Science.gov

Sample records for c-o vibrational frequencies

  1. Theoretical Study of the Electrostatic and Steric Effects on the Spectroscopic Characteristics of the Metal-Ligand Unit of Heme Proteins. 2. C-O Vibrational Frequencies, 17O Isotropic Chemical Shifts, and Nuclear Quadrupole Coupling Constants

    PubMed Central

    Kushkuley, Boris; Stavrov, Solomon S.

    1997-01-01

    The quantum chemical calculations, vibronic theory of activation, and London-Pople approach are used to study the dependence of the C-O vibrational frequency, 17O isotropic chemical shift, and nuclear quadrupole coupling constant on the distortion of the porphyrin ring and geometry of the CO coordination, changes in the iron-carbon and iron-imidazole distances, magnitude of the iron displacement out of the porphyrin plane, and presence of the charged groups in the heme environment. It is shown that only the electrostatic interactions can cause the variation of all these parameters experimentally observed in different heme proteins, and the heme distortions could modulate this variation. The correlations between the theoretically calculated parameters are shown to be close to the experimentally observed ones. The study of the effect of the electric field of the distal histidine shows that the presence of the four C-O vibrational bands in the infrared absorption spectra of the carbon monoxide complexes of different myoglobins and hemoglobins can be caused by the different orientations of the different tautomeric forms of the distal histidine. The dependence of the 17O isotropic chemical shift and nuclear quadrupole coupling constant on pH and the distal histidine substitution can be also explained from the same point of view. PMID:9017215

  2. Mobile high frequency vibrator system

    SciTech Connect

    Fair, D.W.; Buller, P.L.

    1985-01-08

    A carrier mounted seismic vibrator system that is primarily adapted for generation of high force, high frequency seismic energy into an earth medium. The apparatus includes first and second vibrators as supported by first and second lift systems disposed in tandem juxtaposition generally centrally in said vehicle, and the lift systems are designed to maintain equal hold-down force on the vibrator coupling baseplates without exceeding the weight of the carrier vehicle. The juxtaposed vibrators are then energized in synchronized relationship to propagate increased amounts of higher frequency seismic energy into an earth medium.

  3. Distal and proximal ligand interactions in heme proteins: Correlations between C-O and Fe-C vibrational frequencies, oxygen-17 and carbon-13 nuclear magnetic resonance chemical shifts, and oxygen-17 nuclear quadrupole coupling constants in C sup 17 O- and sup 13 CO-labeled species

    SciTech Connect

    Ki Deok Park; Guo, K.; Adebodun, F.; Chiu, M.L.; Sligar, S.G.; Oldfield, E. )

    1991-03-05

    The authors have obtained the oxygen-17 nuclear magnetic resonance (NMR) spectra of a variety of C{sup 17}O-labeled heme proteins, including sperm whale (Physeter catodon) myoglobin, two synthetic sperm whale myoglobin mutants (His E7 {yields} Val E7; His E7 {yields} Phe E7), adult human hemoglobin, rabbit (Oryctolagus cuniculus) hemoglobin, horseradish (Cochlearia armoracia) peroxidase isoenzymes A and C, and Caldariomyces fumago chloroperoxidase, in some cases as a function of pH, and have determined their isotropic {sup 17}O NMR chemical shifts, {delta}{sub i}, and spin-lattice relaxation times, T{sub 1}. They have also obtained similar results on a picket fence prophyrin. The results show an excellent correlation between the infrared C-O vibrational frequencies, {nu}(C-O), and {delta}{sub i}, between {nu}(C-O) and the {sup 17}O nuclear quadrupole coupling constant, and as expected between e{sup 2}qQ/h and {delta}{sub i}. The results suggest the IR and NMR measurements reflect the same interaction, which is thought to be primarily the degree of {pi}-back-bonding from Fe d to CO {pi}* orbitals, as outlined previously.

  4. Modulational instabilities in acetanilide taking into account both the N H and the C=O vibrational self-trappings

    NASA Astrophysics Data System (ADS)

    Simo, Elie

    2007-02-01

    A model of crystalline acetanilide, ACN accounting for the C=O and N-H vibrational self-trappings is presented. We develop a fully discrete version of ACN. We show that ACN can be described by a set of two coupled discrete nonlinear Schrödinger (DNLS) equations. Modulational instabilities (MI) are studied both theoretically and numerically. Dispersion laws for the wavenumbers and frequencies of the linear modulation waves are determined. We also derived the criterion for the existence of MI. Numerical simulations are carried out for a variety of selected wave amplitudes in the unstable zone. It is shown that instabilities grow as the wavenumbers and amplitudes of the modulated waves increase. MI grow faster in the N-H mode than in the C=O mode. Temporal evolution of the density probabilities of the vibrational excitons are obtained by the numerical integration of the coupled DNLS equations governing the ACN molecule. These investigations confirm the generation of localized modes by the phenomenon of MI and the predominance of the N-H vibrational mode in the MI process of the ACN.

  5. Interactions of Cu(B) with Carbon Monoxide in Cytochrome c Oxidase: Origin of the Anomalous Correlation between the Fe-CO and C-O Stretching Frequencies.

    PubMed

    Egawa, Tsuyoshi; Haber, Jonah; Fee, James A; Yeh, Syun-Ru; Rousseau, Denis L

    2015-07-01

    In heme-copper oxidases, the correlation curve between the iron-CO and C-O stretching vibrational modes (ν(Fe-CO) and ν(C-O), respectively) is anomalous as compared to the correlation in other heme proteins. To extend the correlation curve, the resonance Raman (RR) and infrared (IR) spectra of the CO adducts of cytochrome ba3 (ba3) from Thermus thermophilus were measured. The RR spectrum has two strong ν(Fe-CO) lines (508 and 515 cm(-1)) and a very weak line at 526 cm(-1), and the IR spectrum has three ν(C-O) lines (1966, 1973, and 1981 cm(-1)), indicating the presence of multiple conformers. Employing photodissociation methods, the ν(Fe-CO) RR and ν(C-O) IR lines were assigned to each conformer, enabling the establishment of a reliable inverse correlation curve for the ν(Fe-CO) versus the ν(C-O) stretching frequencies. To determine the molecular basis of the correlation, a series of DFT calculations on 6-coordinate porphyrin-CO compounds and a model of the binuclear center of the heme-copper oxidases were carried out. The calculations demonstrated that the copper unit model caused significant mixing among porphyrin-CO molecular orbitals (MOs) that contribute to the Fe-C and C-O bonding interactions, and also indicated the presence of mixing between the d(z)(2) orbital of the copper and MOs that are responsible for the ν(Fe-CO) vs ν(C-O) inverse correlation. Together, the spectroscopic and DFT results clarify the origin of the anomaly of ν(Fe-CO) and ν(C-O) frequencies in the heme-copper oxidases, a long-standing issue. PMID:26056844

  6. Frequency characteristics of electro-hydraulic vibrator.

    PubMed

    Satoh, Noriaki

    2002-12-01

    Frequency characteristics of an electro-hydraulic vibrator were measured using two kinds of test signals. First, sine signals had theoretically 1.0 m/s2 (root-mean-square) in the frequency range from 1 to 16 Hz at single axis. The frequency characteristics were flat from 1 to 12 Hz, but 14, 16 Hz was considerably poor. Second, the vibrator was excited when using a complex signal consisting of 12 components in the frequency range from 1 to 12 Hz at single axis. The overall acceleration was 3 and 1 m/s2. Flat characteristics were seen in the tested frequency range. Acceleration distortion was recognized in a higher frequency than the target frequency. This second method is effective for the efficiency of experimental procedure. PMID:12506857

  7. Low-frequency vibrational modes of glutamine

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Ning; Wang, Guo; Zhang, Yan

    2011-12-01

    High-resolution terahertz absorption and Raman spectra of glutamine in the frequency region 0.2 THz-2.8 THz are obtained by using THz time domain spectroscopy and low-frequency Raman spectroscopy. Based on the experimental and the computational results, the vibration modes corresponding to the terahertz absorption and Raman scatting peaks are assigned and further verified by the theoretical calculations. Spectral investigation of the periodic structure of glutamine based on the sophisticated hybrid density functional B3LYP indicates that the vibrational modes come mainly from the inter-molecular hydrogen bond in this frequency region.

  8. Vibration modes and frequencies of structures

    NASA Technical Reports Server (NTRS)

    Durling, R. J.; Kvaternik, R. G.

    1980-01-01

    SUDAN, Substructuring in Direct Analysis, analyzes natural modes and frequencies of vibration of structural systems. Based on direct method of analysis that employs substructures methodology, program is used with structures that may be represented as equivalent system of beam, springs, and rigid bodies.

  9. Energy scavenging from low frequency vibrations

    NASA Astrophysics Data System (ADS)

    Galchev, Tzeno V.

    The development of three energy conversion devices that are able to transform vibrations in their surroundings to electrical energy is discussed in this thesis. These energy harvesters are based upon a newly invented architecture called the Parametric Frequency Increased Generator (PFIG). The PFIG structure is designed to efficiently convert low frequency and non-periodic vibrations into electrical power. The three PFIG devices have a combined operating range covering two orders of magnitude in acceleration (0.54--19.6m/s 2) and a frequency range spanning up to 60Hz; making them some of the most versatile generators in existence. The PFIG utilizes a bi-stable mechanical structure to initiate high-frequency mechanical oscillations in an electromechanical scavenger. By up-converting the ambient vibration frequency to a higher internal operation frequency, the PFIG achieves better electromechanical coupling. The fixed internal displacement and dynamics of the PFIG allow it to operate more efficiently than resonant generators when the ambient vibration amplitude is higher than the internal displacement limit of the device. The PFIG structure is capable of efficiently converting mechanical vibrations with variable characteristics including amplitude and frequency, into electrical power. The first electromagnetic harvester can generate a peak power of 163microW and an average power of 13.6microW from an input acceleration of 9.8m/s 2 at 10Hz, and it can operate up to 60Hz. The internal volume of the generator is 2.12cm3 (3.75 including casing). It sets the state-of-the-art in efficiency in the <20Hz range. The volume figure of merit is 0.068%, which is a 10x improvement over other published works. It has a record high bandwidth figure of merit (0.375%). A second piezoelectric implementation generates 3.25microW of average power under the same excitation conditions, while the volume of the generator is halved (1.2cm3). A third PFIG was developed for critical

  10. Dynamic vibration absorbers for vibration control within a frequency band

    NASA Astrophysics Data System (ADS)

    Yang, Cheng; Li, Deyu; Cheng, Li

    2011-04-01

    The use of dynamic vibration absorbers to control the vibration of a structure in both narrow and broadbands is discussed in this paper. As a benchmark problem, a plate incorporating multiple vibration absorbers is formulated, leading to an analytical solution when the number of absorbers yields one. Using this analytical solution, control mechanisms of the vibration absorber in different frequency bandwidths are studied; the coupling properties due to the introduction of the absorber into the host structure are analyzed; and the control performance of the absorber in different control bandwidths is examined with respect to its damping and location. It is found that the interaction between the plate and the absorber by means of the reaction force from the absorber plays a dominant role in a narrow band control, while in a relatively broadband control the dissipation by the absorber damping governs the control performance. When control bandwidth further enlarges, the optimal locations of the absorbers are not only affected by the targeted mode, but also by the other plate modes. These locations need to be determined after establishing a trade-off between the targeted mode and other modes involved in the coupling. Finally, numerical findings are assessed based on a simply-supported plate and a fair agreement between the predicted and measured results is obtained.

  11. Vibrational frequencies and structural determination of tetrafluoroformaldazine.

    PubMed

    Jensen, James O

    2004-09-01

    The normal mode frequencies and corresponding vibrational assignments of tetrafluoroformaldazine (F(2)CNNCF(2)) are examined theoretically using the Gaussian98 set of quantum chemistry codes. Each of the vibrational modes was assigned to one of nine types of motion predicted by a group theoretical analysis (C-F stretch, C[triple bond]N stretch, N-N stretch, C=C-N bend, CF(2) wag, CF(2) rock CF(2) scissors, CF(2) twist, and C=N-N=C torsion) utilizing the C(2h) symmetry of the molecule. Uniform scaling factors was derived for each type of motion. Predicted infrared and Raman intensities are reported. PMID:15294242

  12. Vibrational solvatochromism and electrochromism of infrared probe molecules containing C≡O, C≡N, C=O, or C-F vibrational chromophore

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Cho, Minhaeng

    2011-04-01

    Solvatochromic vibrational frequency shifts of a few different infrared (IR) probe molecules have been studied by carrying out quantum chemistry calculations for a number of their water clusters. We are particularly focused on the vibrational solvatochromic and electrochromic effects on the CO, CN, and CF stretch modes in carbon monoxide, acetone, 4-cyanopyridine, p-tolunitrile, fluorobenzene, and 3-fluoropyridine. Using multiple interaction site antenna model, we show that their solvatochromic vibrational frequency shifts can be successfully described by considering spatially nonuniform electrostatic potential generated by the surrounding water molecules. It turns out that the CO and CF stretch mode frequencies are approximately proportional to the solvent electric field projected onto the bond axes, whereas the vibrational frequencies of the nitrile stretch mode in 4-cyanopyridine and p-tolunitrile are not. Consequently, it is confirmed that the vibrational Stark tuning rates of the CO and CF stretching modes can be directly used to describe their solvatochromic frequency shifts in condensed phases. However, the nitrile stretch mode frequency shift induced by solvent electrostatic potential appears to be more complicated than its electrochromic phenomenon. To examine the validity of the distributed interaction site model for solvatochromic frequency shifts of these vibrational chromophores, we thus calculated the vibrational Stark tuning rates of the CO, CN, and CF stretch modes and found that they are in good agreement with the experimental results found in literatures. This confirms that a collection of properly chosen distributed interaction sites can be an excellent electric antenna sensing local electrostatics that affects on vibrational frequencies of IR probe modes.

  13. Iminopropadienones RN=C=C=C=O and bisiminopropadienes RN=C=C=C=NR: Matrix infrared spectra and anharmonic frequency calculations

    NASA Astrophysics Data System (ADS)

    Bégué, Didier; Baraille, Isabelle; Andersen, Heidi Gade; Wentrup, Curt

    2013-10-01

    Methyliminopropadienone MeN=C=C=C=O 1a was generated by flash vacuum thermolysis from four different precursors and isolated in solid argon. The matrix-isolation infrared spectrum is dominated by unusually strong anharmonic effects resulting in complex fine structure of the absorptions due to the NCCCO moiety in the 2200 cm-1 region. Doubling and tripling of the corresponding absorption bands are observed for phenyliminopropadienone PhN=C=C=C=O 1b and bis(phenylimino)propadiene PhN=C=C=C=NPh 9, respectively. Anharmonic vibrational frequency calculations allow the identification of a number of overtones and combination bands as the cause of the splittings for each molecule. This method constitutes an important tool for the characterization of reactive intermediates and unusual molecules by matrix-isolation infrared spectroscopy.

  14. Standard infralow-frequency vibration system

    SciTech Connect

    Chistyakov, V.A.; Korytko, E.P.; Pevzner, B.N.; Prosikov, A.A.

    1985-06-01

    Precision test systems working in the range 0.01-20 Hz are required to determine the metrological characteristics of seismic equipment used in seismic observations and in research on the earth's physical properties. An experimental seismometric test system (STS) has been built to produce sinusoidal oscillations in the horizontal plane in the range 0.01-20 Hz with amplitudes of 0.1-20 mm for instruments of mass up to 25 kg. The apparatus contains a computer and the programmable GZ-110 oscillator, which provide good scope for automating the processing and specifying the working modes in checking equipment with high accuracy and throughput. The STS enables one to record the frequency response, the phase response, and the amplitude characteristics for means of measuring the parameters of infralow-frequency vibrations, as well as to determine the conversion factors for seismic detectors and the metrological parameters of instruments.

  15. Driving an Active Vibration Balancer to Minimize Vibrations at the Fundamental and Harmonic Frequencies

    NASA Technical Reports Server (NTRS)

    Holliday, Ezekiel S. (Inventor)

    2014-01-01

    Vibrations of a principal machine are reduced at the fundamental and harmonic frequencies by driving the drive motor of an active balancer with balancing signals at the fundamental and selected harmonics. Vibrations are sensed to provide a signal representing the mechanical vibrations. A balancing signal generator for the fundamental and for each selected harmonic processes the sensed vibration signal with adaptive filter algorithms of adaptive filters for each frequency to generate a balancing signal for each frequency. Reference inputs for each frequency are applied to the adaptive filter algorithms of each balancing signal generator at the frequency assigned to the generator. The harmonic balancing signals for all of the frequencies are summed and applied to drive the drive motor. The harmonic balancing signals drive the drive motor with a drive voltage component in opposition to the vibration at each frequency.

  16. Multireflection sum frequency generation vibrational spectroscopy.

    PubMed

    Zhang, Chi; Jasensky, Joshua; Chen, Zhan

    2015-08-18

    We developed a multireflection data collection method in order to improve the signal-to-noise ratio (SNR) and sensitivity of sum frequency generation (SFG) spectroscopy, which we refer to as multireflection SFG, or MRSFG for short. To achieve MRSFG, a collinear laser beam propagation geometry was adopted and trapezoidal Dove prisms were used as sample substrates. An in-depth discussion on the signal and SNR in MRSFG was performed. We showed experimentally, with "m" total internal reflections in a Dove prism, MRSFG signal is ∼m times that of conventional SFG; SNR of the SFG signal-to-background is improved by a factor of >m(1/2) and vibrational signals. Surface molecular structures of adsorbed ethanol molecules, polymer films, and a lipid monolayer were characterized using both MRSFG and conventional SFG. Molecular orientation information on lipid molecules with a 9% composition in a mixed monolayer was measured using MRSFG, which showed a good agreement with that derived from 100% lipid surface coverage using conventional SFG. MRSFG can both improve the spectral quality and detection limit of SFG spectroscopy and is expected to have important applications in surface science for studying structures of molecules with a low surface coverage or less ordered molecular moieties. PMID:26176565

  17. A long-stroke horizontal electromagnetic vibrator for ultralow-frequency vibration calibration

    NASA Astrophysics Data System (ADS)

    He, Wen; Zhang, Xufei; Wang, Chunyu; Shen, Runjie; Yu, Mei

    2014-08-01

    A novel long-stroke horizontal electromagnetic vibrator with maximum stroke of 1 m is proposed. To reply to the strong nonlinearity arising from long stroke, a closed double-magnetic circuit with optimal air gap, an electro-viscoelastic-suspension device and a track following device are adopted in the vibrator. Also, a compact moving component with a higher first-order natural frequency is designed to increase the operating frequency of the vibrator. Finally, experimental results show that the vibrator could output low distortion acceleration on its working platform from 0.002 Hz to 100 Hz, which verifies the validity of the proposed technologies and the applicability of the vibrator for an ultralow-frequency vibration calibration system.

  18. Sweeping tuneable vibration absorbers for low-mid frequencies vibration control

    NASA Astrophysics Data System (ADS)

    Gardonio, P.; Zilletti, M.

    2015-10-01

    This paper presents a simulation study concerning the low-mid frequencies control of flexural vibration in a lightly damped thin plate, which is equipped with three sweeping tuneable vibration absorbers and is excited by a rain on the roof broad frequency band stationary disturbance. The sweeping tuneable vibration absorbers are semi-active mass-spring-dashpot systems whose stiffness and damping properties can be varied uniformly within given ranges. They are operated in such a way as their characteristic natural frequencies are continuously varied to control the response of flexural modes that resonate within given frequency bands. More specifically, in this study the three sweeping tuneable vibration absorbers are operated asynchronously, each within one of three sequential frequency bands comprised between 20 and 120, 120 and 220, 220 and 320 Hz. The flexural vibration control effects produced by the three sweeping tuneable vibration absorbers are compared to those produced by three classical tuneable vibration absorbers, each set to control the response of a specific flexural mode of the plate resonating in one of these three frequency bands. The study shows that the proposed sweeping tuneable vibration absorbers outperform the classical tuneable vibration absorbers and produce about 6, 5, 4 dB reduction of the plate overall flexural response in the three frequency bands of operation. Also, the study indicates that the sweeping tuneable vibration absorbers are robust to variations in the plate flexural response. For instance they still produce about 5.1, 5.3, 4.6 dB reductions of the flexural response in the three frequency bands of operation when the plate is tensioned such that the flexural natural frequencies are shifted up from about 40 percent, for the first resonance, to 7 percent, for the tenth resonance.

  19. A vibration energy harvesting device with bidirectional resonance frequency tunability

    NASA Astrophysics Data System (ADS)

    Challa, Vinod R.; Prasad, M. G.; Shi, Yong; Fisher, Frank T.

    2008-02-01

    Vibration energy harvesting is an attractive technique for potential powering of wireless sensors and low power devices. While the technique can be employed to harvest energy from vibrations and vibrating structures, a general requirement independent of the energy transfer mechanism is that the vibration energy harvesting device operate in resonance at the excitation frequency. Most energy harvesting devices developed to date are single resonance frequency based, and while recent efforts have been made to broaden the frequency range of energy harvesting devices, what is lacking is a robust tunable energy harvesting technique. In this paper, the design and testing of a resonance frequency tunable energy harvesting device using a magnetic force technique is presented. This technique enabled resonance tuning to ± 20% of the untuned resonant frequency. In particular, this magnetic-based approach enables either an increase or decrease in the tuned resonant frequency. A piezoelectric cantilever beam with a natural frequency of 26 Hz is used as the energy harvesting cantilever, which is successfully tuned over a frequency range of 22-32 Hz to enable a continuous power output 240-280 µW over the entire frequency range tested. A theoretical model using variable damping is presented, whose results agree closely with the experimental results. The magnetic force applied for resonance frequency tuning and its effect on damping and load resistance have been experimentally determined.

  20. Low-frequency vibrational modes of riboflavin and related compounds

    NASA Astrophysics Data System (ADS)

    Takahashi, Masae; Ishikawa, Yoichi; Nishizawa, Jun-ichi; Ito, Hiromasa

    2005-01-01

    The low-frequency vibrations of riboflavin and related compounds (alloxazine, lumichrome, lumiflavin as the ring system and D-mannitol as the side-chain system) were observed by far-infrared (terahertz) spectroscopy. Vibrational mode assignments in this spectrally congested range were made using high precision quantum chemical calculations. These resonance frequencies located below 200 cm -1 indicate the existence of motions important for biological reactions. The observed absorption bands in the low-frequency region of riboflavin are assigned to the in-plane and out-of-plane-ring deformations of pyrimidine and isoalloxazine, and to the torsion modes of the ribityl chain.

  1. The frequencies of cantilever wings in beam and torsional vibrations

    NASA Technical Reports Server (NTRS)

    Burgess, C P

    1940-01-01

    Methods are described for calculating the period and frequency of vibration of cantilever wings and similar structures in which the weight and moment of inertia vary along the span. Both the beam and torsional frequencies may be calculated by these methods. The procedure is illustrated by examples. It is shown that a surprisingly close approximation to the beam frequency may be obtained by a very brief calculation in which the curvature of the wing in vibration is assumed to be constant. A somewhat longer computation permits taking account of the true curvature of the beam by a series of successive approximations which are shown to be strongly convergent. Analogous methods are applied to calculations of the torsional frequency. For the first approximation it is assumed that the angle of twist varies linearly alone the semispan. True variation of the twist is computed by successive approximations which are strongly convergent, as in the case of beam vibrations.

  2. Experimental and theoretical study of absorption spectrum of the (CH3)2CO···HF complex. Influence of anharmonic interactions on the frequency and intensity of the C=O and H-F stretching bands.

    PubMed

    Bulychev, V P; Svishcheva, E A; Tokhadze, K G

    2014-01-01

    IR absorption spectra of mixtures (CH3)2CO/HF and free (CH3)2CO molecules are recorded in the region of 4000-900 cm(-1) with a Bruker IFS-125 HR vacuum Fourier spectrometer at room temperature with a resolution up to 0.02 cm(-1). Spectral characteristics of the 2ν(C=O) overtone band of free acetone are reliably measured. The ν1(HF) and ν(C=O) absorption bands of the (CH3)2CO···HF complex are obtained by subtracting the absorption bands of free HF and acetone and absorption lines of atmospheric water from the experimental spectrum of mixtures. The experimental data are compared with theoretical results obtained from variational solutions of 1D-4D vibrational Schrödinger equations. The anharmonic potential energy and dipole moment surfaces used in the calculations were computed in the MP2/6-311++G(2d,2p) approximation with corrections for the basis set superposition error. Comparison of the data derived from solutions for different combinations of vibrational degrees of freedom shows that taking the inter-mode anharmonic interactions into account has different effects on the transition frequencies and intensities. Particular attention has been given to elucidation of the influence of anharmonic coupling of the H-F and C=O stretches with the low-frequency intermolecular modes on their frequencies and intensities and the strength of resonance between the fundamental H-F and the first overtone C=O transitions. PMID:24128921

  3. Vibrational spectroscopy and conformation of S-ethyl thioacetate: CH3COSCH2CH3 and comparison with sbnd C(O)Ssbnd and sbnd C(O)Osbnd compounds

    NASA Astrophysics Data System (ADS)

    Defonsi Lestard, María Eliana; Tuttolomondo, María Eugenia; Ben Altabef, Aida

    2015-01-01

    The molecular structure and conformational properties of S-ethyl thioacetate, CH3COSCH2CH3, were determined in the gas phase by electron diffraction and vibrational spectroscopy (IR and Raman). The experimental investigations were supplemented by ab initio (MP2) and DFT quantum chemical calculations at different levels of theory. Theoretical methods reveal two structures with Cs (anti, anti) and C1 (anti, gauche) symmetries. The infrared and Raman spectra for different phases were also recorded and the bands observed assigned to the vibrational normal modes. Liquid Raman and infrared spectra in liquid and gaseous state measurements revealed the presence of two conformations anti, anti (Cs symmetry) and anti, gauche (C1 symmetry). The study was completed using natural bond orbital (NBO) analysis. We have also analyzed the internal rotation barrier about the C(O)SCC dihedral angle using a variety of computational approaches and natural bond orbital (NBO) analyses to understand the nature of the potential function and to explain the preferred conformation of the molecule.

  4. Low-frequency vibration control of floating slab tracks using dynamic vibration absorbers

    NASA Astrophysics Data System (ADS)

    Zhu, Shengyang; Yang, Jizhong; Yan, Hua; Zhang, Longqing; Cai, Chengbiao

    2015-09-01

    This study aims to effectively and robustly suppress the low-frequency vibrations of floating slab tracks (FSTs) using dynamic vibration absorbers (DVAs). First, the optimal locations where the DVAs are attached are determined by modal analysis with a finite element model of the FST. Further, by identifying the equivalent mass of the concerned modes, the optimal stiffness and damping coefficient of each DVA are obtained to minimise the resonant vibration amplitudes based on fixed-point theory. Finally, a three-dimensional coupled dynamic model of a metro vehicle and the FST with the DVAs is developed based on the nonlinear Hertzian contact theory and the modified Kalker linear creep theory. The track irregularities are included and generated by means of a time-frequency transformation technique. The effect of the DVAs on the vibration absorption of the FST subjected to the vehicle dynamic loads is evaluated with the help of the insertion loss in one-third octave frequency bands. The sensitivities of the mass ratio of DVAs and the damping ratio of steel-springs under the floating slab are discussed as well, which provided engineers with the DVA's adjustable room for vibration mitigation. The numerical results show that the proposed DVAs could effectively suppress low-frequency vibrations of the FST when tuned correctly and attached properly. The insertion loss due to the attachment of DVAs increases as the mass ratio increases, whereas it decreases with the increase in the damping ratio of steel-springs.

  5. Powerful Low-Frequency Vibrators for Active Seismology

    SciTech Connect

    Alekseev, A.S.; Chichinin, I.S.; Korneev, V.A.

    2003-12-01

    In the past two decades, active seismology studies in Russia have made use of powerful (40- and 100-ton) low-frequency vibrators. These sources create a force amplitude of up to 100 tons and function in the 1.5 3, 3 6, and 5 10 Hz frequency bands. The mobile versions of the vibrator have a force amplitude of 40 tons and a 6 12 Hz frequency band. Recording distances for the 100-ton vibrator are as large as 350 km, enabling the refracted waves to penetrate down to 50 km depths. Vibrator operation sessions are highly repeatable, having distinct summer or winter spectral patterns. A long profile of seismic records allows estimation of fault zone depths using changes in recorded spectra. Other applications include deep seismic profiling, seismic hazard mapping, structural testing, stress-induced anisotropy studies, seismic station calibration, and large-structure integrity testing. The theoretical description of the low-frequency vibrator is given in the appendices, which contain numerical examples.

  6. Multiple vibration intensities and frequencies for bone mineral density improvement.

    PubMed

    Ezenwa, Bertram; Burns, Edith; Wilson, Charles

    2008-01-01

    Devices that deliver controlled quantum vibration intensities at multiple frequencies (QVIMF) provide optimal stress to the musculoskeletal system for improved bone mineral density and muscle strength. This paper presents development of a QVIMF system and pilot study to determine device performance. Development is centered on specially-designed actuators that comprise multiple nodes of controlled and smooth, but variable rates of contact on a telescoping platform through sets of damping subsystems. The combination of specially-designed actuators and damping subsystems, powered by a DC controlled motor, delivers quantum busts of vibration at multiple frequencies resulting in whole body vibration. An initial feasibility study involved a 79 year old adult male. After IRB approval from both the University of Wisconsin-Milwaukee (UWM) and the Zablocki VA Medical Center, Milwaukee, the subject's bone mineral density (BMD) was measured by dual x-ray absorptimetry (DXA) at baseline. The subject then visited the UWM laboratory for two fifteen-minute vibration sessions per visit, three times a week for a total of 60 visits. Post-vibration BMD was again measured by DXA. Comparison pre- and post-vibration test results showed increases in BMD at the femoral neck, trochanter, total hip, forearm and lower lumbar spine (L1-4). PMID:19163635

  7. Acoustic metamaterial structures based on multi-frequency vibration absorbers

    NASA Astrophysics Data System (ADS)

    Pai, P. Frank; Peng, Hao

    2014-03-01

    This paper presents a new metamaterial beam based on multi-frequency vibration absorbers for broadband vibration absorption. The proposed metamaterial beam consists of a uniform isotropic beam and small two-mass spring-mass- damper subsystems at many locations along the beam to act as multi-frequency vibration absorbers. For an infinite metamaterial beam, governing equations of a unit cell are derived using the extended Hamilton principle. The existence of two stopbands is demonstrated using a model based on averaging material properties over a cell length and a model based on finite element modeling and the Bloch-Floquet theory for periodic structures. For a finite metamaterial beam, because these two idealized models cannot be used for finite beams and/or elastic waves having short wavelengths, a finite-element method is used for detailed modeling and analysis. The concepts of negative effective mass and effective stiffness and how the spring-mass-damper subsystem creates two stopbands are explained in detail. Numerical simulations reveal that the actual working mechanism of the proposed metamaterial beam is based on the concept of conventional mechanical vibration absorbers. For an incoming wave with a frequency in one of the two stopbands, the absorbers are excited to vibrate in their optical modes to create shear forces to straighten the beam and stop the wave propagation. For an incoming wave with a frequency outside of but between the two stopbands, it can be efficiently damped out by the damper with the second mass of each absorber. Hence, the two stopbands are connected into a wide stopband. Numerical examples validate the concept and show that the structure's boundary conditions do not have significant influence on the absorption of high-frequency waves. However, for absorption of low-frequency waves, the structure's boundary conditions and resonance frequencies and the location and spatial distribution of absorbers need to be considered in design, and it

  8. An innovative MRE absorber with double natural frequencies for wide frequency bandwidth vibration absorption

    NASA Astrophysics Data System (ADS)

    Sun, Shuaishuai; Yang, Jian; Li, Weihua; Deng, Huaxia; Du, Haiping; Alici, Gursel; Yan, Tianhong

    2016-05-01

    A new design of adaptive tuned vibration absorber was proposed in this study for vibration reduction. The innovation of the new absorber is the adoption of the eccentric mass on the top of the multilayered magnetorheological elastomer (MRE) structure so that this proposed absorber has two vibration modes: one in the torsional direction and the other in translational direction. This property enables the absorber to expand its effective bandwidth and to be more capable of reducing the vibrations especially dealing with those vibrations with multi-frequencies. The innovative MRE absorber was designed and tested on a horizontal vibration table. The test results illustrate that the MRE absorber realized double natural frequencies, both of which are controllable. Inertia’s influence on the dynamic behavior of the absorber is also investigated in order to guide the design of the innovative MRE absorber. Additionally, the experimentally obtained natural frequencies coincide with the theoretical data, which sufficiently verifies the feasibility of this new design. The last part in terms of the vibration absorption ability also proves that both of these two natural frequencies play a great role in absorbing vibration energy.

  9. Collagen and component polypeptides: Low frequency and amide vibrations

    NASA Astrophysics Data System (ADS)

    Fontaine-Vive, F.; Merzel, F.; Johnson, M. R.; Kearley, G. J.

    2009-01-01

    Collagen is a fibrous protein, which exists widely in the human body. The biomechanical properties of collagen depend on its triple helix structure and the corresponding low frequency vibrations. We use first-principles, density functional theory methods and analytical force fields to investigate the molecular vibrations of a model collagen compound, the results being validated by comparison with published, inelastic neutron scattering data. The results from these atomistic simulations are used at higher frequency to study the Amide I and V vibrations and therefore the vibrational signature of secondary and tertiary structure formation. In addition to collagen, its component homopolymers, poly-glycine and poly-proline are also studied. The Amide V vibration of glycine is strongly modified in going from the single helix of poly-glycine II to the triple helix of collagen. The collagen models are hydrated and this work allows us to discuss the relative merits of density functional theory and force field methods when tackling complex, partially crystalline systems.

  10. Enhanced shock and vibration isolator for the attenuation of low-frequency vibration and high-frequency pyroshock loads

    NASA Astrophysics Data System (ADS)

    Han, Jae-Hung; Youn, Se-Hyun; Jeong, Ho-Kyung; Jang, Young-Soon

    2011-11-01

    Launch vehicles, satellites and aircrafts often experience harsh vibration and pyroshock loads during the flight including maneuvering and separation events, which may cause the malfunction of equipped electronic devices. Furthermore, this minor malfunction can generate catastrophic failure of the whole mission. To prevent malfunction of the electronic devices from severe shock and vibration loads, elastomeric isolators are commonly applied between the electronic device and the equipment bay structure in the aerospace fields. However, this rubber type elastomeric material is vulnerable to the low-frequency vibration load which involves large amount of displacement due to its low stiffness. Recently, the present authors proposed new type of isolator, called as pseudoelastic hybrid mesh isolator. This talk introduces the key features of this new pseudoelastic hybrid mesh isolator which shows better isolation performance throughout all frequency range than conventional isolators.

  11. Enhanced shock and vibration isolator for the attenuation of low-frequency vibration and high-frequency pyroshock loads

    NASA Astrophysics Data System (ADS)

    Han, Jae-Hung; Youn, Se-Hyun; Jeong, Ho-Kyung; Jang, Young-Soon

    2012-04-01

    Launch vehicles, satellites and aircrafts often experience harsh vibration and pyroshock loads during the flight including maneuvering and separation events, which may cause the malfunction of equipped electronic devices. Furthermore, this minor malfunction can generate catastrophic failure of the whole mission. To prevent malfunction of the electronic devices from severe shock and vibration loads, elastomeric isolators are commonly applied between the electronic device and the equipment bay structure in the aerospace fields. However, this rubber type elastomeric material is vulnerable to the low-frequency vibration load which involves large amount of displacement due to its low stiffness. Recently, the present authors proposed new type of isolator, called as pseudoelastic hybrid mesh isolator. This talk introduces the key features of this new pseudoelastic hybrid mesh isolator which shows better isolation performance throughout all frequency range than conventional isolators.

  12. A Solvatochromic Model Calibrates Nitriles’ Vibrational Frequencies to Electrostatic Fields

    PubMed Central

    Bagchi, Sayan; Fried, Stephen D.; Boxer, Steven G.

    2012-01-01

    Electrostatic interactions provide a primary connection between a protein’s three-dimensional structure and its function. Infrared (IR) probes are useful because vibrational frequencies of certain chemical groups, such as nitriles, are linearly sensitive to local electrostatic field, and can serve as a molecular electric field meter. IR spectroscopy has been used to study electrostatic changes or fluctuations in proteins, but measured peak frequencies have not been previously mapped to total electric fields, because of the absence of a field-frequency calibration and the complication of local chemical effects such as H-bonds. We report a solvatochromic model that provides a means to assess the H-bonding status of aromatic nitrile vibrational probes, and calibrates their vibrational frequencies to electrostatic field. The analysis involves correlations between the nitrile’s IR frequency and its 13C chemical shift, whose observation is facilitated by a robust method for introducing isotopes into aromatic nitriles. The method is tested on the model protein Ribonuclease S (RNase S) containing a labeled p-CN-Phe near the active site. Comparison of the measurements in RNase S against solvatochromic data gives an estimate of the average total electrostatic field at this location. The value determined agrees quantitatively with MD simulations, suggesting broader potential for the use of IR probes in the study of protein electrostatics. PMID:22694663

  13. Low Frequency Vibration Energy Harvesting using Diamagnetically Stabilized Magnet Levitation

    NASA Astrophysics Data System (ADS)

    Palagummi, Sri Vikram

    Over the last decade, vibration-based energy harvesting has provided a technology push on the feasibility of self-powered portable small electronic devices and wireless sensor nodes. Vibration energy harvesters in general transduce energy by damping out the environmentally induced relative emotion through either a cantilever beam or an equivalent suspension mechanism with one of the transduction mechanisms, like, piezoelectric, electrostatic, electromagnetic or magnetostrictive. Two major challenges face the present harvesters in literature, one, they suffer from the unavoidable mechanical damping due to internal friction present in the systems, second, they cannot operate efficiently in the low frequency range (< 10 Hz), when most of the ambient vibrational energy is in this low frequency broadband range. Passive and friction free diamagnetically stabilized magnet levitation mechanisms which can work efficiently as a vibration energy harvester in the low frequency range are discussed in this work. First, a mono-stable vertical diamagnetic levitation (VDL) based vibration energy harvester (VEH) is discussed. The harvester consists of a lifting magnet (LM), a floating magnet (FM) and two diamagnetic plates (DPs). The LM balances out the weight of the FM and stability is brought about by the repulsive effect of the DPs, made of pyrolytic graphite. Two thick cylindrical coils, placed in grooves which are engraved in the DPs, are used to convert the mechanical energy into electrical energy. Experimental frequency response of the system is validated by the theoretical analysis which showed that the VEH works in a low frequency range but sufficient levitation gap was not achieved and the frequency response characteristic of the system was effectively linear. To overcome these challenges, the influence of the geometry of the FM, the LM, and the DP were parametrically studied to assess their effects on the levitation gap, size of the system and the natural frequency. For

  14. Effects of broad frequency vibration on cultured osteoblasts

    NASA Technical Reports Server (NTRS)

    Tanaka, Shigeo M.; Li, Jiliang; Duncan, Randall L.; Yokota, Hiroki; Burr, David B.; Turner, Charles H.

    2003-01-01

    Bone is subjected in vivo to both high amplitude, low frequency strain, incurred by locomotion, and to low amplitude, broad frequency strain. The biological effects of low amplitude, broad frequency strain are poorly understood. To evaluate the effects of low amplitude strains ranging in frequency from 0 to 50 Hz on osteoblastic function, we seeded MC3T3-E1 cells into collagen gels and applied the following loading protocols for 3 min per day for either 3 or 7 days: (1) sinusoidal strain at 3 Hz, with 0-3000 microstrain peak-to-peak followed by 0.33 s resting time, (2) "broad frequency vibration" of low amplitude strain (standard deviation of 300 microstrain) including frequency components from 0 to 50 Hz, and (3) sinusoidal strain combined with broad frequency vibration (S + V). The cells were harvested on day 4 or 8. We found that the S + V stimulation significantly repressed cell proliferation by day 8. Osteocalcin mRNA was up-regulated 2.6-fold after 7 days of S + V stimulation, and MMP-9 mRNA was elevated 1.3-fold after 3 days of vibration alone. Sinusoidal stimulation alone did not affect the cell responses. No differences due to loading were observed in alkaline phosphatase activity and in mRNA levels of type I collagen, osteopontin, connexin 43, MMPs-1A, -3, -13. These results suggest that osteoblasts are more sensitive to low amplitude, broad frequency strain, and this kind of strain could sensitize osteoblasts to high amplitude, low frequency strain. This suggestion implies a potential contribution of stochastic resonance to the mechanical sensitivity of osteoblasts. Copyright 2002 Elsevier Science Ltd.

  15. Frequency Identification of Vibration Signals Using Video Camera Image Data

    PubMed Central

    Jeng, Yih-Nen; Wu, Chia-Hung

    2012-01-01

    This study showed that an image data acquisition system connecting a high-speed camera or webcam to a notebook or personal computer (PC) can precisely capture most dominant modes of vibration signal, but may involve the non-physical modes induced by the insufficient frame rates. Using a simple model, frequencies of these modes are properly predicted and excluded. Two experimental designs, which involve using an LED light source and a vibration exciter, are proposed to demonstrate the performance. First, the original gray-level resolution of a video camera from, for instance, 0 to 256 levels, was enhanced by summing gray-level data of all pixels in a small region around the point of interest. The image signal was further enhanced by attaching a white paper sheet marked with a black line on the surface of the vibration system in operation to increase the gray-level resolution. Experimental results showed that the Prosilica CV640C CMOS high-speed camera has the critical frequency of inducing the false mode at 60 Hz, whereas that of the webcam is 7.8 Hz. Several factors were proven to have the effect of partially suppressing the non-physical modes, but they cannot eliminate them completely. Two examples, the prominent vibration modes of which are less than the associated critical frequencies, are examined to demonstrate the performances of the proposed systems. In general, the experimental data show that the non-contact type image data acquisition systems are potential tools for collecting the low-frequency vibration signal of a system. PMID:23202026

  16. Frequency identification of vibration signals using video camera image data.

    PubMed

    Jeng, Yih-Nen; Wu, Chia-Hung

    2012-01-01

    This study showed that an image data acquisition system connecting a high-speed camera or webcam to a notebook or personal computer (PC) can precisely capture most dominant modes of vibration signal, but may involve the non-physical modes induced by the insufficient frame rates. Using a simple model, frequencies of these modes are properly predicted and excluded. Two experimental designs, which involve using an LED light source and a vibration exciter, are proposed to demonstrate the performance. First, the original gray-level resolution of a video camera from, for instance, 0 to 256 levels, was enhanced by summing gray-level data of all pixels in a small region around the point of interest. The image signal was further enhanced by attaching a white paper sheet marked with a black line on the surface of the vibration system in operation to increase the gray-level resolution. Experimental results showed that the Prosilica CV640C CMOS high-speed camera has the critical frequency of inducing the false mode at 60 Hz, whereas that of the webcam is 7.8 Hz. Several factors were proven to have the effect of partially suppressing the non-physical modes, but they cannot eliminate them completely. Two examples, the prominent vibration modes of which are less than the associated critical frequencies, are examined to demonstrate the performances of the proposed systems. In general, the experimental data show that the non-contact type image data acquisition systems are potential tools for collecting the low-frequency vibration signal of a system. PMID:23202026

  17. Peroxyacetyl radical: Electronic excitation energies, fundamental vibrational frequencies, and symmetry breaking in the first excited state

    SciTech Connect

    Copan, Andreas V.; Wiens, Avery E.; Nowara, Ewa M.; Schaefer, Henry F.; Agarwal, Jay

    2015-02-07

    Peroxyacetyl radical [CH{sub 3}C(O)O{sub 2}] is among the most abundant peroxy radicals in the atmosphere and is involved in OH-radical recycling along with peroxyacetyl nitrate formation. Herein, the ground (X{sup ~}) and first (A{sup ~}) excited state surfaces of cis and trans peroxyacetyl radical are characterized using high-level ab initio methods. Geometries, anharmonic vibrational frequencies, and adiabatic excitation energies extrapolated to the complete basis-set limit are reported from computations with coupled-cluster theory. Excitation of the trans conformer is found to induce a symmetry-breaking conformational change due to second-order Jahn-Teller interactions with higher-lying excited states. Additional benchmark computations are provided to aid future theoretical work on peroxy radicals.

  18. A Sub-Hertz, Low-Frequency Vibration Isolation Platform

    NASA Technical Reports Server (NTRS)

    Ortiz, Gerardo, G.; Farr, William H.; Sannibale, Virginio

    2011-01-01

    One of the major technical problems deep-space optical communication (DSOC) systems need to solve is the isolation of the optical terminal from vibrations produced by the spacecraft navigational control system and by the moving parts of onboard instruments. Even under these vibration perturbations, the DSOC transceivers (telescopes) need to be pointed l000 fs of times more accurately than an RF communication system (parabolic antennas). Mechanical resonators have been extensively used to provide vibration isolation for groundbased, airborne, and spaceborne payloads. The effectiveness of these isolation systems is determined mainly by the ability of designing a mechanical oscillator with the lowest possible resonant frequency. The Low-Frequency Vibration Isolation Platform (LFVIP), developed during this effort, aims to reduce the resonant frequency of the mechanical oscillators into the sub-Hertz region in order to maximize the passive isolation afforded by the 40 dB/decade roll-off response of the resonator. The LFVIP also provides tip/tilt functionality for acquisition and tracking of a beacon signal. An active control system is used for platform positioning and for dampening of the mechanical oscillator. The basic idea in the design of the isolation platform is to use a passive isolation strut with an approximately equal to 100-mHz resonance frequency. This will extend the isolation range to lower frequencies. The harmonic oscillator is a second-order lowpass filter for mechanical disturbances. The resonance quality depends on the dissipation mechanisms, which are mainly hysteretic because of the low resonant frequency and the absence of any viscous medium. The LFVIP system is configured using the well-established Stewart Platform, which consists of a top platform connected to a base with six extensible struts (see figure). The struts are attached to the base and to the platform via universal joints, which permit the extension and contraction of the struts. The

  19. Self-mixing vibration measurement using emission frequency sinusoidal modulation

    NASA Astrophysics Data System (ADS)

    Tao, Yufeng; Wang, Ming; Guo, Dongmei; Hao, Hui; Liu, Qiang

    2015-04-01

    In this paper, a simplified phase demodulation scheme is applied to recover vibration trail on a laser self-mixing interferometer for noncontact vibration measurement. The emission of semiconductor laser diode is modulated by injecting sinusoidal wave, and corresponding interference signal is a quasi-sinusoid wave. The vibration mathematical model for semiconductor laser diode is theoretically educed from basic self-mixing theory, the variation of target is converted into phase information. The simulation of demodulation algorithm and standard deviation are presented and the reconstructed waveform displays a desirable consistence with various moving trails. Following the principle, a minimum experimental system is established and position variation of the target mirror driven by voltage signal is translated into phase shifts, feedback is controlled at weak level during experiment, Fourier transform is implemented to analyze phase information. The comparisons of both amplitude and velocity with a Germany Doppler vibrometer are performed to testify vibration model, the error of proposed demodulation method is less than 30 nm and achieve a high accuracy in vibration frequency. The experimental results indicate the traditional phase technology can be applied on complex optical power signal after adaption providing a feasible application prospects in industrial and scientific situation with an inexpensive semiconductor laser.

  20. Time frequency analyses of vibrations of wind turbine towers

    NASA Astrophysics Data System (ADS)

    Chiang, Chih-Hung; Huang, Chi-Luen; Hsu, Keng-Tseng; Cheng, Chia-Chi; Yu, Chih-Peng; Lai, Jiunnren

    2015-04-01

    Transient vibrations of the tower supporting a horizontal-axis wind turbine were recorded using a microwave interferometer. Variations in dominant frequencies have been reported in the previous study. Signal analyses aiming to uncouple different frequency components were performed using reassigned spectrogram, a time-frequency representation based on time-corrected short time Fourier transform. Optimal resolutions in both time and frequency domains were first investigated using synthetic signals. The goal was to seek out the favorable combinations of window size and overlapping portions of adjacent windows for a data sequence at a given sampling rate. The dominant frequency found in reassigned spectrogram agrees with that obtained using Fourier spectrum of the same transient measurements of the wind turbine tower under investigation.

  1. Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies.

    PubMed

    Wang, Zenghui; Jia, Hao; Zheng, Xuqian; Yang, Rui; Wang, Zefang; Ye, G J; Chen, X H; Shan, Jie; Feng, Philip X-L

    2015-01-21

    We report on the experimental demonstration of a new type of nanoelectromechanical resonator based on black phosphorus crystals. Facilitated by a highly efficient dry transfer technique, crystalline black phosphorus flakes are harnessed to enable drumhead resonators vibrating at high and very high frequencies (HF and VHF bands, up to ∼100 MHz). We investigate the resonant vibrational responses from the black phosphorus crystals by devising both electrical and optical excitation schemes, in addition to measuring the undriven thermomechanical motions in these suspended nanostructures. Flakes with thicknesses from ∼200 nm down to ∼20 nm clearly exhibit elastic characteristics transitioning from the plate to the membrane regime. Both frequency- and time-domain measurements of the nanomechanical resonances show that very thin black phosphorus crystals hold interesting potential for moveable and vibratory devices and for semiconductor transducers where high-speed mechanical motions could be coupled to the attractive electronic and optoelectronic properties of black phosphorus. PMID:25385657

  2. High-frequency vibrations of sandwich plates and delamination detection

    NASA Astrophysics Data System (ADS)

    Jensen, Alf E.; Irgens, Fridtjov

    1998-06-01

    In multi-hull marine vehicles assembled by FRP sandwich composite materials problems with delamination and skin/core debonding are reported. High frequency vibrations in foam core sandwich materials are investigated to see if it was possible to apply them, together with bending vibrations, in an early damage warning system for delamination detection in marine vessels. This manuscript presents a theory for high frequency vibration in sandwich plates and beams. The core is modeled as a two parameter foundation with shearing interaction effects as well as normal stress effects in the core included. The skins are modeled as ordinary plates or beams on a foundation. Expressions for both anti-symmetric and symmetric modes are given. In addition to the theoretical development, experiments with a simply supported sandwich beam, using a TV-Holography technic, were performed and good accordance between theory and experiments were achieved. The results indicates that disappearance of symmetric modes may be used a parameter for delamination detection. The anti-symmetric modes may be interchangeable with higher bending modes by an early damage warning system. To avoid this, the theory presented may be applied to determine the anti-symmetric frequency values in forehand.

  3. Configurations of high-frequency ultrasonics complex vibration systems for packaging in microelectronics.

    PubMed

    Tsujino, Jiromaru; Harada, Yoshiki; Ihara, Shigeru; Kasahara, Kohei; Shimizu, Masanori; Ueoka, Tetsugi

    2004-04-01

    Ultrasonic high-frequency complex vibrations are effective for various ultrasonic high-power applications. Three types of ultrasonic complex vibration system with a welding tip vibrating elliptical to circular locus for packaging in microelectronics were studied. The complex vibration sources are using (1) a longitudinal-torsional vibration converter with diagonal slits that is driven only by a longitudinal vibration source, (2) a complex transverse vibration rod with several stepped parts that is driven by two longitudinal vibration source crossed at a right angle and (3) a longitudinal vibration circular disk and three longitudinal transducers that are installed at the circumference of the disk. PMID:15047273

  4. Calculation of mechanical vibration frequencies of stiffened superconducting cavities

    SciTech Connect

    Black, S.J.; Spalek, G.

    1992-09-01

    We calculated the frequencies of transverse and longitudinal mechanical-vibration modes of the HEPL- modified, CERN/DESY four-cell superconducting cavity, using finite-element techniques. We compared the results of these calculations, including the stiffening of the cavity with rods, with mode frequencies measured at HEPL. The correlation between data was significant. The same techniques were also used to design and optimize the stiffening scheme for the seven-cell 805-MHz superconducting cavity being developed at Los Alamos. In this report, we describe the final stiffening scheme and the results of our calculations.

  5. Calculation of mechanical vibration frequencies of stiffened superconducting cavities

    SciTech Connect

    Black, S.J.; Spalek, G.

    1992-01-01

    We calculated the frequencies of transverse and longitudinal mechanical-vibration modes of the HEPL- modified, CERN/DESY four-cell superconducting cavity, using finite-element techniques. We compared the results of these calculations, including the stiffening of the cavity with rods, with mode frequencies measured at HEPL. The correlation between data was significant. The same techniques were also used to design and optimize the stiffening scheme for the seven-cell 805-MHz superconducting cavity being developed at Los Alamos. In this report, we describe the final stiffening scheme and the results of our calculations.

  6. Simple posterior frequency correction for vibrational spectra from molecular dynamics

    NASA Astrophysics Data System (ADS)

    Tikhonov, Denis S.

    2016-05-01

    Vibrational spectra computed from molecular dynamics simulations with large integration time steps suffer from nonphysical frequency shifts of signals [M. Praprotnik and D. Janežič, J. Chem. Phys. 122, 174103 (2005)]. A simple posterior correction technique was developed for compensation of this behavior. It performs through replacement of abscissa in the calculated spectra using following formula: ν corrected = /√{ 2 ṡ (" separators=" 1 - cos ( 2 π ṡ Δ t ṡ ν initial ) ) } 2 π ṡ Δ t , where ν are initial and corrected frequencies and Δt is the MD simulation time step. Applicability of this method was tested on gaseous infrared spectra of hydrogen fluoride and formic acid.

  7. Low-frequency meandering piezoelectric vibration energy harvester.

    PubMed

    Berdy, David F; Srisungsitthisunti, Pornsak; Jung, Byunghoo; Xu, Xianfan; Rhoads, Jeffrey F; Peroulis, Dimitrios

    2012-05-01

    The design, fabrication, and characterization of a novel low-frequency meandering piezoelectric vibration energy harvester is presented. The energy harvester is designed for sensor node applications where the node targets a width-to-length aspect ratio close to 1:1 while simultaneously achieving a low resonant frequency. The measured power output and normalized power density are 118 μW and 5.02 μW/mm(3)/g(2), respectively, when excited by an acceleration magnitude of 0.2 g at 49.7 Hz. The energy harvester consists of a laser-machined meandering PZT bimorph. Two methods, strain-matched electrode (SME) and strain-matched polarization (SMP), are utilized to mitigate the voltage cancellation caused by having both positive and negative strains in the piezoelectric layer during operation at the meander's first resonant frequency. We have performed finite element analysis and experimentally demonstrated a prototype harvester with a footprint of 27 x 23 mm and a height of 6.5 mm including the tip mass. The device achieves a low resonant frequency while maintaining a form factor suitable for sensor node applications. The meandering design enables energy harvesters to harvest energy from vibration sources with frequencies less than 100 Hz within a compact footprint. PMID:22622969

  8. FT-IR Spectra Of The C=O And C-H Stretching Vibration Of Lauric Acid

    NASA Astrophysics Data System (ADS)

    Shifu, Weng; Jinguang, Wu; Guangxian, Xu

    1989-12-01

    FT-IR spectra of lauric acid in different media were examined. In very dilute solution of lauric acid in CC14, the two bands at 1711 and 1760 cm-1 the region 1650 to 1800 cm-1 were observed for the C=0 stretching modes of dimer and monomer of lauric acid, respectively. In n-butanol KBr pellet and fluorinated hydrocarbon media, the three bands at 1712, 1701 and 1687 cm-1 after deconvolution and curve analysis for the C=0 stretching mode can be observed. In the region of C-H stretching vibration, the wavenumber shifts of the CH2 symmetric and antisymmetric stretching bands of lauric acid in different media show that the packings of acyl chains of lauric acid in different media are not the same.

  9. Resonant frequency tuning of an industrial vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Toh, T. T.; Wright, S. W.; Mitcheson, P. D.

    2014-11-01

    This paper presents preliminary results of tuning the resonant frequency of two industrial vibration energy harvesters. The VEH-450 from Ferro Solutions and the PMG17-50 from Perpetuum were tested using discrete reactive electrical loads. The former could be tuned to +0.5 Hz and -2 Hz from its natural resonant frequency of 50.5 Hz at 0.1g. The latter, however, has a broadband output power spectrum that spans ±10 Hz and its output voltage saturates at 7 Vrms, thereby rendering it un-tunable using the method presented here. A comparison of output power between a tuned VEH-450 and an un-tuned PMG17-50, normalised by harvester weight, shows that the former outperforms the latter only at a tuned frequency of 49.8 Hz. A discussion of a resonant frequency tuning circuit that can be fitted to an existing harvester without making modifications to the harvester is presented.

  10. Modeling low frequency vibrational modes of large biomolecules

    NASA Astrophysics Data System (ADS)

    Sankey, Otto; Dykeman, Eric

    2008-03-01

    Mechanical oscillations of proteins in their native state are relevant to understanding the flexibility of the protein assembly, the binding of substrates, the mechanical action involved in enzymatic activity, and the vibrational response to light scattering. Often, only the low frequency modes are of interest and coarse grained methods or other approximations are used due to the large size of the dynamical matrix. We introduce a computational approach, which exploits the methodology from electronic structure Order N methods, to find the vibrational modes below some frequency threshold (analogous to a Fermi-level in electronic structure theory). The approach allows systems to be described in atomistic detail. We use a generalized Born force field to model the interactions. Examples of normal modes for icosahedral viruses (e.g. satellite tobacco necrosis virus), tubular viruses (e.g. M13), and enzymes (e.g. lysozyme, HIV-protease, alpha-lytic protease) will be discussed. This effort is motivated by recent experimental work to produce high amplitude vibrations of viruses from impulsive stimulated Raman scattering.

  11. Vibrotactile difference thresholds: effects of vibration frequency, vibration magnitude, contact area, and body location.

    PubMed

    Forta, Nazim Gizem; Griffin, Michael J; Morioka, Miyuki

    2012-01-01

    It has not been established whether the smallest perceptible change in the intensity of vibrotactile stimuli depends on the somatosensory channel mediating the sensation. This study investigated intensity difference thresholds for vibration using contact conditions (different frequencies, magnitudes, contact areas, body locations) selected so that perception would be mediated by more than one psychophysical channel. It was hypothesized that difference thresholds mediated by the non-Pacinian I (NPI) channel and the Pacinian (P) channel would differ. Using two different contactors (1-mm diameter contactor with 1-mm gap to a fixed surround; 10-mm diameter contactor with 2-mm gap to the surround) vibration was applied to the thenar eminence and the volar forearm at two frequencies (10 and 125 Hz). The up-down-transformed-response method with a three-down-one-up rule provided absolute thresholds and also difference thresholds at various levels above the absolute thresholds of 12 subjects (i.e., sensation levels, SLs) selected to activate preferentially either single channels or multiple channels. Median difference thresholds varied from 0.20 (thenar eminence with 125-Hz vibration at 10 dB SL) to 0.58 (thenar eminence with 10-Hz vibration at 20 dB SL). Median difference thresholds tended to be lower for the P channel than the NPI channel. The NPII channel may have reduced difference thresholds with the smaller contactor at 125 Hz. It is concluded that there are large and systematic variations in difference thresholds associated with the frequency, the magnitude, the area of contact, and the location of contact with vibrotactile stimuli that cannot be explained without increased understanding of the perception of supra-threshold vibrotactile stimuli. PMID:22416802

  12. Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies

    NASA Astrophysics Data System (ADS)

    Wang, Zenghui; Jia, Hao; Zheng, Xuqian; Yang, Rui; Wang, Zefang; Ye, G. J.; Chen, X. H.; Shan, Jie; Feng, Philip X.-L.

    2014-12-01

    We report on the experimental demonstration of a new type of nanoelectromechanical resonator based on black phosphorus crystals. Facilitated by a highly efficient dry transfer technique, crystalline black phosphorus flakes are harnessed to enable drumhead resonators vibrating at high and very high frequencies (HF and VHF bands, up to ~100 MHz). We investigate the resonant vibrational responses from the black phosphorus crystals by devising both electrical and optical excitation schemes, in addition to measuring the undriven thermomechanical motions in these suspended nanostructures. Flakes with thicknesses from ~200 nm down to ~20 nm clearly exhibit elastic characteristics transitioning from the plate to the membrane regime. Both frequency- and time-domain measurements of the nanomechanical resonances show that very thin black phosphorus crystals hold interesting potential for moveable and vibratory devices and for semiconductor transducers where high-speed mechanical motions could be coupled to the attractive electronic and optoelectronic properties of black phosphorus.We report on the experimental demonstration of a new type of nanoelectromechanical resonator based on black phosphorus crystals. Facilitated by a highly efficient dry transfer technique, crystalline black phosphorus flakes are harnessed to enable drumhead resonators vibrating at high and very high frequencies (HF and VHF bands, up to ~100 MHz). We investigate the resonant vibrational responses from the black phosphorus crystals by devising both electrical and optical excitation schemes, in addition to measuring the undriven thermomechanical motions in these suspended nanostructures. Flakes with thicknesses from ~200 nm down to ~20 nm clearly exhibit elastic characteristics transitioning from the plate to the membrane regime. Both frequency- and time-domain measurements of the nanomechanical resonances show that very thin black phosphorus crystals hold interesting potential for moveable and vibratory

  13. High force vibration testing with wide frequency range

    DOEpatents

    Romero, Edward F.; Jepsen, Richard A.; Gregory, Danny Lynn

    2013-04-02

    A shaker assembly for vibration testing includes first and second shakers, where the first shaker includes a piezo-electric material for generating vibration. A support structure permits a test object to be supported for vibration of the test object by both shakers. An input permits an external vibration controller to control vibration of the shakers.

  14. Simple posterior frequency correction for vibrational spectra from molecular dynamics.

    PubMed

    Tikhonov, Denis S

    2016-05-01

    Vibrational spectra computed from molecular dynamics simulations with large integration time steps suffer from nonphysical frequency shifts of signals [M. Praprotnik and D. Janežič, J. Chem. Phys. 122, 174103 (2005)]. A simple posterior correction technique was developed for compensation of this behavior. It performs through replacement of abscissa in the calculated spectra using following formula: νcorrected=2⋅1-cos(2π⋅Δt⋅νinitial)2π⋅Δt, where ν are initial and corrected frequencies and Δt is the MD simulation time step. Applicability of this method was tested on gaseous infrared spectra of hydrogen fluoride and formic acid. PMID:27155626

  15. Robust optical fiber bending sensor to measure frequency of vibration

    NASA Astrophysics Data System (ADS)

    Hernández-Serrano, Arturo Ignacio; Salceda-Delgado, Guillermo; Moreno-Hernández, David; Martínez-Ríos, Alejandro; Monzón-Hernández, David

    2013-09-01

    A simple technique for sensing the acoustic vibration of a cantilever beam, using a single-fiber Mach-Zehnder interferometer, is presented. The interferometer consists of two concatenated low-loss fused fiber tapers, with a waist diameter of 60 μm, separated by an un-tapered fiber section of 10 mm length. The interferometer transmitted signal is modulated when the device is bent under the presence of an external acoustic signal. The optical fiber device glued directly on a metallic cantilever beam is capable of measuring frequency of the resonant modes. The interrogation set-up is simple consisting of a single tunable diode laser and a photodetector. The measured frequencies of the resonating modes agree with the numerical results obtained by the Finite Element Method.

  16. Precise Measurement of Vibrational Transition Frequency of Optically Trapped Molecules

    NASA Astrophysics Data System (ADS)

    Kajita, Masatoshi; Gopakumar, Geetha; Abe, Minori; Hada, Masahiko

    2013-06-01

    We propose to measure the X^{2}Σ(v,N,F,M) =( 0,0,3/2,±3/2) →( v_{u},0,3/2,±3/2) ( v_{u}=1,2,3,4,,,,) transition frequencies of X^{6}Li molecules with the uncertainty lower than 10^{-16} (X: ^{174}Yb, ^{88}Sr, ^{40}Ca). Molecules are produced by photo-association of cold atoms and trapped in the optical lattices. Measurement with molecules in optical lattices is particularly advantageous for precision measurements because (1) the molecules and probe laser interact for a long time, (2) molecules are localized within the Lamb-Dicke region, (3) the measurement is possible with a large number of molecules, and (4) collision effects are suppressed (molecules are trapped at different positions in 2D lattices). Using the proper trap laser frequency, the Stark shift induced by the trap laser is eliminated as the Stark energy shift of the upper and lower states are equal (magic frequency). When the trap laser frequency is shifted from the magic frequency by 1 MHz, the Stark shift is less than 3×10^{-15}. The N=0→0 transition is one-photon forbidden, and it is stimulated by Raman transition using two lasers. When one of two Raman lasers is higher than the magic frequency and another is lower, the total Stark shift induced by two Raman lasers can be eliminated. Measurement of molecular vibrational transition frequencies is useful to test the variation in the proton-to-electron mass ratio. The ^{1}S_{0}-^{3}% P_{0} transition frequencies of ^{27}Al^{+} ion or ^{87}Sr atom are useful as the reference.

  17. A Study on the Vibration Frequency of Blasting Excavation in Highly Stressed Rock Masses

    NASA Astrophysics Data System (ADS)

    Yang, Jianhua; Lu, Wenbo; Jiang, Qinghui; Yao, Chi; Jiang, Shuihua; Tian, Lin

    2016-07-01

    During blasting excavation in deep-buried tunnels and mines characterized by high in situ stress, the rock vibration is attributed not only to blast loading, but also to dynamic unloading caused by transient release of the in situ stress on excavation faces in the process of rock fragmentation by blasting. Understanding the vibration frequency characteristics under these two excitation sources is of important signification to determine appropriate vibration threshold limits for structure damage in deep-buried opening excavations. With a theoretical model developed for a deep-buried circular tunnel excavation by the millisecond delay blasting sequence, frequency characteristics and their influence factors are investigated and discussed for the vibrations induced by the blast loading, the dynamic unloading and the combined effects, respectively. The results show that the rising time of blast loading, the duration of dynamic unloading and the dimension of excavation boundaries are the main factors that affect the vibration frequency of blasting excavation in highly stressed rock masses. It is found that, the blast loading with a much shorter rising time accentuates higher vibration frequency than the dynamic unloading with a long duration, and it causes the blast loading vibration to be more readily attenuated as the propagation distance increases. Thus, the unloading vibration may become the main vibration component at far distances where its low-frequency vibration may exceed the vibration limits. The vibration induced by the combined effects has two distinctly dominant frequency bands corresponding to the two vibration excitation sources. The frequency analyses of the vibration records from two underground projects excavated by blasting are presented to demonstrate this finding. The findings of this study also clearly reveal that, reducing the dimension of excavation boundaries is one of the most effective means to prevent the vibrational damage to structures as it

  18. A Miniature Surgical Drill Using Ultrasonic/Sonic Frequency Vibration

    NASA Astrophysics Data System (ADS)

    Li, Li; Mathieson, Andrew; Lucas, Margaret

    A study is presented of a miniature ultrasonic surgical drill designed for bone biopsy, based on an ultrasonic/sonic drill which converts high frequency to low frequency vibrations through a freely vibrating mass between an ultrasonic transducer-horn and a drill bit. For conventional surgical drilling using a rotary drill or an ultrasonic drill, considerable power is required to penetrate into bone and the efficiency is low. However, for ultrasonic/sonic drilling, sufficient acoustic energy is accumulated and then released through each impact to achieve precise drilling with a lower power requirement. The ultrasonic/sonic drill was originally invented for rock drilling in low gravity environments. In this study it is incorporated in a miniature ultrasonic surgical drill and the effective impulse delivered to the bone is used to evaluate the drilling performance. To develop a miniature surgical device based on maximising the effective impulse, optimisation of the ultrasonic horn and free-mass is first demonstrated. The shape and dimensions of the ultrasonic horn and free-mass are determined through FEA, which focuses on maximising the post-collision velocity of the free-mass. Then, the entire dynamic stack constituting the surgical drill device is modelled as a mass-spring-damper system to analyse the dynamic behaviour. The numerical model is validated through experiments, using a prototype drill, which record the velocity of the free-mass and the drilling force. The results of the numerical models and experiments indicate this miniature ultrasonic surgical drill can deliver sufficient impulse to penetrate bone and form the basis of an ultrasonically activated bone biopsy device.

  19. Characteristics of coated copper wire specimens using high frequency ultrasonic complex vibration welding equipments.

    PubMed

    Tsujino, J; Ihara, S; Harada, Y; Kasahara, K; Sakamaki, N

    2004-04-01

    Welding characteristic of thin coated copper wires were studied using 40, 60, 100 kHz ultrasonic complex vibration welding equipments with elliptical to circular vibration locus. The complex vibration systems consisted of a longitudinal-torsional vibration converter and a driving longitudinal vibration system. Polyurethane coated copper wires of 0.036 mm outer diameter and copper plates of 0.3 mm thickness and the other dimension wires were used as welding specimens. The copper wire part is completely welded on the copper substrate and the insulated coating material is driven from welded area to outsides of the wire specimens by high frequency complex vibration. PMID:15047272

  20. Interpretation of the water surface vibrational sum-frequency spectrum

    NASA Astrophysics Data System (ADS)

    Pieniazek, P. A.; Tainter, C. J.; Skinner, J. L.

    2011-07-01

    We propose a novel interpretation of the water liquid-vapor interface vibrational sum-frequency (VSF) spectrum in terms of hydrogen-bonding classes. Unlike an absorption spectrum, the VSF signal can be considered as a sum of signed contributions from different hydrogen-bonded species in the sample. We show that the recently observed positive feature at low frequency, in the imaginary part of the signal, is a result of cancellation between the positive contributions from four-hydrogen-bonded molecules and negative contributions from those molecules with one or two broken hydrogen bonds. Spectral densities for each of these subgroups span the entire relevant spectral range. Three-body interactions within our newly developed E3B water simulation model prove to be critical in describing the proper balance between different hydrogen-bonded species, as (two-body) SPC/E, TIP4P, and TIP4P/2005 models fail to reproduce the positive feature. The results clarify the molecular origin of the VSF signal, and highlight the importance of many-body interactions for water in heterogeneous situations.

  1. Fundamental Study on the Effect of High Frequency Vibration on Ride Comfort

    NASA Astrophysics Data System (ADS)

    Nakagawa, Chizuru; Shimamune, Ryohei; Watanabe, Ken; Suzuki, Erimitsu

    To develop a more suitable method of evaluating ride comfort of high speed trains, a fundamental study was conducted on sensitivity of passengers to various frequencies of vibration with respect to ride comfort. Experiments were performed on 55 subjects using an electrodynamic vibration system that can generate vibrations in the frequency range of 1 to 80 Hz in the vertical direction. Results of experiments indicated that the subjects tend to experience greater discomfort when exposed to high frequency vibrations than that presumed by the conventional Japanese ride comfort assessment method, the "Ride Comfort Level."

  2. Micro-scale piezoelectric vibration energy harvesting: From fixed-frequency to adaptable-frequency devices

    NASA Astrophysics Data System (ADS)

    Miller, Lindsay Margaret

    hundred milliwatts and are falling steadily as improvements are made, it is feasible to use energy harvesting to power WSNs. This research begins by presenting the results of a thorough survey of ambient vibrations in the machine room of a large campus building, which found that ambient vibrations are low frequency, low amplitude, time varying, and multi-frequency. The modeling and design of fixed-frequency micro scale energy harvesters are then presented. The model is able to take into account rotational inertia of the harvester's proof mass and it accepts arbitrary measured acceleration input, calculating the energy harvester's voltage as an output. The fabrication of the micro electromechanical system (MEMS) energy harvesters is discussed and results of the devices harvesting energy from ambient vibrations are presented. The harvesters had resonance frequencies ranging from 31 - 232 Hz, which was the lowest reported in literature for a MEMS device, and produced 24 pW/g2 - 10 nW/g2 of harvested power from ambient vibrations. A novel method for frequency modification of the released harvester devices using a dispenser printed mass is then presented, demonstrating a frequency shift of 20 Hz. Optimization of the MEMS energy harvester connected to a resistive load is then presented, finding that the harvested power output can be increased to several microwatts with the optimized design as long as the driving frequency matches the harvester's resonance frequency. A framework is then presented to allow a similar optimization to be conducted with the harvester connected to a synchronously switched pre-bias circuit. With the realization that the optimized energy harvester only produces usable amounts of power if the resonance frequency and driving frequency match, which is an unrealistic situation in the case of ambient vibrations which change over time and are not always known a priori, an adaptable-frequency energy harvester was designed. The adaptable-frequency

  3. Evaluation of influences of frequency and amplitude on image degradation caused by satellite vibrations

    NASA Astrophysics Data System (ADS)

    Nan, Yi-Bing; Tang, Yi; Zhang, Li-Jun; Zheng, Cheng; Wang, Jing

    2015-05-01

    Satellite vibrations during exposure will lead to pixel aliasing of remote sensors, resulting in the deterioration of image quality. In this paper, we expose the problem and discuss the characteristics of satellite vibrations, and then present a pixel mixing model. The idea of mean mixing ratio (MMR) is proposed. MMR computations for different frequencies are implemented. In the mixing model, a coefficient matrix is introduced to estimate each mixed pixel. Thus, the simulation of degraded image can be performed when the vibration attitudes are known. The computation of MMR takes into consideration the influences of various frequencies and amplitudes. Therefore, the roles of these parameters played in the degradation progress are identified. Computations show that under the same vibration amplitude, the influence of vibrations fluctuates with the variation of frequency. The fluctuation becomes smaller as the frequency rises. Two kinds of vibration imaging experiments are performed: different amplitudes with the same frequency and different frequencies with the same amplitude. Results are found to be in very good agreement with the theoretical results. MMR has a better description of image quality than modulation transfer function (MTF). The influence of vibrations is determined mainly by the amplitude rather than the frequency. The influence of vibrations on image quality becomes gradually stable with the increase of frequency. Project supported by the National Basic Research Program of China (Grant No. 2013CB329202) and the Basic Industrial Technology Project of China (Grant No. J312012B002).

  4. Precise Measurement of ^{40}CaH^{+} Vibrational Transition Frequency

    NASA Astrophysics Data System (ADS)

    Kajita, Masatoshi; Abe, Minori

    2013-06-01

    Small number of molecular ions in a linear trap can be sympathetically cooled with atomic ions and form a string crystal at the position, where the electric field is zero. Molecular ions in a strinc crystal are advantageous to measure the transition frequencies without Stark shift induced by the trap electric field, but it is required to localize small number of molecular ions in a single quantum state. ^{40}CaH^{+} molecular ion is advantageous to solve this problem, because (1) molecular ion with rotational constant of 141 GHz is localized in the vibrational-rotational ground state when the surrounding temperature is lower than 10 K, and (2) there is no hyperfine splitting in the J=0 state. In this presentation, we porpose to measure the ^{40}CaH^{+} X^{1}% Σ( v,N,F,M) =(0,0,1/2,±1/2) → (v_{u},0,1/2,±1/2) (v_{u}=1,2,3,,,) transition with the uncertainty lower than 10^{-16}. With these transitions, Zeeman shift is less than 10^{-16}/G (given by the slight dependence of schielding effect by electron cloud on the vibrational state) and electric quadrupole shift is zero because of F=1/2. The J=0→0 transition is one-photon forbidden, and it can be observed also by Raman transition using two lasers. Stark shift induced by Raman lasers actually dominates the measurement uncertainty. When v=0→1 transition is observed using Raman lasers in the 6000-15000 /cm, Stark shift with saturation power is of the order of 1.5×10^{-14} and it is higher for overtone transitions. With the following Raman laser frequencies, total Stark shift induced by two Raman lasers is zero. v=0→1 24527 /cm and 23079 /cm v=0→2 24600 /cm and 21745 /cm v=0→3 26237 /cm and 22017 /cm v=0→4 25354 /cm and 19814 /cm The ^{40}CaH^{+} X^{1}Σ( v,N,F,M) =(0,0,1/2,±1/2) →(v_{u},0,1/2,±1/2) (v_{u}=1,2,3,,,) transition can be measured with the uncertainty lower than 10^{-16}, and it is useful to test the variation in the proton-to-electron mass ratio.

  5. The effects of transverse shearing and anisotropy on vibration frequencies of laminated cylinders

    NASA Technical Reports Server (NTRS)

    Jegley, D. C.

    1990-01-01

    The natural vibration frequencies of orthotropic and anisotropic, simply supported right circular cylinders are predicted using a theory which takes into account higher-order transverse shear deformation effects. A comparison between results based on first-order transverse shear deformation theory and the higher-order theory indicates that an additional allowance for transverse shear deformation has a negligible effect on the predicted natural vibration frequencies associated with long wavelengths, but significantly reduces the natural vibration frequencies associated with short wavelengths. Results of a parametric study of ply orientation for two classes of laminates indicates that while stacking sequence affects natural vibration frequencies, cylinder geometry and mode shape are more important in accurately predicting transverse shear deformation effects. Transverse shearing effects are less important in predicting natural vibration frequencies associated with long wavelength than in predicting axial compressive buckling loads.

  6. Examining the impact of harmonic correlation on vibrational frequencies calculated in localized coordinates

    SciTech Connect

    Hanson-Heine, Magnus W. D.

    2015-10-28

    Carefully choosing a set of optimized coordinates for performing vibrational frequency calculations can significantly reduce the anharmonic correlation energy from the self-consistent field treatment of molecular vibrations. However, moving away from normal coordinates also introduces an additional source of correlation energy arising from mode-coupling at the harmonic level. The impact of this new component of the vibrational energy is examined for a range of molecules, and a method is proposed for correcting the resulting self-consistent field frequencies by adding the full coupling energy from connected pairs of harmonic and pseudoharmonic modes, termed vibrational self-consistent field (harmonic correlation). This approach is found to lift the vibrational degeneracies arising from coordinate optimization and provides better agreement with experimental and benchmark frequencies than uncorrected vibrational self-consistent field theory without relying on traditional correlated methods.

  7. Sum frequency generation vibrational spectroscopic studies on buried heterogeneous biointerfaces.

    PubMed

    Zhang, Chi; Jasensky, Joshua; Leng, Chuan; Del Grosso, Chelsey; Smith, Gary D; Wilker, Jonathan J; Chen, Zhan

    2014-05-01

    A sum frequency generation (SFG) vibrational micro-spectroscopy system was developed to examine buried heterogeneous biointerfaces. A compact optical microscope was constructed with total-internal reflection (TIR) SFG geometry to monitor the tightly focused SFG laser spots on interfaces, providing the capability of selectively probing different regions on heterogeneous biointerfaces. The TIR configuration ensures and enhances the SFG signal generated only from the sample/substrate interfacial area. As an example for possible applications in biointerfaces studies, the system was used to probe and compare buried interfacial structures of different biological samples attached to underwater surfaces. We studied the interface of a single mouse oocyte on a silica prism to demonstrate the feasibility of tracing and studying a single live cell and substrate interface using SFG. We also examined the interface between a marine mussel adhesive plaque and a CaF2 substrate, showing the removal of interface-bonded water molecules. This work also paves the way for future integration of other microscopic techniques such as TIR-fluorescence microscopy or nonlinear optical imaging with SFG spectroscopy for multimodal surface or interface studies. PMID:24784085

  8. Investigating buried polymer interfaces using sum frequency generation vibrational spectroscopy

    PubMed Central

    Chen, Zhan

    2010-01-01

    This paper reviews recent progress in the studies of buried polymer interfaces using sum frequency generation (SFG) vibrational spectroscopy. Both buried solid/liquid and solid/solid interfaces involving polymeric materials are discussed. SFG studies of polymer/water interfaces show that different polymers exhibit varied surface restructuring behavior in water, indicating the importance of probing polymer/water interfaces in situ. SFG has also been applied to the investigation of interfaces between polymers and other liquids. It has been found that molecular interactions at such polymer/liquid interfaces dictate interfacial polymer structures. The molecular structures of silane molecules, which are widely used as adhesion promoters, have been investigated using SFG at buried polymer/silane and polymer/polymer interfaces, providing molecular-level understanding of polymer adhesion promotion. The molecular structures of polymer/solid interfaces have been examined using SFG with several different experimental geometries. These results have provided molecular-level information about polymer friction, adhesion, interfacial chemical reactions, interfacial electronic properties, and the structure of layer-by-layer deposited polymers. Such research has demonstrated that SFG is a powerful tool to probe buried interfaces involving polymeric materials, which are difficult to study by conventional surface sensitive analytical techniques. PMID:21113334

  9. Suppression of Leidenfrost effect via low frequency vibrations

    NASA Astrophysics Data System (ADS)

    Ng, Boon Thiam; Hung, Yew Mun; Tan, Ming Kwang

    2015-11-01

    Leidenfrost effect occurs when vapor layer forms in between the coolant and the hot surface above Leidenfrost point, which dramatically reduces the cooling efficiency due to low thermal conductivity of the vapor layer. To prevent surface overheating, there have been number of reported methods to suppress the Leidenfrost effect that were mainly based on functionalization of the substrate surface and application of electric field across the droplet and substrate. In this work, we induce low frequency vibrations (f ~ 100 Hz) to the heated substrate to suppress the Leidenfrost effect. Three distinct impact dynamics are observed based on different magnitudes of surface acceleration and surface temperature. In gentle film boiling regime, formation of thin spreading lamella around the periphery of the impinged droplet is observed; in film boiling regime, due to thicker vapor cushion, rebound of the impinged droplet is observed; in contact boiling regime, due to the direct contact between the impinged droplet and heated substrate, ejection of the tiny droplet is observed. Also, estimated cooling enhancement ratio for contact boiling regime shows an improvement from 95% to 105%.

  10. An Analysis of the High Frequency Vibrations in Early Thematic Mapper Scenes

    NASA Technical Reports Server (NTRS)

    Kogut, J.; Larduinat, E.

    1984-01-01

    The potential effects of high frequency vibrations on the final Thematic Mapper (TM) image are evaluated for 26 scenes. The angular displacements of the TM detectors from their nominal pointing directions as measured by the TM Angular Displacement Sensor (ADS) and the spacecraft Dry Rotor Inertial Reference Unit (DRIRU) give data on the along scan and cross scan high frequency vibrations present in each scan of a scene. These measurements are to find the maximum overlap and underlap between successive scans, and to analyze the spectrum of the high frequency vibrations acting on the detectors. The Fourier spectrum of the along scan and cross scan vibrations for each scene also evaluated. The spectra of the scenes examined indicate that the high frequency vibrations arise primarily from the motion of the TM and MSS mirrors, and that their amplitudes are well within expected ranges.

  11. Active low-frequency vertical vibration isolation system for precision measurements

    NASA Astrophysics Data System (ADS)

    Wu, Kang; Li, Gang; Hu, Hua; Wang, Lijun

    2016-06-01

    Low-frequency vertical vibration isolation systems play important roles in precision measurements to reduce seismic and environmental vibration noise. Several types of active vibration isolation systems have been developed. However, few researches focus on how to optimize the test mass install position in order to improve the vibration transmissibility. An active low-frequency vertical vibration isolation system based on an earlier instrument, the Super Spring, is designed and implemented. The system, which is simple and compact, consists of two stages: a parallelogram-shaped linkage to ensure vertical motion, and a simple spring-mass system. The theoretical analysis of the vibration isolation system is presented, including terms erroneously ignored before. By carefully choosing the mechanical parameters according to the above analysis and using feedback control, the resonance frequency of the system is reduced from 2.3 to 0.03 Hz, a reduction by a factor of more than 75. The vibration isolation system is installed as an inertial reference in an absolute gravimeter, where it improved the scatter of the absolute gravity values by a factor of 5. The experimental results verifies the improved performance of the isolation system, making it particularly suitable for precision experiments. The improved vertical vibration isolation system can be used as a prototype for designing high-performance active vertical isolation systems. An improved theoretical model of this active vibration isolation system with beam-pivot configuration is proposed, providing fundamental guidelines for vibration isolator design and assembling.

  12. Temperature-dependent vibrational dephasing: Comparison of liquid and glassy solvents using frequency-selected vibrational echoes

    NASA Astrophysics Data System (ADS)

    Xu, Qing-Hua; Fayer, M. D.

    2002-08-01

    Frequency-selected vibrational echo experiments were used to investigate the temperature dependences of vibrational dephasing associated with the 0-1 transition of the CO stretching mode of RuTPPCOPy (TPP=5,10,15,20-tetraphenylporphyrin, Py=pyridine) in two solvents: polymethylmethacrylate (PMMA) and 2-methyltetrahydrofuran (2-MTHF). In PMMA, a glass, the echo decay is exponential at all the temperatures studied, and the dephasing rate increases linearly with increasing temperature. In 2-MTHF, there is a change in the functional form of the temperature dependence when the solvent goes through the glass transition temperature (Tg). Below Tg, the dephasing rate increases linearly with temperature, while above Tg, it rises very steeply in a nonlinear manner. In the liquid at higher temperatures, the vibrational echo decays are nonexponential. A model frequency-frequency correlation function (FFCF) is proposed in which the FFCF differs for a glass and a liquid because of the intrinsic differences in the nature of the dynamics. At least two motions, inertial and diffusive, contribute to the vibrational dephasing in the liquids. The different temperature dependences of inertial and diffusive motions are discussed. Comparison of the model calculations of the vibrational echo temperature dependence and the data show reasonable, but not quantitative agreement.

  13. Multi-frequency periodic vibration suppressing in active magnetic bearing-rotor systems via response matching in frequency domain

    NASA Astrophysics Data System (ADS)

    Jiang, Kejian; Zhu, Changsheng

    2011-05-01

    A method for multi-frequency periodic vibration suppressing in active magnetic bearing (AMB)-rotor systems is proposed, which is based on an adaptive finite-duration impulse response (FIR) filter in time domain. Firstly, the theoretic feasibility of the method is proved. However, two problems would be unavoidable, if the conventional adaptive FIR filter is adopted in practical application. One is that the convergence rate of the different frequency components may be highly disparate in multi-frequency vibration control. The other is that the computational complexity is significantly increased because the long memory FIR filter is required to match the transient response time of the AMB-rotor system. To overcome the problems above, the Fast Block Least Mean Square (FBLMS) algorithm is adopted to efficiently implement the computation in frequency domain at a computational cost far less than that of the conventional FIR filter. By the FBLMS algorithm, regardless of the number of the considered frequency components in vibration disturbance, the computational complexity would be invariable. Moreover, filter's weights in the FBLMS algorithm have the intuitional relation with signal's frequency. As a result, the convergence rate of each frequency component can be adjusted by assigning the individual step size parameter for each weight. Experiments with the reciprocating simulating disturbance test and the rotating harmonic vibration test were carried out on an AMB-rigid rotor test rig with a vertical shaft. The experiment results indicate that the proposed method with the FBLMS algorithm can achieve the good effectiveness for suppressing the multi-frequency vibration. The convergence property of each frequency component can be adjusted conveniently. Each harmonic component of the vibration can be addressed, respectively, by reconfiguring the frequency components of the reference input signal.

  14. Modeling of metallic surface topography modification by high-frequency vibration

    NASA Astrophysics Data System (ADS)

    Yao, Zhehe; Mei, Deqing; Chen, Zichen

    2016-02-01

    High-frequency vibration is capable of modifying metallic surface topography significantly, while the underlying mechanisms are still unclear. In this study, the acoustic softening effect is considered to explain and model the effects of high-frequency normal vibration on surface topography. The surface asperities can be softened by the high-frequency vibration due to acoustic softening, leading to the enhancement of surface topography modification. A theoretical model for metallic surface topography modification by high-frequency vibration is proposed based on the acoustic plasticity. Numerical predictions of surface roughness evolution were conducted under various working conditions based on the model developed. It was found that the reduction of surface roughness (RSR) after vibration-assisted forming was affected by static stress, vibration amplitude, material properties and initial specimen surface roughness. The predictions using the developed model were compared with experimental data. Results showed that the predicted RSR agreed well with the experimental results, indicating that the analytical model is able to accurately capture surface topography evolution during vibration-assisted metal forming. This study provides a basis for understanding the underlying mechanisms of surface topography modification in vibration-assisted manufacturing.

  15. TOPICAL REVIEW: Strategies for increasing the operating frequency range of vibration energy harvesters: a review

    NASA Astrophysics Data System (ADS)

    Zhu, Dibin; Tudor, Michael J.; Beeby, Stephen P.

    2010-02-01

    This review presents possible strategies to increase the operational frequency range of vibration-based micro-generators. Most vibration-based micro-generators are spring-mass-damper systems which generate maximum power when the resonant frequency of the generator matches the frequency of the ambient vibration. Any difference between these two frequencies can result in a significant decrease in generated power. This is a fundamental limitation of resonant vibration generators which restricts their capability in real applications. Possible solutions include the periodic tuning of the resonant frequency of the generator so that it matches the frequency of the ambient vibration at all times or widening the bandwidth of the generator. Periodic tuning can be achieved using mechanical or electrical methods. Bandwidth widening can be achieved using a generator array, a mechanical stopper, nonlinear (e.g. magnetic) springs or bi-stable structures. Tuning methods can be classified into intermittent tuning (power is consumed periodically to tune the device) and continuous tuning (the tuning mechanism is continuously powered). This review presents a comprehensive review of the principles and operating strategies for increasing the operating frequency range of vibration-based micro-generators presented in the literature to date. The advantages and disadvantages of each strategy are evaluated and conclusions are drawn regarding the relevant merits of each approach.

  16. Storage capacity and vibration frequencies of guest molecules in CH4 and CO2 hydrates by first-principles calculations.

    PubMed

    Cao, Xiaoxiao; Su, Yan; Liu, Yuan; Zhao, Jijun; Liu, Changling

    2014-01-01

    Using first-principle calculations at B97-D/6-311++G(2d,2p) level, we systematically explore the gas capacity of five standard water cavities (5(12), 4(3)5(6)6(3), 5(12)6(2), 5(12)6(4), and 5(12)6(8)) in clathrate hydrate and study the inclusion complexes to infer general trends in vibrational frequencies of guest molecules as a function of cage size and number of guest molecules. In addition, the Raman spectra of hydrates from CO2/CH4 gases are simulated. From our calculations, the maximum cage occupancy of the five considered cages (5(12), 4(3)5(6)6(3), 5(12)6(2), 5(12)6(4), and 5(12)6(8)) is one, one, two, three, and seven for both CH4 and CO2 guest molecules, respectively. Meanwhile, the optimum cage occupancy are one, one, one, two, and four for CO2 molecules and one, one, two, three, and five for CH4 molecules, respectively. Both the C-H stretching frequency of CH4 and the C-O stretching frequency of CO2 gradually decrease as size of the water cages increases. Meanwhile, the C-H stretching frequency gradually increases as the amount of CH4 molecules in the water cavity (e.g., 5(12)6(8)) increases. PMID:24320601

  17. Application of range imaging lidar for measurement of mechanical vibration and frequency mode distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Hua A.; Zhu, Yonghao; He, Yun

    1993-05-01

    This article reports the application of laser range imaging radar in the measurement of mechanical vibration frequency and the mode distribution, and the periodic motion of the mechanical parts such as a piston rod. The principle of the laser range imaging radar is based on the phase shift of the reflected amplitude modulated laser beam. The mechanical vibration frequency up to 20 KHZ and the minimal retrieved amplitude (or the motion displacement) of 0.5 mm have been achieved with the laser modulating frequency of 40 MHZ. With appropriate modulating frequency, this laser range system can measure the mechanical vibration amplitude, or the moving displacement, from 10-1 mm up to 102 mm, or even higher to the order of meters, which will be useful to measure the vibration and the periodic motion of machines and their parts for field test.

  18. MEASUREMENT OF SMALL MECHANICAL VIBRATIONS OF BRAIN TISSUE EXPOSED TO EXTREMELY-LOW-FREQUENCY ELECTRIC FIELDS

    EPA Science Inventory

    Electromagnetic fields can interact with biological tissue both electrically and mechanically. This study investigated the mechanical interaction between brain tissue and an extremely-low-frequency (ELF) electric field by measuring the resultant vibrational amplitude. The exposur...

  19. The low frequency 2D vibration sensor based on flat coil element

    SciTech Connect

    Djamal, Mitra; Sanjaya, Edi; Islahudin; Ramli

    2012-06-20

    Vibration like an earthquake is a phenomenon of physics. The characteristics of these vibrations can be used as an early warning system so as to reduce the loss or damage caused by earthquakes. In this paper, we introduced a new type of low frequency 2D vibration sensor based on flat coil element that we have developed. Its working principle is based on position change of a seismic mass that put in front of a flat coil element. The flat coil is a part of a LC oscillator; therefore, the change of seismic mass position will change its resonance frequency. The results of measurements of low frequency vibration sensor in the direction of the x axis and y axis gives the frequency range between 0.2 to 1.0 Hz.

  20. Dual resonant structure for energy harvesting from random vibration sources at low frequency

    NASA Astrophysics Data System (ADS)

    Li, Shanshan; Peng, Zhuoteng; Zhang, Ai; Wang, Fei

    2016-01-01

    We introduce a design with dual resonant structure which can harvest energy from random vibration sources at low frequency range. The dual resonant structure consists of two spring-mass subsystems with different frequency responses, which exhibit strong coupling and broad bandwidth when the two masses collide with each other. Experiments with piezoelectric elements show that the energy harvesting device with dual resonant structure can generate higher power output than the sum of the two separate devices from random vibration sources.

  1. Effects of fundamental frequency normalization on vibration-based vehicle classification

    NASA Astrophysics Data System (ADS)

    Smith, Ashley; Goley, Steve; Vongsy, Karmon; Shaw, Arnab; Dierking, Matthew

    2015-05-01

    Vibrometry offers the potential to classify a target based on its vibration spectrum. Signal processing is necessary for extracting features from the sensing signal for classification. This paper investigates the effects of fundamental frequency normalization on the end-to-end classification process [1]. Using the fundamental frequency, assumed to be the engine's firing frequency, has previously been used successfully to classify vehicles [2, 3]. The fundamental frequency attempts to remove the vibration variations due to the engine's revolution per minute (rpm) changes. Vibration signatures with and without fundamental frequency are converted to ten features that are classified and compared. To evaluate the classification performance confusion matrices are constructed and analyzed. A statistical analysis of the features is also performed to determine how the fundamental frequency normalization affects the features. These methods were studied on three datasets including three military vehicles and six civilian vehicles. Accelerometer data from each of these data collections is tested with and without normalization.

  2. A programmable broadband low frequency active vibration isolation system for atom interferometry.

    PubMed

    Tang, Biao; Zhou, Lin; Xiong, Zongyuan; Wang, Jin; Zhan, Mingsheng

    2014-09-01

    Vibration isolation at low frequency is important for some precision measurement experiments that use atom interferometry. To decrease the vibrational noise caused by the reflecting mirror of Raman beams in atom interferometry, we designed and demonstrated a compact stable active low frequency vibration isolation system. In this system, a digital control subsystem is used to process and feedback the vibration measured by a seismometer. A voice coil actuator is used to control and cancel the motion of a commercial passive vibration isolation platform. With the help of field programmable gate array-based control subsystem, the vibration isolation system performed flexibly and accurately. When the feedback is on, the intrinsic resonance frequency of the system will change from 0.8 Hz to about 0.015 Hz. The vertical vibration (0.01-10 Hz) measured by the in-loop seismometer is reduced by an additional factor of up to 500 on the basis of a passive vibration isolation platform, and we have proved the performance by adding an additional seismometer as well as applying it in the atom interferometry experiment. PMID:25273709

  3. An analytical study of the effects of transverse shear deformation and anisotropy on natural vibration frequencies of laminated cylinders

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    1988-01-01

    Natural vibration frequencies of orthotropic and anisotropic simply supported right circular cylinders are predicted using a higher-order transverse-shear deformation theory. A comparison of natural vibration frequencies predicted by first-order transverse-shear deformation theory and the higher-order theory shows that an additional allowance for transverse shear deformation has a negligible effect on the lowest predicted natural vibration frequencies of laminated cylinders but significantly reduces the higher natural vibration frequencies. A parametric study of the effects of ply orientation on the natural vibration frequencies of laminated cylinders indicates that while stacking sequence affects natural vibration frequencies, cylinder geometry is more important in predicting transverse-shear deformation effects. Interaction curves for cylinders subjected to axial compressive loadings and low natural vibration frequencies indicate that transverse shearing effects are less important in predicting low natural vibration frequencies than in predicting axial compressive buckling loads. The effects of anisotropy are more important than the effects of transverse shear deformation for most strongly anisotropic laminated cylinders in predicting natural vibration frequencies. However, transverse-shear deformation effects are important in predicting high natural vibration frequencies of thick-walled laminated cylinders. Neglecting either anisotropic effects or transverse-shear deformation effects leads to non-conservative errors in predicted natural vibration frequencies.

  4. Enhancement to Non-Contacting Stress Measurement of Blade Vibration Frequency

    NASA Technical Reports Server (NTRS)

    Platt, Michael; Jagodnik, John

    2011-01-01

    A system for turbo machinery blade vibration has been developed that combines time-of-arrival sensors for blade vibration amplitude measurement and radar sensors for vibration frequency and mode identification. The enabling technology for this continuous blade monitoring system is the radar sensor, which provides a continuous time series of blade displacement over a portion of a revolution. This allows the data reduction algorithms to directly calculate the blade vibration frequency and to correctly identify the active modes of vibration. The work in this project represents a significant enhancement in the mode identification and stress calculation accuracy in non-contacting stress measurement system (NSMS) technology when compared to time-of-arrival measurements alone.

  5. Self-powered resonant frequency tuning for Piezoelectric Vibration Energy Harvesters

    NASA Astrophysics Data System (ADS)

    Ahmed-Seddik, B.; Despesse, G.; Boisseau, S.; Defay, E.

    2013-12-01

    This paper reports on the design, fabrication and testing of an innovative 33-mode piezoelectric vibration energy harvester (VEH). This system is able to change its resonant frequency in real time to follow the main frequency of a vibration source. The system proposed in this paper enables to adapt VEH characteristics (resonant frequency, electrical damping) to vibration parameters variations (frequency and amplitude) in order to optimize the extraction of energy and then the output power at any time. This solution allows up to 40% of resonant frequency tuning ratio; moreover, the adaptation is made in real time and the consumption of the regulation electronic is less than 10% of the VEH output power (480μW@0.1g-276Hz).

  6. Estimation of the running speed and bearing defect frequencies of an induction motor from vibration data

    NASA Astrophysics Data System (ADS)

    Ocak, Hasan; Loparo, Kenneth A.

    2004-05-01

    This paper presents two separate algorithms for estimating the running speed and the bearing key frequencies of an induction motor using vibration data. Bearing key frequencies are frequencies at which roller elements pass over a defect point. Most frequency domain-based bearing fault detection and diagnosis techniques (e.g. envelope analysis) rely on vibration measurements and the bearing key frequencies. Thus, estimation of the running speed and the bearing key frequencies are required for failure detection and diagnosis. The paper also incorporates the estimation algorithms with the most commonly used bearing fault detection technique, high-frequency demodulation, to detect bearing faults. Experimental data were used to verify the validity of the algorithms. Data were collected through an accelerometer measuring the vibration from the drive-end ball bearing of an induction motor (Reliance Electric 2HP IQPreAlert)-driven mechanical system. Both inner and outer race defects were artificially introduced to the bearing using electrical discharge machining. A linear vibration model was also developed for generating simulated vibration data. The simulated data were also used to validate the performance of the algorithms. The test results proved the algorithms to be very reliable.

  7. Statistical analysis of low frequency vibrations in variable speed wind turbines

    NASA Astrophysics Data System (ADS)

    Escaler, X.; Mebarki, T.

    2013-12-01

    The spectral content of the low frequency vibrations in the band from 0 to 10 Hz measured in full scale wind turbines has been statistically analyzed as a function of the whole range of steady operating conditions. Attention has been given to the amplitudes of the vibration peaks and their dependency on rotating speed and power output. Two different wind turbine models of 800 and 2000 kW have been compared. For each model, a sample of units located in the same wind farm and operating during a representative period of time have been considered. A condition monitoring system installed in each wind turbine has been used to register the axial acceleration on the gearbox casing between the intermediate and the high speed shafts. The average frequency spectrum has permitted to identify the vibration signature and the position of the first tower natural frequency in both models. The evolution of the vibration amplitudes at the rotor rotating frequency and its multiples has shown that the tower response is amplified by resonance conditions in one of the models. So, it is concluded that a continuous measurement and control of low frequency vibrations is required to protect the turbines against harmful vibrations of this nature.

  8. Estimation of vibration frequency of loudspeaker diaphragm by parallel phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Kakue, T.; Endo, Y.; Shimobaba, T.; Ito, T.

    2014-11-01

    We report frequency estimation of loudspeaker diaphragm vibrating at high speed by parallel phase-shifting digital holography which is a technique of single-shot phase-shifting interferometry. This technique records multiple phaseshifted holograms required for phase-shifting interferometry by using space-division multiplexing. We constructed a parallel phase-shifting digital holography system consisting of a high-speed polarization-imaging camera. This camera has a micro-polarizer array which selects four linear polarization axes for 2 × 2 pixels. We set a loudspeaker as an object, and recorded vibration of diaphragm of the loudspeaker by the constructed system. By the constructed system, we demonstrated observation of vibration displacement of loudspeaker diaphragm. In this paper, we aim to estimate vibration frequency of the loudspeaker diaphragm by applying the experimental results to frequency analysis. Holograms consisting of 128 × 128 pixels were recorded at a frame rate of 262,500 frames per second by the camera. A sinusoidal wave was input to the loudspeaker via a phone connector. We observed displacement of the loudspeaker diaphragm vibrating by the system. We also succeeded in estimating vibration frequency of the loudspeaker diaphragm by applying frequency analysis to the experimental results.

  9. The influence of vibration type, frequency, body position and additional load on the neuromuscular activity during whole body vibration.

    PubMed

    Ritzmann, Ramona; Gollhofer, Albert; Kramer, Andreas

    2013-01-01

    This study aimed to assess the influence of different whole body vibration (WBV) determinants on the electromyographic (EMG) activity during WBV in order to identify those training conditions that cause highest neuromuscular responses and therefore provide optimal training conditions. In a randomized cross-over study, the EMG activity of six leg muscles was analyzed in 18 subjects with respect to the following determinants: (1) vibration type (side-alternating vibration (SV) vs. synchronous vibration (SyV), (2) frequency (5-10-15-20-25-30 Hz), (3) knee flexion angle (10°-30°-60°), (4) stance condition (forefoot vs. normal stance) and (5) load variation (no extra load vs. additional load equal to one-third of the body weight). The results are: (1) neuromuscular activity during SV was enhanced compared to SyV (P < 0.05); (2) a progressive increase in frequency caused a progressive increase in EMG activity (P < 0.05); (3) the EMG activity was highest for the knee extensors when the knee joint was 60° flexed (P < 0.05); (4) for the plantar flexors in the forefoot stance condition (P < 0.05); and (5) additional load caused an increase in neuromuscular activation (P < 0.05). In conclusion, large variations of the EMG activation could be observed across conditions. However, with an appropriate adjustment of specific WBV determinants, high EMG activations and therefore high activation intensities could be achieved in the selected muscles. The combination of high vibration frequencies with additional load on an SV platform led to highest EMG activities. Regarding the body position, a knee flexion of 60° and forefoot stance appear to be beneficial for the knee extensors and the plantar flexors, respectively. PMID:22538279

  10. A smart and self-sufficient frequency tunable vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Eichhorn, C.; Tchagsim, R.; Wilhelm, N.; Woias, P.

    2011-10-01

    We present a piezoelectric energy-harvesting system, which is able to self-tune its resonance frequency in an energy-autonomous way, in order to extend its efficient operation over a large frequency range. The system consists of a resonant and frequency-tunable piezoelectric generator and a control unit. In predefined temporal intervals, the control unit analyzes the ambient vibration frequency, decides whether an adjustment of the generator's resonance frequency is necessary or not and delivers the appropriate voltage to a piezoelectric actuator which alters the generator's mechanical stiffness to tune its resonance frequency. The control unit has been optimized to an ultralow power consumption which means that up to 90% of the harvested energy can be fed to the powered electrical load, which could be an embedded system. With frequency-tunable generators, the application range of vibration energy harvesters can be extended to environments with a non-constant vibration frequency, like e.g. the surface of an engine with a varying number of revolutions per minute. Furthermore, the presented system opens the door to off-the-shelf solutions for environments with constant but uncommon vibration frequencies. With the smart tuning algorithm presented in this work, our system is even able to compensate typical weak points of piezoelectrically tunable harvesters, like e.g. hysteresis effects, the temperature dependence of the mechanical stiffness and aging effects.

  11. Statistics and Properties of Low-Frequency Vibrational Modes in Structural Glasses

    NASA Astrophysics Data System (ADS)

    Lerner, Edan; Düring, Gustavo; Bouchbinder, Eran

    2016-07-01

    Low-frequency vibrational modes play a central role in determining various basic properties of glasses, yet their statistical and mechanical properties are not fully understood. Using extensive numerical simulations of several model glasses in three dimensions, we show that in systems of linear size L sufficiently smaller than a crossover size LD, the low-frequency tail of the density of states follows D (ω )˜ω4 up to the vicinity of the lowest Goldstone mode frequency. We find that the sample-to-sample statistics of the minimal vibrational frequency in systems of size L frequency modes are spatially quasilocalized and that their localization and associated quartic anharmonicity are largely frequency independent. The effect of preparation protocols on the low-frequency modes is elucidated, and a number of glassy length scales are briefly discussed.

  12. The effects of low-frequency vibrations on hepatic profile of blood

    NASA Astrophysics Data System (ADS)

    Damijan, Z.

    2008-02-01

    Body vibrations training has become popular in sports training, fitness activity, it is still a rare form of physical rehabilitation.. Vibrations are transmitted onto the whole body or some body parts of an exercising person via a vibration platform subjected to mechanical vertical vibrations. During the training session a participant has to maintain his body position or do exercises that engage specific muscles whilst vibrations of the platform are transmitted onto the person's body. This paper is the continuation of the earlier study covering the effects of low-frequency vibrations on selected physiological parameters of the human body. The experiments were conducted to find the answer to the question if vibration exposure (total duration of training sessions 6 hours 20 min) should produce any changes in hepatic profile of blood. Therefore a research program was undertaken at the University of Science and Technology AGH UST to investigate the effects of low-frequency vibration on selected parameters of hepatic profile of human blood. Cyclic fluctuations of bone loading were induced by the applied harmonic vibration 3.5 Hz and amplitude 0.004 m. The experiments utilizing two vibrating platforms were performed in the Laboratory of Structural Acoustics and Biomedical Engineering AGH-UST. The applied vibrations were harmless and not annoying, in accordance with the standard PN-EN ISO 130901-1, 1998. 23 women volunteers had 19 sessions on subsequent working days, at the same time of day. during the tests the participants remained in the standing position, passive. The main hypothesis has it that short-term low-frequency vibration exposure might bring about the changes of the hepatic profile of blood, including: bilirubin (BILIRUBIN), alkaline phosphatase (Alp), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and albumin (ALBUMIN) levels. Research data indicate the low-frequency vibrations exposure produces statistically significant decrease of

  13. An extension of command shaping methods for controlling residual vibration using frequency sampling

    NASA Technical Reports Server (NTRS)

    Singer, Neil C.; Seering, Warren P.

    1992-01-01

    The authors present an extension to the impulse shaping technique for commanding machines to move with reduced residual vibration. The extension, called frequency sampling, is a method for generating constraints that are used to obtain shaping sequences which minimize residual vibration in systems such as robots whose resonant frequencies change during motion. The authors present a review of impulse shaping methods, a development of the proposed extension, and a comparison of results of tests conducted on a simple model of the space shuttle robot arm. Frequency shaping provides a method for minimizing the impulse sequence duration required to give the desired insensitivity.

  14. The correction of vibration in frequency scanning interferometry based absolute distance measurement system for dynamic measurements

    NASA Astrophysics Data System (ADS)

    Lu, Cheng; Liu, Guodong; Liu, Bingguo; Chen, Fengdong; Zhuang, Zhitao; Xu, Xinke; Gan, Yu

    2015-10-01

    Absolute distance measurement systems are of significant interest in the field of metrology, which could improve the manufacturing efficiency and accuracy of large assemblies in fields such as aircraft construction, automotive engineering, and the production of modern windmill blades. Frequency scanning interferometry demonstrates noticeable advantages as an absolute distance measurement system which has a high precision and doesn't depend on a cooperative target. In this paper , the influence of inevitable vibration in the frequency scanning interferometry based absolute distance measurement system is analyzed. The distance spectrum is broadened as the existence of Doppler effect caused by vibration, which will bring in a measurement error more than 103 times bigger than the changes of optical path difference. In order to decrease the influence of vibration, the changes of the optical path difference are monitored by a frequency stabilized laser, which runs parallel to the frequency scanning interferometry. The experiment has verified the effectiveness of this method.

  15. Fluid dynamic aspects of cardiovascular behavior during low-frequency whole-body vibration

    NASA Technical Reports Server (NTRS)

    Nerem, R. M.

    1973-01-01

    The behavior of the cardiovascular system during low frequency whole-body vibration, such as encountered by astronauts during launch and reentry, is examined from a fluid mechanical viewpoint. The vibration characteristics of typical manned spacecraft and other vibration environments are discussed, and existing results from in vivo studies of the hemodynamic aspects of this problem are reviewed. Recent theoretical solutions to related fluid mechanical problems are then used in the interpretation of these results and in discussing areas of future work. The results are included of studies of the effects of vibration on the work done by the heart and on pulsatile flow in blood vessels. It is shown that important changes in pulse velocity, the instantaneous velocity profile, mass flow rate, and wall shear stress may occur in a pulsatile flow due to the presence of vibration. The significance of this in terms of changes in peripheral vascular resistance and possible damage to the endothelium of blood vessels is discussed.

  16. High-frequency vibration effect on the stability of a horizontal layer of ternary fluid.

    PubMed

    Lyubimova, Tatyana

    2015-05-01

    The effect of small-amplitude high-frequency longitudinal vibrations on the stability of a horizontal layer of ternary fluid is studied in the framework of average approach. Long-wave instability is studied analytically and instability to the perturbations with finite wave numbers is studied numerically. It is found that, similar to the case when vibrations are absent, for ternary fluids there exist monotonic and oscillatory long-wave instability modes. The calculations show that the vibrations lead to destabilization in the case of heating from below and to stabilization in the case of heating from above. Additionally, vibrations influence on the parameter range where long-wave instability is most dangerous. New, vibrational, instability modes are found which leads to the existence of convection in zero-gravity conditions. PMID:25998169

  17. Protonated nitrous oxide, NNOH+: fundamental vibrational frequencies and spectroscopic constants from quartic force fields.

    PubMed

    Huang, Xinchuan; Fortenberry, Ryan C; Lee, Timothy J

    2013-08-28

    The interstellar presence of protonated nitrous oxide has been suspected for some time. Using established high-accuracy quantum chemical techniques, spectroscopic constants and fundamental vibrational frequencies are provided for the lower energy O-protonated isomer of this cation and its deuterated isotopologue. The vibrationally-averaged B0 and C0 rotational constants are within 6 MHz of their experimental values and the D(J) quartic distortion constants agree with experiment to within 3%. The known gas phase O-H stretch of NNOH(+) is 3330.91 cm(-1), and the vibrational configuration interaction computed result is 3330.9 cm(-1). Other spectroscopic constants are also provided, as are the rest of the fundamental vibrational frequencies for NNOH(+) and its deuterated isotopologue. This high-accuracy data should serve to better inform future observational or experimental studies of the rovibrational bands of protonated nitrous oxide in the interstellar medium and the laboratory. PMID:24007003

  18. An Analysis of the High Frequency Vibrations in Early Thematic Mapper Scenes

    NASA Technical Reports Server (NTRS)

    Kogut, J.; Larduinat, E.

    1985-01-01

    The motion of the mirrors in the thematic mapper (TM) and multispectral scanner (MSS) instruments, and the motion of other devices, such as the TDRSS antenna drive, and solar array drives onboard LANDSAT-4 cause vibrations to propagate through the spacecraft. These vibrations as well as nonlinearities in the scanning motion of the TM mirror can cause the TM detectors to point away from their nominal positions. Two computer programs, JITTER and SCDFT, were developed as part of the LANDSAT-D Assessment System (LAS), Products and Procedures Analysis (PAPA) program to evaluate the potential effect of high frequency vibrations on the final TM image. The maximum overlap and underlap which were observed for early TM scenes are well within specifications for the ground processing system. The cross scan and scan high frequency vibrations are also within the specifications cited for the flight system.

  19. Protonated Nitrous Oxide, NNOH(+): Fundamental Vibrational Frequencies and Spectroscopic Constants from Quartic Force Fields

    NASA Technical Reports Server (NTRS)

    Huang, Xinchuan; Fortenberry, Ryan C.; Lee, Timothy J.

    2013-01-01

    The interstellar presence of protonated nitrous oxide has been suspected for some time. Using established high-accuracy quantum chemical techniques, spectroscopic constants and fundamental vibrational frequencies are provided for the lower energy O-protonated isomer of this cation and its deuterated isotopologue. The vibrationally-averaged B0 and C0 rotational constants are within 6 MHz of their experimental values and the D(subJ) quartic distortion constants agree with experiment to within 3%. The known gas phase O-H stretch of NNOH(+) is 3330.91 cm(exp-1), and the vibrational configuration interaction computed result is 3330.9 cm(exp-1). Other spectroscopic constants are also provided, as are the rest of the fundamental vibrational frequencies for NNOH(+) and its deuterated isotopologue. This high-accuracy data should serve to better inform future observational or experimental studies of the rovibrational bands of protonated nitrous oxide in the ISM and the laboratory.

  20. Low frequency vibrations induce malformations in two aquatic species in a frequency-, waveform-, and direction-specific manner.

    PubMed

    Vandenberg, Laura N; Stevenson, Claire; Levin, Michael

    2012-01-01

    Environmental toxicants such as industrial wastes, air particulates from machinery and transportation vehicles, and pesticide run-offs, as well as many chemicals, have been widely studied for their effects on human and wildlife populations. Yet other potentially harmful environmental pollutants such as electromagnetic pulses, noise and vibrations have remained incompletely understood. Because developing embryos undergo complex morphological changes that can be affected detrimentally by alterations in physical forces, they may be particularly susceptible to exposure to these types of pollutants. We investigated the effects of low frequency vibrations on early embryonic development of two aquatic species, Xenopus laevis (frogs) and Danio rerio (zebrafish), specifically focusing on the effects of varying frequencies, waveforms, and applied direction. We observed treatment-specific effects on the incidence of neural tube defects, left-right patterning defects and abnormal tail morphogenesis in Xenopus tadpoles. Additionally, we found that low frequency vibrations altered left-right patterning and tail morphogenesis, but did not induce neural tube defects, in zebrafish. The results of this study support the conclusion that low frequency vibrations are toxic to aquatic vertebrates, with detrimental effects observed in two important model species with very different embryonic architectures. PMID:23251546

  1. Low Frequency Vibrations Induce Malformations in Two Aquatic Species in a Frequency-, Waveform-, and Direction-Specific Manner

    PubMed Central

    Vandenberg, Laura N.; Stevenson, Claire; Levin, Michael

    2012-01-01

    Environmental toxicants such as industrial wastes, air particulates from machinery and transportation vehicles, and pesticide run-offs, as well as many chemicals, have been widely studied for their effects on human and wildlife populations. Yet other potentially harmful environmental pollutants such as electromagnetic pulses, noise and vibrations have remained incompletely understood. Because developing embryos undergo complex morphological changes that can be affected detrimentally by alterations in physical forces, they may be particularly susceptible to exposure to these types of pollutants. We investigated the effects of low frequency vibrations on early embryonic development of two aquatic species, Xenopus laevis (frogs) and Danio rerio (zebrafish), specifically focusing on the effects of varying frequencies, waveforms, and applied direction. We observed treatment-specific effects on the incidence of neural tube defects, left-right patterning defects and abnormal tail morphogenesis in Xenopus tadpoles. Additionally, we found that low frequency vibrations altered left-right patterning and tail morphogenesis, but did not induce neural tube defects, in zebrafish. The results of this study support the conclusion that low frequency vibrations are toxic to aquatic vertebrates, with detrimental effects observed in two important model species with very different embryonic architectures. PMID:23251546

  2. S-shape spring sensor: Sensing specific low-frequency vibration by energy harvesting.

    PubMed

    Zhang, Lan; Lu, Jian; Takei, Ryohei; Makimoto, Natsumi; Itoh, Toshihiro; Kobayashi, Takeshi

    2016-08-01

    We have developed a Si-based microelectromechanical systems sensor with high sensitivity for specific low-frequency vibration-sensing and energy-harvesting applications. The low-frequency vibration sensor contains a disk proof mass attached to two or three lead zirconate titanate (PZT) S-shape spring flexures. To obtain a faster and less expensive prototype, the design and optimization of the sensor structure are studied via finite-element method analysis. To validate the sensor structure to detect low-frequency vibration, the effects of geometrical dimensions, including the width and diameter of the S-shape spring of the proof mass, were analyzed and measured. The functional features, including the mechanical property and electrical performance of the vibration sensor, were evaluated. The results demonstrated that a very low resonant frequency of <11 Hz and a reasonably high voltage output of 7.5 mV at acceleration of >0.2g can be typically achieved. Given a low-frequency vibration sensor with ideal performance and mass fabrication, many advanced civilian and industrial applications can be possibly realized. PMID:27587151

  3. S-shape spring sensor: Sensing specific low-frequency vibration by energy harvesting

    NASA Astrophysics Data System (ADS)

    Zhang, Lan; Lu, Jian; Takei, Ryohei; Makimoto, Natsumi; Itoh, Toshihiro; Kobayashi, Takeshi

    2016-08-01

    We have developed a Si-based microelectromechanical systems sensor with high sensitivity for specific low-frequency vibration-sensing and energy-harvesting applications. The low-frequency vibration sensor contains a disk proof mass attached to two or three lead zirconate titanate (PZT) S-shape spring flexures. To obtain a faster and less expensive prototype, the design and optimization of the sensor structure are studied via finite-element method analysis. To validate the sensor structure to detect low-frequency vibration, the effects of geometrical dimensions, including the width and diameter of the S-shape spring of the proof mass, were analyzed and measured. The functional features, including the mechanical property and electrical performance of the vibration sensor, were evaluated. The results demonstrated that a very low resonant frequency of <11 Hz and a reasonably high voltage output of 7.5 mV at acceleration of >0.2g can be typically achieved. Given a low-frequency vibration sensor with ideal performance and mass fabrication, many advanced civilian and industrial applications can be possibly realized.

  4. Computational IR spectroscopy of water: OH stretch frequencies, transition dipoles, and intermolecular vibrational coupling constants

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Cho, Minhaeng

    2013-05-01

    The Hessian matrix reconstruction method initially developed to extract the basis mode frequencies, vibrational coupling constants, and transition dipoles of the delocalized amide I, II, and III vibrations of polypeptides and proteins from quantum chemistry calculation results is used to obtain those properties of delocalized O-H stretch modes in liquid water. Considering the water symmetric and asymmetric O-H stretch modes as basis modes, we here develop theoretical models relating vibrational frequencies, transition dipoles, and coupling constants of basis modes to local water configuration and solvent electric potential. Molecular dynamics simulation was performed to generate an ensemble of water configurations that was in turn used to construct vibrational Hamiltonian matrices. Obtaining the eigenvalues and eigenvectors of the matrices and using the time-averaging approximation method, which was developed by the Skinner group, to calculating the vibrational spectra of coupled oscillator systems, we could numerically simulate the O-H stretch IR spectrum of liquid water. The asymmetric line shape and weak shoulder bands were quantitatively reproduced by the present computational procedure based on vibrational exciton model, where the polarization effects on basis mode transition dipoles and inter-mode coupling constants were found to be crucial in quantitatively simulating the vibrational spectra of hydrogen-bond networking liquid water.

  5. Structure, Anharmonic Vibrational Frequencies, and Intensities of NNHNN(+).

    PubMed

    Yu, Qi; Bowman, Joel M; Fortenberry, Ryan C; Mancini, John S; Lee, Timothy J; Crawford, T Daniel; Klemperer, William; Francisco, Joseph S

    2015-11-25

    A semiglobal potential energy surface (PES) and quartic force field (QFF) based on fitting high-level electronic structure energies are presented to describe the structures and spectroscopic properties of NNHNN(+). The equilibrium structure of NNHNN(+) is linear with the proton equidistant between the two nitrogen groups and thus of D(∞h) symmetry. Vibrational second-order perturbation theory (VPT2) calculations based on the QFF fails to describe the proton "rattle" motion, i.e., the antisymmetric proton stretch, due to the very flat nature of PES around the global minimum but performs properly for other modes with sharper potential wells. Vibrational self-consistent field/virtual state configuration interaction (VSCF/VCI) calculations using a version of MULTIMODE without angular momentum terms successfully describe this motion and predict the fundamental to be at 759 cm(-1). This is in good agreement with the value of 746 cm(-1) from a fixed-node diffusion Monte Carlo calculation and the experimental Ar-tagged result of 743 cm(-1). Other VSCF/VCI energies are in good agreement with other experimentally reported ones. Both double-harmonic intensity and rigorous MULTIMODE intensity calculations show the proton-transfer fundamental has strong intensity. PMID:26529262

  6. A magnetic-spring-based, low-frequency-vibration energy harvester comprising a dual Halbach array

    NASA Astrophysics Data System (ADS)

    Salauddin, M.; Halim, M. A.; Park, J. Y.

    2016-09-01

    Energy harvesting that uses low-frequency vibrations is attractive due to the availability of such vibrations throughout the ambient environment. Significant power generation at low-frequency vibrations, however, is challenging because the power flow decreases as the frequency decreases; moreover, designing a spring-mass system that is suitable for low-frequency-vibration energy harvesting is difficult. In this work, our proposed device overcomes both of these challenges by using a dual Halbach array and magnetic springs. Each Halbach array concentrates the magnetic-flux lines on one side of the array while suppressing the flux lines on the other side; therefore, a dual Halbach array allows for an interaction between the concentrated magnetic-flux lines and the same coil so that the maximum flux linkage occurs. During the experiment, vibration was applied in a horizontal direction to reduce the gravity effect on the Halbach-array structure. To achieve an increased power generation at low-amplitude and low-frequency vibrations, the magnetic structure of the dual Halbach array and the magnetic springs were optimized in terms of the operating frequency and the power density; subsequently, a prototype was fabricated and tested. The prototype device offers a normalized power density of 133.45 μW cm‑3 g‑2 that is much higher than those of recently reported electromagnetic energy harvesters; furthermore, it is capable of delivering a maximum average power of 1093 μW to a 44 Ω optimum load, at an 11 Hz resonant frequency and under a 0.5 g acceleration.

  7. The Effect of the Weight Scheme on DFT Vibrational Frequencies

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles; Ricca, Alessandra

    1999-01-01

    All-electron B3LYP harmonic frequencies of Ge2H5 and Ge2H6 are computed for several choices of grid and using both the Becke and the Stratmann, Scuseria, and Frisch atomic partition functions (weight scheme). For large grids, the results are independent of the weighting scheme. The lowest frequency mode is much more stable with respect to the number of grid points when the Stratmann, Scuseria, and Frisch weights are used.

  8. Application of coupled analysis methods for prediction of blast-induced dominant vibration frequency

    NASA Astrophysics Data System (ADS)

    Li, Haibo; Li, Xiaofeng; Li, Jianchun; Xia, Xiang; Wang, Xiaowei

    2016-03-01

    Blast-induced dominant vibration frequency (DVF) involves a complex, nonlinear and small sample system considering rock properties, blasting parameters and topography. In this study, a combination of grey relational analysis and dimensional analysis procedures for prediction of dominant vibration frequency are presented. Six factors are selected from extensive effect factor sequences based on grey relational analysis, and then a novel blast-induced dominant vibration frequency prediction is obtained by dimensional analysis. In addition, the prediction is simplified by sensitivity analysis with 195 experimental blast records. Validation is carried out for the proposed formula based on the site test database of the firstperiod blasting excavation in the Guangdong Lufeng Nuclear Power Plant (GLNPP). The results show the proposed approach has a higher fitting degree and smaller mean error when compared with traditional predictions.

  9. DFT Calculation of Vibrational Frequencies of FeCoB m-RAM

    NASA Astrophysics Data System (ADS)

    Ling, Lee Li; Jesudason, Christopher; Shrivastava, Keshav N.

    2010-07-01

    The present available random access memory materials are semiconductors. It is proposed to develop magnetoresistance based random access memory (m-RAM) materials. Hence, we consider an alloy of Fe, Co and B which will be strongly magnetic and work well as a memory device. We calculate the vibrational frequencies of clusters of atoms of Fe, Co and B. The larger vibrational frequencies indicate larger force constants. The result show that CoB3Fe to have the largest vibrational frequency of 1293.03 cm-1 whereas BFeCo2 has 509.59 cm-1. We identify the ratio of constituents and the structures which have large force constant. Hence, CoB3Fe is better than BFeCo2. The cluster formation depends on the method of quenching. Hence, method of preparation can be modified to achieve large force constants.

  10. Peculiarities of the Third Natural Frequency Vibrations of a Cantilever for the Improvement of Energy Harvesting

    PubMed Central

    Ostasevicius, Vytautas; Janusas, Giedrius; Milasauskaite, Ieva; Zilys, Mindaugas; Kizauskiene, Laura

    2015-01-01

    This paper focuses on several aspects extending the dynamical efficiency of a cantilever beam vibrating in the third mode. A few ways of producing this mode stimulation, namely vibro-impact or forced excitation, as well as its application for energy harvesting devices are proposed. The paper presents numerical and experimental analyses of novel structural dynamics effects along with an optimal configuration of the cantilever beam. The peculiarities of a cantilever beam vibrating in the third mode are related to the significant increase of the level of deformations capable of extracting significant additional amounts of energy compared to the conventional harvester vibrating in the first mode. Two types of a piezoelectric vibrating energy harvester (PVEH) prototype are analysed in this paper: the first one without electrode segmentation, while the second is segmented using electrode segmentation at the strain nodes of the third vibration mode to achieve effective operation at the third resonant frequency. The results of this research revealed that the voltage generated by any segment of the segmented PVEH prototype excited at the third resonant frequency demonstrated a 3.4–4.8-fold increase in comparison with the non-segmented prototype. Simultaneously, the efficiency of the energy harvester prototype also increased at lower resonant frequencies from 16% to 90%. The insights presented in the paper may serve for the development and fabrication of advanced piezoelectric energy harvesters which would be able to generate a considerably increased amount of electrical energy independently of the frequency of kinematical excitation. PMID:26029948

  11. Verification of two methods to mitigate high frequency pipe shell vibration

    SciTech Connect

    Motriuk, R.W.

    1996-12-01

    High frequency vibration generated by centrifugal compressors can cause fatigue damage to attached compressor piping systems. In some cases, components of piping systems exposed to such vibrations experience fatigue failures only after a few hours of operation. This paper describes several approaches to mitigate compressor generated high frequency vibrations. It focuses on two passive methods which have been implemented at NOVA Gas Transmission Limited (NGTL). The first method describes how to disturb and disorganize a high frequency complex acoustical field which propagates through the compressor discharge piping thus reducing the excitation forces. The second method involves a direct piping modification which influences the piping mechanical responses. Both methods are applied to large diameter (NPS 24 and NPS 36) natural gas piping systems incorporating 16 MW and 25 MW centrifugal compressors. Vibration velocities are documented for As found systems and for systems modified by implementation of each method. Dynamic stress levels for As found systems are reported in the form of K factors. Discussion of the results is followed by brief guidelines which show how to improve the structural integrity of piping subjected to high frequency vibrations.

  12. Peculiarities of the third natural frequency vibrations of a cantilever for the improvement of energy harvesting.

    PubMed

    Ostasevicius, Vytautas; Janusas, Giedrius; Milasauskaite, Ieva; Zilys, Mindaugas; Kizauskiene, Laura

    2015-01-01

    This paper focuses on several aspects extending the dynamical efficiency of a cantilever beam vibrating in the third mode. A few ways of producing this mode stimulation, namely vibro-impact or forced excitation, as well as its application for energy harvesting devices are proposed. The paper presents numerical and experimental analyses of novel structural dynamics effects along with an optimal configuration of the cantilever beam. The peculiarities of a cantilever beam vibrating in the third mode are related to the significant increase of the level of deformations capable of extracting significant additional amounts of energy compared to the conventional harvester vibrating in the first mode. Two types of a piezoelectric vibrating energy harvester (PVEH) prototype are analysed in this paper: the first one without electrode segmentation, while the second is segmented using electrode segmentation at the strain nodes of the third vibration mode to achieve effective operation at the third resonant frequency. The results of this research revealed that the voltage generated by any segment of the segmented PVEH prototype excited at the third resonant frequency demonstrated a 3.4-4.8-fold increase in comparison with the non-segmented prototype. Simultaneously, the efficiency of the energy harvester prototype also increased at lower resonant frequencies from 16% to 90%. The insights presented in the paper may serve for the development and fabrication of advanced piezoelectric energy harvesters which would be able to generate a considerably increased amount of electrical energy independently of the frequency of kinematical excitation. PMID:26029948

  13. A small-form-factor piezoelectric vibration energy harvester using a resonant frequency-down conversion

    NASA Astrophysics Data System (ADS)

    Sun, Kyung Ho; Kim, Young-Cheol; Kim, Jae Eun

    2014-10-01

    While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm3, which was designed for a target frequency of as low as 100 Hz.

  14. A small-form-factor piezoelectric vibration energy harvester using a resonant frequency-down conversion

    SciTech Connect

    Sun, Kyung Ho; Kim, Young-Cheol; Kim, Jae Eun

    2014-10-15

    While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm{sup 3}, which was designed for a target frequency of as low as 100 Hz.

  15. Broadband electromagnetic power harvester from vibrations via frequency conversion by impact oscillations

    SciTech Connect

    Yuksek, N. S.; Almasri, M.; Feng, Z. C.

    2014-09-15

    In this paper, we propose an electromagnetic power harvester that uses a transformative multi-impact approach to achieve a wide bandwidth response from low frequency vibration sources through frequency-up conversion. The device consists of a pick-up coil, fixed at the free edge of a cantilever beam with high resonant frequency, and two cantilever beams with low excitation frequencies, each with an impact mass attached at its free edge. One of the two cantilevers is designed to resonate at 25 Hz, while the other resonates at 50 Hz within the range of ambient vibration frequency. When the device is subjected to a low frequency vibration, the two low-frequency cantilevers responded by vibrating at low frequencies, and thus their thick metallic masses made impacts with the high resonance frequency cantilever repeatedly at two locations. This has caused it along with the pick-up coil to oscillate, relative to the permanent magnet, with decaying amplitude at its resonance frequency, and results in a wide bandwidth response from 10 to 63 Hz at 2 g. A wide bandwidth response between 10–51 Hz and 10–58 Hz at acceleration values of 0.5 g and 2 g, respectively, were achieved by adjusting the impact cantilever frequencies closer to each other (25 Hz and 45 Hz). A maximum output power of 85 μW was achieved at 5 g at 30 Hz across a load resistor, 2.68 Ω.

  16. Escape conditioning and low-frequency whole-body vibration - The effects of frequency, amplitude, and controls for noise and activation.

    NASA Technical Reports Server (NTRS)

    Wike, E. L.; Wike, S. S.

    1972-01-01

    Seven experiments are reported on low-frequency whole-body vibration and rats' escape conditioning in a modified Skinner box. In the first three studies, conditioning was observed but was independent of frequency. In experiment four, the number of escape responses was directly related to vibration amplitude. Experiment five was a control for vibration noise and noise termination; experiments six and seven studied vibration-induced activation. Noise termination did not produce conditioning. In experiment six, subjects made more responses when responding led to termination than when it did not. In experiment seven, subjects preferred a bar which terminated vibration to one which did not.

  17. High-frequency vibrational density of states of a disordered solid.

    PubMed

    Tomaras, C; Schirmacher, W

    2013-12-11

    We investigate the high-frequency behavior of the density of vibrational states in three-dimensional elasticity theory with spatially fluctuating elastic moduli. At frequencies well above the mobility edge, instanton solutions yield an exponentially decaying density of states. The instanton solutions describe excitations, which become localized due to the disorder-induced fluctuations, which lower the sound velocity in a finite region compared to its average value. The exponentially decaying density of states (known in electronic systems as the Lifshitz tail) is governed by the statistics of a fluctuating-elasticity landscape, capable of trapping the vibrational excitations. PMID:24214818

  18. An ab initio investigation of the structure, vibrational frequencies, and intensities of HO2 and HOCl

    NASA Technical Reports Server (NTRS)

    Komornicki, A.; Jaffe, R. L.

    1979-01-01

    The infrared spectral intensities for HOCl and HO2 have been calculated using a new ab initio technique. Theoretical results for the geometries, vibrational frequencies, and the dipole moments of these species are also reported. All of the calculations were performed at the SCF level using near Hartree-Fock quality basis sets. The results for the molecular geometries and the vibrational frequencies are in good agreement with available experimental data. It is believed that the computed intensities are accurate to at least 50%. The results should be helpful in attempts to determine the stratospheric abundance of HOCl and HO2 by in situ infrared spectroscopic measurements.

  19. A low frequency MEMS vibration sensor for low power missile health monitoring

    NASA Astrophysics Data System (ADS)

    Horowitz, S. B.; Allen, M. S.; Fox, J. R.; Cortes, J. P.; Barkett, L.; Mathias, A. D.; Hernandez, C.; Martin, A. C.; Sanghadasa, M.; Marotta, S.

    This paper addresses the design, fabrication and characterization of a first-generation, low frequency MEMS vibration sensor. The sensor is designed specifically for applications requiring extremely low power vibration detection at only targeted frequencies. For development, lumped element and finite element modeling was performed, driving the design towards a realizable geometry that addresses the targeted performance specs. The sensors were microfabricated using conventional surface micromachining, sol-gel PZT (lead zirconate titanate) thin films, and bulk silicon etching techniques. The completed sensors were then characterized to determine electrical, mechanical and piezoelectric properties at the material and device level. Results demonstrate functional operation with performance close to predicted specifications.

  20. A resonant frequency switching scheme of a cantilever based on polyvinylidene fluoride for vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Jo, Sung-Eun; Kim, Myoung-Soo; Kim, Yong-Jun

    2012-01-01

    A mismatch between the ambient frequency and the resonant frequency of the vibrational energy harvester causes decrease of the energy transduction efficiency. Therefore, there is a great demand for the resonant frequency tuning of the vibrational energy harvester. In this paper, a flexible PVDF (polyvinylidene fluoride) cantilever, which can switch its resonant frequency automatically and maintain the switched resonant frequency without energy consumption, is proposed. The proposed energy harvester is composed of cantilever couples which are similar with a seesaw structure. When the proposed energy harvester is excited by an external vibration and the excited frequency fluctuates, the cantilever couples can be horizontally moved by using the large deflection of a flexible cantilever. So the beam length of each cantilever which corresponds to each arm of the seesaw structure can be changed and the resonant frequency of the proposed energy harvester can be switched in real time. The proposed energy harvester was realized by application of a piezoelectric polymer, PVDF. Also, it was confirmed that the proposed energy harvester can switch its resonant frequency in several seconds without an additional energy source.

  1. Higher-order vibrational mode frequency tuning utilizing fishbone-shaped microelectromechanical systems resonator

    NASA Astrophysics Data System (ADS)

    Suzuki, Naoya; Tanigawa, Hiroshi; Suzuki, Kenichiro

    2013-04-01

    Resonators based on microelectromechanical systems (MEMS) have received considerable attention for their applications for wireless equipment. The requirements for this application include small size, high frequency, wide bandwidth and high portability. However, few MEMS resonators with wide-frequency tuning have been reported. A fishbone-shaped resonator has a resonant frequency with a maximum response that can be changed according to the location and number of several exciting electrodes. Therefore, it can be expected to provide wide-frequency tuning. The resonator has three types of electrostatic forces that can be generated to deform a main beam. We evaluate the vibrational modes caused by each exciting electrodes by comparing simulated results with measured ones. We then successfully demonstrate the frequency tuning of the first to fifth resonant modes by using the algorithm we propose here. The resulting frequency tuning covers 178 to 1746 kHz. In addition, we investigate the suppression of the anchor loss to enhance the Q-factor. An experiment shows that tapered-shaped anchors provide a higher Q-factor than rectangular-shaped anchors. The Q-factor of the resonators supported by suspension beams is also discussed. Because the suspension beams cause complicated vibrational modes for higher frequencies, the enhancement of the Q-factor for high vibrational modes cannot be obtained here. At present, the tapered-anchor resonators are thought to be most suitable for frequency tuning applications.

  2. Centrifugal compressor modifications and their effect on high-frequency pipe wall vibration

    SciTech Connect

    Motriuk, R.W.; Harvey, D.P.

    1998-08-01

    High-frequency pulsation generated by centrifugal compressors, with pressure wave-lengths much smaller than the attached pipe diameter, can cause fatigue failures of the compressor internals, impair compressor performance, and damage the attached compressor piping. There are numerous sources producing pulsation in centrifugal compressors. Some of them are discussed in literature at large (Japikse, 1995; Niese, 1976). NGTL has experienced extreme high-frequency discharge pulsation and pipe wall vibration on many of its radial inlet high-flow centrifugal gas compressor facilities. These pulsations led to several piping attachment failures and compressor internal component failures while the compressor operated within the design envelope. This paper considers several pulsation conditions at an NGTL compression facility which resulted in unacceptable piping vibration. Significant vibration attenuation was achieved by modifying the compressor (pulsation source) through removal of the diffuser vanes and partial removal of the inlet guide vanes (IGV). Direct comparison of the changes in vibration, pulsation, and performance are made for each of the modifications. The vibration problem, probable causes, options available to address the problem, and the results of implementation are reviewed. The effects of diffuser vane removal on discharge pipe wall vibration as well as changes in compressor performance are described.

  3. Vibration Mode Observation of Piezoelectric Disk-type Resonator by High Frequency Laser Doppler Vibrometer

    NASA Astrophysics Data System (ADS)

    Matsumura, Takeshi; Esashi, Masayoshi; Harada, Hiroshi; Tanaka, Shuji

    For future mobile phones based on cognitive radio technology, a compact multi-band RF front-end architecture is strongly required and an integrated multi-band RF filter bank is a key component in it. Contour-mode resonators are receiving increased attention for a multi-band filter solution, because its resonant frequency is mainly determined by its size and shape, which are defined by lithography. However, spurious responses including flexural vibration are also excited due to its thin structure. To improve resonator performance and suppress spurious modes, visual observation with a laser probe system is very effective. In this paper, we have prototyped a mechanically-coupled disk-array filter, which consists of a Si disk and 2 disk-type resonators of higher-order wine-glass mode, and observed its vibration modes using a high-frequency laser-Doppler vibrometer (UHF-120, Polytec, Inc.). As a result, it was confirmed that higher order wine-glass mode vibration included a compound displacement, and that its out-of-plane vibration amplitude was much smaller than other flexural spurious modes. The observed vibration modes were compared with FEM (Finite Element Method) simulation results. In addition, it was also confirmed that the fabrication error, e.g. miss-alignment, induced asymmetric vibration.

  4. Piezoelectric-based power sources for harvesting energy from platforms with low-frequency vibration

    NASA Astrophysics Data System (ADS)

    Rastegar, J.; Pereira, C.; Nguyen, H.-L.

    2006-03-01

    This paper presents a new class of highly efficient piezoelectric based energy harvesting power sources for mounting on platforms that vibrate at very low frequencies as compared to the frequencies at which energy can be efficiently harvested using piezoelectric elements . These energy harvesting power sources have a very simple design and do not require accurate tuning for each application to match the frequency of the platform vibration. The developed method of harvesting mechanical energy and converting it to electrical energy overcomes problems that are usually encountered with harvesting energy from low frequency vibration of various platforms such as ships and other platforms with similar vibratory (rocking or translational) motions. Omnitek Partners has designed several such energy harvesting power sources and is in the process of constructing prototypes for testing. The developed designs are modular and can be used to construct power sources for various power requirements. The amount of mechanical energy available for harvesting is obviously dependent on the frequency and amplitude of vibration of the platform, and the size and mass of the power source.

  5. Detailed Vibration Analysis of Pinion Gear with Time-Frequency Methods

    NASA Technical Reports Server (NTRS)

    Mosher, Marianne; Pryor, Anna H.; Lewicki, David G.

    2003-01-01

    In this paper, the authors show a detailed analysis of the vibration signal from the destructive testing of a spiral bevel gear and pinion pair containing seeded faults. The vibration signal is analyzed in the time domain, frequency domain and with four time-frequency transforms: the Short Time Frequency Transform (STFT), the Wigner-Ville Distribution with the Choi-Williams kernel (WV-CW), the Continuous Wavelet' Transform (CWT) and the Discrete Wavelet Transform (DWT). Vibration data of bevel gear tooth fatigue cracks, under a variety of operating load levels and damage conditions, are analyzed using these methods. A new metric for automatic anomaly detection is developed and can be produced from any systematic numerical representation of the vibration signals. This new metric reveals indications of gear damage with all of the time-frequency transforms, as well as time and frequency representations, on this data set. Analysis with the CWT detects changes in the signal at low torque levels not found with the other transforms. The WV-CW and CWT use considerably more resources than the STFT and the DWT. More testing of the new metric is needed to determine its value for automatic anomaly detection and to develop fault detection methods for the metric.

  6. Potential low frequency ground vibration (<6.3 Hz) impacts from underground LRT operations

    NASA Astrophysics Data System (ADS)

    Wolf, S.

    2003-10-01

    Vibration sensitive research activities at the laboratories of the University of Washington (UW) Physics and Astronomy Building (PAB) were a critical issue for the design of the Sound Transit Link Light Rail LRT system in Seattle, Washington. A study was conducted to measure and predict low frequency ground vibration generated by the LRT operations. The University's concern was an on-going research experiment in gravity, which had sensitivity to vibration below 6.3 Hz. The experiment was located on an independent concrete slab in an area cut-out from the building foundation with no connection to the building structure. Another concern was the planned future construction of a Life Sciences Center with vibration sensitive test equipment. This paper presents the results of a study to estimate the ground displacement at these buildings using empirical measured data of a similar deep tunnel transit system and finite difference modelling analysis.

  7. Frequency weighting for vibration-induced white finger compatible with exposure-response models.

    PubMed

    Brammer, Anthony J; Pitts, Paul M

    2012-01-01

    An analysis has been performed to derive a frequency weighting for the development of vibration-induced white finger (VWF). It employs a model to compare health risks for pairs of population groups that are selected to have similar health outcomes from operating power tools or machines with markedly different acceleration spectra (rock drills, chain saws, pavement breakers and motorcycles). The model defines the Relative Risk, RR(f(trial)), which is constructed from the ratio of daily exposures and includes a trial frequency weighting that is applied to the acceleration spectra. The trial frequency weighting consists of a frequency-independent primary frequency range, and subordinate frequency ranges in which the response to vibration diminishes, with cut-off frequencies that are changed to influence the magnitude of RR(f(trial)). The frequency weighting so derived when RR(f(trial)) = 1 is similar to those obtained by other methods (W(hf), W(hT)). It consists of a frequency independent range from about 25 Hz to 500 Hz (-3 dB frequencies), with an amplitude cut-off rate of 12 dB/octave below 25 Hz and above 500 Hz. The range is compatible with studies of vasoconstriction in persons with VWF. The results provide further evidence that the ISO frequency weighting may be inappropriate for assessing the risk of developing VWF. PMID:23060253

  8. Equivalent damping and frequency change for linear and nonlinear hybrid vibrational energy harvesting systems

    NASA Astrophysics Data System (ADS)

    Karami, M. Amin; Inman, Daniel J.

    2011-11-01

    A unified approximation method is derived to illustrate the effect of electro-mechanical coupling on vibration-based energy harvesting systems caused by variations in damping ratio and excitation frequency of the mechanical subsystem. Vibrational energy harvesters are electro-mechanical systems that generate power from the ambient oscillations. Typically vibration-based energy harvesters employ a mechanical subsystem tuned to resonate with ambient oscillations. The piezoelectric or electromagnetic coupling mechanisms utilized in energy harvesters, transfers some energy from the mechanical subsystem and converts it to an electric energy. Recently the focus of energy harvesting community has shifted toward nonlinear energy harvesters that are less sensitive to the frequency of ambient vibrations. We consider the general class of hybrid energy harvesters that use both piezoelectric and electromagnetic energy harvesting mechanisms. Through using perturbation methods for low amplitude oscillations and numerical integration for large amplitude vibrations we establish a unified approximation method for linear, softly nonlinear, and bi-stable nonlinear energy harvesters. The method quantifies equivalent changes in damping and excitation frequency of the mechanical subsystem that resembles the backward coupling from energy harvesting. We investigate a novel nonlinear hybrid energy harvester as a case study of the proposed method. The approximation method is accurate, provides an intuitive explanation for backward coupling effects and in some cases reduces the computational efforts by an order of magnitude.

  9. Study of electromagnetic vibration energy harvesting with free/impact motion for low frequency operation

    NASA Astrophysics Data System (ADS)

    Haroun, Ahmed; Yamada, Ichiro; Warisawa, Shin`ichi

    2015-08-01

    This paper presents study of an electromagnetic vibration energy harvesting configuration that can work effectively at low frequencies. Unlike the conventional form of vibration energy harvesters in which the mass is directly connected to a vibrating frame with spring suspension, in the proposed configuration a permanent magnet mass is allowed to move freely within a certain distance inside a frame-carrying coil and make impacts with spring end stops. The free motion distance allows matching lower vibration frequencies with an increase in the relative amplitude at resonance. Hence, significant power could be generated at low frequencies. A nonlinear mathematical model including impact and electromagnetic induction is derived. Study of the dynamic behaviour and investigation of the system performance is carried out with the aid of case study simulation. The proposed harvester shows a unique dynamic behaviour in which different ways of response of the internal relative oscillation appear over the range of input frequencies. A mathematical condition for the response type at which the higher relative amplitude appears is derived, followed by an investigation of the system resonant frequency and relative amplitude. The resonant frequency shows a dependency on the free motion distance as well as the utilized mass and spring stiffness. Simulation and experimental comparisons are carried out between the proposed harvester and similar conventional one tuned at the same input frequency. The power generated by the proposed harvesting configuration can reach more than 12 times at 11 Hz in the simulation case and about 10 times at 10 Hz in the experimental case. Simulation comparison also shows that this power magnification increases by matching lower frequencies which emphasize the advantages of the proposed configuration for low frequency operation.

  10. Vocal fold vibrations at high soprano fundamental frequencies.

    PubMed

    Echternach, Matthias; Döllinger, Michael; Sundberg, Johan; Traser, Louisa; Richter, Bernhard

    2013-02-01

    Human voice production at very high fundamental frequencies is not yet understood in detail. It was hypothesized that these frequencies are produced by turbulences, vocal tract/vocal fold interactions, or vocal fold oscillations without closure. Hitherto it has been impossible to visually analyze the vocal mechanism due to technical limitations. Latest high-speed technology, which captures 20,000 frames/s, using transnasal endoscopy was applied. Up to 1568 Hz human vocal folds do exhibit oscillations with complete closure. Therefore, the recent results suggest that human voice production at very high F0s up to 1568 Hz is not caused by turbulence, but rather by airflow modulation from vocal fold oscillations. PMID:23363198

  11. Distributed vibration sensing with time-resolved optical frequency-domain reflectometry.

    PubMed

    Zhou, Da-Peng; Qin, Zengguang; Li, Wenhai; Chen, Liang; Bao, Xiaoyi

    2012-06-01

    The distributed vibration or dynamic strain information can be obtained using time-resolved optical frequency-domain reflectometry. Time-domain information is resolved by measuring Rayleigh backscatter spectrum in different wavelength ranges which fall in successive time sequence due to the linear wavelength sweep of the tunable laser source with a constant sweeping rate. The local Rayleigh backscatter spectrum shift of the vibrated state with respect to that of the non-vibrated state in time sequence can be used to determine dynamic strain information at a specific position along the fiber length. Standard single-mode fibers can be used as sensing head, while the measurable frequency range of 0-32 Hz with the spatial resolution of 10 cm can be achieved up to the total length of 17 m. PMID:22714342

  12. Application of analysis techniques for low frequency interior noise and vibration of commercial aircraft

    NASA Technical Reports Server (NTRS)

    Landmann, A. E.; Tillema, H. F.; Macgregor, G. R.

    1992-01-01

    Finite element analysis (FEA), statistical energy analysis (SEA), and a power flow method (computer program PAIN) were used to assess low frequency interior noise associated with advanced propeller installations. FEA and SEA models were used to predict cabin noise and vibration and evaluate suppression concepts for structure-borne noise associated with the shaft rotational frequency and harmonics (less than 100 Hz). SEA and PAIN models were used to predict cabin noise and vibration and evaluate suppression concepts for airborne noise associated with engine radiated propeller tones. Both aft-mounted and wing-mounted propeller configurations were evaluated. Ground vibration test data from a 727 airplane modified to accept a propeller engine were used to compare with predictions for the aft-mounted propeller. Similar data from the 767 airplane was used for the wing-mounted comparisons.

  13. The Possible Interstellar Anion CH2CN-: Spectroscopic Constants, Vibrational Frequencies, and Other Considerations

    NASA Technical Reports Server (NTRS)

    Fortenberry, Ryan C.; Crawford, T. Daniel; Lee, Timothy J.

    2012-01-01

    The A 1B1 <-1A0 excitation into the dipole-bound state of the cyanomethyl anion (CH2CN??) has been hypothesized as the carrier for one di use interstellar band. However, this particular molecular system has not been detected in the interstellar medium even though the related cyanomethyl radical and the isoelectronic ketenimine molecule have been found. In this study we are employing the use of proven quartic force elds and second-order vibrational perturbation theory to compute accurate spectroscopic constants and fundamental vibrational frequencies for X 1A0 CH2CN?? in order to assist in laboratory studies and astronomical observations. Keywords: Astrochemistry, ISM: molecular anions, Quartic force elds, Rotational constants, Vibrational frequencies

  14. Note: A component-level frequency tunable isolator for vibration-sensitive chips using SMA beams

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyong; Ding, Xin; Wu, Di; Qi, Junlei; Wang, Ruixin; Lu, Siwei; Yan, Xiaojun

    2016-06-01

    This note presents a component-level frequency tunable isolator for vibration-sensitive chips. The isolator employed 8 U-shaped shape memory alloy (SMA) beams to support an isolation island (used for mounting chips). Due to the temperature-induced Young's modulus variation of SMA, the system stiffness of the isolator can be controlled through heating the SMA beams. In such a way, the natural frequency of the isolator can be tuned. A prototype was fabricated to evaluate the concept. The test results show that the natural frequency of the isolator can be tuned in the range of 64 Hz-97 Hz by applying different heating strategies. Moreover, resonant vibration can be suppressed significantly (the transmissibility decreases about 65% near the resonant frequency) using a real-time tuning method.

  15. Note: A component-level frequency tunable isolator for vibration-sensitive chips using SMA beams.

    PubMed

    Zhang, Xiaoyong; Ding, Xin; Wu, Di; Qi, Junlei; Wang, Ruixin; Lu, Siwei; Yan, Xiaojun

    2016-06-01

    This note presents a component-level frequency tunable isolator for vibration-sensitive chips. The isolator employed 8 U-shaped shape memory alloy (SMA) beams to support an isolation island (used for mounting chips). Due to the temperature-induced Young's modulus variation of SMA, the system stiffness of the isolator can be controlled through heating the SMA beams. In such a way, the natural frequency of the isolator can be tuned. A prototype was fabricated to evaluate the concept. The test results show that the natural frequency of the isolator can be tuned in the range of 64 Hz-97 Hz by applying different heating strategies. Moreover, resonant vibration can be suppressed significantly (the transmissibility decreases about 65% near the resonant frequency) using a real-time tuning method. PMID:27370507

  16. Accurate calculation of vibrational frequencies using explicitly correlated coupled-cluster theory.

    PubMed

    Rauhut, Guntram; Knizia, Gerald; Werner, Hans-Joachim

    2009-02-01

    The recently proposed explicitly correlated CCSD(T)-F12x (x = a,b) approximations [T. B. Adler, G. Knizia, and H.-J. Werner, J. Chem. Phys. 127, 221106 (2007)] are applied to compute equilibrium structures and harmonic as well as anharmonic vibrational frequencies for H(2)O, HCN, CO(2), CH(2)O, H(2)O(2), C(2)H(2), CH(2)NH, C(2)H(2)O, and the trans-isomer of 1,2-C(2)H(2)F(2). Using aug-cc-pVTZ basis sets, the CCSD(T)-F12a equilibrium geometries and harmonic vibrational frequencies are in very close agreement with CCSD(T)/aug-cc-pV5Z values. The anharmonic frequencies are evaluated using vibrational self-consistent field and vibrational configuration interaction methods based on automatically generated potential energy surfaces. The mean absolute deviation of the CCSD(T)-F12a/aug-cc-pVTZ anharmonic frequencies from experimental values amounts to only 4.0 cm(-1). PMID:19206956

  17. Low frequency internal vibrations of norbornane and its derivatives studied by IINS and quantum chemistry calculations

    SciTech Connect

    Holderna-Natkaniec, K.; Natkaniec, I.; Khavryutchenko, V. D.

    1999-06-15

    The observed and calculated INS vibrational densities of states for globular molecules of norbornane, norborneole and borneole are compared in the frequency range up to 600 cm{sup -1}. Inelastic incoherent neutron scattering (IINS) spectra were measured at ca. 20 K on the high resolution NERA spectrometer at the IBR-2 pulsed reactor. The IINS intensities were calculated by semi-empirical quantum chemistry method and the assignments of the low-frequency internal modes were proposed.

  18. Stiffness nonlinearity as a means for resonance frequency tuning and enhancing mechanical robustness of vibration power harvesters

    NASA Astrophysics Data System (ADS)

    Loverich, J.; Geiger, R.; Frank, J.

    2008-03-01

    This paper addresses a particular type of power harvesting in which energy in the periodic movement of structures is parasitically converted to stored electric charge. In such applications, tuning of the vibration power harvesters' resonance frequency is often required to match the host structures' forcing frequency. This paper presents a method of adjusting the boundary conditions of nonlinear stiffness elements as a means of tuning the resonance frequency of piezoelectric vibration power harvesters (altering the deformation mode from bending to in-plane stretching). Using this tuning method, the resonance frequency was experimentally varied between 56 and 62 Hz. For a vibration level of 2 mm/s, the harvester has a similar Q to a linear system but its Q is reduced by one third at a vibration level of 10 mm/s. This behavior is important for applications where high sensitivity is required for low vibration levels but mechanical robustness is required for high vibration levels.

  19. Vibrational frequency shifts of fluid nitrogen fundamental and hot band transitions as a function of pressure and temperature

    SciTech Connect

    Schmidt, S.C.; Schiferl, D.; Zinn, A.S.; Ragan, D.D.; Moore, D.S.

    1989-01-01

    Coherent anti-Stokes Raman scattering (CARS) and spontaneous Raman spectroscopy have been used to obtain vibrational spectra of shock-compressed and static high-pressure fluid nitrogen, respectively. Vibrational frequencies were obtained from the CARS data using a semiclassical model for these spectra. Spontaneous Raman vibrational frequencies were determined by fitting data using a Lorentz shape line. A functional form was found for the dependence of the vibrational frequency on pressure and temperature to 40 GPa and 5000 K, respectively. The result is compared to a recent theoretical model. 6 refs., 2 figs., 1 tab.

  20. Application of frequency spectrum analysis in measuring multi-vibrations by using POTDR

    NASA Astrophysics Data System (ADS)

    Wang, Xiangchuan; Zhang, Xuping; Wang, Feng; Chen, Mengmeng; Li, Cunlei

    2011-11-01

    The technology of Polarization Optical Time Domain Reflectometer (POTDR) can be used to obtain the external events' information by measuring the change of state of polarization (SOP) of the Rayleigh backscattering in fiber. When the fiber is disturbed at two different positions simultaneously, we analyze the frequency spectrums of the change of Rayleigh backscattering light which are obtained by POTDR theoretically for ideal fiber, and by numerical simulation for single mode fibers. We find that the frequency spectrums between the first and second events contain the first vibration's frequency and its frequency multiplication. The frequency components of the spectrums after the second event are the linear combination of the first and the second events' frequencies. So we can obtain the location and the frequency information of the two events by analyzing the frequency spectrums. In addition, the frequency distribution in the frequency spectrums from different positions are different because of the different initial SOPs at different positions. So all the actual frequency information can not be obtained from only one frequency spectrum. We add up the frequency spectrums from the positions within a beat length to obtain the perturbation's frequency and the method can reduce the misdiagnosis rate because the sum of the frequency spectrums contains all the initial SOP within a beat length.

  1. Eulerian frequency analysis of structural vibrations from high-speed video

    NASA Astrophysics Data System (ADS)

    Venanzoni, Andrea; De Ryck, Laurent; Cuenca, Jacques

    2016-06-01

    An approach for the analysis of the frequency content of structural vibrations from high-speed video recordings is proposed. The techniques and tools proposed rely on an Eulerian approach, that is, using the time history of pixels independently to analyse structural motion, as opposed to Lagrangian approaches, where the motion of the structure is tracked in time. The starting point is an existing Eulerian motion magnification method, which consists in decomposing the video frames into a set of spatial scales through a so-called Laplacian pyramid [1]. Each scale - or level - can be amplified independently to reconstruct a magnified motion of the observed structure. The approach proposed here provides two analysis tools or pre-amplification steps. The first tool provides a representation of the global frequency content of a video per pyramid level. This may be further enhanced by applying an angular filter in the spatial frequency domain to each frame of the video before the Laplacian pyramid decomposition, which allows for the identification of the frequency content of the structural vibrations in a particular direction of space. This proposed tool complements the existing Eulerian magnification method by amplifying selectively the levels containing relevant motion information with respect to their frequency content. This magnifies the displacement while limiting the noise contribution. The second tool is a holographic representation of the frequency content of a vibrating structure, yielding a map of the predominant frequency components across the structure. In contrast to the global frequency content representation of the video, this tool provides a local analysis of the periodic gray scale intensity changes of the frame in order to identify the vibrating parts of the structure and their main frequencies. Validation cases are provided and the advantages and limits of the approaches are discussed. The first validation case consists of the frequency content

  2. Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS)

    SciTech Connect

    Zhang, Libing; Lu, Zhou; Velarde, Luis; Fu, Li; Pu, Yunqiao; Ding, Shi-You; Ragauskas, Arthur; Wang, Hong-Fei; Yang, Bin

    2015-03-03

    Both the C–H and O–H region spectra of crystalline cellulose were studied using the sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) for the first time. The resolution of HR-BB-SFG-VS is about 10-times better than conventional scanning SFG-VS and has the capability of measuring the intrinsic spectral lineshape and revealing many more spectral details. With HR-BB-SFG-VS, we found that in cellulose samples from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the O–H region were unique for the two allomorphs, i.e. Iα and Iβ, while the spectral signatures in the C–H regions varied in all samples examined. Even though the origin of the different spectral signatures of the crystalline cellulose in the O–H and C–H vibrational frequency regions are yet to be correlated to the structure of cellulose, these results lead to new spectroscopic methods and opportunities to classify and to understand the basic crystalline structures, as well as variations in polymorphism of the crystalline cellulose.

  3. Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS)

    DOE PAGESBeta

    Zhang, Libing; Lu, Zhou; Velarde, Luis; Fu, Li; Pu, Yunqiao; Ding, Shi-You; Ragauskas, Arthur; Wang, Hong-Fei; Yang, Bin

    2015-03-03

    Both the C–H and O–H region spectra of crystalline cellulose were studied using the sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) for the first time. The resolution of HR-BB-SFG-VS is about 10-times better than conventional scanning SFG-VS and has the capability of measuring the intrinsic spectral lineshape and revealing many more spectral details. With HR-BB-SFG-VS, we found that in cellulose samples from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the O–H region were unique for the two allomorphs, i.e. Iα and Iβ, while the spectral signaturesmore » in the C–H regions varied in all samples examined. Even though the origin of the different spectral signatures of the crystalline cellulose in the O–H and C–H vibrational frequency regions are yet to be correlated to the structure of cellulose, these results lead to new spectroscopic methods and opportunities to classify and to understand the basic crystalline structures, as well as variations in polymorphism of the crystalline cellulose.« less

  4. Vibrational Spectral Signatures of Crystalline Cellulose Using High Resolution Broadband Sum Frequency Generation Vibrational Spectroscopy (HR-BB-SFG-VS)

    SciTech Connect

    Zhang, Libing; Lu, Zhou; Velarde Ruiz Esparza, Luis A.; Fu, Li; Pu, Yunqiao; Ding, Shi-You; Ragauskas, Art J.; Wang, Hongfei; Yang, Bin

    2015-03-03

    Here we reported the first sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) study on both the C-H and O-H region spectra of crystalline cellulose. HR-BB-SFG-VS has about 10 times better resolution than the conventional scanning SFG-VS and is known to be able to measure the intrinsic spectral lineshape and to resolve much more spectral details. With HR-BB-SFG-VS, we found that in cellulose from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the OH regions were unique for different allomorphs, i.e. Iα and Iβ, while the spectral signatures in the C-H regions varied in all samples examined. Even though the origin of the different behaviors of the crystalline cellulose in the O-H and C-H vibrational frequency regions is yet to be correlated to the structure of cellulose, these results provided new spectroscopic methods and opportunities to classify and understand the basic crystalline structure, as well as variations, in polymorphism of the crystalline cellulose structure.

  5. A hybrid electromagnetic energy harvesting device for low frequency vibration

    NASA Astrophysics Data System (ADS)

    Jung, Hyung-Jo; Kim, In-Ho; Min, Dong Yi; Sim, Sung-Han; Koo, Jeong-Hoi

    2013-04-01

    An electromagnetic energy harvesting device, which converts a translational base motion into a rotational motion by using a rigid bar having a moving mass pivoted on a hinged point with a power spring, has been recently developed for use of civil engineering structures having low natural frequencies. The device utilizes the relative motion between moving permanent magnets and a fixed solenoid coil in order to harvest electrical power. In this study, the performance of the device is enhanced by introducing a rotational-type generator at a hinged point. In addition, a mechanical stopper, which makes use of an auxiliary energy harvesting part to further improve the efficiency, is incorporated into the device. The effectiveness of the proposed hybrid energy harvesting device based on electromagnetic mechanism is verified through a series of laboratory tests.

  6. Temperature dependence of vibrational frequency fluctuation of N3- in D2O

    NASA Astrophysics Data System (ADS)

    Tayama, Jumpei; Ishihara, Akane; Banno, Motohiro; Ohta, Kaoru; Saito, Shinji; Tominaga, Keisuke

    2010-07-01

    We have studied the temperature dependence of the vibrational frequency fluctuation of the antisymmetric stretching mode of N3- in D2O by three-pulse infrared (IR) photon echo experiments. IR pump-probe measurements were also carried out to investigate the population relaxation and the orientational relaxation of the same band. It was found that the time-correlation function (TCF) of the frequency fluctuation of this mode is well described by a biexponential function with a quasistatic term. The faster decay component has a time constant of about 0.1 ps, and the slower component varies from 1.4 to 1.1 ps in the temperature range from 283 to 353 K. This result indicates that liquid dynamics related to the frequency fluctuation are not highly sensitive to temperature. We discuss the relationship between the temperature dependence of the vibrational frequency fluctuation and that of the molecular motion of the system to investigate the molecular origin of the frequency fluctuation of the solute. We compare the temperature dependence of the frequency fluctuation with that of other dynamics such as dielectric relaxation of water. In contrast to the Debye dielectric relaxation time of D2O, the two time constants of the TCF of the frequency fluctuation do not exhibit strong temperature dependence. We propose a simple theoretical model for the frequency fluctuation in solutions based on perturbation theory and the dipole-dipole interaction between the vibrational mode of the solute and the solvent molecules. This model suggests that the neighboring solvent molecules in the vicinity of the solute play an important role in the frequency fluctuation. We suggest that the picosecond component of the frequency fluctuation results from structural fluctuation of the hydrogen-bonding network in water.

  7. Improving harmonic vibrational frequencies calculations in density functional theory

    NASA Astrophysics Data System (ADS)

    Stratmann, R. Eric; Burant, John C.; Scuseria, Gustavo E.; Frisch, Michael J.

    1997-06-01

    Using a previously introduced weight scheme, microbatching, and grid compression [R. E. Stratmann, G. E. Scuseria and M. J. Frisch, Chem. Phys. Lett. 257, 213 (1996)], we significantly speed up the numerical integration of the exchange-correlation contribution to the Coupled-Perturbed Kohn-Sham equations. In addition, we find that the nature of the integrand is such that it is possible to employ substantially fewer grid points in the quadrature and to use the Gaussian very Fast Multipole Method (GvFMM) with very short multipole expansions for the Coulomb contribution, with negligible loss in accuracy. As a representative example, the computational demand for the exchange-correlation portion of a coronene (C24H12) frequency calculation with a 3-21G basis is reduced by more than one order of magnitude. The overall speed up achieved in this calculation is between a factor of 4 to 6, depending on the specific functional. We also present sample calculations using polarized bases, gradient-corrected functionals, and on even larger systems (C54H18 and C96H24), to illustrate the various effects and improvements that we have accomplished.

  8. Two-dimensional resonance frequency tuning approach for vibration-based energy harvesting

    NASA Astrophysics Data System (ADS)

    Dong, Lin; Prasad, M. G.; Fisher, Frank T.

    2016-06-01

    Vibration-based energy harvesting seeks to convert ambient vibrations to electrical energy and is of interest for, among other applications, powering the individual nodes of wireless sensor networks. Generally it is desired to match the resonant frequencies of the device to the ambient vibration source to optimize the energy harvested. This paper presents a two-dimensionally (2D) tunable vibration-based energy harvesting device via the application of magnetic forces in two-dimensional space. These forces are accounted for in the model separately, with the transverse force contributing to the transverse stiffness of the system while the axial force contributes to a change in axial stiffness of the beam. Simulation results from a COMSOL magnetostatic 3D model agree well with the analytical model and are confirmed with a separate experimental study. Furthermore, analysis of the three possible magnetization orientations between the fixed and tuning magnets shows that the transverse parallel magnetization orientation is the most effective with regards to the proposed 2D tuning approach. In all cases the transverse stiffness term is in general significantly larger than the axial stiffness contribution, suggesting that from a tuning perspective it may be possible to use these stiffness contributions for coarse and fine frequency tuning, respectively. This 2D resonant frequency tuning approach extends earlier 1D approaches and may be particularly useful in applications where space constraints impact the available design space of the energy harvester.

  9. Vibrational frequencies associated with the carbide ligand in iron butterfly clusters

    SciTech Connect

    Stanghellini, P.L.; Sailor, M.J.; Kuznesof, P.; Whitmire, K.H.; Hriljac, J.A.; Kolis, J.W.; Zheng, Y.; Shriver, D.F.

    1987-09-09

    The vibrational frequencies associated with the exposed carbon atom in several tetranuclear iron carbide clusters with a butterfly arrangement of atoms were investigated by infrared and Raman spectroscopy. Vibrational assignments were confirmed in most cases by /sup 13/C labeling of the carbide carbon atom. The characteristic feature of the iron butterfly carbides is a readily observed band in the infrared spectrum around 900 cm/sup -1/. An approximate normal-coordinate analysis on these molecules yields values of the metal-carbon force constant of about 250 N m/sup -1/. 29 references, 6 figures, 5 tables.

  10. Piezoelectric Instruments of High Natural Frequency Vibration Characteristics and Protection Against Interference by Mass Forces

    NASA Technical Reports Server (NTRS)

    Gohlka, Werner

    1943-01-01

    The exploration of the processes accompanying engine combustion demands quick-responding pressure-recording instruments, among which the piezoelectric type has found widespread use because of its especially propitious properties as vibration-recording instruments for high frequencies. Lacking appropriate test methods, the potential errors of piezoelectric recorders in dynamic measurements could only be estimated up to now. In the present report a test method is described by means of which the resonance curves of the piezoelectric pickup can be determined; hence an instrumental appraisal of the vibration characteristics of piezoelectric recorders is obtainable.

  11. Quantitative Sum-Frequency Generation Vibrational Spectroscopy of Molecular Surfaces and Interfaces: Lineshape, Polarization and Orientation

    SciTech Connect

    Wang, Hongfei; Velarde, Luis; Gan, Wei; Fu, Li

    2015-04-01

    Sum-frequency generation vibrational spectroscopy (SFG) can provide detailed information and understanding of molecular vibrational spectroscopy, orientational and conformational structure, and interactions of molecular surfaces and interfaces, through quantitative measurement and analysis. In this review, we present the current status and discuss the main developments on the measurement of intrinsic SFG spectral lineshape, formulations for polarization measurement and orientation analysis of the SFG-VS spectra. The main focus is to present a coherent formulation and discuss the main concepts or issues that can help to make SFG-VS a quantitative analytical and research tool in revealing the chemistry and physics of complex molecular surface and interface.

  12. Influence of low-frequency vibration on changes of biochemical parameters of living rats

    NASA Astrophysics Data System (ADS)

    Kasprzak, Cezary; Damijan, Zbigniew; Panuszka, Ryszard

    2001-05-01

    The aim of the research was to investigate how some selected biochemical parameters of living rats depend on exposure of low-frequency vibrations. Experiments were run on 30 Wistar rats randomly segregated into three groups: (I) 20 days old (before puberty), (II) 70th day after; (III) control group. The exposure was repeated seven times, for 3 h, at the same time of day. Vibrations applied during the first tests of the experiment had acceleration 1.22 m/s2 and frequency 20 Hz. At the 135th day the rats' bones were a subject of morphometric/biochemical examination. The results of biochemical tests proved decrease in LDL and HDL cholesterol levels for exposed rats as well as the Ca contents in blood plasma. There was evident increasing of Ca in blood plasma in exposed rats for frequency of exposition.

  13. Use of chaotic and random vibrations to generate high frequency test inputs

    SciTech Connect

    Gregory, D. L.; Paez, T. L.

    1990-01-01

    This paper and a companion paper show the traditional limits on amplitude and frequency that can be generated in a laboratory test on a vibration exciter can be substantially extended. This is accomplished by attaching a device to the shaker that permits controlled metal to metal impacts that generate high frequency, high acceleration environment on a test surface. A companion paper (Reference 1) shows that a sinusoidal or random shaker input can be used to generate a random vibration environment on the test surface. This paper derives the three response components that occur on the test surface due to an impact on the bottom surface and the base driven response from the shaker input. These response components are used to generate impulse response functions and frequency response functions which are used in the companion paper to derive power spectral density functions for the overall response. 9 refs., 8 figs.

  14. Low frequency collective vibrational spectra of zwitterionic glycine studied by DFT

    NASA Astrophysics Data System (ADS)

    Ma, Shi Hua; Chen, Hua; Cui, Yi Ping

    2012-12-01

    Fourier transform infrared spectrometer and THz-TDS were used to obtain the experimental spectrum of glycine below 600 cm-1, and theoretical results of one or more zwitterionic glycine were calculated by DFT at the basis set of b31yp 6- 31+g(d,p) level based on Gaussian 03 software package in FIR region. There is more reasonable qualitative agreement between the calculated data of crystalline and observed line positions. Detailed assignments of the observed vibrational frequencies are discussed and the origins of some frequencies are analyzed by contrast. The low frequency collective mode of zwitterionic glycine is affected greatly by the intermolecular interaction and hydrogen-bonding effects and their vibrational modes are collective motion.

  15. Low-frequency band gap mechanism of torsional vibration of lightweight elastic metamaterial shafts

    NASA Astrophysics Data System (ADS)

    Li, Lixia; Cai, Anjiang

    2016-07-01

    In this paper, the low-frequency band gap mechanism of torsional vibration is investigated for a kind of light elastic metamaterial (EM) shafts architecture comprised of a radial double-period element periodically as locally resonant oscillators with low frequency property. The dispersion relations are calculated by a method combining the transfer matrix and a lumped-mass method. The theoretical results agree well with finite method simulations, independent of the density of the hard material ring. The effects of the material parameters on the band gaps are further explored numerically. Our results show that in contrast to the traditional EM shaft, the weight of our proposed EM shaft can be reduced by 27% in the same band gap range while the vibration attenuation is kept unchanged, which is very convenient to instruct the potential engineering applications. Finally, the band edge frequencies of the lower band gaps for this light EM shaft are expressed analytically using physical heuristic models.

  16. Spectrum of vibrational frequencies of crystalline tungsten at temperatures of 293 and 2400 K

    NASA Astrophysics Data System (ADS)

    Semenov, V. A.; Dubovsky, O. A.; Orlov, A. V.; Savostin, D. V.; Sudarev, V. V.

    2014-01-01

    The slow neutron inelastic scattering spectra for a refractory ( T melt = 3680 K) Group VI transition metal of the Periodic Table, namely, tungsten, were measured for the first time in the range from room temperature to 2400 K. Measurements of the neutron scattering spectra of tungsten were performed on a DIN-2PI time-of-flight spectrometer installed at the IBR-2 reactor (Dubna, Russia). The sample was heated in a TS3000 K high-temperature thermostat. The spectrum of vibrational frequencies of the crystal lattice of tungsten at temperatures of 293 and 2400 K was determined from the measured neutron scattering spectra by the iterative method. A softening of the frequency spectrum of tungsten was observed with increasing temperature. This was explained by the increasing role of vibrational anharmonicity effects at high temperatures. The experimental results were compared with model calculations of the frequency spectrum of tungsten.

  17. Coupled analysis of multi-impact energy harvesting from low-frequency wind induced vibrations

    NASA Astrophysics Data System (ADS)

    Zhu, Jin; Zhang, Wei

    2015-04-01

    Energy need from off-grid locations has been critical for effective real-time monitoring and control to ensure structural safety and reliability. To harvest energy from ambient environments, the piezoelectric-based energy-harvesting system has been proven very efficient to convert high frequency vibrations into usable electrical energy. However, due to the low frequency nature of the vibrations of civil infrastructures, such as those induced from vehicle impacts, wind, and waves, the application of a traditional piezoelectric-based energy-harvesting system is greatly restrained since the output power drops dramatically with the reduction of vibration frequencies. This paper focuses on the coupled analysis of a proposed piezoelectric multi-impact wind-energy-harvesting device that can effectively up-convert low frequency wind-induced vibrations into high frequency ones. The device consists of an H-shape beam and four bimorph piezoelectric cantilever beams. The H-shape beam, which can be easily triggered to vibrate at a low wind speed, is originated from the first Tacoma Narrows Bridge, which failed at wind speeds of 18.8 m s-1 in 1940. The multi-impact mechanism between the H-shape beam and the bimorph piezoelectric cantilever beams is incorporated to improve the harvesting performance at lower frequencies. During the multi-impact process, a series of sequential impacts between the H-shape beam and the cantilever beams can trigger high frequency vibrations of the cantilever beams and result in high output power with a considerably high efficiency. In the coupled analysis, the coupled structural, aerodynamic, and electrical equations are solved to obtain the dynamic response and the power output of the proposed harvesting device. A parametric study for several parameters in the coupled analysis framework is carried out including the external resistance, wind speed, and the configuration of the H-shape beam. The average harvested power for the piezoelectric cantilever

  18. INDIVIDUAL OPTIMAL FREQUENCY IN WHOLE BODY VIBRATION: EFFECT OF PROTOCOL, JOINT ANGLE AND FATIGUING EXERCISE.

    PubMed

    Carlucci, Flaminia; Felici, Francesco; Piccinini, Alberto; Haxhi, Jonida; Sacchetti, Massimo

    2013-04-12

    Recent studies have shown the importance of individualizing the vibration intervention in order to produce greater effects on the neuromuscular system in less time. The purpose of this study was to assess theindividualoptimalvibration frequency (O.V.F.)corresponding to the highestmuscle activation (RMSmax) duringvibrationat differentfrequencies, comparing different protocols. Twenty-nine university students underwent 3 Continuous (C) and 2 Random (R) different vibrating protocols, maintaining a squat position on a vibration platform. The C protocol lasted 50 seconds and involved the succession of ascending frequencies from 20 to 55 Hz, every 5 seconds. The same protocol was performed twice, having the knee angle at 120° (C) and 90° (C90), in order to assess the effect of joint angle, and after a fatiguing squatting exercise (CF) to evaluate the influence of fatigue on O.V.F. assessment. In therandomprotocols vibration time was 20 seconds with a 2-minute (R2) and a 4-minute (R4) pauses between tested frequencies. Muscle activation and O.V.F. values did not differ significantly in the C, R2 and R4 protocols. RMSmax was higher in C90 (p< 0.001) and in CF (p = 0.04) compared to the Cprotocol. Joint angle and fatiguing exercise had no effect on optimalvibration frequency. In conclusion, the shorter C protocol produced similar myoelectrical activity in the R2 and the R4 protocols and therefore could be equally valid in identifying the O.V.F. with considerable time efficiency. Knee joint angle and fatiguing exercise had an effect on sEMG response during vibration but did not affect significantly O.V.F. identification. PMID:23588483

  19. Occurrence of fatigue induced by a whole-body vibration session is not frequency dependent.

    PubMed

    Raphael, Zory F; Wesley, Aulbrook; Daniel, Keir A; Olivier, Serresse

    2013-09-01

    The aim of this study was to determine whether neuromuscular adaptations (magnitude and location) induced by isometric exercise performed on an oscillating platform are dependent on whole-body vibration (WBV) frequency. Eleven young men performed 4 separate fatigue sessions of static squatting exercise at 3 frequencies of WBV (V20, V40, and V60) and 1 session without vibration (V0). Isometric torque and electromyographic activity of the vastus lateralis, rectus femoris, and biceps femoris were recorded during maximal voluntary and evoked contractions of the knee extensor muscles before and after each fatigue session to examine both peripheral and central adaptations. Isometric torque decreased significantly after each of the 4 frequency sessions (V0: -9.4 ± 6.1%, p = 0.003; V20: -8.1 ± 9.9%, p = 0.010; V40: -11.9 ± 12.7%, p = 0.011; and V60: -7.8 ± 9.2%, p = 0.001, respectively), but this reduction was not significantly different between frequencies. The torque produced by evoked contraction significantly decreased from pre-exercise values after each session (V0: -14.9 ± 15.6%, p = 0.012; V20: -15.8 ± 16.4%, p = 0.010; V40: -21.0 ± 14.3%, p = 0.004; and V60: -17.3 ± 11.6%, p = 0.005, respectively); however, there was no effect of vibration frequency. In both conditions, the maximal voluntary contraction torque reduction observed was mainly attributable to peripheral fatigue and was not because of central modifications of the neuromuscular system. The present study demonstrates that the frequency of vibration does not significantly influence the magnitude and location of neuromuscular fatigue, suggesting that adding WBV to static squat exercise (on a vertically oscillating platform) does not provide an additional training stimulus. PMID:23249822

  20. Experimental research on anti-vibration interferometry based on time-frequency-domain analysis

    NASA Astrophysics Data System (ADS)

    Hu, Yao; Hao, Qun; Zhang, Fanghua; Tian, Yuhan

    2013-10-01

    Phase-shifting interferometry is a non-contact precision precise measuring method for optical surface, but it is highly sensitive to external vibrations. A time-and-frequency-domain (TFD) anti-noise phase-shifting interferometry is proposed to eliminate the effect of vibrations and improve the precision of measurement. According to simulations and preliminary experiments, active phase-shifting speed as well as interferogram capture speed should be increased to improve the anti-vibration capability of the TFD method. In this paper, a fast phase-shifting approach based on PZT actuator and interferogram detection with high-speed camera is proposed. Preliminary experimental results are given to demonstrate the approach.

  1. Frontside-micromachined planar piezoresistive vibration sensor: Evaluating performance in the low frequency test range

    SciTech Connect

    Zhang, Lan; Lu, Jian Takagi, Hideki; Maeda, Ryutaro

    2014-01-15

    Using a surface piezoresistor diffusion method and front-side only micromachining process, a planar piezoresistive vibration sensor was successfully developed with a simple structure, lower processing cost and fewer packaging difficulties. The vibration sensor had a large sector proof mass attached to a narrow flexure. Optimization of the boron diffusion piezoresistor placed on the edge of the narrow flexure greatly improved the sensitivity. Planar vibration sensors were fabricated and measured in order to analyze the effects of the sensor dimensions on performance, including the values of flexure width and the included angle of the sector. Sensitivities of fabricated planar sensors of 0.09–0.46 mV/V/g were measured up to a test frequency of 60 Hz. The sensor functioned at low voltages (<3 V) and currents (<1 mA) with a high sensitivity and low drift. At low background noise levels, the sensor had performance comparable to a commercial device.

  2. Theory and experiment research for ultra-low frequency maglev vibration sensor

    SciTech Connect

    Zheng, Dezhi; Liu, Yixuan Guo, Zhanshe; Fan, Shangchun; Zhao, Xiaomeng

    2015-10-15

    A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.

  3. Combined Amplitude and Frequency Measurements for Non-Contacting Turbomachinery Blade Vibration

    NASA Technical Reports Server (NTRS)

    Platt, Michael J. (Inventor); Jagodnik, John J. (Inventor)

    2013-01-01

    A method and apparatus for measuring the vibration of rotating blades, such as turbines, compressors, fans, or pumps, including sensing the return signal from projected energy and/or field changes from a plurality of sensors mounted on the machine housing. One or more of the sensors has a narrow field of measurement and the data is processed to provide the referenced time of arrival of each blade, and therefore the blade tip deflection due to vibration. One or more of the sensors has a wide field of measurement, providing a time history of the approaching and receding blades, and the data is processed to provide frequency content and relative magnitudes of the active mode(s) of blade vibration. By combining the overall tip deflection magnitude with the relative magnitudes of the active modes, the total vibratory stress state of the blade can be determined.

  4. Theory and experiment research for ultra-low frequency maglev vibration sensor

    NASA Astrophysics Data System (ADS)

    Zheng, Dezhi; Liu, Yixuan; Guo, Zhanshe; Zhao, Xiaomeng; Fan, Shangchun

    2015-10-01

    A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.

  5. Theory and experiment research for ultra-low frequency maglev vibration sensor.

    PubMed

    Zheng, Dezhi; Liu, Yixuan; Guo, Zhanshe; Zhao, Xiaomeng; Fan, Shangchun

    2015-10-01

    A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements. PMID:26520975

  6. Statistics and Properties of Low-Frequency Vibrational Modes in Structural Glasses.

    PubMed

    Lerner, Edan; Düring, Gustavo; Bouchbinder, Eran

    2016-07-15

    Low-frequency vibrational modes play a central role in determining various basic properties of glasses, yet their statistical and mechanical properties are not fully understood. Using extensive numerical simulations of several model glasses in three dimensions, we show that in systems of linear size L sufficiently smaller than a crossover size L_{D}, the low-frequency tail of the density of states follows D(ω)∼ω^{4} up to the vicinity of the lowest Goldstone mode frequency. We find that the sample-to-sample statistics of the minimal vibrational frequency in systems of size Lfrequency modes are spatially quasilocalized and that their localization and associated quartic anharmonicity are largely frequency independent. The effect of preparation protocols on the low-frequency modes is elucidated, and a number of glassy length scales are briefly discussed. PMID:27472122

  7. Temperature compensation method for the resonant frequency of a differential vibrating accelerometer using electrostatic stiffness control

    NASA Astrophysics Data System (ADS)

    Lee, Jungshin; Rhim, Jaewook

    2012-09-01

    Differential vibrating accelerometer (DVA) is a resonant-type sensor which detects the change in the resonant frequency in the presence of acceleration input, i.e. inertial loading. However, the resonant frequency of micromachined silicon resonators is sensitive to the temperature change as well as the input acceleration. Therefore, to design a high-precision vibrating accelerometer, the temperature sensitivity of the resonant frequency has to be predicted and compensated accurately. In this study, a temperature compensation method for resonant frequency is proposed which controls the electrostatic stiffness of the dual-ended tuning fork (DETF) using the temperature-dependent dc voltage between the parallel plate electrodes. To do this, the electromechanical model is derived first to predict the change in the electrostatic stiffness and the resonant frequency resulting from the dc voltage between the resonator and the electrodes. Next, the temperature sensitivity of the resonant frequency is modeled, estimated and compared with the measured values. Then it is shown that the resonant frequency of the DETF can be kept constant in the operating temperature range by applying the temperature-dependent driving voltage to the parallel plate electrodes. The proposed method is validated through experiment.

  8. The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code.

    PubMed

    Pascale, F; Zicovich-Wilson, C M; López Gejo, F; Civalleri, B; Orlando, R; Dovesi, R

    2004-04-30

    The problem of numerical accuracy in the calculation of vibrational frequencies of crystalline compounds from the hessian matrix is discussed with reference to alpha-quartz (SiO(2)) as a case study and to the specific implementation in the CRYSTAL code. The Hessian matrix is obtained by numerical differentiation of the analytical gradient of the energy with respect to the atomic positions. The process of calculating vibrational frequencies involves two steps: the determination of the equilibrium geometry, and the calculation of the frequencies themselves. The parameters controlling the truncation of the Coulomb and exchange series in Hartree-Fock, the quality of the grid used for the numerical integration of the Exchange-correlation potential in Density Functional Theory, the SCF convergence criteria, the parameters controlling the convergence of the optimization process as well as those controlling the accuracy of the numerical calculation of the Hessian matrix can influence the obtained vibrational frequencies to some extent. The effect of all these parameters is discussed and documented. It is concluded that with relatively economical computational conditions the uncertainty related to these parameters is smaller than 2-4 cm(-1). In the case of the Local Density Approximation scheme, comparison is possible with recent calculations performed with a Density Functional Perturbation Theory method and a plane-wave basis set. PMID:15011261

  9. Wide operation frequency band magnetostrictive vibration power generator using nonlinear spring constant by permanent magnet

    NASA Astrophysics Data System (ADS)

    Furumachi, S.; Ueno, T.

    2016-04-01

    We study magnetostrictive vibration based power generator using iron-gallium alloy (Galfenol). The generator is advantages over conventional, such as piezoelectric material in the point of high efficiency highly robust and low electrical impedance. Generally, the generator exhibits maximum power when its resonant frequency matches the frequency of ambient vibration. In other words, the mismatch of these frequencies results in significant decrease of the output. One solution is making the spring characteristics nonlinear using magnetic force, which distorts the resonant peak toward higher or lower frequency side. In this paper, vibrational generator consisting of Galfenol plate of 6 by 0.5 by 13 mm wound with coil and U shape-frame accompanied with plates and pair of permanent magnets was investigated. The experimental results show that lean of resonant peak appears attributed on the non-linear spring characteristics, and half bandwidth with magnets is 1.2 times larger than that without. It was also demonstrated that the addition of proof mass is effective to increase the sensitivity but also the bandwidth. The generator with generating power of sub mW order is useful for power source of wireless heath monitoring for bridge and factory machine.

  10. The lowest frequency vibrational fundamental of disilane: A three-band analysis

    NASA Astrophysics Data System (ADS)

    Borvayeh, L.; Moazzen-Ahmadi, N.; Horneman, V.-M.

    2007-04-01

    The lowest frequency perpendicular fundamental band ν9 of disilane has been analyzed to investigate torsion mediated vibrational interactions. We report here a three-band analysis involving torsional levels built on the ground state, the ν9 vibrational fundamental, and ν3 fundamental. This analysis includes transitions from the far-infrared torsional bands, ν4, 2 ν4 - ν4, 3 ν4 - 2 ν4, two perturbation-allowed rotational series from the overtone band 3 ν4 and transitions restricted to -21 ⩽ kΔ k ⩽ 21 in the ν9 fundamental band. An excellent fit to the included data was obtained. Two interactions are identified in this fit, a resonant Coriolis interaction between the ν9 torsional stack and that of the ground vibrational state and a Fermi interaction between the ν3 fundamental and the gs. The introduction of the Fermi interaction causes a large change in the barrier height for the ground vibrational state and makes the barrier shape parameter redundant, indicating that the vibrational contributions to the experimental barrier shape are dominant. Such effects have also been observed for ethane and other similar molecules.

  11. Effect of vehicle weight on natural frequencies of bridges measured from traffic-induced vibration

    NASA Astrophysics Data System (ADS)

    Kim, Chul-Young; Jung, Dae-Sung; Kim, Nam-Sik; Kwon, Soon-Duck; Feng, Maria Q.

    2003-06-01

    Recently, ambient vibration test (AVT) is widely used to estimate dynamic characteristics of large civil structures. Dynamic characteristics can be affected by various environmental factors such as humidity, intensity of wind, and temperature. Besides these environmental conditions, the mass of vehicles may change the measured values when traffic-induced vibration is used as a source of AVT for bridges. The effect of vehicle mass on dynamic characteristics is investigated through traffic-induced vibration tests on three bridges; (1) three-span suspension bridge (128m +404m + 128m), (2) five-span continuous steel box girder bridge (59m + 3@95m + 59m), (3) simply supported plate girder bridge (46m). Acceleration histories of each measurement location under normal traffic are recorded for 30 minutes at field. These recorded histories are divided into individual vibrations and are combined into two groups according to the level of vibration ; one by heavy vehicles such as trucks and buses and the other by light vehicles such as passenger cars. Separate processing of the two groups of signals shows that, for the middle and long-span bridges, the difference can be hardly detected, but, for the short span bridges whose mass is relatively small, the measured natural frequencies can change up to 5.4%.

  12. A theoretical study of the sum frequency vibrational spectroscopy of the carbon tetrachloride/water interface

    NASA Astrophysics Data System (ADS)

    Green, Anthony J.; Perry, Angela; Moore, Preston B.; Space, Brian

    2012-03-01

    Theoretical approximations to the sum frequency vibrational spectroscopy (SFVS) of the carbon tetrachloride/water interface are constructed using the quantum-corrected time correlation functions (TCF) to aid in interpretation of experimental data and to predict novel vibrational modes. Instantaneous normal mode (INM) methods are used to characterize the observed modes leading to the TCF signal, thus providing molecular resolution of the vibrational lineshapes. Detailed comparisons of the theoretical signals are made with those obtained experimentally and show excellent agreement for the spectral peaks in the O-H stretching region of water. An intermolecular mode, unique to the interface, at 848 cm-1 is also identifiable, similar to the one seen for the water/vapor interface. INM analysis reveals the resonance is due to a wagging mode (hindered rotation) that was previously identified (Perry et al 2005 J. Chem. Phys. 123 144705) as localized on a single water molecule with both hydrogens displaced normal to the interface—generally it is found that the symmetry breaking at the interface leads to hindered translations and rotations at hydrophilic/hydrophobic interfaces that assume finite vibrational frequencies due to anchoring at the aqueous interface. Additionally, examination of the real and imaginary parts of the theoretical SFVS spectra reveal the spectroscopic species attributed the resonances and possible subspecies in the O-H region; these results are consistent with extant experimental data and associated analysis.

  13. Three-dimensional piezoelectric vibration energy harvester using spiral-shaped beam with triple operating frequencies.

    PubMed

    Zhao, Nian; Yang, Jin; Yu, Qiangmo; Zhao, Jiangxin; Liu, Jun; Wen, Yumei; Li, Ping

    2016-01-01

    This work has demonstrated a novel piezoelectric energy harvester without a complex structure and appended component that is capable of scavenging vibration energy from arbitrary directions with multiple resonant frequencies. In this harvester, a spiral-shaped elastic thin beam instead of a traditional thin cantilever beam was adopted to absorb external vibration with arbitrary direction in three-dimensional (3D) spaces owing to its ability to bend flexibly and stretch along arbitrary direction. Furthermore, multiple modes in the elastic thin beam contribute to a possibility to widen the working bandwidth with multiple resonant frequencies. The experimental results show that the harvester was capable of scavenging the vibration energy in 3D arbitrary directions; they also exhibited triple power peaks at about 16 Hz, 21 Hz, and 28 Hz with the powers of 330 μW, 313 μW, and 6 μW, respectively. In addition, human walking and water wave energies were successfully converted into electricity, proving that our harvester was practical to scavenge the time-variant or multi-directional vibration energies in our daily life. PMID:26827346

  14. Three-dimensional piezoelectric vibration energy harvester using spiral-shaped beam with triple operating frequencies

    NASA Astrophysics Data System (ADS)

    Zhao, Nian; Yang, Jin; Yu, Qiangmo; Zhao, Jiangxin; Liu, Jun; Wen, Yumei; Li, Ping

    2016-01-01

    This work has demonstrated a novel piezoelectric energy harvester without a complex structure and appended component that is capable of scavenging vibration energy from arbitrary directions with multiple resonant frequencies. In this harvester, a spiral-shaped elastic thin beam instead of a traditional thin cantilever beam was adopted to absorb external vibration with arbitrary direction in three-dimensional (3D) spaces owing to its ability to bend flexibly and stretch along arbitrary direction. Furthermore, multiple modes in the elastic thin beam contribute to a possibility to widen the working bandwidth with multiple resonant frequencies. The experimental results show that the harvester was capable of scavenging the vibration energy in 3D arbitrary directions; they also exhibited triple power peaks at about 16 Hz, 21 Hz, and 28 Hz with the powers of 330 μW, 313 μW, and 6 μW, respectively. In addition, human walking and water wave energies were successfully converted into electricity, proving that our harvester was practical to scavenge the time-variant or multi-directional vibration energies in our daily life.

  15. Low frequency vibration induced streaming in a Hele-Shaw cell

    SciTech Connect

    Costalonga, M.; Brunet, P.; Peerhossaini, H.

    2015-01-15

    When an acoustic wave propagates in a fluid, it can generate a second order flow whose characteristic time is much longer than the period of the wave. Within a range of frequency between ten and several hundred Hz, a relatively simple and versatile way to generate streaming flow is to put a vibrating object in the fluid. The flow develops vortices in the viscous boundary layer located in the vicinity of the source of vibrations, leading in turn to an outer irrotational streaming called Rayleigh streaming. Because the flow originates from non-linear time-irreversible terms of the Navier-Stokes equation, this phenomenon can be used to generate efficient mixing at low Reynolds number, for instance in confined geometries. Here, we report on an experimental study of such streaming flow induced by a vibrating beam in a Hele-Shaw cell of 2 mm span using long exposure flow visualization and particle-image velocimetry measurements. Our study focuses especially on the effects of forcing frequency and amplitude on flow dynamics. It is shown that some features of this flow can be predicted by simple scaling arguments and that this vibration-induced streaming facilitates the generation of vortices.

  16. Low frequency vibration induced streaming in a Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Costalonga, M.; Brunet, P.; Peerhossaini, H.

    2015-01-01

    When an acoustic wave propagates in a fluid, it can generate a second order flow whose characteristic time is much longer than the period of the wave. Within a range of frequency between ten and several hundred Hz, a relatively simple and versatile way to generate streaming flow is to put a vibrating object in the fluid. The flow develops vortices in the viscous boundary layer located in the vicinity of the source of vibrations, leading in turn to an outer irrotational streaming called Rayleigh streaming. Because the flow originates from non-linear time-irreversible terms of the Navier-Stokes equation, this phenomenon can be used to generate efficient mixing at low Reynolds number, for instance in confined geometries. Here, we report on an experimental study of such streaming flow induced by a vibrating beam in a Hele-Shaw cell of 2 mm span using long exposure flow visualization and particle-image velocimetry measurements. Our study focuses especially on the effects of forcing frequency and amplitude on flow dynamics. It is shown that some features of this flow can be predicted by simple scaling arguments and that this vibration-induced streaming facilitates the generation of vortices.

  17. Frequency Response of the Sample Vibration Mode in Scanning Probe Acoustic Microscope

    NASA Astrophysics Data System (ADS)

    Zhao, Ya-Jun; Cheng, Qian; Qian, Meng-Lu

    2010-05-01

    Based on the interaction mechanism between tip and sample in the contact mode of a scanning probe acoustic microscope (SPAM), an active mass of the sample is introduced in the mass-spring model. The tip motion and frequency response of the sample vibration mode in the SPAM are calculated by the Lagrange equation with dissipation function. For the silicon tip and glass assemblage in the SPAM the frequency response is simulated and it is in agreement with the experimental result. The living myoblast cells on the glass slide are imaged at resonance frequencies of the SPAM system, which are 20kHz, 30kHz and 120kHz. It is shown that good contrast of SPAM images could be obtained when the system is operated at the resonance frequencies of the system in high and low-frequency regions.

  18. Changes in postural sway frequency and complexity in altered sensory environments following whole body vibrations.

    PubMed

    Dickin, D Clark; McClain, Matthew A; Hubble, Ryan P; Doan, Jon B; Sessford, David

    2012-10-01

    Studies assessing whole body vibration (WBV) have produced largely positive effects, with some neutral, on postural control with frequencies between 25 and 40 Hz. However no conclusive evidence indicates that 25-40 Hz elicits the optimal beneficial effects. To address this issue, a larger range of vibration intensity (10-50 Hz at peak-to-peak amplitudes of 2 and 5mm) was employed while increasing the postural complexity (altered somatosensory and/or visual information) to assess acute effects of 4-min of WBV on postural control. Twelve healthy young adults underwent postural assessment at four time intervals (prior to, immediately following and 10 and 20 min post WBV). Findings revealed both postural sway frequency and sway complexity/regularity were affected by WBV. Baseline posture demonstrated increased sway frequency (p=.04) following WBV with no changes in sway complexity. When the support surface was altered, changes in both the frequency and complexity of sway were elicited (p=.027, .002, respectively). When both somatosensory and visual information were altered delayed improvements in postural control were elicited (p=.05 and .01, for frequency and complexity, respectively). Given the differential acute effects as a function of postural task complexity, future longitudinal studies could determine the overall training effect on sway frequency and complexity. PMID:22516837

  19. A generator with nonlinear spring oscillator to provide vibrations of multi-frequency

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Liu, Jingquan; Tang, Gang; Luo, Jiangbo; Yang, Chunsheng; Li, Yigui

    2011-11-01

    A piezoelectric generator with nonlinear spring oscillator is proposed to provide multiple resonant modes for operation and improve conversion efficiency. In order to scavenge the vibration energy of multiple frequencies from a certain vibration source, two types of nonlinear springs have been employed and tested. The maximum output power of 5, 17.83, and 23.39 μW for the nonlinear spring of 8.3 N/m with 1 g acceleration has been obtained under the resonant frequency of 89, 104, and 130 Hz, respectively. Its total output power of 46.22 μW is obviously larger than the one of 28.35 μW for traditional second-order spring-mass linear system.

  20. Novel Euler-LaCoste linkage as a very low frequency vertical vibration isolator.

    PubMed

    Hosain, M A; Sirr, A; Ju, L; Blair, D G

    2012-08-01

    LaCoste linkage vibration isolators have shown excellent performance for ultra-low frequency vertical vibration isolation. However, such isolators depend on the use of conventional pre-stressed coil springs, which suffer from creep. Here, we show that compressional Euler springs can be configured to create a stable tension unit for use in a LaCoste structure. In a proof of concept experiment, we demonstrate a vertical resonance frequency of 0.15 Hz in an Euler-LaCoste configuration with 200 mm height. The system enables the use of very low creep maraging steel as spring elements to eliminate the creep while minimising spring mass and reducing the effect of parasitic resonances. Larger scale systems with optimized Euler spring boundary conditions should achieve performance suitable for applications on third generation gravitational wave detectors such as the proposed Einstein telescope. PMID:22938333

  1. Mechanism of voltage production and frequency dependence of the ultrasonic vibration potential

    NASA Astrophysics Data System (ADS)

    Nguyen, Cuong K.; Wang, Shougang; Diebold, Gerald

    2009-05-01

    Imaging with the ultrasonic vibration potential is based on voltage generation by a colloidal or ionic suspension in response to the passage of ultrasound. The polarization within a body arising from the oscillatory displacement in the ultrasonic field produces a current in a pair of external electrodes that is measured as a function of time or frequency. Existing theory gives the current in the electrodes as arising from both a time varying polarization and ionic conduction. Here, experiments are reported that show the production of the polarization current is the dominant mechanism for current generation in soft tissue. Experiments are also reported giving the frequency dependence of the ultrasonic vibration current in canine blood and in several dilutions of aqueous silica suspensions.

  2. An Accurate Quartic Force Field and Vibrational Frequencies for HNO and DNO

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher E.; Lee, Timothy J.; Schwenke, David W.

    1994-01-01

    An accurate ab initio quartic force field for HNO has been determined using the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations, CCSD(T), in conjunction with the correlation consistent polarized valence triple zeta (cc-pVTZ) basis set. Improved harmonic frequencies were determined with the cc-pVQZ basis set. Fundamental vibrational frequencies were determined using a second-order perturbation theory analysis and also using variational calculations. The N-0 stretch and bending fundamentals are determined well from both vibrational analyses. The H-N stretch, however, is shown to have an unusually large anharmonic correction, and is not well determined using second-order perturbation theory. The H-N fundamental is well determined from the variational calculations, demonstrating the quality of the ab initio quartic force field. The zero-point energy of HNO that should be used in isodesmic reactions is also discussed.

  3. Derivatives of buckling loads and vibration frequencies with respect to stiffness and initial strain parameters

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.; Cohen, Gerald A.; Mroz, Zenon

    1990-01-01

    A uniform variational approach to sensitivity analysis of vibration frequencies and bifurcation loads of nonlinear structures is developed. Two methods of calculating the sensitivities of bifurcation buckling loads and vibration frequencies of nonlinear structures, with respect to stiffness and initial strain parameters, are presented. A direct method requires calculation of derivatives of the prebuckling state with respect to these parameters. An adjoint method bypasses the need for these derivatives by using instead the strain field associated with the second-order postbuckling state. An operator notation is used and the derivation is based on the principle of virtual work. The derivative computations are easily implemented in structural analysis programs. This is demonstrated by examples using a general purpose, finite element program and a shell-of-revolution program.

  4. Novel Euler-LaCoste linkage as a very low frequency vertical vibration isolator

    NASA Astrophysics Data System (ADS)

    Hosain, M. A.; Sirr, A.; Ju, L.; Blair, D. G.

    2012-08-01

    LaCoste linkage vibration isolators have shown excellent performance for ultra-low frequency vertical vibration isolation. However, such isolators depend on the use of conventional pre-stressed coil springs, which suffer from creep. Here, we show that compressional Euler springs can be configured to create a stable tension unit for use in a LaCoste structure. In a proof of concept experiment, we demonstrate a vertical resonance frequency of 0.15 Hz in an Euler-LaCoste configuration with 200 mm height. The system enables the use of very low creep maraging steel as spring elements to eliminate the creep while minimising spring mass and reducing the effect of parasitic resonances. Larger scale systems with optimized Euler spring boundary conditions should achieve performance suitable for applications on third generation gravitational wave detectors such as the proposed Einstein telescope.

  5. Structures and vibrational frequencies of FOOF and FONO using density functional theory

    NASA Astrophysics Data System (ADS)

    Amos, Roger D.; Murray, Christopher W.; Handy, Nicholas C.

    1993-02-01

    Calculations of the equilibrium structure and vibrational frequencies of FOOF using the local density approximation are in good agreement with experimental results. However using a theoretically more accurate gradient corrected (non-local) density functional produces a worse structure. Three isomers of FONO are also studied. The geometry of C 2v isomer FNO 2 is predicted accurately by the local density approximation, with gradient corrected functions again giving a poorer structure, but better vibrational frequencies. The structure of the trans-isomer of FONO is in agreement with recent coupled cluster studies, however calculations on cis-FONO disagree with the coupled cluster results, but may be in better agreement with the experimental geometry.

  6. Sum-Frequency Vibrational Spectroscopic Study of a Rubbed Polymer Surface

    NASA Astrophysics Data System (ADS)

    Wei, Xing; Zhuang, Xiaowei; Hong, Seok-Cheol; Goto, Tomohisa; Shen, Y. R.

    1999-05-01

    Sum-frequency vibrational spectroscopy has been used to probe the chain orientation of polyvinyl alcohol at the surface after rubbing. The distribution function of the chain orientation is determined quantitatively. The orientational order parameter of the chains deduced from the distribution matches well with that of a liquid crystal monolayer deposited on the polymer, proving that the polymer surface can align a liquid crystal film through orientational epitaxy.

  7. Turbulent boundary layer induced vibration up to high frequencies by means of local energy methods

    NASA Astrophysics Data System (ADS)

    Hardy, Pierre; Jezequel, Louis; Ichchou, Mohammed; Jacques, Yves

    2002-11-01

    The local energy method developed in the last years revealed appropriate in medium and high frequencies and supplies an accurate description of the spread of vibration and acoustic fields up to high frequencies. Our aim in the paper is to provide a complete description of the turbulent boundary layer (TBL) induced vibration by means of this method, for a simply supported thin plate. The first step in the energy method proof is the characterization of energy input from a given model of the TBL pressure interspectrum. Then, is deduced the uncoherent structural response of the panel, and the uncoherent normal mean square velocity. The latter provides, using the acoustic radiation resistance, a prediction of noise radiating by the panel up to high frequencies. Accuracy of the local energy analysis versus the usual random normal modes decomposition is demonstrated. Ultimately, a numerical parametric survey is given for various internal loss level. Precisely, the link between results provided here and SEA predictions of TBL structural induced vibration is discussed.

  8. Low-frequency interlayer vibration modes in two-dimensional layered materials

    NASA Astrophysics Data System (ADS)

    Ji, Jianting; Dong, Shan; Zhang, Anmin; Zhang, Qingming

    2016-06-01

    Two-dimensional (2D) layered materials have been attracted tremendous research interest because of their novel photoelectric properties. If a single atomic layer instead of individual atoms is taken as a rigid motion object, two unique interlayer vibrations, i.e. compression/breathing and shear motions, at ultra-low frequencies can be expected and actually have been observed in many layered materials. The vibrations stem from the interlayer van der Waals interaction and can be well described by a conventional linear-chain model in most cases. The vibration frequencies strongly depend on layer thickness, which enables an accurate determination of layer numbers. A quick and nondestructive determination of flake thickness is particularly important for the materials, since the physical properties can be dramatically changed in the cases of several atomic layers. As a measure of interlayer coupling, the low-frequency modes are also sensitive to the stacking methods of atomic layers and the overlapping of different kinds of 2D materials. This allows the modes to play a key role in the applications like van der Waals heterojunctions. In this paper, we will give a brief review on the experimental observations and theoretical understanding of the interlayer modes in several typical 2D systems, as well as their actual and potential applications.

  9. Vibrational characteristics of FRP-bonded concrete interfacial defects in a low frequency regime

    NASA Astrophysics Data System (ADS)

    Cheng, Tin Kei; Lau, Denvid

    2014-04-01

    As externally bonded fiber-reinforced polymer (FRP) is a critical load-bearing component of strengthened or retrofitted civil infrastructures, the betterment of structural health monitoring (SHM) methodology for such composites is imperative. Henceforth the vibrational characteristics of near surface interfacial defects involving delamination and trapped air pockets at the FRP-concrete interface are investigated in this study using a finite element approach. Intuitively, due to its lower interfacial stiffness compared with an intact interface, a damaged region is expected to have a set of resonance frequencies different from an intact region when excited by acoustic waves. It has been observed that, when excited acoustically, both the vibrational amplitudes and frequency peaks in the response spectrum of the defects demonstrate a significant deviation from an intact FRP-bonded region. For a thin sheet of FRP bonded to concrete with sizable interfacial defects, the fundamental mode under free vibration is shown to be relatively low, in the order of kHz. Due to the low resonance frequencies of the defects, the use of low-cost equipment for interfacial defect detection via response spectrum analysis is highly feasible.

  10. Analysis of vibration and frequency transmission of high speed EMU with flexible model

    NASA Astrophysics Data System (ADS)

    Ren, Zun-Song; Yang, Guang; Wang, Shan-Shan; Sun, Shou-Guang

    2014-12-01

    When the operation speed of the high-speed train increases and the weight of the carbody becomes lighter, not only does the sensitivity of the wheel/rail contact get higher, but also the vibration frequency range of the vehicle system gets enlarged and more frequencies are transmitted from the wheelset to the carbody. It is important to investigate the vibration characteristics and the dynamic frequency transmission from the wheel/rail interface to the carbody of the high-speed electric multi-uint (EMU). An elastic highspeed vehicle dynamics model is established in which the carbody, bogieframes, and wheelsets are all dealt with as flexible body. A rigid high-speed vehicle dynamics model is set up to compare with the simulation results of the elastic model. In the rigid vehicle model, the carbody, bogieframes and wheelsets are treated as rigid component while the suspension and structure parameters are the same as used in the elastic model. The dynamic characteristic of the elastic high speed vehicle is investigated in time and frequency domains and the difference of the acceleration, frequency distribution and transmission of the two types of models are presented. The results show that the spectrumpower density of the vehicle decreases from the wheelset to the carbody and the acceleration transmission ratio is approximately from 1% to 10% for each suspension system. The frequency of the wheelset rotation is evident in the vibration of the flexible model and is transmitted from the wheelset to the bogieframe and to the carbody. The results of the flexible model are more reasonable than that of the rigid model. A field test data of the high speed train are presented to verify the simulation results. It shows that the simulation results are coincidentwith the field test data.

  11. Modelling the vibration of sandwich beams using frequency-dependent parameters

    NASA Astrophysics Data System (ADS)

    Backström, D.; Nilsson, A. C.

    2007-03-01

    Various types of sandwich beams with foam or honeycomb cores are currently used in the industry, indicating the need for simple methods describing the dynamics of these complex structures. By implementing frequency-dependent parameters, the vibration of sandwich composite beams can be approximated using simple fourth-order beam theory. A higher-order sandwich beam model is utilized in order to obtain estimates of the frequency-dependent bending stiffness and shear modulus of the equivalent Bernoulli-Euler and Timoshenko models. The resulting predicted eigenfrequencies and transfer accellerance functions are compared to the data obtained from the higher-order model and from measurements.

  12. A scaling approach for the prediction of high-frequency mean responses of vibrating systems.

    PubMed

    Li, Xianhui

    2010-05-01

    This analysis presents a scaling approach to predict high-frequency mean responses of vibrating systems. The basis of the approach lies in the dynamic similitude between the original systems and the scaled models. A general scaling law is formulated using Skudrzyk's mean-value theorem and its specific form is derived for the case of a flexural plate. Modal density is scaled down to reduce the computational cost in the high-frequency mean response prediction. Different scaling procedures are numerically experimented and some insights are given about the accuracy of the scaling approach as compared with a dense finite element analysis. PMID:21117716

  13. Maximum allowable low-frequency platform vibrations in high resolution satellite missions: challenges and look-up figures

    NASA Astrophysics Data System (ADS)

    Haghshenas, Javad

    2015-09-01

    Performance of high resolution remote sensing payloads is often limited due to satellite platform vibrations. Effects of Linear and high frequency vibrations on the overall MTF are known exactly in closed form but the low frequency vibration effect is a random process and must be considered statistically. It should be considered in system level payload designing to know whether or not the overall MTF is limited by the vibration blur radius. Usually the vibration MTF budget is defined based on the mission requirements and the overall MTF limitations. With a good understanding of harmful vibration frequencies and amplitudes in the system preliminary design phase, their effects could be removed totally or partially. This procedure is cost effective and let designer to just eliminate the harmful vibrations and avoids over-designing. In this paper we have analyzed the effects of low-frequency platform vibrations on the payload's modulation transfer function. We have used a statistical analysis to find the probability of imaging with a MTF greater or equal to a pre-defined budget for different missions. After some discussions on the worst and average cases, we have proposed some "look-up figures" which would help the remote sensing payload designers to avoid the vibration effects. Using these figures, designer can choose the electro-optical parameters in such a way, that vibration effects be less than its pre-defined budget. Furthermore, using the results, we can propose a damping profile based on which vibration frequencies and amplitudes must be eliminated to stabilize the payload system.

  14. Whole body vibration at different exposure frequencies: infrared thermography and physiological effects.

    PubMed

    Sonza, Anelise; Robinson, Caroline C; Achaval, Matilde; Zaro, Milton A

    2015-01-01

    The aim of this study was to investigate the effects of whole body vibration (WBV) on physiological parameters, cutaneous temperature, tactile sensitivity, and balance. Twenty-four healthy adults (25.3 ± 2.6 years) participated in four WBV sessions. They spent 15 minutes on a vibration platform in the vertical mode at four different frequencies (31, 35, 40, and 44 Hz) with 1 mm of amplitude. All variables were measured before and after WBV exposure. Pressure sensation in five anatomical regions and both feet was determined using Von Frey monofilaments. Postural sway was measured using a force plate. Cutaneous temperature was obtained with an infrared camera. WBV influences the discharge of the skin touch-pressure receptors, decreasing sensitivity at all measured frequencies and foot regions (P ≤ 0.05). Regarding balance, no differences were found after 20 minutes of WBV at frequencies of 31 and 35 Hz. At 40 and 44 Hz, participants showed higher anterior-posterior center of pressure (COP) velocity and length. The cutaneous temperature of the lower limbs decreased during and 10 minutes after WBV. WBV decreases touch-pressure sensitivity at all measured frequencies 10 min after exposure. This may be related to the impaired balance at higher frequencies since these variables have a role in maintaining postural stability. Vasoconstriction might explain the decreased lower limb temperature. PMID:25664338

  15. Whole Body Vibration at Different Exposure Frequencies: Infrared Thermography and Physiological Effects

    PubMed Central

    Sonza, Anelise; Robinson, Caroline C.; Achaval, Matilde; Zaro, Milton A.

    2015-01-01

    The aim of this study was to investigate the effects of whole body vibration (WBV) on physiological parameters, cutaneous temperature, tactile sensitivity, and balance. Twenty-four healthy adults (25.3 ± 2.6 years) participated in four WBV sessions. They spent 15 minutes on a vibration platform in the vertical mode at four different frequencies (31, 35, 40, and 44 Hz) with 1 mm of amplitude. All variables were measured before and after WBV exposure. Pressure sensation in five anatomical regions and both feet was determined using Von Frey monofilaments. Postural sway was measured using a force plate. Cutaneous temperature was obtained with an infrared camera. WBV influences the discharge of the skin touch-pressure receptors, decreasing sensitivity at all measured frequencies and foot regions (P ≤ 0.05). Regarding balance, no differences were found after 20 minutes of WBV at frequencies of 31 and 35 Hz. At 40 and 44 Hz, participants showed higher anterior-posterior center of pressure (COP) velocity and length. The cutaneous temperature of the lower limbs decreased during and 10 minutes after WBV. WBV decreases touch-pressure sensitivity at all measured frequencies 10 min after exposure. This may be related to the impaired balance at higher frequencies since these variables have a role in maintaining postural stability. Vasoconstriction might explain the decreased lower limb temperature. PMID:25664338

  16. Effects of vibration frequency on vibration-assisted nano-scratch process of mono-crystalline copper via molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zhu, Bo; Zhao, Hongwei; Zhao, Dan; Zhang, Peng; Yang, Yihan; Han, Lei; Kui, Hailin

    2016-03-01

    It has always been a critical issue to understand the material removal behavior of Vibration-Assisted Machining (VAM), especially on atomic level. To find out the effects of vibration frequency on material removal response, a three-dimensional molecular dynamics (MD) model has been established in this research to investigate the effects of scratched groove, crystal defects on the surface quality, comparing with the Von Mises shear strain and tangential force in simulations during nano-scratching process. Comparisons are made among the results of simulations from different vibration frequency with the same scratching feed, depth, amplitude and crystal orientation. Copper potential in this simulation is Embedded-Atom Method (EAM) potential. Interaction between copper and carbon atoms is Morse potential. Simulational results show that higher frequency can make groove smoother. Simulation with high frequency creates more dislocations to improve the machinability of copper specimen. The changing frequency does not have evident effects on Von Mises shear strain. Higher frequency can decrease the tangential force to reduce the consumption of cutting energy and tool wear. In conclusion, higher vibration frequency in VAM on mono-crystalline copper has positive effects on surface finish, machinablility and tool wear reduction.

  17. An automated fringe counting laser interferometer for low frequency vibration measurements

    NASA Astrophysics Data System (ADS)

    Payne, B. F.; Federman, Charles

    Low-frequency accelerometers and velocity transducers are widely used to investigate vibrations on structures such as buildings, bridges, aircraft, ships, power plant equipment, and in seismic applications. Previous work at NBS in this area has focused on the development of accurate calibration methods for transducers by optical methods in the frequency range of 2-100 Hz. This paper describes a computer-controlled fringe-counting interferometric system for transducer calibration. The calibration system uses digital signal analysis for accurate low-frequency voltage measurements. The measurement procedures are fully automated, with menu-driven programs using the computer soft keys for controlling the test frequencies and acceleration, setting test parameters, collecting and storing data and producing reports and graphs. An error analysis is given and experimental data are presented for a typical transducer calibrated on this system.

  18. Dual-wavelength speckle-based SI-POF sensor for frequency detection and localization of remote vibrations

    NASA Astrophysics Data System (ADS)

    Pinzón, P. J.; Montero, D. S.; Tapetado, A.; Torres, J. C.; Vázquez, C.

    2016-05-01

    A novel speckle-based method for sensing frequency vibration is demonstrated in a reflective configuration. By employing a visible dual-wavelength approach it is also possible to determine the relative spatial location of the vibrations along a plastic optical fiber lead of 8 m in a distributed scheme.

  19. Modern blast vibration monitoring, modeling and frequency control at Tara Mines, Ireland

    SciTech Connect

    Durucan, S.; Johnston, G.J.; O`Reilly, B.

    1994-12-31

    Historically vibration monitoring has dealt primarily with surface blasting or near field monitoring of underground blasts. The Situation at Tara Miens is different, blasting occurs up to 400 m underground, with a number of blasts occurring daily and occasionally with residential properties directly above the blasting site. Tara Mines, due to both its location (1.5 km from the rural town of Navan) and stringent planning conditions have always had to monitor, carefully plan and control the levels of vibration from blasting. Tara has recently upgraded it`s monitoring equipment with the purchase of eight Instantel DS-677 Blastmate Series 2 monitors, located in four permanent stations and four portable monitors around the mine. Controlled experiments and routine monitoring of production blasting aims at improving the empirical estimation methods in the short term and the results in the long term at the development of a more reliable predictive model allowing for not only the peak particle velocity of the vibration but also the frequency. This paper is based on the results of the first years research and testing within the project. This paper also deals with monitoring techniques at Tara with respect to seismometer placement, variations in readings, versatility and accuracy of the meters and compares planned vibration levels with measured levels. The paper also deals with the variation of the dominant frequencies, from the blast patterns used at Tara in relation to the delay timing sequence. Some allowances have been made for the transmission path of the frequency pulse and the geological structure around the deposit.

  20. The vibrating reed frequency meter: digital investigation of an early cochlear model

    PubMed Central

    Wit, Hero P.

    2015-01-01

    The vibrating reed frequency meter, originally employed by Békésy and later by Wilson as a cochlear model, uses a set of tuned reeds to represent the cochlea’s graded bank of resonant elements and an elastic band threaded between them to provide nearest-neighbour coupling. Here the system, constructed of 21 reeds progressively tuned from 45 to 55 Hz, is simulated numerically as an elastically coupled bank of passive harmonic oscillators driven simultaneously by an external sinusoidal force. To uncover more detail, simulations were extended to 201 oscillators covering the range 1–2 kHz. Calculations mirror the results reported by Wilson and show expected characteristics such as traveling waves, phase plateaus, and a response with a broad peak at a forcing frequency just above the natural frequency. The system also displays additional fine-grain features that resemble those which have only recently been recognised in the cochlea. Thus, detailed analysis brings to light a secondary peak beyond the main peak, a set of closely spaced low-amplitude ripples, rapid rotation of phase as the driving frequency is swept, frequency plateaus, clustering, and waxing and waning of impulse responses. Further investigation shows that each reed’s vibrations are strongly localised, with small energy flow along the chain. The distinctive set of equally spaced ripples is an inherent feature which is found to be largely independent of boundary conditions. Although the vibrating reed model is functionally different to the standard transmission line, its cochlea-like properties make it an intriguing local oscillator model whose relevance to cochlear mechanics needs further investigation. PMID:26623180

  1. Chiral Vibrational Structures of Proteins at Interfaces Probed by Sum Frequency Generation Spectroscopy

    PubMed Central

    Fu, Li; Wang, Zhuguang; Yan, Elsa C.Y.

    2011-01-01

    We review the recent development of chiral sum frequency generation (SFG) spectroscopy and its applications to study chiral vibrational structures at interfaces. This review summarizes observations of chiral SFG signals from various molecular systems and describes the molecular origins of chiral SFG response. It focuses on the chiral vibrational structures of proteins and presents the chiral SFG spectra of proteins at interfaces in the C-H stretch, amide I, and N-H stretch regions. In particular, a combination of chiral amide I and N-H stretches of the peptide backbone provides highly characteristic vibrational signatures, unique to various secondary structures, which demonstrate the capacity of chiral SFG spectroscopy to distinguish protein secondary structures at interfaces. On the basis of these recent developments, we further discuss the advantages of chiral SFG spectroscopy and its potential application in various fields of science and technology. We conclude that chiral SFG spectroscopy can be a new approach to probe chiral vibrational structures of protein at interfaces, providing structural and dynamic information to study in situ and in real time protein structures and dynamics at interfaces. PMID:22272140

  2. Application of ground vibration frequency spectrum analysis as a tool for optimizing the blast design in large open pit mines

    SciTech Connect

    Rao, K.R.

    1994-12-31

    This paper explains the methodology for assessing the efficiency of rockmass fragmentation by explosive blasting, from ground vibration frequency spectrum analysis of the blast event. Explosives are used in the mining, quarrying and construction industries for fragmenting rockmass to a suitable size. When an explosive charge is detonated, in addition to fragmenting the rockmass, it will also generate ground vibration and air vibrations. Efficiency of a blast depend upon percentage of blast energy wasted in generating ground vibrations and air vibrations. This in turn will depend upon rockmass characteristics, amount of explosive energy used per delay and spatial distribution of explosive in the rockmass. Ground vibrations and air vibrations, arising out of explosive detonation in a rockmass, could be captured by micro-computer based engineering seismograph and sound level meter. Typical frequency range indicative of efficient rockmass fragmentation for a particular rockmass can be identified from ground vibration frequency spectra analysis of the blast event on a personal computer applying Fast Fourier transforms (FFT). The typical frequency range indicative of efficient rockmass fragmentation depends upon rockmass impedance and can be estimated from rockmass characteristics and monitoring few trial blasts. Blast event efficiency is estimated by comparing the typical frequency range with the dominant frequency range of the blast event record. A large number of blast events monitored and analyzed by the author in different rockmass formations and correlation of the results with observations made while fragmented material is lifted and loaded into trucks indicated that ground vibration frequency spectrum analysis could be used as a reliable and cost effective tool for assessing the blasting efficiency and optimizing blast design in large open-pit mines.

  3. Design of piezoelectric MEMS cantilever for low-frequency vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Takei, Ryohei; Makimoto, Natsumi; Okada, Hironao; Itoh, Toshihiro; Kobayashi, Takeshi

    2016-06-01

    We report the design of piezoelectric MEMS cantilevers formed on a silicon-on-insulator wafer to efficiently harvest electrical power from harmonic vibration with a frequency of approximately 30 Hz. Numerical simulation indicates that a >4-µm-thick top silicon layer and >3-µm-thick piezoelectric film are preferable to maximize the output electrical power. An in-plane structure of the cantilever is also designed retaining the footprint of the cantilever. The simulation results indicate that the output power is maximized when the length ratio of the proof mass to the cantilever beam is 1.5. To ensure the accuracy of the simulation, we fabricated and characterized cantilevers with a 10-µm-thick top silicon layer and a 1.8-µm-thick piezoelectric film, resulting in 0.21 µW at a vibration of 0.5 m/s2 and 25.1 Hz. The measured output power is in agreement with the simulated value, meaning that the design is significantly reliable for low-frequency vibration energy harvesters.

  4. Theoretical determination of parity-violating vibrational frequency differences between the enantiomers of chiral molecules.

    PubMed

    Viglione, Rosario G

    2004-11-22

    A perturbation treatment has been used to compute the leading first- and second-order parity-violating corrections to the vibrational energy levels of a chiral molecule. Assuming the molecular equilibrium geometry as expansion point of both parity-violating and parity-conserving potential-energy surfaces, it is shown that these corrections, i.e., harmonic and anharmonic contributions, are of the same order of magnitude and that none of them can be neglected for a realistic determination of vibrational frequency differences. Numerical tests based on ab initio MP2 force fields and quantum-relativistic calculations of the parity-violating potential for each normal mode of PHBrF and AsHBrF molecules confirm this conclusion. In particular, it is shown that a normal mode of AsHBrF is characterized by one of the largest vibrational frequency difference ever found--the prediction is approximately 0.1 Hz--only one order of magnitude less than the presumed resolution limit of current experimental investigations. PMID:15549870

  5. Magnetoelastic beam with extended polymer for low frequency vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Ibrahim, Alwathiqbellah; Towfighian, Shahrzad; Younis, Mohammad; Su, Quang

    2016-04-01

    Ambient energy in the form of mechanical kinetic energy is mostly considered waste energy. The process of scavenging and storing such energy is known as energy harvesting. Energy harvesting from mechanical vibration is performed using resonant energy harvesters (EH) with two major goals: enhancing the power scavenged at low frequency sources of vibrations, and increasing the efficiency of scavenging energy by increasing the bandwidth near the resonant frequency. Toward such goals, we propose a piezoelectric EH of a composite cantilever beam with a tip magnet facing another magnet at a distance. The composite cantilever consists of a piezoelectric bimorph with an extended polymer material. With the effect of the nonlinearity of the magnetic force, higher amplitude can be achieved because of the generated bi-stability oscillations of the cantilever beam under harmonic excitation. The contribution of the this paper is to demonstrate lowering the achieved resonant frequency down to 17 Hz compared to 100 Hz for the piezoelectric bimorph beam without the extended polymer. Depending on the magnetic distance, the beam responses are divided to mono and bi-stable regions, for which we investigate static and dynamic behaviors. The dynamics of the system and the frequency and voltage responses of the beam are obtained using the shooting method.

  6. A low frequency vibration energy harvester using dual Halbach array suspended in magnetic springs

    NASA Astrophysics Data System (ADS)

    Salauddin, M.; Halim, M. A.; Park, J. Y.

    2015-12-01

    An electromagnetic (EM) low frequency vibration energy harvester is newly developed based on dual Halbach array which is suspended in two magnetic springs. Each Halbach array concentrates the magnetic flux lines on one side of the array while suppressing the flux lines on the other side. Dual Halbach array allows the concentrated magnetic flux lines to interact with the same coil in a way where maximum flux linkage occurs. With the goal of higher power generation in low amplitude and low frequency vibrations, the magnetic structures (both the dual Halbach array and the magnetic springs) were optimized in terms of operating frequency and power density. A prototype was fabricated and tested. It is capable of delivering maximum 1.09mW average power to 44Ω optimum load at 11Hz resonant frequency and 0.5g acceleration. The prototype device offers 33.4μWcm-3 average power density which is much higher than recently reported electromagnetic energy harvesters.

  7. Composite 3D-printed metastructures for low-frequency and broadband vibration absorption.

    PubMed

    Matlack, Kathryn H; Bauhofer, Anton; Krödel, Sebastian; Palermo, Antonio; Daraio, Chiara

    2016-07-26

    Architected materials that control elastic wave propagation are essential in vibration mitigation and sound attenuation. Phononic crystals and acoustic metamaterials use band-gap engineering to forbid certain frequencies from propagating through a material. However, existing solutions are limited in the low-frequency regimes and in their bandwidth of operation because they require impractical sizes and masses. Here, we present a class of materials (labeled elastic metastructures) that supports the formation of wide and low-frequency band gaps, while simultaneously reducing their global mass. To achieve these properties, the metastructures combine local resonances with structural modes of a periodic architected lattice. Whereas the band gaps in these metastructures are induced by Bragg scattering mechanisms, their key feature is that the band-gap size and frequency range can be controlled and broadened through local resonances, which are linked to changes in the lattice geometry. We demonstrate these principles experimentally, using advanced additive manufacturing methods, and inform our designs using finite-element simulations. This design strategy has a broad range of applications, including control of structural vibrations, noise, and shock mitigation. PMID:27410042

  8. Ultralow frequency acoustic bandgap and vibration energy recovery in tetragonal folding beam phononic crystal

    NASA Astrophysics Data System (ADS)

    Gao, Nansha; Wu, Jiu Hui; Yu, Lie; Hou, Hong

    2016-06-01

    This paper investigates ultralow frequency acoustic properties and energy recovery of tetragonal folding beam phononic crystal (TFBPC) and its complementary structure. The dispersion curve relationships, transmission spectra and displacement fields of the eigenmodes are studied with FEA in detail. Compared with the traditional three layer phononic crystal (PC) structure, this structure proposed in this paper not only unfold bandgaps (BGs) in lower frequency range (below 300 Hz), but also has lighter weight because of beam structural cracks. We analyze the relevant physical mechanism behind this phenomenon, and discuss the effects of the tetragonal folding beam geometric parameters on band structure maps. FEM proves that the multi-cell structures with different arrangements have different acoustic BGs when compared with single cell structure. Harmonic frequency response and piezoelectric properties of TFBPC are specifically analyzed. The results confirm that this structure does have the recovery ability for low frequency vibration energy in environment. These conclusions in this paper could be indispensable to PC practical applications such as BG tuning and could be applied in portable devices, wireless sensor, micro-electro mechanical systems which can recycle energy from vibration environment as its own energy supply.

  9. An efficient low frequency horizontal diamagnetic levitation mechanism based vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Palagummi, S.; Yuan, F. G.

    2016-04-01

    This article identifies and studies key parameters that characterize a horizontal diamagnetic levitation (HDL) mechanism based low frequency vibration energy harvester with the aim of enhancing performance metrics such as efficiency and volume figure of merit (FoMv). The HDL mechanism comprises of three permanent magnets and two diamagnetic plates. Two of the magnets, aka lifting magnets, are placed co-axially at a distance such that each attract a centrally located magnet, aka floating magnet, to balance its weight. This floating magnet is flanked closely by two diamagnetic plates which stabilize the levitation in the axial direction. The influence of the geometry of the floating magnet, the lifting magnet and the diamagnetic plate are parametrically studied to quantify their effects on the size, stability of the levitation mechanism and the resonant frequency of the floating magnet. For vibration energy harvesting using the HDL mechanism, a coil geometry and eddy current damping are critically discussed. Based on the analysis, an efficient experimental system is setup which showed a softening frequency response with an average system efficiency of 25.8% and a FoMv of 0.23% when excited at a root mean square acceleration of 0.0546 m/s2 and at frequency of 1.9 Hz.

  10. Stick-slip failure in granular experiments: the role of low-frequency vibrational modes

    NASA Astrophysics Data System (ADS)

    Brzinski, T., III; Daniels, K.

    2014-12-01

    The intermittent nature of strain at geological faults is a consequence of the loss of rigidity of the gouge. Due to the granular nature of the gouge, we take insight from granular physics in order to characterize the role of gouge in the generation of seismic events. In static granular packings, the loss of rigidity has been observed to be associated with an excess in low-frequency vibrational modes. The same holds true in both molecular and colloidal glasses, suggesting that excess low-frequency vibrational modes are a general feature in the failure of disordered solids. Therefore, we seek a relationship between these low-frequency modes and spatiotemporal patterns of failure by studying an experimental analog to a geological fault. Specifically, we measure the acoustic emissions from jammed, quasi-2D granular packings under shear. We use a split-bottom annular shear geometry, driven with a linear-ramp torque in order to generate stick-slip behavior, and observe intervals of both periodic and aperiodic slip. We investigate how low-frequency emissions are associated with both local and global slip events of various magnitudes and directions. Twelve piezoelectric acoustic receivers, an imaging system, and high-resolution stress/strain sensors enable direct comparison of acoustic properties as the system approaches failure. The use of photoelastic grains enables local measurement of changes to the internal stresses.

  11. Research on the key parameters influencing the anti-vibration capability of time-frequency-domain interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Fanghua; Hao, Qun; Hu, Yao; Zhu, Qiudong

    2012-11-01

    This paper introduces a time-and-frequency-domain (TFD) anti-noise phase-shifting interferometry, and designs an experimental system to test the anti-vibration ability of this method. In the system, a plane mirror is measured under the external vibrations simulated by the standard mirror propelled by PZT. During the measurement, each of the key parameters is assigned different values. By analyzing the testing results, the law of the parameters' influence on system anti-vibration capability can be obtained. According to the law, the optimization parameters can be determined so that the system has the maximum anti- vibration capability.

  12. Topology optimization and fabrication of low frequency vibration energy harvesting microdevices

    NASA Astrophysics Data System (ADS)

    Deng, Jiadong; Rorschach, Katherine; Baker, Evan; Sun, Cheng; Chen, Wei

    2015-02-01

    Topological design of miniaturized resonating structures capable of harvesting electrical energy from low frequency environmental mechanical vibrations encounters a particular physical challenge, due to the conflicting design requirements: low resonating frequency and miniaturization. In this paper structural static stiffness to resist undesired lateral deformation is included into the objective function, to prevent the structure from degenerating and forcing the solution to be manufacturable. The rational approximation of material properties interpolation scheme is introduced to deal with the problems of local vibration and instability of the low density area induced by the design dependent body forces. Both density and level set based topology optimization (TO) methods are investigated in their parameterization, sensitivity analysis, and applicability for low frequency energy harvester TO problems. Continuum based variation formulations for sensitivity analysis and the material derivative based shape sensitivity analysis are presented for the density method and the level set method, respectively; and their similarities and differences are highlighted. An external damper is introduced to simulate the energy output of the resonator due to electrical damping and the Rayleigh proportional damping is used for mechanical damping. Optimization results for different scenarios are tested to illustrate the influences of dynamic and static loads. To demonstrate manufacturability, the designs are built to scale using a 3D microfabrication method and assembled into vibration energy harvester prototypes. The fabricated devices based on the optimal results from using different TO techniques are tested and compared with the simulation results. The structures obtained by the level set based TO method require less post-processing before fabrication and the structures obtained by the density based TO method have resonating frequency as low as 100 Hz. The electrical voltage response

  13. Dynamics of liquid films exposed to high-frequency surface vibration.

    PubMed

    Manor, Ofer; Rezk, Amgad R; Friend, James R; Yeo, Leslie Y

    2015-05-01

    We derive a generalized equation that governs the spreading of liquid films under high-frequency (MHz-order) substrate vibration in the form of propagating surface waves and show that this single relationship is universally sufficient to collectively describe the rich and diverse dynamic phenomena recently observed for the transport of oil films under such substrate excitation, in particular, Rayleigh surface acoustic waves. In contrast to low-frequency (Hz- to kHz-order) vibration-induced wetting phenomena, film spreading at such high frequencies arises from convective drift generated by the viscous periodic flow localized in a region characterized by the viscous penetration depth β(-1)≡(2μ/ρω)(1/2) adjacent to the substrate that is invoked directly by its vibration; μ and ρ are the viscosity and the density of the liquid, respectively, and ω is the excitation frequency. This convective drift is responsible for driving the spreading of thin films of thickness h≪k(l)(-1), which spread self-similarly as t(1/4) along the direction of the drift corresponding to the propagation direction of the surface wave, k(l) being the wave number of the compressional acoustic wave that forms in the liquid due to leakage of the surface wave energy from the substrate into the liquid and t the time. Films of greater thicknesses h∼k(l)(-1)≫β(-1), in contrast, are observed to spread with constant velocity but in a direction that opposes the drift and surface wave propagation due to the attenuation of the acoustic wave in the liquid. The universal equation derived allows for the collective prediction of the spreading of these thin and thick films in opposing directions. PMID:26066257

  14. Dynamics of liquid films exposed to high-frequency surface vibration

    NASA Astrophysics Data System (ADS)

    Manor, Ofer; Rezk, Amgad R.; Friend, James R.; Yeo, Leslie Y.

    2015-05-01

    We derive a generalized equation that governs the spreading of liquid films under high-frequency (MHz-order) substrate vibration in the form of propagating surface waves and show that this single relationship is universally sufficient to collectively describe the rich and diverse dynamic phenomena recently observed for the transport of oil films under such substrate excitation, in particular, Rayleigh surface acoustic waves. In contrast to low-frequency (Hz- to kHz-order) vibration-induced wetting phenomena, film spreading at such high frequencies arises from convective drift generated by the viscous periodic flow localized in a region characterized by the viscous penetration depth β-1≡(2μ /ρ ω ) 1 /2 adjacent to the substrate that is invoked directly by its vibration; μ and ρ are the viscosity and the density of the liquid, respectively, and ω is the excitation frequency. This convective drift is responsible for driving the spreading of thin films of thickness h ≪kl-1 , which spread self-similarly as t1 /4 along the direction of the drift corresponding to the propagation direction of the surface wave, kl being the wave number of the compressional acoustic wave that forms in the liquid due to leakage of the surface wave energy from the substrate into the liquid and t the time. Films of greater thicknesses h ˜kl-1≫β-1 , in contrast, are observed to spread with constant velocity but in a direction that opposes the drift and surface wave propagation due to the attenuation of the acoustic wave in the liquid. The universal equation derived allows for the collective prediction of the spreading of these thin and thick films in opposing directions.

  15. Frequency-resolved optical gating technique for retrieving the amplitude of a vibrational wavepacket

    PubMed Central

    Nabekawa, Yasuo; Furukawa, Yusuke; Okino, Tomoya; Amani Eilanlou, A.; Takahashi, Eiji J.; Yamanouchi, Kaoru; Midorikawa, Katsumi

    2015-01-01

    We propose a novel method to determine the complex amplitude of each eigenfunction composing a vibrational wavepacket of / molecular ions evolving with a ~10 fs time scale. We find that the two-dimensional spectrogram of the kinetic energy release (KER) of H+/D+ fragments plotted against the time delay of the probe pulse is equivalent to the spectrogram used in the frequency-resolved optical gating (FROG) technique to retrieve the complex amplitude of an ultrashort optical pulse. By adapting the FROG algorithm to the delay-KER spectrogram of the vibrational wavepacket, we have successfully reconstructed the complex amplitude. The deterioration in retrieval accuracy caused by the bandpass filter required to process actual experimental data is also discussed. PMID:26068640

  16. Frequency-resolved optical gating technique for retrieving the amplitude of a vibrational wavepacket

    NASA Astrophysics Data System (ADS)

    Nabekawa, Yasuo; Furukawa, Yusuke; Okino, Tomoya; Amani Eilanlou, A.; Takahashi, Eiji J.; Yamanouchi, Kaoru; Midorikawa, Katsumi

    2015-06-01

    We propose a novel method to determine the complex amplitude of each eigenfunction composing a vibrational wavepacket of / molecular ions evolving with a ~10 fs time scale. We find that the two-dimensional spectrogram of the kinetic energy release (KER) of H+/D+ fragments plotted against the time delay of the probe pulse is equivalent to the spectrogram used in the frequency-resolved optical gating (FROG) technique to retrieve the complex amplitude of an ultrashort optical pulse. By adapting the FROG algorithm to the delay-KER spectrogram of the vibrational wavepacket, we have successfully reconstructed the complex amplitude. The deterioration in retrieval accuracy caused by the bandpass filter required to process actual experimental data is also discussed.

  17. An approach based on tool mode control for surface roughness reduction in high-frequency vibration cutting

    NASA Astrophysics Data System (ADS)

    Ostasevicius, V.; Gaidys, R.; Rimkeviciene, J.; Dauksevicius, R.

    2010-11-01

    The presented research work, aimed at deeper understanding of vibrational process during high-frequency vibration cutting, is accomplished by treating cutting tool as an elastic structure which is characterized by several modes of natural vibrations. An approach for surface quality improvement is proposed in this paper by taking into account that quality of machined surface is related to the intensity of tool-tip (cutting edge) vibrations. It is based on the excitation of a particular higher vibration mode of a turning tool, which leads to the reduction of deleterious vibrations in the machine-tool-workpiece system through intensification of internal energy dissipation in the tool material. The combined application of numerical analysis with accurate finite element model as well as different experimental methods during investigation of the vibration turning process allowed to determine that the most favorable is the second flexural vibration mode of the tool in the direction of vertical cutting force component. This mode is excited by means of piezoelectric transducer vibrating in axial tool direction at the corresponding natural frequency, thereby enabling minimization of surface roughness and tool wear.

  18. Investigations of the Low Frequency Modes of Ferric Cytochrome c Using Vibrational Coherence Spectroscopy

    PubMed Central

    2015-01-01

    Femtosecond vibrational coherence spectroscopy is used to investigate the low frequency vibrational dynamics of the electron transfer heme protein, cytochrome c (cyt c). The vibrational coherence spectra of ferric cyt c have been measured as a function of excitation wavelength within the Soret band. Vibrational coherence spectra obtained with excitation between 412 and 421 nm display a strong mode at ∼44 cm–1 that has been assigned to have a significant contribution from heme ruffling motion in the electronic ground state. This assignment is based partially on the presence of a large heme ruffling distortion in the normal coordinate structural decomposition (NSD) analysis of the X-ray crystal structures. When the excitation wavelength is moved into the ∼421–435 nm region, the transient absorption increases along with the relative intensity of two modes near ∼55 and 30 cm–1. The intensity of the mode near 44 cm–1 appears to minimize in this region and then recover (but with an opposite phase compared to the blue excitation) when the laser is tuned to 443 nm. These observations are consistent with the superposition of both ground and excited state coherence in the 421–435 nm region due to the excitation of a weak porphyrin-to-iron charge transfer (CT) state, which has a lifetime long enough to observe vibrational coherence. The mode near 55 cm–1 is suggested to arise from ruffling in a transient CT state that has a less ruffled heme due to its iron d6 configuration. PMID:24823442

  19. Low-Magnitude, High-Frequency Vibration Fails to Accelerate Ligament Healing but Stimulates Collagen Synthesis in the Achilles Tendon

    PubMed Central

    Thompson, William R.; Keller, Benjamin V.; Davis, Matthew L.; Dahners, Laurence E.; Weinhold, Paul S.

    2015-01-01

    Background: Low-magnitude, high-frequency vibration accelerates fracture and wound healing and prevents disuse atrophy in musculoskeletal tissues. Purpose: To investigate the role of low-magnitude, high-frequency vibration as a treatment to accelerate healing of an acute ligament injury and to examine gene expression in the intact Achilles tendon of the injured limb after low-magnitude, high-frequency vibration. Study Design: Controlled laboratory study. Methods: Complete surgical transection of the medial collateral ligament (MCL) was performed in 32 Sprague-Dawley rats, divided into control and low-magnitude, high-frequency vibration groups. Low-magnitude, high-frequency vibration started on postoperative day 2, and rats received vibration for 30 minutes a day for 12 days. All rats were sacrificed 2 weeks after the operation, and their intact and injured MCLs were biomechanically tested or used for histological analysis. Intact Achilles tendons from the injured limb were evaluated for differences in gene expression. Results: Mechanical testing revealed no differences in the ultimate tensile load or the structural stiffness between the control and vibration groups for either the injured or intact MCL. Vibration exposure increased gene expression of collagen 1 alpha (3-fold), interleukin 6 (7-fold), cyclooxygenase 2 (5-fold), and bone morphogenetic protein 12 (4-fold) in the intact Achilles tendon when compared with control tendons (P < .05). Conclusion: While no differences were observed in the mechanical or histological properties of the fully transected MCL after low-magnitude, high-frequency vibration treatment, significant enhancements in gene expression were observed in the intact Achilles tendon. These included collagen, several inflammatory cytokines, and growth factors critical for tendons. Clinical Relevance: As low-magnitude, high-frequency vibration had no negative effects on ligament healing, vibration therapy may be a useful tool to accelerate healing

  20. Effect of High Frequency, Low Magnitude Vibration on Bone and Muscle in Children with Cerebral Palsy

    PubMed Central

    Wren, Tishya A. L.; Lee, David C.; Hara, Reiko; Rethlefsen, Susan A.; Kay, Robert M.; Dorey, Frederick J.; Gilsanz, Vicente

    2010-01-01

    BACKGROUND Children with cerebral palsy (CP) have decreased strength, low bone mass, and an increased propensity to fracture. High frequency, low magnitude vibration might provide a non-invasive, non-pharmacological, home-based treatment for these musculoskeletal deficits. The purpose of this study was to examine the effects of this intervention on bone and muscle in children with CP. METHODS Thirty-one children with CP ages 6-12 years (mean 9.4, SD 1.4) stood on a vibrating platform (30 Hz, 0.3 g peak acceleration) at home for 10 min/day for 6 months and on the floor without the platform for another 6 months. The order of vibration and standing was randomized, and outcomes were measured at 0, 6, and 12 months. The outcome measures included computed tomography measurements of vertebral cancellous bone density (CBD) and cross-sectional area, CBD of the proximal tibia, geometric properties of the tibial diaphysis, and dynamometer measurements of plantarflexor strength. Outcomes were assessed using mixed model linear regression and Pearson's correlation. RESULTS The main difference between vibration and standing was greater increases in the cortical bone properties (cortical bone area and moments of inertia) during the vibration period (all p's ≤ 0.03). There was no difference in cancellous bone or muscle between vibration and standing (all p's > 0.10) and no correlation between compliance and outcome (all r's < 0.27; all p's > 0.15). The results did not depend on the order of treatment (p > 0.43) and was similar for children in GMFCS 1-2 and GMFCS 3-4. CONCLUSIONS The primary benefit of the vibration intervention in children with CP was to cortical bone in the appendicular skeleton. Increased cortical bone area and structural (strength) properties could translate into a decreased risk of long bone fractures for some patients. More research is needed to corroborate these findings, to elucidate the mechanisms of the intervention, and to determine the most effective

  1. Time-domain filtered-x-Newton narrowband algorithms for active isolation of frequency-fluctuating vibration

    NASA Astrophysics Data System (ADS)

    Li, Yan; He, Lin; Shuai, Chang-geng; Wang, Fei

    2016-04-01

    A time-domain filtered-x Newton narrowband algorithm (the Fx-Newton algorithm) is proposed to address three major problems in active isolation of machinery vibration: multiple narrowband components, MIMO coupling, and amplitude and frequency fluctuations. In this algorithm, narrowband components are extracted by narrowband-pass filters (NBPF) and independently controlled by multi-controllers, and fast convergence of the control algorithm is achieved by inverse secondary-path filtering of the extracted sinusoidal reference signal and its orthogonal component using L×L numbers of 2nd-order filters in the time domain. Controller adapting and control signal generation are also implemented in the time domain, to ensure good real-time performance. The phase shift caused by narrowband filter is compensated online to improve the robustness of control system to frequency fluctuations. A double-reference Fx-Newton algorithm is also proposed to control double sinusoids in the same frequency band, under the precondition of acquiring two independent reference signals. Experiments are conducted with an MIMO single-deck vibration isolation system on which a 200 kW ship diesel generator is mounted, and the algorithms are tested under the vibration alternately excited by the diesel generator and inertial shakers. The results of control over sinusoidal vibration excited by inertial shakers suggest that the Fx-Newton algorithm with NBPF have much faster convergence rate and better attenuation effect than the Fx-LMS algorithm. For swept, frequency-jumping, double, double frequency-swept and double frequency-jumping sinusoidal vibration, and multiple high-level harmonics in broadband vibration excited by the diesel generator, the proposed algorithms also demonstrate large vibration suppression at fast convergence rate, and good robustness to vibration with frequency fluctuations.

  2. Relationship between low-frequency aircraft noise and annoyance due to rattle and vibration.

    PubMed

    Fidell, Sanford; Pearsons, Karl; Silvati, Laura; Sneddon, Matthew

    2002-04-01

    A near-replication of a study of the annoyance of rattle and vibration attributable to aircraft noise [Fidell et al., J. Acoust. Soc. Am. 106, 1408-1415 (1999)] was conducted in the vicinity of Minneapolis-St. Paul International Airport (MSP). The findings of the current study were similar to those reported earlier with respect to the types of objects cited as sources of rattle in homes, frequencies of notice of rattle, and the prevalence of annoyance due to aircraft noise-induced rattle. A reliably lower prevalence rate of annoyance (but not of complaints) with rattle and vibration was noted among respondents living in homes that had been treated to achieve a 5-dB improvement in A-weighted noise reduction than among respondents living in untreated homes. This difference is not due to any substantive increase in low-frequency noise reduction of acoustically treated homes, but may be associated with installation of nonrattling windows. Common interpretations of the prevalence of a consequential degree of annoyance attributable to low-frequency aircraft noise may be developed from the combined results of the present and prior studies. PMID:12002858

  3. Multiscale wireless sensor node for impedance-based SHM and low-frequency vibration data acquisition

    SciTech Connect

    Taylor, Stuart G; Farinholt, Kevin M; Park, Gyuhae; Farrar, Charles R; Todd, Michael D

    2009-01-01

    This paper presents recent developments in an extremely compact, wireless impedance sensor node (WID3, Wireless Impedance Device) at Los Alamos National Laboratory for use in impedance-based structural health monitoring (SHM), Sensor diagnostics and low-frequency vibrational data acquisition. The current generation WID3 is equipped with an Analog Devices AD5933 impedance chip that can resolve measurements up to 100 kHz, a frequency range ideal for many SHM applications. An integrated set of multiplexers allows the end user to monitor seven piezoelectric sensors from a single sensor node. The WID3 combines on-board processing using an Atmega1281 microcontroller, data storage using flash memory, wireless communications capabilities, and a series of internal and external triggering options into a single package to realize a truly comprehensive, self-contained wireless active-sensor node for SHM applications. Furthermore, we recently extended the capability of this device by implementing low-frequency analog to digital and digital and analog converters so that the same device can measure structural vibration data. The WID3 requires less than 70 mW of power to operate, and it can operate in various wireless network paradigms. The performance of this miniaturized and portable device is compared to our previous results and its broader capabilities are demonstrated.

  4. The trans-HOCO radical: Quartic force fields, vibrational frequencies, and spectroscopic constants

    NASA Astrophysics Data System (ADS)

    Fortenberry, Ryan C.; Huang, Xinchuan; Francisco, Joseph S.; Crawford, T. Daniel; Lee, Timothy J.

    2011-10-01

    In the search for a full mechanism creating CO2 from OH + CO, it has been suggested that creation of the hydroxyformyl or HOCO radical may be a necessary step. This reaction and its transient intermediate may also be responsible for the regeneration of CO2 in such high quantities in the atmosphere of Mars. Past spectroscopic observations of this radical have been limited and a full gas phase set of the fundamental vibrational frequencies of the HOCO radical has not been reported. Using established, highly accurate quantum chemical coupled cluster techniques and quartic force fields, we are able to compute all six fundamental vibrational frequencies and other spectroscopic constants for trans-HOCO in the gas phase. These methods have yielded rotational constants that are within 0.01 cm-1 for A0 and 10-4 cm-1 for B0 and C0 compared with experiment as well as fundamental vibrational frequencies within 4 cm-1 of the known gas phase experimental ν1 and ν2 modes. Such results lead us to conclude that our prediction of the other four fundamental modes of trans-HOCO are also quite reliable for comparison to future experimental observation, though the discrepancy for the torsional mode may be larger since it is fairly anharmonic. With the upcoming European Space Agency/NASA ExoMars Trace Gas Orbiter, these data may help to establish whether HOCO is present in the Martian sky and what role it may play in the retention of a CO2-rich atmosphere. Furthermore, these data may also help to clear up questions built around the fundamental chemical process of how exactly the OH + CO reaction progresses.

  5. The effect of classical and quantum dynamics on vibrational frequency shifts of H{sub 2} in clathrate hydrates

    SciTech Connect

    Plattner, Nuria; Meuwly, Markus

    2014-01-14

    Vibrational frequency shifts of H{sub 2} in clathrate hydrates are important to understand the properties and elucidate details of the clathrate structure. Experimental spectra of H{sub 2} in clathrate hydrates have been measured for different clathrate compositions, temperatures, and pressures. In order to establish reliable relationships between the clathrate structure, dynamics, and observed frequencies, calculations of vibrational frequency shifts in different clathrate environments are required. In this study, a combination of classical molecular dynamics simulations, electronic structure calculations, and quantum dynamical simulation is used to calculate relative vibrational frequencies of H{sub 2} in clathrate hydrates. This approach allows us to assess dynamical effects and simulate the change of vibrational frequencies with temperature and pressure. The frequency distributions of the H{sub 2} vibrations in the different clathrate cage types agree favorably with experiment. Also, the simulations demonstrate that H{sub 2} in the 5{sup 12} cage is more sensitive to the details of the environment and to quantum dynamical effects, in particular when the cage is doubly occupied. We show that for the 5{sup 12} cage quantum effects lead to frequency increases and double occupation is unlikely. This is different for the 5{sup 12}6{sup 4} cages for which higher occupation numbers than one H{sub 2} per cage are likely.

  6. Computational procedures for evaluating the sensitivity derivatives of vibration frequencies and Eigenmodes of framed structures

    NASA Technical Reports Server (NTRS)

    Fetterman, Timothy L.; Noor, Ahmed K.

    1987-01-01

    Computational procedures are presented for evaluating the sensitivity derivatives of the vibration frequencies and eigenmodes of framed structures. Both a displacement and a mixed formulation are used. The two key elements of the computational procedure are: (a) Use of dynamic reduction techniques to substantially reduce the number of degrees of freedom; and (b) Application of iterative techniques to improve the accuracy of the derivatives of the eigenmodes. The two reduction techniques considered are the static condensation and a generalized dynamic reduction technique. Error norms are introduced to assess the accuracy of the eigenvalue and eigenvector derivatives obtained by the reduction techniques. The effectiveness of the methods presented is demonstrated by three numerical examples.

  7. Comparison of DFT with Traditional Methods for the Calculation of Vibrational Frequencies and Bond Energies

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W.; Arnold, James O. (Technical Monitor)

    1997-01-01

    The vibrational frequencies of MO2 are computed at many levels of theory, including HF, B3LYP, BP86, CASSCF, MP2, and CCSD(T). The computed results are compared with the available experimental results. Most of the methods fail for at least one state of the systems considered. The accuracy of the results and the origin of the observed failures are discussed. The B3LYP bond energies are compared with traditional methods for a variety of systems, ranging from FeCOn+ to SiCln and its positive ions. The cases where B3LYP differs from the traditional methods are discussed.

  8. A piezoelectric pulse generator for low frequency non-harmonic vibration

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Yeatman, Eric M.

    2013-12-01

    This paper reports a new piezoelectric prototype for pulse generation by energy harvesting from low frequency non-harmonic vibration. The pulse generator presented here consists of two parts: the electromechanical part and the load circuit. A metal rolling rod is used as the proof mass, moving along the substrate to achieve both actuating of the piezoelectric cantilever by magnetic coupling and self-synchronous switching of the circuit. By using this new approach, the energy from the piezoelectric transduction mechanism is regulated simultaneously when it is extracted. This allows a series of tuneable pulses to be generated, which can be applied to self-powered RF wireless sensor network (WSN) nodes.

  9. Vibrational frequencies of anti-diabetic drug studied by terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Du, S. Q.; Li, H.; Xie, L.; Chen, L.; Peng, Y.; Zhu, Y. M.; Li, H.; Dong, P.; Wang, J. T.

    2012-04-01

    By using terahertz time-domain spectroscopy, the absorption spectra of seven anti-diabetic pills have been investigated. For gliquidone, glipizide, gliclazide, and glimepiride, an obvious resonance peak is found at 1.37 THz. Furthermore, to overcome the limit of density functional theory that can analyze the normal mode frequencies of the ground state of organic material, we also present a method that relies on pharmacophore recognition, from which we can obtain the resonance peak at 1.37 THz can be attributed to the vibration of sulfonylurea group. The results indicate that the veracity of density functional theory can be increased by combining pharmacophore recognition.

  10. Optimal design of thin walled I beams for extreme natural frequency of torsional vibrations

    NASA Astrophysics Data System (ADS)

    Szymczak, C.

    1983-01-01

    The optimal design of thin-walled I beams so as to extremize the natural frequency of torsional vibration is considered. It is assumed that only one dimension of the cross-section, except for the web height, may be variable in given limits, along the axis of the beam. The optimality condition for the variable dimension is settled by means of Pontryagin's maximum principle. The effect of the constant, axial loads is also included. the solution of the problem formulated is generally found in an iterative way. Some numerical examples of optimization of the I beam with variable widt of flanges are given.

  11. First-Principles Framework to Compute Sum-Frequency Generation Vibrational Spectra of Semiconductors and Insulators

    NASA Astrophysics Data System (ADS)

    Wan, Quan; Galli, Giulia

    2015-12-01

    We present a first-principles framework to compute sum-frequency generation (SFG) vibrational spectra of semiconductors and insulators. The method is based on density functional theory and the use of maximally localized Wannier functions to compute the response to electric fields, and it includes the effect of electric field gradients at surfaces. In addition, it includes quadrupole contributions to SFG spectra, thus enabling the verification of the dipole approximation, whose validity determines the surface specificity of SFG spectroscopy. We compute the SFG spectra of ice Ih basal surfaces and identify which spectra components are affected by bulk contributions. Our results are in good agreement with experiments at low temperature.

  12. Accurate vibrational frequencies using the self-consistent-charge density-functional tight-binding method

    NASA Astrophysics Data System (ADS)

    Małolepsza, Edyta; Witek, Henryk A.; Morokuma, Keiji

    2005-09-01

    An optimization technique for enhancing the quality of repulsive two-body potentials of the self-consistent-charge density-functional tight-binding (SCC-DFTB) method is presented and tested. The new, optimized potentials allow for significant improvement of calculated harmonic vibrational frequencies. Mean absolute deviation from experiment computed for a group of 14 hydrocarbons is reduced from 59.0 to 33.2 cm -1 and maximal absolute deviation, from 436.2 to 140.4 cm -1. A drawback of the new family of potentials is a lower quality of reproduced geometrical and energetic parameters.

  13. Directional algorithms for the frequency isolation problem in undamped vibrational systems

    NASA Astrophysics Data System (ADS)

    Moro, Julio; Egaña, Juan C.

    2016-06-01

    A new algorithm is presented to solve the frequency isolation problem for vibrational systems with no damping: given an undamped mass-spring system with resonant eigenvalues, the system must be re-designed, finding some close-by non-resonant system at a reasonable cost. Our approach relies on modifying masses and stiffnesses along directions in parameter space which produce a maximal variation in the resonant eigenvalues, provided the non-resonant ones do not undergo large variations. The algorithm is derived from first principles, implemented, and numerically tested. The numerical experiments show that the new algorithms are considerably faster and more robust than previous algorithms solving the same problem.

  14. DFT Ab initio Calculation of Vibrational Frequencies in AsSe glass

    NASA Astrophysics Data System (ADS)

    Shrivastava, Keshav; Kassim, Hasan; Nazrul Rosli, Ahmad

    2008-03-01

    By using DFT double zeta wave functions, we calculated the structure, bond length (picometer, pm), frequencies(intensities)[degeneracy] for various clusters of arsenic selenide. Our results are as follows. (i) AsSe(diatomic) bond length 216pm, 244.0(1/cm). (ii) As2Se(linear) bond length 228.5 pm, frequencies 27.6(1.9) and 387.6(4.3). (iii) As2Se(triangular) As-Se 243.4 pm, As-As 223.3 pm, frequencies 237.3(2.4) and 332.4(0.05)(1/cm). (iv) As3Se (triangular) bond length 238.4 pm, frequencies 107.5 and 296(weak)(1/cm). (v) As4Se (square) bond length 250.2 pm, 58.5(0.04), 241.3(5.9)(1/cm). (vi) AsSe3 (triangular), bond length 231.2 pm, 75.9(0.003), 103.5(1.26)[2], 350.9(33.2)[2]. From this study we identify that linear As-Se-As for which the calculated frequency is 27.6(1/cm) is in agreement with the data of Nemanich, Phys. Rev. B 16, 1655(1977), J. C. Phillips et al Phys. Rev B 21, 5724(1980). We have successfully calculated several vibrational frequencies accurately which agree with the Raman data. *V. R. Devi et al J. Non-Cryst. Solids 351, 489(2005);353,111(2007)

  15. Non-Seismology Seismology: Using QuakeCatchers to Analyze the Frequency of Bridge Vibrations

    NASA Astrophysics Data System (ADS)

    Courtier, A. M.; Constantin, C.; Wilson, C. F.

    2013-12-01

    We conducted an experiment to test the feasibility of measuring seismic waves generated by traffic near James Madison University. We used QuakeCatcher seismometers (originally designed for passive seismic measurement) to measure vibrations associated with traffic on a wooden bridge as well as a nearby concrete bridge. This experiment was a signal processing exercise for a student research project and did not draw any conclusions regarding bridge safety or security. The experiment consisted of two temporary measurement stations comprised of a laptop computer and a QuakeCatcher - a small seismometer that plugs directly into the laptop via a USB cable. The QuakeCatcher was taped to the ground at the edge of the bridge to achieve good coupling, and vibrational events were triggered repeatedly with a control vehicle to accumulate a consistent dataset of the bridge response. For the wooden bridge, the resulting 'seismograms' were converted to Seismic Analysis Code (SAC) format and analyzed in MATLAB. The concrete bridge did not generate vibrations significant enough to trigger the recording mechanism on the QuakeCatchers. We will present an overview of the experimental design and frequency content of the traffic patterns, as well as a discussion of the instructional benefits of using the QuakeCatcher sensors in this non-traditional setting.

  16. Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure

    SciTech Connect

    Li, Pengwei Wang, Yanfen; Luo, Cuixian; Li, Gang; Hu, Jie; Zhang, Wendong; Liu, Ying; Liu, Wei

    2015-04-15

    As an alternative to traditional cantilever beam structures and their evolutions, a flexible beam based, interdigital structure, vibration energy harvester has been presented and investigated. The proposed interdigital-shaped oscillator consists of a rectangular flexible frame and series of cantilever beams interdigitally bonded to it. In order to achieve low frequency and wide-bandwidth harvesting, Young’s modulus of materials, frame size and the amount of the cantilevers have been studied systematically. The measured frequency responses of the designed device (PDMS frame, quintuple piezoelectric cantilever beams) show a 460% increase in bandwidth below 80Hz. When excited at an acceleration of 1.0 g, the energy harvester achieves to a maximum open-circuit voltage of 65V, and the maximum output power 4.5 mW.

  17. High-performance, vibration-immune, fiber-laser frequency comb.

    PubMed

    Baumann, Esther; Giorgetta, Fabrizio R; Nicholson, Jeffrey W; Swann, William C; Coddington, Ian; Newbury, Nathan R

    2009-03-01

    We demonstrate an environmentally robust optical frequency comb based on a polarization-maintaining, all-fiber, figure-eight laser. The comb is phase locked to a cavity-stabilized cw laser by use of an intracavity electro-optic phase modulator yielding 1.6 MHz feedback bandwidth. This high bandwidth provides close to shot-noise-limited residual phase noise between the comb and cw reference laser of -94 dBc/Hz from 20 Hz to 200 kHz and an integrated in-loop phase noise of 32 mrad from 1 Hz to 1 MHz. Moreover, the comb remains phase locked under significant mechanical vibrations of over 1 g. This level of environmental robustness is an important step toward a fieldable fiber frequency comb. PMID:19252577

  18. Energy harvesting of radio frequency and vibration energy to enable wireless sensor monitoring of civil infrastructure

    NASA Astrophysics Data System (ADS)

    Galchev, Tzeno; McCullagh, James; Peterson, Rebecca L.; Najafi, Khalil; Mortazawi, Amir

    2011-04-01

    To power distributed wireless sensor networks on bridges, traditional power cables or battery replacement are excessively expensive or infeasible. This project develops two power harvesting technologies. First, a novel parametric frequency-increased generator (PFIG) is developed. The fabricated PFIG harvests the non-periodic and unprecedentedly low frequency (DC to 30 Hz) and low acceleration (0.55-9.8 m/s2) mechanical energy available on bridges with an average power > 2 μW. Prototype power conversion and storage electronics were designed and the harvester system was used to charge a capacitor from arbitrary bridge-like vibrations. Second, an RF scavenger operating at medium and shortwave frequencies has been designed and tested. Power scavenging at MHz frequencies allows for lower antenna directivities, reducing sensitivity to antenna positioning. Furthermore, ambient RF signals at these frequencies have higher power levels away from cities and residential areas compared to the UHF and SHF bands utilized for cellular communication systems. An RF power scavenger operating at 1 MHz along with power management and storage circuitry has been demonstrated. It powers a LED at a distance of 10 km from AM radio stations.

  19. A vibrating reed apparatus to measure the natural frequency of multilayered thin films

    NASA Astrophysics Data System (ADS)

    Gamboa, F.; López, A.; Avilés, F.; Corona, J. E.; Oliva, A. I.

    2016-04-01

    An apparatus for measuring the natural frequency of sub-micrometric layered films in cantilever beam configuration is presented. The instrument comprises a specially designed test rig with a sample holder, an electronic excitation source, a vibration sensor and an automated software for the excitation and data recollection. The beam is excited by means of an air pulse and the oscillation amplitude of its free end is measured through a laser diode-photosensor arrangement. The instrument provides a very low uncertainty (˜1 mHz, for frequencies of the order of tens Hz) for repeated sequential tests and the major source of uncertainty (˜0.2 Hz, corresponding to a coefficient of variation of 0.18%) arises from the difficulty of placing the sample in an exactly identical location upon clamping. This high sensitivity renders the capability of measuring very small frequency shifts upon deposition of sub-micrometric films over thicker substrates. In order to assess the reliability of the apparatus, cantilever beams of 125 μm thick neat Kapton (substrate) and thin layered films of Au/Kapton and Al/Au/Kapton of 200-250 nm film thickness were fabricated and their natural frequency and damping factor were measured. Calculations of the natural frequency of such beams by finite element analysis further support the accuracy of the experimental measurements.

  20. Fast vibrational calculation of anharmonic OH-stretch frequencies for two low-energy noradrenaline conformers

    NASA Astrophysics Data System (ADS)

    Benoit, David M.

    2008-12-01

    We introduce a new reduced-coupling technique to accelerate direct calculations of a selected number of vibrational frequencies in large molecular systems. Our method combines the advantages of the single-to-all correlation-corrected vibrational self-consistent field (STA-CC-VSCF) approach [D. M. Benoit, J. Chem. Phys. 125, 244110 (2006)] with those of the fast-CC-VSCF technique [D. M. Benoit, J. Chem. Phys. 120, 562 (2004)] and allows the ab initio calculation of only the relevant parts of the required potential energy surface (PES). We demonstrate, using a set of five aliphatic alcohol molecules, that the new fast-STA-CC-VSCF method is accurate and leads to very substantial time gains for the computations of the PES. We then use the fast-STA-CC-VSCF method to accelerate the computation of the OH-stretch and NH-stretch frequencies of the two lowest-energy conformers of noradrenaline, namely, AG1a and GG1a. Our new approach enables us to run the calculation 89 times faster than the standard CC-VSCF technique and makes it possible to use a high-level MP2/TZP description of the PES. We demonstrate that the influence of the strong mode-mode couplings is crucial for a realistic description of the particular OH-stretch vibrational signature of each conformer. Finally, of the two possible low-energy conformers, we identify AG1a as the one most likely to have been observed in the experiments of Snoek et al. [Mol. Phys. 101, 1239 (2003)].

  1. A new aromatic probe - The ring stretching vibration Raman spectroscopy frequency.

    PubMed

    Guo, Yan-Bo; Liu, Zi-Zhong; Liu, Hong-Xia; Zhang, Feng-Ying; Yin, Jun-Qing

    2016-07-01

    A new aromatic criterion is presented to determine the aromatic degree of the high symmetric molecules. Group theory is used to explain the correlation between the aromatic degree and the value of Ring Stretching Vibration Raman Spectroscopic Frequency (RSVRSF). The calculations of the geometrical optimization, nucleus-independent chemical shifts (NICS) and values of the Raman Spectroscopy for the aromatic molecules-LnHn (L=C, Si, Ge, n=3, 5-8) were performed using the Density Functional Theory (DFT) Method, as well as the correlations between the values of their RSVRSF and NICS values by Statistic Package for Social Science (SPSS17.0). There are high positive correlations between the theoretical calculated the NICS values and the value of the RSVRSF (A1g/A1') of the LnHn (L=C, Si, Ge, n=3, 5-8). The bigger the aromatic degree, the bigger the RSVRSF is. The value of the RSVRSF is a new probe of aromaticity. Expectedly, it is predicted that the experimental determination of the aromatic degree can be achieved by the determination of the ring stretching vibration (A1g/A1') Raman spectrum frequencies for the aromatic target molecules. PMID:27085169

  2. A Simplified Sum-Frequency Vibrational Imaging Setup Used for Imaging Lipid Bilayer Arrays

    PubMed Central

    Smith, Kathryn A.; Conboy, John C.

    2012-01-01

    Given the complexity of cell membranes, there is a need for an analytical technique which can explore the physical properties of lipid membranes in a high-throughput and noninvasive manner. A simplified sum-frequency vibrational imaging (SFVI) setup has been developed and characterized using asymmetrically prepared 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC):1,2-distearoyl(d70)-sn-glycero-3-phosphocholine (DSPC-d70) lipid bilayer arrays. Exploiting the vibrational selectivity and inherent symmetry constraints of sum-frequency generation, SFVI was successfully used to probe the transition temperature of a patterned DSPC:DSPC-d70 lipid bilayer array. SFVI was also used to study the phase behavior in a multi-component micropatterned lipid bilayer array (MLBA) prepared using three different binary lipid mixtures (1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC):DSPC, DOPC:1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC:DSPC). This paper demonstrates that a simplified SFVI setup provides the necessary chemical imaging capabilities with the spatial resolution, sensitivity and field of view required for exploring lipid membrane properties in a high-throughput array based assay. PMID:22947074

  3. A simplified sum-frequency vibrational imaging setup used for imaging lipid bilayer arrays.

    PubMed

    Smith, Kathryn A; Conboy, John C

    2012-10-01

    Given the complexity of cell membranes, there is a need for an analytical technique which can explore the physical properties of lipid membranes in a high-throughput and noninvasive manner. A simplified sum-frequency vibrational imaging (SFVI) setup has been developed and characterized using asymmetrically prepared 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC):1,2-distearoyl(d70)-sn-glycero-3-phosphocholine (DSPC-d(70)) lipid bilayer arrays. Exploiting the vibrational selectivity and inherent symmetry constraints of sum-frequency generation, SFVI was successfully used to probe the transition temperature of a patterned DSPC:DSPC-d(70) lipid bilayer array. SFVI was also used to study the phase behavior in a multicomponent micropatterned lipid bilayer array (MLBA) prepared using three different binary lipid mixtures (1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC):DSPC, DOPC:1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC:DSPC). This paper demonstrates that a simplified SFVI setup provides the necessary chemical imaging capabilities with the spatial resolution, sensitivity, and field of view required for exploring lipid membrane properties in a high-throughput array based assay. PMID:22947074

  4. A new aromatic probe - The ring stretching vibration Raman spectroscopy frequency

    NASA Astrophysics Data System (ADS)

    Guo, Yan-bo; Liu, Zi-zhong; Liu, Hong-xia; Zhang, Feng-ying; Yin, Jun-qing

    2016-07-01

    A new aromatic criterion is presented to determine the aromatic degree of the high symmetric molecules. Group theory is used to explain the correlation between the aromatic degree and the value of Ring Stretching Vibration Raman Spectroscopic Frequency (RSVRSF). The calculations of the geometrical optimization, nucleus-independent chemical shifts (NICS) and values of the Raman Spectroscopy for the aromatic molecules-LnHn (L = C, Si, Ge, n = 3, 5-8) were performed using the Density Functional Theory (DFT) Method, as well as the correlations between the values of their RSVRSF and NICS values by Statistic Package for Social Science (SPSS17.0). There are high positive correlations between the theoretical calculated the NICS values and the value of the RSVRSF (A1g/A1‧) of the LnHn (L = C, Si, Ge, n = 3, 5-8). The bigger the aromatic degree, the bigger the RSVRSF is. The value of the RSVRSF is a new probe of aromaticity. Expectedly, it is predicted that the experimental determination of the aromatic degree can be achieved by the determination of the ring stretching vibration (A1g/A1‧) Raman spectrum frequencies for the aromatic target molecules.

  5. Comparison of frequency-domain and time-domain rotorcraft vibration control methods

    NASA Technical Reports Server (NTRS)

    Gupta, N. K.

    1984-01-01

    Active control of rotor-induced vibration in rotorcraft has received significant attention recently. Two classes of techniques have been proposed. The more developed approach works with harmonic analysis of measured time histories and is called the frequency-domain approach. The more recent approach computes the control input directly using the measured time history data and is called the time-domain approach. The report summarizes the results of a theoretical investigation to compare the two approaches. Five specific areas were addressed: (1) techniques to derive models needed for control design (system identification methods), (2) robustness with respect to errors, (3) transient response, (4) susceptibility to noise, and (5) implementation difficulties. The system identification methods are more difficult for the time-domain models. The time-domain approach is more robust (e.g., has higher gain and phase margins) than the frequency-domain approach. It might thus be possible to avoid doing real-time system identification in the time-domain approach by storing models at a number of flight conditions. The most significant error source is the variation in open-loop vibrations caused by pilot inputs, maneuvers or gusts. The implementation requirements are similar except that the time-domain approach can be much simpler to implement if real-time system identification were not necessary.

  6. Spatial and Time Variability of Ambient Vibration H/V Frequency Peak

    NASA Astrophysics Data System (ADS)

    Benkaci, Nassima; Oubaiche, El-hadi; Chatelain, Jean-luc; Bensalem, Rabah; Abbes, Khadidja

    2016-04-01

    The ambient vibration H/V technique is widely used nowadays in microzonation studies, because of its easy field handling and its low cost, compared to other geophysical methods. However, in presence of complex geology or lateral heterogeneity evidenced by more than one peak frequency in the H/V curve, it is difficult to interpret the results, especially when soil information is lacking. In this work, we focus on the construction site of the Baraki 40000=place stadium, located in the north-east side of the Mitidja basin (Algeria), to identify the seismic wave amplification zones. H/V curve analysis leads to the observation of spatial and time variability of the H/V frequency peaks. The spatial variability allows dividing the studied area into three main zones: (1) one with a predominant frequency around 1,5 Hz showing an important amplification level, (2) the second exhibits two peaks at 1,5 Hz and in the 4 Hz - 10 Hz range, and (3) the third zone is characterized by a plateau between 2 Hz and 3 Hz. These H/V curve categories reveal a consequent lateral heterogeneity dividing the stadium site roughly in the middle. Furthermore, a continuous ambient vibration recording during several weeks allows showing that the first peak at 1,5Hz in the second zone, completely disappears between 2 am and 4 am, and reaching its maximum amplitude around 12 am. Consequently, the anthropogenic noise source generating these important variations could be the Algiers Rocade Sud highway, located in the maximum amplification azimuth direction of the H/V curves. This work points out that the H/V method is an important tool to perform nano-zonation studies prior to geotechnical and geophysical investigations, and that, in some cases, the H/V technique fails to reveal the resonance frequency in the absence of strong anthropogenic source.

  7. The dispersion correction and weak-hydrogen-bond network in low-frequency vibration of solid-state salicylic acid

    NASA Astrophysics Data System (ADS)

    Takahashi, Masae; Ishikawa, Yoichi; Ito, Hiromasa

    2012-04-01

    We perform the dispersion-corrected first-principles calculations of vibrational absorption and the far-infrared (terahertz) spectroscopic experiments at different temperature to examine the effect of weak-hydrogen-bond network on the low-frequency vibrations of solid-state salicylic acid. By dispersion correction, calculated frequencies improve especially in the intermonomer torsion and interdimer translational modes which are closely related to the weak hydrogen bonds. The calculated frequencies and their relative intensities reproduce the observed spectrum in the accuracy of 10 cm-1 or less. Weak-hydrogen-bond network causes a large frequency shift of out-of-plane intermonomer modes and enhances interdimer translational modes accompanied by the O⋯H stretching vibrations.

  8. Communication: Quantitative multi-site frequency maps for amide I vibrational spectroscopy.

    PubMed

    Reppert, Mike; Tokmakoff, Andrei

    2015-08-14

    An accurate method for predicting the amide I vibrational spectrum of a given protein structure has been sought for many years. Significant progress has been made recently by sampling structures from molecular dynamics simulations and mapping local electrostatic variables onto the frequencies of individual amide bonds. Agreement with experiment, however, has remained largely qualitative. Previously, we used dipeptide fragments and isotope-labeled constructs of the protein G mimic NuG2b as experimental standards for developing and testing amide I frequency maps. Here, we combine these datasets to test different frequency-map models and develop a novel method to produce an optimized four-site potential (4P) map based on the CHARMM27 force field. Together with a charge correction for glycine residues, the optimized map accurately describes both experimental datasets, with average frequency errors of 2-3 cm(-1). This 4P map is shown to be convertible to a three-site field map which provides equivalent performance, highlighting the viability of both field- and potential-based maps for amide I spectral modeling. The use of multiple sampling points for local electrostatics is found to be essential for accurate map performance. PMID:26277120

  9. Communication: Quantitative multi-site frequency maps for amide I vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Reppert, Mike; Tokmakoff, Andrei

    2015-08-01

    An accurate method for predicting the amide I vibrational spectrum of a given protein structure has been sought for many years. Significant progress has been made recently by sampling structures from molecular dynamics simulations and mapping local electrostatic variables onto the frequencies of individual amide bonds. Agreement with experiment, however, has remained largely qualitative. Previously, we used dipeptide fragments and isotope-labeled constructs of the protein G mimic NuG2b as experimental standards for developing and testing amide I frequency maps. Here, we combine these datasets to test different frequency-map models and develop a novel method to produce an optimized four-site potential (4P) map based on the CHARMM27 force field. Together with a charge correction for glycine residues, the optimized map accurately describes both experimental datasets, with average frequency errors of 2-3 cm-1. This 4P map is shown to be convertible to a three-site field map which provides equivalent performance, highlighting the viability of both field- and potential-based maps for amide I spectral modeling. The use of multiple sampling points for local electrostatics is found to be essential for accurate map performance.

  10. Communication: Quantitative multi-site frequency maps for amide I vibrational spectroscopy

    SciTech Connect

    Reppert, Mike; Tokmakoff, Andrei

    2015-08-14

    An accurate method for predicting the amide I vibrational spectrum of a given protein structure has been sought for many years. Significant progress has been made recently by sampling structures from molecular dynamics simulations and mapping local electrostatic variables onto the frequencies of individual amide bonds. Agreement with experiment, however, has remained largely qualitative. Previously, we used dipeptide fragments and isotope-labeled constructs of the protein G mimic NuG2b as experimental standards for developing and testing amide I frequency maps. Here, we combine these datasets to test different frequency-map models and develop a novel method to produce an optimized four-site potential (4P) map based on the CHARMM27 force field. Together with a charge correction for glycine residues, the optimized map accurately describes both experimental datasets, with average frequency errors of 2–3 cm{sup −1}. This 4P map is shown to be convertible to a three-site field map which provides equivalent performance, highlighting the viability of both field- and potential-based maps for amide I spectral modeling. The use of multiple sampling points for local electrostatics is found to be essential for accurate map performance.

  11. Definitions of non-stationary vibration power for time-frequency analysis and computational algorithms based upon harmonic wavelet transform

    NASA Astrophysics Data System (ADS)

    Heo, YongHwa; Kim, Kwang-joon

    2015-02-01

    While the vibration power for a set of harmonic force and velocity signals is well defined and known, it is not as popular yet for a set of stationary random force and velocity processes, although it can be found in some literatures. In this paper, the definition of the vibration power for a set of non-stationary random force and velocity signals will be derived for the purpose of a time-frequency analysis based on the definitions of the vibration power for the harmonic and stationary random signals. The non-stationary vibration power, defined as the short-time average of the product of the force and velocity over a given frequency range of interest, can be calculated by three methods: the Wigner-Ville distribution, the short-time Fourier transform, and the harmonic wavelet transform. The latter method is selected in this paper because band-pass filtering can be done without phase distortions, and the frequency ranges can be chosen very flexibly for the time-frequency analysis. Three algorithms for the time-frequency analysis of the non-stationary vibration power using the harmonic wavelet transform are discussed. The first is an algorithm for computation according to the full definition, while the others are approximate. Noting that the force and velocity decomposed into frequency ranges of interest by the harmonic wavelet transform are constructed with coefficients and basis functions, for the second algorithm, it is suggested to prepare a table of time integrals of the product of the basis functions in advance, which are independent of the signals under analysis. How to prepare and utilize the integral table are presented. The third algorithm is based on an evolutionary spectrum. Applications of the algorithms to the time-frequency analysis of the vibration power transmitted from an excitation source to a receiver structure in a simple mechanical system consisting of a cantilever beam and a reaction wheel are presented for illustration.

  12. Time-dependent wave packet averaged vibrational frequencies from femtosecond stimulated Raman spectra

    NASA Astrophysics Data System (ADS)

    Wu, Yue-Chao; Zhao, Bin; Lee, Soo-Y.

    2016-02-01

    Femtosecond stimulated Raman spectroscopy (FSRS) on the Stokes side arises from a third order polarization, P(3)(t), which is given by an overlap of a first order wave packet, |" separators=" Ψ2 ( 1 ) ( p u , t ) > , prepared by a narrow band (ps) Raman pump pulse, Epu(t), on the upper electronic e2 potential energy surface (PES), with a second order wave packet, <" separators=" Ψ1 ( 2 ) ( p r ∗ , p u , t ) | , that is prepared on the lower electronic e1 PES by a broadband (fs) probe pulse, Epr(t), acting on the first-order wave packet. In off-resonant FSRS, |" separators=" Ψ2 ( 1 ) ( p u , t ) > resembles the zeroth order wave packet |" separators=" Ψ1 ( 0 ) ( t ) > on the lower PES spatially, but with a force on |" separators=" Ψ2 ( 1 ) ( p u , t ) > along the coordinates of the reporter modes due to displacements in the equilibrium position, so that <" separators=" Ψ1 ( 2 ) ( p r ∗ , p u , t ) | will oscillate along those coordinates thus giving rise to similar oscillations in P(3)(t) with the frequencies of the reporter modes. So, by recovering P(3)(t) from the FSRS spectrum, we are able to deduce information on the time-dependent quantum-mechanical wave packet averaged frequencies, ω ¯ j ( t ) , of the reporter modes j along the trajectory of |" separators=" Ψ1 ( 0 ) ( t ) > . The observable FSRS Raman gain is related to the imaginary part of P(3)(ω). The imaginary and real parts of P(3)(ω) are related by the Kramers-Kronig relation. Hence, from the FSRS Raman gain, we can obtain the complex P(3)(ω), whose Fourier transform then gives us the complex P(3)(t) to analyze for ω ¯ j ( t ) . We apply the theory, first, to a two-dimensional model system with one conformational mode of low frequency and one reporter vibrational mode of higher frequency with good results, and then we apply it to the time-resolved FSRS spectra of the cis-trans isomerization of retinal in rhodopsin [P. Kukura et al., Science 310, 1006 (2005)]. We obtain the vibrational

  13. Vibration signal analysis using parameterized time-frequency method for features extraction of varying-speed rotary machinery

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Dong, X. J.; Peng, Z. K.; Zhang, W. M.; Meng, G.

    2015-01-01

    In real application, when rotary machinery frequently involves variable-speed, unsteady load and defect, it will produce non-stationary vibration signal. Such signal can be characterized by mono- or multi-component frequency modulation (FM) and its internal instantaneous patterns are closely related to operation condition of the rotary machinery. For example, instantaneous frequency (IF) and instantaneous amplitude (IA) of a non-stationary signal are two important time-frequency features to be inspected. For vibration signal analysis of the rotary machinery, time-frequency analysis (TFA), known for analyzing the signal in the time and frequency domain simultaneously, has been accepted as a key signal processing tool. Particularly, parameterized TFA, among various TFAs, has shown great potential to investigate time-frequency features of non-stationary signals. It attracts more attention for improving time-frequency representation (TFR) with signal-dependent transform parameters. However, the parameter estimation and component separation are two problems to tackle with while using the parameterized TFA to extract time-frequency features from non-stationary vibration signal of varying-speed rotary machinery. In this paper, we propose a procedure for the parameterized TFA to analyze the non-stationary vibration signal of varying-speed rotary machinery. It basically includes four steps: initialization, estimation of transform parameter, component separation and parameterized TFA, as well as feature extraction. To demonstrate the effectiveness of the proposed method in analyzing mono- and multi-component signals, it is first used to analyze the vibration response of a laboratory rotor during a speed-up and run-down process, and then extract the instantaneous time-frequency signatures of a hydro-turbine rotor in a hydroelectric power station during a shut-down stage. In addition, the results are compared with several traditional TFAs and the proposed method outperforms

  14. General model with experimental validation of electrical resonant frequency tuning of electromagnetic vibration energy harvesters

    NASA Astrophysics Data System (ADS)

    Zhu, Dibin; Roberts, Stephen; Mouille, Thomas; Tudor, Michael J.; Beeby, Stephen P.

    2012-10-01

    This paper presents a general model and its experimental validation for electrically tunable electromagnetic energy harvesters. Electrical tuning relies on the adjustment of the electrical load so that the maximum output power of the energy harvester occurs at a frequency which is different from the mechanical resonant frequency of the energy harvester. Theoretical analysis shows that for this approach to be feasible the electromagnetic vibration energy harvester’s coupling factor must be maximized so that its resonant frequency can be tuned with the minimum decrease of output power. Two different-sized electromagnetic energy harvesters were built and tested to validate the model. Experimentally, the micro-scale energy harvester has a coupling factor of 0.0035 and an untuned resonant frequency of 70.05 Hz. When excited at 30 mg, it was tuned by 0.23 Hz by changing its capacitive load from 0 to 4000 nF its effective tuning range is 0.15 Hz for a capacitive load variation from 0 to 1500 nF. The macro-scale energy harvester has a coupling factor of 552.25 and an untuned resonant frequency of 95.1 Hz and 95.5 Hz when excited at 10 mg and 25 mg, respectively. When excited at 10 mg, it was tuned by 3.8 Hz by changing its capacitive load from 0 to 1400 nF it has an effective tuning range of 3.5 Hz for a capacitive load variation from 0 to 1200 nF. When excited at 25 mg, its resonant frequency was tuned by 4.2 Hz by changing its capacitive load from 0 to 1400 nF it has an effective tuning range of about 5 Hz. Experimental results were found to agree with the theoretical analysis to within 10%.

  15. Vibrational spectroscopy at interfaces by IR-VIS sum-frequency generation using CLIO FEL

    SciTech Connect

    Peremans, A.; Tadjeddine, A.; Wan Quan, Z.

    1995-12-31

    IR-vis sum-frequency generation (SFG) has developed into a versatile technique for probing the vibrational structure of interfaces. To overcome the limited spectral range accessible by benchtop IR lasers, we have developed an SFG spectrometer that makes use of the broad band tuneable infrared beam provided by the CLIO-FEL. We will evaluate the gain in sensitivity of the FEL-SFG spectrometer in comparison to that of benchtop lasers, taking account of the surface damage by laser heating. Thereafter, we review the different research projects undertaken using this facility: (1) The interface selectivity of SFG makes it particularly suitable for probing buried liquid/solid interface. We took advantage of the spectrometer sensitivity to monitor the electrochemical deposition of hydrogen on platinum single crystals at under- and overpotential (2) Because of its sensitivity to the molecular symmetry, SFG allows probing the conformation of self assembled monolayers deposited on metals. We discuss SFG spectra of {omega}(4-nitroanilino)-dodecane adsorbed on polycrystalline gold and silver films; in the 1550 - 900 cm{sup -1} spectral range. (3) We have undertaken a spectroscopic approach for the investigation of polymer films adhesion on glass. Polyurethane/glass interface is investigated in the 2200 - 1600 cin{sup -1} spectral region. (4) The use of the CLIO FEL allows probing of the vibrational dynamics of the prominent IR active vibrations between 1500 and 500 cm{sup -1} of fullerene epitaxial films. These modes are modified upon charge transfer from the substrate to the C{sub 60} molecules. Preliminary SFG spectra of C{sub 60}/Ag interface are presented. (5) Site specific detection of CO adsorption and CO + O coadsorption on Pd(111) are studied.

  16. Vibrational Sum Frequency Generation Spectroscopy Study of Hydrous Species in Soda Lime Silica Float Glass.

    PubMed

    Luo, Jiawei; Banerjee, Joy; Pantano, Carlo G; Kim, Seong H

    2016-06-21

    It is generally accepted that the mechanical properties of soda lime silica (SLS) glass can be affected by the interaction between sodium ions and hydrous species (silanol groups and water molecules) in its surface region. While the amount of these hydrous species can be estimated from hydrogen profiles and infrared spectroscopy, their chemical environment in the glass network is still not well understood. This work employed vibrational sum frequency generation (SFG) spectroscopy to investigate the chemical environment of hydrous species in the surface region of SLS float glass. SLS float glass shows sharp peaks in the OH stretching vibration region in SFG spectra, while the OH stretch peaks of glasses that do not have leachable sodium ions and the OH peaks of water molecules in condensed phases are normally broad due to fast hydrogen bonding dynamics. The hydrous species responsible for the sharp SFG peaks for the SLS float glass were found to be thermodynamically more stable than physisorbed water molecules, did not exchange with D2O, and were associated with the sodium concentration gradient in the dealkalized subsurface region. These results suggested that the hydrous species reside in static solvation shells defined by the silicate network with relatively slow hydrogen bonding dynamics, compared to physisorbed water layers on top of the glass surface. A putative radial distribution of the hydrous species within the SLS glass network was estimated based on the OH SFG spectral features, which could be compared with theoretical distributions calculated from computational simulations. PMID:27254814

  17. Ablation of chronic total occlusions using kilohertz-frequency mechanical vibrations in minimally invasive angioplasty procedures.

    PubMed

    McGuinness, G B; Wylie, M P; Gavin, G P

    2010-01-01

    Certain minimally invasive cardiology procedures, such as balloon angioplasty and stent implantation, critically require that the site of an arterial blockage be crossed by an intraluminal guidewire. Plaques resulting in near or totally occluded arteries are known as chronic total occlusions, and crossing them with conventional guidewires is a significant challenge. Among the most promising proposed solutions is the delivery of high-power, low-frequency ultrasonic vibrations to the occlusion site via an intraluminal wire waveguide. The vibrating distal tip of the ultrasound wire waveguide is used to transmit energy to the surrounding plaques, tissues, and fluids to ablate or weaken atherosclerotic plaque. Potential mechanisms of interaction with the plaque and adjacent fluids identified in the literature include: (i) direct contact with the waveguide distal tip, (ii) subcavitational acoustic fluid pressure fluctuations, (iii) cavitation, and (iv) acoustic streaming. We summarize developments in this area over more than two decades, describing experimental methods for device performance characterization, preclinical tests, early clinical investigations, and, later, full clinical trials. The article also reviews theoretical foundations and numerical models suitable for device design and analysis. Finally, important issues for future research and for the development of this technology will be considered. PMID:21303322

  18. Ab Initio Potential Energy Surfaces and the Calculation of Accurate Vibrational Frequencies

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Dateo, Christopher E.; Martin, Jan M. L.; Taylor, Peter R.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Due to advances in quantum mechanical methods over the last few years, it is now possible to determine ab initio potential energy surfaces in which fundamental vibrational frequencies are accurate to within plus or minus 8 cm(exp -1) on average, and molecular bond distances are accurate to within plus or minus 0.001-0.003 Angstroms, depending on the nature of the bond. That is, the potential energy surfaces have not been scaled or empirically adjusted in any way, showing that theoretical methods have progressed to the point of being useful in analyzing spectra that are not from a tightly controlled laboratory environment, such as vibrational spectra from the interstellar medium. Some recent examples demonstrating this accuracy will be presented and discussed. These include the HNO, CH4, C2H4, and ClCN molecules. The HNO molecule is interesting due to the very large H-N anharmonicity, while ClCN has a very large Fermi resonance. The ab initio studies for the CH4 and C2H4 molecules present the first accurate full quartic force fields of any kind (i.e., whether theoretical or empirical) for a five-atom and six-atom system, respectively.

  19. Revealing structural properties of the marine nanolayer from vibrational sum frequency generation spectra

    NASA Astrophysics Data System (ADS)

    Laß, K.; Friedrichs, G.

    2011-08-01

    Natural nanolayers originating from sea surface and subsurface water samples collected in the Baltic Sea have been investigated using surface-sensitive vibrational sum frequency generation (VSFG) spectroscopy. Distinct spectral signatures of CH and OH bond stretch vibrations have been detected at wavenumbers ranging from 2700 to 3900 cm-1. Measured water-air interface spectra as well as observed signal intensity trends are discussed in terms of composition and structure of the natural organic nanolayer. Reasoning was based on the comparison with reference spectra, spectral trends inferred from previous VSFG studies, reported average composition of dissolved organic matter in seawater, and simplified assumption that surfactants can be classified as soluble (wet) and insoluble (dry) surfactants. Wet surfactants have been found to be dominant, and often lipid-like compounds form a very dense surfactant nanolayer. Supported by comparison spectra of xanthan gum solutions, the observed VSFG spectral signatures were tentatively assigned to lipopolysaccharides or other lipid-like compounds embedded in colloidal matrices of polymeric material. In addition, VSFG spectra of a polluted harbor water sample and a water sample covered with diesel oil are reported.

  20. Compact ultrahigh vacuum/high-pressure system for broadband infrared sum frequency generation vibrational spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Liu, Shuo; Liu, An-an; Zhang, Ruidan; Ren, Zefeng

    2016-04-01

    We have designed a compact ultrahigh vacuum/high-pressure system for in situ broadband infrared (IR) sum frequency generation vibrational spectroscopy (SFG-VS) studies. In this system, we have achieved a significant reduction in the distance between the sample and the optical window (<5 mm), which in turn considerably reduces the IR absorption from the gas phase under high pressure conditions. Moreover, with this new system, the IR transmission under high pressure conditions can be measured in situ for calibrating the SFG spectra. Therefore, this modified technique can allow us to study the vibrational spectra of adsorbates on single crystals or polycrystalline foils under high pressure. The preliminary results from SFG measurements of a model CH3OH/TiO2(110) system under both ultrahigh vacuum and high pressure conditions are reported here. These results suggest that this newly developed system is potentially a powerful tool for investigating adsorbate structures and surface reactions under both ultrahigh vacuum and real conditions.

  1. Compact ultrahigh vacuum/high-pressure system for broadband infrared sum frequency generation vibrational spectroscopy studies.

    PubMed

    Liu, Shuo; Liu, An-An; Zhang, Ruidan; Ren, Zefeng

    2016-04-01

    We have designed a compact ultrahigh vacuum/high-pressure system for in situ broadband infrared (IR) sum frequency generation vibrational spectroscopy (SFG-VS) studies. In this system, we have achieved a significant reduction in the distance between the sample and the optical window (<5 mm), which in turn considerably reduces the IR absorption from the gas phase under high pressure conditions. Moreover, with this new system, the IR transmission under high pressure conditions can be measured in situ for calibrating the SFG spectra. Therefore, this modified technique can allow us to study the vibrational spectra of adsorbates on single crystals or polycrystalline foils under high pressure. The preliminary results from SFG measurements of a model CH3OH/TiO2(110) system under both ultrahigh vacuum and high pressure conditions are reported here. These results suggest that this newly developed system is potentially a powerful tool for investigating adsorbate structures and surface reactions under both ultrahigh vacuum and real conditions. PMID:27131685

  2. Assessment of whole-body vibration levels of coal miners. Volume 3. Low-frequency vibration exposure and seat performance. Open File report, November 1979-April 1985

    SciTech Connect

    Remington, P.J.

    1984-11-01

    The field data gathered as part of the measurements described in Volumes I and II were reanalyzed in the low frequency regime (.1 Hz to 1 Hz) where motion sickness normally occurs. These data were compared to the International Standard 2631 Addendum 2: Evaluation of exposure to whole-body Z-axis vertical vibration in the frequency range of 0.1 to 1.0 Hz. For both underground mining machines and surface-mining machines, the results showed that one would not expect motion sickness to be a severe problem. New field data were gathered on the vibration reduction performance of various seat designs found on surface-coal-mining machines. The vibration during normal operation was simultaneously measured on the seat using the standard seat-pad accelerometer packaged described in the previous two volumes, and on the floor of the machine at the base of the seat. Preliminary indications are that the so-called high performance seats used for operator vibration reduction do not offer significant improvement over conventional seats.

  3. Two-dimensional concentrated-stress low-frequency piezoelectric vibration energy harvesters

    NASA Astrophysics Data System (ADS)

    Sharpes, Nathan; Abdelkefi, Abdessattar; Priya, Shashank

    2015-08-01

    Vibration-based energy harvesters using piezoelectric materials have long made use of the cantilever beam structure. Surmounting the deficiencies in one-dimensional cantilever-based energy harvesters has been a major focus in the literature. In this work, we demonstrate a strategy of using two-dimensional beam shapes to harvest energy from low frequency excitations. A characteristic Zigzag-shaped beam is created to compare against the two proposed two-dimensional beam shapes, all of which occupy a 25.4 × 25.4 mm2 area. In addition to maintaining the low-resonance bending frequency, the proposed beam shapes are designed with the goal of realizing a concentrated stress structure, whereby stress in the beam is concentrated in a single area where a piezoelectric layer may be placed, rather than being distributed throughout the beam. It is shown analytically, numerically, and experimentally that one of the proposed harvesters is able to provide significant increase in power production, when the base acceleration is set equal to 0.1 g, with only a minimal change in the resonant frequency compared to the current state-of-the-art Zigzag shape. This is accomplished by eliminating torsional effects, producing a more pure bending motion that is necessary for high electromechanical coupling. In addition, the proposed harvesters have a large effective beam tip whereby large tip mass may be placed while retaining a low-profile, resulting in a low volume harvester and subsequently large power density.

  4. Low frequency vibrational modes of oxygenated myoglobin, hemoglobins, and modified derivatives.

    PubMed

    Jeyarajah, S; Proniewicz, L M; Bronder, H; Kincaid, J R

    1994-12-01

    The low frequency resonance Raman spectra of the dioxygen adducts of myoglobin, hemoglobin, its isolated subunits, mesoheme-substituted hemoglobin, and several deuteriated heme derivatives are reported. The observed oxygen isotopic shifts are used to assign the iron-oxygen stretching (approximately 570 cm-1) and the heretofore unobserved delta (Fe-O-O) bending (approximately 420 cm-1) modes. Although the delta (Fe-O-O) is not enhanced in the case of oxymyoglobin, it is observed for all the hemoglobin derivatives, its exact frequency being relatively invariable among the derivatives. The lack of sensitivity to H2O/D2O buffer exchange is consistent with our previous interpretation of H2O/D2O-induced shifts of v(O-O) in the resonance Raman spectra of dioxygen adducts of cobalt-substituted heme proteins; namely, that those shifts are associated with alterations in vibrational coupling of v(O-O) with internal modes of proximal histidyl imidazole rather than to steric or electronic effects of H/D exchange at the active site. No evidence is obtained for enhancement of the v(Fe-N) stretching frequency of the linkage between the heme iron and the imidazole group of the proximal histidine. PMID:7983043

  5. A high figure of merit vibrational energy harvester for low frequency applications

    NASA Astrophysics Data System (ADS)

    Nico, V.; Boco, E.; Frizzell, R.; Punch, J.

    2016-01-01

    Small-scale vibration energy harvesters that respond efficiently at low frequencies are challenging to realize. This paper describes the design and implementation of one such harvester, which achieves a high volumetric Figure of Merit (FoMv = 2.6% at 11.50 Hz) at the scale of a C-type battery and outperforms other state-of-the-art devices in the sub 20 Hz frequency range. The device employs a 2 Degree-of-Freedom velocity-amplified approach and electromagnetic transduction. The harvester comprises two masses oscillating one inside the other, between four sets of magnetic springs. Collisions between the two masses transfer momentum from the heavier to the lighter mass, exploiting velocity amplification. The paper first presents guidelines for designing and optimizing the transduction mechanism, before a nonlinear numerical model for the system dynamics is developed. Experimental characterisation of the harvester design is then presented to validate both the transducer optimization and the dynamics model. The resulting high FoMV demonstrates the effectiveness of the device for low frequency applications, such as human motion.

  6. Disturbance rejection control for vibration suppression of smart beams and plates under a high frequency excitation

    NASA Astrophysics Data System (ADS)

    Zhang, Shun-Qi; Schmidt, Rüdiger; Müller, Peter C.; Qin, Xian-Sheng

    2015-09-01

    This paper aims to perfect the method of Disturbance Rejection (DR) control, based on our earlier published work (Zhang et al. 2014 [1]), for vibration suppression of smart structures under high frequency periodic disturbances. Two observation structures are discussed, namely Proportional-Integral (PI) observer which uses step functions as the fictitious model of disturbances and Generalized PI (GPI) observer which can employ any nonlinear functions. In order to stabilize the PI or GPI observer, Lyapunov and Riccati approaches are implemented and discussed. Furthermore, approximate and exact solutions are developed for obtaining control gains. These various possibilities of DR control are simulated and compared with each other, as well as those obtained by conventional control strategies, PID and LQR control.

  7. Low-frequency vibration sensors based on a cascaded gapped cantilever

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Tu, H.; Xu, Y.

    2016-09-01

    This paper reports the development of low-cost high-performance vibration sensors based on a cascaded asymmetric-gapped cantilever for low-frequency sensing. The cascaded structure is implemented to reduce the spring constant for a high sensitivity and simultaneously avoid the undesirable shear bending. A prototype with a proof mass of 40 g and an overall size of 124 mm × 39 mm × 5.1 mm (l × w × t) has been successfully constructed. The sensor body was made of aluminum and two lead zirconate titanate sheets were implemented as the sensing element. Based on a coherence method, a noise equivalent acceleration close to the theoretical value has been achieved at 35 Hz (~3 ng/√Hz). Finally, the prototype has been successfully demonstrated for ballistocardiogaph monitoring for both sitting and lying positions.

  8. A fragment method for systematic improvement of anharmonic adsorbate vibrational frequencies: Acetylene on Cu(001)

    SciTech Connect

    Chulkov, Sergey K. Benoit, David M.

    2013-12-07

    We suggest a novel method for systematic improvement of anharmonic adsorbate frequencies based on a fragment approach. The calculations are carried out by considering the adsorbed molecule separately and computing an energy correction using high-level ab initio method in addition to a standard calculation of the whole adsorbed system using quantum mechanical techniques with periodic boundary conditions. We demonstrate its reliability for a C{sub 2}H{sub 2} molecule chemisorbed on a Cu(001) surface. We also show that the accuracy of the presented approach with a suitable description of the periodic surface depends mainly on the accuracy of the high-level ab initio method used to describe the adsorbate molecule. Moreover, our technique potentially allows to predict adsorbate vibrational spectra with spectroscopic accuracy.

  9. Theoretical study of sum-frequency vibrational spectroscopy on limonene surface

    SciTech Connect

    Zheng, Ren-Hui Liu, Hao; Jing, Yuan-Yuan; Wang, Bo-Yang; Shi, Qiang; Wei, Wen-Mei

    2014-03-14

    By combining molecule dynamics (MD) simulation and quantum chemistry computation, we calculate the surface sum-frequency vibrational spectroscopy (SFVS) of R-limonene molecules at the gas-liquid interface for SSP, PPP, and SPS polarization combinations. The distributions of the Euler angles are obtained using MD simulation, the ψ-distribution is between isotropic and Gaussian. Instead of the MD distributions, different analytical distributions such as the δ-function, Gaussian and isotropic distributions are applied to simulate surface SFVS. We find that different distributions significantly affect the absolute SFVS intensity and also influence on relative SFVS intensity, and the δ-function distribution should be used with caution when the orientation distribution is broad. Furthermore, the reason that the SPS signal is weak in reflected arrangement is discussed.

  10. Theoretical study of sum-frequency vibrational spectroscopy on limonene surface

    NASA Astrophysics Data System (ADS)

    Zheng, Ren-Hui; Wei, Wen-Mei; Liu, Hao; Jing, Yuan-Yuan; Wang, Bo-Yang; Shi, Qiang

    2014-03-01

    By combining molecule dynamics (MD) simulation and quantum chemistry computation, we calculate the surface sum-frequency vibrational spectroscopy (SFVS) of R-limonene molecules at the gas-liquid interface for SSP, PPP, and SPS polarization combinations. The distributions of the Euler angles are obtained using MD simulation, the ψ-distribution is between isotropic and Gaussian. Instead of the MD distributions, different analytical distributions such as the δ-function, Gaussian and isotropic distributions are applied to simulate surface SFVS. We find that different distributions significantly affect the absolute SFVS intensity and also influence on relative SFVS intensity, and the δ-function distribution should be used with caution when the orientation distribution is broad. Furthermore, the reason that the SPS signal is weak in reflected arrangement is discussed.

  11. Sum-frequency vibrational spectroscopic studies of water/vapor interfaces

    NASA Astrophysics Data System (ADS)

    Tian, C. S.; Shen, Y. R.

    2009-02-01

    Phase-sensitive sum-frequency vibrational spectroscopy was used to obtain the OH and OD stretch spectra of the imaginary part of the nonlinear susceptibility, ImχS(2)(ωIR), for H 2O/vapor, D 2O/vapor, and 2:1 H 2O-D 2O/vapor interfaces that explicitly characterize their resonances. They all exhibit a positive and a negative resonance band in the bonded-OH region, clearly different from those deduced from fitting of the |χS(2)(ωIR)|2 spectra, and from MD simulations. The broad continuum is characteristic of inhomogeneously broadened resonances associated with interfacial water species of various hydrogen-bonding geometries and strengths. Spectral changes due to excess ions at the interfaces support the picture.

  12. Protonated hydrochlorous acid (HOClH + ): Molecular structure, vibrational frequencies, and proton affinity

    NASA Astrophysics Data System (ADS)

    Francisco, J. S.; Sander, S. P.

    1995-06-01

    Protonated hydrochlorous acid (HOClH+) has been examined theoretically. Equilibrium geometries have been optimized and harmonic vibrational frequencies obtained for each of the parent and protonated structures at various levels of theory employing second-order Møller-Plesset perturbation interaction theory (MP2), singles and doubles excitation configuration interaction theory (CISD), and coupled-cluster theory (CCSD). Our study has found that protonation of the oxygen of HOCl is favored over protonation at the chlorine site. Protonation of the oxygen leads to a pyramidal structure of Cs symmetry. There is a planar Cs structure which is the inversion transition state. The inversion barrier is 3.2 kcal mol-1. The proton affinity of hypochlorous acid, HOCl, is found to be 153.1 kcal mol-1 at 0 K.

  13. Note: A kinematic shaker system for high amplitude, low frequency vibration testing

    NASA Astrophysics Data System (ADS)

    Swaminathan, Anand; Poese, Matthew E.; Smith, Robert W. M.; Garrett, Steven L.

    2015-11-01

    This note describes a shaker system capable of high peak-velocity, large amplitude, low frequency, near-sinusoidal excitation that has been constructed and employed in experiments on the inhibition of Rayleigh-Bénard convection using acceleration modulation. The production of high peak-velocity vibration is of interest in parametric excitation problems of this type and reaches beyond the capabilities of standard electromagnetic shakers. The shaker system described employs a kinematic linkage to two counter-rotating flywheels, driven by a variable-speed electrical motor, producing peak-to-peak displacements of 15.24 cm to a platform mounted on two guide rails. In operation, this shaker has been demonstrated to produce peak speeds of up to 3.7 m/s without failure.

  14. Mixed Polarization Vibrational Sum Frequency Generation Spectra of Organic Semiconducting Thin Films

    NASA Astrophysics Data System (ADS)

    Kearns, Patrick; Sohrabpour, Zahara; Massari, Aaron M.

    2014-06-01

    The buried interface of an organic semiconductor at the dielectric has a large on influence on the function of organic field effect transistors (OFETs). The use of vibrational sum frequency generation (VSFG) to obtain structural and orientational information on the buried interfaces of organic thin films has historically been complicated by the signals from other interfaces in the system. A thin film of N,N'-Dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8) was deposited on a SiO2 dielectric to simulate the interfaces found in OFETs. We will show how probing the sample with a varying mixture of linear polarizations in the experimental setup can deconvolute contributions to the overall signal from multiple interfaces.

  15. Sum Frequency Generation Vibrational Spectroscopy of Pyridine Hydrogenation on Platinum Nanoparticles

    SciTech Connect

    Bratlie, Kaitlin M.; Komvopoulos, Kyriakos; Somorjai, Gabor A.

    2008-02-22

    Pyridine hydrogenation in the presence of a surface monolayer consisting of cubic Pt nanoparticles stabilized by tetradecyltrimethylammonium bromide (TTAB) was investigated by sum frequency generation (SFG) vibrational spectroscopy using total internal reflection (TIR) geometry. TIR-SFG spectra analysis revealed that a pyridinium cation (C{sub 5}H{sub 5}NH{sup +}) forms during pyridine hydrogenation on the Pt nanoparticle surface, and the NH group in the C{sub 5}H{sub 5}NH{sup +} cation becomes more hydrogen bound with the increase of the temperature. In addition, the surface coverage of the cation decreases with the increase of the temperature. An important contribution of this study is the in situ identification of reaction intermediates adsorbed on the Pt nanoparticle monolayer during pyridine hydrogenation.

  16. Vibrational Sum Frequency Spectroscopy on Polyelectrolyte Multilayers: Effect of Molecular Surface Structure on Macroscopic Wetting Properties.

    PubMed

    Gustafsson, Emil; Hedberg, Jonas; Larsson, Per A; Wågberg, Lars; Johnson, C Magnus

    2015-04-21

    Adsorption of a single layer of molecules on a surface, or even a reorientation of already present molecules, can significantly affect the surface properties of a material. In this study, vibrational sum frequency spectroscopy (VSFS) has been used to study the change in molecular structure at the solid-air interface following thermal curing of polyelectrolyte multilayers of poly(allylamine hydrochloride) and poly(acrylic acid). Significant changes in the VSF spectra were observed after curing. These changes were accompanied by a distinct increase in the static water contact angle, showing how the properties of the layer-by-layer molecular structure are controlled not just by the polyelectrolyte in the outermost layer but ultimately by the orientation of the chemical constituents in the outermost layers. PMID:25859709

  17. Nonresonant high frequency excitation of mechanical vibrations in a graphene based nanoresonator

    NASA Astrophysics Data System (ADS)

    Eriksson, Axel M.; Voinova, Marina V.; Gorelik, Leonid Y.

    2015-03-01

    We theoretically analyze the dynamics of a suspended graphene membrane which is in tunnel contact with grounded metallic electrodes and subjected to ac-electrostatic potential induced by a gate electrode. It is shown that for such a system the retardation effects in the electronic subsystem generate an effective pumping for the relatively slow mechanical vibrations if the driving frequency exceeds the inverse charge relaxation time. Under this condition there is a critical value of the driving voltage amplitude above which the pumping overcomes the intrinsic damping of the mechanical resonator, leading to a mechanical instability. This nonresonant instability is saturated by nonlinear damping and the system exhibits self-sustained oscillations of relatively large amplitude.

  18. Vibrationally resonant sum-frequency generation microscopy with a solid immersion lens

    PubMed Central

    Lee, Eun Seong; Lee, Sang-Won; Hsu, Julie; Potma, Eric O.

    2014-01-01

    We use a hemispheric sapphire lens in combination with an off-axis parabolic mirror to demonstrate high-resolution vibrationally resonant sum-frequency generation (VR-SFG) microscopy in the mid-infrared range. With the sapphire lens as an immersed solid medium, the numerical aperture (NA) of the parabolic mirror objective is enhanced by a factor of 1.72, from 0.42 to 0.72, close to the theoretical value of 1.76 ( = nsapphire). The measured lateral resolution is as high as 0.64 μm. We show the practical utility of the sapphire immersion lens by imaging collagen-rich tissues with and without the solid immersion lens. PMID:25071953

  19. Vibrational frequency fluctuation of ions in aqueous solutions studied by three-pulse infrared photon echo method.

    PubMed

    Ohta, Kaoru; Tayama, Jumpei; Saito, Shinji; Tominaga, Keisuke

    2012-11-20

    In liquid water, hydrogen bonds form three-dimensional network structures, which have been modeled in various molecular dynamics simulations. Locally, the hydrogen bonds continuously form and break, and the network structure continuously fluctuates. In aqueous solutions, the water molecules perturb the solute molecules, resulting in fluctuations of the electronic and vibrational states. These thermal fluctuations are fundamental to understanding the activation processes in chemical reactions and the function of biopolymers. In this Account, we review studies of the vibrational frequency fluctuations of solute molecules in aqueous solutions using three-pulse infrared photon echo experiments. For comparison, we also briefly describe dynamic fluorescence Stokes shift experiments for investigating solvation dynamics in water. The Stokes shift technique gives a response function, which describes the energy relaxation in the nonequilibrium state and corresponds to the transition energy fluctuation of the electronic state at thermal equilibrium in linear response theorem. The dielectric response of water in the megahertz to terahertz frequency region is a key physical quantity for understanding both of these frequency fluctuations because of the influence of electrostatic interactions between the solute and solvent. We focus on the temperature dependence of the three experiments to discuss the molecular mechanisms of both the frequency fluctuations in aqueous solutions. We used a biexponential function with sub-picosecond and picosecond time constants to characterize the time-correlation functions of both the vibrational and electronic frequency fluctuations. We focus on the slower component, with time constants of 1-2 ps for both the frequency fluctuations at room temperature. However, the temperature dependence and isotope effect for the time constants differ for these two types of fluctuations. The dielectric interactions generally describe the solvation dynamics of

  20. The acute effect of different frequencies of whole-body vibration on countermovement jump performance.

    PubMed

    Turner, Anthony P; Sanderson, Mark F; Attwood, Lynda A

    2011-06-01

    Whole-body vibration (WBV) has been shown to elicit acute and chronic improvements in neuromuscular function; however, there is little conclusive evidence regarding an optimum protocol for acute WBV. The aim of this study was to compare the effects of acute exposure to different frequencies of WBV on countermovement jump (CMJ) height. Twelve recreationally trained men (age, 31 ± 8 years; height, 177 ± 12 cm; weight, 83.0 ± 6.9 kg) completed maximal CMJs pre- and post-WBV in a half-squat position for 30 seconds. In a blinded design with randomized testing order, participants were exposed on different days to frequencies of 0, 30, 35, and 40 Hz. Significant main effects were found for time (pre-to-post WBV, p < 0.01) and frequency * time interaction (p < 0.01), with post hoc analysis highlighting that there was a significant mean improvement of 6% in CMJ as a result of WBV at 40 Hz but no significant change at other frequencies. This study demonstrates that for recreationally trained men, an acute 30-second bout of vertical WBV at 40 Hz and 8-mm peak-to-peak displacement significantly enhances explosive jumping performance in comparison to other frequencies. Acute vertical WBV for 30 seconds at 40 Hz may be incorporated into strength and conditioning training to enhance explosive power; however, the exact mechanisms for improvements remain to be elucidated and further well-controlled investigations on chronic WBV training and using well-trained athletes are recommended. PMID:21358422

  1. Effect of whole body vibration frequency on neuromuscular activity in ACL-deficient and healthy males.

    PubMed

    Giombini, A; Menotti, F; Laudani, L; Piccinini, A; Fagnani, F; Di Cagno, A; Macaluso, A; Pigozzi, F

    2015-09-01

    Whole-body vibration (WBV) has been shown to enhance muscle activity via reflex pathways, thus having the potential to contrast muscle weakness in individuals with rupture of the anterior cruciate ligament (ACL). The present study aimed to compare the magnitude of neuromuscular activation during WBV over a frequency spectrum from 20 to 45 Hz between ACL-deficient and healthy individuals. Fifteen males aged 28±4 with ACL rupture and 15 age-matched healthy males were recruited. Root mean square (RMS) of the surface electromyogram from the vastus lateralis in both limbs was computed during WBV in a static half-squat position at 20, 25, 30, 35, 40 and 45 Hz, and normalized to the RMS while maintaining the half-squat position without vibration. The RMS of the vastus lateralis in the ACL-deficient limb was significantly greater than in the contralateral limb at 25, 30, 35 and 40 Hz (P<0.05) and in both limbs of the healthy participants (dominant limb at 25, 30, 35, 40 and 45 Hz, P<0.05; non dominant limb at 20, 25, 30, 35, 40 and 45 Hz, P<0.05). The greater neuromuscular activity in the injured limb compared to the uninjured limb of the ACL-deficient patients and to both limbs of the healthy participants during WBV might be due to either augmented excitatory or reduced inhibitory neural inflow to motoneurons of the vastus lateralis through the reflex pathways activated by vibratory stimuli. The study provides optimal WBV frequencies which might be used as reference values for ACL-deficient patients. PMID:26424928

  2. Effect of whole body vibration frequency on neuromuscular activity in ACL-deficient and healthy males

    PubMed Central

    Giombini, A; Menotti, F; Piccinini, A; Fagnani, F; Di Cagno, A; Macaluso, A; Pigozzi, F

    2015-01-01

    Whole-body vibration (WBV) has been shown to enhance muscle activity via reflex pathways, thus having the potential to contrast muscle weakness in individuals with rupture of the anterior cruciate ligament (ACL). The present study aimed to compare the magnitude of neuromuscular activation during WBV over a frequency spectrum from 20 to 45 Hz between ACL-deficient and healthy individuals. Fifteen males aged 28±4 with ACL rupture and 15 age-matched healthy males were recruited. Root mean square (RMS) of the surface electromyogram from the vastus lateralis in both limbs was computed during WBV in a static half-squat position at 20, 25, 30, 35, 40 and 45 Hz, and normalized to the RMS while maintaining the half-squat position without vibration. The RMS of the vastus lateralis in the ACL-deficient limb was significantly greater than in the contralateral limb at 25, 30, 35 and 40 Hz (P<0.05) and in both limbs of the healthy participants (dominant limb at 25, 30, 35, 40 and 45 Hz, P<0.05; non dominant limb at 20, 25, 30, 35, 40 and 45 Hz, P<0.05). The greater neuromuscular activity in the injured limb compared to the uninjured limb of the ACL-deficient patients and to both limbs of the healthy participants during WBV might be due to either augmented excitatory or reduced inhibitory neural inflow to motoneurons of the vastus lateralis through the reflex pathways activated by vibratory stimuli. The study provides optimal WBV frequencies which might be used as reference values for ACL-deficient patients. PMID:26424928

  3. Low-frequency vibrational properties of crystalline and glassy indomethacin probed by terahertz time-domain spectroscopy and low-frequency Raman scattering.

    PubMed

    Shibata, Tomohiko; Mori, Tatsuya; Kojima, Seiji

    2015-11-01

    In order to clarify the intermolecular vibrations, the low-frequency modes of the glassy and crystalline states of model pharmaceutical indomethacin have been studied using broadband terahertz time-domain spectroscopy and low-frequency Raman scattering. In the crystalline γ-form, the center of symmetry was suggested by the observation of the exclusion principle of the infrared (IR) and Raman selection rules in the frequency range between 0.2 and 6.5 THz. In addition, a boson peak of the glassy state was observed in both IR and Raman spectra and their frequency showed apparent discrepancy. The intermediate correlation length of the glassy structure was estimated to be about 2.5 nm. The existence of hydrogen bonded cyclic dimers in a glassy state was suggested by the observation of the infrared active intermolecular vibrational mode of the hydrogen bonded cyclic dimers as a broad peak at 3.0 THz in the IR spectrum. PMID:26051642

  4. The effects of whole-body vibration on the Wingate test for anaerobic power when applying individualized frequencies.

    PubMed

    Surowiec, Rachel K; Wang, Henry; Nagelkirk, Paul R; Frame, Jeffrey W; Dickin, D Clark

    2014-07-01

    Recently, individualized frequency (I-Freq) has been introduced with the notion that athletes may elicit a greater reflex response at differing levels (Hz) of vibration. The aim of the study was to evaluate acute whole-body vibration as a feasible intervention to increase power in trained cyclists and evaluate the efficacy of using I-Freq as an alternative to 30Hz, a common frequency seen in the literature. Twelve highly trained, competitive male cyclists (age, 29.9 ± 10.0 years; body height, 175.4 ± 7.8 cm; body mass, 77.3 ± 13.9 kg) participated in the study. A Wingate test for anaerobic power was administered on 3 occasions: following a control of no vibration, 30 Hz, or I-freq. Measures of peak power, average power (AP), and the rate of fatigue were recorded and compared with the vibration conditions using separate repeated measures analysis of variance. Peak power, AP, and the rate of fatigue were not significantly impacted by either the 30 Hz or I-Freq vibration interventions (p > 0.05). Given the trained status of the individuals in this study, the ability to elicit an acute response may have been muted. Future studies should further refine the vibration parameters used and assess changes in untrained or recreationally trained populations. PMID:24378660

  5. A study of the eigenvectors of the low-frequency vibrational modes in crystalline adenosine via high pressure Raman spectroscopy.

    PubMed

    Lee, Scott A; Pinnick, David A; Anderson, A

    2014-12-01

    High-pressure Raman spectroscopy has been used to study the eigenvectors and eigenvalues of the vibrational modes of crystalline adenosine at 295 K by evaluating the logarithmic derivative of the vibrational frequency with respect to pressure: [Formula: see text]. Crystalline samples of molecular materials such as adenosine will have vibrational modes that are localized within a molecular unit ("internal" modes) as well as modes in which the molecular units vibrate against each other ("external" modes). The value of the logarithmic derivative is found to be a diagnostic probe of the nature of the eigenvector of the vibrational modes. Stretching modes which are predominantly internal to the molecule have low logarithmic derivatives while external modes have higher logarithmic derivatives. Particular interest is paid to the low-frequency (≤150 cm(-1)) modes. Based on the pressure dependence of its logarithmic derivative, a mode near 49 cm(-1) is identified as internal mode. The other modes below 400 cm(-1) have pressure dependences of their logarithmic derivatives consistent with being either (1) modes which are mainly external, meaning that the molecules of the unit cell vibrate against each other in translational or librational motions (or linear combinations thereof), or (2) torsional or bending modes involving a large number of atoms, mainly within a molecule. The modes above 400 cm(-1) all have pressure dependences of their logarithmic derivatives consistent with being mainly internal modes. PMID:24127792

  6. Energy Expenditure and Substrate Oxidation in Response to Side-Alternating Whole Body Vibration across Three Commonly-Used Vibration Frequencies

    PubMed Central

    Fares, Elie-Jacques; Charrière, Nathalie; Montani, Jean-Pierre; Schutz, Yves; Dulloo, Abdul G.; Miles-Chan, Jennifer L.

    2016-01-01

    Background and Aim There is increasing recognition about the importance of enhancing energy expenditure (EE) for weight control through increases in low-intensity physical activities comparable with daily life (1.5–4 METS). Whole-body vibration (WBV) increases EE modestly and could present both a useful adjuvant for obesity management and tool for metabolic phenotyping. However, it is unclear whether a “dose-response” exists between commonly-used vibration frequencies (VF) and EE, nor if WBV influences respiratory quotient (RQ), and hence substrate oxidation. We aimed to investigate the EE-VF and RQ-VF relationships across three different frequencies (30, 40, and 50Hz). Methods EE and RQ were measured in 8 healthy young adults by indirect calorimetry at rest, and subsequently during side-alternating WBV at one of 3 VFs (30, 40, and 50 Hz). Each frequency was assessed over 5 cycles of intermittent WBV (30s vibration/30s rest), separated by 5 min seated rest. During the WBV participants stood on the platform with knees flexed sufficiently to maintain comfort, prevent transmission of vibration to the upper body, and minimise voluntary physical exertion. Repeatability was assessed across 3 separate days in a subset of 4 individuals. In order to assess any sequence/habituation effect, an additional group of 6 men underwent 5 cycles of intermittent WBV (30s vibration/30s rest) at 40 Hz, separated by 5 min seated rest. Results Side-alternating WBV increased EE relative to standing, non-vibration levels (+36%, p<0.001). However, no differences in EE were observed across VFs. Similarly, no effect of VF on RQ was found, nor did WBV alter RQ relative to standing without vibration. Conclusion No relationship could be demonstrated between EE and VF in the range of 30-50Hz, and substrate oxidation did not change in response to WBV. Furthermore, the thermogenic effect of intermittent WBV, whilst robust, was quantitatively small (<2 METS). PMID:26974147

  7. Quantum Monte Carlo Simulation of Vibrational Frequency Shifts of CO in Solid para-HYDROGEN

    NASA Astrophysics Data System (ADS)

    Wang, Lecheng; Le Roy, Robert; Roy, Pierre-Nicholas

    2014-06-01

    Stimulated by Fajardo's remarkable study of the rovibrational spectra of CO isotopologues trapped in solid para-hydrogen, we have performed quantum Monte Carlo simulations to predict his observed vibrational frequency shifts and inertial rotational constants using 2-body potentials based on the best available models for the pH_2-pH_2 and CO-pH_2, potential energy functions. We started by fitting an analytic `Morse/Long-Range' (MLR) function to the 1D ``adiabaic hindered rotor" version of Hinde's 5D pH_2-pH_2 potential developed by Faruk et al. We then modified it to take account of many-body effects by scaling it until it yielded the correct equilibrium lattice parameters for the fcc and hcp structures of pure solid para-hydrogen. A CO molecule was then placed at different interstitial or substitution sites in large equilibrated fcc or hcp para-hydrogen lattices, and the structural and dynamical behaviors of the micro-solvation environment around CO were simulated with a PIMC algorithm using a 2D effective pH_2-CO potential based on the 5D H_2--CO potential energy surface recently reported by Li et al., with a lattice sum of values of the 2D CO vibrational difference potential being use to predict the vibrational frequency shift. The effective rotational constants Beff for CO in different solid para-hydrogen structures were also calculated and compared with the experimental observations and with predicted Beff values for CO in large-sized para-hydrogen--CO clusters. M. E. Fajardo, J. Phys. Chem. A 117, 13504 (2013). R. Hinde, J. Chem. Phys., 128, 154308 (2008). H. Li, X-L. Zhang, R.J. Le Roy, and P.-N. Roy, J. Chem. Phys. 139, 164315 (2013). R.J. Le Roy, C.C. Haugen, J. Tao and Hui Li, Mol. Phys., 109, 435 (2011) N. Faruk, R.J. Le Roy, and P.-N. Roy, J. Chem. Phys. (submitted December 2013). Y. Mizumoto and Y. Ohtsuki, Chem. Phys. Lett. 501, 304 (2011).

  8. Large low-frequency vibration attenuation induced by arrays of piezoelectric patches shunted with amplifier-resonator feedback circuits

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Chen, Shengbing

    2016-01-01

    Periodic arrays of piezoelectric patches shunted by amplifier-resonator circuits are attached to a beam in order to gain large low-frequency attenuations in the propagation of flexural beam vibration. A numerical model based on the transfer matrix methodology and Bloch theory are built to predict the band gaps and attenuation factors as well as the transmission of vibration in the proposed smart metamaterials. Influences of circuital parameters on attenuation factors and the equivalent Young’s modulus are studied. It is found that the central frequency of attenuations is lower than the resonant frequency because of the negative equivalent elastic modulus of piezoelectric patches at frequencies lower than the resonance. Finite element simulations and vibration experiments are conducted on a 10 mm-thick aluminium alloy beam with six pairs of piezoelectric patches glued on it. Based on theoretical calculations, three sets of circuital parameters are chosen to gain large vibration transmission attenuations around the lowest three modal peaks. Significant attenuation is found in the experimental results, which is predicted in theoretical calculations and finite element simulations. A superlattice metamaterial specimen with a combination of three different sets of circuital parameters is also studied in order to gain wide attenuation frequency ranges.

  9. Spatial hearing in Cope's gray treefrog: II. Frequency-dependent directionality in the amplitude and phase of tympanum vibrations.

    PubMed

    Caldwell, Michael S; Lee, Norman; Schrode, Katrina M; Johns, Anastasia R; Christensen-Dalsgaard, Jakob; Bee, Mark A

    2014-04-01

    Anuran ears function as pressure difference receivers, and the amplitude and phase of tympanum vibrations are inherently directional, varying with sound incident angle. We quantified the nature of this directionality for Cope's gray treefrog, Hyla chrysoscelis. We presented subjects with pure tones, advertisement calls, and frequency-modulated sweeps to examine the influence of frequency, signal level, lung inflation, and sex on ear directionality. Interaural differences in the amplitude of tympanum vibrations were 1-4 dB greater than sound pressure differences adjacent to the two tympana, while interaural differences in the phase of tympanum vibration were similar to or smaller than those in sound phase. Directionality in the amplitude and phase of tympanum vibration were highly dependent on sound frequency, and directionality in amplitude varied slightly with signal level. Directionality in the amplitude and phase of tone- and call-evoked responses did not differ between sexes. Lung inflation strongly affected tympanum directionality over a narrow frequency range that, in females, included call frequencies. This study provides a foundation for further work on the biomechanics and neural mechanisms of spatial hearing in H. chrysoscelis, and lends valuable perspective to behavioral studies on the use of spatial information by this species and other frogs. PMID:24504183

  10. Accurate Lineshapes from Sub-1 cm-1 Resolution Sum Frequency Generation Vibrational Spectroscopy of α-Pinene at Room Temperature

    SciTech Connect

    Mifflin, Amanda L.; Velarde Ruiz Esparza, Luis A.; Ho, Junming; Psciuk, Brian; Negre, Christian; Ebben, Carlena J.; Upshur, Mary Alice; Lu, Zhou; Strick, Benjamin; Thomson, Regan; Batista, Victor; Wang, Hongfei; Geiger, Franz M.

    2015-02-26

    Room temperature sub-wavenumber high-resolution broadband sum frequency generation (HR-BB-SFG) spectra of the common terpene (+)-α-pinene reveal ten peaks in the C–H stretching region. The spectral resolution exceeds that of Fourier transform infrared, femtosecond stimulated Raman, and traditional BB-SFG and scanning SFG spectroscopy of the same molecule. Experiment and simulation show the spectral lineshapes to be accurate. Homogeneous vibrational decoherence lifetimes of up to 1.7 psec are assigned to specific oscillators and compare favorably to lifetimes computed from density functional tight binding molecular dynamics calculations, while phase-resolved spectra yield orientation information for them. We propose the new spectroscopy as an attractive alternative to time-resolved vibrational spectroscopy or heterodyne-detection schemes for studying vibrational energy relaxation and vibrational coherences in molecules.

  11. Analytical Harmonic Vibrational Frequencies for the Green Fluorescent Protein Computed with ONIOM: Chromophore Mode Character and Its Response to Environment.

    PubMed

    Thompson, Lee M; Lasoroski, Aurélie; Champion, Paul M; Sage, J Timothy; Frisch, Michael J; van Thor, Jasper J; Bearpark, Michael J

    2014-02-11

    A systematic comparison of different environmental effects on the vibrational modes of the 4-hydroxybenzylidene-2,3-dimethylimidazolinone (HBDI) chromophore using the ONIOM method allows us to model how the molecule's spectroscopic transitions are modified in the Green Fluorescent Protein (GFP). ONIOM(QM:MM) reduces the expense of normal mode calculations when computing the majority of second derivatives only at the MM level. New developments described here for the efficient solution of the CPHF equations, including contributions from electrostatic interactions with environment charges, mean that QM model systems of ∼100 atoms can be embedded within a much larger MM environment of ∼5000 atoms. The resulting vibrational normal modes, their associated frequencies, and dipole derivative vectors have been used to interpret experimental difference spectra (GFPI2-GFPA), chromophore vibrational Stark shifts, and changes in the difference between electronic and vibrational transition dipoles (mode angles) in the protein environment. PMID:26580050

  12. Rovibrational spectroscopic constants and fundamental vibrational frequencies for isotopologues of cyclic and bent singlet HC{sub 2}N isomers

    SciTech Connect

    Inostroza, Natalia; Fortenberry, Ryan C.; Lee, Timothy J.; Huang, Xinchuan

    2013-12-01

    Through established, highly accurate ab initio quartic force fields, a complete set of fundamental vibrational frequencies, rotational constants, and rovibrational coupling and centrifugal distortion constants have been determined for both the cyclic 1 {sup 1} A' and bent 2 {sup 1} A' DCCN, H{sup 13}CCN, HC{sup 13}CN, and HCC{sup 15}N isotopologues of HCCN. Spectroscopic constants are computed for all isotopologues using second-order vibrational perturbation theory (VPT2), and the fundamental vibrational frequencies are computed with VPT2 and vibrational configuration interaction (VCI) theory. Agreement between VPT2 and VCI results is quite good, with the fundamental vibrational frequencies of the bent isomer isotopologues in accord to within a 0.1-3.2 cm{sup –1} range. Similar accuracies are present for the cyclic isomer isotopologues. The data generated here serve as a reference for astronomical observations of these closed-shell, highly dipolar molecules using new, high-resolution telescopes and as reference for laboratory studies where isotopic labeling may lead to elucidation of the formation mechanism for the known interstellar molecule: X {sup 3} A' HCCN.

  13. Rovibrational Spectroscopic Constants and Fundamental Vibrational Frequencies for Isotopologues of Cyclic and Bent Singlet HC2N isomers

    NASA Technical Reports Server (NTRS)

    Inostroza, Natalia; Fortenberry, Ryan C.; Huang, Xinchuan; Lee, Timothy J.

    2013-01-01

    Through established, highly-accurate ab initio quartic force fields (QFFs), a complete set of fundamental vibrational frequencies, rotational constants, and rovibrational coupling and centrifugal distortion constants have been determined for both the cyclic 1(sup 1) 1A' and bent 2(sup 1)A' DCCN, H(C13)CCN, HC(C-13)N, and HCC(N-15) isotopologues of HCCN. Spectroscopic constants are computed for all isotopologues using second-order vibrational perturbation theory (VPT2), and the fundamental vibrational frequencies are computed with VPT2 and vibrational configuration interaction (VCI) theory. Agreement between VPT2 and VCI results is quite good with the fundamental vibrational frequencies of the bent isomer isotopologues in accord to within a 0.1 to 3.2 / cm range. Similar accuracies are present for the cyclic isomer isotopologues. The data generated here serve as a reference for astronomical observations of these closed-shell, highly-dipolar molecules using new, high-resolution telescopes and as reference for laboratory studies where isotopic labeling may lead to elucidation of the formation mechanism for the known interstellar molecule: X 3A0 HCCN.

  14. Vibrational modes of hydraulic fractures: Inference of fracture geometry from resonant frequencies and attenuation

    NASA Astrophysics Data System (ADS)

    Lipovsky, Bradley P.; Dunham, Eric M.

    2015-02-01

    Oscillatory seismic signals arising from resonant vibrations of hydraulic fractures are observed in many geologic systems, including volcanoes, glaciers and ice sheets, and hydrocarbon and geothermal reservoirs. To better quantify the physical dimensions of fluid-filled cracks and properties of the fluids within them, we study wave motion along a thin hydraulic fracture waveguide. We present a linearized analysis, valid at wavelengths greater than the fracture aperture, that accounts for quasi-static elastic deformation of the fracture walls, as well as fluid viscosity, inertia, and compressibility. In the long-wavelength limit, anomalously dispersed guided waves known as crack or Krauklis waves propagate with restoring force from fracture wall elasticity. At shorter wavelengths, the waves become sound waves within the fluid channel. Wave attenuation in our model is due to fluid viscosity, rather than seismic radiation from crack tips or fracture wall roughness. We characterize viscous damping at both low frequencies, where the flow is always fully developed, and at high frequencies, where the flow has a nearly constant velocity profile away from viscous boundary layers near the fracture walls. Most observable seismic signals from resonating fractures likely arise in the boundary layer crack wave limit, where fluid-solid coupling is pronounced and attenuation is minimal. We present a method to estimate the aperture and length of a resonating hydraulic fracture using both the seismically observed quality factor and characteristic frequency. Finally, we develop scaling relations between seismic moment and characteristic frequency that might be useful when interpreting the statistics of hydraulic fracture events.

  15. Fin Whale Sound Reception Mechanisms: Skull Vibration Enables Low-Frequency Hearing

    PubMed Central

    Cranford, Ted W.; Krysl, Petr

    2015-01-01

    Hearing mechanisms in baleen whales (Mysticeti) are essentially unknown but their vocalization frequencies overlap with anthropogenic sound sources. Synthetic audiograms were generated for a fin whale by applying finite element modeling tools to X-ray computed tomography (CT) scans. We CT scanned the head of a small fin whale (Balaenoptera physalus) in a scanner designed for solid-fuel rocket motors. Our computer (finite element) modeling toolkit allowed us to visualize what occurs when sounds interact with the anatomic geometry of the whale’s head. Simulations reveal two mechanisms that excite both bony ear complexes, (1) the skull-vibration enabled bone conduction mechanism and (2) a pressure mechanism transmitted through soft tissues. Bone conduction is the predominant mechanism. The mass density of the bony ear complexes and their firmly embedded attachments to the skull are universal across the Mysticeti, suggesting that sound reception mechanisms are similar in all baleen whales. Interactions between incident sound waves and the skull cause deformations that induce motion in each bony ear complex, resulting in best hearing sensitivity for low-frequency sounds. This predominant low-frequency sensitivity has significant implications for assessing mysticete exposure levels to anthropogenic sounds. The din of man-made ocean noise has increased steadily over the past half century. Our results provide valuable data for U.S. regulatory agencies and concerned large-scale industrial users of the ocean environment. This study transforms our understanding of baleen whale hearing and provides a means to predict auditory sensitivity across a broad spectrum of sound frequencies. PMID:25633412

  16. A sensor for measuring low frequency surface vibration of a fluid loaded compliant structure

    SciTech Connect

    McCleary, A.D.; Klippel, P.J.; Young, A.M.; Trivett, D.H.

    1996-04-01

    The most common method of directly measuring the vibration of a fluid-loaded structure is through the use of accelerometers mounted on the surface. When that surface consists of a low density, highly-compliant material it is necessary to take steps to insure that the sensor does not influence the motion of the surface. This can be accomplished with the use of small, neutrally-buoyant accelerometers. However, if low frequency measurements are desired, where the acceleration is small, the signal-to-noise ratio obtained with small, low sensitivity accelerometers may not be acceptable. To address the problem of low-frequency measurements of a submerged compliant surface the Underwater Sound Reference Department of the Naval Undersea Warfare Center (NUWC/USRD) has developed a class of neutrally-buoyant capacitive displacement sensors. A displacement sensor requires that the mass-spring system, which constitutes the detector, be operated above the resonance frequency, resulting in the mass being inertial. Thus, only the dynamic mass of these sensors needs to be equal to the mass of the displaced fluid so as to not alter the mass of the surface to be measured. These sensors are intended for use in the Anechoic Tank Facility at NUWC/USRD and must be capable of operating at hydrostatic pressures of 4.1 MPa (600 psi) and over a temperature range of {minus}4 to 40{degree}C, while being rigid enough so that they neither affect nor are sensitive to the incident acoustic field. Since the sensor responds to the displacement of the surface, instead of the acceleration, these sensors are ideally suited for low frequency measurements. Both their design as well as experimental results will be presented. {copyright} {ital 1996 American Institute of Physics.}

  17. Evaluation of range-separated hybrid density functionals for the prediction of vibrational frequencies, infrared intensities, and Raman activities†

    PubMed Central

    Jiménez-Hoyos, Carlos A.; Janesko, Benjamin G.

    2016-01-01

    We present an assessment of different density functionals, with emphasis on range-separated hybrids, for the prediction of fundamental and harmonic vibrational frequencies, infrared intensities, and Raman activities. Additionally, we discuss the basis set convergence of vibrational properties of H2O with long-range corrected hybrids. Our results show that B3LYP is the best functional for predicting vibrational frequencies (both fundamental and harmonic); the screened-PBE hybrid (HSE) density functional works best for infrared intensities, and the long-range corrected PBE (LC-ωPBE), M06-HF, and M06-L density functionals are almost as good as MP2 for predicting Raman activities. We show the predicted Raman spectrum of adenine as an example of a medium-size molecule where a DFT/Sadlej pVTZ calculation is affordable and compare our results against the experimental spectrum. PMID:18989473

  18. VIBRATION COMPACTION

    DOEpatents

    Hauth, J.J.

    1962-07-01

    A method of compacting a powder in a metal container is described including the steps of vibrating the container at above and below the resonant frequency and also sweeping the frequency of vibration across the resonant frequency several times thereby following the change in resonant frequency caused by compaction of the powder. (AEC)

  19. Quantitative Surface Chirality Detection with Sum Frequency Generation Vibrational Spectroscopy: Twin Polarization Angle Approach

    SciTech Connect

    Wei, Feng; Xu, Yanyan; Guo, Yuan; Liu, Shi-lin; Wang, Hongfei

    2009-12-27

    Here we report a novel twin polarization angle (TPA) approach in the quantitative chirality detection with the surface sum-frequency generation vibrational spectroscopy (SFG-VS). Generally, the achiral contribution dominates the surface SFG-VS signal, and the pure chiral signal is usually two or three orders of magnitude smaller. Therefore, it has been difficult to make quantitative detection and analysis of the chiral contributions to the surface SFG- VS signal. In the TPA method, by varying together the polarization angles of the incoming visible light and the sum frequency signal at fixed s or p polarization of the incoming infrared beam, the polarization dependent SFG signal can give not only direct signature of the chiral contribution in the total SFG-VS signal, but also the accurate measurement of the chiral and achiral components in the surface SFG signal. The general description of the TPA method is presented and the experiment test of the TPA approach is also presented for the SFG-VS from the S- and R-limonene chiral liquid surfaces. The most accurate degree of chiral excess values thus obtained for the 2878 cm⁻¹ spectral peak of the S- and R-limonene liquid surfaces are (23.7±0.4)% and ({25.4±1.3)%, respectively.

  20. Efficient Procedure for the Numerical Calculation of Harmonic Vibrational Frequencies Based on Internal Coordinates

    SciTech Connect

    Miliordos, Evangelos; Xantheas, Sotiris S.

    2013-08-15

    We propose a general procedure for the numerical calculation of the harmonic vibrational frequencies that is based on internal coordinates and Wilson’s GF methodology via double differentiation of the energy. The internal coordinates are defined as the geometrical parameters of a Z-matrix structure, thus avoiding issues related to their redundancy. Linear arrangements of atoms are described using a dummy atom of infinite mass. The procedure has been automated in FORTRAN90 and its main advantage lies in the nontrivial reduction of the number of single-point energy calculations needed for the construction of the Hessian matrix when compared to the corresponding number using double differentiation in Cartesian coordinates. For molecules of C1 symmetry the computational savings in the energy calculations amount to 36N – 30, where N is the number of atoms, with additional savings when symmetry is present. Typical applications for small and medium size molecules in their minimum and transition state geometries as well as hydrogen bonded clusters (water dimer and trimer) are presented. Finally, in all cases the frequencies based on internal coordinates differ on average by <1 cm–1 from those obtained from Cartesian coordinates.

  1. Vibrational sum-frequency spectroscopy for trace chemical detection on surfaces at stand-off distances.

    PubMed

    Asher, William E; Willard-Schmoe, Ella

    2013-03-01

    Vibrational sum-frequency spectroscopy (VSFS) has been used for some time as a laboratory-based surface chemical analytical tool. Here, theoretical considerations in applying the method as a remote-sensing probe for detecting trace levels of chemicals adsorbed on surfaces are presented. Additionally, a VSFS instrument is configured to operate at a stand-off distance of 2.2 m using near-nadir incidence angles. This system was used to measure VSFS spectra for films of pure 1-amino-4-nitrobenzene (p-nitroaniline, PNA) and pure 2-hydroxy-1,3,5-trinitrobenzene (picric acid, PA) adsorbed on polished T-6061 aluminum alloy. These spectra are used to investigate the effect of optical polarization on the sum-frequency response of these compounds at nadir optical geometries. Detection limits for each compound are also estimated and found to be 0.51 μg cm(2) for PNA and 0.89 μg cm(2) for PA. The implications of these results regarding remote sensing applications of VSFS are discussed. PMID:23452488

  2. The thermal effects on high-frequency vibration of beams using energy flow analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Wenbo; Chen, Hualing; Zhu, Danhui; Kong, Xiangjie

    2014-04-01

    In this paper, the energy flow analysis (EFA) method is developed to predict the high-frequency response of beams in a thermal environment, which is a topic of concern in aerospace and automotive industries. The temperature load applied on the structures can generate thermal stresses and change material properties. The wavenumber and group velocity associated with the in-plane axial force arising from thermal stresses are included in the derivation of the governing energy equation, and the input power is obtained from the derived effective bending stiffness. In addition, effect of temperature-dependent material properties is considered in the EFA model. To verify the proposed formulation, numerical simulations are performed for a pinned-pinned beam in a uniform thermal environment. The EFA results are compared with the modal solutions for various frequencies and damping loss factors, and good correlations are observed. The results show that the spatial distributions and levels of energy density can be affected by the thermal effects, and the vibration response of beams increases with temperature.

  3. Strong frequency dependence of vibrational relaxation in bulk and surface water reveals sub-picosecond structural heterogeneity

    PubMed Central

    van der Post, Sietse T.; Hsieh, Cho-Shuen; Okuno, Masanari; Nagata, Yuki; Bakker, Huib J.; Bonn, Mischa; Hunger, Johannes

    2015-01-01

    Because of strong hydrogen bonding in liquid water, intermolecular interactions between water molecules are highly delocalized. Previous two-dimensional infrared spectroscopy experiments have indicated that this delocalization smears out the structural heterogeneity of neat H2O. Here we report on a systematic investigation of the ultrafast vibrational relaxation of bulk and interfacial water using time-resolved infrared and sum-frequency generation spectroscopies. These experiments reveal a remarkably strong dependence of the vibrational relaxation time on the frequency of the OH stretching vibration of liquid water in the bulk and at the air/water interface. For bulk water, the vibrational relaxation time increases continuously from 250 to 550 fs when the frequency is increased from 3,100 to 3,700 cm−1. For hydrogen-bonded water at the air/water interface, the frequency dependence is even stronger. These results directly demonstrate that liquid water possesses substantial structural heterogeneity, both in the bulk and at the surface. PMID:26382651

  4. Calculation and analysis of the harmonic vibrational frequencies in molecules at extreme pressure: Methodology and diborane as a test case

    NASA Astrophysics Data System (ADS)

    Cammi, R.; Cappelli, C.; Mennucci, B.; Tomasi, J.

    2012-10-01

    We present a new quantum chemical method for the calculation of the equilibrium geometry and the harmonic vibrational frequencies of molecular systems in dense medium at high pressures (of the order of GPa). The new computational method, named PCM-XP, is based on the polarizable continuum model (PCM), amply used for the study of the solvent effects at standard condition of pressure, and it is accompanied by a new method of analysis for the interpretation of the mechanisms underpinning the effects of pressure on the molecular geometries and the harmonic vibrational frequencies. The PCM-XP has been applied at the density functional theory level to diborane as a molecular system under high pressure. The computed harmonic vibrational frequencies as a function of the pressure have shown a satisfactory agreement with the corresponding experimental results, and the parallel application of the method of analysis has reveled that the effects of the pressure on the equilibrium geometry can be interpreted in terms of direct effects on the electronic charge distribution of the molecular solutes, and that the effects on the harmonic vibrational frequencies can be described in terms of two physically distinct effects of the pressure (curvature and relaxation) on the potential energy for the motion of the nuclei.

  5. Hydrogenation of the alpha,beta-Unsaturated Aldehydes Acrolein, Crotonaldehyde, and Prenal over Pt Single Crystals: A Kinetic and Sum-Frequency Generation Vibrational Spectroscopy Study

    SciTech Connect

    Kliewer, C.J.; Somorjai, G.A.

    2008-11-26

    Sum-frequency generation vibrational spectroscopy (SFG-VS) and kinetic measurements using gas chromatography have been used to study the surface reaction intermediates during the hydrogenation of three {alpha},{beta}-unsaturated aldehydes, acrolein, crotonaldehyde, and prenal, over Pt(111) at Torr pressures (1 Torr aldehyde, 100 Torr hydrogen) in the temperature range of 295K to 415K. SFG-VS data showed that acrolein has mixed adsorption species of {eta}{sub 2}-di-{sigma}(CC)-trans, {eta}{sub 2}-di-{sigma}(CC)-cis as well as highly coordinated {eta}{sub 3} or {eta}{sub 4} species. Crotonaldehyde adsorbed to Pt(111) as {eta}{sub 2} surface intermediates. SFG-VS during prenal hydrogenation also suggested the presence of the {eta}{sub 2} adsorption species, and became more highly coordinated as the temperature was raised to 415K, in agreement with its enhanced C=O hydrogenation. The effect of catalyst surface structure was clarified by carrying out the hydrogenation of crotonaldehyde over both Pt(111) and Pt(100) single crystals while acquiring the SFG-VS spectra in situ. Both the kinetics and SFG-VS showed little structure sensitivity. Pt(100) generated more decarbonylation 'cracking' product while Pt(111) had a higher selectivity for the formation of the desired unsaturated alcohol, crotylalcohol.

  6. Two-dimensional concentrated-stress low-frequency piezoelectric vibration energy harvesters

    SciTech Connect

    Sharpes, Nathan; Abdelkefi, Abdessattar; Priya, Shashank

    2015-08-31

    Vibration-based energy harvesters using piezoelectric materials have long made use of the cantilever beam structure. Surmounting the deficiencies in one-dimensional cantilever-based energy harvesters has been a major focus in the literature. In this work, we demonstrate a strategy of using two-dimensional beam shapes to harvest energy from low frequency excitations. A characteristic Zigzag-shaped beam is created to compare against the two proposed two-dimensional beam shapes, all of which occupy a 25.4 × 25.4 mm{sup 2} area. In addition to maintaining the low-resonance bending frequency, the proposed beam shapes are designed with the goal of realizing a concentrated stress structure, whereby stress in the beam is concentrated in a single area where a piezoelectric layer may be placed, rather than being distributed throughout the beam. It is shown analytically, numerically, and experimentally that one of the proposed harvesters is able to provide significant increase in power production, when the base acceleration is set equal to 0.1 g, with only a minimal change in the resonant frequency compared to the current state-of-the-art Zigzag shape. This is accomplished by eliminating torsional effects, producing a more pure bending motion that is necessary for high electromechanical coupling. In addition, the proposed harvesters have a large effective beam tip whereby large tip mass may be placed while retaining a low-profile, resulting in a low volume harvester and subsequently large power density.

  7. Frozen wave induced by high frequency horizontal vibrations on a CO2 liquid-gas interface near the critical point.

    PubMed

    Wunenburger, R; Evesque, P; Chabot, C; Garrabos, Y; Fauve, S; Beysens, D

    1999-05-01

    We used the liquid-vapor equilibrium of CO2 near its critical point (T(C)-T=1 to 150 mK) in order to study the stability of an interface between a gas and a liquid having close densities rho(L) approximately rho(V) when submitted to high frequency f (3-57.5 Hz) horizontal vibrations (of amplitude a from 0.1 to 2.5 mm). Above a given velocity threshold (2piaf )(0) we observed a "frozen wave," corresponding to an interface profile of sinelike shape which is stationary in the reference frame of the vibrated sample cell. By varying the vibration parameters, the surface tension, and the density difference between the two phases via the temperature, it was found that the wavelength and the amplitude of the stationary profile are both increasing functions of the frequency and of the amplitude of the vibration and that they are proportional to the capillary length. Our measurements are consistent with a model of inviscid and incompressible flow averaging the effect of the vibration over a period and leading to a Kelvin-Helmholtz-like instability mechanism due to the relative motion of the two fluids. PMID:11969523

  8. Highly accurate quartic force fields, vibrational frequencies, and spectroscopic constants for cyclic and linear C3H3(+).

    PubMed

    Huang, Xinchuan; Taylor, Peter R; Lee, Timothy J

    2011-05-19

    High levels of theory have been used to compute quartic force fields (QFFs) for the cyclic and linear forms of the C(3)H(3)(+) molecular cation, referred to as c-C(3)H(3)(+) and l-C(3)H(3)(+). Specifically, the singles and doubles coupled-cluster method that includes a perturbational estimate of connected triple excitations, CCSD(T), has been used in conjunction with extrapolation to the one-particle basis set limit, and corrections for scalar relativity and core correlation have been included. The QFFs have been used to compute highly accurate fundamental vibrational frequencies and other spectroscopic constants by use of both vibrational second-order perturbation theory and variational methods to solve the nuclear Schrödinger equation. Agreement between our best computed fundamental vibrational frequencies and recent infrared photodissociation experiments is reasonable for most bands, but there are a few exceptions. Possible sources for the discrepancies are discussed. We determine the energy difference between the cyclic and linear forms of C(3)H(3)(+), obtaining 27.9 kcal/mol at 0 K, which should be the most reliable available. It is expected that the fundamental vibrational frequencies and spectroscopic constants presented here for c-C(3)H(3)(+) and l-C(3)H(3)(+) are the most reliable available for the free gas-phase species, and it is hoped that these will be useful in the assignment of future high-resolution laboratory experiments or astronomical observations. PMID:21510653

  9. Highly Accurate Quartic Force Fields, Vibrational Frequencies, and Spectroscopic Constants for Cyclic and Linear C3H3(+)

    NASA Technical Reports Server (NTRS)

    Huang, Xinchuan; Taylor, Peter R.; Lee, Timothy J.

    2011-01-01

    High levels of theory have been used to compute quartic force fields (QFFs) for the cyclic and linear forms of the C H + molecular cation, referred to as c-C H + and I-C H +. Specifically the 33 3333 singles and doubles coupled-cluster method that includes a perturbational estimate of connected triple excitations, CCSD(T), has been used in conjunction with extrapolation to the one-particle basis set limit and corrections for scalar relativity and core correlation have been included. The QFFs have been used to compute highly accurate fundamental vibrational frequencies and other spectroscopic constants using both vibrational 2nd-order perturbation theory and variational methods to solve the nuclear Schroedinger equation. Agreement between our best computed fundamental vibrational frequencies and recent infrared photodissociation experiments is reasonable for most bands, but there are a few exceptions. Possible sources for the discrepancies are discussed. We determine the energy difference between the cyclic and linear forms of C H +, 33 obtaining 27.9 kcal/mol at 0 K, which should be the most reliable available. It is expected that the fundamental vibrational frequencies and spectroscopic constants presented here for c-C H + 33 and I-C H + are the most reliable available for the free gas-phase species and it is hoped that 33 these will be useful in the assignment of future high-resolution laboratory experiments or astronomical observations.

  10. Time-frequency analysis of nonstationary vibration signals for deployable structures by using the constant-Q nonstationary gabor transform

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Yan, Shaoze; Zhang, Wei

    2016-06-01

    Deployable structures have been widely used in on-orbit servicing spacecrafts, and the vibration properties of such structures have become increasingly important in the aerospace industry. The constant-Q nonstationary Gabor transform (CQ-NSGT) is introduced in this paper to accurately evaluate the variation in the frequency and amplitude of vibration signals along with time. First, an example signal is constructed on the basis of the vibration properties of deployable structures and is processed by the short-time Fourier transform, Wigner-Ville distribution, Hilbert-Huang transform, and CQ-NSGT. Results show that time and frequency resolutions are simultaneously fine only by employing CQ-NSGT. Subsequently, a zero padding operation is conducted to correct the calculation error at the end of the transform results. Finally, a set of experimental devices is constructed. The vibration signal of the experimental mode is processed by CQ-NSGT. On this basis, the experimental signal properties are discussed. This time-frequency method may be useful for formulating the dynamics for complex deployable structures.

  11. Intrinsically safe laser-based system for continuous measurement of low-frequency vibration of mine shaft installations

    NASA Astrophysics Data System (ADS)

    Szade, Adam; Passia, Henryk; Lipowczan, Adam; Bochenek, Wojciech

    1998-06-01

    Proper condition of the mine shaft equipment is of vital importance both in view of production and safety. In some cases, this state can be adversely by the changing geological conditions in the shaft surroundings so that special precautions are necessary for reliable operation of the shaft. In the paper, an intrinsically-safe measuring system, approved for gassy mine use, based on the laser vibration sensor has been presented including its construction and operational characteristics. Examples of application have also been given related to measurements of low-frequency vibration events and of displacements both in the surface and underground parts of the shafts.

  12. [The effect of betahistine on histological changes in rabbit brain in model of whole body wide-frequency vibration].

    PubMed

    Shimkus, Iu Iu; Sapegin, I D

    2013-01-01

    In acute experiments in conscious rabbits was studied protective action of selective blocker of histamine H3-receptor betahistine (2mg/kg i/v) against histological changes in precentral and postcentral gyrus, as well as in temporal lobe of cerebral cortex, thalamus, hypothalamus, and cerebellum, arising in case of modeling of whole body wide-frequency vibration. Betahistine attenuates edematous and degenerative changes in neurons and reciprocal glial reaction, caused by vibration, but does not eliminate edema in perivascular spaces. This effect may be related to the improvement of blood supply as a result of of vasodilatory action and decrease of oxygen consumption via vestibuloprotective effect. PMID:24003483

  13. Negative-ion yield in low-pressure radio frequency discharges in hydrogen: Particle modeling and vibrational kinetics

    SciTech Connect

    Diomede, P.; Longo, S.; Capitelli, M.

    2006-03-15

    A theoretical study of the complex interplay between the vibrational kinetics and the plasma dynamics in low-pressure hydrogen plasmas produced by radio frequency discharges is performed. The study is realized by means of a one-dimensional particle model with five species (e, H{sup +}, H{sub 2}{sup +}, H{sub 3}{sup +}, and H{sup -}) while the vibrational/dissociation kinetics is based on a continuum model and the two are self-consistently coupled. In particular, we analyze the influence of pressure.

  14. A handy-motion driven, frequency up-converted hybrid vibration energy harvester using PZT bimorph and nonmagnetic ball

    NASA Astrophysics Data System (ADS)

    Halim, M. A.; Cho, H. O.; Park, J. Y.

    2014-11-01

    We have presented a frequency up-converted hybrid type (Piezoelectric and Electromagnetic) vibration energy harvester that can be used in powering portable and wearable smart devices by handy motion. A transverse impact mechanism has been employed for frequency up-conversion. Use of two transduction mechanisms increases the output power as well as power density. The proposed device consists of a non-magnetic spherical ball (freely movable at handy motion frequency) to impact periodically on the parabolic top of a piezoelectric (PZT) cantilevered mass by sliding over it, allowing it to vibrate at its higher resonant frequency and generates voltage by virtue of piezoelectric effect. A magnet attached to the cantilever vibrates along with it at the same frequency and a relative motion between the magnet and a coil placed below it, induces emf voltage across the coil terminals as well. A macro-scale prototype of the harvester has been fabricated and tested by handy motion. With an optimum magnet-coil overlap, a maximum 0.98mW and 0.64mW peak powers have been obtained from the piezoelectric and the electromagnetic transducers of the proposed device while shaken, respectively. It offers 84.4μWcm-3 peak power density.

  15. Frequency response functions of shape features from full-field vibration measurements using digital image correlation

    NASA Astrophysics Data System (ADS)

    Wang, Weizhuo; Mottershead, John E.; Siebert, Thorsten; Pipino, Andrea

    2012-04-01

    The availability of high speed digital cameras has enabled three-dimensional (3D) vibration measurement by stereography and digital image correlation (DIC). The 3D DIC technique provides non-contact full-field measurements on complex surfaces whereas conventional modal testing methods employ point-wise frequency response functions. It is proposed to identify the modal properties by utilising the domain-wise responses captured by a DIC system. This idea will be illustrated by a case study in the form a car bonnet of 3D irregular shape typical of many engineering structures. The full-field measured data are highly redundant, but the application of image processing using functional transformation enables the extraction of a small number of shape features without any significant loss of information from the raw DIC data. The complex bonnet surface on which the displacement responses are measured is essentially a 2-manifold. It is possible to apply surface parameterisation to 'flatten' the 3D surface to form a 2D planar domain. Well-developed image processing techniques are defined on planar domains and used to extract features from the displacement patterns on the surface of a specimen. An adaptive geometric moment descriptor (AGMD), defined on surface parametric space, is able to extract shape features from a series of full-field transient responses under random excitation. Results show the effectiveness of the AGMD and the obtained shape features are demonstrated to be succinct and efficient. Approximately 14 thousand data points of raw DIC measurement are represented by 20 shape feature terms at each time step. Shape-descriptor frequency response functions (SD-FRFs) of the response field and the loading field are derived in the shape feature space. It is seen that the SD-FRF has a similar format to the conventional receptance FRF. The usual modal identification procedure is applied to determine the natural frequencies, damping factors and eigen-shape-feature vectors

  16. Proposed frequencies of a vibrator used for implant retrieval at the time of hip joint revision surgery.

    PubMed

    Roychowdhury, Amit; Hayes, Westley; Rasquinha, Vijay J; Saha, Subrata

    2009-01-01

    The number and the rate of success of hip implantation surgeries have increased significantly during last thirty years, not only in the USA, but also throughout the world. It has been reported that the failure rates of implanted hip joints are less than 8% after 10 years, and less than 20% after twenty years. Failures occur directly or indirectly due to wear, stress shielding and infection. Revision surgery is needed for those failed implant replacements. In the future, as the elderly population increases, the frequency of this type of revision surgery will also increase. At the time of revision surgery, removal of the existing cemented femoral implant can be a problem for the surgeon. Use of a vibrator for loosening of the existing cement layer between the bone and the implant may be a helpful solution. In this study, we investigated the optimum resonance frequencies of such a vibrator that might be used to loosen the cement layer easily and efficiently. Natural frequencies of different-sized implants and of different materials were determined. For harmonic analysis, CT scan data of a femur was processed in the image processing software MIMICS. Then the outline of the total hip was modeled and was analyzed by the finite element software ANSYS. The required portion of the femoral part was edited, implant and cement layer were introduced in that model, and elements were generated in that FEA software. Then elements of the femoral part, except the cement layer and the implant, were sent to MIMICS software again for assignment of different Youngs modulus of each element, which are proportionate to their densities. Then the elements were brought back to the FEA software. The harmonic analysis was performed for the total model in the FEA software ANSYS. For that particular boundary condition, the first three natural frequencies of the three types of implant sizes and materials varied by a maximum of 7-8%. Results of the numerical harmonic analysis showed that at the

  17. Investigations of heme distortion, low-frequency vibrational excitations, and electron transfer in cytochrome c

    PubMed Central

    Sun, Yuhan; Benabbas, Abdelkrim; Zeng, Weiqiao; Kleingardner, Jesse G.; Bren, Kara L.; Champion, Paul M.

    2014-01-01

    Cytochrome (cyt) c is an important electron transfer protein. The ruffling deformation of its heme cofactor has been suggested to relate to its electron transfer rate. However, there is no direct experimental evidence demonstrating this correlation. In this work, we studied Pseudomonas aeruginosa cytochrome c551 and its F7A mutant. These two proteins, although similar in their X-ray crystal structure, display a significant difference in their heme out-of-plane deformations, mainly along the ruffling coordinate. Resonance Raman and vibrational coherence measurements also indicate significant differences in ruffling-sensitive modes, particularly the low-frequency γa mode found between ∼50–60 cm−1. This supports previous assignments of γa as having a large ruffling content. Measurement of the photoreduction kinetics finds an order of magnitude decrease of the photoreduction cross-section in the F7A mutant, which has nearly twice the ruffling deformation as the WT. Additional measurements on cytochrome c demonstrate that heme ruffling is correlated exponentially with the electron transfer rates and suggest that ruffling could play an important role in redox control. A major relaxation of heme ruffling in cytochrome c, upon binding to the mitochondrial membrane, is discussed in this context. PMID:24753591

  18. Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces

    SciTech Connect

    Roy, S.; Gruenbaum, S. M.; Skinner, J. L.

    2014-11-14

    Understanding the structure of water near cell membranes is crucial for characterizing water-mediated events such as molecular transport. To obtain structural information of water near a membrane, it is useful to have a surface-selective technique that can probe only interfacial water molecules. One such technique is vibrational sum-frequency generation (VSFG) spectroscopy. As model systems for studying membrane headgroup/water interactions, in this paper we consider lipid and surfactant monolayers on water. We adopt a theoretical approach combining molecular dynamics simulations and phase-sensitive VSFG to investigate water structure near these interfaces. Our simulated spectra are in qualitative agreement with experiments and reveal orientational ordering of interfacial water molecules near cationic, anionic, and zwitterionic interfaces. OH bonds of water molecules point toward an anionic interface leading to a positive VSFG peak, whereas the water hydrogen atoms point away from a cationic interface leading to a negative VSFG peak. Coexistence of these two interfacial water species is observed near interfaces between water and mixtures of cationic and anionic lipids, as indicated by the presence of both negative and positive peaks in their VSFG spectra. In the case of a zwitterionic interface, OH orientation is toward the interface on the average, resulting in a positive VSFG peak.

  19. Mass properties calibration of the NASA Langley low frequency vibration test apparatus

    NASA Technical Reports Server (NTRS)

    Javeed, Mehzad; Russell, James W.

    1995-01-01

    This report presents a description and calibration results of the modified NASA Langley Low Frequency Vibration Test Apparatus. The description includes both the suspension system and the data acquisition system. The test apparatus consists of a 2 inch thick, 21 inch diameter aluminum plate that is suspended from an advanced suspension system using a 40 foot long cable system. The test apparatus employed three orthogonally aligned pairs of Sundstrand QA-700 servo accelerometers that can measure accelerations as low as 1 micro-g. The calibration involved deriving the mass and moments of inertia of the test platform from measured input forces and measured acceleration responses. The derived mass and moments were compared to test platform mass properties obtained initially from measurements with a special mass properties instrument. Results of the calibration tests showed that using the product of the test apparatus mass and the measured accelerations, the disturbance force at the center of gravity (CG) can be determined within 4 percent on all three axes. Similarly the disturbance moments about the X, Y, and Z axes can be determined within 5 percent by using the product of the measured moments of inertia and the angular accelerations about the X, Y, and Z axes.

  20. Probing Molecular Recognition at the Solid-Gas Interface by Sum-Frequency Vibrational Spectroscopy.

    PubMed

    Aprile, Arianna; Ciuchi, Federica; Pinalli, Roberta; Dalcanale, Enrico; Pagliusi, Pasquale

    2016-08-01

    Molecular recognition is among the most important chemical events in living systems and has been emulated in supramolecular chemistry, driven by chemical and biochemical sensing potential. Identifying host-guest association in situ at the interface, between the substrate-bound receptors and the analyte-containing media, is essential to predict complexation performances in term of the receptor conformation, orientation and organization. Herein, we report the first sum-frequency vibrational spectroscopy study of molecular recognition at the solid-gas interface. The binding capability of tetraquinoxaline cavitands toward volatile aromatic and aliphatic compounds, namely benzonitrile and acetonitrile, is investigated as test system. We prove the selective complexation of the receptors, organized in a solid-supported hybrid bilayer, toward aromatic compounds. Quantitative analysis allows to correlate the average orientations of the guest molecules and the host binding pockets, establishing "on-axis" complexation of benzonitrile within the cavitand cavity. The study is readily applicable to other receptors, molecular architectures, interfaces and analytes. PMID:27438350

  1. Poisson ratio and excess low-frequency vibrational states in glasses

    NASA Astrophysics Data System (ADS)

    Duval, Eugène; Deschamps, Thierry; Saviot, Lucien

    2013-08-01

    In glass, starting from a dependence of the Angell's fragility on the Poisson ratio [V. N. Novikov and A. P. Sokolov, Nature 431, 961 (2004)], 10.1038/nature02947, and a dependence of the Poisson ratio on the atomic packing density [G. N. Greaves, A. L. Greer, R. S. Lakes, and T. Rouxel, Nature Mater. 10, 823 (2011)], 10.1038/nmat3134, we propose that the heterogeneities are predominantly density fluctuations in strong glasses (lower Poisson ratio) and shear elasticity fluctuations in fragile glasses (higher Poisson ratio). Because the excess of low-frequency vibration modes in comparison with the Debye regime (boson peak) is strongly connected to these fluctuations, we propose that they are breathing-like (with change of volume) in strong glasses and shear-like (without change of volume) in fragile glasses. As a verification, it is confirmed that the excess modes in the strong silica glass are predominantly breathing-like. Moreover, it is shown that the excess breathing-like modes in a strong polymeric glass are replaced by shear-like modes under hydrostatic pressure as the glass becomes more compact.

  2. Structural Origins of Cholesterol Accelerated Lipid Flip-Flop Studied by Sum-Frequency Vibrational Spectroscopy.

    PubMed

    Allhusen, John S; Kimball, Dylan R; Conboy, John C

    2016-03-31

    The unique structure of cholesterol and its role in modulating lipid translocation (flip-flop) were examined using sum-frequency vibrational spectroscopy (SFVS). Two structural analogues of cholesterol--cholestanol and cholestene--were examined to explore the influence of ring rigidity and amphiphilicity on controlling distearoylphosphocholine (DSPC) flip-flop. Kinetic rates for DSPC flip-flop were determined as a function of sterol concentration and temperature. All three sterols increased the rate of DSPC flip-flop in a concentration-dependent manner following the order cholestene > cholestanol > cholesterol. Rates of DSPC flip-flop were used to calculate the thermodynamic activation free energy barrier (ΔG(‡)) in the presence of cholesterol, cholestanol, and cholestene. The acyl chain gauche content of DSPC, mean lipid area, and membrane compressibility were correlated to observed trends in ΔG(‡). ΔG(‡) for DSPC flip-flop showed a strong positive correlation with the molar compression modulus (K*) of the membrane, influenced by the type and concentration of the sterol added. Interestingly, cholesterol is distinctive in maintaining invariant membrane compressibility over the range of 2-10 mol %. The results in this study demonstrate that the compression modulus of a membrane plays a significant role in moderating ΔG(‡) and the kinetics of native, protein-free, lipid translocation in membranes. PMID:26978577

  3. An Empirical IR Frequency Map for Ester C═O Stretching Vibrations.

    PubMed

    Edington, Sean C; Flanagan, Jennifer C; Baiz, Carlos R

    2016-06-01

    We present an approach for parametrizing spectroscopic maps of carbonyl groups against experimental IR absorption spectra. The model correlates electric fields sampled from molecular dynamics simulations with vibrational frequencies and line shapes in different solvents. We perform an exhaustive search of parameter combinations and optimize the parameter values for the ester carbonyl stretching mode in ethyl acetate by comparing to experimental FTIR spectra of the small molecule in eight different solvents of varying polarities. Hydrogen-bonding solvents require that the peaks are fit independently for each hydrogen bond ensemble to compensate for improper sampling in molecular dynamics simulations. Spectra simulated using the optimized electrostatic map reproduce C═O IR absorption spectra of ethyl acetate with a line center RMSD error of 4.9 cm(-1) over 12 different solvents whose measured line centers span a 45 cm(-1) range. In combination with molecular dynamics simulations, this spectroscopic map will be useful in interpreting spectra of ester groups in heterogeneous environments such as lipid membranes. PMID:27214642

  4. Characterization of starch polymorphic structures using vibrational sum frequency generation spectroscopy.

    PubMed

    Kong, Lingyan; Lee, Christopher; Kim, Seong H; Ziegler, Gregory R

    2014-02-20

    The polymorphic structures of starch were characterized with vibrational sum frequency generation (SFG) spectroscopy. The noncentrosymmetry requirement of SFG spectroscopy allows for the detection of the ordered domains without spectral interferences from the amorphous phase and also the distinction of the symmetric elements among crystalline polymorphs. The V-type amylose was SFG-inactive due to the antiparallel packing of single helices in crystal unit cells, whereas the A- and B-type starches showed strong SFG peaks at 2904 cm(-1) and 2952-2968 cm(-1), which were assigned to CH stretching of the axial methine group in the ring and CH2 stretching of the exocyclic CH2OH side group, respectively. The CH2/CH intensity ratios of the A- and B-type starches are significantly different, indicating that the conformation of hydroxymethyl groups in these two polymorphs may be different. Cyclodextrin inclusion complexes were also analyzed as a comparison to the V-type amylose and showed that the head-to-tail and head-to-head stacking patterns of cyclodextrin molecules govern their SFG signals and peak positions. Although the molecular packing is different between V-type amylose and cyclodextrin inclusion complexes, both crystals show the annihilation of SFG signals when the functional group dipoles are arranged pointing in opposite directions. PMID:24432980

  5. Environmental Chemistry at Vapor/Water Interfaces: Insights from Vibrational Sum Frequency Generation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jubb, Aaron M.; Hua, Wei; Allen, Heather C.

    2012-05-01

    The chemistry that occurs at surfaces has been an intense area of study for many years owing to its complexity and importance in describing a wide range of physical phenomena. The vapor/water interface is particularly interesting from an environmental chemistry perspective as this surface plays host to a wide range of chemistries that influence atmospheric and geochemical interactions. The application of vibrational sum frequency generation (VSFG), an inherently surface-specific, even-order nonlinear optical spectroscopy, enables the direct interrogation of various vapor/aqueous interfaces to elucidate the behavior and reaction of chemical species within the surface regime. In this review we discuss the application of VSFG to the study of a variety of atmospherically important systems at the vapor/aqueous interface. Chemical systems presented include inorganic ionic solutions prevalent in aqueous marine aerosols, small molecular solutes, and long-chain fatty acids relevant to fat-coated aerosols. The ability of VSFG to probe both the organization and reactions that may occur for these systems is highlighted. A future perspective toward the application of VSFG to the study of environmental interfaces is also provided.

  6. Phase reference in phase-sensitive sum-frequency vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Sun, Shumei; Liang, Rongda; Xu, Xiaofan; Zhu, Heyuan; Shen, Y. Ron; Tian, Chuanshan

    2016-06-01

    Phase-sensitive sum-frequency vibrational spectroscopy (PS-SFVS) has been established as a powerful technique for surface characterization, but for it to generate a reliable spectrum, accurate phase measurement with a well-defined phase reference is most important. Incorrect phase measurement can lead to significant distortion of a spectrum, as recently seen in the case for the air/water interface. In this work, we show theoretically and experimentally that a transparent, highly nonlinear crystal, such as quartz and barium borate, can be a good phase reference if the surface is clean and unstrained and the crystal is properly oriented to yield a strong SF output. In such cases, the reflected SF signal is dominated by the bulk electric dipole contribution and its phase is either +90° or -90°. On the other hand, materials with inversion symmetry, such as water, fused quartz, and CaF2 are not good phase references due to the quadrupole contribution and phase dispersion at the interface. Using a proper phase reference in PS-SFVS, we have found the most reliable OH stretching spectrum for the air/water interface. The positive band at low frequencies in the imaginary component of the spectrum, which has garnered much interest and been interpreted by many to be due to strongly hydrogen-bonded water species, is no longer present. A weak positive feature however still exists. Its magnitude approximately equals to that of air/D2O away from resonances, suggesting that this positive feature is unrelated to surface resonance of water.

  7. Phase reference in phase-sensitive sum-frequency vibrational spectroscopy.

    PubMed

    Sun, Shumei; Liang, Rongda; Xu, Xiaofan; Zhu, Heyuan; Shen, Y Ron; Tian, Chuanshan

    2016-06-28

    Phase-sensitive sum-frequency vibrational spectroscopy (PS-SFVS) has been established as a powerful technique for surface characterization, but for it to generate a reliable spectrum, accurate phase measurement with a well-defined phase reference is most important. Incorrect phase measurement can lead to significant distortion of a spectrum, as recently seen in the case for the air/water interface. In this work, we show theoretically and experimentally that a transparent, highly nonlinear crystal, such as quartz and barium borate, can be a good phase reference if the surface is clean and unstrained and the crystal is properly oriented to yield a strong SF output. In such cases, the reflected SF signal is dominated by the bulk electric dipole contribution and its phase is either +90° or -90°. On the other hand, materials with inversion symmetry, such as water, fused quartz, and CaF2 are not good phase references due to the quadrupole contribution and phase dispersion at the interface. Using a proper phase reference in PS-SFVS, we have found the most reliable OH stretching spectrum for the air/water interface. The positive band at low frequencies in the imaginary component of the spectrum, which has garnered much interest and been interpreted by many to be due to strongly hydrogen-bonded water species, is no longer present. A weak positive feature however still exists. Its magnitude approximately equals to that of air/D2O away from resonances, suggesting that this positive feature is unrelated to surface resonance of water. PMID:27369537

  8. Relationship between crack defects in magnetic tiles and variation frequencies of high-order vibration mode based on modal technology

    NASA Astrophysics Data System (ADS)

    Fu, Lin; Yang, Suijun; Wang, Xueying; Hou, Dexin

    2010-08-01

    Conventional sonic testing method has such limitations as monotony of signal characteristic quantity, regular shape requirement of measured workpiece, limited ability to identify only one type of defect, etc. This paper establishes the mathematical model of modal vector of free vibration object of arbitrary order, analyzes the effects of vibration modes on the various types of crack default with magnetic tiles commonly used in industry as study object, then gives the relationship between the frequencies of high-order vibration mode and the location, length, depth of the same type crack defects and that between the frequencies of high-order vibration mode and 4 kinds of defects common in magnetic tiles including axial short crack through the top of the arc, tangential short crack through the bottom of the arc, tangential crack in the intrados and axial crack in the intrados, and finally 3 types of magnetic tiles were tested to verify its effectiveness. The results are very helpful in automatic detection of internal defects in workpieces.

  9. An approach for modeling the influence of wheel tractor loads and vibration frequencies on soil compaction

    NASA Astrophysics Data System (ADS)

    Verotti, M.; Servadio, P.; Belfiore, N. P.; Bergonzoli, S.

    2012-04-01

    -soil-man interaction. In particular, a model based on elasto-visco-plastic concentrated parameters, with multiple degrees of freedom, will be used in order to build a method for detecting a soil damage index, especially expressed in terms of increasing of soil compaction. Besides the axle load, the model will take into account the frequency of the vibrations that the vehicle is transmitting to the soil. Such model expresses a numerical value for the transmissibility coefficient and also allows evaluating the damage at the surface and on the bulk medium where the agricultural crops initially develop. Key words: vehicle-soil interaction, vibration, compaction, models. Acknowledgements This work was carried out under the auspices of the special project "Sceneries of adaptation of the Italian agriculture to the climatic changes" (AGROSCENARI) of the Agricultural Research Council, and Italian Ministry of the Agricultural and Forestry Politics.

  10. Control of the low-frequency vibrations of elastic metamaterial shafts with discretized arc-rubber layers

    NASA Astrophysics Data System (ADS)

    Lixia, Li; Anjiang, Cai

    2016-06-01

    We propose a new kind of elastic metamaterial (EM) shaft with discretized arc-shaped rubber layers, which shows excellent low-frequency vibration properties. The band gaps of the shaft structure were analyzed by employing the finite element method. The proposed EM shaft exhibits much lower band gaps than the corresponding structures with the whole rubber ring. Furthermore, the band gaps can be modulated by tuning the arc angle and the number of the arc-shaped rubbers. Additionally, we observed that the first complete band gap tends to disappear when the arc angle of each arc-shaped rubber section is decreased but the arc number remains fixed because the arc angle more strongly affects the rotational stiffness than the transverse stiffness of the rubber layers. This new type of EM shafts could find potential application as a means to control the low-frequency vibrations of rotor shafts in mechanical engineering.

  11. Development of a biologically relevant calcium phosphate substrate for sum frequency generation vibrational spectroscopy.

    PubMed

    McGall, Sarah J; Davies, Paul B; Neivandt, David J

    2005-10-01

    A novel biologically relevant composite substrate has been prepared consisting of a calcium phosphate (CaP) layer formed by magnetron sputter-coating from a hydroxyapatite (HA) target onto a gold-coated silicon substrate. The CaP layer is intended to mimic tooth and bone surfaces and allows polymers used in oral care to be deposited in a procedure analogous to that used for dental surfaces. The polymer cetyl dimethicone copolyol (CDC) was deposited onto the CaP surface of the substrate by Langmuir Blodgett deposition, and the structure of the adsorbed layer was investigated by the surface specific technique of sum frequency generation (SFG) vibrational spectroscopy. The gold sublayer provides enhancement of the SFG signal arising from the polymer but plays no part in the adsorption of the polymer. The surface morphology of the substrate was investigated using SEM and AFM. The surface roughness was commensurate with that of the thermally evaporated gold sublayer and uniform over areas of at least 36 mum(2). The chemical composition of the CaP-coated surface was determined by FTIR and TOF-SIMS. It was concluded that the surface is primarily calcium phosphate present as a mixture of amorphous, non-hydroxylated phases rather than solely stoichiometric hydroxyapatite. The SFG spectra from CDC on CaP were closely similar, both in resonance wavenumbers and in their relative intensities, with spectra of thin films of CDC recorded directly on gold. Application of previous analysis of the spectra of CDC on gold therefore enabled interpretation of the polymer orientation and conformation on the CaP substrate. PMID:16834276

  12. Frequency-domain time-resolved four wave mixing spectroscopy of vibrational coherence transfer with single-color excitation.

    PubMed

    Pakoulev, Andrei V; Rickard, Mark A; Mathew, Nathan A; Kornau, Kathryn M; Wright, John C

    2008-07-17

    Triply vibrationally enhanced four-wave mixing spectroscopy is employed to observe vibrational coherence transfer between the asymmetric and symmetric CO-stretching modes of rhodium(I) dicarbonyl acetylacetonate (RDC). Coherence transfer is a nonradiative transition of a coherent superposition of quantum states to a different coherent superposition due to coupling of the vibrational modes through the bath. All three excitation pulses in the experiment are resonant with a single quantum coherence, but coherence transfer results in new coherences with different frequencies. The new output frequency is observed with a monochromator that resolves it from the stronger peak at the original excitation frequency. This technique spectrally resolves pathways that include coherence transfer, discriminates against spectral features created solely by radiative transitions, and temporally resolves modulations created by interference between different coherence transfer pathways. Redfield theory simulates the temporal modulations in the impulsive limit, but it is also clear that coherence transfer violates the secular approximation invoked in most Redfield theories. Instead, it requires non-Markovian and bath memory effects. RDC may provide a simple model for the development of theories that incorporate these effects. PMID:18572931

  13. Conformational analysis from low-frequency vibrational data and ab initio calculations for 3-chloropropene

    NASA Astrophysics Data System (ADS)

    Durig, J. R.; Durig, D. T.; Jalilian, M. R.; Zhen, Mengzhang; Little, T. S.

    1989-03-01

    The asymmetric torsion of 3-chloropropene, CH 2CHCH 2Cl, has been investigated by far-infrared and Raman spectra of the gas and the low-frequency Raman spectrum of the liquid at various temperatures. Both the gauche and cis (halogen to double bond) conformers are present in the fluid phases at ambient temperature and the gauche isomer is the predominant form in the liquid. The asymmetric torsion of the cis rotamer is observed in the far-infrared spectrum of the gas at 147.28 cm -1 with four accompanying "hot bands" and the corresponding fundamental of the gauche conformer is observed at 101.97 cm -1 also with four "hot bands". From these data, a potential function governing the internal rotation of the asymmetric top has been determined with potential constants of: V1 = -47±19, V2 = 145±17, V3 = 862±8, V4 = 14±6, V6 = -50±4 cm -1. This potential function is consistent with the cis form being thermodynamically preferred by 81 cm -1 (0.23 kcal mol -1), and a torsional dihedral angle of 122° for the gauche conformer away from the cis form. The calculated cis to gauche, gauche to gauche, and gauche to cis barriers are 969 cm -1 (2.77 kcal mol -1), 734 cm -1 (2.10 kcal mol -1) and 888 cm -1 (2.54 kcal mol -1), respectively. From relative intensities of the Raman lines of the liquid at 245 ( cis) and 289 ( gauche) cm -1 as a function of temperature, the enthalpy difference was found to be 178±11 cm -1 (509±31 cal mol -1) with the gauche form being more stable. The normal vibrations for both the cis and gauche rotamers have been calculated by ab initio Hartree-Fock gradient calculations employing the 3-21G* basis set. The calculated frequencies and force constants are compared to those previously reported. Potential surface calculations and structural determinations have been carried out employing both the 3-21G* and 6-31G* basis sets and compared to those obtained experimentally. These results are compared to similar quantities in some related molecules.

  14. Capturing inhomogeneous broadening of the -CN stretch vibration in a Langmuir monolayer with high-resolution spectra and ultrafast vibrational dynamics in sum-frequency generation vibrational spectroscopy (SFG-VS)

    SciTech Connect

    Velarde Ruiz Esparza, Luis A.; Wang, Hongfei

    2013-08-28

    Even though in principle the frequency-domain and time-domain spectroscopic measurement should generate identical information for a given molecular system, inhomogeneous character of surface vibrations in the sum-frequency generation vibrational spectroscopy (SFG-VS) studies has only been studied with the time-domain SFGVS by mapping the decay of the vibrational polarization using ultrafast lasers, due to the lack of SFG vibrational spectra with high enough spectral resolution and accurate enough line shape. Here with recently developed high-resolution broadband SFG-VS (HR-BB-SFG-VS) we show that the inhomogeneous line shape can be obtained in the frequency-domain, for the anchoring CN stretch of the 4-n-octyl-4'-cyanobiphenyl (8CB) Langmuir monolayer at the air-water interface, and that an excellent agreement with the time-domain SFG free-induction-decay (FID) results can be established. We found that the 8CB CN stretch spectrum consists of a single peak centered at 2234.00 + * 0.01 cm-1 with a total line width of 10.9 + - 0.3 cm-1 at half maximum. The Lorentzian contribution accounts only for 4:7 + -0:4 cm-1 to this width and the Gaussian (inhomogeneous) broadening for as much as 8:1+*0:2 cm-1. Polarization analysis of the -CN spectra showed that the -CN group is tilted 57 + - 2 degrees from the surface normal. The large heterogeneity in the -CN spectrum is tentatively attributed to the -CN group interactions with the interfacial water molecules penetrated/accomodated into the 8CB monolayer, a unique phenomenon for the nCB Langmuir monolayers reported previously.

  15. Frequency domain control based on quantitative feedback theory for vibration suppression in structures equipped with magnetorheological dampers

    NASA Astrophysics Data System (ADS)

    Zapateiro, Mauricio; Karimi, Hamid Reza; Luo, Ningsu; Spencer, Billie F., Jr.

    2009-09-01

    This paper addresses the problem of designing quantitative feedback theory (QFT) based controllers for the vibration reduction in a structure equipped with an MR damper. In this way, the controller is designed in the frequency domain and the natural frequencies of the structure can be directly accounted for in the process. Though the QFT methodology was originally conceived of for linear time invariant systems, it can be extended to nonlinear systems. A new methodology is proposed for characterizing the nonlinear hysteretic behavior of the MR damper through the uncertainty template in the Nichols chart. The resulting controller performance is evaluated in a real-time hybrid testing experiment.

  16. A non-resonant, frequency up-converted electromagnetic energy harvester from human-body-induced vibration for hand-held smart system applications

    NASA Astrophysics Data System (ADS)

    Halim, Miah A.; Park, Jae Y.

    2014-03-01

    We present a non-resonant, frequency up-converted electromagnetic energy harvester that generates significant power from human-body-induced vibration, e.g., hand-shaking. Upon excitation, a freely movable non-magnetic ball within a cylinder periodically hits two magnets suspended on two helical compression springs located at either ends of the cylinder, allowing those to vibrate with higher frequencies. The device parameters have been designed based on the characteristics of human hand-shaking vibration. A prototype has been developed and tested both by vibration exciter (for non-resonance test) and by manual hand-shaking. The fabricated device generated 110 μW average power with 15.4 μW cm-3 average power density, while the energy harvester was mounted on a smart phone and was hand-shaken, indicating its ability in powering portable hand-held smart devices from low frequency (<5 Hz) vibrations.

  17. Balancing Vibrations at Harmonic Frequencies by Injecting Harmonic Balancing Signals into the Armature of a Linear Motor/Alternator Coupled to a Stirling Machine

    NASA Technical Reports Server (NTRS)

    Holliday, Ezekiel S. (Inventor)

    2014-01-01

    Vibrations at harmonic frequencies are reduced by injecting harmonic balancing signals into the armature of a linear motor/alternator coupled to a Stirling machine. The vibrations are sensed to provide a signal representing the mechanical vibrations. A harmonic balancing signal is generated for selected harmonics of the operating frequency by processing the sensed vibration signal with adaptive filter algorithms of adaptive filters for each harmonic. Reference inputs for each harmonic are applied to the adaptive filter algorithms at the frequency of the selected harmonic. The harmonic balancing signals for all of the harmonics are summed with a principal control signal. The harmonic balancing signals modify the principal electrical drive voltage and drive the motor/alternator with a drive voltage component in opposition to the vibration at each harmonic.

  18. Unified treatment and measurement of the spectral resolution and temporal effects in frequency-resolved sum-frequency generation vibrational spectroscopy (SFG-VS)

    SciTech Connect

    Velarde Ruiz Esparza, Luis A.; Wang, Hongfei

    2013-12-14

    The emergence of sub-wavenumber high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BBSFG-VS) [Velarde et al., J. Chem. Phys., 2011, 135, 241102] has offered new opportunities in obtaining and understanding the spectral lineshape and temporal effects on the surface vibrational spectroscopy. Particularly, the high accuracy in the HR-BBSFG-VS spectral lineshape measurement provides detailed information on the complex coherent vibrational dynamics through spectral measurement. Here we present a unified formalism of the theoretical and experimental approaches for obtaining the accurate lineshape of the SFG response, and then present a analysis on the higher and lower spectral resolution SFG spectra as well as their temporal effects of the cholesterol molecules at the air/water interface. With the high spectral resolution and accurate lineshape, it is shown that the parameters from the sub-wavenumber resolution SFG spectra can be used not only to understand but also to quantitatively reproduce the temporal effects in the lower resolution SFG measurement. These not only provide a unified picture in understanding both the frequency-domain and the time-domain SFG response of the complex molecular interface, but also provide novel experimental approaches that can directly measure them.

  19. Delays of stimulus-frequency otoacoustic emissions and cochlear vibrations contradict the theory of coherent reflection filtering

    NASA Astrophysics Data System (ADS)

    Siegel, Jonathan H.; Cerka, Amanda J.; Recio-Spinoso, Alberto; Temchin, Andrei N.; van Dijk, Pim; Ruggero, Mario A.

    2005-10-01

    When stimulated by tones, the ear appears to emit tones of its own, stimulus-frequency otoacoustic emissions (SFOAEs). SFOAEs were measured in 17 chinchillas and their group delays were compared with a place map of basilar-membrane vibration group delays measured at the characteristic frequency. The map is based on Wiener-kernel analysis of responses to noise of auditory-nerve fibers corroborated by measurements of vibrations at several basilar-membrane sites. SFOAE group delays were similar to, or shorter than, basilar-membrane group delays for frequencies >4 kHz and <4 kHz, respectively. Such short delays contradict the generally accepted ``theory of coherent reflection filtering'' [Zweig and Shera, J. Acoust. Soc. Am. 98, 2018-2047 (1995)], which predicts that the group delays of SFOAEs evoked by low-level tones approximately equal twice the basilar-membrane group delays. The results for frequencies higher than 4 kHz are compatible with hypotheses of SFOAE propagation to the stapes via acoustic waves or fluid coupling, or via reverse basilar membrane traveling waves with speeds corresponding to the signal-front delays, rather than the group delays, of the forward waves. The results for frequencies lower than 4 kHz cannot be explained by hypotheses based on waves propagating to and from their characteristic places in the cochlea.

  20. Neutron spectrometry and numerical simulations of low-frequency internal vibrational in solid xylenes

    SciTech Connect

    Natkaniec, I.; Holderna-Natkaniec, K.; Kalus, J.; Khavryutchenko, V. D.

    1999-06-15

    Vibrational densities of states of solid xylenes were determined from the inelastic neutron scattering spectra measured on the NERA spectrometer at the IBR-2 pulsed reactor. These spectra were used to test the semi-empirical quantum-chemistry calculations of internal vibrations of xylene molecules with differently deuterated sub-units. Rotations of methyl groups were found to be strongly affected by intermolecular interactions in the crystals and mixed with phenyl ring deformations.

  1. Three-Dimensional Vibration Isolator for Suppressing High-Frequency Responses for Sage III Contamination Monitoring Package (CMP)

    NASA Technical Reports Server (NTRS)

    Li, Y.; Cutright, S.; Dyke, R.; Templeton, J.; Gasbarre, J.; Novak, F.

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) III - International Space Station (ISS) instrument will be used to study ozone, providing global, long-term measurements of key components of the Earth's atmosphere for the continued health of Earth and its inhabitants. SAGE III is launched into orbit in an inverted configuration on SpaceX;s Falcon 9 launch vehicle. As one of its four supporting elements, a Contamination Monitoring Package (CMP) mounted to the top panel of the Interface Adapter Module (IAM) box experiences high-frequency response due to structural coupling between the two structures during the SpaceX launch. These vibrations, which were initially observed in the IAM Engineering Development Unit (EDU) test and later verified through finite element analysis (FEA) for the SpaceX launch loads, may damage the internal electronic cards and the Thermoelectric Quartz Crystal Microbalance (TQCM) sensors mounted on the CMP. Three-dimensional (3D) vibration isolators were required to be inserted between the CMP and IAM interface in order to attenuate the high frequency vibrations without resulting in any major changes to the existing system. Wire rope isolators were proposed as the isolation system between the CMP and IAM due to the low impact to design. Most 3D isolation systems are designed for compression and roll, therefore little dynamic data was available for using wire rope isolators in an inverted or tension configuration. From the isolator FEA and test results, it is shown that by using the 3D wire rope isolators, the CMP high-frequency responses have been suppressed by several orders of magnitude over a wide excitation frequency range. Consequently, the TQCM sensor responses are well below their qualification environments. It is indicated that these high-frequency responses due to the typical instrument structural coupling can be significantly suppressed by a vibration passive control using the 3D vibration isolator. Thermal and contamination

  2. C≡N stretching vibration of 5-cyanotryptophan as an infrared probe of protein local environment: what determines its frequency?

    PubMed

    Zhang, Wenkai; Markiewicz, Beatrice N; Doerksen, Rosalie S; Smith Iii, Amos B; Gai, Feng

    2016-03-14

    Recently it has been suggested that the C≡N stretching vibration of a tryptophan analog, 5-cyanotryptophan, could be used as an infrared probe of the local environment, especially the hydration status, of tryptophan residues in proteins. However, the factors that influence the frequency of this vibrational mode are not understood. To determine these factors, herein we carried out linear and nonlinear infrared measurements on the C≡N stretching vibration of the sidechain of 5-cyanotryptophan, 3-methyl-5-cyanoindole, in a series of protic and aprotic solvents. We found that while the C≡N stretching frequencies obtained in these solvents do not correlate well with any individual Kamlet-Taft solvent parameter, i.e., π* (polarizability), β (hydrogen bond accepting ability), and α (hydrogen bond donating ability), they do however, collapse on a straight line when plotted against σ = π* + β - α. This linear relationship provides a firm indication that both specific interactions, i.e., hydrogen-bonding interactions with the C≡N (through α) and indole N-H (through β) groups, and non-specific interactions with the molecule (through π*) work together to determine the C≡N stretching frequency, thus laying a quantitative framework for applying 5-cyanotryptophan to investigate the microscopic environment of proteins in a site-specific manner. Furthermore, two-dimensional and pump-probe infrared measurements revealed that a significant portion (∼31%) of the ground state bleach signal has a decay time constant of ∼12.3 ps, due to an additional vibrational relaxation channel, making it possible to use 5-cyanotryptophan to probe dynamics occurring on a timescale on the order of tens of picoseconds. PMID:26343769

  3. Effects of Plant Cell Wall Matrix Polysaccharides on Bacterial Cellulose Structure Studied with Vibrational Sum Frequency Generation Spectroscopy and X-ray Diffraction

    SciTech Connect

    Park, Yong Bum; Lee, Christopher M; Kafle, Kabindra; Park, Sunkyu; Cosgrove, Daniel; Kim, Seong H

    2014-07-14

    The crystallinity, allomorph content, and mesoscale ordering of cellulose produced by Gluconacetobacter xylinus cultured with different plant cell wall matrix polysaccharides were studied with vibrational sum frequency generation (SFG) spectroscopy and X-ray diffraction (XRD).

  4. Elucidating low-frequency vibrational dynamics in calcite and water with time-resolved third-harmonic generation spectroscopy.

    PubMed

    Wang, Liang; Liu, Weimin; Fang, Chong

    2015-07-14

    Low-frequency vibrations are foundational for material properties including thermal conductivity and chemical reactivity. To resolve the intrinsic molecular conformational dynamics in condensed phase, we implement time-resolved third-harmonic generation (TRTHG) spectroscopy to unravel collective skeletal motions in calcite, water, and aqueous salt solution in situ. The lifetime of three Raman-active modes in polycrystalline calcite at 155, 282 and 703 cm(-1) is found to be ca. 1.6 ps, 1.3 ps and 250 fs, respectively. The lifetime difference is due to crystallographic defects and anharmonic effects. By incorporating a home-built wire-guided liquid jet, we apply TRTHG to investigate pure water and ZnCl2 aqueous solution, revealing ultrafast dynamics of water intermolecular stretching and librational bands below 500 cm(-1) and a characteristic 280 cm(-1) vibrational mode in the ZnCl4(H2O)2(2-) complex. TRTHG proves to be a compact and versatile technique that directly uses the 800 nm fundamental laser pulse output to capture ultrafast low-frequency vibrational motion snapshots in condensed-phase materials including the omnipresent water, which provides the important time dimension to spectral characterization of molecular structure-function relationships. PMID:26062639

  5. Effect of surface structure on catalytic reactions: A sum frequency generation surface vibrational spectroscopy study

    SciTech Connect

    McCrea, Keith R.

    2001-09-07

    In the results discussed above, it is clear that Sum Frequency Generation (SFG) is a unique tool that allows the detection of vibrational spectra of adsorbed molecules present on single crystal surfaces under catalytic reaction conditions. Not only is it possible to detect active surface intermediates, it is also possible to detect spectator species which are not responsible for the measured turnover rates. By correlating high-pressure SFG spectra under reaction conditions and gas chromatography (GC) kinetic data, it is possible to determine which species are important under reaction intermediates. Because of the flexibility of this technique for studying surface intermediates, it is possible to determine how the structures of single crystal surfaces affect the observed rates of catalytic reactions. As an example of a structure insensitive reaction, ethylene hydrogenation was explored on both Pt(111) and Pt(100). The rates were determined to be essentially the same. It was observed that both ethylidyne and di-{sigma} bonded ethylene were present on the surface under reaction conditions on both crystals, although in different concentrations. This result shows that these two species are not responsible for the measured turnover rate, as it would be expected that one of the two crystals would be more active than the other, since the concentration of the surface intermediate would be different on the two crystals. The most likely active intermediates are weakly adsorbed molecules such as {pi}-bonded ethylene and ethyl. These species are not easily detected because their concentration lies at the detection limit of SFG. The SFG spectra and GC data essentially show that ethylene hydrogenation is structure insensitive for Pt(111) and Pt(100). SFG has proven to be a unique and excellent technique for studying adsorbed species on single crystal surfaces under high-pressure catalytic reactions. Coupled with kinetic data obtained from gas chromatography measurements, it can

  6. Low-frequency vibrational properties of lysozyme in sugar aqueous solutions: A Raman scattering and molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Lerbret, A.; Affouard, F.; Bordat, P.; Hédoux, A.; Guinet, Y.; Descamps, M.

    2009-12-01

    The low-frequency (ω <400 cm-1) vibrational properties of lysozyme in aqueous solutions of three well-known protecting sugars, namely, trehalose, maltose, and sucrose, have been investigated by means of complementary Raman scattering experiments and molecular dynamics simulations. The comparison of the Raman susceptibility χ″(ω) of lysozyme/water and lysozyme/sugar/water solutions at a concentration of 40 wt % with the χ″ of dry lysozyme suggests that the protein dynamics mostly appears in the broad peak around 60-80 cm-1 that reflects the vibrations experienced by atoms within the cage formed by their neighbors, whereas the broad shoulder around 170 cm-1 mainly stems from the intermolecular O-H⋯O stretching vibrations of water. The addition of sugars essentially induces a significant high frequency shift and intensity reduction of this band that reveal a slowing down of water dynamics and a distortion of the tetrahedral hydrogen bond network of water, respectively. Furthermore, the lysozyme vibrational densities of states (VDOS) have been determined from simulations of lysozyme in 37-60 wt % disaccharide aqueous solutions. They exhibit an additional broad peak around 290 cm-1, in line with the VDOS of globular proteins obtained in neutron scattering experiments. The influence of sugars on the computed VDOS mostly appears on the first peak as a slight high-frequency shift and intensity reduction in the low-frequency range (ω <50 cm-1), which increase with the sugar concentration and with the exposition of protein residues to the solvent. These results suggest that sugars stiffen the environment experienced by lysozyme atoms, thereby counteracting the softening of protein vibrational modes upon denaturation, observed at high temperature in the Raman susceptibility of the lysozyme/water solution and in the computed VDOS of unfolded lysozyme in water. Finally, the Raman susceptibility of sugar/water solutions and the calculated VDOS of water in the

  7. N-body:Many-body QM:QM vibrational frequencies: application to small hydrogen-bonded clusters.

    PubMed

    Howard, J Coleman; Tschumper, Gregory S

    2013-11-14

    We present an efficient method for reproducing CCSD(T) (i.e., the coupled-cluster method with single, double and perturbative connected triple excitations) optimized geometries and harmonic vibrational frequencies for molecular clusters with the N-body:Many-body QM:QM technique. In this work, all 1-body through N-body interactions are obtained from CCSD(T) computations, and the higher-order interactions are captured at the MP2 level. The linear expressions from the many-body expansion facilitate a straightforward evaluation of geometrical derivative properties (e.g., gradients and Hessians). For (H2O)n clusters (n = 3-7), optimized structures obtained with the 2-body:Many-body CCSD(T):MP2 method are virtually identical to CCSD(T) optimized geometries. Harmonic vibrational frequencies calculated with this 2-body:Many-body approach differ from CCSD(T) frequencies by at most a few cm(-1). These deviations can be systematically reduced by including more terms from the many-body expansion at the CCSD(T) level. Maximum deviations between CCSD(T) and 3-body:Many-body CCSD(T):MP2 frequencies are typically only a few tenths of a cm(-1) for the H2O clusters examined in this work. These results are obtained at a fraction of the wall time of the supermolecular CCSD(T) computation, and the approach is well-suited for parallelization on relatively modest computational hardware. PMID:24320260

  8. Surface Structure of Protonated R-Sapphire (1$\\bar{1}$02) Studied by Sum-Frequency Vibrational Spectroscopy

    SciTech Connect

    Sung, Jaeho; Zhang, Luning; Tian, Chuanshan; Waychunas, Glenn A.; Shen, Y. Ron

    2011-03-23

    Sum frequency vibrational spectroscopy was used to study the protonated R-plane (1$\\bar{1}$02 ) sapphire surface. The OH stretch vibrational spectra show that the surface is terminated with three hydroxyl moieties, two from AlOH2 and one from Al2OH functional groups. The observed polarization dependence allows determination of the orientations of the three OH species. The results suggest that the protonated sapphire (1$\\bar{1}$02 ) surface differs from an ideal stoichimetric termination in a manner consistent with previous X-ray surface diffraction (crystal truncation rod) studies. However, in order to best explain the observed hydrogenbonding arrangement, surface oxygen spacing determined from the X-ray diffraction study requires modification.

  9. Low-magnitude high-frequency loading, by whole-body vibration, accelerates early implant osseointegration in ovariectomized rats

    PubMed Central

    LIANG, YONG-QIANG; QI, MENG-CHUN; XU, JIANG; XU, JUAN; LIU, HUA-WEI; DONG, WEI; LI, JIN-YUAN; HU, MIN

    2014-01-01

    Osteoporosis deteriorates jaw bone quality and may compromise early implant osseointegration and early implant loading. The influence of low-magnitude, high-frequency (LMHF) vibration on peri-implant bone healing and implant integration in osteoporotic bones remains poorly understood. LMHF loading via whole-body vibration (WBV) for 8 weeks has previously been demonstrated to significantly enhance bone-to-implant contact, peri-implant bone fraction and implant mechanical properties in osteoporotic rats. In the present study, LMHF loading by WBV was performed in osteoporotic rats, with a loading duration of 4 weeks during the early stages of bone healing. The results indicated that 4-week LMHF loading by WBV partly reversed the negative effects of osteoporosis and accelerated early peri-implant osseointegration in ovariectomized rats. PMID:25270245

  10. THE POSSIBLE INTERSTELLAR ANION CH{sub 2}CN{sup -}: SPECTROSCOPIC CONSTANTS, VIBRATIONAL FREQUENCIES, AND OTHER CONSIDERATIONS

    SciTech Connect

    Fortenberry, Ryan C.; Lee, Timothy J.; Crawford, T. Daniel E-mail: Timothy.J.Lee@nasa.gov

    2013-01-10

    The A {sup 1}B{sub 1} Leftwards-Open-Headed-Arrow X-tilde{sup 1}A' excitation into the dipole-bound state of the cyanomethyl anion (CH{sub 2}CN{sup -}) has been hypothesized as the carrier for one diffuse interstellar band. However, this particular molecular system has not been detected in the interstellar medium even though the related cyanomethyl radical and the isoelectronic ketenimine molecule have been found. In this study, we are employing the use of proven quartic force fields and second-order vibrational perturbation theory to compute accurate spectroscopic constants and fundamental vibrational frequencies for X-tilde{sup 1} A' CH{sub 2}CN{sup -} in order to assist in laboratory studies and astronomical observations.

  11. Selective Detection of Crystalline Cellulose in Plant Cell Walls with Sum-Frequency-Generation (SFG) Vibration Spectroscopy

    SciTech Connect

    Barnette, Anna L.; Bradley, Laura C.; Veres, Brandon D.; Schreiner, Edward P.; Park, Yong Bum; Park, Junyeong; Park, Sunkyu; Kim, Seong H.

    2011-07-11

    The selective detection of crystalline cellulose in biomass was demonstrated with sum-frequency-generation (SFG) vibration spectroscopy. SFG is a second-order nonlinear optical response from a system where the optical centrosymmetry is broken. In secondary plant cell walls that contain mostly cellulose, hemicellulose, and lignin with varying concentrations, only certain vibration modes in the crystalline cellulose structure can meet the noninversion symmetry requirements. Thus, SFG can be used to detect and analyze crystalline cellulose selectively in lignocellulosic biomass without extraction of noncellulosic species from biomass or deconvolution of amorphous spectra. The selective detection of crystalline cellulose in lignocellulosic biomass is not readily achievable with other techniques such as XRD, solid-state NMR, IR, and Raman analyses. Therefore, the SFG analysis presents a unique opportunity to reveal the cellulose crystalline structure in lignocellulosic biomass.

  12. DFT and ab initio calculations of the vibrational frequencies and visible spectra of triazenes derived from cyclic amines

    NASA Astrophysics Data System (ADS)

    Dabbagh, Hossein A.; Teimouri, Abbas; Chermahini, Alireza Najafi; Shiasi, Rezvan

    2007-06-01

    We present a detailed analysis of the structural, infrared spectra and visible spectra of the 4-substituted aminoazo-benzenesulfonyl azides. The preparation of 4-sulfonyl azide benzenediazonium chloride with cyclic amines of various ring sizes (pyrrolidine, piperidine, 4-methylpiperidine, N-methylpiperazine, morpholine and hexamethyleneimine) have been investigated theoretically by performing HF and DFT levels of theory using the standard 6-31G* basis set. The optimized geometries and calculated vibrational frequencies are evaluated via comparison with experimental values. The vibrational spectral data obtained from solid phase FT-IR spectra are assigned modes based on the results of the theoretical calculations. The observed spectra are found to be in good agreement with the calculations.

  13. Observations of earth eigen vibrations possibly excited by low frequency gravity waves

    NASA Technical Reports Server (NTRS)

    Tuman, V. S.

    1971-01-01

    A cryogenic gravity meter made of two parts, a magnetic suspension unit and a detection module, was used to monitor earth eigen vibrations. The magnetic field and field gradient are generated by energizing a set of superconducting coils made of niobium-zirconium alloy wire. The detection module is a double Josephson junction magnetometer. The output is printed on a chart recorder and later digitized using a computer; a Fourier transformation is performed on the accumulated data. The measurements of eigen vibrations are summarized in tabular and graphical representations.

  14. Electron–phonon metamaterial featuring nonlinear tri-interleaved piezoelectric topologies and its application in low-frequency vibration control

    NASA Astrophysics Data System (ADS)

    Bao, Bin; Guyomar, Daniel; Lallart, Mickaël

    2016-09-01

    This article proposes a nonlinear tri-interleaved piezoelectric topology based on the synchronized switch damping on inductor (SSDI) technique, which can be applied to phononic metamaterials for elastic wave control and effective low-frequency vibration reduction. A comparison of the attenuation performance is made between piezoelectric phononic metamaterial with distributed SSDI topology (each SSDI shunt being independently connected to a single piezoelectric element) and piezoelectric phononic metamaterial with the proposed electronic topology. Theoretical results show excellent band gap hybridization (near-coupling between Bragg scattering mechanism and wideband resonance mechanism induced by synchronized switch damping networks in piezoelectric phononic metamaterials) with the proposed electronic topology over the investigated frequency domain. Furthermore, piezoelectric phononic metamaterials with proposed electronic topology generated a better low-frequency broadband gap, which is experimentally validated by measuring the harmonic response of a piezoelectric phononic metamaterial beam under clamped–clamped boundary conditions.

  15. Fundamental Vibration Frequency and Damping Estimation: A Comparison Using the Random Decrement Method, the Empirical Mode Decomposition, and the HV Spectral Ratio Method for Local Site Characterization

    NASA Astrophysics Data System (ADS)

    Huerta-Lopez, C. I.; Upegui Botero, F. M.; Pulliam, J.; Willemann, R. J.; Pasyanos, M.; Schmitz, M.; Rojas Mercedes, N.; Louie, J. N.; Moschetti, M. P.; Martinez-Cruzado, J. A.; Suárez, L.; Huerfano Moreno, V.; Polanco, E.

    2013-12-01

    Site characterization in civil engineering demands to know at least two of the dynamic properties of soil systems, which are: (i) dominant vibration frequency, and (ii) damping. As part of an effort to develop understanding of the principles of earthquake hazard analysis, particularly site characterization techniques using non invasive/non destructive seismic methods, a workshop (Pan-American Advanced Studies Institute: New Frontiers in Geophysical Research: Bringing New Tools and Techniques to Bear on Earthquake Hazard Analysis and Mitigation) was conducted during july 15-25, 2013 in Santo Domingo, Dominican Republic by the alliance of Pan-American Advanced Studies Institute (PASI) and Incorporated Research Institutions for Seismology (IRIS), jointly supported by Department of Energy (DOE) and National Science Foundation (NSF). Preliminary results of the site characterization in terms of fundamental vibration frequency and damping are here presented from data collected during the workshop. Three different methods were used in such estimations and later compared in order to identify the stability of estimations as well as the advantage or disadvantage among these methodologies. The used methods were the: (i) Random Decrement Method (RDM), to estimate fundamental vibration frequency and damping simultaneously; (ii) Empirical Mode Decomposition (EMD), to estimate the vibration modes, and (iii) Horizontal to Vertical Spectra ratio (HVSR), to estimate the fundamental vibration frequency. In all cases ambient vibration and induced vibration were used.

  16. Properties of axial or torsional free-vibration frequency of rods

    NASA Technical Reports Server (NTRS)

    Segenreich, S. A.; Rizzi, P.

    1975-01-01

    The investigation reported shows that for a clamped rod with an odd number of degrees of freedom, the middle frequency is independent of any nonuniformity in the area distribution. The frequencies in the lower half of the spectrum of a rod are found to be conjugate to the frequencies in the upper half. In the case of a design modification which leaves a certain frequency in the lower half spectrum unchanged, the conjugate frequency in the upper half will also remain unchanged.

  17. Micro- and nano-structural details of a spider's filter for substrate vibrations: relevance for low-frequency signal transmission

    PubMed Central

    Erko, Maxim; Younes-Metzler, Osnat; Rack, Alexander; Zaslansky, Paul; Young, Seth L.; Milliron, Garrett; Chyasnavichyus, Marius; Barth, Friedrich G.; Fratzl, Peter; Tsukruk, Vladimir; Zlotnikov, Igor; Politi, Yael

    2015-01-01

    The metatarsal lyriform organ of the Central American wandering spider Cupiennius salei is its most sensitive vibration detector. It is able to sense a wide range of vibration stimuli over four orders of magnitude in frequency between at least as low as 0.1 Hz and several kilohertz. Transmission of the vibrations to the slit organ is controlled by a cuticular pad in front of it. While the mechanism of high-frequency stimulus transfer (above ca 40 Hz) is well understood and related to the viscoelastic properties of the pad's epicuticle, it is not yet clear how low-frequency stimuli (less than 40 Hz) are transmitted. Here, we study how the pad material affects the pad's mechanical properties and thus its role in the transfer of the stimulus, using a variety of experimental techniques, such as X-ray micro-computed tomography for three-dimensional imaging, X-ray scattering for structural analysis, and atomic force microscopy and scanning electron microscopy for surface imaging. The mechanical properties were investigated using scanning acoustic microscopy and nanoindentation. We show that large tarsal deflections cause large deformation in the distal highly hydrated part of the pad. Beyond this region, a sclerotized region serves as a supporting frame which resists the deformation and is displaced to push against the slits, with displacement values considerably scaled down to only a few micrometres. Unravelling the structural arrangement in such specialized structures may provide conceptual ideas for the design of new materials capable of controlling a technical sensor's specificity and selectivity, which is so typical of biological sensors. PMID:25631567

  18. Vibrational frequency scaling factors for correlation consistent basis sets and the methods CC2 and MP2 and their spin-scaled SCS and SOS variants

    SciTech Connect

    Friese, Daniel H.; Törk, Lisa; Hättig, Christof

    2014-11-21

    We present scaling factors for vibrational frequencies calculated within the harmonic approximation and the correlated wave-function methods coupled cluster singles and doubles model (CC2) and Møller-Plesset perturbation theory (MP2) with and without a spin-component scaling (SCS or spin-opposite scaling (SOS)). Frequency scaling factors and the remaining deviations from the reference data are evaluated for several non-augmented basis sets of the cc-pVXZ family of generally contracted correlation-consistent basis sets as well as for the segmented contracted TZVPP basis. We find that the SCS and SOS variants of CC2 and MP2 lead to a slightly better accuracy for the scaled vibrational frequencies. The determined frequency scaling factors can also be used for vibrational frequencies calculated for excited states through response theory with CC2 and the algebraic diagrammatic construction through second order and their spin-component scaled variants.

  19. Effect of high-frequency in-plane substrate vibration on a three-phase contact angle

    NASA Astrophysics Data System (ADS)

    Manor, Ofer; Pismen, Len M.

    2015-06-01

    We investigate analytically the contribution of high-frequency horizontal (in-plane) vibration of a solid substrate to the apparent contact angle of a liquid meniscus in the framework of the lubrication approximation. We show that oscillatory excitation invokes a drift of liquid within the meniscus resulting from nonlinear contributions from both the motion of the solid surface and acoustically induced capillary waves at the free surface of the liquid. Our analysis reveals that under this type of excitation, the relative increase of the steady apparent contact angle is proportional to the product of the capillary and Reynolds numbers.

  20. Evidence for highly anharmonic low-frequency vibrational modes in bulk amorphous Pd40Cu40P20

    NASA Astrophysics Data System (ADS)

    Safarik, D. J.; Schwarz, R. B.

    2009-09-01

    We have measured the elastic constants of amorphous Pd40Cu40P20 (isotropic, two independent elastic constants), single crystal Pd40Cu40P20 (tetragonal, six elastic constants), and single crystal Pd50Cu50 (fcc, three elastic constants) over the range 3.9vibrations. The temperature dependence of the shear modulus of amorphous Pd40Cu40P20 includes an additional contribution, ΔCE(T) , which becomes dominant for T<20K : C(T)=C(0)-BT2+ΔCLat(T)+ΔCE(T) . The ΔCE(T) contribution can be explained by the presence of a small number of low-frequency, highly anharmonic vibrational modes, which we characterize as Einstein oscillators with temperature θE≈12K and Grüneisen parameter γEC'≫2 . Theory and computer modeling suggest that these modes involve the collective vibration of stringlike arrays of atoms.

  1. Binding of Na+ and K+ to the Headgroup of Palmitic Acid Monolayers Studied by Vibrational Sum Frequency Generation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Zishuai; Allen, Heather C.

    2012-06-01

    Alkali cations are critical in biological systems due to their electrical interaction with cell membranes. While Na+ and K+ share similar chemical and physical properties, they can exhibit differences when interacting with biological membranes. These phenomena may be modeled using a Langmuir monolayer of surfactant on alkali chloride solutions. Vibrational sum frequency generation (VSFG) spectroscopy is an interface specific technique that is widely employed to study molecular organization at surfaces and interfaces. VSFG spectroscopy was used to probe the CO2- vibrational mode for the carboxylic acid headgroup of palmitic acid (PA) spread on the surface of NaCl and KCl solutions in the vibrational region between 1400 and 1500 cm-1. The ability of Na+ and K+ to bind with the carboxylic headgroup of PA is revealed by observing peak positions (˜1410 cm-1 and ˜1470 cm-1) and relative intensity for the CO2- peaks. These results are compared and discussed with perspective toward elucidating interfacial PA headgroup organization. The time evolution for the PA CO2- peaks is also monitored after monolayer spreading via VSFG and these results are presented as well.

  2. Connecting microwave and optical frequencies with a vibrational degree of freedom

    NASA Astrophysics Data System (ADS)

    Andrews, R. W.; Peterson, R. W.; Purdy, T. P.; Cicak, K.; Simmonds, R. W.; Regal, C. A.; Lehnert, K. W.

    2015-03-01

    We describe the construction of a device that converts electromagnetic signals from microwave (7 GHz) to optical (282 THz) frequencies, and vice-versa. The frequency converter relies on a flexible silicon nitride membrane that is coupled via radiation pressure to both a microwave circuit and a Fabry-Perot cavity. The frequency converter achieves conversion efficiencies of ˜10%, and is potentially capable of frequency conversion of quantum signals.

  3. A study of high frequency vibrations due to pyrotechnic shocks in coupled systems

    NASA Astrophysics Data System (ADS)

    Lednik, D.; Pinnington, R. J.

    1991-10-01

    A method of predicting the vibrational response of complex structures to shock inputs is currently being developed. The possibility of using a combination of two approximate approaches is being examined: wave propagation analysis (WPA) and transient statistical energy analysis (TSEA). Some results of a theoretical investigation into the transient power flow between coupled beams are presented. TSEA and WPA predictions seem to be in good agreement with exact results, virtually independent of the coupling strength.

  4. Self-sufficient electronic control for nonlinear, frequency tunable, piezoelectric vibration harvesters

    NASA Astrophysics Data System (ADS)

    Heller, S.; Neiss, S.; Kroener, M.; Woias, P.

    2015-12-01

    Research in vibration energy harvesting focuses increasingly on nonlinear harvesters. In comparison to linear harvesters they show an inherent larger bandwidth through hardening or softening effects and higher conversion efficiency. A further increase of the bandwidth and thus a higher energy yield can be achieved by controlled tuning of such a nonlinear system. In this paper a self-sufficient tuning control electronic, which is directly powered by the harvester, is presented.

  5. Theoretical foundation, methods, and criteria for calibrating human vibration models using frequency response functions

    PubMed Central

    Dong, Ren G.; Welcome, Daniel E.; McDowell, Thomas W.; Wu, John Z.

    2015-01-01

    While simulations of the measured biodynamic responses of the whole human body or body segments to vibration are conventionally interpreted as summaries of biodynamic measurements, and the resulting models are considered quantitative, this study looked at these simulations from a different angle: model calibration. The specific aims of this study are to review and clarify the theoretical basis for model calibration, to help formulate the criteria for calibration validation, and to help appropriately select and apply calibration methods. In addition to established vibration theory, a novel theorem of mechanical vibration is also used to enhance the understanding of the mathematical and physical principles of the calibration. Based on this enhanced understanding, a set of criteria was proposed and used to systematically examine the calibration methods. Besides theoretical analyses, a numerical testing method is also used in the examination. This study identified the basic requirements for each calibration method to obtain a unique calibration solution. This study also confirmed that the solution becomes more robust if more than sufficient calibration references are provided. Practically, however, as more references are used, more inconsistencies can arise among the measured data for representing the biodynamic properties. To help account for the relative reliabilities of the references, a baseline weighting scheme is proposed. The analyses suggest that the best choice of calibration method depends on the modeling purpose, the model structure, and the availability and reliability of representative reference data. PMID:26740726

  6. Theoretical foundation, methods, and criteria for calibrating human vibration models using frequency response functions

    NASA Astrophysics Data System (ADS)

    Dong, Ren G.; Welcome, Daniel E.; McDowell, Thomas W.; Wu, John Z.

    2015-11-01

    While simulations of the measured biodynamic responses of the whole human body or body segments to vibration are conventionally interpreted as summaries of biodynamic measurements, and the resulting models are considered quantitative, this study looked at these simulations from a different angle: model calibration. The specific aims of this study are to review and clarify the theoretical basis for model calibration, to help formulate the criteria for calibration validation, and to help appropriately select and apply calibration methods. In addition to established vibration theory, a novel theorem of mechanical vibration is also used to enhance the understanding of the mathematical and physical principles of the calibration. Based on this enhanced understanding, a set of criteria was proposed and used to systematically examine the calibration methods. Besides theoretical analyses, a numerical testing method is also used in the examination. This study identified the basic requirements for each calibration method to obtain a unique calibration solution. This study also confirmed that the solution becomes more robust if more than sufficient calibration references are provided. Practically, however, as more references are used, more inconsistencies can arise among the measured data for representing the biodynamic properties. To help account for the relative reliabilities of the references, a baseline weighting scheme is proposed. The analyses suggest that the best choice of calibration method depends on the modeling purpose, the model structure, and the availability and reliability of representative reference data.

  7. Bend Vibration of Surface Water Investigated by Heterodyne-Detected Sum Frequency Generation and Theoretical Study: Dominant Role of Quadrupole.

    PubMed

    Kundu, Achintya; Tanaka, Shogo; Ishiyama, Tatsuya; Ahmed, Mohammed; Inoue, Ken-Ichi; Nihonyanagi, Satoshi; Sawai, Hiromi; Yamaguchi, Shoichi; Morita, Akihiro; Tahara, Tahei

    2016-07-01

    Heterodyne-detected vibrational sum frequency generation spectroscopy was applied to the water surface for measuring the imaginary part of second-order nonlinear susceptibility (Im χ((2))) spectrum in the bend frequency region for the first time. The observed Im χ((2)) spectrum shows an overall positive band around 1650 cm(-1), contradicting former theoretical predictions. We further found that the Im χ((2)) spectrum of NaI aqueous solution exhibits an even larger positive band, which is apparently contrary to the flip-flop orientation of surface water. These unexpected observations are elucidated by calculating quadrupole contributions beyond the conventional dipole approximation. It is indicated that the Im χ((2)) spectrum in the bend region has a large quadrupole contribution from the bulk water. PMID:27322348

  8. Low-Frequency MEMS Electrostatic Vibration Energy Harvester With Corona-Charged Vertical Electrets and Nonlinear Stoppers

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Cottone, F.; Boisseau, S.; Galayko, D.; Marty, F.; Basset, P.

    2015-12-01

    This paper reports for the first time a MEMS electrostatic vibration energy harvester (e-VEH) with corona-charged vertical electrets on its electrodes. The bandwidth of the 1-cm2 device is extended in low and high frequencies by nonlinear elastic stoppers. With a bias voltage of 46 V (electret@21 V + DC external source@25 V) between the electrodes, the RMS power of the device reaches 0.89 μW at 33 Hz and 6.6 μW at 428 Hz. The -3dB frequency band including the hysteresis is 223∼432 Hz, the one excluding the hysteresis 88∼166 Hz. We also demonstrate the charging of a 47 μF capacitor used for powering a wireless and autonomous temperature sensor node with a data transmission beyond 10 m at 868 MHz.

  9. An ab initio study of the harmonic and anharmonic force field and fundamental vibrational frequencies of performic acid

    NASA Astrophysics Data System (ADS)

    Bock, Charles W.; Trachtman, Mendel; George, Philip

    1980-11-01

    The harmonic and anharmonic force fields and fundamental vibrational frequencies of cis-cis and cis-trans performic acid are studied ab initio in the 4-31G basis set using geometries fully optimized at this level. The frequencies predicted for the cis-cis conformer are compared with those derived from spectroscopic observations on the most stable form. An extensive comparison is made between the changes in diagonal and off-diagonal quadratic and cubic force constants, and diagonal stretching quartic constants, in going from the chain to the ring structure in performic and formic acid, and features which these changes have in common are seen to support the view that there is a hydrogen bonding type of interaction in trans-formic acid despite its unfavorable geometry.

  10. Two-degree-of-freedom flow-induced vibrations on isolated and tandem cylinders with varying natural frequency ratios

    NASA Astrophysics Data System (ADS)

    Bao, Yan; Huang, Cheng; Zhou, Dai; Tu, Jiahuang; Han, Zhaolong

    2012-11-01

    A numerical study is performed on the flow-induced vibrations of isolated and tandem elastically mounted cylinders having two degrees of freedom and a variety of the in-line to the transverse natural frequency ratio, fnx/fny. The characteristic-based-split finite element method is utilized to obtain the solution of the incompressible flow equations in primitive variables. The Reynolds number, based on the upstream flow velocity U∞ and the diameter of the cylinder D, is fixed at Re=150, and for a tandem arrangement, the centre-to-centre distance between the cylinders is 5.0D. The computation is carried out at a lower reduced mass ratio of Mr=2.0 and for a wide range of reduced velocities (Ur=3.0-12.0). The structural damping ratio is set to zero to maximize the vortex-induced response of the bodies. In this study, we mainly focused on the effect of the natural frequency ratio on the characteristics of vortex-induced vibration (VIV) responses, including wake frequencies, orbital trajectories, response amplitudes, hydrodynamic forces and wake mode patterns. The natural frequency ratio is varied in the range of fnx/fny=1.0-2.0 with an increment of 0.25. We found that the condition of the occurrence of a dual-resonant response exists over a broad range of tested natural frequency ratios. A third harmonic frequency component appears in the lift fluctuation, along with additional multi-harmonics, which also interact with the drag frequency. Instead of double response peaks, multiple small peaks occur in the amplitude response of the cylinder. These peaks are distributed over a narrow range of Ur from 4.45 to 5.15, and their magnitudes increase with the increase in Ur. For a tandem arrangement, the response characteristic of the upstream cylinder is similar to that of a single cylinder, whereas that of the downstream cylinder is greatly affected by the upstream wake. For a downstream cylinder, the in-line dynamic response is more sensitive to the natural frequency ratio

  11. An ab initio study of the geometries, anharmonic force fields and fundamental vibration frequencies of cis- and trans-formic acid

    NASA Astrophysics Data System (ADS)

    Bock, Charles W.; Trachtman, Mendel; George, Philip

    1980-03-01

    The geometry, harmonic and anharmonic force fields, and fundamental vibration frequencies of cis- and trans-formic acid are studied ab initio in the 4-31G and (9,5) basis sets. For the more stable trans-conformer (i.e., trans with respect to CH and OH) comparisons are made between the predicted and observed anharmonic frequencies, and between the calculated harmonic force constants and those Redington derived from an analysis of experimental data. In the case of the less stable cis-conformer, for which there is as yet little experimental data, the calculations serve to predict values for the fundamental vibrational frequencies.

  12. Ab initio molecular dynamics with noisy and cheap quantum Monte Carlo forces: accurate calculation of vibrational frequencies

    NASA Astrophysics Data System (ADS)

    Luo, Ye; Sorella, Sandro

    2014-03-01

    We introduce a general and efficient method for the calculation of vibrational frequencies of electronic systems, ranging from molecules to solids. By performing damped molecular dynamics with ab initio forces, we show that quantum vibrational frequencies can be evaluated by diagonalizing the time averaged position-position or force-force correlation matrices, although the ionic motion is treated on the classical level within the Born-Oppenheimer approximation. The novelty of our approach is to evaluate atomic forces with QMC by means of a highly accurate and correlated variational wave function which is optimized simultaneously during the dynamics. QMC is an accurate and promising many-body technique for electronic structure calculation thanks to massively parallel computers. However, since infinite statistics is not feasible, property evaluation may be affected by large noise that is difficult to harness. Our approach controls the QMC stochastic bias systematically and gives very accurate results with moderate computational effort, namely even with noisy forces. We prove the accuracy and efficiency of our method on the water monomer[A. Zen et al., JCTC 9 (2013) 4332] and dimer. We are currently working on the challenging problem of simulating liquid water at ambient conditions.

  13. High-frequency vibration energy harvesting from impulsive excitation utilizing intentional dynamic instability caused by strong nonlinearity

    NASA Astrophysics Data System (ADS)

    Remick, Kevin; Dane Quinn, D.; Michael McFarland, D.; Bergman, Lawrence; Vakakis, Alexander

    2016-05-01

    The authors investigate a vibration-based energy harvesting system utilizing essential (nonlinearizable) nonlinearities and electromagnetic coupling elements. The system consists of a grounded, weakly damped linear oscillator (primary system) subjected to a single impulsive load. This primary system is coupled to a lightweight, damped oscillating attachment (denoted as nonlinear energy sink, NES) via a neodymium magnet and an inductance coil, and a piano wire, which generates an essential geometric cubic stiffness nonlinearity. Under impulsive input, the transient damped dynamics of this system exhibit transient resonance captures (TRCs) causing intentional large-amplitude and high-frequency instabilities in the response of the NES. These TRCs result in strong energy transfer from the directly excited primary system to the light-weight attachment. The energy is harvested by the electromagnetic elements in the coupling and, in the present case, dissipated in a resistive element in the electrical circuit. The primary goal of this work is to numerically, analytically, and experimentally demonstrate the efficacy of employing this type of intentional high-frequency dynamic instability to achieve enhanced vibration energy harvesting under impulsive excitation.

  14. Prediction of the bond lengths, vibrational frequencies, and bond dissociation energy of octahedral seaborgium hexacarbonyl, Sg(CO){sub 6}

    SciTech Connect

    Nash, C.S.; Bursten, B.E.

    1999-11-24

    The recent syntheses of several new elements (including the recent reports of elements 116 and 118), coupled with the controversy surrounding the naming of elements 104--109, have stimulated a great interest in the chemistry of the transactinide elements. This contribution addresses hypothetical hexacarbonyl complex of seaborgium (Sg, element 106), which is predicted to be a 6d-block transition element with six valence electrons, analogous to Cr, Mo, and W. The authors have previously predicted that, if it were to exist, Sg(CO){sub 6} would exhibit metal-carbonyl bonding that is very similar to that in Cr(CO){sub 6}, Mo(CO){sub 6}, and W(CO){sub 6}, and quite unlike that of the unknown valence isoelectronic actinide complex U(CO){sub 6}. This finding is in accord with the scant experimental data available for Sg. The relativistic DV-X{alpha} method used in the earlier paper facilitated the analysis of the molecular orbitals of Sg(CO){sub 6}, but did not allow for the calculation of total-energy properties, such as bond lengths and vibrational frequencies. Here the authors will use the superior methodology they have applied to other transactinide molecules to compare the bond lengths, vibrational frequencies, and CO dissociation energy of hypothetical Sg(CO){sub 6} to those of Mo(CO){sub 6} and W(CO){sub 6}.

  15. Natural frequencies, modeshapes and modal interactions for strings vibrating against an obstacle: Relevance to Sitar and Veena

    NASA Astrophysics Data System (ADS)

    Mandal, A. K.; Wahi, P.

    2015-03-01

    We study the vibration characteristics of a string with a smooth unilateral obstacle placed at one of the ends similar to the strings in musical instruments like sitar and veena. In particular, we explore the correlation between the string vibrations and some unique sound characteristics of these instruments like less inharmonicity in the frequencies, a large number of overtones and the presence of both frequency and amplitude modulations. At the obstacle, we have a moving boundary due to the wrapping of the string and an appropriate scaling of the spatial variable leads to a fixed boundary at the cost of introducing nonlinearity in the governing equation. Reduced order system of equations has been obtained by assuming a functional form for the string displacement which satisfies all the boundary conditions and gives the free length of the string in terms of the modal coordinates. To study the natural frequencies and mode-shapes, the nonlinear governing equation is linearized about the static configuration. The natural frequencies have been found to be harmonic and they depend on the shape of the obstacle through the effective free length of the string. Expressions have been obtained for the time-varying mode-shapes as well as the variation of the nodal points. Modal interactions due to coupling have been studied which show the appearance of higher overtones as well as amplitude modulations in our theoretical model akin to the experimental observations. All the obtained results have been verified with an alternate formulation based on the assumed mode method with polynomial shape functions.

  16. Calculation of low-frequency vibrational modes of biologically important isomers

    NASA Astrophysics Data System (ADS)

    Jones, Inke; Rainsford, Tamath J.; Fischer, Bernd M.; Abbott, Derek

    2007-12-01

    In this paper we compare the value of different molecular modeling techniques for the prediction of vibrational modes, especially in the mid- and far-infrared region. There is a wide range of different levels of theory available for molecular modelling - the choice depending on the kind of system to be investigated. For our calculations we use different theoretical approaches such as Hartree-Fock and Density functional theory. We also compare the performances of two available electronic structure programs-Gamess-US and Gaussian03. As examples, we use two different retinoids - all-trans retinal and all-trans retinoic acid - derivatives of Vitamin A.

  17. A computational analysis of the vibrational levels of molecular oxygen in low-pressure stationary and transient radio-frequency oxygen plasma

    NASA Astrophysics Data System (ADS)

    Kemaneci, Efe; Booth, Jean-Paul; Chabert, Pascal; van Dijk, Jan; Mussenbrock, Thomas; Brinkmann, Ralf Peter

    2016-04-01

    Vibrational levels of molecular oxygen, O2(v  <  42), are investigated in continuous and pulse-modulated low-pressure radio-frequency oxygen plasma with a global modelling approach. The model is benchmarked against a variety of pressure-, power- and time-resolved measurements of several inductive and asymmetric capacitive discharges available in the literature, and a good agreement is obtained. The sensitivity of the model with respect to the vibrational kinetics, the wall reactions and the spatial inhomogeneity of the charged particles are presented. The simulations without the vibrational levels are also shown for the sake of comparison.

  18. Structure, Energies, and Vibrational Frequencies of Solvated Li(+) in Ionic Liquids: Role of Cation Type.

    PubMed

    Dubnikova, Faina; Zeiri, Yehuda

    2016-05-19

    This study examines the structure of five ionic liquids all of them containing bis[(trifluoromethyl)sulfonyl]imide (TFSI) as the anion with five different cations: Dimethylammonium, N-propylammonium, N-methyl-1-propylpiperidinium, N-methyl-3-methylpyridinium, and N-methylpyrrolidinium. This study is based on quantum chemical calculations of structure, energetics, and vibrational spectroscopy associated with solutions of Li(+) in the five ionic liquids examined. We have shown that the Li-TFSI ion-pair stabilization is 2.5-4 fold larger than those of the ion pairs of five cations with TFSI. A large number of different species containing LikTFSInCtm (Ct represent one of five cations studied, k, n, m = 0-2) were examined in detail. The results suggest that Li-(TFSI)2 is a highly stable species and may be responsible for the transport of Li ions in these ionic liquids. The vibrational analysis suggests that the high stability of the Li-TFSI ion pair is mainly due to Coulomb interaction between the Li ion and two oxygen atoms bound to the two sulfur atoms in the TFSI anion. This O-Li-O bond exhibits stretching and bending modes that may allow monitoring of these ion pairs. PMID:26583198

  19. The effects of adding different whole-body vibration frequencies to preconditioning exercise on subsequent sprint performance.

    PubMed

    Rønnestad, Bent R; Ellefsen, Stian

    2011-12-01

    Rønnestad, BR and Ellefsen, S. The effects of adding different whole-body vibration frequencies to preconditioning exercise on subsequent sprint performance. J Strength Cond Res 25(12): 3306-3310, 2011-The phenomenon postactivation potentiation can possibly be used to acutely improve sprint performance. The purpose of this study was to investigate the effect of adding whole-body vibration (WBV) to body-loaded half-squats, performed as preconditioning activity to the 40-m sprint test. Nine male amateur soccer players performed 1 familiarization session and 6 separate test sessions. Each session included a standardized warm-up followed by 1 of the after preconditioning exercises: 30-seconds of half-squats with WBV at either 50 or 30 Hz or half-squats without WBV. The 40-m sprint was performed 1 minute after the preconditioning exercise. For each subject, each of the 3 protocols was repeated twice on separate days in a randomized order. Mean values were used in the statistical analysis. Performing the preconditioning exercise with WBV at a frequency of 50 Hz resulted in a superior 40-m sprint performance compared to preconditioning exercise without WBV (5.48 ± 0.19 vs. 5.52 ± 0.21 seconds, respectively, p < 0.05). There was no difference between preconditioning exercise with WBV at a frequency of 30 Hz and the no-WBV condition. In conclusion, preconditioning exercise performed with WBV at 50 Hz seems to enhance 40-m sprint performance in recreationally trained soccer players. The present findings suggest that coaches can incorporate such exercise into the warm-up to improve sprint performance or the quality of the sprint training. PMID:22076085

  20. Real time observation of low frequency heme protein vibrations using femtosecond coherence spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Li, P.; Huang, M.; Sage, J. T.; Champion, P. M.

    1994-01-01

    Femtosecond laser pulses, resonant with the Soret bands of myoglobin (Mb) and cytochrome c, are used to probe coherent low frequency nuclear motion of the heme group. The time domain analysis is in good agreement with frequencies obtained independently using spontaneous resonance Raman spectroscopy. The deoxyMb data reveal a strong oscillation near 300 fs (~ 100 cm-1) and a persistent feature also appears near 50 cm-1. This is near the frequency expected for heme doming motion, which has been associated with the ligand binding reaction coordinate of Mb.

  1. Communication: Vibrational sum-frequency spectrum of the air-water interface, revisited.

    PubMed

    Ni, Yicun; Skinner, J L

    2016-07-21

    Before 2015, heterodyne-detected sum-frequency-generation experiments on the air-water interface showed the presence of a positive feature at low frequency in the imaginary part of the susceptibility. However, three very recent experiments indicate that this positive feature is in fact absent. Armed with a better understanding, developed by others, of how to calculate sum-frequency spectra, we recalculate the spectrum and find good agreement with these new experiments. In addition, we provide a revised interpretation of the spectrum. PMID:27448864

  2. Communication: Vibrational sum-frequency spectrum of the air-water interface, revisited

    NASA Astrophysics Data System (ADS)

    Ni, Yicun; Skinner, J. L.

    2016-07-01

    Before 2015, heterodyne-detected sum-frequency-generation experiments on the air-water interface showed the presence of a positive feature at low frequency in the imaginary part of the susceptibility. However, three very recent experiments indicate that this positive feature is in fact absent. Armed with a better understanding, developed by others, of how to calculate sum-frequency spectra, we recalculate the spectrum and find good agreement with these new experiments. In addition, we provide a revised interpretation of the spectrum.

  3. Powerful low-frequency vibrators and outlooks of their application at monitoring of engineering constructions and at solving other problems of active seismology

    SciTech Connect

    Alekseev, A. S.; Chichinin, I. S.; Korneev, V. A.; Komissarov, V. V.; Seleznev, V. S.; Emanov, A. F.

    2004-06-11

    In the past two decades, active seismology studies in Russia have made use of powerful (40- and 100-ton) low-frequency vibrators. These sources create a force amplitude of up to 100 tons and function in the 1.5-3, 3-6 and 5-10 Hz frequency bands. The mobile versions of the vibrator have a force amplitude of 40 tons and a 6-12 Hz frequency band. Registration distances for the 100 ton vibrator are as large as 350 km, enabling the refracted waves to penetrate down to 50 km depths. Vibrator operation sessions are highly repeatable, having distinct ''summer'' or ''winter'' spectral patterns. A long profile of seismic records allows estimating of fault zone depths using changes in recorded spectra. Other applications include deep seismic profiling, seismic hazard mapping, structural testing, stress induced anisotropy studies, seismic station calibration, and large-structure integrity testing. In more detail, these questions are discussed in reports of our colleagues from Novosibirsk. This report is devoted mainly to powerful low-frequency vibrators, their theoretical description and design. Besides, problems of vibroseismic monitoring of engineering constructions are briefly elucidated.

  4. Characterization of the frequency and muscle responses of the lumbar and thoracic spines of seated volunteers during sinusoidal whole body vibration.

    PubMed

    Baig, Hassam A; Dorman, Daniel B; Bulka, Ben A; Shivers, Bethany L; Chancey, Valeta C; Winkelstein, Beth A

    2014-10-01

    Whole body vibration has been postulated to contribute to the onset of back pain. However, little is known about the relationship between vibration exposure, the biomechanical response, and the physiological responses of the seated human. The aim of this study was to measure the frequency and corresponding muscle responses of seated male volunteers during whole body vibration exposures along the vertical and anteroposterior directions to define the transmissibility and associated muscle activation responses for relevant whole body vibration exposures. Seated human male volunteers underwent separate whole body vibration exposures in the vertical (Z-direction) and anteroposterior (X-direction) directions using sinusoidal sweeps ranging from 2 to 18 Hz, with a constant amplitude of 0.4 g. For each vibration exposure, the accelerations and displacements of the seat and lumbar and thoracic spines were recorded. In addition, muscle activity in the lumbar and thoracic spines was recorded using electromyography (EMG) and surface electrodes in the lumbar and thoracic region. Transmissibility was determined, and peak transmissibility, displacement, and muscle activity were compared in each of the lumbar and thoracic regions. The peak transmissibility for vertical vibrations occurred at 4 Hz for both the lumbar (1.55 ± 0.34) and thoracic (1.49 ± 0.21) regions. For X-directed seat vibrations, the transmissibility ratio in both spinal regions was highest at 2 Hz but never exceeded a value of 1. The peak muscle response in both spinal regions occurred at frequencies corresponding to the peak transmissibility, regardless of the direction of imposed seat vibration: 4 Hz for the Z-direction and 2-3 Hz for the X-direction. In both vibration directions, spinal displacements occurred primarily in the direction of seat vibration, with little off-axis motion. The occurrence of peak muscle responses at frequencies of peak transmissibility suggests that such

  5. Analysis of methods for calculating the transition frequencies of the torsional vibration of acrolein isomers in the ground ( S 0) electronic state

    NASA Astrophysics Data System (ADS)

    Koroleva, L. A.; Tyulin, V. I.; Matveev, V. K.; Pentin, Yu. A.

    2013-05-01

    B3LYP, MP2, CCSD(T), and MP4/MP2 in the 6-311G( d, p), 6-311++G( d, p), cc-pVTZ, aug-cc-pVTZ bases used to calculate the transition frequencies of torsional vibration of trans- and cis-isomers of acrolein in the ground electronic state ( S 0) are analyzed. It is found that for trans-isomers, all methods of calculation except for B3LYP in the cc-pVTZ basis yield good agreement between the calculated and experimental values. It is noted that for the cis-isomer of acrolein, no method of calculation confirms the experimental value of the frequency of torsional vibration (138 cm-1). It is shown that the calculated and experimental values for obertones at 273.0 cm-1 and other transitions of torsional vibration are different for this isomer in particular. However, it is established that in some calculation methods (B3LYP, MP2), the frequency of the torsional vibration of the cis-isomer coincides with another experimental value of this frequency (166.5 cm-1). It is concluded that in analyzing the vibrational structure of the UV spectrum, the calculated and experimental values of its obertone (331.3 cm-1) coincide, along with its frequency. It is also noted that the frequency of torsional vibration for the cis-isomer (166.5 cm-1) can also be found in other experimental works if we change the allocation of torsional transition 18{1/1}.

  6. Sum Frequency Generation Vibrational Spectroscopy of Adsorbed Amino Acids, Peptides and Proteins of Hydrophilic and Hydrophobic Solid-Water Interfaces

    SciTech Connect

    Holinga IV, George Joseph

    2010-09-01

    Sum frequency generation (SFG) vibrational spectroscopy was used to investigate the interfacial properties of several amino acids, peptides, and proteins adsorbed at the hydrophilic polystyrene solid-liquid and the hydrophobic silica solid-liquid interfaces. The influence of experimental geometry on the sensitivity and resolution of the SFG vibrational spectroscopy technique was investigated both theoretically and experimentally. SFG was implemented to investigate the adsorption and organization of eight individual amino acids at model hydrophilic and hydrophobic surfaces under physiological conditions. Biointerface studies were conducted using a combination of SFG and quartz crystal microbalance (QCM) comparing the interfacial structure and concentration of two amino acids and their corresponding homopeptides at two model liquid-solid interfaces as a function of their concentration in aqueous solutions. The influence of temperature, concentration, equilibration time, and electrical bias on the extent of adsorption and interfacial structure of biomolecules were explored at the liquid-solid interface via QCM and SFG. QCM was utilized to quantify the biological activity of heparin functionalized surfaces. A novel optical parametric amplifier was developed and utilized in SFG experiments to investigate the secondary structure of an adsorbed model peptide at the solid-liquid interface.

  7. Structure and charging of hydrophobic material/water interfaces studied by phase-sensitive sum-frequency vibrational spectroscopy

    PubMed Central

    Tian, C. S.; Shen, Y. R.

    2009-01-01

    We have studied the hydrophobic water/octadecyltrichlorosilane (OTS) interface by using the phase-sensitive sum-frequency vibrational spectroscopy (PS-SFVS), and we obtained detailed structural information of the interface at the molecular level. Excess ions emerging at the interface were detected by changes of the surface vibrational spectrum induced by the surface field created by the excess ions. Both hydronium (H3O+) and hydroxide (OH−) ions were found to adsorb at the interface, and so did other negative ions such as Cl−. By varying the ion concentrations in the bulk water, their adsorption isotherms were measured. It was seen that among the three, OH− has the highest adsorption energy, and H3O+ has the lowest; OH− also has the highest saturation coverage, and Cl− has the lowest. The result shows that even the neat water/OTS interface is not neutral, but charged with OH− ions. The result also explains the surprising observation that the isoelectric point appeared at ∼3.0 when HCl was used to decrease the pH starting from neat water. PMID:19706483

  8. Atomistic simulations of ammonium-based protic ionic liquids: steric effects on structure, low frequency vibrational modes and electrical conductivity.

    PubMed

    Sunda, Anurag Prakash; Mondal, Anirban; Balasubramanian, Sundaram

    2015-02-14

    Protic ionic liquids (PILs) are of great interest as electrolytes in various energy applications. Molecular dynamics simulations of trialkylammonium (with varying alkyl group such as methyl, ethyl, and n-propyl) triflate PILs are performed to characterize the influence of the alkyl group on the acidic site (N-H) of the ammonium cation. Spatial distribution function of anions over this site on the cation reveals significant influence of the length of alkyl tail on intermolecular structure. Vibrational density of states and normal modes are calculated for bulk liquids to probe atomic displacements in the far infrared region. The observed N-H···O hydrogen bond stretching vibration in 155-165 cm(-1) frequency region agrees well with experiments. Trends in electrical conductivity calculated using Nernst-Einstein and Green-Kubo relation are in qualitative agreement with experiments. The self-diffusion coefficient and the electrical conductivity is highest for N,N-dimethyl-N-ethylammonium triflate ([N112][TfO]) and is lowest for N,N-di-n-propyl-N-methylammonium triflate ([N133][TfO]) IL. PMID:25585541

  9. Effect of magnet/slot combination on triple-frequency magnetic force and vibration of permanent magnet motors

    NASA Astrophysics Data System (ADS)

    Huo, Mina; Wang, Shiyu; Xiu, Jie; Cao, Shuqian

    2013-10-01

    The relationship between magnet/slot combination and magnetic forces including unbalanced magnetic force (UMF) and cogging torque (CT) of permanent magnet (PM) motors is investigated by using superposition principle and mechanical and magnetic symmetries. The results show that magnetic force can be produced by all magnets passing a single slot, by all slots passing a single magnet, or by eccentricity, which respectively correspond to three frequency components. The results further show that net force/torque can be classified into three typical cases: UMF is suppressed and CT is excited, UMF excited and CT suppressed, and UMF and CT both suppressed, and consequently possible vibrations include three unique groups: rotational modes, translational modes, and balanced modes. The conclusion that combinations with the greatest common divisor (GCD) greater than unity can avoid UMF is mathematically verified, and at the same time lower CT harmonics are preliminarily addressed by the typical excitations. The above findings can create simple guidelines for the suppression of certain UMF and/or CT by using suitable combinations, which in turn can present approach to yield a more desirable response in high performance applications. The superposition effect and predicted relationship are verified by the transient magnetic Finite Element method. Since this work is motivated by symmetries, comparisons are made in order to give further insight into the inner force and vibration behaviors of general rotary power-transmission systems.

  10. Time-frequency data fusion technique with application to vibration signal analysis

    NASA Astrophysics Data System (ADS)

    Peng, Z. K.; Zhang, W. M.; Lang, Z. Q.; Meng, G.; Chu, F. L.

    2012-05-01

    To overcome the inherent deficiencies of conventional time-frequency analysis (TFA) methods, i.e., different TFA methods or the same TFA method with different control parameters will present different results for the same target signal, a novel scheme named as the time-frequency data fusion (TFDF) is developed in this study by extending the idea of data fusion technique. By combining the results produced by two or more different TFA methods, the TFDF technique can present a more accurate time-frequency presentation for the target signal than what can be achieved by any individual TFA method. Therefore, the TFDF has potential to render a significantly improved time-frequency representation and greatly facilitates extracting time-frequency features of target signals. This will promote the applications of TFA in engineering practices and make TFA methods more acceptable to field engineers. The effectiveness of the TFDF technique is validated by three numerical case studies and the analysis of a rubbing-impact signal collected from a rotor test rig.

  11. An ab initio study of the in-plane harmonic force fields and fundamental vibration frequencies of cis- and trans-1,3-butadiene

    NASA Astrophysics Data System (ADS)

    Bock, Charles W.; Trachtman, Mendel; George, Philip

    1980-11-01

    The structure, in-plane force field, and fundamental vibration frequencies of trans- and cis-1,3-butadiene are calculated ab initio using the 4-31G basis set. Using a scaling procedure based on computational results from smaller molecules, the vibration frequencies for the trans-conformer calculated from the ab initio force constant matrix are found on average to be within 2.2% of the experimental values "harmonized" according to Dennison's rule. The values predicted for the cis-conformer, for which experimental spectroscopic data are only now becoming available, should facilitate the complete in-plane assignment of fundamentals in the near future.

  12. Elucidation of molecular structures at buried polymer interfaces and biological interfaces using sum frequency generation vibrational spectroscopy

    PubMed Central

    Zhang, Chi; Myers, John; Chen, Zhan

    2013-01-01

    Sum frequency generation (SFG) vibrational spectroscopy has been developed into an important technique to study surfaces and interfaces. It can probe buried interfaces in situ and provide molecular level structural information such as the presence of various chemical moieties, quantitative molecular functional group orientation, and time dependent kinetics or dynamics at such interfaces. This paper focuses on these three most important advantages of SFG and reviews some of the recent progress in SFG studies on interfaces related to polymer materials and biomolecules. The results discussed here demonstrate that SFG can provide important molecular structural information of buried interfaces in situ and in real time, which is difficult to obtain by other surface sensitive analytical techniques. PMID:23710244

  13. In Situ Molecular Level Studies on Membrane Related Peptides and Proteins in Real Time Using Sum Frequency Generation Vibrational Spectroscopy

    PubMed Central

    Ye, Shuji; Nguyen, Khoi Tan; Le Clair, Stéphanie V.; Chen, Zhan

    2009-01-01

    Sum frequency generation (SFG) vibrational spectroscopy has been demonstrated to be a powerful technique to study the molecular structures of surfaces and interfaces in different chemical environments. This review summarizes recent SFG studies on hybrid bilayer membranes and substrate-supported lipid monolayers and bilayers, the interaction between peptides/proteins and lipid monolayers/bilayers, and bilayer perturbation induced by peptides/proteins. To demonstrate the ability of SFG to determine the orientations of various secondary structures, studies on the interaction between different peptides/proteins (melittin, G proteins, almethicin, and tachyplesin I) and lipid bilayers are discussed. Molecular level details revealed by SFG in these studies show that SFG can provide a unique understanding on the interactions between a lipid monolayer/bilayer and peptides/proteins in real time, in situ and without any exogenous labeling. PMID:19306928

  14. Probing surface and interfacial molecular structures of a rubbery adhesion promoter using sum frequency generation vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Fang, Yong; Li, Bolin; Yu, Jincheng; Zhou, Jie; Xu, Xin; Shao, Wei; Lu, Xiaolin

    2013-09-01

    The molecular structures of an adhesion promoter, polybutadiene-modified epoxy (PBME) rubber at surfaces and buried interfaces with gold (Au) were studied using sum frequency generation (SFG) vibrational spectroscopy. The SFG spectra showed that the soft butadiene part of PBME can segregate to the surfaces and buried interfaces in two base formulations. This is consistent with its application as an adhesion promoter. For the first time, the orientation of the segregated vinyl methylene groups of PBME at the surface and buried interface was evaluated. We found that the vinyl methylene groups at the surface were highly tilted and twisted by quantitative analysis; while the vinyl methylene groups at the buried Au interface were highly tilted by qualitative estimation. Furthermore, this study confirms that the sandwiched-face-down experimental setup can be employed to study the buried interfaces. This could be developed into a standard way to probe the buried interfaces between the commercialized resins and metal substrates.

  15. Salt Effects on Surface Structures of Polyelectrolyte Multilayers (PEMs) Investigated by Vibrational Sum Frequency Generation (SFG) Spectroscopy.

    PubMed

    Ge, Aimin; Matsusaki, Michiya; Qiao, Lin; Akashi, Mitsuru; Ye, Shen

    2016-04-26

    Sum frequency generation (SFG) vibrational spectroscopy was employed to investigate the surface structures of polyelectrolyte multilayers (PEMs) constructed by sequentially alternating adsorption of poly(diallyldimethylammonium chloride) (PDDA) and poly(styrenesulfonate) (PSS). It was found that the surface structures and surface charge density of the as-deposited PEMs of PDDA/PSS significantly depend on the concentration of sodium chloride (NaCl) present in the polyelectrolyte solutions. Furthermore, it was found that the surface structure of the as-deposited PEMs is in a metastable state and will reach the equilibrium state by diffusion of the polyelectrolyte chain after an aging process, resulting in a polyelectrolyte mixture on the PEM surfaces. PMID:27045932

  16. Excess of low frequency vibrational modes and glass transition: A molecular dynamics study for soft spheres at constant pressure

    NASA Astrophysics Data System (ADS)

    Flores-Ruiz, Hugo M.; Naumis, Gerardo G.

    2009-10-01

    Using molecular dynamics at constant pressure, the relationship between the excess of low frequency vibrational modes (known as the boson peak) and the glass transition is investigated for a truncated Lennard-Jones potential. It is observed that the quadratic mean displacement is enhanced by such modes, as predicted using a harmonic Hamiltonian for metastable states. As a result, glasses loose mechanical stability at lower temperatures than the corresponding crystal, since the Lindemann criteria are observed, as is also deduced from density functional theory. Finally, we found that the average force and elastic constant are reduced in the glass due to such excess of modes. The ratio between average elastic constants can be approximated using the 2/3 rule between melting and glass transition temperatures.

  17. Reproducing Deep Tunneling Splittings, Resonances, and Quantum Frequencies in Vibrational Spectra From a Handful of Direct Ab Initio Semiclassical Trajectories.

    PubMed

    Conte, Riccardo; Aspuru-Guzik, Alán; Ceotto, Michele

    2013-10-17

    A time-dependent semiclassical approach for vibrational spectra calculations is shown to describe deep tunneling splittings, resonances, and quantum frequencies in multidimensional multiwell systems, by propagating a very limited number of classical trajectories. The approach is tested on ammonia by evolving eight trajectories on a full-dimensional PES. Quantum effects are reproduced, and results are in good agreement with time-independent quantum calculations. All the features are maintained when ab initio "on-the-fly" dynamics is adopted, thus demonstrating that precomputation of the PES can be avoided. The approach overcomes the typical scaling issues of quantum mechanical techniques without introducing any simplifications nor reductions of dimensionality of the problem. The proposed methodology is promising for further applications to systems of major complexity. PMID:26705583

  18. Good Vibrations: Cross-Frequency Coupling in the Human Nucleus Accumbens during Reward Processing

    ERIC Educational Resources Information Center

    Cohen, Michael X.; Axmacher, Nikolai; Lenartz, Doris; Elger, Christian E.; Sturm, Volker; Schlaepfer, Thomas E.

    2009-01-01

    The nucleus accumbens is critical for reward-guided learning and decision-making. It is thought to "gate" the flow of a diverse range of information (e.g., rewarding, aversive, and novel events) from limbic afferents to basal ganglia outputs. Gating and information encoding may be achieved via cross-frequency coupling, in which bursts of…

  19. Low-frequency, low-magnitude vibrations (LFLM) enhances chondrogenic differentiation potential of human adipose derived mesenchymal stromal stem cells (hASCs).

    PubMed

    Marycz, Krzysztof; Lewandowski, Daniel; Tomaszewski, Krzysztof A; Henry, Brandon M; Golec, Edward B; Marędziak, Monika

    2016-01-01

    The aim of this study was to evaluate if low-frequency, low-magnitude vibrations (LFLM) could enhance chondrogenic differentiation potential of human adipose derived mesenchymal stem cells (hASCs) with simultaneous inhibition of their adipogenic properties for biomedical purposes. We developed a prototype device that induces low-magnitude (0.3 g) low-frequency vibrations with the following frequencies: 25, 35 and 45 Hz. Afterwards, we used human adipose derived mesenchymal stem cell (hASCS), to investigate their cellular response to the mechanical signals. We have also evaluated hASCs morphological and proliferative activity changes in response to each frequency. Induction of chondrogenesis in hASCs, under the influence of a 35 Hz signal leads to most effective and stable cartilaginous tissue formation through highest secretion of Bone Morphogenetic Protein 2 (BMP-2), and Collagen type II, with low concentration of Collagen type I. These results correlated well with appropriate gene expression level. Simultaneously, we observed significant up-regulation of α3, α4, β1 and β3 integrins in chondroblast progenitor cells treated with 35 Hz vibrations, as well as Sox-9. Interestingly, we noticed that application of 35 Hz frequencies significantly inhibited adipogenesis of hASCs. The obtained results suggest that application of LFLM vibrations together with stem cell therapy might be a promising tool in cartilage regeneration. PMID:26966645

  20. Spatial hearing in Cope’s gray treefrog: II. Frequency-dependent directionality in the amplitude and phase of tympanum vibrations

    PubMed Central

    Lee, Norman; Schrode, Katrina M.; Johns, Anastasia R.; Christensen-Dalsgaard, Jakob; Bee, Mark A.

    2014-01-01

    Anuran ears function as pressure difference receivers, and the amplitude and phase of tympanum vibrations are inherently directional, varying with sound incident angle. We quantified the nature of this directionality for Cope’s gray treefrog, Hyla chrysoscelis. We presented subjects with pure tones, advertisement calls, and frequency-modulated sweeps to examine the influence of frequency, signal level, lung inflation, and sex on ear directionality. Interaural differences in the amplitude of tympanum vibrations were 1–4 dB greater than sound pressure differences adjacent to the two tympana, while interaural differences in the phase of tympanum vibration were similar to or smaller than those in sound phase. Directionality in the amplitude and phase of tympanum vibration were highly dependent on sound frequency, and directionality in amplitude varied slightly with signal level. Directionality in the amplitude and phase of tone- and call-evoked responses did not differ between sexes. Lung inflation strongly affected tympanum directionality over a narrow frequency range that, in females, included call frequencies. This study provides a foundation for further work on the biomechanics and neural mechanisms of spatial hearing in H. chrysoscelis, and lends valuable perspective to behavioral studies on the use of spatial information by this species and other frogs. PMID:24504183

  1. Low-frequency, low-magnitude vibrations (LFLM) enhances chondrogenic differentiation potential of human adipose derived mesenchymal stromal stem cells (hASCs)

    PubMed Central

    Lewandowski, Daniel; Tomaszewski, Krzysztof A.; Henry, Brandon M.; Golec, Edward B.; Marędziak, Monika

    2016-01-01

    The aim of this study was to evaluate if low-frequency, low-magnitude vibrations (LFLM) could enhance chondrogenic differentiation potential of human adipose derived mesenchymal stem cells (hASCs) with simultaneous inhibition of their adipogenic properties for biomedical purposes. We developed a prototype device that induces low-magnitude (0.3 g) low-frequency vibrations with the following frequencies: 25, 35 and 45 Hz. Afterwards, we used human adipose derived mesenchymal stem cell (hASCS), to investigate their cellular response to the mechanical signals. We have also evaluated hASCs morphological and proliferative activity changes in response to each frequency. Induction of chondrogenesis in hASCs, under the influence of a 35 Hz signal leads to most effective and stable cartilaginous tissue formation through highest secretion of Bone Morphogenetic Protein 2 (BMP-2), and Collagen type II, with low concentration of Collagen type I. These results correlated well with appropriate gene expression level. Simultaneously, we observed significant up-regulation of α3, α4, β1 and β3 integrins in chondroblast progenitor cells treated with 35 Hz vibrations, as well as Sox-9. Interestingly, we noticed that application of 35 Hz frequencies significantly inhibited adipogenesis of hASCs. The obtained results suggest that application of LFLM vibrations together with stem cell therapy might be a promising tool in cartilage regeneration. PMID:26966645

  2. Analysis of the dominant vibration frequencies of rail bridges for structure-borne noise using a power flow method

    NASA Astrophysics Data System (ADS)

    Li, Q.; Wu, D. J.

    2013-09-01

    The use of concrete bridges in urban rail transit systems has raised many concerns regarding low-frequency (20-200 Hz) structure-borne noise due to the vibration of bridges when subjected to moving trains. Understanding the mechanism that determines the dominant frequencies of bridge vibrations is essential for both vibration and noise reduction. This paper presents a general procedure based on the force method to obtain the power flows within a coupled vehicle-track-bridge system, the point mobility of the system and the dynamic interaction forces connecting various components. The general coupling system consists of multi-rigid-bodies for the vehicles, infinite Euler beams representing the rails, two-dimensional or three-dimensional elements of the concrete bridges, and spring-dashpot pairs to model the wheel-rail contacts, the vehicle suspensions, the rail pads and the bridge bearings. The dynamic interaction of the coupled system is solved in the frequency domain by assuming the combined wheel-rail roughness moves forward relative to the stationary vehicles. The proposed procedure is first applied to a rail on discrete supports and then to a real urban rail transit U-shaped concrete bridge. The computed results show that the wheel-rail contact forces, the power flows to the rail/bridge subsystem and the accelerations of the bridge are primarily dominated by the contents around the natural frequency of a single wheel adhered to the elastically supported rail. If the ath node of the mth spring-dashpot pair and the bth node of the nth spring-dashpot pair are connected to the same rigid body, then δmnab(ω) can be expressed as δmnab(ω)=-{(}/{Mlω}, where Ml is the mass of the lth rigid body. If the ath node of the mth spring-dashpot pair and the bth node of the nth spring-dashpot pair are connected to the same infinite rail, δmnab(ω) can be expressed as [8] δmnab(ω)=-j{((e-je)}/{4EIk}, where xm and xn are the x-coordinates of the mth and nth spring

  3. Intramolecular interactions, isomerization and vibrational frequencies of two paracetamol analogues: A spectroscopic and a computational approach

    NASA Astrophysics Data System (ADS)

    Viana, Rommel B.; Ribeiro, Gabriela L. O.; Santos, Sinara F. F.; Quintero, David E.; Viana, Anderson B.; da Silva, Albérico B. F.; Moreno-Fuquen, Rodolfo

    2016-06-01

    The aim of this investigation was to determine the molecular properties and provide an interpretation of the vibrational mode couplings of these two paracetamol analogues: 2-bromo-2-methyl-N-(4-nitrophenyl)-propanamide and 2-bromo-2-methyl-N-p-tolyl-propanamide. E/Z isomers, keto/enol unimolecular rearrangement and prediction of the transition state structures in each mechanism were also assessed using the Density Functional Theory (DFT). The DFT estimates a high energy gap between E and Z isomers (9-11 kcal·mol- 1), with barrier heights ranging from 16 to 19 kcal·mol- 1. In contrast, the barrier energies on the keto/enol isomerization are almost 10 kcal·mol- 1 higher than those estimated for the E/Z rearrangement. The kinetic rate constant was also determined for each reaction mechanism. Natural bond orbital analysis and the quantum theory of atoms in molecules were used to interpret the intramolecular hydrogen bonds and to understand the most important interactions that govern the stabilization of each isomer. Furthermore, an analysis of the atomic charge distribution using different population methodologies was also performed.

  4. Intramolecular interactions, isomerization and vibrational frequencies of two paracetamol analogues: A spectroscopic and a computational approach.

    PubMed

    Viana, Rommel B; Ribeiro, Gabriela L O; Santos, Sinara F F; Quintero, David E; Viana, Anderson B; da Silva, Albérico B F; Moreno-Fuquen, Rodolfo

    2016-06-01

    The aim of this investigation was to determine the molecular properties and provide an interpretation of the vibrational mode couplings of these two paracetamol analogues: 2-bromo-2-methyl-N-(4-nitrophenyl)-propanamide and 2-bromo-2-methyl-N-p-tolyl-propanamide. E/Z isomers, keto/enol unimolecular rearrangement and prediction of the transition state structures in each mechanism were also assessed using the Density Functional Theory (DFT). The DFT estimates a high energy gap between E and Z isomers (9-11 kcal·mol(-1)), with barrier heights ranging from 16 to 19 kcal·mol(-1). In contrast, the barrier energies on the keto/enol isomerization are almost 10 kcal·mol(-1) higher than those estimated for the E/Z rearrangement. The kinetic rate constant was also determined for each reaction mechanism. Natural bond orbital analysis and the quantum theory of atoms in molecules were used to interpret the intramolecular hydrogen bonds and to understand the most important interactions that govern the stabilization of each isomer. Furthermore, an analysis of the atomic charge distribution using different population methodologies was also performed. PMID:26974474

  5. Time-frequency methods for structural health monitoring of deepwater risers subjected to vortex induced vibrations

    NASA Astrophysics Data System (ADS)

    Huang, Chaojun; Sun, Peng; Nagarajaiah, Satish; Gopalakrishnan, S.

    2013-04-01

    In this paper, an approach based on a new damage index-Distributed Force Change(WDFC), for monitoring the structural health of risers used for production in deep-water floating platforms, is presented. Experiments of a scaled pipe are carried out to validate the vibration based damage identification method. The influences of multiple cracks in the WDFC damage index are studied. Futhermore, this paper demonstrates the effectiveness of wave propagation based structural health monitoring (SHM) strategies within the pipe model. This is realized based on the results of numerical investigation obtained by the use of Finite Element Method(FEM) together with application of Time-of-Flight(FoT) damage identification method in which the damage severity is indicated by Root Mean Square(RMS) of the damage-reflected wave. The influence of crack(s) in the riser/pipe on the wave propagation are studied. The results from the experiments and numerical analysis indicate that both the two damage identification methods can provide information about the estimated crack location(s) and the possible extent of crack. Hence the two methods are suitable for globally and locally monitoring the structural health of deepwater risers respectively.

  6. Ab initio calculations of vibrational frequencies and infrared intensities for global warning potential of CFC substitutes. CF{sub 3}CH{sub 2}F (HFC-134a)

    SciTech Connect

    Papasavva, S.; Tai, S.; Esslinger, A.; Illinger, K.H.; Kenny, J.E.

    1995-03-16

    We have investigated the feasibility of using ab initio molecular orbital methods for predicting the global warming potential of the proposed chlorofluorocarbon (CFC) substitute CF{sub 3}CH{sub 2}F, HFC-134a. Various levels of theory and basis sets were used to optimize geometry and calculate harmonic vibrational frequencies and infrared intensities for the molecule using the GAUSSIAN 92 software package. In attempting to assess the quality of the computations, we found it necessary to reconsider the vibrational assignments available in the literature. On the basis of the current assignment, we find that for the highest level calculation, MP2/6-31G{sup **}, the calculated harmonic frequencies agree extremely well with the experimentally observed ones at frequencies below 800 cm{sup {minus}1}, with a systematic error toward higher calculated frequencies becoming apparent above 800 cm{sup {minus}1}. At lower levels of theory, the systematic error is apparent at all frequencies. The regularity of the deviation between calculated and observed frequencies makes ab initio calculations of vibrational frequencies much more useful than semiempirical calculations, which tend to show random deviations, as demonstrated with a PM3-UHF calculation in this work. The calculated absolute intensities are in good agreement with the limited experimental measurements previously reported. 23 refs., 3 figs., 5 tabs.

  7. Matrix effect on vibrational frequencies: Experiments and simulations for HCl and HNgCl (Ng = Kr and Xe)

    NASA Astrophysics Data System (ADS)

    Kalinowski, Jaroslaw; Gerber, R. Benny; Räsänen, Markku; Lignell, Antti; Khriachtchev, Leonid

    2014-03-01

    We study the environmental effect on molecules embedded in noble-gas (Ng) matrices. The experimental data on HXeCl and HKrCl in Ng matrices is enriched. As a result, the H-Xe stretching bands of HXeCl are now known in four Ng matrices (Ne, Ar, Kr, and Xe), and HKrCl is now known in Ar and Kr matrices. The order of the H-Xe stretching frequencies of HXeCl in different matrices is ν(Ne) < ν(Xe) < ν(Kr) < ν(Ar), which is a non-monotonous function of the dielectric constant, in contrast to the "classical" order observed for HCl: ν(Xe) < ν(Kr) < ν(Ar) < ν(Ne). The order of the H-Kr stretching frequencies of HKrCl is consistently ν(Kr) < ν(Ar). These matrix effects are analyzed theoretically by using a number of quantum chemical methods. The calculations on these molecules (HCl, HXeCl, and HKrCl) embedded in single Ng' layer cages lead to very satisfactory results with respect to the relative matrix shifts in the case of the MP4(SDQ) method whereas the B3LYP-D and MP2 methods fail to fully reproduce these experimental results. The obtained order of frequencies is discussed in terms of the size available for the Ng hydrides in the cages, probably leading to different stresses on the embedded molecule. Taking into account vibrational anharmonicity produces a good agreement of the MP4(SDQ) frequencies of HCl and HXeCl with the experimental values in different matrices. This work also highlights a number of open questions in the field.

  8. Matrix effect on vibrational frequencies: experiments and simulations for HCl and HNgCl (Ng = Kr and Xe).

    PubMed

    Kalinowski, Jaroslaw; Gerber, R Benny; Räsänen, Markku; Lignell, Antti; Khriachtchev, Leonid

    2014-03-01

    We study the environmental effect on molecules embedded in noble-gas (Ng) matrices. The experimental data on HXeCl and HKrCl in Ng matrices is enriched. As a result, the H-Xe stretching bands of HXeCl are now known in four Ng matrices (Ne, Ar, Kr, and Xe), and HKrCl is now known in Ar and Kr matrices. The order of the H-Xe stretching frequencies of HXeCl in different matrices is ν(Ne) < ν(Xe) < ν(Kr) < ν(Ar), which is a non-monotonous function of the dielectric constant, in contrast to the "classical" order observed for HCl: ν(Xe) < ν(Kr) < ν(Ar) < ν(Ne). The order of the H-Kr stretching frequencies of HKrCl is consistently ν(Kr) < ν(Ar). These matrix effects are analyzed theoretically by using a number of quantum chemical methods. The calculations on these molecules (HCl, HXeCl, and HKrCl) embedded in single Ng(') layer cages lead to very satisfactory results with respect to the relative matrix shifts in the case of the MP4(SDQ) method whereas the B3LYP-D and MP2 methods fail to fully reproduce these experimental results. The obtained order of frequencies is discussed in terms of the size available for the Ng hydrides in the cages, probably leading to different stresses on the embedded molecule. Taking into account vibrational anharmonicity produces a good agreement of the MP4(SDQ) frequencies of HCl and HXeCl with the experimental values in different matrices. This work also highlights a number of open questions in the field. PMID:24606357

  9. Matrix effect on vibrational frequencies: Experiments and simulations for HCl and HNgCl (Ng = Kr and Xe)

    SciTech Connect

    Kalinowski, Jaroslaw; Räsänen, Markku; Lignell, Antti; Khriachtchev, Leonid; Gerber, R. Benny

    2014-03-07

    We study the environmental effect on molecules embedded in noble-gas (Ng) matrices. The experimental data on HXeCl and HKrCl in Ng matrices is enriched. As a result, the H−Xe stretching bands of HXeCl are now known in four Ng matrices (Ne, Ar, Kr, and Xe), and HKrCl is now known in Ar and Kr matrices. The order of the H−Xe stretching frequencies of HXeCl in different matrices is ν(Ne) < ν(Xe) < ν(Kr) < ν(Ar), which is a non-monotonous function of the dielectric constant, in contrast to the “classical” order observed for HCl: ν(Xe) < ν(Kr) < ν(Ar) < ν(Ne). The order of the H−Kr stretching frequencies of HKrCl is consistently ν(Kr) < ν(Ar). These matrix effects are analyzed theoretically by using a number of quantum chemical methods. The calculations on these molecules (HCl, HXeCl, and HKrCl) embedded in single Ng{sup ′} layer cages lead to very satisfactory results with respect to the relative matrix shifts in the case of the MP4(SDQ) method whereas the B3LYP-D and MP2 methods fail to fully reproduce these experimental results. The obtained order of frequencies is discussed in terms of the size available for the Ng hydrides in the cages, probably leading to different stresses on the embedded molecule. Taking into account vibrational anharmonicity produces a good agreement of the MP4(SDQ) frequencies of HCl and HXeCl with the experimental values in different matrices. This work also highlights a number of open questions in the field.

  10. Feasibility of controlling speed-dependent low-frequency brake vibration amplification by modulating actuation pressure

    NASA Astrophysics Data System (ADS)

    Sen, Osman Taha; Dreyer, Jason T.; Singh, Rajendra

    2014-12-01

    In this article, a feasibility study of controlling the low frequency torque response of a disc brake system with modulated actuation pressure (in the open loop mode) is conducted. First, a quasi-linear model of the torsional system is introduced, and analytical solutions are proposed to incorporate the modulation effect. Tractable expressions for three different modulation schemes are obtained, and conditions that would lead to a reduction in the oscillatory amplitudes are identified. Second, these conditions are evaluated with a numerical model of the torsional system with clearance nonlinearity, and analytical solutions are verified in terms of the trends observed. Finally, a laboratory experiment with a solenoid valve is built to modulate actuation pressure with a constant duty cycle, and time-frequency domain data are acquired. Measurements are utilized to assess analytical observations, and all methods show that the speed-dependent brake torque amplitudes can be altered with an appropriate modulation of actuation pressure.

  11. Simultaneous measurement of magnitude and phase in interferometric sum-frequency vibrational spectroscopy.

    PubMed

    Covert, Paul A; FitzGerald, William R; Hore, Dennis K

    2012-07-01

    We present a visible-infrared sum-frequency spectroscopic technique that is capable of simultaneously determining the magnitude and phase of the sample response from a single set of experimental conditions. This is especially valuable in cases where the phase stability is high, as in collinear beam geometries, as it enables multiple experiments to be performed without re-measuring the local oscillator phase or the reference phase. After illustrating the phase stability achievable with such a geometry, we provide a technique for quantitatively determining the magnitude and phase from a single set of two-dimensional spectral-temporal interference fringes. A complete demonstration is provided for the C-H stretching frequency region at the surface of an octadecyltricholosilane film. PMID:22779640

  12. Vibrational sum frequency generation (SFG) spectroscopic study of crystalline cellulose in biomass

    NASA Astrophysics Data System (ADS)

    Kim, Seong H.; Lee, Christopher M.; Kafle, Kabindra; Park, Yong Bum; Xi, Xiaoning

    2013-09-01

    The noncentrosymmetry requirement of sum frequency generation (SFG) spectroscopy allows selective detection of crystalline cellulose in plant cell walls and lignocellulose biomass without spectral interferences from hemicelluloses and lignin. In addition, the phase synchronization requirement of the SFG process allows noninvasive investigation of spatial arrangement of crystalline cellulose microfibrils in the sample. This paper reviews how these principles are applied to reveal structural information of crystalline cellulose in plant cell walls and biomass.

  13. Double diffusion convection under sinusoidal modulations of low-frequency vibrations

    NASA Astrophysics Data System (ADS)

    Yan, Yu; Viviani, Antonio; Saghir, M. Ziad

    2008-09-01

    Double diffusion convection features the coupling of diffusion fluxes driven by the temperature and concentration gradients and the simultaneous existence of the natural convection driven by the buoyancy force. This paper studies the double diffusion convection under different modulations of low-frequency g-jitters in order to evaluate the g-jitter effect on diffusion-dominated experiments in space laboratories. The numerical simulation for a binary mixture of water-isopropanol (90:10 wt%) has shown a dependence of the Soret separation on g-jitter frequency and amplitude. Under the same amplitude, the fluctuation of local properties, i.e., velocity, temperature and concentration, is found to intensify as the g-jitter frequency decreases. When both static residual gravity and oscillatory g-jitter exist, the diffusion process is affected by the nonlinear interaction between individual g-jitters. As the amplitude decreases to 1μg, this nonlinearity becomes less significant than it appears in the high-amplitude scenario.

  14. Vibration-based machine condition monitoring with attention to the use of time-frequency methods

    NASA Astrophysics Data System (ADS)

    Rehorn, Adam G. J.; Orban, Peter E.; Jiang, Jin

    2004-03-01

    To enable lightly staffed or fully autonomous machining operations, it is essential that both the condition of the cutter and the health of the machine tool system be known. In this paper, the health of the spindle positioning drive (Z axis) on a Proteo D/94 precision machining center is investigated using time, frequency and time-frequency techniques. Investigated is a cogging phenomenon produced as a result of the DC servomotor brushes sticking due to poor design. This incipient fault reduces the accuracy and controllability of the machine tool, and always leads to total drive failure. Thus, it is important to determine the fault signature of the drive so that corrective action may be taken before failure can occur, permanently damaging both the motor and the workpiece. The vibratory signatures of both a healthy and a faulty spindle during translation are analyzed. It is shown that a spindle under fault conditions behaves differently from a healthy one, and that time and time-frequency domain methods provide useful information on the status of the system. This paper lays the groundwork for the development of a future machine condition monitoring system, which can be easily retrofitted to any machine tool system.

  15. Low Frequency Vibration Characteristics of the Space Acceleration Measurement System 2 Tape Drive Assembly

    NASA Technical Reports Server (NTRS)

    Javeed, Mehzad; Russell, James W.

    1996-01-01

    This report summarizes results of force and moment measurements of the Space Acceleration Measurement System 2 (SAMS 2) Tape Drive Assembly (TDA) over the frequency range from 0.35 Hz to 256 Hz for steady state operations including write, read, rewind, and fast forward. Time domain force results are presented for transient TDA operations that include software eject, manual eject, and manual load. Three different mounting configurations were employed for attaching the inner box with the tape drive unit to the outer box. Two configurations employed grommet sets with spring rates of 42 and 62 pounds per inch respectively. The third configuration employed a set of metallic washers. For all four steady state operations the largest average forces were on the Y axis with the metallic washers and were less than 0.005 pounds. The largest average moments were on the X axes with the washers and were less than 0.030 pound inches. At the third octave centerband frequency of 31.5 Hz, the 42 pound per inch grommets showed the greatest forces and moments for read and write operations. At the third octave centerband frequency of 49.6 Hz, the 62 pound per inch grommets showed the greatest forces and moments for rewind operation. Transient operation forces ranged from 0.75 pounds for the software eject to greater than 1 pound for manual load and eject.

  16. [Study on vibrational spectra of ethyl hexanoate molecule].

    PubMed

    Cai, Zhi-peng; Du, Ya-bing; Zhang, Ling; Li, Peng-wei; Jia, Ting-jian; Mo, Yu-jun

    2008-09-01

    The vibrational spectra of ethyl hexanoate were calculated by the density functional theory (DFT) with B3LYP complex function, diffuse function and polarization function added to heavy atoms and light atoms. On the base of this, the normal Raman spectrum (NRS) and the infrared spectrum (IR) were assigned in detail in the present paper. Comparing the calculated results with the experimental data, the calculated results are in good agreement with the experimental results. The comparison of the experimental Raman and infrared spectra shows that in the experimental Raman spectrum, the strongest bands appear at the frequencies of 2600-3100 cm(-1), while the strongest band is not 1734 cm(-1) but 1444 cm(-1) at the frequencies of 400-2000 cm(-1). The band 1734 cm(-1) attributed to the C=O stretch vibration is the distinctive mark of organic ester compounds, and the band 1444 cm(-1) is related to the symmetric and anti-symmetric scissors vibration of C-H. In the experimental infrared spectrum, the strongest vibrational band is 1739 cm(-1), which is related to C=O stretch vibration; At the frequencies of 400-2000 cm(-1), the relative intensity of the infrared spectrum is distinctively stronger than that of the Raman spectrum, but the relative intensity of infrared spectrum is weaker than that of the Raman spectrum at the frequencies of 2600-3100 cm(-1). In the frequencies of 2600-2800 cm(-1), the vibrational bands 2762 and 2732 cm(-1) do not appear in the experimental spectra, which may originate from two reasons: (1) the weak interaction of molecules. Also, the relative intensity of these vibrational bands is very weak in the experimental spectra, and this may testify that the interaction of molecules is rather weak; (2) the vibrational bands may belong to second order vibrational mode at the frequencies of 2600-2800 cm(-1). The relative intensity of infrared bands is weaker than that of the Raman bands at the frequencies of 2600-2800 cm(-1). At the end, the stronger bands

  17. Crack modelling and detection in Timoshenko FGM beam under transverse vibration using frequency contour and response surface model with GA

    NASA Astrophysics Data System (ADS)

    Banerjee, Amit; Panigrahi, Brajesh; Pohit, G.

    2016-04-01

    In the present work, dynamic response of cracked Timoshenko beam with functionally graded material properties are obtained by a numerical technique using Ritz approximation. In order to verify the applicability and performance of the formulation, comparisons of the present numerical method with three-dimensional FEM models are made. Crack is assumed to be transverse and open throughout the vibration cycle. Two different crack detection techniques have been proposed. Results obtained by the numerical technique are used in both of the crack detection techniques. In the first technique, the frequency contours with respect to crack location and size are plotted and the intersection of contours of different modes helps in the prediction of crack location and size. In the second technique, crack is modelled using response surface methodology (RSM). The sum of the squared errors between the numerical and RSM regression model natural frequencies is used as the objective function. This objective function is minimised using genetic algorithm optimisation technique. Both the crack detection techniques and the numerical analysis have shown good agreement with each other.

  18. Atomization off thin water films generated by high-frequency substrate wave vibrations

    NASA Astrophysics Data System (ADS)

    Collins, David J.; Manor, Ofer; Winkler, Andreas; Schmidt, Hagen; Friend, James R.; Yeo, Leslie Y.

    2012-11-01

    Generating aerosol droplets via the atomization of thin aqueous films with high frequency surface acoustic waves (SAWs) offers several advantages over existing nebulization methods, particularly for pulmonary drug delivery, offering droplet sizes in the 1-5-μm range ideal for effective pulmonary therapy. Nevertheless, the physics underlying SAW atomization is not well understood, especially in the context of thin liquid film formation and spreading and how this affects the aerosol production. Here, we demonstrate that the film geometry, governed primarily by the applied power and frequency of the SAW, indeed plays a crucial role in the atomization process and, in particular, the size of the atomized droplets. In contrast to the continuous spreading of low surface energy liquids atop similar platforms, high surface energy liquids such as water, in the present case, are found to undergo transient spreading due to the SAW to form a quasisteady film whose height is determined by self-selection of the energy minimum state associated with the acoustic resonance in the film and whose length arises from a competition between acoustic streaming and capillary effects. This is elucidated from a fundamental model for the thin film spreading behavior under SAW excitation, from which we show good agreement between the experimentally measured and theoretically predicted droplet dimension, both of which consistently indicate a linear relationship between the droplet diameter and the mechanical power coupled into the liquid by the SAW (the latter captured by an acoustic Weber number to the two thirds power, and the reciprocal of the SAW frequency).

  19. Vibrational frequency analysis, FT-IR, DFT and M06-2X studies on tert-Butyl N-(thiophen-2yl)carbamate

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; Singer, L. M.; Findlater, M.; Doğan, Hatice; Çırak, Ç.

    2014-07-01

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized tert-Butyl N-(thiophen-2yl)carbamate have been investigated. The experimental FT-IR (4000-400 cm-1) spectrum of the molecule in the solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and DFT/M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with the 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The vibrational frequencies have been assigned using potential energy distribution (PED) analysis by using VEDA 4 software. The computational optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with related literature results. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and are depicted.

  20. A Narrow Amide I Vibrational Band Observed by Sum Frequency Generation Spectroscopy Reveals Highly Ordered Structures of a Biofilm Protein at the Air/Water Interface†

    PubMed Central

    Wang, Zhuguang; Morales-Acosta, M. Daniela; Li, Shanghao; Liu, Wei; Kanai, Tapan; Liu, Yuting; Chen, Ya-Na; Walker, Frederick J.; Ahn, Charles H.; Leblanc, Roger M.

    2016-01-01

    We characterized BslA, a bacterial biofilm protein, at the air/water interface using vibrational sum frequency generation spectroscopy and observed one of the sharpest amide I band ever reported. Combining methods of surface pressure measurements, thin film X-ray reflectivity, and atomic force microscopy, we showed extremely ordered BslA at the interface. PMID:26779572

  1. Vibrational Recognition of Adsorption Sites for CO on Platinum and Platinum-Ruthenium Surfaces.

    SciTech Connect

    Dabo, Ismaila; Wieckowski, Andrzei; Marzari, Nicola N.

    2007-09-01

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. We have studied the vibrational properties of CO adsorbed on platinum and platinum-ruthenium surfaces using density-functional perturbation theory within the Perdew-Burke-Ernzerhof generalizedgradient approximation. The calculated C-O stretching frequencies are found to be in excellent agreement with spectroscopic measurements. The frequency shifts that take place when the surface is covered with ruthenium monolayers are also correctly predicted. This agreement for both shifts and absolute vibrational frequencies is made more remarkable by the frequent failure of local and semilocal exchange-correlation functionals in predicting the stability of the different adsorption sites for CO on transition metal surfaces. We have investigated the chemical origin of the C-O frequency shifts introducing an orbital-resolved analysis of the force and frequency density of states, and assessed the effect of donation and backdonation on the CO vibrational frequency using a GGA + molecular U approach. These findings rationalize and establish the accuracy of density-functional calculations in predicting absolute vibrational frequencies, notwithstanding the failure in determining relative adsorption energies, in the strong chemisorption regime.

  2. Sum frequency generation vibrational spectroscopy at solid gas interfaces: CO adsorption on Pd model catalysts at ambient pressure

    NASA Astrophysics Data System (ADS)

    Rupprechter, Günther; Unterhalt, Holger; Morkel, Matthias; Galletto, Paolo; Hu, Linjie; Freund, Hans-Joachim

    2002-04-01

    Carbon monoxide adsorption on Pd(1 1 1) and Pd nanoparticles supported by Al 2O 3/NiAl(1 1 0) was examined by vibrational sum frequency generation spectroscopy from 10 -8 to 1000 mbar, and from 100 to 400 K. Identical CO saturation structures were observed on Pd(1 1 1) under ultrahigh vacuum (˜10 -7 mbar, 95 K) and at high pressure (e.g. ⩾1 mbar, 190 K) with no indications of pressure-induced surface rearrangements. Special attention was paid to experimental artifacts that may occur under elevated pressure and may be misinterpreted as "high pressure effects". Vibrational spectra of CO on defect-rich Pd(1 1 1) exhibited an additional peak that originated from CO bound to defect (step or edge) sites. The CO adsorbate structure on supported Pd nanoparticles was different from Pd(1 1 1) but more similar to stepped Pd(1 1 1). At low pressure (10 -7 mbar CO) the adsorbate structure depended strongly on the Pd morphology revealing specific differences in the adsorption properties of supported nanoparticles and single crystal surfaces. At high pressure (e.g. 200 mbar CO) these differences were even more pronounced. Prominent high coverage CO structures on Pd(1 1 1) could not be established on Pd particles. However, in spite of structural differences between well faceted and rough Pd nanoparticles nearly identical adsorption site occupancies were observed in both cases at 200 mbar CO. Initial tests of the catalytic activity of Pd/Al 2O 3/NiAl(1 1 0) for ethylene hydrogenation at 1 bar revealed a remarkable activity and stability of the model system with catalytic properties similar to impregnated catalysts.

  3. Orientation determination of interfacial bent α-helical structures using Sum Frequency Generation vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Nguyen, Khoi Tan

    2015-02-01

    Sum Frequency Generation (SFG) has been shown to be a powerful and versatile technique in studies of proteins/peptides at surfaces and interfaces. Recently SFG was successfully applied in studies of interfacial macro-molecules with increasing size and complexity. In this report we continued to employ bond additivity model and group theory to demonstrate the importance of both the inter-helical tilt angle and the lengths of the helical segments assembling the structures being studies. Specifically, a newly improved SFG data analysis of multiple α-helical structures on melittin was used to interpret the SFG experimental observation and also verified the findings with the recent insights brought by other spectroscopic techniques.

  4. Time-frequency analysis of railway bridge response in forced vibration

    NASA Astrophysics Data System (ADS)

    Cantero, Daniel; Ülker-Kaustell, Mahir; Karoumi, Raid

    2016-08-01

    This paper suggests the use of the Continuous Wavelet Transform in combination with the Modified Littlewood-Paley basis to analyse bridge responses exited by traversing trains. The analysis provides an energy distribution map in the time-frequency domain that offers a better resolution compared to previous published studies. This is demonstrated with recorded responses of the Skidträsk Bridge, a 36 m long composite bridge located in Sweden. It is shown to be particularly useful to understand the evolution of the energy content during a vehicle crossing event. With this information it is possible to distinguish the effect of several of the governing factors involved in the dynamic response including vehicle's speed and axle configuration as well as non-linear behaviour of the structure.

  5. Dispersed fs-fWM for investigations of low frequency vibrations of transient species in combustion.

    PubMed

    Knopp, Gregor; Radi, Peter P; Gerber, Thomas

    2011-01-01

    Understanding the role of peroxides in combustion, in atmospheric and in surface science involves investigations on a molecular level, at which energy transfers and rearrangements of the nuclei dictate the chemistry. Due to their high reactivity they appear as unstable transient species, which impedes detailed spectroscopic investigations. Low frequency modes, especially internal and hindered rotations with energies less than 200 cm(-1) play an important role for the determination of molecular energies and reaction rates. Unfortunately, these motions are in general difficult to address. Femtosecond four-wave mixing (fs-FWM) is a powerful tool that allows for investigations of ground state dynamics of molecules. The high peak-power output of fs-lasers, facilitates the excitation of weak Raman coherences. Results from the combustion relevant di-tert-butyl peroxide molecule are exemplified. PMID:21744689

  6. Inter- and Intradigit Somatotopic Map of High-Frequency Vibration Stimulations in Human Primary Somatosensory Cortex.

    PubMed

    Choi, Mi-Hyun; Kim, Sung-Phil; Kim, Hyung-Sik; Chung, Soon-Cheol

    2016-05-01

    Although more about the somatotopic mapping of fingers continues to be uncovered, there is lack of mapping attempts regarding the integration of within-finger and across-finger somatotopic coordinates in Broadmann area (BA) 3. This study aimed to address the issue by finding an inter-/intradigit somatotopic map with high-frequency (250 Hz) vibrotactile stimulation. Functional magnetic resonance imaging (fMRI) data were acquired while stimulation was applied to 3 phalanxes (distal [p1], intermediate [p2], and proximal [p3] phalanx) of 4 fingers (index, middle, ring, and little finger) for a total of 12 finger-phalanx combinations for a human. Inter-, intra-, and inter-/intradigit distances were calculated from peak activation coordinates in BA 3 for each combination. With regard to interdigit dimensions, the somatotopic coordinates proceeded in the lateral-to-medial direction for the index, middle, ring, and little fingers consecutively. This trend is comparable to that generated from low-frequency stimulation modalities (flutter stimulation). The somatotopic distances between fingers were greatest when p1 was compared across fingers. From an intradigit perspective, stimulation on p1, p2, and p3 yielded BA 3 peak coordinates aligned along the anterior-to-posterior and inferior-to-superior directions for all fingers. An inter-/intradigit map exhibited a radially propagating trend of distances calculated with respect to index p1 as a reference point; this provided an integrated view of inter- and intradigit somatotopies, which are traditionally discussed separately. We expect such an inter-/intradigit somatotopic map approach to contribute in generating a comprehensive somatotopic model of fingers. PMID:27196488

  7. Inter- and Intradigit Somatotopic Map of High-Frequency Vibration Stimulations in Human Primary Somatosensory Cortex

    PubMed Central

    Choi, Mi-Hyun; Kim, Sung-Phil; Kim, Hyung-Sik; Chung, Soon-Cheol

    2016-01-01

    Abstract Although more about the somatotopic mapping of fingers continues to be uncovered, there is lack of mapping attempts regarding the integration of within-finger and across-finger somatotopic coordinates in Broadmann area (BA) 3. This study aimed to address the issue by finding an inter-/intradigit somatotopic map with high-frequency (250 Hz) vibrotactile stimulation. Functional magnetic resonance imaging (fMRI) data were acquired while stimulation was applied to 3 phalanxes (distal [p1], intermediate [p2], and proximal [p3] phalanx) of 4 fingers (index, middle, ring, and little finger) for a total of 12 finger–phalanx combinations for a human. Inter-, intra-, and inter-/intradigit distances were calculated from peak activation coordinates in BA 3 for each combination. With regard to interdigit dimensions, the somatotopic coordinates proceeded in the lateral-to-medial direction for the index, middle, ring, and little fingers consecutively. This trend is comparable to that generated from low-frequency stimulation modalities (flutter stimulation). The somatotopic distances between fingers were greatest when p1 was compared across fingers. From an intradigit perspective, stimulation on p1, p2, and p3 yielded BA 3 peak coordinates aligned along the anterior-to-posterior and inferior-to-superior directions for all fingers. An inter-/intradigit map exhibited a radially propagating trend of distances calculated with respect to index p1 as a reference point; this provided an integrated view of inter- and intradigit somatotopies, which are traditionally discussed separately. We expect such an inter-/intradigit somatotopic map approach to contribute in generating a comprehensive somatotopic model of fingers. PMID:27196488

  8. Homogeneous and inhomogeneous broadenings and the Voigt line shapes in the phase-resolved and intensity sum-frequency generation vibrational spectroscopy.

    PubMed

    Chen, Shun-Li; Fu, Li; Gan, Wei; Wang, Hong-Fei

    2016-01-21

    In this report, we show that the ability to measure the sub-1 cm(-1) resolution phase-resolved and intensity high-resolution broadband sum frequency generation vibrational spectra of the -CN stretch vibration of the Langmuir-Blodgett (LB) monolayer of the 4-n-octyl-4'-cyanobiphenyl (8CB) on the z-cut α-quartz surface allows the direct comparison and understanding of the homogeneous and inhomogeneous broadenings in the imaginary and intensity SFG vibrational spectral line shapes in detail. The difference of the full width at half maximum (FWHM) of the imaginary and intensity sum-frequency generation vibrational spectroscopy spectra of the same vibrational mode is the signature of the Voigt line shape and it measures the relative contribution to the overall line shape from the homogeneous and inhomogeneous broadenings in SFG vibrational spectra. From the phase-resolved and intensity spectra, we found that the FWHM of the 2238.00 ± 0.02 cm(-1) peak in the phase-resolved imaginary and intensity spectra is 19.2 ± 0.2 cm(-1) and 21.6 ± 0.4 cm(-1), respectively, for the -CN group of the 8CB LB monolayer on the z-cut α-quartz crystal surface. The FWHM width difference of 2.4 cm(-1) agrees quantitatively with a Voigt line shape with a homogeneous broadening half width of Γ = 5.29 ± 0.08 cm(-1) and an inhomogeneous standard derivation width Δω = 5.42 ± 0.07 cm(-1). These results shed new lights on the understanding and interpretation of the line shapes of both the phase-resolved and the intensity SFG vibrational spectra, as well as other incoherent and coherent spectroscopic techniques in general. PMID:26801040

  9. Homogeneous and inhomogeneous broadenings and the Voigt line shapes in the phase-resolved and intensity sum-frequency generation vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Shun-Li; Fu, Li; Gan, Wei; Wang, Hong-Fei

    2016-01-01

    In this report, we show that the ability to measure the sub-1 cm-1 resolution phase-resolved and intensity high-resolution broadband sum frequency generation vibrational spectra of the -CN stretch vibration of the Langmuir-Blodgett (LB) monolayer of the 4-n-octyl-4'-cyanobiphenyl (8CB) on the z-cut α-quartz surface allows the direct comparison and understanding of the homogeneous and inhomogeneous broadenings in the imaginary and intensity SFG vibrational spectral line shapes in detail. The difference of the full width at half maximum (FWHM) of the imaginary and intensity sum-frequency generation vibrational spectroscopy spectra of the same vibrational mode is the signature of the Voigt line shape and it measures the relative contribution to the overall line shape from the homogeneous and inhomogeneous broadenings in SFG vibrational spectra. From the phase-resolved and intensity spectra, we found that the FWHM of the 2238.00 ± 0.02 cm-1 peak in the phase-resolved imaginary and intensity spectra is 19.2 ± 0.2 cm-1 and 21.6 ± 0.4 cm-1, respectively, for the -CN group of the 8CB LB monolayer on the z-cut α-quartz crystal surface. The FWHM width difference of 2.4 cm-1 agrees quantitatively with a Voigt line shape with a homogeneous broadening half width of Γ = 5.29 ± 0.08 cm-1 and an inhomogeneous standard derivation width Δω = 5.42 ± 0.07 cm-1. These results shed new lights on the understanding and interpretation of the line shapes of both the phase-resolved and the intensity SFG vibrational spectra, as well as other incoherent and coherent spectroscopic techniques in general.

  10. Perspective: Watching low-frequency vibrations of water in biomolecular recognition by THz spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Yao; Havenith, Martina

    2015-11-01

    Terahertz (THz) spectroscopy has turned out to be a powerful tool which is able to shed new light on the role of water in biomolecular processes. The low frequency spectrum of the solvated biomolecule in combination with MD simulations provides deep insights into the collective hydrogen bond dynamics on the sub-ps time scale. The absorption spectrum between 1 THz and 10 THz of solvated biomolecules is sensitive to changes in the fast fluctuations of the water network. Systematic studies on mutants of antifreeze proteins indicate a direct correlation between biological activity and a retardation of the (sub)-ps hydration dynamics at the protein binding site, i.e., a "hydration funnel." Kinetic THz absorption studies probe the temporal changes of THz absorption during a biological process, and give access to the kinetics of the coupled protein-hydration dynamics. When combined with simulations, the observed results can be explained in terms of a two-tier model involving a local binding and a long range influence on the hydration bond dynamics of the water around the binding site that highlights the significance of the changes in the hydration dynamics at recognition site for biomolecular recognition. Water is shown to assist molecular recognition processes.

  11. Evaluation of analysis techniques for low frequency interior noise and vibration of commercial aircraft

    NASA Technical Reports Server (NTRS)

    Landmann, A. E.; Tillema, H. F.; Marshall, S. E.

    1989-01-01

    The application of selected analysis techniques to low frequency cabin noise associated with advanced propeller engine installations is evaluated. Three design analysis techniques were chosen for evaluation including finite element analysis, statistical energy analysis (SEA), and a power flow method using element of SEA (computer program Propeller Aircraft Interior Noise). An overview of the three procedures is provided. Data from tests of a 727 airplane (modified to accept a propeller engine) were used to compare with predictions. Comparisons of predicted and measured levels at the end of the first year's effort showed reasonable agreement leading to the conclusion that each technique had value for propeller engine noise predictions on large commercial transports. However, variations in agreement were large enough to remain cautious and to lead to recommendations for further work with each technique. Assessment of the second year's results leads to the conclusion that the selected techniques can accurately predict trends and can be useful to a designer, but that absolute level predictions remain unreliable due to complexity of the aircraft structure and low modal densities.

  12. Quantitative Understanding of van der Waals Interactions by Analyzing the Adsorption Structure and Low-Frequency Vibrational Modes of Single Benzene Molecules on Silver.

    PubMed

    Yuan, Dingwang; Han, Zhumin; Czap, Gregory; Chiang, Chi-Lun; Xu, Chen; Ho, W; Wu, Ruqian

    2016-06-16

    The combination of a sub-Kelvin scanning tunneling microscope and density functional calculations incorporating van der Waals (vdW) corrections has been used successfully to probe the adsorption structure and low-frequency vibrational modes of single benzene molecules on Ag(110). The inclusion of optimized vdW functionals and improved C6-based vdW dispersion schemes in density functional theory is crucial for obtaining the correct adsorption structure and low-energy vibrational modes. These results demonstrate the emerging capability to quantitatively probe the van der Waals interactions between a physisorbed molecule and an inert substrate. PMID:27232051

  13. Theoretical discussion of the effect of a low-frequency electromagnetic vibrating field on the as-cast microstructures of DC Al Zn Mg Cu Zr ingots

    NASA Astrophysics Data System (ADS)

    Jie, Dong; Jianzhong, Cui; Wenjiang, Ding

    2006-10-01

    Within the framework of classical solidification theories, the effect of a low-frequency electromagnetic vibrating field on the as-cast microstructures of direct chilling (DC) casting Al-Zn-Mg-Cu-Zr ingots was discussed. In comparison with the conventional DC ingots, the microstructures of the low-frequency electromagnetic vibrating casting (LFEVC) ingots are gradually refined with increasing electromagnetic intensity. The increased number of nuclei is likely to be as a result of electromagnetic undercooling and forced convection. Grains were assumed to grow first into a global morphology and then into a dendritic one after exceeding a critical size. The unstable wavelength of a growing global grain was deduced to evaluate this transition from a global grain to a dendritic grain. Decreasing the electromagnetic frequency and/or increasing of electromagnetic intensity lead to a longer wavelength and therefore are suitable for less dendritic or net-global grains.

  14. Towards more accurate numerical modeling of impedance based high frequency harmonic vibration

    NASA Astrophysics Data System (ADS)

    Lim, Yee Yan; Kiong Soh, Chee

    2014-03-01

    The application of smart materials in various fields of engineering has recently become increasingly popular. For instance, the high frequency based electromechanical impedance (EMI) technique employing smart piezoelectric materials is found to be versatile in structural health monitoring (SHM). Thus far, considerable efforts have been made to study and improve the technique. Various theoretical models of the EMI technique have been proposed in an attempt to better understand its behavior. So far, the three-dimensional (3D) coupled field finite element (FE) model has proved to be the most accurate. However, large discrepancies between the results of the FE model and experimental tests, especially in terms of the slope and magnitude of the admittance signatures, continue to exist and are yet to be resolved. This paper presents a series of parametric studies using the 3D coupled field finite element method (FEM) on all properties of materials involved in the lead zirconate titanate (PZT) structure interaction of the EMI technique, to investigate their effect on the admittance signatures acquired. FE model updating is then performed by adjusting the parameters to match the experimental results. One of the main reasons for the lower accuracy, especially in terms of magnitude and slope, of previous FE models is the difficulty in determining the damping related coefficients and the stiffness of the bonding layer. In this study, using the hysteretic damping model in place of Rayleigh damping, which is used by most researchers in this field, and updated bonding stiffness, an improved and more accurate FE model is achieved. The results of this paper are expected to be useful for future study of the subject area in terms of research and application, such as modeling, design and optimization.

  15. Multimodal Broadband Vibrational Sum Frequency Generation (MM-BB-V-SFG) Spectrometer and Microscope.

    PubMed

    Lee, Christopher M; Kafle, Kabindra; Huang, Shixin; Kim, Seong H

    2016-01-14

    A broadband sum frequency generation (BB-SFG) spectrometer with multimodal (MM) capabilities was constructed, which could be routinely reconfigured for tabletop experiments in reflection, transmission, and total internal reflection (TIR) geometries, as well as microscopic imaging. The system was constructed using a Ti:sapphire amplifier (800 nm, pulse width = 85 fs, repetition rate = 2 kHz), an optical parameter amplification (OPA) system for production of broadband IR pulses tunable between 1000 and 4000 cm(-1), and two Fabry-Pérot etalons arranged in series for production of narrowband 800 nm pulses. The key feature allowing the MM operation was the nearly collinear alignment of the visible (fixed, 800 nm) and infrared (tunable, 1000-4000 cm(-1)) pulses which were spatially separated. Physical insights discussed in this paper include the comparison of spectral bandwidth produced with 40 and 85 fs pump beams, the improvement of spectral resolution using etalons, the SFG probe volume in bulk analysis, the normalization of SFG signals, the stitching of multiple spectral segments, and the operation in different modes for air/liquid and adsorbate/solid interfaces, bulk samples, as well as spectral imaging combined with principle component analysis (PCA). The SFG spectral features obtained with the MM-BB-SFG system were compared with those obtained with picosecond-scanning-SFG system and high-resolution BB-SFG system (HR-BB-SFG) for dimethyl sulfoxide, α-pinene, and various samples containing cellulose (purified commercial products, Cladophora cell wall, cotton and flax fibers, and onion epidermis cell wall). PMID:26718642

  16. Compound hydraulic seismic source vibrator

    SciTech Connect

    Myers, W.J.

    1989-12-05

    This patent describes a compound seismic source vibrator. It comprises: a housing having an upper section and a low frequency radiating section; a low frequency means for vibrating the low frequency radiating section; a high frequency radiating section flexibly connected to the low frequency radiating section; and a high frequency means rigidly secured to the low frequency radiating section for separately vibrating the high frequency radiating section.

  17. New Insights from Sum Frequency Generation Vibrational Spectroscopy into the Interactions of Islet Amyloid Polypeptides with Lipid Membranes

    PubMed Central

    Wang, Zhuguang; Batista, Victor S.; Yan, Elsa C. Y.

    2016-01-01

    Studies of amyloid polypeptides on membrane surfaces have gained increasing attention in recent years. Several studies have revealed that membranes can catalyze protein aggregation and that the early products of amyloid aggregation can disrupt membrane integrity, increasing water permeability and inducing ion cytotoxicity. Nonetheless, probing aggregation of amyloid proteins on membrane surfaces is challenging. Surface-specific methods are required to discriminate contributions of aggregates at the membrane interface from those in the bulk phase and to characterize protein secondary structures in situ and in real time without the use of perturbing spectroscopic labels. Here, we review the most recent applications of sum frequency generation (SFG) vibrational spectroscopy applied in conjunction with computational modeling techniques, a joint experimental and computational methodology that has provided valuable insights into the aggregation of islet amyloid polypeptide (IAPP) on membrane surfaces. These applications show that SFG can provide detailed information about structures, kinetics, and orientation of IAPP during interfacial aggregation, relevant to the molecular mechanisms of type II diabetes. These recent advances demonstrate the promise of SFG as a new approach for studying amyloid diseases at the molecular level and for the rational drug design targeting early aggregation products on membrane surfaces. PMID:26697504

  18. In Situ Potentiodynamic Analysis of the Electrolyte/Silicon Electrodes Interface Reactions--A Sum Frequency Generation Vibrational Spectroscopy Study.

    PubMed

    Horowitz, Yonatan; Han, Hui-Ling; Ross, Philip N; Somorjai, Gabor A

    2016-01-27

    The key factor in long-term use of batteries is the formation of an electrically insulating solid layer that allows lithium ion transport but stops further electrolyte redox reactions on the electrode surface, hence solid electrolyte interphase (SEI). We have studied a common electrolyte, 1.0 M LiPF6/ethylene carbonate (EC)/diethyl carbonate (DEC), reduction products on crystalline silicon (Si) electrodes in a lithium (Li) half-cell system under reaction conditions. We employed in situ sum frequency generation vibrational spectroscopy (SFG-VS) with interface sensitivity in order to probe the molecular composition of the SEI surface species under various applied potentials where electrolyte reduction is expected. We found that, with a Si(100)-hydrogen terminated wafer, a Si-ethoxy (Si-OC2H5) surface intermediate forms due to DEC decomposition. Our results suggest that the SEI surface composition varies depending on the termination of Si surface, i.e., the acidity of the Si surface. We provide the evidence of specific chemical composition of the SEI on the anode surface under reaction conditions. This supports an electrochemical electrolyte reduction mechanism in which the reduction of the DEC molecule to an ethoxy moiety plays a key role. These findings shed new light on the formation mechanism of SEI on Si anodes in particular and on SEI formation in general. PMID:26651259

  19. Consistency in the Sum Frequency Generation Intensity and Phase Vibrational Spectra of the Air/Neat Water Interface

    SciTech Connect

    Feng, Ranran; Guo, Yuan; Lu, Rong; Velarde Ruiz Esparza, Luis A.; Wang, Hongfei

    2011-06-16

    Tremendous progresses have been made in quantitative understanding and interpretation of the hydrogen bonding and ordering structure at the air/water interface since the first sum-frequency generation vibrational spectroscopy (SFG-VS) measurement on the neat air/water interface by Q. Du et al. in 1993 (PRL, 70, 2312-2316, 1993.). However, there are still disagreements and controversies on the consistency between the different experiment measurements and the theoretical computational results. One critical problem lies in the inconsistency between the SFG-VS intensity measurements and the recently developed SFG-VS phase spectra measurements of the neat air/water interface, which has inspired various theoretical efforts trying to understand them. In this report, the reliability of the SFG-VS intensity spectra of the neat air/water interface is to be quantitatively examined, and the sources of possible inaccuracies in the SFG-VS phase spectral measurement is to be discussed based on the non-resonant SHG phase measurement results. The conclusion is that the SFG-VS intensity spectra data from different laboratories are now quantitatively converging and in agreement with each other, and the possible inaccuracies and inconsistencies in the SFG-VS phase spectra measurements need to be carefully examined against the properly corrected phase standard.

  20. A combined vibrational sum frequency generation spectroscopy and atomic force microscopy study of sphingomyelin-cholesterol monolayers.

    PubMed

    Weeraman, Champika; Chen, Maohui; Moffatt, Douglas J; Lausten, Rune; Stolow, Albert; Johnston, Linda J

    2012-09-11

    A combination of vibrational sum frequency generation spectroscopy and atomic force microscopy is used to study the changes in morphology and conformational order in monolayers prepared from three natural sphingomyelin (SM) mixtures as a function of surface pressure and cholesterol concentration. The most homogeneous SM gave monolayers with well-ordered acyl chains and few gauche defects with relatively small effects of either increasing surface pressure or cholesterol addition. Heterogeneous SM mixtures with a mixture of acyl chain lengths or with significant fractions of unsaturated acyl chains had much larger contributions from gauche defects at low surface pressure and gave increasingly well-ordered monolayers as the surface pressure increased. They also showed substantial increases in lipid chain order after cholesterol addition. Overall, these results are consistent with the strong hydrogen bonding capacity of SM leading to well-ordered monolayers over a range of surface pressures. The changes in acyl chain order for natural SMs as a function of cholesterol are relevant to formation of sphingolipid-cholesterol enriched domains in cell membranes. PMID:22889131

  1. Bilayer Charge Reversal and Modification of Lipid Organization by Dendrimers as Observed by Sum-Frequency Vibrational Spectroscopy.

    PubMed

    Keszthelyi, Tamás; Holló, Gábor; Nyitrai, Gabriella; Kardos, Julianna; Héja, László

    2015-07-21

    Polyamidoamine (PAMAM) dendrimers are hyperbranched, nanosized polymers with promising biomedical applications as nanocarriers in targeted drug delivery and gene therapy. For the development of safe dendrimer-based biomedical applications it is necessary to gain an understanding of the detailed mechanism of the interactions of both cationic and anionic dendrimers with cell membranes. To characterize dendrimer-membrane interactions we applied solid-supported lipid bilayers as biomembrane models and utilized infrared-visible sum-frequency vibrational spectroscopy to independently probe the interactions of cationic G5-NH2 and anionic G4.5-COONa dendrimers with the two leaflets of the lipid bilayers. Interaction with both dendrimers led to changes in the interfacial water structure and charge density as evidenced by the changes in the OH band intensities in the sum-frequency spectra of the bilayers. Interaction with the G5-NH2 dendrimer also led to a unique inversion of the sign of the OH-stretch amplitudes, in addition to a decrease in their absolute values. We suggest that the positively charged amino groups on the G5-NH2 dendrimer surface bind to the negatively charged bilayer, while uncompensated positive charges not involved in the binding cause a reversal of the electric field and thus an opposite orientation of the interfacial water molecules. More subtle but nonetheless significant changes were seen in the relative magnitudes of the CH amplitudes. The methyl antisymmetric to symmetric stretch amplitude ratios are altered, implying changes in the tilt angles of the phospholipid alkyl chains. The conformational order of the phospholipid alkyl chains of both leaflets is also influenced by the G5-NH2 dendrimer while G4.5-COONa has no effect on the alkyl chain conformation. PMID:26099064

  2. Vibrational Frequencies and Spectroscopic Constants for 1(sup 3)A' HNC and 1(sup 3)A' HOC+ from High-Accuracy Quartic Force Fields

    NASA Technical Reports Server (NTRS)

    Fortenberry, Ryan C.; Crawford, T. Daniel; Lee, Timothy J.

    2014-01-01

    The spectroscopic constants and vibrational frequencies for the 1(sup 3)A' states of HNC, DNC, HOC+, and DOC+ are computed and discussed in this work. The reliable CcCR quartic force field based on high-level coupled cluster ab initio quantum chemical computations is exclusively utilized to provide the anharmonic potential. Then, second order vibrational perturbation theory and vibrational configuration interaction methods are employed to treat the nuclear Schroedinger equation. Second-order perturbation theory is also employed to provide spectroscopic data for all molecules examined. The relationship between these molecules and the corresponding 1(sup 3)A' HCN and HCO+ isomers is further developed here. These data are applicable to laboratory studies involving formation of HNC and HOC+ as well as astronomical observations of chemically active astrophysical environments.

  3. Examination of perceptions (intensity, seat comfort, effort) and reaction times (brake and accelerator) during low-frequency vibration in x- or y-direction and biaxial ( xy-) vibration of driver seats with activated and deactivated suspension

    NASA Astrophysics Data System (ADS)

    Schust, Marianne; Blüthner, Ralph; Seidel, Helmut

    2006-12-01

    The optimal design of driver seats with horizontal suspension requires knowledge of human response with respect to the perception of the vibration intensity and seat comfort or of the performance in motor tasks. In an experimental study, 12 male volunteers (body mass 59-97.3 kg) were exposed to whole body vibrations in isolated x- or y-direction (three levels of magnitude) and biaxial xy-direction (combination of the x- and y-exposures on level two) sitting on a driver seat. The suspensions in x- and y-directions were randomly locked or unlocked. A brake and an accelerator foot pedal had to be pressed on demand as fast as possible. The perceptions of the vibration intensity, the seat comfort and the effort to carry out the motor task were judged by cross modality matching (modality: length of a line). The intensity judgements significantly increased with raising vibration magnitude. They were significantly higher for locked suspension. With only some exceptions, the judgements of the seat comfort decreased significantly with increasing magnitude, locked suspension and time. The effort judgements significantly increased with raising magnitude and time and revealed a tendency towards a lower effort with activated suspension. The reaction times showed no significant influences of vibration magnitude, suspension or time, but higher demands seemed to be compensated by enhanced effort. The w d-weighting did not adequately reflect the perceptions for the frequency spectra applied in this study in the x-axis. A modified 'overall vibration total value' determined from the non-weighted accelerations instead of the weighted ones (ISO 2631-1, Article 8.2.3) corresponded with the subjective judgements in case of exposure in x- and xy-directions. A clear definition of 'comfort' or 'discomfort' or the use of 'intensity' instead of these terms is recommendable.

  4. Molecular dynamics simulation of liquid methanol. II. Unified assignment of infrared, raman, and sum frequency generation vibrational spectra in methyl C-H stretching region

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Sokolov, Vladimir V.; Morita, Akihiro

    2011-01-01

    Vibrational spectra of methyl C-H stretching region are notoriously complicated, and thus a theoretical method of systematic assignment is strongly called for in condensed phase. Here we develop a unified analysis method of the vibrational spectra, such as infrared (IR), polarized and depolarized Raman, and ssp polarized sum frequency generation (SFG), by flexible and polarizable molecular dynamics simulation. The molecular model for methanol has been developed by charge response kernel model to allow for analyzing the methyl C-H stretching vibrations. The complicated spectral structure by the Fermi resonance has been unraveled by empirically shifting potential parameters, which provides clear information on the coupling mechanism. The analysis confirmed that for the IR, polarized Raman, and SFG spectra, two-band structure at about 2830 and 2950 cm^{-1} results from the Fermi resonance splitting of the methyl C-H symmetric stretching and bending overtones. In the IR spectrum, the latter, higher-frequency band is overlapped with prominent asymmetric C-H stretching bands. In the depolarized Raman spectrum, the high frequency band at about 2980 cm^{-1} is assigned to the asymmetric C-H stretching mode. In the SFG spectrum, the two bands of the splitted symmetric C-H stretching mode have negative amplitudes of imaginary nonlinear susceptibility χ ^{(2)}, while the higher-frequency band is partly cancelled by positive imaginary components of asymmetric C-H stretching modes.

  5. Molecular dynamics simulation of liquid methanol. II. Unified assignment of infrared, Raman, and sum frequency generation vibrational spectra in methyl C-H stretching region.

    PubMed

    Ishiyama, Tatsuya; Sokolov, Vladimir V; Morita, Akihiro

    2011-01-14

    Vibrational spectra of methyl C-H stretching region are notoriously complicated, and thus a theoretical method of systematic assignment is strongly called for in condensed phase. Here we develop a unified analysis method of the vibrational spectra, such as infrared (IR), polarized and depolarized Raman, and ssp polarized sum frequency generation (SFG), by flexible and polarizable molecular dynamics simulation. The molecular model for methanol has been developed by charge response kernel model to allow for analyzing the methyl C-H stretching vibrations. The complicated spectral structure by the Fermi resonance has been unraveled by empirically shifting potential parameters, which provides clear information on the coupling mechanism. The analysis confirmed that for the IR, polarized Raman, and SFG spectra, two-band structure at about 2830 and 2950 cm(-1) results from the Fermi resonance splitting of the methyl C-H symmetric stretching and bending overtones. In the IR spectrum, the latter, higher-frequency band is overlapped with prominent asymmetric C-H stretching bands. In the depolarized Raman spectrum, the high frequency band at about 2980 cm(-1) is assigned to the asymmetric C-H stretching mode. In the SFG spectrum, the two bands of the splitted symmetric C-H stretching mode have negative amplitudes of imaginary nonlinear susceptibility χ(2), while the higher-frequency band is partly cancelled by positive imaginary components of asymmetric C-H stretching modes. PMID:21241123

  6. Theoretical studies for the N{sub 2}–N{sub 2}O van der Waals complex: The potential energy surface, intermolecular vibrations, and rotational transition frequencies

    SciTech Connect

    Zheng, Rui; Zheng, Limin; Yang, Minghui E-mail: yangmh@wipm.ac.cn; Lu, Yunpeng E-mail: yangmh@wipm.ac.cn

    2015-10-21

    Theoretical studies of the potential energy surface (PES) and bound states are performed for the N{sub 2}–N{sub 2}O van der Waals (vdW) complex. A four-dimensional intermolecular PES is constructed at the level of single and double excitation coupled-cluster method with a non-iterative perturbation treatment of triple excitations [CCSD(T)] with aug-cc-pVTZ basis set supplemented with bond functions. Two equivalent T-shaped global minima are located, in which the O atom of N{sub 2}O monomer is near the N{sub 2} monomer. The intermolecular fundamental vibrational states are assigned by inspecting the orientation of the nodal surface of the wavefunctions. The calculated frequency for intermolecular disrotation mode is 23.086 cm{sup −1}, which is in good agreement with the available experimental data of 22.334 cm{sup −1}. A negligible tunneling splitting with the value of 4.2 MHz is determined for the ground vibrational state and the tunneling splitting increases as the increment of the vibrational frequencies. Rotational levels and transition frequencies are calculated for both isotopomers {sup 14}N{sub 2}–N{sub 2}O and {sup 15}N{sub 2}–N{sub 2}O. The accuracy of the PES is validated by the good agreement between theoretical and experimental results for the transition frequencies and spectroscopic parameters.

  7. Theoretical studies for the N2-N2O van der Waals complex: The potential energy surface, intermolecular vibrations, and rotational transition frequencies.

    PubMed

    Zheng, Rui; Zheng, Limin; Lu, Yunpeng; Yang, Minghui

    2015-10-21

    Theoretical studies of the potential energy surface (PES) and bound states are performed for the N2-N2O van der Waals (vdW) complex. A four-dimensional intermolecular PES is constructed at the level of single and double excitation coupled-cluster method with a non-iterative perturbation treatment of triple excitations [CCSD(T)] with aug-cc-pVTZ basis set supplemented with bond functions. Two equivalent T-shaped global minima are located, in which the O atom of N2O monomer is near the N2 monomer. The intermolecular fundamental vibrational states are assigned by inspecting the orientation of the nodal surface of the wavefunctions. The calculated frequency for intermolecular disrotation mode is 23.086 cm(-1), which is in good agreement with the available experimental data of 22.334 cm(-1). A negligible tunneling splitting with the value of 4.2 MHz is determined for the ground vibrational state and the tunneling splitting increases as the increment of the vibrational frequencies. Rotational levels and transition frequencies are calculated for both isotopomers (14)N2-N2O and (15)N2-N2O. The accuracy of the PES is validated by the good agreement between theoretical and experimental results for the transition frequencies and spectroscopic parameters. PMID:26493904

  8. A study of the eigenvectors of low frequency vibrational modes in crystalline cytidine via high pressure infrared absorption and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Starkey, Carl; Woods, Kristina; Lee, Scott

    High-pressure infrared absorption experiments and molecular dynamics simulations have been used to study the eigenvectors and eigenvalues of the vibrational modes of crystalline cytidine at 295 K by evaluating the logarithmic derivative of the vibrational frequency with respect to pressure: 1/ωdω/dP . Crystalline samples of molecular materials such as cytidine have vibrational modes that are localized within a molecular unit (``internal'' modes) as well as modes in which the molecular units vibrate against each other (``external'' modes). The value of the logarithmic derivative is a diagnostic probe of the nature of the eigenvector of the vibrational modes, making high pressure experiments a very useful probe for such studies. Internal stretching modes have low logarithmic derivatives while external as well as internal torsional and bending modes have higher logarithmic derivatives. Modes at about 503, 757, 795, 3093 and 3351 cm-1 are found to have negative logarithmic pressure derivatives, indicating a weakening of the effective force constants associated with those modes. The two modes above 3000 cm-1 are hydrogen-bond-stretching modes. The identity of all of these modes will be determined via molecular dynamical simuations.

  9. Vibrational spectra from atomic fluctuations in dynamics simulations. II. Solvent-induced frequency fluctuations at femtosecond time resolution

    NASA Astrophysics Data System (ADS)

    Schmitz, Matthias; Tavan, Paul

    2004-12-01

    The midinfrared (MIR) spectra of molecules in polar solvents exhibit inhomogeneously broadened bands whose spectral positions are shifted as compared to the gas phase. The shifts are caused by interactions with structured solvation shells and the broadenings by fluctuations of these interactions. The MIR spectra can be calculated from hybrid molecular dynamics (MD) simulations, which treat the solute molecule by density functional theory and the solvent by molecular mechanics by the so-called instantaneous normal mode analysis (INMA) or by Fourier transforming the time correlation function (FTTCF) of the molecular dipole moment. In Paper I of this work [M. Schmitz and P. Tavan, J. Chem. Phys. 121, 12233 (2004)] we explored an alternative method based on generalized virial (GV) frequencies noting, however, that GV systematically underestimates frequencies. As shown by us these artifacts are caused by solvent-induced fluctuations of the (i) equilibrium geometry, (ii) force constants, and (iii) normal mode directions as well as by (iv) diagonal and (v) off-diagonal anharmonicities. Here we now show, by analyzing the time scales of fluctuations and sample MD trajectories of formaldehyde in the gas phase and in water, that all these sources of computational artifacts can be made visible by a Fourier analysis of the normal coordinates. Correspondingly, the error sources (i) and (iii)-(v) can be removed by bandpass filtering, as long as the spectral signatures of the respective effects are well separated from the fundamental band. Furthermore, the artifacts arising from effect (ii) can be strongly diminished by a time-resolved version of the GV approach (TF-GV). The TF-GV method then yields for each mode j a trajectory of the vibrational frequency ωj(t|τ) at a time resolution τ>τj, which is only limited by the corresponding oscillation time τj=2π/ωj and, thus, is in the femtosecond range. A correlation analysis of these trajectories clearly separates the

  10. Efficient Spectral Diffusion at the Air/Water Interface Revealed by Femtosecond Time-Resolved Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy.

    PubMed

    Inoue, Ken-Ichi; Ishiyama, Tatsuya; Nihonyanagi, Satoshi; Yamaguchi, Shoichi; Morita, Akihiro; Tahara, Tahei

    2016-05-19

    Femtosecond vibrational dynamics at the air/water interface is investigated by time-resolved heterodyne-detected vibrational sum frequency generation (TR-HD-VSFG) spectroscopy and molecular dynamics (MD) simulation. The low- and high-frequency sides of the hydrogen-bonded (HB) OH stretch band at the interface are selectively excited with special attention to the bandwidth and energy of the pump pulses. Narrow bleach is observed immediately after excitation of the high-frequency side of the HB OH band at ∼3500 cm(-1), compared to the broad bleach observed with excitation of the low-frequency side at ∼3300 cm(-1). However, the time-resolved spectra observed with the two different excitations become very similar at 0.5 ps and almost indistinguishable by 1.0 ps. This reveals that efficient spectral diffusion occurs regardless of the difference of the pump frequency. The experimental observations are well-reproduced by complementary MD simulation. There is no experimental and theoretical evidence that supports extraordinary slow dynamics in the high-frequency side of the HB OH band, which was reported before. PMID:27120559

  11. Sum-frequency vibrational spectroscopy of a monolayer self-assembled on gold: interference between resonant and nonresonant contributions of nonlinear polarization

    NASA Astrophysics Data System (ADS)

    Tanaka, Yoshihito; Lin, S.; Aono, M.; Suzuki, T.

    The spectral profiles of sum-frequency signal from CH vibrational modes of octadecanethiol (ODT) self-assembled on gold have been studied for several optical configurations of incident beams. The observed spectra, generally of the shape of dispersion type, have been interpreted by the interference between the resonant contribution from the CH stretching modes of adsorbed molecules and the nonresonant contribution from the gold substrate. We have shown for the first time that the contribution from the zzz component of the resonant nonlinear susceptibility χzzz(R) is dominant in the observed resonant signals, whereas all of the ijk components contribute to the nonresonant signal. The transition frequencies and the relative amplitude of resonant signals are also determined for the CH3 vibrational modes of ODT on gold.

  12. A generic test of gas phase isolated binary collision theories for vibrational relaxation at liquid state densities based on the rescaling properties of collision frequencies

    NASA Astrophysics Data System (ADS)

    Paige, M. E.; Harris, C. B.

    1990-09-01

    The X state vibrational relaxation of geminately recombined I2 in liquid Xe is monitored as a function of solvent density by means of transient absorption spectroscopy. Plots of vibrational energy vs time at different solvent density can be exactly overlapped by linearly scaling the time axis. This linear scaling behavior indicates that the isolated binary collision (IBC) model's assumption regarding the density independence of the probability of relaxation per collision is valid at liquid densities, even for a low frequency oscillator (≊200 cm-1). This new method of testing the IBC model's validity at liquid density is independent of the explicit form of the intermolecular potential and is independent of a determination of collision frequency and thus, eliminates the ambiguities associated with evaluating this quantity.

  13. Theoretical Investigation on the Substituent Effect of Halogen Atoms at the C8 Position of Adenine: Relative Stability, Vibrational Frequencies, and Raman Spectra of Tautomers.

    PubMed

    Chen, Yan-Li; Wu, De-Yin; Tian, Zhong-Qun

    2016-06-16

    We have theoretically investigated the substituent effect of adenine at the C8 position with a substituent X = H, F, Cl, and Br by using the density functional theory (DFT) at the B3LYP/6-311+G(d, p) level. The aim is to study the substituent effect of halogen atoms on the relative stability, vibrational frequencies, and solvation effect of tautomers. Our calculated results show that for substituted adenine molecules the N9H8X tautomer to be the most stable structure in gas phase at the present theoretical level. Here N9H8X denotes the hydrogen atom binds to the N9 position of imidazole ring and X denotes H, F, Cl, and Br atoms. The influence of the induced attraction of the fluorine substituent is significantly larger than chlorine and bromine ones. The halogen substituent effect has a significant influence on changes of vibrational frequencies and Raman intensities. PMID:27243104

  14. Experiments on Suppression of Thermocapillary Oscillations in Sodium Nitrate Floating Half-Zones by High-frequency End-wall Vibrations

    NASA Technical Reports Server (NTRS)

    Anilkumar, A.; Grugel, R. N.; Bhowmick, J.; Wang, T.

    2004-01-01

    Experiments to suppress thermocapillary oscillations using high-frequency vibrations were carried out in sodium nitrate floating half-zones. Such a half-zone is formed by melting one end of a vertically held sodium nitrate crystal rod in contact with a hot surface at the top. Thermocapillary convection occurs in the melt because of the temperature gradient at the free surface of the melt. In the experiments, when thermocapillary oscillations occurred, the bottom end of the crystal rod was vibrated at a high frequency to generate a streaming flow in a direction opposite to that of the thermocapillary convection. It is observed that, by generating a sufficiently strong streaming flow, the thermocapillary flow can be offset enough such that the associated thermocapillary oscillations can be quenched.

  15. Nanoscale chemical and mechanical characterization of thin films:sum frequency generation (SFG) vibrational spectroscopy at buriedinterfaces

    SciTech Connect

    Kweskin, S.J.

    2006-05-19

    Sum frequency generation (SFG) surface vibrational spectroscopy was used to characterize interfaces pertinent to current surface engineering applications, such as thin film polymers and novel catalysts. An array of advanced surface science techniques like scanning probe microscopy (SPM), x-ray photoelectron spectroscopy (XPS), gas chromatography (GC) and electron microscopy were used to obtain experimental measurements complementary to SFG data elucidating polymer and catalyst surface composition, surface structure, and surface mechanical behavior. Experiments reported in this dissertation concentrate on three fundamental questions: (1) How does the interfacial molecular structure differ from that of the bulk in real world applications? (2) How do differences in chemical environment affect interface composition or conformation? (3) How do these changes correlate to properties such as mechanical or catalytic performance? The density, surface energy and bonding at a solid interface dramatically alter the polymer configuration, physics and mechanical properties such as surface glass transition, adhesion and hardness. The enhanced sensitivity of SFG at the buried interface is applied to three systems: a series of acrylates under compression, the compositions and segregation behavior of binary polymer polyolefin blends, and the changes in surface structure of a hydrogel as a function of hydration. In addition, a catalytically active thin film of polymer coated nanoparticles is investigated to evaluate the efficacy of SFG to provide in situ information for catalytic reactions involving small mass adsorption and/or product development. Through the use of SFG, in situ total internal reflection (TIR) was used to increase the sensitivity of SFG and provide the necessary specificity to investigate interfaces of thin polymer films and nanostructures previously considered unfeasible. The dynamic nature of thin film surfaces is examined and it is found that the non

  16. Administration duration influences the effects of low-magnitude, high-frequency vibration on ovariectomized rat bone.

    PubMed

    Qing, Fangzhu; Xie, Pengfei; Liem, Yacincha Selushia; Chen, Ying; Chen, Xuening; Zhu, Xiangdong; Fan, Yujiang; Yang, Xiao; Zhang, Xingdong

    2016-07-01

    Low-magnitude, high-frequency vibration (LMHFV) has been proposed as a non-drug anti-osteoporosis treatment. However, the influence of administration duration on its effect is seldom investigated. In this study, the effect of 16-week LMHFV (0.3 g, 30 Hz, 20 min/day) on the bone mineral densities (BMDs), bone mechanical properties, and cellular responses of osteoporotic and healthy rats was examined by in vivo peripheral quantitative computed tomography (pQCT), fracture tests, cell assays, and mRNA quantification. Forty-eight adult rats were equally assigned to sham surgery (SHM), sham surgery with LMHFV (SHM+V), ovariectomy (OVX), and ovariectomy with LMHFV (OVX+V) groups. At week 8, LMHFV ameliorated ovariectomy-induced deterioration of trabecular bone, with a significantly higher tibia trabecular BMD (+11.2%) being noted in OVX+V rats (vs. OVX). However, this positive effect was not observed at later time points. Furthermore, 16 weeks of LMHFV caused significant reductions in the vertebral mean BMD (-13.0%), trabecular BMD (-15.7%), and maximum load (-21.5%) in OVX+V rats (vs. OVX). Osteoblasts derived from osteoporotic rat bone explants showed elevated BSP and OSX mRNA expression induced by LMHFV on day 1. However, no further positive effect on osteoblastic mRNA expression, alkaline phosphatase activity, or calcium deposition was observed with prolonged culture time. A higher ratio of RANKL/OPG induced by LMHFV suggests that osteoclastogenesis may be activated. Together, these results demonstrate that administration duration played an important role in the effect of LMHFV. Early exposure to LMHFV can positively modulate osteoporotic bone and osteoblasts; however, the beneficial effect seems not to persist over time. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1147-1157, 2016. PMID:26662723

  17. Time Correlation Function Modeling of Third-Order Sum Frequency Vibrational Spectroscopy of a Charged Surface/Water Interface.

    PubMed

    Green, Anthony J; Space, Brian

    2015-07-23

    Sum frequency vibrational spectroscopy (SFVS), a second-order optical process, is interface-specific in the dipole approximation [Perry, A.; Neipert, C.; Moore, P.; Space, B. Chem. Rev. 2006, 106, 1234-1258; Richmond, G. L. Chem. Rev. 2002, 102, 2693-2724; Byrnes, S. J.; Geissler, P. L.; Shen, Y. R. Chem. Phys. Lett. 2011, 516, 115-124]. At charged interfaces, the experimentally detected signal is a combination of enhanced second-order and static-field-induced third-order contributions due to the existence of a static field. Evidence of the importance/relative magnitude of this third-order contribution is seen in the literature [Ong, S.; Zhao, X.; Eisenthal, K. B. Chem. Phys. Lett. 1992, 191, 327-335; Zhao, X.; Ong, S.; Eisenthal, K. B. Chem. Phys. Lett. 1993, 202, 513-520; Shen, Y. R. Appl. Phys. B: Laser Opt. 1999, 68, 295-300], but a molecularly detailed approach to separately calculating the second- and third-order contributions is difficult to construct. Recent work presented a novel molecular dynamics (MD)-based theory that provides a direct means to calculate the third-order contributions to SFVS spectra at charged interfaces [Neipert, C.; Space, B. J. Chem. Phys. 2006, 125, 224706], and a hyperpolarizability model for water was developed as a prerequisite to practical implementation [Neipert, C.; Space, B. Comput. Lett. 2007, 3, 431-440]. Here, these methods are applied to a highly abstracted/idealized silica/water interface, and the results are compared to experimental data for water at a fused quartz surface. The results suggest that such spectra have some quite general spectral features. PMID:25415752

  18. Time-frequency analysis of single-point engine-block vibration measurements for multiple excitation-event identification

    NASA Astrophysics Data System (ADS)

    Vulli, S.; Dunne, J. F.; Potenza, R.; Richardson, D.; King, P.

    2009-04-01

    The short-term-Fourier-transform (STFT) is used to identify different sources of IC engine-block vibration from single-point acceleration measurements taken with a commercial knock sensor. Interest is focused on using the STFT to distinguish normal combustion from other sources of excitation including valve impact, injector pulses, and abnormal combustion, such as knocking. Positive identification of these other events using a single method can be useful for pre-processing of measured knock-sensor data for neural-network-based reconstruction of cylinder pressure. It can also be useful separately as part of a fast knock detection system. A series of experiments is discussed to create the data to isolate these different events on a 3-cylinder gasoline engine. In each case, the measured data is processed using the STFT to attempt to isolate the occurrence of particular events in the time domain. Four classes of experiments are undertaken: (i) an un-fired (motored) engine, driven by a dynamometer, with spark plugs fitted, and then removed, to isolate valve impact; (ii) a fired engine running under idle conditions, to contrast no-load combustion with no combustion; (iii) a part-loaded engine running normally, and then running with one injector switched-off, and (iv) a fully-loaded engine running normally, and then running with knock-control switched-off. The paper shows that a single Time-frequency analysis method, applied to knock sensor data in the form of an appropriately-tuned STFT, can effectively identify the occurrence of these events in the time domain if responses are adequately separated and strong enough.

  19. Prediction of vibrational frequencies of possible intermediates and side products of the methanol synthesis on ZnO(0001) by ab initio calculations.

    PubMed

    Kossmann, Jörg; Rossmüller, Guido; Hättig, Christof

    2012-01-21

    We used ab initio density functional theory in combination with an embedded cluster approach to calculate vibrational spectra and formation enthalpies of possible intermediates and side products (spectator species) in the synthesis of methanol out of syngas on the ZnO(0001) surface. Our investigations are based upon our previous work on possible reaction pathways and activation barriers for this reaction at oxygen vacancies on ZnO(0001). We present and discuss calculated vibrational frequencies of short-living formyl, hydroxymethylene, formaldehyde, acetale, and hydroxymethyl intermediates and compare the calculated frequencies of formate and methoxy species as well as CO and CO(2) species, at the defect free surface and at oxygen vacancies, with recent experimental findings. All investigated species show characteristic features in their spectra. Therefore, the analysis of their vibrational frequencies is a suitable mean to distinguish them and gain new insights in this reaction which is of recent experimental interest. We are able to identify the structure and characteristics of different surface species, such as monodentate and polydentate carbonate and formate species, in agreement with experimental results. PMID:22280776

  20. A low-frequency vibration insensitive pendulum bench based on translation-tilt compensation in measuring the performances of inertial sensors

    NASA Astrophysics Data System (ADS)

    Liu, L.; Ye, X.; Wu, S. C.; Bai, Y. Z.; Zhou, Z. B.

    2015-10-01

    The performance test of precision space inertial sensors on the ground is inevitably affected by seismic noise. A traditional vibration isolation platform, generally with a resonance frequency of several Hz, cannot satisfy the requirements for testing an inertial sensor at low frequencies. In this paper, we present a pendulum bench for inertial sensor testing based on translation-tilt compensation. A theoretical analysis indicates that the seismic noise effect on inertial sensors located on this bench can be attenuated by more than 40 dB below 0.1 Hz, which is very significant for investigating the performance of high-precision inertial sensors. We demonstrate this attenuation with a dedicated experiment.

  1. The impact of low-magnitude high-frequency vibration on fracture healing is profoundly influenced by the oestrogen status in mice

    PubMed Central

    Wehrle, Esther; Liedert, Astrid; Heilmann, Aline; Wehner, Tim; Bindl, Ronny; Fischer, Lena; Haffner-Luntzer, Melanie; Jakob, Franz; Schinke, Thorsten; Amling, Michael; Ignatius, Anita

    2015-01-01

    Fracture healing is impaired in aged and osteoporotic individuals. Because adequate mechanical stimuli are able to increase bone formation, one therapeutical approach to treat poorly healing fractures could be the application of whole-body vibration, including low-magnitude high-frequency vibration (LMHFV). We investigated the effects of LMHFV on fracture healing in aged osteoporotic mice. Female C57BL/6NCrl mice (n=96) were either ovariectomised (OVX) or sham operated (non-OVX) at age 41 weeks. When aged to 49 weeks, all mice received a femur osteotomy that was stabilised using an external fixator. The mice received whole-body vibrations (20 minutes/day) with 0.3 g peak-to-peak acceleration and a frequency of 45 Hz. After 10 and 21 days, the osteotomised femurs and intact bones (contra-lateral femurs, lumbar spine) were evaluated using bending-testing, micro-computed tomography (μCT), histology and gene expression analyses. LMHFV disturbed fracture healing in aged non-OVX mice, with significantly reduced flexural rigidity (−81%) and bone formation (−80%) in the callus. Gene expression analyses demonstrated increased oestrogen receptor β (ERβ, encoded by Esr2) and Sost expression in the callus of the vibrated animals, but decreased β-catenin, suggesting that ERβ might mediate these negative effects through inhibition of osteoanabolic Wnt/β-catenin signalling. In contrast, in OVX mice, LMHFV significantly improved callus properties, with increased flexural rigidity (+1398%) and bone formation (+637%), which could be abolished by subcutaneous oestrogen application (0.025 mg oestrogen administered in a 90-day-release pellet). On a molecular level, we found an upregulation of ERα in the callus of the vibrated OVX mice, whereas ERβ was unaffected, indicating that ERα might mediate the osteoanabolic response. Our results indicate a major role for oestrogen in the mechanostimulation of fracture healing and imply that LMHFV might only be safe and effective in

  2. Conformational Switching by Vibrational Excitation of a Remote NH Bond.

    PubMed

    Lopes Jesus, António Jorge; Reva, Igor; Araujo-Andrade, Cuauhtémoc; Fausto, Rui

    2015-11-18

    Here we describe an unprecedented reversible interconversion between two conformational states, accomplished by selective vibrational excitation of a bond remotely located in relation to the isomerizing fragment. In contrast to previous studies reporting conformational changes via vibrational excitation of a nearby OH group, in this study the transformations were successfully achieved by excitation of a distant NH stretching coordinate. The syn and anti forms of monomeric 6-methoxyindole, which differ in the orientation of the methoxy group, were trapped in low-temperature inert matrixes and characterized spectroscopically. These forms could be selectively shifted in both directions by using near-IR excitations tuned at the frequency of the first NH stretching overtone. The observed isomerization proves the possibility of efficient vibrational relaxation to carry the energy deposited at the NH stretching coordinate into the reactive C-O torsional mode localized on the methoxy group four bonds away from the excited NH moiety. PMID:26376202

  3. Multi-Level Assessment of Fracture Calluses in Rats Subjected to Low-Magnitude High-Frequency Vibration with Different Rest Periods.

    PubMed

    Gao, Jiazi; Gong, He; Huang, Xu; Zhang, Rui; Ma, Renshi; Zhu, Dong

    2016-08-01

    The aim of this study was to investigate the influences of low-magnitude high-frequency vibration (LMHFV) with different rest period regimes (vibrational loading per day [with or without the loading divided into bouts]; or vibrational loading for 7 day followed by 7 day rest [with or without the loading divided into bouts]) on bone healing at multi-levels. Transverse fractures of rat bilateral tibias were established using a Kirschner wire inserted for fixation. The animals were randomly assigned to five groups (n = 7 for each group): four for vibrational groups by LMHFV with different rest period regimes and one for fractured model without mechanical loading. The macromechanical properties of the fractured tibias and the nanomechanical properties of the calluses were investigated through three-point bending and nanoindentation tests, respectively. Atomic force microscopy (AFM) was performed to analyze the nanostructure of the calluses. Micro-computed tomography (micro-CT) scanning was conducted to evaluate the microarchitecture of the calluses. The serum concentration of osteocalcin (OG) and tartrate-resistant acid phosphatase 5b (TRAP5b) were measured to assess the bone formation and resorption rates, respectively. Significantly higher values of failure load and elastic modulus were observed in DL (vibrational loading for 15 min per day) and DLR (vibrational loading per day in which three bouts of 5 min of vibration were separated by 4 h) than FBC (fractured model without mechanical loading) at macro-level (P < 0.05). The results of nanoindentation test showed the highest values of indentation modulus and hardness in DLR (significantly higher than FBC; P < 0.05); besides, higher value of hardness was also observed in DL (significantly higher than FBC; P < 0.05). Though AFM imaging showed no significant differences in grain sizes between the vibrational groups and FBC, roughness of DLR showed the highest value, i.e. it was significantly higher than

  4. Energy Finite Element Analysis for Computing the High Frequency Vibration of the Aluminum Testbed Cylinder and Correlating the Results to Test Data

    NASA Technical Reports Server (NTRS)

    Vlahopoulos, Nickolas

    2005-01-01

    The Energy Finite Element Analysis (EFEA) is a finite element based computational method for high frequency vibration and acoustic analysis. The EFEA solves with finite elements governing differential equations for energy variables. These equations are developed from wave equations. Recently, an EFEA method for computing high frequency vibration of structures either in vacuum or in contact with a dense fluid has been presented. The presence of fluid loading has been considered through added mass and radiation damping. The EFEA developments were validated by comparing EFEA results to solutions obtained by very dense conventional finite element models and solutions from classical techniques such as statistical energy analysis (SEA) and the modal decomposition method for bodies of revolution. EFEA results have also been compared favorably with test data for the vibration and the radiated noise generated by a large scale submersible vehicle. The primary variable in EFEA is defined as the time averaged over a period and space averaged over a wavelength energy density. A joint matrix computed from the power transmission coefficients is utilized for coupling the energy density variables across any discontinuities, such as change of plate thickness, plate/stiffener junctions etc. When considering the high frequency vibration of a periodically stiffened plate or cylinder, the flexural wavelength is smaller than the interval length between two periodic stiffeners, therefore the stiffener stiffness can not be smeared by computing an equivalent rigidity for the plate or cylinder. The periodic stiffeners must be regarded as coupling components between periodic units. In this paper, Periodic Structure (PS) theory is utilized for computing the coupling joint matrix and for accounting for the periodicity characteristics.

  5. High resolution photoelectron imaging of UO- and UO2- and the low-lying electronic states and vibrational frequencies of UO and UO2

    NASA Astrophysics Data System (ADS)

    Czekner, Joseph; Lopez, Gary V.; Wang, Lai-Sheng

    2014-12-01

    We report a study of the electronic and vibrational structures of the gaseous uranium monoxide and dioxide molecules using high-resolution photoelectron imaging. Vibrationally resolved photoelectron spectra are obtained for both UO- and UO2-. The spectra for UO2- are consistent with, but much better resolved than a recent study using a magnetic-bottle photoelectron analyzer [W. L. Li et al., J. Chem. Phys. 140, 094306 (2014)]. The electron affinity (EA) of UO is reported for the first time as 1.1407(7) eV, whereas a much more accurate EA is obtained for UO2 as 1.1688(6) eV. The symmetric stretching modes for the neutral and anionic ground states, and two neutral excited states for UO2 are observed, as well as the bending mode for the neutral ground state. These vibrational frequencies are consistent with previous experimental and theoretical results. The stretching vibrational modes for the ground state and one excited state are observed for UO. The current results for UO and UO2 are compared with previous theoretical calculations including relativistic effects and spin-orbit coupling. The accurate experimental data reported here provide more stringent tests for future theoretical methods for actinide-containing species.

  6. High resolution photoelectron imaging of UO(-) and UO2(-) and the low-lying electronic states and vibrational frequencies of UO and UO2.

    PubMed

    Czekner, Joseph; Lopez, Gary V; Wang, Lai-Sheng

    2014-12-28

    We report a study of the electronic and vibrational structures of the gaseous uranium monoxide and dioxide molecules using high-resolution photoelectron imaging. Vibrationally resolved photoelectron spectra are obtained for both UO(-) and UO2(-). The spectra for UO2(-) are consistent with, but much better resolved than a recent study using a magnetic-bottle photoelectron analyzer [W. L. Li et al., J. Chem. Phys. 140, 094306 (2014)]. The electron affinity (EA) of UO is reported for the first time as 1.1407(7) eV, whereas a much more accurate EA is obtained for UO2 as 1.1688(6) eV. The symmetric stretching modes for the neutral and anionic ground states, and two neutral excited states for UO2 are observed, as well as the bending mode for the neutral ground state. These vibrational frequencies are consistent with previous experimental and theoretical results. The stretching vibrational modes for the ground state and one excited state are observed for UO. The current results for UO and UO2 are compared with previous theoretical calculations including relativistic effects and spin-orbit coupling. The accurate experimental data reported here provide more stringent tests for future theoretical methods for actinide-containing species. PMID:25554146

  7. Partially Hydrated Electrons at the Air/Water Interface Observed by UV-Excited Time-Resolved Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy.

    PubMed

    Matsuzaki, Korenobu; Kusaka, Ryoji; Nihonyanagi, Satoshi; Yamaguchi, Shoichi; Nagata, Takashi; Tahara, Tahei

    2016-06-22

    Hydrated electrons are the most fundamental anion species, consisting only of electrons and surrounding water molecules. Although hydrated electrons have been extensively studied in the bulk aqueous solutions, even their existence is still controversial at the water surface. Here, we report the observation and characterization of hydrated electrons at the air/water interface using new time-resolved interface-selective nonlinear vibrational spectroscopy. With the generation of electrons at the air/water interface by ultraviolet photoirradiation, we observed the appearance of a strong transient band in the OH stretch region by heterodyne-detected vibrational sum-frequency generation. Through the comparison with the time-resolved spectra at the air/indole solution interface, the transient band was assigned to the vibration of water molecules that solvate electrons at the interface. The analysis of the frequency and decay of the observed transient band indicated that the electrons are only partially hydrated at the water surface, and that they escape into the bulk within 100 ps. PMID:27281547

  8. Solvent Effects on Molecular Structure, Vibrational Frequencies, and NLO Properties of N-(2,3-Dichlorophenyl)-2-Nitrobenzene-Sulfonamide: a Density Functional Theory Study

    NASA Astrophysics Data System (ADS)

    Benhalima, Nadia; Boukabcha, Nourdine; Tamer, Ömer; Chouaih, Abdelkader; Avcı, Davut; Atalay, Yusuf; Hamzaoui, Fodil

    2016-04-01

    Density functional theory (DFT) calculations have been performed to obtain optimized geometries, vibrational wavenumbers, highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energies, nonlinear optical (NLO), and thermodynamic properties as well as molecular surfaces for N-(2,3-dichlorophenyl)-2-nitrobenzene-sulfonamide in different solvents. B3LYP level gives similar results for geometric parameters and vibration frequencies in gas phase, water, and ethanol solvents. The most stable structure, which is defined by the highest energy gap between HOMO and LUMO, is obtained in gas phase (∆E = 10.7376 eV). Obtained small energy gaps between HOMO and LUMO demonstrate the high-charge mobility in the titled compound. The magnitude of first static hyperpolarizability (β) parameter increases by the decreasing HOMO-LUMO energy gap. The intensive interactions between bonding and antibonding orbitals of titled compound are responsible for movement of π-electron cloud from donor to acceptor, i.e., intramolecular charge transfer (ICT), inducing the nonlinear optical properties. So, the β parameter for title compound is found to be in the range of 5.5255-3.7187 × 10-30 esu, indicating the considerable NLO character. All of these calculations have been performed in gas phase as well as water and ethanol solvents in order to demonstrate solvent effect on molecular structure, vibration frequencies, NLO properties, etc.

  9. Intrinsic Chirality and Prochirality at Air/R-(+)- and S-(-)-Limonene Interfaces: Spectral Signatures with Interference Chiral Sum-Frequency Generation Vibrational Spectroscopy

    SciTech Connect

    Fu, Li; Zhang, Yun; Wei, Zhehao; Wang, Hongfei

    2014-06-04

    We report in this work detailed measurements on the chiral and achiral sum-frequency vibrational spectra in the C-H stretching vibration region (2800-3050cm-1) of the air/liquid interfaces of R-limonene and S-limonene, using the recently developed high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS). The achiral SFG spectra of R-limonene and S-limonene, as well as the equal amount (50/50) racemic mixture show that the enantiomers are with the same interfacial orientations. The interference chiral SFG spectra of the limonene enantiomers exhibit spectral signature from chiral response of the Cα-H stretching mode, and spectral signature from prochiral response of the CH2 asymmetric stretching mode, respectively. The chiral spectral feature of the Cα-H stretching mode changes sign from R-limonene to S-limonene, and disappears for the 50/50 racemic mixture. While the prochiral spectral feature of the CH2 asymmetric stretching mode is the same for R-limonene and S-limonene, and also surprisingly remains the same for the 50/50 racemic mixture. These results provided detail information in understanding the structure and chirality of molecular interfaces, and demonstrated the sensitivity and potential of SFG-VS as unique spectroscopic tool for chirality characterization and chiral recognition at the molecular interface.

  10. Solvent Effects on Molecular Structure, Vibrational Frequencies, and NLO Properties of N-(2,3-Dichlorophenyl)-2-Nitrobenzene-Sulfonamide: a Density Functional Theory Study

    NASA Astrophysics Data System (ADS)

    Benhalima, Nadia; Boukabcha, Nourdine; Tamer, Ömer; Chouaih, Abdelkader; Avcı, Davut; Atalay, Yusuf; Hamzaoui, Fodil

    2016-08-01

    Density functional theory (DFT) calculations have been performed to obtain optimized geometries, vibrational wavenumbers, highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energies, nonlinear optical (NLO), and thermodynamic properties as well as molecular surfaces for N-(2,3-dichlorophenyl)-2-nitrobenzene-sulfonamide in different solvents. B3LYP level gives similar results for geometric parameters and vibration frequencies in gas phase, water, and ethanol solvents. The most stable structure, which is defined by the highest energy gap between HOMO and LUMO, is obtained in gas phase (∆ E = 10.7376 eV). Obtained small energy gaps between HOMO and LUMO demonstrate the high-charge mobility in the titled compound. The magnitude of first static hyperpolarizability ( β) parameter increases by the decreasing HOMO-LUMO energy gap. The intensive interactions between bonding and antibonding orbitals of titled compound are responsible for movement of π-electron cloud from donor to acceptor, i.e., intramolecular charge transfer (ICT), inducing the nonlinear optical properties. So, the β parameter for title compound is found to be in the range of 5.5255-3.7187 × 10-30 esu, indicating the considerable NLO character. All of these calculations have been performed in gas phase as well as water and ethanol solvents in order to demonstrate solvent effect on molecular structure, vibration frequencies, NLO properties, etc.

  11. Experimental and CIS, TD-DFT, ab initio calculations of visible spectra and the vibrational frequencies of sulfonyl azide-azoic dyes

    NASA Astrophysics Data System (ADS)

    Teimouri, Abbas; Chermahini, Alireza Najafi; Taban, Keivan; Dabbagh, Hossein A.

    2009-03-01

    The detailed experimental and computational analysis [Hartree-Fock (HF), Time-Dependent Density-Functional Theory (TD-DFT) and Second-Order Møller-Plesset Perturbation Theory (PM2) levels of theory at standard 6-31G* basis set] of structure, infrared spectra and visible spectra of azo dyes are investigated. The optimized geometries and calculated vibrational frequencies are evaluated via comparison with experimental values. The vibrational spectral data obtained from solid phase FT-IR spectra are assigned based on the results of the theoretical calculations. The observed spectra are found to be in good agreement with the calculated values. The geometry optimization yields a planar conformation for phenyl rings with azo moiety. The energy and oscillator strength calculated by Configuration Interaction Singles (CIS) complements the Time-Dependent Density-Functional Theory (TD-DFT) results and the experimental findings. Unfortunately, PM2 method could not predict vibrational frequencies and visible spectra of the azo dyes under conditions of this investigation.

  12. Vibration sensors

    NASA Astrophysics Data System (ADS)

    Gupta, Amita; Singh, Ranvir; Ahmad, Amir; Kumar, Mahesh

    2003-10-01

    Today, vibration sensors with low and medium sensitivities are in great demand. Their applications include robotics, navigation, machine vibration monitoring, isolation of precision equipment & activation of safety systems e.g. airbags in automobiles. Vibration sensors have been developed at SSPL, using silicon micromachining to sense vibrations in a system in the 30 - 200 Hz frequency band. The sensing element in the silicon vibration sensor is a seismic mass suspended by thin silicon hinges mounted on a metallized glass plate forming a parallel plate capacitor. The movement of the seismic mass along the vertical axis is monitored to sense vibrations. This is obtained by measuring the change in capacitance. The movable plate of the parallel plate capacitor is formed by a block connected to a surrounding frame by four cantilever beams located on sides or corners of the seismic mass. This element is fabricated by silicon micromachining. Several sensors in the chip sizes 1.6 cm x 1.6 cm, 1 cm x 1 cm and 0.7 cm x 0.7 cm have been fabricated. Work done on these sensors, techniques used in processing and silicon to glass bonding are presented in the paper. Performance evaluation of these sensors is also discussed.

  13. C/O Ratios in Exoplanetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Madhusudhan, N.

    2012-04-01

    Recent observations are allowing unprecedented constraints on the carbon-to-oxygen (C/O) ratios of giant exoplanetary atmospheres. Elemental abundance ratios, such as the C/O ratio, of planetary atmospheres provide important constraints on planetary interior compositions and formation conditions, and on the chemical and dynamical processes in the atmospheres. In addition, for super-Earths, the potential availability of water and oxygen, and hence the notion of `habitability', is contingent on the C/O ratio. Typically, an oxygen-rich composition, motivated by the solar nebula C/O of 0.5, is assumed in models of exoplanetary formation, interiors, and atmospheres. However, recent observations of exoplanetary atmospheres are suggesting the possibility of C/O ratios of 1.0 or higher, motivating the new class of Carbon-rich Planets (CRPs). In this talk, we will present observational constraints on atmospheric C/O ratios for an ensemble of transiting exoplanets and discuss their implications on the various aspects of exoplanetary characterization described above. Motivated by these results, we propose a two-dimensional classification scheme for irradiated giant exoplanets in which the incident irradiation and the atmospheric C/O ratio are the two dimensions. We demonstrate that some of the extreme anomalies reported in the literature for hot Jupiter atmospheres can be explained based on this 2-D scheme. An overview of new theoretical avenues and observational efforts underway for chemical characterization of extrasolar planets, from hot Jupiters to super-Earths, will be presented.

  14. Vibration ride comfort criteria

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Leatherwood, J. D.

    1976-01-01

    Results are presented for an experimental study directed to derive equal vibration discomfort curves, to determine the influence of vibration masking in order to account for the total discomfort of any random vibration, and to develop a scale of total vibration discomfort in the case of human response to whole-body vertical vibration. Discomfort is referred to as a subjective discomfort associated with the acceleration level of a particular frequency band. It is shown that passenger discomfort to whole-body vibration increases linearly with acceleration level for each frequency. Empirical data provide a mechanism for determining the degree of masking (or summation) of the discomfort of multiple frequency vibration. A scale for the prediction of passenger discomfort is developed.

  15. Vibration analyzer

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1990-01-01

    The invention relates to monitoring circuitry for the real time detection of vibrations of a predetermined frequency and which are greater than a predetermined magnitude. The circuitry produces an instability signal in response to such detection. The circuitry is particularly adapted for detecting instabilities in rocket thrusters, but may find application with other machines such as expensive rotating machinery, or turbines. The monitoring circuitry identifies when vibration signals are present having a predetermined frequency of a multi-frequency vibration signal which has an RMS energy level greater than a predetermined magnitude. It generates an instability signal only if such a vibration signal is identified. The circuitry includes a delay circuit which responds with an alarm signal only if the instability signal continues for a predetermined time period. When used with a rocket thruster, the alarm signal may be used to cut off the thruster if such thruster is being used in flight. If the circuitry is monitoring tests of the thruster, it generates signals to change the thruster operation, for example, from pulse mode to continuous firing to determine if the instability of the thruster is sustained once it is detected.

  16. Intramolecular vibrational energy redistribution from a high frequency mode in the presence of an internal rotor: Classical thick-layer diffusion and quantum localization

    NASA Astrophysics Data System (ADS)

    Manikandan, Paranjothy; Keshavamurthy, Srihari

    2007-08-01

    We study the effect of an internal rotor on the classical and quantum intramolecular vibrational energy redistribution (IVR) dynamics of a model system with three degrees of freedom. The system is based on a Hamiltonian proposed by Martens and Reinhardt [J. Chem. Phys. 93, 5621 (1990)] to study IVR in the excited electronic state of para-fluorotoluene. We explicitly construct the state space and show, confirming the mechanism proposed by Martens and Reinhardt, that an excited high frequency mode relaxes via diffusion along a thick layer of chaos created by the low frequency-rotor interactions. However, the corresponding quantum dynamics exhibits no appreciable relaxation of the high frequency mode. We attribute the quantum suppression of the classical thick-layer diffusion to the rotor selection rules and, possibly, dynamical localization effects.

  17. Nonalbuminuric Renal Impairment in Type 2 Diabetic Patients and in the General Population (National Evaluation of the Frequency of Renal Impairment cO-existing with NIDDM [NEFRON] 11)

    PubMed Central

    Thomas, Merlin C.; MacIsaac, Richard J.; Jerums, George; Weekes, Andrew; Moran, John; Shaw, Jonathan E.; Atkins, Robert C.

    2009-01-01

    OBJECTIVE Most diabetic patients with impaired renal function have a urinary albumin excretion rate in the normal range. In these patients, the etiology of renal impairment is unclear, and it is also unclear whether this nonalbumunuric renal impairment is unique to diabetes. RESEARCH DESIGN AND METHODS In this study, we examined the frequency and predictors of nonalbumunuric renal impairment (estimated glomerular filtration rate [eGFR] <60 ml/min per 1.73 m2) in a nationally representative cohort of 3,893 patients with type 2 diabetes and compared our findings with rates observed in the general population from the Australian Diabetes, Obesity and Lifestyle Study (AusDiab) survey (n = 11,247). RESULTS Of the 23.1% of individuals with type 2 diabetes who had eGFR <60 ml/min per 1.73 m2 (95% CI 21.8–24.5%), more than half (55%) had a urinary albumin excretion rate that was persistently in the normal range. This rate of renal impairment was predictably higher than that observed in the general population (adjusted odds ratio 1.3, 95% CI 1.1–1.5, P < 0.01) but was solely due to chronic kidney disease associated with albuminuria. In contrast, renal impairment in the absence of albuminuria was less common in those with diabetes than in the general population, independent of sex, ethnicity, and duration of diabetes (0.6, 0.5–0.7, P < 0.001). CONCLUSIONS Nonalbuminuric renal impairment is not more common in those with diabetes. However, its impact may be more significant. New studies are required to address the pathogenesis, prevention, and treatment of nonalbuminuric renal disease. PMID:19470839

  18. 2D heterodyne-detected sum frequency generation study on the ultrafast vibrational dynamics of H{sub 2}O and HOD water at charged interfaces

    SciTech Connect

    Inoue, Ken-ichi; Singh, Prashant C.; Nihonyanagi, Satoshi; Tahara, Tahei; Yamaguchi, Shoichi

    2015-06-07

    Two-dimensional heterodyne-detected vibrational sum-frequency generation (2D HD-VSFG) spectroscopy is applied to study the ultrafast vibrational dynamics of water at positively charged aqueous interfaces, and 2D HD-VSFG spectra of cetyltrimethylammonium bromide (CTAB)/water interfaces in the whole hydrogen-bonded OH stretch region (3000 cm{sup −1} ≤ ω{sub pump} ≤ 3600 cm{sup −1}) are measured. 2D HD-VSFG spectrum of the CTAB/isotopically diluted water (HOD-D{sub 2}O) interface exhibits a diagonally elongated bleaching lobe immediately after excitation, which becomes round with a time constant of ∼0.3 ps due to spectral diffusion. In contrast, 2D HD-VSFG spectrum of the CTAB/H{sub 2}O interface at 0.0 ps clearly shows two diagonal peaks and their cross peaks in the bleaching region, corresponding to the double peaks observed at 3230 cm{sup −1} and 3420 cm{sup −1} in the steady-state HD-VSFG spectrum. Horizontal slices of the 2D spectrum show that the relative intensity of the two peaks of the bleaching at the CTAB/H{sub 2}O interface gradually change with the change of the pump frequency. We simulate the pump-frequency dependence of the bleaching feature using a model that takes account of the Fermi resonance and inhomogeneity of the OH stretch vibration, and the simulated spectra reproduce the essential features of the 2D HD-VSFG spectra of the CTAB/H{sub 2}O interface. The present study demonstrates that heterodyne detection of the time-resolved VSFG is critically important for studying the ultrafast dynamics of water interfaces and for unveiling the underlying mechanism.

  19. Effect of the vibration-translation transfer rate on laser-induced frequency chirp in a long-pulse CO sub 2 laser

    SciTech Connect

    Chou, H.P.; Willman, B.; Leung, K.; Theophanis, G.; Hasson, V. )

    1990-05-21

    A frequency sweeping (chirping) mechanism governed by the lasing gas pressure and composition has been observed in a long-pulse TE CO{sub 2} laser for the first time. The mechanism was detected in heterodyned data obtained from photomixing the pulsed laser output with a cw local oscillator. A theory has been developed which links this chirp-governing mechanism to the vibration-translation (V-T) transfer rate from the lower laser level to the ground state. This new theory extends the existing theories on chirp in pulsed CO{sub 2} lasers into the long-pulse regime.

  20. On the information content of natural frequency spectra associated with different angular numbers. [acoustic velocity in vibrating fluid sphere model of earth structure

    NASA Technical Reports Server (NTRS)

    Barcilon, V.

    1978-01-01

    The problem of inferring the speed of sound in a contained spherically symmetric fluid solely from its natural frequencies of vibration is considered. An investigation of the case in which the data consist of the two spectra associated with the angular numbers 0 and 1, suggests the possibility that a one-parameter family of slowness profiles can be constructed. These profiles are compatible with the data, up to first order in the non-uniformity of the fluid. It is conjectured that for other angular numbers, the loss of information increases as the difference between them increases.

  1. The acoustic power of a vibrating clamped circular plate revisited in the wide low frequency range using expansion into the radial polynomials.

    PubMed

    Rdzanek, Wojciech P

    2016-06-01

    This study deals with the classical problem of sound radiation of an excited clamped circular plate embedded into a flat rigid baffle. The system of the two coupled differential equations is solved, one for the excited and damped vibrations of the plate and the other one-the Helmholtz equation. An approach using the expansion into radial polynomials leads to results for the modal impedance coefficients useful for a comprehensive numerical analysis of sound radiation. The results obtained are accurate and efficient in a wide low frequency range and can easily be adopted for a simply supported circular plate. The fluid loading is included providing accurate results in resonance. PMID:27369144

  2. The study of the effects of mechanical vibration at infrasound frequency on [(3)H]-thymidine incorporation into DNA of E. coli K-12.

    PubMed

    Martirosyan, Varsik; Baghdasaryan, Naira; Ayrapetyan, Sinerik

    2013-03-01

    The aim of the present work was to investigate the frequency-dependent effects of mechanical vibration at infrasound frequency (MV at IS frequency or MV) on E. coli K-12 growth by investigating the cell proliferation, using radioactive [(3)H]-thymidine assay. The frequency-dependent effects of MV were shown that it could either stimulate or inhibit the growth of microbes. However, the mechanism through which the MV effects affect the bacterial cells is not clear yet. It was suggested that the aqua medium can serve as a target through which the biological effect of MV on microbes could be realized. To check this hypothesis the frequency-dependent effect (2, 4, 6, 8, 10 Hz) of MV on the bacterial growth in cases of exposure the preliminary treated microbes-free medium and microbes containing medium were studied. It has been shown that MV at 4, 8, and 10 Hz frequency has inhibition effects, while at 2 and 6 Hz has stimulation effects on cell proliferation. PMID:23046076

  3. The electronic origin and vibrational levels of the first excited singlet state of isocyanic acid (HNCO)

    SciTech Connect

    Berghout, H. Laine; Crim, F. Fleming; Zyrianov, Mikhail; Reisler, Hanna

    2000-04-15

    The combination of vibrationally mediated photofragment yield spectroscopy, which excites molecules prepared in single vibrational states, and multiphoton fluorescence spectroscopy, which excites molecules cooled in a supersonic expansion, provides detailed information on the energetics and vibrational structure of the first excited singlet state (S{sub 1}) of isocyanic acid (HNCO). Dissociation of molecules prepared in individual vibrational states by stimulated Raman excitation probes vibrational levels near the origin of the electronically excited state. Detection of fluorescence from dissociation products formed by multiphoton excitation through S{sub 1} of molecules cooled in a supersonic expansion reveals the vibrational structure at higher energies. Both types of spectra show long, prominent progressions in the N-C-O bending vibration built on states with different amounts of N-C stretching excitation and H-N-C bending excitation. Analyzing the spectra locates the origin of the S{sub 1} state at 32 449{+-}20 cm{sup -1} and determines the harmonic vibrational frequencies of the N-C stretch ({omega}{sub 3}=1034{+-}20 cm{sup -1}), the H-N-C bend ({omega}{sub 4}=1192{+-}19 cm{sup -1}), and the N-C-O bend ({omega}{sub 5}=599{+-}7 cm{sup -1}), values that are consistent with several ab initio calculations. The assigned spectra strongly suggest that the N-C stretching vibration is a promoting mode for internal conversion from S{sub 1} to S{sub 0}. (c) 2000 American Institute of Physics.

  4. Research on relation between bending stress and characteristic frequency of H-shaped beam by free vibration deflection

    SciTech Connect

    Yoshida, Tsutomu; Watanabe, Takeshi

    2014-05-27

    In order to investigate a relation between a bending stress and a characteristic frequency of a beam, 4-point loading which had constant moment region was conducted to a beam with H shape configuration experimentally and numerically. H-shaped beam has many characteristic deformation modes. Axial tensile stress in the beam made its characteristic frequency higher, and compressive stress lower. In the experiment, some characteristic frequencies got higher by a bending stress, and the others stayed in a small frequency fluctuation. The distinction is anticipated as a capability to measure a bending stress of a beam by its characteristic frequencies.

  5. Shaping frequency response of a vibrating plate for passive and active control applications by simultaneous optimization of arrangement of additional masses and ribs. Part I: Modeling

    NASA Astrophysics Data System (ADS)

    Wrona, Stanislaw; Pawelczyk, Marek

    2016-03-01

    An ability to shape frequency response of a vibrating plate according to precisely defined demands has a very high practical potential. It can be applied to improve acoustic radiation of the plate for required frequencies or enhance acoustic isolation of noise barriers and device casings by using both passive and active control. The proposed method is based on mounting severaladditional ribs and masses (passive and/or active) to the plate surface at locations followed from an optimization process. This paper, Part I, concerns derivation of a mathematical model of the plate with attached elements in the function of their shape and placement. The model is validated by means of simulations and laboratory experiments, and compared with models known from the literature. This paper is followed by a companion paper, Part II, where the optimization process is described. It includes arrangement of passive elements as well as actuators and sensors to improve controllability and observability measures, if active control is concerned.

  6. The structures, binding energies and vibrational frequencies of Ca3 and Ca4: An application of the CCSD(T) method

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Rendell, Alistair P.; Taylor, Peter R.

    1992-01-01

    The Ca3 and Ca4 metallic clusters have been investigated using state-of-the-art ab initio quantum mechanical methods. Large atomic natural orbital basis sets have been used in conjunction with the singles and doubles coupled-cluster (CCSD) method, a coupled-cluster method that includes a perturbational estimate of connected triple excitations, denoted CCSD(T), and the multireference configuration interaction (MRCI) method. The equilibrium geometries, binding energies and harmonic vibrational frequencies have been determined with each of the methods so that the accuracy of the coupled-cluster methods may be assessed. Since the CCSD(T) method reproduces the MRCI results very well, cubic and quartic force fields of Ca3 and Ca4 have been determined using this approach and used to evaluate the fundamental vibrational frequencies. The infrared intensities of both the e' mode of Ca3 and the t2 mode of Ca4 are found to be small. The results obtained in this study are compared and contrasted with those from our earlier studies on small Be and Mg clusters.

  7. Molecular structure, Normal Coordinate Analysis, harmonic vibrational frequencies, Natural Bond Orbital, TD-DFT calculations and biological activity analysis of antioxidant drug 7-hydroxycoumarin

    NASA Astrophysics Data System (ADS)

    Sebastian, S.; Sylvestre, S.; Jayarajan, D.; Amalanathan, M.; Oudayakumar, K.; Gnanapoongothai, T.; Jayavarthanan, T.

    2013-01-01

    In this work, we report harmonic vibrational frequencies, molecular structure, NBO and HOMO, LUMO analysis of Umbelliferone also known as 7-hydroxycoumarin (7HC). The optimized geometric bond lengths and bond angles obtained by computation (monomer and dimmer) shows good agreement with experimental XRD data. Harmonic frequencies of 7HC were determined and analyzed by DFT utilizing 6-311+G(d,p) as basis set. The assignments of the vibrational spectra have been carried out with the help of Normal Coordinate Analysis (NCA) following the Scaled Quantum Mechanical Force Field Methodology (SQMFF). The change in electron density (ED) in the σ* and π* antibonding orbitals and stabilization energies E(2) have been calculated by Natural Bond Orbital (NBO) analysis to give clear evidence of stabilization originating in the hyperconjugation of hydrogen-bonded interaction. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) complements with the experimental findings. The simulated spectra satisfactorily coincides with the experimental spectra. Microbial activity of studied compounds was tested against Staphylococcus aureus, Streptococcus pyogenes, Bacillus subtilis, Escherichia coli, Psuedomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, Shigella flexneri, Salmonella typhi and Enterococcus faecalis.

  8. Comparative study of time-dependent effects of 4 and 8 Hz mechanical vibration at infrasound frequency on E. coli K-12 cells proliferation.

    PubMed

    Martirosyan, Varsik; Ayrapetyan, Sinerik

    2015-01-01

    The aim of the present work is to study the time-dependent effects of mechanical vibration (MV) at infrasound (IS) frequency at 4 and 8 Hz on E. coli K-12 growth by investigating the cell proliferation, using radioactive [(3)H]-thymidine assay. In our previous work it was suggested that the aqua medium can serve as a target through which the biological effect of MV on microbes could be realized. At the same time it was shown that microbes have mechanosensors on the surface of the cells and can sense small changes of the external environment. The obtained results were shown that the time-dependent effects of MV at 4 and 8 Hz frequency could either stimulate or inhibit the growth of microbes depending from exposure time. It more particularly, the invention relates to a method for controlling biological functions through the application of mechanical vibration, thus making it possible to artificially control the functions of bacterial cells, which will allow us to develop method that can be used in agriculture, industry, medicine, biotechnology to control microbial growth. PMID:24725172

  9. Accurate rest frequencies for the submillimetre-wave lines of C{3}O in ground and vibrationally excited states below 400 cm-1

    NASA Astrophysics Data System (ADS)

    Bizzocchi, L.; Degli Esposti, C.; Dore, L.

    2008-12-01

    The submillimetre-wave spectrum of C3O (X^1Σ^+) has been investigated in the laboratory using a source-modulation microwave spectrometer equipped with a gas-phase flow pyrolysis system for the production of unstable chemical species. C3O was produced by thermal decomposition of fumaryl chloride at 900 °C. Thirty-seven new rotational transitions were observed in the frequency range 307-740 GHz for the ground vibrational state, reaching a J quantum number as high as 76. Additionally, new millimetre-wave and submillimetre-wave lines were recorded for the bending fundamental v5 = 1, and for its overtones v5 = 2 and v5 = 3 whose rotational spectra have been identified for the first time. The new laboratory measurements provide much improved rest frequencies in the submillimetre spectral region for the ground state spectra of C3O, and for the first levels of its low-energy v5 vibrational ladder, useful for the radioastronomical identification of their rotational lines in the ISM. Tables 5 to 8 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/492/875

  10. Interfacial Water Structure and Cation Binding with the Dppc Phosphate at Air /aqueous Interfaces Studied by Vibrational Sum Frequency Generation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hua, Wei; Allen, Heather C.

    2012-06-01

    Molecular-level knowledge of water structure and cation binding specificity to lipid headgroups at lipid/water interfaces plays a key role in many relevant chemical, biological, and environmental processes. To obtain information on the molecular organization at aqueous interfaces, vibrational sum frequency generation (VSFG) has been applied extensively as an interface-specific technique. Dipalmitoylphosphocholine (DPPC) is a major component of cell membranes and has been used as a proxy for the organic coating on fat-coated aerosols. In the present work, in addition to conventional VSFG studies on cation interaction with the phosphate headgroup moiety of DPPC, we employ phase-sensitive vibrational sum frequency generation (PS-VSFG) to investigate the average direction of the transition dipole moment of interfacial water molecules. The average orientation of water structure at DPPC/water interfaces is inferred. DPPC orients interfacial water molecules on average with their net transition dipole moment pointing towards the surface. The influence of Na+, K+, Mg2+, Ca2+ is identified in regard to interfacial water structure and DPPC headgroup organization. Ca2+ is observed to have greater impact on the water structure and a unique binding affinity to the phosphate headgroup relative to other cations tested. In highly concentrated Ca2+ regimes the already disturbed interfacial hydrogen-bonding network reorganizes to resemble that of the neat salt solution interface.

  11. Bis(trifluoroacetyl) peroxide, CF(3)C(O)OOC(O)CF(3).

    PubMed

    Kopitzky, R; Willner, H; Hermann, A; Oberhammer, H

    2001-06-01

    Pure, highly explosive CF(3)C(O)OOC(O)CF(3) is prepared for the first time by low-temperature reaction between CF(3)C(O)Cl and Na(2)O(2). At room temperature CF(3)C(O)OOC(O)CF(3) is stable for days in the liquid or gaseous state. The melting point is -37.5 degrees C, and the boiling point is extrapolated to 44 degrees C from the vapor pressure curve log p = -1875/T + 8.92 (p/mbar, T/K). Above room temperature the first-order unimolecular decay into C(2)F(6) + CO(2) occurs with an activation energy of 129 kJ mol(-1). CF(3)C(O)OOC(O)CF(3) is a clean source for CF(3) radicals as demonstrated by matrix-isolation experiments. The pure compound is characterized by NMR, vibrational, and UV spectroscopy. The geometric structure is determined by gas electron diffraction and quantum chemical calculations (HF, B3PW91, B3LYP, and MP2 with 6-31G basis sets). The molecule possesses syn-syn conformation (both C=O bonds synperiplanar to the O-O bond) with O-O = 1.426(10) A and dihedral angle phi(C-O-O-C) = 86.5(32) degrees. The density functional calculations reproduce the experimental structure very well. PMID:11375681

  12. Energy trapping in high-frequency vibrations of piezoelectric plates with partial mass layers under lateral electric field excitation.

    PubMed

    Liu, Bo; Jiang, Qing; Xie, Huimin; Yang, Jiashi

    2011-04-01

    We study coupled face-shear (FS) and thickness-twist (TT) motions of a piezoelectric plate of monoclinic crystals with mass layers on the central parts of the plate surfaces. The plate is driven by a lateral electric field. Mindlin's first-order theory of piezoelectric plates is used. An analytical solution is obtained. Numerical results are presented for an AT-cut quartz plate, including the motional capacitance of the plate as a resonator and the vibration modes trapped under the mass layers in the central portion of the plate. The relationship between the dimension of the mass layers and the number of trapped modes is examined. PMID:21145572

  13. Measurement of vibrational, gas, and rotational temperatures of H2 (X1 Σg+) in radio frequency inductive discharge plasma by multiplex coherent anti-Stokes Raman scattering spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Shakhatov, V. A.; De Pascale, O.; Capitelli, M.; Hassouni, K.; Lombardi, G.; Gicquel, A.

    2005-02-01

    Translational, rotational, and vibrational temperatures of H2 in radio frequency inductive discharge plasmas at pressures and power release ranges, respectively, of 0.5-8 torr and 0.5-2W/cm3 have been measured by using multiplex coherent anti-Stokes Raman scattering (CARS) spectroscopy. Computational codes have been developed to determine the rotational and vibrational temperatures and to analyze H2 CARS spectrum for nonequilibrium conditions. The results show a decrease of the vibrational temperature from 4250 to 2800 K by increasing the pressure from 0.5 to 8 torr and a corresponding increase of the rotational temperature from 525 to 750 K.

  14. An Indirect Mixed-Sensitivity Approach to Microgravity Vibration Isolation: The Exploitation of Kinematic Coupling In Frequency-weighting Design-Filter Selections

    NASA Technical Reports Server (NTRS)

    Hampton, R. David; Whorton, Mark S.

    2000-01-01

    Many space-science experiments need an active isolation system to provide them with the requisite microgravity environment. The isolation systems planned for use with the International Space Station have been appropriately modeled using relative position relative velocity, and acceleration states. In theory, frequency-weighting design filters can be applied to these state-space models, in order to develop optimal H2 or mixed-norm controllers with desired stability and performance characteristics. In practice, however, the kinematic coupling among the various states can lead, through the associated frequency-weighting-filters, to conflicting demands on the Riccati design "machinery." The results can be numerically ill-conditioned regulator and estimator Riccati equations and/or reduced intuition in the design process. In addition, kinematic coupling can result in a redundancy in the demands imposed by the frequency weights. Failure properly to account for this type of coupling can lead to an unnecessary increase in controller dimensionality and, in turn, controller complexity. This paper suggests a rational approach to the assignment of frequency-weighting design filters, in the presence of the kinematic coupling among states that exists in the microgravity vibration isolation problem.

  15. An Indirect Mixed-Sensitivity Approach to Microgravity Vibration Isolation: The Exploitation of Kinematic Coupling In Frequency-Weighting Design-Filter Selections

    NASA Technical Reports Server (NTRS)

    Hampton, R. David; Whorton, Mark S.

    2000-01-01

    Many space science experiments need an active isolation system to provide them with the requisite microgravity environment. The isolation systems planned for use with the International Space Station have been appropriately modeled using relative position, relative velocity, and acceleration states. In theory, frequency design filters can be applied to these state-space models, in order to develop optimal H, or mixed-norm controllers with desired stability- and performance characteristics. In practice. however, the kinematic coupling among the various states can lead, through the associated frequency-weighting-filters, to conflicting demands on the Riccati design "machinery." The results can be numerically ill-conditioned regulator and estimator Riccati equations and/or reduced intuition in the design process. In addition, kinematic coupling can result in a redundancy in the demands imposed by the frequency weights. Failure properly to account for this type of coupling can lead to an unnecessary increase in controller dimensionality and, in turn, controller complexity. This paper suggests a rational approach to the assignment of frequency weighting design filters, in the presence of the kinematic coupling among states that exists in the microgravity vibration isolation problem.

  16. Low-magnitude high-frequency vibration enhanced mesenchymal stem cell recruitment in osteoporotic fracture healing through the SDF-1/CXCR4 pathway.

    PubMed

    Wei, F Y; Chow, S K; Leung, K S; Qin, J; Guo, A; Yu, O L; Li, G; Cheung, W H

    2016-01-01

    Low-magnitude high-frequency vibration (LMHFV) has been proven to promote osteoporotic fracture healing. Mechanical stimulation was reported to enhance SDF-1/CXCR4 signalling in mesenchymal stem cells (MSCs). We hypothesised that LMHFV promoted osteoporotic fracture healing by enhancing MSC migration through the SDF-1/CXCR4 pathway. 152 ovariectomised SD-rats received closed femoral fracture in groups of vibration+MSC (VMG) (20 min/d, 5 d/week), vibration+MSC+AMD3100 (VMAG; AMD, a CXCR4 inhibitor) (1 mg/kg/d, intraperitoneal), MSC (MG) (1 × 106 MSC, intracardiac) or control (CG) for a treatment duration of 2, 4 or 8 weeks. MSC migration was evaluated by ex-vivo green fluorescent protein signal in the callus; and fracture healing was examined by weekly radiographs, endpoint computed-tomography and mechanical test. At week-2 and week-4, ex-vivo callus GFP intensity of VMG was significantly higher than other groups (p < 0.05). From week-2 to week-3, both callus width and callus area in VMG were significantly larger; and from week-7 to week-8, smaller than other groups (p < 0.05). At week-8, high-density bone volume fraction, bone volume fraction, bone mineral density and stiffness in VMG were significantly higher than other 3 groups (p < 0.05). This study demonstrated that LMHFV promoted MSC migration and fracture healing in osteoporotic rats. This effect was attenuated by CXCR4 inhibitor, providing strong evidence that SDF-1-mediated MSC migration was one of the important mechanisms through which LMHFV enhanced fracture healing. PMID:27215741

  17. Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region.

    PubMed

    Chen, Bi-Chang; Sung, Jiha; Lim, Sang-Hyun

    2010-12-23

    We present a new coherent anti-Stokes Raman scattering (CARS) method that can perform background-free microscopy and microspectroscopy at the vibrational fingerprint region. Chirped broad-band pulses from a single Ti:sapphire laser generate CARS signals over 800-1700 cm(-1) with a spectral resolution of 20 cm(-1). Fast modulation of the time delay between the pump and Stokes pulses coupled with lock-in signal detection not only removes the nonresonant background but also produces Raman-like CARS signals. Chemical imaging and microspectroscopy are demonstrated with various samples such as edible oils, lipid membranes, skin tissue, and plant cell walls. Systematic studies of the signal generation mechanism and several fundamental aspects are discussed. PMID:21126030

  18. Two-dimensional-vibrational spectroscopy: Development and testing of a two-dimensional ultrafast Raman spectrometer with Time-Frequency Detection

    NASA Astrophysics Data System (ADS)

    Urbanek, Diana Camila

    The major emphasis of this dissertation will be given toward the theoretical tools necessary to acquire high resolution femtosecond Raman spectra from broadband femtosecond pulses. The theory of simultaneous Time-Frequency Detection (TFD) will be discussed and demonstrated to be a robust technique to acquire the vibrational coherence information. Finally, two experimental cases that demonstrate the feasibility of femtosecond TFD-CARS for acetonitrile and nitrobenzene will be presented. In the introductory first chapter, the motivation and fundamentals for developing 2D-vibrational spectroscopy using femtosecond Raman detection is presented. For coherent Raman spectroscopies, common femtosecond pulses often lie in an intermediate regime: their bandwidth is too wide for measurements in the frequency domain, but their temporal width is too broad for homodyne measurements in the time domain. A recent paper [Phys. Rev. Lett. 97 , 267401 (2006)] showed that complete Raman spectra can be recovered from intermediate length pulses by using simultaneous time and frequency detection (TFD). Heterodyne detection and a phase-stable local oscillator at the anti-Stokes frequency are not needed with TFD. Phase-control, pulse shaping or pulses of widely differing duration are not required. To demonstrate the TFD method, a high resolution Raman spectrum of nitrobenzene obtained from 60 fs pulses is discussed theoretically and experimentally in the second chapter. In the third chapter model calculations illustrate how information on the Raman spectrum is smoothly transferred from the frequency domain to the time domain as the pulse width shortens. When data is collected in both dimensions, the Raman spectrum is completely determined to high resolution, regardless of the probe pulse width. The TFD method is tested on experimental CARS data from acetonitrile in the fourth chapter. Compared to theoretical models, experimental data are complicated by noise and incomplete knowledge of the

  19. A new optical parametric amplifier based on lithium thioindate used for sum frequency generation vibrational spectroscopic studies of the Amide I mode of an interfacial model peptide

    SciTech Connect

    York, Roger L.; Holinga, George J.; Guyer, Dean R.; McCrea, Keith R.; Ward, Robert S.; Somorjai, Gabor A.

    2008-05-03

    We describe a new optical parametric amplifier (OPA) that employs lithium thioindate, LiInS{sub 2} (LIS), to create tunable infrared light between 1500 cm{sup -1} and 2000 cm{sup -1}. The OPA based on LIS described within provides intense infrared light with a good beam profile relative to similar OPAs built on silver gallium sulfide, AgGaS{sub 2} (AGS), or silver gallium selenide, AgGaSe{sub 2} (AGSe). We have used the new LIS OPA to perform surface-specific sum frequency generation (SFG) vibrational spectroscopy of the amide I vibrational mode of a model peptide at the hydrophobic deuterated polystyrene (d{sub 8}-PS)-phosphate buffered saline interface. This model polypeptide (which is known to be an ?-helix in the bulk solution under the high ionic strength conditions employed here) contains hydrophobic leucyl (L) residues and hydrophilic lysyl (K) residues, with sequence Ac-LKKLLKLLKKLLKL-NH{sub 2}. The amide I mode at the d{sub 8}-PS-buffer interface was found to be centered around 1655 cm{sup -1}. This can be interpreted as the peptide having maintained its {alpha}-helical structure when adsorbed on the hydrophobic surface, although other interpretations are discussed.

  20. Accelerator vibration issues

    SciTech Connect

    Tennant, R.A.

    1985-01-01

    Vibrations induced in accelerator structures can cause particle-beam jitter and alignment difficulties. Sources of these vibrations may include pump oscillations, cooling-water turbulence, and vibrations transmitted through the floor to the accelerator structure. Drift tubes (DT) in a drift tube linac (DTL) are components likely to affect beam jitter and alignment because they normally have a heavy magnet structure on the end of a long and relatively small support stem. The natural vibrational frequencies of a drift tube have been compared with theoretical predictions. In principle, by knowing natural frequencies of accelerator components and system vibrational frequncies, an accelerator can be designed that does not have these frequencies coinciding. 2 refs., 2 figs., 2 tabs.