These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Effect of dietary phytic acid and cadmium on the availability of cadmium, zinc, copper, iron, and manganese to rats  

SciTech Connect

The main route of cadmium intake for general population, both human and animal, is via ingestion. The intestinal absorption of cadmium is relatively low, 6% of a single oral dose for humans and less than 2% for various animal species. However, due to poor excretion, accumulation of cadmium occurs, primarily in kidney. The chronic exposure even to low levels of dietary cadmium can lead to the development of renal disturbances. Fox (1988) suggests that phytic acid might be a dietary component capable to influence the intestinal absorption of cadmium. Phytic acid naturally occurs as the major phosphorus storage constituent of most cereals, legumes, and oilseeds. At physiological pH, phytic acid is ionized and has a strong affinity for divalent cations. The potential of phytic acid to decrease the availability of Zn has been for long time of concern for nutritionists. Phytic acid has also been reported to decrease the availability of other trace metals. For nonessential elements, reduced availability of lead has been observed. The experimental data concerning the effect of dietary phytic acid on the availability of dietary cadmium are limited to the work of Rose and Quarterman (1984). The objective of this experiment was to examine: (1) the effect of dietary phytic acid on the availability of cadmium under conditions of chronic dietary exposure of rats to cadmium, and (2) the effect of dietary phytic acid and of chronic dietary exposure to cadmium on the availability of zinc, copper, iron, and manganese to rats. 19 refs., 4 tabs.

Turecki, T.; Ewan, R.C.; Stahr, H.M. [Iowa State Univ., Ames, IA (United States)

1995-05-01

2

Correlations between lead, cadmium, copper, zinc, and iron concentrations in frozen tuna fish  

SciTech Connect

The presence of metallic pollutants in marine ecosystems has promoted wide research plans in order to evaluate pollution levels in marine organisms. However, little is known concerning environmental and physiological processes that regulate the concentration of trace metals in marine organisms. Even though the toxicity of lead and cadmium is well established, copper, zinc and iron are considered as essential elements for mammals. Little is known about heavy metals, other than mercury, concentrations in fresh and frozen tuna fish. Fifty samples obtained at the entrance of a canning factory in Santa Cruz de Tenerife (Canary Islands), were analyzed by atomic absorption spectrophotometry. Results were treated by applying the Statistical Package for the Social Sciences compiled and linked in the software of a Digital VAX/VMS 11/780 computer.

Galindo, L.; Hardisson, A.; Montelongo, F.G.

1986-04-01

3

Cadmium, Copper, Iron, and Zinc Concentrations in Kidneys of Grey Wolves, Canis lupus , from Alaska, Idaho, Montana (USA) and the Northwest Territories (Canada)  

Microsoft Academic Search

Cadmium, copper, iron, and zinc levels were measured in the kidneys of 115 grey wolves (Canis lupus) from Idaho, Montana and Alaska (United States), and from the Northwest Territories (Canada). No significant differences\\u000a in the levels of iron or copper were observed between locations, but wolf kidneys from more northern locations had significantly\\u000a higher cadmium levels (Alaska > Northwest Territories

S. R. Hoffmann; S. A. Blunck; Petersen Kelly; E. M. Jones; J. C. Koval; R. Misek; J. A. Frick; H. D. Cluff; C. A. Sime; M. McNay; K. B. Beckman; M. W. Atkinson; M. Drew; M. D. Collinge; E. E. Bangs; R. G. Harper

2010-01-01

4

Cadmium, copper, iron, and zinc concentrations in kidneys of grey wolves, Canis lupus, from Alaska, Idaho, Montana (USA) and the Northwest Territories (Canada).  

PubMed

Cadmium, copper, iron, and zinc levels were measured in the kidneys of 115 grey wolves (Canis lupus) from Idaho, Montana and Alaska (United States), and from the Northwest Territories (Canada). No significant differences in the levels of iron or copper were observed between locations, but wolf kidneys from more northern locations had significantly higher cadmium levels (Alaska > Northwest Territories > Montana ? Idaho), and wolves from Alaska showed significantly higher zinc than other locations. Additionally, female wolves in Alaska had higher iron levels than males, and adult wolves in Montana had higher copper levels than subadults. PMID:20972865

Hoffmann, S R; Blunck, S A; Petersen, K N; Jones, E M; Koval, J C; Misek, R; Frick, J A; Cluff, H D; Sime, C A; McNay, M; Beckman, K B; Atkinson, M W; Drew, M; Collinge, M D; Bangs, E E; Harper, R G

2010-11-01

5

Effect of chronic cadmium administration on liver and kidney concentrations of zinc, copper, iron, manganese, and chromium  

SciTech Connect

Chronic Cd exposure in animals brings about significant morphological and functional changes in both liver and kidney. Most studies of cadmium effects on essential metal tissue distribution involve large concentrations of either Cd or essential metals added to the diet. The effect of Cd ingestion on trace metal metabolism of animals consuming usual diets may be marked, as elements whose physical and chemical properties are enough alike...will act antagonistically to each other biologically. Therefore, the purpose of the present study was to observe the effects of a chronic low dose of Cd added to an otherwise normal diet on the liver and kidney accumulation of zinc, copper, iron, manganese and chromium in the mouse at different times after the cessation of cadmium ingestion.

Friel, J.K.; Borgman, R.F.; Chandra, R.K.

1987-04-01

6

Concentration of copper, iron, zinc, cadmium, lead, and nickel in boar semen and relation to the spermatozoa quality.  

PubMed

The concentration of copper, iron, zinc, cadmium, lead, and nickel as well as its relation to spermatozoa quality was investigated. The semen samples were analyzed by atomic absorption spectrophotometry (AAS). The concentration of copper in boar semen was 1.64 +/- 0.28 mg kg(-1) and of iron 16.14 +/- 10.35 mg kg(-1). The concentration of zinc in boar semen reached an average value of 171.74 +/- 64.72 mg kg(-1) and the level of cadmium reached 0.01-0.16 mg kg(-1) with the average value of 0.05 mg kg(-1). The analysis of lead showed that the concentration of this element in boar semen was 0.02 +/- 0.03 mg kg(-1) and the average level of nickel was 0.06 +/- 0.08 mg kg(-1). The total percentage of pathological spermatozoa was 9.82 +/- 1.47%. Detail analysis determined 3.18% of separated flagellum, 2.26% knob twisted flagellum, 0.88% flagellum torso, 0.85% flagellum ball, 0.42% broken flagellum, 0.23% retention of the cytoplasmic drop, 0.14% small heads, 0.03% large heads, and 1.83% forms other of pathological changes. Correlation analysis showed significant (p < 0.05) positive correlation between copper and lead (r = 0.52). High correlation between small head and knob twisted tail (r = 0.67), small head and broken flagellum (r = 0.88) as well as between small head and total number of pathological spermatozoa (r = 0.73) was determined. PMID:14533929

Massányi, Peter; Trandzík, Jozef; Nad, Pavol; Koréneková, Beáta; Skalická, Magdaléna; Toman, Robert; Lukác, Norbert; Strapák, Peter; Halo, Marko; Turcan, Ján

2003-01-01

7

Influence of copper and iron on subacute cadmium intoxication in protein-malnourished rats  

SciTech Connect

Male albino rats maintained on low-protein (9%) diets were dosed intraperitoneally with 0.75 mg Cd/kg, as cadmium chloride, for 20 days. Groups of these animals were provided with diets supplemented with 40 ppm Cu, 400 ppm Fe or a combination of both during the exposure period. Hepatic and renal distribution of Cd, Zn, Cu, and Fe along with activity of acid and alkaline phosphatases and ribonuclease and glutathione content were studied. Uptake of Cd both in liver and in kidney was significant and was accompanied by increased Zn and depletion of Fe concentration. The Cu level remained unaltered. Dietary supplementation of Cu or Fe interacted effectively and influenced the metal distribution. Acid and alkaline phosphatases in both liver and kidney were inhibited by Cd exposure. However, Cu and/or Fe supplements could to a varying degree offset the Cd-induced inhibition. Cadmium exposure did not, however, elicit any effect on hepatic and renal ribonuclease activity of low-protein-fed animals. The glutathione concentration registered profound increase on Cd exposure, possibly to act as a defense mechanism.

Tewari, P.C.; Kachru, D.N.; Tandon, S.K.

1986-10-01

8

Biotransference and biomagnification of selenium copper, cadmium, zinc, arsenic and  

E-print Network

Biotransference and biomagnification of selenium copper, cadmium, zinc, arsenic and lead the biotransference of selenium copper, cadmium, zinc, arsenic and lead was measured in a contaminated seagrass. There was no evidence of copper, cadmium, zinc or lead biomagnification within the food web examined. Copper, cadmium

Canberra, University of

9

Electrothermal atomic absorption spectrometric determination of cadmium, copper, iron, lead, and selenium in fruit slurry: analytical application to nutritional and toxicological quality control.  

PubMed

A method is described for direct determination of cadmium, copper, iron, lead, and selenium in slurried fruit samples by electrothermal atomic absorption spectrometry. The fresh samples were suspended in Triton X-100 and shaken with 10 g zirconia spheres until a slurry was formed. The graphite furnace conditions were optimized for each element. The detection limits were 0.3, 3.5, 15.0, 0.5, and 10.0 ng/g for Cd, Cu, Fe, Pb, and Se, respectively. Accuracy and precision were checked against sample mineralization in a microwave acid-digestion bomb. Results for analyses of National Institute of Standards and Technology standard reference materials agreed closely with certified values. Analytical application of this method was tested with 40 samples of 8 widely consumed fruit species. The mean values (referred to fresh weight of edible fraction) for each fruit species had ranges of 0.0003-0.050 microgram/g for Cd, 0.316-1.094 micrograms/g for Cu, 2.00-5.50 micrograms/g for Fe, 0.050-0.396 microgram/g for Pb, and 0.010-0.020 microgram/g for Se. The proposed method is useful for routine multielemental analysis in nutritional and toxicological quality control of fruits and similar foodstuffs. PMID:7580318

Cabrera, C; Lorenzo, M L; Lopez, M C

1995-01-01

10

High copper concentrations in squid livers in association with elevated levels of silver, cadmium, and zinc  

Microsoft Academic Search

Livers from 43 Loligo opalescens, 14 Ommastrephes bartrami, and 7 Symplectoteuthis oualaniensis were analyzed for their silver, cadmium, copper, zinc and iron contents. Copper concentrations of up to 15,000 µg\\/g dry weight were found in L. opalescens in conjunction with significant correlations between this element and Ag, Cd and Zn. The latter elements are known to affect Cu metabolism in

J. H. Martin; A. R. Flegal

1975-01-01

11

Clean hydrometallurgical route to recover zinc, silver, lead, copper, cadmium and iron from hazardous jarosite residues produced during zinc hydrometallurgy.  

PubMed

A hydrometallurgical process for treating the hazardous jarosite residue from zinc hydrometallurgy was proposed, for not only detoxifying the residue, but also recovering the contained valuable metal components. The jarosite was initially activated and decomposed by sintering at 650°C for 1h. The sintered residue was leached in 6mol L(-1) aqueous NH(4)Cl solution at 105°C, followed by filtration. The leaching extraction of Zn, Pb, Cu, Cd and Ag are more than 95%. During reduction with Zn powder, more than 93% of Pb, Cu, Ag and Cd can be simultaneously recovered. Then the NH(4)Cl leaching residue were leached again in 30wt% aqueous NaOH solution for 1h at 160°C, and about 94% of As and 73% of Si were removed from the residue. The final residue was almost completely detoxified, and contains about 55wt% Fe, which can be used as an iron concentration. PMID:21684683

Ju, Shaohua; Zhang, Yifei; Zhang, Yi; Xue, Peiyi; Wang, Yihui

2011-08-30

12

Cadmium and copper metallothioneins in the American lobster, Homarus americanus  

SciTech Connect

Lobsters were fed cadmium-rich oysters for 28 days, and the induction of cadmium metallothionein and its relation to concentrations of cadmium, copper, and zinc in the digestive gland and gills was determined. A portion of the tissues also was retained for determining the cytosolic distribution of these metals by gel filtration and ion-exchange chromatography. The digestive gland contained a majority of the cadmium, copper, and zinc, and both cadmium and zinc were actively accumulated from the oysters. Gel chromatography of the digestive gland cytosol showed that initially only copper was bound to a protein with a molecular weight in the range of metallothionein (i.e., 10,000-7000). However, after feeding on cadmium-laden oysters for 28 days, both cadmium and copper were bound to the metallothioneinlike protein. Further purification of the cadmium/copper protein by ion-exchange chromatography showed that a large portion of the copper and all of the cadmium did not bind to DEAE-Sephacel. The induction of cadmium metallothionein in the digestive gland is correlated with tissue cadmium concentration. Coincident with the induction of the cadmium metallothionein was a cytosolic redistribution of copper. The distribution of zinc was not affected.

Engel, D.W.; Brouwer, M.

1986-03-01

13

Molecular Mediators Governing Iron-Copper Interactions  

PubMed Central

Given their similar physiochemical properties, it is a logical postulate that iron and copper metabolism are intertwined. Indeed, iron-copper interactions were first documented over a century ago, but the homeostatic effects of one on the other has not been elucidated at a molecular level to date. Recent experimental work has, however, begun to provide mechanistic insight into how copper influences iron metabolism. During iron deficiency, elevated copper levels are observed in the intestinal mucosa, liver, and blood. Copper accumulation and/or redistribution within enterocytes may influence iron transport, and high hepatic copper may enhance biosynthesis of a circulating ferroxidase, which potentiates iron release from stores. Moreover, emerging evidence has documented direct effects of copper on the expression and activity of the iron-regulatory hormone hepcidin. This review summarizes current experimental work in this field, with a focus on molecular aspects of iron-copper interplay and how these interactions relate to various disease states. PMID:24995690

Gulec, Sukru; Collins, James F.

2015-01-01

14

Electrolytic Corrosion of Iron and Copper  

Microsoft Academic Search

IT is generally accepted that if cast iron and copper are coupled together in a brine solution, the iron, being the less noble member, is likely to suffer corrosion. The copper, on the other hand, will be made `more negative' by contact with the iron and will be prevented in greater or less degree from corroding. The classical work on

W. F. Higgins

1954-01-01

15

Adsorption mechanism of copper and cadmium onto defatted waste biomass.  

PubMed

In this study, the amount of copper or cadmium adsorbed using waste biomass (i.e., coffee grounds (CG) and rice bran (RB)) was investigated. The amount of crude protein in defatted CG (D-CG) or RB (D-RB) was greater than that in CG or RB, respectively. The amount of copper or cadmium adsorbed using CG was greater than that using RB. Additionally, the amount of copper or cadmium adsorbed was not affected by the presence of fat in CG. Adsorption data was fitted to the Freundlich equation, and the correlation coefficients were in the range of 0.794-0.991. The main adsorption mechanism was thought to be monolayer adsorption onto the surface of the waste biomass. The adsorption rate data was fitted to the pseudo-second-order model, and the correlation coefficient average was in the range of 0.891-0.945. This result showed that the rate-limiting step may be chemisorption. Moreover, the amount of copper or cadmium desorbed from CG or RB using 0.01 mol/L or 1.00 mol/L HNO(3) was investigated. Desorption with 0.01 mol/L HNO(3) resulted in the recovery of 86-97% of the copper and cadmium, indicating that copper or cadmium that was adsorbed using waste biomass was recoverable. PMID:21701100

Ogata, Fumihiko; Tominaga, Hisato; Yabutani, Hitoshi; Kawasaki, Naohito

2011-01-01

16

Water Research 37 (2003) 21732185 Natural variation of copper, zinc, cadmium and selenium  

E-print Network

Water Research 37 (2003) 2173­2185 Natural variation of copper, zinc, cadmium and selenium 2002; accepted 22 November 2002 Abstract Copper, zinc, cadmium and selenium were measured the accumulation of trace metals in contaminated environments. Copper, zinc, cadmium and selenium concentrations

Canberra, University of

17

PHYTOREMEDIATION OF SOIL CONTAMINATED WITH CADMIUM, COPPER AND POLYCHLORINATED BIPHENYLS  

Microsoft Academic Search

A pot experiment and a field trial were conducted to study the remediation of an aged field soil contaminated with cadmium, copper and polychlorinated biphenyls (PCBs) (7.67 ± 0.51 mg kg Cd, 369 ± 1 mg kg Cu in pot experiment; 8.46 ± 0.31 mg kg Cd, 468 ± 7 mg kg Cu, 323 ± 12 ?g kg PCBs for

Longhua Wu; Zhu Li; Cunliang Han; Ling Liu; Ying Teng; Xianghui Sun; Cheng Pan; Yujuan Huang; Yongming Luo; Peter Christie

2012-01-01

18

Defective Copper Transport in the copt5 Mutant Affects Cadmium Tolerance.  

PubMed

Cadmium toxicity interferes with essential metal homeostasis, which is a problem for both plant nutrition and healthy human food consumption. Copper uptake is performed by the members of the Arabidopsis high affinity copper transporter (COPT) family. One of the members, COPT5, is involved in copper recycling from the vacuole toward the cytosolic compartment. We show herein that copt5 mutants are more sensitive to cadmium stress than wild-type plants, as indicated by reduced growth. Exacerbated cadmium toxicity in copt5 mutants is due specifically to altered copper traffic through the COPT5 transporter. Three different processes, which have been shown to affect cadmium tolerance, are affected in copt5 mutants. First, ethylene biosynthesis diminishes under copper deficiency and, in the presence of cadmium, ethylene production further diminishes. Copper deficiency responses are also attenuated under cadmium treatment. Remarkably, while copt5 roots present higher oxidative stress toxicity symptoms than controls, aerial copt5 parts display lower oxidative stress, according to reduced cadmium delivery to shoots. Taken together, these results demonstrate that copper transport plays a key role in cadmium resistance, and suggest that oxidative stress triggers an NADPH oxidase-mediated signaling pathway, which contributes to cadmium translocation and basal plant resistance. The slightly lower cadmium levels that reach aerial parts in the copt5 mutants, irrespectively of the copper content in the media, suggest a new biotechnological approach to minimize toxic cadmium entry into food chains. PMID:25432970

Carrió-Seguí, Angela; Garcia-Molina, Antoni; Sanz, Amparo; Peñarrubia, Lola

2014-11-27

19

Cadmium and copper-induced changes in tomato membrane lipids  

Microsoft Academic Search

Cadmium and copper uptake and distribution, as well as their effects on growth and lipid composition were investigated in 17-day-old tomato seedlings Lycopersicon esculentum Mill. cv. 63\\/5 F1) grown in culture solution supplied with two concentrations of Cd or Cu (0, 5 and 50 ?M). The accumulation of Cd and Cu increased with external metal concentrations, and was considerably higher

Omar Ouariti; Naima Boussama; Moktar Zarrouk; Abdelkader Cherif; Mohamed Habib Ghorbal

1997-01-01

20

Phytoremediation of soil contaminated with cadmium, copper and polychlorinated biphenyls  

Microsoft Academic Search

A pot experiment and a field trial were conducted to study the remediation of an aged field soil contaminated with cadmium, copper and polychlorinated biphenyls (PCBs) (7.67±0.51 mg kg Cd, 369±1 mg kg Cu in pot experiment; 8.46±0.31 mg kg Cd, 468±7 mg kg Cu, 323±12 ?g kg PCBs for field experiment) under different cropping patterns. In the pot experiment

Longhua Wu; Zhu Li; Cunliang Han; Ling Liu; Ying Teng; Xianghui Sun; Cheng Pan; Yujuan Huang; Yongming Luo; Peter Christie

2011-01-01

21

A mitochondrial-vacuolar signaling pathway in yeast that affects iron and copper metabolism.  

PubMed

Mitochondria utilize iron, but the transporters that mediate mitochondrial iron uptake and efflux are largely unknown. Cells with a deletion in the vacuolar iron/manganese transporter Ccc1p are sensitive to high iron. Overexpression of MRS3 or MRS4 suppresses the high iron sensitivity of Deltaccc1 cells. MRS3 and MRS4 have recently been suggested to encode mitochondrial iron transporters. We demonstrate that deletion of MRS3 and MRS4 severely affects cellular and mitochondrial metal homeostasis, including a reduction in cytosolic and mitochondrial iron acquisition. We show that vacuolar iron transport is increased in Deltamrs3Deltamrs4 cells, resulting in decreased cytosolic iron and activation of the iron-sensing transcription factor Aft1p. Activation of Aft1p leads to increased expression of the high affinity iron transport system and increased iron uptake. Deletion of CCC1 in Deltamrs3Deltamrs4 cells restores cellular and mitochondrial iron homeostasis to near normal levels. Deltamrs3Deltamrs4 cells also show increased resistance to cobalt but decreased resistance to copper and cadmium. These phenotypes are also corrected by deletion of CCC1 in Deltamrs3Deltamrs4 cells. Decreased copper resistance in Deltamrs3Deltamrs4 cells results from activation of Aft1p by Ccc1p-mediated iron depletion, as deletion of CCC1 or AFT1 in Deltamrs3Deltamrs4 cells restores copper resistance. These results suggest that deletion of mitochondrial proteins can alter vacuolar metal homeostasis. The data also indicate that increased expression of the AFT1-regulated gene(s) can disrupt copper homeostasis. PMID:15161905

Li, Liangtao; Kaplan, Jerry

2004-08-01

22

Accumulation of cadmium and copper by the terrestrial snail Arianta arbustorum L.: kinetics and budgets  

Microsoft Academic Search

Specimens of the terrestrial gastropod Arianta arbustorum were fed on cadmium- or copper-enriched agar plates with the aim of performing an input\\/output analysis and of studying the distribution of these metals in several organs of the snails. After a feeding period of 20 days about 45% of cadmium were lost. 36% accumulated in the hepatopancreas, where a cadmium concentration of

Burkhard Berger; Reinhard Dallinger

1989-01-01

23

Cadmium, copper and lead in aquatic macrophytes in Shoal Lake (Manitoba-Ontario)  

Microsoft Academic Search

Cadmium, copper and lead concentrations were surveyed in several species of submerged aquatic macrophytes in a Precambrian Shield Lake. Values were variable within each species and interspecific differences in metal concentration were not significant over the season as a whole. Cadmium concentration increased during the season in Potamogeton foliosus and Myriophyllum exalbescens, while copper and lead declined in P. foliosus.

Eva Pip

1990-01-01

24

Simultaneous determination of arsenic, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, molybdenum, nickel, selenium, and zinc in fertilizers by microwave acid digestion and inductively coupled plasma-optical emission spectrometry detection: single-laboratory validation of a modification and extension of AOAC 2006.03.  

PubMed

A single-laboratory validation study was conducted for the simultaneous determination of arsenic, cadmium, calcium, cobalt, copper, chromium, iron, lead, magnesium, manganese, molybdenum, nickel, selenium, and zinc in all major types of commercial fertilizer products by microwave digestion and inductively coupled plasma-optical emission spectroscopy analysis. This validation study proposes an extension and modification of AOAC 2006.03. The extension is the inclusion of calcium, copper, iron, magnesium, manganese, and zinc, and the modification is incorporation of hydrochloric acid in the digestion system. This dual acid digestion utilizes both hydrochloric and nitric acids in a 3 to 9 mL volume ratio/100 mL. In addition to 15 of the 30 original validation materials used in the 2006.03 collaborative study, National Institute of Standards and Technology Standard Reference Material 695 and Magruder 2009-06 were incorporated as accuracy materials. The main benefits of this proposed method are a significant increase in laboratory efficiency when compared to the use of both AOAC Methods 965.09 and 2006.03 to achieve the same objective and an enhanced recovery of several metals. PMID:25051614

Webb, Sharon; Bartos, James; Boles, Rhonda; Hasty, Elaine; Thuotte, Ethel; Thiex, Nancy J

2014-01-01

25

Selenium, Cadmium, Copper, and Zinc Concentrations in Sediments and Mullet (Mugil cephalus) from the Southern Basin of Lake Macquarie, NSW, Australia  

E-print Network

Selenium, Cadmium, Copper, and Zinc Concentrations in Sediments and Mullet (Mugil cephalus) from. Selenium, cadmium, copper, and zinc concentrations were measured in sediments and the tissues of mullet­19; cadmium, 14­42; copper, 1.5­3.6; zinc, 0.77­2.2 times background). Selenium, cadmium, and copper in Lake

Canberra, University of

26

Influence of humic acids on the accumulation of copper and cadmium in Vallisneria spiralis L. from sediment  

Microsoft Academic Search

Physiological responses and metal accumulation in Vallisneria spiralis L. exposed to copper and cadmium contaminated sediment were examined at different metal concentrations and the influence\\u000a of humic acids on copper and cadmium accumulation was also studied. The plants of V. spiralis accumulated high amount of copper and cadmium. The maximum accumulation of 396 and 114 mg kg?1 DW copper were found in

Qian Wang; Zhu Li; Shuiping Cheng; Zhenbin Wu

2010-01-01

27

Bulk diffusion of iron in copper  

NASA Astrophysics Data System (ADS)

The temperature dependence of bulk diffusion coefficient of iron in copper has been determined by electron microprobe analysis (EMA) in the temperature range from 923 to 1273 K to be D_{Fe} = 0.03 × 10^{ - 4} exp ( { - {187 kJ/mol}}/{{RT}}} ) m2/s. The results obtained differ from the parameters of bulk diffusion determined by the tracer method: the activation energy is less by 30 kJ/mol and the preexponential factor is less by approximately a factor of 50. The deviations of the solutions from the ideality does not explain the discrepancies obtained.

Prokoshkina, D. S.; Rodin, A. O.; Esin, V. A.

2012-06-01

28

Comparative Effects of Iron Deficiency Induced by Bleeding and a Low-Iron Diet on the Intestinal Absorptive Interactions of Iron, Cobalt, Manganese, Zinc, Lead and Cadmium1  

Microsoft Academic Search

Dietary iron deficiency enhances the absorption of iron, cobalt, manganese, zinc, cadmium and lead, whereas, iron deficiency due to bleeding in creases the absorption of iron, cobalt and perhaps manganese. To determine whether the response to bleeding is qualitatively different from that induced by dietary iron deficiency, metal absorption was studied in mice fed either a high- iron diet (120

PETER R. FLANAGAN; JAMES HAIST; LESLIE S. VALBERG

29

Iron versus Copper II. Principles and Applications in Bioinorganic Chemistry.  

ERIC Educational Resources Information Center

Discusses the differences between iron and copper. Describes various aspects of the behaviors of these two elements, including those of biological and environmental significance. Addresses the evolution of the atmosphere and sedimentary ore formation, the phylogeny of iron and copper, and some anthropological notes regarding the use of the metals.…

Ochiai, Ei-Ichiro

1986-01-01

30

Retronasal smell and detection thresholds of iron and copper salts  

Microsoft Academic Search

Iron and copper salts, when placed in the mouth, may give rise to odorous compounds which complicate their functioning as chemical stimuli. The contribution of retronasal smell to perception of these metal salts at threshold has not been determined. Detection thresholds of the sulfate and chloride salts of ferrous iron and copper, and sodium chloride (as a control) were determined

Effie M. Epke; Harry T. Lawless

2007-01-01

31

Adsorption of copper and cadmium onto soils: influence of organic matter  

SciTech Connect

The sorption of copper and cadmium by three arid-zone soils at low solution concentrations (i.e., <10 mmol m/sup -3/ for copper and <50 ..mu..mol m/sup -3/ for cadmium) was studied. Sorption isotherms in the present study were characterized by an S-curve which is defined by an initial slope that increases with metal concentration. Preliminary kinetic studies indicated that copper sorption reactions were completed within one hour. The sigmoidal character of the isotherm was found always to be greater for copper than for cadmium and greatest for the soil highest in soluble organic carbon. The distribution function, K/sub d/, for cadmium was a monotonically decreasing function of the amount of metal sorbed. Values of K/sub d/ first increased and then decreased with increasing amounts of copper sorbed. Although increasing sorbent concentration decreased copper sorption, the shape of the isotherm remained unchanged. A soil separate was prepared by successive extractions with a low electrolyte solution in order to remove most of the soluble organic matter. L-curve isotherms were observed for copper and cadmium sorption by the soil separate; the surface exhibited a high affinity for the metals relative to aqueous solution. The addition of a commercially prepared fulvic acid to the soil separate reproduced an S-curve for copper sorption. Likewise, addition of fulvic acid to the unamended soils increased the sigmoidal character of the copper isotherms. A kinetic study suggested that either fulvic acid was not sorbed by the soil separate within the time period of experiment (24 hours) or that it was readily desorbed by copper. Copper was readily desorbed by fulvic acid at concentrations that are found in the soil environment. It was proposed that soluble organic ligands can form nonsorbing, soluble complexes with copper and cadmium.

LeClaire, J.P.

1985-01-01

32

TOXICOLOGICAL COMPARISON OF NATURAL AND CULTURED POPULATIONS OF ARACTIA TONSA TO CADMIUM, COPPER, AND MERCURY  

EPA Science Inventory

Cultured Acartia tonsa manifested a reproducible toxicological response through six generations. There were no statistically significant differences in the responses of F1 and F6 generations to cadmium, copper, and mercury. Cultured and field populations (parental) exposed to cad...

33

TOXICITIES OF CADMIUM, COPPER, AND ZINC TO FOUR JUVENILE STAGES OF CHINOOK SALMON AND STEELHEAD  

EPA Science Inventory

Continuous-flow toxicity tests were conducted to determine the relative tolerances of newly hatched alevins, swim-up alevins, parr, and smolts of chinook salmon (Oncorhyncus tshawytscha) to cadmium, copper, and zinc. Newly hatched alevins were much more tolerant to cadmium and, t...

34

Copper Stress Affects Iron Homeostasis by Destabilizing Iron-Sulfur Cluster Formation in Bacillus subtilis?  

PubMed Central

Copper and iron are essential elements for cellular growth. Although bacteria have to overcome limitations of these metals by affine and selective uptake, excessive amounts of both metals are toxic for the cells. Here we investigated the influences of copper stress on iron homeostasis in Bacillus subtilis, and we present evidence that copper excess leads to imbalances of intracellular iron metabolism by disturbing assembly of iron-sulfur cofactors. Connections between copper and iron homeostasis were initially observed in microarray studies showing upregulation of Fur-dependent genes under conditions of copper excess. This effect was found to be relieved in a csoR mutant showing constitutive copper efflux. In contrast, stronger Fur-dependent gene induction was found in a copper efflux-deficient copA mutant. A significant induction of the PerR regulon was not observed under copper stress, indicating that oxidative stress did not play a major role under these conditions. Intracellular iron and copper quantification revealed that the total iron content was stable during different states of copper excess or efflux and hence that global iron limitation did not account for copper-dependent Fur derepression. Strikingly, the microarray data for copper stress revealed a broad effect on the expression of genes coding for iron-sulfur cluster biogenesis (suf genes) and associated pathways such as cysteine biosynthesis and genes coding for iron-sulfur cluster proteins. Since these effects suggested an interaction of copper and iron-sulfur cluster maturation, a mutant with a conditional mutation of sufU, encoding the essential iron-sulfur scaffold protein in B. subtilis, was assayed for copper sensitivity, and its growth was found to be highly susceptible to copper stress. Further, different intracellular levels of SufU were found to influence the strength of Fur-dependent gene expression. By investigating the influence of copper on cluster-loaded SufU in vitro, Cu(I) was found to destabilize the scaffolded cluster at submicromolar concentrations. Thus, by interfering with iron-sulfur cluster formation, copper stress leads to enhanced expression of cluster scaffold and target proteins as well as iron and sulfur acquisition pathways, suggesting a possible feedback strategy to reestablish cluster biogenesis. PMID:20233928

Chillappagari, Shashi; Seubert, Andreas; Trip, Hein; Kuipers, Oscar P.; Marahiel, Mohamed A.; Miethke, Marcus

2010-01-01

35

Iron monosulfide as a scavenger for dissolved hexavalent chromium and cadmium.  

PubMed

Iron sulfide minerals are common components of soil/sedimentary environments. Reactions near the surfaces of iron sulfides play important roles in metal retention, mobility, and bioavailability. A series of batch experiments was conducted to study the removal of aqueous chromium and cadmium by iron monosulfide. Hexavalent chromium was reduced to Cr(III) by iron monosulfide with simultaneous precipitation of chromium and iron oxyhydroxide. In contrast to chromium, the primary retention mechanism of cadmium by iron monosulfide was lattice exchange. Surface adsorption to iron monosulfide and precipitation with sulfide on the iron monosulfide surface also contributed to the removal of aqueous cadmium. New phases of both chromium and cadmium were confirmed with transmission electron microscopy. The solution pH was an important factor in this research; it can change particle surface charge and metal species, hence affecting the removal of chromium, but not cadmium. Ferrous ions without FeS exhibited less Cr(VI) removal than with FeS, which might be owing to sulfides from FeS and the existence of the solid phase. Iron monosulfide exhibited higher removal efficiency for chromium and cadmium than zero valent iron and other iron oxide minerals, and the synergistic effect of ferrous iron and sulfide appeared to cause this result. PMID:18844124

Jo, S; Lee, J Y; Kong, S H; Choi, J; Park, J W

2008-09-01

36

Multi-Copper Oxidases and Human Iron Metabolism  

PubMed Central

Multi-copper oxidases (MCOs) are a small group of enzymes that oxidize their substrate with the concomitant reduction of dioxygen to two water molecules. Generally, multi-copper oxidases are promiscuous with regards to their reducing substrates and are capable of performing various functions in different species. To date, three multi-copper oxidases have been detected in humans—ceruloplasmin, hephaestin and zyklopen. Each of these enzymes has a high specificity towards iron with the resulting ferroxidase activity being associated with ferroportin, the only known iron exporter protein in humans. Ferroportin exports iron as Fe2+, but transferrin, the major iron transporter protein of blood, can bind only Fe3+ effectively. Iron oxidation in enterocytes is mediated mainly by hephaestin thus allowing dietary iron to enter the bloodstream. Zyklopen is involved in iron efflux from placental trophoblasts during iron transfer from mother to fetus. Release of iron from the liver relies on ferroportin and the ferroxidase activity of ceruloplasmin which is found in blood in a soluble form. Ceruloplasmin, hephaestin and zyklopen show distinctive expression patterns and have unique mechanisms for regulating their expression. These features of human multi-copper ferroxidases can serve as a basis for the precise control of iron efflux in different tissues. In this manuscript, we review the biochemical and biological properties of the three human MCOs and discuss their potential roles in human iron homeostasis. PMID:23807651

Vashchenko, Ganna; MacGillivray, Ross T. A.

2013-01-01

37

Iron Deficiency is Not Associated with Increased Blood Cadmium in Infants  

PubMed Central

Objectives To determine whether blood cadmium concentration is elevated in iron-deficient infants. Methods Blood cadmium and serum ferritin concentrations, serum iron/total iron-binding capacity (Fe/TIBC) and complete blood counts were measured in 31 iron deficient and 36 control infants, aged 6–24 months. All 31 iron-deficient infants received iron supplementation for 1–6 months. Results Blood cadmium concentrations were measured again in 19 of the iron deficient infants after their ferritin levels returned to the normal range. The mean blood cadmium concentration did not differ significantly in iron deficient and control infants. The mean blood cadmium concentration in the 19 iron-deficient infants was not significantly altered by ferric hydroxide treatment, while their hemoglobin, ferritin, and Fe/TIBC (%) concentrations were significantly higher after than before treatment. Conclusion These findings indicate that iron deficiency does not increase blood cadmium concentrations in infants, in contrast with the effects of iron deficiency on manganese and lead concentrations. PMID:24513153

2014-01-01

38

Influence of iron and zinc status on cadmium accumulation in Bangladeshi women  

SciTech Connect

Cadmium is a widespread environmental contaminant present in food. The absorption in the intestine increases in individuals with low iron stores, but the effect of zinc deficiency is not clear. The aim of the present study was to assess the influence of iron and zinc status on cadmium accumulation in pregnant Bangladeshi women. We measured cadmium in urine from 890 women using inductively coupled plasma mass spectrometry (ICPMS). Further, we also measured ferritin and zinc in plasma. The median cadmium concentration in urine was 0.59 {mu}g/L (adjusted to mean specific gravity of 1.012 g/mL). Analysis of covariance (ANCOVA) showed that urinary cadmium was associated with plasma ferritin and plasma zinc via a significant interaction between dichotomized plasma ferritin and plasma zinc. The analysis was adjusted for age and socioeconomic status. Women with low iron stores and adequate zinc status had significantly higher urinary cadmium compared to women with both adequate iron stores and zinc status. There was no difference in urinary cadmium between women with both low iron stores and zinc status compared to those with both adequate iron stores and zinc status. In conclusion, low iron stores were associated with increased cadmium accumulation, but only at adequate zinc status.

Kippler, Maria [Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Ekstroem, Eva-Charlotte [International Maternal and Child Health, Uppsala University, Uppsala (Sweden); Loennerdal, Bo [Department of Nutrition, University of California, Davis, CA 95616 (United States); Goessler, Walter [Institut fuer Chemie - Analytische Chemie, Karl-Franzens-Universitaet, Graz (Austria); Akesson, Agneta [Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); El Arifeen, Shams [International Centre for Diarrhoeal Disease Research, Bangladesh - ICDDR-B, GPO Box 128, Dhaka 1000 (Bangladesh); Persson, Lars-Ake [International Maternal and Child Health, Uppsala University, Uppsala (Sweden); Vahter, Marie [Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden)]. E-mail: Marie.Vahter@ki.se

2007-07-15

39

Phytoremediation of soil contaminated with cadmium, copper and polychlorinated biphenyls.  

PubMed

A pot experiment and afield trial were conducted to study the remediation of an aged field soil contaminated with cadmium, copper and polychlorinated biphenyls (PCBs) (7.67 +/- 0.51 mg kg(-1) Cd, 369 +/- 1 mg kg(-1) Cu in pot experiment; 8.46 +/- 0.31 mg kg(-1) Cd, 468 +/- 7 mg kg(-1) Cu, 323 +/- 12 microg kg(-1) PCBs for field experiment) under different cropping patterns. In the pot experiment Sedum plumbizincicola showed pronounced Cd phytoextraction. After two periods (14 months) of cropping the Cd removal rates in these two treatments were 52.2 +/- 12.0 and 56.1 +/- 9.1%, respectively. Total soil PCBs in unplanted control pots decreased from 323 +/- 11 to 49.3 +/- 6.6 microg kg(-1), but with no significant difference between treatments. The field microcosm experiment intercropping of three plant species reduced the yield of S. plumbizincicola, with a consequent decrease in soil Cd removal. S. plumbizincicola intercropped with E. splendens had the highest shoot Cd uptake (18.5 +/- 1.8 mg pot(-1)) after 6 months planting followed by intercropping with M. sativa (15.9 +/- 1.9 mg pot(-1)). Liming with S. plumbizincicola intercropped with M. sativa significantly promoted soil PCB degradation by 25.2%. Thus, adjustment of soil pH to 5.56 combined with intercropping with S. plumbizincicola and M. sativagave high removal rates of Cd, Cu, and PCBs. PMID:22908627

Wu, Longhua; Li, Zhu; Han, Cunliang; Liu, Ling; Teng, Ying; Sun, Xianghui; Pan, Cheng; Huang, Yujuan; Luo, Yongming; Christie, Peter

2012-07-01

40

The relationship between placental cadmium, zinc, and copper.  

PubMed

A number of interactions between the essential metals zinc (Zn) and copper (Cu), and the toxic metal cadmium (Cd), have been described in animal, but not in human tissues. The purpose of this study was to determine whether Cd levels are directly related to Zn or Cu levels in the human placenta at term, and whether this relationship is affected by parity or smoking. Atomic absorption spectroscopy was used to determine Cd, Zn and Cu in perfused placental cotyledons from 292 low-risk parturients. Plasma thiocyanate levels were used to determine smoking status. Linear regression and repeated measures analysis of variance (ANOVA) were used to examine relationships between the elements and the effects of parity and smoking status. Results show significant correlations between placental Cd and both Zn (r-0.41; p < 0.01) and Cu (r-0.35; p < 0.01), but only in multiparous patients. These relationships were not altered by smoking. These results suggest that Cd-Zn and Cd-Cu interactions occur in the placenta at "normal" levels of Cd exposure and over a very short time period. PMID:8440815

Kuhnert, B R; Kuhnert, P M; Lazebnik, N; Erhard, P

1993-02-01

41

Effects of cadmium and copper on zinc transport kinetics by isolated renal proximal cells.  

PubMed

Zinc, cadmium, and copper are known to interact in many transport processes, but the mechanism of inhibition is widely debated, being either competitive or noncompetitive according to the experimental model employed. We investigated the mechanisms of inhibition of zinc transport by cadmium and copper using renal proximal cells isolated from rabbit kidney. Initial rates of 65Zn uptake were assessed after 0.5 min of incubation. The kinetics parameters of zinc uptake obtained at 20 degrees C were a Jmax of 208.0 +/- 8.4 pmol.min-1.(mg protein)-1, a Km of 15.0 +/- 1.5 microM and an unsaturable constant of 0.259 +/- 0.104 (n = 8). Cadmium at 15 microM competitively inhibited zinc uptake. In the presence of 50 microM cadmium, or copper at both 15 and 50 microM, there was evidence of noncompetitive inhibition. These data suggest that zinc and cadmium enter renal proximal cells via a common, saturable, carrier-mediated process. The mechanisms of the noncompetitive inhibition observed at higher concentrations of cadmium or with copper require further investigation, but may involve a toxic effect on the cytoskeleton. PMID:1280984

Gachot, B; Poujeol, P

1992-11-01

42

Comparative effects of iron deficiency induced by bleeding and a low-iron diet on the intestinal absorptive interactions of iron, cobalt, manganese, zinc, lead and cadmium.  

PubMed

Dietary iron deficiency enhances the absorption of iron, cobalt, manganese, zinc, cadmium and lead, whereas, iron deficiency due to bleeding increases the absorption of iron, cobalt and perhaps manganese. To determine whether the response to bleeding is qualitatively different from that induced by dietary iron deficiency, metal absorption was studied in mice fed either a high-iron diet (120 ppm Fe) and bled (0.5 ml) or fed a low-iron diet (< 3 ppm Fe). Iron absorption from an intragastric dose was increased by the loss of 0.5 ml of blood; smaller losses of blood had no effect. Also, iron absorption was increased more by dietary iron deficiency than by bleeding. In perfusion experiments, bleeding increased the duodenal absorption of only iron and cobalt, whereas dietary iron deficiency enhanced the absorption of all the metals except cadmium. The patterns of absorptive inhibition of the metals by each other were similar in bled mice and in mice with dietary iron deficiency except that interactions among metals with lower affinities for the iron absorption mechanism--manganese, zinc, cadmium and lead--were more obvious in mice fed the low-iron diet. We concluded that bleeding only partially activates the iron absorptive mechanism and that the lack of a bleeding effect on the absorption of manganese, zinc, cadmium and lead results from the weaker interactions of these metals, with a partly-activated absorption process. PMID:7411235

Flanagan, P R; Haist, J; Valberg, L S

1980-09-01

43

Transcuprein is a Macroglobulin Regulated by Copper and Iron Availability  

PubMed Central

SUMMARY Transcuprein is a high affinity copper carrier in the plasma involved in the initial distribution of copper entering the blood from the digestive tract. To identify and obtain cDNA for this protein, it was purified from rat plasma by size exclusion and copper chelate affinity chromatography, and amino acid sequences were obtained. These revealed a 190 kDa glycosylated protein identified as the macroglobulin, ?1inhibitorIII, the main macroglobulin of rodent blood plasma. Albumin (65 kDa) co-purified in variable amounts and was concluded to be a contaminant (although it transiently can bind the macroglobulin). The main macroglobulin in human blood plasma (?2-macroglobulin), homologous to ?1inhibitorIII, also bound copper tightly. Expression of ?1I3 (transcuprein) mRNA by the liver was examined in rats with and without copper deficiency, using quantitative PCR and Northern analysis. Protein expression was examined by Western blotting. Deficient rats with 40% less ceruloplasmin oxidase activity and liver copper concentrations expressed about twice as much ?1I3 mRNA, but circulating levels of transcuprein did not differ. Iron deficiency, which increased liver copper concentrations 3-fold, reduced transcuprein mRNA expression and 7circulating levels of transcuprein relative to what occurred in rats with normal or excess iron. We conclude that transcupreins are specific macroglobulins that not only carry zinc but also transport copper in the blood; and that their expression can be modulated by copper and iron availability. PMID:17363239

Liu, Nanmei; Lo, Louis Shi-li; Askary, S. Hassan; Jones, LaTrice; Kidane, Theodros Z.; Nguyen, Trisha Trang Minh; Goforth, Jeremy; Chu, Yu-Hsiang; Vivas, Esther; Tsai, Monta; Westbrook, Terence; Linder, Maria C.

2009-01-01

44

Spatial Distribution of Total Cadmium, Copper, and Zinc in the Zebra Mussel ( Dreissena polymorpha) Along the Upper St. Lawrence River  

Microsoft Academic Search

The zebra mussel (Dreissena polymorpha) was utilized to assess the spatial distribution of three trace metals, cadmium, copper, and zinc, in the upper St. Lawrence River and to test the hypothesis that outflow from Lake Ontario influenced levels of these metals in near-shore biota. Zebra mussels, collected from twelve sites along the southern shore, were analyzed for total cadmium, copper,

Carolyn Johns

2001-01-01

45

Toxicodynamics of copper and cadmium in Folsomia candida exposed to simulated soil solutions.  

PubMed

To improve our understanding of metal bioavailability to soil-living invertebrates, the effect of porewater composition on the toxicodynamics of copper and cadmium in Folsomia candida (Collembola) was investigated. Assuming that porewater is the main exposure route, F. candida was exposed to simulated soil solutions of different composition. Toxicity of copper was slightly lower in a calcium-only solution than in a multication solution. With increasing copper concentrations from 0.005?mM to 1.37?mM, internal copper concentrations similarly increased in both exposure solutions, suggesting that a single cation nutrient solution is suitable for testing F. candida. In the second experiment, animals were exposed for 7 d to copper and cadmium in simplified soil solutions with different calcium (0.2?mM, 0.8?mM, 3.2?mM, 12.8?mM) and pH (5.0, 6.0, 7.0) levels. The median lethal concentration (LC50) values decreased with time in both the calcium and pH series. A hormetic-type effect was observed for copper in the second test, as well as in the calcium-only solution in the first experiment. Because of stronger hormesis, LC50s for copper were higher at lower calcium concentrations. For cadmium, LC50 values were higher at higher calcium concentrations, suggesting competition of calcium with the free cadmium ion. Toxicity of cadmium increased with decreasing pH, while copper was more toxic at intermediate pH. The results show that a toxicodynamics approach can help to improve the interpretation of metal toxicity to soil invertebrates, taking into account soil solution properties. PMID:23955663

Ardestani, Masoud M; van Gestel, Cornelis A M

2013-12-01

46

Effect of copper additions on the mechanical properties of iron  

NASA Astrophysics Data System (ADS)

The effect of copper alloying on the mechanical properties of iron is studied. Alloying of a model material (armco-iron) with 0.2-2.0% Cu is shown to increase the strength characteristics by a factor of 1.5-2.5 and to decrease the ductility by 8-60%.

Kostina, M. V.; Perkas, M. M.; Shelest, A. E.; Yusupov, V. S.

2011-05-01

47

Effects of copper and cadmium on osmoregulation and oxygen consumption in two species of estuarine crabs  

Microsoft Academic Search

Green crabs (Carcinus maenas) and rock crabs (Cancer irroratus) were exposed to various concentrations of copper as cupric chloride (CuCl2 · 2 H2O), and cadmium as cadmium chloride (CdCl2 · 21\\/2 H2O) for 48 h. The exposures were conducted at 5 different salinities. At the end of each exposure period, tests of blood-serum osmolality and gill-tissue oxygen consumption were performed.

F. P. Thurberg; M. A. Dawson; R. S. Collier

1973-01-01

48

Effect of age on sensitivity of daphnia magna to cadmium, copper and cyanazine  

SciTech Connect

Daphnia magna were exposed to cadmium, copper, and cyanazine to determine the relative sensitivities of several age groups: less than 4 h, less than 24 h, 1 d, 2 d, 3 d, 4 d, 5 d, and 6 d old. Mean cadmium 48-h EC50 values for each age group ranged from 23 to 164 micrograms/L. Mean copper EC50 values ranged from 6 to 18 micrograms/L. Cyanazine EC50 values ranged from 53 to 106 micrograms/L. The 1-d-old Daphnia mean EC50s were 48 and 49 micrograms/L for cadmium, 10 and 10 micrograms/L for copper and 84 and 86 microgram/L for cyanazine, respectively. These similar sensitivities indicate that older animals can be used in tests equally as well as younger animals, thus simplifying the recovery of daphnids in acute sediment toxicity tests.

Nebeker, A.V.; Cairns, M.A.; Onjukka, S.T.; Titus, R.H.

1986-01-01

49

The role of microRNAs in copper and cadmium homeostasis  

SciTech Connect

Essential heavy metals (e.g., copper) and non-essential metals (e.g., cadmium) are both toxic to plants at high concentrations. Recently, microRNAs (miRNAs) have emerged as important modulators of plants adaptive response to heavy metal stress. Plant miRNAs negatively regulate target mRNAs by post-transcriptional cleavage. miR398 regulates copper homeostasis via down-regulating the expression of Cu,Zn-superoxide dismutase (CSD), a scavenger of superoxide radicals. miR393 and miR171 play an important role in cadmium stress mediation. This review focuses on the recent advance in the involvement of miRNAs in copper and cadmium stress regulatory networks in plants.

Ding, Yan-Fei [State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310029 (China)] [State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310029 (China); Zhu, Cheng, E-mail: pzhch@zju.edu.cn [State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310029 (China)] [State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310029 (China)

2009-08-14

50

Iron deficiency in the pregnant rat has differential effects on maternal and fetal copper levels  

Microsoft Academic Search

Iron deficiency during pregnancy causes problems both for the mother and fetus. Iron deficiency is known to have secondary effects on copper metabolism. In this study, we use a rat model to examine the effect of iron deficiency on copper levels in maternal and fetal tissue. We assess whether the effects of iron deficiency on copper metabolism are due to

Lorraine Gambling; Susan Dunford; Harry J. McArdle

2004-01-01

51

The effect of copper on iron reduction and its application to the determination of total iron content in iron and copper ores by potassium dichromate titration.  

PubMed

The International Standard Organization (ISO) specifies two titrimetric methods for the determination of total iron content in iron ores using potassium dichromate as titrant after reduction of the iron(III) by tin(II) chloride and/or titanium(III) chloride. These two ISO methods (ISO2597-1 and ISO2597-2) require nearly boiling-point temperature for iron(III) reduction and suffer from copper interference and/or mercury pollution. In this study, potassium borohydride was used for reduction of iron(III) catalyzed by copper ions at ambient temperatures. In the absence of copper, iron(III) reduction by potassium borohydride was sluggish while a trace amount of copper significantly accelerated the reduction and reduced potassium borohydride consumption. The catalytic mechanism of iron(III) reduction in sulfuric acid and hydrochloric acid was investigated. Potassium borohydride in sodium hydroxide solution was stable without a significant degradation within 24h at ambient conditions and the use of potassium borohydride prepared in sodium hydroxide solution was safe and convenient in routine applications. The applicability of potassium borohydride reduction for the determination of total iron content by potassium dichromate titration was demonstrated by comparing with the ISO standard method using iron and copper ore reference materials and iron ore samples. PMID:24840467

Hu, Hanjun; Tang, Yang; Ying, Haisong; Wang, Minghai; Wan, Pingyu; Jin Yang, X

2014-07-01

52

Complexation of cadmium and copper by fluvial humic matter and effects on their toxicity.  

PubMed

The effects of humic acids and fulvic acids isolated from the River Arno (Italy) on the bioavailability and toxicity of cadmium and copper were assessed in relation to changes in their speciation. Measurements of the complexing capacity of solutions containing these organic ligands were carried out by a titration procedure followed by DPASV and toxicity tests were carried out using lysosomes isolated from rat liver. The complexing capacity of the physiological medium containing about 13 mg/L of humic acids, expressed as ligand concentrations, was 0.30 and 0.072 micromol/L for cadmium and copper respectively; the corresponding conditional stability constants were 4.2 x 10(11) and 1.3 x 10(8) (mol/L)-1. The complexing capacities of the solution containing the same amount of fulvic acids were 0.33 and 0.164 micromol/L for cadmium and copper respectively, the conditional stability constants were 3.2 x 10(11) and 2.4 x 10(7) (mol/L)-1. The humic acids reduced the toxicity of cadmium by about 5 times: the EC50 changed from 4.4 to 20.4 micromol/L. The dose effect curve of copper presented a bi-sigmoid trend and two EC50 values can be determined: The EC50(1) in the presence of humic acids changed from 2.0 to 3.1 micromol/L, while the EC50(2) increased from 22.3 to 45.3 micromol/L. The fulvic acids reduced the cadmium toxicity by about the same amount as humic acids, from 4.4 to 18.6 micromol/L, but they had no effect on copper toxicity. Analysing the chemical speciation of cadmium and copper in the presence of humic components and under toxicity test conditions we can say that the appreciable decrease of EC50 is not related to changes in their speciation; we can hypothesize that this is due to different processes, as well as to blocking of the lysosomal membrane. On the basis of the shape of the dose-effect curves obtained for cadmium and copper respectively, we can say that the toxic effects of the two metals are different and we can hypothesize that copper could exercise its toxic activity by inhibiting the ATP-driven proton pump and the function of the Cl- selective channel. PMID:17822261

Corami, F; Capodaglio, G; Turetta, C; Bragadin, M; Calace, N; Petronio, B M

2007-01-01

53

Effect of Zero-Valent Iron Application on Cadmium Uptake in Rice Plants Grown in Cadmium-Contaminated Soils  

Microsoft Academic Search

Cadmium (Cd) contamination in soils is a serious problem for crop production in the world. Zero-valent iron [Fe (0)] is a reactive material with reducing power capable of stabilizing toxic elements in a solution. In the present study, we examined the effect of zero-valent iron [Fe (0)] application on Cd accumulation in rice plants growing in Cd-contaminated paddy soils. The

Toshihiro Watanabe; Yasutoshi Murata; Takashi Nakamura; Yuki Sakai; Mitsuru Osaki

2009-01-01

54

Lead, zinc, cadmium, mercury, selenium and copper in Greenland caribou and reindeer ( Rangifer tarandus)  

Microsoft Academic Search

Samples of caribou and reindeer muscle (127 samples) and liver (126 samples) were collected from four locations during two seasons plus 3 years in Greenland. The levels of lead, zinc, cadmium, mercury, selenium, and copper were determined, and analyzed in relation to location, two seasons, age and year of sampling. The lead concentrations (geometric mean) ranged from below the detection

P Aastrup; F Riget; R Dietz; G Asmund

2000-01-01

55

Effects of Copper, Cadmium, Lead, and Arsenic in a Live Diet on Juvenile Fish Growth  

EPA Science Inventory

The effects of dietborne copper, cadmium, lead, and arsenic on juvenile fish were evaluated using a live diet consisting of the oligochaete Lumbriculus variegatus. In 30-d exposures, no effects on growth and survival of rainbow trout, fathead minnow, and channel catfish were obs...

56

Cadmium and Copper Uptake and Translocation in Five Willow (Salix L.) Species  

Microsoft Academic Search

The efficacy for phytoremediation of five willow species was tested by experimental copper and cadmium uptake in a greenhouse hydroponic system. Five treatments included two concentrations (5 and 25 ?M for each metal) and a control. Metal concentrations in solution as well as solution uptake were monitored. Metal resistance was assessed through effects on the dry weight of roots and

Yulia A. Kuzovkina; Michael Knee; Martin F. Quigley

2004-01-01

57

Effect of oxygen, methyl mercaptan, and methyl chloride on friction behavior of copper-iron contacts  

NASA Technical Reports Server (NTRS)

Sliding friction experiments were conducted with an iron rider on a copper disk and a copper rider on an iron disk. The sputter cleaned iron and copper disk surfaces were saturated with oxygen, methyl mercaptan, and methyl chloride at atmospheric pressure. Auger emission spectroscopy was used to monitor the surfaces. Lower friction was obtained in all experiments with the copper rider sliding on the iron disk than when the couple was reversed. For both iron and copper disks, methyl mercaptan gave the best surface coverage and was most effective in reducing friction. For both iron and copper disks, methyl chloride was the least effective in reducing friction. With sliding, copper transferred to iron and iron to copper.

Buckley, D. H.

1978-01-01

58

Identification of copper ions in aqueous and vitreous of eyes containing copper and iron foreign bodies.  

PubMed Central

The reliability of aqueous analysis by the atomic absorption spectrophotometer for copper ion content in samples from eyes containing intravitreal pure copper particles was investigated. It was demonstrated that values of copper ions rose well above the normal in the aqueous as well as in the vitreous of such eyes. The standard deviations of the mean values were generally high. It was also found that a similar copper ion content increase occurred in eyes containing iron particles. The possible clinical implications of these findings are discussed. PMID:1191617

Yassur, Y; Zauberman, H; Zidon, M

1975-01-01

59

Chronic toxicity of mixtures of copper, cadmium and zinc to Daphnia pulex  

SciTech Connect

Daphnia pulex (de Greer) were exposed to single and bimetal mixtures of copper, cadmium and zinc in reconstituted waters of different hardness/alkalinity and humic acid concentrations. The effect of single and bimetal exposure to these metals was evaluated by survivorship and reproductive indices of brood size, percent aborted eggs/brood, age at reproductive maturity, age at first reproduction and the instantaneous rate of population growth. Accumulation by 7-day-old Daphnia magna of metals in these mixtures was also assessed in medium water containing 0.0 and 0.75 mg humic acid/L. The addition of 0.75 mg humic acid/L decreased the acute toxicity of copper and zinc but increased the acute toxicity of cadmium. Survival was the best index of a single or bimetal chronic stress since it was equally or more sensitive than any reproductive index. The interaction between copper and zinc was variable in soft water which contained 0.15 mg humic acid/L, but largely independent in medium water which contained 0.0 and 0.75 mg humic acid/L. Zinc and humic acid had no effect on the accumulation of copper in medium water. Copper and cadmium were synergistic in their interaction on daphniid survival in medium water which contained 0.0 and 0.75 mg humic acid/L.

Flickinger, A.L.

1984-01-01

60

Cadmium depletes cellular iron availability through enhancing ferroportin translation via iron responsive element.  

PubMed

Cadmium (Cd) is a heavy metal that has detrimental effects on various organs. The widespread contamination of Cd in the environment, crops and food sources poses a severe threat to human health. Acute toxicities of Cd have been extensively investigated; however, the health impact of chronic low?dose exposure to Cd, particularly exposure under non?toxic concentrations, has yet to be elucidated. Furthermore, the toxic threshold of Cd is currently unknown. Ferroportin is the only known iron exporter in vertebrate cells, and it has an essential role in controlling iron egress from cells. To the best of our knowledge, the present study is the first to verify the regulation of ferroportin by Cd. Treatment with low?dose Cd (i.e. at sublethal concentrations, without undermining cell viability) increased the protein expression of ferroportin in macrophages, and this was associated with depleted cellular iron levels. Mechanistic investigations revealed that Cd modulated the ferroportin concentration at the translational level, via the iron responsive element located at the 5'?untranslated region of ferroportin. In conclusion, these data provide evidence for the molecular basis by which Cd alters cellular iron availability through elevating concentrations of ferroportin. PMID:25435269

Sun, Li; Wang, Lixin; Wang, Zhe; He, Wei; Zhang, Shuping; Guo, Wenli; Qian, Yi; Ji, Hong; Rong, Haiqin; Liu, Sijin

2015-04-01

61

SEPARATION OF CADMIUM FROM URANIUM, COBALT, NICKEL, MANGANESE, ZINC, COPPER, TITANIUM, AND OTHER ELEMENTS BY CATION EXCHANGE CHROMATOGRAPHY  

Microsoft Academic Search

A study of the distribution curves of cations with AG 5OW-X8 resin in ; hydrochloric acid showed that most cations are adsorbed strongly from 0.5 N ; hydrochloric acid, while cadmium is not. This fact was used to develop a cation ; exchange chromatographic procedure to separate cadmium from uranium, cobalt, ; nickel, manganese, zinc, copper, and titanium. Other cations

F. W. E. Strelow; F. W. E

1960-01-01

62

Influence of operating conditions on the retention of copper and cadmium in aqueous solutions by nanofiltration: experimental results and modelling  

Microsoft Academic Search

This paper reports the influence of anion nature, applied pressure and pH on the retention of copper and cadmium salts by nanofiltration. The retention of cations is shown to depend strongly on hydration energy and charge valency of the permeating co-ion. At more than 5bars, the ion retention is independent of the applied pressure. At pH<3, copper and cadmium retention

K Mehiguene; Y Garba; S Taha; N Gondrexon; G Dorange

1999-01-01

63

Iron, copper, and iron regulatory protein 2 in Alzheimer's disease and related dementias.  

PubMed

Accumulating evidence implicates a role for altered iron and copper metabolism in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD). However, imbalances in the levels of the various forms of iron at different stages of AD have not been examined. In this pilot study we extracted and measured the levels of loosely bound, non-heme and total iron and copper in the frontal cortex and hippocampus of patients with mild-moderate AD (n=3), severe AD (n=8) and dementia with Lewy bodies (DLB, n=6), using graphite furnace atomic absorption spectrometry (GFAAS). Additionally, the expression of iron regulatory protein 2 (IRP2) was examined in relation to the pathological hallmarks of AD and DLB, amyloid plaques, neurofibrillary tangles (NFT), and Lewy bodies, by immunohistochemistry. We found significantly decreased loosely bound iron in the hippocampal white matter of mild-moderate and severe AD patients and a trend towards increased non-heme iron in the hippocampal gray matter of severe AD patients. Furthermore, decreased levels of total copper were seen in severe AD and DLB frontal cortex compared to controls, suggesting an imbalance in brain metal levels in both AD and DLB. The decrease in loosely bound iron in mild-moderate AD patients may be associated with myelin breakdown seen in the beginning stages of AD and implicates that iron dysregulation is an early event in AD pathogenesis. PMID:17408857

Magaki, Shino; Raghavan, Ravi; Mueller, Claudius; Oberg, Kerby C; Vinters, Harry V; Kirsch, Wolff M

2007-05-11

64

Application of mercapto ordered carbohydrate-derived porous carbons for trace detection of cadmium and copper ions in agricultural products.  

PubMed

In this paper, we have introduced nanoporous carbon modified with mercapto groups as a new solid-phase method for extraction of cadmium(II) and copper(II) ions. The modified nanoporous carbon sorbent was characterised by thermogravimetric analysis, differential thermal analysis, transmission electron microscopy, Fourier transform infrared spectrometry, X-ray diffraction, and nitrogen adsorption surface area (BET) measurements. Effects of pH value, flow rates, type, concentration and volume of the eluent, breakthrough volume, and effect of other ions were studied. The experimental results show that simultaneous trace cadmium(II) and copper(II) ions can be quantitatively preconcentrated at pH 6.0 with recoveries >97%. Under optimised conditions, limits of detection are 0.04 and 0.09 ng mL(-1) for the ions of cadmium and copper respectively, and the precision of the method for analysis of cadmium and copper ions (5.0 ?g of each target ions, N=8) are 2.4% and 2.1%, respectively. The obtained capacities of mercapto-nanoporous carbon were found to be 145 and 95 mg g(-1) for cadmium and copper ions, respectively. The accuracy of the proposed procedure was verified by analysing standard reference material. Finally, the introduced sorbent was successfully applied for trace determination of cadmium and copper ions in food samples. PMID:25466145

Behbahani, Mohammad; Abolhasani, Jafar; Amini, Mostafa M; Sadeghi, Omid; Omidi, Fariborz; Bagheri, Akbar; Salarian, Mani

2015-04-15

65

Cadmium, copper and zinc in octopuses from Kerguelen Islands, Southern Indian Ocean  

Microsoft Academic Search

Concentrations of cadmium, copper and zinc were measured in 34 octopuses over a large range of size and weight, caught in\\u000a the Kerguelen shelf waters. Compared with levels normally encountered in European cephalopods, Cd concentrations in both species\\u000a were very high: 30.7–47.1 and 27.3–54.4 ?g\\/g dry weight in Graneledone sp. and Benthoctopus thielei, respectively; Cu concentrations were generally low while

P. Bustamante; Y. Cherel; F. Caurant; P. Miramand

1998-01-01

66

Concentration and distribution of copper and cadmium in water, sediments, detritus, plants and animals in a hardwater lowland river  

Microsoft Academic Search

The concentration and distribution of copper (Cu) and cadmium (Cd) were examined in water, sediments, detritus, plants and animals in a small, lowland, hardwater river. Consistently higher concentrations of Cu and Cd were found in all types of samples from two sites. There were marked variations in metal concentrations between different types of samples, and between seasons. Copper and Cd

S. Smith; M.-H. Chen; R. G. Bailey; W. P. Williams

1996-01-01

67

1. Introduction Copper, along with iron active sites dominate the field of  

E-print Network

#12;1. Introduction Copper, along with iron active sites dominate the field of biological oxygen chemistry[1] and play important roles in homogeneous[2] and heterogeneous catalysis.[3, 4] Copper pro- teins heme ± iron centers).[8] The known copper proteins which are involved in dioxygen binding, activation

Chen, Peng

68

Iron and copper homeostasis and intestinal absorption using the Caco2 cell model  

Microsoft Academic Search

Whole body homeostasis can be viewed as the balance between absorption and excretion, which can be regulated independently. Present evidence suggests that for iron, intestinal absorption is the main site for homeostatic regulation, while for copper it is biliary excretion. There are connections between iron and copper in intestinal absorption and transport. The blue copper plasma protein, ceruloplasmin, and its

Maria C. Linder; Nora R. Zerounian; Mizue Moriya; Rashmi Malpe

2003-01-01

69

Cadmium Toxicity Induced Alterations in the Root Proteome of Green Gram in Contrasting Response towards Iron Supplement  

PubMed Central

Cadmium signifies a severe threat to crop productivity and green gram is a notably iron sensitive plant which shows considerable variation towards cadmium stress. A gel-based proteomics analysis was performed with the roots of green gram exposed to iron and cadmium combined treatments. The resulting data show that twenty three proteins were down-regulated in iron-deprived roots either in the absence (?Fe/?Cd) or presence (?Fe/+Cd) of cadmium. These down-regulated proteins were however well expressed in roots under iron sufficient conditions, even in the presence of cadmium (+Fe/+Cd). The functional classification of these proteins determined that 21% of the proteins are associated with nutrient metabolism. The other proteins in higher quantities are involved in either transcription or translation regulation, and the rest are involved in biosynthesis metabolism, antioxidant pathways, molecular chaperones and stress response. On the other hand, several protein spots were also absent in roots in response to iron deprivation either in absence (?Fe/?Cd) or presence (?Fe/+Cd) of cadmium but were well expressed in the presence of iron (+Fe/+Cd). Results suggest that green gram plants exposed to cadmium stress are able to change the nutrient metabolic balance in roots, but in the mean time regulate cadmium toxicity through iron supplements. PMID:24739807

Muneer, Sowbiya; Hakeem, Khalid Rehman; Mohamed, Rozi; Lee, Jeong Hyun

2014-01-01

70

Copper  

MedlinePLUS

... minimum recommended dietary allowance (RDA) for copper is 0.9 milligrams per day for most adults, 1 ... in the cancer process is still unclear, copper complexes have been shown to ... evidence that trace metals, including copper, iron and zinc, may have a ...

71

Iron oxide-copper-gold deposits: an Andean view  

Microsoft Academic Search

Iron oxide-copper-gold (IOCG) deposits, defined primarily by their elevated magnetite and\\/or hematite contents, constitute a broad, ill-defined clan related to a variety of tectono-magmatic settings. The youngest and, therefore, most readily understandable IOCG belt is located in the Coastal Cordillera of northern Chile and southern Peru, where it is part of a volcano-plutonic arc of Jurassic through Early Cretaceous age.

Richard H. Sillitoe

2003-01-01

72

Methods for making a supported iron-copper catalyst  

DOEpatents

A catalyst is described for the synthesis of hydrocarbons from CO+H.sub.2 utilizing a porous Al.sub.2 O.sub.3 support impregnated with iron and copper and optionally promoted with an alkali metal. The use of an Al.sub.2 O.sub.3 support results in the suppression of heavy waxes (C.sub.26 + hydrocarbons), particularly in slurry phase operation, when compared to unsupported or co-precipitated catalysts.

Dyer, Paul N. (Allentown, PA); Pierantozzi, Ronald (Macungie, PA)

1986-01-01

73

Role of Surface Precipitation in Copper Sorption by the Hydrous Oxides of Iron and Aluminum  

E-print Network

Role of Surface Precipitation in Copper Sorption by the Hydrous Oxides of Iron and Aluminum K. G precipitation; sorption; isotherms; X-ray diffraction; hydrous iron oxide; hydrous aluminum oxide; copper. INTRODUCTION Hydrous oxides of iron (HFO) and aluminum (HAO) are important mineral components of natural

Chorover, Jon

74

Electrospray ionization mass spectrometry of zinc, cadmium, and copper metallothioneins: evidence for metal-binding cooperativity.  

PubMed

Electrospray ionization (ESI) mass spectra of both well-characterized and novel metallothioneins (MTs) from various species were recorded to explore their metal-ion-binding modes and stoichiometries. The ESI mass spectra of the zinc- and cadmium-binding MTs showed a single main peak corresponding to metal-to-protein ratios of 4, 6, or 7. These findings combined with data obtained by other methods suggest that these MTs bind zinc or cadmium in a single predominant form and are consistent with the presence of three- and four-metal clusters. An unstable copper-specific MT isoform from Roman snails (Helix pomatia) could be isolated intact and was shown to preferentially bind 12 copper ions. To obtain additional information on the formation and relative stability of metal-thiolate clusters in MTs, a mass spectrometric titration study was conducted. One to seven molar equivalents of zinc or of cadmium were added to metal-free human MT-2 at neutral pH, and the resulting complexes were measured by ESI mass spectrometry. These experiments revealed that the formation of the four-metal cluster and of the thermodynamically less stable three-metal cluster is sequential and largely cooperative for both zinc and cadmium. Minor intermediate forms between metal-free MT, Me4MT, and fully reconstituted Me7MT were also observed. The addition of increasing amounts of cadmium to metal-free blue crab MT-I resulted in prominent peaks whose masses were consistent with apoMT, Cd3MT, and Cd6MT, reflecting the known structure of this MT with two Me3Cys9 centers. In a similar reconstitution experiment performed with Caenorhabditis elegans MT-II, a series of signals corresponding to apoMT and Cd3MT to Cd6MT species were observed. PMID:10716192

Gehrig, P M; You, C; Dallinger, R; Gruber, C; Brouwer, M; Kägi, J H; Hunziker, P E

2000-02-01

75

Electrospray ionization mass spectrometry of zinc, cadmium, and copper metallothioneins: evidence for metal-binding cooperativity.  

PubMed Central

Electrospray ionization (ESI) mass spectra of both well-characterized and novel metallothioneins (MTs) from various species were recorded to explore their metal-ion-binding modes and stoichiometries. The ESI mass spectra of the zinc- and cadmium-binding MTs showed a single main peak corresponding to metal-to-protein ratios of 4, 6, or 7. These findings combined with data obtained by other methods suggest that these MTs bind zinc or cadmium in a single predominant form and are consistent with the presence of three- and four-metal clusters. An unstable copper-specific MT isoform from Roman snails (Helix pomatia) could be isolated intact and was shown to preferentially bind 12 copper ions. To obtain additional information on the formation and relative stability of metal-thiolate clusters in MTs, a mass spectrometric titration study was conducted. One to seven molar equivalents of zinc or of cadmium were added to metal-free human MT-2 at neutral pH, and the resulting complexes were measured by ESI mass spectrometry. These experiments revealed that the formation of the four-metal cluster and of the thermodynamically less stable three-metal cluster is sequential and largely cooperative for both zinc and cadmium. Minor intermediate forms between metal-free MT, Me4MT, and fully reconstituted Me7MT were also observed. The addition of increasing amounts of cadmium to metal-free blue crab MT-I resulted in prominent peaks whose masses were consistent with apoMT, Cd3MT, and Cd6MT, reflecting the known structure of this MT with two Me3Cys9 centers. In a similar reconstitution experiment performed with Caenorhabditis elegans MT-II, a series of signals corresponding to apoMT and Cd3MT to Cd6MT species were observed. PMID:10716192

Gehrig, P. M.; You, C.; Dallinger, R.; Gruber, C.; Brouwer, M.; Kägi, J. H.; Hunziker, P. E.

2000-01-01

76

Cadmium and copper release kinetics in relation to afforestation of cultivated soil  

NASA Astrophysics Data System (ADS)

Afforestation of cultivated soils causes soil acidification and elevated concentrations of dissolved organic matter (DOC) in the soil solution, and hence, aggravate the risk of heavy metal leaching. The kinetics of cadmium and copper release from an unpolluted arable soil applied with forest floor soil solution was investigated in the laboratory, and the release rates correlated to pH and DOC in solution through log-log equations. The soil solution was isolated from Norway spruce ( Picea abies (L.) Karst.) by centrifugation, and the solution passed a cation-exchange column to remove metal cations and to protonate the DOC. Soil samples from an arable Ap horizon were placed in completely mixed flow cells, and influent solutions with 0 to 5 mM DOC were applied. The solution pH was adjusted to achieve effluent pH values in the range 3.6 to 6.9 in the flow cells at steady-state conditions. Cadmium release rates were very low at pH > 5 and increased exponentially as pH decreased to <5. The release rate was correlated to solution pH in a simple model: log(cadmium release rate) = -0.21 pH - 15.28 ( R2 = 0.48), and no significant effect of DOC was observed. The kinetics of copper release from the soil was more complicated with effects of both pH and DOC. In experiments without DOC, the release rate of copper was slightly lower at high pH than at low pH. In experiments above pH 5, the presence of 5 mM DOC in the solution increased the release rate of copper. However, the copper release was retarded by DOC in the range pH 3.8 to 5.0, which coincided with a maximum retention of DOC in the flow cells. The release rate of copper was correlated to solution pH and concentration of DOC, including an interaction of pH and DOC: log(copper release rate) = 0.86 pH - 1.26 logDOC + 0.24 pH · logDOC - 19.26 ( R2 = 0.60). If the changes in soil chemical conditions after afforestation influence the cadmium and copper release rates in a similar way as observed in the flow cell experiments, then the release rate of cadmium will increase exponentially at soil solution pH < 4.5. The inhibition of copper release by DOC observed at pH 3.8 to 5.0 indicates that copper is retained in the soil by interactions with adsorbed organic matter.

Strobel, Bjarne W.; Hansen, Hans Christian Bruun; Borggaard, Ole K.; Andersen, Martin K.; Raulund-Rasmussen, Karsten

2001-04-01

77

Nuclear magnetic resonance of iron and copper disease states  

SciTech Connect

The tissue levels of paramagnetic ions are an important factor in the determination of T/sub 1/ values as observed by nuclear magnetic resonance (NMR) imaging. The increased levels of iron present in human disease states such as hemochromatosis lead to decreased T/sub 1/ values. The mean liver T/sub 1/ of three patients with iron storage disease was determined to be 130 msec, significantly different from the value of 154 msec, the mean for 14 normal controls. Whether NMR will be able to detect the increased copper levels in liver and brain in Wilson disease remains for further clinical trials to evaluate. NMR imaging, however, does serve as a noninvasive method for the diagnosis of states of iron overload and as a technique to follow progression of disease or response to medical therapy.

Runge, V.M. (Vanderbilt Univ., Nashville, TN); Clanton, J.A.; Smith, F.W.; Hutchison, J.; Mallard, J.; Partain, C.L.; James, A.E. Jr.

1983-11-01

78

Complexation and Toxicity of Copper in Higher Plants. II. Different Mechanisms for Copper versus Cadmium Detoxification in the Copper-Sensitive Cadmium\\/Zinc Hyperaccumulator Thlaspi caerulescens (Ganges Ecotype)1(OA)  

Microsoft Academic Search

The cadmium\\/zinc hyperaccumulator Thlaspi caerulescens is sensitive toward copper (Cu) toxicity, which is a problem for phytoremediation of soils with mixed contamination. Cu levels in T. caerulescens grown with 10 mM Cu2+ remained in the nonaccumulator range (,50 ppm), and most individuals were as sensitive toward Cu as the related nonaccumulator Thlaspi fendleri. Obviously, hyperaccumulation and metal resistance are highly

Ana Mijovilovich; Barbara Leitenmaier; Wolfram Meyer-Klaucke; Peter M. H. Kroneck; Birgit Gotz; Hendrik Kupper

79

Iron and copper-associated cirrhosis in infants. Acquired metal toxicity or genetic disorder?  

PubMed

Iron and Copper are essential trace elements for growth and development of the human infant but are toxic in excess. Lethal cirrhotic syndromes in the neonate and infant have been associated with both copper and iron overload. The relative importance of underlying genetic susceptibility and acquired excess of iron or copper in the pathogenesis of these chronic metal toxicity states is controversial and both syndromes probably encompass a spectrum of conditions. PMID:9891605

Lockitch, G

1998-12-01

80

Copper complexation by 3-hydroxypyridin-4-one iron chelators: structural and iron competition studies.  

PubMed

Clinical trials of 1,2-dimethyl-3-hydroxypyridine-4-one (1) as an orally available iron chelator are presently underway in several centers. Discrepant reports of toxicity in human and animal studies have stimulated debate on the role of iron status and the availability of iron for chelation relative to other essential elements like copper in determining the clinical effects of 1. Therefore, we investigated the ability of 1, its 1,2-diethyl analog 2, and their iron chelates to complex copper. Both compounds formed tetracoordinate 2:1 Cu(II) complexes which X-ray structure analysis showed to be planar and coordinated through the oxygen atoms of the hydroxy ketone functionality. Potentiometric analysis revealed that these complexes dominated at physiological pH, although between pH 6 and 7 approximately equal amounts of the mono and bis complexes of Cu with 1 were present at equilibrium. Comparing the stepwise formation constants deduced from the stability constants of these complexes (log beta 2 = 21.7 +/- 0.8 (1) and 20.2 +/- 2.0 (2)) with those of their Fe(III) complexes (Motekaitis,R.J.;Martell,A.E.Inorg.Chim.Acta 1991, 183,71-80) leads to a prediction of insignificant copper complexation when equimolar iron is present and dissociation products are thermodynamically unimportant. However, displacement of Fe3+ occurred from both complexes with stoichiometric amounts of Cu2+, implicating the participation of metal hydrolysis products in the equilibria. We conclude that Cu(II) complexes of the 3-hydroxypyridin-4-one chelators are stable under physiological conditions and that copper can effect displacement of iron by these agents under circumstances where hydrolysis of the metals is important. PMID:7509878

el-Jammal, A; Howell, P L; Turner, M A; Li, N; Templeton, D M

1994-02-18

81

Promotion of atherogenesis by copper or iron-Which is more likely?  

SciTech Connect

Iron levels increase in atherosclerotic lesions in cholesterol fed-rabbits and play a role in atherosclerosis. We investigated whether copper also rises. Male New Zealand White rabbits were fed high-cholesterol diets for 8 weeks. After sacrifice, lesion sizes were determined, and elemental analyses of the lesion and unaffected artery wall performed using nuclear microscopy. Unlike iron, lesion copper is decreased by about half compared with the unaffected artery wall, and much less copper than iron is present. Our data suggest that iron may be more likely to play a role in the promotion of atherosclerosis than copper.

Rajendran, Reshmi [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, MD7, 8 Medical Drive, Singapore 117597 (Singapore); Department of Biochemistry, National University of Singapore, MD7, 8 Medical Drive, Singapore 117597 (Singapore); Ren, Minqin [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, MD7, 8 Medical Drive, Singapore 117597 (Singapore); Ning, Pan [Department of Biochemistry, National University of Singapore, MD7, 8 Medical Drive, Singapore 117597 (Singapore); Tan Kwong Huat, Benny [Department of Pharmacology, National University of Singapore, MD7, 8 Medical Drive, Singapore 117597 (Singapore); Halliwell, Barry [Department of Biochemistry, National University of Singapore, MD7, 8 Medical Drive, Singapore 117597 (Singapore)]. E-mail: bchbh@nus.edu.sg; Watt, Frank [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, MD7, 8 Medical Drive, Singapore 117597 (Singapore)

2007-02-02

82

Bioaccumulation of cadmium, copper and zinc in some tissues of three species of marine turtles stranded along the French Atlantic coasts  

E-print Network

Bioaccumulation of cadmium, copper and zinc in some tissues of three species of marine turtles Pollution Bulletin 38, 12 (1999) 1085-1091" DOI : 10.1016/S0025-326X(99)00109-5 #12;Abstract: Cadmium cadmium concentrations in the kidney were as high as 13.3 µg g-1 wet weight in the Loggerhead turtles

Boyer, Edmond

83

Cadmium, chromium, copper, and zinc in rice and rice field soil from southern Catalonia, Spain  

Microsoft Academic Search

Metals are ubiquitous in the modem industrialized environment. Some metals have no beneficial effects in humans. In contrast, other metals such as chromium, copper, zinc, manganese, cobalt or iron are essential for man. However, these essential trace elements can also be dangerous at high levels. Many metals are natural constituents of soils, whereas soils may also be contaminated by a

M. Schuhmacher; J. L. Domingo; J. M. Llobet; J. Corbella

1994-01-01

84

Copper changes the yield and cadmium/zinc accumulation and cellular distribution in the cadmium/zinc hyperaccumulator Sedum plumbizincicola.  

PubMed

Non-accumulated metals in mixed metal contaminated soils may affect hyperaccumulator growth and metal accumulation and thus remediation efficiency. Two hydroponics experiments were conducted to investigate the effects of copper (Cu) on cadmium (Cd) and zinc (Zn) accumulation by the Cd/Zn hyperaccumulator Sedum plumbizincicola, Cu toxicity and plant detoxification using chemical sequential extraction of metals, sub-cellular separation, micro synchrotron radiation based X-ray fluorescence, and transmission electron microscopy. Compared with the control (0.31 ?M Cu), 5-50 ?M Cu had no significant effect on Cd/Zn accumulation, but Cu at 200 ?M induced root cell plasmolysis and disordered chloroplast structure. The plants held Cu in the roots and cell walls and complexed Cu in insoluble forms as their main detoxification mechanisms. Exposure to 200 ?M Cu for 4 days inhibited plant Cd uptake and translocation but did not affect Zn concentrations in roots and stems. Moreover, unloading of Cd and Zn from stem to leaf was restrained compared to control plants, perhaps due to Cu accumulation in leaf veins. Copper may thus interfere with root Cd uptake and restrain Cd/Zn unloading to the leaves. Further investigation of how Cu affects plant metal uptake may help elucidate the Cd/Zn hyper-accumulating mechanisms of S. plumbizincicola. PMID:23959253

Li, Zhu; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Christie, Peter

2013-10-15

85

Arsenic, cadmium, lead, copper and zinc in cattle from Galicia, NW Spain.  

PubMed

Knowledge of trace and toxic metal concentrations in livestock is important for assessing the effects of pollutants on domestic animals and contaminant intakes by humans. Metal levels in cattle have been measured in various countries but not in Spain. In this study, the (wet wt.) concentrations of three toxic elements (arsenic, cadmium, lead) and two trace elements (copper, zinc) were quantified in the liver (Li), kidney (Ki), muscle (M) and blood (Bl) of calves (males and females between 6 and 10 months old) and cows (2-16 years old) from Galicia, NW Spain. For the toxic elements, geometric mean concentrations of arsenic in calves (sexes combined) and cows were 10.8 and 10.2 microg/kg (Li), 11.3 and 15.2 microg/kg (Ki), 3.75 and 4.25 microg/kg (M), 3.23 and 2.92 microg/l (Bl). The corresponding cadmium concentrations were 7.78 and 83.3 microg/kg (Li), 54.3 and 388 microg/kg (Ki), 0.839 and 0.944 microg/kg (M), 0.373 and 0.449 microg/l (Bl). Geometric mean concentrations of lead in calves and cows were similarly low and were 33.0 and 47.5 microg/kg (Li), 38.9 and 58.3 microg/kg (Ki), 6.37 and 12.5 microg/kg (M), 5.47 and 12.2 microg/l (Bl). Sex had almost no effect on the amount of toxic metal accumulated except that kidney cadmium concentrations were significantly higher in females than males. Age did influence accumulation; cadmium and lead (but not arsenic) concentrations in most tissues were significantly greater in cows than female calves. For the trace elements, geometric mean copper levels in calf and cow tissues were 49.9 and 36.6 mg/kg (Li), 4.27 and 3.63 mg/kg (Ki), 0.649 and 1.68 mg/kg (M) and 0.878 and 0.890 mg/l (Bl). The corresponding zinc concentrations were 46.3 and 52.5 mg/kg (Li), 14.2 and 20.7 mg/kg (Ki), 47.3 and 52.5 mg/kg (M) and 2.80 and 2.22 mg/l (Bl). Female calves had significantly higher levels than males of muscle zinc and blood copper and zinc. Female calves accumulated more copper but less zinc in the liver and kidneys compared with cows; this may have been associated with the chronic, low-level cadmium accumulation observed in cows. Overall, the levels of arsenic, cadmium, lead and zinc in cattle in Galicia do not constitute a risk for animal health. However, up to 20% of cattle in some regions in Galicia had levels of copper in the liver that exceeded 150 mg/kg wet wt. These animals may be at risk from copper poisoning. PMID:10696725

López Alonso, M; Benedito, J L; Miranda, M; Castillo, C; Hernández, J; Shore, R F

2000-02-10

86

Diffusive gradient in thin films technique for assessment of cadmium and copper bioaccessibility to radish (Raphanus sativus).  

PubMed

The aim of this study was to assess cadmium and copper uptake by radish (Raphanus sativus) and to test the capability of the diffusive gradient in thin films (DGT) technique to predict bioaccessibility of the metals for this plant. Radish plants were grown in pots filled with uncontaminated control and artificially contaminated soils differing in cadmium and copper contents. Metal concentrations in plants were compared with free ion metal concentrations in soil solution, and concentrations measured by DGT. Significant correlation was found between metal fluxes to plant and metal fluxes into DGT. Pearson correlation coefficient for cadmium was 0.994 and for copper 0.998. The obtained results showed that DGT offers the possibility of simple test procedure for soils and can be used as a physical surrogate for plant uptake. PMID:25618652

Do?ekalová, Hana; Škarpa, Petr; Do?ekal, Bohumil

2015-03-01

87

Comparative effects of copper, cadmium and mercury on tissue glycogen of the catfish, Heteropneustes fossils (Bloch).  

PubMed

Copper (Cu), cadmium (Cd) and mercury (Hg) at concentrations of 12.5 mg/l, caused a decline in the glycogen level of liver, muscle, brain and kidney of Heteropneustes fossilis. A significant increase in the glycogen content of brain was caused by low concentrations (5 and 7.5 mg/l) of both Cd and Hg 5 mg/l Cu raised the kidney glycogen level, while the same dose of Hg raised liver glycogen. It is suggested that heavy metals in low concentrations act through the endocrine system, creating hormone and/or enzyme imbalance. PMID:7090004

Srivastava, D K

1982-04-01

88

Effects of cadmium, copper, and zinc on ?APP processing and turnover in COS7 and PC12 cells  

Microsoft Academic Search

The effects of cadmium, copper, and zinc on ?APP metabolism were investigated in COS-7 and PC12 cells. Cadmium chloride (CdCl2) increased ?APP steady-state protein levels and decreased ?APP posttranslational processing. These changes were not accompanied\\u000a by alterations in ?APP mRNA levels or splicing. In addition, cytosolic ?-actin and G3PDH levels were not affected. Further,\\u000a neither zinc (ZnCl2) nor copper (CuSO4)

Marilyn Smedman; Anna Potempska; Richard Rubenstein; Weina Ju; Narayan Ramakrishna; Robert B. Denman

1997-01-01

89

VAPOR PHASE MERCURY SORPTION BY ORGANIC-SULFIDE COATED BIMETALLIC IRON-COPPER NANOPARTICLE AGGREGATES  

EPA Science Inventory

Tetra sulfide silane coated iron-copper nano-particle aggregates are found to be potentially very high capacity sorbents for vapor phase mercury capture. High equilibrium capacities were obtained for the silane coated iron copper nano-aggregate sorbent at 70 oC and 120 oC. Even a...

90

Alterations of Serum Zinc, Copper and Iron Concentrations in Patients with Acute and Chronic Cutaneous Leishmaniasis  

Microsoft Academic Search

The aim of this study was to measure the alterations in serum zinc (Zn) copper (Cu) and iron (Fe) concentrations in patients with acute and chronic cutaneous leishmaniasis. Serum zinc and copper were measured by flameless atomic absorption spectrophotometer and serum iron concentration was measured by the Ferrozine method with commercial kits and assay was carried out by using an

M Faryadi; M Mohebali

2003-01-01

91

Electrochemical behaviour of iron and copper in a culture solution for Spirulina platensis  

Microsoft Academic Search

Cyclic voltammograms of iron and copper electrodes were run in sodium hydroxide, carbonate–bicarbonate buffer and culture media for Spirulina platensis at 30°C. Potentiostatic steady state polarisation curves for both electrode surfaces in these electrolytes were performed in the presence and the absence of S. platensis at fixed temperature. Corrosion potential and corrosion current density values of iron and copper were

R. Malgor; G. Heijo; L. Romero; C. F. Zinola

1998-01-01

92

Partitioning and distribution of dissolved copper, cadmium and organic matter in Mediterranean marine coastal areas: The case of a mucilage event  

Microsoft Academic Search

Dissolved copper and cadmium partitioning and their interaction with organic matter were investigated in shallow coastal areas of the Aegean Sea (Eastern Mediterranean).The percentage of DGT-labile copper as for total dissolved copper ranged from 13 to 34% during summer and from 23 to 36% during winter, whereas the corresponding percentage for DGT-labile cadmium was higher in summer (38–68%), in comparison

Michael Scoullos; Marta Plavši?; Sotiris Karavoltsos; Aikaterini Sakellari

2006-01-01

93

Derived reference doses for three compounds used in the photovoltaics industry: Copper indium diselenide, copper gallium diselenide, and cadmium telluride  

SciTech Connect

Polycrystalline thin-film photovoltaic modules made from copper indium diselenide (CIS), copper gallium diselenide (CGS), and cadmium telluride (CdTe) arc nearing commercial development. A wide range of issues are being examined as these materials move from the laboratory to large-scale production facilities to ensure their commercial success. Issues of traditional interest include module efficiency, stability and cost. More recently, there is increased focus given to environmental, health and safety issues surrounding the commercialization of these same devices. An examination of the toxicological properties of these materials, and their chemical parents is fundamental to this discussion. Chemicals that can present large hazards to human health or the environment are regulated often more strictly than those that are less hazardous. Stricter control over how these materials are handled and disposed can increase the costs associated with the production and use of these modules dramatically. Similarly, public perception can be strongly influenced by the inherent biological hazard that these materials possess. Thus, this report: presents a brief background tutorial on how toxicological data are developed and used; overviews the toxicological data available for CIS, CGS and CdTe; develops ``reference doses`` for each of these compounds; compares the reference doses for these compounds with those of their parents; discusses the implications of these findings to photovoltaics industry.

Moskowitz, P.D.; Bernholc, N.; DePhillips, M.P.; Viren, J.

1995-07-06

94

Comparative strategies of heavy metal accumulation by crustaceans: zinc, copper and cadmium in a decapod, an amphipod and a barnacle  

Microsoft Academic Search

This study investigates the comparative strategies of accumulation under standardised laboratory conditions of the essential metals zinc and copper, and the non-essential metal cadmium by three crustaceans of different taxa; vizPalaemon elegans Rathke (Malacostraca: Eucarida: Decapoda),Echinogammarus pirloti (Sexton & Spooner) (Malacostraca: Peracarida: Amphipoda) and the barnacleElminius modestus Darwin (Cirripedia: Thoracica).

P. S. Rainbow; S. L. White

1989-01-01

95

Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China  

Microsoft Academic Search

The concentrations of lead, zinc, copper and cadmium accumulated by 12 emergent-rooted wetland plant species including different populations of Leersia hexandra, Juncus effusus and Equisetum ramosisti were investigated in field conditions of China. The results showed that metal accumulation by wetland plants differed among species, populations and tissues. Populations grown in substrata with elevated metals contained significantly higher metals in

H Deng; Z. H Ye; M. H Wong

2004-01-01

96

Heavy Metal Stress. Activation of Distinct Mitogen-Activated Protein Kinase Pathways by Copper and Cadmium1  

PubMed Central

Excessive amounts of heavy metals adversely affect plant growth and development. Whereas some regions naturally contain high levels of heavy metals, anthropogenic release of heavy metals into the environment continuously increases soil contamination. The presence of elevated levels of heavy metal ions triggers a wide range of cellular responses including changes in gene expression and synthesis of metal-detoxifying peptides. To elucidate signal transduction events leading to the cellular response to heavy metal stress we analyzed protein phosphorylation induced by elevated levels of copper and cadmium ions as examples for heavy metals with different physiochemical properties and functions. Exposure of alfalfa (Medicago sativa) seedlings to excess copper or cadmium ions activated four distinct mitogen-activated protein kinases (MAPKs): SIMK, MMK2, MMK3, and SAMK. Comparison of the kinetics of MAPK activation revealed that SIMK, MMK2, MMK3, and SAMK are very rapidly activated by copper ions, while cadmium ions induced delayed MAPK activation. In protoplasts, the MAPK kinase SIMKK specifically mediated activation of SIMK and SAMK but not of MMK2 and MMK3. Moreover, SIMKK only conveyed MAPK activation by CuCl2 but not by CdCl2. These results suggest that plants respond to heavy metal stress by induction of several distinct MAPK pathways and that excess amounts of copper and cadmium ions induce different cellular signaling mechanisms in roots. PMID:15448198

Jonak, Claudia; Nakagami, Hirofumi; Hirt, Heribert

2004-01-01

97

The influence of cadmium, copper, lead, and zinc on the distribution and evolution of metallophytes in the British Isles  

Microsoft Academic Search

Mine spoils and other soils contaminated with cadmium, copper, lead and zinc show natural colonization by species which have strategies of avoidance or tolerance of metal toxicities. The distribution of plants on such substrata in the British Isles is examined in the light of present knowledge of such strategies. Evolutionary processes mediating the selection of tolerant individuals and ecotypic differentiation

A. J. M. Baker; J. Proctor

1990-01-01

98

Total Cadmium, Copper, and Zinc in Two Dreissenid Mussels, Dreissena polymorpha and Dreissena bugensis, at the Outflow of Lake Ontario  

Microsoft Academic Search

Two closely related Dreissenid mussel species, Dreissena polymorpha and Dreissena bugensis, both recent invaders of the Great Lakes and St. Lawrence River, have potential as biological monitors of metal contamination. To better understand their usefulness as biomonitors, we measured total cadmium, copper, and zinc concentrations in soft tissues of both species at a site at the outflow of Lake Ontario.

Carolyn Johns; Briana E. Timmerman

1998-01-01

99

Subcellular partitioning of cadmium, copper, nickel and zinc in indigenous yellow perch ( Perca flavescens) sampled along a polymetallic gradient  

Microsoft Academic Search

Sub-cellular metal distributions were studied in indigenous yellow perch (Perca flavescens) collected from eight lakes located along a cadmium (Cd), copper (Cu), nickel (Ni) and zinc (Zn) concentration gradient. Ambient dissolved metal concentrations were measured to evaluate exposure and total hepatic metal concentrations were determined as a measure of metal bioaccumulation. Metal partitioning among potentially metal-sensitive fractions (cytosolic enzymes, organelles)

Anik Giguère; Peter G. C. Campbell; Landis Hare; Patrice Couture

2006-01-01

100

Simultaneous Determination of Copper, Lead, and Cadmium at Hexagonal Mesoporous Silica Immobilized Quercetin Modified Carbon Paste Electrode  

PubMed Central

A new method was developed for simultaneous determination of copper, lead, and cadmium, based on their voltammetric response at a carbon paste electrode modified with hexagonal mesoporous silica (HMS) immobilized quercetin (HMS-Qu/CPE). Compared with quercetin modified carbon paste electrode (Qu/CPE) and quercetin ionic liquid modified carbon paste electrode (Qu-IL/CPE), the HMS-Qu/CPE exhibited improved selectivity and high sensitivity toward the detection of copper, lead, and cadmium. The properties of the HMS-Qu/CPE in 0.1?M HCOONa-HCl buffer solution (pH4.7) were investigated by adsorptive stripping voltammetry (ASV) and electrochemical impedance spectroscopy (EIS). The electrochemical behavior of copper, lead, and cadmium at the modified electrodes and factors affecting the preconcentration procedures were also investigated. Detection limits of 5.0, 0.8, 1.0?nM for copper, lead, and cadmium were obtained, respectively. The method is simple, fast, sensitive, and selective, and is successfully applied to soil sample. PMID:20445747

Xia, Fangquan; Zhang, Xin; Zhou, Changli; Sun, Danzi; Dong, Yanmin; Liu, Zhen

2010-01-01

101

Sequential injection lab-on-valve simultaneous spectrophotometric determination of trace amounts of copper and iron.  

PubMed

A sequential injection (SI) method in a lab-on-valve (LOV) format for simultaneous spectrophotometric determination of copper and iron has been devised. The detection chemistry is based on the complex formation of 2-(5-bromo-2-pyridylazo)-5-[N-n-propyl-N-(3-sulfopropyl)amino]aniline (5-Br-PSAA) with copper(II) and/or iron(II) at pH 4.6. Copper(II) reacts with 5-Br-PSAA to form the complex which has an absorption maximum at 580 nm but iron(III) does not react. In the presence of a reducing agent only iron(II)-5-Br-PSAA complex is formed and detected at 558 nm. Under the optimum experimental conditions, the determinable ranges are 0.1-2 mg l(-1) for copper and 0.1-5 mg l(-1) for iron, respectively, with a sampling rate of 18 h(-1). The limits of detection are 50 microg l(-1) for copper and 25 microg l(-1) for iron. The relative standard deviations (n=15) are 2% for 0.5 mg l(-1) copper and 1.8% for 0.5 mg l(-1) iron when determined in standard solutions. The recoveries range between 96 and 105% when determining 0.25-2 mg l(-1) of copper and 0.2-5 mg l(-1) of iron in artificial mixtures at copper/iron ratios of 1:10 to 5:1. The proposed SI-LOV method is successfully applied to the simultaneous determination of copper and iron in multi-element standard solution and in industrial wastewater samples. PMID:18970353

Ohno, Shinsuke; Teshima, Norio; Sakai, Tadao; Grudpan, Kate; Polasek, Miroslav

2006-01-15

102

Copper.  

PubMed

Copper is an essential trace element, which is an important catalyst for heme synthesis and iron absorption. Following zinc and iron, copper is the third most abundant trace element in the body. Copper is a noble metal, like silver and gold. Useful industrial properties include high thermal and electrical conductivity, low corrosion, alloying ability, and malleability. Most of the metallic copper appears in electrical applications. Copper is a constituent of intrauterine contraceptive devices and the release of copper is necessary for their contraceptive effects. The average daily intake of copper in the US is about 1 mg Cu with the primary source being the diet. The bioavailability of copper from the diet is about 65-70% depending on a variety of factors including chemical form, interaction with other metals, and dietary components. The biological half-life of copper from the diet is 13-33 days with bilary excretion being the major route of elimination. Copper sulfate is a gastric irritant that produces erosion of the lining of the gastrointestinal tract. Chronic copper toxicity is rare and primarily affects the liver. Wilson's disease and Indian childhood cirrhosis are examples of severe chronic liver disease that results from the genetic predisposition to the hepatic accumulation of copper. The serum copper concentration ranges up to approximately 1.5 mg/L in healthy persons. Gastrointestinal symptoms occur at whole blood concentrations near 3 mg Cu/L. Chelating agents (CaNa2EDTA, BAL) are recommended in severe poisoning, but there are little pharmacokinetic data to evaluate the effectiveness of these agents. PMID:10382557

Barceloux, D G

1999-01-01

103

Decomposition of the sulfates of copper, iron (II), iron (III), nickel, and zinc: XPS, SEM, DRIFTS, XRD, and TGA study  

Microsoft Academic Search

The bulk and surface characteristics during decomposition of the transition metal sulfates of copper, iron (II), iron (III), nickel, and zinc are investigated utilizing various spectroscopic techniques. An oxidized form of sulfur was detected on the surface during decomposition of all metal sulfate samples, except zinc sulfate. Surface characteristics were not necessarily representative of the bulk characteristics. Oxy-sulfate was observed

Ranjani V Siriwardane; James A Poston Jr; Edward P Fisher; Ming-Shing Shen; Angela L Miltz

1999-01-01

104

Variability of cadmium, copper and zinc levels in molluscs and associated sediments from Chile.  

PubMed

The concentrations of cadmium, copper and zinc in mussel and sediment samples collected together from eight different geographical coastal areas of Chile were determined. The mussels studied were 'Chorito Maico', 'Almejas' and 'Navajuelas Chilenas' (Perumytilus purpuratus, Semelle solida and Tagellus dombeii, respectively). Sampling was carried out in July and September 1992 and January and April 1993 (winter, spring, summer and autumn seasons in Chile, respectively). The metal levels in these mussels varied among species; there were several sites where the metal concentrations in molluscs approached or exceeded the criteria levels for Cd, Cu and Zn in shellfish products: 1, 10 and 50 ppm ww respectively, which are regarded as safe levels for human consumption. The results of metal levels in sediments showed two areas clearly polluted with Cu. Strong relationships between Cu concentrations in the three molluscs and sediments were found; weak correlations were observed for Zn in S. solida. PMID:15091389

De Gregori, I; Pinochet, H; Gras, N; Muñoz, L

1996-01-01

105

Laser desorption from the surface of copper phthalocyanine films on silicon and cadmium sulfide  

NASA Astrophysics Data System (ADS)

We have studied laser desorption mass spectra of copper phthalocyanine (CuPc) films deposited in vacuum onto single crystal silicon and cadmium sulfide substrates. The desorption was induced by 10-ns pulses of neodymium laser radiation (quantum energy, 2.34 eV) with an energy density E varied from 0.1 to 40 mJ/cm2. It is established that laser radiation produces fragmentation of CuPc molecules and desorption of the fragments. The main fragments observed in the mass spectra are identified. The intensity of the main desorbed species has been studied as a function of the laser pulse energy density. The components of CdS substrates penetrate into the volume of deposited CuPc films in the form of Cd atoms and S2 molecules.

Lazneva, É. F.

2007-11-01

106

The relationship between body iron stores and blood and urine cadmium concentrations in US never-smoking, non-pregnant women aged 20-49 years  

SciTech Connect

Background: Cadmium is a ubiquitous environmental pollutant associated with increased risk of leading causes of mortality and morbidity in women, including breast cancer and osteoporosis. Iron deficiency increases absorption of dietary cadmium, rendering women, who tend to have lower iron stores than men, more susceptible to cadmium uptake. We used body iron, a measure that incorporates both serum ferritin and soluble transferrin receptor, as recommended by the World Health Organization, to evaluate the relationships between iron status and urine and blood cadmium. Methods: Serum ferritin, soluble transferrin receptor, urine and blood cadmium values in never-smoking, non-pregnant, non-lactating, non-menopausal women aged 20-49 years (n=599) were obtained from the 2003-2008 National Health and Nutrition Examination Surveys. Body iron was calculated from serum ferritin and soluble transferrin receptor, and iron deficiency defined as body iron <0 mg/kg. Robust linear regression was used to evaluate the relationships between body iron and blood and urine cadmium, adjusted for age, race, poverty, body mass index, and parity. Results: Per incremental (mg/kg) increase in body iron, urine cadmium decreased by 0.003 {mu}g/g creatinine and blood cadmium decreased by 0.014 {mu}g/L. Iron deficiency was associated with 0.044 {mu}g/g creatinine greater urine cadmium (95% CI=0.020, 0.069) and 0.162 {mu}g/L greater blood cadmium (95% CI=0.132, 0.193). Conclusions: Iron deficiency is a risk factor for increased blood and urine cadmium among never-smoking, pre-menopausal, non-pregnant US women, independent of age, race, poverty, body mass index and parity. Expanding programs to detect and correct iron deficiency among non-pregnant women merits consideration as a potential means to reduce the risk of cadmium associated diseases. - Highlights: {yields} Body iron was calculated from serum ferritin and soluble transferrin receptor. {yields} Body iron was inversely associated with blood and urine cadmium in US women. {yields} Inverse associations with blood cadmium were evident in all race/ethnic subsamples. {yields} Inverse associations with urine cadmium were evident in women of other/multi-race. {yields} Black women had lower mean body iron compared to white women.

Gallagher, Carolyn M., E-mail: 2crgallagher@optonline.net [PhD Program in Population Health and Clinical Outcomes Research, Stony Brook University, NY (United States) and Department of Preventive Medicine, Stony Brook University, Z-8036, Level 3, HSC, Stony Brook, NY 11794-8036 (United States); Chen, John J.; Kovach, John S. [Department of Preventive Medicine, Stony Brook University, Z-8036, Level 3, HSC, Stony Brook, NY 11794-8036 (United States)] [Department of Preventive Medicine, Stony Brook University, Z-8036, Level 3, HSC, Stony Brook, NY 11794-8036 (United States)

2011-07-15

107

Effects of copper and cadmium spiked-sediments on embryonic development of Japanese medaka (Oryzias latipes).  

PubMed

Because of their high capacity to accumulate contaminants such as persistent organic pollutants and heavy metals, aquatic sediments are considered as a long-term source of contamination for aquatic organisms. In compliance with the increasing interest both for sediment quality evaluation and the use of fish early life stage (ELS) toxicity assays, we proposed an embryo-larval test to evaluate embryotoxicity and genotoxicity of sediment-bound contaminants. Pre-blastula stage medaka (Oryzias latipes) embryos were exposed by static sediment contact to two model heavy metals (cadmium and copper) at environmental concentrations during the whole 10-day embryonic development. Lethal and sub-lethal effects were recorded in both embryos and larvae for 20 days post fertilisation (dpf) using several global toxicity and phenotypic endpoints. The comet assay was also performed on medaka prolarvae to evaluate genotoxic effects of the tested chemicals. Environmental concentrations of cadmium (Cd) and copper (Cu) did not affect embryo and larval survival. However, both heavy metals significantly induced morphological abnormalities, particularly spinal and cardiovascular deformities. Cd but not Cu induced tachycardia. Both heavy metals induced a significant increase in DNA damage at all tested concentrations. Resulting LOEC values for Cd and Cu corresponded to 1.9 and 8.5 ?g/g d.w. sediment, respectively. Although metal bioavailability is probably lower for naturally contaminated sediments, the relatively low toxicity thresholds for both Cd and Cu raise the question of possible risk for fish embryos developing in direct contact to sediments. This study demonstrates the applicability, sensitivity and relevance of the Japanese medaka embryo-larval assay (MELA) to evaluate sediment hazardous potency at environmental concentrations of heavy metals. PMID:22296881

Barjhoux, Iris; Baudrimont, Magalie; Morin, Bénédicte; Landi, Laure; Gonzalez, Patrice; Cachot, Jérôme

2012-05-01

108

Copper deficiency leads to anemia, duodenal hypoxia, upregulation of HIF-2? and altered expression of iron absorption genes in mice.  

PubMed

Iron and copper are essential trace metals, actively absorbed from the proximal gut in a regulated fashion. Depletion of either metal can lead to anemia. In the gut, copper deficiency can affect iron absorption through modulating the activity of hephaestin - a multi-copper oxidase required for optimal iron export from enterocytes. How systemic copper status regulates iron absorption is unknown. Mice were subjected to a nutritional copper deficiency-induced anemia regime from birth and injected with copper sulphate intraperitoneally to correct the anemia. Copper deficiency resulted in anemia, increased duodenal hypoxia and Hypoxia inducible factor 2? (HIF-2?) levels, a regulator of iron absorption. HIF-2? upregulation in copper deficiency appeared to be independent of duodenal iron or copper levels and correlated with the expression of iron transporters (Ferroportin - Fpn, Divalent Metal transporter - Dmt1) and ferric reductase - Dcytb. Alleviation of copper-dependent anemia with intraperitoneal copper injection resulted in down regulation of HIF-2?-regulated iron absorption genes in the gut. Our work identifies HIF-2? as an important regulator of iron transport machinery in copper deficiency. PMID:23555700

Matak, Pavle; Zumerle, Sara; Mastrogiannaki, Maria; El Balkhi, Souleiman; Delga, Stephanie; Mathieu, Jacques R R; Canonne-Hergaux, François; Poupon, Joel; Sharp, Paul A; Vaulont, Sophie; Peyssonnaux, Carole

2013-01-01

109

Simultaneous Measurement of Zinc, Copper, Lead and Cadmium in Baby Weaning Food and Powder Milk by DPASV.  

PubMed

Apart from the breast milk, infant formula and baby weaning food have a special role in infant diet. Infants and young children are very susceptible to amount of trace elements. Copper and zinc are two elements that add in infant food. Lead and cadmium are heavy metals that enter to food chain unavoidably. DPASV is a benefit and applicable method for measurement of trace elements in food products. In this study, concentration of zinc, copper, lead and cadmium in four brands of baby food (rice and wheat based) and powder milk was analyzed with DPASV and polarograph set. Total Mean ± SE of zinc, copper, lead and cadmium in baby foods (n = 240) were 11.86 ± 1.474 mg/100g, 508.197 ± 83.154 ?g/100g, 0.445 ± 0.006, 0.050 ± 0.005 mg/Kg respectively. Also these amount in powder milk (n = 240) were 3.621± 0.529 mg/100g, 403.822 ± 133.953 ?g/100g, 0.007 ± 0.003, 0.060 ± 0.040 mg/Kg respectively. Zinc level in baby food type I was higher than lablled value (P = 0.030), but in other brands was not difference. Concentration of copper in all of samples was in labeled range (P > 0.05). In each four products, level of lead and cadmium were lower than the standard limit (P < 0.05). Amount of zinc and lead in baby food I, had difference versus other products. Concentration of zinc, camium in baby food type I, was higher than type II (P = 0.043, 0.001 respectively). Concentration of lead and cadmium in baby food type II, was higher than infant formulas, but are in standard limit. PMID:24734090

Sadeghi, Naficeh; Oveisi, Mohammad Reza; Jannat, Behrooz; Hajimahmoodi, Mannan; Behfar, Abdolazim; Behzad, Masoomeh; Norouzi, Narges; Oveisi, Morvarid; Jannat, Behzad

2014-01-01

110

Acclimation and deacclimation of brown trout (Salmo trutta) to zinc and copper singly and in combination with cadmium or copper.  

PubMed

Brown trout (Salmo trutta) were chronically exposed to low and high levels of zinc (Zn) alone, copper (Cu) alone, a Zn-Cu mixture, and a Zn-cadmium (Cd) mixture all starting with eyed eggs and continuing through to the fingerling stage. Exposure to the metals and metal mixtures resulted in acclimation as measured by greater median lethal concentrations (LC50) values relative to metal-naïve fry. The degree of acclimation was similar between the low and high exposures except for Cu, where acclimation was observed at the high but not the low acclimation level. The increases in tolerance relative to metal-naïve controls were usually less than a factor of 2 and never exceeded a factor of 3. Acclimation exposures did not affect hatch or survival except for the high-acclimation regime of Zn plus Cu. Acclimation came at an apparent metabolic cost because growth was decreased by most acclimation exposures. Deacclimation, as evidenced by a return of LC50 values to naïve levels, occurred after 2-5 weeks in clean water. PMID:24770996

Brinkman, Stephen F; Woodling, John D

2014-08-01

111

VAPOR PHASE MERCURY SORPTION BY ORGANIC SULFIDE MODIFIED BIMETALLIC IRON-COPPER NANOPARTICLE AGGREGATES  

EPA Science Inventory

Novel organic sulfide modified bimetallic iron-copper nanoparticle aggregate sorbent materials have been synthesized for removing elemental mercury from vapor streams at elevated temperatures (120-140 °C). Silane based (disulfide silane and tetrasulfide silane) and alkyl sulfide ...

112

Cadmium Accumulation and Its Effects on Uptake of Micronutrients in Indian Mustard [Brassica juncea (L.) Czern.] Grown in a Loamy Sand Soil Artificially Contaminated with Cadmium  

Microsoft Academic Search

A pot experiment was conducted in a greenhouse to evaluate the effects of different levels of cadmium (Cd) on Cd accumulation and their effects on uptake of micronutrients in Indian mustard [Brassica juncea (L.) Czern.]. Cadmium accumulation in shoots and interactions among other metals [manganese (Mn), iron (Fe), copper (Cu), and zinc (Zn)] were investigated. Ten levels of Cd ranging

R. Sikka; V. Nayyar

2012-01-01

113

Copper, zinc, and cadmium body concentrations in Hexaplex trunculus collected from the Tunisian coast.  

PubMed

Copper, Zn, and Cd were analyzed in the soft tissues of the edible gastropod Hexaplex trunculus collected from seven localities along the Tunisian coast. The body concentration of these metals was significantly different depending on the gender and site. Copper and Zn varied, respectively, from 47.70 to 343.64 ?g/g dry weight (dw) and 149.46 to 530.44 ?g/g dw, being higher in males. Cadmium varied from 0.22 to 18.95 ?g/g dw and was always higher in females. Overall, the highest concentrations of the three metals were all recorded in Gabès fishing harbor. Comparison of metal concentrations with the European standards compiled by the Food and Agriculture Organization showed that values exceeded standards in several localities. Imposex had been previously recorded in H. trunculus along the Tunisian coast; however, it does not seem to be related with Cu, Zn, and Cd pollution because the body concentration of these metals is not correlated with imposex degree. Nevertheless, interactive effects resulting from the combination of different pollutants and other stressors cannot be disregarded. PMID:23657735

Lahbib, Youssef; Mleiki, Anwar; Marigomez, Ionan; El Menif, Najoua Trigui

2013-11-01

114

Divalent metal transporter 1 (Dmt1) Mediates Copper Transport in the Duodenum of Iron-Deficient Rats and When Overexpressed in Iron-Deprived HEK-293 Cells12  

PubMed Central

Intracellular copper-binding proteins (metallothionein I/II) and a copper exporter (Menkes copper-transporting ATPase) are upregulated in duodenal enterocytes from iron-deficient rats, consistent with copper accumulation in the intestinal mucosa. How copper enters enterocytes during iron deficiency is, however, not clear. Divalent metal transporter 1 (Dmt1), the predominant iron importer in the mammalian duodenum, also transports other metal ions, possibly including copper. Given this possibility and that Dmt1 expression is upregulated by iron deprivation, we sought to test the hypothesis that Dmt1 transports copper during iron deficiency. Two model systems were utilized: the Belgrade (b) rat, expressing mutant Dmt1, and an inducible Dmt1-overexpression cell culture system. Mutant rats (b/b) were fed a semipurified, AIN93G-based control diet and phenotypically normal littermates (+/b) were fed control or iron-deficient diets for ?14 wk. An everted gut sleeve technique and a colorimetric copper quantification assay were utilized to assess duodenal copper transport. The control diet-fed +/b rats had normal hematological parameters, whereas iron-deprived +/b and b/b rats were iron deficient and Dmt1 mRNA and protein levels increased. Importantly, duodenal copper transport was similar in the control +/b and b/b rats; however, it significantly increased (?4-fold) in the iron-deprived +/b rats. Additional experiments in Dmt1 overexpressing HEK-293 cells showed that copper (64Cu) uptake was stimulated (?3-fold) in the presence of an iron chelator. Dmt1 transcript stabilization due to a 3? iron-responsive element was also documented, likely contributing to increased transport activity. In summary, these studies suggest that Dmt1 enhances copper uptake into duodenal enterocytes during iron deprivation. PMID:24089420

Jiang, Lingli; Garrick, Michael D.; Garrick, Laura M.; Zhao, Lin; Collins, James F.

2013-01-01

115

Divalent metal transporter 1 (Dmt1) mediates copper transport in the duodenum of iron-deficient rats and when overexpressed in iron-deprived HEK-293 cells.  

PubMed

Intracellular copper-binding proteins (metallothionein I/II) and a copper exporter (Menkes copper-transporting ATPase) are upregulated in duodenal enterocytes from iron-deficient rats, consistent with copper accumulation in the intestinal mucosa. How copper enters enterocytes during iron deficiency is, however, not clear. Divalent metal transporter 1 (Dmt1), the predominant iron importer in the mammalian duodenum, also transports other metal ions, possibly including copper. Given this possibility and that Dmt1 expression is upregulated by iron deprivation, we sought to test the hypothesis that Dmt1 transports copper during iron deficiency. Two model systems were utilized: the Belgrade (b) rat, expressing mutant Dmt1, and an inducible Dmt1-overexpression cell culture system. Mutant rats (b/b) were fed a semipurified, AIN93G-based control diet and phenotypically normal littermates (+/b) were fed control or iron-deficient diets for ~14 wk. An everted gut sleeve technique and a colorimetric copper quantification assay were utilized to assess duodenal copper transport. The control diet-fed +/b rats had normal hematological parameters, whereas iron-deprived +/b and b/b rats were iron deficient and Dmt1 mRNA and protein levels increased. Importantly, duodenal copper transport was similar in the control +/b and b/b rats; however, it significantly increased (~4-fold) in the iron-deprived +/b rats. Additional experiments in Dmt1 overexpressing HEK-293 cells showed that copper ((64)Cu) uptake was stimulated (?3-fold) in the presence of an iron chelator. Dmt1 transcript stabilization due to a 3' iron-responsive element was also documented, likely contributing to increased transport activity. In summary, these studies suggest that Dmt1 enhances copper uptake into duodenal enterocytes during iron deprivation. PMID:24089420

Jiang, Lingli; Garrick, Michael D; Garrick, Laura M; Zhao, Lin; Collins, James F

2013-12-01

116

Optimization of copper cementation process by iron using central composite design experiments  

Microsoft Academic Search

In this study, the effects of various experimental parameters on the cementation yield of copper by iron were investigated statistically. A statistical experimental design based on the second-order central composite rotatable design (CCRD) was planned fixing the cementation period at 2h. The experimental design was done at five levels of the operating parameters which were the initial copper concentration, temperature,

W. Djoudi; F. Aissani-Benissad; S. Bourouina-Bacha

2007-01-01

117

Determination of silver, bismuth, cadmium, copper, lead, and zinc in geologic materials by atomic absorption spectrometry with tricaprylylmethylammonium chloride  

USGS Publications Warehouse

Interferences commonly encountered in the determination of silver, bismuth, cadmium, copper, lead, and zinc at crustal abundance levels are effectively eliminated using a rapid, sensitive, organic extraction technique. A potassium chlorate-hydrochloric acid digestion solubilizes the metals not tightly bound in the silicate lattice of rocks, soils, and stream sediments. The six metals are selectively extracted into a 10% Aliquat 336-MIBK organic phase in the presence of ascorbic acid and potassium iodide. Metals in the organic extract are determined by flame atomic absorption spectrometry to the 0.02-ppm level for silver, cadmium, copper, and zinc and to the 0.2-ppm level for bismuth and lead with a maximum relative standard deviation of 18.8% for known reference samples. An additional hydrofluoric acid digestion may be used to determine metals substituted in the silicate lattice.

Viets, J.G.

1978-01-01

118

Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341.  

PubMed

Algae lipid production combined with heavy metal removal is a cost-effective and environment-friendly method for algae biofuel production and hazardous waste treatment. Chlorella minutissima UTEX 2341 had strong resistance to cadmium, copper, manganese and zinc ions under heterotrophic culture condition and could efficiently remove them through intracellular accumulation and extracellular immobilization. Meanwhile, lipid accumulation was not inhibited by heavy metals. Instead, the algae lipid content significantly increased by 21.07% and 93.90%, respectively with the addition of cadmium and copper. Furthermore, the heavy metal residue in lipid was within ?g range and satisfied the commercial standard. This artificial wastewater-algae biofuel-heavy-metal integrated utilization technology offered a new alternative solution to the problems of energy shortage and environmental pollution. PMID:25459865

Yang, JinShui; Cao, Jing; Xing, GuanLan; Yuan, HongLi

2014-11-01

119

OPT3 Is a Component of the Iron-Signaling Network between Leaves and Roots and Misregulation of OPT3 Leads to an Over-Accumulation of Cadmium in Seeds  

PubMed Central

Plants and seeds are the main dietary sources of zinc, iron, manganese, and copper, but are also the main entry point for toxic elements such as cadmium into the food chain. We report here that an Arabidopsis oligopeptide transporter mutant, opt3-2, over-accumulates cadmium (Cd) in seeds and roots but, unexpectedly, under-accumulates Cd in leaves. The cadmium distribution in opt3-2 differs from iron, zinc, and manganese, suggesting a metal-specific mechanism for metal partitioning within the plant. The opt3-2 mutant constitutively up-regulates the Fe/Zn/Cd transporter IRT1 and FRO2 in roots, indicative of an iron-deficiency response. No genetic mutants that impair the shoot-to-root signaling of iron status in leaves have been identified. Interestingly, shoot-specific expression of OPT3 rescues the Cd sensitivity and complements the aberrant expression of IRT1 in opt3-2 roots, suggesting that OPT3 is required to relay the iron status from leaves to roots. OPT3 expression was found in the vasculature with preferential expression in the phloem at the plasma membrane. Using radioisotope experiments, we found that mobilization of Fe from leaves is severely affected in opt3-2, suggesting that Fe mobilization out of leaves is required for proper trace-metal homeostasis. When expressed in yeast, OPT3 does not localize to the plasma membrane, precluding the identification of the OPT3 substrate. Our in planta results show that OPT3 is important for leaf phloem-loading of iron and plays a key role regulating Fe, Zn, and Cd distribution within the plant. Furthermore, ferric chelate reductase activity analyses provide evidence that iron is not the sole signal transferred from leaves to roots in leaf iron status signaling. PMID:24880337

Mendoza-Cózatl, David G.; Xie, Qingqing; Akmakjian, Garo Z.; Jobe, Timothy O.; Patel, Ami; Stacey, Minviluz G.; Song, Lihui; Demoin, Dustin Wayne; Jurisson, Silvia S.; Stacey, Gary; Schroeder, Julian I.

2014-01-01

120

OPT3 is a component of the iron-signaling network between leaves and roots and misregulation of OPT3 leads to an over-accumulation of cadmium in seeds.  

PubMed

Plants and seeds are the main dietary sources of zinc, iron, manganese, and copper, but are also the main entry point for toxic elements such as cadmium into the food chain. We report here that an Arabidopsis oligopeptide transporter mutant, opt3-2, over-accumulates cadmium (Cd) in seeds and roots but, unexpectedly, under-accumulates Cd in leaves. The cadmium distribution in opt3-2 differs from iron, zinc, and manganese, suggesting a metal-specific mechanism for metal partitioning within the plant. The opt3-2 mutant constitutively up-regulates the Fe/Zn/Cd transporter IRT1 and FRO2 in roots, indicative of an iron-deficiency response. No genetic mutants that impair the shoot-to-root signaling of iron status in leaves have been identified. Interestingly, shoot-specific expression of OPT3 rescues the Cd sensitivity and complements the aberrant expression of IRT1 in opt3-2 roots, suggesting that OPT3 is required to relay the iron status from leaves to roots. OPT3 expression was found in the vasculature with preferential expression in the phloem at the plasma membrane. Using radioisotope experiments, we found that mobilization of Fe from leaves is severely affected in opt3-2, suggesting that Fe mobilization out of leaves is required for proper trace-metal homeostasis. When expressed in yeast, OPT3 does not localize to the plasma membrane, precluding the identification of the OPT3 substrate. Our in planta results show that OPT3 is important for leaf phloem-loading of iron and plays a key role regulating Fe, Zn, and Cd distribution within the plant. Furthermore, ferric chelate reductase activity analyses provide evidence that iron is not the sole signal transferred from leaves to roots in leaf iron status signaling. PMID:24880337

Mendoza-Cózatl, David G; Xie, Qingqing; Akmakjian, Garo Z; Jobe, Timothy O; Patel, Ami; Stacey, Minviluz G; Song, Lihui; Demoin, Dustin Wayne; Jurisson, Silvia S; Stacey, Gary; Schroeder, Julian I

2014-09-01

121

Interference of cadmium and copper with the endocrine control of ovarian growth, in the estuarine crab Chasmagnathus granulata.  

PubMed

The effects of cadmium and copper on the hormonal control of ovarian growth were evaluated on the estuarine crab Chasmagnathus granulata, by means of both in vivo (14 days exposure) and in vitro (24 h) assays. For both kind of assays, heavy metal concentrations of 0 (control), 0.5 mg/L of cadmium or 0.1 mg/L of copper were used. No significant (P > 0.05) change of the gonadosomatic index was observed in the in vivo assays with intact females exposed to heavy metals, while eyestalk-ablated exposed females showed significantly (P < 0.05) lower gonadosomatic index values than their respective controls. This latter result led us to consider the possibility that the interfered with extra-eyestalk hormones. In this sense, no differences were noted between control and heavy metals-exposed groups after co-incubating ovary with thoracic ganglion (the source of the gonad stimulating hormone). However, when ovary was incubated with methyl farnesoate or 17-hydroxyprogesterone, 3H-leucine incorporation was significantly lower in the heavy metals-exposed groups than in the controls, indicating a possible interference of cadmium and copper with the transduction pathway of those hormones. On the other hand, ovaries co-incubated in vitro with eyestalk tissue and exposed to either heavy metal showed significantly higher 3H-leucine incorporation than did the controls, suggesting an inhibitory effect of both heavy metals on the secretion of the gonad inhibiting hormone from the eyestalk tissue. Interference by copper and cadmium with the transduction mechanisms of gonad inhibiting hormone at the ovarian level does not appear to be a viable hypothesis, because the addition of eyestalk extracts to the incubation medium reversed the effect caused by each heavy metal. The results from the in vitro assays were in accordance with those obtained with the intact crabs in vivo. PMID:15261452

Medesani, Daniel Alberto; López Greco, Laura Susana; Rodríguez, Enrique Marcelo

2004-08-10

122

Copper, zinc and cadmium in benthic organisms from the Java Sea and estuarine and coastal areas around East Java  

NASA Astrophysics Data System (ADS)

A study was made of the concentrations of copper, zinc and cadmium in benthic organisms, representing the phyla Mollusca, Arthropoda, Echinodermata and Pisces, from the riverine and estuarine areas of the rivers Brantas and Solo (East Java) and the adjacent coastal area. Moreover, an assessment was made of the contamination of the benthic biota with these elements in the Java Sea and Bali Sea. Benthic organisms show a species-specific uptake pattern for each element. Compared to the same type of animals from estuaries and coastal areas in temperate regions of western Europe, the concentrations of cadmium are considerably higher, while copper and zinc concentrations are somewhat lower. There is no general trend in concentration levels of the metals in specimens from rivers, estuaries, coastal zone and open sea. In some groups of organisms ( e.g. shrimp, starfish) the concentrations of copper and zinc are highest in specimens from rivers and estuaries. In contrast, cadmium concentration levels in e.g. crab, shrimp and squid are lowest in riverine and estuarine areas. Significant differences in metal concentrations in these organisms were found between the dry monsoon period (July, August) and the beginning of the wet monsoon (November, December). No relationship existed between the metal concentration of the organisms and the silt fraction of the sediment (grain size < 63 ?m) or the bulk sediment.

Everaarts, J. M.; Boon, J. P.; Kastoro, W.; Fischer, C. V.; Razak, H.; Sumanta, I.

123

Impairment of interrelated iron- and copper homeostatic mechanisms in brain contributes to the pathogenesis of neurodegenerative disorders.  

PubMed

Iron and copper are important co-factors for a number of enzymes in the brain, including enzymes involved in neurotransmitter synthesis and myelin formation. Both shortage and an excess of iron or copper will affect the brain. The transport of iron and copper into the brain from the circulation is strictly regulated, and concordantly protective barriers, i.e., the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCB) have evolved to separate the brain environment from the circulation. The uptake mechanisms of the two metals interact. Both iron deficiency and overload lead to altered copper homeostasis in the brain. Similarly, changes in dietary copper affect the brain iron homeostasis. Moreover, the uptake routes of iron and copper overlap each other which affect the interplay between the concentrations of the two metals in the brain. The divalent metal transporter-1 (DMT1) is involved in the uptake of both iron and copper. Furthermore, copper is an essential co-factor in numerous proteins that are vital for iron homeostasis and affects the binding of iron-response proteins to iron-response elements in the mRNA of the transferrin receptor, DMT1, and ferroportin, all highly involved in iron transport. Iron and copper are mainly taken up at the BBB, but the BCB also plays a vital role in the homeostasis of the two metals, in terms of sequestering, uptake, and efflux of iron and copper from the brain. Inside the brain, iron and copper are taken up by neurons and glia cells that express various transporters. PMID:23055972

Skjørringe, Tina; Møller, Lisbeth Birk; Moos, Torben

2012-01-01

124

Impairment of Interrelated Iron- and Copper Homeostatic Mechanisms in Brain Contributes to the Pathogenesis of Neurodegenerative Disorders  

PubMed Central

Iron and copper are important co-factors for a number of enzymes in the brain, including enzymes involved in neurotransmitter synthesis and myelin formation. Both shortage and an excess of iron or copper will affect the brain. The transport of iron and copper into the brain from the circulation is strictly regulated, and concordantly protective barriers, i.e., the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCB) have evolved to separate the brain environment from the circulation. The uptake mechanisms of the two metals interact. Both iron deficiency and overload lead to altered copper homeostasis in the brain. Similarly, changes in dietary copper affect the brain iron homeostasis. Moreover, the uptake routes of iron and copper overlap each other which affect the interplay between the concentrations of the two metals in the brain. The divalent metal transporter-1 (DMT1) is involved in the uptake of both iron and copper. Furthermore, copper is an essential co-factor in numerous proteins that are vital for iron homeostasis and affects the binding of iron-response proteins to iron-response elements in the mRNA of the transferrin receptor, DMT1, and ferroportin, all highly involved in iron transport. Iron and copper are mainly taken up at the BBB, but the BCB also plays a vital role in the homeostasis of the two metals, in terms of sequestering, uptake, and efflux of iron and copper from the brain. Inside the brain, iron and copper are taken up by neurons and glia cells that express various transporters. PMID:23055972

Skjørringe, Tina; Møller, Lisbeth Birk; Moos, Torben

2012-01-01

125

Iron, Manganese and Copper Release from Synthetic Hydroxyapatite  

NASA Technical Reports Server (NTRS)

Kinetic stir-flow dissolution experiments were performed on iron- (Fe-SHA), manganese- (Mn-SHA), and copper- (Cu-SHA) containing synthetic hydroxyapatites. Solution treatments consisted of de-ionized water, citric acid and DTPA. Initially, Mn concentrations were higher than Cu concentrations and Fe concentrations were the lowest in all treatments. At later times Mn and Cu concentrations dropped in the DTPA treatment while Fe rose to the concentration similar to Mn and Cu. At all times, metal release concentrations in the water and citric acid treatments followed the trend of Mn>Cu>Fe. Rietveld analysis of x-ray diffraction data and ^31P NMR indicated that the metals substituted for Ca in the SHA structure. However, EPR data suggested that a metal (hydr)oxide phase existed either on the SHA surface or between the SHA crystallites. The metal concentration trend of Mn>Cu>Fe suggested that the initial solution metal concentrations are dependent on the dissolution of (hydr)oxides from SHA surfaces or between SHA crystallites. Similar metal concentrations at later times in the DTPA experiments suggests that metal concentrations were controlled by the release of Mn, Cu, or Fe from the SHA structure.

Sutter, B.; Hossner, L. R.; Ming, Douglas W.

1999-01-01

126

Biochemical Evolution of Iron and Copper Proteins, Substances Vital to Life  

ERIC Educational Resources Information Center

Summarizes studies in the area of biochemical evolution of iron, copper, and heme proteins to provide an historical outline. Included are lists of major kinds of proteins and enzymes and charts illustrating electron flow in a cytochrome electron transport system and interconversion of jerrous to ferric ion in iron metabolism. (CC)

Frieden, Earl

1974-01-01

127

Direct determination of cadmium and copper in seawater using a transversely heated graphite furnace atomic absorption spectrometer with Zeeman-effect background corrector  

Microsoft Academic Search

Methods for the direct determination of copper and cadmium in seawater were described using a graphite furnace atomic absorption spectrometer (GFAAS) equipped with a transversely heated graphite atomizer (THGA) and a longitudinal Zeeman effect background corrector. Ammonium nitrate was used as the chemical modifier to determine copper. The mixture of di-ammonium hydrogen phosphate and ammonium nitrate was used as the

Mei-Shu Chan; Shang-Da Huang

2000-01-01

128

Acute pulmonary toxicity of copper gallium diselenide, copper indium diselenide, and cadmium telluride intratracheally instilled into rats.  

PubMed

Acute toxicity studies were conducted on copper gallium diselenide (CGS), copper indium diselenide (CIS), and cadmium telluride (CT), three novel compounds used in the photovoltaic and semiconductor industries. Female Sprague-Dawley rats (six rats/dose) were administered 0, 12, 25, 50, or 100 mg/kg body wt of CGS, CIS, or CT by intratracheal instillation. At 72 hr after treatment, body weight gain was significantly decreased in the 100 mg/kg CIS group and in all CT dose groups. Lung weights were increased in most chemical-treated rats, with CT causing the greatest increase. Total numbers of cells in bronchoalveolar lavage fluid (BALF) were significantly increased in treated rats and were greatest in the 100 mg/kg CIS group. Differential cell counts of BALF demonstrated a marked decrease in the percentage of alveolar macrophages and an increase in the percentage of polymorphonuclear leukocytes in all dose groups of all three chemicals. Slight to moderate increases in lactate dehydrogenase activity were observed in BALF from CGS- and CIS-treated rats; marked increases were observed in CT-treated rats. BALF protein was significantly increased in rats treated with CIS and CT. Microscopic examination revealed lymphoid hyperplasia in lungs of rats treated with all three chemicals. CT caused necrosis of the terminal bronchiolar epithelium and epithelium of the alveolar duct region with inflammation, prominent fibrin exudates, and type II cell hyperplasia. CGS and CIS also caused intraalveolar inflammation and type II cell hyperplasia, but did not cause the necrosis and fibrin exudate observed in lungs of CT-treated rats. Based on changes in lung weight, BALF indices, and histopathology, CT was the most toxic for the lung; CIS had intermediate toxicity and CGS was the least toxic. The solubilities of CGS and CIS were relatively low and similar at both pH levels and do not readily explain the observed differences in pulmonary toxicity. The solubility of CdTe was considerably greater than that of CGS and CIS and likely contributed to the greater toxicity of this compound. PMID:8757234

Morgan, D L; Shines, C J; Jeter, S P; Wilson, R E; Elwell, M P; Price, H C; Moskowitz, P D

1995-10-01

129

IN-HOUSE CORROSION RESEARCH EMPHASIZING LEAD, COPPER AND IRON  

EPA Science Inventory

Lead and copper are directly regulated via the "Lead and Copper Rule;" however, water suppliers must balance all water treatment processes in order to simultaneously comply with all regulations. Specific research needs for copper and lead chemistry still exist, as applications o...

130

Use of atomic absorption spectrometry in assessment of biomonitor plants for lead, cadmium and copper pollution.  

PubMed

Eleven plant species were collected from the vicinity of lead-battery plant in the city of Gaziantep, Turkey. Lead, cadmium and copper concentrations in the soil and leaves of plants were determined by atomic absorption spectrometry. Lead, Cd and Cu concentrations in the soil samples taken from battery area were found to be in the ranges of 304-602, 0.4-0.44 and 31-37 mg x kg(-1), respectively. Significantly increased lead concentration up to 2 750 mg x kg(-1) was found in the leaves of Eleagnus angustifolia L. plant. The lead concentrations in the other plant leaves taken from 50 m around battery factory followed the order Ailanthus altissima > Morus sp. > Juglans regia L. > Ficus carica L. > Cydonia oblonga Miller > Prunus x domestica L. The plants, Populus nigra L. , Eleagnus angustifolia L. and Salix sp. were found useful for Cd, and the plant, Eleagnus angusti folia L. for Pb, to be considered as potential biomonitor. Especially, leaves of trees and plants taken from the distance of 50 m from battery plant have relatively higher Pb concentrations. Therefore, people who and animals which live in this area and benefit from these soil and plants have vital risks. PMID:22497165

Gokce, Kaya; Mehmet, Yaman

2012-01-01

131

Determination and Evaluation of Cadmium, Copper, Nickel, and Zinc in Agricultural Soils of Western Macedonia, Greece  

NASA Astrophysics Data System (ADS)

The objective of this study was to determine the levels of major phytotoxic metals?including cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn)?in agricultural soils of Western Macedonia, Greece. We also wanted to determine the possible relationships among elements and between soil properties and elemental concentrations. Surface soil samples, n = 570, were collected and analyzed. The results of the elemental analysis showed that the mean metal concentrations were consistent with reported typical concentrations found in Greek agricultural soils in the cases of Zn and Cu. Cd exhibited lower and Ni higher mean concentrations than the typical levels reported in the literature. Metal concentrations in the majority of the examined samples (>69%) were found to be higher than the respective critical plant-deficiency levels. However, only 0.4% and 0.2% of the analyzed soil samples, respectively, exhibited Cd and Ni concentrations higher than the levels that cause plant toxicity, as referenced by other investigators. These results suggest that the soils studied can be considered as unpolluted with respect to the examined food-chain metal contaminants. However, the levels of the metal concentrations in some of the soil samples, and the low correlation of the metals with soil properties, suggest an anthropogenic rather that lithogenic origin.

Papadopoulos, A.; Prochaska, C.; Papadopoulos, F.; Gantidis, N.; Metaxa, E.

2007-10-01

132

Reduction of copper(II) by iron(II).  

PubMed

Laboratory and field investigations have clearly demonstrated the important role of reduced iron (Fe(II)) in reductive transformations of first-row transition metal species. However, interactions of Fe(II) and copper (Cu) are not clearly understood. This study examined the reduction of Cu(II) by Fe(II) in stirred-batch experiments at pH 5.2 and 5.5 as influenced by chloride (Cl-) concentration (0.002-0.1 M), initial metal concentration (0.1-9.1 mM), and reaction time (1-60 min) under anoxic conditions. Reduction of Cu(II) to Cu(I) by dissolved Fe(II) was rapid under all experimental conditions and the stability of the products explains the driving force for the redox reaction. Under conditions of low [Cl-] and high initial metal concentration, >40% of total Cu and Fe were removed from solution after 1 min, which accompanied formation of a brownish-red precipitate. X-ray diffraction (XRD) patterns of the precipitates revealed the presence of cuprite (Cu2O), a Cu(I) mineral, based on d-spacings located at 0.248, 0.215, 0.151, and 0.129 nm. Fourier transform infrared (FTIR) spectroscopy corroborated XRD data for the presence of Cu2O, with features located at 518, 625, and 698 cm(-1). Increasing [Cl-] stabilized the dissolved Cu(I) product against Cu2O precipitation and resulted in more Fe precipitated from solution (relative to Cu) that appears to be present as poorly crystalline lepidocrocite (gamma-FeOOH). This process may be important in anoxic soil environments, where dissolved Fe(II) levels can accumulate. PMID:16091606

Matocha, C J; Karathanasis, A D; Rakshit, S; Wagner, K M

2005-01-01

133

Determination of cadmium in soil extracts containing high levels of iron and aluminum by graphite furnace atomic absorption spectrophotometry  

Microsoft Academic Search

Accurate determination of trace levels of cadmium (Cd) in soil extracts can become problematic in an extractant such as acid oxalate which releases a substantial amount of an interfering element, especially iron (Fe) along with trace levels of Cd from soils. The most common technique to identify the chemical interference is to check the recoveries of the element of interest

Surender S. Mann; Andrew W. Rate

1998-01-01

134

Urinary excretion of copper, zinc and iron with and without D-penicillamine administration in relation to hepatic copper concentration in dogs.  

PubMed

Hereditary copper-associated hepatitis in dogs resembles Wilson's disease, a copper storage disease in humans. Values for urinary copper excretion are well established in the diagnostic protocol of Wilson's disease, whereas in dogs these have not been evaluated. The objectives of this study were to characterize both basal and D-penicillamine induced urinary copper, zinc and iron excretion in dogs in relation to hepatic copper concentration. Beagles, Beagle-Bedlington terrier cross-breeds homozygous for the COMMD1 gene mutation that causes copper toxicosis, and Labrador retrievers with normal or increased hepatic copper concentrations were investigated. The hepatic copper phenotype was determined by histological evaluation of liver biopsies and measurement of the hepatic copper concentration by instrumental neutron activation analysis. Urinary excretion of copper, iron and zinc was measured via inductively coupled plasma optical emission spectrometry under basal conditions and after oral administration of a single dose (20mg/kg bodyweight) of the chelator D-penicillamine. There was a rapid increase in urinary excretion of copper and zinc, but not iron after D-penicillamine administration. This increase was not different between dogs with high or normal hepatic copper concentrations. D-penicillamine-induced urinary copper excretion and the copper/creatinine ratio did not correlate with hepatic copper concentrations in the dogs studied, although basal urinary copper/zinc ratios did correlate with hepatic copper concentrations in Labrador retrievers. The latter parameter may be useful in diagnostic and follow-up protocols for copper-associated hepatitis in Labrador retrievers. PMID:23583003

Fieten, H; Hugen, S; van den Ingh, T S G A M; Hendriks, W H; Vernooij, J C M; Bode, P; Watson, A L; Leegwater, P A J; Rothuizen, J

2013-08-01

135

Complexation and Toxicity of Copper in Higher Plants. II. Different Mechanisms for Copper versus Cadmium Detoxification in the Copper-Sensitive Cadmium/Zinc Hyperaccumulator Thlaspi caerulescens (Ganges Ecotype)1[OA  

PubMed Central

The cadmium/zinc hyperaccumulator Thlaspi caerulescens is sensitive toward copper (Cu) toxicity, which is a problem for phytoremediation of soils with mixed contamination. Cu levels in T. caerulescens grown with 10 ?m Cu2+ remained in the nonaccumulator range (<50 ppm), and most individuals were as sensitive toward Cu as the related nonaccumulator Thlaspi fendleri. Obviously, hyperaccumulation and metal resistance are highly metal specific. Cu-induced inhibition of photosynthesis followed the “sun reaction” type of damage, with inhibition of the photosystem II reaction center charge separation and the water-splitting complex. A few individuals of T. caerulescens were more Cu resistant. Compared with Cu-sensitive individuals, they recovered faster from inhibition, at least partially by enhanced repair of chlorophyll-protein complexes but not by exclusion, since the content of Cu in their shoots was increased by about 25%. Extended x-ray absorption fine structure (EXAFS) measurements on frozen-hydrated leaf samples revealed that a large proportion of Cu in T. caerulescens is bound by sulfur ligands. This is in contrast to the known binding environment of cadmium and zinc in the same species, which is dominated by oxygen ligands. Clearly, hyperaccumulators detoxify hyperaccumulated metals differently compared with nonaccumulated metals. Furthermore, strong features in the Cu-EXAFS spectra ascribed to metal-metal contributions were found, in particular in the Cu-resistant specimens. Some of these features may be due to Cu binding to metallothioneins, but a larger proportion seems to result from biomineralization, most likely Cu(II) oxalate and Cu(II) oxides. Additional contributions in the EXAFS spectra indicate complexation of Cu(II) by the nonproteogenic amino acid nicotianamine, which has a very high affinity for Cu(II) as further characterized here. PMID:19692532

Mijovilovich, Ana; Leitenmaier, Barbara; Meyer-Klaucke, Wolfram; Kroneck, Peter M.H.; Götz, Birgit; Küpper, Hendrik

2009-01-01

136

Complexation and toxicity of copper in higher plants. II. Different mechanisms for copper versus cadmium detoxification in the copper-sensitive cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges Ecotype).  

PubMed

The cadmium/zinc hyperaccumulator Thlaspi caerulescens is sensitive toward copper (Cu) toxicity, which is a problem for phytoremediation of soils with mixed contamination. Cu levels in T. caerulescens grown with 10 microm Cu(2+) remained in the nonaccumulator range (<50 ppm), and most individuals were as sensitive toward Cu as the related nonaccumulator Thlaspi fendleri. Obviously, hyperaccumulation and metal resistance are highly metal specific. Cu-induced inhibition of photosynthesis followed the "sun reaction" type of damage, with inhibition of the photosystem II reaction center charge separation and the water-splitting complex. A few individuals of T. caerulescens were more Cu resistant. Compared with Cu-sensitive individuals, they recovered faster from inhibition, at least partially by enhanced repair of chlorophyll-protein complexes but not by exclusion, since the content of Cu in their shoots was increased by about 25%. Extended x-ray absorption fine structure (EXAFS) measurements on frozen-hydrated leaf samples revealed that a large proportion of Cu in T. caerulescens is bound by sulfur ligands. This is in contrast to the known binding environment of cadmium and zinc in the same species, which is dominated by oxygen ligands. Clearly, hyperaccumulators detoxify hyperaccumulated metals differently compared with nonaccumulated metals. Furthermore, strong features in the Cu-EXAFS spectra ascribed to metal-metal contributions were found, in particular in the Cu-resistant specimens. Some of these features may be due to Cu binding to metallothioneins, but a larger proportion seems to result from biomineralization, most likely Cu(II) oxalate and Cu(II) oxides. Additional contributions in the EXAFS spectra indicate complexation of Cu(II) by the nonproteogenic amino acid nicotianamine, which has a very high affinity for Cu(II) as further characterized here. PMID:19692532

Mijovilovich, Ana; Leitenmaier, Barbara; Meyer-Klaucke, Wolfram; Kroneck, Peter M H; Götz, Birgit; Küpper, Hendrik

2009-10-01

137

Herbal infusions as a source of calcium, magnesium, iron, zinc and copper in human nutrition.  

PubMed

The study material consisted of five herbs: chamomile (flowers), mint (leaves), St John's wort (flowers and leaves), sage (leaves) and nettle (leaves), sourced from three producers. The calcium, magnesium, iron, zinc and copper contents were determined for both dried herb samples and prepared infusions, and the extraction rates were calculated. Mineral components were determined using atomic absorption spectrometry. Analysis showed that the contents of individual elements in herbs and infusions depended on the type of raw material, as well as on its origin. Moreover, it was found that iron penetrated the herbal infusions to the lowest degree (4.4-12.4%), while copper did so to the highest (26.7-50.7%). It is felt that in average consumption the herbal infusions are not important as calcium, magnesium, iron, zinc and copper sources in human nutrition. PMID:21916535

Suliburska, Joanna; Kaczmarek, Karolina

2012-03-01

138

Some new chromogens for iron, cobalt, and copper Substituted hydrazidines and 1,2,4-triazines containing the ferroin group.  

PubMed

The spectral characteristics and solution conditions requisite for formation of the iron(II), cobalt(II), and copper(I) complexes of some newly synthesised compounds containing the ferroin functional grouping have been determined. These properties are useful for evaluation of the possible analytical effectiveness of the compounds as spectrophotometric reagents for the determination of iron, cobalt, and copper. PMID:18959951

Schilt, A A

1966-07-01

139

The effects of feeding by the black bean aphidAphis fabae Scop. (Homoptera: Aphididae) on copper and cadmium accumulation in broad bean (Vicia faba L.).  

PubMed

Broad beans (Vicia faba L.), cultured hydroponically were supplied with 100 ?g mL(-1) copper or 50 ?g mL(-1) cadmium in nutrient solution. Samples of plant material from both nutrient regimes were analysed before and after infestation by the black bean aphid (Aphis fabae Scop.). Heavy aphid infestation resulted in a significant reduction in copper content of shoots in comparison with uninfested plants. A similar, but less well- defined, situation occurred in the case of cadmium.Further investigations examined the effects of different levels of aphid infestation on the above phenomena. In all cases the presence of feeding aphids reduced elemental accumulation in plant shoots. Long term infestation with population densities as low as three adult aphids showed a reduction in shoot copper and cadmium content. PMID:24202634

Crawford, L A; Hodkinson, I D; Lepp, N W

1990-09-01

140

Trace Element Status (Iron, Zinc, Copper, Chromium, Cobalt, and Nickel) in Iron-Deficiency Anaemia of Children under 3 Years  

PubMed Central

Aim. To determine trace element status and aetiologic factors for development of trace elements deficiencies in children with iron-deficiency anaemia (IDA) aged 0 to 3 years. Contingent and Methods. 30 patients of the University Hospital, Pleven, Bulgaria—I group; 48 patients of the Sumy Regional Child's Clinical Hospital, Sumy, Ukraine—II group; 25 healthy controls were investigated. Serum concentrations of iron, zinc, copper, chromium, cobalt, and nickel were determined spectrophotometrically and by atomic absorption spectrophotometry. Results. Because the obtained serum levels of zinc, copper, and chromium were near the lower reference limits, I group was divided into IA and IB. In IA group, serum concentrations were lower than the reference values for 47%, 57%, and 73% of patients, respectively. In IB group, these were within the reference values. In II group, results for zinc, cobalt, and nickel were significantly lower (P < 0.05), and results for copper were significantly higher in comparison to controls. Conclusion. Low serum concentrations of zinc, copper, cobalt, and nickel were mainly due to inadequate dietary intake, malabsorption, and micronutrient interactions in both studied groups. Increased serum copper in II group was probably due to metabolic changes resulting from adaptations in IDA. Data can be used for developing a diagnostic algorithm for IDA. PMID:24839556

Angelova, Maria Georgieva; Petkova-Marinova, Tsvetelina Valentinova; Pogorielov, Maksym Vladimirovich; Loboda, Andrii Nikolaevich; Nedkova-Kolarova, Vania Nedkova; Bozhinova, Atanaska Naumova

2014-01-01

141

Cloning and characterization of the HSP90 beta gene from Tanichthys albonubes Lin (Cyprinidae): effect of copper and cadmium exposure.  

PubMed

Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone important in the maturation of a broad spectrum of proteins. In order to evaluate the effect of copper (Cu(2+)) and cadmium (Cd(2+)) on the expression of HSP90 from Tanichthys albonubes (designated TaHSP90), the full-length complementary DNA (cDNA) of TaHSP90 was cloned using reverse transcription PCR and rapid amplification of cDNA ends (RACE) techniques. A 2,687-bp sequence was sequenced and consisted of an open reading frame (ORF) of 2,181 bp encoding a polypeptide of 727 amino acids with five HSP90 family signatures. Homologous analysis revealed that TaHSP90 gene shared high similarity with other known HSP90 genes and belonged to HSP90? subtype. Fluorescent real-time quantitative PCR was used to examine the expression pattern of TaHSP90? mRNA in different tissues (liver, muscle, gill, fin, eye, ovary, intestine and brain), and the result indicated that TaHSP90? was widely expressed in all examined tissues at different levels. Sensitivity of TaHSP90? to copper and cadmium was examined by exposing fish to different concentrations of Cu(2+) (0, 13.50 and 27.00 ?g/L) and Cd(2+) (0, 1.15, 2.31 mg/L) for 24, 48, 72 and 96 h, respectively. The copper treatment induced TaHSP90? expression slight increase only at 24 and 48 h, while cadmium treatment caused slight down-regulation of TaHSP90? only 72 and 96 h. Our data suggest that the cloning and expression analysis of T. albonubes HSP90? gene provided useful molecular information of T. albonubes responses in stress conditions and potential ways to monitor the chronic stressors in T. albonubes culture environments. PMID:21915694

Liu, Haichao; Chen, Huihui; Jing, Jing; Ma, Xufa

2012-06-01

142

Sorption of cadmium by an acid soil amended with compost and copper-mine tailing  

NASA Astrophysics Data System (ADS)

Humified materials from the compost industry and certain waste from mining operations can be used as low cost toxic metal adsorbents in soils having a very low sorption capacity. An experiment was designed to assess the sorption of cadmium (Cd) by an acid coarse-textured soil (pH 5.50) amended with peat moss-shrimp waste compost (PSC), and three copper-mine tailing samples rich in calcareous products, namely untreated tailing (MT), tailing + 10% of PSC (MTC-10) and tailing + 20% of PSC (MTC-20). The soil amendment rates ranged from 0 to 300 g/kg soil. The sorption measurement was carried out on 17 soils by adding 30 mL of 0.01 M CaCl2 solution containing 100 mg Cd/L, as CdCl2, to 1.00 g of soil. The suspension was shaken for 30 min and equilibrated at room temperature for 7 days. After centrifuging, the Cd concentration in the supernatant was measured by atomic absorption spectrophotometry. The sorption coefficient (Ks) was used to interpret the sorption data. Triplicate samples of the soils were used throughout the sorption study. MT (pH 7.7) amendment treatment was more effective than PSC (pH 6.8) treatment in raising the pH of acid sandy soil. Sorption increased with amendment additions depending on the type and rate of amendment application. The compost alone had the highest affinity for Cd, while the tailing alone exhibited the least affinity. The increasing order of Cd sorbed after amendment was: PSC > MTC-20 > MTC-10 > MT. The results indicate that PSC and Cu-mine tailing amended with PSC can be used as effective sorbents for anthropogenic Cd in acid sandy soils.

Karam, A.; Jaouich, A.

2009-04-01

143

Kinetic Investigation of Myeloperoxidase upon Interaction with Copper, Cadmium, and Lead Ions  

PubMed Central

Background: Myeloperoxidase (MPO), which is abundantly expressed in neutrophils, catalyzes the formation of a number of reactive oxidant species. However, evidence has emerged that MPO-derived oxidants contribute to tissue damage and initiation and propagation of inflammatory diseases, particularly, cardiovascular diseases. Therefore, studying the regulatory mechanisms of the enzyme activity is of great importance. For clarifying some possible mechanism of the enzyme activity, kinetic investigations of MPO in the presence of Copper (Cu), Cadmium (Cd), and Lead (Pb) ions were carried out in vitro. Methods: MPO was partially purified from human white blood cells using ion-exchange and gel-filtration chromatography techniques. Its activity was measured spectrophotometrically by using tetramethyl benzidine (TMB) as substrate. Results: Purified enzyme had a specific activity of 21.7 U/mg protein with a purity index of about 0.71. Cu inhibited MPO activity progressively up to a concentration of 60 mM at which about 80% of inhibition achieved. The inhibition was non-competitive with respect to TMB. An inhibitory constant (Ki) of about was calculated from the slope of repot. Cd and Pb did not show any significant inhibitory effect on the enzyme activity. Conclusion: The results of the present study may indicate that there are some places on the enzyme and enzyme-substrate complex for Cu ions. Binding of Cu ions to these places result in conformational changes of the enzyme and thus, enzyme inhibition. This inhibitory effect of Cu on the enzyme activity might be considered as a regulatory mechanism on MPO activity. PMID:21987117

Shabani, Maryam; Ani, Mohsen; Movahedian, Ahmad; Samsam Shariat, Seyed Ziyae Aldin

2011-01-01

144

Effects of Copper and Austempering on Corrosion Behavior of Ductile Iron in 3.5 Pct Sodium Chloride  

NASA Astrophysics Data System (ADS)

Although alloying and heat treatments are common industrial practices to obtain ductile irons with desired mechanical properties, related information on how the two practices affect corrosion behavior is scarce. In this study, two ductile irons—with and without 1 wt pct copper addition—were austempered to obtain austempered ductile irons (ADIs). Polarization tests and salt spray tests were conducted to explore how both copper-alloying and austempering heat treatments influenced the corrosion behavior of ductile irons. The results showed that the corrosion resistance of 1 wt pct copper-alloyed ductile iron was better than that of the unalloyed one, while ADI had improved corrosion resistance compared with the as-cast. In particular, the ductile iron combined with the copper-alloying and austempering treatments increased the corrosion inhibition efficiency up to 84 pct as tested in 3.5 wt pct NaCl solution.

Hsu, Cheng-Hsun; Lin, Kuan-Ting

2013-10-01

145

Lenticular nucleus hyperechogenicity in Wilson's disease reflects local copper, but not iron accumulation.  

PubMed

In patients with Wilson's disease (WD) transcranial brain sonography typically reveals areas of increased echogenicity (hyperechogenicity) of the lenticular nucleus (LN). Correlation with T2-hypointensity on magnetic resonance images suggested that LN hyperechogenicity in WD is caused by trace metal accumulation. Accumulation of both, copper and iron, in the brain of WD patients has been reported. The present study was designed to elucidate whether LN hyperechogenicity in WD reflects accumulation of copper or iron. Post-mortem brains of 15 WD patients and one non-WD subject were studied with ultrasonography in an investigator-blinded fashion. LN hyperechogenicity was measured planimetrically by manual tracing as well as using digitized image analysis. The putaminal copper content was determined in samples of 11 WD brains and the non-WD brains using inductively coupled plasma mass spectrometry, and iron content was assessed using flame atomic absorption spectroscopy. LN was normal on ultrasonography only in the non-WD brain, but abnormal (hyperechogenic) in all WD brains. Digitized image analysis measures of LN hyperechogenicity and, by trend, manual measures correlated with putaminal copper content (Pearson test; digitized: r = 0.77, p = 0.04; manual: r = 0.57, p = 0.051) but not with iron content (each, p > 0.18). LN hyperechogenicity measures were unrelated to age at death of patients, age at onset of WD, WD duration, age of brain specimen, serum copper or serum ceruloplasmin (each, p > 0.1). We conclude that LN hyperechogenicity in WD reflects copper, but not iron accumulation. Further studies are warranted to elucidate the use of transcranial brain sonography for monitoring therapeutic effects of chelating agents in WD patients. PMID:24615184

Walter, Uwe; Skowro?ska, Marta; Litwin, Tomasz; Szpak, Gra?yna Maria; Jab?onka-Salach, Katarzyna; Skoloudík, David; Bulska, Ewa; Cz?onkowska, Anna

2014-10-01

146

A 1500-year record of lead, copper, arsenic, cadmium, zinc level in Antarctic seal hairs and sediments.  

PubMed

To reconstruct the profiles of heavy metal levels in the South Ocean ecosystem of Antarctica, the concentrations of lead (Pb), copper (Cu), arsenic (As), cadmium (Cd), and zinc (Zn) in seal hairs and lake sediments spanning the past 1500 years from Fildes Peninsula of King George Island and in weathering lake sediments from Nelson Island of West Antarctica were determined. The lead contents in the seal hairs and the weathering sediments show a sharp increase since the late 1800s, very likely due to anthropogenic contamination from modern industries. After the 1980s, the Pb content in seal hairs dropped by one-third, apparently due to the reduced usage of leaded gasoline in the Southern Hemisphere. Copper arises mainly from the weathering process, and its level may be substantially affected by climatic conditions. The concentrations of Cd, As, and Zn do not show any clear temporal trends. PMID:16928392

Yin, Xuebin; Liu, Xiaodong; Sun, Liguang; Zhu, Renbin; Xie, Zhouqing; Wang, Yuhong

2006-12-01

147

Effect of dietary copper and zinc levels on tissue copper, zinc, and iron in male rats  

Microsoft Academic Search

The interaction between dietary copper and zinc as determined by tissue concentrations of trace elements was investigated\\u000a in male Sprague-Dawley rats. Animals were fed diets in a factorial design with two levels of copper (0.5, 5 ?g\\/g) and five\\u000a levels of zinc (1, 4.5, 10, 100, 1000 ?g\\/g) for 42 d. In rats fed the low copper diet, as dietary

Carl L. Keen; Nancy H. Reinstein; Jo Goudey-Lefevre; Michael Lefevre; Bo Lönnerdal; Barbara O. Schneeman; Lucille S. Hurley

1985-01-01

148

Gas tungsten arc welding of nickel-copper to nickel-chromium-iron. Welding procedure specification  

SciTech Connect

Procedure WPS-2303-ASME-3 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for gas tungsten arc welding of nickel-copper N04400 (P-42) to nickel-chromium-iron N06600 (P-43), in thickness of 0.035 to 0.432 inch; filler metal is ERNiCu-7 (F-42); shielding gas is argon.

Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

1985-08-01

149

Gas tungsten arc welding of nickel-copper to nickel-chromium-iron. Welding procedure specification  

Microsoft Academic Search

Procedure WPS-2303-ASME-3 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for gas tungsten arc welding of nickel-copper N04400 (P-42) to nickel-chromium-iron N06600 (P-43), in thickness of 0.035 to 0.432 inch; filler metal is ERNiCu-7 (F-42); shielding gas is argon.

C. H. Wodtke; D. R. Frizzell; W. A. Plunkett

1985-01-01

150

IRON ABSORPTION AND INTESTINAL HEPHAESTIN PROTEIN IN COPPER-DEFICIENT RATS  

Technology Transfer Automated Retrieval System (TEKTRAN)

More than 100 years ago, a connection between copper (Cu) and iron (Fe) metabolism was established when some forms of anemia were found to respond to treatment with Cu but not Fe. It was later discovered that the Cu-dependent plasma ferroxidase, ceruloplasmin, was associated with Fe homeostasis. Cu ...

151

Metal passivity as mechanism of metal carcinogenesis: Chromium, nickel, iron, copper, cobalt, platinum, molybdenum  

Microsoft Academic Search

For the transition metals chromium, nickel, iron, copper, cobalt, platinum, and molybdenum, mechanisms of stable bonding in biochemistry (emphasis on carcinogenic mechanisms), chemistry, industrial chemistry, as well as epidemiological, occupational, orthopedic (implant devices) effects related to carcinogenesis, were reviewed. Hypothetically, the propensity to stable bonding (inertness), which ensures the metals’ performance capacity for consumers and industrial application, relates to their

Cornelia Richardson-Boedler

2007-01-01

152

Calcium, copper, iron, magnesium, silicon and zinc content of hair in Parkinson's disease  

Microsoft Academic Search

The aetiology of Parkinson's disease (PD) is still unknown, but some hypotheses have focused on the imbalances in body levels of metals as co-factors of risk. To assess whether hair could be a reliable marker of possible changes, calcium (Ca), copper (Cu), iron (Fe), magnesium (Mg), silicon (Si) and zinc (Zn) were determined in hair from 81 patients affected by

Giovanni Forte; Alessandro Alimonti; Nicola Violante; Marco Di Gregorio; Oreste Senofonte; Francesco Petrucci; Giuseppe Sancesario; Beatrice Bocca

2005-01-01

153

Determination of cadmium, lead and copper in milk and milk powder by means of flow potentiometric stripping analysis.  

PubMed

A flow potentiometric stripping analysis procedure for the determination of cadmium, lead and copper in milk and milk powder samples is described. The instrumental arrangement consists of a glassy-carbon thin-layer cell through which six different solutions may be drawn by means of a peristaltic pump and magnetically operated valves. The glassy-carbon electrode is pre-coated with a film of mercury which can be employed for several analytical runs. The sample, diluted five-fold with Suprapur hydrochloric acid, is electrolysed for 0.5-4 min prior to stripping in Suprapur hydrochloric acid. Pump-rate, electrolysis time and potential, opening and closing of inlet valves and digital evaluation of stripping times are controlled automatically by the computer. The analytical results agree satisfactorily with the certified values for three milk powder reference samples. The detection limit for cadmium, lead and copper in milk samples after 4, 1 and 0.5 min of pre-electrolysis is 0.8, 4 and 8 mug l. , respectively. An analytical procedure for the determination of lead in samples containing high concentrations of tin is described. PMID:18964242

Alamestrand, L; Jagner, D; Renman, L

1986-12-01

154

Preconcentration and separation of iron, zinc, cadmium and mercury, from waste water using Nile blue a grafted polyurethane foam.  

PubMed

The present work describes a novel method for the incorporation of Nile blue A into polyurethane foam matrix. This foam material was found to be very suitable for the extraction of metal ions from aqueous solutions. The characterization of Nile blue A grafted foam and the effect of halide concentration, pH, shaking time, extraction isotherm and capacity have been investigated. This foam material was found to be suitable for the separation and preconcentration of iron (III), zinc (II), cadmium (II) and mercury (II) from waste water. The extraction was accomplished in (15-20) minutes. Iron was separated from acid medium (2-4 M HCl), zinc from (3-5 M HCl), cadmium from (4-6 M HCl) as thiocyanate complexes and mercury was separated from (1-2 M HCl) as chloride. PMID:18968973

El-shahat, M F; Moawed, E A; Zaid, M A A

2003-04-10

155

MD description of damage production in displacement cascades in copper and ?-iron.  

SciTech Connect

Molecular dynamics computer simulation was applied for an extensive study of primary damage creation in displacement cascades in copper and {alpha}-iron. Primary knock-on atom energy, E{sub p}, of up to 25 keV in copper and 100 keV in iron was considered for irradiation temperatures in the range 100-900 K. Special attention was paid to comprehensive statistical treatment of the number and type of defects created in cascades by conducting multiple simulations for each value of energy and temperature. The total number of point defects per cascade is significantly lower than that predicted by the NRT model and rather similar in the two metals. The fraction of self-interstitial atoms (SIAs) and vacancies that agglomerate in clusters in the cascade process was analysed in detail. The clustered fraction of SIAs increases with temperature increase and is larger in copper than iron. SIA clusters have a variety of forms in both metals and, although most are glissile clusters of parallel crowdions, a significant fraction are sessile. The latter include Frank dislocation loops in copper. Tightly packed arrangements of vacancies do not form in iron, and so the fraction of clustered vacancies depends strongly on the range within which point defects are defined to be near-neighbours. Arrangements of vacancies in first-neighbour sites are common in copper. Most are irregular stacking fault tetrahedra (SFTs). In 53 simulations of cascades with E{sub p} = 25 keV at 100 K, the largest cluster formed contained 89 vacancies. The size spectrum of SFT-like clusters is similar to that found experimentally in neutron-irradiated copper, suggesting that the SFTs observed in experiment are formed directly in the cascade process.

Bacon, David J [University of Liverpool; Osetskiy, Yury N [ORNL; Stoller, Roger E [ORNL; Voskoboinikov, Roman E [University of Liverpool

2003-01-01

156

Investigating the role of transferrin in the distribution of iron, manganese, copper, and zinc.  

PubMed

The essential role of transferrin in mammalian iron metabolism is firmly established. Integral to our understanding of transferrin, studies in hypotransferrinemic mice, a model of inherited transferrin deficiency, have demonstrated that transferrin is essential for iron delivery for erythropoiesis and in the regulation of expression of hepcidin, a hormone that inhibits macrophage and enterocyte iron efflux. Here we investigate a potential role for transferrin in the distribution of three other physiologic metals, manganese, copper, and zinc. We first assessed metal content in transferrin-rich fractions of wild-type mouse sera and demonstrate that although both iron and manganese cofractionated predominantly with transferrin, the absolute levels of manganese are several orders of magnitude lower than those of iron. We next measured metal content in multiple tissues in wild-type and hypotransferrinemic mice of various ages. Tissue metal imbalances were severe for iron and minimal to moderate for some metals in some tissues in hypotransferrinemic mice. Metal levels measured in a transferrin-replete yet hepcidin-deficient and iron-loaded mouse strain suggested that the observed imbalances in tissue copper, zinc, and manganese levels were not all specific to hypotransferrinemic mice or caused directly by transferrin deficiency. Overall, our results suggest that transferrin does not have a primary role in the distribution of manganese, copper, or zinc to tissues and that the abnormalities observed in tissue manganese levels are not attributable to a direct role for transferrin in manganese metabolism but rather are attributable to an indirect effect of transferrin deficiency on hepcidin expression and/or iron metabolism. PMID:24567067

Herrera, Carolina; Pettiglio, Michael A; Bartnikas, Thomas B

2014-08-01

157

Arsenic, cadmium, copper, lead, and selenium in migrating blue-winged teal (Anas discors L.).  

PubMed

The blue-winged teal (Anas discors L.), an abundant waterfowl species in North America, winters primarily in Mexico, Central America, and South America. Its transcontinental migratory behavior provides the opportunity to examine contaminant acquisition across a diverse biogeographic landscape that has varied environmental regulations and wildlife laws. We determined concentrations of arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), and selenium (Se) in liver samples of blue-winged teal migrating through southern Texas during autumn 1998 (n = 47) and spring 1999 (n = 46). Concentrations for As (range 0.006 to 0.22 microg/g wet weight [ww]), Cd (range 0.007 to 8.14 microg/g ww), and Pb (range 0.012 to 1.79 microg/g ww) were at background levels for birds, whereas Cu (8.1 to 227.3 microg/g ww) and Se (0.36 to 5.07 microg/g ww) were increased in several individuals. All 24 hatch-year (HY) blue-winged teal had detectable levels of Cd, Cu, Pb, and Se, and eight had detectable levels of As. A seasonal effect was found for Cd, in which the mean Cd concentration in autumn was lower (p < 0.015) than in spring. Comparisons between autumn-collected HY and autumn-collected after-hatch-year (AHY) blue-winged teal found the mean concentration of Cd was higher (p < 0.001) in AHY birds. A seasonal effect occurred for Cu, in which the mean concentration was higher (p < 0.001) in autumn than in spring. Comparisons between seasons using only AHY blue-winged teal found that the mean concentration of Cu was higher (p < 0.001) in autumn than in spring. No sex effects (p > 0.05) were found for the five elements examined. Results indicated that blue-winged teal were acquiring all five elements; that HY blue-winged teal were exposed to these elements in North America; and that increased Se concentrations in 15% of the 93-bird sample were at levels known to cause impairment in birds. PMID:17571203

Fedynich, A M; Ballard, B M; McBride, T J; Estrella, J A; Garvon, J M; Hooper, M J

2007-11-01

158

Comparative transcriptomic characterization of aluminum, sodium chloride, cadmium and copper rhizotoxicities in Arabidopsis thaliana  

PubMed Central

Background Rhizotoxic ions in problem soils inhibit nutrient and water acquisition by roots, which in turn leads to reduced crop yields. Previous studies on the effects of rhizotoxic ions on root growth and physiological functions suggested that some mechanisms were common to all rhizotoxins, while others were more specific. To understand this complex system, we performed comparative transcriptomic analysis with various rhizotoxic ions, followed by bioinformatics analysis, in the model plant Arabidopsis thaliana. Results Roots of Arabidopsis were treated with the major rhizotoxic stressors, aluminum (Al) ions, cadmium (Cd) ions, copper (Cu) ions and sodium (NaCl) chloride, and the gene expression responses were analyzed by DNA array technology. The top 2.5% of genes whose expression was most increased by each stressor were compared with identify common and specific gene expression responses induced by these stressors. A number of genes encoding glutathione-S-transferases, peroxidases, Ca-binding proteins and a trehalose-synthesizing enzyme were induced by all stressors. In contrast, gene ontological categorization identified sets of genes uniquely induced by each stressor, with distinct patterns of biological processes and molecular function. These contained known resistance genes for each stressor, such as AtALMT1 (encoding Al-activated malate transporter) in the Al-specific group and DREB (encoding dehydration responsive element binding protein) in the NaCl-specific group. These gene groups are likely to reflect the common and differential cellular responses and the induction of defense systems in response to each ion. We also identified co-expressed gene groups specific to rhizotoxic ions, which might aid further detailed investigation of the response mechanisms. Conclusion In order to understand the complex responses of roots to rhizotoxic ions, we performed comparative transcriptomic analysis followed by bioinformatics characterization. Our analyses revealed that both general and specific genes were induced in Arabidopsis roots exposed to various rhizotoxic ions. Several defense systems, such as the production of reactive oxygen species and disturbance of Ca homeostasis, were triggered by all stressors, while specific defense genes were also induced by individual stressors. Similar studies in different plant species could help to clarify the resistance mechanisms at the molecular level to provide information that can be utilized for marker-assisted selection. PMID:19309492

Zhao, Cheng-Ri; Ikka, Takashi; Sawaki, Yoshiharu; Kobayashi, Yuriko; Suzuki, Yuji; Hibino, Takashi; Sato, Shigeru; Sakurai, Nozomu; Shibata, Daisuke; Koyama, Hiroyuki

2009-01-01

159

Zinc Pyrithione Inhibits Yeast Growth through Copper Influx and Inactivation of Iron-Sulfur Proteins?†  

PubMed Central

Zinc pyrithione (ZPT) is an antimicrobial material with widespread use in antidandruff shampoos and antifouling paints. Despite decades of commercial use, there is little understanding of its antimicrobial mechanism of action. We used a combination of genome-wide approaches (yeast deletion mutants and microarrays) and traditional methods (gene constructs and atomic emission) to characterize the activity of ZPT against a model yeast, Saccharomyces cerevisiae. ZPT acts through an increase in cellular copper levels that leads to loss of activity of iron-sulfur cluster-containing proteins. ZPT was also found to mediate growth inhibition through an increase in copper in the scalp fungus Malassezia globosa. A model is presented in which pyrithione acts as a copper ionophore, enabling copper to enter cells and distribute across intracellular membranes. This is the first report of a metal-ligand complex that inhibits fungal growth by increasing the cellular level of a different metal. PMID:21947398

Reeder, Nancy L.; Kaplan, Jerry; Xu, Jun; Youngquist, R. Scott; Wallace, Jared; Hu, Ping; Juhlin, Kenton D.; Schwartz, James R.; Grant, Raymond A.; Fieno, Angela; Nemeth, Suzanne; Reichling, Tim; Tiesman, Jay P.; Mills, Tim; Steinke, Mark; Wang, Shuo L.; Saunders, Charles W.

2011-01-01

160

Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricot stone  

Microsoft Academic Search

In this work, adsorption of copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) that exist in industrial wastewater onto the carbon produced from nutshells of walnut, hazelnut, pistachio, almond, and apricot stone has been investigated. All the agricultural shell or stone used were ground, sieved to a defined size range, and carbonized in an oven. Time and temperature of

Maryam Kazemipour; Mehdi Ansari; Shabnam Tajrobehkar; Majdeh Majdzadeh; Hamed Reihani Kermani

2008-01-01

161

Cadmium, Lead, Copper, Zinc, and Nickel in Lettuce and Dry Beans as Related to Mehlich-3 Extraction in Three Brazilian Latossols  

Microsoft Academic Search

Lettuce (Lactuca sativa L.) and dry beans (Phaseolus vulgaris L.) were grown in three Brazilian Red-Yellow Latossols (Oxisols) in greenhouse conditions with cadmium (Cd), lead (Pb), copper (Cu), zinc (Zn), and nickel (Ni) applied to soils in treatments arranged as a randomized complete block design. Plant metals were analyzed in lettuce shoots and dry beans roots, stems, leaves, and seeds.

R. L. F. Fontes; J. M. N. Pereira; J. C. L. Neves; M. P. F. Fontes

2008-01-01

162

Controlling lead and copper corrosion and sequestering of iron and manganese  

SciTech Connect

With the recently enacted Lead and Copper Rule (LCR), many utilities are faced with the conflict of meeting the requirements of the Rule and controlling aesthetic problems caused by source water iron and manganese. The most common approach for utilities to control ``red and black water`` is to add a polyphosphate based compound. However, the higher pH required for control of lead and copper solubility reduces the effectiveness of polyphosphate to sequester iron and manganese. There is also the threat that polyphosphate may complex lead and copper and increase their concentration. An alternative treatment approach, sodium silicate addition, was evaluated at medium sized water system with elevated source water iron (0.30--2.27 mg/L) and manganese (0.11--0.27 mg/L). The goal of the study was to examine the viability of sodium silicate to simultaneously control red water complaints, and reduce lead and copper concentrations. Samples for a wide range of water quality parameters were collected before initiating treatment (5 months) and after treatment to gauge the effectiveness of the approach.

Clement, J.A. [Black and Veatch, Cambridge, MA (United States); Schock, M.; Lytle, D. [Environmental Protection Agency, Cincinnati, OH (United States)

1994-12-31

163

Serum iron, zinc, and copper concentration in premature graying of hair.  

PubMed

Premature graying of hair with unclear etiology, which is known as premature canities, is a common cause of referrals to the dermatologists. We assessed the relationship between serum iron, copper, and zinc concentrations with premature canities. This study was conducted on patients under 20 years old suffering from premature canities, having a minimum of ten gray hair fibers, and referring to university hospitals of Isfahan (Iran). The results were compared with age-sex-matched controls. Demographic data and disease characteristics were recorded for two groups. We studied serum iron, copper, and zinc concentrations of 66 patients and 66 controls using atomic absorption and Ferrozine methods. The mean age of studied cases was 17.8?±?2.0 years, and the mean age of the onset of canities was 15.5?±?3.2 years with no significant difference between males and females (P?>?0.05). Serum copper concentration was significantly lower in patients compared with controls (90.7?±?37.4 vs. 105.3?±?50.2 ?g/dL, P?=?0.048), but serum iron concentration was significantly lower in controls compared to patients (88.8?±?39.5 vs. 108.3?±?48.4 ?g/dL, P?=?0.008). Also, there was no significant difference between patients and controls in serum zinc concentration (114.8?±?67.8 vs. 108.2?±?49.9 ?g/dL, P?=?0.285). According to these results, among copper, zinc, and iron, a low serum copper concentration may play a role in premature graying of hairs in our society. Further studies are needed to find the underlying mechanism of this relationship. PMID:21979243

Fatemi Naieni, Farahnaz; Ebrahimi, Bahareh; Vakilian, Hamid Reza; Shahmoradi, Zabihollah

2012-04-01

164

Copper, nickel, and iron in plumage of three upland gamebird species from non-contaminated environments  

SciTech Connect

High levels of atmospheric contamination and particulate fallout characterizing the Industrial Basin of the copper-nickel smelting operations at Sudbury, Ontario, were shown to be reflected in the feather chemistry of resident ruffed grouse populations. Of considerable concern, however, is the paucity of information on background concentrations of elemental metals that could be considered normal for non-contaminated environments. The present report examines concentrations of copper, nickel and iron in the plumage of three tetraonid species collected from remote and undisturbed areas in Northern Ontario and Quebec.

Parker, G.H.

1985-12-01

165

Iron deficiency is associated with increased levels of blood cadmium in the Korean general population: Analysis of 2008-2009 Korean National Health and Nutrition Examination Survey data  

SciTech Connect

Introduction: We present data from the Korean National Health and Nutrition Examination Survey 2008-2009 on the distribution of blood cadmium levels and their association with iron deficiency in a representative sample of the adult Korean population. Methods: Serum ferritin was categorized into three levels: low (serum ferritin <15.0 {mu}g/L), low normal (15.0-30.0 {mu}g/L for women and 15.0-50.0 for men), and normal ({>=}30.0 {mu}g/L for women and {>=}50.0 for men), and its association with blood cadmium level was assessed after adjustment for various demographic and lifestyle factors. Results: Geometric means of blood cadmium in the low serum ferritin group in women, men, and all participants were significantly higher than in the normal group. Additionally, multiple regression analysis after adjusting for various covariates showed that blood cadmium was significantly higher in the low-ferritin group in women, men, and all participants compared with the normal group. We also found an association between serum ferritin and blood cadmium among never-smoking participants. Discussion: We found, similar to other recent population-based studies, an association between iron deficiency and increased blood cadmium in men and women, independent of smoking status. The results of the present study show that iron deficiency is associated with increased levels of blood cadmium in the general population.

Lee, Byung-Kook [Institute of Environmental and Occupational Medicine, Soonchunhyang University, 646 Eupnae-ri, Shinchang-myun, Asan-si, Choongnam 336-745 (Korea, Republic of)] [Institute of Environmental and Occupational Medicine, Soonchunhyang University, 646 Eupnae-ri, Shinchang-myun, Asan-si, Choongnam 336-745 (Korea, Republic of); Kim, Yangho, E-mail: yanghokm@nuri.net [Department of Occupational and Environmental Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, 290-3 Cheonha-Dong, Dong-Gu, Ulsan 682-060 (Korea, Republic of)] [Department of Occupational and Environmental Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, 290-3 Cheonha-Dong, Dong-Gu, Ulsan 682-060 (Korea, Republic of)

2012-01-15

166

Characterizing the role of rice NRAMP5 in Manganese, Iron and Cadmium Transport  

PubMed Central

Metals like manganese (Mn) and iron (Fe) are essential for metabolism, while cadmium (Cd) is toxic for virtually all living organisms. Understanding the transport of these metals is important for breeding better crops. We have identified that OsNRAMP5 contributes to Mn, Fe and Cd transport in rice. OsNRAMP5 expression was restricted to roots epidermis, exodermis, and outer layers of the cortex as well as in tissues around the xylem. OsNRAMP5 localized to the plasma membrane, and complemented the growth of yeast strains defective in Mn, Fe, and Cd transport. OsNRAMP5 RNAi (OsNRAMP5i) plants accumulated less Mn in the roots, and less Mn and Fe in shoots, and xylem sap. The suppression of OsNRAMP5 promoted Cd translocation to shoots, highlighting the importance of this gene for Cd phytoremediation. These data reveal that OsNRAMP5 contributes to Mn, Cd, and Fe transport in rice and is important for plant growth and development. PMID:22368778

Ishimaru, Yasuhiro; Takahashi, Ryuichi; Bashir, Khurram; Shimo, Hugo; Senoura, Takeshi; Sugimoto, Kazuhiko; Ono, Kazuko; Yano, Masahiro; Ishikawa, Satoru; Arao, Tomohito; Nakanishi, Hiromi; Nishizawa, Naoko K.

2012-01-01

167

Summary of ENDF/B-V evaluations for carbon, calcium, iron, copper, and lead and ENDF/B-V Revision 2 for calcium and iron  

SciTech Connect

This report, together with documents already published, describes the ENDF/B-V evaluations of the neutron and gamma-ray-production cross sections for carbon, calcium, iron, copper, and lead and the ENDF/B-V Revision 2 evaluations for calcium and iron.

Fu, C Y

1982-09-01

168

Content of total iron, copper and manganese in liver of animals during hypokinesia, muscle activity and process of recovery  

NASA Technical Reports Server (NTRS)

It is shown that the content of total iron, copper and manganese in the liver of animals is altered depending on the intensity and duration of their swimming. Hypodynamia for 7 days does not alter the concentration of iron, but sufficiently increases the content of copper and manganese. The barometric factor effectively influences the maintenance of constancy in the content of microelements accumulated in the liver after intensive muscle activity.

Potapovich, G. M.; Taneyeva, G. V.; Uteshev, A. B.

1980-01-01

169

Direct Functionalization of (Un)protected Tetrahydroisoquinoline and Isochroman under Iron and Copper Catalysis: Two Metals, Two Mechanisms  

PubMed Central

A highly facile, straightforward synthesis of 1-(3-indolyl)-tetrahydroisoquinolines was developed using either simple copper or iron catalysts. N-protected and unprotected tetrahydroisoquinolines (THIQ) could be used as starting materials. Extension of the substrate scope of the pronucleophile from indoles to pyrroles and electron-rich arenes was realized. Additionally, methoxyphenylation is not limited to THIQ but can be carried out on isochroman as well, again employing iron and copper catalysis. PMID:21902275

2011-01-01

170

Serum ceruloplasmin protein expression and activity increases in iron-deficient rats and is further enhanced by higher dietary copper intake  

PubMed Central

Increases in serum and liver copper content are noted during iron deficiency in mammals, suggesting that copper-dependent processes participate during iron deprivation. One point of intersection between the 2 metals is the liver-derived, multicopper ferroxidase ceruloplasmin (Cp) that is important for iron release from certain tissues. The current study sought to explore Cp expression and activity during physiologic states in which hepatic copper loading occurs (eg, iron deficiency). Weanling rats were fed control or low iron diets containing low, normal, or high copper for ? 5 weeks, and parameters of iron homeostasis were measured. Liver copper increased in control and iron-deficient rats fed extra copper. Hepatic Cp mRNA levels did not change; however, serum Cp protein was higher during iron deprivation and with higher copper consumption. In-gel and spectrophotometric ferroxidase and amine oxidase assays demonstrated that Cp activity was enhanced when hepatic copper loading occurred. Interestingly, liver copper levels strongly correlated with Cp protein expression and activity. These observations support the possibility that liver copper loading increases metallation of the Cp protein, leading to increased production of the holo enzyme. Moreover, this phenomenon may play an important role in the compensatory response to maintain iron homeostasis during iron deficiency. PMID:21768302

Ranganathan, Perungavur N.; Lu, Yan; Jiang, Lingli; Kim, Changae

2011-01-01

171

Determination of arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc in geological materials by atomic-absorption spectrometry  

USGS Publications Warehouse

Arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc are very useful elements in geochemical exploration. In the proposed method, geological samples are fused with potassium pyrosulphate and the fusate is dissolved in a solution of hydrochloric acid, ascorbic acid and potassium iodide. When this solution is shaken with a 10% V/V Aliquat 336 - isobutyl methyl ketone organic phase, the nine elements of interest are selectively partitioned in the organic phase. All nine elements can then be determined in the organic phase using flame atomic-absorption spectrometry. The method is rapid and allows the determination of Ag and Cd at levels down to 0.1 p.p.m., Cu, Mo, and Zn down to 0.5 p.p.m., Pb, Bi and Sb down to 1 p.p.m. and As down to 5 p.p.m. in geological materials.

Viets, J.G.; O'Leary, R. M.; Clark, Robert J.

1984-01-01

172

The ColRS signal transduction system responds to the excess of external zinc, iron, manganese, and cadmium  

PubMed Central

Background The ColRS two-component system has been shown to contribute to the membrane functionality and stress tolerance of Pseudomonas putida as well as to the virulence of Pseudomonas aeruginosa and plant pathogenic Xanthomonas species. However, the conditions activating the ColRS pathway and the signal(s) sensed by ColS have remained unknown. Here we aimed to analyze the role of the ColRS system in metal tolerance of P. putida and to test whether ColS can respond to metal excess. Results We show that the ColRS system is necessary for P. putida to tolerate the excess of iron and zinc, and that it also contributes to manganese and cadmium tolerance. Excess of iron, zinc, manganese or cadmium activates ColRS signaling and as a result modifies the expression of ColR-regulated genes. Our data suggest that the genes in the ColR regulon are functionally redundant, as several loci have to be deleted to observe a significant decrease in metal tolerance. Site-directed mutagenesis of ColS revealed that excess of iron and, surprisingly, also zinc are sensed by a conserved ExxE motif in ColS’s periplasmic domain. While ColS is able to sense different metals, it still discriminates between the two oxidation states of iron, specifically responding to ferric and not ferrous iron. We propose a signal perception model involving a dimeric ColS, where each monomer donates one ExxE motif for metal binding. Conclusions Several transition metals are essential for living organisms in certain amounts, but toxic in excess. We show that ColRS is a sensor system which detects and responds to the excess of physiologically important metals such as zinc, iron and manganese. Thus, the ColRS system is an important factor for metal homeostasis and tolerance in P. putida. PMID:24946800

2014-01-01

173

Oxidation of cyclohexane over iron and copper salen complexes simultaneously encapsulated in zeolite Y  

Microsoft Academic Search

Iron and copper salen complexes have been simultaneously encapsulated in zeolite Y by using the flexible ligand method, as substantiated by infrared spectroscopy, diffuse reflectance UV–vis spectroscopy, thermo-gravimetric and differential-thermal analyses and N2 adsorption\\/desorption experiments at ?196°C. The prepared material showed much higher activity than the neat Cu(salen) and Fe(salen) or the Cu(salen)\\/Y and Fe(salen)\\/Y or their physical mixtures in

Binbin Fan; Hongyu Li; Weibin Fan; Chun Jin; Ruifeng Li

2008-01-01

174

National contaminant biomonitoring program: Concentrations of arsenic, cadmium, copper, lead, mercury, selenium, and zinc in U.S. Freshwater Fish, 1976–1984  

Microsoft Academic Search

From late 1984 to early 1985, the U.S. Fish and Wildlife Service collected a total of 315 composite samples of whole fish\\u000a from 109 stations nationwide, which were analyzed for arsenic, cadmium, copper, lead, mercury, selenium, and zinc. Geometric\\u000a mean, maximum, and 85th percentile concentrations (?g\\/g wet weight) for 1984 samples were as follows: arsenic-0.14, 1.5, 0.27;\\u000a cadmium-0.03, 0.22, 0.05;

Christopher J. Schmitt; William G. Brumbaugh

1990-01-01

175

Cadmium, copper and zinc in octopuses from Kerguelen Islands, Southern Indian Ocean  

E-print Network

showed that the high levels of Cd in Kerguelen octopuses resulted from very high levels of the metal: Cephalopods . Octopus . Sub-Antarctic . Heavy metals . Cadmium . Digestive gland . Detoxification processes & Klages 1989), royal albatrosses (Imber 1991) and Weddell seals (Clarke & McLeod 1982). They were also

Paris-Sud XI, Université de

176

DETERMINATION OF ZINC, CADMIUM, LEAD, AND COPPER IN WATER BY ANODIC STRIPPING VOLTAMMETRY  

EPA Science Inventory

The Tennessee Valley Authority developed a method of differential pulse anodic stripping voltammetry for determining total concentrations of cadmium and lead in water samples from ash ponds at steam-electric generating plants. After digestion of the sample and addition of reagent...

177

Effect of CaO Addition on Iron Recovery from Copper Smelting Slags by Solid Carbon  

NASA Astrophysics Data System (ADS)

We investigated the effect of flux (lime) addition on the reduction behavior of iron oxide in copper slag by solid carbon at 1773 K (1500 °C). In particular, we quantified the recovery of iron by performing typical kinetic analysis and considering slag foaming, which is strongly affected by the thermophysical properties of slags. The iron oxide in the copper slag was consistently reduced by solid carbon over time. In the kinetic analysis, we determined mass transfer coefficients with and without considering slag foaming using a gas holdup factor. The mass transfer of FeO was not significantly changed by CaO addition when slag foaming was ignored, whereas the mass transfer of FeO when slag foaming was considered was at a minimum in the 20 mass pct CaO system. Iron recovery, defined as the ratio of the amount of iron clearly transferred to the base metal ingot to the initial amount of iron in the slag phase before reduction, was maximal (about 90 pct) in the 20 mass pct CaO system. Various types of solid compounds, including Mg2SiO4 and Ca2SiO4, were precipitated in slags during the FeO reduction process, and these compounds strongly affected the reduction kinetics of FeO as well as iron recovery. Iron recovery was the greatest in the 20 mass pct CaO system because no solid compounds formed in this system, resulting in a highly fluid slag. This fluid slag allowed iron droplets to fall rapidly with high terminal velocity to the bottom of the crucible. A linear relationship between the mass transfer coefficient of FeO considering slag foaming and foam stability was obtained, from which we concluded that the mass transfer of FeO in slag was effectively promoted not only by gas evolution due to reduction reactions but also by foamy slag containing solid compounds. However, the reduced iron droplets were finely dispersed in foamy and viscous slags, making actual iron recovery a challenge.

Heo, Jung Ho; Kim, Byung-Su; Park, Joo Hyun

2013-12-01

178

A chemical potentiator of copper-accumulation used to investigate the iron-regulons of Saccharomyces cerevisiae  

PubMed Central

The extreme resistance of Saccharomyces cerevisiae to copper is overcome by 2-(6-benzyl-2-pyridyl)quinazoline (BPQ), providing a chemical-biology tool which has been exploited in two lines of discovery. First, BPQ is shown to form a red (BPQ)2Cu(I) complex and promote Ctr1-independent copper-accumulation in whole cells and in mitochondria isolated from treated cells. Multiple phenotypes, including loss of aconitase activity, are consistent with copper-BPQ mediated damage to mitochondrial iron–sulphur clusters. Thus, a biochemical basis of copper-toxicity in S. cerevisiae is analogous to other organisms. Second, iron regulons controlled by Aft1/2, Cth2 and Yap5 that respond to mitochondrial iron–sulphur cluster status are modulated by copper-BPQ causing iron hyper-accumulation via upregulated iron-import. Comparison of copper-BPQ treated, untreated and copper-only treated wild-type and fra2? by RNA-seq has uncovered a new candidate Aft1 target-gene (LSO1) and paralogous non-target (LSO2), plus nine putative Cth2 target-transcripts. Two lines of evidence confirm that Fra2 dominates basal repression of the Aft1/2 regulons in iron-replete cultures. Fra2-independent control of these regulons is also observed but CTH2 itself appears to be atypically Fra2-dependent. However, control of Cth2-target transcripts which is independent of CTH2 transcript abundance or of Fra2, is also quantified. Use of copper-BPQ supports a substantial contribution of metabolite repression to iron-regulation. PMID:24895027

Foster, Andrew W; Dainty, Samantha J; Patterson, Carl J; Pohl, Ehmke; Blackburn, Hannah; Wilson, Clare; Hess, Corinna R; Rutherford, Julian C; Quaranta, Laura; Corran, Andy; Robinson, Nigel J

2014-01-01

179

Studies on the role of iron in the reversal of zinc, cadmium, vanadium, nickel, and cobalt toxicities in boiler pullets  

SciTech Connect

Excess dietary iron reduced the toxicity of cadmium (Cd), cobalt (Co), nickel (Ni) and vanadium (V) in chicks. In order to gain further insight into this phenomenon, the toxicity of these elements was examined under conditions of dietary iron deficiency, ca. 10 ppm, and excess, ca. 1010 ppm. Graded levels of Cd, Co, Ni, V and also of zinc (Zn) were added to achieve toxicities of these heavy metals. In every case the iron-supplemented chicks were less susceptible to the every case the iron-supplemented chicks were less susceptible to the toxicities of these elements than were those chicks receiving the iron-deficient diet. The results of these studies revealed that Fe alters the metabolism of Zn, Cd, V, Ni and Co in livers and kidneys of chicks. The data further show that Zn, Cd, and Co alter Fe metabolism in chick livers and kidneys. Additionally, hemoglobin concentration was altered by Zn, Cd, and V, as well as Fe, in chicks. The locus of these interactions was more clearly defined using the radioactive tracers /sup 109/Cd, /sup 60/Co, /sup 63/Ni, /sup 48/V, and /sup 65/Zn. Iron deficiency increased absorption of Co and Ni, reduced liver retention of Cd, and Zn without affecting absorption and increased blood and liver levels of V, possibly as a result of decreased bone uptake. The alteration of liver metabolism of Cd and Zn in iron deficiency was investigated using column chromatography and atomic absorption spectrophotometry. Adequate dietary iron appears to act synergistically with Cd and Zn to induce metallothionein in the liver. Increased dietary Fe was observed to result in an increased liver influx of Zn and Cd. It is possible that iron acts in this manner to induce metallothionein synthesis.

Blalock, T.L.

1986-01-01

180

RECYCLING OF CdTe PHOTOVOLTAIC MODULES: RECOVERY OF CADMIUM AND TELLURIUM Vasilis Fthenakis1, Paul Duby2, Wenming Wang1, Christopher Graves2 & Anuta Belova2  

E-print Network

are: a) Cleaning of glass from the metals and recycling of glass; b) separation of Te from Cd columns in series to separate copper and tellurium from cadmium in solution. Subsequently, we recovered Cd, tellurium, copper, and iron. The solution is then passed consecutively through a chelating resin column

181

The relation of the accumulation of cadmium in human placenta to the intake of high-fibre grains and maternal iron status.  

PubMed

Exposure to cadmium via the diet is known to depend to a large extent on the intake of cereal grains, particularly the high-fibre fractions of wheat. Subjects with low iron status absorb more cadmium than those with better iron status. The purpose of the present study was to determine to what extent cadmium accumulation in human placenta is affected by the intake of grain fibre and maternal iron status during pregnancy. Thirty-nine pregnant women participated in the study. In each trimester the women were requested to complete a dietary history and to allow blood samples to be taken for haemoglobin, serum ferritin and serum thiocyanate determinations, the latter as a marker for smoking. At delivery the whole placenta was taken for the determination of the cadmium concentration. The 32 women who had serum thiocyanate levels less than 70 mumol/l, who had completed at least one dietary history and from whom a blood sample was obtained in the third trimester, were included in the final statistical analyses. In the group of women who consumed less than the median intake of grain fibre and had more than 15 micrograms ferritin/l serum in the third trimester, the placenta cadmium concentration was nearly half that in the placentae of women who had consumed more grain fibre or had lower iron status in late pregnancy. PMID:1327741

Moberg Wing, A; Wing, K; Tholin, K; Sjöström, R; Sandström, B; Hallmans, G

1992-08-01

182

Manganese and iron oxide immobilized activated carbons precursor to dead biomasses in the remediation of cadmium-contaminated waters.  

PubMed

The aim of the present investigation was to exploit the high specific surface area of activated carbons in immobilizing the manganese and iron oxides as to obtain a suitable, efficient and cost effective and environment benign wastewater treatment process in the remediation of cadmium-contaminated waters. The manganese and iron oxides were impregnated in situ onto the surface and pores of the activated carbons precursors to the rice hulls and areca nut wastes. The solids were characterized with the help of Fourier transform infrared spectroscopy and X-ray diffraction analytical data, and the BET specific surface area as obtained. The surface morphology of these solids was discussed with the help of scanning electron microscopic images. The activated carbon samples along with the manganese and iron immobilized activated carbons were further employed in the batch and column reactor operations in the remediation of cadmium-contaminated waters. The batch data showed that an increase in sorptive pH from 2.0 to 10.0 and concentration from 1.0 to 20 mg/L favoured the uptake of cadmium by these solids. Moreover, the 1,000 times increase in background electrolyte concentrations NaNO3 caused an insignificant decrease in cadmium uptake by these solids, which inferred that sorbing ions/species were sorbed specifically and forming 'inner-sphere' complexes onto the solid surface. The concentration dependence data were utilized to model various adsorption isotherms and indicated that Freundlich adsorption isotherm was reasonably fitted well. The kinetic data was fitted well to the pseudo-second-order rate equations; hence, the equilibrium sorption capacity was estimated. Furthermore, the dynamic experiments carried out by the column experiments and the breakthrough data were fitted well to the non-linear Thomas equations; accordingly, the loading capacity of the column was estimated. Iron or manganese immobilized activated carbons showed relatively higher loading capacity compared to its precursor activated carbons hence showing its possible implication in the remediation processes. Moreover, among these modified ACs, IIAC showed higher removal capacity than the MIAC solid. PMID:23589235

Lee, Seung-Mok; Lalhmunsiama; Choi, Sang-Il; Tiwari, Diwakar

2013-10-01

183

Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation  

PubMed Central

Summary Phytochelatins (PCs) are glutathione-derived peptides that function in heavy metal detoxification in plants and certain fungi. Recent research in Arabidopsis has shown that PCs undergo long-distance transport between roots and shoots. However, it remains unknown which tissues or vascular systems, xylem or phloem, mediate PC translocation and whether PC transport contributes to physiologically relevant long-distance transport of cadmium (Cd) between shoots and roots. To address these questions, xylem and phloem sap were obtained from Brassica napus to quantitatively analyze which thiol species are present in response to Cd exposure. High levels of PCs were identified in the phloem sap within 24 h of Cd exposure using combined mass spectrometry and fluorescence HPLC analyses. Unexpectedly, the concentration of Cd was more than four-fold higher in phloem sap compared to xylem sap. Cadmium exposure dramatically decreased iron levels in xylem and phloem sap whereas other essential heavy metals such as zinc and manganese remained unchanged. Data suggest that Cd inhibits vascular loading of iron but not nicotianamine. The high ratios [PCs]/[Cd] and [glutathione]/[Cd] in the phloem sap suggest that PCs and glutathione (GSH) can function as long-distance carriers of Cd. In contrast, only traces of PCs were detected in xylem sap. Our results suggest that, in addition to directional xylem Cd transport, the phloem is a major vascular system for long-distance source to sink transport of Cd as PC–Cd and glutathione–Cd complexes. PMID:18208526

Mendoza-Cózatl, David G.; Butko, Emerald; Springer, Franziska; Torpey, Justin W.; Komives, Elizabeth A.; Kehr, Julia; Schroeder, Julian I.

2010-01-01

184

Trace Elements Status in Selenium-Deficient Rats—Interaction with Cadmium  

Microsoft Academic Search

Although the metabolic and toxicological interactions between essential element selenium (Se) and toxic element cadmium (Cd)\\u000a have been reported for a long time, the experimental studies explored mostly acute, high-dose interactions. Limited data are\\u000a available regarding the effects of Se-deficiency on toxicokinetics of cadmium, as well as on the levels of key trace elements—copper,\\u000a zinc, and iron. In the present

Dana Kotyzová; Pavla ?erná; Ladislav Lešetický; Vladislav Eybl

2010-01-01

185

Comparative acute toxicity of gallium(III), antimony(III), indium(III), cadmium(II), and copper(II) on freshwater swamp shrimp (Macrobrachium nipponense)  

PubMed Central

Background Acute toxicity testing were carried out the freshwater swamp shrimp, Macrobrachium nipponense, as the model animal for the semiconductor applied metals (gallium, antimony, indium, cadmium, and copper) to evaluate if the species is an suitable experimental animal of pollution in aquatic ecosystem. Results The static renewal test method of acute lethal concentrations determination was used, and water temperature was maintained at 24.0?±?0.5°C. Data of individual metal obtained from acute toxicity tests were determined using probit analysis method. The median lethal concentration (96-h LC50) of gallium, antimony, indium, cadmium, and copper for M. nipponense were estimated as 2.7742, 1.9626, 6.8938, 0.0539, and 0.0313 mg/L, respectively. Conclusions Comparing the toxicity tolerance of M. nipponense with other species which exposed to these metals, it is obviously that the M. nipponense is more sensitive than that of various other aquatic animals. PMID:25027256

2014-01-01

186

Determination of cadmium(II), copper(II), manganese(II) and nickel(II) species in Antarctic seawater with complexing resins  

Microsoft Academic Search

The strong species of cadmium(II), copper(II), manganese(II) and nickel(II) in an Antarctic seawater sample are investigated by a method based on the sorption of metal ions on complexing resins. The resins compete with the ligands present in the sample to combine with the metal ions. Two resins with different adsorbing strengths were used. Very stable metal complexes were investigated with

Raffaela Biesuz; Giancarla Alberti; Girolamo D'Agostino; Emanuele Magi; Maria Pesavento

2006-01-01

187

Copper, Cadmium, and Zinc Concentrations in Juvenile Chinook Salmon and Selected Fish-Forage Organisms (Aquatic Insects) in the Upper Sacramento River, California  

Microsoft Academic Search

This study assessed the downstream extent andseverity of copper (Cu), cadmium (Cd), and zinc (Zn)contamination from acid mine drainage on juvenile chinook salmon(Oncorhynchus tshawytscha) and aquatic insects over aroughly 270-km reach of the Sacramento River below KeswickReservoir. During April–May 1998, salmon were collected fromfour sites in the river and from a fish hatchery that receiveswater from Battle Creek. Salmon from

Michael K. Saiki; Barbara A. Martin; Larry D. Thompson; Daniel Welsh

2001-01-01

188

Cadmium?induced alterations in nutrient composition and growth of betula pendula seedlings: The significance of fine roots as a primary target for cadmium toxicity  

Microsoft Academic Search

Birch seedlings (Betula pendula) were cultivated in nutrient solution with 0–2 ?M cadmium (Cd). The effects of 2–10 days of Cd exposure on root and shoot element composition [potassium (K), calcium (Ca), magnesium (Mg), phosphorus (P), sulfur (S), iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), molybdenum (Mo), and Cd] and growth (as percentage dry weight increase) were investigated. The

Monika Gussarsson

1994-01-01

189

Branchial cadmium and copper binding and intestinal cadmium uptake in wild yellow perch (Perca flavescens) from clean and metal-contaminated lakes.  

PubMed

Branchial binding kinetics and gastro-intestinal uptake of copper and cadmium where examined in yellow perch (Perca flavescens) from a metal-contaminated lake (Hannah Lake, Sudbury, Ontario, Canada) and an uncontaminated lake (James Lake, North Bay, Ontario, Canada). An in vivo approach was taken for gill binding comparisons while an in vitro gut binding assay was employed for gastro-intestinal tract (GIT) uptake analysis. By investigating metal uptake at the gill and the gut we cover the two main routes of metal entry into fish. Comparisons of water and sediment chemistries, metal burdens in benthic invertebrate, and metal burdens in the livers of perch from the two study lakes clearly show that yellow perch from Hannah L. are chronically exposed to a highly metal-contaminated environment compared to a reference lake. We found that metal-contaminated yellow perch showed no significant difference in gill Cd binding compared to reference fish, but they did show significant decreases in new Cd binding and absorption in their GITs. The results show that gill Cd binding may involve low-capacity, high-affinity binding sites, while gastro-intestinal Cd uptake involves binding sites that are high-capacity, low-affinity. From this we infer that Cd may be more critically controlled at the gut rather than gills. Significant differences in branchial Cu binding (increased binding) were observed in metal-contaminated yellow perch. We suggest that chronic waterborne exposure to Cu (and/or other metals) may be the dominant influence in gill Cu binding rather than chronic exposure to high Cu diets. We give supporting evidence that Cd is taken up in the GIT, at least in part, by a similar pathway as Ca(2+), principally that elevated dietary Ca(2+) reduces Cd binding and uptake. Overall our study reveals that metal pre-exposure via water and diet can alter uptake kinetics of Cu and Cd at the gill and/or the gut. PMID:17643503

Klinck, J S; Green, W W; Mirza, R S; Nadella, S R; Chowdhury, M J; Wood, C M; Pyle, G G

2007-08-30

190

Zebrafish in the sea of mineral (iron, zinc, and copper) metabolism  

PubMed Central

Iron, copper, zinc, and eight other minerals are classified as essential trace elements because they present in minute in vivo quantities and are essential for life. Because either excess or insufficient levels of trace elements can be detrimental to life (causing human diseases such as iron-deficiency anemia, hemochromatosis, Menkes syndrome and Wilson's disease), the endogenous levels of trace minerals must be tightly regulated. Many studies have demonstrated the existence of systems that maintain trace element homeostasis, and these systems are highly conserved in multiple species ranging from yeast to mice. As a model for studying trace mineral metabolism, the zebrafish is indispensable to researchers. Several large-scale mutagenesis screens have been performed in zebrafish, and these screens led to the identification of a series of metal transporters and the generation of several mutagenesis lines, providing an in-depth functional analysis at the system level. Moreover, because of their developmental advantages, zebrafish have also been used in mineral metabolism-related chemical screens and toxicology studies. Here, we systematically review the major findings of trace element homeostasis studies using the zebrafish model, with a focus on iron, zinc, copper, selenium, manganese, and iodine. We also provide a homology analysis of trace mineral transporters in fish, mice and humans. Finally, we discuss the evidence that zebrafish is an ideal experimental tool for uncovering novel mechanisms of trace mineral metabolism and for improving approaches to treat mineral imbalance-related diseases. PMID:24639652

Zhao, Lu; Xia, Zhidan; Wang, Fudi

2014-01-01

191

Effects of selenium on liver and muscle contents and urinary excretion of zinc, copper, iron and manganese.  

PubMed

Selenium is a main component of glutathione peroxidase (GPX), a key antioxidant enzyme. Other elements, such as zinc, copper, manganese and iron, are also involved in the pathogenesis of oxidative damage as well as in other important metabolic pathways. The effects of selenium supplementation on the metabolism of these elements have yield controversial results .The aim of this study is to analyse the effects of selenium supplementation on liver, muscle and urinary excretion of zinc, copper, iron and manganese in a situation of oxidative stress, such as protein deficiency. The experimental design included four groups of adult male Sprague-Dawley rats, which received the Lieber-DeCarli control diet, an isocaloric 2 % protein-containing diet and another similar two groups to which selenomethionine (6 mg/l liquid diet) was added. After sacrifice (5 weeks later), muscle, liver and serum selenium were determined, as well as muscle, liver and urinary zinc, copper, manganese and iron and liver GPX activity and liver malondialdehyde. Selenium addition led to decreased liver copper, increased muscle copper, increased copper excretion and increased liver iron, whereas zinc and manganese parameters were essentially unaltered. Muscle, liver and serum selenium were all significantly correlated with liver GPX activity. PMID:24622908

Monedero-Prieto, María José; González-Pérez, José María; González-Reimers, Emilio; Hernández-Pérez, Onán; Monereo-Muñoz, María; Galindo-Martín, Luis; Quintero-Platt, Geraldine; Abreu-González, Pedro

2014-05-01

192

Investigation of Iron Metabolism in Mice Expressing a Mutant Menke’s Copper Transporting ATPase (Atp7a) Protein with Diminished Activity (Brindled; MoBr/y)  

PubMed Central

During iron deficiency, perturbations in copper homeostasis have frequently been documented. Previous studies in iron-deprived rats demonstrated that enterocyte and hepatic copper levels increase and a copper transporter (the Menkes Copper ATPase; Atp7a) is induced in the duodenal epithelium in parallel to iron transport-related genes (e.g. Dmt1, Dcytb, Fpn1). Moreover, two ferroxidase proteins involved in iron homeostasis, hephaestin expressed in enterocytes and ceruloplasmin, produced and secreted into blood by the liver, are copper-dependent enzymes. We thus aimed to test the hypothesis that Atp7a function is important for the copper-related compensatory response of the intestinal epithelium to iron deficiency. Accordingly, iron homeostasis was studied for the first time in mice expressing a mutant Atp7a protein with minimal activity (Brindled [MoBr/y]). Mutant mice were rescued by perinatal copper injections, and, after a 7–8 week recovery period, were deprived of dietary iron for 3 weeks (along with WT littermates). Adult MoBr/y mice displayed copper-deficiency anemia but had normal iron status; in contrast, iron-deprived MoBr/y mice were iron deficient and more severely anemic with partial amelioration of the copper-deficient phenotype. Intestinal iron absorption in both genotypes (WT and MoBr/y) increased ?3-fold when mice consumed a low-iron diet and ?6-fold when mice were concurrently bled. WT mice exhibited no alterations in copper homeostasis in response to iron deprivation or phlebotomy. Conversely, upregulation of iron absorption was associated with increased enterocyte and liver copper levels and serum ferroxidase (ceruloplasmin) activity in MoBr/y mice, typifying the response to iron deprivation in many mammalian species. We thus speculate that a copper threshold exists that is necessary to allow appropriate regulate of iron absorption. In summary, MoBr/y mice were able to adequately regulate iron absorption, but unlike in WT mice, concurrent increases in enterocyte and liver copper levels and serum ferroxidase activity may have contributed to maintenance of iron homeostasis. PMID:23776592

Gulec, Sukru; Collins, James F.

2013-01-01

193

Inhibition of Ape1 nuclease activity by lead, iron, and cadmium.  

PubMed Central

Many environmental metals are co-carcinogens, eliciting their effects via inhibition of DNA repair. Apurinic/apyrimidinic (AP) endonuclease 1 (Ape1) is the major mammalian abasic endonuclease and initiates repair of this cytotoxic/mutagenic lesion by incising the DNA backbone via a Mg(2+)-dependent reaction. In this study we examined the effects of arsenite [As(III)], cadmium [Cd(II)], cobalt [Co(II)], iron [Fe(II)], nickel [Ni(II)], and lead [Pb(II)] at concentrations ranging from 0.3 to 100 microM on the incision activity of Ape1 in the presence of 1 mM MgCl(subscript)2(/subscript). Pb(II) and Fe(II) inhibited Ape1 activity at each of the concentrations tested, with an IC(subscript)50(/subscript) (half-maximal inhibitory concentration) of 0.61 and 1.0 microM, respectively. Cd(II) also inhibited Ape1 activity but only at concentrations > 10 microM. No inhibition was seen with As(III), Co(II), or Ni(II). A similar inhibition pattern was observed with the homologous Escherichia coli protein, exonuclease III, but no inhibition was seen with the structurally distinct AP endonuclease E. coli endonuclease IV, indicating a targeted effect of Pb(II), Fe(II), and Cd(II) on the Ape1-like repair enzymes. Excess nonspecific DNA did not abrogate the metal inactivation, suggesting a protein-specific effect. Notably, Cd(II), Fe(II), and Pb(II) [but not As(III), Co(II), or Ni(II)] inhibited AP endonuclease activity in whole-cell extracts but had no significant effect on single nucleotide gap filling, 5'-flap endonuclease, and nick ligation activities, supporting the idea of selective inactivation of Ape1 in cells. Our results are the first to identify a potential DNA repair enzyme target for lead and suggest a means by which these prevalent environmental metals may elicit their deleterious effects. PMID:15159209

McNeill, Daniel R; Narayana, Avinash; Wong, Heng-Kuan; Wilson, David M

2004-01-01

194

Impairment of metabolic capacities in copper and cadmium contaminated wild yellow perch ( Perca flavescens)  

Microsoft Academic Search

This study examined variations in resting oxygen consumption rate (ROCR), post-exercise oxygen consumption rate, relative scope for activity (RSA), liver and muscle aerobic and anaerobic capacities (using citrate synthase (CS) and lactate dehydrogenase, respectively, as indicators), and tissue biosynthetic capacities (using nucleoside diphosphate kinase (NDPK) as an indicator), in wild yellow perch from four lakes varying in copper (Cu) and

Patrice Couture; Puja Rajender Kumar

2003-01-01

195

Iron and Copper Act Synergistically To Delay Anaerobic Growth of Bacteria  

PubMed Central

Transition metals are known to cause toxic effects through their interaction with oxygen, but toxicity under anoxic conditions is poorly understood. Here we investigated the effects of iron (Fe) and copper (Cu) on the anaerobic growth and gene expression of the purple phototrophic bacterium Rhodopseudomonas palustris TIE-1. We found that Fe(II) and Cu(II) act synergistically to delay anaerobic growth at environmentally relevant metal concentrations. Cu(I) and Cu(II) had similar effects both alone and in the presence of ascorbate, a Cu(II) reductant, indicating that reduction of Cu(II) to Cu(I) by Fe(II) is not sufficient to explain the growth inhibition. Addition of Cu(II) increased the toxicity of Co(II) and Ni(II); in contrast, Ni(II) toxicity was diminished in the presence of Fe(II). The synergistic anaerobic toxicity of Fe(II) and Cu(II) was also observed for Escherichia coli MG1655, Shewanella oneidensis MR-1, and Rhodobacter capsulatus SB1003. Gene expression analyses for R. palustris identified three regulatory genes that respond to Cu(II) and not to Fe(II): homologs of cueR and cusR, two known proteobacterial copper homeostasis regulators, and csoR, a copper regulator recently identified in Mycobacterium tuberculosis. Two P-type ATPase efflux pumps, along with an FoF1 ATP synthase, were also upregulated by Cu(II) but not by Fe(II). An Escherichia coli mutant deficient in copA, cus, and cueO showed a smaller synergistic effect, indicating that iron might interfere with one or more of the copper homeostasis systems. Our results suggest that interactive effects of transition metals on microbial physiology may be widespread under anoxic conditions, although the molecular mechanisms remain to be more fully elucidated. PMID:23563938

Bird, Lina J.; Coleman, Maureen L.

2013-01-01

196

Iron and copper act synergistically to delay anaerobic growth of bacteria.  

PubMed

Transition metals are known to cause toxic effects through their interaction with oxygen, but toxicity under anoxic conditions is poorly understood. Here we investigated the effects of iron (Fe) and copper (Cu) on the anaerobic growth and gene expression of the purple phototrophic bacterium Rhodopseudomonas palustris TIE-1. We found that Fe(II) and Cu(II) act synergistically to delay anaerobic growth at environmentally relevant metal concentrations. Cu(I) and Cu(II) had similar effects both alone and in the presence of ascorbate, a Cu(II) reductant, indicating that reduction of Cu(II) to Cu(I) by Fe(II) is not sufficient to explain the growth inhibition. Addition of Cu(II) increased the toxicity of Co(II) and Ni(II); in contrast, Ni(II) toxicity was diminished in the presence of Fe(II). The synergistic anaerobic toxicity of Fe(II) and Cu(II) was also observed for Escherichia coli MG1655, Shewanella oneidensis MR-1, and Rhodobacter capsulatus SB1003. Gene expression analyses for R. palustris identified three regulatory genes that respond to Cu(II) and not to Fe(II): homologs of cueR and cusR, two known proteobacterial copper homeostasis regulators, and csoR, a copper regulator recently identified in Mycobacterium tuberculosis. Two P-type ATPase efflux pumps, along with an F(o)F(1) ATP synthase, were also upregulated by Cu(II) but not by Fe(II). An Escherichia coli mutant deficient in copA, cus, and cueO showed a smaller synergistic effect, indicating that iron might interfere with one or more of the copper homeostasis systems. Our results suggest that interactive effects of transition metals on microbial physiology may be widespread under anoxic conditions, although the molecular mechanisms remain to be more fully elucidated. PMID:23563938

Bird, Lina J; Coleman, Maureen L; Newman, Dianne K

2013-06-01

197

Relationship between Paratuberculosis and the microelements Copper, Zinc, Iron, Selenium and Molybdenum in Beef Cattle  

PubMed Central

To study the deficiency of minerals and its relationship with Paratuberculosis, blood, serum, and fecal samples were obtained from 75 adult bovines without clinical symptoms of the disease and from two bovines with clinical symptoms of the disease, from two beef herds with a previous history of Paratuberculosis in the Province of Buenos Aires, Argentina. Serum samples were processed by ELISA and feces were cultured in Herrolds medium. Copper, zinc and iron in serum were quantified by spectrophotometry and selenium was measured by the activity of glutathione peroxidase. We also determined copper, zinc, iron and molybdenum concentrations in pastures and the concentration of sulfate in water. Mycobacterium avium subsp paratuberculosis (Map) was isolated from 17.3% of fecal samples of asymptomatic animals and from the fecal samples from the two animals with clinical symptoms. All the Map-positive animals were also ELISA-positive or suspect, and among them, 84.6% presented low or marginal values of selenium and 69.2% presented low or marginal values of copper. The two animals with clinical symptoms, and isolation of Map from feces and organs were selenium-deficient and had the lowest activity of glutathione peroxidase of all the animals from both herds. All the animals negative to Map in feces and negative to ELISA had normal values of Se, while 13.8% of animals with positive ELISA or suspect and culture negative presented low levels of Se. Half of the animals that were negative both for ELISA and culture in feces were deficient in copper but none of them presented low values of selenium. The content of molybdenum and iron in pasture was high, 2.5 ppm and 1.13 ppm in one herd and 2.5 ppm and 2.02 ppm in the other, respectively, whereas the copper:molybdenum ratio was 1.5 and 5.2, respectively. These results do not confirm an interaction between imbalances of the micronutrients and clinical Paratuberculosis, but show evidence of the relationship between selenium deficiencies in animals with Map infection and ELISA positive results. PMID:24159298

Paolicchi, F.; Perea, J.; Cseh, S.; Morsella, C.

2013-01-01

198

Seasonal changes of zinc, copper, and iron in gilthead sea bream ( Sparus aurata ) fed fortified diets  

Microsoft Academic Search

Four groups of gilthead sea bream (Sparus aurata) were fed diets with additional metal contents: a basal diet (diet A) contained Zn at 60.9 ± 1.9 mg\\/kg diet, Cu at 3.9 ±\\u000a 0.9 mg\\/kg diet, and Fe at 138.3 ± 6.8 mg\\/kg diet; the other diets were supplemented with copper (20 mg\\/kg, diet B), iron (100\\u000a mg\\/kg, diet C), or

Emilio Carpeme; Rossella Serra; Maurizio Manera; Gloria Isani

1999-01-01

199

Effect of adsorbed chlorine and oxygen on shear strength of iron and copper junctions  

NASA Technical Reports Server (NTRS)

Static friction experiments were performed in ultrahigh vacuum at room temperature on copper, iron, and steel contacts selectively contaminated with oxygen and chlorine in submonolayer amounts. The concentration of the adsorbates was determined with Auger electron spectroscopy and was measured relative to the saturation concentration of oxygen on iron (concentration 1.0). The coefficient of static friction decreased with increasing adsorbate concentration. It was independent of the metal and the adsorbate. The results compared satisfactorily with an extension of the junction growth theory to heterogeneous interfaces. The reduction in interfacial shear strength was measured by the ratio sub a/sub m where sub a is the shear strength of the interface with an adsorbate concentration of 1.0, and sub m is the strength of the clean metal interface. This ratio was 0.835 + or - 0.012 for all the systems tested.

Wheeler, D. R.

1975-01-01

200

Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China.  

PubMed

The concentrations of lead, zinc, copper and cadmium accumulated by 12 emergent-rooted wetland plant species including different populations of Leersia hexandra, Juncus effusus and Equisetum ramosisti were investigated in field conditions of China. The results showed that metal accumulation by wetland plants differed among species, populations and tissues. Populations grown in substrata with elevated metals contained significantly higher metals in plants. Metals accumulated by wetland plants were mostly distributed in root tissues, suggesting that an exclusion strategy for metal tolerance widely exists in them. That some species/populations could accumulate relatively high metal concentrations (far above the toxic concentration to plants) in their shoots indicates that internal detoxification metal tolerance mechanism(s) are also included. The factors affecting metal accumulation by wetland plants include metal concentrations, pH, and nutrient status in substrata. Mostly concentrations of Pb and Cu in both aboveground and underground tissues of the plants were significantly positively related to their total and/or DTPA-extractable fractions in substrata while negatively to soil N and P, respectively. The potential use of these wetland plants in phytoremediation is also discussed. PMID:15276271

Deng, H; Ye, Z H; Wong, M H

2004-11-01

201

Vitamin E attenuates liver injury induced by exposure to lead, mercury, cadmium and copper in albino mice  

PubMed Central

Water pollution is the contamination of water resources by harmful wastes or toxins. Both community and private sources of drinking water are susceptible to a myriad of chemical contaminants. Heavy metals pollution of surface water can create health risks. The present study was aimed to investigate the effect of vitamin E supplementation on male mice exposed to a mixture of some heavy metals (lead, mercury, cadmium and copper) in their drinking water for seven weeks. Significant increases of blood alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma glutamyl transferase (GGT) were detected in heavy metals-treated mice. Histopathologically, the liver sections from heavy metals-treated mice showed severe changes including disarrangement of hepatic strands, rupture in hepatocytes, advanced hepatocellular necrosis, dilation and congestion of blood vessels with hemorrhage, dense lymphocytic infiltration round the central vein and dark stained hepatocytic nuclei indicating cell pycnosis. Administration of vitamin E at a dose of 50 IU/kg body weight, five times weekly improved the observed biochemical and histopathological changes induced by these heavy metals intoxication. Hence, the results of this study suggest that vitamin E protects against these heavy metals-induced liver injury and the attenuating effect of vitamin E may be due to its antioxidant activity. PMID:23961152

Al-Attar, Atef M.

2011-01-01

202

Assessing the mobility of lead, copper and cadmium in a calcareous soil of Port-au-Prince, Haiti.  

PubMed

The presence of heavy metals in the environment constitutes a potential source of both soil and groundwater pollution. This study has focused on the reactivity of lead (Pb), copper (Cu) and Cadmium (Cd) during their transfer in a calcareous soil of Port-au-Prince (Haiti). Kinetic, monometal and competitive batch tests were carried out at pH 6.0. Two simplified models including pseudo-first-order and pseudo-second-order were used to fit the experimental data from kinetics adsorption batch tests. A good fit of these data was found with pseudo-second-order kinetic model which indicates the applicability of this model to describe the adsorption rates of these metals on the soil. Monometal batch tests indicated that both Langmuir and Freundlich models allowed a good fit for experimental data. On the basis of the maximum adsorption capacity (qmax), the order affinity of Pb, Cu and Cd for the studied soil was Pb2+ > Cu2+ > Cd2+. Competitive sorption has proved that the competition between two or several cations on soils for the same active sites can decrease their qmax. These results show that, at high metal concentrations, Cd may pose more threat in soils and groundwater of Port-au-Prince than Pb and Cu. PMID:24192791

Fifi, Urbain; Winiarski, Thierry; Emmanuel, Evens

2013-11-01

203

Combined toxicity of cadmium and copper in Avicennia marina seedlings and the regulation of exogenous jasmonic acid.  

PubMed

Seedlings of Avicennia marina were exposed to single and combined metal treatments of cadmium (Cd) and copper (Cu) in a factorial design, and the combined toxicity of Cu and Cd was tested. The effects of the exogenous jasmonic acid (JA) on chlorophyll concentration, lipid peroxidation, Cd and Cu uptake, antioxidative capacity, endogenous JA concentration, and type-2 metallothionein gene (AmMT2) expression in seedlings of A. marina exposed to combined metal treatments were also investigated. A binary mixture of low-dose Cd (9µmolL(-1)) and high-dose Cu (900µmolL(-1)) showed toxicity to the seedlings, indicated by the significant augmentation in leaf malondialdehyde (MDA) and reduction in leaf chlorophylls. The toxicity of the combined metals was significantly alleviated by the addition of exogenous JA at 1µmolL(-1), and the chlorophyll and MDA contents were found to be restored to levels comparable to those of the control. Compare to treatment with Cd and Cu only, 1 and 10µmolL(-1) JA significantly enhanced the ascorbate peroxidase activity, and 10µmolL(-1) JA significantly decreased the uptake of Cd in A. marina leaves. The relative expression of leaf AmMT2 gene was also significantly enhanced by 1 and 10µmolL(-1) JA, which helped reduce Cd toxicity in A. marina seedlings. PMID:25497768

Yan, Zhongzheng; Li, Xiuzhen; Chen, Jun; Tam, Nora Fung-Yee

2015-03-01

204

Joint toxicity of tetracycline with copper(II) and cadmium(II) to Vibrio fischeri: effect of complexation reaction.  

PubMed

Co-contamination of antibiotic and heavy metals commonly occurs in the environment. Tetracycline (TC), a common antibiotic, can behave as an efficient organic ligand to complex with cations. In this paper, the joint toxicity of TC with two commonly existing metals, copper(II) and cadmium(II), towards a luminescent bacteria, Vibrio fischeri, are investigated. Results showed that coexistence of TC and Cu(II) showed a significant antagonistic effect, while TC and Cd(II) showed a synergistic effect. The aqueous speciation of TC with two metal cations was calculated using a chemical equilibrium software Visual MINTEQ and results indicated that a strong complexation exist between TC and Cu(II), while much weaker interaction between TC and Cd(II). Traditional joint toxicity prediction model based on independent action failed to predict the combined toxicity of TC with metals. A new method based on speciation calculation was used to evaluate the joint toxicity of ligands and cations. It is assumed that the metal-ligand complexes are non-toxic to V. fischeri and the joint toxicity is determined by the sum of toxic unit of free metal-ions and free organic ligands. It explained the joint toxicity of the mixed systems reasonably well. Meanwhile, citric acid (CA) and fulvic acid (FA) were also introduced in this study to provide a benchmark comparison with TC. Results showed it is also valid for mixed systems of CA and FA with metals except for the Cd-CA mixture. PMID:25398505

Tong, Fei; Zhao, Yanping; Gu, Xueyuan; Gu, Cheng; Lee, Charles C C

2015-03-01

205

The Proteome of Copper, Iron, Zinc, and Manganese Micronutrient Deficiency in Chlamydomonas reinhardtii*  

PubMed Central

Trace metals such as copper, iron, zinc, and manganese play important roles in several biochemical processes, including respiration and photosynthesis. Using a label-free, quantitative proteomics strategy (MSE), we examined the effect of deficiencies in these micronutrients on the soluble proteome of Chlamydomonas reinhardtii. We quantified >103 proteins with abundances within a dynamic range of 3 to 4 orders of magnitude and demonstrated statistically significant changes in ?200 proteins in each metal-deficient growth condition relative to nutrient-replete media. Through analysis of Pearson's coefficient, we also examined the correlation between protein abundance and transcript abundance (as determined via RNA-Seq analysis) and found moderate correlations under all nutritional states. Interestingly, in a subset of transcripts known to significantly change in abundance in metal-replete and metal-deficient conditions, the correlation to protein abundance is much stronger. Examples of new discoveries highlighted in this work include the accumulation of O2 labile, anaerobiosis-related enzymes (Hyd1, Pfr1, and Hcp2) in copper-deficient cells; co-variation of Cgl78/Ycf54 and coprogen oxidase; the loss of various stromal and lumenal photosynthesis-related proteins, including plastocyanin, in iron-limited cells; a large accumulation (from undetectable amounts to over 1,000 zmol/cell) of two COG0523 domain-containing proteins in zinc-deficient cells; and the preservation of photosynthesis proteins in manganese-deficient cells despite known losses in photosynthetic function in this condition. PMID:23065468

Hsieh, Scott I.; Castruita, Madeli; Malasarn, Davin; Urzica, Eugen; Erde, Jonathan; Page, M. Dudley; Yamasaki, Hiroaki; Casero, David; Pellegrini, Matteo; Merchant, Sabeeha S.; Loo, Joseph A.

2013-01-01

206

Rapid Size- Controlled Synthesis of Dextran-Coated, Copper-Doped Iron Oxide Nanoparticles  

NASA Astrophysics Data System (ADS)

Development of dual modality probes enabled for magnetic resonance imaging (MRI) and positron emission tomography (PET) has been on the rise in recent years due to the potential for these probes to facilitate combining the complementary high resolution of MRI and the high sensitivity of PET. The efficient synthesis of multimodal probes that include the radiolabels for PET can be hindered due to prolonged reaction times during radioisotope incorporation, and the resulting decay of the radiolabel. Along with a time-efficient synthesis, one also needs an optimal synthesis that yields products in a desirable size range (between 20-100 nm) to increase blood retention time. In this work, we describe a novel, rapid, microwave-based synthesis of dextran-coated iron oxide nanoparticles doped with copper (DIO/Cu). Traditional methods for synthesizing dextran-coated iron oxide particles require refluxing for 2 hours and result in approximately 50 nm particles. We demonstrate that microwave synthesis can produce 50 nm nanoparticles in 5 minutes of heating. We discuss the various parameters used in the microwave synthesis protocol to vary the size distribution of DIO/Cu, and demonstrate the successful incorporation of copper into these particles with the aim of future use for rapid 64Cu incorporation.

Wong, Ray M.

2011-12-01

207

Copper and iron concentrations in Ascophyllum nodosum (Fucales, Phaeophyta) from different sites in Ireland and after culture experiments in relation to thallus age and epiphytism  

Microsoft Academic Search

In laboratory experiments, copper concentrations in plants of Ascophyllum nodosum (L.) Le Jolis (Fucales, Phaeophyta) increased with the concentrations in the culture media and were highest in younger, meristematic thallus parts. After initial accumulation in high-copper medium and subsequent transfer to clean seawater for 5 days, no release of copper could be detected. Iron concentrations in A. nodosum tissue were

Dagmar B. Stengel; Matthew J. Dring

2000-01-01

208

Friction and transfer of copper, silver, and gold to iron in the presence of various adsorbed surface films  

NASA Technical Reports Server (NTRS)

Sliding friction experiments were conducted with the noble metals copper, silver, and gold and two binary alloys of these metals contacting iron in the presence of various adsorbates including, oxygen, methyl mercaptan, and methyl chloride. A pin on disk specimen configuration was used with a load of 100 grams, sliding velocity of 60 mm/min; at 25 C with the surfaces saturated with the adsorbates. Auger emission spectroscopy was used to monitor surface films. Results of the experiments indicate that friction and transfer characteristics are highly specific with respect to both the noble metal and surface film present. With all three metals and films transfer of the noble metal to iron occurred very rapidly. With all metals and films transfer of the noble metal to iron continuously increased with repeated passes except for silver and copper sliding on iron sulfide.

Buckley, D. H.

1979-01-01

209

Iron as a possible aggravating factor for osteopathy in itai-itai disease, a disease associated with chronic cadmium intoxication  

SciTech Connect

Itai-itai disease is thought to be the result of chronic cadmium (Cd) intoxication. We examined 23 autopsy cases of itai-itai disease and 18 cases of sudden death as controls. Urine and blood samples from 10 patients were collected before they died and revealed the presence of severe anemia and renal tubular injuries. Undecalcified sections of iliac bone were stained with Aluminon reagent, and ammonium salt of aurintricarboxylic acid, and Prussian blue reagent in all cases of itai-itai disease. These two reagents reacted at the same mineralization fronts. X-ray microanalysis revealed the presence of iron at mineralization fronts in itai-itai disease. Five patients showed evidence of hemosiderosis in the liver, spleen, and pancreas, probably as a result of post transfusion iron overload. Renal calculi and calcified aortic walls were also stained with Prussian blue reagent in several patients. Neither ferritin nor transferrin were visualized at mineralization fronts in itai-itai disease by immunohistochemical staining. These results suggest that iron is bound to calcium or to calcium phosphate by a physicochemical reaction. A marked osteomalacia was observed in 10 cases of itai-itai disease by histomorphometry. Regression analyses of data from cases of itai-itai disease suggested that an Aluminon-positive metal inhibited mineralization and that renal tubules were injured. Since bone Cd levels were increased in itai-itai disease, it is likely that renal tubules were injured by exposure to Cd. Therefore, stainable bone iron is another possible aggravating factor for osteopathy in itai-itai disease, and a synergistic effect between iron and Cd on mineralization is proposed.

Noda, M.; Yasuda, M.; Kitagawa, M. (Toyama Medical and Pharmaceutical Univ. (Japan))

1991-03-01

210

Iron, copper, and nickel behavior in buffered, neutral aluminum chloride:1-methyl-3-ethylimidazolium chloride molten salt  

Microsoft Academic Search

Iron, copper, and nickel electrodes were examined as possible metal\\/metal(II) chloride cathodes for the room temperature sodium\\/metal chloride battery in a molten salt composed of sodium chloride (NaCl), aluminum chloride (AlClâ), and 1-methyl-3-ethylimidazolium chloride (MEIC). The iron electrode was investigated in basic, neutral-like, and acidic MEIC:AlClâ melts. The solubility and the kinetics of the reduction of Fe(II) was a function

Stephen Pye; J. Winnick; P. A. Kohl

1997-01-01

211

Association of serum levels of iron, copper, and zinc, and inflammatory markers with bacteriological sputum conversion during tuberculosis treatment.  

PubMed

Iron, copper, and zinc are key micronutrients that play an important role in the immune response to Mycobacterium tuberculosis. The present study aimed to evaluate the association between serum levels of those micronutrients, inflammatory markers, and the smear and culture conversion of M. tuberculosis during 60 days of tuberculosis treatment. Seventy-five male patients with pulmonary tuberculosis (mean age, 40.0?±?10.7 years) were evaluated at baseline and again at 30 and 60 days of tuberculosis treatment. Serum levels of iron, copper, zinc, albumin, globulin, C-reactive protein, and hemoglobin, and smear and cultures for M. tuberculosis in sputum samples were analyzed. Compared to healthy subjects, at baseline, patients with PTB had lower serum iron levels, higher copper levels and copper/zinc ratio, and similar zinc levels. During the tuberculosis treatment, no significant changes in the serum levels of iron, zinc, and copper/zinc were observed. Lower serum copper levels were associated with bacteriological conversion in tuberculosis treatment (tuberculosis-negative) at 30 days but not at 60 days (tuberculosis-positive). C-reactive protein levels and the C-reactive protein/albumin ratio were lower in tuberculosis-negative patients than in tuberculosis-positive patients at 30 and 60 days after treatment. Albumin and hemoglobin levels and the albumin/globulin ratio in patients with pulmonary tuberculosis increased during the study period, regardless of the bacteriological results. High serum globulin levels did not change among pulmonary tuberculosis patients during the study. Serum copper levels and the C-reactive protein/albumin ratio may be important parameters to evaluate the persistence of non-conversion after 60 days of tuberculosis treatment, and they may serve as predictors for relapse after successful treatment. PMID:24958018

Moraes, Milena Lima de; Ramalho, Daniela Maria de Paula; Delogo, Karina Neves; Miranda, Pryscila Fernandes Campino; Mesquita, Eliene Denites Duarte; de Melo Guedes de Oliveira, Hedi Marinho; Netto, Antônio Ruffino; Dos Anjos, Marcelino José; Kritski, Afrânio Lineu; de Oliveira, Martha Maria

2014-08-01

212

Micronutrient status in female university students: iron, zinc, copper, selenium, vitamin B12 and folate.  

PubMed

Young women are at an increased risk of micronutrient deficiencies, particularly due to higher micronutrient requirements during childbearing years and multiple food group avoidances. The objective of this study was to investigate biomarkers of particular micronutrients in apparently healthy young women. Female students (n = 308; age range 18-35 year; Body Mass Index 21.5 ± 2.8 kg/m2; mean ± SD) were recruited to participate in a cross-sectional study. Blood samples were obtained from participants in the fasted state and analysed for biomarkers of iron status, vitamin B12, folate, homocysteine, selenium, zinc, and copper. The results show iron deficiency anaemia, unspecified anaemia, and hypoferritinemia in 3%, 7% and 33.9% of participants, respectively. Low vitamin B12 concentrations (<120 pmol/L) were found in 11.3% of participants, while 4.7% showed sub-clinical deficiency based on serum methylmalonic acid concentrations >0.34 ?mol/L. Folate concentrations below the reference range were observed in 1.7% (serum) or 1% (erythrocytes) of participants, and 99.7% of the participant had erythrocyte-folate concentrations >300 nmol/L. Serum zinc concentrations <10.7 ?mol/L were observed in 2% of participants. Serum copper and selenium concentrations were below the reference range in 23% and 11% of participants, respectively. Micronutrient deficiencies including iron and vitamin B12, and apparent excess of folate are present in educated Australian female students of childbearing age, including those studying nutrition. The effects of dietary behaviours and food choices on markers of micronutrient status require further investigation. PMID:25401503

Fayet-Moore, Flavia; Petocz, Peter; Samman, Samir

2014-11-01

213

Haemolysis and Perturbations in the Systemic Iron Metabolism of Suckling, Copper-Deficient Mosaic Mutant Mice – An Animal Model of Menkes Disease  

PubMed Central

The biological interaction between copper and iron is best exemplified by the decreased activity of multicopper ferroxidases under conditions of copper deficiency that limits the availability of iron for erythropoiesis. However, little is known about how copper deficiency affects iron homeostasis through alteration of the activity of other copper-containing proteins, not directly connected with iron metabolism, such as superoxide dismutase 1 (SOD1). This antioxidant enzyme scavenges the superoxide anion, a reactive oxygen species contributing to the toxicity of iron via the Fenton reaction. Here, we analyzed changes in the systemic iron metabolism using an animal model of Menkes disease: copper-deficient mosaic mutant mice with dysfunction of the ATP7A copper transporter. We found that the erythrocytes of these mutants are copper-deficient, display decreased SOD1 activity/expression and have cell membrane abnormalities. In consequence, the mosaic mice show evidence of haemolysis accompanied by haptoglobin-dependent elimination of haemoglobin (Hb) from the circulation, as well as the induction of haem oxygenase 1 (HO1) in the liver and kidney. Moreover, the hepcidin-ferroportin regulatory axis is strongly affected in mosaic mice. These findings indicate that haemolysis is an additional pathogenic factor in a mouse model of Menkes diseases and provides evidence of a new indirect connection between copper deficiency and iron metabolism. PMID:25247420

Lenartowicz, Ma?gorzata; Starzy?ski, Rafa? R.; Krzeptowski, Wojciech; Grzmil, Pawe?; Bednarz, Aleksandra; Ogórek, Mateusz; Pierzcha?a, Olga; Staro?, Robert; Gajowiak, Anna; Lipi?ski, Pawe?

2014-01-01

214

The effect of iron and copper as an essential nutrient on mitochondrial electron transport system and lipid peroxidation in Trichoderma harzianum.  

PubMed

Iron and copper are essential nutrients for all living organisms as cofactors of many enzymes and play important roles in electron transport system (ETS) enzymes which have heme and iron-sulfur centers. In the present study, ETS enzymes, namely, succinate dehydrogenase (SDH) and cytochrome c oxidase (COX), activities as well as adenine nucleotides and lipid peroxidation (LPO) levels of eukaryotic model Trichoderma harzianum grown in varied concentrations of iron (0-20 mg/l) and copper (0-25 mg/l) mediums have been examined. SDH and COX activities increased up to 10 mg/l of iron. COX and SDH activities increased significantly up to 15 and 1 mg/l of copper, respectively. ATP and ADP levels showed a positive correlation with SDH activity with respect to iron-copper concentrations. The trends of AMP were similar with those of ATP and ADP for iron concentrations, while AMP levels elevated until 5 mg/l of copper. As an indicative marker of membrane damage, LPO levels increased with iron and copper concentration. In conclusion, iron and copper concentrations are of critical importance on activities of the ETS enzymes besides adenine nucleotides and LPO levels by maintenance of this metal homeostasis. PMID:23716140

Tavsan, Zehra; Ayar Kayali, Hulya

2013-08-01

215

Bioaccumulation of iron, zinc, cadmium and chromium by juvenile snail Limicolaria aurora J., fed edible mushroom Pleurotus spp from Niger Delta, Nigeria.  

PubMed

The effects of uptake of metals (iron, zinc, cadmium and chromium) by juvenile snail Limicolaria aurora fed edible mushroom Pleurotus spp from 3 contaminated farm sites and a laboratory grown species (control) respectively were investigated. The 120 snails were fed in plastic snaileries for 4 weeks in the laboratory. Control site was risk free. Metal uptake was low and bioaccumulation in L. aurora tissue was below FAO/WHO standard of 1 mg/kg for chromium and cadmium. Snails were considered safe for consumption. PMID:23229305

Ebenso, I E; Solomon, I P; Akoje, C C; Akpan, I P; Eko, P M; Akpan, E A; Omole, A J

2013-03-01

216

Acute sensitivity of white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) to copper, cadmium, or zinc in water-only laboratory exposures  

USGS Publications Warehouse

The acute toxicity of cadmium, copper, and zinc to white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) were determined for 7 developmental life stages in flow-through water-only exposures. Metal toxicity varied by species and by life stage. Rainbow trout were more sensitive to cadmium than white sturgeon across all life stages, with median effect concentrations (hardness-normalized EC50s) ranging from 1.47?µg Cd/L to 2.62?µg Cd/L with sensitivity remaining consistent during later stages of development. Rainbow trout at 46 d posthatch (dph) ranked at the 2nd percentile of a compiled database for Cd species sensitivity distribution with an EC50 of 1.46?µg Cd/L and 72 dph sturgeon ranked at the 19th percentile (EC50 of 3.02?µg Cd/L). White sturgeon were more sensitive to copper than rainbow trout in 5 of the 7 life stages tested with biotic ligand model (BLM)-normalized EC50s ranging from 1.51?µg Cu/L to 21.9?µg Cu/L. In turn, rainbow trout at 74 dph and 95 dph were more sensitive to copper than white sturgeon at 72 dph and 89 dph, indicating sturgeon become more tolerant in older life stages, whereas older trout become more sensitive to copper exposure. White sturgeon at 2 dph, 16 dph, and 30 dph ranked in the lower percentiles of a compiled database for copper species sensitivity distribution, ranking at the 3rd (2 dph), 5th (16 dph), and 10th (30 dph) percentiles. White sturgeon were more sensitive to zinc than rainbow trout for 1 out of 7 life stages tested (2 dph with an biotic ligand model–normalized EC50 of 209?µg Zn/L) and ranked in the 1st percentile of a compiled database for zinc species sensitivity distribution.

Calfee, Robin D.; Little, Edward E.; Puglis, Holly J.; Scott, Erinn L.; Brumbaugh, William G.; Mebane, Christopher A.

2014-01-01

217

pH-Dependent reactivity of oxidants formed by iron and copper-catalyzed decomposition of hydrogen peroxide.  

PubMed

The decomposition of hydrogen peroxide catalyzed by iron and copper leads to the generation of reactive oxidants capable of oxidizing various organic compounds. However, the specific nature of the reactive oxidants is still unclear, with evidence suggesting the production of hydroxyl radical or high-valent metal species. To identify the reactive species in the Fenton system, the oxidation of a series of different compounds (phenol, benzoic acid, methanol, Reactive Black 5 and arsenite) was studied for iron- and copper-catalyzed reactions at varying pH values. At lower pH values, more reactive oxidants appear to be formed in both iron and copper-catalyzed systems. The aromatic compounds, phenol and benzoic acid, were not oxidized under neutral or alkaline pH conditions, whereas methanol, Reactive Black 5, and arsenite were oxidized to a different degree, depending on the catalytic system. The oxidants responsible for the oxidation of compounds at neutral and alkaline pH values are likely to be high-valent metal complexes of iron and copper (i.e., ferryl and cupryl ions). PMID:23433935

Lee, Hongshin; Lee, Hye-Jin; Sedlak, David L; Lee, Changha

2013-07-01

218

Transcriptional regulation of copper metabolism genes in the liver of fetal and neonatal control and iron-deficient rats.  

PubMed

Copper and iron metabolism have been known to interact for many years. We have previously shown, during pregnancy, that copper levels in the maternal liver rise as a consequence of iron deficiency, but that levels in the fetal liver decrease. In this paper, we measure expression of genes involved in copper metabolism in fetal and postnatal liver, to test whether alterations can explain this observation. Additionally, we study the extent to which gene expression changes in the latter stages of pregnancy and in the perinatal period. Ctr1 expression levels dropped to term, rising again thereafter. There was no difference in gene expression between control and iron deficient animals. Atox1 expression remained approximately stable until term, and then there was a rise to a maximum at about Day 8. Atp7a expression levels remained constant, except for a brief drop at term. Atp7b levels, in contrast, decreased from a maximum early in gestation to low levels in the term and post-natal livers. Ceruloplasmin expression appeared to be diametrically opposite to Atp7b. The other two metallochaperones showed the same pattern of expression as Atox1, with a decrease to term, a rise at Day 1, or a rise after birth followed by a brief decrease at about Day 3. None of the genes were significantly affected by iron deficiency, suggesting that changes in expression cannot explain the altered copper levels in the fetal and neonatal liver. PMID:25349135

Lenartowicz, Malgorzata; Kennedy, Christine; Hayes, Helen; McArdle, Harry J

2015-02-01

219

Adventiously-bound redox active iron and copper are at the center of oxidative damage in Alzheimer disease  

Microsoft Academic Search

Central to oxidative damage in Alzheimer disease is the production of metal-catalyzed hydroxyl radicals that damage every category of macromolecule. Studies on redox-competent copper and iron indicate that redox activity in Alzheimer disease resides exclusively within the cytosol of vulnerable neurons and that chelation with deferoxamine or DTPA removes this activity. We have also found that while proteins that accumulate

George Perry; Marta A. Taddeo; Robert B. Petersen; Rudy J. Castellani; Peggy L. R. Harris; Sandra L. Siedlak; Adam D. Cash; Quan Liu; Akohiko Nunomura; Craig S. Atwood; Mark A. Smith

2003-01-01

220

Trace metal removal by iron coprecipitation: Field evaluation: Final report  

Microsoft Academic Search

Many trace elements found in coal-fired power plant wastewaters are designated as priority pollutants by the USEPA. These include beryllium, cadmium, copper, chromium, lead, nickel, and zinc. This report presents the results of a field demonstration of the iron adsorption\\/coprecipitation process at the Pennsylvania Power and Light (PP and L) Company's Montour Steam Electric Station in Washingtonville, Pennsylvania. The study

M. A. Manzione; D. T. Merrill

1989-01-01

221

Liver and kidney concentrations of strontium, barium, cadmium, copper, zinc, manganese, chromium, antimony, selenium and lead in cats  

PubMed Central

Background In order to provide new knowledge on the storage of strontium (Sr), barium (Ba), cadmium (Cd), copper (Cu), zinc (Zn), manganese (Mn), chromium (Cr), antimony (Sb), selenium (Se) and lead (Pb) in the feline organism, we measured the concentrations of these elements in the liver, renal cortex and renal medulla, evaluating also the impact of age, sex or the occurrence of a chronic kidney disease (CKD). The element concentrations in the tissues of 47 cats (22 male; 25 female; aged between 2 months and 18 years) were measured using inductively coupled plasma mass spectrometry. Results Cu, Zn and Mn were the highest in the liver, followed by the renal cortex and the renal medulla. The Cd concentrations were lower in the renal medulla compared to the renal cortex and the liver, and Sr was higher in the renal medulla compared to the liver. The Se concentrations in the cortex of the kidneys were higher than in the medulla of the kidneys and in the liver. Higher Cd concentrations were measured in the renal cortex of female cats, while no further gender-related differences were observed. Except for Cr, Sb and Se, age-dependencies were detected for the storage of all elements. The occurrence of a CKD also affected the storage of the elements, with lower concentrations of Ba (renal medulla), Zn (renal cortex; renal medulla) and Mn (liver; renal medulla), but higher Cd concentrations (liver; renal cortex) in diseased cats. Conclusions In conclusion, the present results provide new information on the accumulation of specific elements in the feline liver and kidneys, demonstrating a dependency on age and an impaired kidney function, but not on the sex of the animals. PMID:25030305

2014-01-01

222

Effect of complexans (EDTA, NTA and DTPA) on the exposure to high concentrations of cadmium, copper, zinc and lead  

SciTech Connect

The effects of complexans on the toxicity of short exposures to high chemical concentrations of heavy meals were examined. The heavy metals used were cadmium, zinc, lead and copper. Mortality every 24-h and the content of metal in each of three areas of fish - viscera, gills and other parts - were detemined both in the groups kept in water containing metal alone and in those whose aqueous environments contained complexan in mole concentrations three time that of the heavy metal. The carp (Cyprinus carpio L.) 8.0 + 0.5 cm were kept in groups of 8 to 10. There were altogether 49 such groups: 12 kept in three relatively high concentrations of each of the metals, Cu, Cd, Pb and Zn, alone; 36 groups in environments each containing only one of the three complexans, the tetrasodium salt of ethylene-diamine tetraacetic acid (EDTA), the trisodium salt of nitrilotriacetic acid (NTA), and the pentasodium salt of diethylenetriamine pentaacetic acid (DTPA) were used. Results indicate that the addition of the complexans resulted in the decrease of the tissue concentrations of Cd, Zn, Pb and Cu. It is considered that the heavy metals were not present merely as metal ions but formed complexes with the complexans, since the complexans were added at three times mole of the metal and therefore complex formation occurred in preference to the binding of the metals with the tissue proteins of the fish. It is furthermore assumed that the heavy metals can pass through the fish as metal-complexes, and so are not retained.

Muramoto, S.

1980-12-01

223

Creation of ribbon substrates with a sharp cube texture of copper and copper-nickel alloys additionally alloyed with iron and chromium  

NASA Astrophysics Data System (ADS)

The possibility of obtaining a perfect cube texture in thin ribbon made of binary copper-nickel alloys opens the possibility of using them as substrates in the technology of second-generation HTSC cables. The possibility of production of multicomponent alloys based on a binary Cu-30% Ni alloy additionally alloyed with elements (such as iron or chromium) that strengthen the fcc matrix has been shown. Optimum regimes of annealing have been determined, which make it possible to obtain a perfect biaxial texture with the content of cube grains {001}<100> exceeding 97% in Cu- M and Cu-30Ni- M ( M = Fe or Cr) alloys. In the tapes made of copper alloys with iron or chromium, the precipitation of disperse particles occurs in the process of cooling after recrystallization annealing, which improves the mechanical properties of the substrate. The estimation of the mechanical properties of the textured ribbons of binary and ternary copper alloys demonstrates a yield stress higher than that of the ribbons of pure copper by a factor of 2.5-4.5.

Schastlivtsev, V. M.; Khlebnikova, Yu. V.; Rodionov, D. P.; Gervas'eva, I. V.; Suaridze, T. R.

2014-12-01

224

ESR of copper and iron complexes with antitumor and cytotoxic properties.  

PubMed Central

The relatively few iron and copper metal complexes which have been examined in cells and tissues for their redox properties, radical generation properties, and antitumor activity are discussed for studies which utilized electron spin resonance spectroscopy (ESR). A common property of a number of metal complexes, which include bleomycin, adriamycin, and thiosemicarbazones described in this review, is that they are readily reduced by thiol compounds and oxidized by oxygen or reduced species of oxygen to produce radicals. Structural features of these reactions are identified by ESR spectroscopy in model systems and often in cells. Furthermore, ESR spectroscopy has been most useful to probe the environment of the complexes in cells and to measure the rate of reduction of their oxidized forms. As a result of these studies, it is anticipated that more attention will be given to the exploration of redox-active metal complexes as drugs. PMID:2420582

Antholine, W E; Kalyanaraman, B; Petering, D H

1985-01-01

225

Photometric and spectrochemical determination of gold in iron pyrites, copper and lead concentrates.  

PubMed

A photometric and a spectrochemical method have been developed for determining gold in iron pyrites, copper and lead concentrates. In both, the sample is dissolved and gold is extracted from 1M hydrochloric add solution with a mixture of ethyl methyl ketone and chloroform (1:1). Gold was determined photometrically with N,N'-tetramethyl-o-tolidine. Conditions have been found for satisfactorily sensitive and reproducible spectral determination of gold. For this purpose the effect of various collectors and buffers on the evaporation curves of gold has been studied, as well as excitation conditions, form of the electrodes, optimum slit-width, and photographic variables. The sensitivity and precision of both methods have been evaluated. PMID:18960389

Jordanov, N; Mareva, S; Krasnobaeva, N; Nedyalkova, N

1968-09-01

226

Predicting copper-, iron-, and zinc-binding proteins in pathogenic species of the Paracoccidioides genus  

PubMed Central

Approximately one-third of all proteins have been estimated to contain at least one metal cofactor, and these proteins are referred to as metalloproteins. These represent one of the most diverse classes of proteins, containing metal ions that bind to specific sites to perform catalytic, regulatory and structural functions. Bioinformatic tools have been developed to predict metalloproteins encoded by an organism based only on its genome sequence. Its function and the type of metal binder can also be predicted via a bioinformatics approach. Paracoccidioides complex includes termodimorphic pathogenic fungi that are found as saprobic mycelia in the environment and as yeast, the parasitic form, in host tissues. They are the etiologic agents of Paracoccidioidomycosis, a prevalent systemic mycosis in Latin America. Many metalloproteins are important for the virulence of several pathogenic microorganisms. Accordingly, the present work aimed to predict the copper, iron and zinc proteins encoded by the genomes of three phylogenetic species of Paracoccidioides (Pb01, Pb03, and Pb18). The metalloproteins were identified using bioinformatics approaches based on structure, annotation and domains. Cu-, Fe-, and Zn-binding proteins represent 7% of the total proteins encoded by Paracoccidioides spp. genomes. Zinc proteins were the most abundant metalloproteins, representing 5.7% of the fungus proteome, whereas copper and iron proteins represent 0.3 and 1.2%, respectively. Functional classification revealed that metalloproteins are related to many cellular processes. Furthermore, it was observed that many of these metalloproteins serve as virulence factors in the biology of the fungus. Thus, it is concluded that the Cu, Fe, and Zn metalloproteomes of the Paracoccidioides spp. are of the utmost importance for the biology and virulence of these particular human pathogens.

Tristão, Gabriel B.; Assunção, Leandro do Prado; dos Santos, Luiz Paulo A.; Borges, Clayton L.; Silva-Bailão, Mirelle Garcia; Soares, Célia M. de Almeida; Cavallaro, Gabriele; Bailão, Alexandre M.

2015-01-01

227

Assessing Toxicity of Copper, Cadmium and Chromium Levels Relevant to Discharge Limits of Industrial Effluents into Inland Surface Waters Using Common Onion, Allium cepa Bioassay.  

PubMed

Toxicity of copper, cadmium and chromium relevant to established tolerance limits for the discharge of industrial effluents into inland surface waters was evaluated by Allium cepa bioassay. The roots of A. cepa bulbs exposed to Cu(2+) (3 mg L(-1)) individually or in mixtures with Cd(2+) (0.1 mg L(-1)) or/and Cr(6+) (0.1 mg L(-1)) exhibited the highest growth inhibition, mitotic index depression and nuclear abnormalities. Root tip cells exposed to Cr(6+) or Cd(2+) alone or in mixture displayed significant chromosomal aberrations in comparison to the controls. EC50s for root growth inhibition followed the order Cu(2+) < Cd(2+) < Cr(6+) indicating greater toxicity of copper. The results show that the industrial effluent discharge regulatory limits for these metals need to be reviewed considering potential cyto-genotoxicity to biological systems. PMID:25201323

Hemachandra, Chamini K; Pathiratne, Asoka

2015-02-01

228

Regulation of brain iron and copper homeostasis by brain barrier systems: implication in neurodegenerative diseases.  

PubMed

Iron (Fe) and copper (Cu) are essential to neuronal function; excess or deficiency of either is known to underlie the pathoetiology of several commonly known neurodegenerative disorders. This delicate balance of Fe and Cu in the central milieu is maintained by the brain barrier systems, i.e., the blood-brain barrier (BBB) between the blood and brain interstitial fluid and the blood-cerebrospinal fluid barrier (BCB) between the blood and cerebrospinal fluid (CSF). This review provides a concise description on the structural and functional characteristics of the brain barrier systems. Current understanding of Fe and Cu transport across the brain barriers is thoroughly examined, with major focuses on whether the BBB and BCB coordinate the direction of Fe and Cu fluxes between the blood and brain/CSF. In particular, the mechanism by which pertinent metal transporters in the barriers, such as the transferrin receptor (TfR), divalent metal transporter (DMT1), copper transporter (CTR1), ATP7A/B, and ferroportin (FPN), regulate metal movement across the barriers is explored. Finally, the detrimental consequences of dysfunctional metal transport by brain barriers, as a result of endogenous disorders or exogenous insults, are discussed. Understanding the regulation of Fe and Cu homeostasis in the central nervous system aids in the design of new drugs targeted on the regulatory proteins at the brain barriers for the treatment of metal's deficiency or overload-related neurological diseases. PMID:22115751

Zheng, Wei; Monnot, Andrew D

2012-02-01

229

Development of copper sulfide/cadmium sulfide thin-film solar cells  

SciTech Connect

The most important accomplishments during this period were to demonstrate and to elucidate further the complex effects that occur during the aging of Cu/sub 2/S/CdS thin-film solar cells in flowing wet oxygen. There are two distinct effects. At constant illumination, the short-circuit current of cells aged at room temperature consistently decreases with time. The second effect, related to diode opposing current, is more involved and may result from several competing mechanisms. Over the short term (approx. 4 to 5 hours), the magnitude of diode opposing current decreases. After approx. 20 hours of aging, opposing current generally returns to the level achieved after hydrogen annealing which immediately preceded the aging sequence. Optical measurements of the spectral transmission of the Cu/sub 2/S layers in a cell content have been made using a silicon detector epoxied to the back of a CdS cell after the copper foil substrate was removed. There is no significant change in Cu/sub 2/S transmission behavior for wavelengths ranging from 525 to 1000 nm during wet-oxygen aging for periods of 2 to 36 hours. This suggests that the decrease in J/sub SC/ at constant illumination, for the aging experiments in a flowing wet-oxygen ambient, arises because of changes in minority-carrier transport properties of the Cu/sub 2/S. Before developing a method for using an epoxied silicon detector to measure optical behavior of the Cu/sub 2/S layer, we explored the possibility of using a junction-containing wafer of silicon as a substrate for deposited CdS films. Some monolithic structures were successfully fabricated. Comparisons were made of CdS grain structure details in the junction detector area and in an adjacent metallized area.

Szedon, J. R.; Biter, W. J.; Dickey, H. C.

1982-03-08

230

Development of copper sulfide/cadmium sulfide thin-film solar cells  

SciTech Connect

The purpose of this work has been to identify aspects of cell fabrication and treatment which are critical for achieving high efficiency Cu/sub 2/S/CdS solar cells. In approaching the problem several comparisons were made of the effects of specific steps in two methods of cell fabrication. These methods had previously given cells of about 6% and a maximum of 9% efficiency. Three areas requiring special attention and specific means to achieve acceptable results were identified. (1) The Cu/sub 2/S/CdS heterojunction area must be minimized. If single source evaporations of CdS are made on substrates whose temperatures (approx. 220/sup 0/C) are monitored and controlled using welded thermocouples, the CdS films will have adequately large grains (grain diameter greater than or equal to 2 ..mu..m) and will not develop significant etch pits during texturing in a mild etchant solution. (2) The termination of the wet barrier processing steps must be done carefully. An acceptable termination involves minimizing the amount of cuprous chloride retained on the cell surface during transfer to a rinsing stage while providing adequate exclusion of air from the space above the surface of the cuprous chloride solution. (3) Once formed, the Cu/sub 2/S layer should not be exposed to high temperatures (>100/sup 0/C) for long periods of time (> 5 min) if surface adsorbed moisture or oxygen are present. Heat treatments in ampoules under flowing hydrogen atmospheres should be preceded and followed by periods of at least 30 minutes at room temperature in the reducing ambient. If all these precautions are taken, wet chemical barrier processing of thermally evaporated CdS films on zinc-plated copper foil substrates yields cells of nearly 8% conversion efficiency without AR coating.

Szedon, J.R.; Biter, W.J.; Abel, J.A.; Dickey, H.C.; Shirland, F.A.

1981-02-27

231

Copper(I)- and copper(0)-promoted homocoupling and homocoupling-hydrodehalogenation reactions of dihalogenoclathrochelate precursors for C-C conjugated iron(II) bis-cage complexes.  

PubMed

Iron(II) dibromo- and diiodoclathrochelates undergo copper(I)-promoted reductive homocoupling in HMPA at 70-80 °C leading to C-C conjugated dibromo- and diiodo-bis-clathrochelates in high yields. Under the same conditions, their dichloroclathrochelate analog does not undergo the same homocoupling reaction, so the target dichloro-bis-cage product was obtained in high yield via dimerization of its heterodihalogenide iodochloromonomacrobicyclic precursor. The use of NMP as a solvent at 120-140 °C gave the mixture of bis-clathrochelates resulting from a tandem homocoupling-hydrodehalogenation reaction: the initial acetonitrile copper(I) solvato-complex at a high temperature underwent re-solvatation and disproportionation leading to Cu(II) ions and nano-copper, which promoted the hydrodehalogenation process even at room temperature. The most probable pathway of this reaction in situ includes hydrodehalogenation of the already formed dihalogeno-bis-clathrochelate via the formation of reduced anion radical intermediates. As a result, chemical transformations of the iron(II) dihalogenoclathrochelates in the presence of an acetonitrile copper(I) solvato-complex were found to depend both on the nature of halogen atoms in their ribbed chelate fragments and on reaction conditions (i.e. solvent and temperature). The C-C conjugated iron(II) dihalogeno-bis-clathrochelates easily undergo nucleophilic substitution with various N,S-nucleophiles giving ribbed-functionalized bis-cage species. These iron(II) complexes were characterized by elemental analysis, MALDI-TOF mass spectrometry, IR, UV-Vis, (1)H and (13)C NMR spectroscopy, and by X-ray diffraction; their electrochemical properties were studied by cyclic voltammetry. The isomeric shift values in (57)Fe Mössbauer spectra of such cage compounds allowed identifying them as low-spin iron(II) complexes, while those of the quadrupole splitting are the evidence for a significant TP distortion of their FeN6-coordination polyhedra. As follows from CV data, the C-C conjugated iron(II) bis-clathrochelates undergo stepwise electrochemical reduction and oxidation giving mixed-valence Fe(II)Fe(I) and Fe(II)Fe(III) bis-cage intermediates. PMID:25056255

Varzatskii, Oleg A; Shul'ga, Sergey V; Belov, Alexander S; Novikov, Valentin V; Dolganov, Alexander V; Vologzhanina, Anna V; Voloshin, Yan Z

2014-12-28

232

L-Ornithine Schiff base-copper and -cadmium complexes as new proteasome inhibitors and apoptosis inducers in human cancer cells.  

PubMed

Ubiquitin-proteasome system (UPS) plays a crucial role in many cellular processes such as cell cycle, proliferation and apoptosis. Aberrant activation of UPS may result in cellular transformation or other altered pathological conditions. Previous studies have shown that metal-based complexes could inhibit proteasome activity and induce apoptosis in certain human cancer cells. In the current study, we report that the cadmium and copper complexes with heterocycle-ornithine Schiff base are potent inhibitors of proteasomal chymotrypsin-like (CT-like) activity, leading to induction of apoptosis in cancer cells. Two novel copper-containing complexes and two novel cadmium-containing complexes with different heterocycle-ornithine Schiff base structures as ligands were synthesized and characterized. We found that complexes Cu1, Cd1 and Cd2 show proteasome-inhibitory activities in human breast cancer MDA-MB-231 and human prostate cancer LNCaP cells, resulting in the accumulation of p27, a natural proteasome substrate and other ubiquitinated proteins, followed by the induction of apoptosis. Our results suggest that metal complexes with heterocycle-ornithine Schiff base have proteasome-inhibitory capabilities and have the potential to be developed into novel anticancer drugs. PMID:25467055

Zhang, Zhongyu; Bi, Caifeng; Fan, Yuhua; Zhang, Nan; Deshmukh, Rahul; Yan, Xingchen; Lv, Xiuwen; Zhang, Pengfei; Zhang, Xia; Dou, Q Ping

2014-12-01

233

Flotation-separation and ICP-AES determination of ultra trace amounts of copper, cadmium, nickel and cobalt using 2-aminocyclopentene-1-dithiocarboxylic acid.  

PubMed

A rapid flotation method for separation and enrichment of ultra trace amounts of copper(II), cadmium(II), nickel(II) and cobalt(II) ions from water samples is established. At pH 6.5 and with sodium dodecylsulfate used as a foaming reagent, Cu2+, Cd2+, Ni2+ and Co2+ were separated simultaneously with 2-aminocyclopentene-1-dithiocarboxylic acid (ACDA) added to 1 l of aqueous solution. The proposed procedure of preconcentration is applied prior to the determination of these four analytes using inductivity coupled plasma-atomic emission spectrometry (ICP-AES). The effects of pH, concentration of ACDA, applicability of different surfactants and foreign ions on the separation efficiency were investigated. The preconcentration factor of the method is 1000 and the detection limits of copper(II), cadmium(II), nickel(II) and cobalt(II) ions are 0.078, 0.075, 0.072 and 0.080 ng ml(-1), respectively. PMID:16363474

Shamsipur, Mojtaba; Hashemi, Omid Reza; Safavi, Afsaneh

2005-09-01

234

Transcription patterns of genes encoding four metallothionein homologs in Daphnia pulex exposed to copper and cadmium are time- and homolog- dependent  

PubMed Central

Metallothioneins are proteins that play an essential role in metal homeostasis and detoxification in nearly all organisms studied to date. Yet discrepancies between outcomes of chronic and acute exposure experiments hamper the understanding of the regulatory mechanisms of their isoforms following metal exposure. Here, we investigated transcriptional differences among four identified homologs (mt1–mt4) in Daphnia pulex exposed across time to copper and cadmium relative to a control. Transcriptional upregulation of mt1 and mt3 was detected on day four following exposure to cadmium, whereas that of mt2 and mt4 was detected on day two and day eight following exposure to copper. These results confirm temporal and metal-specific differences in the transcriptional induction of genes encoding metallothionein homologs upon metal exposure which should be considered in ecotoxicological monitoring programs of metal-contaminated water bodies. Indeed, the mRNA expression patterns observed here illustrate the complex regulatory system associated with metallothioneins, as these patterns are not only dependent on the metal, but also on exposure time and the homolog studied. Further phylogenetic analysis and analysis of regulatory elements in upstream promoter regions revealed a high degree of similarity between metallothionein genes of Daphnia pulex and Daphnia magna, a species belonging to the same genus. These findings, combined with a limited amount of available expression data for D. magna metallothionein genes, tentatively suggest a potential generalization of the metallothionein response system between these Daphnia species. PMID:24113165

Asselman, Jana; Shaw, Joseph R.; Glaholt, Stephen P.; Colbourne, John K.; De Schamphelaere, Karel AC.

2013-01-01

235

Organic Constituents and Complexation of Nickel(II), Iron(III), Cadmium(II), and plutonium(IV) in Soybean Xylem Exudates 1  

PubMed Central

The xylem exudates of soybean (Glycine max cv Williams), provided with fixed N, were characterized as to their organic constituents and in vivo and in vitro complexation of plutonium, iron, cadmium, and nickel. Ion exchange fractionation of whole exudates into their compound classes (organic acid, neutral, amino acid, and polyphosphate), followed by thinlayer electrophoresis, permitted evaluation of the types of ligands which stabilize each element. The polyvalent elements plutonium(IV) and iron(III) are found primarily as organic acid complexes, while the divalent elements nickel(II) and cadmium(II) are associated primarily with components of the amino acid/peptide fraction. For plutonium and cadmium, it was not possible to fully duplicate complexes formed in vivo by back reaction with whole exudates or individual class fractions, indicating the possible importance of plant induction processes, reaction kinetics, and/or the formation of mixed ligand complexes. The number and distribution of specific iron- and nickel-containing complexes varies with plant age and appears to be related to the relative concentration of organic acids and amino acids/peptides being produced and transported in the xylem as the plant matures. PMID:16665978

Cataldo, Dominic A.; McFadden, Kristin M.; Garland, Thomas R.; Wildung, Raymond E.

1988-01-01

236

The Homeostasis of Iron, Copper, and Zinc in Paracoccidioides Brasiliensis, Cryptococcus Neoformans Var. Grubii, and Cryptococcus Gattii: A Comparative Analysis  

PubMed Central

Iron, copper, and zinc are essential for all living organisms. Moreover, the homeostasis of these metals is vital to microorganisms during pathogenic interactions with a host. Most pathogens have developed specific mechanisms for the uptake of micronutrients from their hosts in order to counteract the low availability of essential ions in infected tissues. We report here an analysis of genes potentially involved in iron, copper, and zinc uptake and homeostasis in the fungal pathogens Paracoccidioides brasiliensis, Cryptococcus neoformans var. grubii, and Cryptococcus gattii. Although prior studies have identified certain aspects of metal regulation in Cryptococcus species, little is known regarding the regulation of these elements in P. brasiliensis. We also present amino acid sequences analyses of deduced proteins in order to examine possible conserved domains. The genomic data reveals, for the first time, genes associated to iron, copper, and zinc assimilation and homeostasis in P. brasiliensis. Furthermore, analyses of the three fungal species identified homologs to genes associated with high-affinity uptake systems, vacuolar and mitochondrial iron storage, copper uptake and reduction, and zinc assimilation. However, homologs to genes involved in siderophore production were only found in P. brasiliensis. Interestingly, in silico analysis of the genomes of P. brasiliensis Pb01, Pb03, and Pb18 revealed significant differences in the presence and/or number of genes involved in metal homeostasis, such as in genes related to iron reduction and oxidation. The broad analyses of the genomes of P. brasiliensis, C. neoformans var. grubii, and C. gattii for genes involved in metal homeostasis provide important groundwork for numerous interesting future areas of investigation that are required in order to validate and explore the function of the identified genes and gene pathways. PMID:21833306

Silva, Mirelle Garcia; Schrank, Augusto; Bailão, Elisa Flávia L.C.; Bailão, Alexandre Melo; Borges, Clayton Luiz; Staats, Charley Christian; Parente, Juliana Alves; Pereira, Maristela; Salem-Izacc, Silvia Maria; Mendes-Giannini, Maria José Soares; Oliveira, Rosely Maria Zancopé; Silva, Lívia Kmetzsch Rosa e; Nosanchuk, Joshua D.; Vainstein, Marilene Henning; de Almeida Soares, Célia Maria

2011-01-01

237

Semen quality and reproductive endocrine function in relation to biomarkers of lead, cadmium, zinc, and copper in men.  

PubMed Central

Blood lead (BPb), activity of delta-aminolevulinic acid dehydratase (ALAD), erythrocyte protoporphyrin (EP), blood cadmium (BCd), serum zinc (SZn), seminal fluid zinc (SfZn), serum copper (SCu), and parameters of semen quality and of reproductive endocrine function were measured in 149 healthy male industrial workers 20-43 years of age. The group contained 98 subjects with slight to moderate occupational exposure to Pb and 51 reference subjects. All of the subjects lived in Zagreb, Croatia. Significant (p < 0.05) correlations of BPb, ALAD, and/or EP with reproductive parameters indicated a Pb-related decrease in sperm density, in counts of total, motile, and viable sperm, in the percentage and count of progressively motile sperm, in parameters of prostate secretory function (SfZn, acid phosphatase, and citric acid in seminal fluid), and an increase in abnormal sperm head morphology, serum testosterone, and estradiol. These associations were confirmed by results of multiple regression, which also showed significant (p < 0. 05) influence of BCd, SZn, SCu, smoking habits, alcohol consumption, or age on certain reproductive parameters. These effects were mainly of lower rank and intensity as compared to Pb-related reproductive effects, whereas BCd contributed to a decrease in sperm motility and an increase in abnormal sperm morphology and serum testosterone. No significant Pb- or Cd-related influence was found on levels of the lactate dehydrogenase isoenzyme LDH-C(4) and fructose in seminal fluid or on follicle-stimulating hormone, luteinizing hormone, and prolactin in serum. The seminal fluid concentrations of Pb (SfPb) and Cd (SfCd) were measured in 118 of the 149 subjects, and a highly significant (p < 0.0001) correlation was found between BPb and SfPb levels (r = 0.571) and between BCd and SfCd levels (r = 0.490). The overall study results indicate that even moderate exposures to Pb (BPb < 400 microg/L) and Cd (BCd < 10 microg/L) can significantly reduce human semen quality without conclusive evidence of impairment of male reproductive endocrine function. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:10620523

Telisman, S; Cvitkovi?, P; Jurasovi?, J; Pizent, A; Gavella, M; Roci?, B

2000-01-01

238

Novel erm(T)-Carrying Multiresistance Plasmids from Porcine and Human Isolates of Methicillin-Resistant Staphylococcus aureus ST398 That Also Harbor Cadmium and Copper Resistance Determinants  

PubMed Central

This study describes three novel erm(T)-carrying multiresistance plasmids that also harbor cadmium and copper resistance determinants. The plasmids, designated pUR1902, pUR2940, and pUR2941, were obtained from porcine and human methicillin-resistant Staphylococcus aureus (MRSA) of the clonal lineage ST398. In addition to the macrolide-lincosamide-streptogramin B (MLSB) resistance gene erm(T), all three plasmids also carry the tetracycline resistance gene tet(L). Furthermore, plasmid pUR2940 harbors the trimethoprim resistance gene dfrK and the MLSB resistance gene erm(C), while plasmids pUR1902 and pUR2941 possess the kanamycin/neomycin resistance gene aadD. Sequence analysis of approximately 18.1 kb of the erm(T)-flanking region from pUR1902, 20.0 kb from pUR2940, and 20.8 kb from pUR2941 revealed the presence of several copies of the recently described insertion sequence ISSau10, which is probably involved in the evolution of the respective plasmids. All plasmids carried a functional cadmium resistance operon with the genes cadD and cadX, in addition to the multicopper oxidase gene mco and the ATPase copper transport gene copA, which are involved in copper resistance. The comparative analysis of S. aureus RN4220 and the three S. aureus RN4220 transformants carrying plasmid pUR1902, pUR2940, or pUR2941 revealed an 8-fold increase in CdSO4 and a 2-fold increase in CuSO4 MICs. The emergence of multidrug resistance plasmids that also carry heavy metal resistance genes is alarming and requires further surveillance. The colocalization of antimicrobial resistance genes and genes that confer resistance to heavy metals may facilitate their persistence, coselection, and dissemination. PMID:23629701

Gómez-Sanz, Elena; Kadlec, Kristina; Feßler, Andrea T.; Zarazaga, Myriam; Schwarz, Stefan

2013-01-01

239

Effects of nutritional factors on metabolism of dietary cadmium at levels similar to those of man.  

PubMed Central

Several nutrients are known to affect cadmium toxicity, but little is known about the effect of dietary nutrient levels on absorption and tissue retention of cadmium at low dietary levels, similar to those of man. Feeding gradedlevels of zinc in a casein-gelatin diet to young Japanese quail with 109Cd (as the chloride) and 0.062 ppm added cadmium decreased the cadmium concentrations in the proventriculus-ventriculus, duodenum, jejunum-ileum, and the liver, but not in the kidney. Zinc also affected some zinc, iron, manganese, and copper tissue levels. Different tissue concentration patterns of cadmium and essential minerals were obtained with two purified control diets, one based on casein-gelatin and the other on soy isolate as the principal protein sources. The data show that relatively small dietary changes can markedly affect tissue levels of cadmium and that a low intake of zinc may increase the risk to dietary cadmium exposure. The complexity of the nutrient interrelationships and their effects on cadmium require further study to define mechanisms, which may be similar to those produced by low cadmium intakes in man. PMID:488027

Fox, M R; Jacobs, R M; Jones, A O; Fry, B E

1979-01-01

240

Utilization of activating and masking effects by ligands for highly selective catalytic spectrophotometric determination of copper and iron in natural waters.  

PubMed

A kinetic-catalytic spectrophotometric method is proposed for the successive determination of nanogram levels of copper and iron, which is based on their catalytic effects on the oxidative coupling of p-anisidine with N,N-dimethylaniline (DMA) to form a colored compound (lambda(max)=740 nm) in the presence of hydrogen peroxide at pH 3.2. 2,9-Dimethyl-1,10-phenanthroline (neocuproine) acted as an activator for the copper catalysis, and 1,10-phenanthroline (phen) acted as an activator for the iron catalysis. The selectivity was improved in the presence of diphosphate as a masking agent. The determinable ranges were 0.16-10 ppb for copper and 1-100 ppb for iron, respectively. The relative standard deviations of copper and iron were 1.1 and 0.97% for five determinations of 10 ppb copper and 40 ppb iron. The method was successfully applied to the analyses of copper and iron in tap, well, river and pond waters. PMID:18969144

Ohno, Shinsuke; Teshima, Norio; Zhang, Heng; Sakai, Tadao

2003-08-29

241

Tribological behaviour and statistical experimental design of sintered iron-copper based composites  

NASA Astrophysics Data System (ADS)

The sintered iron-copper based composites for automotive brake pads have a complex composite composition and should have good physical, mechanical and tribological characteristics. In this paper, we obtained frictional composites by Powder Metallurgy (P/M) technique and we have characterized them by microstructural and tribological point of view. The morphology of raw powders was determined by SEM and the surfaces of obtained sintered friction materials were analyzed by ESEM, EDS elemental and compo-images analyses. One lot of samples were tested on a "pin-on-disc" type wear machine under dry sliding conditions, at applied load between 3.5 and 11.5 × 10-1 MPa and 12.5 and 16.9 m/s relative speed in braking point at constant temperature. The other lot of samples were tested on an inertial test stand according to a methodology simulating the real conditions of dry friction, at a contact pressure of 2.5-3 MPa, at 300-1200 rpm. The most important characteristics required for sintered friction materials are high and stable friction coefficient during breaking and also, for high durability in service, must have: low wear, high corrosion resistance, high thermal conductivity, mechanical resistance and thermal stability at elevated temperature. Because of the tribological characteristics importance (wear rate and friction coefficient) of sintered iron-copper based composites, we predicted the tribological behaviour through statistical analysis. For the first lot of samples, the response variables Yi (represented by the wear rate and friction coefficient) have been correlated with x1 and x2 (the code value of applied load and relative speed in braking points, respectively) using a linear factorial design approach. We obtained brake friction materials with improved wear resistance characteristics and high and stable friction coefficients. It has been shown, through experimental data and obtained linear regression equations, that the sintered composites wear rate increases with increasing applied load and relative speed, but in the same conditions, the frictional coefficients slowly decrease.

Popescu, Ileana Nicoleta; Ghi??, Constantin; Bratu, Vasile; Palacios Navarro, Guillermo

2013-11-01

242

Molecular bases of copper and iron deficiency-associated dyslipidemia: a microarray analysis of the rat intestinal transcriptome  

Microsoft Academic Search

As essential cofactor in many proteins and redox enzymes, copper and iron are involved in a wide range of biological processes.\\u000a Mild dietary deficiency of metals represents an underestimated problem for human health, because it does not cause clear signs\\u000a and clinical symptoms, but it is associated to long-term deleterious effects in cardiovascular system and alterations in lipid\\u000a metabolism. The

Alessandra Tosco; Bianca Fontanella; Rosa Danise; Luigi Cicatiello; Olì M. V. Grober; Maria Ravo; Alessandro Weisz; Liberato Marzullo

2010-01-01

243

Expression profiling reveals functionally redundant multiple-copy genes related to zinc, iron and cadmium responses in Brassica rapa.  

PubMed

Genes underlying environmental adaptability tend to be over-retained in polyploid plant species. Zinc deficiency (ZnD) and iron deficiency (FeD), excess Zn (ZnE) and cadmium exposure (CdE) are major environmental problems for crop cultivation, but little is known about the differential expression of duplicated genes upon these stress conditions. Applying Tag-Seq technology to leaves of Brassica rapa grown under FeD, ZnD, ZnE or CdE conditions, with normal conditions as a control, we examined global gene expression changes and compared the expression patterns of multiple paralogs. We identified 812, 543, 331 and 447 differentially expressed genes under FeD, ZnD, ZnE and CdE conditions, respectively, in B. rapa leaves. Genes involved in regulatory networks centered on the transcription factors bHLH038 or bHLH100 were differentially expressed under (ZnE-induced) FeD. Further analysis revealed that genes associated with Zn, Fe and Cd responses tended to be over-retained in the B. rapa genome. Most of these multiple-copy genes showed the same direction of expression change under stress conditions. We conclude that the duplicated genes involved in trace element responses in B. rapa are functionally redundant, making the regulatory network more complex in B. rapa than in Arabidopsis thaliana. PMID:24738937

Li, Jimeng; Liu, Bo; Cheng, Feng; Wang, Xiaowu; Aarts, Mark G M; Wu, Jian

2014-07-01

244

Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene.  

PubMed

Serine/arginine-rich (SR) proteins are important splicing factors. However, the biological functions of plant SR proteins remain unclear especially in abiotic stresses. Cadmium (Cd) is a non-essential element that negatively affects plant growth and development. In this study, we provided clear evidence for SR gene involved in Cd tolerance in planta. Systemic expression analysis of 17 Arabidopsis SR genes revealed that SR34b is the only SR gene upregulated by Cd, suggesting its potential roles in Arabidopsis Cd tolerance. Consistent with this, a SR34b T-DNA insertion mutant (sr34b) was moderately sensitive to Cd, which had higher Cd(2+) uptake rate and accumulated Cd in greater amounts than wild-type. This was due to the altered expression of iron-regulated transporter 1 (IRT1) gene in sr34b mutant. Under normal growth conditions, IRT1 mRNAs highly accumulated in sr34b mutant, which was a result of increased stability of IRT1 mRNA. Under Cd stress, however, sr34b mutant plants had a splicing defect in IRT1 gene, thus reducing the IRT1 mRNA accumulation. Despite of this, sr34b mutant plants still constitutively expressed IRT1 proteins under Cd stress, thereby resulting in Cd stress-sensitive phenotype. We therefore propose the essential roles of SR34b in posttranscriptional regulation of IRT1 expression and identify it as a regulator of Arabidopsis Cd tolerance. PMID:25446093

Zhang, Wentao; Du, Bojing; Liu, Di; Qi, Xiaoting

2014-12-12

245

Acute sensitivity of white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) to copper, cadmium, or zinc in water-only laboratory exposures  

PubMed Central

The acute toxicity of cadmium, copper, and zinc to white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) were determined for 7 developmental life stages in flow-through water-only exposures. Metal toxicity varied by species and by life stage. Rainbow trout were more sensitive to cadmium than white sturgeon across all life stages, with median effect concentrations (hardness-normalized EC50s) ranging from 1.47?µg Cd/L to 2.62?µg Cd/L with sensitivity remaining consistent during later stages of development. Rainbow trout at 46 d posthatch (dph) ranked at the 2nd percentile of a compiled database for Cd species sensitivity distribution with an EC50 of 1.46?µg Cd/L and 72 dph sturgeon ranked at the 19th percentile (EC50 of 3.02?µg Cd/L). White sturgeon were more sensitive to copper than rainbow trout in 5 of the 7 life stages tested with biotic ligand model (BLM)-normalized EC50s ranging from 1.51?µg Cu/L to 21.9?µg Cu/L. In turn, rainbow trout at 74 dph and 95 dph were more sensitive to copper than white sturgeon at 72 dph and 89 dph, indicating sturgeon become more tolerant in older life stages, whereas older trout become more sensitive to copper exposure. White sturgeon at 2 dph, 16 dph, and 30 dph ranked in the lower percentiles of a compiled database for copper species sensitivity distribution, ranking at the 3rd (2 dph), 5th (16 dph), and 10th (30 dph) percentiles. White sturgeon were more sensitive to zinc than rainbow trout for 1 out of 7 life stages tested (2 dph with an biotic ligand model–normalized EC50 of 209?µg Zn/L) and ranked in the 1st percentile of a compiled database for zinc species sensitivity distribution. Environ Toxicol Chem 2014;33:2259–2272. © 2014. The Authors. This article is a US government work and, as such, is in the public domain in the United States of America. Environmental Toxicology and Chemistry published byWiley Periodicals, Inc. on behalf of SETAC. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. PMID:25043712

Calfee, Robin D; Little, Edward E; Puglis, Holly J; Scott, Erinn; Brumbaugh, William G; Mebane, Christopher A

2014-01-01

246

Iron, copper, and nickel behavior in buffered, neutral aluminum chloride:1-methyl-3-ethylimidazolium chloride molten salt  

SciTech Connect

Iron, copper, and nickel electrodes were examined as possible metal/metal(II) chloride cathodes for the room temperature sodium/metal chloride battery in a molten salt composed of sodium chloride (NaCl), aluminum chloride (AlCl{sub 3}), and 1-methyl-3-ethylimidazolium chloride (MEIC). The iron electrode was investigated in basic, neutral-like, and acidic MEIC:AlCl{sub 3} melts. The solubility and the kinetics of the reduction of Fe(II) was a function of acidity. In the basic melt, the FeCl{sub 2} was soluble; however, its reduction was not observed due to slow kinetics. In the neutral-like and acidic melts, the quasi-reversible reduction of Fe(II) to Fe(0) was observed. The redox potential of copper was approximately 1 V more positive of iron; however, the oxidized copper was soluble in the neutral-like melt, making it unacceptable without a separator. The oxidized and reduced forms of nickel were insoluble and the redox potential was 2.5 V positive of Na/Na{sup +}. The nickel electrode supported a charge density of 3.5 mC/cm{sup 2} at room temperature, suggesting that a high-surface-area electrode would be needed in a practical device.

Pye, S.; Winnick, J.; Kohl, P.A. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Chemical Engineering

1997-06-01

247

Assessing Plasma Levels of Selenium, Copper, Iron and Zinc in Patients of Parkinson’s Disease  

PubMed Central

Trace elements have been recognized to play an important role in the development of Parkinson’s disease (PD). However, it is difficult to precisely identify the relationship between these elements and the progression of PD because of an insufficient number of patients. In this study, quantifications of selenium (Se), copper (Cu), iron (Fe) and zinc (Zn) by atomic absorption spectrophotometry were performed in plasma from 238 PD patients and 302 controls recruited from eastern China, which is so far the largest cohort of PD patients and controls for measuring plasma levels of these elements. We found that plasma Se and Fe concentrations were significantly increased whereas Cu and Zn concentrations decreased in PD patients as compared with controls. Meanwhile, these four elements displayed differential changes with regard to age. Linear and logistic regression analyses revealed that both Fe and Zn were negatively correlated with age in PD patients. Association analysis suggests that lower plasma Se and Fe levels may reduce the risk for PD, whereas lower plasma Zn is probably a PD risk factor. Finally, a model was generated to predict PD patients based on the plasma concentrations of these four trace elements as well as other features such as sex and age, which achieved an accuracy of 80.97±1.34% using 10-fold cross-validation. In summary, our data provide new insights into the roles of Se, Cu, Fe and Zn in PD progression. PMID:24340079

Cheng, Xing; Wang, Jian-Yong; Hu, Bei-Lei; Zhang, Yan; Zhang, Xiong; Zhu, Jian-Hong

2013-01-01

248

Expression of a Vacuole-Localized BURP-Domain Protein from Soybean (SALI3-2) Enhances Tolerance to Cadmium and Copper Stresses  

PubMed Central

The plant-specific BURP family proteins play diverse roles in plant development and stress responses, but the function mechanism of these proteins is still poorly understood. Proteins in this family are characterized by a highly conserved BURP domain with four conserved Cys-His repeats and two other Cys, indicating that these proteins potentially interacts with metal ions. In this paper, an immobilized metal affinity chromatography (IMAC) assay showed that the soybean BURP protein SALI3-2 could bind soft transition metal ions (Cd2+, Co2+, Ni2+, Zn2+ and Cu2+) but not hard metal ions (Ca2+ and Mg2+) in vitro. A subcellular localization analysis by confocal laser scanning microscopy revealed that the SALI3-2-GFP fusion protein was localized to the vacuoles. Physiological indexes assay showed that Sali3-2-transgenic Arabidopsis thaliana seedlings were more tolerant to Cu2+ or Cd2+ stresses than the wild type. An inductively coupled plasma optical emission spectrometry (ICP-OES) analysis illustrated that, compared to the wild type seedlings the Sali3-2-transgenic seedlings accumulated more cadmium or copper in the roots but less in the upper ground tissues when the seedlings were exposed to excessive CuCl2 or CdCl2 stress. Therefore, our findings suggest that the SALI3-2 protein may confer cadmium (Cd2+) and copper (Cu2+) tolerance to plants by helping plants to sequester Cd2+ or Cu2+ in the root and reduce the amount of heavy metals transported to the shoots. PMID:24901737

Tang, Yulin; Cao, Yan; Qiu, Jianbin; Gao, Zhan; Ou, Zhonghua; Wang, Yajing; Zheng, Yizhi

2014-01-01

249

The membrane-associated form of methane mono-oxygenase from Methylococcus capsulatus (Bath) is a copper/iron protein.  

PubMed Central

A protocol has been developed which permits the purification of a membrane-associated methane-oxidizing complex from Methylococcus capsulatus (Bath). This complex has approximately 5 fold higher specific activity than any purified particulate methane mono-oxygenase (pMMO) previously reported from M. capsulatus (Bath). This efficiently functioning methane-oxidizing complex consists of the pMMO hydroxylase (pMMOH) and an unidentified component we have assigned as a potential pMMO reductase (pMMOR). The complex was isolated by solubilizing intracytoplasmic membrane preparations containing the high yields of active membrane-bound pMMO (pMMO(m)), using the non-ionic detergent dodecyl-beta-D-maltoside, to yield solubilized enzyme (pMMO(s)). Further purification gave rise to an active complex (pMMO(c)) that could be resolved (at low levels) by ion-exchange chromatography into two components, the pMMOH (47, 27 and 24 kDa subunits) and the pMMOR (63 and 8 kDa subunits). The purified complex contains two copper atoms and one non-haem iron atom/mol of enzyme. EPR spectra of preparations grown with (63)Cu indicated that the copper ion interacted with three or four nitrogenic ligands. These EPR data, in conjunction with other experimental results, including the oxidation by ferricyanide, EDTA treatment to remove copper and re-addition of copper to the depleted protein, verified the essential role of copper in enzyme catalysis and indicated the implausibility of copper existing as a trinuclear cluster. The EPR measurements also demonstrated the presence of a tightly bound mononuclear Fe(3+) ion in an octahedral environment that may well be exchange-coupled to another paramagnetic species. PMID:12379148

Basu, Piku; Katterle, Bettina; Andersson, K Kristoffer; Dalton, Howard

2003-01-01

250

Bioaccumulation of cadmium by growing Zygosaccharomyces rouxii and Saccharomyces cerevisiae.  

PubMed

Bioaccumulation via growing cells is a potential technique for heavy metal removal from food materials. The cadmium bioaccumulation characteristics by growing Zygosaccharomyces rouxii and Saccharomyces cerevisiae were investigated. Z. rouxii displayed powerful cadmium removal ability at low cadmium concentrations, which mainly depended on the intracellular cadmium bioaccumulation. The percentage of intracellular cadmium bioaccumulation of both yeasts obviously decreased with the increase of initial biomass and cadmium concentrations. Low pH and elevated concentrations of zinc and copper significantly decreased the intracellular cadmium bioaccumulation of both yeasts but improved the cadmium tolerance and the cell-surface cadmium bioaccumulation of Z. rouxii. Cadmium removal of Z. rouxii was improved by zinc and copper conditionally. Z. rouxii that possessed more powerful cadmium tolerance and removal ability at low pH and high concentration of competing ions can be developed into a potential cadmium removal agent using in complex food environment in future. PMID:24440489

Li, Chunsheng; Jiang, Wei; Ma, Ning; Zhu, Yinglian; Dong, Xiaoyan; Wang, Dongfeng; Meng, Xianghong; Xu, Ying

2014-03-01

251

Detoxification mechanism of heavy metals in marine mammals and seabirds: interaction of selenium with mercury, silver, copper, zinc, and cadmium in liver.  

PubMed

Subcellular distribution of mercury, selenium, silver, copper, zinc, and cadmium was determined in the liver of northern fur seals (Callorhinus ursinus), black-footed albatrosses (Diomedea nigripes), and Dall's porpoises (Phocoenoides dalli). Mercury, selenium, and silver were preferentially accumulated in nuclear, lysosomal, and mitochondrial fraction with an increase in their hepatic concentrations, whereas copper, zinc, and cadmium were accumulated mainly in cytosol with an increase in the hepatic concentrations for all three species. To gain insight into the existing state of the metals, they were extracted with four extractants--sodium dodecylsulfate (SDS); 2-mercaptoethanol; 2-mercaptoethanol + guanidinium thiocyanate; and copper sulfate (CuSO4)--at several concentrations from nuclear, lysosomal, and mitochondrial fraction in liver from a specimen of northern fur seal. Extraction efficiencies of the metals for 2-mercaptoethanol + guanidinium thiocyanate and CuSO4 were much higher than those for SDS and 2-mercaptoethanol. Also, for all individuals of the three species, metals were extracted by the three extractants--2% SDS; 0.25 mol/L 2-mercaptoethanol + 5 mol/L guanidinium thiocyanate; and 0.1 mol/L CuSO4--from nuclear, lysosomal, and mitochondrial fraction of liver. In the northern fur seals with higher concentration of mercury, the molar ratio of selenium to mercury approached unity in the nonextractable fraction of 0.25 mol/L 2-mercaptoethanol + 5 mol/L guanidinium thiocyanate, suggesting the possible formation of mercuric selenide (HgSe) with increasing hepatic concentration. Because the nonextractable content of mercury and its distribution were larger for black-footed albatross than those for the other two species, it was suggested that the black-footed albatross has a stronger ability to form a stable compound(s) of mercury in the liver. It is notable that the existing state of silver was similar to that of mercury as judged by their subcellular distribution and the extraction tests, suggesting that silver also interacted with selenium in the liver of marine animals used in this study. PMID:15386135

Ikemoto, T; Kunito, T; Tanaka, H; Baba, N; Miyazaki, N; Tanabe, S

2004-10-01

252

Effect of Cadmium on Uptake and Translocation of Three Microelements in Cotton  

Microsoft Academic Search

A hydroponic experiment was conducted in a greenhouse to study the effect of cadmium (Cd) on uptake, accumulation, and distribution of three microelements [zinc (Zn), copper (Cu), and iron (Fe)] in cotton during ontogenesis and their difference among genotypes, using 3 genotypes with different Cd tolerances: Zhongmian 16, Zhongmian 16-2 (relatively tolerant-genotypes); and Simian 3 (relatively sensitive-genotype) and treated with

Hongxia Wu; Feibo Wu; Guoping Zhang; Dango M. Bachir L

2005-01-01

253

Determination of mercury, cadmium, lead, zinc, selenium and iron by ICP-OES in mushroom samples from around thermal power plant in Mu?la, Turkey.  

PubMed

Scleroderma verrucosum, Stropharia coronilla, Lactarius deterrimus, Chroogomphus rutilus, Russula delica, Laccaria laccata, Clitocybe odora var. alba, Lyophyllum decastes, Coprinus comatus, Helvella leucomelaena, Melanoleuca cognata, Melanoleuca cognata, Paxina acetabulum, Clitocybe vermicularis, Sarcosphaera crassa, Rhizopogon roseolu and Thelephora caryophyllea were collected from different localities in Mu?la-Yata?an region of Turkey. Their trace metals concentrations were determined by ICPOES after microwave digestion. The results were 0.37 ± 0.01-5.28 ± 0.21 for cadmium, 467 ± 19-3,280 ± 131 for iron, 0.69 ± 0.03-9.15 ± 0.37 for lead, 18.70 ± 0.75-67.10 ± 2.68 for selenium, 75 ± 3-213 ± 8 for zinc and 0.15 ± 0.01-0.55 ± 0.01 for mercury (as ?g/g). The detection limits for ICPOES were found as 0.25 for Cadmium, 0.2 for iron, 0.1 for lead, 0.5 for selenium, 0.2 for zinc and 0.03 for mercury (as mg L(-1)). The Relatively Standard Deviations (R.S.D.) were found below 4.0%. The accuracy of procedure was confirmed by certified reference material. PMID:21735274

Kula, Ibrahim; Solak, M Halil; U?urlu, Mehmet; I??lo?lu, Mustafa; Arslan, Yasin

2011-09-01

254

Maternal iron supplementation attenuates the impact of perinatal copper deficiency but does not eliminate hypotriiodothyroninemia nor impaired sensorimotor development  

PubMed Central

Copper (Cu), iron (Fe), and iodine/thyroid hormone (TH) deficiencies disrupt brain development. Neonatal Cu deficiency causes Fe deficiency and may impact thyroidal status. One purpose of these studies was to determine the impact of improved iron status following Cu deficiency by supplementing the diet with iron. Cu deficiency was produced in pregnant Holtzman (Exp. 1) or Sprague Dawley (Exp. 2) rats using two different diets. In Exp. 2, dietary Fe content was increased from 35 to 75 mg/kg according to NRC guidelines for reproduction. Cu deficient (CuD) postnatal day 24 (P24) rats from both experiments demonstrated lower hemoglobin, serum Fe, and serum triiodothyronine (T3) concentrations. However, brain Fe was lower only in CuD P24 rats in Exp. 1. Hemoglobin and serum Fe were higher in Cu adequate (CuA) P24 rats from Exp. 2 compared to Exp. 1. Cu and TH deficient rats from Exp. 2 exhibited a similar sensorimotor functional deficit following three months of repletion. Results suggest that Cu deficiency may impact TH status independent of its impact on iron biology. Further research is needed to clarify the individual roles for Cu, Fe, and TH in brain development. PMID:21239157

Bastian, Thomas W.; Lassi, Katie C.; Anderson, Grant W.; Prohaska, Joseph R.

2012-01-01

255

Iron  

MedlinePLUS

Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

256

Sub-cellular partitioning of cadmium, copper, nickel and zinc in indigenous yellow perch (Perca flavescens) sampled along a polymetallic gradient.  

PubMed

Sub-cellular metal distributions were studied in indigenous yellow perch (Perca flavescens) collected from eight lakes located along a cadmium (Cd), copper (Cu), nickel (Ni) and zinc (Zn) concentration gradient. Ambient dissolved metal concentrations were measured to evaluate exposure and total hepatic metal concentrations were determined as a measure of metal bioaccumulation. Metal partitioning among potentially metal-sensitive fractions (cytosolic enzymes, organelles) and detoxified metal fractions (metallothionein) was determined after differential centrifugation of fish liver homogenates. Major proportions of hepatic Cd and Cu were found in the heat-stable cytosolic peptides and proteins fraction (HSP), a fraction including metallothioneins, whereas the potentially metal-sensitive heat-denaturable proteins fraction (HDP) was the largest contributor to the total Ni and Zn burdens. The concentrations of Cd, Cu and Ni (but not Zn) in each sub-cellular fraction increased along the metal contamination gradient, but the relative contributions of each fraction to the total burden of each of these metals remained generally constant. For these chronically exposed fish there was no threshold exposure concentration below which binding of Cd or Ni to the heat-denaturable protein fraction did not occur. The presence of Cd and Ni in the HDP fraction, even for low chronic exposure concentrations, suggests that metal detoxification was imperfect, i.e. that P. flavescens was subject to some metal-related stress even under these conditions. PMID:16430977

Giguère, Anik; Campbell, Peter G C; Hare, Landis; Couture, Patrice

2006-05-01

257

Cadmium(II) and Copper(II) coordination polymers based on 5-(Pyrazinyl) tetrazolate ligand: Structure, photoluminescence, theoretical calculations and magnetism  

NASA Astrophysics Data System (ADS)

Two ?2-tetrazolyl bridged metal complexes, {[CdI(PTZ)(H2O)]·H2O}n1 and {[Cu(PTZ)2]·H2O}n2 (HPTZ=5-(pyrazinyl) tetrazolate), were hydrothermally synthesized and fully characterized by X-ray crystallography, elemental analyses and spectrum techniques. In 1, cadmium ions are bridged by tridentate ?2-?2N2,N5:?1N1 chelating PTZ- ligand and halide linkers into an infinite 1D chain, while in 2 copper ions are connected by tridentate ?2-?2N7,N12:?1N8 and bidentate ?2-?1N1:?1N2 chelating-bridging PTZ- ligands to form a 1D castellated chain structure. Compound 1 displays phosphorescence with a lifetime of ˜7.74 ms in the visible region, and the origin of the luminescent emission is primary assigned to the combination of ligand-centered emission, metal-to-ligand charge transfer and ligand-to-ligand charge transfer, which has been probed by the density of states (DOS) calculations. Magnetic measurement reveals that compound 2 displays an anti-ferromagnetic ordering.

Chen, Hui-Fen; Yang, Wen-Bin; Lin, Lang; Guo, Xiang-Guang; Dui, Xue-jing; Wu, Xiao-Yuan; Lu, Can-Zhong; Zhang, Cui-Juan

2013-05-01

258

Copper and iron isotope fractionation during weathering and pedogenesis: Insights from saprolite profiles  

NASA Astrophysics Data System (ADS)

Iron and copper isotopes are useful tools to track redox transformation and biogeochemical cycling in natural environment. To study the relationships of stable Fe and Cu isotopic variations with redox regime and biological processes during weathering and pedogenesis, we carried out Fe and Cu isotope analyses for two sets of basalt weathering profiles (South Carolina, USA and Hainan Island, China), which formed under different climatic conditions (subtropical vs. tropical). Unaltered parent rocks from both profiles have uniform ?56Fe and ?65Cu values close to the average of global basalts. In the South Carolina profile, ?56Fe values of saprolites vary from -0.01‰ to 0.92‰ in the lower (reduced) part and positively correlate with Fe3+/?Fe (R2 = 0.90), whereas ?65Cu values are almost constant. By contrast, ?56Fe values are less variable and negatively correlate with Fe3+/?Fe (R2 = 0.88) in the upper (oxidized) part, where large (4.85‰) ?65Cu variation is observed with most samples enriched in heavy isotopes. In the Hainan profile formed by extreme weathering under oxidized condition, ?56Fe values vary little (0.05-0.14‰), whereas ?65Cu values successively decrease from 0.32‰ to -0.12‰ with depth below 3 m and increase from -0.17‰ to 0.02‰ with depth above 3 m. Throughout the whole profile, ?65Cu positively correlate with Cu concentration and negatively correlate with the content of total organic carbon (TOC). Overall, the contrasting Fe isotopic patterns under different redox conditions suggest redox states play the key controls on Fe mobility and isotope fractionation. The negative correlation between ?56Fe and Fe3+/?Fe in the oxidized part of the South Carolina profile may reflect addition of isotopically light Fe. This is demonstrated by leaching experiments, which show that Fe mineral pools extracted by 0.5 N HCl, representing poorly-crystalline Fe (hydr)-oxides, are enriched in light Fe isotopes. The systematic Cu isotopic variation in the Hainan profile reflects desorption and downward transport of isotopically heavy Cu, leaving the organically-bound Cu enriched in light isotope as supported by the negative correlation of ?65Cu with TOC (R2 = 0.88). The contrasting (mostly positive vs. negative) Cu isotopic signatures in the upper parts of these two profiles can be attributed to the different climatic conditions, e.g., high rainfall at a tropical climate in Hainan favors desorption and the development of organism, whereas relatively dry climate in South Carolina favors Cu re-precipitation from soil solutions and adsorption onto Fe (hydr)-oxides. Our results highlight the potential applications of Fe and Cu isotopes as great tracers of redox condition, ancient climate and biological cycling during chemical weathering and pedogenic translocation.

Liu, Sheng-Ao; Teng, Fang-Zhen; Li, Shuguang; Wei, Gang-Jian; Ma, Jing-Long; Li, Dandan

2014-12-01

259

Arabidopsis Thaliana CARBOXYL-TERMINAL DOMAIN PHOSPHATASE-Like1 (CPL1) Mediates Responses to Iron Deficiency and Cadmium Toxicity  

E-print Network

, accumulation of the heavy-metal cadmium (Cd) in plants is toxic and it is absorbed by the roots due to the low selectivity of metal transporters such as AtIRT1. In this dissertation, CPL1 was also shown to regulate the transcriptional responses to Cd...

Aksoy, Emre

2014-04-24

260

Co-Overexpression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis-Enhanced Cadmium Tolerance via Increased Cadmium Sequestration in Roots and Improved Iron Homeostasis of Shoots1[W  

PubMed Central

Cadmium (Cd) is toxic to plant cells. Under Cd exposure, the plant displayed leaf chlorosis, which is a typical symptom of iron (Fe) deficiency. Interactions of Cd with Fe have been reported. However, the molecular mechanisms of Cd-Fe interactions are not well understood. Here, we showed that FER-like Deficiency Induced Transcripition Factor (FIT), AtbHLH38, and AtbHLH39, three basic helix-loop-helix transcription factors involved in Fe homeostasis in plants, also play important roles in Cd tolerance. The gene expression analysis showed that the expression of FIT, AtbHLH38, and AtbHLH39 was up-regulated in the roots of plants treated with Cd. The plants overexpressing AtbHLH39 and double-overexpressing FIT/AtbHLH38 and FIT/AtbHLH39 exhibited more tolerance to Cd exposure than wild type, whereas no Cd tolerance was observed in plants overexpressing either AtbHLH38 or FIT. Further analysis revealed that co-overexpression of FIT with AtbHLH38 or AtbHLH39 constitutively activated the expression of Heavy Metal Associated3 (HMA3), Metal Tolerance Protein3 (MTP3), Iron Regulated Transporter2 (IRT2), and Iron Regulated Gene2 (IREG2), which are involved in the heavy metal detoxification in Arabidopsis (Arabidopis thaliana). Moreover, co-overexpression of FIT with AtbHLH38 or AtbHLH39 also enhanced the expression of NICOTIANAMINE SYNTHETASE1 (NAS1) and NAS2, resulting in the accumulation of nicotiananamine, a crucial chelator for Fe transportation and homeostasis. Finally, we showed that maintaining high Fe content in shoots under Cd exposure could alleviate the Cd toxicity. Our results provide new insight to understand the molecular mechanisms of Cd tolerance in plants. PMID:22184655

Wu, Huilan; Chen, Chunlin; Du, Juan; Liu, Hongfei; Cui, Yan; Zhang, Yue; He, Yujing; Wang, Yiqing; Chu, Chengcai; Feng, Zongyun; Li, Junming; Ling, Hong-Qing

2012-01-01

261

Iron superoxide dismutase from Escherichia coli at 3.1-A resolution: a structure unlike that of copper/zinc protein at both monomer and dimer levels.  

PubMed Central

The structure of iron superoxide dismutase (EC 1.15.1.1) from Escherichia coli has been determined at 3.1-A resolution. The dimeric molecule is constructed from identical subunits, which are two-domain polypeptides. The NH2-terminal domain is composed of two antiparallel crossing helices and the COOH-terminal domain is a three-layered structure characterized by mixed alpha/beta secondary structural features. The active center iron atoms, separated by 18 A and located near the monomer-monomer interface, are coordinated by two amino acid residues from each domain. Azide binding has been investigated by using difference Fourier techniques. Consistent with the notion of the independent evolution of the copper/zinc dismutase gene, the iron dismutase structure resembles the copper/zinc protein at neither the monomer nor the dimer level. PMID:6346322

Stallings, W C; Powers, T B; Pattridge, K A; Fee, J A; Ludwig, M L

1983-01-01

262

Cadmium toxicity decreased by dietary ascorbic acid supplements  

Microsoft Academic Search

Feeding the environmental toxicant cadmium to young Japanese quail for 4 weeks produced growth retardation, severe anemia, low concentrations of iron in the liver, and high concentrations of cadmium in the liver. Dietary ascorbic acid supplements almost completely prevented the anemia and improved the growth rate but did not markedly alter concentrations of iron or cadmium in the liver.

M. R. S. Fox; B. E. Jr. Fry

1970-01-01

263

Bioconcentration patterns of zinc, copper, cadmium and lead in selected fish species from the Fox River, Illinois  

SciTech Connect

This study was conducted to determine if bioconcentration patterns were similar between four common essential and nonessential trace elements. The whole body concentrations of Zn, Cu, Cd and Pb were related to the whole body dry weights of blue-gill (Lepomis macrochirus), black crappie (Pomoxis nigromaculatus), black bullhead (Ictalurus melas), and yellow perch (Perca flavescens). Zinc, Cu, Cd, and Pb were selected because most studies of heavy metal concentrations in fish have examined one or more of these elements. These metals are often closely associated with each other as natural impurities or as alloys. Zinc and Cu are essential components of metallo-enzymes. Cadmium and Pb have not been shown to have essential functions in fishes, but rather inhibit biological systems and competitively interfere with Zn and Cu. The fish species were chosen on the basis of their importance as recreational and food species and their frequent use in both field and laboratory studies. Patterns of metal bioconcentrations with fish size were determined by simple linear regression.

Vinikour, W.S.; Goldstein, R.M.; Anderson, R.V.

1980-05-01

264

Cadmium sulfide-copper sulfide heterojunction cell research. Quarterly progress report, December 1, 1979-February 29, 1980  

SciTech Connect

Attempts have been continued to increase the short circuit current in cells of enhanced open circuit voltage. Both deposition of copper on the surface of the Cu/sub 2/S layer and hydrogen plasma treatments have been attempted. To date, no significant increase in ultimate current has been achieved. Various changes in cell production procedure have been made with significant improvements in reproducibility. Improvements in the structure of (CdZn)S layers and resulting cell properties have been achieved using modified substrates based on NiFe. Improvement have been made to the capacitance measuring systems with a consequent gain in resolution, accuracy and reproducibility. Structural studies of the electron beam deposited glass have revealed the presence of cracking and experiments have been carried out to determine the optimum deposition conditions for producing defect-free coatings.

None

1980-07-01

265

Iron, zinc and copper in the Alzheimer’s disease brain: a quantitative meta-analysis. Some insight on the influence of citation bias on scientific opinion  

PubMed Central

Dysfunctional homeostasis of transition metals is believed to play a role in the pathogenesis of Alzheimer’s disease (AD). Although questioned by some, brain copper, zinc, and particularly iron overload are widely accepted features of AD which have led to the hypothesis that oxidative stress generated from aberrant homeostasis of these transition metals might be a pathogenic mechanism behind AD. This meta-analysis compiled and critically assessed available quantitative data on brain iron, zinc and copper levels in AD patients compared to aged controls. The results were very heterogeneous. A series of heavily cited articles from one laboratory reported a large increase in iron in AD neocortex compared to age-matched controls (p<0.0001) while seven laboratories failed to reproduce these findings reporting no significant difference between the groups (p=0.76). A more than three-fold citation bias was found to favor outlier studies reporting increases in iron and this bias was particularly prominent among narrative review articles. Additionally, while zinc was not significantly changed in the neocortex (p=0.29), copper was significantly depleted in AD (p=0.0003). In light of these findings, it will be important to re-evaluate the hypothesis that transition metal overload accounts for oxidative injury noted in AD. PMID:21600264

Schrag, Matthew; Mueller, Claudius; Oyoyo, Udochukwu; Kirsch, Wolff M.

2011-01-01

266

Laser-initiated combustion studies of selected aluminum, copper, iron, and nickel alloys  

NASA Technical Reports Server (NTRS)

The results of combustion studies at atmospheric pressure on ten metal alloys are presented. The alloys studied were aluminum alloys 1100, 2219, 6061, and tensile-50; 304, 347 and 21-6-9 stainless steel; inconel 600; beryllium copper and a bronze. It was found that once ignition was achieved all alloys would generally burn to completion. The overall combustion process appears to obey a first order rate process. Preliminary conclusions are presented along with recommendations for future work.

Bransford, J. W.; Clark, A. F.

1981-01-01

267

Biochemical responses of juvenile European sturgeon, (Huso huso) to a sub-lethal level of copper and cadmium in freshwater and brackish water environments  

PubMed Central

In Caspian Sea basin, sturgeons spend the larval and juvenile stages in freshwaters of rivers and then, they migrate to brackish waters of the sea where they grow and mature. With regard to the elevation of the metal concentrations in coastal waters and sediments of the Caspian Sea and its adjacent rivers, it is likely that juvenile sturgeon are exposed to sub-lethal levels of metals during seawater entry process. We compared the biochemical responses of juvenile European sturgeon, (Beluga, Huso huso) exposed to a sub-lethal level of copper (Cu, 20 ?g/L) and cadmium (Cd, 300 ?g/L) in freshwater (FW, 0 ppt) and brackish water (BW, 11 ppt) for seven days. The results showed that the levels of plasma glucose increased significantly in BW and in all metal exposed groups. Also, plasma cortisol concentrations showed significant increases when juveniles were exposed to BW, Cu(FW/BW) and Cd(BW). The activity of liver superoxide dismutase (SOD) decreased significantly in BW compared with FW. Moreover, Cu and Cd exposure enhanced the activity of SOD in BW, while SOD did not show any changes in FW. The levels of tissue and plasma proteins as well as plasma triiodothyronine (T3), thyroxine (T4) and liver Catalase (CAT) activity remained constant when animals were exposed to Cu/Cd in both FW and BW environments. Our data indicate that exposure of juvenile beluga to BW stimulated the general biochemical responses of stress such as cortisol and glucose, while sub-lethal exposure to Cu and Cd caused oxidative stress in BW environment but not in FW. PMID:24499513

2013-01-01

268

Bioaccumulation and Tissue Distribution of Arsenic, Cadmium, Copper and Zinc in Crassostrea virginica Grown at Two Different Depths in Jamaica Bay, New York  

PubMed Central

Historically, Jamaica Bay was a site of extensive oyster beds and shellfish culture leases that supported a significant oyster fishery in the New York area. The industrial and urban expansion of the early 1900’s led to over-harvesting and a deterioration in water and bay sediment quality that coincided with shellfish decline and the ultimate disappearance of oysters from the bay. Over the past 50 years, efforts to arrest and reverse the pollution problems of Jamaica Bay have been undertaken but the area still contains metals and other pollutants at levels higher than NYS Water Quality Standards. Previous we showed that Crassostrea virginica seed transplanted to the bay had excellent growth and survival despite the bay’s pollution problems. In this study we measured the one-year bioaccumulation and tissue distribution of four metals in C. virginica seed that were transplanted to the bay at two different depths: one foot from the surface and one foot above the sediment. Tissues of C. virginica were dissected, dried and digested in nitric acid. Arsenic, cadmium, copper and zinc levels were measured using electrothermal vaporization with deuterium lamp background correction in an atomic absorption spectrophotometer fitted with a THGA graphite furnace. Metals were distributed in the various tissues in ?g/g dry weight amounts, which correlate well with published values for whole oysters grown in other polluted areas. Metal distributions were not homogeneous throughout the animals and in most of the tissues tested, oysters grown near the surface accumulated more metal than those positioned near bay sediment. PMID:21841973

Rodney, Eric; Herrera, Pedro; Luxama, Juan; Boykin, Mark; Crawford, Alisa; Carroll, Margaret A.; Catapane, Edward J.

2011-01-01

269

Bioavailability of Cadmium, Copper, Mercury, Lead, and Zinc in Subtropical Coastal Lagoons from the Southeast Gulf of California Using Mangrove Oysters (Crassostrea corteziensis and Crassostrea palmula).  

PubMed

Cadmium (Cd), copper (Cu), mercury (Hg), lead (Pb), and zinc (Zn) were assessed in the edible tissues of Crassrotrea corteziensis oysters collected during the rainy and dry seasons in 27 sites from 8 coastal lagoons of the southeast Gulf of California. In addition, C. palmula oysters were sampled at 9 sites from the same mangrove roots where C. corteziensis oysters were collected. Metal analyses were performed by flame atomic absorption spectrophotometry (Cd, Cu, and Zn), graphite furnace (Pb), and cold vapor detection (Hg). The obtained mean levels were (µg g(-1) dry weight) as follows: Cd 6.05 ± 2.77, Cu 60.0 ± 33.4, Hg 0.38 ± 0.17, Pb 1.11 ± 0.63, and Zn 777 ± 528 µg g(-1). For all metals except Hg, the concentrations were greater during dry season than during rainy seasons. The high levels, particularly that for Cd, were related to upwelling along the eastern Gulf of California. High Hg levels in the rainy season were associated with the transport of materials from the watershed to the lagoon. Shrimp farming, agriculture, and other sources were considered as potential sources to explain the differences in metal bioavailability in the 8 lagoons. The mean concentrations of Cd (Santa María-La Reforma lagoon), Cu [San Ignacio-Navachiste-El Macapule (SINM), Urías (URI), and Altata-Ensenada del Pabellón lagoons], and zinc (Zn) (URI, Santa María-Ohuira-Topolobampo, El Colorado, and SINM lagoons) during the dry season were greater than the maximum permissible limits. C. palmula collected in 8 sites where they were present simultaneously with C. corteziensis had consistently greater metal levels than C. corteziensis, but correlation analyses showed a high and significant (P < 0.05) correlation between metal concentrations in both species. The correlation equations obtained are useful where the same species is not distributed and is necessary to compare results from distinct regions. PMID:25556031

Páez-Osuna, Federico; Osuna-Martínez, Carmen C

2015-02-01

270

Biochemical responses of juvenile European sturgeon, (Huso huso) to a sub-lethal level of copper and cadmium in freshwater and brackish water environments.  

PubMed

In Caspian Sea basin, sturgeons spend the larval and juvenile stages in freshwaters of rivers and then, they migrate to brackish waters of the sea where they grow and mature. With regard to the elevation of the metal concentrations in coastal waters and sediments of the Caspian Sea and its adjacent rivers, it is likely that juvenile sturgeon are exposed to sub-lethal levels of metals during seawater entry process. We compared the biochemical responses of juvenile European sturgeon, (Beluga, Huso huso) exposed to a sub-lethal level of copper (Cu, 20 ?g/L) and cadmium (Cd, 300 ?g/L) in freshwater (FW, 0 ppt) and brackish water (BW, 11 ppt) for seven days. The results showed that the levels of plasma glucose increased significantly in BW and in all metal exposed groups. Also, plasma cortisol concentrations showed significant increases when juveniles were exposed to BW, Cu(FW/BW) and Cd(BW). The activity of liver superoxide dismutase (SOD) decreased significantly in BW compared with FW. Moreover, Cu and Cd exposure enhanced the activity of SOD in BW, while SOD did not show any changes in FW. The levels of tissue and plasma proteins as well as plasma triiodothyronine (T3), thyroxine (T4) and liver Catalase (CAT) activity remained constant when animals were exposed to Cu/Cd in both FW and BW environments. Our data indicate that exposure of juvenile beluga to BW stimulated the general biochemical responses of stress such as cortisol and glucose, while sub-lethal exposure to Cu and Cd caused oxidative stress in BW environment but not in FW. PMID:24499513

Zahedi, Saeed; Akbarzadeh, Arash; Rafati, Maryam; Banaee, Mahdi; Sepehri Moghadam, Heshmat; Raeici, Hadi

2013-01-01

271

Leaching of cadmium, chromium, copper, lead, and zinc from two slag dumps with different environmental exposure periods under dynamic acidic condition.  

PubMed

Over the past few decades, zinc smelting activities in Guizhou, China have produced numerous slag dumps, which are often dispersed on roadsides and hill slopes throughout the region. During periods of acid rain, these exposed slags release heavy metals into surface water bodies. A column leaching study was designed to test the potential release of the heavy metals cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) under simulated acid rain events. Two slags with varying environmental exposure periods were packed in columns and subjected to leaching solutions of pH 3.5, 5.5, or DI H2O at intervals of 1, 7, 14, 28, 56d. Pulse concentrations of Cd in leachate were found above 5?g/L, Cr, Pb, and Zn >10?g/L, whereas, Cu reached 10?g/L. After five leaching events, the leachability (percentage of cumulative heavy metal leached after five leaching events as in its respective total concentration in slags) of Cd was 0.05 percent and 0.035 percent from the old and young slag, respectively. Cr (0.035 percent and 0.05 percent) was greater than Cu (0.002 percent and 0.005 percent) and Zn (0.006 percent and 0.003 percent), while the lowest leachability was observed for Pb (0.0005 percent and 0.0002 percent) from the old and young slags, respectively. Reaction rates (release amount of heavy metals in certain period of leaching) of heavy metals in the leachates demonstrated the sequence of Zn>Cr>Cd, Cu>Pb. Leaching release of heavy metals was jointly affected by the pH of leaching solution and mineral composition of slags (including chemical forms of Cd, Cr, Cu, Pb, and Zn). Environmental exposure period of slags, resulting in the alteration of minerals, could affect the release process of heavy metals in leaching as well. PMID:24632122

Jin, Zhisheng; Liu, Taoze; Yang, Yuangen; Jackson, Daniel

2014-06-01

272

Iron  

MedlinePLUS

... mealtime or when you take iron supplements.RiboflavinTaking riboflavin supplements may improve the way iron supplements work ... significant only in people with low levels of riboflavin.SoySoy protein seems to reduce the body's ability ...

273

Wear mechanism of copper alloy wire sliding against iron-base strip under electric current  

Microsoft Academic Search

In electric railways, the wear rate of trolley wire decides the life of the wire. In order to search for methods of decreasing the wear rate. laboratory wear test was carried out with three types of wire materials sliding against an iron-base sintered alloy strip under electric current flow condition. The test results indicate that the wear rate of wire

Hiroki Nagasawa; Koji Kato

1998-01-01

274

Rosette iron deficiency transcript and microRNA profiling reveals links between copper and iron homeostasis in Arabidopsis thaliana  

PubMed Central

Iron (Fe) is an essential plant micronutrient, and its deficiency limits plant growth and development on alkaline soils. Under Fe deficiency, plant responses include up-regulation of genes involved in Fe uptake from the soil. However, little is known about shoot responses to Fe deficiency. Using microarrays to probe gene expression in Kas-1 and Tsu-1 ecotypes of Arabidopsis thaliana, and comparison with existing Col-0 data, revealed conserved rosette gene expression responses to Fe deficiency. Fe-regulated genes included known metal homeostasis-related genes, and a number of genes of unknown function. Several genes responded to Fe deficiency in both roots and rosettes. Fe deficiency led to up-regulation of Cu,Zn superoxide dismutase (SOD) genes CSD1 and CSD2, and down-regulation of FeSOD genes FSD1 and FSD2. Eight microRNAs were found to respond to Fe deficiency. Three of these (miR397a, miR398a, and miR398b/c) are known to regulate transcripts of Cu-containing proteins, and were down-regulated by Fe deficiency, suggesting that they could be involved in plant adaptation to Fe limitation. Indeed, Fe deficiency led to accumulation of Cu in rosettes, prior to any detectable decrease in Fe concentration. ccs1 mutants that lack functional Cu,ZnSOD proteins were prone to greater oxidative stress under Fe deficiency, indicating that increased Cu concentration under Fe limitation has an important role in oxidative stress prevention. The present results show that Cu accumulation, microRNA regulation, and associated differential expression of Fe and CuSOD genes are coordinated responses to Fe limitation. PMID:22962679

Waters, Brian M.; Stein, Ricardo J.

2012-01-01

275

IRON  

EPA Science Inventory

The document surveys the effects of organic and inorganic iron that are relevant to humans and their environment. The biology and chemistry of iron are complex and only partially understood. Iron participates in oxidation reduction processes that not only affect its geochemical m...

276

Oral intake of cadmium, cobalt, copper, iron, lead, nickel, manganese and zinc in the university student's diet.  

PubMed

A duplicate diet meal study was carried out with a group of university students living in a hostel, in order to estimate the intake of Zn, Cd, Co, Cu, Fe, Mn, Ni and Pb. Zn, Cu, Fe, Mn and Ni were determined by flame atomic absorption spectrophotometry and Cd, Co and Pb by graphite furnace atomic absorption spectrophotometry after a nitric acid wet digestion procedure. The estimated intake values from the contents of breakfast, lunch, dinner and drinks were compared with the values of the Provisional Tolerable Daily Intake (PTDI) in the case of Cd and Pb, Recommended Dietary Allowances (RDA) of Co, Fe and Zn and Estimated Safe and Adequate Dietetic Daily Intake (ESADDI) of Cu and Mn. Neither excessive intake of Pb and Cd nor deficiencies in Zn, Co, Fe, Mn or Ni were observed, but Cu intake was lower than the ESADDI. PMID:8361527

Barberá, R; Farré, R; Mesado, D

1993-01-01

277

Zinc, cadmium, and copper mobility and accumulation in reeds (Phragmites australis) in urban sediments from two stormwater infiltration basins  

NASA Astrophysics Data System (ADS)

Infiltration basins are stormwater management techniques that are widely used to reduce stormwater volume. The settling of stormwater particles leads to a contaminated sediment layer at the basin surface. Phragmites australis used in constructed wetlands are widely present in infiltration basins. Such plant can play a role on the fate of heavy metals either directly by their uptake or indirectly by modification of physico-chemical characteristics of the sediment. The aim of this study is to assess Zn, Cd and Cu potential mobility and their bioaccumulation by reeds during plant's growth in urban sediments offering two different geochemical contexts. Methodology is based on the monitoring (in june, august and december) of physico-chemical characteristics of sediment deposit in two basins. These basins, "Minerve" and "Grézieu", located on both sides of Lyon city are characteristic of two different geochemical context. "Minerve" is in the east and "Grézieu" in the west part. The geology of the eastern part of Lyon is characterized by carbonated fluvio-glacial deposits. In the western part, the subsoil is mainly composed of gneiss and granit. Moreover, 20 cm of gravel and a sand layer were initially added at the surface of the "Grézieu" basin. In "Minerve", a clay material was initially added and a filter trench was built along the basin to allow water infiltration. We characterized the sediment deposit by the identification of their geochemical characteristics (Zn, Cu, Cd, total content, pH, CEC, C/N, carbonates and major elements contents …). Then we studied the potential mobility of the three metals by single chemical extraction (CaCl2 for the exchangeable phase, acetate buffer for the acido-soluble phase and diethylenetriamine-pentaacetic acid (DTPA) for the fraction associated to the organic matter). The accumulation of Zn, Cd and Cu in aerial parts and roots of the reeds was also measured. The results show clearly that "Grézieu" sediment is more enriched in organic matter and metals than "Minerve". For example, Zn contents are equal to 400 mg/kgDW in "Grézieu" whereas it is equal to 80 mg/kgDW in "Minerve". In the most contaminated basin "Grézieu", metals mobility is mainly controlled by their association with carbonates and organic matter. Thus, copper associated with organic matter may represent almost 70% of the total copper content. In the "Minerve" sediment, the metals are distributed on the different sediment components, with very stable associations on the different mineral phases. The reed accumulates more metal in the context of the most contaminated basin (Grézieu), but without any differences in bioconcentration factors. The high metal contents in "Grézieu" sediments limited also the growth of reed. Moreover, for "Grézieu" sediment, characteristics evolve with the seasons. Thus, texture decreases from June to December in parallel with an increase in organic matter and metals in the sediment deposit.

Bedell, J.-P.; Saulais, S.; Delolme, C.

2012-04-01

278

Flow-injection determination of copper(II) based on its catalysis on the redox reaction of cysteine with iron(III) in the presence of 1,10-phenanthroline  

Microsoft Academic Search

A redox reaction of cysteine with iron(III) proceeds slowly in the presence of 1,10-phenanthroline (phen). However, this reaction is accelerated in the presence of copper(II) as a catalyst, producing an iron(II)–phen complex (?max=510 nm). A sensitive spectrophotometric flow-injection method is proposed for the determination of copper(II) based on its catalytic action on this redox reaction. The dynamic range was 0.1–10

Norio Teshima; Hideyuki Katsumata; Makoto Kurihara; Tadao Sakai; Takuji Kawashima

1999-01-01

279

Iron and copper isotope fractionation during filtration and ultrafiltration of boreal organic-rich waters  

Microsoft Academic Search

Typical feature of all boreal surface waters is high concentration of dissolved (< 0.22 µm) organic matter (DOM) and iron, notably in the form of Fe(III)-OM complexes. Organic and organo-mineral colloids are the most likely carriers of trace metals such as Cu in rivers of the boreal zone. This work addresses colloidal speciation of Cu and Fe using conventional size

Svetlana M. Ilina; Jerome Viers; Oleg S. Pokrovsky; Franck Poitrasson; Sergey A. Lapitsky; Yuriy V. Alekhin

2010-01-01

280

Welding procedure specification: gas tungsten arc welding of nickel-copper to nickel-chromium-iron. Supplement 1. Records of procedure qualification tests  

SciTech Connect

Procedure WPS-2303-ASME-3 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for gas tungsten arc welding of nickel-copper N04400 (P-42) to nickel-chromium-iron N06600 (P-43), in thickness range of 0.035 to 0.432 inch; filler metal is ERNiCu-7 (F-42); shielding gas is argon.

Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

1986-06-01

281

Welding procedure specification: gas tungsten arc welding of nickel-copper to nickel-chromium-iron. Supplement 1. Records of procedure qualification tests  

Microsoft Academic Search

Procedure WPS-2303-ASME-3 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for gas tungsten arc welding of nickel-copper N04400 (P-42) to nickel-chromium-iron N06600 (P-43), in thickness range of 0.035 to 0.432 inch; filler metal is ERNiCu-7 (F-42); shielding gas is argon.

C. H. Wodtke; D. R. Frizzell; W. A. Plunkett

1986-01-01

282

Biosorption of copper(II), lead(II), iron(III) and cobalt(II) on Bacillus sphaericus-loaded Diaion SP850 resin  

Microsoft Academic Search

The biosorption of copper(II), lead(II), iron(III) and cobalt(II) on Bacillus sphaericus-loaded Diaion SP-850 resin for preconcentration–separation of them have been investigated. The sorbed analytes on biosorbent were eluted by using 1molL?1 HCl and analytes were determined by flame atomic absorption spectrometry. The influences of analytical parameters including amounts of pH, B. sphaericus, sample volume etc. on the quantitative recoveries of

Mustafa Tuzen; Ozgur Dogan Uluozlu; Canan Usta; Mustafa Soylak

2007-01-01

283

Analysis of the fuel wood used in Late Bronze Age and Early Iron Age copper mining sites of the Schwaz and Brixlegg area (Tyrol, Austria)  

E-print Network

Charcoal analysis was carried out as part of an interdisciplinary project focusing on the copper mining history of the former mining area of Schwaz and Brixlegg, a region pivotal as a copper source in prehistoric Europe. The goal was to use remains of carbonised wood to investigate environmental implications of prehistoric mining, as well as to gain new insight about the ancient mining technique of fire-setting. Charcoal samples from seven copper mining sites (Late Bronze Age to Early Iron Age) were analysed. The results reveal a strong preference for coniferous wood as fuel in fire-setting, but not in ore smelting/roasting processes. Species composition at the ore-processing sites indicates moderate forest degradation processes caused by human intervention.

Andreas G. Heiss; Klaus Oeggl

2008-01-01

284

Structural features and the reaction mechanism of cytochrome oxidase: iron and copper X-ray absorption fine structure.  

PubMed Central

X-ray edge absorption of copper and extended fine structure studies of both copper and iron centers have been made of cytochrome oxidase from beef heart, Paracoccus dentrificans, and HB-8 thermophilic bacteria (1-2.5 mM in heme). The desired redox state (fully oxidized, reduced CO, mixed valence formate and CO) in the x-ray beam was controlled by low temperature (-140 degrees C) and was continuously monitored by simultaneous optical spectroscopy and by electron paramagnetic resonance (EPR) monitoring every 30 min of x-ray exposure. The structure of the active site, a cytochrome a3-copper pair in fully oxidized and in mixed valence formate states where they are spin coupled, contains a sulphur bridge with three ligands 2.60 +/- 0.03 A from Fea3 and 2.18 +/- 0.03 A from Cua3. The distance between Fea3 and Cua3 is 3.75 +/- 0.05 A, making the sulphur bond angle 103 degrees reasonable for sp3 sulphur bonding. The Fea3 first shell has four typical heme nitrogens (2.01 +/- 0.03 A) with a proximal nitrogen at 2.14 +/- 0.03 A. The sixth ligand is the bridging sulphur. The Cua3 first shell is identical to oxidized stellacyanin containing two nitrogens and a bridging sulphur. Upon reduction with CO, the active site is identical to reduced stellacyanin for the Cua3 first shell and contains the sulphur that forms the bridge in fully oxidized and mixed valence formate states. The Fea3 first shell is identical to oxyhemoglobin but has CO instead of O2. The other redox centers, Fea and the other "EPR detectable" Cu are not observed in higher shells of Fea3. Fea has six equidistant nitrogens and Cua has one (or two) nitrogens and three (or two) sulphurs with typical distances; these ligands change only slight on reduction. These structures afford the basis for an oxygen reduction mechanism involving oxy- and peroxy intermediates. Images FIGURE 2 PMID:6264990

Powers, L; Chance, B; Ching, Y; Angiolillo, P

1981-01-01

285

Nickel-cobalt-iron-copper sulfides and arsenides in solution-collapse breccia pipes, northwestern Arizona  

SciTech Connect

An extensive suite of Ni-Co-Fe-Cu sulfides and arsenides lies within the matrix of solution-collapse breccias buried deep within the plateaus of the Grand Canyon region. Ceilings over large caverns in the Redwall collapsed, brecciating the overlying sandstone and forming cylindrical breccia pipes up to 300 ft in diameter that extend vertically as much as 3,000 ft. These highly permeable breccias served as a host for the precipitation of a suite of over 100 minerals, including uraninite, sphalerite, galena and various copper phases, in addition to the Ni-Co-bearing-phase discussed here. Intricately zoned crystals of small (<1 mm), euhedral Ni-Co-Fe-As-S minerals were the first to form during the second major episode of mineralization in these pipes. Several of these phases replace minerals, such as barite and anhydrite, from the first episode. Extensive microprobe work has been done on samples from two breccia pipe mines, the Hack 2 and Orphan, which are about 50 miles apart. Mineral compositions are similar except that no copper is found in the Ni-Co-Fe phases from the Hack 2 mine, while pyrites containing 1 wt % Cu are common from the Orphan, which was mined for copper. In some of these pyrites', Cu is dominant and the mineral is actually villamaninite. Pyrites from both mines characteristically contain 0.5 to 3 wt % As. Metal contents in zones pyrite-bravoite-vaesite (M[sub 1]S[sub 2]) crystals at the Hack 2 mine range from Fe[sub 1] to Fe[sub .12], Ni[sub 0] to Ni[sub .86], and Co[sub 0] to Co[sub .10]. The metal content for polydymite-siegenite-violarite averages about (Ni[sub 2.33]Co[sub .39]Fe[sub .23])(S[sub 3.9]As[sub .1]). Orphan mine pyrite-bravoite-vaesite-villamaninite ranges in composition from pure FeS[sub 2] to (Ni[sub .6]Fe[sub .21]Co[sub .17])S[sub 2], and (Cu[sub .46]Ni[sub .27]Fe[sub .21]Co[sub .13])S[sub 2]. Of all the sulfides or arsenides found in these breccia pipes, only nickeline consistently occurs as the pure end member.

Wenrich, K.J. (Geological Survey, Denver, CO (United States)); Hlava, P.F. (Sandia National Labs., Albuquerque, NM (United States))

1993-04-01

286

Coumarin-Based Fluorescent Probes for Dual Recognition of Copper(II) and Iron(III) Ions and Their Application in Bio-Imaging  

PubMed Central

Two new coumarin-based “turn-off” fluorescent probes, (E)-3-((3,4-dihydroxybenzylidene)amino)-7-hydroxy-2H-chromen-2-one (BS1) and (E)-3-((2,4-dihydroxybenzylidene)amino)-7-hydroxy-2H-chromen-2-one (BS2), were synthesized and their detection of copper(II) and iron(III) ions was studied. Results show that both compounds are highly selective for Cu2+ and Fe3+ ions over other metal ions. However, BS2 is detected directly, while detection of BS1 involves a hydrolysis reaction to regenerate 3-amino-7-hydroxycoumarin (3) and 3,4-dihydroxybenzaldehyde, of which 3 is able to react with copper(II) or iron(III) ions. The interaction between the tested compounds and copper or iron ions is associated with a large fluorescence decrease, showing detection limits of ca. 10?5 M. Preliminary studies employing epifluorescence microscopy demonstrate that Cu2+ and Fe3+ ions can be imaged in human neuroblastoma SH-SY5Y cells treated with the tested probes. PMID:24419164

García-Beltrán, Olimpo; Cassels, Bruce K.; Pérez, Claudio; Mena, Natalia; Núñez, Marco T.; Martínez, Natalia P.; Pavez, Paulina; Aliaga, Margarita E.

2014-01-01

287

Coumarin-based fluorescent probes for dual recognition of copper(II) and iron(III) ions and their application in bio-imaging.  

PubMed

Two new coumarin-based "turn-off" fluorescent probes, (E)-3-((3,4-dihydroxybenzylidene)amino)-7-hydroxy-2H-chromen-2-one (BS1) and (E)-3-((2,4-dihydroxybenzylidene)amino)-7-hydroxy-2H-chromen-2-one (BS2), were synthesized and their detection of copper(II) and iron(III) ions was studied. Results show that both compounds are highly selective for Cu²? and Fe³? ions over other metal ions. However, BS2 is detected directly, while detection of BS1 involves a hydrolysis reaction to regenerate 3-amino-7-hydroxycoumarin (3) and 3,4-dihydroxybenzaldehyde, of which 3 is able to react with copper(II) or iron(III) ions. The interaction between the tested compounds and copper or iron ions is associated with a large fluorescence decrease, showing detection limits of ca. 10?? M. Preliminary studies employing epifluorescence microscopy demonstrate that Cu²? and Fe³? ions can be imaged in human neuroblastoma SH-SY5Y cells treated with the tested probes. PMID:24419164

García-Beltrán, Olimpo; Cassels, Bruce K; Pérez, Claudio; Mena, Natalia; Núñez, Marco T; Martínez, Natalia P; Pavez, Paulina; Aliaga, Margarita E

2014-01-01

288

Enthalpies of formation of borides of iron, cobalt, and nickel by solution calorimetry in liquid copper  

Microsoft Academic Search

The enthalpies of formation at 1385 ?2 K of the following crystalline borides have been determined by high temperature solution\\u000a calorimetry using liquid copper as the calorimetric solvent. Fe2B-67.87 ?8.05 kJ mol?1, Co2B -58.1 ?7.0 kJ mol?1, Ni2B -67.66 ?4.12 kJ ml?1, FeB-64.63 ?4.34 kJ mol?1, CoB -69.52 ?6.0 kJ mol?1, and NiB -40.2 ?3.77 kJ mol?1. The enthalpy of

Seichi Sato; O. J. Kleppa

1982-01-01

289

High Levels of Copper, Zinc, Iron and Magnesium, but not Calcium, in the Cerebrospinal Fluid of Patients with Fahr's Disease.  

PubMed

Patients with marked calcification of the basal ganglia and cerebellum have traditionally been referred to as having Fahr's disease, but the nomenclature has been criticized for including heterogeneous etiology. We describe 3 patients with idiopathic bilateral striatopallidodentate calcinosis (IBSPDC). The patients were a 24-year-old man with mental deterioration, a 57-year-old man with parkinsonism and dementia, and a 76-year-old woman with dementia and mild parkinsonism. The former 2 patients showed severe calcification of the basal ganglia and cerebellum, and the latter patient showed severe calcification of the cerebellum. We found significantly increased levels of copper (Cu), zinc (Zn), iron (Fe) and magnesium (Mg), using inductively coupled plasma mass spectrometry in the CSF of all these 3 patients. The increased levels of Cu, Zn, Fe and Mg reflect the involvement of metabolism of several metals and/or metal-binding proteins during the progression of IBSPDC. More numerous patients with IBSPDC should be examined in other races to clarify the common mechanism of the disease and to investigate the specific treatment. PMID:20671856

Hozumi, Isao; Kohmura, Akihiro; Kimura, Akio; Hasegawa, Tatsuya; Honda, Akiko; Hayashi, Yuichi; Hashimoto, Kazunori; Yamada, Megumi; Sakurai, Takeo; Tanaka, Yuji; Satoh, Masahiko; Inuzuka, Takashi

2010-01-01

290

High Levels of Copper, Zinc, Iron and Magnesium, but not Calcium, in the Cerebrospinal Fluid of Patients with Fahr's Disease  

PubMed Central

Patients with marked calcification of the basal ganglia and cerebellum have traditionally been referred to as having Fahr's disease, but the nomenclature has been criticized for including heterogeneous etiology. We describe 3 patients with idiopathic bilateral striatopallidodentate calcinosis (IBSPDC). The patients were a 24-year-old man with mental deterioration, a 57-year-old man with parkinsonism and dementia, and a 76-year-old woman with dementia and mild parkinsonism. The former 2 patients showed severe calcification of the basal ganglia and cerebellum, and the latter patient showed severe calcification of the cerebellum. We found significantly increased levels of copper (Cu), zinc (Zn), iron (Fe) and magnesium (Mg), using inductively coupled plasma mass spectrometry in the CSF of all these 3 patients. The increased levels of Cu, Zn, Fe and Mg reflect the involvement of metabolism of several metals and/or metal-binding proteins during the progression of IBSPDC. More numerous patients with IBSPDC should be examined in other races to clarify the common mechanism of the disease and to investigate the specific treatment. PMID:20671856

Hozumi, Isao; Kohmura, Akihiro; Kimura, Akio; Hasegawa, Tatsuya; Honda, Akiko; Hayashi, Yuichi; Hashimoto, Kazunori; Yamada, Megumi; Sakurai, Takeo; Tanaka, Yuji; Satoh, Masahiko; Inuzuka, Takashi

2010-01-01

291

Transcriptomic and physiological characterization of the fefe mutant of melon (Cucumis melo) reveals new aspects of iron-copper crosstalk.  

PubMed

Iron (Fe) and copper (Cu) homeostasis are tightly linked across biology. In previous work, Fe deficiency interacted with Cu-regulated genes and stimulated Cu accumulation. The C940-fe (fefe) Fe-uptake mutant of melon (Cucumis melo) was characterized, and the fefe mutant was used to test whether Cu deficiency could stimulate Fe uptake. Wild-type and fefe mutant transcriptomes were determined by RNA-seq under Fe and Cu deficiency. FeFe-regulated genes included core Fe uptake, metal homeostasis, and transcription factor genes. Numerous genes were regulated by both Fe and Cu. The fefe mutant was rescued by high Fe or by Cu deficiency, which stimulated ferric-chelate reductase activity, FRO2 expression, and Fe accumulation. Accumulation of Fe in Cu-deficient plants was independent of the normal Fe-uptake system. One of the four FRO genes in the melon and cucumber (Cucumis sativus) genomes was Fe-regulated, and one was Cu-regulated. Simultaneous Fe and Cu deficiency synergistically up-regulated Fe-uptake gene expression. Overlap in Fe and Cu deficiency transcriptomes highlights the importance of Fe-Cu crosstalk in metal homeostasis. The fefe gene is not orthologous to FIT, and thus identification of this gene will provide clues to help understand regulation of Fe uptake in plants. PMID:24975482

Waters, Brian M; McInturf, Samuel A; Amundsen, Keenan

2014-09-01

292

Copper stable isotopes as tracers of metal-sulphide segregation and fractional crystallisation processes on iron meteorite parent bodies  

NASA Astrophysics Data System (ADS)

We report high precision Cu isotope data coupled with Cu concentration measurements for metal, troilite and silicate fractions separated from magmatic and non-magmatic iron meteorites, analysed for Fe isotopes (? 57Fe; permil deviation in 57Fe/ 54Fe relative to the pure iron standard IRMM-014) in an earlier study ( Williams et al., 2006). The Cu isotope compositions (? 65Cu; permil deviation in 65Cu/ 63Cu relative to the pure copper standard NIST 976) of both metals (? 65Cu M) and sulphides (? 65Cu FeS) span much wider ranges (-9.30 to 0.99‰ and -8.90 to 0.63‰, respectively) than reported previously. Metal-troilite fractionation factors (? 65Cu M-FeS = ? 65Cu M - ? 65Cu FeS) are variable, ranging from -0.07 to 5.28‰, and cannot be explained by equilibrium stable isotope fractionation coupled with either mixing or reservoir effects, i.e. differences in the relative proportions of metal and sulphide in the meteorites. Strong negative correlations exist between troilite Cu and Fe (? 57Fe FeS) isotope compositions and between metal-troilite Cu and Fe (? 57Fe M-FeS) isotope fractionation factors, for both magmatic and non-magmatic irons, which suggests that similar processes control isotopic variations in both systems. Clear linear arrays between ? 65Cu FeS and ? 57Fe FeS and calculated Cu metal-sulphide partition coefficients (D Cu = [Cu] metal/[Cu] FeS) are also present. A strong negative correlation exists between ? 57Fe M-FeS and D Cu; a more diffuse positive array is defined by ? 65Cu M-FeS and D Cu. The value of D Cu can be used to approximate the degree of Cu concentration equilibrium as experimental studies constrain the range of D Cu between Fe metal and FeS at equilibrium to be in the range of 0.05-0.2; D Cu values for the magmatic and non-magmatic irons studied here range from 0.34 to 1.11 and from 0.04 to 0.87, respectively. The irons with low D Cu values (closer to Cu concentration equilibrium) display the largest ? 57Fe M-FeS and the lowest ? 65Cu M-FeS values, whereas the converse is observed in the irons with large values D Cu that deviate most from Cu concentration equilibrium. The magnitudes of Cu and Fe isotope fractionation between metal and FeS in the most equilibrated samples are similar: 0.25 and 0.32‰/amu, respectively. As proposed in an earlier study ( Williams et al., 2006) the range in ? 57Fe M-FeS values can be explained by incomplete Fe isotope equilibrium between metal and sulphide during cooling, where the most rapidly-cooled samples are furthest from isotopic equilibrium and display the smallest ? 57Fe M-FeS and largest D Cu values. The range in ? 65Cu M-FeS, however, reflects the combined effects of partial isotopic equilibrium overprinting an initial kinetic signature produced by the diffusion of Cu from metal into exsolving sulphides and the faster diffusion of the lighter isotope. In this scenario, newly-exsolved sulphides initially have low Cu contents (i.e. high D Cu) and extremely light ? 65Cu FeS values; with progressive equilibrium and fractional crystallisation the Cu contents of the sulphides increase as their isotopic composition becomes less extreme and closer to the metal value. The correlation between ? 65Cu M-FeS and ? 57Fe M-FeS is therefore a product of the superimposed effects of kinetic fractionation of Cu and incomplete equilibrium between metal and sulphide for both isotope systems during cooling. The correlations between ? 65Cu M-FeS and ? 57Fe M-FeS are defined by both magmatic and non-magmatic irons record fractional crystallisation and cooling of metallic melts on their respective parent bodies as sulphur and chalcophile elements become excluded from crystallised solid iron and concentrated in the residual melt. Fractional crystallisation processes at shallow levels have been implicated in the two main classes of models for the origin of the non-magmatic iron meteorites; at (i) shallow levels in impact melt models and (ii) at much deeper levels in models where the non-magmatic irons represent metallic melts that crystallised within the in

Williams, Helen M.; Archer, Corey

2011-06-01

293

Simultaneous removal of cadmium and nitrate in aqueous media by nanoscale zerovalent iron (nZVI) and Au doped nZVI particles.  

PubMed

Nanoscale zerovalent iron (nZVI) has demonstrated high efficacy for treating nitrate or cadmium (Cd) contamination, but its efficiency for simultaneous removal of nitrate and Cd has not been investigated. This study evaluated the reactivity of nZVI to the co-contaminants and by-product formation, employed different catalysts to reduce nitrite yield from nitrate, and examined the transformation of nZVI after reaction. Nitrate reduction resulted in high solution pH, negatively charged surface of nZVI, formation of Fe3O4 (a stable transformation of nZVI), and no release of ionic iron. Increased pH and negative charge contributed to significant increase in Cd(II) removal capacity (from 40 mg/g to 188 mg/g) with nitrate present. In addition, nitrate reduction by nZVI could be catalyzed by Cd(II): while 30% of nitrate was reduced by nZVI within 2 h in the absence of Cd(II), complete nitrate reduction was observed in the presence of 40 mg-Cd/L due to the formation of Cd islands (Cd(0) and CdO) on the nZVI particles. While nitrate was reduced mostly to ammonium when Cd(II) was not present or at Cd(II) concentrations ? 40 mg/L, up to 20% of the initial nitrate was reduced to nitrite at Cd(II) concentrations < 40 mg/L. Among nZVI particles doped with 1 wt. % Cu, Ag, or Au, nZVI deposited with 1 wt. % Au reduced nitrite yield to less than 3% of the initial nitrate, while maintaining a high Cd(II) removal capacity. PMID:24999115

Su, Yiming; Adeleye, Adeyemi S; Huang, Yuxiong; Sun, Xiaoya; Dai, Chaomeng; Zhou, Xuefei; Zhang, Yalei; Keller, Arturo A

2014-10-15

294

Quantitative separation of zinc traces from cadmium matrices by solid-phase extraction with polyurethane foam.  

PubMed

A system for separation of zinc traces from large amounts of cadmium is proposed in this paper. It is based on the solid-phase extraction of the zinc in the form of thiocyanate complexes by the polyurethane foam. The following parameters were studied: effect of pH and of the thiocyanate concentration on the zinc extraction, shaking time required for quantitative extraction, amount of PU foam necessary for complete extraction, conditions for the separation of zinc from cadmium, influence of other cations and anions on the zinc sorption by PU foam, and required conditions for back extraction of zinc from the PU foam. The results show that zinc traces can be separated from large amounts of cadmium at pH 3.0+/-0.50, with the range of thiocyanate concentration from 0.15 to 0.20 mol l(-1), and the shaking time of 5 min. The back extraction of zinc can be done by shaking it with water for 10 min. Calcium, barium, strontium, magnesium, aluminum, nickel and iron(II) are efficiently separated. Iron(III), copper(II) and cobalt(II) are extracted simultaneously with zinc, but the iron reduction with ascorbic acid and the use of citrate to mask copper(II) and cobalt(II) increase the selectivity of the zinc extraction. The anions nitrate, chloride, sulfate, acetate, thiosulphate, tartarate, oxalate, fluoride, citrate, and carbonate do not affect the zinc extraction. Phosphate and EDTA must be absent. The method proposed was applied to determine zinc in cadmium salts using 4-(2-pyridylazo)-resorcinol (PAR) as a spectrophotometric reagent. The result achieved did not show significant difference in the accuracy and precision (95% confidence level) with those obtained by ICP-AES analysis. PMID:18967283

Santiago de Jesus, D; Souza de Carvalho, M; Spínola Costa, A C; Costa Ferreira, S L

1998-08-01

295

Activation of Methanogenesis by Cadmium in the Marine Archaeon Methanosarcina acetivorans  

PubMed Central

Methanosarcina acetivorans was cultured in the presence of CdCl2 to determine the metal effect on cell growth and biogas production. With methanol as substrate, cell growth and methane synthesis were not altered by cadmium, whereas with acetate, cadmium slightly increased both, growth and methane rate synthesis. In cultures metabolically active, incubations for short-term (minutes) with 10 µM total cadmium increased the methanogenesis rate by 6 and 9 folds in methanol- and acetate-grown cells, respectively. Cobalt and zinc but not copper or iron also activated the methane production rate. Methanogenic carbonic anhydrase and acetate kinase were directly activated by cadmium. Indeed, cells cultured in 100 µM total cadmium removed 41–69% of the heavy metal from the culture and accumulated 231–539 nmol Cd/mg cell protein. This is the first report showing that (i) Cd2+ has an activating effect on methanogenesis, a biotechnological relevant process in the bio-fuels field; and (ii) a methanogenic archaea is able to remove a heavy metal from aquatic environments. PMID:23152802

Lira-Silva, Elizabeth; Santiago-Martínez, M. Geovanni; Hernández-Juárez, Viridiana; García-Contreras, Rodolfo; Moreno-Sánchez, Rafael; Jasso-Chávez, Ricardo

2012-01-01

296

Accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator, Arthrocnemum macrostachyum.  

PubMed

The potential of the extreme halophyte Arthrocnemum macrostachyum was examined to determine its tolerance and ability to accumulate cadmium for phytoremediation purposes. A glasshouse experiment was designed to investigate the effect of cadmium from 0 to 1.35 mmol l(-1) on the growth and the photosynthetic apparatus of A. macrostachyum by measuring chlorophyll fluorescence parameters, gas exchange and photosynthetic pigment concentrations. We also determined ash, cadmium, calcium, copper, iron, manganese, magnesium, phosphorous, sodium, and zinc concentrations, and C/N ratio. A. macrostachyum demonstrated hypertolerance to cadmium stress; it did not show phytotoxicity at shoot concentration as high as 70 mg kg(-1). The bioaccumulator factors exceeded the critical value (1.0) for all Cd treatments, and the transport factors indicated that this species has higher ability to transfer Cd from roots to shoots at lower Cd concentrations. At 1.35 mmol l(-1) Cd A. macrostachyum showed 25% biomass reduction after a month of treatment. Long-term effects of cadmium on the growth were mainly determined by variations in net photosynthetic rate (P(N)). Reductions in P(N) could be accounted by higher dark respiration and lower pigment concentrations. Finally, A. macrostachyum has the basic characteristics of a Cd-hyperaccumulator and may be useful for restoring Cd-contaminated sites. PMID:20832167

Redondo-Gómez, Susana; Mateos-Naranjo, Enrique; Andrades-Moreno, Luis

2010-12-15

297

Investigation of the effects of cadmium by micro analytical methods on Lycopersicon esculentum Mill. roots.  

PubMed

The interactions between cadmium stress and plant nutritional elements have been investigated on complete plant or at the level of organs. This study was undertaken to contribute to the exploration of the physiological basis of cadmium phytotoxicity. We examined the changes in the nutritional element compositions of the root epidermal cells of the seedlings of Lycopersicon esculentum Mill. at the initial growth stages that is known as the most sensitive stage to the stress. Effects of cadmium stress on the seedlings of Lycopersicon esculentum Mill. were examined by EDX (Energy Dispersive X-Ray Microanalysis) assay performed with using low vacuum (? 24 Pascal) Scanning Electron Microscopy. In the analysis performed at the level of root epidermal cells, some of the macro- and micronutrient contents of the cells (carbon, oxygen, nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, iron, copper, and zinc levels) were found to change when the applying toxic concentrations of cadmium. There was no change in the manganese and sodium content of the epidermal cells. It was concluded that the changes in nutritional element composition of the cells can be considered as an effective parameter in explaining the physiological mechanisms of cadmium-induced growth inhibition. PMID:25194735

Colak, G; Baykul, M C; Gürler, R; Catak, E; Caner, N

2014-09-01

298

Effect of Copper and Nickel on the Transformation Kinetics of Austempered Ductile Iron  

NASA Astrophysics Data System (ADS)

The kinetics of reaction occurring during the austempering treatment of ductile iron (DI) containing different additions of Cu and Ni was investigated in this work. DI bars were heat treated in an instrumented dilatometer in order to follow the exhibited transformation kinetics. The dilatometric results indicated that the addition of Cu alone did not have a significant effect on the incubation times for the austempering transformation. Also, the addition of both, Cu and Ni resulted in a significant effect on reducing the transformation rates. It was found that the austempering process is characterized by two clearly distinguished transformation stages. In the initial stage, the addition of Cu, and to a greater extent, additions of both Cu and Ni led to reductions in the transformation rates shifting the maximum transformation rate values toward longer times. The outcome of this work indicates that during the first stage of austempering, nucleation of the ferrite plates occurs via a diffusionless mechanism while their growth is diffusion controlled. Moreover, after the maximum in the transformation rate has been reached, the growth of ferrite plates becomes dominant with the rate-limiting step becoming the diffusion of C into the surrounding austenite. A qualitative model for the austempering transformation is proposed in this work to account for the experimental observations.

Górny, Marcin; Tyra?a, Edward; Lopez, Hugo

2014-10-01

299

Combined effects of ethanol and protein deficiency on hepatic iron, zinc, manganese, and copper contents.  

PubMed

The present study has been performed in order to establish the relative and combined roles of ethanol and malnutrition on liver Fe, Zn, Cu, and Mn alterations in alcoholic male adult Wistar rats, and also the relationships between these alterations and histomorphometrically determined hepatocyte and nuclear areas, perivenular fibrotic rim area, and total amount of fat present in the liver. Four groups of 8 animals each were fed: (1) a nutritionally adequate diet (C); (2) a 36% ethanol-containing (as percent of energy), isocaloric diet (A); (3) a 2% protein-containing, isocaloric diet (PD); and (4) a 36% ethanol, 2% protein-containing, isocaloric diet (A-PD), respectively, following the Lieber-DeCarli model. Ethanol-fed, protein-deficient animals showed the highest liver Fe, and the lowest Zn and Cu values, although differences in liver Zn, Mn, and Cu values were not significantly different between PD and A-PD groups. Statistically significant differences of these parameters were observed between the A and the A-PD groups, and between the A and PD groups, except for liver iron. Except for liver Mn, differences between C and A groups were statistically significant. These alterations correlated with liver fibrosis and steatosis, serum albumin, and weight loss, except for liver Mn, which was not correlated with fibrosis or steatosis. Thus, protein deficiency seems to enhance ethanol-induced liver Fe, Zn, and Cu alterations, whereas protein deficiency, but not ethanol, seems to play a major role on liver Mn alterations. PMID:1418656

Conde-Martel, A; González-Reimers, E; Santolaria-Fernández, F; Castro-Alemán, V; Galindo-Martín, L; Rodríguez-Moreno, F; Martínez-Riera, A

1992-01-01

300

Acute and subacute response of iron, zinc, copper and selenium in pigs experimentally infected with Actinobacillus pleuropneumoniae.  

PubMed

This study was performed to characterise the response of iron (Fe), zinc (Zn), copper (Cu) and selenium (Se) in bacterial-induced porcine acute phase reaction (APR). Twenty piglets were challenged by aerosolic infection with Actinobacillus pleuropneumoniae (A.pp.) serotype 2, ten piglets serving as controls. Blood sampling was done initially and at day 4 and 21 after infection, collection of liver tissue was done at day 21 (autopsy). A.pp.-infection caused fever and respiratory symptoms. APR at day 4 after infection was marked by an increase in total white blood cells, granulocytes and monocytes in whole blood samples and an increase in globulin/albumin ratio (G/A), ?2-globulins, C-reactive protein, haptoglobin, ceruloplasmin (Cp), Cu and Se in serum. Concurrently, there was a decrease in haemoglobin (Hb) and packed cell volume (PCV) in whole blood as well as a decrease in albumin, transferrin, total iron binding capacity and Fe in serum and Zn in plasma. The subacute stage at day 21 was characterised by progressively increased concentrations of G/A, ?-globulins and ?-globulins reflecting the specific immune reaction. Hb and PCV showed further decreases, all other parameters returned to the initial concentrations. Glutathione peroxidase activity in plasma and liver tissue remained unaffected by A.pp.-infection. The liver concentration (day 21) of Zn was found to be higher, that of Se was lower in the A.pp.-group, whereas hepatic concentrations of Cu and Fe were not affected by A.pp.-infection. In summary, the acute and subacute stages of A.pp.-infection were accurately characterised by the APR-related parameters. Se was only marginally affected by the A.pp.-infection. The elevated plasma Cu concentration may be a side effect of the transient hepatic induction of Cp synthesis. Zn responded, being distinctly reduced in plasma and probably having been sequestered in the liver tissue. Reduction in serum Fe can be regarded as an unspecific defence mechanism in A.pp.-infection to withdraw Fe from bacterial acquisition systems. PMID:25100437

Humann-Ziehank, Esther; Menzel, Anne; Roehrig, Petra; Schwert, Barbara; Ganter, Martin; Hennig-Pauka, Isabel

2014-10-01

301

Dynamic Aeolian Deposition of Glacial Iron to the Open Ocean: 2 Years of Time-Series Observations from Middleton Island and the Copper River Delta  

NASA Astrophysics Data System (ADS)

ron (Fe) is thought to be a limiting nutrient for phytoplankton in much of the north Pacific and the Gulf of Alaska (GoA) in particular. In the subarctic GoA, we have a limited knowledge of the role of glaciers in driving the supply of iron to marine ecosystem, and in particular, the role that dust derived from glacial flour plays in delivering bioavailable iron to the offshore ecosystems. In order to better understand glacial dust deposition in the GoA and its potential role in marine productivity, we combine time-series satellite, meteorological, and aerosol geochemical data from over 2 years of monitoring at Middleton Island and the Copper River Valley. Middleton Island is located on the edge of the continental shelf and is ideally positioned to monitor the flux of aerosol iron into adjacent Fe-limited waters, while the Copper River Delta and Valley are thought to be the source of much of the glacial dust that reaches Middleton. In fact, widespread dust events have been frequently observed (MODIS imagery) emanating from exposed floodplains within the heavily glacierized Copper River Valley. These events are most common in the fall, when high pressure in the AK interior and low pressure in the central GoA establish a pressure gradient that drives anomalously strong northerly winds capable of entraining the abundant glacial flour that is exposed under low water conditions in the Copper River floodplain. Here we present Fe geochemical data from continuous automated aerosol sampling on Middleton Island from 2011-2013. These time-series geochemical data, when coupled with MODIS and meteorological observations, present a remarkable opportunity to examine the drivers of these dust events and how inter-annual meteorological variability between dust seasons influences the annual flux of soluble Fe associated with these phenomena. The dust season of 2011-12, characterized by early and heavy snows and onshore winds, generated very little dust with minimal and infrequent iron deposition observed on Middleton Island and estimated via MODIS. This was in stark contrast to the dust season of 2012-2013, when sustained high offshore winds and dry conditions during the fall generated close to continuous strong dust activity for over a month and delivered a high flux of soluble glacial Fe offshore. As a whole, these time-series data reveal the dramatic inter-annual variability of the influence of glaciers on eolian iron deposition in offshore GoA waters, and clearly demonstrate that the potential role of glacial dust in marine nutrient cycles is highly dynamic and sensitive to regional and local climatological and hydrologic conditions.

Schroth, A. W.; Crusius, J.; Campbell, R. W.; Gasso, S.; Moy, C. M.

2013-12-01

302

Solid state 31phosphorus nuclear magnetic resonance of iron-, manganese-, and copper-containing synthetic hydroxyapatites  

NASA Technical Reports Server (NTRS)

The incorporation of micronutrients into synthetic hydroxyapatite (SHA) is proposed for slow release of these nutrients to crops in the National Aeronautics and Space Administration's (NASA's) Advanced Life Support (ALS) program for Lunar or Martian outposts. Solid state 31P nuclear magnetic resonance (NMR) was utilized to examine the paramagnetic effects of Fe3+, Mn2+, and Cu2+ to determine if they were incorporated into the SHA structure. Separate Fe3+, Mn2+, and Cu2+ containing SHA materials along with a transition metal free SHA (pure-SHA) were synthesized using a precipitation method. The proximity (<1 nm) of the transition metals to the 31P nuclei of SHA were apparent when comparing the integrated 31P signal intensities of the pure-SHA (87 arbitrary units g-1) with the Fe-, Mn-, and Cu-SHA materials (37-71 arbitrary units g-1). The lower integrated 31P signal intensities of the Fe-, Mn-, and Cu-SHA materials relative to the pure-SHA suggested that Fe3+, Mn2+, and Cu2+ were incorporated in the SHA structure. Further support for Fe3+, Mn2+, and Cu2+ incorporation was demonstrated by the reduced spin-lattice relaxation constants of the Fe-, Mn-, and Cu-SHA materials (T'=0.075-0.434s) relative to pure-SHA (T1=58.4s). Inversion recovery spectra indicated that Fe3+, Mn2+, and Cu2+ were not homogeneously distributed about the 31P nuclei in the SHA structure. Extraction with diethylene-triamine-penta-acetic acid (DTPA) suggested that between 50 and 80% of the total starting metal concentrations were incorporated in the SHA structure. Iron-, Mn-, and Cu-containing SHA are potential slow release sources of Fe, Mn, and Cu in the ALS cropping system.

Sutter, B.; Taylor, R. E.; Hossner, L. R.; Ming, D. W.

2002-01-01

303

Copper and Iron Homeostasis in Plants: The Challenges of Oxidative Stress  

PubMed Central

Abstract Significance: Photosynthesis, the process that drives life on earth, relies on transition metal (e.g., Fe and Cu) containing proteins that participate in electron transfer in the chloroplast. However, the light reactions also generate high levels of reactive oxygen species (ROS), which makes metal use in plants a challenge. Recent Advances: Sophisticated regulatory networks govern Fe and Cu homeostasis in response to metal ion availability according to cellular needs and priorities. Molecular remodeling in response to Fe or Cu limitation leads to its economy to benefit photosynthesis. Fe toxicity is prevented by ferritin, a chloroplastic Fe-storage protein in plants. Recent studies on ferritin function and regulation revealed the interplay between iron homeostasis and the redox balance in the chloroplast. Critical Issues: Although the connections between metal excess and ROS in the chloroplast are established at the molecular level, the mechanistic details and physiological significance remain to be defined. The causality/effect relationship between transition metals, redox signals, and responses is difficult to establish. Future Directions: Integrated approaches have led to a comprehensive understanding of Cu homeostasis in plants. However, the biological functions of several major families of Cu proteins remain unclear. The cellular priorities for Fe use under deficiency remain largely to be determined. A number of transcription factors that function to regulate Cu and Fe homeostasis under deficiency have been characterized, but we have not identified regulators that mediate responses to excess. Importantly, details of metal sensing mechanisms and cross talk to ROS-sensing mechanisms are so far poorly documented in plants. Antioxid. Redox Signal. 19, 919–932. PMID:23199018

Pilon, Marinus

2013-01-01

304

Fractionation of fulvic acid by iron and aluminum oxides--influence on copper toxicity to Ceriodaphnia dubia.  

PubMed

This study examines the effect on aquatic copper toxicity of the chemical fractionation of fulvic acid (FA) that results from its association with iron and aluminum oxyhydroxide precipitates. Fractionated and unfractionated FAs obtained from streamwater and suspended sediment were utilized in acute Cu toxicity tests on Ceriodaphnia dubia. Toxicity test results with equal FA concentrations (6 mg FA/L) show that the fractionated dissolved FA was 3 times less effective at reducing Cu toxicity (EC50 13 ± 0.6 ?g Cu/L) than were the unfractionated dissolved FAs (EC50 39 ± 0.4 and 41 ± 1.2 ?g Cu/L). The fractionation is a consequence of preferential sorption of molecules having strong metal-binding (more aromatic) moieties to precipitating Fe- and Al-rich oxyhydroxides, causing the remaining dissolved FA to be depleted in these functional groups. As a result, there is more bioavailable dissolved Cu in the water and hence greater potential for Cu toxicity to aquatic organisms. In predicting Cu toxicity, biotic ligand models (BLMs) take into account dissolved organic carbon (DOC) concentration; however, unless DOC characteristics are accounted for, model predictions can underestimate acute Cu toxicity for water containing fractionated dissolved FA. This may have implications for water-quality criteria in systems containing Fe- and Al-rich sediment, and in mined and mineralized areas in particular. Optical measurements, such as specific ultraviolet absorbance at 254 nm (SUVA254), show promise for use as spectral indicators of DOC chemical fractionation and inferred increased Cu toxicity. PMID:25289694

Smith, Kathleen S; Ranville, James F; Lesher, Emily K; Diedrich, Daniel J; McKnight, Diane M; Sofield, Ruth M

2014-10-21

305

Mechanism of copper transport at the blood-cerebrospinal fluid barrier: influence of iron deficiency in an in vitro model.  

PubMed

Copper (Cu) is an essential trace element that requires tight homeostatic regulation to ensure appropriate supply while not causing cytotoxicity due to its strong redox potential. Our previous in vivo study has shown that iron deficiency (FeD) increases Cu levels in brain tissues, particularly in the choroid plexus, where the blood-cerebrospinal fluid (CSF) barrier resides. This study was designed to elucidate the mechanism by which FeD results in excess Cu accumulation at the blood-CSF barrier. The effect of FeD on cellular Cu retention and transporters Cu transporter-1 (Ctr1), divalent metal transporter 1 (DMT1), antioxidant protein-1 (ATOX1) and ATP7A was examined in choroidal epithelial Z310 cells. The results revealed that deferoximine treatment (FeD) resulted in 70% increase in cellular Cu retention (P < 0.05). A significant increase in the mRNA levels of DMT1, but not Ctr1, was also observed after FeD treatment, suggesting a critical role of DMT1 in cellular Cu regulation during FeD. Knocking down Ctr1 or DMT1 resulted in significantly lower Cu uptake by Z310 cells, whereas the knocking down of ATOX1 or ATP7A led to substantial increases of cellular retention of Cu. Taken together, these results suggest that Ctr1, DMT1, ATOX1 and ATP7A contribute to Cu transport at the blood-CSF barrier, and that the accumulation of intracellular Cu found in the Z310 cells during FeD appears to be mediated, at least in part, via the upregulation of DMT1 after FeD treatment. PMID:22442359

Monnot, Andrew D; Zheng, Gang; Zheng, Wei

2012-03-01

306

Zinc, Iron, Manganese and Copper Uptake Requirement in Response to Nitrogen Supply and the Increased Grain Yield of Summer Maize  

PubMed Central

The relationships between grain yields and whole-plant accumulation of micronutrients such as zinc (Zn), iron (Fe), manganese (Mn) and copper (Cu) in maize (Zea mays L.) were investigated by studying their reciprocal internal efficiencies (RIEs, g of micronutrient requirement in plant dry matter per Mg of grain). Field experiments were conducted from 2008 to 2011 in North China to evaluate RIEs and shoot micronutrient accumulation dynamics during different growth stages under different yield and nitrogen (N) levels. Fe, Mn and Cu RIEs (average 64.4, 18.1and 5.3 g, respectively) were less affected by the yield and N levels. ZnRIE increased by 15% with an increased N supply but decreased from 36.3 to 18.0 g with increasing yield. The effect of cultivars on ZnRIE was similar to that of yield ranges. The substantial decrease in ZnRIE may be attributed to an increased Zn harvest index (from 41% to 60%) and decreased Zn concentrations in straw (a 56% decrease) and grain (decreased from 16.9 to 12.2 mg kg?1) rather than greater shoot Zn accumulation. Shoot Fe, Mn and Cu accumulation at maturity tended to increase but the proportions of pre-silking shoot Fe, Cu and Zn accumulation consistently decreased (from 95% to 59%, 90% to 71% and 91% to 66%, respectively). The decrease indicated the high reproductive-stage demands for Fe, Zn and Cu with the increasing yields. Optimized N supply achieved the highest yield and tended to increase grain concentrations of micronutrients compared to no or lower N supply. Excessive N supply did not result in any increases in yield or micronutrient nutrition for shoot or grain. These results indicate that optimized N management may be an economical method of improving micronutrient concentrations in maize grain with higher grain yield. PMID:24705926

Xue, Yanfang; Yue, Shanchao; Zhang, Wei; Liu, Dunyi; Cui, Zhenling; Chen, Xinping; Ye, Youliang; Zou, Chunqin

2014-01-01

307

Copper and Copper Proteins in Parkinson's Disease  

PubMed Central

Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology. PMID:24672633

Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo

2014-01-01

308

Copper and copper proteins in Parkinson's disease.  

PubMed

Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology. PMID:24672633

Montes, Sergio; Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo

2014-01-01

309

Effects of silicon, copper and iron on static and dynamic properties of alloy 206 (aluminum-copper) in semi-solids produced by the SEED process  

NASA Astrophysics Data System (ADS)

The advantages of producing metal parts by rheocasting are generally recognised for common foundry alloys of Al-Si. However, other more performing alloys in terms of mechanical properties could have a great interest in specialized applications in the automotive industry, while remaining competitive in the forming. Indeed, the growing demand for more competitive products requires the development of new alloys better suited to semi-solid processes. Among others, Al-Cu alloys of the 2XX series are known for their superior mechanical strength. However, in the past, 2XX alloys were never candidates for pressure die casting. The main reason is their propensity to hot tearing. Semi-solid processes provide better conditions for molding with the rheological behavior of dough and molding temperatures lower reducing this type of defect. In the initial phase, this research has studied factors that reduce hot tearing susceptibility of castings produced by semi-solid SEED of alloy 206. Subsequently, a comparative study on the tensile properties and fatigue was performed on four variants of the alloy 206. The results of tensile strength and fatigue were compared with the specifications for applications in the automotive industry and also to other competing processes and alloys. During this study, several metallurgical aspects were analyzed. The following main points have been validated: i) the main effects of compositional variations of silicon, iron and copper alloy Al-Cu (206) on the mechanical properties, and ii) certain relationships between the mechanism of hot cracking and the solidification rate in semi-solid. Parts produced from the semi-solid paste coming from the SEED process combined with modified 206 alloys have been successfully molded and achieved superior mechanical properties than the requirements of the automotive industry. The fatigue properties of the two best modified 206 alloys were higher than those of A357 alloy castings and are close to those of the wrought alloy AA6061. At present, there is simply no known application for pressure die-cast alloy with 206 (Liquid Die-casting). This is mainly due to the high propensity to hot cracking and limitations facing the part geometry and the subsequent assembly. This study demonstrated that in addition to pieces produced by semi-solid die-casting using large variations in chemical composition, the SEED process allows obtaining spare sound (sound part) and more complex geometry. Moreover, as the semi-solid parts have less porosity, they can also be machined and welded for some applications. The conclusions of this study demonstrate significant progress in identifying the main issues related to the feasibility of die-casting good parts with high performance using the modified 206 alloy combined with SEED process. This work is therefore a baseline work in the development of new Al-Cu alloys for industries of semi-solid and, at the same time, for the expansion of aluminum for high performance applications in the industry. N.B. This thesis is part of a research project developed by the NSERC / Rio Tinto Akan Industrial Research Chair in Metallurgy of Innovative Aluminum Transformation (CIMTAL).

Lemieux, Alain

310

Acute toxicity of copper, lead, cadmium, and zinc to early life stages of white sturgeon (Acipenser transmontanus) in laboratory and Columbia River water.  

PubMed

Populations of white sturgeon (Acipenser transmontanus) are in decline in North America. This is attributed, primarily, to poor recruitment, and white sturgeon are listed as threatened or endangered in several parts of British Columbia, Canada, and the United States. In the Columbia River, effects of metals have been hypothesized as possible contributing factors. Previous work has demonstrated that early life stage white sturgeon are particularly sensitive to certain metals, and concerns over the level of protectiveness of water quality standards are justified. Here we report results from acute (96-h) toxicity tests for copper (Cu), cadmium (Cd), zinc (Zn), and lead (Pb) from parallel studies that were conducted in laboratory water and in the field with Columbia River water. Water effect ratios (WERs) and sensitivity parameters (i.e., median lethal accumulations, or LA50s) were calculated to assess relative bioavailability of these metals in Columbia River water compared to laboratory water, and to elucidate possible differences in sensitivity of early life stage white sturgeon to the same concentrations of metals when tested in the different water sources. For Cu and Pb, white sturgeon toxicity tests were initiated at two life stages, 8 and 40 days post-hatch (dph), and median lethal concentrations (LC50s) ranged between 9-25 ?g Cu/L and 177-1,556 ?g Pb/L. LC50s for 8 dph white sturgeon exposed to Cd in laboratory water and river water were 14.5 and 72 ?g/L, respectively. Exposure of 8 dph white sturgeon to Zn in laboratory and river water resulted in LC50s of 150 and 625 ?g/L, respectively. Threshold concentrations were consistently less in laboratory water compared with river water, and as a result, WERs were greater than 1 in all cases. In addition, LA50s were consistently greater in river water exposures compared with laboratory exposures in all paired tests. These results, in combination with results from the biotic ligand model, suggest that the observed differences in toxicity between river water exposures and laboratory water exposures were not entirely due to differences in water quality and metal bioavailability but rather in combination with differences in fish sensitivity. It is hypothesized that differences in concentrations of calcium in the different water sources might have resulted in differences in acquired sensitivity of sturgeon to metals. Canadian water quality guidelines, US national criteria for the protection of aquatic life, and water quality criteria for the state of Washington were less than LC50 values for all metals and life stages tested in laboratory and Columbia River water. With the exception, however, that 40 dph white sturgeon exposed to Cu in laboratory water resulted in threshold values that bordered US national criteria and criteria for the state of Washington. PMID:24920427

Vardy, David W; Santore, Robert; Ryan, Adam; Giesy, John P; Hecker, Markus

2014-07-01

311

Theoretical (in B3LYP/6-3111++G** level), spectroscopic (FT-IR, FT-Raman) and thermogravimetric studies of gentisic acid and sodium, copper(II) and cadmium(II) gentisates  

NASA Astrophysics Data System (ADS)

The DFT calculations (B3LYP method with 6-311++G(d,p) mixed with LanL2DZ for transition metals basis sets) for different conformers of 2,5-dihydroxybenzoic acid (gentisic acid), sodium 2,5-dihydroxybenzoate (gentisate) and copper(II) and cadmium(II) gentisates were done. The proposed hydrated structures of transition metal complexes were based on the results of experimental findings. The theoretical geometrical parameters and atomic charge distribution were discussed. Moreover Na, Cu(II) and Cd(II) gentisates were synthesized and the composition of obtained compounds was revealed by means of elemental and thermogravimetric analyses. The FT-IR and FT-Raman spectra of gentisic acid and gentisates were registered and the effect of metals on the electronic charge distribution of ligand was discussed.

Regulska, E.; Kalinowska, M.; Wojtulewski, S.; Korczak, A.; Sienkiewicz-Gromiuk, J.; Rz?czy?ska, Z.; ?wis?ocka, R.; Lewandowski, W.

2014-11-01

312

The correlation between high background radiation and blood level of the trace elements (copper, zinc, iron and magnesium) in workers of Mahallat's hot springs  

PubMed Central

Background: Blood trace elements of people who are living or working in areas with high radioactivity have an important role in vital processes. The scope of this work is to measure the concentrations of blood trace elements of permanent workers in Mahallat's hot springs. Materials and Methods: In this study, 30 persons of hot springs permanent workers in Mahallat (mean background dose: 21.6 mSv) were selected as a sample group and 30 persons with similar social class who received a normal background dose and were not engaged in any type of radiation work were selected as a control group. Five milliliters of blood sample was taken from each person and after preparation of the samples, the concentration of copper, iron, zinc and magnesium was measured with atomic absorption spectrometry. Results: The average concentration of copper, iron, zinc and magnesium in the irradiated group was 0.67±0.11, 1.54±0.41, 1.76±0.34 and 19.78±1.42, respectively and in the control group, was 0.78±0.06, 1.06±0.15, 0.85±0.05 and 20.34±0.57, respectively. Values of copper and magnesium in workers were found to be less than that of the control group. The mean concentration of iron and zinc in permanent workers was significantly more than that of the control group (P<0.05). Overall, no meaningful statistical correlation was found between the concentration of magnesium among the permanent presence in the area (P>0.05). Conclusions: The results showed that increases in the average concentrations of Zn and Fe and decreases in the concentration of Cu of workers was observed. The finding also showed that the probability of chronic exposure effects on body trace element concentrations was increases and each value of the doses could be dangerous. PMID:23326795

Shahbazi-Gahrouei, Daryoush; Abdolahi, Mohammad

2012-01-01

313

Study on solid phase extraction and graphite furnace atomic absorption spectrometry for the determination of nickel, silver, cobalt, copper, cadmium and lead with MCI GEL CHP 20Y as sorbent.  

PubMed

A solid phase extraction and graphite furnace atomic absorption spectrometry (GFAAS) for the determination of nickel, silver, cobalt, copper, cadmium and lead with MCI GEL CHP 20Y as sorbent was studied. Trace amounts of chromium, nickel, silver, cobalt, copper, cadmium and lead were reacted with 2-(2-quinolinil-azo)-4-methyl-1,3-dihydroxidobenzene (QAMDHB) followed by adsorption onto MCI GEL CHP 20Y solid phase extraction column, and 1.0molL(-1) HNO(3) was used as eluent. The metal ions in 300mL solution can be concentrated to 1.0mL, representing an enrichment factor of 300 was achieved. The recoveries of analytes at pH 8.0 with 1.0g of resin were greater than 95% without interference from alkaline, earth alkaline and some metal ions. When detected with graphite furnace atomic absorption spectrometry, the detection limits in the original samples were 1.4ngL(-1) for Cr(III), 1.0ngL(-1) for Ni(II), 0.85ngL(-1) for Ag(I), 1.2ngL(-1) for Co(II), 1.0ngL(-1) for Cu(II), 1.2ngL(-1) for Cd(II) and 1.3ngL(-1) for Pb(II). The validation of the procedure was performed by the analysis of the certified standard reference materials, and the presented procedure was applied to the determination of analytes in biological, water and soil samples with good results (recoveries range from 89 to 104%, and R.S.D.% lower than 3.2%. The results agreed with the standard value or reference method). PMID:18562094

Yang, Guangyu; Fen, Weibo; Lei, Chun; Xiao, Weilie; Sun, Handong

2009-02-15

314

Iron(III)- and copper(II) complexes of an asymmetric, pentadentate salen-like ligand bearing a pendant carboxylate group  

Microsoft Academic Search

The equilibrium and solution structural properties of the iron(III) and copper(II) complexes of an asymmetric salen-like ligand (N,N?-bis(2-hydroxybenzyl)-2,3-diamino-propionic acid, H3bhbdpa) bearing a pendant carboxylate group were characterized in aqueous solution by potentiometric, pH-dependent electron paramagnetic resonance (EPR) and UV–Vis (UV–Visible) measurements. In the equimolar systems the pentadentate ligand forms very stable, differently protonated mononuclear complexes with both metal ions. In

Attila Jancsó; Zoltán Paksi; Satu Mikkola; Antal Rockenbauer; Tamás Gajda

2005-01-01

315

Chelatometric determination of calcium and magnesium in iron ores, slags, anorthosite, limestone, copper-nickel-lead-zinc ores and divers materials.  

PubMed

Chelatometric methods for the determination of calcium and magnesium in iron ores, slags, anorthosite, copper-nickel-lead-zinc ores and various other materials are described. Potential interfering elements are masked with triethanolamine and potassium cyanide. In one aliquot calcium is titrated at pH > 12, with calcein and thymolphthalein mixed indicator and in another aliquot calcium and magnesium are titrated in ammonia buffer, with o-cresolphthalein complexone screened with Naphthol Green B as indicator. The results compare favourably with certified values for reference materials of diverse nature. PMID:18962661

Hitchen, A; Zechanowitsch, G

1980-03-01

316

Long-distance transport, vacuolar sequestration and transcriptional responses induced by cadmium and arsenic  

PubMed Central

Summary Iron, zinc, copper and manganese are essential metals for cellular enzyme functions while cadmium, mercury and the metalloid arsenic lack any biological function. Both, essential and non-essential metals and metalloids are extremely reactive and toxic. Therefore, plants have acquired specialized mechanisms to sense, transport and maintain essential metals within physiological concentrations and to detoxify non-essential metals and metalloids. This review focuses on the recent identification of transporters that sequester cadmium and arsenic in vacuoles and the mechanisms mediating the partitioning of these metal(loid)s between roots and shoots. We further discuss recent models of phloem-mediated long-distance transport, seed accumulation of Cd and As and recent data demonstrating that plants posses a defined transcriptional response that allow plants to preserve metal homeostasis. This research is instrumental for future engineering of reduced toxic metal(loid) accumulation in edible crop tissues as well as for improved phytoremediation technologies. PMID:21820943

Mendoza-Cózatl, David G.; Jobe, Timothy O.; Hauser, Felix; Schroeder, Julian I.

2011-01-01

317

Identical flow injection spectrophotometric manifold for determination of protein, phosphorus, calcium, chloride, copper, manganese, iron, and zinc in feeds or premixes.  

PubMed

A simple procedure using an identical manifold was developed for determination of nitrogen (protein) phosphorus, calcium, chloride, copper, manganese, iron, and zinc in feeds and feedstuffs. By changing appropriate reagents and detection wavelength, these 8 elements were determined successively with a simple identical double-line flow injection (FI) manifold. Fl spectrophotometric determinations were made by the blue indophenol reaction for ammonium, the molybdenum blue method for phosphate, the cresolphthalein complexone procedure for calcium, and the mercuric thiocyanate procedure for chloride. The chromogenic reagents for copper, iron, manganese, and zinc determination were bis(cyclohexanone)oxalydihydrazone (Cuprizone), 1,10-phenanthroline, formaldoxime, and xylenol orange, respectively. Sample digestion catalyst, Fl manifold, and some chemical parameters were optimized. The proposed procedure had a sampling rate of 90/h for each analyte. The determination ranges (mg/L) were 10-60 for N, 1-15 for P and Ca, 540 for Cl, and 0.5-15 for Cu, Fe, Mn, and Zn, respectively. Results of the analyses of animal feed and feedstuff samples by this procedure did not differ significantly from those obtained by proven manual methods. PMID:11501921

Liu, J F; Feng, Y D; Jiang, G B

2001-01-01

318

Relative and combined effects of ethanol and protein deficiency on zinc, iron, copper, and manganese contents in different organs and urinary and fecal excretion.  

PubMed

The relative contribution of protein deficiency to the altered metabolism of certain trace elements in chronic alcoholics is not well defined, so this study was performed to analyse the relative and combined effects of ethanol and protein deficiency on liver, bone, muscle, and blood cell content of copper, zinc, iron, and manganese, and also on serum levels and urinary and fecal excretion of these elements in four groups of eight animals each that were pair-fed during 8 weeks with a nutritionally adequate diet, a 36% (as energy) ethanol-containing isocaloric diet, a 2% protein isocaloric diet, and a 36% ethanol 2% protein isocaloric diet, respectively, following the Lieber-DeCarli model. Five additional rats were fed ad lib the control diet. Protein malnutrition, but not ethanol, leads to liver zinc depletion. Both ethanol and protein malnutrition cause muscle zinc depletion and increase urinary zinc and manganese excretion, whereas ethanol also increases urinary iron excretion and liver manganese content. No differences were observed regarding copper metabolism. PMID:9650630

Gonzalez-Reimers, E; Martinez-Riera, A; Santolaria-Fernandez, F; Mas-Pascual, A; Rodriguez-Moreno, F; Galindo-Martin, L; Molina-Perez, M; Barros-Lopez, N

1998-07-01

319

Effects of microbial iron reduction and oxidation on the immobilization and mobilization of copper in synthesized Fe(III) minerals and Fe-rich soils.  

PubMed

The effects of microbial iron reduction and oxidation on the immobilization and mobilization of copper were investigated in a high concentration of sulfate with synthesized Fe(III) minerals and red earth soils rich in amorphous Fe (hydr)oxides. Batch microcosm experiments showed that red earth soil inoculated with subsurface sediments had a faster Fe(III) bioreduction rate than pure amorphous Fe(III) minerals and resulted in quicker immobilization of Cu in the aqueous fraction. Coinciding with the decrease of aqueous Cu, SO4(2-) in the inoculated red earth soil decreased acutely after incubation. The shift in the microbial community composite in the inoculated soil was analyzed through denaturing gradient gel electrophoresis. Results revealed the potential cooperative effect of microbial Fe(III) reduction and sulfate reduction on copper immobilization. After exposure to air for 144 h, more than 50% of the immobilized Cu was remobilized from the anaerobic matrices; aqueous sulfate increased significantly. Sequential extraction analysis demonstrated that the organic matter/sulfide-bound Cu increased by 52% after anaerobic incubation relative to the abiotic treatment but decreased by 32% after oxidation, indicating the generation and oxidation of Cu-sulfide coprecipitates in the inoculated red earth soil. These findings suggest that the immobilization of copper could be enhanced by mediating microbial Fe(III) reduction with sulfate reduction under anaerobic conditions. The findings have an important implication for bioremediation in Cucontaminated and Fe-rich soils, especially in acid-mine-drainage-affected sites. PMID:24448165

Hu, Chaohua; Zhang, Youchi; Zhang, Lei; Luo, Wensui

2014-04-01

320

Microstructural Evolution and Mechanical Properties of Fusion Welds and Simulated Heat-Affected Zones in an Iron-Copper Based Multi-Component Steel  

NASA Astrophysics Data System (ADS)

NUCu-140 is a copper-precipitation strengthened steel that exhibits excellent mechanical properties with a relatively simple chemical composition and processing schedule. As a result, NUCu-140 is a candidate material for use in many naval and structural applications. Before NUCu-140 can be implemented as a replacement for currently utilized materials, a comprehensive welding strategy must be developed under a wide range of welding conditions. This research represents an initial step toward understanding the microstructural and mechanical property evolution that occurs during fusion welding of NUCu-140. The following dissertation is presented as a series of four chapters. Chapter one is a review of the relevant literature on the iron-copper system including the precipitation of copper in steel, the development of the NUCu family of alloys, and the formation of acicular ferrite in steel weldments. Chapter two is a detailed study of the precipitate, microstructural, and mechanical property evolution of NUCu-140 fusion welds. Microhardness testing, tensile testing, local-electrode atom probe (LEAP) tomography, MatCalc kinetic simulations, and Russell-Brown strengthening results for gas-tungsten and gas-metal arc welds are presented. Chapter three is a thorough study of the microstructural and mechanical property evolution that occurs in the four critical regions of the HAZ. Simulated HAZ specimens were produced and evaluated using microhardness, tensile testing, and charpy impact testing. MatCalc simulations and R-B strengthening calculations were also performed in an effort to model the experimentally observed mechanical property trends. Chapter 4 is a brief investigation into the capabilities of MatCalc and the R-B model to determine if the two techniques could be used as predictive tools for a series of binary iron-copper alloys without the aid of experimentally measured precipitate data. The mechanical property results show that local softening occurs in the heat-affected zone (HAZ) as a result of either full or partial dissolution of the copper-rich precipitates responsible for strengthening. Re-precipitation of the copper-rich precipitates was observed during the cooling portion of the weld thermal cycle but the resultant precipitate phase fractions were too low to fully recover the lost strength. The coarse-grained HAZ and fusion zone exhibited an acicular type microstructure which led to improved tensile properties when compared to the other regions of the HAZ. MatCalc simulations displayed excellent agreement with the precipitate parameters measured experimentally using the LEAP. The R-B model was shown to provide reasonable agreement under select conditions, but in general was determined to be overly sensitive to small variations in precipitate parameters. As a result in should be considered a qualitative tool only for precipitate radii less than ˜2 nm. Finally, it was determined that the current generation of MatCalc software was unable to accurately capture the precipitate evolution of various binary iron-copper alloys when experimental data sets were not available for calibration of the model parameters.

Farren, Jeffrey David

321

In vivo and in vitro effects of copper and cadmium on the plasma membrane H + ATPase from cucumber ( Cucumis sativus L.) and maize ( Zea mays L.) roots  

Microsoft Academic Search

The plasmalemma vesicles isolated from cucumber and maize roots were used to study the effect of Cu2+ and Cd2+ on the hydrolytic and proton pumping activities of ATPase. In vivo application of metal ions to the plant growth solutions resulted in stimulation of the proton transport in maize. In cucumber\\u000a roots the action of metals was not the same: cadmium

Marek Burzy?ski; Ewa Kolano

2003-01-01

322

Iron, manganese and copper emitted by cargo and passenger trains in Zürich (Switzerland): Size-segregated mass concentrations in ambient air  

NASA Astrophysics Data System (ADS)

Particle emissions caused by railway traffic have hardly been investigated in the past, due to their obviously minor influence on air quality compared to automotive traffic. In this study, emissions related to particle abrasion from wheels and tracks were investigated next to a busy railway line in Zürich (Switzerland), where trains run nearly exclusively with electrical locomotives. Hourly size-segregated aerosol samples (0.1-1, 1-2.5 and 2.5-10 ?m) were collected with a rotating drum impactor (RDI) and subsequently analyzed by synchrotron radiation X-ray fluorescence spectrometry (SR-XRF). In this way, hourly elemental mass concentrations were obtained for chromium, manganese, iron and copper, which are the elements most relevant for railway abrasion. Additionally, daily aerosol filters were collected at the same site as well as at a background site for subsequent analysis by gravimetry and wavelength dispersive XRF (WD-XRF). Railway related ambient air concentrations of iron and manganese were calculated for the coarse (2.5-10 ?m) and fine (<2.5 ?m) particle fraction by means of a Mn/Fe ratio investigation. The comparison to train type and frequency data showed that 75% and 60% of the iron and manganese mass concentrations related to cargo and passenger trains, respectively, were found in the coarse mode. The railway related iron mass concentration normalized by the train frequency ranges between 10 and 100 ng m -3 h iron in 10 m distance to the tracks, depending on train type. It is estimated that the personal exposure next to a busy railway line above ground is more than a magnitude lower than inside a subway station.

Bukowiecki, Nicolas; Gehrig, Robert; Hill, Matthias; Lienemann, Peter; Zwicky, Christoph N.; Buchmann, Brigitte; Weingartner, Ernest; Baltensperger, Urs

323

Environmental, health, and safety issues related to the production and use of cadmium telluride photovoltaic modules  

Microsoft Academic Search

This paper examines environmental, health and safety issues associated with the production and use of cadmium telluride photovoltaic modules; some of the discussions also apply to the use of cadmium sulfide in copper indium diselenide photovoltaic modules. Handling of cadmium and tellurium in photovoltaic module production can present hazards to health, safety and the environment. Prior recognition of these hazards

P. D. Moskowitz; N. Bernholc; V. M. Fthenakis; R. M. Pardi

1995-01-01

324

Degradation of some typical pharmaceuticals and personal care products with copper-plating iron doped Cu2O under visible light irradiation.  

PubMed

A mixture of five commonly used pharmaceuticals and personal care products (PPCPs) was degraded using a new combined catalyst under visible light irradiation. Scanning electron microscopy and X-ray diffraction analysis revealed that the combined catalyst was composed of copper-plating iron doped Cu2O (FeCu/Cu2O). Compared with the Fe/C inner micro-circuit, the electric currents flowing between Cu and Fe increase the speed of anodic Fe dissolution. Moreover, due to the photochemical properties, Cu2O can accelerate the PPCPs degradation processes under the irradiation of visible light. In addition, shaking increased the dissolved oxygen concentration in the solution, which not only preconditioned the photo-catalysis reaction, but also set the stage for Fe reduction. According to the experimental results, we propose the possible reaction mechanism of the reaction. PMID:22893958

An, Jing; Zhou, Qixing

2012-01-01

325

Table of interplanar spacings for crystal-structure determinations by X-ray diffraction with molybdenum, copper, cobalt, iron, and chromium radiations  

NASA Technical Reports Server (NTRS)

For a simple diffraction pattern, the time required to calculate interplanar distances from measurements of the pattern is not excessive. If more than a few lines are present, however, or if several patterns are to be studied, it is very advantageous to have available a table giving interplanar spacings directly in terms of the linear measurements made on the film of the lines appearing on the diffraction pattern. The preparation of the table given here was undertaken when the expansion of research activities involving X-ray diffraction techniques indicated that such a table would greatly decrease the time required to analyze diffraction patterns. The table was prepared for use with K alpha(sub 1) radiation from the following target materials: molybdenum, copper, cobalt, iron, and chromium.

Kittel, J Howard

1945-01-01

326

The influence of the production technology of iron-copper composite alloy on its erosion properties in a high-current high-pressure arc  

NASA Astrophysics Data System (ADS)

The electrical erosion properties of material based on a pseudo-alloy of copper and iron CuFe (85/15%) obtained by layered cladding are compared with the erosion of CuW (25/75%) and CuFe (70/30%) obtained by conventional powder alloying. Erosion of electrodes has been measured for arcs in the range of current amplitudes from 50 to 150 kA at an air pressure from 20 Pa to 2 MPa. Specific erosion has been determined as a function of current and gas pressure. The specific erosion of the new material is ˜1 mg/C at the level of materials produced by conventional powder technology.

Budin, A. V.; Pinchuk, M. E.; Kuznetsov, V. E.; Rutberg, F. G.

2014-12-01

327

Evaluating In-Situ Reactions of Chlorine and Chloramines at the Surface of Copper and Iron using Microelectrodes  

EPA Science Inventory

Corrosion of drinking water plumbing materials is a significant cause of deterioration of treated drinking water quality and a failure to supply safe water to the public. As a result of the Lead and Copper Rule, many water utilities in the US have developed and evaluated corrosio...

328

SOURCES OF COPPER AIR EMISSIONS  

EPA Science Inventory

The report gives results of a study to update estimates of atmospheric emissions of copper and copper compounds in the U.S. Source categories evaluated included: metallic minerals, primary copper smelters, iron and steel making, combustion, municipal incineration, secondary coppe...

329

Concentrations of strontium, barium, cadmium, copper, zinc, manganese, chromium, antimony, selenium and lead in the liver and kidneys of dogs, depending on age, sex and the occurrence of a chronic kidney disease.  

PubMed

Only few data are available for the storage of elements in the organs of dogs. This study aimed at determining the concentrations of strontium (Sr), barium (Ba), cadmium (Cd), copper (Cu), zinc (Zn), manganese (Mn), chromium (Cr), antimony (Sb), selenium (Se) and lead (Pb) in the canine liver, renal cortex and renal medulla, evaluating also the relevance of age, sex and the occurrence of a chronic kidney disease (CKD). Therefore, tissues of 50 dogs were analyzed using inductively coupled plasma mass spectrometry. Cu, Zn and Mn were highest in the liver, followed by the renal cortex and the renal medulla. Highest Sr, Cd and Se concentrations were measured in the renal cortex, while markedly lower concentrations were found in the renal medulla and the liver. Female dogs showed higher tissue concentrations of Sr (liver; renal medulla), Cd (liver), Zn (liver; renal cortex), Cr (liver; renal cortex; renal medulla) and Pb (liver) than male dogs. Except for Mn and Sb, age-dependent variations were observed for all element concentrations in the canine tissues. The hepatic Cd and Cr concentrations were higher in dogs with CKD. In conclusion, the present results provide new knowledge on the storage of specific elements in the canine liver and kidneys and can be considered as important reference data for diagnostics and further investigations. PMID:25234328

Paßlack, Nadine; Mainzer, Barbara; Lahrssen-Wiederholt, Monika; Schafft, Helmut; Palavinskas, Richard; Breithaupt, Angele; Zentek, JÜrgen

2014-09-17

330

Calcium, potassium, iron, copper and zinc concentrations in the white and gray matter of the cerebellum and corpus callosum in brain of four genetic mouse strains  

NASA Astrophysics Data System (ADS)

In the central nervous system, metallic cations are involved in oligodendrocyte maturation and myelinogenesis. Moreover, the metallic cations have been associated with pathogenesis, particularly multiple sclerosis and malignant gliomas. The brain is vulnerable to either a deficit or an excess of available trace elements. Relationship between trace metals and myelinogenesis is important in understanding a severe human pathology : the multiple sclerosis, which remains without efficient treatment. One approach to understand this disease has used mutant or transgenic mice presenting myelin deficiency or excess. But to date, the concentration of trace metals and mineral elements in white and gray matter areas in wild type brain is unknown. The aim of this study is to establish the reference concentrations of trace metals (iron, copper and zinc) and minerals (potassium and calcium) in the white and gray matter of the mouse cerebellum and corpus callosum. The brains of four different genetic mouse strains (C57Black6/SJL, C57Black6/D2, SJL and C3H) were analyzed. The freeze-dried samples were prepared to allow PIXE (Proton-induced X-ray emission) and RBS (Rutherford backscattering spectrometry) analyses with the nuclear microprobe in Bordeaux. The results obtained give the first reference values. Furthermore, one species out of the fours testes exhibited differences in calcium, iron and zinc concentrations in the white matter.

Sergeant, C.; Vesvres, M. H.; Devès, G.; Guillou, F.

2005-04-01

331

Hydrogen bonding of sulfur ligands in blue copper and iron-sulfur proteins: detection by resonance raman spectroscopy  

Microsoft Academic Search

The resonance Raman spectrum of the blue copper protein azurin from Alcaligenes denitrificans exhibits nine vibrational modes between 330 and 460 cm⁻¹, seven of which shift 0.4-3.0 cm⁻¹ to lower energy after incubation of the protein in DâO. These deuterium-dependent shifts have been previously ascribed to exchangeable protons on imidazole ligands or to exchangeable protons on amide groups which are

Yoshiki Mino; Thomas M. Loehr; Keishiro Wada; Hiroshi Matsubara; Joann Sanders-Loehr

1987-01-01

332

Comparison of injectable iron complexes in their ability to iron load tissues and to induce oxidative stress  

Microsoft Academic Search

Iron and copper homeostasis have been studied in various tissues after iron-loading with the polynuclear ferric hydroxide carbohydrate complexes, iron dextran, iron polymaltose, iron sucrose and iron gluconate for four weeks. There were significant increases in the iron content of the different rat tissues compared to controls, with the exception of the brain, which showed no change in its iron

R. Legssyer; P. Geisser; Harry McArdle; R. R. Crichton; R. J. Ward

2003-01-01

333

Current status of cadmium as an environmental health problem  

Microsoft Academic Search

Cadmium is a toxic metal occurring in the environment naturally and as a pollutant emanating from industrial and agricultural sources. Food is the main source of cadmium intake in the non-smoking population. The bioavailability, retention and toxicity are affected by several factors including nutritional status such as low iron status. Cadmium is efficiently retained in the kidney (half-time 10–30 years) and

Lars Jaerup; Agneta Åkesson

2009-01-01

334

Simultaneous automatic electrochemical detection of zinc, cadmium, copper and lead ions in environmental samples using a thin-film mercury electrode and an artificial neural network.  

PubMed

In this study a device for automatic electrochemical analysis was designed. A three electrodes detection system was attached to a positioning device, which enabled us to move the electrode system from one well to another of a microtitre plate. Disposable carbon tip electrodes were used for Cd(II), Cu(II) and Pb(II) ion quantification, while Zn(II) did not give signal in this electrode configuration. In order to detect all mentioned heavy metals simultaneously, thin-film mercury electrodes (TFME) were fabricated by electrodeposition of mercury on the surface of carbon tips. In comparison with bare electrodes the TMFEs had lower detection limits and better sensitivity. In addition to pure aqueous heavy metal solutions, the assay was also performed on mineralized rock samples, artificial blood plasma samples and samples of chicken embryo organs treated with cadmium. An artificial neural network was created to evaluate the concentrations of the mentioned heavy metals correctly in mixture samples and an excellent fit was observed (R2 = 0.9933). PMID:25558996

Kudr, Jiri; Nguyen, Hoai Viet; Gumulec, Jaromir; Nejdl, Lukas; Blazkova, Iva; Ruttkay-Nedecky, Branislav; Hynek, David; Kynicky, Jindrich; Adam, Vojtech; Kizek, Rene

2014-01-01

335

Evidence for a copper-dependent iron transport system in the marine, magnetotactic bacterium strain MV1  

Microsoft Academic Search

Cells of the magnetotactic marine vibrio, strain MV-1, produce magnetite-containing magnetosomes when grown anaerobically or microaerobically. Stable, spontaneous, non-magnetotactic mutants were regularly observed when cells of MV-1 were cultured on solid media incubated under anaerobic or microaerobic conditions. Randomly amplified polymorphic DNA analysis showed that these mutants are not all genetically identical. Cellular iron content of one non-magnetotactic mutant strain,

Bradley L. Dubbels; Alan A. DiSpirito; John D. Morton; Jeremy D. Semrau; J. N. E. Neto; Dennis A. Bazylinski

2004-01-01

336

Essential elements, cadmium, and lead in raw and pasteurized cow and goat milk  

SciTech Connect

Fifteen essential elements plus cadmium and lead were determined in raw and pasteurized cow and goat milks by atomic absorption spectrophotometry. When results were compared on a wet weight basis, there were no significant differences between the raw and pasteurized milks except for cobalt, iron, and lead in goat milk. When copper in goat milk was expressed on a dry weight basis, there was a significant difference between raw and pasteurized milk. There were significantly higher amounts of cobalt, copper, iron, lead, magnesium, and phosphorus, wet weight basis, in pasteurized goat milk than in pasteurized cow milk. Significantly more nickel and sodium were in pasteurized cow milk. No difference in the content of chloride, calcium, potassium, and zinc was significant between the two milks. When dry weights of the two milks were compared, statistical differences were the same, except there was significantly more calcium and potassium in pasteurized cow milk than in pasteurized goat milk and there were no significant differences in the content of lead and phosphorus between the two milks. Percentages of the established and estimated recommended daily allowances show both cow and goat milk to be excellent sources of calcium, phosphorus, and potassium and fair sources of iron, magnesium, and sodium.

Lopez, A.; Collins, W.F.; Williams, H.L.

1985-08-01

337

Cadmium-induced Cancers in Animals and in Humans  

PubMed Central

Discovered in the early 1800s, the use of cadmium and various cadmium salts started to become industrially important near the close of the 19th century, rapidly thereafter began to flourish, yet has diminished more recently. Most cadmium used in the United States is a byproduct from the smelting of zinc, lead, or copper ores, and is used to manufacture batteries. Carcinogenic activity of cadmium was discovered first in animals and only subsequently in humans. Cadmium and cadmium compounds have been classified as known human carcinogens by the International Agency for Research on Cancer and the National Toxicology Program based on epidemiologic studies showing a causal association with lung cancer, and possibly prostate cancer, and studies in experimental animals, demonstrating that cadmium causes tumors at multiple tissue sites, by various routes of exposure, and in several species and strains. Epidemiologic studies published since these evaluations suggest that cadmium is also associated with cancers of the breast, kidney, pancreas, and urinary bladder. The basic metal cationic portion of cadmium is responsible for both toxic and cardinogenic activity, and the mechanism of carcinogenicity appears to be multifactorial. Available information about the carcinogenicity of cadmium and cadmium compounds is reviewed, evaluated, and discussed. PMID:17718178

Huff, James; Lunn, Ruth M.; Waalkes, Michael P.; Tomatis, Lorenzo; Infante, Peter F.

2012-01-01

338

Metalloregulation in Bacillus subtilis: the copZ chromosomal gene is involved in cadmium resistance.  

PubMed

The copZ gene of Bacillus subtilis encodes a copper chaperon CopZ that donates copper to the copper transporter CopA. Both genes copZ and copA are clustered to an operon and its promoter is regulated by Cu ions and CueR, a Mer-like transcriptional activator. Here we show that cadmium ions activate copZA expression as strong as copper ions. Northern hybridization analysis showed that copper and cadmium both induce the synthesis of a 2.7 kb copZA transcript and a 250 bp copZ transcript. A copA deletion mutant was sensitive to copper, whereas a copZ deletion resulted in an increased sensitivity to cadmium and copper. Transcription of the cadmium resistance gene cadA, which is adjacent to the copZA cluster, is extremely reduced in a copZ deletion strain. Transformation of copZ in trans restores wild type resistance to cadmium and copper in a copZ deletion strain. This excludes any polar effect and proves that the copZ encoded protein is important for copper and cadmium resistance. PMID:15212800

Solovieva, Irina M; Entian, Karl-Dieter

2004-07-01

339

Effect of metallothionein core promoter region polymorphism on cadmium, zinc and copper levels in autopsy kidney tissues from a Turkish population  

SciTech Connect

Metallothioneins (MTs) are metal-binding, low molecular weight proteins and are involved in pathophysiological processes like metabolism of essential metals, metal ion homeostasis and detoxification of heavy metals. Metallothionein expression is induced by various heavy metals especially cadmium, mercury and zinc; MTs suppress toxicity of heavy metals by binding themselves to these metals. The aim of this study was to investigate the association between the - 5 A/G metallothionein 2A (MT2A) single nucleotide polymorphism (SNP) and Cd, Zn and Cu levels in the renal cortex from autopsy cases. MT2A core promoter region - 5 A/G SNP was analyzed by PCR-RFLP method using 114 autopsy kidney tissues and the genotype frequencies of this polymorphism were found as 87.7% homozygote typical (AA), 11.4% heterozygote (AG) and 0.9% homozygote atypical (GG). In order to assess the Cd, Zn and Cu levels in the same autopsy kidney tissues, a dual atomic absorption spectrophotometer system was used and the average levels of Cd, Zn and Cu were measured as 95.54 {+-} 65.58 {mu}g/g, 181.20 {+-} 87.72 {mu}g/g and 17.14 {+-} 16.28 {mu}g/g, respectively. As a result, no statistical association was found between the - 5 A/G SNP in the MT2A gene and the Zn and Cu levels in the renal cortex (p > 0.05), but considerably high accumulation of Cd was monitored for individuals having AG (151.24 {+-} 60.21 {mu}g/g) and GG genotypes (153.09 {mu}g/g) compared with individuals having AA genotype (87.72 {+-} 62.98 {mu}g/g) (p < 0.05). These results show that the core promoter region polymorphism of metallothionein 2A increases the accumulation of Cd in human renal cortex.

Kayaalti, Zeliha, E-mail: kayaalti@medicine.ankara.edu.t [Ankara University Institute of Forensic Medicine, Institute of Forensic Medicine, Ankara University, Dikimevi, 06590, Ankara (Turkey); Mergen, Goerkem; Soeylemezoglu, Tuelin [Ankara University Institute of Forensic Medicine, Institute of Forensic Medicine, Ankara University, Dikimevi, 06590, Ankara (Turkey)

2010-06-01

340

Biosorption of copper(II), lead(II), iron(III) and cobalt(II) on Bacillus sphaericus-loaded Diaion SP-850 resin.  

PubMed

The biosorption of copper(II), lead(II), iron(III) and cobalt(II) on Bacillus sphaericus-loaded Diaion SP-850 resin for preconcentration-separation of them have been investigated. The sorbed analytes on biosorbent were eluted by using 1 mol L(-1) HCl and analytes were determined by flame atomic absorption spectrometry. The influences of analytical parameters including amounts of pH, B. sphaericus, sample volume etc. on the quantitative recoveries of analytes were investigated. The effects of alkaline, earth alkaline ions and some metal ions on the retentions of the analytes on the biosorbent were also examined. Separation and preconcentration of Cu, Pb, Fe and Co ions from real samples was achieved quantitatively. The detection limits by 3 sigma for analyte ions were in the range of 0.20-0.75 microg L(-1) for aqueous samples and in the range of 2.5-9.4 ng g(-1) for solid samples. The validation of the procedure was performed by the analysis of the certified standard reference materials (NRCC-SLRS 4 Riverine Water, SRM 2711 Montana soil and GBW 07605 Tea). The presented method was applied to the determination of analyte ions in green tea, black tea, cultivated mushroom, boiled wheat, rice and soil samples with successfully results. PMID:17386450

Tuzen, Mustafa; Uluozlu, Ozgur Dogan; Usta, Canan; Soylak, Mustafa

2007-01-01

341

Field trials to assess the use of iron-bearing industrial by-products for stabilisation of chromated copper arsenate-contaminated soil.  

PubMed

Two industrial by-products with high iron contents were tested for their effectiveness in the stabilisation of arsenic and trace metals in chromated copper arsenate (CCA)-contaminated soil. Steel abrasive (SA; 97% Fe(0)) and oxygen scarfing granulate (OSG; 69% Fe(3)O(4)) were applied at levels of 1% and 8% (w/w) respectively to two soils with different organic matter contents. Field lysimeter measurements indicated that SA and OSG treatments decreased the arsenic concentration in pore water by 68% and 92%, respectively, for the soil with low organic matter content, and by about 30% in pore water of soil with high organic matter content. At pH < or =6, the amended soil with low organic content contained elevated levels of manganese and nickel in their pore water, which were sufficient to induce cytotoxic effects in L-929 mouse fibroblast cells. The industrial by-products have significant potential for soil amendment at field-scale, but caution is required because of the potential release of their chemical contaminants and their reduced capacity for sorption of arsenic in organic-rich soils. PMID:17804040

Lidelöw, Sofia; Ragnvaldsson, Daniel; Leffler, Per; Tesfalidet, Solomon; Maurice, Christian

2007-11-15

342

The SLC31 (Ctr) copper transporter family  

Microsoft Academic Search

Copper is essential for many copper-dependent processes, including mitochondrial oxidative phosphorylation, free-radical detoxification, pigmentation, neurotransmitter synthesis, and iron metabolism. The identification of proteins for high affinity copper uptake and export has greatly expanded our understanding of cellular copper homeostasis. Copper export in human cells is mediated by the ATP7A and ATP7B P-type ATPases, which are, respectively, affected in the genetic

Michael J. Petris

2004-01-01

343

Subcellular distribution of aluminum, bismuth, cadmium, chromium, copper, iron, manganese, nickel, and lead in cultivated mushrooms (Agaricus bisporus and Pleurotus ostreatus).  

PubMed

In this work, the distribution of nine metals in two types of cultivated mushroom had been investigated. For Agaricus bisporus, the biomass was separated into caps and stalks, and for Pleurotus ostreatus, the entire mushrooms were taken for analysis. Electrothermal atomic absorption spectrometry was used for total element determination in acid digests. For accuracy checking, the certified reference material (NIST 1,571, citrus leaves) was analyzed. The results obtained for the two fungi species were within the ranges of concentration reported previously by other authors. Subcellular fractionation was accomplished by centrifugation of cell homogenates, which had been suspended in Tris-HCl buffer. In the first centrifugation (7,300 g, 4 degrees C, 10 min), cell walls were separated (pellet I), and the second centrifugation (147,000g, 4 degrees C, 60 min) yielded mixed membrane fraction (pellet II) and cytosol (supernatant II). Recoveries of the fractionation procedure were in the range 70--100% (with the exception of Fe). For all elements studied, the highest relative contributions were found in cytosol fractions of the fruiting bodies (63--72%, 49--76%, 44--93%, 26--87 pc, 55--85%, 50--68%, 41--78%, 39--78%, 54--67% respectively for Al, Bi, Cd, Cr, Cu, Fe, Mn, Ni, and Pb. Lower contributions were found in cell walls (respectively 22--32%, 24--44%, 6.1--47%, 12--52%, 7.3-- 37%, 7.9--32%, 19--52%, 20--42%, and 25--38%) and only minute amounts in the mixed membrane fraction (3.0--5.8%, 0.7--7.0%, 0.7--8.3%, 1.0--22%, 7.5--14%, 16--24%, 1.1--19%, and 5.1--7.7%). The results obtained indicate that small water-soluble molecules were the primary forms of nine elements in two mushroom species studied. On the other hand, the evidence has been provided on elements binding to larger, water-insoluble molecules contained in the structures of cell wall and membranes. The relative distribution was both element and fungi dependent. Thus, in P. ostreatus, total element levels were higher than in A. bisporus, with the preference for their accumulation in cytosol. On the contrary, total element content in the latter fungi was lower; however, a clear tendency toward more efficient element incorporation to the water-insoluble structures was observed (no apparent differences between stalks and caps). PMID:16141474

Muñoz, Alma Hortensia Serafín; Corona, Felix Gutierrez; Wrobel, Kazimierz; Soto, Gerardo Martínez; Wrobel, Katarzyna

2005-09-01

344

Cadmium carcinogenesis in review  

Microsoft Academic Search

Cadmium is an inorganic toxicant of great environmental and occupational concern which was classified as a human carcinogen in 1993. Occupational cadmium exposure is associated with lung cancer in humans. Cadmium exposure has also, on occasion, been linked to human prostate cancer. The epidemiological data linking cadmium and pulmonary cancer are much stronger than for prostatic cancer. Other target sites

Michael P Waalkes

2000-01-01

345

Effect of natural organic materials on cadmium and neptunium sorption  

SciTech Connect

In a batch sorption study of the effect of naturally occurring organic materials on the sorption of cadmium and neptunium on oxides and tuff surfaces, the model sorbents were synthetic goethite, boehmite, amorphous silicon oxides, and a crushed tuff material from Yucca Mountain, Nevada. An amino acid, 3-(3,4-dihydroxypheny)-DL-alanine (DOPA), and an aquatic-originated fulvic material, Nordic aquatic fulvic acid (NAFA), were used as model organic chemicals. Sorption isotherm results showed that DOPA sorption followed the order aluminum oxide > iron oxide > silicon oxide and that the amount of DOAP sorption for a given sorbent increased as the solution pH was raised. The sorption of cadmium and neptunium on the iron oxide was about ten times higher than that on the aluminum oxide. The sorption of cadmium and neptunium on natural tuff material was much lower than that on aluminum and iron oxides. The sorption of cadmium on iron and aluminum oxides was found to be influenced by the presence of DOPA, and increasing the amount of DOPA coating resulted in higher cadmium sorption on aluminum oxide. However, for iron oxide, cadmium sorption decreased with increasing DOPA concentration. The presence of the model organic materials DOPA and NAFA did not affect the sorption of neptunium on tuff material or on the iron and aluminum oxides. Spectroscopic results indicate that cadmium complexes strongly with DOPA. Therefore, the effect of the organic material, DOPA, on the cadmium sorption is readily observed. However, neptunium is possibly complexed weakly with organic material. Thus, DOPA and NAFA have little effect on neptunium sorption on all sorbents selected for study.

Kung, K.S.; Triay, I.R.

1994-10-01

346

Effect of breeding season and pregnancy status on serum progesterone, sodium, potassium, copper and iron of estrous synchronized Aradi goat does  

PubMed Central

Eighteen out of 88 estrous synchronized Aradi goat does were randomly chosen to be bled during May–July (Out breeding season, n = 9) and during September–December (Within breeding season, n = 9). Estrous synchronization was applied by using a control internal drug release (CIDR) as a reproductive management regimen throughout the year. Nineteen days after CIDR insertion, a 500 IU eCG was injected (i.m.) and CIDR was removed. Does were subjected to fertile bucks 48-60 h after CIDR removal. Jugular blood samples were collected in non-heparinized Vacutainer tubes at 0 h just before CIDR insertion, every 3 days during CIDR insert, at day of CIDR removal, at incidence of estrus and mating, at day 1, 8 and 30 post mating. Data on pregnancy were recorded and serum levels of progesterone (P), sodium (Na), potassium (K), copper (Cu) and iron (Fe) were determined. Progesterone concentration was higher (p < 0.05) within (2.85 ± 0.15 ng/ml) than outside (2.37 ± 0.13 ng/ml) the breeding season. Pregnant does exhibited higher (p < 0.05) levels of progesterone (2.76 ± 0.17 ng/ml) than non-pregnant does (2.37 ± 0.10 ng/ml). No significant interaction was found between season and pregnancy status on progesterone concentration. A typical progesterone profile was found during treatment days, as levels of P increased during CIDR insertion and declined at CIDR removal and thereafter. Neither breeding season nor pregnancy status affected Na+ concentration. Contrariwise, mean levels of K+ was higher (p < 0.05) outside (148.34 ± 3.91 mg/L) than within (136.27 ± 3.91 mg/L) the breeding season. Pregnancy status did not influence K concentration. Sodium/potassium (Na+/K+) ratio was significantly (p < 0.01) higher within (30.29 ± 0.44) than outside (27.62 ± 0.44) the breeding season. On the contrary, pregnancy status did not affect this ratio. Iron concentrations neither affected by season nor pregnancy. Likewise, Cu concentrations were not affected by season, however Cu levels were higher (p < 0.05) in pregnant (147.75 ± 7.24 ?g/L) than in non-pregnant (127.31 ± 5.03 ?g/L) does. PMID:23961088

Al-Sobaiyl, K.A.

2010-01-01

347

Iron, copper, zinc and bromine mapping in cirrhotic liver slices from patients with hemochromatosis studied by microscopic synchrotron radiation X-ray fluorescence analysis in continuous scanning mode  

NASA Astrophysics Data System (ADS)

Iron (Fe) and copper (Cu) are essential metals in physiological cell metabolism. While Fe is easy to determine biochemically in histological slices, Cu and zinc (Zn) distribution is frequently critical in confirming the presence of an overload in disturbed Fe/Cu metabolism. To analyze Fe, Cu and Zn in a near histological resolution, energy dispersive microscopic synchrotron radiation X-ray fluorescence was applied. In normal liver tissue, after fixation and imbedding in paraffin, mean Fe, Cu and Zn concentrations were 152 ± 54, 20.1 ± 4.3 and 88.919.5 ?g/g sample weight, respectively. No substantial, characteristic differences in their distribution were found in the two-dimensional scans. In slices from patients with hemochromatosis mean Fe, Cu and Zn concentrations were 1102 ± 539, 35.9 ± 14.6 and 27.2 ± 6.7 ?g/g sample weight, respectively. Additionally, a significant decrease in phosphorus and sulphur concentrations existed. An increased Cu around cirrhotic regenerations nodules is mostly associated with a lymphocytic infiltration in this region. Analyzing concentrations of Fe in different regions of the samples show a clear negative dependency between Fe and Cu, Cu and Zn, but a positive one between Fe and Zn. Conclusion: With a focal beam size of 15 ?m in diameter a resolution of the elemental distribution was achieved which is widely comparable with stained histological slices (20× light microscope). The analysis of simultaneous determined elements reveals metabolic differences between Fe, Cu and Zn in liver tissue from patients with hemochromatosis.

Osterode, W.; Falkenberg, G.; Höftberger, R.; Wrba, F.

2007-07-01

348

Optimization of chemical bath deposited cadmium sulfide thin films  

Microsoft Academic Search

Cadmium sulfide (CdS) is known to be an excellent heterojunction partner of p-type cadmium telluride (CdTe) or p-type copper indium diselenide (CuInSeâ) due essentially to its high electron affinity. It is widely used as a window material in high efficiency thin-film solar cells based on CdTe or CuInSeâ owing to its transparency and photoconductivity among other properties. The authors report

Isaiah O. Oladeji; L. Chow

1997-01-01

349

Structural analysis of actinidin and a comparison of cadmium and sulfur anomalous signals from actinidin crystals measured using in-house copper- and chromium-anode X-ray sources.  

PubMed

The structure of the 24?kDa cysteine protease saru-actinidin from the fruit of Actinidia arguta Planch. (sarunashi) was determined by the cadmium/sulfur-SAD method with X-ray diffraction data collected using in-house Cu?K? and Cr?K? radiation. The anomalous scatterers included nine sulfurs and several cadmium ions from the crystallization solution. The high quality of the diffraction data, the use of chromium-anode X-ray radiation and the substantial anomalous signal allowed structure determination and automated model building despite both a low solvent content (<40%) and low data multiplicity. The amino-acid sequence of saru-actinidin was deduced from the cDNA and was modified based on experimental electron-density maps at 1.5?Å resolution. The active site of saru-actinidin is occupied by a cadmium ion and the active-site cysteine is found to be in an unmodified, cysteine sulfenic acid or cysteine sulfinic acid form. The cadmium sites, coordination geometries and polygonal water structures on the protein surface have also been extensively analyzed. An analysis and comparison of the sulfur/cadmium anomalous signals at the Cu?K? and Cr?K? wavelengths was carried out. It is proposed that the inclusion of cadmium salts in crystallization solutions coupled with chromium-anode radiation can provide a convenient route for structure determination. PMID:21123873

Yogavel, Manickam; Nithya, Nirmal; Suzuki, Atsuo; Sugiyama, Yasuo; Yamane, Takashi; Velmurugan, Devadasan; Sharma, Amit

2010-12-01

350

Integrated thin film cadmium sulfide solar cell module  

NASA Technical Reports Server (NTRS)

The design, development, fabrication and tests of flexible integrated thin-film cadmium sulfide solar cells and modules are discussed. The development of low cost and high production rate methods for interconnecting cells into large solar arrays is described. Chromium thin films were applied extensively in the deposited cell structures as a means to: (1) achieve high adherence between the cadmium sulfide films and the vacuum-metallized copper substrates, (2) obtain an ohmic contact to the cadmium sulfide films, and (3) improve the adherence of gold films as grids or contact areas.

Mickelsen, R. A.; Abbott, D. D.

1971-01-01

351

Acid phosphatase activity in Pisolithus arrhizus mycelium treated with cadmium dust  

Microsoft Academic Search

The influence of cadmium dust (containing lead, cadmium, copper, zinc, silicium and other elements) on acid phosphatase activity of Pisolithus arrhizus was observed by means of electron microscopy. Dust-treated mycelium showed increased activity of the enzyme, especially on the surface of the cell wall. There was an increase in abundance of autophagic vacuoles marked by a strong phosphatase reaction. An

K. Turnau; J. Dexheimer

1995-01-01

352

Iron and Iron Deficiency  

MedlinePLUS

... iron. (NIH) back to top Iron Overload and Hemochromatosis Iron overload is the accumulation of excess iron in body tissues. Hemochromatosis is the disease resulting from significant iron overload. ...

353

Spatial and temporal zoning of hydrothermal alteration and mineralization in the Sossego iron oxide-copper-gold deposit, Carajás Mineral Province, Brazil: paragenesis and stable isotope constraints  

NASA Astrophysics Data System (ADS)

The Sossego iron oxide-copper-gold deposit (245 Mt @ 1.1% Cu, 0.28 g/t Au) in the Carajás Mineral Province of Brazil consists of two major groups of orebodies (Pista-Sequeirinho-Baiano and Sossego-Curral) with distinct alteration assemblages that are separated from each other by a major high angle fault. The deposit is located along a regional WNW-ESE-striking shear zone that defines the contact between metavolcano-sedimentary units of the ˜2.76 Ga Itacaiúnas Supergroup and tonalitic to trondhjemitic gneisses and migmatites of the ˜2.8 Ga Xingu Complex. The deposit is hosted by granite, granophyric granite, gabbro, and felsic metavolcanic rocks. The Pista-Sequeirinho-Baiano orebodies have undergone regional sodic (albite-hematite) alteration and later sodic-calcic (actinolite-rich) alteration associated with the formation of massive magnetite-(apatite) bodies. Both these alteration assemblages display ductile to ductile-brittle fabrics. They are cut by spatially restricted zones of potassic (biotite and potassium feldspar) alteration that grades outward to chlorite-rich assemblages. The Sossego-Curral orebodies contain weakly developed early albitic alteration and very poorly developed subsequent calcic-sodic alteration. These orebodies contain well-developed potassic alteration assemblages that were formed during brittle deformation that resulted in the formation of breccia bodies. Breccia matrix commonly displays coarse mineral infill suggestive of growth into open space. Sulfides in both groups of deposits were precipitated first with potassic alteration and more importantly with a later assemblage of calcite-quartz-epidote-chlorite. In the Sequeirinho orebodies, sulfides range from undeformed to deformed; sulfides in the Sossego-Curral orebodies are undeformed. Very late, weakly mineralized hydrolytic alteration is present in the Sossego/Currral orebodies. The sulfide assemblage is dominated by chalcopyrite with subsidiary siegenite, and millerite. Pyrrhotite and pyrite are minor constituents of ore in the Sequerinho orebodies while pyrite is relatively abundant in the Sossego-Curral bodies. Oxygen isotope partitioning between mineral pairs constrains temperatures in the deposit spatially and through time. In the Sequeirinho orebody, the early sodic-calcic alteration stage was characterized by temperatures exceeding 500°C and ? ^{{{text{18}}}} {text{O}}_{{{text{H}}_{{text{2}}} {text{O}}}} values for the alteration fluid of 6.9 ± 0.9‰. Temperature declines outward and upward from the zone of most intense alteration. Paragenetically later copper-gold mineralization displays markedly lower temperatures (<300°C) and was characterized by the introduction of 18O-depleted hydrothermal fluids -1.8 ± 3.4‰. The calculated ?DH2O and ? ^{{{text{18}}}} {text{O}}_{{{text{H}}_{{text{2}}} {text{O}}}} values suggest that the fluids that formed the early calcic-sodic alteration assemblage were of formational/metamorphic or magmatic origin. The decrease of ? ^{{{text{18}}}} {text{O}}_{{{text{H}}_{{text{2}}} {text{O}}}} values through time may reflect influx of surficially derived waters during later alteration and mineralization events. Influx of such fluids could be related to episodic fluid overpressure, resulting in dilution and cooling of the metalliferous fluid, causing deposition of metals transported as metal chloride complexes.

Monteiro, Lena V. S.; Xavier, Roberto P.; de Carvalho, Emerson R.; Hitzman, Murray W.; Johnson, Craig A.; de Souza Filho, Carlos Roberto; Torresi, Ignácio

2008-02-01

354

Process for producing cadmium sulfide on a cadmium telluride surface  

DOEpatents

A process for producing a layer of cadmium sulfide on a cadmium telluride surface to be employed in a photovoltaic device. The process comprises providing a cadmium telluride surface which is exposed to a hydrogen sulfide plasma at an exposure flow rate, an exposure time and an exposure temperature sufficient to permit reaction between the hydrogen sulfide and cadmium telluride to thereby form a cadmium sulfide layer on the cadmium telluride surface and accomplish passivation. In addition to passivation, a heterojunction at the interface of the cadmium sulfide and the cadmium telluride can be formed when the layer of cadmium sulfide formed on the cadmium telluride is of sufficient thickness.

Levi, Dean H. (Lakewood, CO); Nelson, Art J. (Longmont, CO); Ahrenkiel, Richard K. (Lakewood, CO)

1996-01-01

355

Perinatal lead and cadmium burden in a British urban population.  

PubMed Central

Concentrations of the potential pollutants, lead and cadmium, were studied in the perinatal period in a British urban population. Blood lead and cadmium concentrations and iron status were measured in 28 mother and infant pairs at delivery and at five days postpartum in the mother; breast milk collected at five days postpartum under controlled conditions was analysed for lead and cadmium. Placental transfer of both metals was noted; concentrations of lead in breast milk (mean concentration 0.01 mmol/l (2 micrograms/l) were less than in two brands of commercial prepacked formulas, and the concentration of cadmium in breast milk and prepacked formulas (mean 3.6 nmol/l (0.4 microgram/l] were similar. The risk of excess lead or cadmium intake from breast milk is small. PMID:6696491

Kovar, I Z; Strehlow, C D; Richmond, J; Thompson, M G

1984-01-01

356

Cadmium sulfide membranes  

DOEpatents

A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

Spanhel, Lubomir (Madison, WI); Anderson, Marc A. (Madison, WI)

1991-10-22

357

Cadmium sulfide membranes  

DOEpatents

A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

Spanhel, Lubomir (Madison, WI); Anderson, Marc A. (Madison, WI)

1992-07-07

358

Fibroblasts from long-lived rodent species exclude cadmium.  

PubMed

Resistance to the lethal effects of cellular stressors, including the toxic heavy metal cadmium (Cd), is characteristic of fibroblast cell lines derived from long-lived bird and rodent species, as well as cell lines from several varieties of long-lived mutant mice. To explore the mechanism of resistance to Cd, we used inductively coupled plasma mass spectroscopy to measure the rate of Cd uptake into primary fibroblasts of 15 rodent species. These data indicate that fibroblasts from long-lived rodent species have slower rates of Cd uptake from the extracellular medium than those from short-lived species. In addition, fibroblasts from short-lived species export more zinc after exposure to extracellular Cd than cells from long-lived species. Lastly, fibroblasts from long-lived rodent species have lower baseline concentrations of two redox-active metals, iron and copper. Our results suggest that evolution of longevity among rodents required adjustment of cellular properties to alter metal homeostasis and to reduce the toxic effects of heavy metals that accumulate over the course of a longer life span. PMID:24522391

Dostál, Lubomír; Kohler, William M; Penner-Hahn, James E; Miller, Richard A; Fierke, Carol A

2015-01-01

359

Health effects of cadmium exposure--a review of the literature and a risk estimate.  

PubMed

This report provides a review of the cadmium exposure situation in Sweden and updates the information on health risk assessment according to recent studies on the health effects of cadmium. The report focuses on the health effects of low cadmium doses and the identification of high-risk groups. The diet is the main source of cadmium exposure in the Swedish nonsmoking general population. The average daily dietary intake is about 15 micrograms/day, but there are great individual variations due to differences in energy intake and dietary habits. It has been shown that a high fiber diet and a diet rich in shellfish increase the dietary cadmium intake substantially. Cadmium concentrations in agricultural soil and wheat have increased continuously during the last century. At present, soil cadmium concentrations increase by about 0.2% per year. Cadmium accumulates in the kidneys. Human kidney concentrations of cadmium have increased several fold during the last century. Cadmium in pig kidney has been shown to have increased by about 2% per year from 1984-1992. There is no tendency towards decreasing cadmium exposure among the general nonsmoking population. The absorption of cadmium in the lungs is 10-50%, while the absorption in the gastrointestinal tract is only a few percent. Smokers have about 4-5 times higher blood cadmium concentrations (about 1.5 micrograms/l), and twice as high kidney cortex cadmium concentrations (about 20-30 micrograms/g wet weight) as nonsmokers. Similarly, the blood cadmium concentrations are substantially elevated in persons with low body iron stores, indicating increased gastrointestinal absorption. About 10-40% of Swedish women of child-bearing age are reported to have empty iron stores (S-ferritin < 12 micrograms/l). In general, women have higher concentrations of cadmium in blood, urine, and kidney than men. The population groups at highest risk are probably smokers, women with low body iron stores, and people habitually eating a diet rich in cadmium. According to current knowledge, renal tubular damage is probably the critical health effect of cadmium exposure, both in the general population and in occupationally exposed workers. Tubular damage may develop at much lower levels than previously estimated, as shown in this report. Data from several recent reports from different countries indicate that an average urinary cadmium excretion of 2.5 micrograms/g creatinine is related to an excess prevalence of renal tubular damage of 4%. An average urinary excretion of 2.5 micrograms/g creatinine corresponds to an average concentration of cadmium in renal cortex of 50 micrograms/g, which would be the result of long-term (decades) intake of 50 micrograms per day. When the critical concentrations for adverse effects due to cadmium accumulation are being evaluated, it is crucial to consider both the individual variation in kidney cadmium concentrations and the variations in sensitivity within the general population. Even if the population average kidney concentration is relatively low for the general population, a certain proportion will have values exceeding the concentration where renal tubular damage can occur. It can be estimated that, at the present average daily intake of cadmium in Sweden, about 1% of women with low body iron stores and smokers may experience adverse renal effects related to cadmium. If the average daily intake of cadmium would increase to 30 micrograms/day, about 1% of the entire population would have cadmium-induced tubular damage. In risk groups, for example, women with low iron stores, the percentage would be higher, up to 5%. Both human and animal studies indicate that skeletal damage (osteoporosis) may be a critical effect of cadmium exposure. We conclude, however, that the present evidence is not sufficient to permit such a conclusion for humans. We would like to stress, however, that osteoporosis is a very important public health problem worldwide, but especially in the Scandinav PMID:9569444

Järup, L; Berglund, M; Elinder, C G; Nordberg, G; Vahter, M

1998-01-01

360

The Porphyromonas gingivalis HmuY haemophore binds gallium(iii), zinc(ii), cobalt(iii), manganese(iii), nickel(ii), and copper(ii) protoporphyrin IX but in a manner different to iron(iii) protoporphyrin IX.  

PubMed

Porphyromonas gingivalis, a major etiological agent of chronic periodontitis, acquires haem from host haemoproteins through a haem transporter HmuR and a haemophore HmuY. The aim of this study was to analyse the binding specificity of HmuY towards non-iron metalloporphyrins which may be employed as antimicrobials to treat periodontitis. HmuY binds gallium(iii), zinc(ii), cobalt(iii), manganese(iii), nickel(ii), and copper(ii) protoporphyrin IX but in a manner different to iron(iii) protoporphyrin IX which uses His(134) and His(166) as axial ligands. The metal ions in Ga(iii)PPIX and Zn(ii)PPIX can accept only His(166) as an axial ligand, whereas nickel(ii) and copper(ii) interact exclusively with His(134). Two forms of pentacoordinate manganese(iii) are present in the Mn(iii)PPIX-HmuY complex since the metal accepts either His(134) or His(166) as a single axial ligand. The cobalt ion is hexacoordinate in the Co(iii)PPIX-HmuY complex and binds His(134) and His(166) as axial ligands; however, some differences in their environments exist. Despite different coordination modes of the central metal ion, gallium(iii), zinc(ii), cobalt(iii), and manganese(iii) protoporphyrin IX bound to the HmuY haemophore cannot be displaced by excess haem. All of the metalloporphyrins examined bind to a P. gingivalis wild-type strain with higher ability compared to a mutant strain lacking a functional hmuY gene, thus corroborating binding of non-iron metalloporphyrins to purified HmuY protein. Our results further clarify the basis of metalloporphyrin acquisition by P. gingivalis and add to understanding of the interactions with porphyrin derivatives which exhibit antimicrobial activity against P. gingivalis. PMID:23392445

Wójtowicz, Halina; Bielecki, Marcin; Wojaczy?ski, Jacek; Olczak, Mariusz; Smalley, John W; Olczak, Teresa

2013-04-01

361

Copper in microbial pathogenesis: meddling with the metal  

PubMed Central

Transition metals such as iron, zinc, copper and manganese are essential for the growth and development of organisms ranging from bacteria to mammals. Numerous studies have focused on the impact of iron availability during bacterial and fungal infections, and increasing evidence suggests that copper is also involved in microbial pathogenesis. Not only is copper an essential co-factor for specific microbial enzymes, but several recent studies also strongly suggest that copper is used to restrict pathogen growth in vivo. Here, we review evidence that animals use copper as an anti-microbial weapon and, in turn, microbes have developed mechanisms to counteract the toxic effects of copper. PMID:22341460

Samanovic, Marie I.; Ding, Chen; Thiele, Dennis J.; Darwin, K. Heran

2012-01-01

362

CADMIUM SOLUBILITY IN PADDY SOILS: EFFECTS OF SOIL OXIDATION, METAL SULFIDES AND COMPETITIVE IONS.  

EPA Science Inventory

Cadmium (Cd) is a non-essential element for human nutrition and is an agricultural soil contaminant. Cadmium solubility in paddy soils affects Cd accumulation in the grain of rice. This is a human health risk, exacerbated by the fact that rice grains are deficient in iron (Fe) an...

363

Nanocomposites of metallic copper and spinel ferrite films: Growth and self-assembly of copper particles  

Microsoft Academic Search

Nanocomposites of metallic copper and iron oxides films have been prepared by RF-sputtering of pure CuFeO2 delafossite target. The films are made of copper and spinel ferrite crystallites of less than 10 nm in diameter. The content of metallic copper and the ferrite composition depend on the sputtering conditions. For the shortest substrate-target distances, films are made of copper and

Emmanuelle Mugnier; Isabelle Pasquet; Antoine Barnabé; Lionel Presmanes; Corine Bonningue; Philippe Tailhades

2005-01-01

364

Hydrothermal alteration, fluid inclusions and stable isotope systematics of the Alvo 118 iron oxide-copper-gold deposit, Carajás Mineral Province (Brazil): Implications for ore genesis  

NASA Astrophysics Data System (ADS)

The Alvo 118 iron oxide-copper-gold (IOCG) deposit (170 Mt at 1.0 wt.% Cu, 0.3 g/t Au) lies in the southern sector of the Itacaúnas Shear Belt, Carajás Mineral Province, along a WNW-ESE-striking, 60-km-long shear zone, close to the contact of the ~2.76-Ga metavolcano-sedimentary Itacaiúnas Supergroup and the basement (~3.0 Ga Xingu Complex). The Alvo 118 deposit is hosted by mafic and felsic metavolcanic rocks and crosscutting granitoid and gabbro intrusions that have been subjected to the following hydrothermal alteration sequence towards the ore zones: (1) poorly developed sodic alteration (albite and scapolite); (2) potassic alteration (biotite or K-feldspar) accompanied by magnetite formation and silicification; (3) widespread, pervasive chlorite alteration spatially associated with quartz-carbonate-sulphide infill ore breccia and vein stockworks; and (4) local post-ore quartz-sericite alteration. The ore assemblage is dominated by chalcopyrite (~60%), bornite (~10%), hematite (~20%), magnetite (10%) and subordinate chalcocite, native gold, Au-Ag tellurides, galena, cassiterite, F-rich apatite, xenotime, monazite, britholite-(Y) and a gadolinite-group mineral. Fluid inclusion studies in quartz point to a fluid regime composed of two distinct fluid types that may have probably coexisted within the timeframe of the Cu-Au mineralizing episode: a hot (>200°C) saline (32.8‰ to 40.6 wt.% NaCl eq.) solution, represented by salt-bearing aqueous inclusions, and a lower temperature (<200°C), low to intermediate salinity (<15 wt.% NaCl eq.) aqueous fluid defined by two-phase (LH2O + VH2O) fluid inclusions. This trend is very similar to those defined for other IOCG systems of the Carajás Mineral Province. ? 18OH2O values in equilibrium with calcite (-1.0‰ to 7.5‰ at 277°C to 344°C) overlap the lower range for primary magmatic waters, but the more 18O-depleted values also point to the involvement of externally derived fluids, possibly of meteoric origin. Furthermore, sulphide ? 34S values (5.1‰ to 6.3‰), together with available boron isotope and Cl/Br-Na/Cl data provide evidence for a significant component of residual evaporative fluids (e.g., bittern fluids generated by seawater evaporation) in this scenario that, together with magma-derived brines, would be the main sources of the highly saline fluids involved in the formation Alvo 118 IOCG deposit. The restricted high temperature sodic alteration, the pervasive overprinting of the potassic alteration minerals by chlorite proximal to the ore zones, ore breccias with open-space filling textures in brittle structures, microthermometric and stable isotope data indicate, collectively, that the Alvo 118 IOCG system developed at structurally high levels and may be considered the shallower representative of the IOCG systems of the CMP.

Torresi, Ignacio; Xavier, Roberto Perez; Bortholoto, Diego F. A.; Monteiro, Lena V. S.

2012-03-01

365

Copper-Triggered Aggregation of Ubiquitin  

Microsoft Academic Search

Neurodegenerative disorders share common features comprising aggregation of misfolded proteins, failure of the ubiquitin- proteasome system, and increased levels of metal ions in the brain. Protein aggregates within affected cells often contain ubiquitin, however no report has focused on the aggregation propensity of this protein. Recently it was shown that copper, differently from zinc, nickel, aluminum, or cadmium, compromises ubiquitin

Fabio Arnesano; Simone Scintilla; Elena Bonfrate; Chiara Ingrosso; Maurizio Losacco; Teresa Pellegrino; Enrico Rizzarelli; Giovanni Natile

2009-01-01

366

Enhanced Copper Tolerance in Silene vulgaris (Moench) Garcke Populations from Copper Mines Is Associated with Increased Transcript Levels of a 2b-Type Metallothionein Gene1  

Microsoft Academic Search

Silene vulgaris (Moench) Garcke has evolved populations with extremely high levels of copper tolerance. To evaluate the role of metallothioneins (MTs) in copper tolerance in S. vulgaris, we screened a cDNA library derived from a highly copper- tolerant population using Arabidopsis-based MT probes and identified an MT2b-like gene. When expressed in yeast, this gene, SvMT2b, restored cadmium and copper tolerance

Nathalie A. L. M. van Hoof; Viivi H. Hassinen; Henk W. J. Hakvoort; Koos F. Ballintijn; Henk Schat; Jos A. C. Verkleij; Wilfried H. O. Ernst; Sirpa O. Karenlampi; Arja I. Tervahauta

367

Cadmium in tobacco  

SciTech Connect

The present study was conducted to determine the cadmium level in tobacco planted in five main tobacco-producing areas, a cadmium polluted area, and in cigarettes produced domestically (54 brands). The results indicate that average cadmium content in tobacco was 1.48 (0.10-4.95 mg/kg), which was similar to that of Indian tobacco (1.24 mg/kg), but the cadmium of tobacco produced in the cadmium polluted area was quite high (8.60 mg/kg). The average cigarette cadmium was 1.05 micrograms/g (with filter tip) and 1.61 micrograms/g (regular cigarette). Therefore special attention should be paid to the soil used in planting tobacco.

Yue, L. (Institute of Environmental Health Monitoring, Chinese Academy of Preventive Medicine, Beijing (China))

1992-03-01

368

Cadmium - A metallohormone?  

SciTech Connect

Cadmium is a heavy metal that is often referred to as the metal of the 20th century. It is widely used in industry principally in galvanizing and electroplating, in batteries, in electrical conductors, in the manufacture of alloys, pigments, and plastics, and in the stabilization of phosphate fertilizers. As a byproduct of smelters, cadmium is a prevalent environmental contaminant. In the general population, exposure to cadmium occurs primarily through dietary sources, cigarette smoking, and, to a lesser degree, drinking water. Although the metal has no known physiological function, there is evidence to suggest that the cadmium is a potent metallohormone. This review summarizes the increasing evidence that cadmium mimics the function of steroid hormones, addresses our current understanding of the mechanism by which cadmium functions as a hormone, and discusses its potential role in development of the hormone dependent cancers.

Byrne, Celia [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC (United States); Divekar, Shailaja D.; Storchan, Geoffrey B.; Parodi, Daniela A. [Department of Biochemistry and Molecular and Cellular Biology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC (United States); Martin, Mary Beth [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC (United States); Department of Biochemistry and Molecular and Cellular Biology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC (United States)], E-mail: martinmb@georgetown.edu

2009-08-01

369

Cadmium Toxicity and Treatment  

PubMed Central

Cadmium is a heavy metal of considerable toxicity with destructive impact on most organ systems. It is widely distributed in humans, the chief sources of contamination being cigarette smoke, welding, and contaminated food and beverages. Toxic impacts are discussed and appear to be proportional to body burden of cadmium. Detoxification of cadmium with EDTA and other chelators is possible and has been shown to be therapeutically beneficial in humans and animals when done using established protocols. PMID:23844395

Bernhoft, Robin A.

2013-01-01

370

Copper stabilizes the Menkes copper-transporting ATPase (Atp7a) protein expressed in rat intestinal epithelial cells  

PubMed Central

Iron deficiency decreases oxygen tension in the intestinal mucosa, leading to stabilization of hypoxia-inducible transcription factor 2? (Hif2?) and subsequent upregulation of genes involved in iron transport [e.g., divalent metal transporter (Dmt1) and ferroportin 1 (Fpn1)]. Iron deprivation also alters copper homeostasis, reflected by copper accumulation in the intestinal epithelium and induction of an intracellular copper-binding protein [metallothionein (Mt)] and a copper exporter [Menkes copper ATPase (Atp7a)]. Importantly, Atp7a is also a Hif2? target. It was, however, previously noted that Atp7a protein expression was induced more strongly than mRNA in the duodenum of iron-deprived rats, suggesting additional regulatory mechanisms. The current study was thus designed to decipher mechanistic aspects of Atp7a regulation during iron deprivation using an established in vitro model of the mammalian intestine, rat intestinal epithelial (IEC-6) cells. Cells were treated with an iron chelator and/or copper loaded to mimic the in vivo situation. IEC-6 cells exposed to copper showed a dose-dependent increase in Mt expression, confirming intracellular copper accumulation. Iron chelation with copper loading increased Atp7a mRNA and protein levels; however, contrary to our expectation, copper alone increased only protein levels. This suggested that copper increased Atp7a protein levels by a posttranscriptional regulatory mechanism. Therefore, to determine if Atp7a protein stability was affected, the translation inhibitor cycloheximide was utilized. Experiments in IEC-6 cells revealed that the half-life of the Atp7a protein was ?41 h and, furthermore, that intracellular copper accumulation increased steady-state Atp7a protein levels. This investigation thus reveals a novel mechanism of Atp7a regulation in which copper stabilizes the protein, possibly complementing Hif2?-mediated transcriptional induction during iron deficiency. PMID:23174565

Xie, Liwei

2013-01-01

371

Copper Sulfide Precipitation by Yeasts from Acid Mine-Waters  

PubMed Central

Two strains of Rhodotorula and one of Trichosporon precipitated dissolved copper with H2S formed by reducing elemental sulfur with glucose. Iron stimulated this activity under certain conditions. In the case of Rhodotorula strain L, iron stimulated copper precipitation aerobically at a copper concentration of 18 but not 180 ?g/ml. Anaerobically, the L strain required iron for precipitation of copper from a medium with 180 ?g of copper per ml. Rhodotorula strain L was able to precipitate about five times as much copper anaerobically as aerobically. The precipitated copper was identified as copper sulfide, but its exact composition could not be ascertained. Iron was not precipitated by the H2S formed by any of the yeasts. Added as ferric iron, it was able to redissolve copper sulfide formed aerobically by Rhodotorula strain L from 18 but not 180 ?g of copper per ml of medium. Since the yeasts were derived from acid mine-waters, their ability to precipitate copper may be of geomicrobial importance. PMID:16349711

Ehrlich, H. L.; Fox, Sally I.

1967-01-01

372

Recovering cadmium and tellurium from thin-film photovoltaic device scrap. Report of investigations/1995  

SciTech Connect

The U.S. Bureau of Mines (USBM) is investigating hydrometallurgical processing techniques to recycle metals from semiconductors and other advanced materials. Cadmium amd tellurium were recovered from mixed CdTe/CdS scrap produced in the manufacture of thin-film photovoltaic devices. Leaching the scrap for 90 min at 110 deg. C in 2.2Normal H2SO4 under 400 psig O2 yielded 97% Cd extraction; however, cadmium content of the residue ranged between 4% and 7%. Soluble iron was added to the lixiviant to catalyze oxidation of the CdS component. Tellurium and sulfur remained in the leach residue primarily in the elemental form. The iron and tellurium were removed from the cadmium-rich leach liquor by adjusting the pH to 5.3. The cadmium was recovered as cadmium sulfate crystals by evaporating the solution. Alternative leaching and purification schemes are discussed.

Tolley, W.K.; Palmer, G.R.

1995-12-31

373

Selective adsorption of lead, copper and antimony in runoff water from a small arms shooting range with a combination of charcoal and iron hydroxide.  

PubMed

Metals and metalloids from ammunition residues at small arms shooting ranges leach into the soil and surrounding watercourses and may pose a threat to exposed wildlife and humans. To reduce the potential impact of heavy metal on the environment a field study was performed with different sorbents in order to reduce the metal concentration in polluted water from a shooting range. Two sorbents were tested in situ for their ability to reduce the concentration of Cu, Sb and Pb: Brimac(®) charcoal and Kemira(®) iron hydroxide. The mean sorption of Cu, Sb and Pb was 85%, 65%, and 88% respectively when using the charcoal and 60%, 85% and 92% respectively with the iron hydroxide. Even better sorption of the elements was achieved when the two sorbents were combined in order to increase their selectivity. The best results were achieved in the filter in which the water percolated the charcoal first and the iron hydroxide last, with a mean sorption of Cu, Sb and Pb of 89%, 90% and 93% respectively. This preparation gave a significant better sorption of Cu compared to the filter in which the water percolated the iron hydroxide first and the charcoal last. The different effect between the two filters may be due to pH, since charcoal has alkaline properties and iron hydroxide has acidic properties. For large scale experiments or in filter devices we therefore recommend use of a combination of different reactive sorbents. PMID:25527987

Mariussen, Espen; Johnsen, Ida Vaa; Strømseng, Arnljot Einride

2015-03-01

374

Iron deficiency increases blood concentrations of neurotoxic metals in children  

PubMed Central

Iron deficiency affects approximately one-third of the world's population, occurring most frequently in children aged 6 months to 3 years. Mechanisms of iron absorption are similar to those of other divalent metals, particularly manganese, lead, and cadmium, and a diet deficient in iron can lead to excess absorption of manganese, lead, and cadmium. Iron deficiency may lead to cognitive impairments resulting from the deficiency itself or from increased metal concentrations caused by the deficiency. Iron deficiency combined with increased manganese or lead concentrations may further affect neurodevelopment. We recently showed that blood manganese and lead concentrations are elevated among iron-deficient infants. Increased blood manganese and lead levels are likely associated with prolonged breast-feeding, which is also a risk factor for iron deficiency. Thus, babies who are breast-fed for prolonged periods should be given plain, iron-fortified cereals or other good sources of dietary iron. PMID:25210521

Kim, Yangho

2014-01-01

375

Responses to selection for cadmium resistance in the least killifish, Heterandria formosa.  

PubMed

An artificial selection experiment was conducted for six generations to investigate the responses to selection for cadmium resistance in the least killifish, Heterandria formosa. There was a rapid response to selection. After only one generation of selection, two of the three selection lines had an increased resistance to cadmium, while all three selection lines had an elevated resistance by the next generation. After six generations of selection, fish from the selection lines survived about three times as long as control line fish when exposed to cadmium. Realized heritability for cadmium resistance was estimated to be 0.50. Cross-resistance to copper was studied in the F2, F3, and F6 generations; fish from the cadmium-resistant lines had a longer survival time than those from the control lines. Resistance to heat was investigated in the F2, F3, and F5 generations; the cadmium-resistant lines had a significantly shorter survival time than the control lines. Our results showed that evolution of resistance to cadmium was rapid, that cross-resistance to copper occurred, and that the evolution of resistance to cadmium was accompanied by a trade-off (fitness costs) as evidenced by the reduced heat tolerance. PMID:12558162

Xie, Lingtian; Klerks, Paul L

2003-02-01

376

Thin films preparation by rf-sputtering of copper\\/iron ceramic targets with Cu\\/Fe = 1: From nanocomposites to delafossite compounds  

Microsoft Academic Search

In the Cu–Fe–O phase diagram, delafossite CuFeO2 is obtained for the CuI oxidation state and for the Cu\\/Fe=1 ratio. By decreasing the oxygen content, copper\\/spinel oxide composite can be obtained because of the reduction and the disproponation of cuprous ions. Many physical properties as for instance, electrical, optical, catalytic properties can then be affected by the control of the oxygen

E. Mugnier; A. Barnabe; L. Presmanes; Ph. Tailhades

2008-01-01

377

Process for producing cadmium sulfide on a cadmium telluride surface  

DOEpatents

A process is described for producing a layer of cadmium sulfide on a cadmium telluride surface to be employed in a photovoltaic device. The process comprises providing a cadmium telluride surface which is exposed to a hydrogen sulfide plasma at an exposure flow rate, an exposure time and an exposure temperature sufficient to permit reaction between the hydrogen sulfide and cadmium telluride to thereby form a cadmium sulfide layer on the cadmium telluride surface and accomplish passivation. In addition to passivation, a heterojunction at the interface of the cadmium sulfide and the cadmium telluride can be formed when the layer of cadmium sulfide formed on the cadmium telluride is of sufficient thickness. 12 figs.

Levi, D.H.; Nelson, A.J.; Ahrenkiel, R.K.

1996-07-30

378

Relations between liver cadmium, cumulative exposure, and renal function in cadmium alloy workers.  

PubMed Central

Detailed biochemical investigations of renal function were made on 75 male workers exposed to cadmium and an equal number of referents matched for age, sex, and employment status. The exposed group consisted of current and retired workers who had been employed in the manufacture of copper-cadmium alloy at a single factory in the United Kingdom for periods of up to 39 years and for whom cumulative cadmium exposure indices could be calculated. In vivo measurements of liver and kidney cadmium burden were made on exposed and referent workers using a transportable neutron activation analysis facility. Significant increases in the urinary excretion of albumin, retinol binding protein, beta 2 microglobulin, N-acetylglucosaminidase (NAG), alkaline phosphatase, gamma-glutamyl transferase and significant decreases in the renal reabsorption of calcium, urate, and phosphate were found in the exposed group compared with the referent group. Measures of glomerular filtration rate (GFR) (creatinine clearance, serum creatinine, and beta 2 microglobulin) indicated a reduction in GFR in the exposed population. Many of these tubular and glomerular function indicators were significantly correlated with both cumulative exposure index and liver cadmium burden. Using cumulative exposure index and liver cadmium as estimates of dose, a two phase linear regression model was applied to identify an inflection point signifying a threshold level above which changes in renal function occur. Many biochemical variables fitted this model; urinary total protein, retinol binding protein, albumin, and beta 2 microglobulin gave similar inflection points at cumulative exposure levels of about 1100 y.micrograms/m3 whereas changes in the tubular reabsorption of urate and phosphate occurred at higher cumulative exposure indices. Measures of GFR, although fitting the threshold model did not give well defined inflection points. Fewer variables fitted the two phase model using liver cadmium; those that did gave threshold levels in the range 20.3-55.1 ppm. When cadmium workers with cumulative exposure indices of less than 1100 y.micrograms/m3 were compared with their respective referents only serum beta 2 microglobulin and urinary NAG were significantly increased in the exposed group and these differences were not related to the degree of cadmium exposure.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:3219304

Mason, H J; Davison, A G; Wright, A L; Guthrie, C J; Fayers, P M; Venables, K M; Smith, N J; Chettle, D R; Franklin, D M; Scott, M C

1988-01-01

379

Fabrication of cadmium sulfide thin films by cw Nd:YAG laser deposition  

NASA Astrophysics Data System (ADS)

We report new results on continuous wave Nd:YAG laser deposition of Cadmium Sulfide (CdS) thin films. Cadmium Sulfide has useful piezoelectric, optoelectric, photo-conductive and semiconductive properties. CdS films have been deposited on various substrates including Soda-lime silicate glass (SLS), NaCl, Alumina (corundum) and copper coated formvar. The thin films were analyzed using x-ray diffraction, SEM, EDS, TEM, and UV/visible transmission spectra.

Orloff, S.; Vuong, Khanh D.; Tenpas, Eric W.; Fagan, J. G.; Wang, Xing W.

1996-02-01

380

Physical, chemical and antimicrobial characterization of copper-bearing material  

NASA Astrophysics Data System (ADS)

Arsenic, cadmium, copper, mercury, silver, and zinc are elements with strong antimicrobial properties. Among them, copper is more environmentally friendly and has both good antibacterial and antifungal properties. It has been shown that copper can even be effective against new viruses such as avian influenza (H5N1). Development of copper-bearing materials for various applications, therefore, is receiving increased attention. The Keweenaw Peninsula of Michigan was the largest native copper mining regions of North America at the turn of the 20th century. Copper was extracted by mining the copper-rich basaltic rock, and steamdriven stamp mills were used to process a great volume of low-grade ores, resulting in huge amounts of crushed waste ore called stamp sands. Approximately 500 million tons of stamp sand were discarded. This material is investigated in this study as an example for the development of antimicrobial materials.

Li, Bowen; Hwang, Jiann-Yang; Drelich, Jaroslaw; Popko, Domenic; Bagley, Susan

2010-12-01

381

Health, safety and environmental issues relating to cadmium usage in photovoltaic energy systems  

SciTech Connect

This paper discusses the current technology base and hazards associated with two promising thin-film photovoltaic cells that contain cadmium compounds -- cadmium telluride (CdTe) and copper indium diselenide (CuInSe{sub 2}). More specifically, this paper summarizes the toxicological information on cadmium (Cd) compounds; evaluates potential health, safety and environmental hazards associated with cadmium usage in the photovoltaics industry; describes regulatory requirements associated with the use, handling and disposal of cadmium compounds; and lists management options to permit the safe and continued use of these materials. Handling of cadmium in photovoltaic production can present hazards to health, safety and the environment. Prior recognition of these hazards can allow device manufacturers and regulators to implement appropriate and readily available hazard management strategies. Hazards associated with product use (i.e., array fires) and disposal remain controversial and partially unresolved. The most likely effects that could be expected would be those associated with chronic low-level exposures to cadmium wastes. Because of the general immobility of the cadmium present in these devices and availability of environmental and biomonitoring protocols, chronic hazards can be monitored, and remediated if necessary. Nevertheless, concern about cadmium hazards should continue to be emphasized to ensure that health, safety and environmental issues are properly managed. At the same time, the potential role that these systems can play in ameliorating some important health and environmental hazards related to other energy systems should not be ignored. 27 refs., 5 figs., 2 tabs.

Moskowitz, P.D.; Fthenakis, V.M. (Brookhaven National Lab., Upton, NY (USA)); Zweibel, K. (Solar Energy Research Inst., Golden, CO (USA))

1989-12-01

382

Prediction of cadmium concentration in selected home-produced vegetables.  

PubMed

Soil contaminated with cadmium presents a potential hazard for humans, animals and plants. The latter play a major role in the transfer of cadmium to the food chain. The uptake of cadmium and its accumulation by plants is dependent on various soil, plants and environmental factors. In order to identify soil properties with statistically significant influence on cadmium concentration in vegetables and to reduce the collection of data, time and costs, regression models can be applied. The main objective of this research was to develop regression models to predict the concentration of cadmium in 9-vegetable species: zucchini, tomato, cabbage, onion, potato, carrot, red beet, endive and chicory, based on soil properties. Soil samples were collected from 123 home gardens of the Municipality of Celje and 59 of these gardens were also included in vegetable sampling. The concentration of elements (e.g. arsenic, cadmium, copper, lead, and zinc) in the samples was determined by Inductively Coupled Plasma Mass Spectrometry. Single (for cabbage, potato, red beet and chicory) and multiple (for tomato, onion, carrot and endive) linear regression models were developed. There was no statistically significant regression model for zucchini. The most significant parameter for the influencing the cadmium concentration in vegetables was the concentration of cadmium in soil. Other important soil properties were the content of organic matter, pH-value and the concentration of manganese. It was concluded that consuming carrots, red beets, endives, onions, potatoes and chicory which are grown in gardens with Cd concentrations (mgkg(-1) DW) above 2.4, 3.2, 6.3, 7.9, 8.3 and 10.9, respectively, might represent an important contribution to dietary Cd exposure. PMID:23886800

Bešter, Petra Karo; Lobnik, Franc; Eržen, Ivan; Kastelec, Damijana; Zupan, Marko

2013-10-01

383

Critical levels of blood and urinary cadmium, urinary beta 2-microglobulin and retinol-binding protein for monitoring cadmium health effects.  

PubMed

The critical levels for monitoring cadmium health effects in 358 workers engaged in ore crushing/roasting (cadmium concentration in the workplace air 2.5-6.5 mg/m3), dry smelting (10.8-23.3 mg/m3), cadmium melting (0.01-0.16 mg/m3), and ingot making (2.8-4.7 mg/m3), were investigated. Exposure parameters such as blood and urinary cadmium were determined, together with biological parameters such as proteinuria, amino acids, glucose, beta 2-microglobulin, retinol-binding protein, albumin, plasma beta 2-microglobulin, creatinine clearance, tubular reabsorption of beta 2-microglobulin and phosphate, and blood and urinary levels of zinc, copper and lead. Factor analysis and stepwise regression analysis were then applied to the data to classify parameters and to find the main contributing parameter. Blood and urinary cadmium, urinary beta 2-microglobulin, retinol-binding protein and the ratio of urinary beta 2-microglobulin to albumin were also subjected to multiple correlation analysis, multiple regression analysis and the Chi-square test was applied to contingency tables. It is concluded, based on the data, that cadmium health effects may be assessed by using the following critical levels: blood cadmium: 10 micrograms/l, urinary cadmium: 10 micrograms/g creatinine; urinary beta 2-microglobulin: 2000 micrograms/g creatinine, urinary retinol-binding protein: 200 micrograms/g creatinine and a ratio of urinary beta 2-microglobulin to albumin of 0.001. PMID:1303959

Nomiyama, K; Liu, S J; Nomiyama, H

1992-01-01

384

Copper and oxidative stress in the pathogenesis of Alzheimer's disease.  

PubMed

Copper is a redox-active metal with many important biological roles. Consequently, its distribution and oxidation state are subject to stringent regulation. A large body of clinicopathological, circumstantial, and epidemiological evidence suggests that the dysregulation of copper is intimately involved in the pathogenesis of Alzheimer's disease. Other light transition metals such as iron and zinc may affect copper regulation by competing for copper binding sites and transporters. Therapeutic interventions targeting the regulation of copper are promising, but large gaps in our understanding of copper biochemistry, amyloidogenesis, and the nature of oxidative stress in the brain must be addressed. PMID:22708607

Eskici, Gözde; Axelsen, Paul H

2012-08-14

385

Application of Emulsified Zero-Valent Iron to Marine Environments  

NASA Technical Reports Server (NTRS)

Contamination of marine waters and sediments with heavy metals and dense non-aqueous phase liquids (DNAPLs) including chlorinated solvents, pesticides and PCBs pose ecological and human health risks through the potential of the contaminant to bioaccumulate in fish, shellfish and avian populations. The contaminants enter marine environments through improper disposal techniques and storm water runoff. Current remediation technologies for application to marine environments include costly dredging and off-site treatment of the contaminated media. Emulsified zero-valent iron (EZVI) has been proven to effectively degrade dissolved-phase and DNAPL-phase contaminants in freshwater environments on both the laboratory and field-scale level. Emulsified Zero-Valent Metal (EZVM) using metals such as iron and/or magnesium have been shown in the laboratory and on the bench scale to be effective at removing metals contamination in freshwater environments. The application to marine environments, however, is only just being explored. This paper discusses. the potential use of EZVI or EZVM in brackish and saltwater environments, with supporting laboratory data detailing its effectiveness on trichloroethylene, lead, copper, nickel and cadmium.

Quinn, Jacqueline W.; Brooks, Kathleen B.; Geiger, Cherie L.; Clausen, Christian A.; Milum, Kristen M.

2006-01-01

386

Trace metal removal by iron coprecipitation: Field evaluation: Final report  

SciTech Connect

Many trace elements found in coal-fired power plant wastewaters are designated as priority pollutants by the USEPA. These include beryllium, cadmium, copper, chromium, lead, nickel, and zinc. This report presents the results of a field demonstration of the iron adsorption/coprecipitation process at the Pennsylvania Power and Light (PP and L) Company's Montour Steam Electric Station in Washingtonville, Pennsylvania. The study focused on removing many of the above-mentioned trace elements from several waste streams, including ash pond effluent, air heater wash, coal pile drainage, and leachate from a dry fly ash landfill. The study's objectives were to verify previously derived laboratory results, confirm technological and economical feasibility, and develop information that could be used to design and estimate costs of full-scale systems. The treatment technology was tested at pilot scale (10 gpm) in a continuous system under field conditions. The study examined the roles of pH, iron, and polymers in trace element removal. Investigators also studied sludges produced by the treatment process. This report describes methods for predicting sludge production, gravity sludge thickening efficiency, and sludge dewatering effectiveness (by filter press). It also discusses the results of testing four different types of process sludge with five hazardous waste characterization procedures (the EP Toxicity, Toxicity Characteristic Leaching Procedure, and California Assessment Manual tests). Results are presented from experiments designed to simulate the interactions between iron sludges and clay liners when the sludges are buried in sludge-only landfills. Finally, a design and cost example is presented to illustrate the use of pilot results in implementation of iron treatment technology at full-scale. 59 refs., 37 figs., 65 tabs.

Manzione, M.A.; Merrill, D.T.

1989-06-01

387

Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence  

PubMed Central

For all microorganisms, acquisition of metal ions is essential for survival in the environment or in their infected host. Metal ions are required in many biological processes as components of metalloproteins and serve as cofactors or structural elements for enzymes. However, it is critical for bacteria to ensure that metal uptake and availability is in accordance with physiological needs, as an imbalance in bacterial metal homeostasis is deleterious. Indeed, host defense strategies against infection either consist of metal starvation by sequestration or toxicity by the highly concentrated release of metals. To overcome these host strategies, bacteria employ a variety of metal uptake and export systems and finely regulate metal homeostasis by numerous transcriptional regulators, allowing them to adapt to changing environmental conditions. As a consequence, iron, zinc, manganese, and copper uptake systems significantly contribute to the virulence of many pathogenic bacteria. However, during the course of our experiments on the role of iron and manganese transporters in extraintestinal Escherichia coli (ExPEC) virulence, we observed that depending on the strain tested, the importance of tested systems in virulence may be different. This could be due to the different set of systems present in these strains, but literature also suggests that as each pathogen must adapt to the particular microenvironment of its site of infection, the role of each acquisition system in virulence can differ from a particular strain to another. In this review, we present the systems involved in metal transport by Enterobacteria and the main regulators responsible for their controlled expression. We also discuss the relative role of these systems depending on the pathogen and the tissues they infect. PMID:24367764

Porcheron, Gaëlle; Garénaux, Amélie; Proulx, Julie; Sabri, Mourad; Dozois, Charles M.

2013-01-01

388

Accumulation of Copper and Other Metals by Copper-Resistant Plant-Pathogenic and Saprophytic Pseudomonads  

PubMed Central

Copper-resistant strains of Pseudomonas syringae carrying the cop operon produce periplasmic copper-binding proteins, and this sequestration outside the cytoplasm has been proposed as a resistance mechanism. In this study, strain PS61 of P. syringae carrying the cloned cop operon accumulated more total cellular copper than without the operon. Several other copper-resistant pseudomonads with homology to cop were isolated from plants, and these bacteria also accumulated copper. Two highly resistant species accumulated up to 115 to 120 mg of copper per g (dry weight) of cells. P. putida 08891 was more resistant to several metals than P. syringae pv. tomato PT23, but this increased resistance was not correlated with an increased accumulation of metals other than copper. Several metals were accumulated by both PT23 and P. putida, but when copper was added to induce the cop operon, there was generally no increase of accumulation of the other metals, suggesting that the cop operon does not contribute to accumulation of these other metals. The exceptions were aluminum for PT23 and iron for P. putida, which accumulated to higher levels when copper was added to the cultures. The results of this study support the role of copper sequestration in the copper resistance mechanism of P. syringae and suggest that this mechanism is common to several copper-resistant Pseudomonas species found on plants to which antimicrobial copper compounds are applied for plant disease control. PMID:16348627

Cooksey, Donald A.; Azad, Hamid R.

1992-01-01

389

Coprecipitation with yttrium phosphate as a separation technique for iron(III), lead, and bismuth from cobalt, nickel, and copper matrices  

Microsoft Academic Search

The coprecipitation behavior of 44 elements (47 ions because of chromium(III,VI), arsenic(III,V), and antimony(III,V)) with yttrium phosphate was investigated at various pHs. Yttrium phosphate could quantitatively coprecipitate iron(III), lead, bismuth, and indium over a wide pH range; however, 18 ions, including alkali metals and oxo anions, such as vanadium(V), chromium(VI), molybdenum(VI), tungsten(VI), germanium(IV), arsenic(III,V), selenium(IV), and tellurium(VI), were scarcely collected.

Shigehiro Kagaya; Yasuko Araki; Noriyasu Hirai; Kiyoshi Hasegawa

2005-01-01

390

Copper hypersensitivity.  

PubMed

The world production of copper is steadily increasing. Although humans are widely exposed to copper-containing items on the skin and mucosa, allergic reactions to copper are only infrequently reported. To review the chemistry, biology and accessible data to clarify the implications of copper hypersensitivity, a database search of PubMed was performed with the following terms: copper, dermatitis, allergic contact dermatitis, contact hypersensitivity, contact sensitization, contact allergy, patch test, dental, IUD, epidemiology, clinical, and experimental. Human exposure to copper is relatively common. As a metal, it possesses many of the same qualities as nickel, which is a known strong sensitizer. Cumulative data on subjects with presumed related symptoms and/or suspected exposure showed that a weighted average of 3.8% had a positive patch test reaction to copper. We conclude that copper is a very weak sensitizer as compared with other metal compounds. However, in a few and selected cases, copper can result in clinically relevant allergic reactions. PMID:25098945

Fage, Simon W; Faurschou, Annesofie; Thyssen, Jacob P

2014-10-01

391

Characterization of a cadmium-binding complex of cabbage leaves  

Microsoft Academic Search

The chemical nature of a principle, inducible cadmium-binding complex which accumulates in cabbage leaves was studied and compared with that of animal metallothionein and copper-binding proteins isolated from various organisms. The apparent molecular weight of native cabbage complex and carboxymethylated ligand of the complex under native conditions as determined by gel filtration was about 10,000 daltons. Under denaturing conditions their

G. J. Wagner

1984-01-01

392

Redesigning the blue copper azurin into a redox-active mononuclear nonheme iron protein: preparation and study of Fe(II)-M121E azurin.  

PubMed

Much progress has been made in designing heme and dinuclear nonheme iron enzymes. In contrast, engineering mononuclear nonheme iron enzymes is lagging, even though these enzymes belong to a large class that catalyzes quite diverse reactions. Herein we report spectroscopic and X-ray crystallographic studies of Fe(II)-M121E azurin (Az), by replacing the axial Met121 and Cu(II) in wild-type azurin (wtAz) with Glu and Fe(II), respectively. In contrast to the redox inactive Fe(II)-wtAz, the Fe(II)-M121EAz mutant can be readily oxidized by Na2IrCl6, and interestingly, the protein exhibits superoxide scavenging activity. Mössbauer and EPR spectroscopies, along with X-ray structural comparisons, revealed similarities and differences between Fe(II)-M121EAz, Fe(II)-wtAz, and superoxide reductase (SOR) and allowed design of the second generation mutant, Fe(II)-M121EM44KAz, that exhibits increased superoxide scavenging activity by 2 orders of magnitude. This finding demonstrates the importance of noncovalent secondary coordination sphere interactions in fine-tuning enzymatic activity. PMID:25082811

Liu, Jing; Meier, Katlyn K; Tian, Shiliang; Zhang, Jun-Long; Guo, Hongchao; Schulz, Charles E; Robinson, Howard; Nilges, Mark J; Münck, Eckard; Lu, Yi

2014-09-01

393

Copper determination in natural water samples by using FAAS after preconcentration onto amberlite XAD-2 loaded with calmagite.  

PubMed

A procedure for separation and preconcentration of trace amounts of copper in natural water samples, has been proposed. It is based on the adsorption of copper(II) ions onto a column of Amberlite XAD-2 resin loaded with calmagite reagent. This way amounts of copper within the range from 0.0125 to 25.0 microg, in a sample volume of 25 to 250 ml, and pH from 3.7 to 10.0 was concentrated as calmagite complex in a column of 0.50 g of Amberlite XAD-2 resin. Copper (II) ion was desorpted by using 5.0 ml of 2 mol l(-1) hydrochloric acid. Detection and determination limits of the proposed procedure for 250 ml sample volume were 0.15 and 0.50 microg l(-1), respectively. Selectivity test showed that (in the indicated concentration), calcium(II) (500 mg l(-1)), magnesium(II) (500 mg l(-1)), strontium(II) (50 mg l(-1)), iron(III) (10 mg l(-1)), nickel(II) (10 mg l(-1)), cobalt(II) (10 mg l(-1)), cadmium(II) (10 mg l(-1)) and lead(II) (10 mg l(-1)) did not interfere in copper determination by this procedure. Precision of the method, evaluated as the relative standard deviation by analyzing a series of seven replicates, was 2.42% for a copper mass of 1.0 microg in a sample volume of 100 ml. The accuracy of the proposed procedure was evaluated by means of copper determination in reference biological samples. The achieved results were in good agreement with certified values. The extractor system had a sorption capacity of 1.59 mumol of copper per gram of resin loaded with calmagite. The proposed procedure was applied for copper determination by FAAS in natural water samples. Samples were collected from different places of Salvador city, Bahia, Brazil. The achieved recovery, measured by the standard addition technique, showed that the proposed procedure had good accuracy. A good enrichment factor (50x) and simplicity are the main advantages in this analytical procedure. PMID:18967821

Ferreira, S L; Ferreira, J R; Dantas, A F; Lemos, V A; Araújo, N M; Spinola Costa, A C

2000-01-10

394

Determination of calcium, copper, iron, magnesium, manganese, potassium, phosphorus, sodium, and zinc in fortified food products by microwave digestion and inductively coupled plasma-optical emission spectrometry: single-laboratory validation and ring trial.  

PubMed

A single-laboratory validation (SLV) and a ring trial (RT) were undertaken to determine nine nutritional elements in food products by inductively coupled plasma-optical emission spectrometry in order to modernize AOAC Official Method 984.27. The improvements involved extension of the scope to all food matrixes (including infant formula), optimized microwave digestion, selected analytical lines, internal standardization, and ion buffering. Simultaneous determination of nine elements (calcium, copper, iron, potassium, magnesium, manganese, sodium, phosphorus, and zinc) was made in food products. Sample digestion was performed through wet digestion of food samples by microwave technology with either closed- or open-vessel systems. Validation was performed to characterize the method for selectivity, sensitivity, linearity, accuracy, precision, recovery, ruggedness, and uncertainty. The robustness and efficiency of this method was proven through a successful RT using experienced independent food industry laboratories. Performance characteristics are reported for 13 certified and in-house reference materials, populating the AOAC triangle food sectors, which fulfilled AOAC criteria and recommendations for accuracy (trueness, recovery, and z-scores) and precision (repeatability and reproducibility RSD, and HorRat values) regarding SLVs and RTs. This multielemental method is cost-efficient, time-saving, accurate, and fit-for-purpose according to ISO 17025 Norm and AOAC acceptability criteria, and is proposed as an extended updated version of AOAC Official Method 984.27 for fortified food products, including infant formula. PMID:22468357

Poitevin, Eric

2012-01-01

395

Cadmium Transporters in the Kidney and Cadmium-Induced Nephrotoxicity  

PubMed Central

Among the organs in which the environmental pollutant cadmium causes toxicity, the kidney has gained the most attention in recent years. Numerous studies have sought to unravel the exact pathways by which cadmium enters the renal epithelial cells and the mechanisms by which it causes toxicity in the kidney. The purpose of this review is to present the progress made on the mechanisms of cadmium transport in the kidney and the role of transporter proteins in cadmium-induced nephrotoxicity. PMID:25584611

Yang, Hong; Shu, Yan

2015-01-01

396

Effect of iron-intermetallics and porosity on tensile and impact properties of aluminum-silicon-copper and aluminum-silicon-magnesium cast alloys  

NASA Astrophysics Data System (ADS)

Aluminum-silicon (Al-Si) alloys are an important class of materials that constitute the majority of aluminum cast parts produced, due to their superior properties and excellent casting characteristics. Within this family of alloys, Al-Si-Cu and Al-Si-Mg cast alloys are frequently employed in automotive applications. The commercially popular 319 and 356 alloys, representing these two alloy systems, were selected for study in the present work, with the aim of investigating the effect of iron intermetallics and porosity on the alloy performance. This was carried out through a study of the tensile and impact properties, these being two of the important mechanical properties used in design calculations. Iron, through the precipitation of second phase intermetallic constituents, in particular the platelike beta-Al5FeSi phase, is harmful to the alloy properties. Likewise, gas- or shrinkage porosity in castings is also detrimental to the mechanical properties. By determining the optimum alloying, melt processing and solidification parameters (viz., Fe content, Sr modification and cooling rate) required to minimize the harmful effects of porosity and iron intermetallics, and studying their role on the fracture behavior, the fracture mechanism in the alloys could be determined. Castings were prepared from both industrial and experimental 319.2, B319.2 and A356.2 alloy melts, containing Fe levels of 0.2--1.0 wt%. Sr-modified (˜200 ppm) melts were also prepared for each alloy Fe level. The end-chilled refractory mold used provided directional solidification and a range of cooling rates (or dendrite arm spacings, DAS) within the same casting. Tensile and impact test samples machined from specimen blanks sectioned from the castings at various heights above the chill end provided DASs of 23--85mum. All samples were T6-heat-treated before testing. Tests were carried out employing Instron Universal and Instrumented Charpy testing machines. Optical microscopy, image analysis, SEM and EPMA techniques were used for microstructural and fracture analysis. The results show that the highest cooling rate (23 mum DAS) is the most significant parameter controlling the size and distribution of the beta-Al 5FeSi phase and porosity in the unmodified 319.2 and A356.2 alloys. (Abstract shortened by UMI.)

Ma, Zheyuan

397

Copper Metallochaperones  

PubMed Central

The current state of knowledge on how copper metallochaperones support the maturation of cuproproteins is reviewed. Copper is needed within mitochondria to supply the CuA and intramembrane CuB sites of cytochrome oxidase, within the trans-Golgi network to supply secreted cuproproteins and within the cytosol to supply superoxide dismutase 1 (Sod1). Subpopulations of copper-zinc superoxide dismutase also localize to mitochondria, the secretory system, the nucleus and, in plants, the chloroplast, which also requires copper for plastocyanin. Prokaryotic cuproproteins are found in the cell membrane and in the periplasm of gram-negative bacteria. Cu(I) and Cu(II) form tight complexes with organic molecules and drive redox chemistry, which unrestrained would be destructive. Copper metallochaperones assist copper in reaching vital destinations without inflicting damage or becoming trapped in adventitious binding sites. Copper ions are specifically released from copper metallochaperones upon contact with their cognate cuproproteins and metal transfer is thought to proceed by ligand substitution. PMID:20205585

Robinson, Nigel J.; Winge, Dennis R.

2014-01-01

398

Simultaneous removal of nitrate and heavy metals by iron metal*  

PubMed Central

Great attention should be paid now to simultaneously removing common pollutants, especially inorganic pollutants such as nitrate and heavy metals, as individual removal has been investigated extensively. Removing common pollutants simultaneously by iron metal is a very effective alternative method. Near neutral pH, heavy metals, such as copper and nickel, can be removed rapidly by iron metal, while nitrate removal very much slower than that of copper and nickel, and copper can accelerate nitrate removal when both are removed simultaneously. Even a little amount of copper can enhance nitrate removal efficiently. Different mechanisms of these contaminants removal by iron metal were also discussed. PMID:15822139

Hao, Zhi-wei; Xu, Xin-hua; Jin, Jian; He, Ping; Liu, Yong; Wang, Da-hui

2005-01-01

399

The genetic basis of cadmium resistance of Burkholderia cenocepacia.  

PubMed

Burkholderia species are highly resistant to heavy metals (HMs), yet their resistance mechanisms are largely unknown. In this study we screened 5000 mini-Tn5 transposon insertion mutants of Burkholderia cenocepacia H111 for loss of cadmium tolerance. Of the four genes identified three affected outer membrane biogenesis and integrity or DNA repair. The fourth gene, BCAE0587, encoded a P1-type ATPase belonging to the CadA family of HM exporters. CadA-deficient strains lost the ability to grow in the presence of cadmium, zinc and lead, whereas resistance to nickel, copper and cobalt was not affected. Expression studies using a transcriptional fusion of the cadA promoter to gfp confirmed this specificity, as induction was only observed in presence of cadmium, zinc and lead. The promoter activity was found to be highest at neutral pH with an activation threshold of 30?nM cadmium. Inoculation of the HM-hyperaccumulating plant Arabidopsis halleri with a RFP-marked derivative of B.?cenocepacia H111 containing the PcadA -gfp fusion demonstrated the applicability of this biosensor for monitoring cadmium at the single cell level in a natural environment. PMID:23760902

Schwager, Stephan; Lumjiaktase, Putthapoom; Stöckli, Martina; Weisskopf, Laure; Eberl, Leo

2012-10-01

400

Characterization of metal binding peptides from cadmium resistant plant cells  

SciTech Connect

The majority of the cellular cadmium (<80%) in cadmium resistant Datura innoxia cells is bound to a small, metal induced peptide which is not metallothionein. This peptide consists of glutamate, cysteine and glycine in a ratio between 2:2:1 and 3:3:1 and has an apparent molecular weight of 776, under denaturing conditions. It is heat stable and complexes with cadmium to produce multimeric forms which are separable by gel filtration. Chemical analyses suggest that some amino acids are not joined by classical peptide linkages. This indicates that the synthesis of the peptide may not be directed by mRNA and that induction of its synthesis may not involve increased transcription from a putative gene corresponding directly to this peptide. A smaller proportion (>15%) of the cellular cadmium is bound to a larger compound which is also heat stable and binds copper more readily than cadmium in vivo. This larger compound has an amino acid composition similar, in some respects, to metallothioneins. 22 refs., 1 fig., 1 tab.

Robinson, N.J.; Barton, K.; Naranjo, C.M.; Sillerud, L.O.; Trewhella, J.; Watt, K.; Jackson, P.J.

1985-01-01