Science.gov

Sample records for c-c bond energy

  1. The computation of C-C and N-N bond dissociation energies for singly, doubly, and triply bonded systems

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.; Taylor, Peter R.

    1989-01-01

    The bond dissociation energies (D sub e) of C2H2, C2H4, C2H6, N2, N2H2, and N2H4 are studied at various levels of correlation treatment. The convergence of D sub e with respect to the one particle basis is studied at the single reference modified coupled-pair functional (MCPF) level. At all levels of correlation treatment, the errors in the bond dissociation energies increase with the degree of multiple bond character. The multireference configuration interaction (MRCI) D sub e values, corrected for an estimate of higher excitations, are in excellent agreement with those determined using the size extensive averaged coupled pair functional (ACPF) method. It was found that the full valence complete active space self consistent field (CASSCF)/MRCI calculations are reproduced very well by MRCI calculations based on a CASSCF calculation that includes in the active space only those electrons involved in the C-C or N-N bonds. To achieve chemical accuracy (1 kcal/mole) for the D sub e values of the doubly bonded species C2H4 and N2H2 requires one particle basis sets including up through h angular momentum functions (l = 5) and a multireference treatment of electron correlation: still higher levels of calculation are required to achieve chemical accuracy for the triply bonded species C2H2 and N2.

  2. The computation of C-C and N-N bond dissociation energies for singly, doubly, and triply bonded systems

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.; Taylor, Peter R.

    1991-01-01

    The bond dissociation energies (De) of C2H2, C2H4, C2H6, N2, N2H2, and N2H4 are studied at various levels of correlation treatment. The convergence of De with respect to the one-particle basis is studied at the single-reference modified coupled-pair-functional (MCPF)level. At all levels of correlation treatment, the errors in the bond dissociation energies increase with the degree of multiple bond character. The multireference configuration-interaction (MRCI) De values, corrected for an estimate of higher excitations, are in excellent agreement with those determined using the size-extensive averaged-coupled-pair-functional (ACPF) method. The full-valence complete-active-space self-consistent-field (CASSCF)/MRCI calculations are reproduced very well by MRCI calculations based on a CASSCF calculation that includes in the active space only those electrons involved in the C-C or N-N bonds.

  3. HC[triple bond]P and H3C-C[triple bond]P as proton acceptors in protonated complexes containing two phosphorus bases: structures, binding energies, and spin-spin coupling constants.

    PubMed

    Alkorta, Ibon; Elguero, José; Bene, Janet E Del

    2007-10-01

    Ab initio calculations at the MP2/aug'-cc-pVTZ level have been carried out to investigate the structures and binding energies of cationic complexes involving protonated sp, sp2, and sp3 phosphorus bases as proton donor ions and the sp-hybridized phosphorus bases H-C[triple bond]P and H3C-C[triple bond]P as proton acceptors. These proton-bound complexes exhibit a variety of structural motifs, but all are stabilized by interactions that occur through the pi cloud of the acceptor base. The binding energies of these complexes range from 6 to 15 kcal/mol. Corresponding complexes with H3C-C[triple bond]P as the proton acceptor are more stable than those with H-C[triple bond]P as the acceptor, a reflection of the greater basicity of H3C-C[triple bond]P. In most complexes with sp2- or sp3-hybridized P-H donor ions, the P-H bond lengthens and the P-H stretching frequency is red-shifted relative to the corresponding monomers. Complex formation also leads to a lengthening of the C[triple bond]P bond and a red shift of the C[triple bond]P stretching vibration. The two-bond coupling constants 2pihJ(P-P) and 2pihJ(P-C) are significantly smaller than 2hJ(P-P) and 2hJ(P-C) for complexes in which hydrogen bonding occurs through lone pairs of electrons on P or C. This reflects the absence of significant s electron density in the hydrogen-bonding regions of these pi complexes. PMID:17760429

  4. Understanding Rotation about a C=C Double Bond

    ERIC Educational Resources Information Center

    Barrows, Susan E.; Eberlein, Thomas H.

    2005-01-01

    The study focuses on the process and energetic cost of twisting around a C=C double bond and provides instructors with a simple vehicle for rectifying the common misrepresentation of C=C double bonds as rigid and inflexible. Discussions of cis and trans isomers of cycloalkenes are a good entry point for introducing students to the idea of a…

  5. Alkali metal mediated C-C bond coupling reaction

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto

    2015-02-01

    Metal catalyzed carbon-carbon (C-C) bond formation is one of the important reactions in pharmacy and in organic chemistry. In the present study, the electron and hole capture dynamics of a lithium-benzene sandwich complex, expressed by Li(Bz)2, have been investigated by means of direct ab-initio molecular dynamics method. Following the electron capture of Li(Bz)2, the structure of [Li(Bz)2]- was drastically changed: Bz-Bz parallel form was rapidly fluctuated as a function of time, and a new C-C single bond was formed in the C1-C1' position of Bz-Bz interaction system. In the hole capture, the intermolecular vibration between Bz-Bz rings was only enhanced. The mechanism of C-C bond formation in the electron capture was discussed on the basis of theoretical results.

  6. Ag-catalyzed C-H/C-C bond functionalization.

    PubMed

    Zheng, Qing-Zhong; Jiao, Ning

    2016-08-21

    Silver, known and utilized since ancient times, is a coinage metal, which has been widely used for various organic transformations in the past few decades. Currently, the silver-catalyzed reaction is one of the frontier areas in organic chemistry, and the progress of research in this field is very rapid. Compared with other transition metals, silver has long been believed to have low catalytic efficiency, and most commonly, it is used as either a cocatalyst or a Lewis acid. Interestingly, the discovery of Ag-catalysis has been significantly improved in recent years. Especially, Ag(i) has been demonstrated as an important and versatile catalyst for a variety of organic transformations. However, so far, there has been no systematic review on Ag-catalyzed C-H/C-C bond functionalization. In this review, we will focus on the development of Ag-catalyzed C-H/C-C bond functionalization and the corresponding mechanism. PMID:27056573

  7. Cuprous Oxide Catalyzed Oxidative C-C Bond Cleavage for C-N Bond Formation: Synthesis of Cyclic Imides from Ketones and Amines.

    PubMed

    Wang, Min; Lu, Jianmin; Ma, Jiping; Zhang, Zhe; Wang, Feng

    2015-11-16

    Selective oxidative cleavage of a C-C bond offers a straightforward method to functionalize organic skeletons. Reported herein is the oxidative C-C bond cleavage of ketone for C-N bond formation over a cuprous oxide catalyst with molecular oxygen as the oxidant. A wide range of ketones and amines are converted into cyclic imides with moderate to excellent yields. In-depth studies show that both α-C-H and β-C-H bonds adjacent to the carbonyl groups are indispensable for the C-C bond cleavage. DFT calculations indicate the reaction is initiated with the oxidation of the α-C-H bond. Amines lower the activation energy of the C-C bond cleavage, and thus promote the reaction. New insight into the C-C bond cleavage mechanism is presented. PMID:26494312

  8. Manganese-catalyzed regiospecific sp(3) C-S bond formation through C-C bond cleavage of cyclobutanols.

    PubMed

    Ren, Rongguo; Wu, Zhen; Zhu, Chen

    2016-06-21

    A manganese-catalyzed regioselective sp(3) C-S bond formation through C-C bond cleavage of cyclobutanols is described. A variety of primary and secondary alkyl thioethers are efficiently prepared under mild reaction conditions. The mechanistic pathways involving radical-mediated tandem C-C bond cleavage and C-S bond formation are proposed. PMID:27279018

  9. Hydrogen induced C-C, C-N, and C-S bond activation on Pt and Ni surfaces

    SciTech Connect

    Gland, J.L.

    1992-01-01

    The work has focussed on hydrogen induced bond activation in adsorbed organic molecules and intermediates containin C-S and C-N and C-C bonds on Ni(100), Ni(111), and Pt(111) surfaces. Fluorescence Yield Near Edge Spectroscopy (FYNES) above the carbon K edge was used for adsorbed organic reactants and in-situ kinetic studies of bond activation. Results indicate that the activation is enhanced on Ni relative to Pt. Methylthiolate and methylamine adsorbed on Pt(111) were studied.

  10. Hydrogen induced C-C, C-N, and C-S bond activation on Pt and Ni surfaces

    SciTech Connect

    Gland, J.L.

    1992-12-01

    The work has focussed on hydrogen induced bond activation in adsorbed organic molecules and intermediates containin C-S and C-N and C-C bonds on Ni(100), Ni(111), and Pt(111) surfaces. Fluorescence Yield Near Edge Spectroscopy (FYNES) above the carbon K edge was used for adsorbed organic reactants and in-situ kinetic studies of bond activation. Results indicate that the activation is enhanced on Ni relative to Pt. Methylthiolate and methylamine adsorbed on Pt(111) were studied.

  11. C-C and C-Heteroatom Bond Dissociation Energies in CH 3 R'C(OH) 2 : Energetics for Photocatalytic Processes of Organic Diolates on TiO 2 Surfaces

    SciTech Connect

    Wang, Tsang-Hsiu; Dixon, David A.; Henderson, Michael A.

    2010-08-26

    The bond energies of a range of gem-diols, CH3R'C(OH)2 (R' = H, F, Cl, Br, CN, NO2, CF3, CH3CH2, CH3CH2CH2, CH3CH2CH2CH2, ((CH3)2)CH, (CH3)3C, ((CH3)2CH)CH2, (CH3CH2)(CH3)CH, C6H5 (CH3CH2)(CH3)CH) which serve as models for binding to a surface have been studied with density functional theory (DFT) and the molecular orbital G3(MP2) methods to provide thermodynamic data for the analysis of the photochemistry of ketones on TiO2. The ultraviolet (UV) photon-induced photodecomposition of adsorbed acetone and 3,3-dimethylbutanone on the rutile TiO2 (110) surface have been investigated with photon stimulated desorption (PSD) and temperature programmed desorption (TPD). The C-CH3 and C-C(R') bond dissociation energies in CH3R'C(OH)2 were predicted, and our calculated bond dissociation energies are in excellent agreement with the available experimental values. We used a series of isodemic reactions to provide small corrections to the various bond dissociation energies. The calculated bond dissociation energies are in agreement with the observed photodissociation processes except for R' = CF3, suggesting that these processes are under thermodynamic control. For R' = CF3, reaction dynamics also play a role in determining the photodissociation mechanism. The gas phase Brönsted acidities of the gem-diols were calculated. For three molecules, R' = Cl, Br, and NO2, loss of a proton leads to the formation of a complex of acetic acid with the anion Cl-, Br-, and NO2-. The acidities of these three species are very high with the former two having acidities comparable to CF3SO3H. The ketones (R'RC(=O)) are weak Lewis acids except where addition of OH- leads to the dissociation of the complex to form an anion bonded to acetic acid, R' = NO2, Cl, and Br. The X-C bond dissociation energies for a number of X-CO2- species were calculated and these should be useful in correlating with photochemical reactivity studies.

  12. Stereochemistry of enzymatic water addition to C=C bonds.

    PubMed

    Chen, Bi-Shuang; Otten, Linda G; Hanefeld, Ulf

    2015-01-01

    Water addition to carbon-carbon double bonds using hydratases is attracting great interest in biochemistry. Most of the known hydratases are involved in primary metabolism and to a lesser extent in secondary metabolism. New hydratases have recently been added to the toolbox, both from natural sources or artificial metalloenzymes. In order to comprehensively understand how the hydratases are able to catalyse the water addition to carbon-carbon double bonds, this review will highlight the mechanistic and stereochemical studies of the enzymatic water addition to carbon-carbon double bonds, focusing on the syn/anti-addition and stereochemistry of the reaction. PMID:25640045

  13. Iterative reactions of transient boronic acids enable sequential C-C bond formation

    NASA Astrophysics Data System (ADS)

    Battilocchio, Claudio; Feist, Florian; Hafner, Andreas; Simon, Meike; Tran, Duc N.; Allwood, Daniel M.; Blakemore, David C.; Ley, Steven V.

    2016-04-01

    The ability to form multiple carbon-carbon bonds in a controlled sequence and thus rapidly build molecular complexity in an iterative fashion is an important goal in modern chemical synthesis. In recent times, transition-metal-catalysed coupling reactions have dominated in the development of C-C bond forming processes. A desire to reduce the reliance on precious metals and a need to obtain products with very low levels of metal impurities has brought a renewed focus on metal-free coupling processes. Here, we report the in situ preparation of reactive allylic and benzylic boronic acids, obtained by reacting flow-generated diazo compounds with boronic acids, and their application in controlled iterative C-C bond forming reactions is described. Thus far we have shown the formation of up to three C-C bonds in a sequence including the final trapping of a reactive boronic acid species with an aldehyde to generate a range of new chemical structures.

  14. Aromaticity effects on the profiles of the lowest triplet-state potential-energy surfaces for rotation about the C=C bonds of olefins with five-membered ring substituents: an example of the impact of Baird's rule.

    PubMed

    Zhu, Jun; Fogarty, Heather A; Möllerstedt, Helene; Brink, Maria; Ottosson, Henrik

    2013-08-01

    A density functional theory study on olefins with five-membered monocyclic 4n and 4n+2 π-electron substituents (C4H3X; X=CH(+), SiH(+), BH, AlH, CH2, SiH2, O, S, NH, and CH(-)) was performed to assess the connection between the degree of substituent (anti)aromaticity and the profile of the lowest triplet-state (T1) potential-energy surface (PES) for twisting about olefinic C=C bonds. It exploited both Hückel's rule on aromaticity in the closed-shell singlet ground state (S0) and Baird's rule on aromaticity in the lowest ππ* excited triplet state. The compounds CH2=CH(C4H3X) were categorized as set A and set B olefins depending on which carbon atom (C2 or C3) of the C4H3X ring is bonded to the olefin. The degree of substituent (anti)aromaticity goes from strongly S0 -antiaromatic/T1 -aromatic (C5H4 (+)) to strongly S0 -aromatic/T1- antiaromatic (C5H4(-)). Our hypothesis is that the shapes of the T1 PESs, as given by the energy differences between planar and perpendicularly twisted olefin structures in T1 [ΔE(T1)], smoothly follow the changes in substituent (anti)aromaticity. Indeed, correlations between ΔE(T1) and the (anti)aromaticity changes of the C4 H3 X groups, as measured by the zz-tensor component of the nucleus-independent chemical shift ΔNICS(T1;1)zz , are found both for sets A and B separately (linear fits; r(2) =0.949 and 0.851, respectively) and for the two sets combined (linear fit; r(2) =0.851). For sets A and B combined, strong correlations are also found between ΔE(T1) and the degree of S0 (anti)aromaticity as determined by NICS(S0,1)zz (sigmoidal fit; r(2) =0.963), as well as between the T1 energies of the planar olefins and NICS(S0,1)zz (linear fit; r(2) =0.939). Thus, careful tuning of substituent (anti)aromaticity allows for design of small olefins with T1 PESs suitable for adiabatic Z/E photoisomerization. PMID:23794153

  15. Synthesis of 2-Benzylphenyl Ketones by Aryne Insertion into Unactivated C-C Bonds.

    PubMed

    Rao, Bin; Tang, Jinghua; Zeng, Xiaoming

    2016-04-01

    A transition-metal-free procedure to access to functionalized 2-benzylphenyl ketones is described by direct insertion of arynes into benzylic C-C bonds. This reaction was promoted by cesium fluoride at room temperature, allowing the products to form in high selectivity and achieve good functional group tolerance. PMID:27004731

  16. Rh(I)-Catalyzed Insertion of Allenes into C-C Bonds of Benzocyclobutenols.

    PubMed

    Zhao, Chunliang; Liu, Li-Chuan; Wang, Jing; Jiang, Chenran; Zhang, Qing-Wei; He, Wei

    2016-01-15

    Herein we report a Rh(I)-catalyzed two carbon insertion into C-C bonds of benzocyclobutenols by employing symmetrical and unsymmetrical allenes. This reaction provides rapid access to alkylidene tetralins bearing two adjacent stereogenic centers in good yields and diasteroselectivities. PMID:26727276

  17. Formation of C-C Bonds via Iridium-Catalyzed Hydrogenation and Transfer Hydrogenation.

    PubMed

    Bower, John F; Krische, Michael J

    2011-01-01

    The formation of C-C bonds via catalytic hydrogenation and transfer hydrogenation enables carbonyl and imine addition in the absence of stoichiometric organometallic reagents. In this review, iridium-catalyzed C-C bond-forming hydrogenations and transfer hydrogenations are surveyed. These processes encompass selective, atom-economic methods for the vinylation and allylation of carbonyl compounds and imines. Notably, under transfer hydrogenation conditions, alcohol dehydrogenation drives reductive generation of organoiridium nucleophiles, enabling carbonyl addition from the aldehyde or alcohol oxidation level. In the latter case, hydrogen exchange between alcohols and π-unsaturated reactants generates electrophile-nucleophile pairs en route to products of hydro-hydroxyalkylation, representing a direct method for the functionalization of carbinol C-H bonds. PMID:21822399

  18. Formation of C-C Bonds via Iridium-Catalyzed Hydrogenation and Transfer Hydrogenation

    NASA Astrophysics Data System (ADS)

    Bower, John F.; Krische, Michael J.

    The formation of C-C bonds via catalytic hydrogenation and transfer hydrogenation enables carbonyl and imine addition in the absence of stoichiometric organometallic reagents. In this review, iridium-catalyzed C-C bond-forming hydrogenations and transfer hydrogenations are surveyed. These processes encompass selective, atom-economic methods for the vinylation and allylation of carbonyl compounds and imines. Notably, under transfer hydrogenation conditions, alcohol dehydrogenation drives reductive generation of organoiridium nucleophiles, enabling carbonyl addition from the aldehyde or alcohol oxidation level. In the latter case, hydrogen exchange between alcohols and π-unsaturated reactants generates electrophile-nucleophile pairs en route to products of hydro-hydroxyalkylation, representing a direct method for the functionalization of carbinol C-H bonds.

  19. Spectroscopic Characterization of Lanthanum-Mediated Dehydrogenation and C-C Bond Coupling of Ethylene.

    PubMed

    Kumari, Sudesh; Cao, Wenjin; Zhang, Yuchen; Roudjane, Mourad; Yang, Dong-Sheng

    2016-07-01

    La(C2H2) and La(C4H6) are observed from the reaction of laser-vaporized La atoms with ethylene molecules by photoionization time-of-flight mass spectrometry and characterized by mass-analyzed threshold ionization spectroscopy. La(C2H2) is identified as a metallacyclopropene and La(C4H6) as a metallacyclopentene. The three-membered ring is formed by concerted H2 elimination and the five-membered cycle by dehydrogenation and C-C bond coupling. Both metallacycles prefer a doublet ground state with a La 6s-based unpaired electron. Ionization of the neutral doublet state of either complex produces a singlet ion state by removing the La-based electron. The ionization allows accurate measurements of the adiabatic ionization energy of the neutral doublet state and metal-ligand and ligand-based vibrational frequencies of the neutral and ionic states. Although the La atom is in a formal oxidation state of +2, the ionization energies of these metal-hydrocarbon cycles are lower than that of the neutral La atom. Deuteration has a small effect on the ionization energies of the two cyclic radicals but distinctive effects on their vibrational frequencies. PMID:27322131

  20. Facile P-C/C-H Bond-Cleavage Reactivity of Nickel Bis(diphosphine) Complexes.

    PubMed

    Zhang, Shaoguang; Li, Haixia; Appel, Aaron M; Hall, Michael B; Bullock, R Morris

    2016-07-01

    Unusual cleavage of P-C and C-H bonds of the P2 N2 ligand, in heteroleptic [Ni(P2 N2 )(diphosphine)](2+) complexes under mild conditions, results in the formation of an iminium formyl nickelate featuring a C,P,P-tridentate coordination mode. The structures of both the heteroleptic [Ni(P2 N2 )(diphosphine)](2+) complexes and the resulting iminium formyl nickelate have been characterized by NMR spectroscopy and single-crystal X-ray diffraction analysis. Density functional theory (DFT) calculations were employed to investigate the mechanism of the P-C/C-H bond cleavage, which involves C-H bond cleavage, hydride rotation, Ni-C/P-H bond formation, and P-C bond cleavage. PMID:27189413

  1. [Hydrogen induced C-C, C-N, and C-S bond activities on Pi and Ni surfaces]: Summary

    SciTech Connect

    Gland, J.L.

    1994-12-31

    This document summarizes research applied to chemical bond activation studies. Topics summarized include: Carbon nitrogen bonds experimentation with aniline on Ni(111), Mi(100), and Pt(111) surfaces; carbon sulfur bonds experimentation with methanethiol, phenylthiol, and dimethyl disulfide on Pt(111) and Ni(111) surfaces; carbon-carbon bonds experimentation on Ni(100), Ni(111) and Pt(111) surfaces; and in-situ fluorescence yield near edge spectroscopy.

  2. Baeyer-Villiger C-C bond cleavage reaction in gilvocarcin and jadomycin biosynthesis

    PubMed Central

    Tibrewal, Nidhi; Pahari, Pallab; Wang, Guojun; Kharel, Madan K.; Morris, Caleb; Downey, Theresa; Hou, Yanpeng; Bugni, Tim S.; Rohr, Jürgen

    2012-01-01

    GilOII has been unambiguously identified as the key enzyme performing the crucial C-C bond cleavage reaction responsible for the unique rearrangement of a benz[a]anthracene skeleton to the benzo[d]naphthopyranone backbone typical for the gilvocarcin type natural anticancer antibiotics. Further investigations of this enzyme led to the isolation of a hydroxy-oxepinone intermediate which allowed important conclusions regarding the cleavage mechanism. PMID:23102024

  3. A quantum chemical topological analysis of the C-C bond formation in organic reactions involving cationic species.

    PubMed

    Domingo, Luis R; Pérez, Patricia

    2014-07-21

    ELF topological analysis of the ionic Diels-Alder (I-DA) reaction between the N,N-dimethyliminium cation and cyclopentadiene (Cp) has been performed in order to characterise the C-C single bond formation. The C-C bond formation begins in the short range of 2.00-1.96 Åvia a C-to-C pseudoradical coupling between the most electrophilic center of the iminium cation and one of the two most nucleophilic centers of Cp. The electron density of the pseudoradical center generated at the most electrophilic carbon of the iminium cation comes mainly from the global charge transfer which takes place along the reaction. Analysis of the global reactivity indices indicates that the very high electrophilic character of the iminium cation is responsible for the negative activation energy found in the gas phase. On the other hand, the analysis of the radical P(k)(o) Parr functions of the iminium cation, and the nucleophilic P(k)(-) Parr functions of Cp makes the characterisation of the most favourable two-center interaction along the formation of the C-C single bond possible. PMID:24901220

  4. Metalloenzyme-Like Zeolites as Lewis Acid Catalysts for C-C Bond Formation.

    PubMed

    Van de Vyver, Stijn; Román-Leshkov, Yuriy

    2015-10-19

    The use of metalloenzyme-like zeolites as Lewis acid catalysts for C-C bond formation reactions has received increasing attention over the past few years. In particular, the observation of direct aldol condensation reactions enabled by hydrophobic zeolites with isolated framework metal sites has encouraged the development of catalytic approaches for producing chemicals from biomass-derived compounds. The discovery of new Diels-Alder cycloaddition/dehydration routes and experimental and computational studies of Lewis acid catalyzed carbonyl-ene reactions have given a further boost to this rapidly evolving field. PMID:26465652

  5. Formation of C-C bonds via ruthenium-catalyzed transfer hydrogenation().

    PubMed

    Moran, Joseph; Krische, Michael J

    2012-01-01

    Ruthenium-catalyzed transfer hydrogenation of diverse π-unsaturated reactants in the presence of aldehydes provides products of carbonyl addition. Dehydrogenation of primary alcohols in the presence of the same π-unsaturated reactants provides identical products of carbonyl addition. In this way, carbonyl addition is achieved from the alcohol or aldehyde oxidation level in the absence of stoichiometric organometallic reagents or metallic reductants. In this account, the discovery of ruthenium-catalyzed C-C bond-forming transfer hydrogenations and the recent development of diastereo- and enantioselective variants are discussed. PMID:23430602

  6. Structure sensitivity of hydrogenolytic cleavage of endocyclic and exocyclic C-C bonds in methylcyclohexane over supported iridium particles

    SciTech Connect

    Shi, Hui; Gutierrez, Oliver Y.; Haller, Gary L.; Mei, Donghai; Rousseau, Roger J.; Lercher, Johannes A.

    2013-01-02

    Structure sensitivities, H2 pressure effects and temperature dependencies for rates and selectivities of endo- and exocyclic C–C bond cleavage in methylcyclohexane were studied over supported Ir catalysts. The rate of endocyclic C–C bond cleavage first decreased and then increased with declining Ir dispersion from 0.65 to 0.035. The ring opening (RO) product distribution remained unchanged with varying H2 pressure on small Ir particles, while further shifting to methylhexanes with increasing H2 pressure on large particles. In contrast, the rate and selectivity of exocyclic C–C bond cleavage decreased monotonically with increasing H2 pressure and decreasing Ir particle size. The distinct dependencies of endocyclic and exocyclic C–C bond cleavage pathways on Ir dispersion and H2 pressure suggest that they are mediated by surface species with different ensemble size requirements. DFT calculations were performed on an Ir50 cluster and an Ir(111) surface, with or without pre-adsorbed hydrogen atoms, to provide insight into the observed effects of particle size and H2 pressure on RO pathways. On small Ir particles, the calculated dehydrogenation enthalpies for all endocyclic bonds were similar and affected to similar extents by H2 pressure; on large particles, the selectivity to n-heptane (via substituted C-C bond cleavage) was even lower than on small particles as a result of the least favorable adsorption and dehydrogenation energetics for hindered bonds. This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences under Contract DE-AC05-76RL01830. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The computing time is provided by the user project from EMSL, a national scientific user facility sponsored by the US Department of Energy's Office of Biological and Environmental Research and located at Pacific

  7. Rhodium-Catalyzed C-C Bond Formation via Heteroatom-Directed C-H Bond Activation

    SciTech Connect

    Colby, Denise; Bergman, Robert; Ellman, Jonathan

    2010-05-13

    Once considered the 'holy grail' of organometallic chemistry, synthetically useful reactions employing C-H bond activation have increasingly been developed and applied to natural product and drug synthesis over the past decade. The ubiquity and relative low cost of hydrocarbons makes C-H bond functionalization an attractive alternative to classical C-C bond forming reactions such as cross-coupling, which require organohalides and organometallic reagents. In addition to providing an atom economical alternative to standard cross - coupling strategies, C-H bond functionalization also reduces the production of toxic by-products, thereby contributing to the growing field of reactions with decreased environmental impact. In the area of C-C bond forming reactions that proceed via a C-H activation mechanism, rhodium catalysts stand out for their functional group tolerance and wide range of synthetic utility. Over the course of the last decade, many Rh-catalyzed methods for heteroatom-directed C-H bond functionalization have been reported and will be the focus of this review. Material appearing in the literature prior to 2001 has been reviewed previously and will only be introduced as background when necessary. The synthesis of complex molecules from relatively simple precursors has long been a goal for many organic chemists. The ability to selectively functionalize a molecule with minimal pre-activation can streamline syntheses and expand the opportunities to explore the utility of complex molecules in areas ranging from the pharmaceutical industry to materials science. Indeed, the issue of selectivity is paramount in the development of all C-H bond functionalization methods. Several groups have developed elegant approaches towards achieving selectivity in molecules that possess many sterically and electronically similar C-H bonds. Many of these approaches are discussed in detail in the accompanying articles in this special issue of Chemical Reviews. One approach that has

  8. Comparison of the kinetics and thermodynamics for methyl radical addition to C=C, C=O, and C=S double bonds.

    PubMed

    Henry, David J; Coote, Michelle L; Gómez-Balderas, Rodolfo; Radom, Leo

    2004-02-18

    The barriers, enthalpies, and rate constants for the addition of methyl radical to the double bonds of a selection of alkene, carbonyl, and thiocarbonyl species (CH(2)=Z, CH(3)CH=Z, and (CH(3))(2)C=Z, where Z = CH(2), O, or S) and for the reverse beta-scission reactions have been investigated using high-level ab inito calculations. The results are rationalized with the aid of the curve-crossing model. The addition reactions proceed via early transition structures in all cases. The barriers for addition of methyl radical to C=C bonds are largely determined by the reaction exothermicities. Addition to the unsubstituted carbon center of C=C double bonds is favored over addition to the substituted carbon center, both kinetically (lower barriers) and thermodynamically (greater exothermicities). The barriers for addition to C=O bonds are influenced by both the reaction exothermicity and the singlet-triplet gap of the substrate. Addition to the carbon center is favored over addition to the oxygen, also both thermodynamically and kinetically. For the thiocarbonyl systems, addition to the carbon center is thermodynamically favored over addition to sulfur. However, in this case, the reaction is contrathermodynamic, addition to the sulfur center having a lower barrier due to spin density considerations. Entropic differences among corresponding addition and beta-scission reactions are relatively minor, and the differences in reaction rates are thus dominated by differences in the respective reaction barriers. PMID:14871104

  9. Recent Advances in Transition-Metal-Free Oxygenation of Alkene C=C Double Bonds for Carbonyl Generation.

    PubMed

    Wan, Jie-Ping; Gao, Yong; Wei, Li

    2016-08-01

    Carbonyl-forming reactions are a class of fundamental transformations in organic chemistry. Guided by the current importance of environmentally benign metal-free catalysis and synthesis, herein we review recent advances in carbonyl-generation reactions based on alkene C=C double oxygenation as well as related cascade reactions in the synthesis of diverse organic products. The content of this focus review consists of two important but different reaction models: oxygenation based on full C=C double-bond cleavage and oxygenation based on partial C=C double-bond cleavage. PMID:27237866

  10. A Homogeneous, Recyclable Polymer Support for Rh(I)-Catalyzed C-C Bond Formation

    PubMed Central

    Jana, Ranjan; Tunge, Jon A.

    2011-01-01

    A robust and practical polymer-supported, homogeneous, recyclable biphephos rhodium(I) catalyst has been developed for C-C bond formation reactions. Control of polymer molecular weight allowed tuning of the polymer solubility such that the polymer-supported catalyst is soluble in nonpolar solvents and insoluble in polar solvents. Using the supported rhodium catalysts, addition of aryl and vinylboronic acids to the electrophiles such as enones, aldehydes, N-sulfonyl aldimines, and alkynes occurs smoothly to provide products in high yields. Additions of terminal alkynes to enones and industrially relevant hydroformylation reactions have also been successfully carried out. Studies show that the leaching of Rh from the polymer support is low and catalyst recycle can be achieved by simple precipitation and filtration. PMID:21895010

  11. Bronsted-Evans-Polany relationships for C-C bond forming and C-C bond breaking reactions in thiamine-catalyzed decarboxylation of 2-keto acids using density functional theory.

    SciTech Connect

    Assary, R. S.; Broadbelt, L. J.; Curtiss, L. A.

    2012-01-01

    The concept of generalized enzyme reactions suggests that a wide variety of substrates can undergo enzymatic transformations, including those whose biotransformation has not yet been realized. The use of quantum chemistry to evaluate kinetic feasibility is an attractive approach to identify enzymes for the proposed transformation. However, the sheer number of novel transformations that can be generated makes this impractical as a screening approach. Therefore, it is essential to develop structure/activity relationships based on quantities that are more efficient to calculate. In this work, we propose a structure/activity relationship based on the free energy of binding or reaction of non-native substrates to evaluate the catalysis relative to that of native substrates. While Broensted-Evans-Polanyi (BEP) relationships such as that proposed here have found broad application in heterogeneous catalysis, their extension to enzymatic catalysis is limited. We report here on density functional theory (DFT) studies for C-C bond formation and C-C bond cleavage associated with the decarboxylation of six 2-keto acids by a thiamine-containing enzyme (EC 1.2.7.1) and demonstrate a linear relationship between the free energy of reaction and the activation barrier. We then applied this relationship to predict the activation barriers of 17 chemically similar novel reactions. These calculations reveal that there is a clear correlation between the free energy of formation of the transition state and the free energy of the reaction, suggesting that this method can be further extended to predict the kinetics of novel reactions through our computational framework for discovery of novel biochemical transformations.

  12. Silver(I) NHC mediated C-C bond activation of alkyl nitriles and catalytic efficiency in oxazoline synthesis.

    PubMed

    Heath, Rachael; Müller-Bunz, Helge; Albrecht, Martin

    2015-05-21

    Preparation of silver triazolylidene (trz) species from triazolium salts and Ag2O in refluxing MeCN leads to a selective C-C bond cleavage and the formation of complexes of general formula [(trz)Ag(CN)] from Calkyl-CN bond activation. Moreover, these silver carbene complexes are precursors of highly active catalysts for oxazoline formation via aldol condensation. PMID:25913007

  13. Observation of Spontaneous C=C Bond Breaking in the Reaction between Atomic Boron and Ethylene in Solid Neon.

    PubMed

    Jian, Jiwen; Lin, Hailu; Luo, Mingbiao; Chen, Mohua; Zhou, Mingfei

    2016-07-11

    A ground-state boron atom inserts into the C=C bond of ethylene to spontaneously form the allene-like compound H2 CBCH2 on annealing in solid neon. This compound can further isomerize to the propyne-like HCBCH3 isomer under UV light excitation. The observation of this unique spontaneous C=C bond insertion reaction is consistent with theoretical predictions that the reaction is thermodynamically exothermic and kinetically facile. This work demonstrates that the stronger C=C bond, rather than the less inert C-H bond, can be broken to form organoboron species from the reaction of a boron atom with ethylene even at cryogenic temperatures. PMID:27240114

  14. Central C-C Bonding Increases Optical and Chemical Stability of NIR Fluorophores

    PubMed Central

    Hyun, Hoon; Owens, Eric A.; Narayana, Lakshminarayana; Wada, Hideyuki; Gravier, Julien; Bao, Kai; Frangioni, John V.; Choi, Hak Soo; Henary, Maged

    2014-01-01

    Functional near-infrared (NIR) fluorophores have played a major role in the recent advances in bioimaging. However, the optical and physicochemical stabilities of NIR fluorophores in the biological and physiological environment are still a challenge. Especially, the ether linkage on the meso carbon of heptamethine core is fragile when exposed to serum proteins or other amine-rich biomolecules. To solve such a structural limitation, a rigid carbon-carbon bond was installed onto the framework of ether-linked NIR fluorophores through the Suzuki coupling. The robust fluorophores replaced as ZW800-1C and ZW800-3C displayed enhanced optical and chemical stability in various solvents and a 100% warm serum environment (> 99%, 24 h). The biodistribution and clearance of C-C coupled ZW800 compounds were almost identical to the previously developed oxygen-substituted ZW800 compounds. When conjugated with a small molecule ligand, ZW800-1C maintained the identical stable form in warm serum (>98%, 24 h), while ZW800-1A hydrolyzed quickly after 4 h incubation (34%, 24 h). PMID:25530846

  15. Acceptorless dehydrogenation of C-C single bonds adjacent to functional groups by metal-ligand cooperation.

    PubMed

    Kusumoto, Shuhei; Akiyama, Midori; Nozaki, Kyoko

    2013-12-18

    Unprecedented direct acceptorless dehydrogenation of C-C single bonds adjacent to functional groups to form α,β-unsaturated compounds has been accomplished by using a new class of group 9 metal complexes. Metal-ligand cooperation operated by the hydroxycyclopentadienyl ligand was proposed to play a major role in the catalytic transformation. PMID:24299029

  16. Enantioselective Rh-Catalyzed Carboacylation of C═N Bonds via C-C Activation of Benzocyclobutenones.

    PubMed

    Deng, Lin; Xu, Tao; Li, Hongbo; Dong, Guangbin

    2016-01-13

    Herein we describe the first enantioselective Rh-catalyzed carboacylation of oximes (imines) via C-C activation. In this transformation, the benzocyclobutenone C1-C2 bond is selectively activated by a low valent rhodium catalyst and subsequently the resulting two Rh-C bonds add across a C═N bond, which provides a unique approach to access chiral lactams. A range of polycyclic nitrogen-containing scaffolds were obtained in good yields with excellent enantioselectivity. Further derivatization of the lactam products led to a rapid entry to various novel fused heterocycles. PMID:26674855

  17. Identification of Possible Pathways for C-C Bond Formation during Electrochemical Reduction of CO2: New Theoretical Insights from an Improved Electrochemical Model.

    PubMed

    Goodpaster, Jason D; Bell, Alexis T; Head-Gordon, Martin

    2016-04-21

    We have carried out a periodic Kohn-Sham density functional theory investigation of the pathways by which carbon-carbon bonds could be formed during the electrochemical reduction of CO2 on Cu(100) using a model that includes the effects of the electrochemical potential, solvent, and electrolyte. The electrochemical potential was set by relating the applied potential to the Fermi energy and then calculating the number of electrons required by the simulation cell for that specific Fermi energy. The solvent was included as a continuum dielectric, and the electrolyte was described using a linearized Poisson-Boltzmann model. The calculated potential of zero charge for a variety of surfaces agrees with experiment to within a mean average error of 0.09 V, thereby validating the assumptions of the model. Analysis of the mechanism for C-C bond formation revealed that at low-applied potential, C-C bond formation occurs through a CO dimer. However, at high applied potentials, a large activation barrier blocks this pathway; therefore, C-C bond formation occurs through reaction of adsorbed CHO and CO. Rate parameters determined from our calculations were used to simulate the kinetics of ethene formation during the electrochemical reduction of CO over a Cu(100) surface. An excellent match was observed between previously reported measurements of the partial current for ethene formation as a function of applied voltage and the variation in the partial current for C-C bond formation predicted by our microkinetic model. The electrochemical model reported here is simple, fairly easy to implement, and involves only a small increase in computational cost over calculations neglecting the effects of the electrolyte and the applied field. Therefore, it can be used to study the effects of applied potential and electrolyte composition on the energetics of surface reactions for a wide variety of electrochemical reactions. PMID:27045040

  18. Ruthenium-Catalyzed Transfer Hydrogenation for C-C Bond Formation: Hydrohydroxyalkylation and Hydroaminoalkylation via Reactant Redox Pairs.

    PubMed

    Perez, Felix; Oda, Susumu; Geary, Laina M; Krische, Michael J

    2016-06-01

    Merging the chemistry of transfer hydrogenation and carbonyl or imine addition, a broad new family of redox-neutral or reductive hydrohydroxyalkylations and hydroaminomethylations have been developed. In these processes, hydrogen redistribution between alcohols and π-unsaturated reactants is accompanied by C-C bond formation, enabling direct conversion of lower alcohols to higher alcohols. Similarly, hydrogen redistribution between amines to π-unsaturated reactants results in direct conversion of lower amines to higher amines. Alternatively, equivalent products of hydrohydroxyalkylation and hydroaminomethylation may be generated through the reaction of carbonyl compounds or imines with π-unsaturated reactants under the conditions of 2-propanol-mediated reductive coupling. Finally, using vicinally dioxygenated reactants, that is, diol, ketols, or diones, successive transfer hydrogenative coupling occurs to generate 2 C-C bonds, resulting in products of formal [4+2] cycloaddition. PMID:27573275

  19. Gold-Catalyzed Oxidation of Propargylic Ethers with Internal C-C Triple Bonds: Impressive Regioselectivity Enabled by Inductive Effect

    PubMed Central

    Ji, Kegong; D’Souza, Brendan; Nelson, Jon; Zhang, Liming

    2014-01-01

    Inductive perturbations of C-C triple bonds are shown to dictate the regiochemistry of gold-catalyzed oxidation of internal C-C triple bonds in the cases of propargylic ethers, resulting in highly regioselective formation of β-alkoxy-α,β-unsaturated ketones (up to >50/1 selectivity) via α-oxo gold carbene intermediates. Ethers derived from primary propargylic alcohols can be reliably transformed in good yields, and various functional groups are tolerated. With substrates derived from secondary propargylic alcohols, the development of a new P,N-bidentate ligand enables the minimization of competing alkyl group migration to the gold carbene center over the desired hydride migration; the preferred migration of a phenyl group, however, results in efficient formation of a α-phenyl-β-alkoxy-α,β-unsaturated ketone. These results further advance the surrogacy of a propargyl moiety to synthetically versatile enone function with reliable and readily predictable regioselectivity. PMID:25284890

  20. The use of ultrasmall iron(0) nanoparticles as catalysts for the selective hydrogenation of unsaturated C-C bonds.

    PubMed

    Kelsen, Vinciane; Wendt, Bianca; Werkmeister, Svenja; Junge, Kathrin; Beller, Matthias; Chaudret, Bruno

    2013-04-28

    The performance of well-defined ultrasmall iron(0) nanoparticles (NPs) as catalysts for the selective hydrogenation of unsaturated C-C and C=X bonds is reported. Monodisperse iron nanoparticles of about 2 nm size are synthesized by the decomposition of {Fe(N[Si(CH3)3]2)2}2 under dihydrogen. They are found to be active for the hydrogenation of various alkenes and alkynes under mild conditions and weakly active for C=O bond hydrogenation. PMID:23505625

  1. Raman spectroscopic determination of the length, strength, compressibility, Debye temperature, elasticity, and force constant of the C-C bond in graphene.

    PubMed

    Yang, X X; Li, J W; Zhou, Z F; Wang, Y; Yang, L W; Zheng, W T; Sun, Chang Q

    2012-01-21

    From the perspective of bond relaxation and bond vibration, we have formulated the Raman phonon relaxation of graphene, under the stimuli of the number-of-layers, the uni-axial strain, the pressure, and the temperature, in terms of the response of the length and strength of the representative bond of the entire specimen to the applied stimuli. Theoretical unification of the measurements clarifies that: (i) the opposite trends of the Raman shifts, which are due to the number-of-layers reduction, of the G-peak shift and arises from the vibration of a pair of atoms, while the D- and the 2D-peak shifts involve the z-neighbor of a specific atom; (ii) the tensile strain-induced phonon softening and phonon-band splitting arise from the asymmetric response of the C(3v) bond geometry to the C(2v) uni-axial bond elongation; (iii) the thermal softening of the phonons originates from bond expansion and weakening; and (iv) the pressure stiffening of the phonons results from bond compression and work hardening. Reproduction of the measurements has led to quantitative information about the referential frequencies from which the Raman frequencies shift as well as the length, energy, force constant, Debye temperature, compressibility and elastic modulus of the C-C bond in graphene, which is of instrumental importance in the understanding of the unusual behavior of graphene. PMID:22105904

  2. Energy pulse bonding

    NASA Technical Reports Server (NTRS)

    Smith, G. C.

    1972-01-01

    To eliminate many of the present termination problems a technique called energy pulse bonding (EPB) was developed. The process demonstrated the capability of: (1) joining conductors without prior removal of insulations, (2) joining conductors without danger of brittle intermetallics, (3) increased joint temperature capability, (4) simultaneous formation of several bonds, (5) capability of higher joint density, and (6) a production oriented process. The following metals were successfully bonded in the solid state: copper, beryllium copper, phosphor bronze, aluminum, brass, and Kovar.

  3. Chemoselective Radical Dehalogenation and C-C Bond Formation on Aryl Halide Substrates Using Organic Photoredox Catalysts.

    PubMed

    Poelma, Saemi O; Burnett, G Leslie; Discekici, Emre H; Mattson, Kaila M; Treat, Nicolas J; Luo, Yingdong; Hudson, Zachary M; Shankel, Shelby L; Clark, Paul G; Kramer, John W; Hawker, Craig J; Read de Alaniz, Javier

    2016-08-19

    Despite the number of methods available for dehalogenation and carbon-carbon bond formation using aryl halides, strategies that provide chemoselectivity for systems bearing multiple carbon-halogen bonds are still needed. Herein, we report the ability to tune the reduction potential of metal-free phenothiazine-based photoredox catalysts and demonstrate the application of these catalysts for chemoselective carbon-halogen bond activation to achieve C-C cross-coupling reactions as well as reductive dehalogenations. This procedure works both for conjugated polyhalides as well as unconjugated substrates. We further illustrate the usefulness of this protocol by intramolecular cyclization of a pyrrole substrate, an advanced building block for a family of natural products known to exhibit biological activity. PMID:27276418

  4. Unlocking Hydrogenation for C-C Bond Formation: A Brief Overview of Enantioselective Methods

    PubMed Central

    Hassan, Abbas; Krische, Michael J.

    2011-01-01

    Hydrogenation of π-unsaturated reactants in the presence of carbonyl compounds or imines promotes reductive C-C coupling, providing a byproduct-free alternative to stoichiometric organometallic reagents in an ever-increasing range of C=X (X = O, NR) additions. Under transfer hydrogenation conditions, hydrogen exchange between alcohols and π-unsaturated reactants triggers generation of electrophile-nucleophile pairs, enabling carbonyl addition directly from the alcohol oxidation level, bypassing discrete alcohol oxidation and generation of stoichiometric byproducts. PMID:22125398

  5. Ceric ammonium nitrate (CAN) catalyzed modification of ketones via two C-C bond cleavages with the retention of the oxo-group.

    PubMed

    Feng, Peng; Sun, Xiang; Su, Yijin; Li, Xinyao; Zhang, Li He; Shi, Xiaodong; Jiao, Ning

    2014-06-20

    A simple ceric ammonium nitrate (CAN) catalyzed functionalization of ketones through double C-C bond cleavage strategy has been disclosed. This reaction provides a mild, practical method toward carbamoyl azides, which are versatile intermediates and building blocks in organic synthesis. Based on relevant mechanistic studies, a unique and plausible C-C bond and N-O bond cleavage process is proposed, where the oxyamination intermediate plays an important role in this reaction. PMID:24906031

  6. Molecular dynamics simulation of C-C bond scission in polyethylene and linear alkanes: effects of the condensed phase.

    PubMed

    Popov, Konstantin V; Knyazev, Vadim D

    2014-03-27

    The reaction of C-C bond scission in polyethylene chains of various lengths was studied using molecular dynamics under the conditions of vacuum and condensed phase (polymer melt). A method of assigning meaningful rate constant values to condensed-phase bond scission reactions based on a kinetic mechanism accounting for dissociation, reverse recombination, and diffusional separation of fragments was developed. The developed method accounts for such condensed-phase phenomena as cage effects and diffusion of the decay products away from the reaction site. The results of C-C scission simulations indicate that per-bond rate constants decrease by an order of magnitude as the density of the system increases from vacuum to the normal density of a polyethylene melt. Additional calculations were performed to study the dependence of the rate constant on the length of the polymer chain under the conditions of the condensed phase. The calculations demonstrate that the rate constant is independent of the degree of polymerization if polyethylene samples of different lengths are kept at the same pressure. However, if instead molecular systems of different polyethylene chain lengths decompose under the conditions of the same density, shorter chains result in higher pressures and lower rate constants. The observed effect is attributed to a higher degree of molecular crowding (lower fraction of free intermolecular space available for molecular motion) in the case of shorter molecules. PMID:24571517

  7. Ternary Electrocatalysts for Oxidizing Ethanol to Carbon Dioxide: Making Ir Capable of Splitting C-C bond

    SciTech Connect

    Li, Meng; Cullen, David A; Sasaki, Kotaro; Marinkovic, N.; More, Karren Leslie; Adzic, Radoslav R.

    2013-01-01

    Splitting the C-C bond is the main obstacle to electroxidation of ethanol (EOR) to CO2. We recently demonstrated that the ternary PtRhSnO2 electrocatalyst can accomplish that reaction at room temperature with Rh having a unique capability to split the C-C bond. In this article we report the finding that Ir can be induced to split the C-C bond as a component of the ternary catalyst. We synthesized, characterized and compared the properties of several ternary electrocatalysts. Carbon-supported nanoparticle (NP) electrocatalysts comprising a SnO2 NP core decorated with multi-metallic nanoislands (MM = PtIr, PtRh, IrRh, PtIrRh) were prepared using a seeded growth approach. An array of characterization techniques were employed to establish the composition and architecture of the synthesized MM /SnO2 NPs, while electrochemical and in situ infrared reflection absorption spectroscopy studies elucidated trends in activity and the nature of the reaction intermediates and products. Both EOR reactivity and selectivity towards CO2 formation of several of these MM /SnO2/C electrocatalysts are significantly higher compared to conventional Pt/C and Pt/SnO2/C catalysts. We demonstrate that the PtIr/SnO2/C catalyst with high Ir content shows outstanding catalytic property with the most negative EOR onset potential and reasonably good selectivity towards ethanol complete oxidation to CO2. PtRh/SnO2/C catalysts with a moderate Rh content exhibit the highest EOR selectivity, as deduced from infrared studies.

  8. Matching plasmon resonances to the C=C and C-H bonds in estradiol

    NASA Astrophysics Data System (ADS)

    Mbomson, Ifeoma G.; McMeekin, Scott; De La Rue, Richard; Johnson, Nigel P.

    2015-03-01

    We tune nanoantennas to resonate within mid-infrared wavelengths to match the vibrational resonances of C=C and C-H of the hormone estradiol. Modelling and fabrication of the nanoantennas produce plasmon resonances between 2 μm to 7 μm. The hormone estradiol was dissolved in ethanol and evaporated, leaving thickness of a few hundreds of nanometres on top of gold asymmetric split H-like shaped on a fused silica substrate. The reflectance was measured and a red-shift is recorded from the resonators plasmonic peaks. Fourier transform infrared spectroscopy is use to observe enhanced spectra of the stretching modes for the analyte which belongs to alkenyl biochemical group.

  9. Direct Construction of 4-Hydroxybenzils via Para-Selective C-C Bond Coupling of Phenols and Aryl Methyl Ketones.

    PubMed

    Xiang, Jia-Chen; Cheng, Yan; Wang, Miao; Wu, Yan-Dong; Wu, An-Xin

    2016-09-01

    A highly para-selective C-C bond coupling is presented between phenols C(sp(2)) and aryl methyl ketones C(sp(3)), which enables the direct construction of 4-hydroxybenzil derivatives. This practical method exhibits a broad substrate scope and large-scale applicability and represents a general gateway to the hydroxybenzil natural product family. Mechanistic investigations indicated that the combination of HI with DMSO realized the oxidative carbonylation of aryl methyl ketones, while boric acid acted as a dual-functional relay reagent to promote this transformation. PMID:27513164

  10. Cyanoalkylation: Alkylnitriles in Catalytic C-C Bond-Forming Reactions.

    PubMed

    López, Rosa; Palomo, Claudio

    2015-11-01

    Alkylnitriles are one of the most ubiquitous nitrogen-containing chemicals and are widely employed in reactions which result in nitrile-group conversion into other functionalities. Nevertheless, their use as carbon pronucleophiles in carbon-carbon bond-forming reactions has been hampered by difficulties associated mainly with the catalytic generation of active species, that is, α-cyano carbanions or metalated nitriles. Recent investigations have addressed this challenge and have resulted in different modes of alkylnitrile activation. This review illustrates these findings, which have set the foundation for the development of practical and conceptually new catalytic, direct cyanoalkylation methodologies. PMID:26387483

  11. Efficient C-C bond splitting on Pt monolayer and sub-monolayer catalysts during ethanol electro-oxidation: Pt layer strain and morphology effects.

    PubMed

    Loukrakpam, Rameshwori; Yuan, Qiuyi; Petkov, Valeri; Gan, Lin; Rudi, Stefan; Yang, Ruizhi; Huang, Yunhui; Brankovic, Stanko R; Strasser, Peter

    2014-09-21

    Efficient catalytic C-C bond splitting coupled with complete 12-electron oxidation of the ethanol molecule to CO2 is reported on nanoscale electrocatalysts comprised of a Pt monolayer (ML) and sub-monolayer (sML) deposited on Au nanoparticles (Au@Pt ML/sML). The Au@Pt electrocatalysts were synthesized using surface limited redox replacement (SLRR) of an underpotentially deposited (UPD) Cu monolayer in an electrochemical cell reactor. Au@Pt ML showed improved catalytic activity for ethanol oxidation reaction (EOR) and, unlike their Pt bulk and Pt sML counterparts, was able to generate CO2 at very low electrode potentials owing to efficient C-C bond splitting. To explain this, we explore the hypothesis that competing strain effects due to the Pt layer coverage/morphology (compressive) and the Pt-Au lattice mismatch (tensile) control surface chemisorption and overall activity. Control experiments on well-defined model Pt monolayer systems are carried out involving a wide array of methods such as high-energy X-ray diffraction, pair-distribution function (PDF) analysis, in situ electrochemical FTIR spectroscopy, and in situ scanning tunneling microscopy. The vibrational fingerprints of adsorbed CO provide compelling evidence on the relation between surface bond strength, layer strain and morphology, and catalytic activity. PMID:25081353

  12. Intramolecular Interaction, Photoisomerization, and Mechanical C-C Bond Dissociation of 1,2-Di(9-anthryl)benzene and Its Photoisomer: A Fundamental Moiety of Anthracene-Based π-Cluster Molecules.

    PubMed

    Nishiuchi, Tomohiko; Uno, Shin-Ya; Hirao, Yasukazu; Kubo, Takashi

    2016-03-01

    We report variable and unique properties of 1,2-di(9-anthryl)benzene 1 as a fundamental moiety of anthracene-based π-cluster molecules. Due to a through-space π-conjugation between anthracene units, excimer emission at room temperature and charge delocalized state in radical cation state of 1 could be observed. Photoirradiation to 1 afforded an intramolecular [4 + 4] cyclized anthracene dimer 1' having a high strain energy with long C-C bond that exceeded 1.68 Å, resulting in C-C bond dissociation by simple mechanical grinding. PMID:26828776

  13. Rh(III)-Catalyzed Synthesis of N-Unprotected Indoles from Imidamides and Diazo Ketoesters via C-H Activation and C-C/C-N Bond Cleavage.

    PubMed

    Qi, Zisong; Yu, Songjie; Li, Xingwei

    2016-02-19

    The synthesis of N-unprotected indoles has been realized via Rh(III)-catalyzed C-H activation/annulation of imidamides with α-diazo β-ketoesters. The reaction occurs with the release of an amide coproduct, which originates from both the imidamide and the diazo as a result of C═N cleavage of the imidamide and C-C(acyl) cleavage of the diazo. A rhodacyclic intermediate has been isolated and a plausible mechanism has been proposed. PMID:26824751

  14. Palladium(ii)-catalyzed C-C and C-O bond formation for the synthesis of C1-benzoyl isoquinolines from isoquinoline N-oxides and nitroalkenes.

    PubMed

    Li, Jiu-Ling; Li, Wei-Ze; Wang, Ying-Chun; Ren, Qiu; Wang, Heng-Shan; Pan, Ying-Ming

    2016-08-01

    C1-Benzoyl isoquinolines can be generated via a palladium(ii)-catalyzed C-C and C-O coupling of isoquinoline N-oxides with aromatic nitroalkenes. The reaction proceeds through remote C-H bond activation and subsequent intramolecular oxygen atom transfer (OAT). In this reaction, the N-O bond was designed as a directing group in the C-H bond activation as well as the source of an oxygen atom. PMID:27443150

  15. Bonding and Integration of C-C Composite to Cu-Clad-Molybdenum for Thermal Management Applications

    NASA Technical Reports Server (NTRS)

    Asthana, R.; Singh, M.; Shpargel, T.P.

    2008-01-01

    Two- and three-dimensional carbon-carbon composites with either resin-derived matrix or CVI matrix were joined to Cu-clad-Mo using active Ag-Cu braze alloys for thermal management applications. The joint microstructure and composition were examined using Field-Emission Scanning Electron Microscopy and Energy-Dispersive Spectroscopy, and the joint hardness was characterized using the Knoop microhardness testing. Observations on the infiltration of the composite with molten braze, dissolution of metal substrate, and solute segregation at the C-C surface have been discussed. The thermal response of the integrated assembly is also briefly discussed.

  16. Theoretical study of the bond dissociation energies of methanol

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Walch, Stephen P.

    1992-01-01

    A theoretical study of the bond dissociation energies for H2O and CH3OH is presented. The C-H and O-H bond energies are computed accurately with the modified coupled-pair functional method using a large basis set. For these bonds, an accuracy of +/- 2 kcal/mol is achieved, which is consistent with the C-H and C-C single bond energies of other molecules. The C-O bond is much more difficult to compute accurately because it requires higher levels of correlation treatment and more extensive one-particle basis sets.

  17. Active Metal Brazing and Adhesive Bonding of Titanium to C/C Composites for Heat Rejection System

    NASA Technical Reports Server (NTRS)

    Singh, M.; Shpargel, Tarah; Cerny, Jennifer

    2006-01-01

    Robust assembly and integration technologies are critically needed for the manufacturing of heat rejection system (HRS) components for current and future space exploration missions. Active metal brazing and adhesive bonding technologies are being assessed for the bonding of titanium to high conductivity Carbon-Carbon composite sub components in various shapes and sizes. Currently a number of different silver and copper based active metal brazes and adhesive compositions are being evaluated. The joint microstructures were examined using optical microscopy, and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). Several mechanical tests have been employed to ascertain the effectiveness of different brazing and adhesive approaches in tension and in shear that are both simple and representative of the actual system and relatively straightforward in analysis. The results of these mechanical tests along with the fractographic analysis will be discussed. In addition, advantages, technical issues and concerns in using different bonding approaches will also be presented.

  18. Influence of sulfur addition and S-induced wall catalytic effect on C-C bond cleavage and aromatics hydrogenation

    SciTech Connect

    Schmidt, E.; Song, C.; Schobert, H.H.

    1995-12-31

    Catalytic hydrocracking of 4-(-1-naphthylmethyl)bibenzyl NMBB predominately yielded naphthalene and 4-methylbibenzyl. Sulfur addition to most catalyst precursors lead to substantially higher catalyst activity and subsequently higher conversion. In order to clarify the effect of sulfur alone on model compound conversion, NMBB was treated with sulfur in concentrations of 1.2 to 3.4 wt%, corresponding to conditions present in catalytic runs with sulfur. It was found that increasing sulfur concentrations leads to higher NMBB conversion. Furthermore, sulfur had a permanent influence on the reactor walls. It reacted with the transition metals in the steel to form a microscopic black iron sulfide layer on the surface, which could not be removed mechanically. The {open_quotes}non catalytic{close_quotes} runs after experiments with added sulfur yielded higher conversion than normal runs with new reactors. This {open_quotes}wall catalytic effect{close_quotes} can be reduced by treating sulfided reactors with hydrochloric acid for a short period of time and subsequent immersing into a base bath over night. These results demonstrate the significant influence of sulfur addition and S-induced residual wall-effect on C-C bond cleavage and hydrogenation of aromatics in batch reactors.

  19. Influence of sulfur addition and S-induced wall catalytic effects on C-C bond cleavage and aromatics hydrogenation

    SciTech Connect

    Schmidt, E.; Song, Chunshan; Schobert, H.H.

    1995-12-31

    Catalytic hydrocracking of 4-(1-naphthylmethyl)bibenzyl, designated as NMBB, predominately yielded naphthalene and 4-methylbibenzyl. Sulfur addition to most catalyst precursors lead to substantially higher catalyst activity and subsequently higher conversion. NMBB was also treated with sulfur alone in the absence of catalysts in concentrations of 1.2 to 3.4 wt, corresponding to conditions present in catalytic runs with added sulfur to precursors. It was found that increasing sulfur concentrations lead to higher NMBB conversion. Furthermore, sulfur had a permanent influence on the reactor walls. It reacted with the transition metals in the stainless steel to form a microscopic black iron sulfide layer on the surface, which could not be removed mechanically. The {open_quotes}non-catalytic{close_quotes} runs which were done after experiments with added sulfur yielded higher conversions than normal runs done in new reactors. This {open_quotes}wall catalytic effect{close_quotes} can be reduced by treating sulfided reactors with hydrochloric acid for a short period of time and subsequent immersing into a base bath overnight. These results demonstrate the significant influence of sulfur addition and S-induced residual wall-effect on C-C bond cleavage and hydrogenation of aromatics in batch reactors.

  20. A DFT study on the NHC catalysed Michael addition of enols to α,β-unsaturated acyl-azoliums. A base catalysed C-C bond-formation step.

    PubMed

    Domingo, Luis R; Sáez, José A; Arnó, Manuel

    2014-02-14

    The NHC catalysed nucleophilic additions of enols to α,β-unsaturated acyl-azolium intermediates have been investigated using DFT methods at the MPWB1K/6-31G** computational level. In the direct and the conjugate additions, formation of a hydrogen bond (HB) with the carboxyl oxygen is not sufficient to favour the C-C bond formation as a consequence of the low nucleophilic character of enols. Interestingly, when enols form a HB with the chloride counterion, the activation energies associated with the conjugate addition decrease as a consequence of the increased nucleophilic character of enols and the increased electrophilic character of the 'acyl-azolium + Cl' ion pair. Analysis of the DFT reactivity indices allows establishing a base catalysed C-C bond-formation step promoted by the chloride counterion. PMID:24343422

  1. C-H Bond activation and C-C bond formation in the reaction of 2,5-dimethylthiophene with TpMe2Ir compounds.

    PubMed

    Paneque, Margarita; Poveda, Manuel L; Carmona, Ernesto; Salazar, Verónica

    2005-04-21

    The bulky 2,5-dimethylthiophene (2,5-Me2T) reacts at 60 degrees C with TpMe2Ir(C2H4)2 to give a mixture of two TpMe2Ir(III) hydride products, 3 and 4, that contain in addition a thienyl (3) or a thienyl-derived ligand (4). For the generation of 3 only sp2 C-H activation is needed, but the formation of 4 requires also the activation of an sp3 C-H bond and the formation of a new C-C bond (between vinyl and thienyl fragments). In the presence of 2,5-Me2T, compound 4 reacts further to produce a complex thiophenic structure (5, characterized by X-ray methods) that derives formally from two molecules of 2,5-Me2T and a vinyl fragment. Compounds 3-5 can be readily protonated by [H(OEt2)2][BAr'4](Ar'= 3,5-C6H3(CF3)2), with initial generation of carbene ligands (in the case of 3 and 5) as a consequence of H+ attack at the beta-carbon of the Ir-thienyl unit. Free, substituted thiophenes, derived from the original 2,5-Me2T, may be isolated in this way. PMID:15824780

  2. Bond energy analysis revisited and designed toward a rigorous methodology

    NASA Astrophysics Data System (ADS)

    Nakai, Hiromi; Ohashi, Hideaki; Imamura, Yutaka; Kikuchi, Yasuaki

    2011-09-01

    The present study theoretically revisits and numerically assesses two-body energy decomposition schemes including a newly proposed one. The new decomposition scheme is designed to make the equilibrium bond distance equivalent with the minimum point of bond energies. Although the other decomposition schemes generally predict the wrong order of the C-C bond strengths of C2H2, C2H4, and C2H6, the new decomposition scheme is capable of reproducing the C-C bond strengths. Numerical assessment on a training set of molecules demonstrates that the present scheme exhibits a stronger correlation with bond dissociation energies than the other decomposition schemes do, which suggests that the new decomposition scheme is a reliable and powerful analysis methodology.

  3. Metal-catalyzed C-C bond cleavage in alkanes: effects of methyl substitution on transition-state structures and stability.

    PubMed

    Flaherty, David W; Hibbitts, David D; Iglesia, Enrique

    2014-07-01

    Methyl substituents at C-C bonds influence hydrogenolysis rates and selectivities of acyclic and cyclic C2-C8 alkanes on Ir, Rh, Ru, and Pt catalysts. C-C cleavage transition states form via equilibrated dehydrogenation steps that replace several C-H bonds with C-metal bonds, desorb H atoms (H*) from saturated surfaces, and form λ H2(g) molecules. Activation enthalpies (ΔH(‡)) and entropies (ΔS(‡)) and λ values for (3)C-(x)C cleavage are larger than for (2)C-(2)C or (2)C-(1)C bonds, irrespective of the composition of metal clusters or the cyclic/acyclic structure of the reactants. (3)C-(x)C bonds cleave through α,β,γ- or α,β,γ,δ-bound transition states, as indicated by the agreement between measured activation entropies and those estimated for such structures using statistical mechanics. In contrast, less substituted C-C bonds involve α,β-bound species with each C atom bound to several surface atoms. These α,β configurations weaken C-C bonds through back-donation to antibonding orbitals, but such configurations cannot form with (3)C atoms, which have one C-H bond and thus can form only one C-M bond. (3)C-(x)C cleavage involves attachment of other C atoms, which requires endothermic C-H activation and H* desorption steps that lead to larger ΔH(‡) values but also larger ΔS(‡) values (by forming more H2(g)) than for (2)C-(2)C and (2)C-(1)C bonds, irrespective of alkane size (C2-C8) or cyclic/acyclic structure. These data and their mechanistic interpretation indicate that low temperatures and high H2 pressures favor cleavage of less substituted C-C bonds and form more highly branched products from cyclic and acyclic alkanes. Such interpretations and catalytic consequences of substitution seem also relevant to C-X cleavage (X = S, N, O) in desulfurization, denitrogenation, and deoxygenation reactions. PMID:24961991

  4. Stereoselective Halogenation of Integral Unsaturated C-C Bonds in Chemically and Mechanically Robust Zr and Hf MOFs.

    PubMed

    Marshall, Ross J; Griffin, Sarah L; Wilson, Claire; Forgan, Ross S

    2016-03-24

    Metal-organic frameworks (MOFs) containing Zr(IV) -based secondary building units (SBUs), as in the UiO-66 series, are receiving widespread research interest due to their enhanced chemical and mechanical stabilities. We report the synthesis and extensive characterisation, as both bulk microcrystalline and single crystal forms, of extended UiO-66 (Zr and Hf) series MOFs containing integral unsaturated alkene, alkyne and butadiyne units, which serve as reactive sites for postsynthetic modification (PSM) by halogenation. The water stability of a Zr-stilbene MOF allows the dual insertion of both -OH and -Br groups in a single, aqueous bromohydrination step. Quantitative bromination of alkyne- and butadiyne-containing MOFs is demonstrated to be stereoselective, as a consequence of the linker geometry when bound in the MOFs, while the inherent change in hybridisation and geometry of integral linker atoms is facilitated by the high mechanical stabilities of the MOFs, allowing bromination to be characterised in a single-crystal to single-crystal (SCSC) manner. The facile addition of bromine across the unsaturated C-C bonds in the MOFs in solution is extended to irreversible iodine sequestration in the vapour phase. A large-pore interpenetrated Zr MOF demonstrates an I2 storage capacity of 279 % w/w, through a combination of chemisorption and physisorption, which is comparable to the highest reported capacities of benchmark iodine storage materials for radioactive I2 sequestration. We expect this facile PSM process to not only allow trapping of toxic vapours, but also modulate the mechanical properties of the MOFs. PMID:26916707

  5. A facile C-C bond cleavage in the epoxides and its use for the synthesis of oxygenated heterocycles by a ring expansion strategy.

    PubMed

    Lakshmipathi, Pandarinathan; Grée, Danielle; Grée, René

    2002-02-01

    The bicyclic epoxy alcohols when treated with DAST gave a new class of rearranged organofluorine compounds, by a ring expansion via C-C bond cleavage of the oxirane ring. The outcome of this reaction with respect to ring size and stereochemical relation between the functionalities is presented here. PMID:11820902

  6. Rhodium-catalyzed oxidative coupling of triarylmethanols with internal alkynes via successive C-H and C-C bond cleavages.

    PubMed

    Uto, Toshihiko; Shimizu, Masaki; Ueura, Kenji; Tsurugi, Hayato; Satoh, Tetsuya; Miura, Masahiro

    2008-01-01

    The rhodium-catalyzed oxidative coupling of triarylmethanols with internal alkynes effectively proceeds in a 1:2 manner via cleavage of C-H and C-C bonds to produce the corresponding naphthalene derivatives. Addition of tri- or tetraphenylcyclopentadiene as a ligand is crucial for the reaction to occur efficiently. PMID:18052297

  7. A Selective Rh(I) -Catalyzed Substrate-Controlled C-C Bond Activation of Benzyl Sulfonamide/Alcohol-Tethered Alkylidenecyclopropanes.

    PubMed

    Chen, Kai; Liu, Jia-Xin; Tang, Xiang-Ying; Shi, Min

    2016-08-01

    Benzyl sulfonamide/alcohol-tethered alkylidenecyclopropanes undergo a rhodium-catalyzed and substrate-controlled selective C-C bond activation, producing three types of common organic structural units: benzo[c]azepine/oxepines, dihydronaphthalen-1-amines, and conjugated dienes. Epoxidation and aromatization of these products to construct two useful compounds have also been achieved. PMID:27305281

  8. Catalytic constructive deoxygenation of lignin-derived phenols: new C-C bond formation processes from imidazole-sulfonates and ether cleavage reactions.

    PubMed

    Leckie, Stuart M; Harkness, Gavin J; Clarke, Matthew L

    2014-10-01

    As part of a programme aimed at exploiting lignin as a chemical feedstock for less oxygenated fine chemicals, several catalytic C-C bond forming reactions utilising guaiacol imidazole sulfonate are demonstrated. These include the cross-coupling of a Grignard, a non-toxic cyanide source, a benzoxazole, and nitromethane. A modified Meyers reaction is used to accomplish a second constructive deoxygenation on a benzoxazole functionalised anisole. PMID:25130565

  9. NAD(P)H-Independent Asymmetric C=C Bond Reduction Catalyzed by Ene Reductases by Using Artificial Co-substrates as the Hydrogen Donor

    PubMed Central

    Winkler, Christoph K; Clay, Dorina; Entner, Marcello; Plank, Markus; Faber, Kurt

    2014-01-01

    To develop a nicotinamide-independent single flavoenzyme system for the asymmetric bioreduction of C=C bonds, four types of hydrogen donor, encompassing more than 50 candidates, were investigated. Six highly potent, cheap, and commercially available co-substrates were identified that (under the optimized conditions) resulted in conversions and enantioselectivities comparable with, or even superior to, those obtained with traditional two-enzyme nicotinamide adenine dinucleotide phosphate (NAD(P)H)-recycling systems. PMID:24382795

  10. Selectfluor-Mediated Simultaneous Cleavage of C-O and C-C Bonds in α,β-Epoxy Ketones Under Transition-Metal-Free Conditions: A Route to 1,2-Diketones.

    PubMed

    Wang, Heng; Ren, Shaobo; Zhang, Jian; Zhang, Wei; Liu, Yunkui

    2015-07-01

    Selectfluor-mediated simultaneous cleavage of C-O and C-C bonds in α,β-epoxy ketones has been successfully achieved under transition-metal-free conditions. The reaction gives 1,2-diketone compounds in moderate to good yields involving a ring-opening/benzoyl rearrangement/C-C bond cleavage sequence under oxidative conditions. PMID:26050519

  11. Chlorine atom-initiated low-temperature oxidation of prenol and isoprenol: The effect of C=C double bonds on the peroxy radical chemistry in alcohol oxidation

    DOE PAGESBeta

    Welz, Oliver; Savee, John D.; Osborn, David L.; Taatjes, Craig A.

    2014-07-04

    The chlorine atom-initiated oxidation of two unsaturated primary C5 alcohols, prenol (3-methyl-2-buten-1-ol, (CH3)2CCHCH2OH) and isoprenol (3-methyl-3-buten-1-ol, CH2C(CH3)CH2CH2OH), is studied at 550 K and low pressure (8 Torr). The time- and isomer-resolved formation of products is probed with multiplexed photoionization mass spectrometry (MPIMS) using tunable vacuum ultraviolet ionizing synchrotron radiation. The peroxy radical chemistry of the unsaturated alcohols appears much less rich than that of saturated C4 and C5 alcohols. The main products observed are the corresponding unsaturated aldehydes – prenal (3-methyl-2-butenal) from prenol oxidation and isoprenal (3-methyl-3-butenal) from isoprenol oxidation. No significant products arising from QOOH chemistry are observed. Thesemore » results can be qualitatively explained by the formation of resonance stabilized allylic radicals via H-abstraction in the Cl + prenol and Cl + isoprenol initiation reactions. The loss of resonance stabilization upon O2 addition causes the energies of the intermediate wells, saddle points, and products to increase relative to the energy of the initial radicals and O2. These energetic shifts make most product channels observed in the peroxy radical chemistry of saturated alcohols inaccessible for these unsaturated alcohols. The experimental findings are underpinned by quantum-chemical calculations for stationary points on the potential energy surfaces for the reactions of the initial radicals with O2. Under our conditions, the dominant channels in prenol and isoprenol oxidation are the chain-terminating HO2-forming channels arising from radicals, in which the unpaired electron and the –OH group are on the same carbon atom, with stable prenal and isoprenal co-products, respectively. These results suggest that the presence of C=C double bonds in alcohols will reduce low-temperature reactivity during autoignition.« less

  12. Theoretical insights into how the first C-C bond forms in the methanol-to-olefin process catalysed by HSAPO-34.

    PubMed

    Peng, Chao; Wang, Haifeng; Hu, P

    2016-05-25

    We report here a comprehensive understanding of the first C-C coupling during the induction period of the methanol-to-olefin process using density functional theory with the HSE06 hybrid functional. We illustrate the possible routes of formation for the active carbenium ion (CH3OCH2(+)), which has been identified to play an important part in triggering the formation of the first C-C bond and the hydrocarbon pool species. CH3OCH2(+) can be generated not only from dimethyl ether and Z(O)-CH3, but also from the reaction of HCHO and Z(O)-CH3, which has a lower effective barrier. An understanding of the dominance of CH3OCH2(+) over other carbocations and direct C-C coupling pathways is presented and quantitatively analysed. The charge distribution in the formation of CH3OCH2(+) is revealed and it is confirmed that the carbenium ion is thermodynamically more favoured than the radical. The subsequent reaction after the first C-C coupling was investigated, which uncovered some important active C2 species that possibly led to the formation of the active hydrocarbon pool intermediates and may finally realize the catalytic cycle. PMID:27173579

  13. Diversification of ortho-Fused Cycloocta-2,5-dien-1-one Cores and Eight- to Six-Ring Conversion by σ Bond C-C Cleavage.

    PubMed

    Eccleshare, Lee; Lozada-Rodríguez, Leticia; Cooper, Phillippa; Burroughs, Laurence; Ritchie, John; Lewis, William; Woodward, Simon

    2016-08-22

    Sequential treatment of 2-C6 H4 Br(CHO) with LiC≡CR(1) (R(1) =SiMe3 , tBu), nBuLi, CuBr⋅SMe2 and HC≡CCHClR(2) [R(2) =Ph, 4-CF3 Ph, 3-CNPh, 4-(MeO2 C)Ph] at -50 °C leads to formation of an intermediate carbanion (Z)-1,2-C6 H4 {CA (=O)C≡CB R(1) }{CH=CH(CH(-) )R(2) } (4). Low temperatures (-50 °C) favour attack at CB leading to kinetic formation of 6,8-bicycles containing non-classical C-carbanion enolates (5). Higher temperatures (-10 °C to ambient) and electron-deficient R(2) favour retro σ-bond C-C cleavage regenerating 4, which subsequently closes on CA providing 6,6-bicyclic alkoxides (6). Computational modelling (CBS-QB3) indicated that both pathways are viable and of similar energies. Reaction of 6 with H(+) gave 1,2-dihydronaphthalen-1-ols, or under dehydrating conditions, 2-aryl-1-alkynylnaphthlenes. Enolates 5 react in situ with: H2 O, D2 O, I2 , allylbromide, S2 Me2 , CO2 and lead to the expected C-E derivatives (E=H, D, I, allyl, SMe, CO2 H) in 49-64 % yield directly from intermediate 5. The parents (E=H; R(1) =SiMe3 , tBu; R(2) =Ph) are versatile starting materials for NaBH4 and Grignard C=O additions, desilylation (when R(1) =SiMe) and oxime formation. The latter allows formation of 6,9-bicyclics via Beckmann rearrangement. The 6,8-ring iodides are suitable Suzuki precursors for Pd-catalysed C-C coupling (81-87 %), whereas the carboxylic acids readily form amides under T3P® conditions (71-95 %). PMID:27452351

  14. Stability of the C-C covalent bonds in fullerenes in the solid body-vapor structure during the thermodynamic action by a quasi-pulsed electron beam

    NASA Astrophysics Data System (ADS)

    Semenov, A. P.; Semenova, I. A.; Churilov, G. N.

    2015-04-01

    The explosive evaporation of a fullerene mixture in a vacuum of ˜10-2 Pa during the contraction of a 1-kW hollow electron beam into a spot on a substrate in a time of 0.1-1 s is considered. A comparative analysis of the Raman spectra and the absorption electron spectra of a starting fullerene mixture powder and the vapor condensates shows that the evaporation of C60 and C70 fullerenes proceeds without breaking C-C covalent bonds.

  15. Splitting a Substrate into Three Parts: Gold-Catalyzed Nitrogenation of Alkynes by C-C and C≡C Bond Cleavage.

    PubMed

    Qin, Chong; Su, Yijin; Shen, Tao; Shi, Xiaodong; Jiao, Ning

    2016-01-01

    A gold-catalyzed nitrogenation of alkynes for the synthesis of carbamides and amino tetrazoles through C-C and C≡C bond cleavages is described. A diverse set of functionalized carbamide and amino tetrazole derivatives were selectively constructed under mild conditions. The chemoselectivity can be easily switched by the selection of the acid additives. The reaction is characterized by its broad substrate scope, direct construction of high value products, easy operation under air, and mild conditions at room temperature. This chemistry provides a way to transform alkynes by splitting the substrate into three parts. PMID:26494539

  16. Unique properties of C,C'-linked nido-biscarborane tetraanions. Synthesis, structure and bonding of ruthenium monocarbollide via unprecedented cage carbon extrusion.

    PubMed

    Zhao, Da; Zhang, Jiji; Lin, Zhenyang; Xie, Zuowei

    2016-08-21

    Four reaction pathways have been found in the reaction of a C,C'-linked nido-biscarborane tetraanionic salt with [Ru(p-cymene)Cl2]2, leading to the isolation and structural characterization of redox, triple cage B-H oxidative addition, cage expansion and cage carbon extrusion products. Among these, the unprecedented cage carbon extrusion results in the formation of a new 6π-electron carboranyl ligand [C2B10H10](2-). The bonding interactions between this ligand and the Ru(ii) center have also been discussed on the basis of DFT calculations. PMID:27405999

  17. C-C Bond Formation: Synthesis of C5 Substituted Pyrimidine and C8 Substituted Purine Nucleosides Using Water Soluble Pd-imidate Complex.

    PubMed

    Gayakhe, Vijay; Ardhapure, Ajaykumar V; Kapdi, Anant R; Sanghvi, Yogesh S; Serrano, Jose Luis; Schulzke, Carola

    2016-01-01

    The synthesis of a highly efficient, water soluble [Pd(Sacc)2 (TPA)2 ] complex for C-C bond formation is described. Additionally, application of the [Pd(Sacc)2 (TPA)2 ] complex for Suzuki-Miyaura arylation of all four nucleosides (5-iodo-2'-deoxyuridine [5-IdU], 5-iodo-2'-deoxycytidine [5-IdC], 8-bromo-2'-deoxyadenosine, and 8-bromo-2'-deoxyguanosine) with various aryl/heteroaryl boronic acids in plain water under milder conditions is demonstrated. © 2016 by John Wiley & Sons, Inc. PMID:27248782

  18. Iron-promoted C-C bond cleavage of 1,3-diketones: a route to 1,2-diketones under mild reaction conditions.

    PubMed

    Huang, Lehao; Cheng, Kai; Yao, Bangben; Xie, Yongju; Zhang, Yuhong

    2011-07-15

    A conceptual method for the preparation of 1,2-diketones is reported. The selective C-C bond cleavage of 1,3-diketones affords the 1,2-diketones in high yields under mild reaction conditions in air by the use of FeCl(3) as the catalyst and tert-butyl nitrite (TBN) as the oxidant without the use of solvent. The possible reaction mechanism is discussed. This protocol provides an expeditious route to the useful 1,2-diketones. PMID:21627329

  19. Synthesis of Indolizines through Oxidative Linkage of C-C and C-N Bonds from 2-Pyridylacetates.

    PubMed

    Mohan, Darapaneni Chandra; Ravi, Chitrakar; Pappula, Venkatanarayana; Adimurthy, Subbarayappa

    2015-07-01

    Synthesis of indolizine-1-carboxylates through the Ortoleva-King reaction of 2-pyridylacetate followed by the Aldol condensation under mild reaction conditions has been described. This protocol is compatible with a broad range of functional groups, and it has been also successfully extended to unsaturated ketones, bringing about the regioselective formation of benzoyl-substituted indolizines through Michael addition followed by C-N bond formation, which are difficult to prepare by previous methods in a single step. PMID:26044904

  20. Chlorine atom-initiated low-temperature oxidation of prenol and isoprenol: The effect of C=C double bonds on the peroxy radical chemistry in alcohol oxidation

    SciTech Connect

    Welz, Oliver; Savee, John D.; Osborn, David L.; Taatjes, Craig A.

    2014-07-04

    The chlorine atom-initiated oxidation of two unsaturated primary C5 alcohols, prenol (3-methyl-2-buten-1-ol, (CH3)2CCHCH2OH) and isoprenol (3-methyl-3-buten-1-ol, CH2C(CH3)CH2CH2OH), is studied at 550 K and low pressure (8 Torr). The time- and isomer-resolved formation of products is probed with multiplexed photoionization mass spectrometry (MPIMS) using tunable vacuum ultraviolet ionizing synchrotron radiation. The peroxy radical chemistry of the unsaturated alcohols appears much less rich than that of saturated C4 and C5 alcohols. The main products observed are the corresponding unsaturated aldehydes – prenal (3-methyl-2-butenal) from prenol oxidation and isoprenal (3-methyl-3-butenal) from isoprenol oxidation. No significant products arising from QOOH chemistry are observed. These results can be qualitatively explained by the formation of resonance stabilized allylic radicals via H-abstraction in the Cl + prenol and Cl + isoprenol initiation reactions. The loss of resonance stabilization upon O2 addition causes the energies of the intermediate wells, saddle points, and products to increase relative to the energy of the initial radicals and O2. These energetic shifts make most product channels observed in the peroxy radical chemistry of saturated alcohols inaccessible for these unsaturated alcohols. The experimental findings are underpinned by quantum-chemical calculations for stationary points on the potential energy surfaces for the reactions of the initial radicals with O2. Under our conditions, the dominant channels in prenol and isoprenol oxidation are the chain-terminating HO2-forming channels arising from radicals, in which the unpaired electron and the –OH group are on the same carbon atom, with stable prenal and isoprenal co-products, respectively. These results suggest that the presence of C=C double bonds in alcohols will reduce

  1. A Novel Strategy for Biomass Upgrade: Cascade Approach to the Synthesis of Useful Compounds via C-C Bond Formation Using Biomass-Derived Sugars as Carbon Nucleophiles.

    PubMed

    Yamaguchi, Sho; Baba, Toshihide

    2016-01-01

    Due to the depletion of fossil fuels, biomass-derived sugars have attracted increasing attention in recent years as an alternative carbon source. Although significant advances have been reported in the development of catalysts for the conversion of carbohydrates into key chemicals (e.g., degradation approaches based on the dehydration of hydroxyl groups or cleavage of C-C bonds via retro-aldol reactions), only a limited range of products can be obtained through such processes. Thus, the development of a novel and efficient strategy targeted towards the preparation of a range of compounds from biomass-derived sugars is required. We herein describe the highly-selective cascade syntheses of a range of useful compounds using biomass-derived sugars as carbon nucleophiles. We focus on the upgrade of C2 and C3 oxygenates generated from glucose to yield useful compounds via C-C bond formation. The establishment of this novel synthetic methodology to generate valuable chemical products from monosaccharides and their decomposed oxygenated materials renders carbohydrates a potential alternative carbon resource to fossil fuels. PMID:27447603

  2. Reactivity of biomimetic iron(II)-2-aminophenolate complexes toward dioxygen: mechanistic investigations on the oxidative C-C bond cleavage of substituted 2-aminophenols.

    PubMed

    Chakraborty, Biswarup; Bhunya, Sourav; Paul, Ankan; Paine, Tapan Kanti

    2014-05-19

    The isolation and characterization of a series of iron(II)-2-aminophenolate complexes [(6-Me3-TPA)Fe(II)(X)](+) (X = 2-amino-4-nitrophenolate (4-NO2-HAP), 1; X = 2-aminophenolate (2-HAP), 2; X = 2-amino-3-methylphenolate (3-Me-HAP), 3; X = 2-amino-4-methylphenolate (4-Me-HAP), 4; X = 2-amino-5-methylphenolate (5-Me-HAP), 5; X = 2-amino-4-tert-butylphenolate (4-(t)Bu-HAP), 6 and X = 2-amino-4,6-di-tert-butylphenolate (4,6-di-(t)Bu-HAP), 7) and an iron(III)-2-amidophenolate complex [(6-Me3-TPA)Fe(III)(4,6-di-(t)Bu-AP)](+) (7(Ox)) supported by a tripodal nitrogen ligand (6-Me3-TPA = tris(6-methyl-2-pyridylmethyl)amine) are reported. Substituted 2-aminophenols were used to prepare the biomimetic iron(II) complexes to understand the effect of electronic and structural properties of aminophenolate rings on the dioxygen reactivity and on the selectivity of C-C bond cleavage reactions. Crystal structures of the cationic parts of 5·ClO4 and 7·BPh4 show six-coordinate iron(II) centers ligated by a neutral tetradentate ligand and a monoanionic 2-aminophenolate in a bidentate fashion. While 1·BPh4 does not react with oxygen, other complexes undergo oxidative transformation in the presence of dioxygen. The reaction of 2·ClO4 with dioxygen affords 2-amino-3H-phenoxazin-3-one, an auto-oxidation product of 2-aminophenol, whereas complexes 3·BPh4, 4·BPh4, 5·ClO4 and 6·ClO4 react with O2 to exhibit C-C bond cleavage of the bound aminophenolates. Complexes 7·ClO4 and 7(Ox)·BPh4 produce a mixture of 4,6-di-tert-butyl-2H-pyran-2-imine and 4,6-di-tert-butyl-2-picolinic acid. Labeling experiments with (18)O2 show the incorporation of one oxygen atom from dioxygen into the cleavage products. The reactivity (and stability) of the intermediate, which directs the course of aromatic ring cleavage reaction, is found to be dependent on the nature of ring substituent. The presence of two tert-butyl groups on the aminophenolate ring in 7·ClO4 makes the complex slow to cleave the C-C

  3. Three methods to measure RH bond energies

    SciTech Connect

    Berkowitz, J.; Ellison, G.B.; Gutman, D.

    1993-03-21

    In this paper the authors compare and contrast three powerful methods for experimentally measuring bond energies in polyatomic molecules. The methods are: radical kinetics; gas phase acidity cycles; and photoionization mass spectroscopy. The knowledge of the values of bond energies are a basic piece of information to a chemist. Chemical reactions involve the making and breaking of chemical bonds. It has been shown that comparable bonds in polyatomic molecules, compared to the same bonds in radicals, can be significantly different. These bond energies can be measured in terms of bond dissociation energies.

  4. C-H activation and C=C double bond formation reactions in iridium ortho-methyl arylphosphane complexes.

    PubMed

    Baratta, Walter; Ballico, Maurizio; Del Zotto, Alessandro; Zangrando, Ennio; Rigo, Pierluigi

    2007-01-01

    The Vaska-type iridium(I) complex [IrCl(CO){PPh(2)(2-MeC(6)H(4))}(2)] (1), characterized by an X-ray diffraction study, was obtained from iridium(III) chloride hydrate and PPh(2)(2,6-MeRC(6)H(3)) with R=H in DMF, whereas for R=Me, activation of two ortho-methyl groups resulted in the biscyclometalated iridium(III) compound [IrCl(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}(2)] (2). Conversely, for R=Me the iridium(I) compound [IrCl(CO){PPh(2)(2,6-Me(2)C(6)H(3))}(2)] (3) can be obtained by treatment of [IrCl(COE)(2)](2) (COE=cyclooctene) with carbon monoxide and the phosphane in acetonitrile. Compound 3 in CH(2)Cl(2) undergoes intramolecular C-H oxidative addition, affording the cyclometalated hydride iridium(III) species [IrHCl(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}{PPh(2)(2,6-Me(2)C(6)H(3))}] (4). Treatment of 2 with Na[BAr(f) (4)] (Ar(f)=3,5-C(6)H(3)(CF(3))(2)) gives the fluxional cationic 16-electron complex [Ir(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}(2)][BAr(f) (4)] (5), which reversibly reacts with dihydrogen to afford the delta-agostic complex [IrH(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}{PPh(2)(2,6-Me(2)C(6)H(3))}][BAr(f)(4)] (6), through cleavage of an Ir-C bond. This species can also be formed by treatment of 4 with Na[BAr(f)(4)] or of 2 with Na[BAr(f)(4)] through C-H oxidative addition of one ortho-methyl group, via a transient 14-electron iridium(I) complex. Heating of the coordinatively unsaturated biscyclometalated species 5 in toluene gives the trans-dihydride iridium(III) complex [IrH(2)(CO){PPh(2)(2,6-MeC(6)H(3)CH=CHC(6)H(3)Me-2,6)PPh(2)}][BAr(f) (4)] (7), containing a trans-stilbene-type terdentate ligand, as result of a dehydrogenative carbon-carbon double bond coupling reaction, possibly through an iridium carbene species. PMID:17535000

  5. A Substrate-Assisted Mechanism of Nucleophile Activation in a Ser-His-Asp Containing C-C Bond Hydrolase

    SciTech Connect

    Ruzzini, Antonio C.; Bhowmik, Shiva; Ghosh, Subhangi; Yam, Katherine C.; Bolin, Jeffrey T.; Eltis, Lindsay D.

    2013-11-12

    The meta-cleavage product (MCP) hydrolases utilize a Ser–His–Asp triad to hydrolyze a carbon–carbon bond. Hydrolysis of the MCP substrate has been proposed to proceed via an enol-to-keto tautomerization followed by a nucleophilic mechanism of catalysis. Ketonization involves an intermediate, ESred, which possesses a remarkable bathochromically shifted absorption spectrum. We investigated the catalytic mechanism of the MCP hydrolases using DxnB2 from Sphingomonas wittichii RW1. Pre-steady-state kinetic and LC ESI/MS evaluation of the DxnB2-mediated hydrolysis of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid to 2-hydroxy-2,4-pentadienoic acid and benzoate support a nucleophilic mechanism catalysis. In DxnB2, the rate of ESred decay and product formation showed a solvent kinetic isotope effect of 2.5, indicating that a proton transfer reaction, assigned here to substrate ketonization, limits the rate of acylation. For a series of substituted MCPs, this rate was linearly dependent on MCP pKa2nuc ~ 1). Structural characterization of DxnB2 S105A:MCP complexes revealed that the catalytic histidine is displaced upon substrate-binding. The results provide evidence for enzyme-catalyzed ketonization in which the catalytic His–Asp pair does not play an essential role. The data further suggest that ESred represents a dianionic intermediate that acts as a general base to activate the serine nucleophile. This substrate-assisted mechanism of nucleophilic catalysis distinguishes MCP hydrolases from other serine hydrolases.

  6. Bis(trifluoromethyl)methylene addition to vinyl-terminated SAMs: a gas-phase C-C bond-forming reaction on a surface.

    PubMed

    Adamkiewicz, Malgorzata; O'Hagan, David; Hähner, Georg

    2014-05-20

    Vinyl-terminated self-assembled monolayers (SAMs) on silicon oxide substrates were chemically modified by the addition of a bis(trifluoromethyl)methylene group in a rare gas-phase C-C bond-forming reaction to directly generate films carrying terminal CF3 groups. The vinyl-terminated films were treated with hexafluoroacetone azine (HFAA) for modification. The films were characterized with ellipsometry, contact angle measurements, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). In this study, we find that for optimized conditions clean reactions occur on a surface between SAMs with terminal olefins and HFAA, and the product is consistent with bis(trifluoromethyl)cyclopropanation formation after nitrogen extrusion. PMID:24806554

  7. An Electron-Poor C64 Nanographene by Palladium-Catalyzed Cascade C-C Bond Formation: One-Pot Synthesis and Single-Crystal Structure Analysis.

    PubMed

    Seifert, Sabine; Shoyama, Kazutaka; Schmidt, David; Würthner, Frank

    2016-05-23

    Herein, we report the one-pot synthesis of an electron-poor nanographene containing dicarboximide groups at the corners. We efficiently combined palladium-catalyzed Suzuki-Miyaura cross-coupling and dehydrohalogenation to synthesize an extended two-dimensional π-scaffold of defined size in a single chemical operation starting from N-(2,6-diisopropylphenyl)-4,5-dibromo-1,8-naphthalimide and a tetrasubstituted pyrene boronic acid ester as readily accessible starting materials. The reaction of these precursors under the conditions commonly used for Suzuki-Miyaura cross-coupling afforded a C64 nanographene through the formation of ten C-C bonds in a one-pot process. Single-crystal X-ray analysis unequivocally confirmed the structure of this unique extended aromatic molecule with a planar geometry. The optical and electrochemical properties of this largest ever synthesized planar electron-poor nanographene skeleton were also analyzed. PMID:27058998

  8. Tailored synthesis of various nanomaterials by using a graphene-oxide-based gel as a nanoreactor and nanohybrid-catalyzed C-C bond formation.

    PubMed

    Biswas, Abhijit; Banerjee, Arindam

    2014-12-01

    New graphene oxide (GO)-based hydrogels that contain vitamin B2/B12 and vitamin C (ascorbic acid) have been synthesized in water (at neutral pH value). These gel-based soft materials have been used to synthesize various metal nanoparticles, including Au, Ag, and Pd nanoparticles, as well as nanoparticle-containing reduced graphene oxide (RGO)-based nanohybrid systems. This result indicates that GO-based gels can be used as versatile reactors for the synthesis of different nanomaterials and hybrid systems on the nanoscale. Moreover, the RGO-based nanohybrid hydrogel with Pd nanoparticles was used as an efficient catalyst for C-C bond-formation reactions with good yields and showed high recyclability in Suzuki-Miyaura coupling reactions. PMID:25224859

  9. Reversible Sigma C-C Bond Formation Between Phenanthroline Ligands Activated by (C5Me5)2Yb

    SciTech Connect

    Nocton, Grégory; Lukens, Wayne W.; Booth, Corwin H.; Rozenel, Sergio S.; Medling, Scott A.; Maron, Laurent; Andersen, Richard A.

    2014-06-26

    The electronic structure and associated magnetic properties of the 1,10-phenanthroline adducts of Cp*2Yb are dramatically different from those of the 2,2?-bipyridine adducts. The monomeric phenanthroline adducts are ground state triplets that are based upon trivalent Yb(III), f13, and (phen ) that are only weakly exchange coupled, which is in contrast to the bipyridine adducts whose ground states are multiconfigurational, open-shell singlets in which ytterbium is intermediate valent ( J. Am. Chem. Soc 2009, 131, 6480; J. Am. Chem. Soc 2010, 132, 17537). The origin of these different physical properties is traced to the number and symmetry of the LUMO and LUMO+1 of the heterocyclic diimine ligands. The bipy has only one 1 orbital of b1 symmetry of accessible energy, but phen has two orbitals of b1 and a2 symmetry that are energetically accessible. The carbon p-orbitals have different nodal properties and coefficients and their energies, and therefore their populations change depending on the position and number of methyl substitutions on the ring. A chemical ramification of the change in electronic structure is that Cp 2Yb(phen) is a dimer when crystallized from toluene solution, but a monomer when sublimed at 180190 C. When 3,8-Me2phenanthroline is used, the adduct Cp*2Yb(3,8-Me2phen) exists in the solution in a dimer monomer equilibrium in which G is near zero. The adducts with 3-Me, 4-Me, 5-Me, 3,8-Me2, and 5,6-Me2-phenanthroline are isolated and characterized by solid state X-ray crystallography, magnetic susceptibility and LIII-edge XANES spectroscopy as a function of temperature and variable-temperature 1H NMR spectroscopy.

  10. Reversible sigma C-C bond formation between phenanthroline ligands activated by (C5Me5)2Yb.

    PubMed

    Nocton, Grégory; Lukens, Wayne W; Booth, Corwin H; Rozenel, Sergio S; Medling, Scott A; Maron, Laurent; Andersen, Richard A

    2014-06-18

    The electronic structure and associated magnetic properties of the 1,10-phenanthroline adducts of Cp*2Yb are dramatically different from those of the 2,2'-bipyridine adducts. The monomeric phenanthroline adducts are ground state triplets that are based upon trivalent Yb(III), f(13), and (phen(•-) ) that are only weakly exchange coupled, which is in contrast to the bipyridine adducts whose ground states are multiconfigurational, open-shell singlets in which ytterbium is intermediate valent ( J. Am. Chem. Soc 2009 , 131 , 6480 ; J. Am. Chem. Soc 2010 , 132 , 17537 ). The origin of these different physical properties is traced to the number and symmetry of the LUMO and LUMO+1 of the heterocyclic diimine ligands. The bipy(•-) has only one π*1 orbital of b1 symmetry of accessible energy, but phen(•-) has two π* orbitals of b1 and a2 symmetry that are energetically accessible. The carbon pπ-orbitals have different nodal properties and coefficients and their energies, and therefore their populations change depending on the position and number of methyl substitutions on the ring. A chemical ramification of the change in electronic structure is that Cp*2Yb(phen) is a dimer when crystallized from toluene solution, but a monomer when sublimed at 180-190 °C. When 3,8-Me2phenanthroline is used, the adduct Cp*2Yb(3,8-Me2phen) exists in the solution in a dimer-monomer equilibrium in which ΔG is near zero. The adducts with 3-Me, 4-Me, 5-Me, 3,8-Me2, and 5,6-Me2-phenanthroline are isolated and characterized by solid state X-ray crystallography, magnetic susceptibility and LIII-edge XANES spectroscopy as a function of temperature and variable-temperature (1)H NMR spectroscopy. PMID:24852897

  11. A first principles study on CVD graphene growth on copper surfaces: C-C bonding reactions at graphene edges

    NASA Astrophysics Data System (ADS)

    Tajima, Nobuo; Kaneko, Tomoaki; Nara, Jun; Takahisa, Ohno

    2015-03-01

    Graphene has attracted considerable research interest owing to its potential application to future electronic devices. Large area and high quality graphene is needed for device applications. Chemical vapor deposition (CVD) using a copper surface with a hydrocarbon source is one of the practical methods to produce graphene. This method is appropriate for creating large area graphene with low cost, and the graphene growth control to obtain a high quality product is a remaining challenge. The carbon atom nucleation and cluster growth processes in the CVD reactions have been studied extensively as key steps that affect the graphene growth behavior. We have been studying the carbon atom reactions in these processes by theoretical approaches In the present study, we have focused on the later stage of CVD reaction, that is, carbon atom reactions at graphene edges by which carbon clusters grow in the Cu-CVD We have found that these reactions have energy barriers of ~1 eV. First principles simulation code PHASE http://www.ciss.iis.u-tokyo.ac.jp/riss/english/project/device/) was used in the theoretical calculations.

  12. Formation of C-C and C-O bonds and oxygen removal in reactions of alkanediols, alkanols, and alkanals on copper catalysts.

    PubMed

    Sad, María E; Neurock, Matthew; Iglesia, Enrique

    2011-12-21

    This study reports evidence for catalytic deoxygenation of alkanols, alkanals, and alkanediols on dispersed Cu clusters with minimal use of external H(2) and with the concurrent formation of new C-C and C-O bonds. These catalysts selectively remove O-atoms from these oxygenates as CO or CO(2) through decarbonylation or decarboxylation routes, respectively, that use C-atoms present within reactants or as H(2)O using H(2) added or formed in situ from CO/H(2)O mixtures via water-gas shift. Cu catalysts fully convert 1,3-propanediol to equilibrated propanol-propanal intermediates that subsequently form larger oxygenates via aldol-type condensation and esterification routes without detectable involvement of the oxide supports. Propanal-propanol-H(2) equilibration is mediated by their chemisorption and interconversion at surfaces via C-H and O-H activation and propoxide intermediates. The kinetic effects of H(2), propanal, and propanol pressures on turnover rates, taken together with measured selectivities and the established chemical events for base-catalyzed condensation and esterification reactions, indicate that both reactions involve kinetically relevant bimolecular steps in which propoxide species, acting as the base, abstract the α-hydrogen in adsorbed propanal (condensation) or attack the electrophilic C-atom at its carbonyl group (esterification). These weakly held basic alkoxides render Cu surfaces able to mediate C-C and C-O formation reactions typically catalyzed by basic sites inherent in the catalyst, instead of provided by coadsorbed organic moieties. Turnover rates for condensation and esterification reactions decrease with increasing Cu dispersion, because low-coordination corner and edge atoms prevalent on small clusters stabilize adsorbed intermediates and increase the activation barriers for the bimolecular kinetically relevant steps required for both reactions. PMID:22023723

  13. Mild and Selective Catalytic Hydrogenation of the C=C Bond in α,β-Unsaturated Carbonyl Compounds Using Supported Palladium Nanoparticles.

    PubMed

    Nagendiran, Anuja; Pascanu, Vlad; Bermejo Gómez, Antonio; González Miera, Greco; Tai, Cheuk-Wai; Verho, Oscar; Martín-Matute, Belén; Bäckvall, Jan-E

    2016-05-17

    Chemoselective reduction of the C=C bond in a variety of α,β-unsaturated carbonyl compounds using supported palladium nanoparticles is reported. Three different heterogeneous catalysts were compared using 1 atm of H2 : 1) nano-Pd on a metal-organic framework (MOF: Pd(0) -MIL-101-NH2 (Cr)), 2) nano-Pd on a siliceous mesocellular foam (MCF: Pd(0) -AmP-MCF), and 3) commercially available palladium on carbon (Pd/C). Initial studies showed that the Pd@MOF and Pd@MCF nanocatalysts were superior in activity and selectivity compared to commercial Pd/C. Both Pd(0) -MIL-101-NH2 (Cr) and Pd(0) -AmP-MCF were capable of delivering the desired products in very short reaction times (10-90 min) with low loadings of Pd (0.5-1 mol %). Additionally, the two catalytic systems exhibited high recyclability and very low levels of metal leaching. PMID:27111403

  14. Acetaldehyde partial oxidation on the Au(111) model catalyst surface: C-C bond activation and formation of methyl acetate as an oxidative coupling product

    NASA Astrophysics Data System (ADS)

    Karatok, Mustafa; Vovk, Evgeny I.; Shah, Asad A.; Turksoy, Abdurrahman; Ozensoy, Emrah

    2015-11-01

    Partial oxidation of acetaldehyde (CH3CHO) on the oxygen pre-covered Au(111) single crystal model catalyst was investigated via Temperature Programmed Desorption (TPD) and Temperature Programmed Reaction Spectroscopy (TPRS) techniques, where ozone (O3) was utilized as the oxygen delivery agent providing atomic oxygen to the reacting surface. We show that for low exposures of O3 and small surface oxygen coverages, two partial oxidation products namely, methyl acetate (CH3COOCH3) and acetic acid (CH3COOH) can be generated without the formation of significant quantities of carbon dioxide. The formation of methyl acetate as the oxidative coupling reaction product implies that oxygen pre-covered Au(111) single crystal model catalyst surface can activate C-C bonds. In addition to the generation of these products; indications of the polymerization of acetaldehyde on the gold surface were also observed as an additional reaction route competing with the partial and total oxidation pathways. The interplay between the partial oxidation, total oxidation and polymerization pathways reveals the complex catalytic chemistry associated with the interaction between the acetaldehyde and atomic oxygen on catalytic gold surfaces.

  15. Direct construction of 2-alkylbenzo-1,3-azoles via C-H activation of alkanes for C-C and C-X (X = O, S) bond formation.

    PubMed

    Yadav, Arvind K; Yadav, Lal Dhar S

    2015-03-01

    Copper catalyzed straightforward synthesis of 2-alkylbenzoxa(thia)azoles from aryl isocyanates/isothiocyanates and simple alkanes is reported. The protocol utilizes ditertiary butyl peroxide (DTBP) as a radical initiator and involves sequential formation of C-C and C-X (X = O, S) bonds followed by aromatization in a one-pot procedure. PMID:25578954

  16. Sulfur in coal: Model studies of the role of ArS radicals in C-C and C-S bond formation and structural evolution in coal liquefaction

    SciTech Connect

    Alnajjar, M.S.; Franz, J.A.

    1987-06-01

    Experiments in this paper show the importance of thiyl radicals in sulfur containing coals during coal liquefaction processes. The presence of arylthiyl radicals enhances the cleavage of C-C, C=C, and C=C bonds in these otherwise refactory systems. Abstraction reactions, 1,2-phenyl migration from sulfur to carbon and displacement reactions at sulfur may be important mechanisms of structural evolution during liquefaction. In addition to cleavage of arylalkyl structures, the results also show that undesirable retrograde formation of inert diaryl- and triarylmethanes may be a consequence of the presence of sulfur and the attending aryl thiol structures. Thus, while a reaction medium including sulfur and hydrogen has been demonstrated to lead to the enhance cleavage of the bibenzyl model structure the present results suggest that retrograde reactions may be significant undesired pathways in coal liquefaction in the presence of sulfur. 17 refs.

  17. Direct C-C Coupling of CO2 and the Methyl Group from CH4 Activation through Facile Insertion of CO2 into Zn-CH3 σ-Bond.

    PubMed

    Zhao, Yuntao; Cui, Chaonan; Han, Jinyu; Wang, Hua; Zhu, Xinli; Ge, Qingfeng

    2016-08-17

    Conversion of CO2 and CH4 to value-added products will contribute to alleviating the green-house gas effect but is a challenge both scientifically and practically. Stabilization of the methyl group through CH4 activation and facile CO2 insertion ensure the realization of C-C coupling. In the present study, we demonstrate the ready C-C coupling reaction on a Zn-doped ceria catalyst. The detailed mechanism of this direct C-C coupling reaction was examined based on the results from density functional theory calculations. The results show that the Zn dopant stabilizes the methyl group by forming a Zn-C bond, thus hindering subsequent dehydrogenation of CH4. CO2 can be inserted into the Zn-C bond in an activated bent configuration, with the transition state in the form of a three-centered Zn-C-C moiety and an activation barrier of 0.51 eV. The C-C coupling reaction resulted in the acetate species, which could desorb as acetic acid by combining with a surface proton. The formation of acetic acid from CO2 and CH4 is a reaction with 100% atom economy, and the implementation of the reaction on a heterogeneous catalyst is of great importance to the utilization of the greenhouse gases. We tested other possible dopants including Al, Ga, Cd, In, and Ni and found a positive correlation between the activation barrier of C-C coupling and the electronegativity of the dopant, although C-H bond activation is likely the dominant reaction on the Ni-doped ceria catalyst. PMID:27452233

  18. A calculation of the diffusion energies for adatoms on surfaces of F.C.C. metals

    NASA Technical Reports Server (NTRS)

    Halicioglu, T.; Pound, G. M.

    1979-01-01

    The activation energies for diffusion were determined for gold, platinum and iridium adatoms on plane and plane PT surfaces and were found to be in good agreement with the measurements reported by Bassett and Webber. The Lennard-Jones pair potentials were used to model the interatomic forces, and relaxation of the substrate atoms in near proximity to the adatom was considered in detail. The present calculations clarify the mechanism of the observed two-dimensional diffusion of platinum and iridium atoms on a plane PT surface. The results are compared with those obtained using Morse potential functions and different relaxation techniques.

  19. Chlorination-Promoted Skeletal-Cage Transformations of C88 Fullerene by C2 Losses and a C-C Bond Rotation.

    PubMed

    Yang, Shangfeng; Wei, Tao; Scheurell, Kerstin; Kemnitz, Erhard; Troyanov, Sergey I

    2015-10-19

    High-temperature chlorination of fullerene C88 (isomer 33) with VCl4 gives rise to skeletal transformations affording several nonclassical (NC) fullerene chlorides, C86 (NC1)Cl24/26 and C84 (NC2)Cl26 , with one and two heptagons, respectively, in the carbon cages. The branched skeletal transformation including C2 losses as well as a Stone-Wales rearrangement has been comprehensively characterized by the structure determination of two intermediates and three final chlorination products. Quantum-chemical calculations demonstrate that the average energy of the C-Cl bond is significantly increased in chlorides of nonclassical fullerenes with a large number of chlorinated sites of pentagon-pentagon adjacency. PMID:26332709

  20. Metal- and Oxidant-Free Synthesis of Quinazolinones from β-Ketoesters with o-Aminobenzamides via Phosphorous Acid-Catalyzed Cyclocondensation and Selective C-C Bond Cleavage.

    PubMed

    Li, Zhongwen; Dong, Jianyu; Chen, Xiuling; Li, Qiang; Zhou, Yongbo; Yin, Shuang-Feng

    2015-10-01

    A general and efficient phosphorous acid-catalyzed cyclocondensation of β-ketoesters with o-aminobenzamides via selective C-C bond cleavage leading to quinazolinones is developed. This reaction proceeds smoothly under metal- and oxidant-free conditions, giving both 2-alkyl- and 2-aryl-substituted quinazolinones in excellent yields. This strategy can also be applied to the synthesis of other N-heterocycles, such as benzimidazoles and benzothiazoles. PMID:26339716

  1. Primary photodissociation pathways of epichlorohydrin and analysis of the C-C bond fission channels from an O((3)P)+allyl radical intermediate.

    PubMed

    Fitzpatrick, Benjamin L; Alligood, Bridget W; Butler, Laurie J; Lee, Shih-Huang; Lin, Jim Jr-Min

    2010-09-01

    This study initially characterizes the primary photodissociation processes of epichlorohydrin, c-(H(2)COCH)CH(2)Cl. The three dominant photoproduct channels analyzed are c-(H(2)COCH)CH(2)+Cl, c-(H(2)COCH)+CH(2)Cl, and C(3)H(4)O+HCl. In the second channel, the c-(H(2)COCH) photofission product is a higher energy intermediate on C(2)H(3)O global potential energy surface and has a small isomerization barrier to vinoxy. The resulting highly vibrationally excited vinoxy radicals likely dissociate to give the observed signal at the mass corresponding to ketene, H(2)CCO. The final primary photodissociation pathway HCl+C(3)H(4)O evidences a recoil kinetic energy distribution similar to that of four-center HCl elimination in chlorinated alkenes, so is assigned to production of c-(H(2)COC)=CH(2); the epoxide product is formed with enough vibrational energy to isomerize to acrolein and dissociate. The paper then analyzes the dynamics of the C(3)H(5)O radical produced from C-Cl bond photofission. When the epoxide radical photoproduct undergoes facile ring opening, it is the radical intermediate formed in the O((3)P)+allyl bimolecular reaction when the O atom adds to an end C atom. We focus on the HCO+C(2)H(4) and H(2)CO+C(2)H(3) product channels from this radical intermediate in this report. Analysis of the velocity distribution of the momentum-matched signals from the HCO+C(2)H(4) products at m/e=29 and 28 shows that the dissociation of the radical intermediate imparts a high relative kinetic energy, peaking near 20 kcal/mol, between the products. Similarly, the energy imparted to relative kinetic energy in the H(2)CO+C(2)H(3) product channel of the O((3)P)+allyl radical intermediate also peaks at high-recoil kinetic energies, near 18 kcal/mol. The strongly forward-backward peaked angular distributions and the high kinetic energy release result from tangential recoil during the dissociation of highly rotationally excited nascent radicals formed photolytically in this

  2. Adhesive bonding using variable frequency microwave energy

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

    1998-09-08

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

  3. Adhesive bonding using variable frequency microwave energy

    DOEpatents

    Lauf, Robert J.; McMillan, April D.; Paulauskas, Felix L.; Fathi, Zakaryae; Wei, Jianghua

    1998-01-01

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy.

  4. Adhesive bonding using variable frequency microwave energy

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

    1998-08-25

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

  5. Towards an understanding of the bonding in polyoxometalates through bond order and bond energy analysis.

    PubMed

    Bridgeman, Adam J; Cavigliasso, Germán

    2003-01-01

    The molecular and electronic structures of transition metal complexes, [MOCl5]n- (n = 2 for M = V,Nb,Ta and n = 1 for Mo,W) and mixed-metal polyoxometalates, [M'M5O19]3-V,Nb,Ta, M = Mo,W) containing a single terminal oxo group on each metal, and of complexes of the uranyl ion [UO2]2+, [UO2(H2O)5]2+ and [UO2Cl4]2-, have been calculated using density functional methods. The calculated structures of the complexes are in good agreement with available experimental parameters. For the mixed-metal hexametalates, for which no crystallographic data is available, the calculations predict a small tetragonal compression of the clusters with only minor structural changes compared to the parent molybdate and tungstate. The metal oxygen bonding in these anions has been probed using Mayer-Mulliken, bond energy and atoms in molecule analyses (AIM). These methods provide a consistent description of the bonding in polyoxometalates. The terminal bonds between transition metal or uranium and oxygen atoms have large sigma and pi components with the pi contributions exceeding the sigma bonding. The transition metals utilize their d orbitals almost exclusively to bond to oxygen whilst uranium uses both its 5f and 6d orbitals. Oxygen atom charges increase and covalency indexes decrease with coordination number, with a marked separation of these terms according to the oxygen atom type. The total valency and AIM energies of the oxygen atoms are predicted to be almost constant for all types of oxygen site. The constancy of the bonding power of the oxygen atoms appears to be an important factor in determining the gross structures and details of the bonding in polyoxometalates. The Mayer Mulliken approach provides direct characterization of the bonding power of atoms and the extent of the interaction between pairs of atoms that is consistent with the results of the considerably more computationally demanding bond energy and AIM approaches. PMID:14527219

  6. Primary photodissociation pathways of epichlorohydrin and analysis of the C-C bond fission channels from an O({sup 3}P)+allyl radical intermediate

    SciTech Connect

    FitzPatrick, Benjamin L.; Alligood, Bridget W.; Butler, Laurie J.; Lee, Shih-Huang; Lin, Jim Jr-Min

    2010-09-07

    This study initially characterizes the primary photodissociation processes of epichlorohydrin, c-(H{sub 2}COCH)CH{sub 2}Cl. The three dominant photoproduct channels analyzed are c-(H{sub 2}COCH)CH{sub 2}+Cl, c-(H{sub 2}COCH)+CH{sub 2}Cl, and C{sub 3}H{sub 4}O+HCl. In the second channel, the c-(H{sub 2}COCH) photofission product is a higher energy intermediate on C{sub 2}H{sub 3}O global potential energy surface and has a small isomerization barrier to vinoxy. The resulting highly vibrationally excited vinoxy radicals likely dissociate to give the observed signal at the mass corresponding to ketene, H{sub 2}CCO. The final primary photodissociation pathway HCl+C{sub 3}H{sub 4}O evidences a recoil kinetic energy distribution similar to that of four-center HCl elimination in chlorinated alkenes, so is assigned to production of c-(H{sub 2}COC)=CH{sub 2}; the epoxide product is formed with enough vibrational energy to isomerize to acrolein and dissociate. The paper then analyzes the dynamics of the C{sub 3}H{sub 5}O radical produced from C-Cl bond photofission. When the epoxide radical photoproduct undergoes facile ring opening, it is the radical intermediate formed in the O({sup 3}P)+allyl bimolecular reaction when the O atom adds to an end C atom. We focus on the HCO+C{sub 2}H{sub 4} and H{sub 2}CO+C{sub 2}H{sub 3} product channels from this radical intermediate in this report. Analysis of the velocity distribution of the momentum-matched signals from the HCO+C{sub 2}H{sub 4} products at m/e=29 and 28 shows that the dissociation of the radical intermediate imparts a high relative kinetic energy, peaking near 20 kcal/mol, between the products. Similarly, the energy imparted to relative kinetic energy in the H{sub 2}CO+C{sub 2}H{sub 3} product channel of the O({sup 3}P)+allyl radical intermediate also peaks at high-recoil kinetic energies, near 18 kcal/mol. The strongly forward-backward peaked angular distributions and the high kinetic energy release result from

  7. Bond-Energy and Surface-Energy Calculations in Metals

    ERIC Educational Resources Information Center

    Eberhart, James G.; Horner, Steve

    2010-01-01

    A simple technique appropriate for introductory materials science courses is outlined for the calculation of bond energies in metals from lattice energies. The approach is applied to body-centered cubic (bcc), face-centered cubic (fcc), and hexagonal-closest-packed (hcp) metals. The strength of these bonds is tabulated for a variety metals and is…

  8. Theoretical study of the bond dissociation energies of propyne (C3H4)

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1992-01-01

    The C-C and C-H bond dissociation energies (BDEs) of propyne have been computed using the modified coupled-pair functional method. Due to hyperconjugation, the C-C and methyl C-H single bonds are stronger and weaker, respectively than those in ethane. The acetylenic C-H and C triple bond C BDEs are larger and smaller, respectively, than in acetylene, also as a result of the hyperconjugation. Our best estimate of 92.5 +/- 2 kcal/mol for the methyl C-H BDE in propyne is slightly larger than the experimental value. For the acetylenic C-H BDE in propyne we predict 135.9 +/- 2 kcal/mol.

  9. Ruthenium(0) Catalyzed Endiyne-α-Ketol [4+2] Cycloaddition: Convergent Assembly of Type II Polyketide Substructures via C-C Bond Forming Transfer Hydrogenation

    PubMed Central

    Saxena, Aakarsh; Perez, Felix; Krische, Michael J.

    2015-01-01

    Upon exposure of 3,4-benzannulated 1,5-diynes (benzo-endiynes) to α-ketols (α-hydroxyketones) in the presence of ruthenium(0) catalysts derived from Ru3(CO)12 and RuPhos or CyJohnPhos, successive redox-triggered C-C coupling occurs to generate products of [4+2] cycloaddition. The proposed catalytic mechanism involves consecutive alkyne-carbonyl oxidative couplings to form transient oxaruthana-cycles that suffer α-ketol mediated transfer hydrogenolysis. This process provides a new, convergent means of assembling Type II polyketide substructures. PMID:25938947

  10. Rhodium(III)-Catalyzed Directed ortho-C-H Bond Functionalization of Aromatic Ketazines via C-S and C-C Coupling.

    PubMed

    Wen, Jing; Wu, An; Wang, Mingyang; Zhu, Jin

    2015-11-01

    Described herein is a convenient and efficient method for sulfuration and olefination of aromatic ketazines via rhodium-catalyzed oxidative C-H bond activation. A range of substituted substrates are supported, and a possible mechanism is proposed according to experimental results of kinetic isotopic effect, reversibility studies, and catalysis of rhodacycle intermediate c1. PMID:26417874

  11. An approach to benzophosphole oxides through silver- or manganese-mediated dehydrogenative annulation involving C-C and C-P bond formation.

    PubMed

    Unoh, Yuto; Hirano, Koji; Satoh, Tetsuya; Miura, Masahiro

    2013-12-01

    Benzophosphole construction was achieved through the Ag(I) -mediated dehydrogenative annulation of phenylphosphine oxides with internal alkynes in a process involving CC and CP bond formation. A wide range of asymmetrical phenylacetylenes could be employed and the reactions proceeded with perfect regioselectivity. Moreover, the annulation could be conducted even at room temperature when a Mn(III) promoter was used in place of Ag(I) . PMID:24127410

  12. General and facile method for exo-methlyene synthesis via regioselective C-C double-bond formation using a copper-amine catalyst system.

    PubMed

    Nishikata, Takashi; Nakamura, Kimiaki; Itonaga, Kohei; Ishikawa, Shingo

    2014-11-01

    In this study, for distal-selective β-hydride elimination to produce exomethylene compounds with a newly formed Csp(3)-Csp(3) bond between tertiary alkyl halides and α-alkylated styrenes, a combination of a Cu(I) salt and a pyridine-based amine ligand (TPMA) is found to be a very efficient catalyst system. The yields and regioselectivities were high, and the regioselectivity was found to be dependent on the structure of the alkyl halide, with bulky alkyl halides showing the highest distal selectivities. PMID:25315319

  13. Does C-C bonding proceed during exposure of adequate metal surfaces to CH{sub 4}? Reply to {open_quotes}Comment by Z. Hlavathy, Z. Paal, and P. Tetenyi{close_quotes}

    SciTech Connect

    Amaraiglio, A.; Pareja, P.; Amariglio, H.

    1997-02-01

    The comments, results, and reflections presented by Hlavathy and co-workers in their Letter aim at demonstrating that C-C bonding between CH{sub x} adspecies, formed upon exposure of Pt to CH{sub 4}, can proceed as well during the exposure itself as during further exposure to H{sub 2}. This possibility was implicitly put forward because they thought that a tight parallelism exists between the interactions of CH{sub 4} and CO with a metal surface, provided that the exposure to CH{sub 4} is carried out at a high enough temperature (450{degrees}C). In both cases these authors assumed that three kinds of carbon, C{sub {alpha}}, C{sub {beta}}, and C{sub {gamma}}, can be formed, C{sub {alpha}} being the main species responsible for the production of CH{sub 4} and of the C{sub 2}, alkanes obtained when the metal was further contacted with H{sub 2} at 100{degrees}C. As they argued that C{sub {alpha}} (also named carbidic carbon) has only metal atoms in its first coordination shell, they were implicitly led it that C-C bonding must take place during the hydrogenation step. The authors have not denied this possibility, but they have suggested that different situations can result from exposures to CH{sub 4} conducted at temperatures much lower than those used by Koerts et al.. 13 refs.

  14. Electronic Structure and Bonding in Iron(II) and Iron(I) Complexes Bearing Bisphosphine Ligands of Relevance to Iron-Catalyzed C-C Cross-Coupling.

    PubMed

    Kneebone, Jared L; Fleischauer, Valerie E; Daifuku, Stephanie L; Shaps, Ari A; Bailey, Joseph M; Iannuzzi, Theresa E; Neidig, Michael L

    2016-01-01

    Chelating phosphines are effective additives and supporting ligands for a wide array of iron-catalyzed cross-coupling reactions. While recent studies have begun to unravel the nature of the in situ-formed iron species in several of these reactions, including the identification of the active iron species, insight into the origin of the differential effectiveness of bisphosphine ligands in catalysis as a function of their backbone and peripheral steric structures remains elusive. Herein, we report a spectroscopic and computational investigation of well-defined FeCl2(bisphosphine) complexes (bisphosphine = SciOPP, dpbz, (tBu)dppe, or Xantphos) and known iron(I) variants to systematically discern the relative effects of bisphosphine backbone character and steric substitution on the overall electronic structure and bonding within their iron complexes across oxidation states implicated to be relevant in catalysis. Magnetic circular dichroism (MCD) and density functional theory (DFT) studies demonstrate that common o-phenylene and saturated ethyl backbone motifs result in small but non-negligible perturbations to 10Dq(Td) and iron-bisphosphine bonding character at the iron(II) level within isostructural tetrahedra as well as in five-coordinate iron(I) complexes FeCl(dpbz)2 and FeCl(dppe)2. Notably, coordination of Xantphos to FeCl2 results in a ligand field significantly reduced relative to those of its iron(II) partners, where a large bite angle and consequent reduced iron-phosphorus Mayer bond orders (MBOs) could play a role in fostering the unique ability of Xantphos to be an effective additive in Kumada and Suzuki-Miyaura alkyl-alkyl cross-couplings. Furthermore, it has been found that the peripheral steric bulk of the SciOPP ligand does little to perturb the electronic structure of FeCl2(SciOPP) relative to that of the analogous FeCl2(dpbz) complex, potentially suggesting that differences in the steric properties of these ligands might be more important in

  15. The Bond Dissociation Energies of 1-Butene

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    The bond dissociation energies of 1-butene and several calibration systems are computed using the G2(MP2) approach. The agreement between the calibration systems and experiment is very good. The computed values for 1-butene are compared with calibration systems and the agreement between the computed results for 1-butene and the "rule of thumb" values from the smaller systems is remarkably good.

  16. Methanol conversion to hydrocarbons over zeolite H-ZSM-5: Investigation of the role of CO and ketene in the formation of the initial C-C bond

    SciTech Connect

    Hutchings, G.J.; Johnston, P. ); Hunter, R. ); Van Rensburg, L.J. )

    1993-08-01

    Mechanistic studies concerning the formation of the initial carbon-carbon bond in the methanol conversion reaction over zeolite H-ZSM-5 are described and discussed. In particular, the possible roles of CO as a reaction intermediate or as a catalyst, via the formation of ketene, are evaluated. Experiments using [sup 13]CH[sub 3]OH/[sup 12]CO reactant mixtures demonstrate that no CO is incorporated into ethene, the primary product of this reaction. In addition, CO is found to have no significant effect on the induction period for this reaction. Model experiments for the methylation of ketene by reaction with Me[sub 2]SO[sub 4] and Me[sub 3]O[sup +]SbCl[sub 6][sup [minus

  17. Interaction of a pseudo-π C-C bond with cuprous and argentous chlorides: Cyclopropane⋯CuCl and cyclopropane⋯AgCl investigated by rotational spectroscopy and ab initio calculations.

    PubMed

    Zaleski, Daniel P; Mullaney, John C; Bittner, Dror M; Tew, David P; Walker, Nicholas R; Legon, Anthony C

    2015-10-28

    Strongly bound complexes (CH2)3⋯MCl (M = Cu or Ag), formed by non-covalent interaction of cyclopropane and either cuprous chloride or argentous chloride, have been generated in the gas phase by means of the laser ablation of either copper or silver metal in the presence of supersonically expanded pulses of a gas mixture containing small amounts of cyclopropane and carbon tetrachloride in a large excess of argon. The rotational spectra of the complexes so formed were detected with a chirped-pulse, Fourier transform microwave spectrometer and analysed to give rotational constants and Cu and Cl nuclear quadrupole coupling constants for eight isotopologues of each of (CH2)3⋯CuCl and (CH2)3⋯AgCl. The geometry of each of these complexes was established unambiguously to have C(2v) symmetry, with the three C atoms coplanar, and with the MCl molecule lying along a median of the cyclopropane C3 triangle. This median coincides with the principal inertia axis a in each of the two complexes (CH2)3⋯MCl. The M atom interacts with the pseudo-π bond linking the pair of equivalent carbon atoms (F)C (F = front) nearest to it, so that M forms a non-covalent bond to one C-C edge of the cyclopropane molecule. The (CH2)3⋯MCl complexes have similar angular geometries to those of the hydrogen- and halogen-bonded analogues (CH2)3⋯HCl and (CH2)3⋯ClF, respectively. Quantitative details of the geometries were determined by interpretation of the observed rotational constants and gave results in good agreement with those from ab initio calculations carried out at the CCSD(T)(F12*)/aug-cc-pVTZ-F12 level of theory. Interesting geometrical features are the lengthening of the (F)C-(F)C bond and the shrinkage of the two equivalent (B)C-(F)C (B = back) bonds relative to the C-C bond in cyclopropane itself. The expansions of the (F)C-(F)C bond are 0.1024(9) Å and 0.0727(17) Å in (CH2)3⋯CuCl and (CH2)3⋯AgCl, respectively, according to the determined r0 geometries. The C-C bond

  18. Ether complexes of tungsten with two different binding modes: An O-bound ether and an {eta}{sup 2}-(C=C) vinyl ether. Evidence for C-H...O hydrogen bonding of vinylic C-H groups

    SciTech Connect

    Song, J.S.; Szalda, D.J.; Bullock, R.M.

    1996-11-13

    The reaction of PhCH(OCH{sup 3}){sup 2} with Cp(CO){sup 3}WH and HOTf gives [Cp(CO){sup 3}W(PhCH{sup 2}OCH{sup 3})]{sup +}OTf{sup -}. The structure of this benzyl methyl ether complex was determined by single crystal X-ray diffraction and was shown to have the ether bonded to tungsten through the oxygen. This compound was isolated as a kinetic product of the reaction; it decomposes in solution by releasing free PhCH{sup 2}OCH{sup 3} and forming Cp(CO){sup 3}WOTf. An analog with the BAr`{sup 4}{sup -} counterion [Ar` = 3, 5-bis(trifluoromethyl)phenyl] is more stable. The reaction of the vinyl acetal CH{sup 2}=CHCH(OEt){sup 2} with Cp(CO){sup 3}WH and HOTf produces [Cp(CO){sup 3}W({eta}{sup 2}-EtOCH=CHCH{sup 3})]{sup +} OTf{sup -}, in which the ether is bonded to tungsten through the C=C bond of the vinyl ether. The crystal structure of this compound shows that the W-C(OEt) distance (2.69(3) A) is significantly longer than the W-C(CH{sup 3}) distance (2.37(3) A). There are weak C-H...O hydrogen bonds between both vinyl CH`s and oxygens of the triflate counterions. Evidence is presented that some of these weak hydrogen bonds are maintained in CD{sup 2}Cl{sup 2} solution but not in CD{sup 3}CN. 44 refs., 4 figs., 3 tabs.

  19. Synthesis of seco-B-ring bryostatin analogue WN-1 via C-C bond-forming hydrogenation: critical contribution of the B-ring in determining bryostatin-like and phorbol 12-myristate 13-acetate-like properties.

    PubMed

    Andrews, Ian P; Ketcham, John M; Blumberg, Peter M; Kedei, Noemi; Lewin, Nancy E; Peach, Megan L; Krische, Michael J

    2014-09-24

    The seco-B-ring bryostatin analogue, macrodiolide WN-1, was prepared in 17 steps (longest linear sequence) and 30 total steps with three bonds formed via hydrogen-mediated C-C coupling. This synthetic route features a palladium-catalyzed alkoxycarbonylation of a C2-symmetric diol to form the C9-deoxygenated bryostatin A-ring. WN-1 binds to PKCα (Ki = 16.1 nM) and inhibits the growth of multiple leukemia cell lines. Although structural features of the WN-1 A-ring and C-ring are shared by analogues that display bryostatin-like behavior, WN-1 displays PMA-like behavior in U937 cell attachment and proliferation assays, as well as in K562 and MV-4-11 proliferation assays. Molecular modeling studies suggest the pattern of internal hydrogen bonds evident in bryostatin 1 is preserved in WN-1, and that upon docking WN-1 into the crystal structure of the C1b domain of PKCδ, the binding mode of bryostatin 1 is reproduced. The collective data emphasize the critical contribution of the B-ring to the function of the upper portion of the molecule in conferring a bryostatin-like pattern of biological activity. PMID:25207655

  20. A Tungsten Complex with a Bidentate, Hemilabile N-Heterocyclic Carbene Ligand, Facile Displacement of the Weakly Bound W-(C=C) Bond, and the Vulnerability of the NHC Ligand Towards Catalyst Deactivation During Ketone Hydrogenation

    SciTech Connect

    Wu,F.; Dioumaev, V.; Szalda, D.; Hanson, J.; Bullock, R.

    2007-01-01

    The initial reaction observed between the N-heterocyclic carbene IMes (IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene) and molybdenum and tungsten hydride complexes CpM(CO){sub 2}(PPh{sub 3})H (M = Mo, W) is deprotonation of the metal hydride by IMes, giving [(IMes)H]{sup +}[CpM(CO){sub 2}(PPh{sub 3})]{sup -}. At longer reaction times and higher temperatures, the reaction of IMes with CpM(CO){sub 2}(PR{sub 3})H (M = Mo, W; R = Me, Ph) produces CpM(CO){sub 2}(IMes)H. Hydride transfer from CpW(CO)2(IMes)H to Ph{sub 3}C{sub +}B(C{sub 6}F{sub 5}){sub 4}{sup -} gives CpW(CO){sub 2}(IMes){sup +}B(C{sub 6}F{sub 5}){sub 4}{sup -}, which was crystallographically characterized using X-ray radiation from a synchrotron. The IMes is bonded as a bidentate ligand, through the carbon of the carbene as well as forming a weak bond from the metal to a C=C bond of one mesityl ring. The weakly bound C=C ligand is hemilabile, being readily displaced by H{sub 2}, THF, ketones, or alcohols. Reaction of CpW(CO){sub 2}(IMes){sup +} with H{sub 2} gives the dihydride complex [CpW(CO){sub 2}(IMes)(H){sub 2}]{sup +}. Addition of Et{sub 2}CH-OH to CpW(CO){sub 2}(IMes){sup +}B(C{sub 6}F{sub 5}){sub 4}{sup -} gives the alcohol complex [CpW(CO){sub 2}(IMes)(Et{sub 2}CH-OH)]{sup +}[B(C{sub 6}F{sub 5}){sub 4}]{sup -}, which was characterized by crystallography and exhibits no evidence for hydrogen bonding of the bound OH group. Addition of H{sub 2} to the ketone complex [CpW(CO){sub 2}(IMes)(Et{sub 2}C=O)]{sup +}[B(C{sub 6}F{sub 5}){sub 4}]{sup -} produces an equilibrium with the dihydride [CpW(CO){sub 2}(IMes)(H){sub 2}]{sup +} (K{sub eq} = 1.1 x 10{sup 3} at 25 {sup o}C). The tungsten ketone complex [CpW(CO){sub 2}(IMes)(Et{sub 2}C=O)]{sup +}[B(C{sub 6}F{sub 5}){sub 4}]{sup -}- serves as a modest catalyst for hydrogenation of Et{sub 2}C=O to Et{sub 2}CH-OH in neat ketone solvent. Decomposition of the catalyst produces [H(IMes)]{sup +}B(C{sub 6}F{sub 5}){sub 4}{sup -}, indicating that these

  1. Model for particle production in nuclear reactions at intermediate energies: Application to C-C collisions at 95 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Dudouet, J.; Durand, D.

    2016-07-01

    A model describing nuclear collisions at intermediate energies is presented and the results are compared with recently measured double differential cross sections in C-C reactions at 95 MeV/nucleon. Results show the key role played by geometrical effects and the memory of the entrance channel, in particular the momentum distributions of the two incoming nuclei. Special attention is paid to the description of processes occurring at midrapidity. To this end, a random particle production mechanism by means of a coalescence process in velocity space is considered in the overlap region of the two interacting nuclei.

  2. C-C bond unsaturation degree in monosubstituted ferrocenes for molecular electronics investigated by a combined near-edge x-ray absorption fine structure, x-ray photoemission spectroscopy, and density functional theory approach

    NASA Astrophysics Data System (ADS)

    Boccia, A.; Lanzilotto, V.; Marrani, A. G.; Stranges, S.; Zanoni, R.; Alagia, M.; Fronzoni, G.; Decleva, P.

    2012-04-01

    We present the results of an experimental and theoretical investigation of monosubstituted ethyl-, vinyl-, and ethynyl-ferrocene (EtFC, VFC, and EFC) free molecules, obtained by means of synchrotron-radiation based C 1s photoabsorption (NEXAFS) and photoemission (C 1s XPS) spectroscopies, and density functional theory (DFT) calculations. Such a combined study is aimed at elucidating the role played by the C-C bond unsaturation degree of the substituent on the electronic structure of the ferrocene derivatives. Such substituents are required for molecular chemical anchoring onto relevant surfaces when ferrocenes are used for molecular electronics hybrid devices. The high resolution C 1s NEXAFS spectra exhibit distinctive features that depend on the degree of unsaturation of the hydrocarbon substituent. The theoretical approach to consider the NEXAFS spectrum made of three parts allowed to disentangle the specific contribution of the substituent group to the experimental spectrum as a function of its unsaturation degree. C 1s IEs were derived from the experimental data analysis based on the DFT calculated IE values for the different carbon atoms of the substituent and cyclopentadienyl (Cp) rings. Distinctive trends of chemical shifts were observed for the substituent carbon atoms and the substituted atom of the Cp ring along the series of ferrocenes. The calculated IE pattern was rationalized in terms of initial and final state effects influencing the IE value, with special regard to the different mechanism of electron conjugation between the Cp ring and the substituent, namely the σ/π hyperconjugation in EtFC and the π-conjugation in VFC and EFC.

  3. C-C bond unsaturation degree in monosubstituted ferrocenes for molecular electronics investigated by a combined near-edge x-ray absorption fine structure, x-ray photoemission spectroscopy, and density functional theory approach

    SciTech Connect

    Boccia, A.; Lanzilotto, V.; Marrani, A. G.; Zanoni, R.; Stranges, S.; Alagia, M.; Fronzoni, G.; Decleva, P.

    2012-04-07

    We present the results of an experimental and theoretical investigation of monosubstituted ethyl-, vinyl-, and ethynyl-ferrocene (EtFC, VFC, and EFC) free molecules, obtained by means of synchrotron-radiation based C 1s photoabsorption (NEXAFS) and photoemission (C 1s XPS) spectroscopies, and density functional theory (DFT) calculations. Such a combined study is aimed at elucidating the role played by the C-C bond unsaturation degree of the substituent on the electronic structure of the ferrocene derivatives. Such substituents are required for molecular chemical anchoring onto relevant surfaces when ferrocenes are used for molecular electronics hybrid devices. The high resolution C 1s NEXAFS spectra exhibit distinctive features that depend on the degree of unsaturation of the hydrocarbon substituent. The theoretical approach to consider the NEXAFS spectrum made of three parts allowed to disentangle the specific contribution of the substituent group to the experimental spectrum as a function of its unsaturation degree. C 1s IEs were derived from the experimental data analysis based on the DFT calculated IE values for the different carbon atoms of the substituent and cyclopentadienyl (Cp) rings. Distinctive trends of chemical shifts were observed for the substituent carbon atoms and the substituted atom of the Cp ring along the series of ferrocenes. The calculated IE pattern was rationalized in terms of initial and final state effects influencing the IE value, with special regard to the different mechanism of electron conjugation between the Cp ring and the substituent, namely the {sigma}/{pi} hyperconjugation in EtFC and the {pi}-conjugation in VFC and EFC.

  4. Ambient pressure XPS and IRRAS investigation of ethanol steam reforming on Ni-CeO2(111) catalysts: an in situ study of C-C and O-H bond scission.

    PubMed

    Liu, Zongyuan; Duchoň, Tomáš; Wang, Huanru; Grinter, David C; Waluyo, Iradwikanari; Zhou, Jing; Liu, Qiang; Jeong, Beomgyun; Crumlin, Ethan J; Matolín, Vladimír; Stacchiola, Dario J; Rodriguez, José A; Senanayake, Sanjaya D

    2016-06-22

    Ambient-Pressure X-ray Photoelectron Spectroscopy (AP-XPS) and Infrared Reflection Absorption Spectroscopy (AP-IRRAS) have been used to elucidate the active sites and mechanistic steps associated with the ethanol steam reforming reaction (ESR) over Ni-CeO2(111) model catalysts. Our results reveal that surface layers of the ceria substrate are both highly reduced and hydroxylated under reaction conditions while the small supported Ni nanoparticles are present as Ni(0)/NixC. A multifunctional, synergistic role is highlighted in which Ni, CeOx and the interface provide an ensemble effect in the active chemistry that leads to H2. Ni(0) is the active phase leading to both C-C and C-H bond cleavage in ethanol and it is also responsible for carbon accumulation. On the other hand, CeOx is important for the deprotonation of ethanol/water to ethoxy and OH intermediates. The active state of CeOx is a Ce(3+)(OH)x compound that results from extensive reduction by ethanol and the efficient dissociation of water. Additionally, we gain an important insight into the stability and selectivity of the catalyst by its effective water dissociation, where the accumulation of surface carbon can be mitigated by the increased presence of surface OH groups. The co-existence and cooperative interplay of Ni(0) and Ce(3+)(OH)x through a metal-support interaction facilitate oxygen transfer, activation of ethanol/water as well as the removal of coke. PMID:27095305

  5. Emissive osmium(II) complexes supported by N-heterocyclic carbene-based C^C^C-pincer ligands and aromatic diimines.

    PubMed

    Chung, Lai-Hon; Chan, Siu-Chung; Lee, Wing-Chun; Wong, Chun-Yuen

    2012-08-20

    Osmium(II) complexes containing N-heterocyclic carbene (NHC)-based pincer ligand 1,3-bis(1-methylimidazolin-2-ylidene)phenyl anion (C(1)^C^C(1)) or 1,3-bis(3-methylbenzimidazolin-2-ylidene)phenyl anion (C(2)^C^C(2)) and aromatic diimine (2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), or 4,4'-diphenyl-2,2'-bipyridine (Ph(2)bpy)) in the form of [Os(C^C^C)(N^N)(CO)](+) have been prepared. Crystal structures for these complexes show that the Os-C(NHC) bonds are essentially single (Os-C(NHC) distances = 2.079(5)-2.103(7) Å). Spectroscopic comparisons and time-dependent density functional theory (TD-DFT) calculations suggest that the lowest-energy electronic transition associated with these complexes (λ(max) = 493-536 nm, ε(max) = (5-10) × 10(3) dm(3) mol(-1) cm(-1), solvent = CH(3)CN) originate from a d(π)(Os(II)) → π*(N^N) metal-to-ligand charge transfer transition, where the d(π)(Os(II)) and π*(N^N) levels contain significant contribution from the C^C^C ligands. All these complexes are emissive in the red-spectral region (674-731 nm) with quantum yields of 10(-4)-10(-2) and emission lifetimes of around 1-6 μs. Transient absorption spectroscopy and spectroelectrochemical measurements have also been used to probe the nature of the emissive excited-states. Overall, this joint experimental and theoretical investigation reveals that the C^C^C ligands can be used to modulate the photophysical properties of a [Os(N^N)] core via the formation of the hybrid [Os + C^C^C] frontier orbitals. PMID:22873818

  6. The Calculation of Accurate Metal-Ligand Bond Energies

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W.; Partridge, Harry, III; Ricca, Alessandra; Arnold, James O. (Technical Monitor)

    1997-01-01

    The optimization of the geometry and calculation of zero-point energies are carried out at the B3LYP level of theory. The bond energies are determined at this level, as well as at the CCSD(T) level using very large basis sets. The successive OH bond energies to the first row transition metal cations are reported. For most systems there has been an experimental determination of the first OH. In general, the CCSD(T) values are in good agreement with experiment. The bonding changes from mostly covalent for the early metals to mostly electrostatic for the late transition metal systems.

  7. Do Bond Functions Help for the Calculation of Accurate Bond Energies?

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Arnold, James (Technical Monitor)

    1998-01-01

    The bond energies of 8 chemically bound diatomics are computed using several basis sets with and without bond functions (BF). The bond energies obtained using the aug-pVnZ+BF basis sets (with a correction for basis set superposition error, BSSE) tend to be slightly smaller that the results obtained using the aug-pV(n+I)Z basis sets, but slightly larger than the BSSE corrected aug-pV(n+I)Z results. The aug-cc-pVDZ+BF and aug-cc-pVTZ+BF basis sets yield reasonable estimates of bond energies, but, in most cases, these results cannot be considered highly accurate. Extrapolation of the results obtained with basis sets including bond functions appears to be inferior to the results obtained by extrapolation using atom-centered basis sets. Therefore bond functions do not appear to offer a path for obtaining highly accurate results for chemically bound systems at a lower computational cost than atom centered basis sets.

  8. Calculation of bond dissociation energies of diatomic molecules using bond function basis sets with counterpoise corrections

    SciTech Connect

    Li, Z.; Pan, Y.K.; Tao, F.M.

    1996-01-15

    Bond function basis sets combined with the counterpoise procedure are used to calculate the molecular dissociation energies D{sub e} of 24 diatomic molecules and ions. The calculated values of D{sub e} are compared to those without bond functions and/or counterpoise corrections. The equilibrium bond lengths r{sub e}, and harmonic frequencies w{sub e} are also calculated for a few selected molecules. The calculations at the fourth-order-Moller-Plesset approximation (MP4) have consistently recovered about 95-99% of the experimental values for D{sub e}, compared to as low as 75% without use of bond functions. The calculated values of r{sub 3} are typically 0.01 {Angstrom} larger than the experimental values, and the calculated values of w{sub e} are over 95% of the experimental values. 37 refs., 2 tabs.

  9. How resonance assists hydrogen bonding interactions: an energy decomposition analysis.

    PubMed

    Beck, John Frederick; Mo, Yirong

    2007-01-15

    Block-localized wave function (BLW) method, which is a variant of the ab initio valence bond (VB) theory, was employed to explore the nature of resonance-assisted hydrogen bonds (RAHBs) and to investigate the mechanism of synergistic interplay between pi delocalization and hydrogen-bonding interactions. We examined the dimers of formic acid, formamide, 4-pyrimidinone, 2-pyridinone, 2-hydroxpyridine, and 2-hydroxycyclopenta-2,4-dien-1-one. In addition, we studied the interactions in beta-diketone enols with a simplified model, namely the hydrogen bonds of 3-hydroxypropenal with both ethenol and formaldehyde. The intermolecular interaction energies, either with or without the involvement of pi resonance, were decomposed into the Hitler-London energy (DeltaEHL), polarization energy (DeltaEpol), charge transfer energy (DeltaECT), and electron correlation energy (DeltaEcor) terms. This allows for the examination of the character of hydrogen bonds and the impact of pi conjugation on hydrogen bonding interactions. Although it has been proposed that resonance-assisted hydrogen bonds are accompanied with an increasing of covalency character, our analyses showed that the enhanced interactions mostly originate from the classical dipole-dipole (i.e., electrostatic) attraction, as resonance redistributes the electron density and increases the dipole moments in monomers. The covalency of hydrogen bonds, however, changes very little. This disputes the belief that RAHB is primarily covalent in nature. Accordingly, we recommend the term "resonance-assisted binding (RAB)" instead of "resonance-assisted hydrogen bonding (RHAB)" to highlight the electrostatic, which is a long-range effect, rather than the electron transfer nature of the enhanced stabilization in RAHBs. PMID:17143867

  10. The Tautomeric Half-reaction of BphD, a C-C Bond Hydrolase Kinetic and Structural Evidence Supporting a Key Role for Histidine 265 of the Catalytic triad

    SciTech Connect

    Horsman, Geoff P.; Bhowmik, Shiva; Seah, Stephen Y.K.; Kumar, Pravindra; Bolin, Jeffrey T.; Eltis, Lindsay D.

    2010-01-07

    BphD of Burkholderia xenovorans LB400 catalyzes an unusual C-C bond hydrolysis of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) to afford benzoic acid and 2-hydroxy-2,4-pentadienoic acid (HPD). An enol-keto tautomerization has been proposed to precede hydrolysis via a gem-diol intermediate. The role of the canonical catalytic triad (Ser-112, His-265, Asp-237) in mediating these two half-reactions remains unclear. We previously reported that the BphD-catalyzed hydrolysis of HOPDA ({lambda}{sub max} is 434 nm for the free enolate) proceeds via an unidentified intermediate with a red-shifted absorption spectrum ({lambda}{sub max} is 492 nm) (Horsman, G. P., Ke, J., Dai, S., Seah, S. Y. K., Bolin, J. T., and Eltis, L. D. (2006) Biochemistry 45, 11071-11086). Here we demonstrate that the S112A variant generates and traps a similar intermediate ({lambda}{sub max} is 506 nm) with a similar rate, 1/{tau} {approx} 500 s{sup -1}. The crystal structure of the S112A:HOPDA complex at 1.8-{angstrom} resolution identified this intermediate as the keto tautomer, (E)-2,6-dioxo-6-phenyl-hex-3-enoate. This keto tautomer did not accumulate in either the H265A or the S112A/H265A double variants, indicating that His-265 catalyzes tautomerization. Consistent with this role, the wild type and S112A enzymes catalyzed tautomerization of the product HPD, whereas H265A variants did not. This study thus identifies a keto intermediate, and demonstrates that the catalytic triad histidine catalyzes the tautomerization half-reaction, expanding the role of this residue from its purely hydrolytic function in other serine hydrolases. Finally, the S112A:HOPDA crystal structure is more consistent with hydrolysis occurring via an acyl-enzyme intermediate than a gem-diol intermediate as solvent molecules have poor access to C6, and the closest ordered water is 7{angstrom} away.

  11. Ubiquitous Transgenic Overexpression of C-C Chemokine Ligand 2: A Model to Assess the Combined Effect of High Energy Intake and Continuous Low-Grade Inflammation

    PubMed Central

    Rodríguez-Gallego, Esther; Hernández-Aguilera, Anna; Mariné-Casadó, Roger; Rull, Anna; Beltrán-Debón, Raúl; Menendez, Javier A.; Vazquez-Martin, Alejandro; Sirvent, Juan J.; Martín-Paredero, Vicente; Corbí, Angel L.; Sierra-Filardi, Elena; Aragonès, Gerard; García-Heredia, Anabel; Camps, Jordi; Alonso-Villaverde, Carlos; Joven, Jorge

    2013-01-01

    Excessive energy management leads to low-grade, chronic inflammation, which is a significant factor predicting noncommunicable diseases. In turn, inflammation, oxidation, and metabolism are associated with the course of these diseases; mitochondrial dysfunction seems to be at the crossroads of mutual relationships. The migration of immune cells during inflammation is governed by the interaction between chemokines and chemokine receptors. Chemokines, especially C-C-chemokine ligand 2 (CCL2), have a variety of additional functions that are involved in the maintenance of normal metabolism. It is our hypothesis that a ubiquitous and continuous secretion of CCL2 may represent an animal model of low-grade chronic inflammation that, in the presence of an energy surplus, could help to ascertain the afore-mentioned relationships and/or to search for specific therapeutic approaches. Here, we present preliminary data on a mouse model created by using targeted gene knock-in technology to integrate an additional copy of the CCl2 gene in the Gt(ROSA)26Sor locus of the mouse genome via homologous recombination in embryonic stem cells. Short-term dietary manipulations were assessed and the findings include metabolic disturbances, premature death, and the manipulation of macrophage plasticity and autophagy. These results raise a number of mechanistic questions for future study. PMID:24453432

  12. Ubiquitous transgenic overexpression of C-C chemokine ligand 2: a model to assess the combined effect of high energy intake and continuous low-grade inflammation.

    PubMed

    Rodríguez-Gallego, Esther; Riera-Borrull, Marta; Hernández-Aguilera, Anna; Mariné-Casadó, Roger; Rull, Anna; Beltrán-Debón, Raúl; Luciano-Mateo, Fedra; Menendez, Javier A; Vazquez-Martin, Alejandro; Sirvent, Juan J; Martín-Paredero, Vicente; Corbí, Angel L; Sierra-Filardi, Elena; Aragonès, Gerard; García-Heredia, Anabel; Camps, Jordi; Alonso-Villaverde, Carlos; Joven, Jorge

    2013-01-01

    Excessive energy management leads to low-grade, chronic inflammation, which is a significant factor predicting noncommunicable diseases. In turn, inflammation, oxidation, and metabolism are associated with the course of these diseases; mitochondrial dysfunction seems to be at the crossroads of mutual relationships. The migration of immune cells during inflammation is governed by the interaction between chemokines and chemokine receptors. Chemokines, especially C-C-chemokine ligand 2 (CCL2), have a variety of additional functions that are involved in the maintenance of normal metabolism. It is our hypothesis that a ubiquitous and continuous secretion of CCL2 may represent an animal model of low-grade chronic inflammation that, in the presence of an energy surplus, could help to ascertain the afore-mentioned relationships and/or to search for specific therapeutic approaches. Here, we present preliminary data on a mouse model created by using targeted gene knock-in technology to integrate an additional copy of the CCl2 gene in the Gt(ROSA)26Sor locus of the mouse genome via homologous recombination in embryonic stem cells. Short-term dietary manipulations were assessed and the findings include metabolic disturbances, premature death, and the manipulation of macrophage plasticity and autophagy. These results raise a number of mechanistic questions for future study. PMID:24453432

  13. Estimating the energy of intramolecular hydrogen bonds in chitosan oligomers

    NASA Astrophysics Data System (ADS)

    Mikhailov, G. P.; Lazarev, V. V.

    2016-07-01

    The effect the number of chitosan monomer units CTS n ( n = 1-5), the protonation of chitosan dimers, and the interaction between CTS n ( n = 1-3) and acetate ions have on the energy of intramolecular hydrogen bonds is investigated by means of QTAIM analysis and solving the vibrational problem within the cluster-continuum model. It is established that the number of H-bonds in CTS n is 2 n - 1 and the total energy of H-bonds grows by ~20 kJ/mol. It is concluded that the hydrogen bonds between CTS and acetate ions play a major role in the stabilization of polyelectrolyte complexes in dilute acetic acid solutions of CTS.

  14. Bond resonance energy and verification of the isolated pentagon rule

    SciTech Connect

    Aihara, Jun Ichi

    1995-04-12

    The isolated pentagon rule (IPR) states that fullerenes with isolated pentagons are kinetically much more stable than their fused pentagon counterparts. This rule can be verified in terms of a graph-theoretically defined bond resonance energy. In general, a {pi} bond shared by two pentagons has a large negative bond resonance energy, thus contributing significantly to the increase in kinetic instability or chemical reactivity of the molecule. The existence of such highly antiaromatic local structures sharply distinguishes IPR-violating fullerenes from isolated-pentagon isomers. {pi}bonds shared by two pentagons are shared by many antiaromatic conjugated circuits but not by relatively small aromatic conjugated circuits. 39 refs., 3 figs., 5 tabs.

  15. The bond length and bond energy of gaseous CrW.

    PubMed

    Matthew, Daniel J; Oh, Sang Hoon; Sevy, Andrew; Morse, Michael D

    2016-06-01

    Supersonically cooled CrW was studied using resonant two-photon ionization spectroscopy. The vibronically resolved spectrum was recorded over the region 21 100 to 23 400 cm(-1), showing a very large number of bands. Seventeen of these bands, across three different isotopologues, were rotationally resolved and analyzed. All were found to arise from the ground (1)Σ(+) state of the molecule and to terminate on states with Ω' = 0. The average r0 bond length across the three isotopic forms was determined to be 1.8814(4) Å. A predissociation threshold was observed in this dense manifold of vibronic states at 23 127(10) cm(-1), indicating a bond dissociation energy of D0(CrW) = 2.867(1) eV. Using the multiple bonding radius determined for atomic Cr in previous work, the multiple bonding radius for tungsten was calculated to be 1.037 Å. Comparisons are made between CrW and the previously investigated group 6 diatomic metals, Cr2, CrMo, and Mo2, and to previous computational studies of this molecule. It is also found that the accurately known bond dissociation energies of group 5/6 metal diatomics Cr2, V2, CrW, NbCr, VNb, Mo2, and Nb2 display a qualitative linear dependence on the sum of the d-orbital radial expectation values, r; this relationship allows the bond dissociation energies of other molecules of this type to be estimated. PMID:27276956

  16. The Chemical Bond in C2.

    PubMed

    Hermann, Markus; Frenking, Gernot

    2016-03-14

    Quantum chemical calculations using the complete active space of the valence orbitals have been carried out for Hn CCHn (n=0-3) and N2 . The quadratic force constants and the stretching potentials of Hn CCHn have been calculated at the CASSCF/cc-pVTZ level. The bond dissociation energies of the C-C bonds of C2 and HC≡CH were computed using explicitly correlated CASPT2-F12/cc-pVTZ-F12 wave functions. The bond dissociation energies and the force constants suggest that C2 has a weaker C-C bond than acetylene. The analysis of the CASSCF wavefunctions in conjunction with the effective bond orders of the multiple bonds shows that there are four bonding components in C2 , while there are only three in acetylene and in N2 . The bonding components in C2 consist of two weakly bonding σ bonds and two electron-sharing π bonds. The bonding situation in C2 can be described with the σ bonds in Be2 that are enforced by two π bonds. There is no single Lewis structure that adequately depicts the bonding situation in C2 . The assignment of quadruple bonding in C2 is misleading, because the bond is weaker than the triple bond in HC≡CH. PMID:26756311

  17. Direct, redox-neutral prenylation and geranylation of secondary carbinol C-H bonds: C4-regioselectivity in ruthenium-catalyzed C-C couplings of dienes to α-hydroxy esters.

    PubMed

    Leung, Joyce C; Geary, Laina M; Chen, Te-Yu; Zbieg, Jason R; Krische, Michael J

    2012-09-26

    The ruthenium catalyst generated in situ from Ru(3)(CO)(12) and tricyclohexylphosphine, PCy(3), promotes the redox-neutral C-C coupling of aryl-substituted α-hydroxy esters to isoprene and myrcene at the diene C4-position, resulting in direct carbinol C-H prenylation and geranylation, respectively. This process enables direct conversion of secondary to tertiary alcohols in the absence of stoichiometric byproducts or premetalated reagents, and is the first example of C4-regioselectivity in catalytic C-C couplings of 2-substituted dienes to carbonyl partners. Mechanistic studies corroborate a catalytic cycle involving diene-carbonyl oxidative coupling. PMID:22985393

  18. Storing Renewable Energy in Chemical Bonds

    ScienceCinema

    Helm, Monte; Bullock, Morris

    2014-06-13

    With nearly 7 billion people, the world's population is demanding more electricity every year. Improved technologies are bringing wind and solar power to our electrical grid. However, wind turbines and solar panels only work when the wind blows or the sun shines. PNNL scientists discuss catalysis approaches for storing and releasing energy on demand.

  19. Storing Renewable Energy in Chemical Bonds

    SciTech Connect

    Helm, Monte; Bullock, Morris

    2013-03-27

    With nearly 7 billion people, the world's population is demanding more electricity every year. Improved technologies are bringing wind and solar power to our electrical grid. However, wind turbines and solar panels only work when the wind blows or the sun shines. PNNL scientists discuss catalysis approaches for storing and releasing energy on demand.

  20. Bond Dissociation Energies in Second-Row Compounds

    SciTech Connect

    Grant, Daniel J.; Matus, Myrna H.; Switzer, Jackson R.; Dixon, David A.; Francisco, Joseph S.; Christe, Karl O.

    2008-04-10

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Heats of formation at 0 and 298 K are predicted for PF₃, PF₅, PF₃O, SF₂, SF₄, SF₆, SF₂O, SF₂O₂, and SF₄O as well as a number of radicals derived from these stable compounds on the basis of coupled cluster theory [CCSD(T)] calculations extrapolated to the complete basis set limit. In order to achieve near chemical accuracy (±1 kcal/mol), additional corrections were added to the complete basis set binding energies based on frozen core coupled cluster theory energies: a correction for core-valence effects, a correction for scalar relativistic effects, a correction for first-order atomic spin-orbit effects, and vibrational zero-point energies. The calculated values substantially reduce the error limits for these species. A detailed comparison of adiabatic and diabatic bond dissociation energies (BDEs) is made and used to explain trends in the BDEs. Because the adiabatic BDEs of polyatomic molecules represent not only the energy required for breaking a specific bond but also contain any reorganization energies of the bonds in the resulting products, these BDEs can be quite different for each step in the stepwise loss of ligands in binary compounds. For example, the adiabatic BDE for the removal of one fluorine ligand from the very stable closed-shell SF₆ molecule to give the unstable SF₅ radical is 2.8 times the BDE needed for the removal of one fluorine ligand from the unstable SF₅ radical to give the stable closed-shell SF₄ molecule. Similarly, the BDE for the removal of one fluorine ligand from the stable closed-shell PF₃O molecule to give the unstable PF₂O radical is higher than the BDE needed to remove the oxygen atom to give the stable closed

  1. Heats of Formation and Bond Energies in Group III Compounds

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Allendorf, Mark D.; Melius, Carl F.; Arnold, James O. (Technical Monitor)

    1999-01-01

    We present heats of formation and bond energies for Group-III compounds obtained from calculations of molecular ground-state I electronic energies. Data for compounds of the form MXn are presented, where M = B, Al, Ga, and In, X = He H, Cl, and CH3, and n = 1-3. Energies for the B, Al, and Ga compounds are obtained from G2 predictions, while those for the In compounds are obtained from CCSD(T)/CBS calculations; these are the most accurate calculations for indium-containing compounds published to date. In most cases, the calculated thermochemistry is in good agreement with published values derived from experiments for those species that have well-established heats of formation. Bond energies obtained from the heats of formation follow the expected trend (Cl much greater than CH3 approx. H). However, the CH3M-(CH3)2 bond energies obtained for trimethylgallium and trimethylindium are considerably stronger (greater than 15 kcal/mol) than currently accepted values.

  2. Energy-based analysis of biochemical cycles using bond graphs.

    PubMed

    Gawthrop, Peter J; Crampin, Edmund J

    2014-11-01

    Thermodynamic aspects of chemical reactions have a long history in the physical chemistry literature. In particular, biochemical cycles require a source of energy to function. However, although fundamental, the role of chemical potential and Gibb's free energy in the analysis of biochemical systems is often overlooked leading to models which are physically impossible. The bond graph approach was developed for modelling engineering systems, where energy generation, storage and transmission are fundamental. The method focuses on how power flows between components and how energy is stored, transmitted or dissipated within components. Based on the early ideas of network thermodynamics, we have applied this approach to biochemical systems to generate models which automatically obey the laws of thermodynamics. We illustrate the method with examples of biochemical cycles. We have found that thermodynamically compliant models of simple biochemical cycles can easily be developed using this approach. In particular, both stoichiometric information and simulation models can be developed directly from the bond graph. Furthermore, model reduction and approximation while retaining structural and thermodynamic properties is facilitated. Because the bond graph approach is also modular and scaleable, we believe that it provides a secure foundation for building thermodynamically compliant models of large biochemical networks. PMID:25383030

  3. Energy-based analysis of biochemical cycles using bond graphs

    PubMed Central

    Gawthrop, Peter J.; Crampin, Edmund J.

    2014-01-01

    Thermodynamic aspects of chemical reactions have a long history in the physical chemistry literature. In particular, biochemical cycles require a source of energy to function. However, although fundamental, the role of chemical potential and Gibb's free energy in the analysis of biochemical systems is often overlooked leading to models which are physically impossible. The bond graph approach was developed for modelling engineering systems, where energy generation, storage and transmission are fundamental. The method focuses on how power flows between components and how energy is stored, transmitted or dissipated within components. Based on the early ideas of network thermodynamics, we have applied this approach to biochemical systems to generate models which automatically obey the laws of thermodynamics. We illustrate the method with examples of biochemical cycles. We have found that thermodynamically compliant models of simple biochemical cycles can easily be developed using this approach. In particular, both stoichiometric information and simulation models can be developed directly from the bond graph. Furthermore, model reduction and approximation while retaining structural and thermodynamic properties is facilitated. Because the bond graph approach is also modular and scaleable, we believe that it provides a secure foundation for building thermodynamically compliant models of large biochemical networks. PMID:25383030

  4. Argon hydrochloride, Ar.HCl, bond energy by infrared spectroscopy

    NASA Technical Reports Server (NTRS)

    Miziolek, A. W.; Pimentel, G. C.

    1976-01-01

    The infrared absorption of argon (200 to 760 torr) and hydrogen chloride (2 to 6 torr) mixtures is reexamined in the missing Q branch region (spectral region between 2860 and 3010 wavelength/cm) at temperatures ranging from 195 to 298 K. The temperature dependence of two absorption features of the argon hydrogen chloride complex, at 2887 and 2879 wavelength/cm, leads to a bond energy estimate that depends on the assumptions made about the internal degrees of freedom of the complex. It is shown that agreement with experiment can be reached for well depths near 1.2 kcal/mole. This result is relatively insensitive to the choice of the vibrational frequencies and anharmonicities, but does depend on the extent to which the energy level manifolds are truncated to avoid molecular excitation in excess of the bond energy. The bond energy is found to deviate from the commonly accepted value of 0.4 kcal/mole. Possible causes for the discrepancy are considered.

  5. Bond Dissociation Energies for Substituted Polycyclic Aromatic Hydrocarbons and Their Cations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W.; Langhoff, Stephen R.; Arnold, James O. (Technical Monitor)

    1998-01-01

    The B3LYP/4-31G approach is used to compute bond energies for a series of substituted benzene, naphthalene, and anthracene molecules and their cations. The benzene bond energies are compared with experiment. The trends in the bond energies are discussed. The ionization energies are also reported and compared with available experiments.

  6. Analysis of liquid metal embrittlement from a bond energy viewpoint

    NASA Technical Reports Server (NTRS)

    Kelley, M. J.; Stoloff, N. S.

    1975-01-01

    Absorption induced embrittlement of solid metals by certain liquid metals is analyzed through an Engel-Brewer calculation of the solid-liquid interaction energy, and of the effect of the latter in reducing fracture surface energy. The reduction in fracture surface energy is estimated by comparison of the electronic contribution to the solid-liquid interaction energy with solid-solid bond energy for some 40 liquid-solid couples. Regular solution theory is used to estimate mutual solubility as the relative difference in parameter values. Embrittlement can be predicted by using reduction in fracture surface energy and solubility parameter difference as critical variables. The effect of solute additions to the liquid on the degree of embrittlement is interpreted via the same two variables; the principal effect of solutes is to modify solubility relationships at the solid-liquid interface.

  7. IR Spectra and Bond Energies Computed Using DFT

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles; Andrews, Lester; Arnold, James (Technical Monitor)

    2000-01-01

    The combination of density functional theory (DFT) frequencies and infrared (IR) intensities and experimental spectra is a very powerful tool in the identification of molecules and ions. The computed and measured isotopic ratios make the identification much more secure than frequencies and intensities alone. This will be illustrated using several examples, such as Mn(CO)n and Mn(CO)n-. The accuracy of DFT metal-ligand bond energies will also be discussed.

  8. Accurate Bond Energies of Hydrocarbons from Complete Basis Set Extrapolated Multi-Reference Singles and Doubles Configuration Interaction

    SciTech Connect

    Oyeyemi, Victor B.; Pavone, Michele; Carter, Emily A.

    2011-11-03

    Quantum chemistry has become one of the most reliable tools for characterizing the thermochemical underpinnings of reactions, such as bond dissociation energies (BDEs). The accurate prediction of these particular properties (BDEs) are challenging for ab initio methods based on perturbative corrections or coupled cluster expansions of the single-determinant Hartree-Fock wave function: the processes of bond breaking and forming are inherently multi-configurational and require an accurate description of non-dynamical electron correlation. To this end, we present a systematic ab initio approach for computing BDEs that is based on three components: (1) multi-reference single and double excitation configuration interaction (MRSDCI) for the electronic energies; (2) a two-parameter scheme for extrapolating MRSDCI energies to the complete basis set limit; and (3) DFT-B3LYP calculations of minimumenergy structures and vibrational frequencies to account for zero point energy and thermal corrections. We validated our methodology against a set of reliable experimental BDE values of C*C and C*H bonds of hydrocarbons. The goal of chemical accuracy is achieved, on average, without applying any empirical corrections to the MRSDCI electronic energies. We then use this composite scheme to make predictions of BDEs in a large number of hydrocarbon molecules for which there are no experimental data, so as to provide needed thermochemical estimates for fuel molecules.

  9. Structures, energies, and bonding in the water heptamer.

    PubMed

    Acelas, Nancy; Hincapié, Gina; Guerra, Doris; David, Jorge; Restrepo, Albeiro

    2013-07-28

    In this paper we report the geometries and properties of 38 distinct geometrical motifs located on the B3LYP/6-31+G(d), MP2/6-311++G(d, p) potential energy surfaces of the water heptamer. Binding energies of up to 45 kcal/mol are calculated. All motifs fall within 10 kcal/mol of the most stable conformation, with at least 13 structural patterns located no more than 3 kcal/mol above, leading to a very complex potential energy surface, populated by a multitude of motifs each one allowing large numbers of conformations. Cluster stability does not seem to be correlated with the number of hydrogen bonds. Compact structures are energetically favored by electronic energies with zero-point energy corrections, while more open structures are preferred when temperature and entropy are accounted for. The molecular interactions holding the clusters as discrete units lead to large binding energies but are not strong enough to cause significant changes in the geometries of the interacting monomers. Our results indicate that bonding in the water heptamers can be considered as largely non-shared interactions with contributions from intermediate character of increasing covalency. PMID:23901983

  10. Copper-catalyzed domino synthesis of 2-imino-1H-imidazol-5(2H)-ones and quinoxalines involving C-C bond cleavage with a 1,3-dicarbonyl unit as a leaving group.

    PubMed

    Yang, Yan; Ni, Fan; Shu, Wen-Ming; Wu, An-Xin

    2014-09-01

    Although 2-imino-1H-imidazol-5(2H)-ones have important biological activities in metabolism, their synthesis has rarely been investigated. Quinoxalines as "privileged scaffolds" in medicinal chemistry have been extensively investigated, but the development of novel and efficient synthetic methods remains very attractive. Herein, we have developed two copper-catalyzed domino reactions for the synthesis of 2-imino-1H-imidazol-5(2H)-ones and quinoxalines involving CC bond-cleavage with a 1,3-dicarbonyl unit as a leaving group. The domino sequence for the synthesis of 2-imino-1H-imidazol-5(2H)-ones includes aza-Michael addition, intramolecular cyclization, CC bond-cleavage, 1,2-rearrangement, and aerobic dehydrogenation reaction, whereas the domino sequence for the synthesis of quinoxalines includes aza-Michael addition, intramolecular cyclization, elimination reaction, and CC bond-cleavage reaction. The two domino reactions have significant advantages including high efficiency, mild reaction conditions, and high tolerance of various functional groups. PMID:25079446

  11. Bond length and local energy density property connections for non-transition-metal oxide-bonded interactions.

    PubMed

    Gibbs, G V; Spackman, M A; Jayatilaka, D; Rosso, K M; Cox, D F

    2006-11-01

    For a variety of molecules and earth materials, the theoretical local kinetic energy density, G(r(c)), increases and the local potential energy density, V(r(c)), decreases as the M-O bond lengths (M = first- and second-row metal atoms bonded to O) decrease and the electron density, rho(r(c)), accumulates at the bond critical points, r(c). Despite the claim that the local kinetic energy density per electronic charge, G(r(c))/rho(r(c)), classifies bonded interactions as shared interactions when less than unity and closed-shell when greater, the ratio was found to increase from 0.5 to 2.5 au as the local electronic energy density, H(r(c)) = G(r(c)) + V(r(c)), decreases and becomes progressively more negative. The ratio appears to be a measure of the character of a given M-O bonded interaction, the greater the ratio, the larger the value of rho(r(c)), the smaller the coordination number of the M atom and the more shared the bonded interaction. H(r(c))/rho(r(c)) versus G(r(c))/rho(r(c)) scatter diagrams categorize the M-O bonded interactions into domains with the local electronic energy density per electron charge, H(r(c))/rho(r(c)), tending to decrease as the electronegativity differences for the bonded pairs of atoms decrease. The values of G(r(c)) and V(r(c)), estimated with a gradient-corrected electron gas theory expression and the local virial theorem, are in good agreement with theoretical values, particularly for the bonded interactions involving second-row M atoms. The agreement is poorer for shared C-O and N-O bonded interactions. PMID:17078623

  12. Effects of Exchange Energy and Spin-Orbit Coupling on Bond Energies

    ERIC Educational Resources Information Center

    Smith, Derek W.

    2004-01-01

    Since chemical reactions involve the breaking and making of bonds, understanding the relative strengths of bonds is of paramount importance in the study, teaching, and practice of chemistry. Further, it is showed that free atoms having p(super n) configuration with n = 2,3, or 4 are stabilized by exchange energy, and by spin-orbit coupling for n =…

  13. Measuring the energy landscape of complex bonds using AFM

    NASA Astrophysics Data System (ADS)

    Mayyas, Essa; Hoffmann, Peter; Runyan, Lindsay

    2009-03-01

    We measured rupture force of a complex bond of two interacting proteins with atomic force microscopy. Proteins of interest were active and latent Matrix metalloproteinases (MMPs), type 2 and 9, and their tissue inhibitors TIMP1 and TIMP2. Measurements show that the rupture force depends on the pulling speed; it ranges from 30 pN to 150 pN at pulling speeds 30nm/s to 48000nm/s. Analyzing data using an extended theory enabled us to understand the mechanism of MMP-TIMP interaction; we determined all physical parameters that form the landscape energy of the interaction, in addition to the life time of the bond and its length. Moreover, we used the pulling experiment to study the interaction of TIMP2 with the receptor MT1-MMP on the surface of living cells.

  14. Bond Energies in Models of the Schrock Metathesis Catalyst

    SciTech Connect

    Vasiliu, Monica; Li, Shenggang; Arduengo, Anthony J.; Dixon, David A.

    2011-06-23

    Heats of formation, adiabatic and diabatic bond dissociation energies (BDEs) of the model Schrock-type metal complexes M(NH)(CRR)(OH)₂ (M = Cr, Mo, W; CRR = CH₂, CHF, CF₂) and MO₂(OH)₂ compounds, and Brønsted acidities and fluoride affinities for the M(NH)(CH₂)(OH) ₂ transition metal complexes are predicted using high level CCSD(T) calculations. The metallacycle intermediates formed by reaction of C₂H4 with M(NH)-(CH₂)(OH)2 and MO₂(OH)₂ are investigated at the same level of theory. Additional corrections were added to the complete basis set limit to obtain near chemical accuracy ((1 kcal/mol). A comparison between adiabatic and diabatic BDEs is made and provides an explanation of trends in the BDEs. Electronegative groups bonded on the carbenic carbon lead to less stable Schrock-type complexes as the adiabatic BDEs ofMdCF₂ andMdCHF bonds are much lower than theMdCH₂ bonds. The Cr compounds have smaller BDEs than theWorMo complexes and should be less stable. Different M(NH)(OH)₂(C₃H₆) and MO(OH)₂(OC₂H4) metallacycle intermediates are investigated, and the lowest-energy metallacycles have a square pyramidal geometry. The results show that consideration of the singlet_triplet splitting in the carbene in the initial catalyst as well as in the metal product formed by the retro [2+2] cycloaddition is a critical component in the design of an effective olefin metathesis catalyst in terms of the parent catalyst and the groups being transferred.

  15. Predissociation measurements of bond dissociation energies: VC, VN, and VS.

    PubMed

    Johnson, Eric L; Davis, Quincy C; Morse, Michael D

    2016-06-21

    The abrupt onset of predissociation in the congested electronic spectra of jet-cooled VC, VN, and VS has been observed using resonant two-photon ionization spectroscopy. It is argued that because of the high density of electronic states in these molecules, the predissociation threshold occurs at the thermochemical threshold for the production of separated atoms in their ground electronic states. As a result, the measured threshold represents the bond dissociation energy. Using this method, bond dissociation energies of D0(V C) = 4.1086(25) eV, D0(V N) = 4.9968(20) eV, and D0(V S) = 4.5353(25) eV are obtained. From these values, enthalpies of formation are derived as Δf,0KH°(V C(g)) = 827.0 ± 8 kJ mol(-1), Δf,0KH°(V N(g)) = 500.9 ± 8 kJ mol(-1), and Δf,0KH°(V S(g)) = 349.3 ± 8 kJ mol(-1). Using a thermochemical cycle and the well-known ionization energies of V, VC, and VN, our results also provide D0(V(+)-C) = 3.7242(25) eV and D0(V(+)-N) = 4.6871(20) eV. These values are compared to previous measurements and to computational results. The precision of these bond dissociation energies makes them good candidates for testing computational chemistry methods, particularly those that employ density functional theory. PMID:27334161

  16. Predissociation measurements of bond dissociation energies: VC, VN, and VS

    NASA Astrophysics Data System (ADS)

    Johnson, Eric L.; Davis, Quincy C.; Morse, Michael D.

    2016-06-01

    The abrupt onset of predissociation in the congested electronic spectra of jet-cooled VC, VN, and VS has been observed using resonant two-photon ionization spectroscopy. It is argued that because of the high density of electronic states in these molecules, the predissociation threshold occurs at the thermochemical threshold for the production of separated atoms in their ground electronic states. As a result, the measured threshold represents the bond dissociation energy. Using this method, bond dissociation energies of D0(V C) = 4.1086(25) eV, D0(V N) = 4.9968(20) eV, and D0(V S) = 4.5353(25) eV are obtained. From these values, enthalpies of formation are derived as Δf,0KH°(V C(g)) = 827.0 ± 8 kJ mol-1, Δf,0KH°(V N(g)) = 500.9 ± 8 kJ mol-1, and Δf,0KH°(V S(g)) = 349.3 ± 8 kJ mol-1. Using a thermochemical cycle and the well-known ionization energies of V, VC, and VN, our results also provide D0(V+-C) = 3.7242(25) eV and D0(V+-N) = 4.6871(20) eV. These values are compared to previous measurements and to computational results. The precision of these bond dissociation energies makes them good candidates for testing computational chemistry methods, particularly those that employ density functional theory.

  17. Controlling the bond scission sequence of oxygenates for energy applications

    NASA Astrophysics Data System (ADS)

    Stottlemyer, Alan L.

    The so called "Holy Grail" of heterogeneous catalysis is a fundamental understanding of catalyzed chemical transformations which span multidimensional scales of both length and time, enabling rational catalyst design. Such an undertaking is realizable only with an atomic level understanding of bond formation and destruction with respect to intrinsic properties of the metal catalyst. In this study, we investigate the bond scission sequence of small oxygenates (methanol, ethanol, ethylene glycol) on bimetallic transition metal catalysts and transition metal carbide catalysts. Oxygenates are of interest both as hydrogen carriers for reforming to H2 and CO and as fuels in direct alcohol fuel cells (DAFC). To address the so-called "materials gap" and "pressure gap" this work adopted three parallel research approaches: (1) ultra high vacuum (UHV) studies including temperature programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS) on polycrystalline surfaces; (2) DFT studies including thermodynamic and kinetic calculations; (3) electrochemical studies including cyclic voltammetry (CV) and chronoamperometry (CA). Recent studies have suggested that tungsten monocarbide (WC) may behave similarly to Pt for the electrooxidation of oxygenates. TPD was used to quantify the activity and selectivity of oxygenate decomposition for WC and Pt-modifiedWC (Pt/WC) as compared to Pt. While decomposition activity was generally higher on WC than on Pt, scission of the C-O bond resulted in alkane/alkene formation on WC, an undesired product for DAFC. When Pt was added to WC by physical vapor deposition C-O bond scission was limited, suggesting that Pt synergistically modifies WC to improve the selectivity toward C-H bond scission to produce H2 and CO. Additionally, TPD confirmed WC and Pt/WC to be more CO tolerant than Pt. HREELS results verified that surface intermediates were different on Pt/WC as compared to Pt or WC and evidence of aldehyde

  18. Template Catalysis by Metal-Ligand Cooperation. C-C Bond Formation via Conjugate Addition of Non-activated Nitriles under Mild, Base-free Conditions Catalyzed by a Manganese Pincer Complex.

    PubMed

    Nerush, Alexander; Vogt, Matthias; Gellrich, Urs; Leitus, Gregory; Ben-David, Yehoshoa; Milstein, David

    2016-06-01

    The first example of a catalytic Michael addition reaction of non-activated aliphatic nitriles to α,β-unsaturated carbonyl compounds under mild, neutral conditions is reported. A new de-aromatized pyridine-based PNP pincer complex of the Earth-abundant, first-row transition metal manganese serves as the catalyst. The reaction tolerates a variety of nitriles and Michael acceptors with different steric features and acceptor strengths. Mechanistic investigations including temperature-dependent NMR spectroscopy and DFT calculations reveal that the cooperative activation of alkyl nitriles, which leads to the generation of metalated nitrile nucleophile species (α-cyano carbanion analogues), is a key step of the mechanism. The metal center is not directly involved in the catalytic bond formation but rather serves, cooperatively with the ligand, as a template for the substrate activation. This approach of "template catalysis" expands the scope of potential donors for conjugate addition reactions. PMID:27164437

  19. Theoretical determination of the alkali-metal superoxide bond energies

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Sodupe, Mariona; Langhoff, Stephen R.

    1992-01-01

    The bond dissociation energies for the alkali-metal superoxides have been computed using extensive Gaussian basis sets and treating electron correlation at the modified coupled-pair functional level. Our computed D0 values are 61.4, 37.2, 40.6, and 38.4 kcal/mol for LiO2, NaO2, KO2, and RbO2, respectively. These values, which are expected to be lower bounds and accurate to 2 kcal/mol, agree well with some of the older flame data, but rule out several recent experimental measurements.

  20. The Trouble with Chemical Energy: Why Understanding Bond Energies Requires an Interdisciplinary Systems Approach

    ERIC Educational Resources Information Center

    Cooper, Melanie M.; Klymkowsky, Michael W.

    2013-01-01

    Helping students understand "chemical energy" is notoriously difficult. Many hold inconsistent ideas about what energy is, how and why it changes during the course of a chemical reaction, and how these changes are related to bond energies and reaction dynamics. There are (at least) three major sources for this problem: 1) the way biologists talk…

  1. Theoretical Electron Density Distributions for Fe- and Cu-Sulfide Earth Materials: A Connection between Bond Length, Bond Critical Point Properties, Local Energy Densities, and Bonded Interactions

    SciTech Connect

    Gibbs, Gerald V.; Cox, David F.; Rosso, Kevin M.; Ross, Nancy L.; Downs, R. T.; Spackman, M. A.

    2007-03-01

    Bond critical point and local energy density properties together with net atomic charges were calculated for theoretical electron density distributions, F(r), generated for a variety of Fe and Cu metal-sulfide materials with high- and low-spin Fe atoms in octahedral coordination and high-spin Fe atoms in tetrahedral coordination. The electron density, F(rc), the Laplacian, 32F(rc), the local kinetic energy, G(rc), and the oxidation state of Fe increase as the local potential energy density, V(rc), the Fe-S bond lengths, and the coordination numbers of the Fe atoms decrease. The properties of the bonded interactions for the octahedrally coordinated low-spin Fe atoms for pyrite and marcasite are distinct from those for high-spin Fe atoms for troilite, smythite, and greigite. The Fe-S bond lengths are shorter and the values of F(rc) and 32F(rc) are larger for pyrite and marcasite, indicating that the accumulation and local concentration of F(r) in the internuclear region are greater than those involving the longer, high-spin Fe-S bonded interactions. The net atomic charges and the bonded radii calculated for the Fe and S atoms in pyrite and marcasite are also smaller than those for sulfides with high-spin octahedrally coordinated Fe atoms. Collectively, the Fe-S interactions are indicated to be intermediate in character with the low-spin Fe-S interactions having greater shared character than the highspin interactions. The bond lengths observed for chalcopyrite together with the calculated bond critical point properties are consistent with the formula Cu+Fe3+S2. The bond length is shorter and the F(rc) value is larger for the FeS4 tetrahedron displayed by metastable greigite than those displayed by chalcopyrite and cubanite, consistent with a proposal that the Fe atom in greigite is tetravalent. S-S bond paths exist between each of the surface S atoms of adjacent slabs of FeS6 octahedra comprising the layer sulfide smythite, suggesting that the neutral Fe3S4 slabs are

  2. Theoretical electron density distributions for Fe- and Cu-sulfide earth materials: a connection between bond length, bond critical point properties, local energy densities, and bonded interactions.

    PubMed

    Gibbs, G V; Cox, D F; Rosso, K M; Ross, N L; Downs, R T; Spackman, M A

    2007-03-01

    Bond critical point and local energy density properties together with net atomic charges were calculated for theoretical electron density distributions, rho(r), generated for a variety of Fe and Cu metal-sulfide materials with high- and low-spin Fe atoms in octahedral coordination and high-spin Fe atoms in tetrahedral coordination. The electron density, rho(rc), the Laplacian, triangle down2rho(rc), the local kinetic energy, G(rc), and the oxidation state of Fe increase as the local potential energy density, V(rc), the Fe-S bond lengths, and the coordination numbers of the Fe atoms decrease. The properties of the bonded interactions for the octahedrally coordinated low-spin Fe atoms for pyrite and marcasite are distinct from those for high-spin Fe atoms for troilite, smythite, and greigite. The Fe-S bond lengths are shorter and the values of rho(rc) and triangle down2rho(rc) are larger for pyrite and marcasite, indicating that the accumulation and local concentration of rho(r) in the internuclear region are greater than those involving the longer, high-spin Fe-S bonded interactions. The net atomic charges and the bonded radii calculated for the Fe and S atoms in pyrite and marcasite are also smaller than those for sulfides with high-spin octahedrally coordinated Fe atoms. Collectively, the Fe-S interactions are indicated to be intermediate in character with the low-spin Fe-S interactions having greater shared character than the high-spin interactions. The bond lengths observed for chalcopyrite together with the calculated bond critical point properties are consistent with the formula Cu+Fe3+S2. The bond length is shorter and the rho(rc) value is larger for the FeS4 tetrahedron displayed by metastable greigite than those displayed by chalcopyrite and cubanite, consistent with a proposal that the Fe atom in greigite is tetravalent. S-S bond paths exist between each of the surface S atoms of adjacent slabs of FeS6 octahedra comprising the layer sulfide smythite

  3. Accurate bond dissociation energies (D 0) for FHF- isotopologues

    NASA Astrophysics Data System (ADS)

    Stein, Christopher; Oswald, Rainer; Sebald, Peter; Botschwina, Peter; Stoll, Hermann; Peterson, Kirk A.

    2013-09-01

    Accurate bond dissociation energies (D 0) are determined for three isotopologues of the bifluoride ion (FHF-). While the zero-point vibrational contributions are taken from our previous work (P. Sebald, A. Bargholz, R. Oswald, C. Stein, P. Botschwina, J. Phys. Chem. A, DOI: 10.1021/jp3123677), the equilibrium dissociation energy (D e ) of the reaction ? was obtained by a composite method including frozen-core (fc) CCSD(T) calculations with basis sets up to cardinal number n = 7 followed by extrapolation to the complete basis set limit. Smaller terms beyond fc-CCSD(T) cancel each other almost completely. The D 0 values of FHF-, FDF-, and FTF- are predicted to be 15,176, 15,191, and 15,198 cm-1, respectively, with an uncertainty of ca. 15 cm-1.

  4. Mediatorless solar energy conversion by covalently bonded thylakoid monolayer on the glassy carbon electrode.

    PubMed

    Lee, Jinhwan; Im, Jaekyun; Kim, Sunghyun

    2016-04-01

    Light reactions of photosynthesis that take place in thylakoid membranes found in plants or cyanobacteria are among the most effective ways of utilizing light. Unlike most researches that use photosystem I or photosystem II as conversion units for converting light to electricity, we have developed a simple method in which the thylakoid monolayer was covalently immobilized on the glassy carbon electrode surface. The activity of isolated thylakoid membrane was confirmed by measuring evolving oxygen under illumination. Glassy carbon surfaces were first modified with partial or full monolayers of carboxyphenyl groups by reductive C-C coupling using 4-aminobenzoic acid and aniline and then thylakoid membrane was bioconjugated through the peptide bond between amine residues of thylakoid and carboxyl groups on the surface. Surface properties of modified surfaces were characterized by cyclic voltammetry, contact angle measurements, and electrochemical impedance spectroscopy. Photocurrent of 230 nA cm(-2) was observed when the thylakoid monolayer was formed on the mixed monolayer of 4-carboxylpheny and benzene at applied potential of 0.4V vs. Ag/AgCl. A small photocurrent resulted when the 4-carboxyphenyl full monolayer was used. This work shows the possibility of solar energy conversion by directly employing the whole thylakoid membrane through simple surface modification. PMID:26625272

  5. Bond energy effects on strength, cooperativity and robustness of molecular structures.

    PubMed

    Chou, Chia-Ching; Buehler, Markus J

    2011-10-01

    A fundamental challenge in engineering biologically inspired materials and systems is the identification of molecular structures that define fundamental building blocks. Here, we report a systematic study of the effect of the energy of chemical bonds on the mechanical properties of molecular structures, specifically, their strength and robustness. By considering a simple model system of an assembly of bonds in a cluster, we demonstrate that weak bonding, as found for example in H-bonds, results in a highly cooperative behaviour where clusters of bonds operate synergistically to form relatively strong molecular clusters. The cooperative effect of bonding results in an enhanced robustness since the drop of strength owing to the loss of a bond in a larger cluster only results in a marginal reduction of the strength. Strong bonding, as found in covalent interactions such as disulphide bonds or in the backbone of proteins, results in a larger mechanical strength. However, the ability for bonds to interact cooperatively is lost, and, as a result, the overall robustness is lower since the mechanical strength hinges on individual bonds rather than a cluster of bonds. The systematic analysis presented here provides general insight into the interplay of bond energy, robustness and other geometric parameters such as bond spacing. We conclude our analysis with a correlation of structural data of natural protein structures, which confirms the conclusions derived from our study. PMID:23050078

  6. Metallic bond effects on mean excitation energies for stopping powers

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Xu, Y. J.

    1982-01-01

    Mean excitation energies for first row metals are evaluated by means of the local plasma approximation. Particle corrections based on Pines' (1953) procedure and the Wigner Seitz (1934) model of the metallic state are included. The agreement with experimental values is remarkably good. In contrast to previous work, the calculations given here estimate shifts in the plasma frequency according to the theory for plane wave states in an extended plasma as calculated by Pines. It is demonstrated that the effects of the metallic bond in lithium and beryllium are quite large and that they appear mainly as a result of collective oscillations in the 'free' electron gas formed from the valence electrons. The usefulness of the plasma frequency shift derived for a degenerate electron gas in predicting the plasma frequency shift within the ion core is considered surprising.

  7. Bond dissociation energies from the topology of the charge density using gradient bundle analysis

    NASA Astrophysics Data System (ADS)

    Morgenstern, Amanda; Eberhart, Mark

    2016-02-01

    New and more robust models of chemical bonding are necessary to further our understanding of chemical phenomena. Among these are bond bundle and gradient bundle methods, which analyze bonding interactions in terms of property distributions over geometrically defined volumes. These methods have been shown to provide a systematic framework from which to search for structure-property relationships. In addition to providing a brief review of some of the relationships found using this framework, we present new findings that relate the lowering of kinetic energy in bonding regions to bond dissociation energy.

  8. Calculation of activation energies for hydrogen-atom abstractions by radicals containing carbon triple bonds

    NASA Technical Reports Server (NTRS)

    Brown, R. L.; Laufer, A. H.

    1981-01-01

    Activation energies are calculated by the bond-energy-bond-order (BEBO) and the bond-strength-bond-length (BSBL) methods for the reactions of C2H radicals with H2, CH4, and C2H6 and for the reactions of CN radicals with H2 and CH4. The BSBL technique accurately predicts the activation energies for these reactions while the BEBO method yields energies averaging 9 kcal higher than those observed. A possible reason for the disagreement is considered.

  9. An Experimental and Theoretical Study on the Ionization Energies of Polyynes (H-(C = C)n-H; n = 1 - 9)

    SciTech Connect

    Kaiser, Ralf I.; Sun, Bian Jian; Lin, Hong Mao; Chang, Agnes H. H.; Mebel, Alexander M.; Kostko, Oleg; Ahmed, Musahid

    2010-05-17

    We present a combined experimental and theoretical work on the ionization energies of polyacetylene -- organic molecules considered as important building blocks to form polycyclic aromatic hydrocarbons (PAHs) in the proto planetary nebulae such as of CRL 618. This set of astrophysical data can be utilized with significant confidence in future astrochemical models of photon-dominated regions and also of the proto planetary nebulae CRL 618. We recommend ionization energies of polyacetylenes from diacetylene up to heptaacetylene with an experimental accuracy of +- 0.05 eV: 10.03 eV (diacetylene), 9.45 eV (triacetylene), 9.08 eV (tetraacetylene), 8.75 eV (pentaacetylene), 8.65 eV (hexaacetylene), and 8.50 eV (heptaacetylene); further, ionization energies and with an accuracy of +- 0.1 eV: 8.32 eV (octaacetylene) and 8.24 eV (nonaacetylene) were computed. Implications of these energies to the redox chemistry involved in the multiply charged metal-ion mediated chemistry of hydrocarbon-rich atmospheres of planets and their moons such as Titan are also discussed.

  10. Structures, bonding and energies of N 6 isomers

    NASA Astrophysics Data System (ADS)

    Glukhovtsev, Mikhail N.; von Ragué Schleyer, Paul

    1992-10-01

    The most stable N 6 isomer, a twisted open-chain C 2 structure, is 188.3 kcal/mol (MP4SDTQ/6-31G(d)//MP2(full)/6-31 G(d) + ZPE(MP2/6-31 G(d))) higher in energy than three N 2 molecules. In contrast to benzene, hexazine, N 6, prefers a non-planar twist-boat D 2 structure, but this is 26.0 kcal/mol less stable than the C 2 form. The D 6h altenative is a second-order saddle point at MP2 (full)/6-31G(d) 2.1 kcal/mol higher in energy at MP4SDTQ/6-311 (+s)G(d)//MP2(full)/6-311 (+s)G(2d) + ZPE (MP2/6-31G(d)). The homodesmotic and hyperhomodesmotic reaction energies indicate that the D 6h structure is destabilized (-17.6 and -10.4 kcal/mol, respectively), in contrast to the stabilization of benzene (23.9 and 20.3 kcal/mol, respectively, MP4SDTQ/6-31 G(d, p)//MP2(full)/6-31 G(d, p)). NBO analysis shows that none of the N atoms in the N 6 open-chain structures forms more than four covalent bonds. The other N 6 valence isomers, hexaaza-Dewar-benzene, hexaazabicyclopropenyl, and hexaazaprismane are higher in energy than hexazine (33.9, 29.6 and 115.8 kcal/mol, respectively) at MP4SDTQ(fc)/6-31 G(d)/MP2(full)/6-31 G(d) + ZPE(HF/6-31 G(d)).

  11. Interstellar Isomers: The Importance of Bonding Energy Differences

    NASA Technical Reports Server (NTRS)

    Remijan, Anthony J.; Hollis, J. M.; Lovas, F. J.; Plusquellic, D. F.; Jewell, P. R.

    2005-01-01

    We present strong detections of methyl cyanide (CH3CN), vinyl cyanide (CH2CHCN), ethyl cyanide (CH3CH2CN) and cyanodiacetylene (HC4CN) molecules with the Green Bank Telescope (GBT) toward the Sgr B2(N) molecular cloud. Attempts to detect the corresponding isocyanide isomers were only successful in the case of methyl isocyanide (CH3NC) for its J(sub K) = 1(sub 0) - 0(sub 0) transition, which is the first interstellar report of this line. To determine the spatial distribution of CH3NC, we used archival Berkeley-Illinois-Maryland Association (BIMA) array data for the J(sub K) = 1(sub 0) - 0(sub 0) transitions but no emission was detected. From ab initio calculations, the bonding energy difference between the cyanide and isocyanide molecules is greater than 8500 per centimeter (greater than 12,000 K). Thus, cyanides are the more stable isomers and would likely be formed more preferentially over their isocyanide counterparts. That we detect CH3NC emission with a single antenna (Gaussian beamsize(omega(sub B))=1723 arcsec(sup 2)) but not with an interferometer (omega(sub b)=192 arcsec(sup 2)), strongly suggests that CH3NC has a widespread spatial distribution toward the Sgr B2(N) region. Other investigators have shown that CH3CN is present both in the LMH hot core of Sgr B2(N) and in the surrounding medium, while we have shown that CH3NC appears to be deficient in the LMH hot core. Thus, largescale, non-thermal processes in the surrounding medium may account for the conversion of CH3CN to CH3NC while the LMH hot core, which is dominated by thermal processes, does not produce a significant amount of CH3NC. Ice analog experiments by other investigators have shown that radiation bombardment of CH3CN can produce CH3NC, thus supporting our observations. We conclude that isomers separated by such large bonding energy differences are distributed in different interstellar environments, making the evaluation of column density ratios between such isomers irrelevant unless it can

  12. Conformational changes of 1-4-glucopyranosyl residues of a sulfated C-C linked hexasaccharide.

    PubMed

    Coletti, Alessia; Elli, Stefano; Macchi, Eleonora; Galzerano, Patrizia; Zamani, Leila; Guerrini, Marco; Torri, Giangiacomo; Vismara, Elena

    2014-05-01

    This work describes the structure of a fully sulfated maltotriose alpha-beta C-C linked dimer, where a central glycosidic bond was substituted by a non natural, hydrolase-resistant C-C bond. Such compound shows anti-metastatic properties being an inhibitor of the heparanase enzymatic activity and of P-selectin-mediated cell-cell interactions. NMR spectroscopy was applied to investigate the structure and conformational properties of this C-C linked hexasaccharide. The presence of sulfate substituents and the internal C-C bond drives the two internal rings in an unusual (1)C(4) chair conformation, while the external rings linked by glycosidic bonds retain the typical (4)C(1) conformation. The NMR results were confirmed by molecular mechanics calculations using structure corresponding di- and tetrasaccharides as models. PMID:24680506

  13. A revised set of values of single-bond radii derived from the observed interatomic distances in metals by correction for bond number and resonance energy

    PubMed Central

    Pauling, Linus; Kamb, Barclay

    1986-01-01

    An earlier discussion [Pauling, L. (1947) J. Am. Chem. Soc. 69, 542] of observed bond lengths in elemental metals with correction for bond number and resonance energy led to a set of single-bond metallic radii with values usually somewhat less than the corresponding values obtained from molecules and complex ions. A theory of resonating covalent bonds has now been developed that permits calculation of the number of resonance structures per atom and of the effective resonance energy per bond. With this refined method of correcting the observed bond lengths for the effect of resonance energy, a new set of single-bond covalent radii, in better agreement with values from molecules and complex ions, has been constructed. PMID:16593698

  14. Two-State Reactivity Mechanism of Benzene C-C Activation by Trinuclear Titanium Hydride.

    PubMed

    Zhu, Bo; Guan, Wei; Yan, Li-Kai; Su, Zhong-Min

    2016-09-01

    The cleavage of inert C-C bonds is a central challenge in modern chemistry. Multinuclear transition metal complexes would be a desirable alternative because of the synergetic effect of multiple metal centers. In this work, carbon-carbon bond cleavage and rearrangement of benzene by a trinuclear titanium hydride were investigated using density functional theory. The reaction occurs via a novel "two-state reactivity" mechanism. The important elementary steps consist of hydride transfer, benzene coordination, dehydrogenation, oxidative addition, hydride-proton exchange, and reductive elimination. Most importantly, the ground-state potential energy surface switches from nearly degenerate triplet and antiferromagnetic singlet states to a closed-shell singlet state in the dearomatization of benzene, which effectively decreases the activation barrier. Furthermore, the roles of the transition metal centers and hydrides were clarified. PMID:27549571

  15. The trouble with chemical energy: why understanding bond energies requires an interdisciplinary systems approach.

    PubMed

    Cooper, Melanie M; Klymkowsky, Michael W

    2013-06-01

    Helping students understand "chemical energy" is notoriously difficult. Many hold inconsistent ideas about what energy is, how and why it changes during the course of a chemical reaction, and how these changes are related to bond energies and reaction dynamics. There are (at least) three major sources for this problem: 1) the way biologists talk about chemical energy (which is also the way we talk about energy in everyday life); 2) the macroscopic approach to energy concepts that is common in physics and physical sciences; and 3) the failure of chemistry courses to explicitly link molecular with macroscopic energy ideas. From a constructivist perspective, it is unlikely that students can, without a coherent understanding of such a central concept, attain a robust and accurate understanding of new concepts. However, changes are on the horizon, guided by the increasing understanding that difficult concepts require coherent, well-designed learning progressions and the new National Research Council Framework for K-12 Science Education. We provide supporting evidence for our assertions and suggestions for an interdisciplinary learning progression designed to better approach the concept of bond energies, a first step in an understanding chemical energy and behavior of reaction systems that is central to biological systems. PMID:23737636

  16. Iminopropadienones RN=C=C=C=O and bisiminopropadienes RN=C=C=C=NR: Matrix infrared spectra and anharmonic frequency calculations

    NASA Astrophysics Data System (ADS)

    Bégué, Didier; Baraille, Isabelle; Andersen, Heidi Gade; Wentrup, Curt

    2013-10-01

    Methyliminopropadienone MeN=C=C=C=O 1a was generated by flash vacuum thermolysis from four different precursors and isolated in solid argon. The matrix-isolation infrared spectrum is dominated by unusually strong anharmonic effects resulting in complex fine structure of the absorptions due to the NCCCO moiety in the 2200 cm-1 region. Doubling and tripling of the corresponding absorption bands are observed for phenyliminopropadienone PhN=C=C=C=O 1b and bis(phenylimino)propadiene PhN=C=C=C=NPh 9, respectively. Anharmonic vibrational frequency calculations allow the identification of a number of overtones and combination bands as the cause of the splittings for each molecule. This method constitutes an important tool for the characterization of reactive intermediates and unusual molecules by matrix-isolation infrared spectroscopy.

  17. The Trouble with Chemical Energy: Why Understanding Bond Energies Requires an Interdisciplinary Systems Approach

    PubMed Central

    Cooper, Melanie M.; Klymkowsky, Michael W.

    2013-01-01

    Helping students understand “chemical energy” is notoriously difficult. Many hold inconsistent ideas about what energy is, how and why it changes during the course of a chemical reaction, and how these changes are related to bond energies and reaction dynamics. There are (at least) three major sources for this problem: 1) the way biologists talk about chemical energy (which is also the way we talk about energy in everyday life); 2) the macroscopic approach to energy concepts that is common in physics and physical sciences; and 3) the failure of chemistry courses to explicitly link molecular with macroscopic energy ideas. From a constructivist perspective, it is unlikely that students can, without a coherent understanding of such a central concept, attain a robust and accurate understanding of new concepts. However, changes are on the horizon, guided by the increasing understanding that difficult concepts require coherent, well-designed learning progressions and the new National Research Council Framework for K–12 Science Education. We provide supporting evidence for our assertions and suggestions for an interdisciplinary learning progression designed to better approach the concept of bond energies, a first step in an understanding chemical energy and behavior of reaction systems that is central to biological systems. PMID:23737636

  18. Aerobic synthesis of substituted quinoline from aldehyde and aniline: copper-catalyzed intermolecular C-H active and C-C formative cyclization.

    PubMed

    Yan, Rulong; Liu, Xingxing; Pan, Congming; Zhou, Xiaoqiang; Li, Xiaoni; Kang, Xing; Huang, Guosheng

    2013-09-20

    An efficient method for the direct synthesis of substituted quinolines from anilines and aldehydes through C-H functionalization, C-C/C-N bond formation, and C-C bond cleavage has been developed. The method is simple and practical and employs air as an oxidant. PMID:24024912

  19. Direct computation of general chemical energy differences: Application to ionization potentials, excitation, and bond energies

    SciTech Connect

    Beste, Ariana; Harrison, Robert J; Yanai, Takeshi

    2006-01-01

    Chemists are mainly interested in energy differences. In contrast, most quantum chemical methods yield the total energy which is a large number compared to the difference and has therefore to be computed to a higher relative precision than would be necessary for the difference alone. Hence, it is desirable to compute energy differences directly, thereby avoiding the precision problem. Whenever it is possible to find a parameter which transforms smoothly from an initial to a final state, the energy difference can be obtained by integrating the energy derivative with respect to that parameter (c.f., thermodynamic integration or adiabatic connection methods). If the dependence on the parameter is predominantly linear, accurate results can be obtained by single-point integration. In density functional theory (DFT) and Hartree-Fock, we applied the formalism to ionization potentials, excitation energies, and chemical bond breaking. Example calculations for ionization potentials and excitation energies showed that accurate results could be obtained with a linear estimate. For breaking bonds, we introduce a non-geometrical parameter which gradually turns the interaction between two fragments of a molecule on. The interaction changes the potentials used to determine the orbitals as well as constraining the orbitals to be orthogonal.

  20. Direct computation of general chemical energy differences: Application to ionization potentials, excitation, and bond energies

    NASA Astrophysics Data System (ADS)

    Beste, A.; Harrison, R. J.; Yanai, T.

    2006-08-01

    Chemists are mainly interested in energy differences. In contrast, most quantum chemical methods yield the total energy which is a large number compared to the difference and has therefore to be computed to a higher relative precision than would be necessary for the difference alone. Hence, it is desirable to compute energy differences directly, thereby avoiding the precision problem. Whenever it is possible to find a parameter which transforms smoothly from an initial to a final state, the energy difference can be obtained by integrating the energy derivative with respect to that parameter (cf. thermodynamic integration or adiabatic connection methods). If the dependence on the parameter is predominantly linear, accurate results can be obtained by single-point integration. In density functional theory and Hartree-Fock, we applied the formalism to ionization potentials, excitation energies, and chemical bond breaking. Example calculations for ionization potentials and excitation energies showed that accurate results could be obtained with a linear estimate. For breaking bonds, we introduce a nongeometrical parameter which gradually turns the interaction between two fragments of a molecule on. The interaction changes the potentials used to determine the orbitals as well as the constraint on the orbitals to be orthogonal.

  1. Prediction of the bond lengths, vibrational frequencies, and bond dissociation energy of octahedral seaborgium hexacarbonyl, Sg(CO){sub 6}

    SciTech Connect

    Nash, C.S.; Bursten, B.E.

    1999-11-24

    The recent syntheses of several new elements (including the recent reports of elements 116 and 118), coupled with the controversy surrounding the naming of elements 104--109, have stimulated a great interest in the chemistry of the transactinide elements. This contribution addresses hypothetical hexacarbonyl complex of seaborgium (Sg, element 106), which is predicted to be a 6d-block transition element with six valence electrons, analogous to Cr, Mo, and W. The authors have previously predicted that, if it were to exist, Sg(CO){sub 6} would exhibit metal-carbonyl bonding that is very similar to that in Cr(CO){sub 6}, Mo(CO){sub 6}, and W(CO){sub 6}, and quite unlike that of the unknown valence isoelectronic actinide complex U(CO){sub 6}. This finding is in accord with the scant experimental data available for Sg. The relativistic DV-X{alpha} method used in the earlier paper facilitated the analysis of the molecular orbitals of Sg(CO){sub 6}, but did not allow for the calculation of total-energy properties, such as bond lengths and vibrational frequencies. Here the authors will use the superior methodology they have applied to other transactinide molecules to compare the bond lengths, vibrational frequencies, and CO dissociation energy of hypothetical Sg(CO){sub 6} to those of Mo(CO){sub 6} and W(CO){sub 6}.

  2. Intrinsic affinities of alkali cations for 15-crown-5 and 18-crown-6: Bond dissociation energies of gas-phase M{sup +}-crown ether complexes

    SciTech Connect

    More, M.B.; Ray, D.; Armentrout, P.B.

    1999-01-20

    Bond dissociation energies (BDEs) of M{sup +}[c-(C{sub 2}H{sub 4}O){sub 5}] and M{sup +}[c-(C{sub 2}H{sub 4}O){sub 6}] for M = Na, K, Rb, and Cs are reported. The BDEs are determined experimentally by analysis of the thresholds for collision-induced dissociation of the cation-crown ether complexes by xenon measured by using guided ion beam mass spectrometry. In all cases, the primary and lowest energy dissociation channel observed experimentally in endothermic loss of the ligand molecule. The cross section thresholds are interpreted to yield 0 and 298 K BDEs after accounting for the effects of multiple ion-molecule collisions, internal energy of the complexes, and unimolecular decay rates. For both 18-crown-6 and 15-crown-5, the BDEs decrease monotonically with increasing cation size. These results indicate that the intrinsic affinity of c-(C{sub 2}H{sub 4}O){sub 5} and c-(C{sub 2}H{sub 4}O){sub 6} for M{sup +} is determined principally by the charge density of the cation not by the ratio of the ionic radius to the cavity size. The BDEs reported here are in fair agreement with recent ab initio calculations at the MP2 level with 6-31+G* basis sets. The experimental values are systematically smaller than the computed values by 8 {+-} 2 kJ/mol per metal-oxygen interaction. The existence of less strongly bound isomers in the experimental apparatus for Rb{sup +}(15-crown-5) and Cs{sup +}(15-crown-5) appears likely, but their absence for Na{sup +} and K{sup +} complexes indicates interesting metal-dependent dynamics to the formation of such isomers.

  3. The effect of bond functions on dissociation energies

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.

    1985-01-01

    The procedure employing bond functions recently suggested by Wright and Buenker has been applied to the N2 X 1 Sigma g + potential curve within the CAS SCF + MRSD CI treatment of electron correlation. The basis set used herein is identical to that employed by these authors in their SCF + CI calculations. The De and and the shape of the resulting potential curve, as judged by the computed vibrational levels, is not so accurate as would be expected from the results reported by Wright and Buenker (1984). The results indicate that using the CI superposition errors associated with bond functions to cancel basis set incompleteness depends on the treatment of the electron correlation.

  4. A Dynamic Pathway for Stone-Wales Bond Rotation on Carbon Nanotubes through Diamond-Like Bonds

    NASA Technical Reports Server (NTRS)

    Wei, Chen-Yu; Srivastava, Deepak; Cho, Kyeong-Jae; Menon, Madhu

    2003-01-01

    A new lower energy barrier with a two-step pathway of Stone-Wales (SW) ,ond rotation on carbon nanotubes (CNTs) is found through molecular dynamics (MD) simulations of CNTs under tension. The first step involves going over to a stable sp3-like metastable configuration with half rotated and partially tilted C-C bond. The second step involves going over to the fully rotated C-C bond with the formation of a SW defect in the nanotube. The energy barrier for this two-step dynamic pathway is significantly lower than the previously known static barrier for in-plane rotation of the C-C bond on a tensile strained (> 4%) CNT.

  5. The Bond Energy of CH3-H: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Dorain, Paul B.

    1979-01-01

    Describes an experiment, designed for use in the undergraduate laboratory, that measures the bond energies of molecules using a small commercial mass spectrometer and low-cost digital voltmeters. (BT)

  6. 98. Catalog HHistory 1, C.C.C., 19 Tree Planting, Negative No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    98. Catalog H-History 1, C.C.C., 19 Tree Planting, Negative No. P 474c (Photographer and date unknown) TRANSPLANTING TREE. - Skyline Drive, From Front Royal, VA to Rockfish Gap, VA , Luray, Page County, VA

  7. Direct, Sequential, and Stereoselective Alkynylation of C,C-Dibromophosphaalkenes.

    PubMed

    Shameem, Muhammad A; Esfandiarfard, Keyhan; Öberg, Elisabet; Ott, Sascha; Orthaber, Andreas

    2016-07-18

    The first direct alkynylation of C,C-dibromophosphaalkenes by a reaction with sulfonylacetylenes is reported. Alkynylation proceeds selectively in the trans position relative to the P substituent to afford bromoethynylphosphaalkenes. Owing to the absence of transition metals in the procedure, the previously observed conversion of dibromophosphaalkenes into phosphaalkynes through the phosphorus analog of the Fritsch-Buttenberg-Wiechell rearrangement is thus suppressed. The bromoethynylphosphaalkenes can subsequently be converted to C,C-diacetylenic, cross-conjugated phosphaalkenes by following a Sonogashira coupling protocol in good overall yields. By using the newly described method, full control over the stereochemistry at the P=C double bond is achieved. The substrate scope of this reaction is demonstrated for different dibromophosphaalkenes as well as different sulfonylacetylenes. PMID:27310813

  8. Equilibrium Acidities and Homolytic Bond Dissociation Energies of Acidic C H Bonds in Alpha-Arylacetophenones and Related Compounds

    SciTech Connect

    Alnajjar, Mikhail S. ); Zhang, Xian-Man; Gleicher, Gerald J.; Truksa, Scott V.; Franz, James A. )

    2002-12-13

    The equilibrium acidities (pKAHs) and the oxidation potentials of the conjugate anions (Eox(A?{approx})s) were determined in dimethyl sulfoxide (DMSO) for eight ketones of the structure GCOCH3 and twenty of the structure RCOCH2G, (where R= alkyl, phenyl and G= alkyl, aryl). The homolytic bond dissociation energies (BDEs) for the acidic C H bonds of the ketones were estimated using the equation, BDEAH= 1.37pKAH+ 23.1Eox(A?{approx})+ 73.3. While the equilibrium acidities of GCOCH3 were found to be dependent on the remote substituent G, the BDE values for the C H bonds remained essentially invariant (93.5+ 0.5 kcal/mol). A linear correlation between pKAH values and (Eox(A?{approx})s) was found for the ketones. For RCOCH2G ketones, both pKAH and BDE values for the adjacent C-H bonds are sensitive to the nature of the substituent G. However, the steric bulk of the aryl group tends to exert a leveling effect on BDE's. The BDE of?p-9-anthracenylacetophenone is higher than that of??-2-anthracenylacetophenone by 3 kcal/mole, reflecting significant steric inhibition of resonance in the 9-substituted system. A range of 80.7 - 84.4 kcal/mole is observed for RCOCH2G ketones. The results are discussed in terms of solvation, steric, and resonance effects. Ab initio density functional theory (DFT) calculations are employed to illustrate the effect of steric interactions on radical and anion geometries. The DFT results parallel the trends in the experimental BDEs of??-arylacetophenones.

  9. Protein unfolding from free-energy calculations: Integration of the Gaussian network model with bond binding energies

    NASA Astrophysics Data System (ADS)

    Srivastava, Amit; Granek, Rony

    2015-02-01

    Motivated by single molecule experiments, we study thermal unfolding pathways of four proteins, chymotrypsin inhibitor, barnase, ubiquitin, and adenylate kinase, using bond network models that combine bond energies and elasticity. The protein elasticity is described by the Gaussian network model (GNM), to which we add prescribed bond binding energies that are assigned to all (nonbackbone) connecting bonds in the GNM of native state and assumed identical for simplicity. Using exact calculation of the Helmholtz free energy for this model, we consider bond rupture single events. The bond designated for rupture is chosen by minimizing the free-energy difference for the process, over all (nonbackbone) bonds in the network. Plotting the free-energy profile along this pathway at different temperatures, we observe a few major partial unfolding, metastable or stable, states, that are separated by free-energy barriers and change role as the temperature is raised. In particular, for adenylate kinase we find three major partial unfolding states, which is consistent with single molecule FRET experiments [Pirchi et al., Nat. Commun. 2, 493 (2011), 10.1038/ncomms1504] for which hidden Markov analysis reveals between three and five such states. Such states can play a major role in enzymatic activity.

  10. Hypovalency--a kinetic-energy density description of a 4c-2e bond.

    PubMed

    Jacobsen, Heiko

    2009-06-01

    A bond descriptor based on the kinetic energy density, the localized-orbital locator (LOL), is used to characterize the nature of the chemical bond in electron deficient multi-center bonds. The boranes B(2)H(6), B(4)H(4), B(4)H(10), [B(6)H(6)](2-), and [B(6)H(7)](-) serve as prototypical examples of hypovalent 3c-2e and 4c-2e bonding. The kinetic energy density is derived from a set of Kohn-Sham orbitals obtained from pure density functional calculations (PBE/TZVP), and the topology of LOL is analyzed in terms of (3,-3) attractors (Gamma). The B-B-B and B-H-B 3c-2e, and the B-B-H-B 4c-2e bonding situations are defined by their own characteristic LOL profiles. The presence of one attractor in relation to the three or four atoms that are engaged in electron deficient bonding provides sufficient indication of the type of 3c-2e or 4c-2e bond present. For the 4c-2e bond in [B(6)H(7)](-) the LOL analysis is compared to results from an experimental QTAIM study. PMID:19452076

  11. Bond Energies and Thermochemical Properties of Ring-Opened Diradicals and Carbenes of exo-Tricyclo[5.2.1.0(2,6)]decane.

    PubMed

    Hudzik, Jason M; Castillo, Álvaro; Bozzelli, Joseph W

    2015-09-24

    Exo-tricyclo[5.2.1.0(2,6)]decane (TCD) or exo-tetrahydrodicyclopentadiene is an interesting strained ring compound and the single-component high-energy density hydrocarbon fuel known as JP-10. Important initial reactions of TCD at high temperatures could cleave a strained carbon-carbon (C-C) bond in the ring system creating diradicals also constrained by the remaining ring system. This study determines the thermochemical properties of these diradicals (TCD-H2 mJ-nJ where m and n correspond to the cleaved carbons sites) including the carbon-carbon bond dissociation energy (C-C BDE) corresponding to the cleaved TCD site. Thermochemical properties including enthalpies (ΔH°f298), entropies (S(T)), heat capacities (Cp(T)), and C-H and C-C BDEs for the parent (TCD-H2 m-n), radical (TCD-H2 mJ-n and m-nJ), diradical (TCD-H2 mJ-nJ), and carbene (TCD-H2 mJJ-n and m-nJJ) species are determined. Structures, vibrational frequencies, moments of inertia, and internal rotor potentials are calculated at the B3LYP/6-31G(d,p) level of theory. Standard enthalpies of formation in the gas phase for the TCD-H2 m-n parent and radical species are determined using the B3LYP density functional theory and the higher level G3MP2B3 and CBS-QB3 composite methods. For singlet and triplet TCD diradicals and carbenes, M06-2X, ωB97X-D, and CCSD(T) methods are included in the analysis to determine ΔH°f298 values. The C-C BDEs are further calculated using CASMP2(2,2)/aug-cc-pvtz//CASSCF(2,2)/cc-pvtz and with the CASMP2 energies extrapolated to the complete basis set limit. The bond energies calculated with these methods are shown to be comparable to the other calculation methods. Isodesmic work reactions are used for enthalpy analysis of these compounds for effective cancelation of systematic errors arising from ring strain. C-C BDEs range from 77.4 to 84.6 kcal mol(-1) for TCD diradical singlet species. C-H BDEs for the parent TCD-H2 m-n carbon sites range from 93 to 101 kcal mol(-1) with a

  12. Bond Graph Modeling and Validation of an Energy Regenerative System for Emulsion Pump Tests

    PubMed Central

    Li, Yilei; Zhu, Zhencai; Chen, Guoan

    2014-01-01

    The test system for emulsion pump is facing serious challenges due to its huge energy consumption and waste nowadays. To settle this energy issue, a novel energy regenerative system (ERS) for emulsion pump tests is briefly introduced at first. Modeling such an ERS of multienergy domains needs a unified and systematic approach. Bond graph modeling is well suited for this task. The bond graph model of this ERS is developed by first considering the separate components before assembling them together and so is the state-space equation. Both numerical simulation and experiments are carried out to validate the bond graph model of this ERS. Moreover the simulation and experiments results show that this ERS not only satisfies the test requirements, but also could save at least 25% of energy consumption as compared to the original test system, demonstrating that it is a promising method of energy regeneration for emulsion pump tests. PMID:24967428

  13. Bond graph modeling and validation of an energy regenerative system for emulsion pump tests.

    PubMed

    Li, Yilei; Zhu, Zhencai; Chen, Guoan

    2014-01-01

    The test system for emulsion pump is facing serious challenges due to its huge energy consumption and waste nowadays. To settle this energy issue, a novel energy regenerative system (ERS) for emulsion pump tests is briefly introduced at first. Modeling such an ERS of multienergy domains needs a unified and systematic approach. Bond graph modeling is well suited for this task. The bond graph model of this ERS is developed by first considering the separate components before assembling them together and so is the state-space equation. Both numerical simulation and experiments are carried out to validate the bond graph model of this ERS. Moreover the simulation and experiments results show that this ERS not only satisfies the test requirements, but also could save at least 25% of energy consumption as compared to the original test system, demonstrating that it is a promising method of energy regeneration for emulsion pump tests. PMID:24967428

  14. Renewable energy liberation by nonthermal intermolecular bond dissociation in water and ethanol

    NASA Astrophysics Data System (ADS)

    Graneau, N.; Verdoold, S.; Oudakker, G.; Yurteri, C. U.; Marijnissen, J. C. M.

    2011-02-01

    Prior indication that renewable energy can be extracted from hydrogen bonds in water has led to several investigations of the energy balance when bulk liquid is converted into micron scale droplets by directional (nonthermal) forces. The demonstration of this effect has previously involved pulsed high current arcs in water which produce large electrodynamic forces. Here, we show that renewable energy is also liberated during the creation of droplets by electrostatic forces in electrohydrodynamic atomization (electrospray) experiments. Using both ethanol and water, the energy outputs, primarily the droplet kinetic energy, were always greater than the energy inputs, implying that stored energy was liberated from the liquid. The energetics of generic chemical bonding are investigated to demonstrate that although this discovery was not publicly anticipated, it is consistent with conventional theory. This experimental breakthrough should have a major impact on the quest for renewable energy sources, capable of powering electricity generators.

  15. Understanding selenocysteine through conformational analysis, proton affinities, acidities and bond dissociation energies

    NASA Astrophysics Data System (ADS)

    Kaur, Damanjit; Sharma, Punita; Bharatam, Prasad V.; Kaur, Mondeep

    Density functional methods have been employed to characterize the gas phase conformations of selenocysteine. The 33 stable conformers of selenocysteine have been located on the potential energy surface using density functional B3LYP/6-31+G* method. The conformers are analyzed in terms of intramolecular hydrogen bonding interactions. The proton affinity, gas phase acidities, and bond dissociation energies have also been evaluated for different reactive sites of selenocysteine for the five lowest energy conformers at B3LYP/6-311++G*//B3LYP/6-31+G* level. Evaluation of these intrinsic properties reflects the antioxidant activity of selenium in selenocysteine.0

  16. Mapping the Globe with C & C Technologies

    NASA Astrophysics Data System (ADS)

    Kleiner, A. A.

    2001-12-01

    C & C Technologies is an international survey and mapping company with an entrepreneurial spirit that is evident throughout. C & C was recently awarded the MTS (Marine Technology Society) ROV Committee Corporate Excellence Award in recognition of their pioneering spirit displayed by the introduction of the HUGIN 3000 Autonomous Underwater Vehicle (AUV) to the offshore industry. This presentation will outline the wide variety of global mapping projects that C & C has performed for government, private sector, and academia. These include high-resolution mapping of Cater Lake, the Panama Canal, Antarctica, Lake Tahoe, and the HUGIN 3000ś discovery of the German submarine U-166 in 5000 feet of water in the Gulf of Mexico. Adacemic disciplines required to support these technical challenges will be characterized and job opportunities in this emerging field will be addressed.

  17. A Novel Method to Quantify Soil Aggregate Stability by Measuring Aggregate Bond Energies

    NASA Astrophysics Data System (ADS)

    Efrat, Rachel; Rawlins, Barry G.; Quinton, John N.; Watts, Chris W.; Whitmore, Andy P.

    2016-04-01

    Soil aggregate stability is a key indicator of soil quality because it controls physical, biological and chemical functions important in cultivated soils. Micro-aggregates are responsible for the long term sequestration of carbon in soil, therefore determine soils role in the carbon cycle. It is thus vital that techniques to measure aggregate stability are accurate, consistent and reliable, in order to appropriately manage and monitor soil quality, and to develop our understanding and estimates of soil as a carbon store to appropriately incorporate in carbon cycle models. Practices used to assess the stability of aggregates vary in sample preparation, operational technique and unit of results. They use proxies and lack quantification. Conflicting results are therefore drawn between projects that do not provide methodological or resultant comparability. Typical modern stability tests suspend aggregates in water and monitor fragmentation upon exposure to an un-quantified amount of ultrasonic energy, utilising a laser granulometer to measure the change in mean weight diameter. In this project a novel approach has been developed based on that of Zhu et al., (2009), to accurately quantify the stability of aggregates by specifically measuring their bond energies. The bond energies are measured operating a combination of calorimetry and a high powered ultrasonic probe, with computable output function. Temperature change during sonication is monitored by an array of probes which enables calculation of the energy spent heating the system (Ph). Our novel technique suspends aggregates in heavy liquid lithium heteropolytungstate, as opposed to water, to avoid exposing aggregates to an immeasurable disruptive energy source, due to cavitation, collisions and clay swelling. Mean weight diameter is measured by a laser granulometer to monitor aggregate breakdown after successive periods of calculated ultrasonic energy input (Pi), until complete dispersion is achieved and bond

  18. Calculation of structures and bond dissociation energies of radical cations: The importance of through-bond delocalization in bibenzylic systems

    SciTech Connect

    Camaioni, D.M. )

    1990-12-19

    Structures ad energies ({Delta}H{degree}{sub f}) of radical cations and their radical and cationic fragments have been calculated by use of AM1 semiempirical molecular orbital theory and compared with experimental data in the literature. Experimental {Delta}H{degree}{sub f} correlate linearly with calculated heats giving nonzero intercepts and nonunit slopes. The best correlations as judged by the variance of the fit are obtained when performed according to structure types, i.e., aromatic radical cations, alkane radical cations, radicals, and cations. These correlations enable corrections to AM1 values that allow prediction of experimental {Delta}H{degree}{sub f} with uncertainties that approach experimental uncertainties. Used in this way, AM1 can augment experimental thermochemical data and enable confident predictions of reaction enthalpies. Bibenzylic radical cations are calculated to have charge and sin localized in only one of the aromatic rings ether through space or through the ethylenic bond are found.

  19. Size, Kinetics, and Free Energy of Clusters Formed by Ultraweak Carbohydrate-Carbohydrate Bonds.

    PubMed

    Witt, Hannes; Savić, Filip; Oelkers, Marieelen; Awan, Shahid I; Werz, Daniel B; Geil, Burkhard; Janshoff, Andreas

    2016-04-12

    Weak noncovalent intermolecular interactions play a pivotal role in many biological processes such as cell adhesion or immunology, where the overall binding strength is controlled through bond association and dissociation dynamics as well as the cooperative action of many parallel bonds. Among the various molecules participating in weak bonds, carbohydrate-carbohydrate interactions are probably the most ancient ones allowing individual cells to reversibly enter the multicellular state and to tell apart self and nonself cells. Here, we scrutinized the kinetics and thermodynamics of small homomeric Lewis X-Lewis X ensembles formed in the contact zone of a membrane-coated colloidal probe and a solid supported membrane ensuring minimal nonspecific background interactions. We used an atomic force microscope to measure force distance curves at Piconewton resolution, which allowed us to measure the force due to unbinding of the colloidal probe and the planar membrane as a function of contact time. Applying a contact model, we could estimate the free binding energy of the formed adhesion cluster as a function of dwell time and thereby determine the precise size of the contact zone, the number of participating bonds, and the intrinsic rates of association and dissociation in the presence of calcium ions. The unbinding energy per bond was found to be on the order of 1 kBT. Approximately 30 bonds were opened simultaneously at an off-rate of koff = 7 ± 0.2 s(-1). PMID:27074683

  20. 102. Catalog HHistory 1, C.C.C., 34 Landscaping, Negative No. 6040a ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    102. Catalog H-History 1, C.C.C., 34 Landscaping, Negative No. 6040a (Photographer and date unknown) BEAUTIFICATION PROGRAM STARTED AS SOON AS GRADING ALONG THE DRIVE WAS COMPLETED. CCC CAMP 3 SHOWN PLANTING LAUREL. - Skyline Drive, From Front Royal, VA to Rockfish Gap, VA , Luray, Page County, VA

  1. The Scalar Relativistic Contribution to Ga-Halide Bond Energies

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Arnold, James O. (Technical Monitor)

    1998-01-01

    The one-electron Douglas Kroll (DK) and perturbation theory (+R) approaches are used to compute the scalar relativistic contribution to the atomization energies of GaFn. These results are compared with the previous GaCln results. While the +R and DK results agree well for the GaCln atom nation energies, they differ for GaFn. The present work suggests that the DK approach is more accurate than the +R approach. In addition, the DK approach is less sensitive to the choice of basis set. The computed atomization energies of GaF2 and GaF3 are smaller than the somewhat uncertain experiments. It is suggested that additional calibration calculations for the scalar relativistic effects in GaF2 and GaF3 would be valuable.

  2. Chemical bond as a test of density-gradient expansions for kinetic and exchange energies

    NASA Astrophysics Data System (ADS)

    Perdew, John P.; Levy, Mel; Painter, G. S.; Wei, Siqing; Lagowski, Jolanta B.

    1988-01-01

    Errors in kinetic and exchange contributions to the molecular bonding energy are assessed for approximate density functionals by reference to near-exact Hartree-Fock values. From the molecular calculations of Allan et al.and of Lee and Ghosh, it is demonstrated that the density-gradient expansion does not accurately describe the noninteracting kinetic contribution to the bonding energy, even when this expansion is carried to fourth order and applied in its spin-density-functional form to accurate Hartree-Fock densities. In a related study, it is demonstrated that the overbinding of molecules such as N2 and F2, which occurs in the local-spin-density (LSD) approximation for the exchange-correlation energy, is not attributable to errors in the self-consistent LSD densities. Contrary to expectations based upon the Gunnarsson-Jones nodality argument, it is found that the LSD approximation for the exchange energy can seriously overbind a molecule even when bonding does not create additional nodes in the occupied valence orbitals. LSD and exact values for the exchange contribution to the bonding energy are displayed and discussed for several molecules.

  3. Chemical bond as a test of density-gradient expansions for kinetic and exchange energies

    SciTech Connect

    Perdew, J.P.; Levy, M.; Painter, G.S.; Wei, S.; Lagowski, J.B.

    1988-01-15

    Errors in kinetic and exchange contributions to the molecular bonding energy are assessed for approximate density functionals by reference to near-exact Hartree-Fock values. From the molecular calculations of Allan et al. and of Lee and Ghosh, it is demonstrated that the density-gradient expansion does not accurately describe the noninteracting kinetic contribution to the bonding energy, even when this expansion is carried to fourth order and applied in its spin-density-functional form to accurate Hartree-Fock densities. In a related study, it is demonstrated that the overbinding of molecules such as N/sub 2/ and F/sub 2/, which occurs in the local-spin-density (LSD) approximation for the exchange-correlation energy, is not attributable to errors in the self-consistent LSD densities. Contrary to expectations based upon the Gunnarsson-Jones nodality argument, it is found that the LSD approximation for the exchange energy can seriously overbind a molecule even when bonding does not create additional nodes in the occupied valence orbitals. LSD and exact values for the exchange contribution to the bonding energy are displayed and discussed for several molecules.

  4. Electronic structure, molecular bonding and potential energy surfaces

    SciTech Connect

    Ruedenberg, K.

    1993-12-01

    By virtue of the universal validity of the generalized Born-Oppenheimer separation, potential energy surfaces (PES`) represent the central conceptual as well as quantitative entities of chemical physics and provide the basis for the understanding of most physicochemical phenomena in many diverse fields. The research in this group deals with the elucidation of general properties of PES` as well as with the quantitative determination of PES` for concrete systems, in particular pertaining to reactions involving carbon, oxygen, nitrogen and hydrogen molecules.

  5. A periodic energy decomposition analysis method for the investigation of chemical bonding in extended systems

    SciTech Connect

    Raupach, Marc; Tonner, Ralf

    2015-05-21

    The development and first applications of a new periodic energy decomposition analysis (pEDA) scheme for extended systems based on the Kohn-Sham approach to density functional theory are described. The pEDA decomposes the bonding energy between two fragments (e.g., the adsorption energy of a molecule on a surface) into several well-defined terms: preparation, electrostatic, Pauli repulsion, and orbital relaxation energies. This is complemented by consideration of dispersion interactions via a pairwise scheme. One major extension toward a previous implementation [Philipsen and Baerends, J. Phys. Chem. B 110, 12470 (2006)] lies in the separate discussion of electrostatic and Pauli and the addition of a dispersion term. The pEDA presented here for an implementation based on atomic orbitals can handle restricted and unrestricted fragments for 0D to 3D systems considering periodic boundary conditions with and without the determination of fragment occupations. For the latter case, reciprocal space sampling is enabled. The new method gives comparable results to established schemes for molecular systems and shows good convergence with respect to the basis set (TZ2P), the integration accuracy, and k-space sampling. Four typical bonding scenarios for surface-adsorbate complexes were chosen to highlight the performance of the method representing insulating (CO on MgO(001)), metallic (H{sub 2} on M(001), M = Pd, Cu), and semiconducting (CO and C{sub 2}H{sub 2} on Si(001)) substrates. These examples cover diverse substrates as well as bonding scenarios ranging from weakly interacting to covalent (shared electron and donor acceptor) bonding. The results presented lend confidence that the pEDA will be a powerful tool for the analysis of surface-adsorbate bonding in the future, enabling the transfer of concepts like ionic and covalent bonding, donor-acceptor interaction, steric repulsion, and others to extended systems.

  6. Bond Functions and Core Correlation Energy Contributions To HeBe Potential

    NASA Astrophysics Data System (ADS)

    Shalabi, A. S.; Nour, E. M.; Abdel Halim, W. S.

    An empirical scheme for implementation of bond functions in heteronuclear diatomics is suggested and applied to HeBe using universal even-tempered functions. The effects of bond functions and core-correlation energy on the interaction potential of HeBe calculated at the uncorrelated (SCF) and correlated (MBPT and CC) levels are examined. The results confirm that an accuracy of sub μ Hartree level can be obtained using even-tempered functions with s-, p-, and d- symmetry and that bond functions of size {4s2p} for He and {6s3p} for Be recovers 100% of energy lowering obtained from the addition of 10d atom-centered functions to He and 13d atom centred functions to Be. The various treatments of the electron correlation, conclude that the system is interacting weakly with a well depth from 14.5-24.7 μEh at a separation near 9.1a0 compared with 20.7-25.5 μEh previously reported with a rather limited basis set. The most reliable well depth corrected for BSSE (19.0 μEh) was obtained at the CC-SD(T)level at separation of 8.71a0 taking into account the effects of bond functions and core correlation energy. Potential energy curves at the CC-SD(T) valence and CC-SD(T) valence + core correlation levels are analyzed in analytical forms in terms of exchange repulsion, induction and dispersion components.

  7. Contributions of mass and bond energy difference and interface defects on thermal boundary conductance

    NASA Astrophysics Data System (ADS)

    Choi, ChangJin; Roberts, Nicholas

    2015-09-01

    The impact of mass and bond energy difference and interface defects on thermal boundary conductance (TBC) is investigated using non-equilibrium molecular dynamics (NEMD) with the Lennard-Jones (L-J) interatomic potential. Results show that the maximum TBC is achieved when the mass and bond energy of two dissimilar materials are matched, although the effective thermal conductivity is not necessarily a maximum due to the contributions of the thermal conductivity of the constituent materials. Mass and bond energy differences result in a mismatch between phonon dispersions, limiting high frequency phonon transport at the interface. This frequency mismatch is defined by a frequency ratio, which is a ratio of the characteristic frequencies of the two materials, presented in the discussion section, and is a reference of the level of phonon dispersion mismatch. Inelastic scattering may result at higher temperatures, especially when there exists a bond energy difference, resulting in strain in the lattice, which would allow phonons outside the allowable frequency range to contribute to transport. TBC decreases abruptly with small mass differences, but at which point larger differences in mass have no impact. In addition, interdiffusion across the interface further reduces the TBC between the frequency ratios of 0.79 and 1.26 while vacancies have negligible impact.

  8. Ionic bond effects on the mean excitation energy for stopping power

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Chang, C. K.; Kamaratos, E.; Xu, Y. J.

    1982-01-01

    Molecular mean excitation energies for ionic bonded molecules calculated according to the local plasma approximation are compared to the Bragg rule. Adjustments of 15% are calculated for LiF in agreement with experiments while 6% adjustments are predicted for HF and 3% for LiH.

  9. Covalent bonding effect on the mean excitation energy of H2 with the local plasma model

    NASA Technical Reports Server (NTRS)

    Kamaratos, E.

    1984-01-01

    Chemical bonding is taken into account explicitly in the determination of the mean excitation energy (I) for stopping power of H2 with the local plasma approximation by employing molecular electronic wave functions for H2 for the first time. This procedure leads to a new value for IH2 that is higher than all accepted experimental and theoretical values.

  10. The Dissociation Energies of He2, HeH, and ArH; A Bond Function Study

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Arnold, James (Technical Monitor)

    1998-01-01

    The bond energies and bond lengths are determined for He2, HeH, and ArH at the CCSD(T) level using both atom-centered basis sets and those that include bond functions. The addition of bond functions dramatically improves the rate of convergence of the results with respect to the size of the atom-centered basis set; with bond functions, triple zeta atom-centered basis set, outperform quintuple zeta basis sets without bond functions. The addition of bond functions also reduces the number of diffuse functions that must be added to the atom-centered sets. Employing bond functions appear to offer a very cost effective method of computing the interaction between weakly bound systems, especially for He.

  11. Average bond energies between boron and elements of the fourth, fifth, sixth, and seventh groups of the periodic table

    NASA Technical Reports Server (NTRS)

    Altshuller, Aubrey P

    1955-01-01

    The average bond energies D(gm)(B-Z) for boron-containing molecules have been calculated by the Pauling geometric-mean equation. These calculated bond energies are compared with the average bond energies D(exp)(B-Z) obtained from experimental data. The higher values of D(exp)(B-Z) in comparison with D(gm)(B-Z) when Z is an element in the fifth, sixth, or seventh periodic group may be attributed to resonance stabilization or double-bond character.

  12. Quantum dynamics study of fulvene double bond photoisomerization: The role of intramolecular vibrational energy redistribution and excitation energy

    SciTech Connect

    Blancafort, Lluis; Gatti, Fabien; Meyer, Hans-Dieter

    2011-10-07

    The double bond photoisomerization of fulvene has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method. Fulvene is a test case to develop optical control strategies based on the knowledge of the excited state decay mechanism. The decay takes place on a time scale of several hundred femtoseconds, and the potential energy surface is centered around a conical intersection seam between the ground and excited state. The competition between unreactive decay and photoisomerization depends on the region of the seam accessed during the decay. The dynamics are carried out on a four-dimensional model surface, parametrized from complete active space self-consistent field calculations, that captures the main features of the seam (energy and locus of the seam and associated branching space vectors). Wave packet propagations initiated by single laser pulses of 5-25 fs duration and 1.85-4 eV excitation energy show the principal characteristics of the first 150 fs of the photodynamics. Initially, the excitation energy is transferred to a bond stretching mode that leads the wave packet to the seam, inducing the regeneration of the reactant. The photoisomerization starts after the vibrational energy has flowed from the bond stretching to the torsional mode. In our propagations, intramolecular energy redistribution (IVR) is accelerated for higher excess energies along the bond stretch mode. Thus, the competition between unreactive decay and isomerization depends on the rate of IVR between the bond stretch and torsion coordinates, which in turn depends on the excitation energy. These results set the ground for the development of future optical control strategies.

  13. Trans-reflection thermal driven deformable mirror with flexible bonding in high energy laser system

    NASA Astrophysics Data System (ADS)

    Ma, Xingkun; Huang, Lei; Gong, Mali; Xue, Qiao

    2014-09-01

    Deformable mirrors used in high energy laser system suffer from problems like the stress from adhesive solidification or the relatively expensive unit price of piezoceramic actuator. The thermal driven deformable mirror (TDDM) investigated here provided a promising prospect to solve these problems. Four scenarios of TDDM were studied and compared. Results showed that the trans-reflection TDDM with flexible bonding best met the requirement in practical use. The flexible bonding excluded the stress problem in the solidification of adhesives, trans-reflection brought about enough correction range, and the choice of thermo-electric cooler as actuator could greatly bring down the cost of adaptive optics apparatus as well.

  14. Fabrication and Characterization of a Lead Zirconate Titanate Micro Energy Harvester Based on Eutectic Bonding

    NASA Astrophysics Data System (ADS)

    Li, Yi-Gui; Sun, Jian; Yang, Chun-Sheng; Liu, Jing-Quan; Sugiyama, Susumu; Tanaka, Katsuhiko

    2011-06-01

    A lead zirconate titanate(PZT)-Si energy harvester cantilever with PZT bulk ceramics is fabricated by eutectic bonding, polishing and dicing processes. The feasibility of this process is studied using a successful operation of the cantilever in both actuation and harvesting modes. The first prototype made from a PZT-Au-Si cantiliever is tested. The testing results show the voltage output of 632 mV at the frequency of 815 Hz when the excitation acceleration is 0.5 g. The PZT and silicon layers are bonded together to form a sandwiched structure using a gold layer as an intermediate layer.

  15. Addition, cycloaddition, and metathesis reactions of the cationic carbyne complexes [Cp(CO)[sub 2]Mn[triple bond]CCH[sub 2]R][sup +] and neutral vinylidene complexes Cp(CO)[sub 2]M=C=C(H)R (M = Mn, Re)

    SciTech Connect

    Terry, M.R.; Mercando, L.A.; Kelley, C.; Geoffroy, G.L. ); Nombel, P.; Lugan, N.; Mathieu, R. ); Ostrander, R.L.; Owens-Waltermire, B.E.; Rheingold, A.L. )

    1994-03-01

    The cationic alkylidyne complexes [Cp(CO)[sub 2]M=VCCH[sub 2]R][sup +] (M = Re, R = H; M = Mn, R = H, Me, Ph) undergo facile deprotonation to give the corresponding neutral vinylidene complexes Cp(CO)[sub 2]M=C=C(H)R. For [Cp(CO)[sub 2]Re=VCCH[sub 3

  16. Interlayer bonding energy of layered minerals: Implication for the relationship with friction coefficient

    NASA Astrophysics Data System (ADS)

    Sakuma, Hiroshi; Suehara, Shigeru

    2015-04-01

    The frictional strength of layered minerals is an important component of fault slip physics. A low-friction coefficient of these minerals has been attributed to the interlayer bonding energy (ILBE) of their weak interlayer bonding. The ILBE used for discussing the friction coefficient is based on a simple electrostatic calculation; however, the values should be revisited by precise calculations based on quantum mechanics. In this study, the ILBEs of layered minerals were calculated by using the density functional theory (DFT) method with van der Waals correction. The ILBEs calculated by the simple electrostatic method for hydrogen-bonding minerals such as kaolinite, lizardite, gibbsite, and brucite strongly overestimated the reliable energies calculated by the DFT method. This result should be ascribed to the inaccurate approximation of the point charges at the basal plane. A linear relationship between the experimentally measured friction coefficients of layered minerals and the ILBEs determined by the simple method was not confirmed by using the reliable ILBEs calculated by our DFT method. The results, however, do not remove the possibility of a relationship between interlayer bonding energy and the friction coefficient because the latter, used for comparing the former, was obtained through experiments conducted under various conditions.

  17. Microscopic thermal characterization of C/C and C/C-SiC composites

    NASA Astrophysics Data System (ADS)

    Jumel, J.; Krapez, J. C.; Lepoutre, F.; Enguehard, F.; Rochais, D.; Neuer, G.; Cataldi, M.

    2002-05-01

    To measure the thermal properties of C/C and C/C-SiC composites constituents, photoreflectance microscopy is used. Specific methods are developed to cope with experimental artefacts (material semi-transparency, convolution effects), so as with fibers and matrix specificities (strong thermal anisotropy, geometric effects…). Experimental results are presented demonstrating the interest of photoreflectance microscopy for a quantitative determination of the microscopic thermal properties of these complex graphite materials.

  18. Using Qualified Energy Conservation Bonds for Public Building Upgrades. Reducing Energy Bills in the City of Philadelphia

    SciTech Connect

    Zimring, Mark

    2012-07-18

    Qualified Energy Conservation Bonds (QECBs) are federally-subsidized bonds that enable state, tribal, and local government issuers to borrow money to fund a range of energy conservation projects, including public building upgrades that reduce energy use by at least 20 percent, at very attractive borrowing rates and long terms. As part of the American Recovery and Reinvestment Act (ARRA), the City of Philadelphia received a $15 million QECB award from the U.S. Department of the Treasury (Treasury). The city leveraged $6.25 million of its QECB allocation to finance half of a $12.6 million initiative to upgrade the energy efficiency of City buildings. The upgrades to four city facilities are expected to deliver over $10 million of net savings, and are a major step towards achieving the city’s goal of reducing government energy consumption by 30 percent by 2015.

  19. Hydrogen Bonding between Metal-Ion Complexes and Noncoordinated Water: Electrostatic Potentials and Interaction Energies.

    PubMed

    Andrić, Jelena M; Misini-Ignjatović, Majda Z; Murray, Jane S; Politzer, Peter; Zarić, Snežana D

    2016-07-01

    The hydrogen bonding of noncoordinated water molecules to each other and to water molecules that are coordinated to metal-ion complexes has been investigated by means of a search of the Cambridge Structural Database (CSD) and through quantum chemical calculations. Tetrahedral and octahedral complexes that were both charged and neutral were studied. A general conclusion is that hydrogen bonds between noncoordinated water and coordinated water are much stronger than those between noncoordinated waters, whereas hydrogen bonds of water molecule in tetrahedral complexes are stronger than in octahedral complexes. We examined the possibility of correlating the computed interaction energies with the most positive electrostatic potentials on the interacting hydrogen atoms prior to interaction and obtained very good correlation. This study illustrates the fact that electrostatic potentials computed for ground-state molecules, prior to interaction, can provide considerable insight into the interactions. PMID:26989883

  20. An efficient algorithm for energy gradients and orbital optimization in valence bond theory.

    PubMed

    Song, Lingchun; Song, Jinshuai; Mo, Yirong; Wu, Wei

    2009-02-01

    An efficient algorithm for energy gradients in valence bond theory with nonorthogonal orbitals is presented. A general Hartree-Fock-like expression for the Hamiltonian matrix element between valence bond (VB) determinants is derived by introducing a transition density matrix. Analytical expressions for the energy gradients with respect to the orbital coefficients are obtained explicitly, whose scaling for computational cost is m(4), where m is the number of basis functions, and is thus approximately the same as in HF method. Compared with other existing approaches, the present algorithm has lower scaling, and thus is much more efficient. Furthermore, the expression for the energy gradient with respect to the nuclear coordinates is also presented, and it provides an effective algorithm for the geometry optimization and the evaluation of various molecular properties in VB theory. Test applications show that our new algorithm runs faster than other methods. PMID:18629879

  1. Bond ionicity, lattice energy, bond energy and microwave dielectric properties of ZnZr(Nb1-xAx)2O8 (A = Ta, Sb) ceramics.

    PubMed

    Zhang, Ping; Zhao, Yonggui; Haitao, Wu

    2015-10-14

    The dependence of microwave dielectric properties on the structural characteristics of ZnZr(Nb1-xAx)2O8 (A = Ta, Sb) (0 ≤x≤ 0.10) ceramics is investigated. All the compounds were prepared by a conventional solid-state reaction method and analyzed via multiphase structure refinement. The diffraction patterns of ZnZr(Nb1-xAx)2O8 (A = Ta, Sb) show the monoclinic wolframite structure of ZrZrNb2O8 which consists of an oxygen octahedron, with the Nb ion in the center of the oxygen octahedron. For the ZnZr(Nb1-xAx)2O8 (A = Ta, Sb) ceramics, the dielectric constant (εr) decreased with the decrease in Nb-site bond ionicity. The quality factor (Q×f) of ZnZr(Nb1-xSbx)2O8 ceramics was found to be the highest (89 400 GHz), which is explained in terms of the average of the Nb-site lattice energy. With the decrease in the bond energy of the Nb-site, the temperature coefficient of resonant frequency (|τf|) value increased. The substitution of A(5+) (A = Ta, Sb) for Nb(5+) effectively influences the microstructure and microwave dielectric properties of ZrZrNb2O8 ceramics. PMID:26348992

  2. Hydrogen Induced C-C, C-N, & C-S Bond Activation on Pt & Ni Surfaces

    SciTech Connect

    Gland, J. L.

    2004-07-29

    The primary reactions investigated were chosen based on their importance in fuel and chemical production as well as in environmental remediation, and include reactions for hydrodesulfurization (HDS), hydrodenitrogenation (HDN), carbon-carbon hydrogenolysis, and hydrocarbon oxidation.

  3. Luminescent Iridium(III) Complexes Supported by N-Heterocyclic Carbene-based C^C^C-Pincer Ligands and Aromatic Diimines

    NASA Astrophysics Data System (ADS)

    Chung, Lai-Hon; Lo, Hoi-Shing; Ng, Sze-Wing; Ma, Dik-Lung; Leung, Chung-Hang; Wong, Chun-Yuen

    2015-10-01

    Iridium(III) hydrido complexes containing N-heterocyclic carbene (NHC)-based pincer ligand 1,3-bis(1-butylimidazolin-2-ylidene)phenyl anion (C1^C^C1) or 1,3-bis(3-butylbenzimidazolin-2-ylidene)phenyl anion (C2^C^C2) and aromatic diimine (2,2‧-bipyridine (bpy), 1,10-phenanthroline (phen), 4,4‧-dimethyl-2,2‧-bipyridine (Me2bpy), or dipyrido-[3,2-f:2‧,3‧-h]-quinoxaline (dpq)) in the form of [Ir(C^C^C)(N^N)(H)]+ have been prepared. Crystal structures for these complexes show that the Ir-CNHC distances are 2.043(5)-2.056(5) Å. The hydride chemical shifts for complexes bearing C1^C^C1 (-20.6 to -20.3 ppm) are more upfield than those with C2^C^C2 (-19.5 and -19.2 ppm), revealing that C1^C^C1 is a better electron donor than C2^C^C2. Spectroscopic comparisons and time-dependent density functional theory (TD-DFT) calculations suggest that the lowest-energy electronic transition associated with these complexes (λ = 340-530 nm (ɛ ≤ 103 dm3 mol-1 cm-1)) originate from a dπ(IrIII) → π*(N^N) metal-to-ligand charge transfer transition, where the dπ(IrIII) level contain significant contribution from the C^C^C ligands. All these complexes are emissive in the yellow-spectral region (553-604 nm in CH3CN and CH2Cl2) upon photo-excitation with quantum yields of 10-3-10-1.

  4. Luminescent Iridium(III) Complexes Supported by N-Heterocyclic Carbene-based C^C^C-Pincer Ligands and Aromatic Diimines

    PubMed Central

    Chung, Lai-Hon; Lo, Hoi-Shing; Ng, Sze-Wing; Ma, Dik-Lung; Leung, Chung-Hang; Wong, Chun-Yuen

    2015-01-01

    Iridium(III) hydrido complexes containing N-heterocyclic carbene (NHC)-based pincer ligand 1,3-bis(1-butylimidazolin-2-ylidene)phenyl anion (C1^C^C1) or 1,3-bis(3-butylbenzimidazolin-2-ylidene)phenyl anion (C2^C^C2) and aromatic diimine (2,2′-bipyridine (bpy), 1,10-phenanthroline (phen), 4,4′-dimethyl-2,2′-bipyridine (Me2bpy), or dipyrido-[3,2-f:2′,3′-h]-quinoxaline (dpq)) in the form of [Ir(C^C^C)(N^N)(H)]+ have been prepared. Crystal structures for these complexes show that the Ir–CNHC distances are 2.043(5)–2.056(5) Å. The hydride chemical shifts for complexes bearing C1^C^C1 (−20.6 to −20.3 ppm) are more upfield than those with C2^C^C2 (−19.5 and −19.2 ppm), revealing that C1^C^C1 is a better electron donor than C2^C^C2. Spectroscopic comparisons and time-dependent density functional theory (TD-DFT) calculations suggest that the lowest-energy electronic transition associated with these complexes (λ = 340–530 nm (ε ≤ 103 dm3 mol−1 cm−1)) originate from a dπ(IrIII) → π*(N^N) metal-to-ligand charge transfer transition, where the dπ(IrIII) level contain significant contribution from the C^C^C ligands. All these complexes are emissive in the yellow-spectral region (553–604 nm in CH3CN and CH2Cl2) upon photo-excitation with quantum yields of 10−3–10−1. PMID:26487542

  5. Tubulin Bond Energies and Microtubule Biomechanics Determined from Nanoindentation in Silico

    PubMed Central

    2015-01-01

    Microtubules, the primary components of the chromosome segregation machinery, are stabilized by longitudinal and lateral noncovalent bonds between the tubulin subunits. However, the thermodynamics of these bonds and the microtubule physicochemical properties are poorly understood. Here, we explore the biomechanics of microtubule polymers using multiscale computational modeling and nanoindentations in silico of a contiguous microtubule fragment. A close match between the simulated and experimental force–deformation spectra enabled us to correlate the microtubule biomechanics with dynamic structural transitions at the nanoscale. Our mechanical testing revealed that the compressed MT behaves as a system of rigid elements interconnected through a network of lateral and longitudinal elastic bonds. The initial regime of continuous elastic deformation of the microtubule is followed by the transition regime, during which the microtubule lattice undergoes discrete structural changes, which include first the reversible dissociation of lateral bonds followed by irreversible dissociation of the longitudinal bonds. We have determined the free energies of dissociation of the lateral (6.9 ± 0.4 kcal/mol) and longitudinal (14.9 ± 1.5 kcal/mol) tubulin–tubulin bonds. These values in conjunction with the large flexural rigidity of tubulin protofilaments obtained (18,000–26,000 pN·nm2) support the idea that the disassembling microtubule is capable of generating a large mechanical force to move chromosomes during cell division. Our computational modeling offers a comprehensive quantitative platform to link molecular tubulin characteristics with the physiological behavior of microtubules. The developed in silico nanoindentation method provides a powerful tool for the exploration of biomechanical properties of other cytoskeletal and multiprotein assemblies. PMID:25389565

  6. Which Ab Initio Wave Function Methods Are Adequate for Quantitative Calculations of the Energies of Biradicals? The Performance of Coupled-Cluster and Multi-Reference Methods Along a Single-Bond Dissociation Coordinate

    SciTech Connect

    Yang, Ke; Jalan, Amrit; Green, William H.; Truhlar, Donald G.

    2013-01-08

    We examine the accuracy of single-reference and multireference correlated wave function methods for predicting accurate energies and potential energy curves of biradicals. The biradicals considered are intermediate species along the bond dissociation coordinates for breaking the F-F bond in F2, the O-O bond in H2O2, and the C-C bond in CH3CH3. We apply a host of single-reference and multireference approximations in a consistent way to the same cases to provide a better assessment of their relative accuracies than was previously possible. The most accurate method studied is coupled cluster theory with all connected excitations through quadruples, CCSDTQ. Without explicit quadruple excitations, the most accurate potential energy curves are obtained by the single-reference RCCSDt method, followed, in order of decreasing accuracy, by UCCSDT, RCCSDT, UCCSDt, seven multireference methods, including perturbation theory, configuration interaction, and coupled-cluster methods (with MRCI+Q being the best and Mk-MR-CCSD the least accurate), four CCSD(T) methods, and then CCSD.

  7. Theoretical study of the C-H bond dissociation energy of C2H

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1990-01-01

    A theoretical study of the convergence of the C-H bond dissociation energy D(0) in C2H with respect to both the one- and n-particle spaces is presented. The calculated C-H bond energies of C2H2 and C2H4, which are in excellent agreement with experiment, are used for calibration. The best estimate for D(0) of 112.4 + or - 2.0 kcal/mol is slightly below the recent experimental value of 116.3 + or - 2.6 kcal/mol, but substantially above a previous theoretical estimate of 102 kcal/mol. The remaining discrepancy with experiment may reflect primarily the uncertainty in the experimental D(0) value of C2 required in the analysis.

  8. Electronic structure, stacking energy, partial charge, and hydrogen bonding in four periodic B-DNA models

    NASA Astrophysics Data System (ADS)

    Poudel, Lokendra; Rulis, Paul; Liang, Lei; Ching, W. Y.

    2014-08-01

    We present a theoretical study of the electronic structure of four periodic B-DNA models labeled (AT)10,(GC)10, (AT)5(GC)5, and (AT-GC)5 where A denotes adenine, T denotes thymine, G denotes guanine, and C denotes cytosine. Each model has ten base pairs with Na counterions to neutralize the negative phosphate group in the backbone. The (AT)5(GC)5 and (AT-GC)5 models contain two and five AT-GC bilayers, respectively. When compared against the average of the two pure models, we estimate the AT-GC bilayer interaction energy to be 19.015 Kcal/mol, which is comparable to the hydrogen bonding energy between base pairs obtained from the literature. Our investigation shows that the stacking of base pairs plays a vital role in the electronic structure, relative stability, bonding, and distribution of partial charges in the DNA models. All four models show a highest occupied molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO) gap ranging from 2.14 to 3.12 eV with HOMO states residing on the PO4 + Na functional group and LUMO states originating from the bases. Our calculation implies that the electrical conductance of a DNA molecule should increase with increased base-pair mixing. Interatomic bonding effects in these models are investigated in detail by analyzing the distributions of the calculated bond order values for every pair of atoms in the four models including hydrogen bonding. The counterions significantly affect the gap width, the conductivity, and the distribution of partial charge on the DNA backbone. We also evaluate quantitatively the surface partial charge density on each functional group of the DNA models.

  9. Theoretical study of the C-H bond dissociation energy of acetylene

    NASA Technical Reports Server (NTRS)

    Taylor, Peter R.; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1990-01-01

    The authors present a theoretical study of the convergence of the C-H bond dissociation energy (D sub o) of acetylene with respect to both the one- and n-particle spaces. Their best estimate for D sub o of 130.1 plus or minus 1.0 kcal/mole is slightly below previous theoretical estimates, but substantially above the value determined using Stark anticrossing spectroscopy that is asserted to be an upper bound.

  10. Computation of Bond Dissociation Energies for Removal of Nitrogen Dioxide Groups in Certain Aliphatic Nitro Compounds

    NASA Astrophysics Data System (ADS)

    Shao, Ju-Xiang; Cheng, Xin-Lu; Yang, Xiang-Dong; Xiang, Shi-Kai

    2006-04-01

    Bond dissociation energies for removal of nitrogen dioxide groups in 10 aliphatic nitro compounds, including nitromethane, nitroethylene, nitroethane, dinitromethane, 1-nitropropane, 2-nitropropane, 1-nitrobutane, 2-methyl-2-nitropropane, nitropentane, and nitrohexane, are calculated using the highly accurate complete basis set (CBS-Q) and the three hybrid density functional theory (DFT) methods B3LYP, B3PW91 and B3P86 with 6-31G** basis set. By comparing the computed bond dissociation energies and experimental results, we find that the B3LYP/6-31G** and B3PW91/6-31G** methods are incapable of predicting the satisfactory bond dissociation energy (BDE). However, B3P86/6-31G** and CBS-Q computations are capable of giving the calculated BDEs, which are in extraordinary agreement with the experimental data. Nevertheless, since CBS-Q computational demands increase rapidly with the number of containing atoms in molecules, larger molecules soon become prohibitively expensive. Therefore, we suggest to take the B3P86/6-31G** method as a reliable method of computing the BDEs for removal of the NO2 groups in the aliphatic nitro compounds.

  11. Students' reasoning about "high-energy bonds" and ATP: A vision of interdisciplinary education

    NASA Astrophysics Data System (ADS)

    Dreyfus, Benjamin W.; Sawtelle, Vashti; Turpen, Chandra; Gouvea, Julia; Redish, Edward F.

    2014-06-01

    As interdisciplinary courses are developed, instructors and researchers have to grapple with questions of how students should make connections across disciplines. We explore the issue of interdisciplinary reconciliation (IDR): how students reconcile seemingly contradictory ideas from different disciplines. While IDR has elements in common with other frameworks for the reconciliation of ideas across contexts, it differs in that each disciplinary idea is considered canonically correct within its own discipline. The setting for the research is an introductory physics course for biology majors that seeks to build greater interdisciplinary coherence and therefore includes biologically relevant topics such as adenosine triphosphate (ATP) and chemical bond energy. In our case-study data, students grapple with the apparent contradiction between the energy released when the phosphate bond in ATP is broken and the idea that an energy input is required to break a bond. We see students justifying context-dependent modeling choices, showing nuance in articulating how system choices may be related to disciplinary problems of interest. This represents a desired end point of IDR, in which students can build coherent connections between concepts from different disciplines while understanding each concept in its own disciplinary context. Our case study also illustrates elements of the instructional environment that play roles in the process of IDR.

  12. Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O

    NASA Astrophysics Data System (ADS)

    Cowan, M. L.; Bruner, B. D.; Huse, N.; Dwyer, J. R.; Chugh, B.; Nibbering, E. T. J.; Elsaesser, T.; Miller, R. J. D.

    2005-03-01

    Many of the unusual properties of liquid water are attributed to its unique structure, comprised of a random and fluctuating three-dimensional network of hydrogen bonds that link the highly polar water molecules. One of the most direct probes of the dynamics of this network is the infrared spectrum of the OH stretching vibration, which reflects the distribution of hydrogen-bonded structures and the intermolecular forces controlling the structural dynamics of the liquid. Indeed, water dynamics has been studied in detail, most recently using multi-dimensional nonlinear infrared spectroscopy for acquiring structural and dynamical information on femtosecond timescales. But owing to technical difficulties, only OH stretching vibrations in D2O or OD vibrations in H2O could be monitored. Here we show that using a specially designed, ultrathin sample cell allows us to observe OH stretching vibrations in H2O. Under these fully resonant conditions, we observe hydrogen bond network dynamics more than one order of magnitude faster than seen in earlier studies that include an extremely fast sweep in the OH frequencies on a 50-fs timescale and an equally fast disappearance of the initial inhomogeneous distribution of sites. Our results highlight the efficiency of energy redistribution within the hydrogen-bonded network, and that liquid water essentially loses the memory of persistent correlations in its structure within 50fs.

  13. Bond-Specific Dissociation Following Excitation Energy Transfer for Distance Constraint Determination in the Gas Phase

    PubMed Central

    2015-01-01

    Herein, we report chemistry that enables excitation energy transfer (EET) to be accurately measured via action spectroscopy on gaseous ions in an ion trap. It is demonstrated that EET between tryptophan or tyrosine and a disulfide bond leads to excited state, homolytic fragmentation of the disulfide bond. This phenomenon exhibits a tight distance dependence, which is consistent with Dexter exchange transfer. The extent of fragmentation of the disulfide bond can be used to determine the distance between the chromophore and disulfide bond. The chemistry is well suited for the examination of protein structure in the gas phase because native amino acids can serve as the donor/acceptor moieties. Furthermore, both tyrosine and tryptophan exhibit unique action spectra, meaning that the identity of the donating chromophore can be easily determined in addition to the distance between donor/acceptor. Application of the method to the Trpcage miniprotein reveals distance constraints that are consistent with a native-like fold for the +2 charge state in the gas phase. This structure is stabilized by several salt bridges, which have also been observed to be important previously in proteins that retain native-like structures in the gas phase. The ability of this method to measure specific distance constraints, potentially at numerous positions if combined with site-directed mutagenesis, significantly enhances our ability to examine protein structure in the gas phase. PMID:25174489

  14. Bond-specific dissociation following excitation energy transfer for distance constraint determination in the gas phase.

    PubMed

    Hendricks, Nathan G; Lareau, Nichole M; Stow, Sarah M; McLean, John A; Julian, Ryan R

    2014-09-24

    Herein, we report chemistry that enables excitation energy transfer (EET) to be accurately measured via action spectroscopy on gaseous ions in an ion trap. It is demonstrated that EET between tryptophan or tyrosine and a disulfide bond leads to excited state, homolytic fragmentation of the disulfide bond. This phenomenon exhibits a tight distance dependence, which is consistent with Dexter exchange transfer. The extent of fragmentation of the disulfide bond can be used to determine the distance between the chromophore and disulfide bond. The chemistry is well suited for the examination of protein structure in the gas phase because native amino acids can serve as the donor/acceptor moieties. Furthermore, both tyrosine and tryptophan exhibit unique action spectra, meaning that the identity of the donating chromophore can be easily determined in addition to the distance between donor/acceptor. Application of the method to the Trpcage miniprotein reveals distance constraints that are consistent with a native-like fold for the +2 charge state in the gas phase. This structure is stabilized by several salt bridges, which have also been observed to be important previously in proteins that retain native-like structures in the gas phase. The ability of this method to measure specific distance constraints, potentially at numerous positions if combined with site-directed mutagenesis, significantly enhances our ability to examine protein structure in the gas phase. PMID:25174489

  15. Chemical Bonds II

    ERIC Educational Resources Information Center

    Sanderson, R. T.

    1972-01-01

    The continuation of a paper discussing chemical bonding from a bond energy viewpoint, with a number of examples of single and multiple bonds. (Part I appeared in volume 1 number 3, pages 16-23, February 1972.) (AL)

  16. Impact of mass and bond energy difference and interface defects on thermal boundary conductance

    NASA Astrophysics Data System (ADS)

    Choi, ChangJin

    The objective of this study is to use molecular dynamics simulation techniques in order to improve the understanding of phonon transport at the interface of dissimilar materials and the impact of different material properties on thermal boundary conductance (TBC). In order to achieve this goal, we investigated the contributions of mass and bond energy difference and interface defects on TBC at the interface of nanostructured materials using non-equilibrium molecular dynamics (NEMD) simulation and phonon wave-packet (PWP) simulation techniques. NEMD is used to distinguish relative and combined contributions of mass and bond energy difference on TBC. As a result, it is found that the mass has a stronger contribution than the bond energy on lowering the TBC and that the TBC is dependent on the length of interdiffusion region as well as temperature. In addition, evidence of inelastic scattering is observed with interdiffusion regions especially when two materials differ in the bond energy. A detailed description of phonon interactions at the interface is obtained performing PWP simulations. A frequency dependence of the TBC based on phonon dispersion relation is observed. As it is expected, minimum scattering occurs when there exists only vibrational mismatch at the interface and inelastic scattering is to take place at high frequency region when the bond energy of the two materials is different resulting in the strain at the interface. It is also shown that the level of inelastic scattering is dependent on the length of the interdiffusion region. In addition, the TBC calculated with the results of PWP simulations is compared with that of NEMD simulations as well as theoretical predictions from the acoustic mismatch model and the diffuse mismatch model. A simple analytical model, which utilizes knowledge of thermal interface resistance and the interface geometry for the prediction of effective thermal conductivity, is developed. This model is generated based on Si

  17. Relationships between bond dissociation energies, electron density minima and electrostatic potential minima

    NASA Astrophysics Data System (ADS)

    Wiener, John J. M.; Murray, Jane S.; Grice, M. Edward; Politzer, Peter

    The experimental dissociation energies of a group of homonuclear diatomic molecules are found to correlate with computed electron densities pho(r) and electrostatic potentials V (r) at the bond midpoints, supporting an earlier prediction based on density functional arguments (N. H. March, P. M. Kozlowski and F. Perrot 1990, J. molec. Struct. Theochem, 209, 433). The relationships are generalized to 45 molecules of various types, focusing upon the minima of pho(r) and V (r) along internuclear axes. Dissociation energies are shown to be related distinctly more closely to the minimum values of V (r) than to those of pho(r). This complements previous findings for negative monatomic ions as well as the recent observation that the V (r) minima provide the more realistic boundary points between bonded atoms (relative to literature values of covalent radii), and thus further establishes the significance of electrostatic potential axial minima with respect to covalent bonding. In the present work, all calculations were carried out by a density functional procedure (Becke exchange, Lee, Yang and Parr correlation, 6-31G** basis sets).

  18. Prediction of Reliable Metal-PH₃ Bond Energies for Ni, Pd, and Pt in the 0 and +2 Oxidation States

    SciTech Connect

    Craciun, Raluca; Vincent, Andrew J.; Shaughnessy, Kevin H.; Dixon, David A.

    2010-06-21

    Phosphine-based catalysts play an important role in many metal-catalyzed carbon-carbon bond formation reactions yet reliable values of their bond energies are not available. We have been studying homogeneous catalysts consisting of a phosphine bonded to a Pt, Pd, or Ni. High level electronic structure calculations at the CCSD(T)/complete basis set level were used to predict the M-PH₃ bond energy (BE) for the 0 and +2 oxidation states for M=Ni, Pd, and Pt. The calculated bond energies can then be used, for example, in the design of new catalyst systems. A wide range of exchange-correlation functionals were also evaluated to assess the performance of density functional theory (DFT) for these important bond energies. None of the DFT functionals were able to predict all of the M-PH3 bond energies to within 5 kcal/mol, and the best functionals were generalized gradient approximation functionals in contrast to the usual hybrid functionals often employed for main group thermochemistry.

  19. A single theoretical descriptor for the bond-dissociation energy of substituted phenols.

    PubMed

    Aliaga, Carolina; Almodovar, Iriux; Rezende, Marcos Caroli

    2015-01-01

    Relative to the corresponding value of phenol, the bond-dissociation energies (BDE) of substituted phenols correlate well with a single descriptor: the Mulliken charge on the oxygen atom of the phenoxyl radical. However, the correlation fails for phenols ortho-substituted with polar groups. Internal reaction coordinates (IRC) for the model reaction of hydrogen abstraction by the hydroperoxyl radical from various 2- and 4-substituted phenols were calculated in order to investigate the role of intra-molecular hydrogen bonds and steric effects on the process. Calculations yielded theoretical values in good agreement with experimental ΔBDE values. The hydrogen-abstraction process was further analyzed in terms of density functional theory (DFT)-based reactivity indices such as local electrophilicity, the Fukui function for nucleophilic attack, and dual descriptor values of the phenolic hydroxyl oxygen along the IRC. PMID:25617211

  20. Distribution of Exchange Energy in a Bond-alternating S=1 Quantum Spin Chain

    SciTech Connect

    Zheludev, Andrey I; Masuda, Takatsugu; Sales, Brian C; Mandrus, David; Papenbrock, Thomas F; Barnes, Ted {F E }; Park, S.

    2004-01-01

    The quasi-one-dimensional bond-alternating S=1 quantum antiferromagnet [Ni(N,N'-bis(3aminopropyl)propane-1,3-diamine({mu}-NO{sub 2})]ClO{sub 4} (NTENP) is studied by single-crystal inelastic neutron scattering. Parameters of the measured dispersion relation for magnetic excitations are compared to existing numerical results and used to determine the magnitude of bond-strength alternation. The measured neutron-scattering intensities are also analyzed, using the first-moment sum rules for the magnetic dynamic structure factor, to directly determine the modulation of ground-state exchange energies. These independently determined modulation parameters characterize the level of spin dimerization in NTENP. First-principles density-matrix renormalization-group calculations are used to study the relation between these two quantities.

  1. The Role of Interfacial Molecular Structure and Hydrogen-Bonding in Gas-Surface Energy Exchange

    NASA Astrophysics Data System (ADS)

    Day, Scott; Fergusion, Melinda; Morris, John

    2004-03-01

    Atomic-beam scattering experiments using n-alkanethiol and w-functionalized alkanethiol self-assembled monolayers (SAMs) on gold are employed to explore the dynamics of gas-surface energy exchange in collisions with model organic surfaces. The studies are performed by directing a nearly monoenergetic beam of 80 kJ/mol Ar atoms onto a particular SAM at an incident angle of 30° with respect to the surface normal and recording the time-of-flight distributions for the atoms as they scatter from the surface at a final angle of 30°. Among the monolayers studied, long-chain methyl-terminated SAMs are found to be the most effective at dissipating the translational energy of impinging atoms. For alkanethiols with greater than seven total carbon atoms, we find that, for specular scattering conditions, over 80the incident energy is transferred to the surface and that over 60with the surface before scattering back into the gas phase. In contrast to methyl-terminated monolayers, SAMs constructed from hydrogen-bonding alkanethiols exhibit characteristics of more rigid collision partners. The Ar atoms transfer about 77with only 43equilibrium before recoiling. Further comparisons of mixed hydroxyl- and methyl-terminated SAMs and alkene-terminated SAMs suggest that intramonolayer hydrogen bonding of terminal functional groups may play an important role in determining the extent of energy transfer and thermalization.

  2. The effect of tensile stress on the conformational free energy landscape of disulfide bonds.

    PubMed

    Anjukandi, Padmesh; Dopieralski, Przemyslaw; Ribas-Arino, Jordi; Marx, Dominik

    2014-01-01

    Disulfide bridges are no longer considered to merely stabilize protein structure, but are increasingly recognized to play a functional role in many regulatory biomolecular processes. Recent studies have uncovered that the redox activity of native disulfides depends on their C-C-S-S dihedrals, χ2 and χ'2. Moreover, the interplay of chemical reactivity and mechanical stress of disulfide switches has been recently elucidated using force-clamp spectroscopy and computer simulation. The χ2 and χ'2 angles have been found to change from conformations that are open to nucleophilic attack to sterically hindered, so-called closed states upon exerting tensile stress. In view of the growing evidence of the importance of C-C-S-S dihedrals in tuning the reactivity of disulfides, here we present a systematic study of the conformational diversity of disulfides as a function of tensile stress. With the help of force-clamp metadynamics simulations, we show that tensile stress brings about a large stabilization of the closed conformers, thereby giving rise to drastic changes in the conformational free energy landscape of disulfides. Statistical analysis shows that native TDi, DO and interchain Ig protein disulfides prefer open conformations, whereas the intrachain disulfide bridges in Ig proteins favor closed conformations. Correlating mechanical stress with the distance between the two a-carbons of the disulfide moiety reveals that the strain of intrachain Ig protein disulfides corresponds to a mechanical activation of about 100 pN. Such mechanical activation leads to a severalfold increase of the rate of the elementary redox S(N)2 reaction step. All these findings constitute a step forward towards achieving a full understanding of functional disulfides. PMID:25286308

  3. The Bond Order of C2 from a Strictly N-Representable Natural Orbital Energy Functional Perspective.

    PubMed

    Piris, Mario; Lopez, Xabier; Ugalde, Jesus M

    2016-03-14

    The bond order of the ground electronic state of the carbon dimer has been analyzed in the light of natural orbital functional theory calculations carried out with an approximate, albeit strictly N-representable, energy functional. Three distinct solutions have been found from the Euler equations of the minimization of the energy functional with respect to the natural orbitals and their occupation numbers, which expand upon increasing values of the internuclear coordinate. In the close vicinity of the minimum energy region, two of the solutions compete around a discontinuity point. The former, corresponding to the absolute minimum energy, features two valence natural orbitals of each of the following symmetries, σ, σ*, π and π*, and has three bonding interactions and one antibonding interaction, which is very suggestive of a bond order large than two but smaller than three. The latter, features one σ-σ* linked pair of natural orbitals and three degenerate pseudo-bonding like orbitals, paired each with one triply degenerate pseudo-antibonding orbital, which points to a bond order larger than three. When correlation effects, other than Hartree-Fock for example, between the paired natural orbitals are accounted for, this second solution vanishes yielding a smooth continuous dissociation curve. Comparison of the vibrational energies and electron ionization energies, calculated on this curve, with their corresponding experimental marks, lend further support to a bond order for C2 intermediate between acetylene and ethylene. PMID:26822104

  4. Autyomatic Differentiation of C/C++

    SciTech Connect

    Beata Winnicka, Boyana Norris

    2005-11-14

    Automatic differentiation (AD) tools mechanize the process of developing code for the computation of derivatives. AD avoids the inaccuracies inherent in numerical approximations. Furthermore, sophisticated AD algoirthms can often produce c ode that is more reliable and more efficient than code written by an expert programmer. ADIC is the first and only AD tool for C and C++ based on compiler technology. This compiler foundation makes possible analyses and optimizations not available in toos based on operator overloading. The earliest implementations of ADIC included support for ANSI C applications, ADIC 2.0 lverages EDG, a commercial C/C++ parser, to provide robust C++ differentiation support. Modern AD tools, including ADIC are implemented in a modular way, aiming to isolate language-dependent program analyses and semantic transformations. The component design leads to much higher implementation quality because the different components can be implemented by experts in each of the different domains involved. For example, a compiler expert can focus on parsing, canonicalizing, and unparising C and C++, while an expert in graph theory and algorithms can produce new differentiation modules without having to worry about the complexity of parsing and generating C++ code. Thsi separation of concerns was achieved through the use of language-independent program analysis interfaces (in collaboration with researcgers at Rice University) and a language-independent XML representation of the computational portions of programs (XAIF). In addition to improved robustness and faster development times, this design naturally enables the reuse of program analysis algorithms and differentiation modules in compiler-based AD tools for other languages. In fact, the analysis and differention components are used in both ADIC and the Open AD Fortran front-end (based on Rice's Open64 compiler.

  5. Autyomatic Differentiation of C/C++

    Energy Science and Technology Software Center (ESTSC)

    2005-11-14

    Automatic differentiation (AD) tools mechanize the process of developing code for the computation of derivatives. AD avoids the inaccuracies inherent in numerical approximations. Furthermore, sophisticated AD algoirthms can often produce c ode that is more reliable and more efficient than code written by an expert programmer. ADIC is the first and only AD tool for C and C++ based on compiler technology. This compiler foundation makes possible analyses and optimizations not available in toos basedmore » on operator overloading. The earliest implementations of ADIC included support for ANSI C applications, ADIC 2.0 lverages EDG, a commercial C/C++ parser, to provide robust C++ differentiation support. Modern AD tools, including ADIC are implemented in a modular way, aiming to isolate language-dependent program analyses and semantic transformations. The component design leads to much higher implementation quality because the different components can be implemented by experts in each of the different domains involved. For example, a compiler expert can focus on parsing, canonicalizing, and unparising C and C++, while an expert in graph theory and algorithms can produce new differentiation modules without having to worry about the complexity of parsing and generating C++ code. Thsi separation of concerns was achieved through the use of language-independent program analysis interfaces (in collaboration with researcgers at Rice University) and a language-independent XML representation of the computational portions of programs (XAIF). In addition to improved robustness and faster development times, this design naturally enables the reuse of program analysis algorithms and differentiation modules in compiler-based AD tools for other languages. In fact, the analysis and differention components are used in both ADIC and the Open AD Fortran front-end (based on Rice's Open64 compiler.« less

  6. Understanding bond formation in polar one-step reactions. Topological analyses of the reaction between nitrones and lithium ynolates.

    PubMed

    Roca-López, David; Polo, Victor; Tejero, Tomás; Merino, Pedro

    2015-04-17

    The mechanism of the reaction between nitrones and lithium ynolates has been studied using DFT methods at the M06-2X/cc-pVTZ/PCM=THF level. After the formation of a starting complex an without energy barrier, in which the lithium atom is coordinated to both nitrone and ynolate, the reaction takes place in one single kinetic step through a single transition structure. However, the formation of C-C and C-O bonds takes place sequentially through a typical two-stage, one-step process. A combined study of noncovalent interactions (NCIs) and electron localization function (ELFs) of selected points along the intrinsic reaction coordinate (IRC) of the reaction confirmed that, in the transition structure, only the C-C bond is being formed to some extent, whereas an electrostatic interaction is present between carbon and oxygen atoms previous to the formation of the C-O bond. Indeed, the formation of the second C-O bond only begins when the first C-C bond is completely formed without formation of any intermediate. Once the C-C bond is formed and before the C-O bond formation starts the RMS gradient norm dips, approaching but not reaching 0, giving rise to a hidden intermediate. PMID:25803829

  7. A program to calculate non-bonded interaction energy in biomolecular aggregates.

    PubMed

    Sundaram, K; Prasad, C V

    1982-02-01

    This paper describes a program to calculate intermolecular as well as intramolecular electronic potential energy resulting from non-bonded interactions. The underlying theory is obtained by the application of Rayleigh-Schroedinger perturbation theory to non-overlap regions of a molecular system. The rigorous theoretical expressions for the energy terms are simplified by approximations consistent with those commonly employed in semi-empirical molecular orbital theories. The program is particularly suited for the study of biomolecular assemblies, and in situations where insight into contributions to total energy from various component interaction types is desired. The inclusion of the non-additive dispersion effects in this approach makes it especially interesting for the study of cooperative phenomena in the light of a recent finding [1]. PMID:7067416

  8. Comparison of DFT with Traditional Methods for the Calculation of Vibrational Frequencies and Bond Energies

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W.; Arnold, James O. (Technical Monitor)

    1997-01-01

    The vibrational frequencies of MO2 are computed at many levels of theory, including HF, B3LYP, BP86, CASSCF, MP2, and CCSD(T). The computed results are compared with the available experimental results. Most of the methods fail for at least one state of the systems considered. The accuracy of the results and the origin of the observed failures are discussed. The B3LYP bond energies are compared with traditional methods for a variety of systems, ranging from FeCOn+ to SiCln and its positive ions. The cases where B3LYP differs from the traditional methods are discussed.

  9. Accurate thermochemistry for larger molecules : gaussian-2 theory with bond separation energies.

    SciTech Connect

    Raghavachari, K.; Stefanov, B. B.; Curtiss, L. A.; Lucent Tech.

    1997-04-22

    Gaussian-2 (G2) theory is combined with isodesmic bond separation reaction energies to yield accurate thermochemistry for larger molecules. For a test set of 40 molecules composed of H, C, O, and N, our method yields enthalpies of formation, {Delta}H{sub f}{sup 0}(298 K), with a mean absolute deviation from experiment of only 0.5 kcal/mol. This is an improvement of a factor of three over the deviation of 1.5 kcal/mol seen in standard G2 theory.

  10. Correcting for the free energy costs of bond or angle constraints in molecular dynamics simulations

    PubMed Central

    König, Gerhard; Brooks, Bernard R.

    2014-01-01

    Background Free energy simulations are an important tool in the arsenal of computational biophysics, allowing the calculation of thermodynamic properties of binding or enzymatic reactions. This paper introduces methods to increase the accuracy and precision of free energy calculations by calculating the free energy costs of constraints during post-processing. The primary purpose of employing constraints for these free energy methods is to increase the phase space overlap between ensembles, which is required for accuracy and convergence. Methods The free energy costs of applying or removing constraints are calculated as additional explicit steps in the free energy cycle. The new techniques focus on hard degrees of freedom and use both gradients and Hessian estimation. Enthalpy, vibrational entropy, and Jacobian free energy terms are considered. Results We demonstrate the utility of this method with simple classical systems involving harmonic and anharmonic oscillators, four-atomic benchmark systems, an alchemical mutation of ethane to methanol, and free energy simulations between alanine and serine. The errors for the analytical test cases are all below 0.0007 kcal/mol, and the accuracy of the free energy results of ethane to methanol is improved from 0.15 to 0.04 kcal/mol. For the alanine to serine case, the phase space overlaps of the unconstrained simulations range between 0.15 and 0.9%. The introduction of constraints increases the overlap up to 2.05%. On average, the overlap increases by 94% relative to the unconstrained value and precision is doubled. Conclusions The approach reduces errors arising from constraints by about an order of magnitude. Free energy simulations benefit from the use of constraints through enhanced convergence and higher precision. General Significance The primary utility of this approach is to calculate free energies for systems with disparate energy surfaces and bonded terms, especially in multi-scale molecular mechanics