relative populations of these intermediates. Furthermore, upon annealing, the low pH samples convert to two forms of a ferryl heme O-O bond-cleavage product, whose ?(Fe?O) frequencies reflect substantially different Fe?O bond strengths. In the process of conducting these studies, rR structural characterization of the dioxygen adduct of LPO, commonly called Compound III, has also been completed, demonstrating a substantial difference in the strengths of the Fe-O linkage of the Fe-O-O fragment under acidic and alkaline conditions, an effect most reasonably attributed to a corresponding weakening of the trans-axial histidyl imidazole linkage at lower pH. Collectively, these new results provide important insight into the impact of pH on the disposition of the key Fe-O-O and Fe?O fragments of intermediates that arise in the enzymatic cycles of LPO, other mammalian peroxidases, and related proteins. PMID:25506715

  6. Cleavage of the Nb=O bond of oxoniobium(V) porphyrins. Synthesis and characterization of novel niobium(V) porphyrins with two distinct catechols

    SciTech Connect

    Kurihara, Masato; Kotoh, Noriyuki; Kojima, Takahiko

    1995-09-13

    A novel catecholato complex, Nb{sup v}(tpp)(cat)(Hcat), where cat and Hcat are two distinct catechol ligands (a bidentate catecholate dianion and a monodentate catecholate monoanion, respectively) and tpp is 5, 10, 15, 20-tetaphenylporphyrin dianion, has been isolated in the reaction of Nb{sup v} (tpp)(O)(AcO) with catechol, where AcO is an acetatoligand. Its molecular structure has been determined by X-ray crystallography. Crystal data: monoclinic, space group P2{sub 1}/c, Z = 4, a = 14.592(3) {Angstrom}, b = 23.46(1) {Angstrom}, c = 14.415(4) {Angstrom}, {beta} = 100.95(2){degrees}, R = 0.079. The heptacoordinate niobium atom is displaced by 1.02 {Angstrom} from the mean plane of the four nitrogen atoms. The structure of the complex in solution and the mechanism of the Nb=O cleavage were investigated by means of {sup 1}H-NMR spectroscopy. The bidentate catechol is oriented in C{sub s} symmetry with respect to the porphyrin plane, and the monodentate catechol is located perpendicularly to both the bidentate catechol and the porphyrin plane. Two intermediates with the bidentate catechol were observed after addition of 2 equiv of catechol to Nb(tmp)(O)(AcO) at -30 {degrees}C, where tmp denotes the 5,10,15,20-tetramesitylporphyrin dianion. These intermediates were determined to be Nb(tmp)(cat)(OH) and Nb(tmp)(cat)(AcO). Thus, the Nb=O bond of Nb(tmp)(O)(AcO) was easily cleaved to create the two intermediates. The authors propose a unique route to the Nb=O cleavage that involves an intramolecular electron transfer from the catechol ligand coordinated at the first stage through a ligand exchange with AcO. Both protonation and electron transfer to the Nb=O moiety play important roles in the Nb=O cleavage.

  7. Chlorine atom-initiated low-temperature oxidation of prenol and isoprenol: The effect of C=C double bonds on the peroxy radical chemistry in alcohol oxidation

    DOE PAGESBeta

    Welz, Oliver; Savee, John D.; Osborn, David L.; Taatjes, Craig A.

    2014-07-04

    The chlorine atom-initiated oxidation of two unsaturated primary C5 alcohols, prenol (3-methyl-2-buten-1-ol, (CH3)2CCHCH2OH) and isoprenol (3-methyl-3-buten-1-ol, CH2C(CH3)CH2CH2OH), is studied at 550 K and low pressure (8 Torr). The time- and isomer-resolved formation of products is probed with multiplexed photoionization mass spectrometry (MPIMS) using tunable vacuum ultraviolet ionizing synchrotron radiation. The peroxy radical chemistry of the unsaturated alcohols appears much less rich than that of saturated C4 and C5 alcohols. The main products observed are the corresponding unsaturated aldehydes – prenal (3-methyl-2-butenal) from prenol oxidation and isoprenal (3-methyl-3-butenal) from isoprenol oxidation. No significant products arising from QOOH chemistry are observed. Thesemore »results can be qualitatively explained by the formation of resonance stabilized allylic radicals via H-abstraction in the Cl + prenol and Cl + isoprenol initiation reactions. The loss of resonance stabilization upon O2 addition causes the energies of the intermediate wells, saddle points, and products to increase relative to the energy of the initial radicals and O2. These energetic shifts make most product channels observed in the peroxy radical chemistry of saturated alcohols inaccessible for these unsaturated alcohols. The experimental findings are underpinned by quantum-chemical calculations for stationary points on the potential energy surfaces for the reactions of the initial radicals with O2. Under our conditions, the dominant channels in prenol and isoprenol oxidation are the chain-terminating HO2-forming channels arising from radicals, in which the unpaired electron and the –OH group are on the same carbon atom, with stable prenal and isoprenal co-products, respectively. These results suggest that the presence of C=C double bonds in alcohols will reduce low-temperature reactivity during autoignition.« less

  8. CO2 conversion to isocyanate via multiple N-Si bond cleavage at a bulky uranium(iii) complex.

    PubMed

    Camp, Clément; Chatelain, Lucile; Kefalidis, Christos E; Pécaut, Jacques; Maron, Laurent; Mazzanti, Marinella

    2015-10-28

    The reaction of the sterically saturated uranium(iii) tetrasilylamido complex [K(18c6)][U(N(SiMe3)2)4] with CO2 leads to CO2 insertion into the U-N bond affording the stable U(iv) isocyanate complex [K(18c6)][U(N(SiMe3)2)3(NCO)2]n that was crystallographically characterized. DFT studies indicate that the reaction involves the [2+2] cyclo-addition of a double bond of O[double bond, length as m-dash]CO to the U-N(SiMe3)2 bond and proceeds to the final product through multiple silyl migration steps. PMID:26346380

  9. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen.

    PubMed

    Jia, Hong-Peng; Quadrelli, Elsje Alessandra

    2014-01-21

    Dinitrogen cleavage and hydrogenation by transition-metal centers to produce ammonia is central in industry and in Nature. After an introductory section on the thermodynamic and kinetic challenges linked to N2 splitting, this tutorial review discusses three major classes of transition-metal systems (homogeneous, heterogeneous and biological) capable of achieving dissociation and hydrogenation of dinitrogen. Molecular complexes, solid-state Haber-Bosch catalytic systems, silica-supported tantalum hydrides and nitrogenase will be discussed. Emphasis is focused on the reaction mechanisms operating in the process of dissociation and hydrogenation of dinitrogen, and in particular on the key role played by metal hydride bonds and by dihydrogen in such reactions. PMID:24108246

  10. Identification and cleavage of breakable single bonds by selective oxidation, reduction, and hydrolysis. Quarterly report No. 12, June 1-September 30, 1981

    SciTech Connect

    Hirschon, A.S.; Zevely, J.; Mayo, F.R.

    1981-11-12

    We assume that bituminous coal consists mostly of an aggregate of condensed aromatic and aliphatic rings, connected and made insoluble (but swellable) by crosslinks containing single bonds. The objective of this project is to determine the proportions of the various kinds of connecting links and how they can best be broken - in other words, to determine the structure of bituminous coal, with emphasis on the crosslinks and breakable single bonds. The program began with an investigation of the structure of the TIPS fraction of Illinois No. 6 coal, that is, the two-thirds of the 16% extracted by pyridine that is toluene-insoluble, pyridine-soluble, mostly through changes in molecular weight during cleavage reactions in pyridine solution. The most promising of these cleavage reactions are now being applied to the 84% of coal that is insoluble in pyridine and presents the main problem in coal liquefaction, following the progress of the reactions by formation of soluble material and swelling of the insoluble portion. We found that benzylamine (BnNH/sub 2/) would extract an additional 14% (of the original weight of coal) of material from pyridine-extracted coal, and later that an ethylenediamine/dimethyl sulfoxide (EDA/DMSO) mixture would dissolve another 21% of the original coal. The BnNH/sub 2/ extract is soluble in pyridine. Our best present guess is that the BnNH/sub 2/ extract cleaves most of the ester groups in coal and that EDA/DMSO cleaves the remaining ester and most of the ether groups.

  11. Synthesis of Polyheteroaromatic Compounds via Rhodium-Catalyzed Multiple C-H Bond Activation and Oxidative Annulation.

    PubMed

    Peng, Shiyong; Liu, Suna; Zhang, Sai; Cao, Shengyu; Sun, Jiangtao

    2015-10-16

    Polyheteroaromatic compounds are potential optoelectronic conjugated materials due to their electro- and photochemical properties. Transition-metal-catalyzed multiple C-H activation and sequential oxidative annulation allows rapidly assembling of those compounds from readily available starting materials. A rhodium-catalyzed cascade oxidative annulation of ?-enamino esters or 4-aminocoumarins with internal alkynes is described to access those compounds, featuring multiple C-H/N-H bond cleavages and sequential C-C/C-N bond formations in one pot. PMID:26439472

  12. 11704 J. Am. Chem. SOC.1995,117, 11704-11709 Regiochemical Selectivity in the Carbon-Sulfur Bond Cleavage

    E-print Network

    Jones, William D.

    11704 J. Am. Chem. SOC.1995,117, 11704- 11709 Regiochemical Selectivity in the Carbon- Sulfur Bond be an importantstep in the removal of sulfur from thiophene in the hydrodesulfur- ization (HDS) process.' Thiophene and its benzo derivatives represent abundant sulfur-containing impurities in coal and petroleum feedstocks

  13. Chlorine atom-initiated low-temperature oxidation of prenol and isoprenol: The effect of C=C double bonds on the peroxy radical chemistry in alcohol oxidation

    SciTech Connect

    Welz, Oliver; Savee, John D.; Osborn, David L.; Taatjes, Craig A.

    2014-07-04

    The chlorine atom-initiated oxidation of two unsaturated primary C5 alcohols, prenol (3-methyl-2-buten-1-ol, (CH3)2CCHCH2OH) and isoprenol (3-methyl-3-buten-1-ol, CH2C(CH3)CH2CH2OH), is studied at 550 K and low pressure (8 Torr). The time- and isomer-resolved formation of products is probed with multiplexed photoionization mass spectrometry (MPIMS) using tunable vacuum ultraviolet ionizing synchrotron radiation. The peroxy radical chemistry of the unsaturated alcohols appears much less rich than that of saturated C4 and C5 alcohols. The main products observed are the corresponding unsaturated aldehydes – prenal (3-methyl-2-butenal) from prenol oxidation and isoprenal (3-methyl-3-butenal) from isoprenol oxidation. No significant products arising from QOOH chemistry are observed. These results can be qualitatively explained by the formation of resonance stabilized allylic radicals via H-abstraction in the Cl + prenol and Cl + isoprenol initiation reactions. The loss of resonance stabilization upon O2 addition causes the energies of the intermediate wells, saddle points, and products to increase relative to the energy of the initial radicals and O2. These energetic shifts make most product channels observed in the peroxy radical chemistry of saturated alcohols inaccessible for these unsaturated alcohols. The experimental findings are underpinned by quantum-chemical calculations for stationary points on the potential energy surfaces for the reactions of the initial radicals with O2. Under our conditions, the dominant channels in prenol and isoprenol oxidation are the chain-terminating HO2-forming channels arising from radicals, in which the unpaired electron and the –OH group are on the same carbon atom, with stable prenal and isoprenal co-products, respectively. These results suggest that the presence of C=C double bonds in alcohols will reduce low-temperature reactivity during autoignition.

  14. Insights into the mechanism of X-ray-induced disulfide-bond cleavage in lysozyme crystals based on EPR, optical absorption and X-ray diffraction studies

    PubMed Central

    Sutton, Kristin A.; Black, Paul J.; Mercer, Kermit R.; Garman, Elspeth F.; Owen, Robin L.; Snell, Edward H.; Bernhard, William A.

    2013-01-01

    Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV–visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5–0.8?MGy, in contrast to the saturating dose of ?0.2?MGy observed using EPR at much lower dose rates. The observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure. PMID:24311579

  15. Heterolytic Cleavage of Hydrogen by an Iron Hydrogenase Model: An Fe-H - - - H-N Dihydorgen Bond Characterized by Neutron Diffraction

    SciTech Connect

    Liu, Tianbiao L.; Wang, Xiaoping; Hoffmann, Christina; DuBois, Daniel L.; Bullock, R. Morris

    2014-05-19

    Use of hydrogen as a fuel by [FeFe]-hydrogenase enzymes in nature requires heterolytic cleavage of the H-H bond into a proton (H+) and hydride (H-), a reaction that is also a critical step in homogeneous catalysts for hydrogenation of C=O and C=N bonds. An understanding of the catalytic oxidation of H2 by hydrogenases provides insights into the design of synthetic catalysts that are sought as cost-effective alternatives to the use of the precious metal platinum in fuel cells. Crystallographic studies on the [FeFe]-hydrogenase enzyme were critical to understanding of its reactivity, but the key H-H cleavage step is not readily observed experimentally in natural hydrogenases. Synthetic biomimics have provided evidence for H2 cleavage leading to hydride transfer to the metal and proton transfer to an amine. Limitations on the precise location of hydrogen atoms by x-ray diffraction can be overcome by use of neutron diffraction, though its use is severely limited by the difficulty of obtaining suitable crystals and by the scarcity of neutron sources. Here we show that an iron complex with a pendant amine in the diphosphine ligand cleaves hydrogen heterolytically under mild conditions, leading to [CpC5F4NFeH(PtBu2NtBu2H)]+BArF4-, [PtBu2NtBu2 = 1,5-di(tert-butyl)-3,7-di(tert-butyl)-1,5-diaza-3,7-diphosphacyclooctane; ArF = 3,5-bis(trifluoromethyl)phenyl]. The Fe-H- - - H-N moiety has a strong dihydrogen bond, with a remarkably short H • • • H distance of 1.489(10) Å between the protic N-H?+ and hydridic Fe-H?-. The structural data for [CpC5F4NFeH(PtBu2NtBu2H)]+ provide a glimpse of how the H-H bond is oxidized or generated in hydrogenase enzymes, with the pendant amine playing a key role as a proton relay. The iron complex [CpC5F4NFeH(PtBu2NtBu2H)]+BArF4- is an electrocatalyst for oxidation of H2 (1 atm) at 22 °C, so the structural data are obtained on a complex that is a functional model for catalysis by [FeFe]-hydrogenase enzymes. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  16. Silylations of Arenes with Hydrosilanes: From Transition-Metal-Catalyzed C¢X Bond Cleavage to Environmentally Benign Transition-Metal-Free C¢H Bond Activation.

    PubMed

    Xu, Zheng; Xu, Li-Wen

    2015-07-01

    The construction of carbon-silicon bonds is highlighted as an exciting achievement in the field of organosilicon chemistry and green chemistry. Recent developments in this area will enable the sustainable chemical conversion of silicon resources into synthetically useful compounds. Especially, the catalytic silylation through C¢H bond activation without directing groups and hydrogen acceptors is one of the most challenging topics in organic chemistry and green chemistry. These remarkable findings on catalytic silylation can pave the way to a more environmentally benign utilization of earth-abundant silicon-based resources in synthetic chemistry. PMID:26073645

  17. Geometric and Electronic Structure of [{Cu(MeAN)}2(?-?2:?2(O22?))]2+ with an Unusually Long O–O Bond: O–O Bond Weakening vs Activation for Reductive Cleavage

    PubMed Central

    Park, Ga Young; Qayyum, Munzarin F.; Woertink, Julia; Hodgson, Keith O.; Hedman, Britt; Narducci Sarjeant, Amy A.; Solomon, Edward I.; Karlin, Kenneth D.

    2012-01-01

    Certain side-on peroxo dicopper(II) species with particularly low ?O–O (710–730 cm?1) have been found in equilibrium with their bis-?-oxo dicopper(III) isomer. An issue is whether such side-on peroxo bridges are further activated for O–O cleavage. In a previous study (Liang, H.-C., et al., J. Am. Chem. Soc. 2002, 124, 4170–4171), we showed that oxygenation of the three-coordinate complex [CuI(MeAN)]+ (MeAN=N-methyl-N,N-bis[3-(dimethylamino)propyl]amine) leads to a low-temperature stable [{CuII(MeAN)}2(?-?2:?2-O22?)]2+ peroxo species with low ?O–O (721 cm?1), as characterized by UV-Vis absorption and resonance Raman (rR) spectroscopies. Here, this complex has been crystallized as its SbF6? salt and an X-ray structure indicates the presence of an unusually long O–O bond (1.540(5) Å) consistent with the low ?O–O. EXAFS and rR spectroscopic and reactivity studies indicate the exclusive formation of [{CuII(MeAN)}2(?-?2:?2-O22?)]2+ without any bis-?-oxo-dicopper(III) isomer present. This is the first structure of a side-on peroxo dicopper(II) species with a significantly long and weak O–O bond. DFT calculations show that the weak O–O bond results from strong ? donation from the MeAN ligand to Cu that is compensated by a decrease in the extent of peroxo to Cu charge transfer. Importantly, the weak O–O bond does not reflect an increase in backbonding into the ?* orbital of the peroxide. Thus, although the O–O bond is unusually weak, this structure is not further activated for reductive cleavage to form a reactive bis-?-oxo-dicopper(III) species. These results highlight the necessity of understanding electronic structure changes associated with spectral changes for correlations to reactivity. PMID:22571744

  18. Interaction of a pseudo-? C-C bond with cuprous and argentous chlorides: Cyclopropane?CuCl and cyclopropane?AgCl investigated by rotational spectroscopy and ab initio calculations.

    PubMed

    Zaleski, Daniel P; Mullaney, John C; Bittner, Dror M; Tew, David P; Walker, Nicholas R; Legon, Anthony C

    2015-10-28

    Strongly bound complexes (CH2)3?MCl (M = Cu or Ag), formed by non-covalent interaction of cyclopropane and either cuprous chloride or argentous chloride, have been generated in the gas phase by means of the laser ablation of either copper or silver metal in the presence of supersonically expanded pulses of a gas mixture containing small amounts of cyclopropane and carbon tetrachloride in a large excess of argon. The rotational spectra of the complexes so formed were detected with a chirped-pulse, Fourier transform microwave spectrometer and analysed to give rotational constants and Cu and Cl nuclear quadrupole coupling constants for eight isotopologues of each of (CH2)3?CuCl and (CH2)3?AgCl. The geometry of each of these complexes was established unambiguously to have C2v symmetry, with the three C atoms coplanar, and with the MCl molecule lying along a median of the cyclopropane C3 triangle. This median coincides with the principal inertia axis a in each of the two complexes (CH2)3?MCl. The M atom interacts with the pseudo-? bond linking the pair of equivalent carbon atoms (F)C (F = front) nearest to it, so that M forms a non-covalent bond to one C-C edge of the cyclopropane molecule. The (CH2)3?MCl complexes have similar angular geometries to those of the hydrogen- and halogen-bonded analogues (CH2)3?HCl and (CH2)3?ClF, respectively. Quantitative details of the geometries were determined by interpretation of the observed rotational constants and gave results in good agreement with those from ab initio calculations carried out at the CCSD(T)(F12*)/aug-cc-pVTZ-F12 level of theory. Interesting geometrical features are the lengthening of the (F)C-(F)C bond and the shrinkage of the two equivalent (B)C-(F)C (B = back) bonds relative to the C-C bond in cyclopropane itself. The expansions of the (F)C-(F)C bond are 0.1024(9) Å and 0.0727(17) Å in (CH2)3?CuCl and (CH2)3?AgCl, respectively, according to the determined r0 geometries. The C-C bond lengthening is in each case about four times that observed by similar methods in the corresponding complexes of MCl with ethyne and ethene, even though the cyclopropane complexes are more weakly bound than their ethyne and ethene analogues. Reasons for the larger increase in r(CC) in the pseudo-? complexes are discussed. PMID:26520520

  19. Interaction of a pseudo-? C—C bond with cuprous and argentous chlorides: Cyclopropane⋯CuCl and cyclopropane⋯AgCl investigated by rotational spectroscopy and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Zaleski, Daniel P.; Mullaney, John C.; Bittner, Dror M.; Tew, David P.; Walker, Nicholas R.; Legon, Anthony C.

    2015-10-01

    Strongly bound complexes (CH2)3⋯MCl (M = Cu or Ag), formed by non-covalent interaction of cyclopropane and either cuprous chloride or argentous chloride, have been generated in the gas phase by means of the laser ablation of either copper or silver metal in the presence of supersonically expanded pulses of a gas mixture containing small amounts of cyclopropane and carbon tetrachloride in a large excess of argon. The rotational spectra of the complexes so formed were detected with a chirped-pulse, Fourier transform microwave spectrometer and analysed to give rotational constants and Cu and Cl nuclear quadrupole coupling constants for eight isotopologues of each of (CH2)3⋯CuCl and (CH2)3⋯AgCl. The geometry of each of these complexes was established unambiguously to have C2v symmetry, with the three C atoms coplanar, and with the MCl molecule lying along a median of the cyclopropane C3 triangle. This median coincides with the principal inertia axis a in each of the two complexes (CH2)3⋯MCl. The M atom interacts with the pseudo-? bond linking the pair of equivalent carbon atoms FC (F = front) nearest to it, so that M forms a non-covalent bond to one C—C edge of the cyclopropane molecule. The (CH2)3⋯MCl complexes have similar angular geometries to those of the hydrogen- and halogen-bonded analogues (CH2)3⋯HCl and (CH2)3⋯ClF, respectively. Quantitative details of the geometries were determined by interpretation of the observed rotational constants and gave results in good agreement with those from ab initio calculations carried out at the CCSD(T)(F12*)/aug-cc-pVTZ-F12 level of theory. Interesting geometrical features are the lengthening of the FC—FC bond and the shrinkage of the two equivalent BC—FC (B = back) bonds relative to the C—C bond in cyclopropane itself. The expansions of the FC—FC bond are 0.1024(9) Å and 0.0727(17) Å in (CH2)3⋯CuCl and (CH2)3⋯AgCl, respectively, according to the determined r0 geometries. The C—C bond lengthening is in each case about four times that observed by similar methods in the corresponding complexes of MCl with ethyne and ethene, even though the cyclopropane complexes are more weakly bound than their ethyne and ethene analogues. Reasons for the larger increase in r(CC) in the pseudo-? complexes are discussed.

  20. Direct, Redox Neutral Prenylation and Geranylation of Secondary Carbinol C-H Bonds: C4 Regioselectivity in Ruthenium Catalyzed C-C Couplings of Dienes to ?-Hydroxy Esters

    PubMed Central

    Leung, Joyce C.; Geary, Laina M.; Chen, Te-Yu; Zbieg, Jason R.

    2012-01-01

    The ruthenium catalyst generated in situ from Ru3(CO)12 and tricyclohexylphosphine, PCy3, promotes the redox-neutral C-C coupling of aryl substituted ?-hydroxy esters to isoprene and myrcene at the diene C4-position, resulting in direct carbinol C-H prenylation and geranylation, respectively. This process enables direct conversion of secondary to tertiary alcohols in the absence of stoichiometric byproducts or premetallated reagents, and is the first example of C4-regioselectivity in catalytic C-C couplings of 2-substituted dienes to carbonyl partners. Mechanistic studies corroborate a catalytic cycle involving diene-carbonyl oxidative coupling. PMID:22985393

  1. Chords: Em 022000 Em Em Em Em C C C C

    E-print Network

    Reiners, Peter W.

    Verse 1 Chorus Verse 2 Chorus Verse 3 Chords: Em 022000 C 035553 G 320002 F 133211 Intro: Em Em Em Em C C C C Em Em Em Em C C C C Em Em Em Em C C C C Em Em Em Em C C C C Verse: Em Em Em Em C C C C G G G G G G G G Em Em Em Em C C C C G G G G G G G G Em Em Em Em C C C C G G G G G G G G Em Em Em Em C C

  2. Role of aromatic structure in pathways of hydrogen transfer and bond cleavage in coal liquefaction: Theoretical studies

    SciTech Connect

    Franz, J.A.; Autrey, T.; Camaioni, D.M.; Watts, J.D.; Bartlett, R.J.

    1995-09-01

    The mechanisms by which strong carbon-carbon bonds between aromatic rings and side chains are cleaved under hydropyrolysis conditions remain a subject of wide interest to fuel science. Recently, the authors have studied in detail an alternate pathway for hydrogen atom transfer to {pi}-systems, radical hydrogen transfer (RHT). RHT is the direct, bimolecular transfer of hydrogen from the {beta}-position of an organic radical to the target {pi}-system. In the initial theoretical study, they examined the reaction ethyl radical + ethylene = ethylene + ethyl at the spin-projected UMP2/6-31G** level of theory. Recently, they have used a calibrated ROHF-MNDO-PM3 method to predict thermoneutral RHT barriers for hydrogen transfer between hydroaryl radicals and the corresponding arene. Because of the inherent limitations of semiempirical methods such as ROHF-MNDO-PM3, they have extended the initial work with the ethyl + ethylene study to examine this reaction at the ROHF-MBPT[2]-6-31G** and ROHF-CCSD[T]-6-31G** levels of ab initio theory. The primary objective was to determine how intrinsic RHT barriers change with conjugative stabilization of the radicals. The spin-restricted ROHF approach has been applied to study several RHT reactions, and they present completed ROHF results for the ethyl + ethylene system and preliminary results for the methallyl + butadiene system. The methallyl + butadiene system serves as a model for highly stabilized hydroaryl radicals: the methallyl radical exhibits a C-H bond strength of 46.5 kcal/mol compared to 9-hydroanthracenyl, 43.1 kcal/mol.

  3. Intramolecular C-H/O-H bond cleavage with water and alcohol using a phosphine-free ruthenium carbene NCN pincer complex.

    PubMed

    Prokopchuk, Demyan E; Tsui, Brian T H; Lough, Alan J; Morris, Robert H

    2014-12-15

    Transition metal complexes that exhibit metal-ligand cooperative reactivity could be suitable candidates for applications in water splitting. Ideally, the ligands around the metal should not contain oxidizable donor atoms, such as phosphines. With this goal in mind, we report new phosphine-free ruthenium NCN pincer complexes with a central N-heterocyclic carbene donor and methylpyridyl N-donors. Reaction with base generates a neutral, dearomatized alkoxo-amido complex, which has been structurally and spectroscopically characterized. The tert-butoxide ligand facilitates regioselective, intramolecular proton transfer through a C?H/O?H bond cleavage process occurring at room temperature. Kinetic and thermodynamic data have been obtained by VT NMR experiments; DFT calculations support the observed behavior. Isolation and structural characterization of a doubly dearomatized phosphine complex also strongly supports our mechanistic proposal. The alkoxo-amido complex reacts with water to form a dearomatized ruthenium hydroxide complex, a first step towards phosphine-free metal-ligand cooperative water splitting. PMID:25266279

  4. Mechanistic elucidation of the stepwise formation of a tetranuclear manganese pinned butterfly cluster via N-N bond cleavage, hydrogen atom transfer, and cluster rearrangement.

    PubMed

    Hamilton, Clifton R; Gau, Michael R; Baglia, Regina A; McWilliams, Sean F; Zdilla, Michael J

    2014-12-31

    A mechanistic pathway for the formation of the structurally characterized manganese-amide-hydrazide pinned butterfly complex, Mn4(?3-PhN-NPh-?(3)N,N')2(?-PhN-NPh-?(2)-N,N')(?-NHPh)2L4 (L = THF, py), is proposed and supported by the use of labeling studies, kinetic measurements, kinetic competition experiments, kinetic isotope effects, and hydrogen atom transfer reagent substitution, and via the isolation and characterization of intermediates using X-ray diffraction and electron paramagnetic resonance spectroscopy. The data support a formation mechanism whereby bis[bis(trimethylsilyl)amido]manganese(II) (Mn(NR2)2, where R = SiMe3) reacts with N,N'-diphenylhydrazine (PhNHNHPh) via initial proton transfer, followed by reductive N-N bond cleavage to form a long-lived Mn(IV) imido multinuclear complex. Coordinating solvents activate this cluster for abstraction of hydrogen atoms from an additional equivalent of PhNHNHPh resulting in a Mn(II)phenylamido dimer, Mn2(?-NHPh)2(NR2)2L2. This dimeric complex further assembles in fast steps with two additional equivalents of PhNHNHPh replacing the terminal silylamido ligands with ?(1)-hydrazine ligands to give a dimeric Mn2(?-NHPh)2(PhN-NHPh)2L4 intermediate, and finally, the addition of two additional equivalents of Mn(NR2)2 and PhNHNHPh gives the pinned butterfly cluster. PMID:25424971

  5. Experimental and theoretical investigations of copper (I/II) complexes with triazine-pyrazole derivatives as ligands and their in situ C-N bond cleavage

    NASA Astrophysics Data System (ADS)

    Wang, Ji-Xiao; Wang, Che; Wang, Xuan; Wang, Xin-Yu; Xing, Yong-Heng; Sun, Qiao

    2015-05-01

    Two copper complexes, Cu(SCN)(Mpz?T-(EtO)2) (1) (Mpz?T-(EtO)2 = L3) and CuCl(H2O)(Mpz?T-O2) (2) (Mpz?T-O2 = L4) were synthesized by the reaction of 2,4,6-tri(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine (L1) or 2,4,6-tri(1H-pyrazol-1-yl)-1,3,5-triazine (L2) with CuCl2·2H2O in anhydrous ethanol and methanol, respectively. The complexes were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, single crystal X-ray diffraction and X-ray powder diffraction. The structural characterizations and quantum mechanical calculations of the two complexes were analyzed in detail. It was found that an in site reaction occurred during the synthesis process of complexes 1 and 2, likely due to catalytic property of copper ions which leads to the C-N bond cleavage to generate new organic species, namely, Mpz?T-(EtO)2 (L3) and Mpz?T-O2 (L4).

  6. Identification and cleavage of breakable single bonds by selective oxidation, reduction, and hydrolysis. Quarterly report No. 9, October 1-December 31, 1980

    SciTech Connect

    Pavelka, L.A.; Mayo, F.R.; Zevely, J.

    1981-03-24

    Objective is to determine the structure of bituminous coal with emphasis on the crosslinks and breakable single bonds. Some of the highlights of this quarter are: (1) large-scale extraction of benzylamine-extracted coal with ethylene diamine-dimethyl sulfoxide (EDA-DMSO) led to 50.4% recovery of soluble material and 40.5% recovery of undissolved coal; (2) EDA-DMSO extraction appears to have removed essentially all of the ether and ester links in both fractions, leaving only hydrocarbon links; (3) extraction of whole coal by a mixture of N-methylpyrrolidinone (NMP) and EDA is no better than EDA-DMSO, even though NMP alone is a better solvent than DMSO alone; (4) investigators have no evidence that NaOCl will oxidize sulfide links to sulfuric acid and NaOCl appears to be unsuitable for determining sulfide links in coal; (5) black acid fraction from several NaOCl oxidations precipitated between pH 4.98 and 4.66 was characterized; (6) measurements of hydroxyl and carboxyl contents on pyridine and benzylamine extracts and extracted coal show increases in carboxyl content on reactions of these fractions with alcoholic KOH, and an increase in hydroxyl content on reactions of the pyridine-extracted coal with benzylamine, consistent with ester cleavage. 6 tables.

  7. Ordered Cleavage of Myeloperoxidase Ester Bonds Releases Active site Heme Leading to Inactivation of Myeloperoxidase by Benzoic Acid Hydrazide Analogs*

    PubMed Central

    Huang, Jiansheng; Smith, Forrest; Panizzi, Peter

    2014-01-01

    Myeloperoxidase (MPO) catalyzes the breakdown of hydrogen peroxide and the formation of the potent oxidant hypochlorous acid. We present the application of the fluorogenic peroxidase substrate 10-acetyl-3,7-dihydroxyphenoxazine (ADHP) in steady-state and transient kinetic studies of MPO function. Using initial kinetic parameters for the MPO system, we characterized under the same conditions a number of gold standards for MPO inhibition, namely 4-amino benzoic acid hydrazide (4-ABAH), isoniazid and NaN3 before expanding our focus to isomers of 4-ABAH and benzoic acid hydrazide analogs. We determined that in the presence of hydrogen peroxide that 4-ABAH and its isomer 2-ABAH are both slow-tight binding inhibitors of MPO requiring at least two steps, whereas NaN3 and isoniazid-based inhibition has a single observable step. We also determined that MPO inhibition by benzoic acid hydrazide and 4-(trifluoromethyl) benzoic acid hydrazide was due to hydrolysis of the ester bond between MPO heavy chain Glu 242 residue and the heme pyrrole A ring, freeing the light chain and heme b fragment from the larger remaining MPO heavy chain. This new mechanism would essentially indicate that the benzoic acid hydrazide analogs impart inhibition through initial ejection of the heme catalytic moiety without prior loss of the active site iron. PMID:24632143

  8. Ruthenium(0) Catalyzed Endiyne-?-Ketol [4 + 2] Cycloaddition: Convergent Assembly of Type II Polyketide Substructures via C-C Bond Forming Transfer Hydrogenation.

    PubMed

    Saxena, Aakarsh; Perez, Felix; Krische, Michael J

    2015-05-13

    Upon exposure of 3,4-benzannulated 1,5-diynes (benzo-endiynes) to ?-ketols (?-hydroxyketones) in the presence of Ru(0) catalysts derived from Ru3(CO)12 and RuPhos or CyJohnPhos, successive redox-triggered C-C coupling occurs to generate products of [4 + 2] cycloaddition. The proposed catalytic mechanism involves consecutive alkyne-carbonyl oxidative couplings to form transient oxaruthanacycles that suffer ?-ketol mediated transfer hydrogenolysis. This process provides a new, convergent means of assembling Type II polyketide substructures. PMID:25938947

  9. Synthesis, characterization, and CH/CC cleavage reactions of two rhodiumtrispyrazolylborate dihydrides

    E-print Network

    Jones, William D.

    Synthesis, characterization, and C­H/C­C cleavage reactions of two rhodium of Prof. Jerry Trofimenko Keywords: Trispyrazolylborate Rhodium C­H cleavage C­C cleavage Photochemistry dicarbonyl and dihydride rhodium complexes. Preparative routes to rhodium dicarbonyl complexes of the type

  10. Rhodium(III)-Catalyzed Directed ortho-C-H Bond Functionalization of Aromatic Ketazines via C-S and C-C Coupling.

    PubMed

    Wen, Jing; Wu, An; Wang, Mingyang; Zhu, Jin

    2015-11-01

    Described herein is a convenient and efficient method for sulfuration and olefination of aromatic ketazines via rhodium-catalyzed oxidative C-H bond activation. A range of substituted substrates are supported, and a possible mechanism is proposed according to experimental results of kinetic isotopic effect, reversibility studies, and catalysis of rhodacycle intermediate c1. PMID:26417874

  11. All-carbon quaternary stereogenic centers in acyclic systems through the creation of several C-C bonds per chemical step.

    PubMed

    Marek, Ilan; Minko, Yury; Pasco, Morgane; Mejuch, Tom; Gilboa, Noga; Chechik, Helena; Das, Jaya P

    2014-02-19

    In the past few decades, it has become clear that asymmetric catalysis is one of the most powerful methods for the construction of carbon-carbon as well as carbon-heteroatom bonds in a stereoselective manner. However, when structural complexity increases (i.e., all-carbon quaternary stereogenic center), the difficulty in reaching the desired adducts through asymmetric catalytic reactions leads to a single carbon-carbon bond-forming event per chemical step between two components. Issues of efficiency and convergence should therefore be addressed to avoid extraneous chemical steps. In this Perspective, we present approaches that tackle the stimulating problem of efficiency while answering interesting synthetic challenges. Ideally, if one could create all-carbon quaternary stereogenic centers via the creation of several new carbon-carbon bonds in an acyclic system and in a single-pot operation from simple precursors, it would certainly open new horizons toward solving the synthetic problems. Even more important for any further design, the presence of polyreactive intermediates in synthesis (bismetalated, carbenoid, and oxenoids species) becomes now an indispensable tool, as it creates consecutively the same number of carbon-carbon bonds as in a multi-step process, but in a single-pot operation. PMID:24512113

  12. Formation of a dinuclear copper(II) complex through the cleavage of CN bond of 1-benzoyl-3-(pyridin-2-yl)-1H-pyrazole

    SciTech Connect

    Shardin, Rosidah; Pui, Law Kung; Yamin, Bohari M.; Kassim, Mohammad B.

    2014-09-03

    A simple mononuclear octahedral copper(II) complex was attempted from the reaction of three moles of 1-benzoyl-3-(pyridin-2-yl)-1H-pyrazole and one mole of copper(II) perchlorate hexahydrate in methanol. However, the product of the reaction was confirmed to be a dinuclear copper(II) complex with ?-(3-(pyridin-2-yl)-pyrazolato) and 3-(pyridin-2-yl)-1H-pyrazole ligands attached to each of the Cu(II) centre atom. The copper(II) ion assisted the cleavage of the C{sub benzoyl}N bond afforded a 3-(pyridin-2-yl)-1H-pyrazole molecule. Deprotonation of the 3-(pyridin-2-yl)-1H-pyrazole gave a 3-(pyridin-2-yl)-pyrazolato, which subsequently reacted with the Cu(II) ion to give the (3-(pyridin-2-yl)-pyrazolato)(3-(pyridin-2-yl)-1H-pyrazole)Cu(II) product moiety. The structure of the dinuclear complex was confirmed by x-ray crystallography. The complex crystallized in a monoclinic crystal system with P2(1)/n space group and cell dimensions of a = 12.2029(8) Å, b = 11.4010(7) Å, c = 14.4052(9) Å and ? = 102.414(2)°. The compound was further characterized by mass spectrometry, CHN elemental analysis, infrared and UV-visible spectroscopy and the results concurred with the x-ray structure. The presence of d-d transition at 671 nm (? = 116 dm{sup 3} mol{sup ?1} cm{sup ?1}) supports the presence of Cu(II) centres.

  13. Activation of C-O and C-C bonds and formation of novel HAlOH-ether complexes: an EPR study of the reaction of ground-state Al atoms with methylethyl ether and diethyl ether.

    PubMed

    Brunet, François D; Feola, Julie C; Joly, Helen A

    2012-03-15

    Reaction mixtures, containing Al atoms and methylethyl ether (MEE) or diethyl ether (DEE) in an adamantane matrix, were prepared with the aid of a metal-atom reactor known as a rotating cryostat. The EPR spectra of the resulting products were recorded from 77-260 K, at 10 K intervals. Al atoms were found to insert into methyl-O, ethyl-O, and C-C bonds to form CH(3)AlOCH(2)CH(3), CH(3)OAlCH(2)CH(3), and CH(3)OCH(2)AlCH(3), respectively, in the case of MEE while DEE produced CH(3)CH(2)AlOCH(2)CH(3) and CH(3)AlCH(2)OCH(2)CH(3), respectively. From the intensity of the transition lines attributed to the Al atom C-O insertion products of MEE, insertion into the methyl-O bond is preferred. The Al hyperfine interaction (hfi) extracted from the EPR spectra of the C-O insertion products was greater than that of the C-C insertion products, that is, 5.4% greater for the DEE system and 7% greater for the MEE system. The increase in Al hfi is thought to arise from the increased electron-withdrawing ability of the substituents bonded to Al. Besides HAlOH, resulting from the reaction of Al atoms with adventitious water, novel mixed HAlOH:MEE and HAlOH:DEE complexes were identified with the aid of isotopic studies involving H(2)(17)O and D(2)O. The Al and H hfi of HAlOH were found to decrease upon complex formation. These findings are consistent with the nuclear hfi calculated using a density functional theory (DFT) method with close agreement between theory and experiment occurring at the B3LYP level using a 6-311+G(2df,p) basis set. PMID:22299675

  14. Chlorination-Promoted Skeletal-Cage Transformations of C88 Fullerene by C2 Losses and a C?C Bond Rotation.

    PubMed

    Yang, Shangfeng; Wei, Tao; Scheurell, Kerstin; Kemnitz, Erhard; Troyanov, Sergey I

    2015-10-19

    High-temperature chlorination of fullerene C88 (isomer 33) with VCl4 gives rise to skeletal transformations affording several nonclassical (NC) fullerene chlorides, C86 (NC1)Cl24/26 and C84 (NC2)Cl26 , with one and two heptagons, respectively, in the carbon cages. The branched skeletal transformation including C2 losses as well as a Stone-Wales rearrangement has been comprehensively characterized by the structure determination of two intermediates and three final chlorination products. Quantum-chemical calculations demonstrate that the average energy of the C?Cl bond is significantly increased in chlorides of nonclassical fullerenes with a large number of chlorinated sites of pentagon-pentagon adjacency. PMID:26332709

  15. C-C and C-Heteroatom Bond Dissociation Energies in CH3R?C(OH)2: Energetics for Photocatalytic Processes of Organic Diolates on TiO2 Surfaces

    SciTech Connect

    Wang, Tsang-Hsiu; Dixon, David A.; Henderson, Michael A.

    2010-08-26

    The bond energies of a range of gem-diols, CH3R?C(OH)2 (R? = H, F, Cl, Br, CN, NO2, CF3, CH3CH2, CH3CH2CH2, CH3CH2CH2CH2, ((CH3)2)CH, (CH3)3C, ((CH3)2CH)CH2, (CH3CH2)(CH3)CH, C6H5 (CH3CH2)(CH3)CH) which serve as models for binding to a surface have been studied with density functional theory (DFT) and the molecular orbital G3(MP2) methods to provide thermodynamic data for the analysis of the photochemistry of ketones on TiO2. The ultraviolet (UV) photon-induced photodecomposition of adsorbed acetone and 3,3-dimethylbutanone on the rutile TiO2 (110) surface have been investigated with photon stimulated desorption (PSD) and temperature programmed desorption (TPD). The C-CH3 and C-C(R?) bond dissociation energies in CH3R?C(OH)2 were predicted, and our calculated bond dissociation energies are in excellent agreement with the available experimental values. We used a series of isodemic reactions to provide small corrections to the various bond dissociation energies. The calculated bond dissociation energies are in agreement with the observed photodissociation processes except for R? = CF3, suggesting that these processes are under thermodynamic control. For R? = CF3, reaction dynamics also play a role in determining the photodissociation mechanism. The gas phase Brönsted acidities of the gem-diols were calculated. For three molecules, R? = Cl, Br, and NO2, loss of a proton leads to the formation of a complex of acetic acid with the anion Cl-, Br-, and NO2-. The acidities of these three species are very high with the former two having acidities comparable to CF3SO3H. The ketones (R?RC(=O)) are weak Lewis acids except where addition of OH- leads to the dissociation of the complex to form an anion bonded to acetic acid, R' = NO2, Cl, and Br. The X-C bond dissociation energies for a number of X-CO2- species were calculated and these should be useful in correlating with photochemical reactivity studies.

  16. Mechanism of the mutagenic action of hydroxylamine. IX. The UV-induced cleavage of the N-O bond in N4-hydroxy-and N4-methoxycytidine and N6-methoxyadenosine.

    PubMed Central

    Simukova, N A; Yakovlev, D Y; Budowsky, E I

    1975-01-01

    The principal UV-induced (lambda = 2546nm) reaction of N4-hydroxy- and N4methoxycytidines and N6-methoxyadenosine in neutral aqueous solutions is cleavage of the exocyclic N-O bond with the respective formation of cytidine and adenosine. Quantum yields are 2.8x10(-3) and 2.2x10(-3) M/E for the first two compounds and 9.1x10(-3) M/E for N6-methoxyadenosine. PMID:1052542

  17. Identification and cleavage of breakable single bonds by selective oxidation, reduction, and hydrolysis. Quarterly report No. 8, July 1-September 30, 1980

    SciTech Connect

    Pavelka, L.A.; Mayo, F.R.

    1980-10-31

    The objective of this project is to determine the proportions of the various kinds of connecting links and how they can best be broken - in other words, to determine the structure of bituminous coal. Progress reports are presented for the following: (1) cleavage of pyridine TIPS 28-A with NaNH/sub 2/; (2) cleavages of pyridine-extracted coal with pyridine hydroiode and alkylation with NaNH/sub 2/ and BuBr; (3) cleavages and characterization of benzylamine extract 11-A; (4) consumption of KOH by PYR-TIPS 28-A, pyridine-extracted 18-A, BuNH/sub 2/ TIPS 28-C, and BuNH/sub 2/-extracted 11-C; (5) extractions of whole coal; (6) oxidation of benzylamine-extracted coal; (7) oxidation of organic sulfides; and (8) fractionation of combined black acids. 4 tables.

  18. Kinetic and Structural Insight into the Mechanism of BphD, a C-C Bond Hydrolase from the Biphenyl Degradation Pathway†

    PubMed Central

    Horsman, Geoff P.; Ke, Jiyuan; Dai, Shaodong; Seah, Stephen Y. K.; Bolin, Jeffrey T.; Eltis, Lindsay D.

    2008-01-01

    Kinetic and structural analyses of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) hydrolase from Burkholderia xenovorans LB400 (BphDLB400) provide insight into the catalytic mechanism of this unusual serine hydrolase. Single turnover stopped-flow analysis at 25 °C showed that the enzyme rapidly (1/?1 ? 500 s?1) transforms HOPDA (?max = 434 nm) to a species with electronic absorption maxima at 473 and 492 nm. The absorbance of this enzyme-bound species (E:S) decayed in a biphasic manner (1/?2 = 54 s?1, 1/?3 = 6 s?1 ? kcat) with simultaneous biphasic appearance (48 and 8 s?1) of an absorbance band at 270 nm characteristic of one of the products, 2-hydroxypenta-2,4-dienoic acid (HPD). Increasing solution viscosity with glycerol slowed 1/?1 and 1/?2, but affected neither 1/?3 nor kcat, suggesting that 1/?2 may reflect diffusive HPD dissociation, while 1/?3 represents an intramolecular event. Product inhibition studies suggested that the other product, benzoate, is released after HPD. Contrary to studies in a related hydrolase, we found no evidence that ketonized HOPDA is partially released prior to hydrolysis, and therefore postulate that the biphasic kinetics reflect one of two mechanisms, pending assignment of E:S (?max = 492 nm). Crystal structures of wild type, the S112C variant, and S112C incubated with HOPDA were each determined to 1.6 Å resolution. The latter reveals interactions between conserved active site residues and the dienoate moiety of the substrate. Most notably, the catalytic residue His265 is hydrogen-bonded to the 2-hydroxy/oxo substituent of HOPDA, consistent with a role in catalyzing ketonization. The data are more consistent with an acyl-enzyme mechanism than with the formation of a gem-diol intermediate. PMID:16964968

  19. Synthesis of seco-B-Ring Bryostatin Analogue WN-1 via C–C Bond-Forming Hydrogenation: Critical Contribution of the B-Ring in Determining Bryostatin-like and Phorbol 12-Myristate 13-Acetate-like Properties

    PubMed Central

    2015-01-01

    The seco-B-ring bryostatin analogue, macrodiolide WN-1, was prepared in 17 steps (longest linear sequence) and 30 total steps with three bonds formed via hydrogen-mediated C–C coupling. This synthetic route features a palladium-catalyzed alkoxycarbonylation of a C2-symmetric diol to form the C9-deoxygenated bryostatin A-ring. WN-1 binds to PKC? (Ki = 16.1 nM) and inhibits the growth of multiple leukemia cell lines. Although structural features of the WN-1 A-ring and C-ring are shared by analogues that display bryostatin-like behavior, WN-1 displays PMA-like behavior in U937 cell attachment and proliferation assays, as well as in K562 and MV-4-11 proliferation assays. Molecular modeling studies suggest the pattern of internal hydrogen bonds evident in bryostatin 1 is preserved in WN-1, and that upon docking WN-1 into the crystal structure of the C1b domain of PKC?, the binding mode of bryostatin 1 is reproduced. The collective data emphasize the critical contribution of the B-ring to the function of the upper portion of the molecule in conferring a bryostatin-like pattern of biological activity. PMID:25207655

  20. Synthesis of seco-B-ring bryostatin analogue WN-1 via C-C bond-forming hydrogenation: critical contribution of the B-ring in determining bryostatin-like and phorbol 12-myristate 13-acetate-like properties.

    PubMed

    Andrews, Ian P; Ketcham, John M; Blumberg, Peter M; Kedei, Noemi; Lewin, Nancy E; Peach, Megan L; Krische, Michael J

    2014-09-24

    The seco-B-ring bryostatin analogue, macrodiolide WN-1, was prepared in 17 steps (longest linear sequence) and 30 total steps with three bonds formed via hydrogen-mediated C-C coupling. This synthetic route features a palladium-catalyzed alkoxycarbonylation of a C2-symmetric diol to form the C9-deoxygenated bryostatin A-ring. WN-1 binds to PKC? (Ki = 16.1 nM) and inhibits the growth of multiple leukemia cell lines. Although structural features of the WN-1 A-ring and C-ring are shared by analogues that display bryostatin-like behavior, WN-1 displays PMA-like behavior in U937 cell attachment and proliferation assays, as well as in K562 and MV-4-11 proliferation assays. Molecular modeling studies suggest the pattern of internal hydrogen bonds evident in bryostatin 1 is preserved in WN-1, and that upon docking WN-1 into the crystal structure of the C1b domain of PKC?, the binding mode of bryostatin 1 is reproduced. The collective data emphasize the critical contribution of the B-ring to the function of the upper portion of the molecule in conferring a bryostatin-like pattern of biological activity. PMID:25207655

  1. Transition-Metal-Free Synthesis of Carbonyl-Containing Oxindoles from N-Arylacrylamides and ?-Diketones via TBHP- or Oxone-Mediated Oxidative Cleavage of C(sp(2))-C(sp(2)) Bonds.

    PubMed

    Zhang, Ming-Zhong; Ji, Peng-Yi; Liu, Yu-Feng; Guo, Can-Cheng

    2015-11-01

    Carbonyl-containing oxindoles can be prepared from N-arylacrylamides and ?-diketones by TBHP- or oxone (KHSO5)-mediated C(sp(2))-C(sp(2)) bond cleavage and new C(sp(2))-C(sp(3)) bond formation. This methodology is characterized by its simple and transition-metal-free conditions and good functional group compatibility utilizing inexpensive and readily available reagents, thus providing a practical and efficient approach to an important class of 3-(2-oxoethyl)indolin-2-ones which are highly valued synthetic intermediates of biologically active molecules. In this transformation, alkylcarbonyl-containing oxindoles were obtained in majority when N-arylacrylamides reacted with asymmetric aliphatic/aromatic ?-diketones. On the basis of the preliminary experiments, a plausible mechanism of this transformation is disclosed. PMID:26488108

  2. Cleavage of the phenacyl esters of carboxylic and thiocarboxylic acids by metal alkoxides

    SciTech Connect

    Morozov, A.A.

    1988-11-20

    During the cleavage of phenacyl esters with general formula XC/sub 6/H/sub 4/COCH/sub 2/OCOR by metal alkoxides in alcohols and in ether-alcohol solutions the acids, esters, and ethers are formed as a result of cleavage of the C-C bond. The solvent participates in the formation of the ether and gives rise to transesterification of RCOOCH/sub 3/ with catalytic participation of the metal alkoxide. The reactivity of the phenacyl esters of the thio acids is much higher. Before dissociation the esters of substituted benzoins C/sub 6/H/sub 5/COCH(OCOCH/sub 3/) /times/ C/sub 6/H/sub 4/X-4 undergo irreversible rearrangement with the formation of isomeric products.

  3. Reactivity studies of a pseudo three-coordinate vanadium(II) complex: Synthesis of terminal oxo and sulfido complexes of vanadium(IV) and S?S and Se?Se reductive bond cleavage reactions

    SciTech Connect

    Tran, Ba L.; Chen, Chun-Hsing; Mindiola, Daniel J.

    2012-02-07

    Terminal oxo and sulfido complexes in the form of (nacnac)V=E(Ntol{sub 2}) (nacnac = [ArNC(CH{sub 3})]{sub 2}CH{sup -}, Ar = 2,6-(CHMe{sub 2}){sub 2}C{sub 6}H{sub 3}, Ntol{sub 2} = {sup -}N(C{sub 6}H{sub 4}-4-Me), E = O (1), S (2)) were isolated from treatment of the masked three-coordinate vanadium(II) complex, (nacnac)V(Ntol{sub 2}), with C{sub 5}H{sub 5}NO and S{sub 8}, respectively. Both vanadium(IV) species, 1 and 2, have been characterized by room temperature X-band EPR spectroscopic studies, and in the case of complex 1, a single crystal molecular structure confirmed the presence of a terminal oxo moiety. Moreover, reaction of (nacnac)V(Ntol{sub 2}) with diphenyl-disulfide and diphenyl-diselenide results in the reductive cleavage of these compounds to produce the vanadium(III) complexes (nacnac)V(XPh)(Ntol{sub 2}) (X = S, (3), Se (4)). A molecular structure of the phenylsulfide complex, 3, confirmed formation of the d{sup 2} complex resulting from reductive cleavage of the S-S bond.

  4. Investigations of iridium-mediated reversible C-H bond cleavage: characterization of a 16-electron iridium(III) methyl hydride complex.

    PubMed

    Bernskoetter, Wesley H; Hanson, Susan Kloek; Buzak, Sara K; Davis, Zoe; White, Peter S; Swartz, Rodney; Goldberg, Karen I; Brookhart, Maurice

    2009-06-24

    New iridium complexes of a tridentate pincer ligand, 2,6-bis(di-tert-butylphosphinito)pyridine (PONOP), have been prepared and used in the study of hydrocarbon C-H bond activation. Intermolecular oxidative addition of a benzene C-H bond was directly observed with [(PONOP)Ir(I)(cyclooctene)][PF(6)] at ambient temperature, resulting in a cationic five-coordinate iridium(III) phenyl hydride product. Protonation of the (PONOP)Ir(I) methyl complex yielded the corresponding iridium(III) methyl hydride cation, a rare five-coordinate, 16-valence electron transition metal alkyl hydride species which was characterized by X-ray diffraction. Kinetic studies of C-H bond coupling and reductive elimination reactions from the five-coordinate complexes have been carried out. Exchange NMR spectroscopy measurements established a barrier of 17.8(4) kcal/mol (22 degrees C) for H-C(aryl) bond coupling in the iridium(III) phenyl hydride cation and of 9.3(4) kcal/mol (-105 degrees C) for the analogous H-C(alkyl) coupling in the iridium(III) methyl hydride cation. The origin of the higher barrier of H-C(aryl) relative to H-C(alkyl) bond coupling is proposed to be influenced by a hindered rotation about the Ir-C(aryl) bond, a result of the sterically demanding PONOP ligand. PMID:19489584

  5. Using IR and Raman spectra to explain the catalytic activity of the Fe(II)/Fe(III) pair toward the cleavage of peptide bonds.

    PubMed

    Camacho, Felipe G; Alves, Wagner A

    2015-12-01

    IR and Raman experiments of formamide (FA) solutions containing variable amounts of Fe(II) and Fe(III) salts were carried out. The ?CO vibration is downshifted whereas the ?CN mode is upshifted in the presence of the divalent ion. As the trivalent ion is added to the solvent, upshifts of both ?CO and ?CN vibrations are observed. These spectral patterns are related to the distinct FA forms that are stabilized by each ion. Fe(II) is surrounded by 6 ionic FA species while neutral ones coordinate to the trivalent ion with formation of [Fe(FA)3Cl](2+) and [Fe(FA)2(Cl)2](+). In higher salt compositions [FeCl4](-) is also identified in the spectra. Our vibrational results are very well corroborated by biological studies on the catalytic activity of the Fe(II)/Fe(III) pair in oxidative cleavage processes of polypeptides and proteins. PMID:26117195

  6. Oxidative coupling of dichalcogenides with sodium sulfinates via copper-catalyzed cleavage of S-S and Se-Se bonds.

    PubMed

    Taniguchi, Nobukazu

    2015-02-01

    A copper-catalyzed sulfonylation of disulfides was achieved using sodium sulfinates in air. The reaction formed various sulfur-sulfone bonds efficiently and afforded thiosulfonates in good yields. Selenosulfonates could also be prepared with this procedure. Furthermore, both chalcogenide groups on the dichalcogenides were available in these reactions. PMID:25562106

  7. Silicon–Carbon bond cleavage reactions of Ansa tungstenocene compounds: The [Me2Si] bridge as a site for metallocene functionalization

    PubMed Central

    Zachmanoglou, Cary E.; Lee, Hyosun; Jang, Seung Ho; Pang, Keliang; Parkin, Gerard

    2008-01-01

    [Me2Si(CpMe2)2]W(H)Cl is obtained via reaction of WCl6 with a mixture of [Me2Si(CpMe2)2]Li2 and NaBH4, from which the dichloride [Me2Si(CpMe2)2]WCl2 is obtained via treatment with CHCl3. [Me2Si(CpMe2)2]WCl2 provides a means to access other ansa tungstenocene compounds, such as [Me2Si(CpMe2)2]WH2, [Me2Si(CpMe2)2]WMe2, and [Me2Si(CpMe2)2]WCO. Of most interest, the reactions of [Me2Si(CpMe2)2]W(H)Cl with organolithium reagents do not yield simple ansa tungstenocene derivatives. Specifically, the reactions of [Me2Si(CpMe2)2]W(H)Cl with MeLi, BunLi, or PhLi result in the formation of mixed-ring tungstenocene compounds resulting from C–Si cleavage and functionalization of the ansa bridge, namely (CpMe2)(?5,?1–C5H2Me2SiMe2CH2)WH, (CpMe2)[?5,?1–C5H2Me2Si(Me)(Bun)CH2]WH, and (CpMe2)[?5,?1–C5H2Me2SiMe2(C6H4)]WH, respectively. In contrast to the C–Si cleavage achieved by MeLi, BunLi, and PhLi, the ansa bridge of [Me2Si(CpMe2)2]W(H)Cl is inert to ButLi and the product obtained is the fulvene (“tuck-in”) complex [Me2Si(CpMe2)(?6–C5MeH2CH2)]WH derived from dehydrohalogenation. PMID:18635687

  8. Identification and cleavage of breakable single bonds by selective oxidation, reduction, and hydrolysis. Quarterly report No. 16, July 1-October 31, 1982

    SciTech Connect

    Hirschon, A.S.; Zevely, J.S.; Mayo, F.R.

    1983-01-14

    Efforts were made to establish the presence of diarylmethane groups in coal by oxidations of the corresponding ketones with m-chloroperbenzoic acid. No evidence of such groups was found. Black acids from a nitric acid oxidation of EDA/DMSO-extracted coal were examined for ketone groups, using the oxime and infrared absorption; no ketone or oxime was found. Reactions of a TIPS fraction with pyridine hydroiodide in pyridine, hydrogen iodide (HI) in toluene, and by aqueous hydrogen iodide were examined using molecular weight changes, vapor-phase osmometry (VPO), gel permeation chromatography (GLC), and iodine incorporation. Reactions with pyridine hydroiodide were complete and fairly consistent, with incorporation of about one iodine atom for each new molecule formed. Reactions in toluene and water were incomplete. Reaction of TIPS with benzylamine (BnNH/sub 2/) resulted in less cleavage than with pyridine hydroiodide, as measured by VPO, and inconclusive results by GPC. Exhaustive extractions of eight coals with BnNH/sub 2/ at 100/sup 0/C show that the beneficiated PSOC 25 lot of Illinois No. 6 coal gives 45% of soluble material. A plot of the ratio, BnNH/sub 2/ solubility/pyridine solubility, against %C dmmf in the coals gives a smooth curve. A TIPS fraction has been fractionated into smaller fractions by GPC, and molecular weights have been estimated; results agree reasonably well. The 96.6% of a BnNH/sub 2/ extract that is soluble in pyridine was compared with a whole TIPS fraction by GPC. Molecular weights range from 300 to 4000, with the BnNH/sub 2/ fraction averaging significantly higher than the TIPS fractions. Attempts to increase the solubility of black acids were unsuccessful.

  9. The Tautomeric Half-reaction of BphD, a C-C Bond Hydrolase Kinetic and Structural Evidence Supporting a Key Role for Histidine 265 of the Catalytic triad

    SciTech Connect

    Horsman, Geoff P.; Bhowmik, Shiva; Seah, Stephen Y.K.; Kumar, Pravindra; Bolin, Jeffrey T.; Eltis, Lindsay D.

    2010-01-07

    BphD of Burkholderia xenovorans LB400 catalyzes an unusual C-C bond hydrolysis of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) to afford benzoic acid and 2-hydroxy-2,4-pentadienoic acid (HPD). An enol-keto tautomerization has been proposed to precede hydrolysis via a gem-diol intermediate. The role of the canonical catalytic triad (Ser-112, His-265, Asp-237) in mediating these two half-reactions remains unclear. We previously reported that the BphD-catalyzed hydrolysis of HOPDA ({lambda}{sub max} is 434 nm for the free enolate) proceeds via an unidentified intermediate with a red-shifted absorption spectrum ({lambda}{sub max} is 492 nm) (Horsman, G. P., Ke, J., Dai, S., Seah, S. Y. K., Bolin, J. T., and Eltis, L. D. (2006) Biochemistry 45, 11071-11086). Here we demonstrate that the S112A variant generates and traps a similar intermediate ({lambda}{sub max} is 506 nm) with a similar rate, 1/{tau} {approx} 500 s{sup -1}. The crystal structure of the S112A:HOPDA complex at 1.8-{angstrom} resolution identified this intermediate as the keto tautomer, (E)-2,6-dioxo-6-phenyl-hex-3-enoate. This keto tautomer did not accumulate in either the H265A or the S112A/H265A double variants, indicating that His-265 catalyzes tautomerization. Consistent with this role, the wild type and S112A enzymes catalyzed tautomerization of the product HPD, whereas H265A variants did not. This study thus identifies a keto intermediate, and demonstrates that the catalytic triad histidine catalyzes the tautomerization half-reaction, expanding the role of this residue from its purely hydrolytic function in other serine hydrolases. Finally, the S112A:HOPDA crystal structure is more consistent with hydrolysis occurring via an acyl-enzyme intermediate than a gem-diol intermediate as solvent molecules have poor access to C6, and the closest ordered water is 7{angstrom} away.

  10. Activation of Homolytic Si-Zn and Si-Hg Bond Cleavage, Mediated by a Pt(0) Complex, via Novel Pt-Zn and Pt-Hg Compounds.

    PubMed

    Kratish, Yosi; Molev, Gregory; Kostenko, Arseni; Sheberla, Dennis; Tumanskii, Boris; Botoshansky, Mark; Shimada, Shigeru; Bravo-Zhivotovskii, Dmitry; Apeloig, Yitzhak

    2015-09-28

    The thermally stable [(tBuMe2 Si)2 M] (M=Zn, Hg) generate R3 Si(.) radicals in the presence of [(dmpe)Pt(PEt3 )2 ] at 60-80 °C. The reaction proceeds via hexacoordinate Pt complexes, (M=Zn (2 a and 2 b), M=Hg (3 a and 3 b)) which were isolated and characterized. Mild warming or photolysis of 2 or 3 lead to homolytic dissociation of the Pt-MSiR3 bond generating silyl radicals and novel unstable pentacoordinate platinum paramagnetic complexes (M=Zn (5), Hg (6)) whose structures were determined by EPR spectroscopy and DFT calculations. PMID:26288342

  11. Structural insights into the role of iron–histidine bond cleavage in nitric oxide-induced activation of H-NOX gas sensor proteins

    PubMed Central

    Herzik, Mark A.; Jonnalagadda, Rohan; Kuriyan, John; Marletta, Michael A.

    2014-01-01

    Heme-nitric oxide/oxygen (H-NOX) binding domains are a recently discovered family of heme-based gas sensor proteins that are conserved across eukaryotes and bacteria. Nitric oxide (NO) binding to the heme cofactor of H-NOX proteins has been implicated as a regulatory mechanism for processes ranging from vasodilation in mammals to communal behavior in bacteria. A key molecular event during NO-dependent activation of H-NOX proteins is rupture of the heme–histidine bond and formation of a five-coordinate nitrosyl complex. Although extensive biochemical studies have provided insight into the NO activation mechanism, precise molecular-level details have remained elusive. In the present study, high-resolution crystal structures of the H-NOX protein from Shewanella oneidensis in the unligated, intermediate six-coordinate and activated five-coordinate, NO-bound states are reported. From these structures, it is evident that several structural features in the heme pocket of the unligated protein function to maintain the heme distorted from planarity. NO-induced scission of the iron–histidine bond triggers structural rearrangements in the heme pocket that permit the heme to relax toward planarity, yielding the signaling-competent NO-bound conformation. Here, we also provide characterization of a nonheme metal coordination site occupied by zinc in an H-NOX protein. PMID:25253889

  12. In situ and theoretical studies for the dissociation of water on an active Ni/CeO2 catalyst: importance of strong metal-support interactions for the cleavage of O-H bonds.

    PubMed

    Carrasco, Javier; López-Durán, David; Liu, Zongyuan; Ducho?, Tomáš; Evans, Jaime; Senanayake, Sanjaya D; Crumlin, Ethan J; Matolín, Vladimir; Rodríguez, José A; Ganduglia-Pirovano, M Verónica

    2015-03-23

    Water dissociation is crucial in many catalytic reactions on oxide-supported transition-metal catalysts. Supported by experimental and density-functional theory results, the effect of the support on O?H bond cleavage activity is elucidated for nickel/ceria systems. Ambient-pressure O?1s photoemission spectra at low Ni loadings on CeO2 (111) reveal a substantially larger amount of OH groups as compared to the bare support. Computed activation energy barriers for water dissociation show an enhanced reactivity of Ni adatoms on CeO2 (111) compared with pyramidal Ni4 particles with one Ni atom not in contact with the support, and extended Ni(111) surfaces. At the origin of this support effect is the ability of ceria to stabilize oxidized Ni(2+) species by accommodating electrons in localized f-states. The fast dissociation of water on Ni/CeO2 has a dramatic effect on the activity and stability of this system as a catalyst for the water-gas shift and ethanol steam reforming reactions. PMID:25651288

  13. In-situ and theoretical studies for the dissociation of water on an active Ni/CeO? catalyst: Importance of strong metal-support interactions for the cleavage of O-H bonds

    DOE PAGESBeta

    Carrasco, Javier; Rodriguez, Jose A.; Lopez-Duran, David; Liu, Zongyuan; Duchon, Tomas; Evans, Jaime; Senanayake, Sanjaya D.; Crumlin, Ethan J.; Matolin, Vladimir; Ganduglia-Pirovano, M. Veronica

    2015-03-23

    Water dissociation is crucial in many catalytic reactions on oxide-supported transition-metal catalysts. Here, supported by experimental and density-functional theory results, we elucidate the effect of the support on O-H bond cleavage activity for nickel/ceria systems. Ambient-pressure O1s photoemission spectra at low Ni loadings on CeO?(111) reveal a substantially larger amount of OH groups as compared to the bare support. Our computed activation energy barriers for water dissociation show an enhanced reactivity of Ni adatoms on CeO?(111) compared with pyramidal Ni? particles with one Ni atom not in contact with the support, and extended Ni(111) surfaces. At the origin of thismore »support effect is the ability of ceria to stabilize oxidized Ni²? species by accommodating electrons in localized f-states. The fast dissociation of water on Ni/CeO? has a dramatic effect on the activity and stability of this system as a catalyst for the water-gas shift and ethanol steam reforming reactions.« less

  14. In-situ and theoretical studies for the dissociation of water on an active Ni/CeO? catalyst: Importance of strong metal-support interactions for the cleavage of O-H bonds

    SciTech Connect

    Carrasco, Javier; Rodriguez, Jose A.; Lopez-Duran, David; Liu, Zongyuan; Duchon, Tomas; Evans, Jaime; Senanayake, Sanjaya D.; Crumlin, Ethan J.; Matolin, Vladimir; Ganduglia-Pirovano, M. Veronica

    2015-03-23

    Water dissociation is crucial in many catalytic reactions on oxide-supported transition-metal catalysts. Here, supported by experimental and density-functional theory results, we elucidate the effect of the support on O-H bond cleavage activity for nickel/ceria systems. Ambient-pressure O1s photoemission spectra at low Ni loadings on CeO?(111) reveal a substantially larger amount of OH groups as compared to the bare support. Our computed activation energy barriers for water dissociation show an enhanced reactivity of Ni adatoms on CeO?(111) compared with pyramidal Ni? particles with one Ni atom not in contact with the support, and extended Ni(111) surfaces. At the origin of this support effect is the ability of ceria to stabilize oxidized Ni²? species by accommodating electrons in localized f-states. The fast dissociation of water on Ni/CeO? has a dramatic effect on the activity and stability of this system as a catalyst for the water-gas shift and ethanol steam reforming reactions.

  15. Cleavage of peptide bonds bearing ionizable amino acids at P{sub 1} by serine proteases with hydrophobic S{sub 1} pocket

    SciTech Connect

    Qasim, Mohammad A.; Song, Jikui; Markley, John L.; Laskowski, Michael

    2010-10-01

    Research highlights: {yields} Large pK shifts in ionizable groups when buried in the protein interior. {yields} Substrate dependent shifts in pH optimum for serine proteases. {yields} Lys side chain is a stronger acid in serine protease S{sub 1} pocket than Asp side chain. -- Abstract: Enzymatic hydrolysis of the synthetic substrate succinyl-Ala-Ala-Pro-Xxx-pNA (where Xxx = Leu, Asp or Lys) catalyzed by bovine chymotrypsin (CHYM) or Streptomyces griseus protease B (SGPB) has been studied at different pH values in the pH range 3-11. The pH optima for substrates having Leu, Asp, and Lys have been found to be 7.5-8.0, 5.5-6.0, and {approx}10, respectively. At the normally reported pH optimum (pH 7-8) of CHYM and SGPB, the substrate with Leu at the reactive site is more than 25,000-fold more reactive than that with Asp. However, when fully protonated, Asp is nearly as good a substrate as Leu. The pK values of the side chains of Asp and Lys in the hydrophobic S{sub 1} pocket of CHYM and SGPB have been calculated from pH-dependent hydrolysis data and have been found to be about 9 for Asp and 7.4 and 9.7 for Lys for CHYM and SGPB, respectively. The results presented in this communication suggest a possible application of CHYM like enzymes in cleaving peptide bonds contributed by acidic amino acids between pH 5 and 6.

  16. Identification and cleavage of breakable single bonds by selective oxidation, reduction, and hydrolysis. Quarterly report No. 10, January 1-March 31, 1981

    SciTech Connect

    Pavelka, L.A.; Mayo, F.R.; Zevely, J.

    1981-05-12

    The objective is to determine the structure of coal with emphasis on the crosslinks and breakable single bonds. Near the end of the first year, we found that benzylamine (BnNH/sub 2/) would extract an additional 14% (of the original weight of coal) of material from pyridine-extracted coal. More recently, we found that an EDA-DMSO (ethylene diamine-dimethyl sulfoxide) mixture would dissolve an additional 19% of the original coal. The BnHN/sub 2/ extract is nearly wholly soluble in pyridine, but the EDA-DMSO extract is only partly soluble in pyridine. Our best present guess is that the BnNH/sub 2/ cleaves most of the ester groups in coal and that EDA-DMSO cleaves the remaining ester and most of the ether groups, thus liberating additional material from the pyridine-insoluble coal network. These two extracts are interesting for structural studies because they were part of the pyridine-insoluble portion of whole coal, instead of being unattached accompanying material. The EDA-DMSO-extracted coal is of interest for investigating connecting links, because it represents a smaller proportion of the coal network, perhaps containing only hydrocarbon connecting links. The experimental section of this report describes: solubilities of the EDA-DMSO extracts of Illinois No. 6 coal and the treatment of an extract with sodium; last details (Cl analysis) of an earlier treatment of EDA-DMSO-extracted coal with zinc chloride; oxidations of extracted coals with nitric acid, formic acid + hydrogen peroxide, and oxygen + t-BuOK in pyridine; recent efforts to characterize various oxidation products, mostly black acids; and shows that sulfolane extracted only 0.7% of whole Illinois No. 6 coal. 3 figures, 3 tables.

  17. Cleavage of the iron-methionine bond in c-type cytochromes: Crystal structure of oxidized and reduced cytochrome c2 from Rhodopseudomonas palustris and its ammonia complex

    PubMed Central

    Geremia, Silvano; Garau, Gianpiero; Vaccari, Lisa; Sgarra, Riccardo; Viezzoli, Maria Silvia; Calligaris, Mario; Randaccio, Lucio

    2002-01-01

    The three-dimensional structures of the native cytochrome c2 from Rhodopseudomonas palustris and of its ammonia complex have been obtained at pH 4.4 and pH 8.5, respectively. The structure of the native form has been refined in the oxidized state at 1.70 ? and in the reduced state at 1.95 ? resolution. These are the first high-resolution crystal structures in both oxidation states of a cytochrome c2 with relatively high redox potential (+350 mV). The differences between the two oxidation states of the native form, including the position of internal water molecules, are small. The unusual six-residue insertion Gly82-Ala87, which precedes the heme binding Met93, forms an isolated 310-helix secondary structural element not previously observed in other c-type cytochromes. Furthermore, this cytochrome shows an external methionine residue involved in a strained folding near the exposed edge of the heme. The structural comparison of the present cytochrome c2 with other c-type cytochromes has revealed that the presence of such a residue, with torsion angles ? and ? of approximately ?140 and ?130°, respectively, is a typical feature of this family of proteins. The refined crystal structure of the ammonia complex, obtained at 1.15 ? resolution, shows that the sulphur atom of the Met93 axial ligand does not coordinate the heme iron atom, but is replaced by an exogenous ammonia molecule. This is the only example so far reported of an X-ray structure with the heme iron coordinated by an ammonia molecule. The detachment of Met93 is accompanied by a very localized change in backbone conformation, involving mainly the residues Lys92, Met93, and Thr94. Previous studies under typical denaturing conditions, including high-pH values and the presence of exogenous ligands, have shown that the detachment of the Met axial ligand is a basic step in the folding/unfolding process of c-type cytochromes. The ammonia adduct represents a structural model for this important step of the unfolding pathway. Factors proposed to be important for the methionine dissociation are the strength of the H-bond between the Met93 and Tyr66 residues that stabilizes the native form, and the presence in this bacterial cytochrome c2 of the rare six-residue insertion in the helix 310 conformation that increases Met loop flexibility. PMID:11742117

  18. The Oxygenase CAO-1 of Neurospora crassa Is a Resveratrol Cleavage Enzyme

    PubMed Central

    Díaz-Sánchez, Violeta; F. Estrada, Alejandro; Limón, M. Carmen; Al-Babili, Salim

    2013-01-01

    The genome of the ascomycete Neurospora crassa encodes CAO-1 and CAO-2, two members of the carotenoid cleavage oxygenase family that target double bonds in different substrates. Previous studies demonstrated the role of CAO-2 in cleaving the C40 carotene torulene, a key step in the synthesis of the C35 apocarotenoid pigment neurosporaxanthin. In this work, we investigated the activity of CAO-1, assuming that it may provide retinal, the chromophore of the NOP-1 rhodopsin, by cleaving ?-carotene. For this purpose, we tested CAO-1 activity with carotenoid substrates that were, however, not converted. In contrast and consistent with its sequence similarity to family members that act on stilbenes, CAO-1 cleaved the interphenyl C?-C? double bond of resveratrol and its derivative piceatannol. CAO-1 did not convert five other similar stilbenes, indicating a requirement for a minimal number of unmodified hydroxyl groups in the stilbene background. Confirming its biological function in converting stilbenes, adding resveratrol led to a pronounced increase in cao-1 mRNA levels, while light, a key regulator of carotenoid metabolism, did not alter them. Targeted ?cao-1 mutants were not impaired by the presence of resveratrol, a phytoalexin active against different fungi, which did not significantly affect the growth and development of wild-type Neurospora. However, under partial sorbose toxicity, the ?cao-1 colonies exhibited faster radial growth than control strains in the presence of resveratrol, suggesting a moderate toxic effect of resveratrol cleavage products. PMID:23893079

  19. The oxygenase CAO-1 of Neurospora crassa is a resveratrol cleavage enzyme.

    PubMed

    Díaz-Sánchez, Violeta; Estrada, Alejandro F; Limón, M Carmen; Al-Babili, Salim; Avalos, Javier

    2013-09-01

    The genome of the ascomycete Neurospora crassa encodes CAO-1 and CAO-2, two members of the carotenoid cleavage oxygenase family that target double bonds in different substrates. Previous studies demonstrated the role of CAO-2 in cleaving the C40 carotene torulene, a key step in the synthesis of the C35 apocarotenoid pigment neurosporaxanthin. In this work, we investigated the activity of CAO-1, assuming that it may provide retinal, the chromophore of the NOP-1 rhodopsin, by cleaving ?-carotene. For this purpose, we tested CAO-1 activity with carotenoid substrates that were, however, not converted. In contrast and consistent with its sequence similarity to family members that act on stilbenes, CAO-1 cleaved the interphenyl C?-C? double bond of resveratrol and its derivative piceatannol. CAO-1 did not convert five other similar stilbenes, indicating a requirement for a minimal number of unmodified hydroxyl groups in the stilbene background. Confirming its biological function in converting stilbenes, adding resveratrol led to a pronounced increase in cao-1 mRNA levels, while light, a key regulator of carotenoid metabolism, did not alter them. Targeted ?cao-1 mutants were not impaired by the presence of resveratrol, a phytoalexin active against different fungi, which did not significantly affect the growth and development of wild-type Neurospora. However, under partial sorbose toxicity, the ?cao-1 colonies exhibited faster radial growth than control strains in the presence of resveratrol, suggesting a moderate toxic effect of resveratrol cleavage products. PMID:23893079

  20. Metallacyclocumulenes: a theoretical perspective on the structure, bonding, and reactivity.

    PubMed

    Roy, Subhendu; Rosenthal, Uwe; Jemmis, Eluvathingal D

    2014-10-21

    Conspectus Transition metals help to stabilize highly strained organic fragments. Metallacycles, especially unsaturated ones, provide much variety in this area. We had a sustained interest in understanding new C-C bond formation reactions affected by binuclear transition metal fragments Cp2M. One such study led to the exploration of the bimetallic C-C cleavage and coupled complexes, where the acetylide ligands bridge two metal atoms. The underlying M-C interaction in these complexes inspired the synthesis of a five-membered cyclocumulene complex, which opened a new phase in organometallic chemistry. The metallacyclocumulene produces a variety of C-C cleavage and coupled products including a radialene complex. Group 4 metallocenes have thus unlocked a fascinating chemistry by stabilizing strained unsaturated C4 organic fragments in the form of five-membered metallacyclocumulenes, metallacyclopentynes, and metallacycloallenes. Over the years, we have carried out a comprehensive theoretical study to understand the unusual stability and reactivity of these metallacycles. The unique (M-C?) interaction of the internal carbon atoms with the metal atom is the reason for unusual stability of the metallacycles. We have also shown that there is a definite dependence of the C-C coupling and cleavage reactions on the metal of metallacyclocumulenes. It demonstrates unexpected reaction pathways for these reactions. Based on this understanding, we have predicted and unraveled the stabilization factors of an unusual four-membered metallacycloallene complex. Indeed, our prediction about a four-membered heterometallacycle has led to an interesting bonding situation, which is experimentally realized. This type of M-C bonding is intriguing from a fundamental perspective and has great relevance in synthesizing unusual structures with interesting properties. In this Account, we first give a short prologue of what led to the present study and describe the salient features of the structure and bonding of the metallacyclocumulenes. The unusual reaction pathway of this metallacycle is explored next. Similar features of the metallacyclopentynes and metallacycloallenes are briefly mentioned. Then, we discuss the exploitation of the unique M-C bonding to design some exotic molecules such as a four-membered metallacycloallene complex. Our efforts to build a conceptual framework to understand these metallacycles and to exploit their chemistry continue. PMID:25171518

  1. Cleavage of nucleic acids

    SciTech Connect

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow; Mary Ann D.; Dahlberg, James E.

    2010-11-09

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  2. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R. (Madison, WI); Hall, Jeff G. (Madison, WI); Lyamichev, Victor L. (Madison, WI); Brow, Mary Ann D. (Madison, WI); Dahlberg, James E. (Madison, WI)

    2007-12-11

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  3. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R. (Madison, WI); Hall, Jeff G. (Madison, WI); Lyamichev, Victor I. (Madison, WI); Brow, Mary Ann D. (Madison, WI); Dahlberg, James E. (Madison, WI)

    2000-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  4. Brønsted acid-promoted C-H bond cleavage via electron transfer from toluene derivatives to a protonated nonheme iron(IV)-oxo complex with no kinetic isotope effect.

    PubMed

    Park, Jiyun; Lee, Yong-Min; Nam, Wonwoo; Fukuzumi, Shunichi

    2013-04-01

    The reactivity of a nonheme iron(IV)-oxo complex, [(N4Py)Fe(IV)(O)](2+) (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine), was markedly enhanced by perchloric acid (70% HClO4) in the oxidation of toluene derivatives. Toluene, which has a high one-electron oxidation potential (Eox = 2.20 V vs SCE), was oxidized by [(N4Py)Fe(IV)(O)](2+) in the presence of HClO4 in acetonitrile (MeCN) to yield a stoichiometric amount of benzyl alcohol, in which [(N4Py)Fe(IV)(O)](2+) was reduced to [(N4Py)Fe(III)(OH2)](3+). The second-order rate constant (kobs) of the oxidation of toluene derivatives by [(N4Py)Fe(IV)(O)](2+) increased with increasing concentration of HClO4, showing the first-order dependence on [HClO4]. A significant kinetic isotope effect (KIE) was observed when mesitylene was replaced by mesitylene-d12 in the oxidation with [(N4Py)Fe(IV)(O)](2+) in the absence of HClO4 in MeCN at 298 K. The KIE value drastically decreased from KIE = 31 in the absence of HClO4 to KIE = 1.0 with increasing concentration of HClO4, accompanied by the large acceleration of the oxidation rate. The absence of KIE suggests that electron transfer from a toluene derivative to the protonated iron(IV)-oxo complex ([(N4Py)Fe(IV)(OH)](3+)) is the rate-determining step in the acid-promoted oxidation reaction. The detailed kinetic analysis in light of the Marcus theory of electron transfer has revealed that the acid-promoted C-H bond cleavage proceeds via the rate-determining electron transfer from toluene derivatives to [(N4Py)Fe(IV)(OH)](3+) through formation of strong precursor complexes between toluene derivatives and [(N4Py)Fe(IV)(OH)](3+). PMID:23528016

  5. Selective cleavage of pepsin by molybdenum metallopeptidase

    SciTech Connect

    Yenjai, Sudarat; Malaikaew, Pinpinat; Liwporncharoenvong, Teerayuth; Buranaprapuk, Apinya

    2012-03-02

    Graphical abstract: Molybdenum metallopeptidase: the Mo(VI) cluster with six molybdenum cations has the ability to cleave protein under mild conditions (37 Degree-Sign C, pH 7) without reducing agents. The reaction required only low concentration of ammonium heptamolybdatetetrahydrate ((NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}{center_dot}4H{sub 2}O) (0.125 mM). The reaction undergoes possibly via a hydrolytic mechanism. This is the first demonstration of protein cleavage by a molybdenum cluster. Highlights: Black-Right-Pointing-Pointer This is the first demonstration of protein cleavage by a Mo(VI) cluster with six molybdenum cations. Black-Right-Pointing-Pointer The cleavage reaction undergoes at mild conditions. Black-Right-Pointing-Pointer No need of reducing agents. Black-Right-Pointing-Pointer Only low concentration of Mo(VI) cluster and short time of incubation are needed. -- Abstract: In this study, the cleavage of protein by molybdenum cluster is reported for the first time. The protein target used is porcine pepsin. The data presented in this study show that pepsin is cleaved to at least three fragments with molecular weights of {approx}23, {approx}19 and {approx}16 kDa when the mixture of the protein and ammonium heptamolybdate tetrahydrate ((NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}{center_dot}4H{sub 2}O) was incubated at 37 Degree-Sign C for 24 h. No self cleavage of pepsin occurs at 37 Degree-Sign C, 24 h indicating that the reaction is mediated by the metal ions. N-terminal sequencing of the peptide fragments indicated three cleavage sites of pepsin between Leu 112-Tyr 113, Leu 166-Leu 167 and Leu 178-Asn 179. The cleavage reaction occurs after incubation of the mixture of pepsin and (NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}{center_dot}4H{sub 2}O) only for 2 h. However, the specificity of the cleavage decreases when incubation time is longer than 48 h. The mechanism for cleavage of pepsin is expected to be hydrolytic chemistry of the amide bonds in the protein backbone.

  6. Palladium-catalyzed C-C, C-N and C-O bond formation

    E-print Network

    Huang, Xiaohua, 1973-

    2003-01-01

    New methods for Pd-catalyzed cross-coupling reactions of aryl halides or arenesulfonates are described. Key to the success of these transformations is the proper choice of ligand and reaction conditions. Palladium catalysts ...

  7. Mechanisms of Catalytic Cleavage of Benzyl Phenyl Ether in Aqueous and Apolar Phases

    SciTech Connect

    He, Jiayue; Lu, Lu; Zhao, Chen; Mei, Donghai; Lercher, Johannes A.

    2014-03-03

    Catalytic pathways for the cleavage of the ether bonds in benzyl phenyl ether (BPE) in the condensed liquid phases using Ni and zeolite based catalysts are explored. In absence of catalysts, the C?O bond is selectively cleaved in water by hydrolysis forming phenol and benzyl alcohol as intermediates, followed by C?C bond alkylation. The hydronium ions catalyzing the reactions are provided by the dissociation of water at the high temperature (523 K). Upon addition of a solid acid (HZSM-5), rates of hydrolysis and alkylation are markedly increased in proportion to the acid concentrations. In the presence of a metal (Ni/SiO2), the selective hydrogenolysis dominates for cleaving the Caliphatic?O bond. Catalyzed by the dual-functional Ni/HZSM-5, hydrogenolysis occurs as the major route rather than hydrolysis (minor). In the apolar undecane, the non-catalytic thermal pyrolysis route dominates. Hydrogenolysis of BPE appears to be the major reaction pathway in undecane in presence of Ni/SiO2 or Ni/HZSM-5, almost suppressing the radical reactions completely. The density functional theory (DFT) calculations perfectly support the proposed C?O bond cleavage mechanisms on BPE in the aqueous and apolar phases. DFT calculations show that BPE is initially protonated and subsequently hydrolyzed in the aqueous phase. The radical reaction plays a significant role for generating primary benzyl and phenoxy radicals in undecane evidenced by DFT calculation, which leads to heavier condensation products without the aid of metals for providing dissociated hydrogen radicals. J.H., L.L., and C.Z. gratefully acknowledge support from the graduate school (Faculty Graduate Center of Chemistry) of the Technische Universität München and the Elitenetzwerk Bayern (graduate school NanoCat). D.M. and J.A.L. thank the support from the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.

  8. groupe sous groupe ACHARD MATHIEU c c1

    E-print Network

    Chatterji, Indira Lara - Le Laboratoire de Mathématiques

    groupe sous groupe ACHARD MATHIEU c c1 AL MOUSAWI SOUAAD c c2 AUVARO-GIRELLI MARY-SARA c c1 BAUDE MELISSA c c2 BONO LUCA c c1 CACHOT TONY c c2 CHAMBRET CELINE c c1 FRANCISCO RODRIGUEZ STEPHANIE c c2 GAUBERT MIKE c c2 GAUTIER DE CHARNACE CORENTIN c c1 GAZAGNAIRE EVA c c2 GHIZZONI JESSICA c c1 GUIOT

  9. Facilitating room-temperature Suzuki coupling reaction with light: Mott-Schottky photocatalyst for C-C-coupling

    PubMed Central

    Li, Xin-Hao; Baar, Moritz; Blechert, Siegfried; Antonietti, Markus

    2013-01-01

    The Suzuki coupling reaction is one of the most practiced classes of catalytic C-C bond formation. The development of new means of activating molecules and bonds over old catalysts for C-C bond formation is a fundamental objective for chemists. Here, we report the room-temperature C-C bond formation over heterogeneous Pd catalysts by light-mediated catalyst activation. We employ stimulated electron transfer at the metal-semiconductor interface from optically active mesoporous carbon nitride nanorods to Pd nanoparticles. This photocatalytic pathway is highly efficient for coupling aryl halides with various coupling partners with high activity and selectivity under photo irradiation and very mild conditions.

  10. Ultrasonic cleavage of nicked DNA.

    PubMed

    Il'icheva, I A; Nechipurenko, D Yu; Grokhovsky, S L

    2009-12-01

    Structural properties of nicked dsDNA have been an object of numerous studies due to their special role in reparation processes. Here we report experimental results covering ultrasound irradiation of a nicked dsDNA fragments. We have quantitatively estimated ultrasonic cleavage rates in these fragments using the polyacrylamide gel electrophoresis. Data reveal cleavage enhancement in the regions of about 10 b. p. up and down the nick. The intensity of ultrasonic cleavage near the nick is one order of magnitude higher than intensity of ultrasonic cleavage in the same sites of the intact dsDNA fragments. At the same time, the cleavage rates in positions beyond the regions around the nick markedly grow weak comparing to the sequence-specific cleavage rates of intact dsDNA. Thus, the presence of the nick serves as an expressive structural alteration which exceeds any modulation of the structure caused by the base-pair sequence. PMID:19795921

  11. Mass spectrometric identification of the trypsin cleavage pathway in lysyl-proline containing oligotuftsin peptides.

    PubMed

    Manea, Marilena; Mezo, Gábor; Hudecz, Ferenc; Przybylski, Michael

    2007-04-01

    Trypsin cleaves specifically peptide bonds at the C-terminal side of lysine and arginine residues, except for -Arg-Pro- and -Lys-Pro- bonds which are normally resistant to proteolysis. Here we report evidence for a -Lys-Pro- tryptic cleavage in modified oligotuftsin derivatives, Ac-[TKPKG]4-NH2) (1), using high-resolution mass spectrometry and HPLC as primary methods for analysis of proteolytic reactions. The proteolytic susceptibility of -Lys-Pro- bonds was strongly dependent on flanking residues, and the flexibility of the peptide backbone might be a prerequisite for this unusual cleavage. While -Lys-Gly- bonds in 1 were rapidly cleaved, the modification of these Lys residues by the attachment of a ss-amyloid(4-10) epitope to yield -Lys(X)-Gly derivatives prevented cleavage of this bond, and provided trypsin cleavage of -Lys-Pro- bonds, the pathway of this degradation being independent on the type of Lys-N(epsilon)-side chains (acetyl group, amino acid, peptide). Substitution of the Lys residues by Ala at the P'2 positions decreased the tryptic cleavage, while replacement of the bulky side chain of Thr at the P2 positions strongly increased the cleavage of -Lys-Pro- bonds. Circular dichroism (CD) data of the modified oligotuftsin derivatives are in accord with enhanced flexibility of the peptide backbone, as a prerequisite for increased susceptibility to cleavage of -Lys-Pro- bonds. These results obtained of oligotuftsin derivatives might have implications for the proteolytic degradation of target peptides that require specific conformational preconditions. PMID:17394121

  12. Bond Dissociation Energies of Organic Molecules

    E-print Network

    Ellison, Barney

    . Introduction The making and breaking of bonds is the basis of all chemical transformation. A sound knowledge to understanding chemical processes.1 The energy required for homolytic bond cleavage at 298 K corresponds of chemical reactions for which experimental bond en- thalpies are available. One must be cautious, however

  13. Temperature effects on adsorption and diffusion dynamics of CH3CH2(ads) and H3C-C?C(ads) on Ag(111) surface and their self-coupling reactions: ab initio molecular dynamics approach.

    PubMed

    Lu, Shao-Yu; Lin, Jyh-Shing

    2014-01-14

    Density functional theory (DFT)-based molecular dynamics (DFTMD) simulations in combination with a Fourier transform of dipole moment autocorrelation function are performed to investigate the adsorption dynamics and the reaction mechanisms of self-coupling reactions of both acetylide (H3C-C(?)?C(?) (ads)) and ethyl (H3C(?)-C(?)H2(ads)) with I(ads) coadsorbed on the Ag(111) surface at various temperatures. In addition, the calculated infrared spectra of H3C-C(?)?C(?)(ads) and I coadsorbed on the Ag(111) surface indicate that the active peaks of -C(?)?C(?)- stretching are gradually merged into one peak as a result of the dominant motion of the stand-up -C-C(?)?C(?)- axis as the temperature increases from 200 K to 400 K. However, the calculated infrared spectra of H3C(?)-C(?)H2(ads) and I coadsorbed on the Ag(111) surface indicate that all the active peaks are not altered as the temperature increases from 100 K to 150 K because only one orientation of H3C(?)-C(?)H2(ads) adsorbed on the Ag(111) surface has been observed. These calculated IR spectra are in a good agreement with experimental reflection absorption infrared spectroscopy results. Furthermore, the dynamics behaviors of H3C-C(?)?C(?)(ads) and I coadsorbed on the Ag(111) surface point out the less diffusive ability of H3C-C(?)?C(?)(ads) due to the increasing s-character of C? leading to the stronger Ag-C? bond in comparison with that of H3C(?)-C(?)H2(ads) and I coadsorbed on the same surface. Finally, these DFTMD simulation results allow us to predict the energetically more favourable reaction pathways for self-coupling of both H3C-C(?)?C(?)(ads) and H3C(?)-C(?)H2(ads) adsorbed on the Ag(111) surface to form 2,4-hexadiyne (H3C-C?C-C?C-CH3(g)) and butane (CH3-CH2-CH2-CH3(g)), respectively. The calculated reaction energy barriers for both H3C-C?C-C?C-CH3(g) (1.34 eV) and CH3-CH2-CH2-CH3(g) (0.60 eV) are further employed with the Redhead analysis to estimate the desorption temperatures approximately at 510 K and 230 K, respectively, which are in a good agreement with the experimental low-coverage temperature programmed reaction spectroscopy measurements. PMID:24437901

  14. Temperature effects on adsorption and diffusion dynamics of CH3CH2(ads) and H3C-C?C(ads) on Ag(111) surface and their self-coupling reactions: Ab initio molecular dynamics approach

    NASA Astrophysics Data System (ADS)

    Lu, Shao-Yu; Lin, Jyh-Shing

    2014-01-01

    Density functional theory (DFT)-based molecular dynamics (DFTMD) simulations in combination with a Fourier transform of dipole moment autocorrelation function are performed to investigate the adsorption dynamics and the reaction mechanisms of self-coupling reactions of both acetylide (H3C-C(?)?C(?) (ads)) and ethyl (H3C(?)-C(?)H2(ads)) with I(ads) coadsorbed on the Ag(111) surface at various temperatures. In addition, the calculated infrared spectra of H3C-C(?)?C(?)(ads) and I coadsorbed on the Ag(111) surface indicate that the active peaks of -C(?)?C(?)- stretching are gradually merged into one peak as a result of the dominant motion of the stand-up -C-C(?)?C(?)- axis as the temperature increases from 200 K to 400 K. However, the calculated infrared spectra of H3C(?)-C(?)H2(ads) and I coadsorbed on the Ag(111) surface indicate that all the active peaks are not altered as the temperature increases from 100 K to 150 K because only one orientation of H3C(?)-C(?)H2(ads) adsorbed on the Ag(111) surface has been observed. These calculated IR spectra are in a good agreement with experimental reflection absorption infrared spectroscopy results. Furthermore, the dynamics behaviors of H3C-C(?)?C(?)(ads) and I coadsorbed on the Ag(111) surface point out the less diffusive ability of H3C-C(?)?C(?)(ads) due to the increasing s-character of C? leading to the stronger Ag-C? bond in comparison with that of H3C(?)-C(?)H2(ads) and I coadsorbed on the same surface. Finally, these DFTMD simulation results allow us to predict the energetically more favourable reaction pathways for self-coupling of both H3C-C(?)?C(?)(ads) and H3C(?)-C(?)H2(ads) adsorbed on the Ag(111) surface to form 2,4-hexadiyne (H3C-C?C-C?C-CH3(g)) and butane (CH3-CH2-CH2-CH3(g)), respectively. The calculated reaction energy barriers for both H3C-C?C-C?C-CH3(g) (1.34 eV) and CH3-CH2-CH2-CH3(g) (0.60 eV) are further employed with the Redhead analysis to estimate the desorption temperatures approximately at 510 K and 230 K, respectively, which are in a good agreement with the experimental low-coverage temperature programmed reaction spectroscopy measurements.

  15. Invasive cleavage of nucleic acids

    DOEpatents

    Prudent, James R. (Madison, WI); Hall, Jeff G. (Madison, WI); Lyamichev, Victor I. (Madison, WI); Brow, Mary Ann D. (Madison, WI); Dahlberg, James E. (Madison, WI)

    2002-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  16. Invasive cleavage of nucleic acids

    DOEpatents

    Prudent, James R. (Madison, WI); Hall, Jeff G. (Madison, WI); Lyamichev, Victor I. (Madison, WI); Brow, Mary Ann D. (Madison, WI); Dahlberg, James E. (Madison, WI)

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  17. Palladium-catalyzed allylic alkylation via decarboxylative and retro-Claisen C-C cleavage methods

    E-print Network

    Grenning, Alexander James

    2012-05-31

    an oxidative addition on the allylic acetate transforming it into a Pd-?-allyl complex, which is a good electrophile. Concurrently, an external base deprotonates the active methylene compound S1a. These activated intermediates then undergo a coupling reaction...: an allyl ?-EWG acetate (S2a) undergoes oxidative addition with Pd(0) generating a carboxylate (S2b) and a Pd-?-allyl complex. The carboxylate, substituted with an EWG, will decarboxylate to generate the active nucleophile (S2c). Though not necessarily a...

  18. Mild P-P bond cleavage in the methyldiphosphenyl complex [Mo2Cp2(?-PCy2)(?-?(2):?(2)-P2Me)(CO)2] to give novel phosphide-bridged trinuclear derivatives.

    PubMed

    Alvarez, M Angeles; García, M Esther; García-Vivó, Daniel; Lozano, Raquel; Ramos, Alberto; Ruiz, Miguel A

    2014-10-20

    Reactions of the title diphosphenyl complex with [Fe2(CO)9] and [W(CO)4(THF)2] gave the trinuclear species [Mo2FeCp2(?3-P)(?-PCy2)(?3-PMe)(CO)5] and [Mo2WCp2(?3-P)(?-PCy2)(?3-PMe)(CO)6] following from formal insertion of the 14-electron fragments Fe(CO)3 and W(CO)4, respectively, in the P-P bond of the diphosphenyl ligand and formation of a new heterometallic bond [Mo-Fe = 2.9294(6) Å and Mo-W = 3.146(1) Å]. Reactions of the diphosphenyl complex with the tetrahydrofuran adducts [MLn(THF)] (MLn = MnCp'(CO)2, W(CO)5) led instead to trinuclear diphosphenyl complexes [Mo2MCp2(?-PCy2)(?3-?(2):?(2):?(1)-P2Me)(CO)2Ln] following from coordination in each case of the corresponding 16-electron fragment MLn to the lone-pair-bearing P atom of the P2Me ligand. However, these diphosphenyl complexes were unstable and decomposed at room temperature or under mild heating by the release of methylphosphinidene (PMe), to give the corresponding derivatives [Mo2MCp2(?3-P)(?-PCy2)(CO)2Ln] displaying trigonal-planar phosphide ligands, giving rise to strongly deshielded (31)P NMR resonances (?P ca. 1100 ppm), while being involved in strong ? bonding with the unsaturated Mo2 center of these molecules [Mo-Mo = 2.749(1) Å and Mo-P = ca. 2.30 Å when M = W]. An isolobal analogy could be established between the P?MLn fragments in these products and a carbyne ligand (CR), supported by density functional theory calculations on the tungsten compound, which also enabled an easy interpretation and prediction of their chemical behavior. Thus, the manganese complex could be reversibly carbonylated (pCO = ca. 3 atm, 293 K) to give the corresponding electron-precise pentacarbonyl [MnMo2Cp2Cp'(?3-P)(?-PCy2)(CO)5] [Mo-Mo = 3.1318(7) Å], a process also involving a trans-to-cis rearrangement of the Mo2Cp2 subunit. On the other hand, decarbonylation of the tungsten complex was accomplished in a refluxing toluene solution to give the hexacarbonyl [Mo2WCp2(?3-P)(?-PCy2)(?-CO)(CO)5], a derivative containing an unsaturated 30-electron dimolybdenum center with an intermetallic triple bond. PMID:25300937

  19. New Regioselectivity in the Cleavage of Histidine-Containing Peptides by Palladium(II) Complexes Studied by Kinetic Experiments

    E-print Network

    Ullmann, G. Matthias

    New Regioselectivity in the Cleavage of Histidine-Containing Peptides by Palladium(II) Complexes, Germany ReceiVed July 6, 1998 Abstract: Palladium(II) complexes promote hydrolytic cleavage of amide bonds at the N-1 or N-3 atom of imidazole. Methylation controls coordination of imidazole to palladium

  20. Design and synthesis of quasi-diastereomeric molecules with unchanging central, regenerating axial and switchable helical chirality via cleavage and formation of Ni(II)–O and Ni(II)–N coordination bonds

    PubMed Central

    Aceña, José Luis; Ueki, Hisanori; Han, Jianlin

    2012-01-01

    Summary We describe herein the design and synthesis of asymmetric, pentadentate ligands, which are able to coordinate to Ni(II) cations leading to quasi-diastereomeric complexes displaying two new elements of chirality: stereogenic axis and helix along with configurational stabilization of the stereogenic center on the nitrogen. Due to the stereocongested structural characteristics of the corresponding Ni(II) complexes, the formation of quasi-diastereomeric products is highly stereoselective providing formation of only two, (R a*,M h*,R c*) and (R a*,P h*,R c*), out of the four possible stereochemical combinations. The reversible quasi-diastereomeric transformation between the products (R a*,M h*,R c*) and (R a*,P h*,R c*) occurs by intramolecular trans-coordination of Ni–NH and Ni–O bonds providing a basis for a chiral switch model. PMID:23209532

  1. Enhanced RNA cleavage within bulge-loops by an artificial ribonuclease

    PubMed Central

    Kuznetsova, Irina L.; Zenkova, Marina A.; Gross, Hans J.; Vlassov, Valentin V.

    2005-01-01

    Cleavage of phosphodiester bonds by small ribonuclease mimics within different bulge-loops of RNA was investigated. Bulge-loops of different size (1–7 nt) and sequence composition were formed in a 3? terminal fragment of influenza virus M2 RNA (96 nt) by hybridization of complementary oligodeoxynucleotides. Small bulges (up to 4 nt) were readily formed upon oligonucleotide hybridization, whereas hybridization of the RNA to the oligonucleotides designed to produce larger bulges resulted in formation of several alternative structures. A synthetic ribonuclease mimic displaying Pyr–Pu cleavage specificity cleaved CpA motifs located within bulges faster than similar motifs within the rest of the RNA. In the presence of 10 mM MgCl2, 75% of the cleavage products resulted from the attack of this motif. Thus, selective RNA cleavage at a single target phosphodiester bond was achieved by using bulge forming oligonucleotides and a small ribonuclease A mimic. PMID:15731340

  2. Exotic c c-bar Mesons

    E-print Network

    Eric Braaten

    2008-08-21

    A surprising number of new c c-bar mesons with masses above the D D-bar threshold have been discovered at the B factories. Some of them are ordinary charmonium states, but others are definitely exotic mesons. The current theoretical status of the new c c-bar mesons is summarized.

  3. 99. Catalog HHistory 1, C.C.C., 23 Guard Rail Construction, Negative ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    99. Catalog H-History 1, C.C.C., 23 Guard Rail Construction, Negative No. P455e (Photographer and date unknown) GUARD RAIL INSTALLATION. - Skyline Drive, From Front Royal, VA to Rockfish Gap, VA , Luray, Page County, VA

  4. 98. Catalog HHistory 1, C.C.C., 19 Tree Planting, Negative No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    98. Catalog H-History 1, C.C.C., 19 Tree Planting, Negative No. P 474c (Photographer and date unknown) TRANSPLANTING TREE. - Skyline Drive, From Front Royal, VA to Rockfish Gap, VA , Luray, Page County, VA

  5. 100. Catalog HHistory 1, C.C.C., 34 Landscaping, Negative No. P ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    100. Catalog H-History 1, C.C.C., 34 Landscaping, Negative No. P 733c (Photographer and date unknown) SLOPE MAINTENANCE WORK BY CCC. - Skyline Drive, From Front Royal, VA to Rockfish Gap, VA , Luray, Page County, VA

  6. 101. Catalog HHistory 1, C.C.C., 34 Landscaping, Negative No. 1340 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    101. Catalog H-History 1, C.C.C., 34 Landscaping, Negative No. 1340 (Photographer and date unknown) BANK BLENDING WORK BY CCC. - Skyline Drive, From Front Royal, VA to Rockfish Gap, VA , Luray, Page County, VA

  7. Dinitrogen cleavage and hydrogenation by a trinuclear titanium polyhydride complex.

    PubMed

    Shima, Takanori; Hu, Shaowei; Luo, Gen; Kang, Xiaohui; Luo, Yi; Hou, Zhaomin

    2013-06-28

    Both the Haber-Bosch and biological ammonia syntheses are thought to rely on the cooperation of multiple metals in breaking the strong N?N triple bond and forming an N-H bond. This has spurred investigations of the reactivity of molecular multimetallic hydrides with dinitrogen. We report here the reaction of a trinuclear titanium polyhydride complex with dinitrogen, which induces dinitrogen cleavage and partial hydrogenation at ambient temperature and pressure. By (1)H and (15)N nuclear magnetic resonance, x-ray crystallographic, and computational studies of some key reaction steps and products, we have determined that the dinitrogen (N2) reduction proceeds sequentially through scission of a N2 molecule bonded to three Ti atoms in a ?-?(1):?(2):?(2)-end-on-side-on fashion to give a ?2-N/?3-N dinitrido species, followed by intramolecular hydrogen migration from Ti to the ?2-N nitrido unit. PMID:23812710

  8. Mapping the Globe with C & C Technologies

    NASA Astrophysics Data System (ADS)

    Kleiner, A. A.

    2001-12-01

    C & C Technologies is an international survey and mapping company with an entrepreneurial spirit that is evident throughout. C & C was recently awarded the MTS (Marine Technology Society) ROV Committee Corporate Excellence Award in recognition of their pioneering spirit displayed by the introduction of the HUGIN 3000 Autonomous Underwater Vehicle (AUV) to the offshore industry. This presentation will outline the wide variety of global mapping projects that C & C has performed for government, private sector, and academia. These include high-resolution mapping of Cater Lake, the Panama Canal, Antarctica, Lake Tahoe, and the HUGIN 3000? discovery of the German submarine U-166 in 5000 feet of water in the Gulf of Mexico. Adacemic disciplines required to support these technical challenges will be characterized and job opportunities in this emerging field will be addressed.

  9. Determination of the orientation of OH bond axes in layer silicates by infrared absorption

    USGS Publications Warehouse

    Serratosa, J.M.; Bradley, W.F.

    1958-01-01

    It is observed that, among the micas and related crystallizations, trioctahedral compositions exhibit an OH bond axis normal to the cleavage flake, with an infrared absorption frequency near 3700 cm.-1, but that dioctahedral compositions exhibit OH bond axes near the plane of the cleavage flake and of lesser absorption frequencies.

  10. 4698 Biochemistry 1993, 32, 4698-4701 Sequence-Specific Cleavage of DNA via Nucleophilic Attack of Hydrogen

    E-print Network

    Tullius, Thomas D.

    of Hydrogen Peroxide, Assisted by Flp Recombinaset Amy S. Kimball,*Jehee Lee,o Makkuni Jayaram,s and Thomas D ABSTRACT: Hydrogen peroxide is capable of effecting the cleavage of a specific phosphodiester bond in DNA phosphodiester bond in DNA. We perform this reaction using hydrogen peroxide in concertwith the Flprecombinaseof

  11. 104. Catalog HHistory 1, C.C.C., 73 Picnic Furniture Construction, Negative ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    104. Catalog H-History 1, C.C.C., 73 Picnic Furniture Construction, Negative No. 8821 ca. 1936 WOOD UTILIZATION. COMPLETED RUSTIC BENCH MADE BY CCC ENROLLEES AT CAMP NP-3 FOR USE AT PARKING OVERLOOKS AND PICNIC GROUNDS. NOTE SAW IN BACKGROUND USED FOR HALVING CHESTNUT. - Skyline Drive, From Front Royal, VA to Rockfish Gap, VA , Luray, Page County, VA

  12. 102. Catalog HHistory 1, C.C.C., 34 Landscaping, Negative No. 6040a ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    102. Catalog H-History 1, C.C.C., 34 Landscaping, Negative No. 6040a (Photographer and date unknown) BEAUTIFICATION PROGRAM STARTED AS SOON AS GRADING ALONG THE DRIVE WAS COMPLETED. CCC CAMP 3 SHOWN PLANTING LAUREL. - Skyline Drive, From Front Royal, VA to Rockfish Gap, VA , Luray, Page County, VA

  13. 103. Catalog HHistory 1, C.C.C., 58 Landscaping, Negative No. 870 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    103. Catalog H-History 1, C.C.C., 58 Landscaping, Negative No. 870 10 ca. 1936 PROPAGATION AND PLANTING. ROOTED PLANTS TRANSPLANTED FROM HOT BEDS TO CANS TO SHADED BEDS IN PREPARATION FOR PLANTING ON ROAD SLOPES. NURSERY AT NORTH ENTRANCE. - Skyline Drive, From Front Royal, VA to Rockfish Gap, VA , Luray, Page County, VA

  14. Carbon-Fluorine Bond Cleavage by Zirconium Metal Hydride Complexes

    E-print Network

    Jones, William D.

    metallocenes.17 They have shown that octafluo- ronaphthalene reacts with Cp2ZrCl2 in THF with Mg as catalysts for the aromatization of cyclic perfluorocarbons at room temperature (eq 2).18 Several prior

  15. (669)revision:2011-11-07modified:2011-11-08 NON COHEN ORACLE C.C.C

    E-print Network

    Shelah, Saharon

    (669)revision:2011-11-07modified:2011-11-08 NON COHEN ORACLE C.C.C SH669 SAHARON SHELAH Abstract. The oracle c.c.c. is closely related to Cohen forcing. During an iteration we can "omit a type"; i the parallel of the oracle c.c.c. and end with a criterion for extracting a subforcing (not a complete

  16. Copper-catalyzed, hypervalent iodine mediated C[double bond, length as m-dash]C bond activation of enaminones for the synthesis of ?-keto amides.

    PubMed

    Wan, Jie-Ping; Lin, Yunfang; Cao, Xiaoji; Liu, Yunyun; Wei, Li

    2016-01-01

    An unprecedented C[double bond, length as m-dash]C bond cleavage of enaminones has been realized by means of copper catalysis in the presence of hypervalent iodine (PhI(OAc)2). The cascade transformation based on this bond cleavage leads to the synthesis of various ?-keto amides. Isotope labeling experiments suggest that water has acted as a source of oxygen atoms during the generation of the new carbonyl group. PMID:26612528

  17. Novel carbon–carbon bond formations for biocatalysis

    PubMed Central

    Resch, Verena; Schrittwieser, Joerg H; Siirola, Elina; Kroutil, Wolfgang

    2011-01-01

    Carbon–carbon bond formation is the key transformation in organic synthesis to set up the carbon backbone of organic molecules. However, only a limited number of enzymatic C–C bond forming reactions have been applied in biocatalytic organic synthesis. Recently, further name reactions have been accomplished for the first time employing enzymes on a preparative scale, for instance the Stetter and Pictet–Spengler reaction or oxidative C–C bond formation. Furthermore, novel enzymatic C–C bond forming reactions have been identified like benzylation of aromatics, intermolecular Diels-Alder or reductive coupling of carbon monoxide. PMID:21354781

  18. Evaluation by Rocket Combustor of C/C Composite Cooled Structure Using Metallic Cooling Tubes

    NASA Astrophysics Data System (ADS)

    Takegoshi, Masao; Ono, Fumiei; Ueda, Shuichi; Saito, Toshihito; Hayasaka, Osamu

    In this study, the cooling performance of a C/C composite material structure with metallic cooling tubes fixed by elastic force without chemical bonding was evaluated experimentally using combustion gas in a rocket combustor. The C/C composite chamber was covered by a stainless steel outer shell to maintain its airtightness. Gaseous hydrogen as a fuel and gaseous oxygen as an oxidizer were used for the heating test. The surface of these C/C composites was maintained below 1500 K when the combustion gas temperature was about 2800 K and the heat flux to the combustion chamber wall was about 9 MW/m2. No thermal damage was observed on the stainless steel tubes that were in contact with the C/C composite materials. The results of the heating test showed that such a metallic tube-cooled C/C composite structure is able to control the surface temperature as a cooling structure (also as a heat exchanger) as well as indicated the possibility of reducing the amount of coolant even if the thermal load to the engine is high. Thus, application of this metallic tube-cooled C/C composite structure to reusable engines such as a rocket-ramjet combined-cycle engine is expected.

  19. Hydrogen Induced C-C, C-N, & C-S Bond Activation on Pt & Ni Surfaces

    SciTech Connect

    Gland, J. L.

    2004-07-29

    The primary reactions investigated were chosen based on their importance in fuel and chemical production as well as in environmental remediation, and include reactions for hydrodesulfurization (HDS), hydrodenitrogenation (HDN), carbon-carbon hydrogenolysis, and hydrocarbon oxidation.

  20. Biomass Oxidation: Formyl C-H Bond Activation by the Surface Lattice Oxygen of Regenerative CuO Nanoleaves.

    PubMed

    Amaniampong, Prince N; Trinh, Quang Thang; Wang, Bo; Borgna, Armando; Yang, Yanhui; Mushrif, Samir H

    2015-07-27

    An integrated experimental and computational investigation reveals that surface lattice oxygen of copper oxide (CuO) nanoleaves activates the formyl C-H bond in glucose and incorporates itself into the glucose molecule to oxidize it to gluconic acid. The reduced CuO catalyst regains its structure, morphology, and activity upon reoxidation. The activity of lattice oxygen is shown to be superior to that of the chemisorbed oxygen on the metal surface and the hydrogen abstraction ability of the catalyst is correlated with the adsorption energy. Based on the present investigation, it is suggested that surface lattice oxygen is critical for the oxidation of glucose to gluconic acid, without further breaking down the glucose molecule into smaller fragments, because of C-C cleavage. Using CuO nanoleaves as catalyst, an excellent yield of gluconic acid is also obtained for the direct oxidation of cellobiose and polymeric cellulose, as biomass substrates. PMID:26119659

  1. Tuning of the Copper–Thioether Bond in Tetradentate N3S(thioether) Ligands; O–O Bond Reductive Cleavage via a [CuII2(?-1,2-peroxo)]2+/[CuIII2(?-oxo)2]2+ Equilibrium

    PubMed Central

    2015-01-01

    Current interest in copper/dioxygen reactivity includes the influence of thioether sulfur ligation, as it concerns the formation, structures, and properties of derived copper-dioxygen complexes. Here, we report on the chemistry of {L-CuI}2-(O2) species L = DMMESE, DMMESP, and DMMESDP, which are N3S(thioether)-based ligands varied in the nature of a substituent on the S atom, along with a related N3O(ether) (EOE) ligand. CuI and CuII complexes have been synthesized and crystallographically characterized. Copper(I) complexes are dimeric in the solid state, [{L-CuI}2](B(C6F5)4)2, however are shown by diffusion-ordered NMR spectroscopy to be mononuclear in solution. Copper(II) complexes with a general formulation [L-CuII(X)]n+ {X = ClO4–, n = 1, or X = H2O, n = 2} exhibit distorted square pyramidal coordination geometries and progressively weaker axial thioether ligation across the series. Oxygenation (?130 °C) of {(DMMESE)CuI}+ results in the formation of a trans-?-1,2-peroxodicopper(II) species [{(DMMESE)CuII}2(?-1,2-O22–)]2+ (1P). Weakening the Cu–S bond via a change to the thioether donor found in DMMESP leads to the initial formation of [{(DMMESP)CuII}2(?-1,2-O22–)]2+ (2P) that subsequently isomerizes to a bis-?-oxodicopper(III) complex, [{(DMMESP)CuIII}2(?-O2–)2]2+ (2O), with 2P and 2O in equilibrium (Keq = [2O]/[2P] = 2.6 at ?130 °C). Formulations for these Cu/O2 adducts were confirmed by resonance Raman (rR) spectroscopy. This solution mixture is sensitive to the addition of methylsulfonate, which shifts the equilibrium toward the bis-?-oxo isomer. Further weakening of the Cu–S bond in DMMESDP or substitution with an ether donor in DMMEOE leads to only a bis-?-oxo species (3O and 4O, respectively). Reactivity studies indicate that the bis-?-oxodicopper(III) species (2O, 3O) and not the trans-peroxo isomers (1P and 2P) are responsible for the observed ligand sulfoxidation. Our findings concerning the existence of the 2P/2O equilibrium contrast with previously established ligand-CuI/O2 reactivity and possible implications are discussed. PMID:24854766

  2. Bent Bonds and Multiple Bonds.

    ERIC Educational Resources Information Center

    Robinson, Edward A.; Gillespie, Ronald J.

    1980-01-01

    Considers carbon-carbon multiple bonds in terms of Pauling's bent bond model, which allows direct calculation of double and triple bonds from the length of a CC single bond. Lengths of these multiple bonds are estimated from direct measurements on "bent-bond" models constructed of plastic tubing and standard kits. (CS)

  3. IBM XL C/C++ Enterprise Edition V8.0 for AIX Getting Started with XL C/C++

    E-print Network

    Hickman, Mark

    IBM XL C/C++ Enterprise Edition V8.0 for AIX Getting Started with XL C/C++ SC09-7997-00 #12;#12;IBM XL C/C++ Enterprise Edition V8.0 for AIX Getting Started with XL C/C++ SC09-7997-00 #12;Note! Before "Notices" on page 37. First Edition (September 2005) This edition applies to IBM® XL C/C++ Enterprise

  4. On the mechanism of RNA phosphodiester backbone cleavage in the absence of solvent

    PubMed Central

    Riml, Christian; Glasner, Heidelinde; Rodgers, M. T.; Micura, Ronald; Breuker, Kathrin

    2015-01-01

    Ribonucleic acid (RNA) modifications play an important role in the regulation of gene expression and the development of RNA-based therapeutics, but their identification, localization and relative quantitation by conventional biochemical methods can be quite challenging. As a promising alternative, mass spectrometry (MS) based approaches that involve RNA dissociation in ‘top-down’ strategies are currently being developed. For this purpose, it is essential to understand the dissociation mechanisms of unmodified and posttranscriptionally or synthetically modified RNA. Here, we have studied the effect of select nucleobase, ribose and backbone modifications on phosphodiester bond cleavage in collisionally activated dissociation (CAD) of positively and negatively charged RNA. We found that CAD of RNA is a stepwise reaction that is facilitated by, but does not require, the presence of positive charge. Preferred backbone cleavage next to adenosine and guanosine in CAD of (M+nH)n+ and (M?nH)n? ions, respectively, is based on hydrogen bonding between nucleobase and phosphodiester moieties. Moreover, CAD of RNA involves an intermediate that is sufficiently stable to survive extension of the RNA structure and intramolecular proton redistribution according to simple Coulombic repulsion prior to backbone cleavage into c and y ions from phosphodiester bond cleavage. PMID:25904631

  5. Electron Transfer Dissociation (ETD) of Peptides Containing Intrachain Disulfide Bonds

    NASA Astrophysics Data System (ADS)

    Cole, Scott R.; Ma, Xiaoxiao; Zhang, Xinrong; Xia, Yu

    2012-02-01

    The fragmentation chemistry of peptides containing intrachain disulfide bonds was investigated under electron transfer dissociation (ETD) conditions. Fragments within the cyclic region of the peptide backbone due to intrachain disulfide bond formation were observed, including: c (odd electron), z (even electron), c-33 Da, z + 33 Da, c + 32 Da, and z-32 Da types of ions. The presence of these ions indicated cleavages both at the disulfide bond and the N-C? backbone from a single electron transfer event. Mechanistic studies supported a mechanism whereby the N-C? bond was cleaved first, and radical-driven reactions caused cleavage at either an S-S bond or an S-C bond within cysteinyl residues. Direct ETD at the disulfide linkage was also observed, correlating with signature loss of 33 Da (SH) from the charge-reduced peptide ions. Initial ETD cleavage at the disulfide bond was found to be promoted amongst peptides ions of lower charge states, while backbone fragmentation was more abundant for higher charge states. The capability of inducing both backbone and disulfide bond cleavages from ETD could be particularly useful for sequencing peptides containing intact intrachain disulfide bonds. ETD of the 13 peptides studied herein all showed substantial sequence coverage, accounting for 75%-100% of possible backbone fragmentation.

  6. Pd(II)-Catalyzed C–H Activation/C–C Cross-Coupling Reactions: Versatility and Practicality

    PubMed Central

    Chen, Xiao; Engle, Keary M.; Wang, Dong-Hui; Yu, Jin-Quan

    2009-01-01

    In the past decade, palladium-catalyzed C–H activation/C–C bond forming reactions have emerged as promising new catalytic transformations; however, development in this field is still at an early stage compared to the state of the art in cross-coupling reactions using aryl and alkyl halides. This Review begins with a brief introduction of four extensively investigated modes of catalysis for forming C–C bonds from C–H bonds: Pd(II)/Pd(0), Pd(II)/Pd(IV), Pd(0)/Pd(II)/Pd(IV) and Pd(0)/Pd(II) catalysis. More detailed discussion is then directed towards the recent development of Pd(II)-catalyzed coupling of C–H bonds with organometallic reagents through a Pd(II)/Pd(0) catalytic cycle. Despite much progress made to date, improving the versatility and practicality of this new reaction remains a tremendous challenge. PMID:19557755

  7. Oxygenative aromatic ring cleavage of 2-aminophenol with dioxygen catalyzed by a nonheme iron complex: catalytic functional model of 2-aminophenol dioxygenases.

    PubMed

    Chatterjee, Sayanti; Paine, Tapan Kanti

    2015-02-16

    2-Aminophenol dioxygenases catalyze the oxidative ring cleavage of 2-aminophenol to 2-picolinic acid using O2 as the oxidant. Inspired by the reaction catalyzed by these nonheme iron enzymes, a biomimetic iron(III)-2-amidophenolate complex, [(tBu-L(Me))Fe(III)(4,6-di-tBu-AP)](ClO4) (1a) of a facial tridentate ligand (tBu-L(Me) = 1-[bis(6-methyl-pyridin-2-yl)-methyl]-3-tert-butyl-urea and 4,6-di-tBu-H2AP = 2-amino-4,6-di-tert-butylphenol) bearing a urea group have been isolated. The complex reacts with O2 to cleave the C-C bond of 4,6-di-tBu-AP regioselectively and catalytically to afford 4,6-di-tert-butyl-2-picolinic acid. An iron(II)-chloro complex [(tBu-L(Me))Fe(II)Cl2(MeOH)] (1) of the same ligand also cleaves the aromatic ring of 4,6-di-tBu-AP catalytically in the reaction with O2. To assess the effect of urea group on the ring cleavage reaction of 2-aminophenol, two iron complexes, [(BA-L(Me))2Fe(II)2Cl4] (2) and [(BA-L(Me))Fe(III)(4,6-di-tBu-AP)](ClO4) (2a), of a tridentate ligand devoid of urea group (BA-L(Me) = benzyl-[bis(6-methyl-pyridin-2-yl)-methyl]-amine) have been isolated and characterized. Although the iron complexes (1 and 1a) of the ligand with urea group display catalytic reaction, the iron complexes (2 and 2a) of the ligand without urea group do not exhibit catalytic aromatic ring fission reactivity. The results support the role of urea group in directing the catalytic reactivity exhibited by 1 and 1a. PMID:25646806

  8. C.C. Berndt: Professional 1 Following your Passion while

    E-print Network

    Alpay, S. Pamir

    C.C. Berndt: Professional 1 4/20/12 1 Following your Passion while Navigating the Bumps in the Road Chris Berndt Swinburne University of Technology; Melbourne Stony Brook University (SBU); NY-USA #12;C.C. Berndt: Professional Sydney Melbourne Where am I? Brisbane 2 2 #12;C.C. Berndt: Professional 3 85 km #1

  9. Unexpected relationship between interlayer distances and surface/cleavage energies in ?-TiAl: density functional study.

    PubMed

    Wang, Lu; Shang, Jia-Xiang; Wang, Fu-He; Zhang, Yue; Chroneos, Alexander

    2011-07-01

    Density functional calculations were performed to study the ?-TiAl (001), (100), (110) and (111) surfaces. The (100) surface is the most stable under Ti-rich conditions, while the Al-termination (110) surface becomes the most stable with the increase of Al chemical potential. We calculate that in ?-TiAl intermetallic compound the larger the interlayer distance, the larger the surface energy and cleavage energy. This is different from the situation in a pure metal. This phenomenon can be explained by the analysis of the bonding characteristics in ?-TiAl. In particular there are both metallic and covalent bonds in ?-TiAl, and the strongest covalent bonds mainly focus on the center of three Ti-Al-Ti atoms. It is the covalent bonds that affect greatly the cleavage energy, the surface energy and the surface stability. PMID:21673399

  10. Unexpected relationship between interlayer distances and surface/cleavage energies in ?-TiAl: density functional study

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Shang, Jia-Xiang; Wang, Fu-He; Zhang, Yue; Chroneos, Alexander

    2011-07-01

    Density functional calculations were performed to study the ?-TiAl (001), (100), (110) and (111) surfaces. The (100) surface is the most stable under Ti-rich conditions, while the Al-termination (110) surface becomes the most stable with the increase of Al chemical potential. We calculate that in ?-TiAl intermetallic compound the larger the interlayer distance, the larger the surface energy and cleavage energy. This is different from the situation in a pure metal. This phenomenon can be explained by the analysis of the bonding characteristics in ?-TiAl. In particular there are both metallic and covalent bonds in ?-TiAl, and the strongest covalent bonds mainly focus on the center of three Ti-Al-Ti atoms. It is the covalent bonds that affect greatly the cleavage energy, the surface energy and the surface stability.

  11. C-C Activation in Biphenylene. Synthesis, Structure, and Reactivity of (C5Me5)2M2(2,2-biphenyl) (M ) Rh, Co)

    E-print Network

    Jones, William D.

    C-C Activation in Biphenylene. Synthesis, Structure, and Reactivity of (C5Me5)2M2(2,2-biphenyl) (M cleavage of biphenylene was achieved with (C5Me5)M(C2H4)2 (M ) Rh, Co) to give the bimetallic species (C5Me on both binuclear species, and the energy barrier for interconversion of the two (C5Me5) fragments

  12. Control of blood proteins by functional disulfide bonds

    PubMed Central

    Butera, Diego; Cook, Kristina M.; Chiu, Joyce; Wong, Jason W. H.

    2014-01-01

    Most proteins in nature are chemically modified after they are made to control how, when, and where they function. The 3 core features of proteins are posttranslationally modified: amino acid side chains can be modified, peptide bonds can be cleaved or isomerized, and disulfide bonds can be cleaved. Cleavage of peptide bonds is a major mechanism of protein control in the circulation, as exemplified by activation of the blood coagulation and complement zymogens. Cleavage of disulfide bonds is emerging as another important mechanism of protein control in the circulation. Recent advances in our understanding of control of soluble blood proteins and blood cell receptors by functional disulfide bonds is discussed as is how these bonds are being identified and studied. PMID:24523239

  13. Formation of cleavage products by autoxidation of lycopene.

    PubMed

    Kim, S J; Nara, E; Kobayashi, H; Terao, J; Nagao, A

    2001-02-01

    The cleavage products formed by autoxidation of lycopene were evaluated in order to elucidate possible oxidation products of lycopene in biological tissues. Lycopene solubilized at 50 microM in toluene, aqueous Tween 40, or liposomal suspension was oxidized by incubating at 37 degrees C for 72 h. Among a number of oxidation products formed, eight products in the carbonyl compound fraction were identified as 3,7,11 -trimethyl-2,4,6,10-dodecatetraen-1-al, 6,10,14-trimethyl-3,5,7,9,13-pentadecapentaen-2-one, acycloretinal, apo-14'-lycopenal, apo-12'-lycopenal, apo-10'-lycopenal, apo-8'-lycopenal, and apo-6'-lycopenal. These correspond to a series of products formed by cleavage in the respective 11 conjugated double bonds of lycopene. The maximal formation of acycloretinal was 135 nM in toluene, 49 nM in aqueous Tween 40, and 64 nM in liposomal suspension. Acycloretinoic acid was also formed by autoxidation of lycopene, although its formation was lower in the aqueous media than in toluene. The pig liver homogenate had the ability to convert acycloretinal to acycloretinoic acid, comparable to the conversion of all-transretinal to all-trans-retinoic acid. These results suggest that lycopene might be cleaved to a series of apolycopenals and short-chain carbonyl compounds under the oxidative conditions in biological tissues and that acycloretinal is further enzymatically converted to acycloretinoic acid. PMID:11269700

  14. Event anisotropy in 4.2A GeV/c C+C collisions

    E-print Network

    Lj. Simic; J. Milosevic

    2001-06-20

    The directed and elliptic flow of protons and negative pions in 4.2A GeV/c C+C collisions is studied using the Fourier analysis of azimuthal distributions. It is found that the protons exhibit pronounced directed flow, while the flow of pions is either non existent or too weak to be detected experimentally. Also, it is found that in the entire rapidity interval the elliptic flow is very small if not zero. These results are confirmed by the Quark-Gluon-String Model (QGSM) and the relativistic transport model (ART 1.0), except that these models predict very weak antiflow of pions. The more detailed comparison with the QGSM suggests that the decay of resonances and rescattering of secondaries dominantly determine the proton and negative pion flow at this energy.

  15. The competition between Si-Si and Si-C cleavage in functionalised oligosilanes: their reactivity with elemental lithium.

    PubMed

    Däschlein, Christian; Strohmann, Carsten

    2010-02-28

    The reaction of aryl-substituted disilanes with elemental lithium is a common method for the preparation of lithiosilanes and the subsequent synthesis of functionalised oligosilanes, especially of enantiomerically pure compounds. A series of alkyl- and arylsubstituted di- and trisilanes has been investigated with respect to their reactivity against elemental lithium. Thereby, depending on the substituents, silicon-silicon bond cleavage of the central Si-Si unit and/or silicon-carbon bond cleavage to arenes are observed. Quantum chemical studies provide a deeper insight into the ongoing processes. The reactive centre can be estimated by both, bond elongation after electron transfer and frontier orbital interactions (pi-bonding and sigma-antibonding part). Aromatic substituents at the silicon atoms proved to be necessary for the processing of any cleavage reaction in the studied systems by stabilising the radical anion after electron transfer at the corresponding di- or trisilane. Yet, selective cleavage reactions do not depend on the number of arenes. PMID:20148226

  16. Measurements of $?(3686) \\to K^{-} ?\\bar?^{+} +c.c.$ and $?(3686) \\to ?K^{-} ?\\bar?^{+} +c.c$

    E-print Network

    BESIII Collaboration; M. Ablikim; M. N. Achasov; X. C. Ai; O. Albayrak; M. Albrecht; D. J. Ambrose; A. Amoroso; F. F. An; Q. An; J. Z. Bai; R. Baldini Ferroli; Y. Ban; D. W. Bennett; J. V. Bennett; M. Bertani; D. Bettoni; J. M. Bian; F. Bianchi; E. Boger; O. Bondarenko; I. Boyko; R. A. Briere; H. Cai; X. Cai; O. Cakir; A. Calcaterra; G. F. Cao; S. A. Cetin; J. F. Chang; G. Chelkov; G. Chen; H. S. Chen; H. Y. Chen; J. C. Chen; M. L. Chen; S. J. Chen; X. Chen; X. R. Chen; Y. B. Chen; H. P. Cheng; X. K. Chu; G. Cibinetto; D. Cronin-Hennessy; H. L. Dai; J. P. Dai; A. Dbeyssi; D. Dedovich; Z. Y. Deng; A. Denig; I. Denysenko; M. Destefanis; F. DeMori; Y. Ding; C. Dong; J. Dong; L. Y. Dong; M. Y. Dong; S. X. Du; P. F. Duan; J. Z. Fan; J. Fang; S. S. Fang; X. Fang; Y. Fang; L. Fava; F. Feldbauer; G. Felici; C. Q. Feng; E. Fioravanti; M. Fritsch; C. D. Fu; Q. Gao; X. Y. Gao; Y. Gao; Z. Gao; I. Garzia; C. Geng; K. Goetzen; W. X. Gong; W. Gradl; M. Greco; M. H. Gu; Y. T. Gu; Y. H. Guan; A. Q. Guo; L. B. Guo; Y. Guo; Y. P. Guo; Z. Haddadi; A. Hafner; S. Han; Y. L. Han; X. Q. Hao; F. A. Harris; K. L. He; Z. Y. He; T. Held; Y. K. Heng; Z. L. Hou; C. Hu; H. M. Hu; J. F. Hu; T. Hu; Y. Hu; G. M. Huang; G. S. Huang; H. P. Huang; J. S. Huang; X. T. Huang; Y. Huang; T. Hussain; Q. Ji; Q. P. Ji; X. B. Ji; X. L. Ji; L. L. Jiang; L. W. Jiang; X. S. Jiang; J. B. Jiao; Z. Jiao; D. P. Jin; S. Jin; T. Johansson; A. Julin; N. Kalantar-Nayestanaki; X. L. Kang; X. S. Kang; M. Kavatsyuk; B. C. Ke; R. Kliemt; B. Kloss; O. B. Kolcu; B. Kopf; M. Kornicer; W. Kühn; A. Kupsc; W. Lai; J. S. Lange; M. Lara; P. Larin; C. Leng; C. H. Li; Cheng Li; D. M. Li; F. Li; G. Li; H. B. Li; J. C. Li; Jin Li; K. Li; K. Li; Lei Li; P. R. Li; T. Li; W. D. Li; W. G. Li; X. L. Li; X. M. Li; X. N. Li; X. Q. Li; Z. B. Li; H. Liang; Y. F. Liang; Y. T. Liang; G. R. Liao; D. X. Lin; B. J. Liu; C. X. Liu; F. H. Liu; Fang Liu; Feng Liu; H. B. Liu; H. H. Liu; H. H. Liu; H. M. Liu; J. Liu; J. P. Liu; J. Y. Liu; K. Liu; K. Y. Liu; L. D. Liu; P. L. Liu; Q. Liu; S. B. Liu; X. Liu; X. X. Liu; Y. B. Liu; Z. A. Liu; Zhiqiang Liu; Zhiqing Liu; H. Loehner; X. C. Lou; H. J. Lu; J. G. Lu; R. Q. Lu; Y. Lu; Y. P. Lu; C. L. Luo; M. X. Luo; T. Luo; X. L. Luo; M. Lv; X. R. Lyu; F. C. Ma; H. L. Ma; L. L. Ma; Q. M. Ma; S. Ma; T. Ma; X. N. Ma; X. Y. Ma; F. E. Maas; M. Maggiora; Q. A. Malik; Y. J. Mao; Z. P. Mao; S. Marcello; J. G. Messchendorp; J. Min; T. J. Min; R. E. Mitchell; X. H. Mo; Y. J. Mo; C. Morales Morales; K. Moriya; N. Yu. Muchnoi; H. Muramatsu; Y. Nefedov; F. Nerling; I. B. Nikolaev; Z. Ning; S. Nisar; S. L. Niu; X. Y. Niu; S. L. Olsen; Q. Ouyang; S. Pacetti; P. Patteri; M. Pelizaeus; H. P. Peng; K. Peters; J. Pettersson; J. L. Ping; R. G. Ping; R. Poling; Y. N. Pu; M. Qi; S. Qian; C. F. Qiao; L. Q. Qin; N. Qin; X. S. Qin; Y. Qin; Z. H. Qin; J. F. Qiu; K. H. Rashid; C. F. Redmer; H. L. Ren; M. Ripka; G. Rong; X. D. Ruan; V. Santoro; A. Sarantsev; M. Savrié; K. Schoenning; S. Schumann; W. Shan; M. Shao; C. P. Shen; P. X. Shen; X. Y. Shen; H. Y. Sheng; W. M. Song; X. Y. Song; S. Sosio; S. Spataro; G. X. Sun; J. F. Sun; S. S. Sun; Y. J. Sun; Y. Z. Sun; Z. J. Sun; Z. T. Sun; C. J. Tang; X. Tang; I. Tapan; E. H. Thorndike; M. Tiemens; D. Toth; M. Ullrich; I. Uman; G. S. Varner; B. Wang; B. L. Wang; D. Wang; D. Y. Wang; K. Wang; L. L. Wang; L. S. Wang; M. Wang; P. Wang; P. L. Wang; Q. J. Wang; S. G. Wang; W. Wang; X. F. Wang; Y. D. Wang; Y. F. Wang; Y. Q. Wang; Z. Wang; Z. G. Wang; Z. H. Wang; Z. Y. Wang; T. Weber; D. H. Wei; J. B. Wei; P. Weidenkaff; S. P. Wen; U. Wiedner; M. Wolke; L. H. Wu; Z. Wu; L. G. Xia; Y. Xia; D. Xiao; Z. J. Xiao; Y. G. Xie; Q. L. Xiu; G. F. Xu; L. Xu; Q. J. Xu; Q. N. Xu; X. P. Xu; L. Yan; W. B. Yan; W. C. Yan; Y. H. Yan; H. X. Yang; L. Yang; Y. Yang; Y. X. Yang; H. Ye; M. Ye; M. H. Ye; J. H. Yin; B. X. Yu; C. X. Yu; H. W. Yu; J. S. Yu; C. Z. Yuan; W. L. Yuan; Y. Yuan; A. Yuncu; A. A. Zafar; A. Zallo; Y. Zeng; B. X. Zhang; B. Y. Zhang; C. Zhang; C. C. Zhang; D. H. Zhang; H. H. Zhang; H. Y. Zhang; J. J. Zhang; J. L. Zhang; J. Q. Zhang; J. W. Zhang; J. Y. Zhang; J. Z. Zhang; K. Zhang; L. Zhang; S. H. Zhang; X. Y. Zhang; Y. Zhang; Y. H. Zhang; Y. T. Zhang; Z. H. Zhang; Z. P. Zhang; Z. Y. Zhang; G. Zhao; J. W. Zhao; J. Y. Zhao; J. Z. Zhao; Lei Zhao; Ling Zhao; M. G. Zhao; Q. Zhao; Q. W. Zhao; S. J. Zhao; T. C. Zhao; Y. B. Zhao; Z. G. Zhao; A. Zhemchugov; B. Zheng; J. P. Zheng; W. J. Zheng; Y. H. Zheng; B. Zhong; L. Zhou; Li Zhou; X. Zhou; X. K. Zhou; X. R. Zhou; X. Y. Zhou; K. Zhu; K. J. Zhu; S. Zhu; X. L. Zhu; Y. C. Zhu; Y. S. Zhu; Z. A. Zhu; J. Zhuang; L. Zotti; B. S. Zou; J. H. Zou

    2015-04-08

    Using a sample of $1.06\\times10^8\\ \\psip$ events produced in $e^+e^-$ collisions at $\\sqrt{s}$ = 3.686 GeV and collected with the BESIII detector at the BEPCII collider, we present studies of the decays $\\klx+c.c.$ and $\\gklx+c.c.$. We observe two hyperons, $\\Xi(1690)^-$ and $\\Xi(1820)^-$, in the $K^-\\Lambda$ invariant mass distribution in the decay $\\klx+c.c.$ with significances of $4.9 \\sigma$ and $6.2 \\sigma$, respectively. The branching fractions of $\\klx+c.c.$, $\\ksx+c.c.$, $\\psip\\to\\gamma \\chi_{cJ}\\to \\gamma K^- \\Lambda \\bar{\\Xi}^+ +c.c.$ $(J=0,\\ 1,\\ 2)$, and $\\psip\\to \\Xi(1690/1820)^{-} \\bar{\\Xi}^++c.c$ with subsequent decay $\\Xi(1690/1820)^-\\to K^-\\Lambda$ are measured for the first time.

  17. Does Cleavage Work at Work? Men, but Not Women, Falsely Believe Cleavage Sells a Weak Product

    ERIC Educational Resources Information Center

    Glick, Peter; Chrislock, Karyna; Petersik, Korinne; Vijay, Madhuri; Turek, Aleksandra

    2008-01-01

    We examined whether men, but not women, would be distracted by a female sales representative's exposed cleavage, leading to greater perceived efficacy for a weak, but not for a strong product. A community sample of 88 men and 97 women viewed a video of a female pharmaceutical sales representative who (a) had exposed cleavage or dressed modestly…

  18. Autyomatic Differentiation of C/C++

    Energy Science and Technology Software Center (ESTSC)

    2005-11-14

    Automatic differentiation (AD) tools mechanize the process of developing code for the computation of derivatives. AD avoids the inaccuracies inherent in numerical approximations. Furthermore, sophisticated AD algoirthms can often produce c ode that is more reliable and more efficient than code written by an expert programmer. ADIC is the first and only AD tool for C and C++ based on compiler technology. This compiler foundation makes possible analyses and optimizations not available in toos basedmore »on operator overloading. The earliest implementations of ADIC included support for ANSI C applications, ADIC 2.0 lverages EDG, a commercial C/C++ parser, to provide robust C++ differentiation support. Modern AD tools, including ADIC are implemented in a modular way, aiming to isolate language-dependent program analyses and semantic transformations. The component design leads to much higher implementation quality because the different components can be implemented by experts in each of the different domains involved. For example, a compiler expert can focus on parsing, canonicalizing, and unparising C and C++, while an expert in graph theory and algorithms can produce new differentiation modules without having to worry about the complexity of parsing and generating C++ code. Thsi separation of concerns was achieved through the use of language-independent program analysis interfaces (in collaboration with researcgers at Rice University) and a language-independent XML representation of the computational portions of programs (XAIF). In addition to improved robustness and faster development times, this design naturally enables the reuse of program analysis algorithms and differentiation modules in compiler-based AD tools for other languages. In fact, the analysis and differention components are used in both ADIC and the Open AD Fortran front-end (based on Rice's Open64 compiler.« less

  19. Substrate determinants for cleavage in cis and in trans by the hepatitis C virus NS3 proteinase.

    PubMed Central

    Bartenschlager, R; Ahlborn-Laake, L; Yasargil, K; Mous, J; Jacobsen, H

    1995-01-01

    Processing of the hepatitis C virus polyprotein is accomplished by a series of cotranslational and posttranslational cleavages mediated by host cell signalases and two virally encoded proteinases. Of these the NS3 proteinase is essential for processing at the NS3/4A, NS4A/4B, NS4B/5A, and NS5A/5B junctions. Processing between NS3 and NS4A occurs in cis, implying an intramolecular reaction mechanism, whereas cleavage at the other sites can also be mediated in trans. Sequence analysis of the amino termini of mature cleavage products and comparisons of amino acid residues around the scissile bonds of various hepatitis C virus isolates identified amino acid residues which might contribute to substrate specificity and processing efficiency: an acidic amino acid at the P6 position, a Thr or Cys at the P1 position, and a Ser or Ala at the P1' position. To study the importance of these residues for NS3-mediated cleavage we have undertaken a mutational analysis using an NS3'-5B polyprotein expressed by recombinant vaccinia viruses in mammalian cells. For all NS3-dependent cleavage sites P1 substitutions had the most drastic effects on cleavage efficiency, showing that amino acid residues at this position are the most critical substrate determinants. Since less drastic effects were found for substitutions at the P1' position, these residues appear to be less important for proper cleavage. For all cleavage sites the P6 acidic residue was dispensable, suggesting that it is not essential for substrate recognition and subsequent cleavage. Analysis of a series of mutations at the NS3/4A site revealed great flexibility for substitutions compared with more stringent requirements at the trans cleavage sites. On the basis of these results we propose a model in which processing in cis is determined primarily by polyprotein folding, whereas cleavage in trans is governed not only by the structure of the polyprotein but also by specific interactions between the proteinase and the polyprotein substrate at or around the scissile bond. PMID:7983710

  20. Proteolytic Cleavage Driven by Glycosylation.

    PubMed

    Kötzler, Miriam P; Withers, Stephen G

    2016-01-01

    Proteolytic processing of human host cell factor 1 (HCF-1) to its mature form was recently shown, unexpectedly, to occur in a UDP-GlcNAc-dependent fashion within the transferase active site of O-GlcNAc-transferase (OGT) (Lazarus, M. B., Jiang, J., Kapuria, V., Bhuiyan, T., Janetzko, J., Zandberg, W. F., Vocadlo, D. J., Herr, W., and Walker, S. (2013) Science 342, 1235-1239). An interesting mechanism involving formation and then intramolecular rearrangement of a covalent glycosyl ester adduct of the HCF-1 polypeptide was proposed to account for this unprecedented proteolytic activity. However, the key intermediate remained hypothetical. Here, using a model enzyme system for which the formation of a glycosyl ester within the enzyme active site has been shown unequivocally, we show that ester formation can indeed lead to proteolysis of the adjacent peptide bond, thereby providing substantive support for the mechanism of HCF-1 processing proposed. PMID:26515062

  1. The dual role of oxygen functions in coal pretreatment and liquefaction: Crosslinking and cleavage reactions. Seventh quarterly report, September 30, 1992--December 31, 1992

    SciTech Connect

    Serio, M.A.; Kroo, E.; Charpenay, S.; Solomon, P.R.

    1992-12-31

    The work during the past quarter under Task 2 has focused on the investigation of FT-IR methods for measuring carboxyl and phenolic functions. Fourier transform infrared (FT-IR) spectra of coal contain a wealth of information that can be utilized in the development of quantitative analysis routines based on least squares curvefitting. Because of the importance of the carboxylate groups in retrogressive reactions, recent efforts have focused on the C=O stretching region. Raw and modified coal samples (acid washed, demineralized, and cation exchanged) were analyzed in order to validate the proposed band assignments in the C=O stretching region. This parameter set differentiates free carbonyl (B2) and hydrogen-bonded carbonyl (B4) from carboxylic acid carbonyl (B3) and carboxylate (B7). One test of these assignments, which are based on literature data, is to plot B3 versus B7. This should be linear, assuming that the sum of the free carboxyl and carboxylate groups is constant and that the intensity of the overlapped aromatic ring band in B7 is also constant. This relationship was found to hold for a set of raw, acid washed, and acid washed/cation-exchanged Zap coals. The work under Task 3 has involved (1) completion of the synthesis of the -C-C-0- linked, methoxy substituted lignin-network polymer, -- C{sub 6}H{sub 3}(o-OMe)-O-CH{sub 2}CH{sub 2}]{sub {eta}} -- polymer, (2) Analysis of the polymer via depolymerization under pyrolysis-FIMS (Py-FIMS) conditions, and (3) testing of several routes to selective cleavage of the O-Methyl bond so that the relative crosslinking tendencies of the methylated and unmethylated versions of the polymer could be determined.

  2. Identification of an Acyl-Enzyme Intermediate in a meta-Cleavage Product Hydrolase Reveals the Versatility of the Catalytic Triad

    SciTech Connect

    Ruzzini, Antonio C.; Ghosh, Subhangi; Horsman, Geoff P.; Foster, Leonard J.; Bolin, Jeffrey T.; Eltis, Lindsay D.

    2012-03-14

    Meta-cleavage product (MCP) hydrolases are members of the {alpha}/{beta}-hydrolase superfamily that utilize a Ser-His-Asp triad to catalyze the hydrolysis of a C-C bond. BphD, the MCP hydrolase from the biphenyl degradation pathway, hydrolyzes 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) to 2-hydroxypenta-2,4-dienoic acid (HPD) and benzoate. A 1.6 {angstrom} resolution crystal structure of BphD H265Q incubated with HOPDA revealed that the enzyme's catalytic serine was benzoylated. The acyl-enzyme is stabilized by hydrogen bonding from the amide backbone of 'oxyanion hole' residues, consistent with formation of a tetrahedral oxyanion during nucleophilic attack by Ser112. Chemical quench and mass spectrometry studies substantiated the formation and decay of a Ser112-benzoyl species in wild-type BphD on a time scale consistent with turnover and incorporation of a single equivalent of {sup 18}O into the benzoate produced during hydrolysis in H{sub 2}{sup 18}O. Rapid-scanning kinetic studies indicated that the catalytic histidine contributes to the rate of acylation by only an order of magnitude, but affects the rate of deacylation by over 5 orders of magnitude. The orange-colored catalytic intermediate, ES{sup red}, previously detected in the wild-type enzyme and proposed herein to be a carbanion, was not observed during hydrolysis by H265Q. In the newly proposed mechanism, the carbanion abstracts a proton from Ser112, thereby completing tautomerization and generating a serinate for nucleophilic attack on the C6-carbonyl. Finally, quantification of an observed pre-steady-state kinetic burst suggests that BphD is a half-site reactive enzyme. While the updated catalytic mechanism shares features with the serine proteases, MCP hydrolase-specific chemistry highlights the versatility of the Ser-His-Asp triad.

  3. Isomerization of the diphosphine ligand 3,4-bis(diphenylphosphino)-5-methoxy-2(5H)-furanone (bmf) at a triosmium cluster and P C bond cleavage in the unsaturated cluster 1,1-Os3(CO)9(bmf): Synthesis and X-ray diffraction structures of the isomeric Os3(CO)10(bmf) clusters and HOs3(CO)8( -C6H4)[ -PhPCC(Ph2P)CH(OMe)OC(O)

    SciTech Connect

    Kandala, Srikanth; Yang, Li; Campana, Charles F.; Nesterov, Vladimir; Richmond, Michael G.

    2010-07-01

    The labile cluster 1,2-Os3(CO)10(MeCN)2 (1) reacts with the chiral diphosphine ligand 3,4-bis(diphenylphosphino)-5-methoxy-2(5H)-furanone (bmf) to furnish 1,2-Os3(CO)10(bmf) (2a) in high yield. Heating cluster 2a over the temperature range 358 383 K under CO leads to isomerization of the bmf ligand and formation of the diphosphine-chelated cluster 1,1-Os3(CO)10(bmf) (2b) and an equilibrium mixture consisting of 2a and 2b in a 15:85 ratio. Extended thermolysis of an equilibrium mixture of Os3(CO)10(bmf) is accompanied by CO loss and ortho-metalation of an aryl ring to afford an inseparable mixture of three diastereomeric hydride clusters HOs3(CO)9(C29H23O3P2) (3a c). Thermolysis of HOs3(CO)9(C29H23O3P2) (3a c) in refluxing toluene leads to P C bond cleavage and formation of the benzyne-substituted clusters HOs3(CO)8( -C6H4)( -C23H19O3P2) (4a,b) as a 4:1 mixture of diastereomers. The unequivocal identity of the major benzyne-substituted cluster has been determined by X-ray diffraction analysis, where the activation of one of the phenyl groups situated to the furanone carbonyl group in the bmf ligand has been established. The isomerization and activation of the bmf ligand are contrasted with other Os3(CO)10(diphosphine) derivatives prepared by our groups.

  4. Computational prediction of cleavage using proteasomal in vitro digestion and MHC I ligand data*

    PubMed Central

    Lu, Yu-feng; Sheng, Hao; Zhang, Yi; Li, Zhi-yang

    2013-01-01

    Proteasomes are responsible for the production of the majority of cytotoxic T lymphocyte (CTL) epitopes. Hence, it is important to identify correctly which peptides will be generated by proteasomes from an unknown protein. However, the pool of proteasome cleavage data used in the prediction algorithms, whether from major histocompatibility complex (MHC) I ligand or in vitro digestion data, is not identical to in vivo proteasomal digestion products. Therefore, the accuracy and reliability of these models still need to be improved. In this paper, three types of proteasomal cleavage data, constitutive proteasome (cCP), immunoproteasome (iCP) in vitro cleavage, and MHC I ligand data, were used for training cleave-site predictive methods based on the kernel-function stabilized matrix method (KSMM). The predictive accuracies of the KSMM+pair coefficients were 75.0%, 72.3%, and 83.1% for cCP, iCP, and MHC I ligand data, respectively, which were comparable to the results from support vector machine (SVM). The three proteasomal cleavage methods were combined in turn with MHC I-peptide binding predictions to model MHC I-peptide processing and the presentation pathway. These integrations markedly improved MHC I peptide identification, increasing area under the receiver operator characteristics (ROC) curve (AUC) values from 0.82 to 0.91. The results suggested that both MHC I ligand and proteasomal in vitro degradation data can give an exact simulation of in vivo processed digestion. The information extracted from cCP and iCP in vitro cleavage data demonstrated that both cCP and iCP are selective in their usage of peptide bonds for cleavage. PMID:24009202

  5. Sticker Bonding.

    ERIC Educational Resources Information Center

    Frazier, Laura Corbin

    2000-01-01

    Introduces a science activity on the bonding of chemical compounds. Assigns students the role of either a cation or anion and asks them to write the ions they may bond with. Assesses students' understanding of charge, bonding, and other concepts. (YDS)

  6. Bond Issues.

    ERIC Educational Resources Information Center

    Pollack, Rachel H.

    2000-01-01

    Notes trends toward increased borrowing by colleges and universities and offers guidelines for institutions that are considering issuing bonds to raise money for capital projects. Discussion covers advantages of using bond financing, how use of bonds impacts on traditional fund raising, other cautions and concerns, and some troubling aspects of…

  7. Extension of microwave-accelerated residue-specific acid cleavage to proteins with carbohydrate side chains and disulfide linkages

    NASA Astrophysics Data System (ADS)

    Li, Jinxi; Shefcheck, Kevin; Callahan, John; Fenselau, Catherine

    2008-12-01

    This laboratory has introduced a chemical method for residue-specific protein cleavage and has provided a preliminary assessment of the suitability of microwave-accelerated acid cleavage as a proteomic tool. This report is a continuing assessment of the fate of common protein modifications in microwave-accelerated acid cleavage. We have examined the cleavage of ribonuclease A and the related N-linked glycoprotein ribonuclease B, and the O-linked glycoprotein alpha crystallin A chain, using MALDI-TOF and LC-ESI-MS to identify the peptide products. RNase A and B each contains four disulfide bonds, and the addition of a reducing reagent, such as dithiothreitol, was found to be required to achieve efficient acidic proteolysis. The linkage of the glycosidic group to the asparagine side chain in ribonuclease B was found not to be cleaved by brief microwave treatment in 12.5% acetic acid. The distribution of the heterogeneous carbohydrate side chain in the glycopeptide products of acid cleavage was compared to that of the glycopeptide products of tryptic digestion. Hydrolysis within the carbohydrate chain itself is minimal under the conditions used. The O-linked side chain on alpha crystalline A was found to be cleaved during acid cleavage of the protein.

  8. Cleavage Specificity Analysis of Six Type II Transmembrane Serine Proteases (TTSPs) Using PICS with Proteome-Derived Peptide Libraries

    PubMed Central

    Béliveau, François; Leduc, Richard; Overall, Christopher M.

    2014-01-01

    Background Type II transmembrane serine proteases (TTSPs) are a family of cell membrane tethered serine proteases with unclear roles as their cleavage site specificities and substrate degradomes have not been fully elucidated. Indeed just 52 cleavage sites are annotated in MEROPS, the database of proteases, their substrates and inhibitors. Methodology/Principal Finding To profile the active site specificities of the TTSPs, we applied Proteomic Identification of protease Cleavage Sites (PICS). Human proteome-derived database searchable peptide libraries were assayed with six human TTSPs (matriptase, matriptase-2, matriptase-3, HAT, DESC and hepsin) to simultaneously determine sequence preferences on the N-terminal non-prime (P) and C-terminal prime (P’) sides of the scissile bond. Prime-side cleavage products were isolated following biotinylation and identified by tandem mass spectrometry. The corresponding non-prime side sequences were derived from human proteome databases using bioinformatics. Sequencing of 2,405 individual cleaved peptides allowed for the development of the family consensus protease cleavage site specificity revealing a strong specificity for arginine in the P1 position and surprisingly a lysine in P1? position. TTSP cleavage between R?K was confirmed using synthetic peptides. By parsing through known substrates and known structures of TTSP catalytic domains, and by modeling the remainder, structural explanations for this strong specificity were derived. Conclusions Degradomics analysis of 2,405 cleavage sites revealed a similar and characteristic TTSP family specificity at the P1 and P1? positions for arginine and lysine in unfolded peptides. The prime side is important for cleavage specificity, thus making these proteases unusual within the tryptic-enzyme class that generally has overriding non-prime side specificity. PMID:25211023

  9. Human topoisomerase II? uses a two-metal-ion mechanism for DNA cleavage

    PubMed Central

    Deweese, Joseph E.; Burgin, Alex B.; Osheroff, Neil

    2008-01-01

    The DNA cleavage reaction of human topoisomerase II? is critical to all of the physiological and pharmacological functions of the protein. While it has long been known that the type II enzyme requires a divalent metal ion in order to cleave DNA, the role of the cation in this process is not known. To resolve this fundamental issue, the present study utilized a series of divalent metal ions with varying thiophilicities in conjunction with DNA cleavage substrates that replaced the 3?-bridging oxygen of the scissile bond with a sulfur atom (i.e. 3?-bridging phosphorothiolates). Rates and levels of DNA scission were greatly enhanced when thiophilic metal ions were included in reactions that utilized sulfur-containing substrates. Based on these results and those of reactions that employed divalent cation mixtures, we propose that topoisomerase II? mediates DNA cleavage via a two-metal-ion mechanism. In this model, one of the metal ions makes a critical interaction with the 3?-bridging atom of the scissile phosphate. This interaction greatly accelerates rates of enzyme-mediated DNA cleavage, and most likely is needed to stabilize the leaving 3?-oxygen. PMID:18653531

  10. Photochemical DNA Cleavage by the Antitumor Agent

    E-print Network

    Gates, Kent. S.

    Photochemical DNA Cleavage by the Antitumor Agent 3-Amino-1,2,4-benzotriazine 1,4-Dioxide to derive its therapeutic activity by selectively damaging DNA in oxygen-poor (hypoxic) tumor cells.1,2 DNA,2 that the one-electron reduced form of the drug (2) reacts directly with DNA, although recent studies have

  11. Reaction between radicals and N-alkoxyamines As coordinated cleavage with fragmentation

    NASA Astrophysics Data System (ADS)

    Denisov, E. T.; Shestakov, A. F.

    2015-08-01

    Quantum chemical calculations of the enthalpy and activation energy of two reactions with MeO{2/?} attacking the CH- and CH2-groups of 2,2,6,6-tetramethylpiperidineoxy-2'-butane are performed. It is shown that the cleavage of hydrogen atoms is accompanied by coordinated breaking of N-O-bonds in the former case and C-O-bonds in the latter. Based on the obtained results, a new scheme is proposed for the cyclic mechanism behind the cleavage of chains on nitroxyl radicals in oxidizing hydrocarbons and polymers that agrees with experimental data. At the center of this cyclic mechanism lies the fast exothermic reaction between peroxyl radicals and N-alkoxyamine with the cleavage of H atoms and the coordinated fragmentation of molecules. Using the model of intersecting parabolas, an algorithm for calculating the enthalpies, activation energies, and rate constants of these reactions with the participation of alkyl, alkoxy, aminyl, peroxyl, phenoxyl, thiyl, and hydroxyl radicals is proposed.

  12. On the Relative Merits of Non-Orthogonal and Orthogonal Valence Bond Methods Illustrated on the Hydrogen Molecule

    ERIC Educational Resources Information Center

    Angeli, Celestino; Cimiraglia, Renzo; Malrieu, Jean-Paul

    2008-01-01

    Valence bond (VB) is one of the cornerstone theories of quantum chemistry. Even if in practical applications the molecular orbital (MO) approach has obtained more attention, some basic chemical concepts (such as the nature of the chemical bond and the failure of the single determinant-based MO methods in describing the bond cleavage) are normally…

  13. Characterization of Brazed Joints of C-C Composite to Cu-clad-Molybdenum

    NASA Technical Reports Server (NTRS)

    Singh, M.; Asthana, R.

    2008-01-01

    Carbon-carbon composites with either pitch+CVI matrix or resin-derived matrix were joined to copper-clad molybdenum using two active braze alloys, Cusil-ABA (1.75% Ti) and Ticusil (4.5% Ti). The brazed joints revealed good interfacial bonding, preferential precipitation of Ti at the composite/braze interface, and a tendency toward de-lamination in resin-derived C-C composite due to its low inter-laminar shear strength. Extensive braze penetration of the inter-fiber channels in the pitch+CVI C-C composites was observed. The relatively low brazing temperatures (<950 C) precluded melting of the clad layer and restricted the redistribution of alloying elements but led to metallurgically sound composite joints. The Knoop microhardness (HK) distribution across the joint interfaces revealed sharp gradients at the Cu-clad-Mo/braze interface and higher hardness in Ticusil (approx.85-250 HK) than in Cusil-ABA (approx.50-150 HK). These C-C/Cu-clad-Mo joints with relatively low thermal resistance may be promising for thermal management applications.

  14. Diffusion bonding

    NASA Astrophysics Data System (ADS)

    Brown, L. E.

    1993-03-01

    A temperature between 400 and 500 and a pressure between 40 MPa and 160 MPa were indicated by a two-factor, three-level factorial experiment for diffusion bonding of molybdenum sheet substrates. These substrates were sputter ion plated with palladium (0.5 microns) and silver (10 microns) films on the mating surfaces, with the silver used as a bonding interlayer. The palladium acted as an adhesive layer between the silver film and molybdenum substrate. The silver diffusion bonds that resulted were qualitatively characterized at the interfacial regions, and bonds with no visible interface were obtained at 7500X magnification. Correlations were obtained for voids found optically at the silver/silver bonding interface and colored image maps, illustrating bond quality, produced by nondestructive ultrasonic imaging. Above 160 MPa, the bonding process produces samples with a nonuniform load distribution. These samples contained regions with gaps and well-bonded regions at the silver/silver interface, and all had macroscopic deformation of the silver films.

  15. Hydrolysis of alpha-human atrial natriuretic peptide in vitro by human kidney membranes and purified endopeptidase-24.11. Evidence for a novel cleavage site.

    PubMed Central

    Vanneste, Y; Michel, A; Dimaline, R; Najdovski, T; Deschodt-Lanckman, M

    1988-01-01

    alpha-Human atrial natriuretic peptide (hANP) is secreted by the heart and acts on the kidney to promote a strong diuresis and natriuresis. In vivo it has been shown to be catabolized partly by the kidney. Crude microvillar membranes of human kidney degrade 125I-ANP at several internal bonds generating metabolites among which the C-terminal fragments were identified. Formation of the C-terminal tripeptide was blocked by phosphoramidon, indicating the involvement of endopeptidase-24.11 in this cleavage. Subsequent cleavages by aminopeptidase(s) yielded the C-terminal dipeptide and free tyrosine. Using purified endopeptidase 24.11, we identified seven sites of hydrolysis in unlabelled alpha-hANP: the bonds Arg-4-Ser-5, Cys-7-Phe-8, Arg-11-Met-12, Arg-14-Ile-15, Gly-16-Ala-17, Gly-20-Leu-21 and Ser-25-Phe-26. However, the bonds Gly-16-Ala-17 and Arg-4-Ser-5 did not fulfil the known specificity requirements of the enzyme. Cleavage at the Gly-16-Ala-17 bond was previously observed by Stephenson & Kenny [(1987) Biochem. J. 243, 183-187], but this is the first report of an Arg-Ser bond cleavage by this enzyme. Initial attack of alpha-hANP by endopeptidase-24.11 took place at a bond within the disulphide-linked loop and produced a peptide having the same amino acid composition as intact ANP. The bond cleaved in this metabolite was determined as the Cys-7-Phe-8 bond. Determination of all the bonds cleaved in alpha-hANP by endopeptidase-24.11 should prove useful for the design of more stable analogues, which could have therapeutic uses in hypertension. PMID:2972276

  16. 7. Historic American Buildings Survey, C. C. Adams, Photographer August ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Historic American Buildings Survey, C. C. Adams, Photographer August 1931, SEED PACKING ROOM, Gift of New York State Department of Education. - Shaker North Family Washhouse (first), Shaker Road, New Lebanon, Columbia County, NY

  17. Cleavage of [4Fe-4S]-Type Clusters: Breaking the Symmetry

    SciTech Connect

    Niu, Shuqiang; Ichiye, Toshiko

    2009-05-14

    The cleavage of [4Fes4S]-type clusters is thought to be important in proteins such as FesS scaffold proteins and nitrogenase. However, most [4Fes4S]2+ clusters in proteins have two antiferromagnetically coupled high-spin layers in which a minority spin is delocalized in each layer, thus forming a symmetric Fe2.5+sFe2.5+ pair, and how cleavage occurs between the irons is puzzling because of the shared electron. Previously, we proposed a novel mechanism for the fission of a [4Fes4S] core into two [2Fes2S] cores in which the minority spin localizes on one iron, thus breaking the symmetry and creating a transition state with two Fe3+sFe2+ pairs. Cleavage first through the weak Fe2+sS bonds lowers the activation energy. Here, we propose a test of this mechanism: break the symmetry of the cluster by changing the ligands to promote spin localization, which should enhance reactivity. The cleavage reactions for the homoligand [Fe4S4L4]2- (L ) SCH3, Cl, H) and heteroligand [Fe4S4(SCH3)2L2]2- (L ) Cl, H) clusters in the gas phase were examined via broken-symmetry density functional theory calculations. In the heteroligand clusters, the minority spin localized on the iron coordinated by the weaker electron-donor ligand, and the reaction energy and activation barrier of the cleavage were lowered, which is in accord with our proposed mechanism and consistent with photoelectron spectroscopy and collision-induced dissociation experiments. These studies suggest that proteins requiring facile fission of their [4Fes4S] cluster in their biological function might have spin-localized [4Fes4S] clusters.

  18. Cleavage crystallography of liquid metal embrittled aluminum alloys

    NASA Technical Reports Server (NTRS)

    Reynolds, A. P.; Stoner, G. E.

    1991-01-01

    The crystallography of liquid metal-induced transgranular cleavage in six aluminum alloys having a variety of microstructures has been determined via Laue X-ray back reflection. The cleavage crystallography was independent of alloy microstructure, and the cleavage plane was 100-plane oriented in all cases. It was further determined that the cleavage crystallography was not influenced by alloy texture. Examination of the fracture surface indicated that there was not a unique direction of crack propagation. In addition, the existence of 100-plane cleavage on alloy 2024 fracture surfaces was inferred by comparison of secondary cleavage crack intersection geometry on the 2024 surfaces with the geometry of secondary cleavage crack intersections on the test alloys.

  19. Total Synthesis of 6-Deoxyerythronolide B via C-C Bond-Forming Transfer Hydrogenation

    PubMed Central

    Gao, Xin; Woo, Sang Kook; Krische, Michael J.

    2013-01-01

    The 14-membered macrolide 6-deoxyerythronolide B is prepared in 14 steps (longest linear sequence) and 20 total steps. Two different methods for alcohol CH-crotylation via transfer hydrogenation are deployed for the first time in target-oriented synthesis. Enyne metathesis is used to form the 14-membered ring. The present approach represents the most concise construction of any erythronolide reported, to date. PMID:23464668

  20. A family of low molecular-weight, organic catalysts for reductive C-C bond formation.

    PubMed

    Shaaban, Saad; Jolit, Anaïs; Petkova, Desislava; Maulide, Nuno

    2015-09-21

    Hydrazines form a new family of low molecular-weight reducing agents for diazonium salts. Using only small amounts of hydrazine catalyst, the coupling of diazonium salts to a variety of reactive partners has been achieved, without the requirement for either metal adjuvants or irradiation with visible or ultraviolet light. The generality of the concept proposed herein as well as its advantages in the preparative scale is outlined and discussed. PMID:26239300

  1. Photochemically-induced C-C bond formation between tertiary amines and nitrones.

    PubMed

    Itoh, Kennosuke; Kato, Ryo; Kinugawa, Daito; Kamiya, Hideaki; Kudo, Ryuki; Hasegawa, Masayuki; Fujii, Hideaki; Suga, Hiroyuki

    2015-09-01

    Photoexcited nitrones serve as excellent electron acceptors as well as radical acceptors in the presence of tertiary amines to give ?-amino hydroxylamines via photochemically-induced direct sp(3) C-H functionalization of the tertiary amines. The combined use of an organophotosensitizer and photoirradiation was highly effective in accelerating addition reactions. Several nitrones and tertiary amines were successfully utilized to give ?-amino hydroxylamines in good yield. Highly regioselective generation of primary ?-aminoalkyl radicals based on Lewis's stereoelectronic rule and diastereoselective addition reactions of primary ?-aminoalkyl radicals with nitrones were successfully achieved. Furthermore, a highly diastereoselective reaction of an ?-aminoalkyl radical with a chiral (E)-geometry-fixed ?-alkoxycarbonylnitrone was performed. PMID:26205235

  2. Synthesis, characterization and reactivity of group 4 metallocene bis(diphenylphosphino)acetylene complexes-a reactivity and bonding study.

    PubMed

    Haehnel, Martin; Hansen, Sven; Schubert, Kathleen; Arndt, Perdita; Spannenberg, Anke; Jiao, Haijun; Rosenthal, Uwe

    2013-11-20

    A study of the coordination chemistry of bis(diphenylphosphino)acetylene, Ph2P-C?C-PPh2, with selected group 4 metallocenes is presented. By substitution of the alkyne in complexes of the type Cp'2M(L)(?(2)-Me3SiC2SiMe3) (M = Ti, no L; M = Zr, L = pyridine; Cp' = substituted or unsubstituted bridged or unbridged ?(5)-cyclopentadienyl), the expected mononuclear complexes Cp*2Ti(?(2)-Ph2PC2PPh2) (4Ti), (rac-ebthi)Ti(?(2)-Ph2PC2PPh2) (5Ti), and (rac-ebthi)Zr(?(2)-Ph2PC2PPh2) (5Zr) [ebthi = ethylenebis(tetrahydroindenyl)] were obtained. When [Cp2Zr] was used in the reaction of Cp2Zr(py)(?(2)-Me3SiC2SiMe3) with Ph2P-C?C-PPh2, the dinuclear complex [Cp2Zr(?(2)-Ph2PC2PPh2)]2 (6) was formed and isolated in the solid state. In solution, this complex is in equilibrium with the very spectacular structure of complex 7b as the first example of such a highly strained four-membered heterometallacycle of a group 4 metal, involving the rare R2PCCR' fragment in the cyclic unit. Both the stability and reactivity of heterodisubstituted alkynes X-C?C-X (X = NR2, PR2, SR, SiR3, etc.) themselves and also of their complexes are of general interest. Complex 6 did not react with a second [Cp2Zr] fragment to form a homobimetallic complex. In contrast, for (rac-ebthi)Zr(?(2)-Ph2PC2PPh2) (5Zr) this reaction occurs. In the reaction of complex 4Ti with the Ni(0) complex (Cy3P)2Ni(?(2)-C2H4) (Cy = cyclohexyl), C-P bond cleavage of the alkyne ligand resulted in the formation of the isolated complex [(Cy3P)Ni(?-PPh2)]2 (11). The structure and bonding of the complexes were investigated by DFT analysis to compare the different possible coordination modes of the R2P-C?C-PR2 ligand. For compound 7b, a flip-flop coordination of the phosphorus atoms was proposed. Complexes 4Ti, 5Ti, 5Zr, 6, and 11 were characterized by X-ray crystallography. PMID:24156561

  3. In-line alignment and Mg2+ coordination at the cleavage site of the env22 twister ribozyme

    PubMed Central

    Ren, Aiming; Košuti?, Marija; Rajashankar, Kanagalaghatta R.; Frener, Marina; Santner, Tobias; Westhof, Eric; Micura, Ronald; Patel, Dinshaw J.

    2015-01-01

    Small self-cleaving nucleolytic ribozymes contain catalytic domains that accelerate site-specific cleavage/ligation of phosphodiester backbones. We report on the 2.9-Å crystal structure of the env22 twister ribozyme, which adopts a compact tertiary fold stabilized by co-helical stacking, double-pseudoknot formation and long-range pairing interactions. The U-A cleavage site adopts a splayed-apart conformation with the modeled 2?-O of U positioned for in-line attack on the adjacent to-be-cleaved P-O5? bond. Both an invariant guanosine and a Mg2+ are directly coordinated to the non-bridging phosphate oxygens at the U-A cleavage step, with the former positioned to contribute to catalysis and the latter to structural integrity. The impact of key mutations on cleavage activity identified an invariant guanosine that contributes to catalysis. Our structure of the in-line aligned env22 twister ribozyme is compared with two recently-reported twister ribozymes structures, which adopt similar global folds, but differ in conformational features around the cleavage site. PMID:25410397

  4. ?-Secretase Modulators and APH1 Isoforms Modulate ?-Secretase Cleavage but Not Position of ?-Cleavage of the Amyloid Precursor Protein (APP)

    PubMed Central

    Lessard, Christian B.; Cottrell, Barbara A.; Maruyama, Hiroko; Suresh, Suraj; Golde, Todd E.; Koo, Edward H.

    2015-01-01

    The relative increase in A?42 peptides from familial Alzheimer disease (FAD) linked APP and PSEN mutations can be related to changes in both ?-cleavage site utilization and subsequent step-wise cleavage. Cleavage at the ?-site releases the amyloid precursor protein (APP) intracellular domain (AICD), and perturbations in the position of ?-cleavage are closely associated with changes in the profile of amyloid ?-protein (A?) species that are produced and secreted. The mechanisms by which ?-secretase modulators (GSMs) or FAD mutations affect the various ?-secretase cleavages to alter the generation of A? peptides have not been fully elucidated. Recent studies suggested that GSMs do not modulate ?-cleavage of APP, but the data were derived principally from recombinant truncated epitope tagged APP substrate. Here, using full length APP from transfected cells, we investigated whether GSMs modify the ?-cleavage of APP under more native conditions. Our results confirmed the previous findings that ?-cleavage is insensitive to GSMs. In addition, fenofibrate, an inverse GSM (iGSM), did not alter the position or kinetics of ?-cleavage position in vitro. APH1A and APH1B, a subunit of the ?-secretase complex, also modulated A?42/A?40 ratio without any alterations in ?-cleavage, a result in contrast to what has been observed with PS1 and APP FAD mutations. Consequently, GSMs and APH1 appear to modulate ?-secretase activity and A?42 generation by altering processivity but not ?-cleavage site utilization. PMID:26678856

  5. Testing of DLR C/C-SiC and C/C for HIFiRE 8 Scramjet Combustor

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Capriotti, Diego P.; Reimer, Thomas; Kutemeyer, Marius; Smart, Michael K.

    2014-01-01

    Ceramic Matrix Composites (CMCs) have been proposed for use as lightweight hot structures in scramjet combustors. Previous studies have calculated significant weight savings by utilizing CMCs (active and passive) versus actively cooled metallic scramjet structures. Both a carbon/carbon (C/C) and a carbon/carbon-silicon carbide (C/C-SiC) material fabricated by DLR (Stuttgart, Germany) are being considered for use in a passively cooled combustor design for Hypersonic International Flight Research Experimentation (HIFiRE) 8, a joint Australia / Air Force Research Laboratory hypersonic flight program, expected to fly at Mach 7 for approximately 30 sec, at a dynamic pressure of 55 kilopascals. Flat panels of the DLR C/C and C/C-SiC materials were installed downstream of a hydrogen-fueled, dual-mode scramjet combustor and tested for several minutes at conditions simulating flight at Mach 5 and Mach 6. Gaseous hydrogen fuel was used to fuel the scramjet combustor. The test panels were instrumented with embedded Type K and Type S thermocouples. Zirconia felt insulation was used during some of the tests to reduce heat loss from the back surface and thus increase the heated surface temperature of the C/C-SiC panel approximately 177 C (350 F). The final C/C-SiC panel was tested for three cycles totaling over 135 sec at Mach 6 enthalpy. Slightly more erosion was observed on the C/C panel than the C/C-SiC panels, but both material systems demonstrated acceptable recession performance for the HIFiRE 8 flight.

  6. Theoretical study of the bond dissociation energies of methanol

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Walch, Stephen P.

    1992-01-01

    A theoretical study of the bond dissociation energies for H2O and CH3OH is presented. The C-H and O-H bond energies are computed accurately with the modified coupled-pair functional method using a large basis set. For these bonds, an accuracy of +/- 2 kcal/mol is achieved, which is consistent with the C-H and C-C single bond energies of other molecules. The C-O bond is much more difficult to compute accurately because it requires higher levels of correlation treatment and more extensive one-particle basis sets.

  7. Carbon-Carbon Bond Activation in Pt(0)-Diphenylacetylene Complexes Bearing

    E-print Network

    Jones, William D.

    Carbon-Carbon Bond Activation in Pt(0)-Diphenylacetylene Complexes Bearing Chelating P,N- and P complexes bearing chelating P,N- or P,P-ligands and on the cleavage of the C(sp2)-C(sp) bond complexes bearing chelat- ing P,P-ligands. Thus, the reaction of 1 with 1 equiv bis- (diisopropylphosphino

  8. Determination and interrelation of bond heterolysis and homolysis energies in solution. Final report, January 1988-August 1991

    SciTech Connect

    Arnett, E.M.

    1993-01-01

    Solution phase heats of heterolysis Delta H(sub(het)) and homolysis Delta H(sub(homo)) were determined for covalent bonds that can be cleaved to produce resonance-stabilized carbenium ions, anions, and radicals. Simple and broadly applicable correlation equations were developed which relate Delta H(sub(het)) to ion stabilization properties pK(sub(R+5)) and pK(sub a) and relate Delta H(sub(homo)) to radical stabilization properties (AOPs and CRPs). Important conclusions from the study are: (1) there is no general correlation between Delta H(sub(het)) and Delta H(sub(homo)) which implies that heterolytic bond cleavage pathways in coal will be quite different than the homolytic bond cleavage pathways associated with coal thermolysis; (2) many covalent bonds in coal which require high temperature for homolytic cleavage may be susceptible to heterolytic cleavage under mild conditions; and (3) coal conversion process chemistry based upon heterolytic bond cleavage may be more selective and controllable than homolytic bond cleavage associated with coal thermolysis.

  9. Atomically Smooth Stress-Corrosion Cleavage of a Hydrogen-Implanted Crystal

    NASA Astrophysics Data System (ADS)

    Moras, Gianpietro; Ciacchi, Lucio Colombi; Elsässer, Christian; Gumbsch, Peter; de Vita, Alessandro

    2010-08-01

    We present a quantum-accurate multiscale study of how hydrogen-filled discoidal “platelet” defects grow inside a silicon crystal. Dynamical simulations of a 10-nm-diameter platelet reveal that H2 molecules form at its internal surfaces, diffuse, and dissociate at its perimeter, where they both induce and stabilize the breaking up of highly stressed silicon bonds. A buildup of H2 internal pressure is neither needed for nor allowed by this stress-corrosion growth mechanism, at odds with previous models. Slow platelet growth up to micrometric sizes is predicted as a consequence, making atomically smooth crystal cleavage possible in implantation experiments.

  10. Cleavage and formation of molecular dinitrogen in a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine.

    PubMed

    Miyazaki, Takamasa; Tanaka, Hiromasa; Tanabe, Yoshiaki; Yuki, Masahiro; Nakajima, Kazunari; Yoshizawa, Kazunari; Nishibayashi, Yoshiaki

    2014-10-20

    The N?N bond of molecular dinitrogen bridging two molybdenum atoms in the pentamethylcyclopentadienyl molybdenum complexes that bear ferrocenyldiphosphine as an auxiliary ligand is homolytically cleaved under visible light irradiation at room temperature to afford two molar molybdenum nitride complexes. Conversely, the bridging molecular dinitrogen is reformed by the oxidation of the molybdenum nitride complex at room temperature. This result provides a successful example of the cleavage and formation of molecular dinitrogen induced by a pair of two different external stimuli using a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine under ambient conditions. PMID:25214300

  11. Homogeneous Gold Catalysis Highly Efficient Functionalization of CC Multiple Bonds and Electron-Rich CH Bonds

    E-print Network

    Stoltz, Brian M.

    Homogeneous Gold Catalysis Highly Efficient Functionalization of C­C Multiple Bonds and Electron references: Puddephatt, R. The Chemistry of Gold; E. L. Sevier Scientific Publication Co., Amsterdam, 1978. Hashmi, A. S. K. Gold Bulletin 2004, 37, 51-65. Parish, R. V. Gold Bulletin 1997, 30, 3-12. Parish, R. V

  12. Proteolytic Cleavage of Notch: “HIT and RUN”

    PubMed Central

    van Tetering, G.; Vooijs, M.

    2014-01-01

    The Notch pathway is a highly conserved signaling pathway in multicellular eukaryotes essential in controlling spatial patterning, morphogenesis and homeostasis in embryonic and adult tissues. Notch proteins coordinate cell-cell communication through receptor-ligand interactions between adjacent cells. Notch signaling is frequently deregulated by oncogenic mutation or overexpression in many cancer types. Notch activity is controlled by three sequential cleavage steps leading to ectodomain shedding and transcriptional activation. Here we review the key regulatory steps in the activation of Notch, from receptor maturation to receptor activation (HIT) via a rate-limiting proteolytic cascade (RUN) in the context of species-specific differences. PMID:21506924

  13. Early cleavage in Phoronis muelleri (Phoronida) displays spiral features.

    PubMed

    Pennerstorfer, Markus; Scholtz, Gerhard

    2012-01-01

    The view that early cleavage in Phoronida follows a radial pattern is widely accepted. However, data supporting this characterization are ambiguous. Studies have been repeatedly reporting variation between individual embryos, and the occurrence of embryos exhibiting oblique divisions or nonradial cell arrangements. Such embryos were often considered to represent variation within radial cleavage, or artificial appearances. Cleavage in Phoronis muelleri was previously characterized as "derived radial," but also oblique spindles and cell elongations, and shifted cell arrangements were observed. We studied the early cleavage in P. muelleri applying 4D microscopy, fluorescent staining, and confocal laser scanning microscopy. To deal with the problem of variation we provide statistical evaluations of our data. These show that oblique divisions do not represent variational abnormalities. In fact, they reveal that most cells divide obliquely from the third cleavage onwards. What is more, in almost all cells the axis of the third cleavage is inclined dextrally. The fourth cleavage is even stronger sinistrally pronounced. Subsequently, the pattern of alternating cleavage orientation is largely restricted to animal and vegetal blastomeres. As a result of the obliqueness of divisions, four cells encircle the poles in most embryos. Cross furrows are occasionally present. We found no indications for radial cleavage in P. muelleri. In contrast, the observed cleavage displays several characters consistent with the pattern of spiral cleavage. A close relation of phoronid and spiralian cleavage is also suggested by molecular phylogenies, allying both groups in the Lophotrochozoa. We suggest our findings to represent morphological support for this lophotrochozoan/spiralian affinity of Phoronida. PMID:23134207

  14. Activity dependent CAM cleavage and neurotransmission

    PubMed Central

    Conant, Katherine; Allen, Megan; Lim, Seung T.

    2015-01-01

    Spatially localized proteolysis represents an elegant means by which neuronal activity dependent changes in synaptic structure, and thus experience dependent learning and memory, can be achieved. In vitro and in vivo studies suggest that matrix metalloproteinase and adamalysin activity is concentrated at the cell surface, and emerging evidence suggests that increased peri-synaptic expression, release and/or activation of these proteinases occurs with enhanced excitatory neurotransmission. Synaptically expressed cell adhesion molecules (CAMs) could therefore represent important targets for neuronal activity-dependent proteolysis. Several CAM subtypes are expressed at the synapse, and their cleavage can influence the efficacy of synaptic transmission through a variety of non-mutually exclusive mechanisms. In the following review, we discuss mechanisms that regulate neuronal activity-dependent synaptic CAM shedding, including those that may be calcium dependent. We also highlight CAM targets of activity-dependent proteolysis including neuroligin and intercellular adhesion molecule-5 (ICAM-5). We include discussion focused on potential consequences of synaptic CAM shedding, with an emphasis on interactions between soluble CAM cleavage products and specific pre- and post-synaptic receptors. PMID:26321910

  15. Activity dependent CAM cleavage and neurotransmission.

    PubMed

    Conant, Katherine; Allen, Megan; Lim, Seung T

    2015-01-01

    Spatially localized proteolysis represents an elegant means by which neuronal activity dependent changes in synaptic structure, and thus experience dependent learning and memory, can be achieved. In vitro and in vivo studies suggest that matrix metalloproteinase and adamalysin activity is concentrated at the cell surface, and emerging evidence suggests that increased peri-synaptic expression, release and/or activation of these proteinases occurs with enhanced excitatory neurotransmission. Synaptically expressed cell adhesion molecules (CAMs) could therefore represent important targets for neuronal activity-dependent proteolysis. Several CAM subtypes are expressed at the synapse, and their cleavage can influence the efficacy of synaptic transmission through a variety of non-mutually exclusive mechanisms. In the following review, we discuss mechanisms that regulate neuronal activity-dependent synaptic CAM shedding, including those that may be calcium dependent. We also highlight CAM targets of activity-dependent proteolysis including neuroligin and intercellular adhesion molecule-5 (ICAM-5). We include discussion focused on potential consequences of synaptic CAM shedding, with an emphasis on interactions between soluble CAM cleavage products and specific pre- and post-synaptic receptors. PMID:26321910

  16. Transition Metals Catalyzed Element-Cyano Bonds Activations

    PubMed Central

    Wang, Rui; Falck, John R.

    2014-01-01

    Cyano group as a versatile functionalized intermediate has been explored for several decades, as it readily transfers to many useful functionalization groups such as amine, amide, acid, etc., which make it possess high popularization and use value in organic synthesis. Reactions involved with element-cyano bond cleavage can provide not only a new cyano group but also a freshly functionalized skeleton in one-pot, consequently making it of high importance. The highlights reviewed herein include H-CN, Si-CN, C-CN, B-CN, Sn-CN, Ge-CN, S-CN, Halo-CN, N-CN, and O-CN bonds cleavages and will summarize progress in such an important research area. This review article will focus on transition metal catalyzed reactions involving element-cyano bond activation. PMID:25558119

  17. Selective and Nonselective Cleavages in Positive and Negative CID of the Fragments Generated from In-Source Decay of Intact Proteins in MALDI-MS

    NASA Astrophysics Data System (ADS)

    Takayama, Mitsuo; Sekiya, Sadanori; Iimuro, Ryunosuke; Iwamoto, Shinichi; Tanaka, Koichi

    2014-01-01

    Selective and nonselective cleavages in ion trap low-energy collision-induced dissociation (CID) experiments of the fragments generated from in-source decay (ISD) with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) of intact proteins are described in both positive and negative ion modes. The MALDI-ISD spectra of the proteins demonstrate common, discontinuous, abundant c- and z'-ions originating from cleavage at the N-C? bond of Xxx-Asp/Asn and Gly-Xxx residues in both positive- and negative-ion modes. The positive ion CID of the c- and z'-ions resulted in product ions originating from selective cleavage at Asp-Xxx, Glu-Xxx and Cys-Xxx residues. Nonselective cleavage product ions rationalized by the mechanism of a "mobile proton" are also observed in positive ion CID spectra. Negative ion CID of the ISD fragments results in complex product ions accompanied by the loss of neutrals from b-, c-, and y-ions. The most characteristic feature of negative ion CID is selective cleavage of the peptide bonds of acidic residues, Xxx-Asp/Glu/Cys. A definite influence of ?-helix on the CID product ions was not obtained. However, the results from positive ion and negative ion CID of the MALDI-ISD fragments that may have long ?-helical domains suggest that acidic residues in helix-free regions tend to degrade more than those in helical regions.

  18. Cleavage of nicotinamide adenine dinucleotide by the ribosome-inactivating protein from Momordica charantia.

    PubMed

    Vinkovic, M; Dunn, G; Wood, G E; Husain, J; Wood, S P; Gill, R

    2015-09-01

    The interaction of momordin, a type 1 ribosome-inactivating protein from Momordica charantia, with NADP(+) and NADPH has been investigated by X-ray diffraction analysis of complexes generated by co-crystallization and crystal soaking. It is known that the proteins of this family readily cleave the adenine-ribose bond of adenosine and related nucleotides in the crystal, leaving the product, adenine, bound to the enzyme active site. Surprisingly, the nicotinamide-ribose bond of oxidized NADP(+) is cleaved, leaving nicotinamide bound in the active site in the same position but in a slightly different orientation to that of the five-membered ring of adenine. No binding or cleavage of NADPH was observed at pH 7.4 in these experiments. These observations are in accord with current views of the enzyme mechanism and may contribute to ongoing searches for effective inhibitors. PMID:26323301

  19. The Turbulent Alfvenic Aurora C. C. Chaston,1

    E-print Network

    Bonnell, John W.

    The Turbulent Alfve´nic Aurora C. C. Chaston,1 C. Salem,1 J. W. Bonnell,1 C. W. Carlson,1 R. E) It is demonstrated from observations that the Alfve´nic aurora may be powered by a turbulent cascade transverse acceleration of electrons from near-Earth space to form the aurora. We find that regions of Alfve´n wave

  20. FROM EUCLID TO ENTROPY C. C. Rodr'iguez

    E-print Network

    Rodriguez, Carlos

    FROM EUCLID TO ENTROPY C. C. Rodr'iguez Department of Mathematics and Statistics SUNY at Albany of geometry goes something like this... Once upon a time there was a greek man named Euclid who organized the mathematical knowledge in his time in six books known as The Elements. Euclid's work was so influential

  1. Mit Methanol iridiumkatalysiert C-C-Bindungen knpfen

    E-print Network

    Meyer, Karsten

    Mit Methanol iridiumkatalysiert C-C-Bindungen knüpfen i Die Reaktivität von Methanol (1) beruht meist auf dem nucleophilen Sauerstoffatom. Obwohl Methanol industriell im Monsanto-Prozess carbo, dass Methanol iridiumkatalysiert leicht an Allene (2) addiert. Damit entstehen 2,2-disub- stituierte

  2. Optical conductivity of nodal metals C. C. Homes1

    E-print Network

    Johnson, Peter D.

    Optical conductivity of nodal metals C. C. Homes1 , J. J. Tu2 , J. Li2 , G. D. Gu1 & A. Akrap3 1 than the scattering rate, the optical conductivity adopts the well-known power law behavior s1(v) / v22-law behavior in the residual optical conductivity now permits the removal of this contribution, revealing

  3. The Gas Leakage Analysis in C/C Composites

    NASA Astrophysics Data System (ADS)

    Nishiyama, Yuichi; Hatta, Hiroshi; Bando, Takamasa; Sugibayashi, Toshio

    Gas leakage through carbon fiber reinforcement carbon composites, C/Cs, was discussed so as to apply C/Cs to heat exchangers in an engine system for a future space-plane. Since C/Cs include many cracks and pores, gas easily leaks through C/Cs. To predict and to prevent the gas flow through a C/C, leakage rate was measured as a function of pressure and gas flow path was identified by micro-observation of the C/C. Then, several analytical models were examined to clarify principal mechanism yielding gas flow resistance. It was found that laminar flow models gave far small flow resistance compared with experimental results, but a model based on adiabatic expansion and compression flow, used for gas leak through labyrinth seals, resulted in reasonable agreement. Finally, Si impregnation in a C/C was examined to minimize the gas leakage. This treatment was shown to be an excellent measure to reduce the gas leakage through C/C.

  4. Ionospheric erosion by Alfven waves C. C. Chaston,1

    E-print Network

    Bonnell, John W.

    Ionospheric erosion by Alfve´n waves C. C. Chaston,1 V. Genot,2 J. W. Bonnell,1 C. W. Carlson,1 J oval showing the erosion of ionospheric plasmas from the topside ionosphere by the action of Alfve), Ionospheric erosion by Alfve´n waves, J. Geophys. Res., 111, A03206, doi:10.1029/2005JA011367. 1. Introduction

  5. Quantification of C?C and C?O Surface Carbons in Detonation Nanodiamond by NMR

    SciTech Connect

    Cui, J -F; Fang, X -W; Schmidt-Rohr, K

    2014-05-08

    The ability of solid-state 13C NMR to detect and quantify small amounts of sp2-hybridized carbon on the surface of ?5 nm diameter nanodiamond particles is demonstrated. The C?C carbon fraction is only 1.1 ± 0.4% in pristine purified detonation nanodiamond, while a full single-layer graphitic or “bucky diamond” shell would contain ca. 25% of all C in a 5 nm diameter particle. Instead of large aromatic patches repeatedly proposed in the recent literature, sp3-hybridized CH and COH carbons cover most of the nanodiamond particle surface, accounting for ?5% each. C?O and COO groups also seen in X-ray absorption near-edge structure spectroscopy (XANES) but not detected in previous NMR studies make up ca. 1.5% of all C. They are removed by heat treatment at 800 °C, which increases the aromatic fraction. 13C{1H} NMR demonstrates that the various sp2-hybridized carbons are mostly not protonated, but cross-polarization shows that they are separated from 1H by only a few bond lengths, which proves that they are near the protonated surface. Together, the observed C–H, C–OH, C?O, and C?C groups account for 12–14% of all C, which matches the surface fraction expected for bulk-terminated 5 nm diameter diamond particles.

  6. A Dynamic Pathway for Stone-Wales Bond Rotation on Carbon Nanotubes through Diamond-Like Bonds

    NASA Technical Reports Server (NTRS)

    Wei, Chen-Yu; Srivastava, Deepak; Cho, Kyeong-Jae; Menon, Madhu

    2003-01-01

    A new lower energy barrier with a two-step pathway of Stone-Wales (SW) ,ond rotation on carbon nanotubes (CNTs) is found through molecular dynamics (MD) simulations of CNTs under tension. The first step involves going over to a stable sp3-like metastable configuration with half rotated and partially tilted C-C bond. The second step involves going over to the fully rotated C-C bond with the formation of a SW defect in the nanotube. The energy barrier for this two-step dynamic pathway is significantly lower than the previously known static barrier for in-plane rotation of the C-C bond on a tensile strained (> 4%) CNT.

  7. LC-MS based cleavage site profiling of the proteases ADAM10 and ADAM17 using proteome-derived peptide libraries.

    PubMed

    Tucher, Joanna; Linke, Dennis; Koudelka, Tomas; Cassidy, Liam; Tredup, Claudia; Wichert, Rielana; Pietrzik, Claus; Becker-Pauly, Christoph; Tholey, Andreas

    2014-04-01

    A Disintegrin and Metalloproteinase 10 (ADAM10) and ADAM17 catalyze ectodomain shedding of a number of cell surface proteins important for embryonic development and tissue homeostasis. Changes in the expression levels or dysregulated proteolytic activity of ADAM10 and ADAM17 have been shown to play important roles in multiple diseases such as inflammation, cancer, and neurodegenerative disorders. Despite the well documented substrate repertoire of ADAM10 and ADAM17, little is known about their cleavage site specificity. We optimized Q-PICS (Quantitative Proteomics for the Identification of Cleavage Sites) to elucidate the cleavage site specificity of recombinant murine ADAM10 and ADAM17. Two different yeast proteome-derived peptide libraries were used and samples were analyzed by LC-MALDI and LC-ESI MS in parallel. We show that the largest difference in the cleavage site specificities of ADAM10 and ADAM17 is at the P1' site: while both enzymes cleave N-terminal of leucine, only ADAM10 shows additional preference toward aromatic amino acids, whereas ADAM17 exhibits the highest preference for valine. Together with further amino acid preferences more adjacent to the scissile bond, our data is in good agreement with ADAM10/17 cleavage sites previously identified in native substrates. Overall, the precise identification of ADAM10 and ADAM17 cleavage site specificity provides the basis for better substrate identification in vivo and the generation of specific inhibitors or activity based probes. PMID:24635658

  8. A Deeper Look into Thiophene Coordination Prior to Oxidative Addition of the C-S Bond to Platinum(0): A Computational Study

    E-print Network

    Jones, William D.

    A Deeper Look into Thiophene Coordination Prior to Oxidative Addition of the C-S Bond to Platinum(0 platinum bisalkylphosphine fragment yields a highly stable thiaplatinacycle derived from cleavage of the C

  9. A Simple Test to Determine the Effectiveness of Different Braze Compositions for Joining Ti-Tubes to C/C Composite Plates

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Singh, Mrityunjay; Shpargel, Tarah; Asthana, Rajiv

    2006-01-01

    A simple tube-plate joint tensile test was implemented to compare the effectiveness of commercial brazes, namely, TiCuNi, TiCuSil, and Cu-ABA, used for bonding Ti-tubes joined to C-C composite plates. The different braze systems yielded different; yet, repeatable results. The Cu-ABA system proved to have about twice the load-carrying ability of the other two systems due to the fact that the bonded area between the braze material and the C-C plate was largest for this system. The orientation of the surface fiber tows also had a significant effect on load-carrying ability with tows oriented perpendicular to the tube axis displaying the highest failure loads. Increasing the process load and modifying the surface of the C-C plate by grooving out channels for the Ti-Tube to nest in resulted in increased load-carrying ability for the TiCuSil and Cu-ABA systems due to increased bonded area and better penetration of the braze material into the C-C composite.

  10. Alkali metal control over N-N cleavage in iron complexes.

    PubMed

    Grubel, Katarzyna; Brennessel, William W; Mercado, Brandon Q; Holland, Patrick L

    2014-12-01

    Though N2 cleavage on K-promoted Fe surfaces is important in the large-scale Haber-Bosch process, there is still ambiguity about the number of Fe atoms involved during the N-N cleaving step and the interactions responsible for the promoting ability of K. This work explores a molecular Fe system for N2 reduction, particularly focusing on the differences in the results obtained using different alkali metals as reductants (Na, K, Rb, Cs). The products of these reactions feature new types of Fe-N2 and Fe-nitride cores. Surprisingly, adding more equivalents of reductant to the system gives a product in which the N-N bond is not cleaved, indicating that the reducing power is not the most important factor that determines the extent of N2 activation. On the other hand, the results suggest that the size of the alkali metal cation can control the number of Fe atoms that can approach N2, which in turn controls the ability to achieve N2 cleavage. The accumulated results indicate that cleaving the triple N-N bond to nitrides is facilitated by simultaneous approach of least three low-valent Fe atoms to a single molecule of N2. PMID:25412468

  11. Alkali Metal Control over N–N Cleavage in Iron Complexes

    PubMed Central

    2015-01-01

    Though N2 cleavage on K-promoted Fe surfaces is important in the large-scale Haber–Bosch process, there is still ambiguity about the number of Fe atoms involved during the N–N cleaving step and the interactions responsible for the promoting ability of K. This work explores a molecular Fe system for N2 reduction, particularly focusing on the differences in the results obtained using different alkali metals as reductants (Na, K, Rb, Cs). The products of these reactions feature new types of Fe–N2 and Fe-nitride cores. Surprisingly, adding more equivalents of reductant to the system gives a product in which the N–N bond is not cleaved, indicating that the reducing power is not the most important factor that determines the extent of N2 activation. On the other hand, the results suggest that the size of the alkali metal cation can control the number of Fe atoms that can approach N2, which in turn controls the ability to achieve N2 cleavage. The accumulated results indicate that cleaving the triple N–N bond to nitrides is facilitated by simultaneous approach of least three low-valent Fe atoms to a single molecule of N2. PMID:25412468

  12. Preferred sequences within a defined cleavage window specify DNA 3' end-directed cleavages by retroviral RNases H.

    PubMed

    Schultz, Sharon J; Zhang, Miaohua; Champoux, James J

    2009-11-20

    The RNase H activity of reverse transcriptase carries out three types of cleavage termed internal, RNA 5' end-directed, and DNA 3' end-directed. Given the strong association between the polymerase domain of reverse transcriptase and a DNA 3' primer terminus, we asked whether the distance from the primer terminus is paramount for positioning DNA 3' end-directed cleavages or whether preferred sequences and/or a cleavage window are important as they are for RNA 5' end-directed cleavages. Using the reverse transcriptases of human immunodeficiency virus, type 1 (HIV-1) and Moloney murine leukemia virus (M-MuLV), we determined the effects of sequence, distance, and substrate end structure on DNA 3' end-directed cleavages. Utilizing sequence-matched substrates, our analyses showed that DNA 3' end-directed cleavages share the same sequence preferences as RNA 5' end-directed cleavages, but the sites must fall in a narrow window between the 15th and 20th nucleotides from the recessed end for HIV-1 reverse transcriptase and between the 17th and 20th nucleotides for M-MuLV. Substrates with an RNA 5' end recessed by 1 (HIV-1) or 2-3 (M-MuLV) bases on a longer DNA could accommodate both types of end-directed cleavage, but further recession of the RNA 5' end excluded DNA 3' end-directed cleavages. For HIV-1 RNase H, the inclusion of the cognate dNTP enhanced DNA 3' end-directed cleavages at the 17th and 18th nucleotides. These data demonstrate that all three modes of retroviral RNase H cleavage share sequence determinants that may be useful in designing assays to identify inhibitors of retroviral RNases H. PMID:19778906

  13. Measurement of the cleavage energy of graphite

    PubMed Central

    Wang, Wen; Dai, Shuyang; Li, Xide; Yang, Jiarui; Srolovitz, David J.; Zheng, Quanshui

    2015-01-01

    The basal plane cleavage energy (CE) of graphite is a key material parameter for understanding many of the unusual properties of graphite, graphene and carbon nanotubes. Nonetheless, a wide range of values for the CE has been reported and no consensus has yet emerged. Here we report the first direct, accurate experimental measurement of the CE of graphite using a novel method based on the self-retraction phenomenon in graphite. The measured value, 0.37±0.01?J?m?2 for the incommensurate state of bicrystal graphite, is nearly invariant with respect to temperature (22?°C?T?198?°C) and bicrystal twist angle, and insensitive to impurities from the atmosphere. The CE for the ideal ABAB graphite stacking, 0.39±0.02?J?m?2, is calculated based on a combination of the measured CE and a theoretical calculation. These experimental measurements are also ideal for use in evaluating the efficacy of competing theoretical approaches. PMID:26314373

  14. Cleavage of tRNA with imidazole and spermine imidazole constructs: a new approach for probing RNA structure.

    PubMed Central

    Vlassov, V V; Zuber, G; Felden, B; Behr, J P; Giegé, R

    1995-01-01

    Hydrolysis of RNA in imidazole buffer and by spermine-imidazole conjugates has been investigated. The RNA models were yeast tRNA(Asp) and a transcript derived from the 3'-terminal sequence of tobacco mosaic virus RNA representing a minihelix capable of being enzymatically aminoacylated with histidine. Imidazole buffer and spermine-imidazole conjugates in the presence of free imidazole cleave phosphodiester bonds in the folded RNAs in a specific fashion. Imidazole buffer induces cleavages preferentially in single-stranded regions because nucleotides in these regions have more conformational freedom and can assume more easily the geometry needed for formation of the hydrolysis intermediate state. Spermine-imidazole constructs supplemented with free imidazole cleave tRNA(Asp) within single-stranded regions after pyrimidine residues with a marked preference for pyrimidine-A sequences. Hydrolysis patterns suggest a cleavage mechanism involving an attack by the imidazole residue of the electrostatically bound spermine-imidazole and by free imidazole at the most accessible single-stranded regions of the RNA. Cleavages in a viral RNA fragment recapitulating a tRNA-like domain were found in agreement with the model of this molecule that accounts for its functional properties, thus illustrating the potential of the imidazole-derived reagents as structural probes for solution mapping of RNAs. The cleavage reactions are simple to perform, provide information reflecting the state of the ribose-phosphate backbone of RNA and can be used for mapping single- and double-stranded regions in RNAs. Images PMID:7667092

  15. Familial Alzheimer’s mutations within APPTM increase A?42 production by enhancing accessibility of ?-cleavage site

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Gamache, Eric; Rosenman, David J.; Xie, Jian; Lopez, Maria M.; Li, Yue-Ming; Wang, Chunyu

    2014-01-01

    The high A?42/A?40 production ratio is a hallmark of familial Alzheimer’s disease, which can be caused by mutations in the amyloid precursor protein (APP). The C-terminus of A? is generated by ?-secretase cleavage within the transmembrane domain of APP (APPTM), a process that is primed by an initial ?-cleavage at either T48 or L49, resulting in subsequent production of A?42 or A?40, respectively. Here we solve the dimer structures of wild-type APPTM (AAPTM WT) and mutant APPTM (FAD mutants V44M) with solution NMR. The right-handed APPTM helical dimer is mediated by GXXXA motif. From the NMR structural and dynamic data, we show that the V44M and V44A mutations can selectively expose the T48 site by weakening helical hydrogen bonds and increasing hydrogen-deuterium exchange rate (kex). We propose a structural model in which FAD mutations (V44M and V44A) can open the T48 site ?-secretase for the initial ?-cleavage, and consequently shift cleavage preference towards A?42.

  16. Solar System planetary tests of \\dot c/c

    E-print Network

    Lorenzo Iorio

    2009-05-15

    Analytical and numerical calculations show that a putative temporal variation of the speed of light c, with the meaning of space-time structure constant c_ST, assumed to be linear over timescales of about one century, would induce a secular precession of the longitude of the pericenter \\varpi of a test particle orbiting a spherically symmetric body. By comparing such a predicted effect to the corrections \\Delta\\dot\\varpi to the usual Newtonian/Einsteinian perihelion precessions of the inner planets of the Solar System, recently estimated by E.V. Pitjeva by fitting about one century of modern astronomical observations with the standard dynamical force models of the EPM epehemerides, we obtained \\dot c/c =(0.5 +/- 2)\\times 10^-7 yr^-1. Moreover, the possibility that \\dot c/c\

  17. Dislocation dissociation in some f.c.c. metals

    NASA Technical Reports Server (NTRS)

    Esterling, D. M.

    1980-01-01

    The dissociation of a perfect screw dislocation into a stacking fault in an f.c.c. lattice is modeled by the modified lattice statics. The interatomic potentials are obtained from the work of Esterling and Swaroop and differ substantially from those empirical potentials usually employed in defect simulations. The calculated stacking fault widths for aluminum, copper, and silver are in good agreement with weak beam microscopy results.

  18. [Study on spectral emissivity of C/C composites].

    PubMed

    Zhu, Bo; Cao, Wei-Wei; Jing, Min; Dong, Xing-Guang; Wang, Cheng-Guo

    2009-11-01

    Different types of C/C composites were prepared by conventional molding, and the changes in normal spectral emissivity of samples were tested. The testing results show that spectral emissivity of C/C composite reinforced by short cut carbon fibers is generally higher than the sample reinforced by carbon cloth in the entire 2500-13000nm wavelength region. The structure of short cut carbon fibers is relatively loose and the number of material particles is less than other samples in unit volume, which increases the penetration depth of electromagnetic waves. This is the reason for higher normal spectral emissivity and better heat radiation property. Meanwhile, the test results of normal spectral emissivity for fiber perform and C/C composite samples show that the spectral emissivity of resin carbon is better than fiber carbon because of the difference in microstructure for the two kinds of carbon materials. Laser Raman spectroscopy was employed to analyze the microstructures of different carbon materials, and the results show that because sp3 and sp2 hybrid states of carbon atoms in resin carbon produced more vibration modes, the resin carbon also has higher normal spectral emissivity and better characteristics of heat radiation. PMID:20101951

  19. Pi Bond Orders and Bond Lengths

    ERIC Educational Resources Information Center

    Herndon, William C.; Parkanyi, Cyril

    1976-01-01

    Discusses three methods of correlating bond orders and bond lengths in unsaturated hydrocarbons: the Pauling theory, the Huckel molecular orbital technique, and self-consistent-field techniques. (MLH)

  20. Surface-catalyzed C-C covalent coupling strategies toward the synthesis of low-dimensional carbon-based nanostructures.

    PubMed

    Fan, Qitang; Gottfried, J Michael; Zhu, Junfa

    2015-08-18

    Carbon-based nanostructures have attracted tremendous interest because of their versatile and tunable properties, which depend on the bonding type of the constituting carbon atoms. Graphene, as the most prominent representative of the ?-conjugated carbon-based materials, consists entirely of sp(2)-hybridized carbon atoms and exhibits a zero band gap. Recently, countless efforts were made to open and tune the band gap of graphene for its applications in semiconductor devices. One promising method is periodic perforation, resulting in a graphene nanomesh (GNM), which opens the band gap while maintaining the exceptional transport properties. However, the typically employed lithographic approach for graphene perforation is difficult to control at the atomic level. The complementary bottom-up method using surface-assisted carbon-carbon (C-C) covalent coupling between organic molecules has opened up new possibilities for atomically precise fabrication of conjugated nanostructures like GNM and graphene nanoribbons (GNR), although with limited maturity. A general drawback of the bottom-up approach is that the desired structure usually does not represent the global thermodynamic minimum. It is therefore impossible to improve the long-range order by postannealing, because once the C-C bond formation becomes reversible, graphene as the thermodynamically most stable structure will be formed. This means that only carefully chosen precursors and reaction conditions can lead to the desired (non-graphene) material. One of the most popular and frequently used organic reactions for on-surface C-C coupling is the Ullmann reaction of aromatic halides. While experimentally simple to perform, the irreversibility of the C-C bond formation makes it a challenge to obtain long-range ordered nanostructures. With no postreaction structural improvement possible, the assembly process must be optimized to result in defect-free nanostructures during the initial reaction, requiring complete reaction of the precursors in the right positions. Incomplete connections typically result when mobile precursor monomers are blocked from reaching unsaturated reaction sites of the preformed nanostructures. For example, monomers may not be able to reach a randomly formed internal cavity of a two-dimensional (2D) nanostructure island due to steric hindrance in 2D confinement, leaving reaction sites in the internal cavity unsaturated. Wrong connections between precursor monomers, here defined as intermolecular C-C bonds forcing the monomer into a nonideal position within the structure, are usually irreversible and can induce further structural defects. The relative conformational flexibility of the monomer backbones permits connections between deformed monomers when they encounter strong steric hindrance. This, however, usually leads to heterogeneous structural motifs in the formed nanostructures. This Account reviews some of the latest developments regarding on-surface C-C coupling strategies toward the synthesis of carbon-based nanostructures by addressing the above-mentioned issues. The strategies include Ullmann coupling and other, "cleaner" alternative C-C coupling reactions like Glaser coupling, cyclo-dehydrogenation, and dehydrogenative coupling. The choice of substrate materials and precursor designs is crucial for optimizing substrate reactivity and precursor diffusion rates, and to reduce events of wrong linkage. Hierarchical polymerization is employed to steer the coupling route, which effectively improves the completeness of the reaction. Effects of byproducts on nanostructure formation is comprehended with both experimental and theoretical studies. PMID:26194462

  1. Investing in Bonds 

    E-print Network

    Johnson, Jason; Polk, Wade

    2002-08-12

    Bonds, which are issued by governments and corporations, can be an important part of one's investment portfolio. U.S. government bonds, municipal bonds, zero-coupon bonds and other types are described. Also learn strategies for coping with inflation...

  2. The VHSE-Based Prediction of Proteasomal Cleavage Sites

    PubMed Central

    Zhou, Shangbo; Pan, Xianchao; Cai, Shaoxi; Yang, Li; Mei, Hu

    2013-01-01

    Prediction of proteasomal cleavage sites has been a focus of computational biology. Up to date, the predictive methods are mostly based on nonlinear classifiers and variables with little physicochemical meanings. In this paper, the physicochemical properties of 14 residues both upstream and downstream of a cleavage site are characterized by VHSE (principal component score vector of hydrophobic, steric, and electronic properties) descriptors. Then, the resulting VHSE descriptors are employed to construct prediction models by support vector machine (SVM). For both in vivo and in vitro datasets, the performance of VHSE-based method is comparatively better than that of the well-known PAProC, MAPPP, and NetChop methods. The results reveal that the hydrophobic property of 10 residues both upstream and downstream of the cleavage site is a dominant factor affecting in vivo and in vitro cleavage specificities, followed by residue’s electronic and steric properties. Furthermore, the difference in hydrophobic potential between residues flanking the cleavage site is proposed to favor substrate cleavages. Overall, the interpretable VHSE-based method provides a preferable way to predict proteasomal cleavage sites. PMID:24040264

  3. The VHSE-based prediction of proteasomal cleavage sites.

    PubMed

    Xie, Jiangan; Xu, Zhiling; Zhou, Shangbo; Pan, Xianchao; Cai, Shaoxi; Yang, Li; Mei, Hu

    2013-01-01

    Prediction of proteasomal cleavage sites has been a focus of computational biology. Up to date, the predictive methods are mostly based on nonlinear classifiers and variables with little physicochemical meanings. In this paper, the physicochemical properties of 14 residues both upstream and downstream of a cleavage site are characterized by VHSE (principal component score vector of hydrophobic, steric, and electronic properties) descriptors. Then, the resulting VHSE descriptors are employed to construct prediction models by support vector machine (SVM). For both in vivo and in vitro datasets, the performance of VHSE-based method is comparatively better than that of the well-known PAProC, MAPPP, and NetChop methods. The results reveal that the hydrophobic property of 10 residues both upstream and downstream of the cleavage site is a dominant factor affecting in vivo and in vitro cleavage specificities, followed by residue's electronic and steric properties. Furthermore, the difference in hydrophobic potential between residues flanking the cleavage site is proposed to favor substrate cleavages. Overall, the interpretable VHSE-based method provides a preferable way to predict proteasomal cleavage sites. PMID:24040264

  4. Bundled slaty cleavage in laminated argillite, north-central minnesota

    USGS Publications Warehouse

    Southwick, D.L.

    1987-01-01

    Exceptional bundled slaty cleavage (defined herein) has been found in drill cores of laminated, folded, weakly metamorphosed argillite at several localities in the early Proterozoic Animikie basin of north-central Minnesota. The cleavage domains are more closely spaced within the cleavage bundles than outside them, the mean tectosilicate grain size of siltstone layers, measured normal to cleavage, is less in the cleavage bundles than outside them, and the cleavage bundles are enriched in opaque phases and phyllosilicates relative to extra-bundle segments. These facts suggest that pressure solution was a major factor in bundle development. If it is assumed that opaque phases have been conserved during pressure solution, the modal differences in composition between intra-bundle and extra-bundle segments of beds provide a means for estimating bulk material shortening normal to cleavage. Argillite samples from the central part of the Animikie basin have been shortened a minimum of about 22%, as estimated by this method. These estimates are similar to the shortening values derived from other strain markers in other rock types interbedded with the argillite, and are also consistent with the regional pattern of deformation. ?? 1987.

  5. Rubber Oxygenase and Latex Clearing Protein Cleave Rubber to Different Products and Use Different Cleavage Mechanisms

    PubMed Central

    Birke, Jakob

    2014-01-01

    Two types of enzyme for oxidative cleavage of poly(cis-1,4-isoprene) are known. One is rubber oxygenase (RoxA) that is secreted by Xanthomonas sp. strain 35Y and a few other Gram-negative rubber-degrading bacteria during growth on polyisoprene. RoxA was studied in the past, and the recently solved structure showed a structural relationship to bacterial cytochrome c peroxidases (J. Seidel et al., Proc. Natl. Acad. Sci. U. S. A. 110:13833–13838, 2013, http://dx.doi.org/10.1073/pnas.1305560110). The other enzyme is latex-clearing protein (Lcp) that is secreted by rubber-degrading actinomycetes, but Lcp has not yet been purified. Here, we expressed Lcp of Streptomyces sp. strain K30 in a ?roxA background of Xanthomonas sp. strain 35Y and purified native (untagged) Lcp. The specific activities of Lcp and RoxA were 0.70 and 0.48 U/mg, respectively. Lcp differed from RoxA in the absence of heme groups and other characteristics. Notably, Lcp degraded polyisoprene via endo-type cleavage to tetra-C20 and higher oligo-isoprenoids with aldehyde and keto end groups, whereas RoxA used an exo-type cleavage mechanism to give the main end product 12-oxo-4,8-dimethyltrideca-4,8-diene-1-al (ODTD). RoxA was able to cleave isolated Lcp-derived oligo-isoprenoid molecules to ODTD. Inhibitor studies, spectroscopic investigations and metal analysis gave no indication for the presence of iron, other metals, or cofactors in Lcp. Our results suggest that Lcp could be a member of the growing group of cofactor-independent oxygenases and differs in the cleavage mechanism from heme-dependent RoxA. In conclusion, RoxA and Lcp represent two different answers to the same biochemical problem, the cleavage of polyisoprene, a polymer that has carbon-carbon double bonds as the only functional groups for enzymatic attack. PMID:24907333

  6. Rubber oxygenase and latex clearing protein cleave rubber to different products and use different cleavage mechanisms.

    PubMed

    Birke, Jakob; Jendrossek, Dieter

    2014-08-01

    Two types of enzyme for oxidative cleavage of poly(cis-1,4-isoprene) are known. One is rubber oxygenase (RoxA) that is secreted by Xanthomonas sp. strain 35Y and a few other Gram-negative rubber-degrading bacteria during growth on polyisoprene. RoxA was studied in the past, and the recently solved structure showed a structural relationship to bacterial cytochrome c peroxidases (J. Seidel et al., Proc. Natl. Acad. Sci. U. S. A. 110:13833-13838, 2013, http://dx.doi.org/10.1073/pnas.1305560110). The other enzyme is latex-clearing protein (Lcp) that is secreted by rubber-degrading actinomycetes, but Lcp has not yet been purified. Here, we expressed Lcp of Streptomyces sp. strain K30 in a ?roxA background of Xanthomonas sp. strain 35Y and purified native (untagged) Lcp. The specific activities of Lcp and RoxA were 0.70 and 0.48 U/mg, respectively. Lcp differed from RoxA in the absence of heme groups and other characteristics. Notably, Lcp degraded polyisoprene via endo-type cleavage to tetra-C20 and higher oligo-isoprenoids with aldehyde and keto end groups, whereas RoxA used an exo-type cleavage mechanism to give the main end product 12-oxo-4,8-dimethyltrideca-4,8-diene-1-al (ODTD). RoxA was able to cleave isolated Lcp-derived oligo-isoprenoid molecules to ODTD. Inhibitor studies, spectroscopic investigations and metal analysis gave no indication for the presence of iron, other metals, or cofactors in Lcp. Our results suggest that Lcp could be a member of the growing group of cofactor-independent oxygenases and differs in the cleavage mechanism from heme-dependent RoxA. In conclusion, RoxA and Lcp represent two different answers to the same biochemical problem, the cleavage of polyisoprene, a polymer that has carbon-carbon double bonds as the only functional groups for enzymatic attack. PMID:24907333

  7. Basics of Fidelity Bonding.

    ERIC Educational Resources Information Center

    Kahn, Steven P.

    Fidelity bonds are important for an agency to hold to protect itself against any financial loss that can result from dishonest acts by its employees. Three types of fidelity bonds are available to an agency: (1) public official bonds; (2) dishonesty bonds; and (3) faithful performance bonds. Public official bonds are required by state law to be…

  8. A dense and strong bonding collagen film for carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Cao, Sheng; Li, Hejun; Li, Kezhi; Lu, Jinhua; Zhang, Leilei

    2015-08-01

    A strong bonding collagen film was successfully prepared on carbon/carbon (C/C) composites. The surface conditions of the modified C/C composites were detected by contact angle measurements, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectra. The roughness, optical morphology, bonding strength and biocompatibility of collagen films at different pH values were detected by confocal laser scanning microscope (CLSM), universal test machine and cytology tests in vitro. After a 4-h modification in 30% H2O2 solution at 100 °C, the contact angle on the surface of C/C composites was decreased from 92.3° to 65.3°. Large quantities of hydroxyl, carboxyl and carbonyl functional groups were formed on the surface of the modified C/C composites. Then a dense and continuous collagen film was prepared on the modified C/C substrate. Bonding strength between collagen film and C/C substrate was reached to 8 MPa level when the pH value of this collagen film was 2.5 after the preparing process. With 2-day dehydrathermal treatment (DHT) crosslinking at 105 °C, the bonding strength was increased to 12 MPa level. At last, the results of in vitro cytological test showed that this collagen film made a great improvement on the biocompatibility on C/C composites.

  9. Detection of nucleic acid sequences by invader-directed cleavage

    DOEpatents

    Brow, Mary Ann D. (Madison, WI); Hall, Jeff Steven Grotelueschen (Madison, WI); Lyamichev, Victor (Madison, WI); Olive, David Michael (Madison, WI); Prudent, James Robert (Madison, WI)

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The 5' nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based by charge.

  10. 3-Keto-5-aminohexanoate Cleavage Enzyme

    PubMed Central

    Bellinzoni, Marco; Bastard, Karine; Perret, Alain; Zaparucha, Anne; Perchat, Nadia; Vergne, Carine; Wagner, Tristan; de Melo-Minardi, Raquel C.; Artiguenave, François; Cohen, Georges N.; Weissenbach, Jean; Salanoubat, Marcel; Alzari, Pedro M.

    2011-01-01

    The exponential increase in genome sequencing output has led to the accumulation of thousands of predicted genes lacking a proper functional annotation. Among this mass of hypothetical proteins, enzymes catalyzing new reactions or using novel ways to catalyze already known reactions might still wait to be identified. Here, we provide a structural and biochemical characterization of the 3-keto-5-aminohexanoate cleavage enzyme (Kce), an enzymatic activity long known as being involved in the anaerobic fermentation of lysine but whose catalytic mechanism has remained elusive so far. Although the enzyme shows the ubiquitous triose phosphate isomerase (TIM) barrel fold and a Zn2+ cation reminiscent of metal-dependent class II aldolases, our results based on a combination of x-ray snapshots and molecular modeling point to an unprecedented mechanism that proceeds through deprotonation of the 3-keto-5-aminohexanoate substrate, nucleophilic addition onto an incoming acetyl-CoA, intramolecular transfer of the CoA moiety, and final retro-Claisen reaction leading to acetoacetate and 3-aminobutyryl-CoA. This model also accounts for earlier observations showing the origin of carbon atoms in the products, as well as the absence of detection of any covalent acyl-enzyme intermediate. Kce is the first representative of a large family of prokaryotic hypothetical proteins, currently annotated as the “domain of unknown function” DUF849. PMID:21632536

  11. DFT study of the hydrolysis reaction in atranes and ocanes: the influence of transannular bonding.

    PubMed

    Ignatyev, Igor S; Montejo, Manuel; Rodriguez Ortega, Pilar G; Kochina, Tatiana A; López González, Juan Jesús

    2016-01-01

    Thermochemical kinetics of hydrolysis reactions of compounds with transannular intramolecular M…N bonds, i.e., atranes RM(OCH2CH2)3N and ocanes R2M(OCH2CH2)2NH (M?=?Si, Ge; R?=?F, Cl, Me), is studied at the B3LYP/aug-cc-pVDZ theoretical level. Several DFT methods are assessed for the reproduction of the experimental activation barrier for the Si-O bond cleavage of 1-methylsilatrane. Activation barriers for atranes and ocanes show the tendency for their growth with the decrease of the electronegativity of a substituent R on going from F to Me and their decrease from Si to Ge. Hydrolysis activation barriers of atranes and ocanes are compared with those of their acyclic analogs RM(OCH3)3 and R2M(OCH2)2NH in order to study the role of transannular M…N bonds in the stability of these molecules to hydrolysis. Substantially larger barriers for atranes support the opinion that stability of atranes may be explained by the formation of intramolecular bonds; however, the strengthening of transannular M…N bonds results in lower M-O cleavage barriers. It was proposed that the M-O cleavage barrier height is determined not by a weak M…N bonding itself, but rather by the contribution of a nitrogen lone pair to the antibonding orbitals of M-O bonds. The NBO analysis show that this interaction increases with the decrease of the electronegativity of a substituent R and decreases on going from atranes to ocanes. In ocanes, the presence of M…N bonds does not kinetically hinder the hydrolytic process; M-O cleavage activation barriers for acyclic analogs are higher. M-Hal cleavage barriers are substantially higher than those for M-O cleavage for R?=?F, but lower for R?=?Cl. Graphical Abstract The experimental barrier height of the Si-O bond cleavage in 1-methylsilatrane is well reproduced when three explicit water molecules are included in the B3LYP/aug-cc-pVDZ theoretical model. PMID:26645807

  12. Detection of nucleic acids by multiple sequential invasive cleavages

    DOEpatents

    Hall, Jeff G; Lyamichev, Victor I; Mast, Andrea L; Brow, Mary Ann D

    2012-10-16

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of human cytomegalovirus nucleic acid in a sample.

  13. Cleavages, social engagement and trust in post-communist euroupe 

    E-print Network

    Rossbach, David Otto

    2009-05-15

    This dissertation addresses generalized trust in Post-Communist Europe. I examine trust stressing two sets of factors: the impact of attitudes associated with cleavages coming out of transition to democracy, and the importance of informal...

  14. Detection of nucleic acids by multiple sequential invasive cleavages 02

    DOEpatents

    Hall, Jeff G. (Madison, WI); Lyamichev, Victor I. (Madison, WI); Mast, Andrea L. (Madison, WI); Brow, Mary Ann D. (Madison, WI)

    2002-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of human cytomegalovirus nucleic acid in a sample.

  15. Mechanisms for ribotoxin-induced ribosomal RNA cleavage

    SciTech Connect

    He, Kaiyu; Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 ; Zhou, Hui-Ren; Pestka, James J.

    2012-11-15

    The Type B trichothecene deoxynivalenol (DON), a ribotoxic mycotoxin known to contaminate cereal-based foods, induces ribosomal RNA (rRNA) cleavage in the macrophage via p38-directed activation of caspases. Here we employed the RAW 264.7 murine macrophage model to test the hypothesis that this rRNA cleavage pathway is similarly induced by other ribotoxins. Capillary electrophoresis confirmed that the antibiotic anisomycin (? 25 ng/ml), the macrocylic trichothecene satratoxin G (SG) (? 10 ng/ml) and ribosome-inactivating protein ricin (? 300 ng/ml) induced 18s and 28s rRNA fragmentation patterns identical to that observed for DON. Also, as found for DON, inhibition of p38, double-stranded RNA-activated kinase (PKR) and hematopoietic cell kinase (Hck) suppressed MAPK anisomycin-induced rRNA cleavage, while, in contrast, their inhibition did not affect SG- and ricin-induced rRNA fragmentation. The p53 inhibitor pifithrin-? and pan caspase inhibitor Z-VAD-FMK suppressed rRNA cleavage induced by anisomycin, SG and ricin, indicating that these ribotoxins shared with DON a conserved downstream pathway. Activation of caspases 8, 9 and 3 concurrently with apoptosis further suggested that rRNA cleavage occurred in parallel with both extrinsic and intrinsic pathways of programmed cell death. When specific inhibitors of cathepsins L and B (lysosomal cysteine cathepsins active at cytosolic neutral pH) were tested, only the former impaired anisomycin-, SG-, ricin- and DON-induced rRNA cleavage. Taken together, the data suggest that (1) all four ribotoxins induced p53-dependent rRNA cleavage via activation of cathepsin L and caspase 3, and (2) activation of p53 by DON and anisomycin involved p38 whereas SG and ricin activated p53 by an alternative mechanism. Highlights: ? Deoxynivalenol (DON) anisomycin, satratoxin G (SG) and ricin are ribotoxins. ? Ribotoxins induce 18s and 28s rRNA cleavage in the RAW 264.7 macrophage model. ? Ribotoxins induce rRNA cleavage via activation of p53, caspases and cathepsins. ? DON- and anisomycin-triggered rRNA cleavage is p38-dependent. ? SG- and ricin-induced rRNA cleavage is p38-independent.

  16. Mechanistic Investigation of Catalytic Carbon-Carbon Bond Activation and Formation by Platinum and Palladium Phosphine

    E-print Network

    Jones, William D.

    Mechanistic Investigation of Catalytic Carbon-Carbon Bond Activation and Formation by Platinum impede their development. First, the metal- carbon bond resulting from C-C insertion has been calculated Of this latter variety, Milstein and co-workers have discovered a system that is capable of removing a methyl

  17. Modeling the metal-semiconductor interaction: Analytical bond-order potential for platinum-carbon

    E-print Network

    Nordlund, Kai

    Modeling the metal-semiconductor interaction: Analytical bond-order potential for platinum for this potential makes use of the fact that chemical bonding in both covalent systems and d-transition metals can for describing the C-C/Pt-Pt/Pt-C interactions. It resembles, in the case of the pure metal interaction

  18. Atomic Level Distributed Strain within Graphene Divacancies from Bond Rotations.

    PubMed

    Chen, Qu; Robertson, Alex W; He, Kuang; Gong, Chuncheng; Yoon, Euijoon; Lee, Gun-Do; Warner, Jamie H

    2015-08-25

    Vacancy defects play an important role in influencing the properties of graphene, and understanding their detailed atomic structure is crucial for developing accurate models to predict their impact. Divacancies (DVs) are one of the most common defects in graphene and can take three different structural forms through various sequences of bond rotations to minimize the energy. Using aberration-corrected transmission electron microscopy with monochromation of the electron source, we resolve the position of C atoms in graphene and measure the C-C bond lengths within the three DVs, enabling a map of bond strain to be generated. We show that bond rotations reduce the maximum single bond strain reached within a DV and help distribute the strain over a larger number of bonds to minimize the peak magnitude. PMID:26204434

  19. MECHANISM AND FUNCTION OF SPLICEOSOMAL CLEAVAGE IN FISSION YEAST

    E-print Network

    Kannan, Ram

    2013-08-31

    MECHANISM AND FUNCTION OF SPLICEOSOMAL CLEAVAGE IN FISSION YEAST BY Ram Kannan B. Tech., PSG College Of Technology, 2007 Submitted to the graduate degree program in Molecular and Integrative Physiology and the Graduate Faculty of the University of Kansas... The Dissertation Committee for Ram Kannan certifies that this is the approved version of the following dissertation: MECHANISM AND FUNCTION OF SPLICEOSOMAL CLEAVAGE IN FISSION YEAST ________________________________ Dr. Peter Baumann (Advisor...

  20. Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis

    PubMed Central

    Frusciante, Sarah; Diretto, Gianfranco; Bruno, Mark; Ferrante, Paola; Pietrella, Marco; Prado-Cabrero, Alfonso; Rubio-Moraga, Angela; Beyer, Peter; Gomez-Gomez, Lourdes; Al-Babili, Salim; Giuliano, Giovanni

    2014-01-01

    Crocus sativus stigmas are the source of the saffron spice and accumulate the apocarotenoids crocetin, crocins, picrocrocin, and safranal, responsible for its color, taste, and aroma. Through deep transcriptome sequencing, we identified a novel dioxygenase, carotenoid cleavage dioxygenase 2 (CCD2), expressed early during stigma development and closely related to, but distinct from, the CCD1 dioxygenase family. CCD2 is the only identified member of a novel CCD clade, presents the structural features of a bona fide CCD, and is able to cleave zeaxanthin, the presumed precursor of saffron apocarotenoids, both in Escherichia coli and in maize endosperm. The cleavage products, identified through high-resolution mass spectrometry and comigration with authentic standards, are crocetin dialdehyde and crocetin, respectively. In vitro assays show that CCD2 cleaves sequentially the 7,8 and 7?,8? double bonds adjacent to a 3-OH-?-ionone ring and that the conversion of zeaxanthin to crocetin dialdehyde proceeds via the C30 intermediate 3-OH-?-apo-8?-carotenal. In contrast, zeaxanthin cleavage dioxygenase (ZCD), an enzyme previously claimed to mediate crocetin formation, did not cleave zeaxanthin or 3-OH-?-apo-8?-carotenal in the test systems used. Sequence comparison and structure prediction suggest that ZCD is an N-truncated CCD4 form, lacking one blade of the ?-propeller structure conserved in all CCDs. These results constitute strong evidence that CCD2 catalyzes the first dedicated step in crocin biosynthesis. Similar to CCD1, CCD2 has a cytoplasmic localization, suggesting that it may cleave carotenoids localized in the chromoplast outer envelope. PMID:25097262

  1. Global analysis of RNA cleavage by 5'-hydroxyl RNA sequencing.

    PubMed

    Peach, Sally E; York, Kerri; Hesselberth, Jay R

    2015-09-30

    RNA cleavage by some endoribonucleases and self-cleaving ribozymes produces RNA fragments with 5'-hydroxyl (5'-OH) and 2',3'-cyclic phosphate termini. To identify 5'-OH RNA fragments produced by these cleavage events, we exploited the unique ligation mechanism of Escherichia coli RtcB RNA ligase to attach an oligonucleotide linker to RNAs with 5'-OH termini, followed by steps for library construction and analysis by massively parallel DNA sequencing. We applied the method to RNA from budding yeast and captured known 5'-OH fragments produced by tRNA Splicing Endonuclease (SEN) during processing of intron-containing pre-tRNAs and by Ire1 cleavage of HAC1 mRNA following induction of the unfolded protein response (UPR). We identified numerous novel 5'-OH fragments derived from mRNAs: some 5'-OH mRNA fragments were derived from single, localized cleavages, while others were likely produced by multiple, distributed cleavages. Many 5'-OH fragments derived from mRNAs were produced upstream of codons for highly electrostatic peptides, suggesting that the fragments may be generated by co-translational mRNA decay. Several 5'-OH RNA fragments accumulated during the induction of the UPR, some of which share a common sequence motif that may direct cleavage of these mRNAs. This method enables specific capture of 5'-OH termini and complements existing methods for identifying RNAs with 2',3'-cyclic phosphate termini. PMID:26001965

  2. Femtosecond quantum control of molecular bond formation.

    PubMed

    Nuernberger, Patrick; Wolpert, Daniel; Weiss, Horst; Gerber, Gustav

    2010-06-01

    Ultrafast lasers are versatile tools used in many scientific areas, from welding to eye surgery. They are also used to coherently manipulate light-matter interactions such as chemical reactions, but so far control experiments have concentrated on cleavage or rearrangement of existing molecular bonds. Here we demonstrate the synthesis of several molecular species starting from small reactant molecules in laser-induced catalytic surface reactions, and even the increase of the relative reaction efficiency by feedback-optimized laser pulses. We show that the control mechanism is nontrivial and sensitive to the relative proportion of the reactants. The control experiments open up a pathway towards photocatalysis and are relevant for research in physics, chemistry, and biology where light-induced bond formation is important. PMID:20505117

  3. Copper- and Vanadium-Catalyzed Oxidative Cleavage of Lignin using Dioxygen.

    PubMed

    Mottweiler, Jakob; Puche, Marta; Räuber, Christoph; Schmidt, Thomas; Concepción, Patricia; Corma, Avelino; Bolm, Carsten

    2015-06-22

    Transition-metal-containing hydrotalcites (HTc) and V(acac)3 /Cu(NO3 )2 ?3 H2 O (acac=acetylacetonate) mixtures were tested for their catalytic activity in the cleavage of the lignin model compound erythro-1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)-l,3-propanediol (1) with molecular oxygen as oxidant. Both catalytic systems displayed high activity and good selectivity and afforded veratric acid as the main product. The catalyst behavior was studied by EPR spectroscopy, XRD, and Raman spectroscopy. After the catalysts were established for the model system, lignin depolymerization studies were performed with various organsolv and kraft lignin sources. The oxidative depolymerization and lignin bond cleavage were monitored by gel permeation chromatography (GPC), MALDI MS, and 2D-NMR (HSQC). Irrespective of the lignin pretreatment, both HTc-Cu-V and V(acac)3 /Cu(NO3 )2 ?3 H2 O were able to cleave the ?-O-4 linkages and the resinol structures to form dimeric and trimeric products. PMID:26013592

  4. Etching of porous and solid SiO2 in Ar/c-C4F8, O2/c-C4F8 and Ar/O2/c-C4F8 plasmas

    E-print Network

    Kushner, Mark

    , Illinois 61801 Mark J. Kushnerb) Department of Electrical and Computer Engineering, University of Illinois mechanism was validated by comparison to experiments for blanket etching of solid and porous SiO2 in Ar/c-C4F8 and O2/c-C4F8 plasmas using inductively coupled plasma reactors. We found that the blanket etch

  5. Topological properties of hydrogen bonds and covalent bonds from charge densities obtained by the maximum entropy method (MEM)

    PubMed Central

    Netzel, Jeanette; van Smaalen, Sander

    2009-01-01

    Charge densities have been determined by the Maximum Entropy Method (MEM) from the high-resolution, low-temperature (T ? 20?K) X-ray diffraction data of six different crystals of amino acids and peptides. A comparison of dynamic deformation densities of the MEM with static and dynamic deformation densities of multipole models shows that the MEM may lead to a better description of the electron density in hydrogen bonds in cases where the multipole model has been restricted to isotropic displacement parameters and low-order multipoles (l max = 1) for the H atoms. Topological properties at bond critical points (BCPs) are found to depend systematically on the bond length, but with different functions for covalent C—C, C—N and C—O bonds, and for hydrogen bonds together with covalent C—H and N—H bonds. Similar dependencies are known for AIM properties derived from static multipole densities. The ratio of potential and kinetic energy densities |V(BCP)|/G(BCP) is successfully used for a classification of hydrogen bonds according to their distance d(H?O) between the H atom and the acceptor atom. The classification based on MEM densities coincides with the usual classification of hydrogen bonds as strong, intermediate and weak [Jeffrey (1997) ?. An Introduction to Hydrogen Bonding. Oxford University Press]. MEM and procrystal densities lead to similar values of the densities at the BCPs of hydrogen bonds, but differences are shown to prevail, such that it is found that only the true charge density, represented by MEM densities, the multipole model or some other method can lead to the correct characterization of chemical bonding. Our results do not confirm suggestions in the literature that the promolecule density might be sufficient for a characterization of hydrogen bonds. PMID:19767685

  6. Oxygen-promoted C-H bond activation at palladium.

    PubMed

    Scheuermann, Margaret L; Boyce, David W; Grice, Kyle A; Kaminsky, Werner; Stoll, Stefan; Tolman, William B; Swang, Ole; Goldberg, Karen I

    2014-06-16

    [Pd(P(Ar)(tBu)2)2] (1, Ar=naphthyl) reacts with molecular oxygen to form Pd(II) hydroxide dimers in which the naphthyl ring is cyclometalated and one equivalent of phosphine per palladium atom is released. This reaction involves the cleavage of both C-H and O-O bonds, two transformations central to catalytic aerobic oxidizations of hydrocarbons. Observations at low temperature suggest the initial formation of a superoxo complex, which then generates a peroxo complex prior to the C-H activation step. A transition state for energetically viable C-H activation across a Pd-peroxo bond was located computationally. PMID:24817523

  7. , 2006, . 47, 5, c. 557--567 http://www.izdatgeo.ru PP C C CX X

    E-print Network

    Cerveny, Vlastislav

    , 2006, . 47, 5, c. 557--567 http://www.izdatgeo.ru 550.834 PP C C CX X P P CP . p Republic pp c px px cx x, pcpcpxc p p p cp, c c c. c cc p P- S-, pcpcpxc px x - p. pp c p SH-, pcpcpxc c- c cp p p cp. xppc p- p c p c c p cpc. p, cc c cc p pcpcp p c pc pccp c . p c c p

  8. Size effects and strain localization in atomic-scale cleavage modeling.

    PubMed

    Elsner, B A M; Müller, S

    2015-09-01

    In this work, we study the adhesion and decohesion of Cu(1 0 0) surfaces using density functional theory (DFT) calculations. An upper stress to surface decohesion is obtained via the universal binding energy relation (UBER), but the model is limited to rigid separation of bulk-terminated surfaces. When structural relaxations are included, an unphysical size effect arises if decohesion is considered to occur as soon as the strain energy equals the energy of the newly formed surfaces. We employ the nudged elastic band (NEB) method to show that this size effect is opposed by a size-dependency of the energy barriers involved in the transition. Further, we find that the transition occurs via a localization of bond strain in the vicinity of the cleavage plane, which resembles the strain localization at the tip of a sharp crack that is predicted by linear elastic fracture mechanics. PMID:26219654

  9. Defect structures in deformed F.C.C. metals

    SciTech Connect

    Dai, Y.; Victoria, M.

    1997-08-01

    A high density of small defect clusters, similar to those observed in irradiated or quenched metals, has been observed in the deformed f.c.c. metals Cu, Au and Ni. The preliminary results show that the defect clusters are predominantly stacking fault tetrahedral (SFT). The SFT number density, rather than the size distribution, is deformation dependent. The defect cluster density is greater in the vicinities of dislocation tangles and grain boundaries. Their size distribution is wider than that produced by irradiation with an important number of larger clusters being formed. It is argued that these deformation-produced clusters may play a role in determining the flow stress and work hardening at low deformations.

  10. Effect of ZnO on the interfacial bonding between Na 2O-B 2O 3-SiO 2 vitrified bond and diamond

    NASA Astrophysics Data System (ADS)

    Wang, P. F.; Li, Zh. H.; Li, J.; Zhu, Y. M.

    2009-08-01

    Diamond composites were prepared by sintering diamond grains with low melting Na 2O-B 2O 3-SiO 2 vitrified bonds in air. The influence of ZnO on the wettability and flowing ability of Na 2O-B 2O 3-SiO 2 vitrified bonds was characterized by wetting angle, the interfacial bonding states between diamond grains and the vitrified bonds were observed by scanning electron microscope (SEM), and the micro-scale bonding mechanism in the interfaces was investigated by means of energy-dispersive spectrometer (EDS), Fourier transform infrared (FTIR) spectrometer and X-ray photoelectron spectroscopy (XPS). The experimental results showed that ZnO facilitated the dissociation of boron/silicon-oxygen polyhedra and the formation of larger amount of non-bridging oxygen in the glass network, which resulted in the increase of the vitrified bonds' wettability and the formation of -C dbnd O, -O-H and -C-H bonds on the surface of diamond grains. B and Si diffused from the vitrified bonds to the interface, and C-C, C-O, C dbnd O and C-B bond formed on the surface of sintered diamond grains during sintering process, by which the interfacial bonding between diamond grains and the vitrified bonds was strengthened.

  11. Chemical Bonds II

    ERIC Educational Resources Information Center

    Sanderson, R. T.

    1972-01-01

    The continuation of a paper discussing chemical bonding from a bond energy viewpoint, with a number of examples of single and multiple bonds. (Part I appeared in volume 1 number 3, pages 16-23, February 1972.) (AL)

  12. Characterization of Disulphide Bond Pattern of Integrin Chains John A. Wilkins1

    E-print Network

    Ens, Werner

    Characterization of Disulphide Bond Pattern of Integrin Chains John A. Wilkins1 , Oleg V. Krokhin1, Russia; Integrins are heterodimeric type I membrane proteins that mediate cellular adherence. The chains of several integrins (IIb, V, 3, 5, and 6) undergo post-translational cleavage to produce

  13. 29 CFR 2580.412-20 - Use of existing bonds, separate bonds and additional bonding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...bonds, separate bonds and additional bonding. 2580.412-20 Section 2580...DEPARTMENT OF LABOR TEMPORARY BONDING RULES UNDER THE EMPLOYEE RETIREMENT INCOME SECURITY ACT OF 1974 TEMPORARY BONDING RULES General Bond Rules §...

  14. 29 CFR 2580.412-20 - Use of existing bonds, separate bonds and additional bonding.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...bonds, separate bonds and additional bonding. 2580.412-20 Section 2580...DEPARTMENT OF LABOR TEMPORARY BONDING RULES UNDER THE EMPLOYEE RETIREMENT INCOME SECURITY ACT OF 1974 TEMPORARY BONDING RULES General Bond Rules §...

  15. Bond cleavage reactions in oxygen and nitrogen heterocycles by a rhodium phosphine complex

    SciTech Connect

    Jones, W.D.; Dong, L.; Myers, A.W. )

    1995-02-01

    The reactions of (C[sub 5]Me[sub 5])Rh(PMe[sub 3])PhH with furan, 2,5-dimethylfuran, 2,3-dihydrofuran, dibenzofuran, pyrrole, 1-methylpyrrole, 2,5-dimethylpyrrole, 1,2,5-trimethylpyrrole, carbazole, 9-methylcarbazole, pyrrolidine, pyridine, 3,5-lutidine, 2,4,6-collidine, pyrazole, 3-methylpyrazole, and piperidine have been investigated. While the oxygen heterocycles give only C-H activation, the nitrogen heterocycles yield C-H and N-H insertion products. The chloro derivative (C[sub 5]Me[sub 5])Rh(PMe[sub 3])[2-(1-methylpyrrole)]Cl was found to crystallize in the monoclinic space group C2/c with a = 13.753 (6) A, b = 9.665 (5) A, c = 30.14 (2) A, [beta] = 99.77 (5)-[degree], Z = 8, and V = 3949 (4.1) A[sup 3] while (C[sub 5]Me[sub 5])Rh(PMe[sub 5])[2-(3,5-lutidine)]Cl was found to crystallize in the monoclinic space group P2[sub 1]/c with a = 14.976 (8) A, b = 8.613 (5) A, c = 17.12 (2) A, [beta] = 101.90 (6)[degree], Z = 4, and V = 2160 (5.2) A[sup 3]. 30 refs., 2 figs., 3 tabs.

  16. Mild N-O Bond Cleavage Reactions of a Pyramidalized Nitrosyl Ligand Bridging a Dimolybdenum Center.

    PubMed

    Alvarez, M Angeles; García, M Esther; García-Vivó, Daniel; Ruiz, Miguel A; Toyos, Adrián

    2015-11-16

    Complex [Mo2Cp2(?-PCy2)(?-NO)(NO)2] (1) was prepared by reacting [Mo2Cp2(?-H)(?-PCy2)(CO)4] with 2 equiv of [NO]BF4 and then treating the resulting product [Mo2Cp2(?-PCy2)(CO)2(NO)2](BF4) with NaNO2 at 323 K, and it was shown to display a bridging nitrosyl ligand with significant pyramidalization at the N atom, a circumstance related to an unusual behavior concerning degradation of the bridging nitrosyl. Indeed, complex 1 reacts with HBF4·OEt2 to give the nitroxyl-bridged derivative [Mo2Cp2(?-PCy2)(?-?(1):?(2)-HNO)(NO)2](BF4), is reduced by Zn(Hg) in the presence of trace H2O to give the amido complex [Mo2Cp2(?-PCy2)(?-NH2)(NO)2], and reacts with excess P(OPh)3 to give the phosphoraniminato-bridged derivative [Mo2Cp2(?-PCy2){?-NP(OPh)3}(NO)2]. PMID:26529181

  17. Intermolecular Cyclopropanation of Styrenes Using Iodine and Visible Light via Carbon-Iodine Bond Cleavage.

    PubMed

    Usami, Kaoru; Nagasawa, Yoshitomo; Yamaguchi, Eiji; Tada, Norihiro; Itoh, Akichika

    2016-01-01

    The intermolecular cyclopropanation of aromatic olefins with activated methylene compounds using iodine and visible light irradiation was described. This reaction proceeds under rare-metal-free conditions. Styrenes with various substituted groups (alkyl and electron-withdrawing groups) provided corresponding cyclopropanes in moderate to good yields. PMID:26654114

  18. Cleavage of the Carbon-Sulfur Bonds in Thiophenes by a Binuclear Ruthenium Complex

    E-print Network

    Jones, William D.

    . Chem. Soc. 1991, 113, 1619- 1626. (9) Jones, W. D.; Chin, R. M. J. Am. Chem. Soc. 1994, 116, 198- 203, A.; Moneti, S.; Vizza, F. Organometallics 1998, 17, 2636-2645. (3) Hachgenei, J. W.; Angelici, R. J. (10) Vicic, D. A.; Jones, W. D. Organometallics 1997, 16, 1912-1917. (11) Matsubara, K.; Okamura, R

  19. Nitrogen dioxide reaction with proteins: Evidence for peptide bond cleavage at lysine residues

    SciTech Connect

    Hood, D.B.

    1991-01-01

    Nitrogen dioxide (NO{sub 2}), an air pollutant produced by burning fossil fuels and a component of cigarette smoke, is thought to contribute to the pathogenesis of pulmonary diseases, such as emphysema. To gain information on the mechanism by which NO{sub 2} damages the lung, in vitro exposures of {alpha}{sub 1}-proteinase inhibitor ({alpha}{sub 1}-PI), elastin, bovine serum albumin (BSA), human serum albumin (HSA) and synthetic poly-L-lysine were performed. A genetic deficiency of {alpha}{sup 1}-PI predisposes humans to emphysema and NO{sub 2} has been hypothesized to damage {alpha}{sub 1}-PI, which would leave proteases such as human neutrophil elastase, (HNE) free to attack lung structural proteins. The ability of {alpha}{sub 1}-PI to inhibit HNE declined with exposure to 50% of the control value at molar ratios of NO{sub 2}:{alpha}{sub 1}-PI of 400:1 and greater. Exposure of {alpha}{sub 1}-PI to NO{sub 2} resulted in a 50% lose of immunoreactivity with either monoclonal or polyclonal antibodies in an enzyme-linked immunosorbent assay at molar ratios of NO{sub 2}:{alpha}{sub 1}-PI of essentially 100:1 and greater. The mechanisms of these effects were investigated via ultraviolet-visible spectroscopy and amino acid analysis. The remaining target molecules were labeled by reductive methylation of amino groups with {sup 3}H-HCHO prior to treatment with NO{sub 2} in aqueous solutions at physiological pH. Time course exposure of 5 mg {sup 3}H-insoluble bovine ligamentum nuchae elastin suspensions with up to 120 {mu}moles of NO{sub 2} resulted in 90% solubilization of the label. Amino acid analysis of the soluble and insoluble fractions from these exposures confirmed that 80% of the {sup 3}H-dimethyllysine residues were in the soluble fraction.

  20. Aryl-oxygen bond cleavage by a trihydride-bridging ditantalum complex.

    PubMed

    Kawaguchi, Hiroyuki; Matsuo, Tsukasa

    2003-11-26

    We have described the synthesis of the cyclometalated trihydride ditantalum(V) complexes supported by the aryloxide tridentate ligand. According to variable-temperature NMR studies, these dimers could provide a masked form of Ta(IV)-Ta(IV) and/or Ta(III)-Ta(III). In addition, these complexes were found to undergo hydrodeoxygenation of the aryloxide ligand. PMID:14624555

  1. RecA-mediated cleavage activates UmuD for mutagenesis: Mechanistic relationship between transcriptional derepression and posttranslational activation

    SciTech Connect

    Nohmi, Takehiko; Battista, J.R.; Dodson, L.A.; Walker, G.C. )

    1988-03-01

    The products of the SOS-regulated umuDC operon are required for most UV and chemical mutagenesis in Escherichia coli. It has been shown that the UmuD protein shares homology with LexA, the repressor of the SOS genes. In this paper the authors describe a series of genetic experiments that indicate that the purpose of RecA-mediated cleavage of UmuD at its bond between Cys-24 and Gly-25 is to activate UmuD for its role in mutagenesis and that the COOH-terminal fragment of UmuD is necessary and sufficient for the role of UmuD in UV mutagenesis. Other genetic experiments are presented that (i) support the hypothesis that the primary role of Ser-60 in UmuD function is to act as a nucleophile in the RecA-mediated cleavage reaction and (ii) raise the possibility that RecA has a third role in UV mutagenesis besides mediating the cleavage of LexA and UmuD.

  2. Specific proteolytic cleavage of recombinant Norwalk virus capsid protein.

    PubMed Central

    Hardy, M E; White, L J; Ball, J M; Estes, M K

    1995-01-01

    Norwalk virus (NV) causes epidemic outbreaks of acute nonbacterial gastroenteritis in humans. The NV capsid is made up of a single protein, and expression of the capsid protein in baculovirus recombinants results in spontaneous assembly of the protein into virus-like particles (X. Jiang, M. Wang, D. Y. Graham, and M. K. Estes, J. Virol. 66:6527-6532, 1992). We have investigated whether the NV capsid protein undergoes a specific proteolytic cleavage. Recombinant NV (rNV) particles were digested with trypsin to determine if a specific cleavage occurred. A predominant band with a molecular weight of approximately 32,000 (32K protein) was observed when trypsin-treated rNV was electrophoresed on sodium dodecyl sulfate-polyacrylamide gels. Determination of the N-terminal sequence of this band showed that a trypsin-specific cleavage occurred at amino acid residue 227. Early studies identified two proteins with molecular weights of 59,000 and 30,000 (59K and 30K proteins) in the stool of NV-infected volunteers that were reactive with postinfection antiserum. (H. B. Greenberg, J. R. Valdesuso, A. R. Kalica, R. G. Wyatt, V. J. McAuliffe, A. Z. Kapikian, and R. M. Chanock, J. Virol. 37:994-999, 1981). We hypothesized that the 32K rNV cleavage product might be analogous to the 30K soluble protein detected in stools of NV-infected volunteers. Immunoprecipitation of soluble protein from these stool extracts with a rabbit polyclonal antiserum made against rNV, and Western blot detection with a mouse polyclonal antiserum made against rNV, revealed a single band with an apparent molecular weight of 30,000 that migrated similarly to the trypsin cleavage product observed in vitro. The N terminus of this band was identical to that of the 32K cleavage product of rNV capsid protein. These data show that the 30K protein in stool is produced by specific cleavage of the NV capsid protein in vivo. Trypsin cleavage of isolated soluble rNV 58K capsid protein and of assembled particles showed that only soluble 58K capsid protein is susceptible to cleavage. The presence of a large amount of soluble capsid protein may influence the immune response to or pathogenicity of NV infections. PMID:7853506

  3. Specific proteolytic cleavage of recombinant Norwalk virus capsid protein.

    PubMed

    Hardy, M E; White, L J; Ball, J M; Estes, M K

    1995-03-01

    Norwalk virus (NV) causes epidemic outbreaks of acute nonbacterial gastroenteritis in humans. The NV capsid is made up of a single protein, and expression of the capsid protein in baculovirus recombinants results in spontaneous assembly of the protein into virus-like particles (X. Jiang, M. Wang, D. Y. Graham, and M. K. Estes, J. Virol. 66:6527-6532, 1992). We have investigated whether the NV capsid protein undergoes a specific proteolytic cleavage. Recombinant NV (rNV) particles were digested with trypsin to determine if a specific cleavage occurred. A predominant band with a molecular weight of approximately 32,000 (32K protein) was observed when trypsin-treated rNV was electrophoresed on sodium dodecyl sulfate-polyacrylamide gels. Determination of the N-terminal sequence of this band showed that a trypsin-specific cleavage occurred at amino acid residue 227. Early studies identified two proteins with molecular weights of 59,000 and 30,000 (59K and 30K proteins) in the stool of NV-infected volunteers that were reactive with postinfection antiserum. (H. B. Greenberg, J. R. Valdesuso, A. R. Kalica, R. G. Wyatt, V. J. McAuliffe, A. Z. Kapikian, and R. M. Chanock, J. Virol. 37:994-999, 1981). We hypothesized that the 32K rNV cleavage product might be analogous to the 30K soluble protein detected in stools of NV-infected volunteers. Immunoprecipitation of soluble protein from these stool extracts with a rabbit polyclonal antiserum made against rNV, and Western blot detection with a mouse polyclonal antiserum made against rNV, revealed a single band with an apparent molecular weight of 30,000 that migrated similarly to the trypsin cleavage product observed in vitro. The N terminus of this band was identical to that of the 32K cleavage product of rNV capsid protein. These data show that the 30K protein in stool is produced by specific cleavage of the NV capsid protein in vivo. Trypsin cleavage of isolated soluble rNV 58K capsid protein and of assembled particles showed that only soluble 58K capsid protein is susceptible to cleavage. The presence of a large amount of soluble capsid protein may influence the immune response to or pathogenicity of NV infections. PMID:7853506

  4. Cleavage of Signal Regulatory Protein ? (SIRP?) Enhances Inflammatory Signaling.

    PubMed

    Londino, James D; Gulick, Dexter; Isenberg, Jeffrey S; Mallampalli, Rama K

    2015-12-25

    Signal regulatory protein ? (SIRP?) is a membrane glycoprotein immunoreceptor abundant in cells of monocyte lineage. SIRP? ligation by a broadly expressed transmembrane protein, CD47, results in phosphorylation of the cytoplasmic immunoreceptor tyrosine-based inhibitory motifs, resulting in the inhibition of NF-?B signaling in macrophages. Here we observed that proteolysis of SIRP? during inflammation is regulated by a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), resulting in the generation of a membrane-associated cleavage fragment in both THP-1 monocytes and human lung epithelia. We mapped a charge-dependent putative cleavage site near the membrane-proximal domain necessary for ADAM10-mediated cleavage. In addition, a secondary proteolytic cleavage within the membrane-associated SIRP? fragment by ?-secretase was identified. Ectopic expression of a SIRP? mutant plasmid encoding a proteolytically resistant form in HeLa cells inhibited activation of the NF-?B pathway and suppressed STAT1 phosphorylation in response to TNF? to a greater extent than expression of wild-type SIRP?. Conversely, overexpression of plasmids encoding the proteolytically cleaved SIRP? fragments in cells resulted in enhanced STAT-1 and NF-?B pathway activation. Thus, the data suggest that combinatorial actions of ADAM10 and ?-secretase on SIRP? cleavage promote inflammatory signaling. PMID:26534964

  5. Luminescent Iridium(III) Complexes Supported by N-Heterocyclic Carbene-based C^C^C-Pincer Ligands and Aromatic Diimines

    PubMed Central

    Chung, Lai-Hon; Lo, Hoi-Shing; Ng, Sze-Wing; Ma, Dik-Lung; Leung, Chung-Hang; Wong, Chun-Yuen

    2015-01-01

    Iridium(III) hydrido complexes containing N-heterocyclic carbene (NHC)-based pincer ligand 1,3-bis(1-butylimidazolin-2-ylidene)phenyl anion (C1^C^C1) or 1,3-bis(3-butylbenzimidazolin-2-ylidene)phenyl anion (C2^C^C2) and aromatic diimine (2,2?-bipyridine (bpy), 1,10-phenanthroline (phen), 4,4?-dimethyl-2,2?-bipyridine (Me2bpy), or dipyrido-[3,2-f:2?,3?-h]-quinoxaline (dpq)) in the form of [Ir(C^C^C)(N^N)(H)]+ have been prepared. Crystal structures for these complexes show that the Ir–CNHC distances are 2.043(5)–2.056(5) Å. The hydride chemical shifts for complexes bearing C1^C^C1 (?20.6 to ?20.3?ppm) are more upfield than those with C2^C^C2 (?19.5 and ?19.2?ppm), revealing that C1^C^C1 is a better electron donor than C2^C^C2. Spectroscopic comparisons and time-dependent density functional theory (TD-DFT) calculations suggest that the lowest-energy electronic transition associated with these complexes (??=?340–530?nm (????103?dm3 mol?1 cm?1)) originate from a d?(IrIII)????*(N^N) metal-to-ligand charge transfer transition, where the d?(IrIII) level contain significant contribution from the C^C^C ligands. All these complexes are emissive in the yellow-spectral region (553–604?nm in CH3CN and CH2Cl2) upon photo-excitation with quantum yields of 10?3–10?1. PMID:26487542

  6. Luminescent Iridium(III) Complexes Supported by N-Heterocyclic Carbene-based C^C^C-Pincer Ligands and Aromatic Diimines

    NASA Astrophysics Data System (ADS)

    Chung, Lai-Hon; Lo, Hoi-Shing; Ng, Sze-Wing; Ma, Dik-Lung; Leung, Chung-Hang; Wong, Chun-Yuen

    2015-10-01

    Iridium(III) hydrido complexes containing N-heterocyclic carbene (NHC)-based pincer ligand 1,3-bis(1-butylimidazolin-2-ylidene)phenyl anion (C1^C^C1) or 1,3-bis(3-butylbenzimidazolin-2-ylidene)phenyl anion (C2^C^C2) and aromatic diimine (2,2?-bipyridine (bpy), 1,10-phenanthroline (phen), 4,4?-dimethyl-2,2?-bipyridine (Me2bpy), or dipyrido-[3,2-f:2?,3?-h]-quinoxaline (dpq)) in the form of [Ir(C^C^C)(N^N)(H)]+ have been prepared. Crystal structures for these complexes show that the Ir–CNHC distances are 2.043(5)–2.056(5) Å. The hydride chemical shifts for complexes bearing C1^C^C1 (?20.6 to ?20.3?ppm) are more upfield than those with C2^C^C2 (?19.5 and ?19.2?ppm), revealing that C1^C^C1 is a better electron donor than C2^C^C2. Spectroscopic comparisons and time-dependent density functional theory (TD-DFT) calculations suggest that the lowest-energy electronic transition associated with these complexes (??=?340–530?nm (????103?dm3 mol?1 cm?1)) originate from a d?(IrIII)????*(N^N) metal-to-ligand charge transfer transition, where the d?(IrIII) level contain significant contribution from the C^C^C ligands. All these complexes are emissive in the yellow-spectral region (553–604?nm in CH3CN and CH2Cl2) upon photo-excitation with quantum yields of 10?3–10?1.

  7. Luminescent Iridium(III) Complexes Supported by N-Heterocyclic Carbene-based C^C^C-Pincer Ligands and Aromatic Diimines.

    PubMed

    Chung, Lai-Hon; Lo, Hoi-Shing; Ng, Sze-Wing; Ma, Dik-Lung; Leung, Chung-Hang; Wong, Chun-Yuen

    2015-01-01

    Iridium(III) hydrido complexes containing N-heterocyclic carbene (NHC)-based pincer ligand 1,3-bis(1-butylimidazolin-2-ylidene)phenyl anion (C(1)^C^C(1)) or 1,3-bis(3-butylbenzimidazolin-2-ylidene)phenyl anion (C(2)^C^C(2)) and aromatic diimine (2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), 4,4'-dimethyl-2,2'-bipyridine (Me2bpy), or dipyrido-[3,2-f:2',3'-h]-quinoxaline (dpq)) in the form of [Ir(C^C^C)(N^N)(H)](+) have been prepared. Crystal structures for these complexes show that the Ir-CNHC distances are 2.043(5)-2.056(5) Å. The hydride chemical shifts for complexes bearing C(1)^C^C(1) (-20.6 to -20.3?ppm) are more upfield than those with C(2)^C^C(2) (-19.5 and -19.2?ppm), revealing that C(1)^C^C(1) is a better electron donor than C(2)^C^C(2). Spectroscopic comparisons and time-dependent density functional theory (TD-DFT) calculations suggest that the lowest-energy electronic transition associated with these complexes (??=?340-530?nm (????10(3)?dm(3) mol(-1) cm(-1))) originate from a d?(Ir(III))????*(N^N) metal-to-ligand charge transfer transition, where the d?(Ir(III)) level contain significant contribution from the C^C^C ligands. All these complexes are emissive in the yellow-spectral region (553-604?nm in CH3CN and CH2Cl2) upon photo-excitation with quantum yields of 10(-3)-10(-1). PMID:26487542

  8. Transition Metal Catalyzed Hydroarylation of Multiple Bonds: Exploration of Second Generation Ruthenium Catalysts and Extension to Copper Systems

    SciTech Connect

    T. Brent Gunnoe

    2011-02-17

    Catalysts provide foundational technology for the development of new materials and can enhance the efficiency of routes to known materials. New catalyst technologies offer the possibility of reducing energy and raw material consumption as well as enabling chemical processes with a lower environmental impact. The rising demand and expense of fossil resources has strained national and global economies and has increased the importance of accessing more efficient catalytic processes for the conversion of hydrocarbons to useful products. The goals of the research are to develop and understand single-site homogeneous catalysts for the conversion of readily available hydrocarbons into useful materials. A detailed understanding of these catalytic reactions could lead to the development of catalysts with improved activity, longevity and selectivity. Such transformations could reduce the environmental impact of hydrocarbon functionalization, conserve energy and valuable fossil resources and provide new technologies for the production of liquid fuels. This project is a collaborative effort that incorporates both experimental and computational studies to understand the details of transition metal catalyzed C-H activation and C-C bond forming reactions with olefins. Accomplishments of the current funding period include: (1) We have completed and published studies of C-H activation and catalytic olefin hydroarylation by TpRu{l_brace}P(pyr){sub 3}{r_brace}(NCMe)R (pyr = N-pyrrolyl) complexes. While these systems efficiently initiate stoichiometric benzene C-H activation, catalytic olefin hydroarylation is hindered by inhibition of olefin coordination, which is a result of the steric bulk of the P(pyr){sub 3} ligand. (2) We have extended our studies of catalytic olefin hydroarylation by TpRu(L)(NCMe)Ph systems to L = P(OCH{sub 2}){sub 3}CEt. Thus, we have now completed detailed mechanistic studies of four systems with L = CO, PMe{sub 3}, P(pyr){sub 3} and P(OCH{sub 2}){sub 3}CEt, which has provided a comprehensive understanding of the impact of steric and electronic parameters of 'L' on the catalytic hydroarylation of olefins. (3) We have completed and published a detailed mechanistic study of stoichiometric aromatic C-H activation by TpRu(L)(NCMe)Ph (L = CO or PMe{sub 3}). These efforts have probed the impact of functionality para to the site of C-H activation for benzene substrates and have allowed us to develop a detailed model of the transition state for the C-H activation process. These results have led us to conclude that the C-H bond cleavage occurs by a {sigma}-bond metathesis process in which the C-H transfer is best viewed as an intramolecular proton transfer. (4) We have completed studies of Ru complexes possessing the N-heterocyclic carbene IMes (IMes = 1,3-bis-(2,4,6-trimethylphenyl)imidazol-2-ylidene). One of these systems is a unique four-coordinate Ru(II) complex that catalyzes the oxidative hydrophenylation of ethylene (in low yields) to produce styrene and ethane (utilizing ethylene as the hydrogen acceptor) as well as the hydrogenation of olefins, aldehydes and ketones. These results provide a map for the preparation of catalysts that are selective for oxidative olefin hydroarylation. (5) The ability of TpRu(PMe{sub 3})(NCMe)R systems to activate sp{sup 3} C-H bonds has been demonstrated including extension to subsequent C-C bond forming steps. These results open the door to the development of catalysts for the functionalization of more inert C-H bonds. (6) We have discovered that Pt(II) complexes supported by simple nitrogen-based ligands serve as catalysts for the hydroarylation of olefins. Given the extensive studies of Pt-based catalytic C-H activation, we believe these results will provide an entry point into an array of possible catalysts for hydrocarbon functionalization.

  9. Ir-Catalyzed Functionalization of C-H Bonds

    NASA Astrophysics Data System (ADS)

    Choi, Jongwook; Goldman, Alan S.

    The ability to selectively functionalize C-H bonds holds enormous potential value in virtually every sphere of organic chemistry, from fuels to pharmaceuticals. Transition metal complexes have shown great promise in this context. Iridium provided the first examples of oxidative addition of C-H bonds; this addition is key to iridium's leading role in alkane dehydrogenation and related reactions. Catalysts based on iridium have also proven highly effective for valuable borylations of C-H bonds and, to a lesser extent, for C-Si coupling. Compared with other platinum group metals, iridium chemistry has not been developed as extensively for the elaboration of C-C bonds from C-H bonds, but significant promise is indicated, particularly for coupling with simple hydrocarbons which lack functionalities that can act as directing groups.

  10. Evolution of development in the sea star genus Patiriella: clade-specific alterations in cleavage.

    PubMed

    Cerra, Anna; Byrne, Maria

    2004-01-01

    Examination of early development in five species of the Patiriella sea star species complex indicates that the ancestral-type radial holoblastic cleavage (Type I) is characteristic of P. regularis and P. exigua, whereas cleavage in species from the calcar clade followed multiple alternatives (Types II-IV) from holoblastic to meroblastic. Considering that invariant radial cleavage is thought to play a role in embryonic axis formation in echinoderms, we documented the details of blastomere formation in Patiriella sp. and followed development of the embryos. In Type II cleavage, the first and second cleavage planes appeared simultaneously at one pole of the embryo, dividing it directly into four equally sized blastomeres. In Type III cleavage, the first and second cleavage planes appeared simultaneously, followed promptly by the third cleavage plane, dividing the embryo directly into eight equally sized blastomeres. In Type IV cleavage, numerous furrows appeared simultaneously at one end of the embryo, dividing it into 32-40 equally sized blastomeres. Confocal sections revealed that embryos with cleavage Types II-IV were initially syncytial. The timing of karyokinesis in embryos with Types II and III cleavage was similar to that seen in clutch mates with Type I cleavage. Karyokinesis in embryos with Type IV cleavage, however, differed in timing compared with Type I clutch mates. Alteration in cleavage was not associated with polarized distribution of maternally provided nutrients. For each cleavage type, development was normal to the competent larval stage. Although variable blastomere configuration in the calcar clade may be linked to possession of a lecithotrophic development, other Patiriella species with this mode of development have typical cleavage. The presence of variable cleavage in all calcar clade species indicates that phylogenetic history has played a role in the distribution of this embryonic trait in Patiriella. The plasticity in early cleavage in these sea stars indicates that this aspect of early development is not constrained against change and that there are many ways to achieve multicellularity. PMID:15009123

  11. Site-specific DNA cleavage by mammalian DNA topoisomerase II induced by novel flavone and catechin derivatives.

    PubMed Central

    Austin, C A; Patel, S; Ono, K; Nakane, H; Fisher, L M

    1992-01-01

    Four naturally occurring flavones (baicalein, quercetin, quercetagetin and myricetin) and two novel catechins [(-)-epicatechin gallate and (-)-epigallocatechin gallate, from the tea plant Camellia sinensis], which are known inhibitors of reverse transcriptase, were shown to induce mammalian topoisomerase II-dependent DNA-cleavage in vitro. The flavones differed from the catechins in causing unwinding of duplex DNA, but both classes of compound induced enzymic DNA breakage at the same sites on DNA. Moreover, the cleavage specificity was the same as that for the known intercalator 4'-(acridin-9-ylamino)methanesulphon-m-anisidide, suggesting that these agents trap the same cleavable complex. Analysis of some 30 flavonoid compounds allowed elucidation of the structure-function relationships for topoisomerase II-mediated DNA cleavage. For flavonoid inhibitors an unsaturated double bond between positions 2 and 3 of the pyrone ring and hydroxy groups at the 5, 7, 3' and 4' positions favoured efficient cleavage. Hydroxy substitutions could be tolerated at the 3, 6 and 5' positions. Indeed, the absence of substituents at the 3', 4' and 5' positions could be compensated by a hydroxy group at position 6 (baicalein). Similar requirements have been reported for flavonoid inhibitors of protein kinase C that act competitively with ATP, suggesting interaction with a conserved protein feature. Formation of the cleavable complex is a cytotoxic lesion that may contribute to the growth-inhibitory properties of flavones observed for three human tumour cell lines. These results are discussed in regard to the selectivity of antiviral agents. Images Fig. 2. Fig. 3. Fig. 4. Fig. 6. PMID:1313232

  12. JMS Proxy and C/C++ Client SDK

    NASA Technical Reports Server (NTRS)

    Wolgast, Paul; Pechkam, Paul

    2007-01-01

    JMS Proxy and C/C++ Client SDK (JMS signifies "Java messaging service" and "SDK" signifies "software development kit") is a software package for developing interfaces that enable legacy programs (here denoted "clients") written in the C and C++ languages to communicate with each other via a JMS broker. This package consists of two main components: the JMS proxy server component and the client C library SDK component. The JMS proxy server component implements a native Java process that receives and responds to requests from clients. This component can run on any computer that supports Java and a JMS client. The client C library SDK component is used to develop a JMS client program running in each affected C or C++ environment, without need for running a Java virtual machine in the affected computer. A C client program developed by use of this SDK has most of the quality-of-service characteristics of standard Java-based client programs, including the following: Durable subscriptions; Asynchronous message receipt; Such standard JMS message qualities as "TimeToLive," "Message Properties," and "DeliveryMode" (as the quoted terms are defined in previously published JMS documentation); and Automatic reconnection of a JMS proxy to a restarted JMS broker.

  13. Reinterpretation of the Vibrational Spectroscopy of the Medicinal Bioinorganic Synthon c,c,t-[Pt(NH3)2Cl2(OH)2]†

    PubMed Central

    Johnstone, Timothy C.

    2014-01-01

    The Pt(IV) complex c,c,t-[Pt(NH3)2Cl2(OH)2] is an important intermediate in the synthesis of Pt(IV) anticancer prodrugs and has been investigated as an anticancer agent in its own right. An analysis of the vibrational spectroscopy of this molecule was previously reported [Faggiani et al., 1982, Can. J. Chem. 60, 529] in which crystallographic determination of the structure of the complex permitted a site group approach. The space group, however, was incorrectly assigned. In the present study we have redetermined at high resolution crystal structures of c,c,t-[Pt(NH3)2Cl2(OH)2] and c,c,t-[Pt(NH3)2Cl2(OH)2]·H2O2, which enable discussion of the effect of hydrogen bonding on the N–H and O–H vibrational bands. The correct crystallographic site symmetry of the platinum complex in the c,c,t-[Pt(NH3)2Cl2(OH)2] structure is employed to conduct a new vibrational analysis using both group theoretical and modern DFT methods. This analysis reveals the nature and symmetry of the “missing band” described in the original publication and suggests a possible explanation for its disappearance. PMID:24515615

  14. BIOLOGICAL ACTIVITY OF THE CLEAVAGE PRODUCT OF HUMAN IMMUNOGLOBULIN G WITH CYANOGEN BROMIDE

    PubMed Central

    Lahav, Mira; Arnon, Ruth; Sela, Michael

    1967-01-01

    Treatment of human IgG with cyanogen bromide in 0.05 M HCl under specified conditions resulted in the cleavage of about half of its methionyl peptide bonds. A major fragment of about 5S was isolated from the reaction mixture by gel filtration in quantitative yield. The CNBr fragment reacted fully with goat antiserum against human light chain, but its reaction with anti-heavy chain was markedly decreased. The treatment with CNBr caused a drastic decrease in the following biological activities of IgG: complement fixing, skin binding, reaction with antiglobulin factors, and reaction with specific anti-Gm(12) serum. On the other hand, the reaction with serum of anti-Gm(1) or anti-Gm(4) specificity was not impaired and antibody activity, namely antistreptolysin and isohemagglutinin, was retained after the treatment with CNBr. It is concluded that the CNBr cleaves preferentially the methionyl bonds in the Fc portion of IgG, and that the major fragment obtained, denoted F(ab'')2, has still the combining properties of a divalent antibody. The possible therapeutic uses of F(ab'')2 are discussed. PMID:4164692

  15. Analysis of carotenoid isomerase activity in a prototypical carotenoid cleavage enzyme, apocarotenoid oxygenase (ACO).

    PubMed

    Sui, Xuewu; Kiser, Philip D; Che, Tao; Carey, Paul R; Golczak, Marcin; Shi, Wuxian; von Lintig, Johannes; Palczewski, Krzysztof

    2014-05-01

    Carotenoid cleavage enzymes (CCEs) constitute a group of evolutionarily related proteins that metabolize a variety of carotenoid and non-carotenoid substrates. Typically, these enzymes utilize a non-heme iron center to oxidatively cleave a carbon-carbon double bond of a carotenoid substrate. Some members also isomerize specific double bonds in their substrates to yield cis-apocarotenoid products. The apocarotenoid oxygenase from Synechocystis has been hypothesized to represent one such member of this latter category of CCEs. Here, we developed a novel expression and purification protocol that enabled production of soluble, native ACO in quantities sufficient for high resolution structural and spectroscopic investigation of its catalytic mechanism. High performance liquid chromatography and Raman spectroscopy revealed that ACO exclusively formed all-trans products. We also found that linear polyoxyethylene detergents previously used for ACO crystallization strongly inhibited the apocarotenoid oxygenase activity of the enzyme. We crystallized the native enzyme in the absence of apocarotenoid substrate and found electron density in the active site that was similar in appearance to the density previously attributed to a di-cis-apocarotenoid intermediate. Our results clearly demonstrated that ACO is in fact a non-isomerizing member of the CCE family. These results indicate that careful selection of detergent is critical for the success of structural studies aimed at elucidating structures of CCE-carotenoid/retinoid complexes. PMID:24648526

  16. Abnormal Early Cleavage Events Predict Early Embryo Demise: Sperm Oxidative Stress and Early Abnormal Cleavage

    PubMed Central

    Burruel, Victoria; Klooster, Katie; Barker, Christopher M.; Pera, Renee Reijo; Meyers, Stuart

    2014-01-01

    Human embryos resulting from abnormal early cleavage can result in aneuploidy and failure to develop normally to the blastocyst stage. The nature of paternal influence on early embryo development has not been directly demonstrated although many studies have suggested effects from spermatozoal chromatin packaging, DNA damage, centriolar and mitotic spindle integrity, and plasma membrane integrity. The goal of this study was to determine whether early developmental events were affected by oxidative damage to the fertilizing sperm. Survival analysis was used to compare patterns of blastocyst formation based on P2 duration. Kaplan-Meier survival curves demonstrate that relatively few embryos with short (<1?hr) P2 times reached blastocysts, and the two curves diverged beginning on day 4, with nearly all of the embryos with longer P2 times reaching blastocysts by day 6 (p < .01). We determined that duration of the 2nd to 3rd mitoses were sensitive periods in the presence of spermatozoal oxidative stress. Embryos that displayed either too long or too short cytokineses demonstrated an increased failure to reach blastocyst stage and therefore survive for further development. Although paternal-derived gene expression occurs later in development, this study suggests a specific role in early mitosis that is highly influenced by paternal factors. PMID:25307782

  17. Pd loaded amphiphilic COF as catalyst for multi-fold Heck reactions, C-C couplings and CO oxidation

    PubMed Central

    Mullangi, Dinesh; Nandi, Shyamapada; Shalini, Sorout; Sreedhala, Sheshadri; Vinod, Chathakudath P.; Vaidhyanathan, Ramanathan

    2015-01-01

    COFs represent a class of polymers with designable crystalline structures capable of interacting with active metal nanoparticles to form excellent heterogeneous catalysts. Many valuable ligands/monomers employed in making coordination/organic polymers are prepared via Heck and C-C couplings. Here, we report an amphiphilic triazine COF and the facile single-step loading of Pd0 nanoparticles into it. An 18–20% nano-Pd loading gives highly active composite working in open air at low concentrations (Conc. Pd(0) <0.05?mol%, average TON 1500) catalyzing simultaneous multiple site Heck couplings and C-C couplings using ‘non-boronic acid’ substrates, and exhibits good recyclability with no sign of catalyst leaching. As an oxidation catalyst, it shows 100% conversion of CO to CO2 at 150?°C with no loss of activity with time and between cycles. Both vapor sorptions and contact angle measurements confirm the amphiphilic character of the COF. DFT-TB studies showed the presence of Pd-triazine and Pd-Schiff bond interactions as being favorable. PMID:26057044

  18. Functionalized olefin cross-coupling to construct carbon–carbon bonds

    PubMed Central

    Lo, Julian C.; Gui, Jinghan; Yabe, Yuki; Pan, Chung-Mao; Baran, Phil S.

    2014-01-01

    Carbon–carbon (C–C) bonds form the backbone of many important molecules, including polymers, dyes, and pharmaceutical agents. The development of new methods to create these essential connections in a rapid and practical fashion has been the focus of numerous organic chemists. This endeavor heavily relies on the ability to form C–C bonds in the presence of sensitive functional groups and congested structural environments. Here we report a fundamentally new chemical transformation that allows for the facile construction of highly substituted and uniquely functionalized C–C bonds. Using a simple iron catalyst, an inexpensive silane, and a benign solvent under an ambient atmosphere, heteroatom-substituted olefins are easily merged with electron-deficient olefins to create molecular architectures that were previously difficult or impossible to access. More than sixty examples are presented with a wide array of substrates, demonstrating the unique chemoselectivity and mildness of this simple reaction. PMID:25519131

  19. Oxidative DNA Cleavage by the Antitumor Antibiotic Leinamycin and Simple

    E-print Network

    Gates, Kent. S.

    partially inhibited by agents such as catalase and DETAPAC, which more completely inhibit thiol employed here, thiol-activated DNA cleavage by 1 is partially inhibited by the radical scavengers mannitol and ethanol, by the hydrogen-peroxide-destroying enzyme catalase, and by the chelator of adventitious trace

  20. piRNA-directed cleavage of meiotic transcripts regulates spermatogenesis

    E-print Network

    Goh, Wee Siong Sho; Falciatori, Ilaria; Tam, Oliver H.; Burgess, Ralph; Meikar, Oliver; Kotaja, Noora; Hammell, Molly; Hannon, Gregory J.

    2015-03-15

    identification of both transposable elements and meiotically expressed protein-coding genes as targets of native piRNAs. Cleavage of genic targets began at the pachytene stage and resulted in progressive repression through meiosis, driven at least in part via...

  1. Scientific Correspondence Cleavage of Bipartite Substrates by Rice and Maize

    E-print Network

    Gopalan, Venkat

    Scientific Correspondence Cleavage of Bipartite Substrates by Rice and Maize Ribonuclease P.G.) and Plant Biology (V.G.), The Ohio State University, Columbus, Ohio 43210; and Center for Biotechnology with rice (Oryza sativa) and maize (Zea mays) nuclear RNase P. By successively employing ion

  2. Cleavage sites within the poliovirus capsid protein precursors.

    PubMed Central

    Larsen, G R; Anderson, C W; Dorner, A J; Semler, B L; Wimmer, E

    1982-01-01

    Partial amino-terminal sequence analysis was performed on radiolabeled polio-virus capsid proteins VP1, VP2, and VP3. A computer-assisted comparison of the amino acid sequences obtained with that predicted by the nucleotide sequence of the poliovirus genome allows assignment of the amino terminus of each capsid protein to a unique position within the virus polyprotein. Sequence analysis of trypsin-digested VP4, which has a blocked amino terminus, demonstrates that VP4 is encoded at or very near to the amino terminus of the polyprotein. The gene order of the capsid proteins is VP4-VP2-VP3-VP1. Cleavage of VP0 to VP4 and VP2 is shown to occur between asparagine and serine, whereas the cleavages that separate VP2/VP3 and VP3/VP1 occur between glutamine and glycine residues. This finding supports the hypothesis that the cleavage of VP0, which occurs during virion morphogenesis, is distinct from the cleavages that separate functional regions of the polyprotein. PMID:6283126

  3. Cleavage sites within the poliovirus capsid protein precursors

    SciTech Connect

    Larsen, G.R.; Anderson, C.W.; Dorner, A.J.; Semler, B.L.; Wimmer, E.

    1982-01-01

    Partial amino-terminal sequence analysis was performed on radiolabeled poliovirus capsid proteins VP1, VP2, and VP3. A computer-assisted comparison of the amino acid sequences obtained with that predicted by the nucleotide sequence of the poliovirus genome allows assignment of the amino terminus of each capsid protein to a unique position within the virus polyprotein. Sequence analysis of trypsin-digested VP4, which has a blocked amino terminus, demonstrates that VP4 is encoded at or very near to the amino terminus of the polyprotein. The gene order of the capsid proteins is VP4-VP2-VP3-VP1. Cleavage of VP0 to VP4 and VP2 is shown to occur between asparagine and serine, whereas the cleavages that separate VP2/VP3 and VP3/VP1 occur between glutamine and glycine residues. This finding supports the hypothesis that the cleavage of VP0, which occurs during virion morphogenesis, is distinct from the cleavages that separate functional regions of the polyprotein.

  4. Modeling Radial Holoblastic Cleavage: A Laboratory Activity for Developmental Biology.

    ERIC Educational Resources Information Center

    Ellis, Linda K.

    2000-01-01

    Introduces a laboratory activity designed for an undergraduate developmental biology course. Uses Play-Doh (plastic modeling clay) to build a multicellular embryo in order to provide a 3-D demonstration of cleavage. Includes notes for the instructor and student directions. (YDS)

  5. A Secreted Protein Promotes Cleavage Furrow Maturation during Cytokinesis

    PubMed Central

    Xu, Xuehong; Vogel, Bruce E.

    2010-01-01

    Summary Developmental modifications in cell shape depend on dynamic interactions between the extracellular matrix and cytoskeleton. In contrast, existing models of cytokinesis describe substantial cell surface remodeling that involves many intracellular regulatory and structural proteins but includes no contribution from the extracellular matrix [1–3]. Here, we show that extracellular hemicentins assemble at the cleavage furrow of dividing cells in the C. elegans germline and in preimplantation mouse embryos. In the absence of hemicentin, cleavage furrows form but retract prior to completion, resulting in multinucleate cells. In addition to their role in tissue organization, the data indicate that hemicentins are the first secreted proteins required during mammalian development and the only known secreted proteins required for cytokinesis, with an evolutionarily conserved role in stabilizing and preventing retraction of nascent cleavage furrows. Together with studies showing that extracellular polysaccharides are required for cytokinesis in diverse species [4–9], our data suggest that assembly of a cell type-specific extracellular matrix may be a general requirement for cleavage furrow maturation and contractile ring function during cytokinesis. PMID:21215633

  6. Regulation of the glycine cleavage system in rat liver

    SciTech Connect

    Hampson, R.K.

    1984-01-01

    Catabolism of glycine, via the glycine cleavage system was investigated in isolated, fully functional, rat liver mitochondria, and the isolated perfused rat liver. Metabolic flux through the glycine cleavage system, which catalyzes the tetrahydrofolate-dependent cleavage of glycine yielding carbon dioxide, ammonia, N/sup 5/,N/sup 10/-methylenetetrahydrofolate, and NADH + H/sup +/, was monitored by measuring the production of /sup 14/CO/sub 2/ from (1-/sup 14/C)glycine. The glycine cleavage system was demonstrated to be responsible for nearly all /sup 14/CO/sub 2/ production from (1-/sup 14/C)glycine in both isolated mitochondria and the perfused rat liver. Glycine decarboxylation by rat liver mitochondria was highly sensitive to the metabolic state in which the mitochondria were maintained. Production of /sup 14/CO/sub 2/ from (1-/sup 14/C)glycine was stimulated in State 3 over State 4 and was maximal in the uncoupled state. Alternatively, respiratory inhibitors, such as rotenone, and reducing substrates, inhibited mitochondrial glycine decarboxylation strongly. Propionate stimulated glycine decarboxylation by rat liver mitochondria with a concomitant decrease in the measured intramitochondrial NADPH content. Incubation of mitochondria with propionate evoked a large decrease in the measured intramitochondrial ATP content and a large increase in AMP content. Manipulation of the intramitochondrial adenine nucleotide profile demonstrated that no direct correlation existed between rates of mitochondrial glycine decarboxylation and the intramitochondrial content of either ATP, ADP, or AMP.

  7. CASPASE-1 RECOGNIZES EXTENDED CLEAVAGE SITES IN ITS NATURAL SUBSTRATES

    PubMed Central

    Shen, Jerry; Yin, Ying; Mai, Jietang; Xiong, Xinyu; Pansuria, Meghana; Liu, Jingshan; Maley, Erin; Saqib, Najam Us; Wang, Hong; Yang, Xiao-Feng

    2010-01-01

    Objective The preferred amino acids in the proteolytic sites have been considered to be similar between caspase-1 and caspase-9, which do not support their differential functions in inflammatory pyroptosis and apoptosis. We attempted to solve this problem. Methods We analyzed the flanking 20 amino acid residues in the cleavage sites in 34 caspase-1 and 11 capase-9 experimentally identified substrates. Results This study has made the following findings: first, we verified that caspase-1 and caspase-9 shared 100% aspartic acid in the P1 position. However, the structures in the cleavage sites of most caspase-1 substrates are different from that of caspase-9 substrates in the following three aspects, a) the amino acid residues with the statistically high frequencies; b) the hydrophobic amino acid occurrence frequencies; and c) the charged amino acid occurrence frequencies; second, the amino acid pairs P1-P1? are different; third, our identified cleavage site patterns are useful in the prediction for the 91.4% cleavage sites of 35 new caspase-1 substrates. Conclusion Since most caspase-1 substrates are involved in vascular function, inflammation and atherogenesis, our novel structural patterns for the caspases’ substrates are significant in developing new diagnostics and therapeutics. PMID:20060974

  8. Serine Biosynthesis with One Carbon Catabolism and the Glycine Cleavage System Represents a Novel Pathway for

    E-print Network

    Vazquez, Alexei

    Serine Biosynthesis with One Carbon Catabolism and the Glycine Cleavage System Represents a Novel with One Carbon Catabolism and the Glycine Cleavage System Represents a Novel Pathway for ATP Generation

  9. Hydroxide-catalyzed bonding

    NASA Technical Reports Server (NTRS)

    Gwo, Dz-Hung (Inventor)

    2003-01-01

    A method of bonding substrates by hydroxide-catalyzed hydration/dehydration involves applying a bonding material to at least one surface to be bonded, and placing the at least one surface sufficiently close to another surface such that a bonding interface is formed between them. A bonding material of the invention comprises a source of hydroxide ions, and may optionally include a silicate component, a particulate filling material, and a property-modifying component. Bonding methods of the invention reliably and reproducibly provide bonds which are strong and precise, and which may be tailored according to a wide range of possible applications. Possible applications for bonding materials of the invention include: forming composite materials, coating substrates, forming laminate structures, assembly of precision optical components, and preparing objects of defined geometry and composition. Bonding materials and methods of preparing the same are also disclosed.

  10. H-H, C-H, and C-C NMR spin-spin coupling constants calculated by the FP-INDO method for aromatic hydrocarbons

    NASA Technical Reports Server (NTRS)

    Long, S. A. T.; Memory, J. D.

    1978-01-01

    The FP-INDO (finite perturbation-intermediate neglect of differential overlap) method is used to calculate the H-H, C-H, and C-C coupling constants in hertz for molecules of six different benzenoid hydrocarbons: benzene, naphthalene, biphenyl, anthracene, phenanthrene, and pyrene. The calculations are based on both the actual and the average molecular geometries. It is found that only the actual molecular geometries can always yield the correct relative order of values for the H-H coupling constants. For the calculated C-C coupling constants, as for the calculated C-H coupling constants, the signs are positive (negative) for an odd (even) number of bonds connecting the two nuclei. Agreements between the calculated and experimental values of the coupling constants for all six molecules are comparable to those reported previously for other molecules.

  11. Human bone marrow transplant rejection is associated with telomere cleavage.

    PubMed

    Multani, A S; Worth, L L; Jeha, S; Chan, K W; Pathak, S

    2001-12-01

    Telomeres that guard chromosomes are shortened with each cell division because of replication-dependent sequence loss at both termini. The gradual erosion of telomeric length has been directly related to the process of aging in vivo. Recently we have reported, in murine and human cancer cells treated with different apoptogens, cleavage and extrusion of telomeric DNA prior to cell death on one hand and an amplification of telomeric DNA in metastatic epithelial malignancies of different histopathologic origin on the other. This study tested our hypothesis that telomere cleavage is linked to transplant rejection in cancer patients receiving stem cells either from bone marrow (BM) or umbilical cord blood transfusion. Telomere integrity and mitotic catastrophe were studied by cytogenetic and molecular fluorescence in situ hybridization (FISH) techniques in two BM samples taken from a male stem cell transplant recipient diagnosed with aplastic anemia. The first BM sample, which was aspirated 27 days after transplant, was mitotically active. Only one of 50 metaphases showed a chromatid break. Every cell karyotyped was of male origin with 46, XY chromosome constitution. The second BM sample aspirated 52 days after transplant gave no metaphases and most interphase cells appeared dead. FISH preparations of the second BM sample showed cleavage and drastic reduction of telomeric DNA at the time the patient was rejecting the transplant. In contrast, the first BM sample had shown no indication of cleavage of the telomeric DNA, although the percentage of telomeric area was smaller than in the control. The replicative stress imposed on the stem cells engrafted may result in an accelerated aging effect, possibly due to the erosion of telomeric DNA. We, therefore, conclude that BM rejection could be directly associated with the cleavage, clustering, and extrusion of telomeric DNA in the donor cells. PMID:11712073

  12. IBM XL C/C++ Advanced Edition V8.0 for Linux Programming Guide

    E-print Network

    Hickman, Mark

    IBM XL C/C++ Advanced Edition V8.0 for Linux Programming Guide SC09-8014-00 #12;#12;IBM XL C/C++ Advanced Edition V8.0 for Linux Programming Guide SC09-8014-00 #12;Note! Before using this information) This edition applies to version 8.0 of IBM XL C/C++ Advanced Edition V8.0 for Linux (product number 5724-M16

  13. IBM XL C/C++ Advanced Edition V8.0 for Linux Language Reference

    E-print Network

    Hickman, Mark

    IBM XL C/C++ Advanced Edition V8.0 for Linux Language Reference SC09-8016-00 #12;#12;IBM XL C/C++ Advanced Edition V8.0 for Linux Language Reference SC09-8016-00 #12;Note! Before using this information (November, 2005) This edition applies to Version 8.0 of IBM XL C/C++ Advanced Edition for Linux (product

  14. IBM XL C/C++ Advanced Edition V8.0 for Linux Compiler Reference

    E-print Network

    Hickman, Mark

    IBM XL C/C++ Advanced Edition V8.0 for Linux Compiler Reference SC09-8013-00 #12;#12;IBM XL C/C++ Advanced Edition V8.0 for Linux Compiler Reference SC09-8013-00 #12;Note! Before using this information 2005 ) This edition applies to XL C/C++ Advanced Edition V8.0 for Linux (Program number 5724-M16

  15. IBM XL C/C++ Enterprise Edition V8.0 for AIX Programming Guide

    E-print Network

    Hickman, Mark

    IBM XL C/C++ Enterprise Edition V8.0 for AIX Programming Guide SC09-7996-00 #12;#12;IBM XL C/C++ Enterprise Edition V8.0 for AIX Programming Guide SC09-7996-00 #12;Note! Before using this information) This edition applies to version 8.0 of IBM XL C/C++ Enterprise Edition V8.0 for AIX (product number 5724-I12

  16. IBM XL C/C++ Enterprise Edition V8.0 for AIX Compiler Reference

    E-print Network

    Hickman, Mark

    IBM XL C/C++ Enterprise Edition V8.0 for AIX Compiler Reference SC09-7995-00 #12;#12;IBM XL C/C++ Enterprise Edition V8.0 for AIX Compiler Reference SC09-7995-00 #12;Note! Before using this information ) This edition applies to IBM XL C/C++ Enterprise Edition V8.0 for AIX (Program number 5724-M12) and to all

  17. IBM XL C/C++ Enterprise Edition V8.0 for AIX Language Reference

    E-print Network

    Hickman, Mark

    IBM XL C/C++ Enterprise Edition V8.0 for AIX Language Reference SC09-7998-00 #12;#12;IBM XL C/C++ Enterprise Edition V8.0 for AIX Language Reference SC09-7998-00 #12;Note! Before using this information (October, 2005) This edition applies to Version 8.0 of IBM XL C/C++ Enterprise Edition for AIX (product

  18. Utilizing the C-terminal cleavage activity of a protein splicing element to purify recombinant proteins in a single chromatographic step.

    PubMed

    Chong, S; Montello, G E; Zhang, A; Cantor, E J; Liao, W; Xu, M Q; Benner, J

    1998-11-15

    A conventional affinity protein purification system often requires a separate protease to separate the target protein from the affinity tag. This paper describes a unique protein purification system in which the target protein is fused to the C-terminus of a modified protein splicing element (intein). A small affinity tag is inserted in a loop region of the endonuclease domain of the intein to allow affinity purification. Specific mutations at the C-terminal splice junction of the intein allow controllable C-terminal peptide bond cleavage. The cleavage is triggered by addition of thiols such as dithiothreitol or free cysteine, resulting in elution of the target protein while the affinity-tagged intein remains immobilized on the affinity column. This system eliminates the need for a separate protease and allows purification of a target protein without the N-terminal methionine. We have constructed general cloning vectors and demonstrated single-column purification of several proteins. In addition, we discuss several factors that may affect the C-terminal peptide bond cleavage activity. PMID:9801307

  19. Utilizing the C-terminal cleavage activity of a protein splicing element to purify recombinant proteins in a single chromatographic step.

    PubMed Central

    Chong, S; Montello, G E; Zhang, A; Cantor, E J; Liao, W; Xu, M Q; Benner, J

    1998-01-01

    A conventional affinity protein purification system often requires a separate protease to separate the target protein from the affinity tag. This paper describes a unique protein purification system in which the target protein is fused to the C-terminus of a modified protein splicing element (intein). A small affinity tag is inserted in a loop region of the endonuclease domain of the intein to allow affinity purification. Specific mutations at the C-terminal splice junction of the intein allow controllable C-terminal peptide bond cleavage. The cleavage is triggered by addition of thiols such as dithiothreitol or free cysteine, resulting in elution of the target protein while the affinity-tagged intein remains immobilized on the affinity column. This system eliminates the need for a separate protease and allows purification of a target protein without the N-terminal methionine. We have constructed general cloning vectors and demonstrated single-column purification of several proteins. In addition, we discuss several factors that may affect the C-terminal peptide bond cleavage activity. PMID:9801307

  20. A Unique Coplanar Multi-center Bonding Network in Doubly Acetylide-bridged Binuclear Zirconocene Complexes: A Density Functional Theory Study

    SciTech Connect

    Niu, Shuqiang; Derecskei-Kovacs, Agnes; Hall, Michael B.

    2007-10-01

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. A unique p-conjugative interaction pattern was experimentally revealed in the doubly acetylide-bridged binuclear group 4 metallocene complexes, which was involved in C–C coupling/cleavage reactions of acetylides and r-alkynyl migrations. To elucidate how this multicenter bonding network affects the structural and reaction properties of these complexes, density functional theory (DFT) calculations and molecular orbital (MO) analysis were carried out on the electronic structure and r-alkynyl migration mechanisms of the doubly acetylide-bridged binuclear Zr complexes, (L2Zr)2(l-C„CH)2 (L = Cp,Cl). The B3LYP calculations suggested that the doubly [r,p] acetylide-bridged complex C2h-(L2Zr)2(l-C„CH)2 was produced by the reaction of L2Zr(C„CH)2 with L2Zr through a C2v- (L2Zr)2(l-C„CH)2 intermediate followed by an isomerization process. In particular, the isomerization of C2h- or C2v-(L2Zr)2(l- C„CH)2 is almost thermoneutral through a low barrier of 15.3–17.0 kcal/mol. The MO Walsh diagram revealed that the two isomers have a very similar six-center-six-electron bonding network. The coplanar p-conjunctive interaction by the electron donating and backdonating interactions between the metal centers and acetylide ligands significantly stabilizes the doubly acetylide-bridged binuclear group 4 metallocene complexes and the isomerization transition state.

  1. Unusual nitrile-nitrile and nitrile-alkyne coupling of Fc-C?N and FC-C?C-C?N.

    PubMed

    Becker, Lisanne; Strehler, Frank; Korb, Marcus; Arndt, Perdita; Spannenberg, Anke; Baumann, Wolfgang; Lang, Heinrich; Rosenthal, Uwe

    2014-03-10

    The reactions of the Group?4 metallocene alkyne complexes, [Cp*2M(?2-Me3SiC2SiMe3)] (1?a: M=Ti, 1?b: M=Zr, Cp*=?5-pentamethylcyclopentadienyl), with the ferrocenyl nitriles, Fc-CN and Fc-C?C-C?N (Fc=Fe(?5-C5H5)(?5-C5H4)), is described. In case of Fc-C?N an unusual nitrile–nitrile C-C homocoupling was observed and 1-metalla-2,5-diaza-cyclopenta-2,4-dienes (3?a, b) were obtained. As the first step of the reaction with 1?b, the nitrile was coordinated to give [Cp*2Zr(?2-Me3SiC2SiMe3)(N?C-Fc)] (2?b). The reactions with the 3-ferrocenyl-2-propyne-nitrile FcC?C-C?N lead to an alkyne–nitrile C-C coupling of two substrates and the formation of 1-metalla-2-aza-cyclopenta-2,4-dienes (4?a, b). For M=Zr, the compound is stabilized by dimerization as evidenced by single-crystal X-ray structure analysis. The electrochemical behavior of 3?a, b and 4?a, b was investigated, showing decomposition after oxidation, leading to different redox-active products. PMID:24615841

  2. C-H bond activation by f-block complexes.

    PubMed

    Arnold, Polly L; McMullon, Max W; Rieb, Julia; Kühn, Fritz E

    2015-01-01

    Most homogeneous catalysis relies on the design of metal complexes to trap and convert substrates or small molecules to value-added products. Organometallic lanthanide compounds first gave a tantalizing glimpse of their potential for catalytic C-H bond transformations with the selective cleavage of one C-H bond in methane by bis(permethylcyclopentadienyl)lanthanide methyl [(?(5) -C5 Me5 )2 Ln(CH3 )] complexes some 25?years ago. Since then, numerous metal complexes from across the periodic table have been shown to selectively activate hydrocarbon C-H bonds, but the challenges of closing catalytic cycles still remain; many f-block complexes show great potential in this important area of chemistry. PMID:25384554

  3. Chirality transfer based on reversible C-C bond formation/breaking in nickel(II) complexes.

    PubMed

    Kawamoto, Tatsuya; Suzuki, Narumi; Ono, Takeshi; Gong, Dafei; Konno, Takumi

    2013-01-25

    The reaction of (1R)-(-)-myrtenal-derived benzothiazoline with nickel(II) acetate in ethanol exclusively gave a Schiff base-type nickel(II) complex having M helical configurational myrtenyl arms, which is reversibly converted to a non-innocent-type complex having additional S,S configurational asymmetric carbon centres. PMID:23090291

  4. An efficient and general route to reduced polypropionates via Zr-catalyzed asymmetric C—C bond formation

    PubMed Central

    Negishi, Ei-ichi; Tan, Ze; Liang, Bo; Novak, Tibor

    2004-01-01

    An efficient and general method for the synthesis of reduced polypropionates has been developed through the application of asymmetric carboalumination of alkenes catalyzed by dichlorobis(1-neomenthylindenyl)zirconium [(NMI)2ZrCl2]. In this investigation, attention has been focused on those reduced polypropionates that are ?-monoheterofunctional and either ?-ethyl or ?-n-propyl. The reaction of 3-buten-1-ol with triethylaluminum (Et3Al) or tripropylaluminum (nPr3Al) in the presence of (NMI)2ZrCl2 and isobutylaluminoxane gave, after protonolysis, (R)-3-methyl-1-pentanol as well as (R)- and (S)-3-methyl-1-hexanols in 88–92% yield in 90–92% enantiomeric excess in one step. These 3-monomethyl-1-alkanols were then converted to two stereoisomers each of 2,4-dimethyl-1-hexanols and 2,4-dimethyl-1-heptanols via methylalumination catalyzed by (NMI)2ZrCl2 and methylaluminoxane followed by oxidation with O2. The four-step (or three-isolation-step) protocol provided syn-2,4-dimethyl-1-alkanols of ?98% stereoisomeric purity in ?50% overall yields, whereas (2S,4R)-2,4-dimethyl-1-hexanol of comparable purity was obtained in 40% overall yield. Commercial availability of (S)-2-methyl-1-butanol as a relatively inexpensive material suggested its use in the synthesis of (2S,4S)- and (2R,4S)-2,4-dimethyl-1-hexanols via a three-step protocol consisting of (i) iodination, (ii) zincation followed by Pd-catalyzed vinylation, and (iii) Zr-catalyzed methylalumination followed by oxidation with O2. This three-step protocol is iterative and applicable to the synthesis of reduced polypropionates containing three or more branching methyl groups, rendering this method for the synthesis of reduced polypropionates generally applicable. Its synthetic utility has been demonstrated by preparing the side chain of zaragozic acid A and the C11–C20 fragment of antibiotics TMC-151 A–F. PMID:15073327

  5. Hapalindole/Ambiguine Biogenesis Is Mediated by a Cope Rearrangement, C-C Bond-Forming Cascade.

    PubMed

    Li, Shasha; Lowell, Andrew N; Yu, Fengan; Raveh, Avi; Newmister, Sean A; Bair, Nathan; Schaub, Jeffrey M; Williams, Robert M; Sherman, David H

    2015-12-16

    Hapalindoles are bioactive indole alkaloids with fascinating polycyclic ring systems whose biosynthetic assembly mechanism has remained unknown since their initial discovery in the 1980s. In this study, we describe the fam gene cluster from the cyanobacterium Fischerella ambigua UTEX 1903 encoding hapalindole and ambiguine biosynthesis along with the characterization of two aromatic prenyltransferases, FamD1 and FamD2, and a previously undescribed cyclase, FamC1. These studies demonstrate that FamD2 and FamC1 act in concert to form the tetracyclic core ring system of the hapalindoles from cis-indole isonitrile and geranyl pyrophosphate through a presumed biosynthetic Cope rearrangement and subsequent 6-exo-trig cyclization/electrophilic aromatic substitution reaction. PMID:26629885

  6. Probing o-diphenylphosphanyl benzoate (o-DPPB)-directed C-C bond formation: total synthesis of dictyostatin.

    PubMed

    Wünsch, Sebastian; Breit, Bernhard

    2015-02-01

    Herein, we report a robust total synthesis of dictyostatin. This polyketide natural product has attracted much attention because of its impressive antiproliferative activity against several human cancer-cell lines. We accomplished its synthesis in a highly convergent manner from three fragments of equal complexity, which were prepared on multigram scale. The southern and northwestern subunits were constructed through application of our o-DPPB-directed hydroformylation and allylic substitution methodology, respectively. These methods generated the C6 and C14 stereocenters of dictyostatin with good diastereoselectivities and simultaneously allowed further elaboration of the fragments by Wittig olefination and Sharpless asymmetric epoxidation, respectively. The compelling performance of the hydroformylation and allylic substitution with regard to practicability, selectivity, and scale underline their value for the construction of propionate motifs. PMID:25524890

  7. Reversible Sigma C-C Bond Formation Between Phenanthroline Ligands Activated by (C5Me5)2Yb

    SciTech Connect

    Nocton, Gré gory; Lukens, Wayne W.; Booth, Corwin H.; Rozenel, Sergio S.; Medling, Scott A.; Maron, Laurent; Andersen, Richard A.

    2014-06-26

    The electronic structure and associated magnetic properties of the 1,10-phenanthroline adducts of Cp*2Yb are dramatically different from those of the 2,2?-bipyridine adducts. The monomeric phenanthroline adducts are ground state triplets that are based upon trivalent Yb(III), f13, and (phen ) that are only weakly exchange coupled, which is in contrast to the bipyridine adducts whose ground states are multiconfigurational, open-shell singlets in which ytterbium is intermediate valent ( J. Am. Chem. Soc 2009, 131, 6480; J. Am. Chem. Soc 2010, 132, 17537). The origin of these different physical properties is traced to the number and symmetry of the LUMO and LUMO+1 of the heterocyclic diimine ligands. The bipy has only one 1 orbital of b1 symmetry of accessible energy, but phen has two orbitals of b1 and a2 symmetry that are energetically accessible. The carbon p-orbitals have different nodal properties and coefficients and their energies, and therefore their populations change depending on the position and number of methyl substitutions on the ring. A chemical ramification of the change in electronic structure is that Cp 2Yb(phen) is a dimer when crystallized from toluene solution, but a monomer when sublimed at 180190 C. When 3,8-Me2phenanthroline is used, the adduct Cp*2Yb(3,8-Me2phen) exists in the solution in a dimer monomer equilibrium in which G is near zero. The adducts with 3-Me, 4-Me, 5-Me, 3,8-Me2, and 5,6-Me2-phenanthroline are isolated and characterized by solid state X-ray crystallography, magnetic susceptibility and LIII-edge XANES spectroscopy as a function of temperature and variable-temperature 1H NMR spectroscopy.

  8. Cyanide-catalyzed C-C bond formation: synthesis of novel compounds, materials and ligands for homogeneous catalysis 

    E-print Network

    Reich, Blair Jesse Ellyn

    2007-04-25

    under aerobic conditions to yield conjugated oligoketimines and polyketimines with unprecedented structure and molecular weight (DP = 2 - 23, ~700 -8200 g/mol). The �±- diimine linkage was established based on IR spectroscopy, NMR spectroscopy, size...

  9. Topotactic elimination of water across a C-C ligand bond in a dense 3-D metal-organic framework.

    PubMed

    Yeung, Hamish H-M; Kosa, Monica; Griffin, John M; Grey, Clare P; Major, Dan T; Cheetham, Anthony K

    2014-11-11

    Upon heating, lithium L-malate undergoes topotactic dehydration to form a phase containing the unsaturated fumarate ligand, in which the original 3-D framework remains intact. Insight into this unusual transformation has been obtained by single crystal X-ray diffraction, MAS-NMR, in situ powder X-ray diffraction and DFT calculations. PMID:25232700

  10. C-C Bond Formation via Copper-Catalyzed Conjugate Addition Reactions to Enones in Water at Room Temperature

    PubMed Central

    Lipshutz, Bruce H.; Huang, Shenlin; Leong, Wendy Wen Yi; Isley, Nicholas A.

    2013-01-01

    Conjugate addition reactions to enones can now be done in water at room temperature with in situ-generated organocopper reagents. Mixing an enone, zinc powder, TMEDA, and an alkyl halide in a micellar environemnt containing catalytic amounts of Cu(I), Ag(I), and Au(III), leads to 1,4-adducts in good isolated yields: no organometallic precursor is involved. PMID:23190029

  11. Reversible sigma C-C bond formation between phenanthroline ligands activated by (C5Me5)2Yb.

    PubMed

    Nocton, Grégory; Lukens, Wayne W; Booth, Corwin H; Rozenel, Sergio S; Medling, Scott A; Maron, Laurent; Andersen, Richard A

    2014-06-18

    The electronic structure and associated magnetic properties of the 1,10-phenanthroline adducts of Cp*2Yb are dramatically different from those of the 2,2'-bipyridine adducts. The monomeric phenanthroline adducts are ground state triplets that are based upon trivalent Yb(III), f(13), and (phen(•-) ) that are only weakly exchange coupled, which is in contrast to the bipyridine adducts whose ground states are multiconfigurational, open-shell singlets in which ytterbium is intermediate valent ( J. Am. Chem. Soc 2009 , 131 , 6480 ; J. Am. Chem. Soc 2010 , 132 , 17537 ). The origin of these different physical properties is traced to the number and symmetry of the LUMO and LUMO+1 of the heterocyclic diimine ligands. The bipy(•-) has only one ?*1 orbital of b1 symmetry of accessible energy, but phen(•-) has two ?* orbitals of b1 and a2 symmetry that are energetically accessible. The carbon p?-orbitals have different nodal properties and coefficients and their energies, and therefore their populations change depending on the position and number of methyl substitutions on the ring. A chemical ramification of the change in electronic structure is that Cp*2Yb(phen) is a dimer when crystallized from toluene solution, but a monomer when sublimed at 180-190 °C. When 3,8-Me2phenanthroline is used, the adduct Cp*2Yb(3,8-Me2phen) exists in the solution in a dimer-monomer equilibrium in which ?G is near zero. The adducts with 3-Me, 4-Me, 5-Me, 3,8-Me2, and 5,6-Me2-phenanthroline are isolated and characterized by solid state X-ray crystallography, magnetic susceptibility and LIII-edge XANES spectroscopy as a function of temperature and variable-temperature (1)H NMR spectroscopy. PMID:24852897

  12. Multicomponent synthesis of chiral bidentate unsymmetrical unsaturated N-heterocyclic carbenes: copper-catalyzed asymmetric C-C bond formation.

    PubMed

    Jahier-Diallo, Claire; Morin, Marie S T; Queval, Pierre; Rouen, Mathieu; Artur, Isabelle; Querard, Pierre; Toupet, Loic; Crévisy, Christophe; Baslé, Olivier; Mauduit, Marc

    2015-01-12

    A multicomponent strategy was applied to the synthesis of chiral bidentate unsaturated hydroxyalkyl- and carboxyalkyl-N-heterocyclic carbene (NHC) precursors. The newly developed low-cost chiral ligands derived from amino alcohols and amino acids were evaluated in copper-catalyzed asymmetric conjugated addition and asymmetric allylic alkylation, which afforded the desired tertiary and quaternary carbon stereocenters with excellent regio- and enantioselectivities (up to 99:1 e.r.). PMID:25421857

  13. Palladium-catalyzed enolate arylation as a key C-C bond-forming reaction for the synthesis of isoquinolines.

    PubMed

    Pilgrim, Ben S; Gatland, Alice E; Esteves, Carlos H A; McTernan, Charlie T; Jones, Geraint R; Tatton, Matthew R; Procopiou, Panayiotis A; Donohoe, Timothy J

    2016-01-21

    The palladium-catalyzed coupling of an enolate with an ortho-functionalized aryl halide (an ?-arylation) furnishes a protected 1,5-dicarbonyl moiety that can be cyclized to an isoquinoline with a source of ammonia. This fully regioselective synthetic route tolerates a wide range of substituents, including those that give rise to the traditionally difficult to access electron-deficient isoquinoline skeletons. These two synthetic operations can be combined to give a three-component, one-pot isoquinoline synthesis. Alternatively, cyclization of the intermediates with hydroxylamine hydrochloride engenders direct access to isoquinoline N-oxides; and cyclization with methylamine, gives isoquinolinium salts. Significant diversity is available in the substituents at the C4 position in four-component, one-pot couplings, by either trapping the in situ intermediate after ?-arylation with carbon or heteroatom-based electrophiles, or by performing an ?,?-heterodiarylation to install aryl groups at this position. The ?-arylation of nitrile and ester enolates gives access to 3-amino and 3-hydroxyisoquinolines and the ?-arylation of tert-butyl cyanoacetate followed by electrophile trapping, decarboxylation and cyclization, C4-functionalized 3-aminoisoquinolines. An oxime directing group can be used to direct a C-H functionalization/bromination, which allows monofunctionalized rather than difunctionalized aryl precursors to be brought through this synthetic route. PMID:26632484

  14. Expanding the substrate scope in palladium-catalyzed C-N and C-C bond-forming reactions

    E-print Network

    Anderson, Kevin William

    2006-01-01

    Chapter 1. The first detailed study of the palladium-catalyzed amination of aryl nonaflates is reported. Use of bulky electron-rich monophosphinobiaryl ligands or BINAP allow for the catalytic amination of electron-rich ...

  15. Cleavage patterns and the topology of the metazoan tree of?life

    PubMed Central

    Valentine, James W.

    1997-01-01

    Several major alliances of metazoan phyla have been identified by small subunit rRNA sequence comparisons. It is possible to arrange the phyla to produce a parsimonious distribution of cleavage types, requiring only one change from a radial ancestral condition to spiral cleavage and one other to “idiosyncratic” cleavage; this arrangement is consistent with most of the recent molecular phylogenies. The cleavage shifts are correlated with changes in many of the features that once were used to distinguish Protostomia and Deuterostomia. It is hypothesized that changes in cleavage direction are causally associated with changes in blastomere fates and thus that cleavage type correlates with such features as the identity of mesoderm founder cells, which in turn can constrain the mode of origination of the eucelom. Cleavage changes may also affect the timing of cell fate specification. In a tree that emphasizes cleavage parsimony, radial cleavage, regulative development, and enterocely are ancestral within the Bilateria, and spiral or idiosyncratic cleavages, mosaic development, and schizocely are associated with a change in cleavage direction. Deuterostomy is presumably ancestral and is correlated with radial cleavage for this reason, rather than mechanistically. PMID:9223303

  16. A novel cleavage product formed by autoxidation of lycopene induces apoptosis in HL-60 cells.

    PubMed

    Zhang, Hong; Kotake-Nara, Eiichi; Ono, Hiroshi; Nagao, Akihiko

    2003-12-15

    Dietary carotenoids have been thought to have beneficial effects on human health through their antioxidant activity, provitamin A activity, and effects on cancer cell propagation. Recent studies suggest that oxidation products or metabolites are involved in biological activities of carotenoids. We previously reported that an autoxidation mixture of lycopene induced apoptosis in HL-60 human promyelocytic leukemia cells, but lycopene alone did not. In the present study, bioassay-directed fractionations of autoxidized lycopene led to isolation of a novel cleavage product of lycopene. Spectral analyses elucidated its structure as (E,E,E)-4-methyl-8-oxo-2,4,6-nonatrienal (MON), suggesting the formation through the oxidative cleavages at the 5, 6- and 13, 14-double bonds of lycopene. MON was proved to cause a dose-dependent reduction of viability in HL-60 cells with morphological changes such as chromatin condensation and nuclear fragmentation. Treatment of HL-60 cells with MON could induce DNA fragmentation and increase apoptotic cells in a time- and dose-dependent manner. The MON treatment could enhance both caspase 8 and caspase 9 activities. Moreover, it reduced the expression of Bcl-2 and Bcl-XL proteins, whereas it had no effect on the level of Bax protein. These results clearly indicated that MON induced apoptosis in HL-60 cells, associated with the down regulation of Bcl-2 and Bcl-XL and the activation of caspase cascades. The concentration of MON attained by treatment of the autoxidized lycopene preparation was far less than the IC50 (10 microM) value of MON alone in reducing the viability of HL-60 cells. The fractionation of the oxidized lycopene indicated the presence of other active oxidation products. Thus, unidentified products as well as MON would be responsible for the apoptosis-inducing activity of the autoxidized lycopene. PMID:14680688

  17. C-H and C-C clumping in ethane by high-resolution mass spectrometry

    NASA Astrophysics Data System (ADS)

    Clog, M. D.; Eiler, J. M.

    2014-12-01

    Ethane (C2H6) is an important natural compound, and its geochemistry can be studied through 13C-13C, 13C-D and/or D-D clumping. Such measurements are potentially important both as a stepping stone towards the study of more complex organic molecules and, in its own regard, to understand processes controlling the generation, migration and destruction of natural gas. Isotopic clumping on C-C and C-H bonds could be influenced by thermodynamics, chemical kinetics, diffusion or gas mixing. Previous work showed that 13C-D clumping in methane generally reflects equilibrium and provides a measure of formation temperature (Stolper et al 2014a), whereas 13C-13C clumping in ethane is likely most controlled by chemical-kinetic processes and/or inheritance from the isotopic structure of source organic compounds (Clog et al 2014). 13C-D clumping in ethane has the potential to provide a thermometer for its synthesis, as it does for methane. However, the difference in C-H bond dissociation energy for these two compounds may suggest a lower 'blocking temperature' for this phenomenon in ethane (the blocking temperature for methane is ?~250 C in geological conditions). We present analytical techniques to measure both 13C-13C and 13C-D clumping in ethane, using a novel two-instrument technique, including both the Thermo 253-Ultra and the Thermo DFS. In this method, the Ultra is used to measure the relative abundances of combinations nearly isobaric isotopologues: (13C12CH6 + 12C2DH5)/12C2H6 and (13C2H6 + 12C13CDH5)/12C2H6, free of other isobaric interferences like O2. The DFS, a very high resolution single-collector instrument, is then used to measure the ratios of isotopologues of ethane at a single cardinal mass: 12C2DH5/13C12CH6, and 12C13CDH5/13C2H6, with precisions of ~1 permil. Those 4 measurements allow us to calculate the bulk isotopic composition (?D and ?13C) as well as the abundance of 13C2H6 and 13C12CDH5. We also present progress on the development of software tools to use the data measured with the DFS efficiently.

  18. Measurements of electron attachment lineshapes and cross sections at ultra-low electron energies for CF2Cl2, c-C4F6, c-C4F8 and c-C7F14

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Alajajian, S. H.

    1987-01-01

    Electron-attachment cross sections are reported in the electron energy range 0-160 meV, and at energy resolutions of 7.0 and 7.5 meV (FWHM), for the molecules CF2Cl2 (dichlorodifluoromethane), c-C4F6 (perfluorocyclobutene), c-C4F8 (perfluorocyclobutane), and c-C7F14 (perfluoromethylcyclohexane). Use is made of the Kr photoionization method. Measured attachment lineshapes are deconvoluted from the spectral slit function, and are converted to cross sections by normalization through thermal attachment-rate constants. Comparisons are made with attachment cross sections derived from several independent sets of swarm-measured rate constants, and with collisional ionization (high-Rydberg attachment) data.

  19. Essays on corporate bonds

    E-print Network

    Bao, Jack (Jack C.)

    2009-01-01

    This thesis consists of three empirical essays on corporate bonds, examining the role of both credit risk and liquidity. In the first chapter, I test the ability of structural models of default to price corporate bonds in ...

  20. Diffusion bonding aeroengine components

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, G. A.; Broughton, T.

    1988-10-01

    The use of diffusion bonding processes at Rolls-Royce for the manufacture of titanium-alloy aircraft engine components and structures is described. A liquid-phase diffusion bonding process called activated diffusion bonding has been developed for the manufacture of the hollow titanium wide chord fan blade. In addition, solid-state diffusion bonding is being used in the manufacture of hollow vane/blade airfoil constructions mainly in conjunction with superplastic forming and hot forming techniques.

  1. Breaking bonds with electrons and protons. Models and examples.

    PubMed

    Costentin, Cyrille; Robert, Marc; Savéant, Jean-Michel; Tard, Cédric

    2014-01-21

    Besides its theoretical interest, the attention currently aroused by proton-coupled electron transfers (PCET reactions) has two main motives. One is a better understanding of biological processes in which PCET reactions are involved, Photosystem II as well as a myriad of other natural systems. The other is directed toward synthetic processes, many of which are related to global energy challenges. Until recently, the analyses of the mechanism and reactivity of PCET reactions have focused on outersphere transfers, those in which no bond between heavy atoms (all atoms with the exception of H) is concomitantly formed or broken. Conversely, reactions in which electron transfer triggers the breaking of a heavy-atom bond with no proton transfer have been extensively analyzed, both theoretically and experimentally. In both cases, strategies have been developed to distinguish between stepwise and concerted pathways. In each case, kinetic models have been devised, allowing the relation between activation and thermodynamic driving force to be established by means of parameters pertaining to the initial and final state. Although many natural and artificial processes include electron transfer, proton transfer, and heavy-atom bond breaking (/formation), no means were offered until recently to analyze the mechanism of such reactions, notably to establish the degree of concertedness of the three constitutive events. Likewise, no kinetic models were available to describe reactions where the three events are concerted. In this Account, we discuss the strategies to distinguish stepwise, partially concerted (when two of the three events are concerted), and totally concerted pathways in these reactions that include electron transfer, proton transfer, and heavy-atom bond breaking. These mechanism analysis methods are illustrated and validated by three examples. First we describe the electrochemical cleavage of an O-O bond in an aliphatic peroxide molecule with a pendant carboxylic acid group that can serve as proton donor for electron transfer and bond breaking. In the second example, we examine the breaking of one of the C-O bonds of CO2 within a multistep process where the reduction of CO2 into CO is catalyzed by an electrogenerated iron(0) porphyrin in the presence of various Brönsted acids. In this case, an intramolecular electron transfer triggers proton transfer and bond cleavage. In the first two examples, all three events are concerted. The third example also involves catalysis. It describes the cleavage of a cobalt-carbon bond in the reduction of chloroacetonitrile catalyzed by an electrogenerated cobalt(I) porphyrin. It illustrates the rather common case where the intermediate formed by the reaction of a transition metal complex with the substrate has to be cleaved to close the catalytic cycle. In the first two examples, all three events are concerted, whereas, in the last case, a partially concerted pathway takes place: proton transfer and bond-breaking (Co-C cleavage) are concerted after an initial electron transfer step. The all-concerted cases require a model that connects the kinetics to the thermodynamic driving force of the reaction. Starting from previous models of outersphere electron transfer, concerted proton-electron transfer, and concerted dissociative electron transfer, we describe a model for all-concerted proton-electron-bond breaking reactions. These pathways skip the high-energy intermediates that occur in stepwise pathways, but could introduce kinetic penalties. The all-concerted model allows one to assess these penalties and the way in which they can be fought by the supplement of driving force offered by concerted proton transfer. PMID:24016042

  2. Catalytic ?-activation of carbon-carbon triple bonds: reactions of propargylic alcohols and alkynes.

    PubMed

    Kumar, Rapolu Kiran; Bi, Xihe

    2016-01-01

    The majority reactions of alkynes in the literature are reported to proceed via either structural ?-activation or catalytic ?-activation of C[triple bond, length as m-dash]C bonds. We skillfully designed novel methods for the catalytic ?-activation of C[triple bond, length as m-dash]C bonds of alkynyl compounds. For terminal alkynyl compounds, ?-activation was achieved by silver(i)-catalyzed C-H functionalization. Whereas ?-activation of internal alkynes was accomplished by the generation of propargylic cations from propargylic alcohols under Lewis-acid catalysis. These ?-activated species have been successfully used for new C-C and C-heteroatom bond formation reactions. Plausible reaction pathways were proposed based on typical control experiments to help the readers to gain insights into reactions and for further discovery of new reactions based on this concept of catalytic ?-activation of C[triple bond, length as m-dash]C bonds. PMID:26658835

  3. Aminocyanation by the addition of N-CN bonds to arynes: chemoselective synthesis of 1,2-bifunctional aminobenzonitriles.

    PubMed

    Rao, Bin; Zeng, Xiaoming

    2014-01-01

    An efficient aminocyanation by the direct addition of aryl cyanamides to arynes is described, enabling incorporation of highly useful amino and cyano groups synchronously via cleavage of inert N-CN bonds, affording synthetically useful 1,2-bifunctional aminobenzonitriles. The postsynthetic functionalization of the aminocyanation products allows diverse formation of synthetically important derivatives such as drug molecule Ponstan and fused heterocycles. PMID:24325782

  4. Acrylic mechanical bond tests

    SciTech Connect

    Wouters, J.M.; Doe, P.J.

    1991-02-01

    The tensile strength of bonded acrylic is tested as a function of bond joint thickness. 0.125 in. thick bond joints were found to posses the maximum strength while the acceptable range of joints varied from 0.063 in. to almost 0.25 in. Such joints are used in the Sudbury Neutrino Observatory.

  5. Testing of DLR C/C-SiC for HIFiRE 8 Scramjet Combustor

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Capriotti, Diego P.; Reimer, Thomas; Kutemeyer, Marius; Smart, Michael

    2013-01-01

    Ceramic Matrix Composites (CMCs) have been proposed for hot structures in scramjet combustors. Previous studies have calculated significant weight savings by utilizing CMCs (active and passive) versus actively cooled metallic scramjet structures. Both a C/C and a C/C-SiC material system fabricated by DLR (Stuttgart, Germany) are being considered for use in a passively cooled combustor design for HIFiRE 8, a joint Australia / AFRL hypersonic flight program, expected to fly at Mach 7 for approximately 30 sec, at a dynamic pressure of 55 kPa. Flat panels of the DLR C/C and the C/C-SiC were tested in the NASA Langley Direct Connect Rig (DCR) at Mach 5 and Mach 6 enthalpy for several minutes. Gaseous hydrogen fuel was used to fuel the scramjet combustor. The test panels were instrumented with embedded Type K and Type S thermocouples. Zirconia felt insulation was used in some of the tests to increase the surface temperature of the C/C-SiC panel for approximately 350degF. The final C/C-SiC panel was tested for 3 cycles totaling over 135 sec at Mach 6 enthalpy. Slightly more erosion was observed on the C/C panel than the C/C-SiC panels, but both material systems demonstrated acceptable recession performance for the HIFiRE 8 flight.

  6. MPI-CHECK for C/C++ MPI Programs Pavel Kru sina and Glenn R. Luecke

    E-print Network

    Luecke, Glenn R.

    MPI-CHECK for C/C++ MPI Programs Pavel Kru#20;sina and Glenn R. Luecke #3; 291 Durham Center, Iowa manager. However, the current version of Umpire requires that a shared memory parallel computer is being C/C++ program Instrumentation and compilation Results MPI processes MPI-CHECK server Figure 1: MPI

  7. 77 FR 10004 - C$ cMoney, Inc.; Order of Suspension of Trading

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ... From the Federal Register Online via the Government Printing Office SECURITIES AND EXCHANGE COMMISSION C$ cMoney, Inc.; Order of Suspension of Trading February 16, 2012. It appears to the Securities... securities of C$ cMoney, Inc. (``cMoney'') because of questions regarding the accuracy of assertions by...

  8. Enhancement of Neurospora VS ribozyme cleavage by tuberactinomycin antibiotics.

    PubMed Central

    Olive, J E; De Abreu, D M; Rastogi, T; Andersen, A A; Mittermaier, A K; Beattie, T L; Collins, R A

    1995-01-01

    Several examples of inhibition of the function of a ribozyme or RNA-protein complex have shown that certain antibiotics can interact specifically with RNA. There are, however, few examples of antibiotics that have a positive, rather than a negative, effect on the function of an RNA. We have found that micromolar concentrations of viomycin, a basic, cyclic peptide antibiotic of the tuberactinomycin group, enhance the cleavage of a ribozyme derived from Neurospora VS RNA. Viomycin decreases by an order of magnitude the concentration of magnesium required for cleavage. It also stimulates an otherwise insignificant transcleavage reaction by enhancing interactions between RNA molecules. The ability of viomycin to enhance some RNA-mediated reactions but inhibit others, including translation and Group I intron splicing, demonstrates the potential for natural selection by small molecules during evolution in the 'RNA world' and may have broader implications with respect to ribozyme expression and activity in contemporary cells. Images PMID:7621836

  9. Asymmetric cortical extension shifts cleavage furrow position in Drosophila neuroblasts.

    PubMed

    Connell, Marisa; Cabernard, Clemens; Ricketson, Derek; Doe, Chris Q; Prehoda, Kenneth E

    2011-11-01

    The cytokinetic cleavage furrow is typically positioned symmetrically relative to the cortical cell boundaries, but it can also be asymmetric. The mechanisms that control furrow site specification have been intensively studied, but how polar cortex movements influence ultimate furrow position remains poorly understood. We measured the position of the apical and the basal cortex in asymmetrically dividing Drosophila neuroblasts and observed preferential displacement of the apical cortex that becomes the larger daughter cell during anaphase, effectively shifting the cleavage furrow toward the smaller daughter cell. Asymmetric cortical extension is correlated with the presence of cortical myosin II, which is polarized in neuroblasts. Loss of myosin II asymmetry by perturbing heterotrimeric G-protein signaling results in symmetric extension and equal-sized daughter cells. We propose a model in which contraction-driven asymmetric polar extension of the neuroblast cortex during anaphase contributes to asymmetric furrow position and daughter cell size. PMID:21937716

  10. Investigation of a self-sustained volume discharge in c-C4F8

    NASA Astrophysics Data System (ADS)

    Belevtsev, A. A.; Firsov, K. N.; Kazantsev, S. Yu; Kononov, I. G.; Podlesnykh, S. V.

    2015-11-01

    This paper reports the first experimental study of a self-sustained volume discharge (SSVD) in c-C4F8. The discharge voltage and current oscillograms are taken over a wide range of gas pressures. For the first time an SSVD in c-C4F8 preheated by CO2-laser radiation has been investigated. Some special features and temperature-dependent characteristics of this discharge are revealed. There is discussion on the peculiarities of an SSVD in a preirradiated c-C4F8. To refine the static limiting field in c-C4F8 the static dielectric strength of c-C4F8 is measured on changing the gas pressure by nearly two orders of magnitude.

  11. Autoproteolytic cleavage mediates cytotoxicity of Clostridium difficile toxin A.

    PubMed

    Kreimeyer, Isa; Euler, Friederike; Marckscheffel, Alexander; Tatge, Helma; Pich, Andreas; Olling, Alexandra; Schwarz, Janett; Just, Ingo; Gerhard, Ralf

    2011-03-01

    Toxin A and toxin B from Clostridium difficile are the causative agents of the antibiotic-associated pseudomembranous colitis. They are of an A/B structure type and possess inositol hexakisphosphate-inducible autoproteolytic activity to release their glucosyltransferase domain to the cytoplasm of target cells. In this study, we investigated the effect of extracellular and intracellular autoproteolytic cleavage on the function of TcdA. Extracellular cleavage led to functional inactivation albeit TcdA was less susceptible to inositol hexakisphosphate-induced autoproteolysis than TcdB. A non-cleavable TcdA mutant (TcdA A541 G542 A543) was generated to investigate whether autoproteolysis is a prerequisite for intracellular function of TcdA. Although the EC(50) regarding cell rounding was about 75-fold reduced in short-term assay, non-cleavable TcdA was able to induce complete cell rounding and apoptosis after 36 h comparable to wildtype TcdA when continuously present. Studies with limited uptake of toxins revealed progressive Rac1 glucosylation and complete cell rounding for TcdA, whereas the effect induced by non-cleavable TcdA was reversible. These findings argue for cytosolic accumulation of the released glucosyltransferase domain of wild-type TcdA and rapid degradation of the non-cleavable TcdA. In summary, extracellular cleavage functionally inactivates TcdA (and TcdB), whereas intracellular autoproteolytic cleavage is not essential for function of TcdA but defines its potency. PMID:21046073

  12. Prospective bonding applications

    NASA Astrophysics Data System (ADS)

    Ancenay, H.; Benazet, D.

    1981-07-01

    Adhesive bonding in industry and in the laboratory is surveyed and prospects for its wider utilization are assessed. The economic impact of bonding technology on industry is discussed. Research is reviewed, centering on the development of nondestructive testing and inspection techniques. Traditional (wood) as well as new materials susceptible to bonding are considered. Applications in construction and civil engineering, in aeronautics, and in the automobile industry are covered. The use of glues in mechanical constructions, in assembling cylindrical parts, and in metal-metal bonding are examined. Hybrid assembling and bonding of composite materials are included.

  13. Bonding thermoplastic polymers

    DOEpatents

    Wallow, Thomas I. (Fremont, CA); Hunter, Marion C. (Livermore, CA); Krafcik, Karen Lee (Livermore, CA); Morales, Alfredo M. (Livermore, CA); Simmons, Blake A. (San Francisco, CA); Domeier, Linda A. (Danville, CA)

    2008-06-24

    We demonstrate a new method for joining patterned thermoplastic parts into layered structures. The method takes advantage of case-II permeant diffusion to generate dimensionally controlled, activated bonding layers at the surfaces being joined. It is capable of producing bonds characterized by cohesive failure while preserving the fidelity of patterned features in the bonding surfaces. This approach is uniquely suited to production of microfluidic multilayer structures, as it allows the bond-forming interface between plastic parts to be precisely manipulated at micrometer length scales. The bond enhancing procedure is easily integrated in standard process flows and requires no specialized equipment.

  14. DNA photoreacts by nucleobase ring cleavage to form labile isocyanates.

    PubMed

    Buschhaus, Laura; Rolf, Josefin; Kleinermanns, Karl

    2013-11-14

    Differential infrared absorption spectroscopy was used to study the formation of isocyanates and further photo-products in the oligonucleotides dG10, dC10 and dT10 and in their mononucleosides by ultraviolet light at 266 nm. We find that ?-cleavage takes place in oligonucleotides and mononucleosides both in films and in solution. The very intense and spectrally isolated isocyanate (N=C=O) asymmetric stretch vibration at 2277 cm(-1) is used as a spectroscopic marker for detection of the photo-product. The band disappears upon reaction with small amounts of water vapour as expected for isocyanates. Quantum yields for isocyanate formation by nucleobase ring cleavage in the ?-position to the carbonyl group are ?5 × 10(-5) in the mononucleosides and up to 5 × 10(-4) in the oligonucleotides. In the mixed oligonucleotides dG10/dC10 and dA10/dT10 the quantum yield of ?-cleavage drops by a factor of 10 compared to the single oligonucleotides. Implications for DNA repair and photo-induced DNA-protein cross-linking via isocyanate reaction with NH2 groups of amino acids are discussed. PMID:23860445

  15. N-cadherin prodomain cleavage regulates synapse formation in vivo.

    PubMed

    Latefi, Nazlie S; Pedraza, Liliana; Schohl, Anne; Li, Ziwei; Ruthazer, Edward S

    2009-07-01

    Cadherins are initially synthesized bearing a prodomain that is thought to limit adhesion during early stages of biosynthesis. Functional cadherins lack this prodomain, raising the intriguing possibility that cells may utilize prodomain cleavage as a means to temporally or spatially regulate adhesion after delivery of cadherin to the cell surface. In support of this idea, immunostaining for the prodomain of zebrafish N-cadherin revealed enriched labeling at neuronal surfaces at the soma and along axonal processes. To determine whether post-translational cleavage of the prodomain affects synapse formation, we imaged Rohon-Beard cells in zebrafish embryos expressing GFP-tagged wild-type N-cadherin (NCAD-GFP) or a GFP-tagged N-cadherin mutant expressing an uncleavable prodomain (PRON-GFP) rendering it nonadhesive. NCAD-GFP accumulated at synaptic microdomains in a developmentally regulated manner, and its overexpression transiently accelerated synapse formation. PRON-GFP was much more diffusely distributed along the axon and its overexpression delayed synapse formation. Our results support the notion that N-cadherin serves to stabilize pre- to postsynaptic contacts early in synapse development and suggests that regulated cleavage of the N-cadherin prodomain may be a mechanism by which the kinetics of synaptogenesis are regulated. PMID:19365814

  16. Demethylation and cleavage of dimethylsulfoniopropionate in marine intertidal sediments

    USGS Publications Warehouse

    Visscher, P.T.; Kiene, R.P.; Taylor, B.F.

    1994-01-01

    Demethylation and cleavage of dimethylsulfoniopropionate (DMSP) was measured in three different types of,intertidal marine sediments: a cyanobacterial mat, a diatom-covered tidal flat and a carbonate sediment. Consumption rates of added DMSP were highest in cyanobacterial mat slurries (59 ?? mol DMSP l-1 slurry h-1) and lower in slurries from a diatom mat and a carbonate tidal sediment (24 and 9 ??mol DMSP l-1 h-1, respectively). Dimethyl sulfide (DMS) and 3-mercaptopropionate (MPA) were produced simultaneously during DMSP consumption, indicating that cleavage and demethylation occurred at the same time. Viable counts of DMSP-utilizing bacteria revealed a population of 2 x 107 cells cm-3 sediment (90% of these cleaved DMSP to DMS, 10% demethylated DMSP to MPA) in the cyanobacterial mat, 7 x 105 cells cm-3 in the diatom mat (23% cleavers, 77% demethylators), and 9 x 104 cells cm-3 (20% cleavers and 80% demethylators) in the carbonate sediment. In slurries of the diatom mat, the rate of MPA production from added 3-methiolpropionate (MMPA) was 50% of the rate of MPA formation from DMSP. The presence of a large population of demethylating bacteria and the production of MPA from DMSP suggest that the demethylation pathway, in addition to cleavage, contributes significantly to DMSP consumption in coastal sediments.

  17. Carotenoid-cleavage activities of crude enzymes from Pandanous amryllifolius.

    PubMed

    Ningrum, Andriati; Schreiner, Matthias

    2014-11-01

    Carotenoid degradation products, known as norisoprenoids, are aroma-impact compounds in several plants. Pandan wangi is a common name of the shrub Pandanus amaryllifolius. The genus name 'Pandanus' is derived from the Indonesian name of the tree, pandan. In Indonesia, the leaves from the plant are used for several purposes, e.g., as natural colorants and flavor, and as traditional treatments. The aim of this study was to determine the cleavage of ?-carotene and ?-apo-8'-carotenal by carotenoid-cleavage enzymes isolated from pandan leaves, to investigate dependencies of the enzymatic activities on temperature and pH, to determine the enzymatic reaction products by using Headspace Solid Phase Microextraction Gas Chromatography/Mass Spectrophotometry (HS-SPME GC/MS), and to investigate the influence of heat treatment and addition of crude enzyme on formation of norisoprenoids. Crude enzymes from pandan leaves showed higher activity against ?-carotene than ?-apo-8'-carotenal. The optimum temperature of crude enzymes was 70°, while the optimum pH value was 6. We identified ?-ionone as the major volatile reaction product from the incubations of two different carotenoid substrates, ?-carotene and ?-apo-8'-carotenal. Several treatments, e.g., heat treatment and addition of crude enzymes in pandan leaves contributed to the norisoprenoid content. Our findings revealed that the crude enzymes from pandan leaves with carotenoid-cleavage activity might provide a potential application, especially for biocatalysis, in natural-flavor industry. PMID:25408328

  18. Cleavage and activation of human factor IX by serine proteases

    SciTech Connect

    Enfield, D.L.; Thompson, A.R.

    1984-10-01

    Human factor IX circulates as a single-chain glycoprotein. Upon activation in vitro, it is cleaved into disulfide-linked light and heavy chains and an activation peptide. After reduction of activated /sup 125/I-factor IX, the heavy and light chains are readily identified by gel electrophoresis. A direct, immunoradiometric assay for factor IXa was developed to assess activation of factor IX for proteases that cleaved it. The assay utilized radiolabeled antithrombin III with heparin to identify the active site and antibodies to distinguish factor IX. After cleavage of factor IX by factor XIa, factor VIIa-tissue thromboplastin complex, or the factor X-activating enzyme from Russell's viper venom, antithrombin III bound readily to factor IXa. Cleavage of /sup 125/I-factor IX by trypsin, chymotrypsin, and granulocyte elastase in the presence of calcium yielded major polypeptide fragments of the sizes of the factor XIa-generated light and heavy chains. When the immunoradiometric assay was used to assess trypsin-cleaved factor IX, the product bound antithrombin III, but not maximally. After digesting with insolubilized trypsin, clotting activity confirmed activation. In evaluating activation of factor IX, physical evidence of activation cleavages does not necessarily correlate with generation of an active site.

  19. Numerical modeling of ductile tearing effects on cleavage fracture toughness

    SciTech Connect

    Dodds, R.H. Jr.; Tang, M.; Anderson, T.L.

    1994-05-01

    Experimental studies demonstrate a significant effect of specimen size, a/W ratio and prior ductile tearing on cleavage fracture toughness values (J{sub c}) measured in the ductile-to-brittle transition region of ferritic materials. In the lower-transition region, cleavage fracture often occurs under conditions of large-scale yielding but without prior ductile crack extension. The increased toughness develops when plastic zones formed at the crack tip interact with nearby specimen surfaces which relaxes crack-tip constraint (stress triaxiality). In the mid-to-upper transition region, small amounts of ductile crack extension (often < 1-2 mm) routinely precede termination of the J-{Delta}a curve by brittle fracture. Large-scale yielding, coupled with small amounts of ductile tearing, magnifies the impact of small variations in microscale material properties on the macroscopic fracture toughness which contributes to the large amount scatter observed in measured J{sub c}-values. Previous work by the authors described a micromechanics fracture model to correct measured J{sub c}-values for the mechanistic effects of large-scale yielding. This new work extends the model to also include the influence of ductile crack extension prior to cleavage. The paper explores development of the new model, provides necessary graphs and procedures for its application and demonstrates the effects of the model on fracture data sets for two pressure vessel steels (A533B and A515).

  20. Hydrogen multicentre bonds

    NASA Astrophysics Data System (ADS)

    Janotti, Anderson; van de Walle, Chris G.

    2007-01-01

    The concept of a chemical bond stands out as a major development in the process of understanding how atoms are held together in molecules and solids. Lewis' classical picture of chemical bonds as shared-electron pairs evolved to the quantum-mechanical valence-bond and molecular-orbital theories, and the classification of molecules and solids in terms of their bonding type: covalent, ionic, van der Waals and metallic. Along with the more complex hydrogen bonds and three-centre bonds, they form a paradigm within which the structure of almost all molecules and solids can be understood. Here, we present evidence for hydrogen multicentre bonds-a generalization of three-centre bonds-in which a hydrogen atom equally bonds to four or more other atoms. When substituting for oxygen in metal oxides, hydrogen bonds equally to all the surrounding metal atoms, becoming fourfold coordinated in ZnO, and sixfold coordinated in MgO. These multicentre bonds are remarkably strong despite their large hydrogen-metal distances. The calculated local vibration mode frequency in MgO agrees with infrared spectroscopy measurements. Multicoordinated hydrogen also explains the dependence of electrical conductivity on oxygen partial pressure, resolving a long-standing controversy on the role of point defects in unintentional n-type conductivity of ZnO (refs 8-10).

  1. Alkyne–Aldehyde Reductive C–C Coupling through Ruthenium-Catalyzed Transfer Hydrogenation: Direct Regio- and Stereoselective Carbonyl Vinylation to Form Trisubstituted Allylic Alcohols in the Absence of Premetallated Reagents

    PubMed Central

    Leung, Joyce C.; Patman, Ryan L.; Sam, Brannon

    2011-01-01

    Nonsymmetric 1,2-disubstituted alkynes engage in reductive coupling to a variety of aldehydes under the conditions of ruthenium-catalyzed transfer hydrogenation by employing formic acid as the terminal reductant and delivering the products of carbonyl vinylation with good to excellent levels of regioselectivity and with complete control of olefin stereochemistry. As revealed in an assessment of the ruthenium counterion, iodide plays an essential role in directing the regioselectivity of C–C bond formation. Isotopic labeling studies corroborate reversible catalytic propargyl C–H oxidative addition in advance of the C–C coupling, and demonstrate that the C–C coupling products do not experience reversible dehydrogenation by way of enone intermediates. This transfer hydrogenation protocol enables carbonyl vinylation in the absence of stoichiometric metallic reagents. PMID:21953608

  2. Proton stopping in C+C, d+C, C+Ta and d+Ta collisions at 4.2A GeV/c

    E-print Network

    Lj. Simic; M. Kornicer

    1998-07-31

    The shape of proton rapidity distributions is analysed in terms of their Gaussian components, and the average rapidity loss is determined in order to estimate the amount of stopping in C+C, d+C, C+Ta and d+Ta collisions at 4.2A GeV/c. Three Gaussians correspond to the nuclear transparency and describe well all peripheral and also C+C central collisions. Two-component shape is obtained in case of d+C and C+Ta central collisions. Finally one Gaussian, found in d+Ta central collisions, corresponds to the full stopping. The calculated values of the average rapidity loss support the qualitative relationship between the number of Gaussian components and the corresponding stopping power. It is also observed, in central collisions, that the average rapidity loss increases with the ratio of the number of target and the number of projectile participants.

  3. Substrate discrimination in RNase P RNA-mediated cleavage: importance of the structural environment of the RNase P cleavage site

    PubMed Central

    Kikovska, Ema; Brännvall, Mathias; Kufel, Joanna; Kirsebom, Leif A.

    2005-01-01

    Like the translational elongation factor EF-Tu, RNase P interacts with a large number of substrates where RNase P with its RNA subunit generates tRNAs with matured 5? termini by cleaving tRNA precursors immediately 5? of the residue at +1, i.e. at the position that corresponds to the first residue in tRNA. Most tRNAs carry a G+1C+72 base pair at the end of the aminoacyl acceptor-stem whereas in tRNAGln G+1C+72 is replaced with U+1A+72. Here, we investigated RNase P RNA-mediated cleavage as a function of having G+1C+72 versus U+1A+72 in various substrate backgrounds, two full-size tRNA precursors (pre-tRNAGln and pre-tRNATyrSu3) and a model RNA hairpin substrate (pATSer). Our data showed that replacement of G+1C+72 with U+1A+72 influenced ground state binding, cleavage efficiency under multiple and single turnover conditions in a substrate-dependent manner. Interestingly, we observed differences both in ground state binding and rate of cleavage comparing two full-size tRNA precursors, pre-tRNAGln and pre-tRNATyrSu3. These findings provide evidence for substrate discrimination in RNase P RNA-mediated cleavage both at the level of binding, as previously observed for EF-Tu, as well as at the catalytic step. In our experiments where we used model substrate derivatives further indicated the importance of the +1/+72 base pair in substrate discrimination by RNase P RNA. Finally, we provide evidence that the structural architecture influences Mg2+ binding, most likely in its vicinity. PMID:15817565

  4. Active Metal Brazing and Characterization of Brazed Joints in C-C and C-SiC Composites to Copper-Clad-Molybdenum System

    NASA Technical Reports Server (NTRS)

    Singh, M.; Asthana, R.

    2008-01-01

    Carbon/carbon composites with CVI and resin-derived matrices, and C/SiC composites reinforced with T-300 carbon fibers in a CVI SiC matrix were joined to Cu-clad Mo using two Ag-Cu braze alloys, Cusil-ABA (1.75% Ti) and Ticusil (4.5% Ti). The brazed joints revealed good interfacial bonding, preferential precipitation of Ti at the composite/braze interface, and a tendency toward delamination in resin-derived C/C composite. Extensive braze penetration of the inter-fiber channels in the CVI C/C composites was observed. The Knoop microhardness (HK) distribution across the C/C joints indicated sharp gradients at the interface, and a higher hardness in Ticusil than in Cusil-ABA. For the C/SiC composite to Cu-clad-Mo joints, the effect of composite surface preparation revealed that ground samples did not crack whereas unground samples cracked. Calculated strain energy in brazed joints in both systems is comparable to the strain energy in a number of other ceramic/metal systems. Theoretical predictions of the effective thermal resistance suggest that such joined systems may be promising for thermal management applications.

  5. Transient Liquid Phase Bonding Single-Crystal Superalloys with Orientation Deviations: Creep Properties

    NASA Astrophysics Data System (ADS)

    Sheng, Naicheng; Liu, Jide; Jin, Tao; Sun, Xiaofeng; Hu, Zhuangqi

    2015-12-01

    Superalloys single crystals with various orientation deviations were bonded using transient liquid phase bonding method, then the creep properties of the bonded specimens were tested at 1033 K (760 °C)/780 MPa. It is found that the creep life of the bonded specimens decreases with the increase of the relative orientation deviations. Despite the fracture of the specimens appears on the bonding region, the deformation mechanism changes from specimens with low angle boundary to high angle boundary. In low angle boundary specimens, cleavage originated from the defects grows perpendicularly to the tensile stress and connects through the different slip planes around the cleavage planes. In this case, the deformation proceeds by the dislocations and stacking faults on multi-planes. With increasing orientation deviation, dislocation and stacking faults moved on single plane. As a result, the dislocations interact with the grain boundary and lead to fracture. Based on the present investigation, the orientation of the bonded superalloys single crystal should be controlled so that the introduced grain boundaries are relatively small and exhibit higher creep strength.

  6. RNase II is important for A-site mRNA cleavage during ribosome pausing

    PubMed Central

    Garza-Sánchez, Fernando; Shoji, Shinichiro; Fredrick, Kurt; Hayes, Christopher S.

    2009-01-01

    Summary In Escherichia coli, translational arrest can elicit cleavage of codons within the ribosomal A site. This A-site mRNA cleavage is independent of RelE, and has been proposed to be an endonucleolytic activity of the ribosome. Here, we show that the 3??5? exonuclease RNase II plays an important role in RelE-independent A-site cleavage. Instead of A-site cleavage, translational pausing in ?RNase II cells produces transcripts that are truncated +12 and +28 nucleotides downstream of the A-site codon. Deletions of the genes encoding polynucleotide phosphorylase (PNPase) and RNase R had little effect on A-site cleavage. However, PNPase overexpression restored A-site cleavage activity to ?RNase II cells. Purified RNase II and PNPase were both unable to directly catalyze A-site cleavage in vitro. Instead, these exonucleases degraded ribosome-bound mRNA to positions +18 and +24 nucleotides downstream of the ribosomal A site, respectively. Finally, a stable structural barrier to exoribonuclease activity inhibited A-site cleavage when introduced immediately downstream of paused ribosomes. These results demonstrate that 3??5? exonuclease activity is an important prerequisite for efficient A-site cleavage. We propose that RNase II degrades mRNA to the downstream border of paused ribosomes, facilitating cleavage of the A-site codon by an unknown RNase. PMID:19627501

  7. Bonded semiconductor substrate

    DOEpatents

    Atwater, Jr.; Harry A. (South Pasadena, CA), Zahler; James M. (Pasadena, CA)

    2010-07-13

    Ge/Si and other nonsilicon film heterostructures are formed by hydrogen-induced exfoliation of the Ge film which is wafer bonded to a cheaper substrate, such as Si. A thin, single-crystal layer of Ge is transferred to Si substrate. The bond at the interface of the Ge/Si heterostructures is covalent to ensure good thermal contact, mechanical strength, and to enable the formation of an ohmic contact between the Si substrate and Ge layers. To accomplish this type of bond, hydrophobic wafer bonding is used, because as the invention demonstrates the hydrogen-surface-terminating species that facilitate van der Waals bonding evolves at temperatures above 600.degree. C. into covalent bonding in hydrophobically bound Ge/Si layer transferred systems.

  8. The Role of Mg(II) in DNA Cleavage Site Recognition in Group II Intron Ribozymes

    PubMed Central

    Skilandat, Miriam; Sigel, Roland K. O.

    2014-01-01

    Group II intron ribozymes catalyze the cleavage of (and their reinsertion into) DNA and RNA targets using a Mg2+-dependent reaction. The target is cleaved 3? to the last nucleotide of intron binding site 1 (IBS1), one of three regions that form base pairs with the intron's exon binding sites (EBS1 to -3). We solved the NMR solution structure of the d3? hairpin of the Sc.ai5? intron containing EBS1 in its 11-nucleotide loop in complex with the dIBS1 DNA 7-mer and compare it with the analogous RNA·RNA contact. The EBS1·dIBS1 helix is slightly flexible and non-symmetric. NMR data reveal two major groove binding sites for divalent metal ions at the EBS1·dIBS1 helix, and surface plasmon resonance experiments show that low concentrations of Mg2+ considerably enhance the affinity of dIBS1 for EBS1. Our results indicate that identification of both RNA and DNA IBS1 targets, presentation of the scissile bond, and stabilization of the structure by metal ions are governed by the overall structure of EBS1·dIBS1 and the surrounding loop nucleotides but are irrespective of different EBS1·(d)IBS1 geometries and interstrand affinities. PMID:24895129

  9. Selective cleavage of thioether linkage in proteins modified with 4-hydroxynonenal.

    PubMed Central

    Uchida, K; Stadtman, E R

    1992-01-01

    The peroxidation of polyunsaturated fatty acids leads to numerous products, including 4-hydroxynonenal (HNE). That 4-hydroxy-2-alkenal compounds react with sulfhydryl groups of proteins to form thioether adducts possessing a carbonyl function has been established [Schauenstein, E. & Esterbauer, H. (1979) Ciba Found. Symp. 67, 225-244]. Taking advantage of the fact that Raney nickel catalyzes cleavage of thioether bonds, we have developed a procedure to quantitate the amount of HNE moiety bound to protein by means of a thioether linkage. Adducts of HNE with N-acetylcysteine and glutathione were prepared, labeled with NaB[3H]H4, and then treated with Raney nickel. The 3H-labeled product was recovered in 85-90% yield from both HNE-N-acetylcysteine and HNE-glutathione adducts in a solvent [10% (vol/vol) methanol/chloroform]-estractable form. Treatment of proteins with HNE led to the disappearance of protein sulfhydryl groups. However, less than 10% of the labeled adducts obtained after subsequent reduction with NaB[3H]H4 could be released in a solvent-extractable form upon treatment with Raney nickel. This and the observation that HNE reacts with proteins lacking a sulfhydryl group attests to the fact that HNE can react with amino acid residues other than cysteinyl residues. Images PMID:1608970

  10. The Structural Basis of [beta]-Peptide-Specific Cleavage by the Serine Protease Cyanophycinase

    SciTech Connect

    Law, Adrienne M.; Lai, Sandy W.S.; Tavares, John; Kimber, Matthew S.

    2010-10-01

    Cyanophycin, or poly-L-Asp-multi-L-Arg, is a non-ribosomally synthesized peptidic polymer that is used for nitrogen storage by cyanobacteria and other select eubacteria. Upon synthesis, it self-associates to form insoluble granules, the degradation of which is uniquely catalyzed by a carboxy-terminal-specific protease, cyanophycinase. We have determined the structure of cyanophycinase from the freshwater cyanobacterium Synechocystis sp. PCC6803 at 1.5-{angstrom} resolution, showing that the structure is dimeric, with individual protomers resembling aspartyl dipeptidase. Kinetic characterization of the enzyme demonstrates that the enzyme displays Michaelis-Menten kinetics with a k{sub cat} of 16.5 s{sup -1} and a k{sub cat}/K{sub M} of 7.5 x 10{sup -6} M{sup -1} s{sup -1}. Site-directed mutagenesis experiments confirm that cyanophycinase is a serine protease and that Gln101, Asp172, Gln173, Arg178, Arg180 and Arg183, which form a conserved pocket adjacent to the catalytic Ser132, are functionally critical residues. Modeling indicates that cyanophycinase binds the {beta}-Asp-Arg dipeptide residue immediately N-terminal to the scissile bond in an extended conformation in this pocket, primarily recognizing this penultimate {beta}-Asp-Arg residue of the polymeric chain. Because binding and catalysis depend on substrate features unique to {beta}-linked aspartyl peptides, cyanophycinase is able to act within the cytosol without non-specific cleavage events disrupting essential cellular processes.

  11. Chemical bonding technology

    NASA Technical Reports Server (NTRS)

    Plueddemann, E.

    1986-01-01

    Primers employed in bonding together the various material interfaces in a photovoltaic module are being developed. The approach develops interfacial adhesion by generating actual chemical bonds between the various materials bonded together. The current status of the program is described along with the progress toward developing two general purpose primers for ethylene vinyl acetate (EVA), one for glass and metals, and another for plastic films.

  12. General Education Coursework: Credits General Education Coursework: Credits ENGL 110C (C or better) 3 ENGL 211C, 221C or 231C ( C or better) 3

    E-print Network

    General Education Coursework: Credits General Education Coursework: Credits ENGL 110C (C or better: Credits General Education Coursework: Credits Information Literacy and Research 3 Human Creativity 3 BIOL SEMESTER (17 credits) SPRING SEMESTER (18 Major Coursework: Major Coursework: Major Coursework: Credits

  13. Pd-Catalyzed CdC Double-Bond Formation by Coupling of

    E-print Network

    Wang, Jianbo

    reagents, see: (a) Crawforth, C. M.; Burling, S.; Fairlamb, I. J. S.; Taylor, R. J. K.; Whitwood, A. C, C. M.; Fairlamb, I. J. S.; Kapdi, A. R.; Serrano, J. L.; Taylor, R. J. K.; Sanchez, G. AdV. SynthPd-Catalyzed CdC Double-Bond Formation by Coupling of N-Tosylhydrazones with Benzyl Halides Qing

  14. (N-heterocyclic-carbene)Copper(I)-catalyzed carbon-carbon bond formation using carbon dioxide

    E-print Network

    Sirokman, Gergely

    2007-01-01

    This thesis presents work towards the development of a new catalytic C-C bond forming reaction. Alkynes and olefins insert into [(IPr)CuH]2 (IPr = N,N-bis-(2,6-diisopropylphenyl)-1,3-imidazol-2-ylidene) to give copper vinyl ...

  15. Geometrical effects of phospholipid olefinic bonds on the structure and dynamics of membranes: A molecular dynamics study.

    PubMed

    Tsai, Hui-Hsu Gavin; Lee, Jian-Bin; Li, Hung-Sheng; Hou, Tsai-Yi; Chu, Wen-Yuan; Shen, Po-Chuan; Chen, Ying-Yu; Tan, Chun-Jui; Hu, Jia-Cheng; Chiu, Chih-Chiang

    2015-05-01

    The trans isomers of fatty acids are found in human adipose tissue. These isomers have been linked with deleterious health effects (e.g., coronary artery disease). In this study, we performed molecular dynamics simulations to investigate the structures and dynamic properties of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) and 1-palmitoyl-2-elaidoyl sn-glycero-3-phosphatidylcholine (PEPC) lipid bilayers. The geometry of the olefinic bond and membrane packing effects significantly influenced the conformations and dynamics of the two C-C single bonds adjacent to the olefinic bond. For the PEPC lipid, the two C-C single bonds adjacent to the olefinic bond adopted mainly nonplanar skew-trans and planar cis-trans motifs; although the cis conformation featured relatively strong steric repulsion, it was stabilized through membrane packing because its planar structure is more suitable for membrane packing. Moreover, membrane packing effects stabilized the planar transition state for conformational conversion to a greater extent than they did with the nonplanar transition state, thereby affecting the dynamics of conformational conversion. The rotational motions of the first neighboring C-C single bonds were much faster than those of typical saturated C-C single bonds; in contrast, the rotational motions of the second neighboring C-C single bonds were significantly slower than those of typical saturated torsion angles. The packing of PEPC lipids is superior to that of POPC lipids, leading to a smaller area per lipid, a higher order parameter and a smaller diffusion coefficient. The distinct properties of POPC and PEPC lipids result in PEPC lipids forming microdomains within a POPC matrix. PMID:25732027

  16. Brazing of C/C composites and Ni-based alloy using interlayer

    NASA Astrophysics Data System (ADS)

    Ikeshoji, Toshi-Taka; Tokunaga, Tatsuya; Suzumura, Akio; Yamazaki, Takahisa

    2014-08-01

    The brazing of C/C composites and Inconel-600 Ni-based heat resistant alloy was conducted using Fe-Ni-Cr-P-Si brazing filler alloy with inserting various thickness of Nb foil as stress relief interlayer. SEM observation of cross section of brazing interface revealed that Nb foil was resolved into the brazing filler layer on C/C composites side. Nb diffused to the surface of C/C composites and acted as the active metal element to enhance the wettability of molten metal on graphite matrix of C/C composites during the brazing process. The variation in shear strength values of the brazed joint with Nb layer thickness suggested that the Nb layer should be remained at least 100 ?m.

  17. Observation of the decay $?(3686)$ $\\rightarrow$ $?\\bar?^{\\pm}?^{\\mp}+c.c.$

    E-print Network

    BESIII collaboration; M. Ablikim; M. N. Achasov; X. C. Ai; O. Albayrak; D. J. Ambrose; F. F. An; Q. An; J. Z. Bai; R. Baldini Ferroli A; Y. Ban; J. V. Bennett; M. Bertani A; J. M. Bian; E. Boger; O. Bondarenko; I. Boyko; S. Braun; R. A. Briere; H. Cai; X. Cai; O. Cakir A; A. Calcaterra A; G. F. Cao; S. A. Cetin B; J. F. Chang; G. Chelkov; G. Chen; H. S. Chen; J. C. Chen; M. L. Chen; S. J. Chen; X. Chen; X. R. Chen; Y. B. Chen; H. P. Cheng; X. K. Chu; Y. P. Chu; D. Cronin-Hennessy; H. L. Dai; J. P. Dai; D. Dedovich; Z. Y. Deng; A. Denig; I. Denysenko; M. Destefanis; W. M. Ding; Y. Ding; C. Dong; J. Dong; L. Y. Dong; M. Y. Dong; S. X. Du; J. Fang; S. S. Fang; Y. Fang; L. Fava; C. Q. Feng; C. D. Fu; J. L. Fu; O. Fuks; Q. Gao; Y. Gao; C. Geng; K. Goetzen; W. X. Gong; W. Gradl; M. Greco; M. H. Gu; Y. T. Gu; Y. H. Guan; A. Q. Guo; L. B. Guo; T. Guo; Y. P. Guo; Y. P. Guo; Y. L. Han; F. A. Harris; K. L. He; M. He; Z. Y. He; T. Held; Y. K. Heng; Z. L. Hou; C. Hu; H. M. Hu; J. F. Hu; T. Hu; G. M. Huang; G. S. Huang; J. S. Huang; L. Huang; X. T. Huang; T. Hussain; C. S. Ji; Q. Ji; Q. P. Ji; X. B. Ji; X. L. Ji; L. L. Jiang; X. S. Jiang; J. B. Jiao; Z. Jiao; D. P. Jin; S. Jin; F. F. Jing; T. Johansson; N. Kalantar-Nayestanaki; X. L. Kang; M. Kavatsyuk; B. Kloss; B. Kopf; M. Kornicer; W. Kuehn; A. Kupsc; W. Lai; J. S. Lange; M. Lara; P. Larin; M. Leyhe; C. H. Li; Cheng Li; Cui Li; D. Li; D. M. Li; F. Li; G. Li; H. B. Li; J. C. Li; K. Li; K. Li; Lei Li; P. R. Li; Q. J. Li; T. Li; W. D. Li; W. G. Li; X. L. Li; X. N. Li; X. Q. Li; X. R. Li; Z. B. Li; H. Liang; Y. F. Liang; Y. T. Liang; G. R. Liao; D. X. Lin; B. J. Liu; C. L. Liu; C. X. Liu; F. H. Liu; Fang Liu; Feng Liu; H. B. Liu; H. H. Liu; H. M. Liu; J. Liu; J. P. Liu; K. Liu; K. Y. Liu; P. L. Liu; Q. Liu; S. B. Liu; X. Liu; Y. B. Liu; Z. A. Liu; Zhiqiang Liu; Zhiqing Liu; H. Loehner; X. C. Lou; G. R. Lu; H. J. Lu; H. L. Lu; J. G. Lu; X. R. Lu; Y. Lu; Y. P. Lu; C. L. Luo; M. X. Luo; T. Luo; X. L. Luo; M. Lv; F. C. Ma; H. L. Ma; Q. M. Ma; S. Ma; T. Ma; X. Y. Ma; F. E. Maas; M. Maggiora; Q. A. Malik; Y. J. Mao; Z. P. Mao; J. G. Messchendorp; J. Min; T. J. Min; R. E. Mitchell; X. H. Mo; H. Moeini; C. Morales Morales; K. Moriya; N. Yu. Muchnoi; Y. Nefedov; I. B. Nikolaev; Z. Ning; S. Nisar; X. Y. Niu; S. L. Olsen; Q. Ouyang; S. Pacetti B; M. Pelizaeus; H. P. Peng; K. Peters; J. L. Ping; R. G. Ping; R. Poling; E. Prencipe; M. Qi; S. Qian; C. F. Qiao; L. Q. Qin; X. S. Qin; Y. Qin; Z. H. Qin; J. F. Qiu; K. H. Rashid; C. F. Redmer; M. Ripka; G. Rong; X. D. Ruan; A. Sarantsev; K. Schinning; S. Schumann; W. Shan; M. Shao; C. P. Shen; X. Y. Shen; H. Y. Sheng; M. R. Shepherd; W. M. Song; X. Y. Song; S. Spataro; B. Spruck; G. X. Sun; J. F. Sun; S. S. Sun; Y. J. Sun; Y. Z. Sun; Z. J. Sun; Z. T. Sun; C. J. Tang; X. Tang; I. Tapan; E. H. Thorndike; D. Toth; M. Ullrich; I. Uman B; G. S. Varner; B. Wang; D. Wang; D. Y. Wang; K. Wang; L. L. Wang; L. S. Wang; M. Wang; P. Wang; P. L. Wang; Q. J. Wang; S. G. Wang; W. Wang; X. F. Wang; Y. D. Wang A; Y. F. Wang; Y. Q. Wang; Z. Wang; Z. G. Wang; Z. H. Wang; Z. Y. Wang; D. H. Wei; J. B. Wei; P. Weidenkaff; S. P. Wen; M. Werner; U. Wiedner; M. Wolke; G. G. Wu; L. H. Wu; N. Wu; W. Wu; Z. Wu; L. G. Xia; Y. Xia; D. Xiao; Z. J. Xiao; Y. G. Xie; Q. L. Xiu; G. F. Xu; L. Xu; Q. J. Xu; Q. N. Xu; X. P. Xu; Z. Xue; L. Yan; W. B. Yan; W. C. Yan; Y. H. Yan; H. X. Yang; Y. Yang; Y. X. Yang; H. Ye; M. Ye; M. H. Ye; B. X. Yu; C. X. Yu; H. W. Yu; J. S. Yu; S. P. Yu; C. Z. Yuan; W. L. Yuan; Y. Yuan; A. A. Zafar; A. Zallo A; S. L. Zang; Y. Zeng; B. X. Zhang; B. Y. Zhang; C. Zhang; C. B. Zhang; C. C. Zhang; D. H. Zhang; H. H. Zhang; H. Y. Zhang; J. J. Zhang; J. L. Zhang; J. Q. Zhang; J. W. Zhang; J. Y. Zhang; J. Z. Zhang; S. H. Zhang; X. J. Zhang; X. Y. Zhang; Y. Zhang; Y. H. Zhang; Z. H. Zhang; Z. P. Zhang; Z. Y. Zhang; G. Zhao; J. W. Zhao; Lei Zhao; Ling Zhao; M. G. Zhao; Q. Zhao; Q. W. Zhao; S. J. Zhao; T. C. Zhao; X. H. Zhao; Y. B. Zhao; Z. G. Zhao; A. Zhemchugov; B. Zheng; J. P. Zheng; Y. H. Zheng; B. Zhong; L. Zhou; Li Zhou; X. Zhou; X. K. Zhou; X. R. Zhou; X. Y. Zhou; K. Zhu; K. J. Zhu; X. L. Zhu; Y. C. Zhu; Y. S. Zhu; Z. A. Zhu; J. Zhuang; B. S. Zou; J. H. Zou

    2013-10-22

    Using a sample of $1.06\\times10^{8}$ $\\psi(3686)$ events collected with the BESIII detector, we present the first observation of the decays of $\\psi(3686)$ $\\rightarrow$ $\\Lambda\\bar\\Sigma^{+}\\pi^{-}+c.c.$ and $\\psi(3686)$ $\\rightarrow$ $\\Lambda\\bar\\Sigma^{-}\\pi^{+}+c.c.$. The branching fractions are measured to be $\\mathcal{B}(\\psi(3686) \\rightarrow \\Lambda\\bar\\Sigma^{+}\\pi^{-} + c.c.)=(1.40\\pm 0.03 \\pm 0.13)\\times10^{-4}$ and $\\mathcal{B}(\\psi(3686) \\rightarrow \\Lambda\\bar\\Sigma^{-}\\pi^{+}+c.c.)=(1.54\\pm 0.04 \\pm 0.13)\\times10^{-4}$, where the first errors are statistical and the second ones systematic.

  18. Search for the weak decays J /? ?Ds(*)-e+?e+c .c .

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Ferroli, R. Baldini; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Chu, Y. P.; Cibinetto, G.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fu, C. D.; Gao, Q.; Gao, Y.; Garzia, I.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, T.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Han, Y. L.; Harris, F. A.; He, K. L.; He, Z. Y.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, H. P.; Huang, J. S.; Huang, X. T.; Huang, Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. L.; Jiang, L. W.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuehn, W.; Kupsc, A.; Lai, W.; Lange, J. S.; Lara, M.; Larin, P.; Li, C. H.; Li, Cheng; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B. J.; Liu, C. L.; Liu, C. X.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, R. Q.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X. N.; Ma, X. Y.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Moeini, H.; Morales, C. Morales; Moriya, K.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Pu, Y. N.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Y.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ren, H. L.; Ripka, M.; Rong, G.; Ruan, X. D.; Santoro, V.; Sarantsev, A.; Savrié, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shepherd, M. R.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Spruck, B.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Toth, D.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q. J.; Wang, S. G.; Wang, W.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, H. W.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. H.; Zhang, X. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, Li; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.

    2014-12-01

    Using a sample of 2.25 ×1 08 J /? events collected with the BESIII detector at the BEPCII collider, we search for the J /? semileptonic weak decay J /? ?Ds-e+?e+c .c . with a much higher sensitivity than previous searches. We also perform the first search for J /? ?Ds*-e+?e+c .c . No significant excess of a signal above background is observed in either channel. At the 90% confidence level, the upper limits are determined to be B (J /? ?Ds-e+?e+c .c .)<1.3 ×1 0-6 and B (J /? ?Ds* -e+?e+c .c .)<1.8 ×1 0-6 , respectively. Both are consistent with Standard Model predictions.

  19. 5. Historic American Buildings Survey C.C. Woodburn, Photographer. January 12, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Historic American Buildings Survey C.C. Woodburn, Photographer. January 12, 1934 DETAIL OF ENTRANCE (WEST ELEVATION) - Ferdinand Daniel Pulver House, County Road F-70 Vicinity, Vandalia, Jasper County, IA

  20. C/C composite brake disk nondestructive evaluation by IR thermography

    NASA Astrophysics Data System (ADS)

    Chu, Tsuchin P.; Poudel, Anish; Filip, Peter

    2012-06-01

    This paper discusses the non-destructive evaluation of thick Carbon/Carbon (C/C) composite aircraft brake disks by using transient infrared thermography (IRT) approach. Thermal diffusivity measurement technique was applied to identify the subsurface anomalies in thick C/C brake disks. In addition, finite element analysis (FEA) modeling tool was used to determine the transient thermal response of the C/C disks that were subjected to flash heating. For this, series of finite element models were built and thermal responses with various thermal diffusivities subjected to different heating conditions were investigated. Experiments were conducted to verify the models by using custom built in-house IRT system and commercial turnkey system. The analysis and experimental results showed good correlation between thermal diffusivity value and anomalies within the disk. It was demonstrated that the step-heating transient thermal approach could be effectively applied to obtain the whole field thermal diffusivity value of C/C composites.

  1. Cnidarian microRNAs frequently regulate targets by cleavage

    PubMed Central

    Moran, Yehu; Fredman, David; Praher, Daniela; Li, Xin Z.; Wee, Liang Meng; Rentzsch, Fabian; Zamore, Phillip D.; Technau, Ulrich; Seitz, Hervé

    2014-01-01

    In bilaterians, which comprise most of extant animals, microRNAs (miRNAs) regulate the majority of messenger RNAs (mRNAs) via base-pairing of a short sequence (the miRNA “seed”) to the target, subsequently promoting translational inhibition and transcript instability. In plants, many miRNAs guide endonucleolytic cleavage of highly complementary targets. Because little is known about miRNA function in nonbilaterian animals, we investigated the repertoire and biological activity of miRNAs in the sea anemone Nematostella vectensis, a representative of Cnidaria, the sister phylum of Bilateria. Our work uncovers scores of novel miRNAs in Nematostella, increasing the total miRNA gene count to 87. Yet only a handful are conserved in corals and hydras, suggesting that microRNA gene turnover in Cnidaria greatly exceeds that of other metazoan groups. We further show that Nematostella miRNAs frequently direct the cleavage of their mRNA targets via nearly perfect complementarity. This mode of action resembles that of small interfering RNAs (siRNAs) and plant miRNAs. It appears to be common in Cnidaria, as several of the miRNA target sites are conserved among distantly related anemone species, and we also detected miRNA-directed cleavage in Hydra. Unlike in bilaterians, Nematostella miRNAs are commonly coexpressed with their target transcripts. In light of these findings, we propose that post-transcriptional regulation by miRNAs functions differently in Cnidaria and Bilateria. The similar, siRNA-like mode of action of miRNAs in Cnidaria and plants suggests that this may be an ancestral state. PMID:24642861

  2. Universal Bronsted-Evans-Polanyi Relations for C-C, C-O, C-N, N-O, N-N, and O-O Dissociation Reactions

    SciTech Connect

    Wang, Shengguang

    2010-10-27

    It is shown that for all the essential bond forming and bond breaking reactions on metal surfaces, the reactivity of the metal surface correlates linearly with the reaction energy in a single universal relation. Such correlations provide an easy way of establishing trends in reactivity among the different transition metals.

  3. Cleavage of silicon by laser-based shock waves: Interpretation by nanoscopic length scales

    NASA Astrophysics Data System (ADS)

    Hess, Peter; Lomonosov, Alexey M.

    2014-05-01

    Cleavage along the weakest Si{1 1 1} cleavage plane is measured by impulsive fracture using surface acoustic waves (SAWs) with steep shock fronts, generated by pulsed laser irradiation and recorded with a laser probe-beam-deflection setup. The theoretical cleavage strength, obtained by ab initio calculations for perfect single-crystal silicon lattices is compared with the strength resulting from an improved Polanyi-Orowan cleavage model. The critical strength of a real silicon crystal, measured by using calibrated elastic surface pulses with shocks, was employed to extract the corresponding critical length scale characterizing the cleavage process on the basis of the modified cleavage model. The extracted length scale of 7 nm can be connected with the size of the microstructural defect initiating failure. Usually stress generating surface defects are responsible for the nucleation of brittle fracture, especially in nanoscale systems with large surface areas.

  4. Spiroacetal Formation through Telescoped Cycloaddition and Carbon–Hydrogen Bond Functionalization: Total Synthesis of Bistramide A

    PubMed Central

    Han, Xun; Floreancig, Paul E.

    2014-01-01

    Spiroacetals can be formed through a one-pot sequence of a hetero Diels-Alder reaction, an oxidative carbon–hydrogen bond cleavage, and an acid treatment. This convergent approach expedites access to a complex molecular subunit that is present in numerous biologically active structures. The utility of the protocol is demonstrated through its application to a brief synthesis of the actin-binding cytotoxin bistramide A. PMID:25196585

  5. Chemical Bonding, again ionic bonding (in salts): transfer of e-

    E-print Network

    Zakarian, Armen

    Chemical Bonding, again · ionic bonding (in salts): transfer of e- · covalent bonding (organic molecules, non-metals): sharing e- · metallic bonding: electron pooling (delocalization) Lewis electron 3A 4A 5A 6A 7A 8A 2 3 (exceptions) #12;Ionic Bonding Model See sample problem 9.1 4Na + O2 ! 2Na2O

  6. FIRST DETECTION OF c-C{sub 3}H{sub 2} IN A CIRCUMSTELLAR DISK

    SciTech Connect

    Qi Chunhua; Wilner, David J.; Rosenfeld, Katherine A.; Oeberg, Karin I.

    2013-03-01

    We report the first detection of c-C{sub 3}H{sub 2} in a circumstellar disk. The c-C{sub 3}H{sub 2} J = 6-5 line (217.882 GHz) is detected and imaged through Atacama Large Millimeter Array (ALMA) Science Verification observations toward the disk around the Herbig Ae star HD 163296 at 0.''8 resolution. The emission is consistent with that arising from a Keplerian rotating disk. Two additional c-C{sub 3}H{sub 2} transitions are also tentatively detected, bolstering the identification of this species, but with insufficient signal-to-noise ratio to constrain the spatial distribution. Using a previously developed model for the physical structure of this disk, we fit a radial power-law distribution model to the c-C{sub 3}H{sub 2} 6-5 emission and find that c-C{sub 3}H{sub 2} is present in a ring structure from an inner radius of about 30 AU to an outer radius of about 165 AU. The column density is estimated to be 10{sup 12}-10{sup 13} cm{sup -2}. The clear detection and intriguing ring structure suggest that c-C{sub 3}H{sub 2} has the potential to become a useful probe of radiation penetration in disks.

  7. Escherichia coli DNA helicase I catalyzes a sequence-specific cleavage/ligation reaction at the F plasmid origin of transfer.

    PubMed

    Sherman, J A; Matson, S W

    1994-10-21

    Recent studies have shown that the Escherichia coli F plasmid-encoded traI gene product (TraIp), also known as DNA helicase I, catalyzes the formation of the site- and strand-specific nick that initiates F plasmid DNA transfer. Scission of the phosphodiester bond at the nic site within the origin of transfer (oriT) is accompanied by the covalent attachment of TraIp to the 5'-phosphate of the nicked DNA strand. This mechanism suggests that TraIp may also be capable of catalyzing a DNA ligation reaction using the energy stored in the protein-DNA intermediate. To test this possibility, an in vitro assay was designed that utilized short single-stranded DNA oligonucleotides of different lengths derived from the region within oriT that spanned the nic site. Purified TraIp was capable of efficiently cleaving single-stranded DNA that contained a nic site, and upon cleavage, the protein became covalently linked to the 5'-end of the nic site. When TraIp was incubated with two oligonucleotides of different length that contained the nic site, there was formation of novel recombinant products resulting from a TraIp-catalyzed cleavage/ligation reaction. Furthermore, the cleavage and ligation reactions were both sequence-specific. These data suggest that TraIp plays an important role in the initiation and termination of conjugative DNA transfer. PMID:7929337

  8. Breaking the Si-Ph bond with amino alcohols

    SciTech Connect

    Urtane, I.P.; Zelchan, G.I.; Liepin'sh, E.E.; Kupche, E.L.; Lukevits, E.

    1987-11-10

    In this work are described new instances that the authors observed of cleavage of the Si-Ph bond by di- and trialkanolamines. Interaction of phenylsilanes with di- and trialkanolamines in the presence of sodium alcoholate at T > 200/sup 0/C breaks the C/sub 6/H/sub 5/-Si bond. Interaction of diphenylmethoxysilane with bis(3-hydroxypropyl)amine forms a new heterocycle: 1-phenyl-2,10-dioxa-6-aza-1-silabicyclo(4.4.0/sup 1.6/) decane. They obtained /sup 1/H, /sup 13/C, and /sup 29/Si NMR on a Bruker WM-360 spectrometer. For analysis of the SSCC of protons they used the spectrum simulation program PANIC. The SSCC of /sup 13/C-/sup 29/Si and /sup 15/N-/sup 29/Si were measured in the /sup 29/Si spectra with natural isotope content.

  9. The dissociative bond.

    PubMed

    Gordon, Nirit

    2013-01-01

    Dissociation leaves a psychic void and a lingering sense of psychic absence. How do 2 people bond while they are both suffering from dissociation? The author explores the notion of a dissociative bond that occurs in the aftermath of trauma--a bond that holds at its core an understanding and shared detachment from the self. Such a bond is confined to unspoken terms that are established in the relational unconscious. The author proposes understanding the dissociative bond as a transitional space that may not lead to full integration of dissociated knowledge yet offers some healing. This is exemplified by R. Prince's (2009) clinical case study. A relational perspective is adopted, focusing on the intersubjective aspects of a dyadic relationship. In the dissociative bond, recognition of the need to experience mutual dissociation can accommodate a psychic state that yearns for relationship when the psyche cannot fully confront past wounds. Such a bond speaks to the need to reestablish a sense of human relatedness and connection when both parties in the relationship suffer from disconnection. This bond is bound to a silence that becomes both a means of protection against the horror of traumatic memory and a way to convey unspoken gestures toward the other. PMID:23282044

  10. Chemical Bonds I

    ERIC Educational Resources Information Center

    Sanderson, R. T.

    1972-01-01

    Chemical bonding is discussed from a bond energy, rather than a wave mechanics, viewpoint. This approach is considered to be more suitable for the average student. (The second part of the article will appear in a later issue of the journal.) (AL)

  11. Mother-Child Bonding.

    ERIC Educational Resources Information Center

    Pearce, Joseph Chilton

    1994-01-01

    Examines the nature of mother-child bonding from the prenatal stage through early infancy, discussing how the mother's actions, even before birth, stimulate her child's senses. Explains the crucial role that physical contact, breastfeeding, and visual stimuli have on mother-child bonding in human and animal newborns. (MDM)

  12. Hydrogen effect on shearing and cleavage of Al: A first-principles study

    NASA Astrophysics Data System (ADS)

    Apostol, F.; Mishin, Y.

    2011-09-01

    We report on first-principles calculations of the effect of a (111) hydrogen layer embedded in Al on generalized stacking fault energies and cleavage energy for different choices of the slip and cleavage planes. It is shown that the H layer softens Al against shear by reducing the stable and unstable stacking fault energies relative to pure Al. This finding points to a possible enhancement of plasticity of Al by H. The H layer also reduces the cleavage energy on the (111) plane. The reductions in the cleavage energy and unstable stacking fault energy compensate each other and produce only a moderate change in the Rice criterion of ductile versus brittle fracture.

  13. Back-rotation during crenulation cleavage development: implications for structural facing and cleavage-forming processes: Discussion

    NASA Astrophysics Data System (ADS)

    Kraus, Jürgen

    2000-01-01

    In his recent article, Johnson (1999a) discusses the relationships between bedding (S0) and two generations of cleavage (S3 and S4) in a metamorphosed turbidite-mudstone sequence from the overturned limb of a large F3 antiform in the Cooma Complex of N.S.W., Australia. Johnson claims that an S4 crenulation cleavage developed from an S3 differentiated layering in the incompetent pelitic beds, but not in the psammitic beds. The S0/S4 asymmetry and the gradual decrease of the S0/S4 dihedral angles towards the pelitic tops (resulting in a smooth curvature of S4; Johnson's fig. 6) are indicative of F4-related sinistral S0-parallel shear. In the competent psammitic beds, S3 is undeformed, and is either parallel or at a low angle to S0 with a sinistral S0/S3 asymmetry (Johnson's figs. 4 and 6). For the pelitic beds, Johnson assumes that the orientation of S3 preserved in the S4 microlithons, which appear to be consistent in orientation in a hand-specimen-sized domain, does not reflect the orientation of S3 prior to its crenulation by S4 (Johnson's fig. 6). Connecting S3 folia across several microlithons results in an S3 'form surface' that yields a dextral asymmetry with respect to layer boundaries. Thus, S3 in the psammitic and pelitic beds has contrasting asymmetries ('herringbone pattern'), and structural facing determined on S3 in adjacent beds yields contradictory results (the same is valid for the determination of F3 fold vergence based on bedding-cleavage relationships). Johnson therefore advises that facing is only reliable, when determined on S3, which was not crenulated by S4 (i.e. in the psammitic beds). He believes that the opposite S0/S3 asymmetry in the pelitic beds (relative to the psammitic beds) is a function of 'back-rotation' of S3 (with respect to S0) in the S4 microlithons during crenulation. The original orientation of S3, he speculates, was identical in all rock types, and is preserved in the psammitic beds (Johnson's fig. 8). Based on the observed porphyroblast-S4 relationships and the S3-S4 angular relationships in the pelitic beds, Johnson concludes that synkinematic porphyroblasts grow generally during crenulation-cleavage development, and that back-rotation of the crenulation hinges (with respect to the S4 septa) minimises shortening across the microlithons, thus preserving space for the redeposition of quartz dissolved from the developing septa.

  14. Ultrasonically bonded value assembly

    NASA Technical Reports Server (NTRS)

    Salvinski, R. J. (inventor)

    1975-01-01

    A valve apparatus capable of maintaining a fluid-tight seal over a relatively long period of time by releasably bonding a valve member to its seat is described. The valve member is bonded or welded to the seat and then released by the application of the same energy to the bond joint. The valve member is held in place during the bonding by a clamping device. An appropriate force device can activate the opening and closing of the valve member. Various combinations of material for the valve member and valve seat can be utilized to provide an adequate sealing bond. Aluminum oxide, stainless steel, inconel, tungsten carbide as hard materials and copper, aluminum, titanium, silver, and gold as soft materials are suggested.

  15. Shape Bonding method

    NASA Technical Reports Server (NTRS)

    Pontius, James T. (Inventor)

    2010-01-01

    The present invention is directed to a method of bonding at least two surfaces together. The methods step of the present invention include applying a strip of adhesive to a first surface along a predefined outer boundary of a bond area and thereby defining a remaining open area there within. A second surface, or gusset plate, is affixed onto the adhesive before the adhesive cures. The strip of adhesive is allowed to cure and then a second amount of adhesive is applied to cover the remaining open area and substantially fill a void between said first and second surfaces about said bond area. A stencil may be used to precisely apply the strip of adhesive. When the strip cures, it acts as a dam to prevent overflow of the subsequent application of adhesive to undesired areas. The method results in a precise bond area free of undesired shapes and of a preferred profile which eliminate the drawbacks of the prior art bonds.

  16. Wood Bond Testing

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A joint development program between Hartford Steam Boiler Inspection Technologies and The Weyerhaeuser Company resulted in an internal bond analyzer (IBA), a device which combines ultrasonics with acoustic emission testing techniques. It is actually a spinoff from a spinoff, stemming from a NASA Lewis invented acousto-ultrasonic technique that became a system for testing bond strength of composite materials. Hartford's parent company, Acoustic Emission Technology Corporation (AET) refined and commercialized the technology. The IBA builds on the original system and incorporates on-line process control systems. The IBA determines bond strength by measuring changes in pulsar ultrasonic waves injected into a board. Analysis of the wave determines the average internal bond strength for the panel. Results are displayed immediately. Using the system, a mill operator can adjust resin/wood proportion, reduce setup time and waste, produce internal bonds of a consistent quality and automatically mark deficient products.

  17. Steric C-N bond activation on the dimeric macrocycle [{P(?-NR)}2(?-NR)]2.

    PubMed

    Shi, Yan X; Liang, Rong Z; Martin, Katherine A; Star, Daniel G; Díaz, Jesús; Li, Xin Y; Ganguly, Rakesh; García, Felipe

    2015-11-01

    Dimeric cyclophosphazanes [{P(?-NR)}2(?-NR)]2 [R = (t)Bu ( ) and (i)Pr ( )] were oxidized with elemental selenium. During these reactions an unexpected C-N bond cleavage and N-H bond formation occurred. Compound produced P4(?-N(t)Bu)3(?-NH)3Se4 ( ) where three (t)Bu groups were lost in the form of isobutylene. In contrast, during the oxidation of the less sterically hindered , the resulting product, P4(?-N(i)Pr)5(?-NH)Se4 ( ), showed only one substituent loss. Theoretical studies confirmed the steric nature of the driving force underlying the different outcomes. PMID:26368005

  18. Quantitative Analysis of PMLA Nanoconjugate Components after Backbone Cleavage

    PubMed Central

    Ding, Hui; Patil, Rameshwar; Portilla-Arias, Jose; Black, Keith L.; Ljubimova, Julia Y.; Holler, Eggehard

    2015-01-01

    Multifunctional polymer nanoconjugates containing multiple components show great promise in cancer therapy, but in most cases complete analysis of each component is difficult. Polymalic acid (PMLA) based nanoconjugates have demonstrated successful brain and breast cancer treatment. They consist of multiple components including targeting antibodies, Morpholino antisense oligonucleotides (AONs), and endosome escape moieties. The component analysis of PMLA nanoconjugates is extremely difficult using conventional spectrometry and HPLC method. Taking advantage of the nature of polyester of PMLA, which can be cleaved by ammonium hydroxide, we describe a method to analyze the content of antibody and AON within nanoconjugates simultaneously using SEC-HPLC by selectively cleaving the PMLA backbone. The selected cleavage conditions only degrade PMLA without affecting the integrity and biological activity of the antibody. Although the amount of antibody could also be determined using the bicinchoninic acid (BCA) method, our selective cleavage method gives more reliable results and is more powerful. Our approach provides a new direction for the component analysis of polymer nanoconjugates and nanoparticles. PMID:25894227

  19. A novel mechano-enzymatic cleavage mechanism underlies transthyretin amyloidogenesis.

    PubMed

    Marcoux, Julien; Mangione, P Patrizia; Porcari, Riccardo; Degiacomi, Matteo T; Verona, Guglielmo; Taylor, Graham W; Giorgetti, Sofia; Raimondi, Sara; Sanglier-Cianférani, Sarah; Benesch, Justin Lp; Cecconi, Ciro; Naqvi, Mohsin M; Gillmore, Julian D; Hawkins, Philip N; Stoppini, Monica; Robinson, Carol V; Pepys, Mark B; Bellotti, Vittorio

    2015-01-01

    The mechanisms underlying transthyretin-related amyloidosis in vivo remain unclear. The abundance of the 49-127 transthyretin fragment in ex vivo deposits suggests that a proteolytic cleavage has a crucial role in destabilizing the tetramer and releasing the highly amyloidogenic 49-127 truncated protomer. Here, we investigate the mechanism of cleavage and release of the 49-127 fragment from the prototypic S52P variant, and we show that the proteolysis/fibrillogenesis pathway is common to several amyloidogenic variants of transthyretin and requires the action of biomechanical forces provided by the shear stress of physiological fluid flow. Crucially, the non-amyloidogenic and protective T119M variant is neither cleaved nor generates fibrils under these conditions. We propose that a mechano-enzymatic mechanism mediates transthyretin amyloid fibrillogenesis in vivo. This may be particularly important in the heart where shear stress is greatest; indeed, the 49-127 transthyretin fragment is particularly abundant in cardiac amyloid. Finally, we show that existing transthyretin stabilizers, including tafamidis, inhibit proteolysis-mediated transthyretin fibrillogenesis with different efficiency in different variants; however, inhibition is complete only when both binding sites are occupied. PMID:26286619

  20. Improving the prospects of cleavage-based nanopore sequencing engines

    NASA Astrophysics Data System (ADS)

    Brady, Kyle T.; Reiner, Joseph E.

    2015-08-01

    Recently proposed methods for DNA sequencing involve the use of cleavage-based enzymes attached to the opening of a nanopore. The idea is that DNA interacting with either an exonuclease or polymerase protein will lead to a small molecule being cleaved near the mouth of the nanopore, and subsequent entry into the pore will yield information about the DNA sequence. The prospects for this approach seem promising, but it has been shown that diffusion related effects impose a limit on the capture probability of molecules by the pore, which limits the efficacy of the technique. Here, we revisit the problem with the goal of optimizing the capture probability via a step decrease in the nucleotide diffusion coefficient between the pore and bulk solutions. It is shown through random walk simulations and a simplified analytical model that decreasing the molecule's diffusion coefficient in the bulk relative to its value in the pore increases the nucleotide capture probability. Specifically, we show that at sufficiently high applied transmembrane potentials (?100 mV), increasing the potential by a factor f is equivalent to decreasing the diffusion coefficient ratio Dbulk/Dpore by the same factor f. This suggests a promising route toward implementation of cleavage-based sequencing protocols. We also discuss the feasibility of forming a step function in the diffusion coefficient across the pore-bulk interface.

  1. Regulation of adipolin/CTRP12 cleavage by obesity.

    PubMed

    Enomoto, Takashi; Shibata, Rei; Ohashi, Koji; Kambara, Takahiro; Kataoka, Yoshiyuki; Uemura, Yusuke; Yuasa, Daisuke; Murohara, Toyoaki; Ouchi, Noriyuki

    2012-11-01

    Obesity is highly associated with the development of insulin resistance and type 2 diabetes. Recently we found that adipolin/CRTP12 is an adipocytokine that exerts beneficial actions on glucose metabolism. Here we investigated the regulation of circulating adipolin under conditions of obesity and assessed its potential mechanisms. Both full and cleaved forms of adipolin were observed in mouse plasma. Diet-induced obese (DIO) mice showed a significant reduction of plasma levels of full and total (full and cleaved) adipolin compared with control mice, resulting in an increase in the ratio of cleaved to full isoform. In vitro gene transfection studies using HEK293 cells revealed that a deletion mutant of adipolin gene (?aa90-93) caused a reduction of cleaved production of adipolin in media. A bioinformatics analysis of adipolin amino acid sequence indicated the potential involvement of the family of proprotein convertases (PCs) in cleavage of adipolin. Treatment of 3T3-L1 adipocytes with an inhibitor for PCs abolished the expression of cleaved adipolin form in the media. The expression of furin, the member of PCs, was increased in adipose tissue of DIO mice. Furin expression was also increased in cultured adipocytes by treatment with an inducer of inflammation. These data suggest that obesity states facilitate the cleavage of adipolin presumably through upregulation of furin in adipose tissue. PMID:23068097

  2. A novel mechano-enzymatic cleavage mechanism underlies transthyretin amyloidogenesis

    PubMed Central

    Marcoux, Julien; Mangione, P Patrizia; Porcari, Riccardo; Degiacomi, Matteo T; Verona, Guglielmo; Taylor, Graham W; Giorgetti, Sofia; Raimondi, Sara; Sanglier-Cianférani, Sarah; Benesch, Justin LP; Cecconi, Ciro; Naqvi, Mohsin M; Gillmore, Julian D; Hawkins, Philip N; Stoppini, Monica; Robinson, Carol V; Pepys, Mark B; Bellotti, Vittorio

    2015-01-01

    The mechanisms underlying transthyretin-related amyloidosis in vivo remain unclear. The abundance of the 49–127 transthyretin fragment in ex vivo deposits suggests that a proteolytic cleavage has a crucial role in destabilizing the tetramer and releasing the highly amyloidogenic 49–127 truncated protomer. Here, we investigate the mechanism of cleavage and release of the 49–127 fragment from the prototypic S52P variant, and we show that the proteolysis/fibrillogenesis pathway is common to several amyloidogenic variants of transthyretin and requires the action of biomechanical forces provided by the shear stress of physiological fluid flow. Crucially, the non-amyloidogenic and protective T119M variant is neither cleaved nor generates fibrils under these conditions. We propose that a mechano-enzymatic mechanism mediates transthyretin amyloid fibrillogenesis in vivo. This may be particularly important in the heart where shear stress is greatest; indeed, the 49–127 transthyretin fragment is particularly abundant in cardiac amyloid. Finally, we show that existing transthyretin stabilizers, including tafamidis, inhibit proteolysis-mediated transthyretin fibrillogenesis with different efficiency in different variants; however, inhibition is complete only when both binding sites are occupied. PMID:26286619

  3. Effect of charge transfer bands on the photo-induced DNA cleavage activity of [1-(2-thiazolylazo)-2-naphtholato]copper(II) complexes.

    PubMed

    Dhar, Shanta; Nethaji, Munirathinam; Chakravarty, Akhil R

    2005-03-01

    Ternary copper(II) complex [Cu(TAN)(O2CMe)] (1), where H-TAN is 1-(2-thiazolylazo)-2-naphthol, is prepared and structurally characterized by X-ray crystallography. The complex has a distorted square pyramidal (4+1) CuN2O3 coordination geometry with the acetate showing chelating axial-equatorial binding mode and TAN as a tridentate ligand bonded to the metal in the basal plane. Complex 1 is one-electron paramagnetic and displays ligand-to-metal charge transfer bands at 575 and 398 nm in dimethylformamide. The reactions of 1 with bases (B) like 1,10-phenanthroline (phen) and kanamycin-A (kan-A) afford ternary complexes of formulation [Cu(TAN)B]+ (B=phen, 2; kan-A, 3) under in situ reaction conditions. Complexes 2 and 3, prepared to explore their DNA binding and photo-induced DNA cleavage activity, display good binding propensity to calf thymus (CT) DNA giving a relative order: 2-3>1. The apparent binding constant (Kapp) for 1 is determined as 9.8 x 10(5)M(-1) from fluorescence quenching experiments using ethidium bromide. The quenching constants (K) values of 1-3, obtained from the Stern-Volmer plots, are 0.28, 0.52 and 0.49, respectively. All the complexes show photo-induced DNA cleavage activity when irradiated with a monochromatic UV light of 365 nm wavelength. A 200 microM complex 1 cleaves approximately 75% supercoiled (SC) DNA on 2h exposure time at 365 nm. A 50 microM solution of 1 in presence of 100 microM phen and kanamycin-A cleaves approximately 99% and approximately 60% SC DNA to its nicked circular form, respectively, for an exposure of 30 min. The complexes also exhibit significant cleavage of SC DNA on irradiation with visible light of wavelengths 532, 575 and 632.8 nm. Control experiments reveal the minor groove binding nature of the complexes. The cleavage reactions involve the formation reactive hydroxyl species as significant inhibition in the presence of dimethyl sulfoxide (DMSO) and catalase is observed. There is no apparent inhibition in cleavage in the presence of singlet oxygen quenchers like sodium azide. The cleavage activity has been found to be higher at the CT band position of 575 nm in comparison to those at 532 and 632.8 nm. The results indicate the involvement of the CT band in the photo-excitation process. PMID:15708802

  4. A Biomimetic Synthesis of Phaitanthrin E Involving a Fragmentation of sp(3) Carbon-Carbon Bond: Synthesis and Rearrangement of Phaitanthrin D to Phaitanthrin E.

    PubMed

    Vaidya, Sagar D; Argade, Narshinha P

    2015-12-18

    A biogenetic type total synthesis of alkaloids phaitanthrin D and phaitanthrin E has been described. The Csp(3)-Csp(3) bond cleavage with the release of several heteroatoms bearing unexpected leaving groups in intramolecular substitution reactions on an iminium double bond in the quinazolinones has been demonstrated using HMDS/ZnCl2 or NaHMDS. The mechanistic aspects have been supported by isolation and characterization of appropriate intermediates. PMID:26650567

  5. Theoretical study of the bond dissociation energies of propyne (C3H4)

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1992-01-01

    The C-C and C-H bond dissociation energies (BDEs) of propyne have been computed using the modified coupled-pair functional method. Due to hyperconjugation, the C-C and methyl C-H single bonds are stronger and weaker, respectively than those in ethane. The acetylenic C-H and C triple bond C BDEs are larger and smaller, respectively, than in acetylene, also as a result of the hyperconjugation. Our best estimate of 92.5 +/- 2 kcal/mol for the methyl C-H BDE in propyne is slightly larger than the experimental value. For the acetylenic C-H BDE in propyne we predict 135.9 +/- 2 kcal/mol.

  6. Wafer-Level Thermocompression Bonds

    E-print Network

    Tsau, Christine H.

    Thermocompression bonding of gold is a promising technique for achieving low temperature, wafer-level bonding without the application of an electric field or complicated pre-bond cleaning procedure. The presence of a ductile ...

  7. Molecular Basis for the Recognition and Cleavages of IGF-II, TGF-[alpha], and Amylin by Human Insulin-Degrading Enzyme

    SciTech Connect

    Guo, Qing; Manolopoulou, Marika; Bian, Yao; Schilling, Alexander B.; Tang, Wei-Jen

    2010-02-11

    Insulin-degrading enzyme (IDE) is involved in the clearance of many bioactive peptide substrates, including insulin and amyloid-{beta}, peptides vital to the development of diabetes and Alzheimer's disease, respectively. IDE can also rapidly degrade hormones that are held together by intramolecular disulfide bond(s) without their reduction. Furthermore, IDE exhibits a remarkable ability to preferentially degrade structurally similar peptides such as the selective degradation of insulin-like growth factor (IGF)-II and transforming growth factor-{alpha} (TGF-{alpha}) over IGF-I and epidermal growth factor, respectively. Here, we used high-accuracy mass spectrometry to identify the cleavage sites of human IGF-II, TGF-{alpha}, amylin, reduced amylin, and amyloid-{beta} by human IDE. We also determined the structures of human IDE-IGF-II and IDE-TGF-{alpha} at 2.3 {angstrom} and IDE-amylin at 2.9 {angstrom}. We found that IDE cleaves its substrates at multiple sites in a biased stochastic manner. Furthermore, the presence of a disulfide bond in amylin allows IDE to cut at an additional site in the middle of the peptide (amino acids 18-19). Our amylin-bound IDE structure offers insight into how the structural constraint from a disulfide bond in amylin can alter IDE cleavage sites. Together with NMR structures of amylin and the IGF and epidermal growth factor families, our work also reveals the structural basis of how the high dipole moment of substrates complements the charge distribution of the IDE catalytic chamber for the substrate selectivity. In addition, we show how the ability of substrates to properly anchor their N-terminus to the exosite of IDE and undergo a conformational switch upon binding to the catalytic chamber of IDE can also contribute to the selective degradation of structurally related growth factors.

  8. Role of the Active Site Guanine in the glmS Ribozyme Self-Cleavage Mechanism: Quantum Mechanical/Molecular Mechanical Free Energy Simulations

    PubMed Central

    2015-01-01

    The glmS ribozyme catalyzes a self-cleavage reaction at the phosphodiester bond between residues A-1 and G1. This reaction is thought to occur by an acid–base mechanism involving the glucosamine-6-phosphate cofactor and G40 residue. Herein quantum mechanical/molecular mechanical free energy simulations and pKa calculations, as well as experimental measurements of the rate constant for self-cleavage, are utilized to elucidate the mechanism, particularly the role of G40. Our calculations suggest that an external base deprotonates either G40(N1) or possibly A-1(O2?), which would be followed by proton transfer from G40(N1) to A-1(O2?). After this initial deprotonation, A-1(O2?) starts attacking the phosphate as a hydroxyl group, which is hydrogen-bonded to deprotonated G40, concurrent with G40(N1) moving closer to the hydroxyl group and directing the in-line attack. Proton transfer from A-1(O2?) to G40 is concomitant with attack of the scissile phosphate, followed by the remainder of the cleavage reaction. A mechanism in which an external base does not participate, but rather the proton transfers from A-1(O2?) to a nonbridging oxygen during nucleophilic attack, was also considered but deemed to be less likely due to its higher effective free energy barrier. The calculated rate constant for the favored mechanism is in agreement with the experimental rate constant measured at biological Mg2+ ion concentration. According to these calculations, catalysis is optimal when G40 has an elevated pKa rather than a pKa shifted toward neutrality, although a balance among the pKa’s of A-1, G40, and the nonbridging oxygen is essential. These results have general implications, as the hammerhead, hairpin, and twister ribozymes have guanines at a similar position as G40. PMID:25526516

  9. Cleavage and gastrulation of the dendrobranchiate shrimp Penaeus monodon (Crustacea, Malacostraca, Decapoda)

    E-print Network

    Alwes, Frederike

    Cleavage and gastrulation of the dendrobranchiate shrimp Penaeus monodon (Crustacea, Malacostraca of the black tiger shrimp Penaeus monodon was analyzed from the first division until gastrulation. Observations for stereotypic develop- ment is the cleavage pattern in dendrobranchiate shrimps among the Decapoda. Starting

  10. Comparative and phylogenetic perspectives of the cleavage process in tailed amphibians.

    PubMed

    Desnitskiy, Alexey G; Litvinchuk, Spartak N

    2015-10-01

    The order Caudata includes about 660 species and displays a variety of important developmental traits such as cleavage pattern and egg size. However, the cleavage process of tailed amphibians has never been analyzed within a phylogenetic framework. We use published data on the embryos of 36 species concerning the character of the third cleavage furrow (latitudinal, longitudinal or variable) and the magnitude of synchronous cleavage period (up to 3-4 synchronous cell divisions in the animal hemisphere or a considerably longer series of synchronous divisions followed by midblastula transition). Several species from basal caudate families Cryptobranchidae (Andrias davidianus and Cryptobranchus alleganiensis) and Hynobiidae (Onychodactylus japonicus) as well as several representatives from derived families Plethodontidae (Desmognathus fuscus and Ensatina eschscholtzii) and Proteidae (Necturus maculosus) are characterized by longitudinal furrows of the third cleavage and the loss of synchrony as early as the 8-cell stage. By contrast, many representatives of derived families Ambystomatidae and Salamandridae have latitudinal furrows of the third cleavage and extensive period of synchronous divisions. Our analysis of these ontogenetic characters mapped onto a phylogenetic tree shows that the cleavage pattern of large, yolky eggs with short series of synchronous divisions is an ancestral trait for the tailed amphibians, while the data on the orientation of third cleavage furrows seem to be ambiguous with respect to phylogeny. Nevertheless, the midblastula transition, which is characteristic of the model species Ambystoma mexicanum (Caudata) and Xenopus laevis (Anura), might have evolved convergently in these two amphibian orders. PMID:25180466

  11. Identification and characterization of the genomic termini and cleavage/packaging signals of gallid herpesvirus 2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herpesvirus replication within host cells produces concatameric genomic DNA which is cleaved into unit-length genomes and packaged into the capsid by a complex of proteins. The sites of cleavage have been identified for many herpesviruses and conserved signaling sequences involved in cleavage and p...

  12. Transcription of Cholesterol Side-Chain Cleavage Cytochrome P450 in the Placenta: Activating

    E-print Network

    Lebendiker, Mario

    Transcription of Cholesterol Side-Chain Cleavage Cytochrome P450 in the Placenta: Activating initiates when cholesterol is converted in the mitochondria to the first steroid, pregnenolone. This reaction is cata- lyzed by a specialized enzyme complex that includes the cholesterol side-chain cleavage

  13. Research Paper 85 The role of the cleavage site 2-hydroxyl in the Tetrahymena

    E-print Network

    Herschlag, Dan

    Research Paper 85 The role of the cleavage site 2-hydroxyl in the Tetrahymena group I ribozyme-hydroxyl of U preceding the cleavage site, U(­1), in the Tetrahymena ribozyme reaction contributes 103-fold-oxygen in the transition state. Introduction The Tetrahymena ribozyme (E) derived from a self

  14. Metal-Dependent DNA Cleavage Mechanism of the I-CreI LAGLIDADG Homing Endonuclease,

    E-print Network

    Monnat, Ray

    Metal-Dependent DNA Cleavage Mechanism of the I-CreI LAGLIDADG Homing Endonuclease, Brett Chevalier-SceI indicate that three catalytic divalent metal ions are distributed across a pair of overlapping active sites, with one shared metal participating in both strand cleavage reactions. These structures differ

  15. Anaerobic biodegradation of ether compounds by ether bond-cleaving bacteria and methanogenic consortia

    SciTech Connect

    Dwyer, D.F.

    1989-01-01

    Ether compounds are manufactured for use in nonionic detergents, plastics, pesticides and other products and occur as toxic organic compounds, the most famous being tetrachlorodibenzo-p-dioxin. Ether compounds were considered recalcitrant to anaerobic biodegradation due to the lack of an appropriate oxidant for ether bond-cleavage in reducing environments. Many of these compounds reside in anaerobic environments or are exposed to anaerobic waste treatment processes. Thus, it is of interest to identify: (i) whether ether compounds are anaerobically biodegradable, (ii) the anaerobic microorganisms able to degrade these compounds, and (iii) the mechanism(s) of anaerobic ether bond-cleavage. The ether bonds of polyethylene glycol (PEG; HO-(CH{sub 2}CH{sub 2}-O-){sub n}H), phenyl ether ((C{sub 6}H{sub 5}){sub 2}O), and dibenzo-p-dioxin ((C{sub 6}H{sub 4}){sub 2}O{sub 2}) were shown to be degraded in methanogenic consortia enriched with these compounds and polyethoxylate (nonionic) surfactants as substrates. Two anaerobic microorganisms which used PEGs as sole substrates were isolated and characterized. Desulfovibrio desulfuricans strain DG2 degraded the monomer ethylene glycol and oligomers up to tetraethylene glycol (HO-(CH{sub 2}CH{sub 2}-O-){sub 4}H) in length. Bacteroides sp. strain PG1 degraded diethylene glycol and all other polymer lengths of PEG. PEGs were degraded by Bacteroides sp. strain PG1 via an external depolymerization which was either a hydrolytic or a reductive cleavage of the ether bond. The ether bond of diaryl ethers was apparently cleaved by a reductive mechanism which produced benzene and phenol as products from phenyl ether degradation and benzene and, by indirect analysis, catechol from dibenzo-dioxin.

  16. Detecting Defective Solder Bonds

    NASA Technical Reports Server (NTRS)

    Paulson, R.; Barney, J.; Decker, H. J.

    1984-01-01

    Method is noncontact and nondestructive. Technique detects solder bonds in solar array of other large circuit board, using thermal-imaging camera. Board placed between heat lamp and camera. Poor joints indiated by "cold" spots on the infrared image.

  17. Gold Thermocompression Wafer Bonding

    E-print Network

    Spearing, S. Mark

    Thermocompression bonding of gold is a promising technique for the fabrication and packaging microelectronic and MEMS devices. The use of a gold interlayer and moderate temperatures and pressures results in a hermetic, ...

  18. Characterization of anodic bonding

    E-print Network

    Tudryn, Carissa Debra, 1978-

    2004-01-01

    Anodic bonding is a common process used in MicroElectroMechanical Systems (MEMS) device fabrication and packaging. Polycrystalline chemical vapor deposited (CVD) silicon carbide (SiC) is emerging as a new MEMS device and ...

  19. Repetitive cleavage of elastomeric membrane via controlled interfacial fracture.

    PubMed

    Kim, Jeong Hun; Choi, Yong Whan; Kim, Min Sung; Um, Hyung Sik; Lee, Sung Hoon; Kim, Pilnam; Suh, Kahp-Yang

    2014-07-23

    Here, we report a method of fabricating thin layer of polydimethylsiloxane (PDMS), with a thickness in the range of 60-80 nm, which can be repeatedly generated (more than 10 times) from the same block of PDMS via controlled interfacial fracture. The thin layers can be transferred to various substrates by peeling off from the bulk PDMS. The cleavage is attributed to the built-in stress at the fracture interface due to plasma treatment, resulting in the repetitive formation of the thin membranes, with no residue from processing, and with a surface roughness of ?5 nm. We were able to demonstrate transferred patterns with controlled thickness by varying the oxygen plasma treatment conditions and the composition of bulk PDMS stamp. Using the method, we achieved residual-free patterns with submicrometer resolution for applications in biomolecule array templates. PMID:24988493

  20. Enzymic Pathways for Formation of Carotenoid Cleavage Products

    NASA Astrophysics Data System (ADS)

    Fleischmann, Peter; Zorn, Holger

    Degraded carotenoids (apocarotenoids, norisoprenoids) have been a subject of intensive research for several decades. From the perspective of human physiology and nutrition, the retinoids, acting as vitamins, signalling molecules, and visual pigments, attracted the greatest attention (Chapters 15 and 16). Plant scientists, however, detected a wealth of different apocarotenoids, presumably derived by the excentric cleavage of carotenoids in various species, the plant hormone abscisic acid (1, Scheme 6) being the best-investigated example. With the onset of fruit ripening, flower opening or senescence of green tissues, carotenoids are degraded oxidatively to smaller, volatile compounds. The natural biological functions of the reaction products are outlined in Chapter 15. As many of these apocarotenoids act as potent flavour compounds, food chemists and flavourists worldwide have investigated meticulously their structural and sensory properties. Many aspects of carotenoid metabolites and breakdown products as aroma compounds are presented in a comprehensive book [1].