Science.gov

Sample records for cadmium sulfide solar

  1. Integrated thin film cadmium sulfide solar cell module

    NASA Technical Reports Server (NTRS)

    Mickelsen, R. A.; Abbott, D. D.

    1971-01-01

    The design, development, fabrication and tests of flexible integrated thin-film cadmium sulfide solar cells and modules are discussed. The development of low cost and high production rate methods for interconnecting cells into large solar arrays is described. Chromium thin films were applied extensively in the deposited cell structures as a means to: (1) achieve high adherence between the cadmium sulfide films and the vacuum-metallized copper substrates, (2) obtain an ohmic contact to the cadmium sulfide films, and (3) improve the adherence of gold films as grids or contact areas.

  2. Cadmium sulfide membranes

    DOEpatents

    Spanhel, Lubomir; Anderson, Marc A.

    1992-07-07

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  3. Cadmium sulfide membranes

    DOEpatents

    Spanhel, Lubomir; Anderson, Marc A.

    1991-10-22

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  4. Cadmium sulfide thin films deposited by close spaced sublimation and cadmium sulfide/cadmium telluride solar cells

    NASA Astrophysics Data System (ADS)

    Marinskiy, Dmitriy Nikolaevich

    1998-12-01

    One of the applications of CdS films is as a window layer in CdTe and Cu(In,Ga)Sesb2 solar cells. The study of the optical and structural properties of CdS films deposited by close spaced sublimation as well as their influence on CdS/CdTe solar cell performance is part of the CdTe solar cell program at the University of South Florida. CdS films have been deposited by the close-spaced sublimation technique. The influence of the main process parameters, the substrate and source temperatures, and the ambient in the deposition chamber has been investigated. As-deposited films have been subjected to heat treatments in Hsb2 ambient, in CdClsb2 atmosphere, and in atmosphere with small amounts of oxygen. A special annealing chamber was built to carry out the annealing experiments in the presence of CdClsb2 vapor and oxygen. Several CSS chambers were assembled to study the influence of various process parameters simultaneously and validate the results. Results of scanning electron microscopy and photoluminescence measurements have been used as the primary characterization techniques. X-ray diffraction, electron microprobe analysis, and transmission measurements have also been carried out. It was found that as deposited CdS films have a hexagonal structure independent of the process parameters used. The presence of a CdO phase was detected in the samples grown with the highest oxygen concentration in the ambient. The resistivity of CdS films is controlled by intergrain barriers. Photoluminescence measurements showed the presence of oxygen-acceptor transition and a wide variation in the intensity of deep emission bands. The variation in the intensities was correlated with the variation in the deposition and annealing conditions. However, no correlation was found between the PL intensities of defect bands and cell performance. CdS/CdTe junctions have been fabricated using standard deposition and postgrowth techniques developed in the USF solar cells laboratory. All cells have

  5. Improved performance of carbon nanotubes—manganese doped cadmium sulfide quantum dot nanocomposite based solar cell

    NASA Astrophysics Data System (ADS)

    Kaur, Rajnish; Priya, Nidhi; Deep, Akash

    2016-01-01

    The nanocomposites of carbon nanotubes with quantum dots (MWCNT-QDS) display the capability of light induced charge dissociation and transport, which make them suitable for photovoltaic applications. The present work reports the coupling of multiwalled CNT (MWCNT) with L-cysteine (2-amino 3-mercaptopropionic acid) capped manganese doped cadmium sulfide QDs (CdS:Mn). The confirmation of the MWCNT-CdS:Mn nanocomposite formation is done with various instrumental techniques. Current-voltage studies of the MWCNT-CdS:Mn thin film indicate their semiconducting behavior. Further, cyclic voltammetry and frequency response analyses of the above MWCNT-CdS:Mn thin film have highlighted their potential application as a photoanode material in dye sanitized solar cells. It has been demonstrated that the use of MWCNT-CdS:Mn nanocomposite as a photoanode material offer better photocurrent characteristics as compared to QDS alone.

  6. Process for producing cadmium sulfide on a cadmium telluride surface

    DOEpatents

    Levi, Dean H.; Nelson, Art J.; Ahrenkiel, Richard K.

    1996-01-01

    A process for producing a layer of cadmium sulfide on a cadmium telluride surface to be employed in a photovoltaic device. The process comprises providing a cadmium telluride surface which is exposed to a hydrogen sulfide plasma at an exposure flow rate, an exposure time and an exposure temperature sufficient to permit reaction between the hydrogen sulfide and cadmium telluride to thereby form a cadmium sulfide layer on the cadmium telluride surface and accomplish passivation. In addition to passivation, a heterojunction at the interface of the cadmium sulfide and the cadmium telluride can be formed when the layer of cadmium sulfide formed on the cadmium telluride is of sufficient thickness.

  7. Development of copper sulfide/cadmium sulfide thin-film solar cells

    SciTech Connect

    Szedon, J.R.; Biter, W.J.; Abel, J.A.; Dickey, H.C.; Shirland, F.A.

    1981-02-27

    The purpose of this work has been to identify aspects of cell fabrication and treatment which are critical for achieving high efficiency Cu/sub 2/S/CdS solar cells. In approaching the problem several comparisons were made of the effects of specific steps in two methods of cell fabrication. These methods had previously given cells of about 6% and a maximum of 9% efficiency. Three areas requiring special attention and specific means to achieve acceptable results were identified. (1) The Cu/sub 2/S/CdS heterojunction area must be minimized. If single source evaporations of CdS are made on substrates whose temperatures (approx. 220/sup 0/C) are monitored and controlled using welded thermocouples, the CdS films will have adequately large grains (grain diameter greater than or equal to 2 ..mu..m) and will not develop significant etch pits during texturing in a mild etchant solution. (2) The termination of the wet barrier processing steps must be done carefully. An acceptable termination involves minimizing the amount of cuprous chloride retained on the cell surface during transfer to a rinsing stage while providing adequate exclusion of air from the space above the surface of the cuprous chloride solution. (3) Once formed, the Cu/sub 2/S layer should not be exposed to high temperatures (>100/sup 0/C) for long periods of time (> 5 min) if surface adsorbed moisture or oxygen are present. Heat treatments in ampoules under flowing hydrogen atmospheres should be preceded and followed by periods of at least 30 minutes at room temperature in the reducing ambient. If all these precautions are taken, wet chemical barrier processing of thermally evaporated CdS films on zinc-plated copper foil substrates yields cells of nearly 8% conversion efficiency without AR coating.

  8. Development of copper sulfide/cadmium sulfide thin-film solar cells

    SciTech Connect

    Szedon, J. R.; Biter, W. J.; Dickey, H. C.

    1982-03-08

    The most important accomplishments during this period were to demonstrate and to elucidate further the complex effects that occur during the aging of Cu/sub 2/S/CdS thin-film solar cells in flowing wet oxygen. There are two distinct effects. At constant illumination, the short-circuit current of cells aged at room temperature consistently decreases with time. The second effect, related to diode opposing current, is more involved and may result from several competing mechanisms. Over the short term (approx. 4 to 5 hours), the magnitude of diode opposing current decreases. After approx. 20 hours of aging, opposing current generally returns to the level achieved after hydrogen annealing which immediately preceded the aging sequence. Optical measurements of the spectral transmission of the Cu/sub 2/S layers in a cell content have been made using a silicon detector epoxied to the back of a CdS cell after the copper foil substrate was removed. There is no significant change in Cu/sub 2/S transmission behavior for wavelengths ranging from 525 to 1000 nm during wet-oxygen aging for periods of 2 to 36 hours. This suggests that the decrease in J/sub SC/ at constant illumination, for the aging experiments in a flowing wet-oxygen ambient, arises because of changes in minority-carrier transport properties of the Cu/sub 2/S. Before developing a method for using an epoxied silicon detector to measure optical behavior of the Cu/sub 2/S layer, we explored the possibility of using a junction-containing wafer of silicon as a substrate for deposited CdS films. Some monolithic structures were successfully fabricated. Comparisons were made of CdS grain structure details in the junction detector area and in an adjacent metallized area.

  9. Process for producing cadmium sulfide on a cadmium telluride surface

    DOEpatents

    Levi, D.H.; Nelson, A.J.; Ahrenkiel, R.K.

    1996-07-30

    A process is described for producing a layer of cadmium sulfide on a cadmium telluride surface to be employed in a photovoltaic device. The process comprises providing a cadmium telluride surface which is exposed to a hydrogen sulfide plasma at an exposure flow rate, an exposure time and an exposure temperature sufficient to permit reaction between the hydrogen sulfide and cadmium telluride to thereby form a cadmium sulfide layer on the cadmium telluride surface and accomplish passivation. In addition to passivation, a heterojunction at the interface of the cadmium sulfide and the cadmium telluride can be formed when the layer of cadmium sulfide formed on the cadmium telluride is of sufficient thickness. 12 figs.

  10. Solution Processing of Cadmium Sulfide Buffer Layer and Aluminum-Doped Zinc Oxide Window Layer for Thin Films Solar Cells

    NASA Astrophysics Data System (ADS)

    Alam, Mahboob; Islam, Mohammad; Achour, Amine; Hayat, Ansar; Ahsan, Bilal; Rasheed, Haroon; Salam, Shahzad; Mujahid, Mohammad

    2014-07-01

    Cadmium sulfide (CdS) and aluminum-doped zinc oxide (Al:ZnO) thin films are used as buffer layer and front window layer, respectively, in thin film solar cells. CdS and Al:ZnO thin films were produced using chemical bath deposition (CBD) and sol-gel technique, respectively. For CBD CdS, the effect of bath composition and temperature, dipping time and annealing temperature on film properties was investigated. The CdS films are found to be polycrystalline with metastable cubic crystal structure, dense, crack-free surface morphology and the crystallite size of either few nanometers or 12-17 nm depending on bath composition. In case of CdS films produced with 1:2 ratio of Cd and S precursors, spectrophotometer studies indicate quantum confinement effect, owing to extremely small crystallite size, with an increase in Eg value from 2.42 eV (for bulk CdS) to 3.76 eV along with a shift in the absorption edge toward 330 nm wavelength. The optimum annealing temperature is 400°C beyond which film properties deteriorate through S evaporation and CdO formation. On the other hand, Al:ZnO films prepared via spin coating of precursor sols containing 0.90-1.10 at.% Al show that, with an increase in Al concentration, the average grain size increases from 28 nm to 131 nm with an associated decrease in root-mean-square roughness. The minimum value of electrical resistivity, measured for the films prepared using 0.95 at.% Al in the precursor sol, is 2.7 × 10-4 Ω ṡ cm. The electrical resistivity value rises upon further increase in Al doping level due to introduction of lattice defects and Al segregation to the grain boundary area, thus limiting electron transport through it.

  11. Admittance spectroscopy of copper indium diselenide/cadmium sulfide solar cells

    NASA Astrophysics Data System (ADS)

    Strifler, Walter A.

    This dissertation concentrates on admittance spectroscopy of CuInSe2/CdS heterojunction solar cells prepared by chemical spray pyrolysis (CSP) and by multiple-source evaporation (MSE). The primary goal is to examine some of the more important electrical characteristics of these heterojunctions and determine if the spray-pyrolyzed cells behave similar, albeit at a lower efficiency, to higher quality cells prepared by other techniques. The primary analytical tool used in this study is admittance spectroscopy. The theory of admittance spectroscopy is developed using the concept of equivalent circuits. The traditional temperature-swept technique for admittance spectroscopy is shown to be inadequate for measuring most heterojunction samples examined in this study because of the large parallel leakage conductance found in these devices. Instead, a frequency-swept admittance technique is developed and employed to correct for the parallel conductance effect and reveal the true nature of slow charge in the depletion layer. In addition to admittance spectroscopy, the two sets of solar cell diodes are characterized using a variety of measurement techniques including capacitance-voltage, current-voltage over spectral response, capacitance dispersion over wavelength, and solar efficiency. The different pieces of experimental data are discussed to form a self-consistent physical model of the polycrystalline solar cells. Charge transport across the diode junction is dominated by recombination processes within the CuInSe2 depletion layer for both sets of diodes although the large parallel conductance in the CSP diodes often masks this characteristic. The CSP solar cells exhibit a pronounced blue peak in the spectral response indicating that electron collection is the limiting factor in the overall short-circuit quantum efficiency. A large degree of capacitance dispersion is found in both sets of diodes. Supporting measurements indicate that the majority of this dispersion is due

  12. Effects of contact-based non-uniformities in cadmium sulfide/cadmium telluride thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Davies, Alan R.

    To strongly contribute to the near-term electricity supply, CdTe-based photovoltaic devices must continue to improve in performance under the constraint of simple and cost efficient fabrication methods. This dissertation focuses on characterization and modeling of devices with non-uniform performance induced by the cell contacts. Devices were obtained from a commercially viable pilot-scale fabrication system at Colorado State University. Current versus voltage (J-V), quantum efficiency (QE) and laser-beam-induced current (LBIC) were the main characterization techniques applied in this work. The p-type CdTe semiconductor has a large work-function and thus tends to form a Schottky barrier when the back-electrode is formed. A common strategy of mitigating the performance-limiting contact barrier is to prepare the CdTe surface with a chemical etch, and include Cu to reduce the effective barrier. Non-uniformity of the etch or Cu inclusion, or insufficient application of Cu can result in a non-uniform contact, with regions of high- and low-energy Schottky barriers participating in the cell performance. Barrier non-uniformities in devices with little or no Cu were identified with the LBIC measurement and a model for their influence was developed and tested using PSpice circuit modeling software. Because of their superstrate configuration, CdTe cells feature front contacts made from transparent-conducting oxides (TCOs). Fluorine-doped tin oxide (F:SnO2) is a common choice because of its availability and acceptable optical and electrical properties. When the n-CdS layer of the CdS/CdTe structure is thinned to encourage greater current generation, non-uniformities of the solar cell junction arise, as CdTe comes into sporadic contact with the TCO layer. Device simulations suggest that the SnO2/CdTe junction is weaker than CdS/CdTe because of a large conduction-band offset induced by the differing electron affinities in the heterojunction. LBIC was used to verify increasing

  13. A bifacial quantum dot-sensitized solar cell with all-cadmium sulfide photoanode

    NASA Astrophysics Data System (ADS)

    Ma, Chunqing; Tang, Qunwei; Liu, Danyang; Zhao, Zhiyuan; He, Benlin; Chen, Haiyan; Yu, Liangmin

    2015-02-01

    Pursuit of a high power conversion efficiency and reduction of electricity-generation cost has been a persistent objective for quantum dot-sensitized solar cells (QDSSCs). We present here the fabrication of a QDSSC comprising a nanoflower-structured CdS anode, a liquid electrolyte having S2-/Sn2- redox couples, and a transparent CoSe counter electrode. Nanoflower-structured CdS anodes are prepared by a successive ionic layer adsorption and reaction (SILAR) method and subsequently hydrothermal strategy free of any surfactant or template. The CdS nanoparticles synthesized by a SILAR method act as "seed crystal" for growth of CdS nanoflowers. The average electron lifetime is markedly elevated in nanoflower-structured CdS anode in comparison with CdS nanoparticle or nanoporous CdS microsphere anode. Herein, we study the effect of synthesis method on CdS morphology and solar cell's photovoltaic performance, showing a power conversion efficiency of 1.67% and 1.17% for nanoflower-structured CdS QDSSC under front and rear irradiations, respectively.

  14. Chemical spray pyrolysis of copper indium diselenide/cadmium sulfide solar cells

    SciTech Connect

    Brown, B.J.

    1989-01-01

    This dissertation concentrates on Chemical Spray Pyrolysis (CSP) of CuInSe{sub 2} and CdS thin films and solar cells. The primary goal is to gain an understanding of the chemistry and physics of CSP, and apply this knowledge to the fabrication of CuInSe{sub 2}/CdS solar cells. It provide an extensive review of the literature on the properties of CuInSe{sub 2} an CdS produced by CSP and other techniques. The films are characterized by x-ray diffractometry, scanning electron microscopy, electron microprobe, van der Pauw-Hall measurements, and optical absorption spectroscopy, and the devices are characterized electrically in the dark and under illumination. A model for the chemical mechanisms involved in CSP of CdS an CuInSe{sub 2} thin films is developed which is used to point out similarities between the two systems and explain the correlation between spray solution pH and second phases in CuInSe{sub 2} thin films. Structural investigations show that the CuInSe{sub 2} films can be produced in either the ordered or disordered crystal structure, while different substrates radically change the morphology of the films. By taking into account the effect of second phases, the electrical and optical properties of the sprayed films agree with published results for CuInSe{sub 2} produced by other techniques. The properties of the sprayed CdS films in this work are shown to agree with those sprayed by others. The device properties of cells fabricated in both the backwall and reverse backwall configuration are compared with each other and related to the materials properties of the semiconductor layers. The highest efficiency cell employing sprayed CuInSe{sub 2} is reported; however, the efficiency of the cells still need improvement before becoming practical. The dissertation concludes with recommendations for increasing the efficiency of completely sprayed CuInSe{sub 2}/CdS solar cells.

  15. Cadmium stannate selective optical films for solar energy applications

    NASA Technical Reports Server (NTRS)

    Haacke, G.

    1975-01-01

    Efforts concentrated on reducing the electrical sheet resistance of sputtered cadmium stannate films, installing and testing equipment for spray coating experiments, and sputter deposition of thin cadmium sulfide layers onto cadmium stannate electrodes. In addition, single crystal silicon wafers were coated with cadmium stannate. Work also continued on the development of the backwall CdS solar cell.

  16. Indium phosphide/cadmium sulfide thin-film solar cells. Quarterly report, July-October 1980

    SciTech Connect

    Zanio, K.

    1981-01-01

    InP thin films were deposited by planar reactive deposition on recrystallized CdS (RXCdS) and semi-insulating (100) InP substrates and evaluated as potential layers for an all-thin-film solar cell. One objective of this period was to grow InP on RXCdS at a substrate temperature which is high enough to permit the growth of p-type material but yet low enough to permit the epitaxial growth of large grains. Films prepared on RXCdS at approximately 330/sup 0/C contained a mixture of grains having both large and submicron lateral dimensions. Be-doped epitaxial films, deposited on semi-insulating InP at 330/sup 0/C, showed both n- and p-type behavior. Films prepared at higher temperatures with a freshly Be-charged indium source were p-type. However, at these temperatures, layers prepared after several runs with the same source were n-type. Analyses of the indium source and films were initiated to determine the cause of the transient doping.

  17. Indium phosphide/cadmium sulfide thin-film solar cells. Semiannual report, July 1980-December 1980

    SciTech Connect

    Zanio, K.

    1981-03-01

    InP thin films were deposited by planar reactive deposition on recyrstallized CdS (RXCdS) and semi-insulating (100) InP substrates and evaluated as potential layers for an all-thin-film solar cell. Films prepared on RXCdS at approximately 330/sup 0/C contained a mixture of grains having both large and submicron lateral dimensions. SIMS analysis showed the interdiffusion profiles to be well behaved and, within the resolution of the analysis, no significant difference in the profiles between structures prepared at 330/sup 0/C and 380/sup 0/C. Be-doped epitaxial films, deposited on semi-insulating InP at 330/sup 0/C, showed both n- and p-type behavior. Films prepared at higher and lower temperatures with a freshly Be-charged In source were p-type and n-type, respectively; the n-type behavior is associated with an excess of n-type native defects. SIMS analyses confirmed the presence of Be in all Be-doped films. Growth with deviation from stoichiometry was initiated at 330/sup 0/C to reduce the concentration of native defects. Growth of Be-doped films at higher substrate temperature with the same Be-doped source after several runs eventually resulted in n-type films. Analyses of the In source and films were initiated to determine the cause of the transient doping. As an alternative to Be doping, p-type Zn-doped InP films were prepared on InP semi-insulating substrates with room-temperature carrier concentration and mobilities of 6 x 10/sup 16/ cm/sup -3/, and 80 cm/sup 2//Vsec, respectively.

  18. Process for thin film deposition of cadmium sulfide

    DOEpatents

    Muruska, H. Paul; Sansregret, Joseph L.; Young, Archie R.

    1982-01-01

    The present invention teaches a process for depositing layers of cadmium sulfide. The process includes depositing a layer of cadmium oxide by spray pyrolysis of a cadmium salt in an aqueous or organic solvent. The oxide film is then converted into cadmium sulfide by thermal ion exchange of the O.sup.-2 for S.sup.-2 by annealing the oxide layer in gaseous sulfur at elevated temperatures.

  19. Trichosporon jirovecii-mediated synthesis of cadmium sulfide nanoparticles.

    PubMed

    El-Baz, Ashraf Farag; Sorour, Noha Mohamed; Shetaia, Youssria Mohamed

    2016-05-01

    Cadmium sulphide is one of the most promising materials for solar cells and of great interest due to its useful applications in photonics and electronics, thus the development of bio-mediated synthesis of cadmium sulphide nanoparticles (CdS NPs) is one of the essential areas in nanoparticles. The present study demonstrates for the first time the eco-friendly biosynthesis of CdS NPs using the yeast Trichosporon jirovecii. The biosynthesis of CdS NPs were confirmed by UV-Vis spectrum and characterized by X-ray diffraction assay and electron microscopy. Scanning and transmission electron microscope analyses shows the formation of spherical CdS NPs with a size range of about 6-15 nm with a mean Cd:S molar ratio of 1.0:0.98. T. jirovecii produced hydrogen sulfide on cysteine containing medium confirmed by positive cysteine-desulfhydrase activity and the colony color turned yellow on 0.1 mM cadmium containing medium. T. jirovecii tolerance to cadmium was increased by the UV treatment and three 0.6 mM cadmium tolerant mutants were generated upon the UV radiation treatment. The overall results indicated that T. jirovecii could tolerate cadmium toxicity by its conversion into CdS NPs on cysteine containing medium using cysteine-desulfhydrase as a defense response mechanism. PMID:26467054

  20. Properties of reactively sputtered oxygenated cadmium sulfide (CdS:O) and their impact on CdTe solar cell performance

    SciTech Connect

    Meysing, Daniel M. Wolden, Colin A.; Griffith, Michelle M.; Mahabaduge, Hasitha; Pankow, Joel; Reese, Matthew O.; Burst, James M.; Rance, William L.; Barnes, Teresa M.

    2015-03-15

    Oxygenated cadmium sulfide (CdS:O) is commonly used as the n-type window layer in high-performance CdTe heterojunction solar cells. This layer is deposited by reactive sputtering, but the optimal amount of oxygen in the sputtering ambient is highly dependent on the specific system and process employed. In this work, the intrinsic properties of CdS:O were measured as a function of the oxygen content (0%–10%) in the sputtering ambient and correlated to device performance with the goal of better defining optimal CdS:O properties for CdTe solar cells. Optimal performance was found using CdS:O films that contained ∼40 at. % oxygen as measured by Rutherford backscattering spectrometry. X-ray photoelectron spectroscopy confirmed these results and showed that oxygen is incorporated primarily as oxygenated sulfur compounds (SO{sub x}). Device efficiency improved from 10.5% using CdS to >14% with CdS:O due largely to increases in short-circuit current density as well as a modest improvement in open-circuit voltage. The transparency of the CdS:O films was well correlated with observed improvements in blue quantum efficiency with increasing oxygen content. The optical bandgap of as-deposited CdS:O was identified as a simple metric for process optimization and transfer, with 2.8 eV being ideal for the device architecture employed.

  1. Cadmium zinc sulfide by solution growth

    DOEpatents

    Chen, Wen S.

    1992-05-12

    A process for depositing thin layers of a II-VI compound cadmium zinc sulfide (CdZnS) by an aqueous solution growth technique with quality suitable for high efficiency photovoltaic or other devices which can benefit from the band edge shift resulting from the inclusion of Zn in the sulfide. A first solution comprising CdCl.sub.2 2.5H.sub.2 O, NH.sub.4 Cl, NH.sub.4 OH and ZnCl.sub.2, and a second solution comprising thiourea ((NH.sub.2).sub.2 CS) are combined and placed in a deposition cell, along with a substrate to form a thin i.e. 10 nm film of CdZnS on the substrate. This process can be sequentially repeated with to achieve deposition of independent multiple layers having different Zn concentrations.

  2. Preparation of mesoporous cadmium sulfide nanoparticles with moderate pore size

    SciTech Connect

    Han Zhaohui Zhu, Huaiyong; Shi, Jeffrey; Parkinson, Gordon; Lu, G.Q.

    2007-03-15

    The preparation of cadmium sulfide nanoparticles that have a moderate pore size is reported. This preparation method involves a hydrothermal process that produces a precursor mixture and a following acid treatment of the precursor to get the porous material. The majority of the particles have a pore size close to 20nm, which complements and fills in the gap between the existing cadmium sulfide materials, which usually have a pore size either less than 10nm or are well above 100nm.

  3. Spectrometric characteristics of cadmium sulfide-based scintillators

    SciTech Connect

    Zdesenko, Y.G.; Nikolaiko, A.S.; Ryzhikov, V.D.; Silin, V.J.

    1985-11-01

    Results of measurements of the time and spectrometric characteristics of CdS(Te) scintillation crystals produced by advanced technology are presented. The possibility of using detectors based on cadmium sulfide for spectrometry of ionizing radiation at a temperature of 300/sup 0/K is shown. The energy resolution of the better specimens is 21% for the 622-keV /sup 137/Cs gamma line. Measurements made confirm the possibility of creating spectrometers based on CdS(Te) and allow it to be hoped that cadmium sulfide detectors can be produced that have the necessary parameters of studying /sup 116/Cd double beta decay.

  4. Epitaxial growth of cadmium sulfide films on silicon

    NASA Astrophysics Data System (ADS)

    Antipov, V. V.; Kukushkin, S. A.; Osipov, A. V.

    2016-03-01

    A 300-nm-thick cadmium sulfide epitaxial layer on silicon was grown for the first time. The grown was performed by the method of evaporation and condensation in a quasi-closed volume at a substrate temperature of 650°C and a growth time of 4 s. In order to avoid a chemical reaction between silicon and cadmium sulfide (at this temperature, the rate constant of the reaction is ~103) and to prevent etching of silicon by sulfur, a high-quality silicon carbide buffer layer ~100 nm thick was preliminarily synthesized by the substitution of atoms on the silicon surface. The ellipsometric, Raman, electron diffraction, and trace element analyses showed a high structural perfection of the CdS layer and the absence of a polycrystalline phase.

  5. Room temperature chemical bath deposition of cadmium selenide, cadmium sulfide and cadmium sulfoselenide thin films with novel nanostructures

    NASA Astrophysics Data System (ADS)

    VanderHyde, Cephas A.; Sartale, S. D.; Patil, Jayant M.; Ghoderao, Karuna P.; Sawant, Jitendra P.; Kale, Rohidas B.

    2015-10-01

    A simple, convenient and low cost chemical synthesis route has been used to deposit nanostructured cadmium sulfide, selenide and sulfoselenide thin films at room temperature. The films were deposited on glass substrates, using cadmium acetate as cadmium ion and sodium selenosulfate/thiourea as a selenium/sulfur ion sources. Aqueous ammonia was used as a complex reagent and also to adjust the pH of the final solution. The as-deposited films were uniform, well adherent to the glass substrate, specularly reflective and red/yellow in color depending on selenium and sulfur composition. The X-ray diffraction pattern of deposited cadmium selenide thin film revealed the nanocrystalline nature with cubic phase; cadmium sulfide revealed mixture of cubic along with hexagonal phase and cadmium sulfoselenide thin film were grown with purely hexagonal phase. The morphological observations revealed the growth and formation of interesting one, two and three-dimensional nanostructures. The band gap of thin films was calculated and the results are reported.

  6. ACID-VOLATILE SULFIDE AS A FACTOR MEDIATING CADMIUM AND NICKEL BIOAVAILABILITY IN CONTAMINATED SEDIMENTS

    EPA Science Inventory

    We investigated the influence of sulfide, measured as acid-volatile sulfide (AVS), on the bioavailability of cadmium and nickel in sediments. eventeen samples from an estuarine system heavily contaminated with cadmium and nickel were analyzed for AVS and simultaneously extracted ...

  7. Selective Facet Reactivity During Cation Exchange in Cadmium Sulfide Nanorods

    SciTech Connect

    Sadtler, Bryce; Demchenko, Denis; Zheng, Haimei; Hughes, Steven; Merkle, Maxwell; Dahmen, Ulrich; Wang, Lin-Wang; Alivisatos, A. Paul

    2008-12-18

    The partial transformation of ionic nanocrystals through cation exchange has been used to synthesize nanocrystal heterostructures. We demonstrate that the selectivity for cation exchange to take place at different facets of the nanocrystal plays an important role in determining the resulting morphology of the binary heterostructure. In the case of copper I (Cu+) cation exchange in cadmium sulfide (CdS) nanorods, the reaction starts preferentially at the ends of the nanorods such that copper sulfide (Cu2S) grows inwards from either end. The resulting morphology is very different from the striped pattern obtained in our previous studies of silver I (Ag+) exchange in CdS nanorods where non-selective nucleation of silver sulfide (Ag2S) occurs. From interface formation energies calculated for several models of epitaxialconnections between CdS and Cu2S or Ag2S, we infer the relative stability of each interface during the nucleation and growth of Cu2S or Ag2S within the CdS nanorods. The epitaxial connections of Cu2S to the end facets of CdS nanorods minimize the formation energy, making these interfaces stable throughout the exchange reaction. However, as the two end facets of wurtzite CdS nanorods are crystallographically nonequivalent, asymmetric heterostructures can be produced.

  8. Thin film cadmium telluride solar cells

    SciTech Connect

    Chu, T.L.; Chu, S.S.; Xi, X.J.; Yang, Y.T.

    1983-05-01

    Cadmium telluride films have been deposited on coated graphite and mullite substrates by the direct combination of the vapors of the elements in a hydrogen atmosphere. The properties of nearly stoichiometric films on mullite substrates were measured by the van der Pauw technique in the temperature range of 25/sup 0/ - 150/sup 0/C. The deposition of n-type cadmium telluride by using hydrogen iodide as a dopant and the deposition of p-type cadmium telluride films by using arsine or phosphine as a dopant were studied. Schottky barrier solar cells were prepared from n-type cadmium telluride films and heterojunction cells from p-type cadmium telluride films.

  9. Cadmium Telluride, Cadmium Telluride/Cadmium Sulfide Core/Shell, and Cadmium Telluride/Cadmium Sulfide/Zinc Sulfide Core/Shell/Shell Quantum Dots Study

    NASA Astrophysics Data System (ADS)

    Yan, Yueran

    CdTe, CdTe/CdS core/shell, and CdTe/CdS/ZnS core/shell/shell quantum dots (QDs) are potential candidates for bio-imaging and solar cell applications because of some special physical properties in these nano materials. For example, the band gap energy of the bulk CdTe is about 1.5 eV, so that principally they can emit 790 nm light, which is in the near-infrared range (also called biological window). Moreover, theoretically hot exciton generated by QDs is possible to be caught since the exciton relaxation process in QDs is slower than in bulk materials due to the large intraband energy gap in QDs. In this dissertation, we have synthesized the CdTe and CdTe/CdS core/shell QDs, characterized their structure, and analyzed their photophysical properties. We used organometallic methods to synthesize the CdTe QDs in a noncoordinating solvent. To avoid being quenched by air, ligands, solvent, or other compounds, CdS shell was successfully deposited on the CdTe QDs by different methods, including the slow injection method, the successive ion layer adsorption and reaction (SILAR) method, and thermal-cycling coupled single precursor method (TC-SP). Our final product, quasi-type- II CdTe/CdS core/shell QDs were able to emit at 770 nm with a fluorescence quantum yield as high as 70%. We also tried to deposit a second shell ZnS on CdTe/CdS core/shell QDs since some compounds can quench CdTe/CdS core/shell QDs. Even though different methods were used to deposit ZnS shell on the CdTe/CdS core/shell QDs, CdTe/CdS/ZnS core/shell/shell QDs still can be quenched. Furthermore, the CdTe/CdS core/shell and CdTe/CdS/ZnS core/shell/shell QDs were transferred into aqueous phase, phosphate buffered saline or deionized water, by switching the hydrophilic ligands (thiol or PEG ligands). The thioglycolic acid (TGA)-capped CdTe/CdS core/shell QDs can be kept in aqueous phase with high fluorescence quantum yield (60%--70%) for more than two months. However, some other compounds in organic or

  10. Titanium Dioxide/Upconversion Nanoparticles/Cadmium Sulfide Nanofibers Enable Enhanced Full-Spectrum Absorption for Superior Solar Light Driven Photocatalysis.

    PubMed

    Zhang, Fu; Zhang, Chuan-Ling; Wang, Wan-Ni; Cong, Huai-Ping; Qian, Hai-Sheng

    2016-06-22

    In this work, we demonstrate an electrospinning technique to fabricate TiO2 /upconversion nanoparticles (UCNPs)/CdS nanofibers on large scale. In addition, the as-prepared TiO2 nanofibers are incorporated with a high population of UCNPs and CdS nanospheres; this results in Förster resonance energy-transfer configurations of the UCNPs, TiO2 , and CdS nanospheres that are in close proximity. Hence, strong fluorescent emissions for the Tm(3+) ions including the (1) G4 →(3) H6 transition are efficiently transferred to TiO2 and the CdS nanoparticles through an energy-transfer process. The as-prepared TiO2 /UCNPs/CdS nanofibers exhibit full-spectrum solar-energy absorption and enable the efficient degradation of organic dyes by fluorescence resonance energy transfer between the UCNPs and TiO2 (or CdS). The UCNPs/TiO2 /CdS nanofibers may also have enhanced energy-transfer efficiency for wide applications in solar cells, bioimaging, photodynamics, and chemotherapy. PMID:27214754

  11. Fabrication of polymer/cadmium sulfide hybrid solar cells [P3HT:CdS and PCPDTBT:CdS] by spray deposition.

    PubMed

    Kumar, Neetesh; Dutta, Viresh

    2014-11-15

    This paper investigates fabrication of surfactant free CdS nanoparticles (NPs) and application in the fabrication of P3HT:CdS and PCPDTBT:CdS bulk-heterojunction hybrid solar cells using high-throughput, large-area, low cost spray deposition technique. Both the hybrid active layers and hole transport layers are deposited by spray technique. The CdS/Poly(3-hexylthiophene-2,5-diyl) (P3HT) and CdS/Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT) hybrid devices are fabricated by spray deposition process at optimized conditions (i.e. film thickness, spray solution volume, distance between sample and spray nozzle, substrate temperature, etc.). The power conversion efficiency of η=0.6% and 1.02% is obtained for P3HT:CdS and PCPDTBT:CdS hybrid devices, respectively. Spray coating holds significant promise as a technique capable of fabricating large-area, high performance hybrid solar cells. PMID:25203909

  12. Cadmium sulfide/copper selenide cell research. Copper selenide-based thin film solar cells. First quarterly technical progress report, June 1-September 1, 1980

    SciTech Connect

    Mickelsen, R.A.; Stewart, J.M.; Chen, W.S.

    1980-01-01

    The objective of this program is to investigate the use of Cu/sub 2-x/Se to produce low cost, high efficiency photovoltaic solar cells. The goal is to: (1) develop a polycrystalline thin film photovoltaic device capable of 10% conversion efficiency, and (2) demonstrate feasibility of large scale production at a cost of approximately $0.30/watt. The Cu/sub 2-x/Se films are produced by coevaporation of Cu and Se from separate, individually controlled vapor sources onto heated glass substrates. This method gives greater composition controllability and is readily adaptable to large scale production efforts. Two quartz crystal microbalances are used to separately monitor the Cu and Se deposition rates. The structural, electrical, and optical properties of the Cu/sub 2-x/Se films have been measured for deposits made on 250/sup 0/C substrates. The optical absorption measurements shows the material having an indirect band gap of 1.4 ev and a direct gap of 2.2 ev. These values are for stoichiometric indices in the range of 0.17 less than or equal to x less than or equal to 0.26. Hall and conductivity measurements give hole mobilities in the range of 3-7 cm/sup 2//Vsec and hole densities of the order of 4 x 10/sup 22/ cm/sup -3/. For deposits made on substrate at 160/sup 0/C, the mobility is in the range of 3 to 10 cm/sup 2//Vsec and hole densities on the order of 10/sup 19/ to 10/sup 21/ cm/sup -3/ for 0.1 less than or equal to x less than or equal to 0.3. To date, the best cell has photovoltaic characteristics of J/sub sc/ = 11.6 mA/cm/sup 2/, V/sub oc/ = 460 mV, F.F. = 0.62 and eta = 3.3% as tested under simulated AM1 illumination.

  13. Cadmium sulfide/copper selenide cell research copper selenide-based thin film solar cells. Second quarterly technical progress report, September 1, 1980-December 1, 1980

    SciTech Connect

    Sauve', S.P.; Mickelsen, R.A.; Stewart, J.M.; Chen, W.S.

    1980-01-01

    The objective of this program is to investigate the use of Cu/sub 2-x/Se to produce low cost, high efficiency photovoltaic solar cells. The Cu/sub 2-x/Se films are produced by coevaporation of Cu and Se from separate, individually controlled vapor sources onto heated glass substrates. This method gives greater composition controllability and is readily adaptable to large scale production efforts. Two quartz crystal microbalances are used to separately monitor the Cu and Se deposition rates. The structural, electrical, and optical properties of the Cu/sub 2-x/Se films have been measured for deposits made on 250/sup 0/C substrates. The optical absorption measurements show the material having an indirect band gap of 1.4 eV and a direct gap of 2.2 eV. These values are for stoichiometric indices in the range of 0.17 less than or equal to x less than or equal to 0.26. Hall and conductivity measurements give hole mobilities in the range of 3 to 7 cm/sup 2//Vsec and hole densities of the order of 4 x 10/sup 22/ cm/sup -3/. For deposits made on substrate at 160/sup 0/C, the mobility is in the range of 3 to 10 cm/sup 2//Vsec and hole densities on the order of 10/sup 18/ to 10/sup 21/ cm/sup -3/ for 0.1 less than or equal to x less than or equal to 0.3. To date, the best cell has photovoltaic characteristics of J/sub sc/ = 11.6 mA/cm/sup 2/, V/sub oc/ = 460 mV, F.F. = 0.62 and eta = 3.3% when tested under simulated AM1 illumination. In an effort to improve cell performance, low resistance CdS was used. Cell performance degraded considerably with the low resistance CdS resulting in substantially lower values for both V/sub oc/ and I/sub sc/. It is believed in part that this difficulty can be traced to pinhole defects in the ITO electrode. When the low resistance CdS is deposited on ITO, regions in the CdS appear to be high in Cd where pinholes in the ITO were observed.

  14. 3.88% efficient tin sulfide solar cells using congruent thermal evaporation.

    PubMed

    Steinmann, Vera; Jaramillo, R; Hartman, Katy; Chakraborty, Rupak; Brandt, Riley E; Poindexter, Jeremy R; Lee, Yun Seog; Sun, Leizhi; Polizzotti, Alexander; Park, Helen Hejin; Gordon, Roy G; Buonassisi, Tonio

    2014-11-26

    Tin sulfide (SnS), as a promising absorber material in thin-film photovoltaic devices, is described. Here, it is confirmed that SnS evaporates congruently, which provides facile composition control akin to cadmium telluride. A SnS heterojunction solar cell is demons trated, which has a power conversion efficiency of 3.88% (certified), and an empirical loss analysis is presented to guide further performance improvements. PMID:25142203

  15. A Satellite Borne Cadmium Sulfide Total Corpuscular Energy Detector

    NASA Technical Reports Server (NTRS)

    Freeman, John W.

    1961-01-01

    The properties of single crystals of cadmium sulfide as radiation detectors are described. It has been found possible to select crystals such that: (a) The ratio of increase of conductivity under irradiation to the rate of absorption of energy in the crystal is substantially independent of particle energy (over the examined ranges of 500 ev to 80 kev for electrons and 5 kev to 180 kev for protons) and of the magnitude of energy flux (over the range from.005 to 10 ergs/cm(sup 2 -sec); and (b) The above ration is substantially the same for protons, electrons, alpha particles, x-rays, and gamma-rays. For a driving voltage of 100 volts, typical crystal yield currents of 10(sup -7) to 10(sup- 6) amperes for each erg/cm(sup 2-sec) of energy absorbed by the crystal. The threshold of such crystal detectors (resulting from dark currents of the order of 10(sup 10 amp) is typically 10(sup -3) ergs/cm(sup 2- sec). For the selected crystals a response-temperature coefficient of -0.25% per degree centigrade is found for the temperature range -50 deg C to + 50 deg C. A description is given of a complete CdS total corpuscular energy detector for the study of geomagnetically trapped radiation by means of a satellite. The detector described has a dynamic range great than 10(sup 4), a solid angle of 10(exp -3) steradian, and a detection threshold of approximately 1 erg/cm(sup 2-sec-sterad). A similar detector employing a small magnet for the selective exclusion of electrons is also described. Noteworthy practical features of these detectors for satellite and space probe experiments are: (a) Use of bare crystals, without covering foils, in order to detect charged particles having energies as low as hundreds of electron volts. (b) Simplicity of electronic auxiliaries. (c) Compactness, lightweight and nechanical ruggedness. (d) Low electrical power requirements; and (e) Conversion of conduction current to the rate of a twostate relaxation oscillator in order to facilitate telemetric

  16. Cadmium sulfide and lead sulfide quantum dots in glass: Processing, growth, and optical absorption

    NASA Astrophysics Data System (ADS)

    Rao, Pratima Gattu Naga

    Glasses containing cadmium sulfide and lead sulfide particles were prepared, and their properties were studied. These particles exhibit quantum confinement behavior when they are smaller than their Bohr exciton radii. Quantum confinement leads to size dependence in the optical absorption of particles. This size dependence can tune the optical absorption of the material to a particular wavelength or energy and possibly enhances the nonlinear optical absorption of the particles. These properties have potential applications in photonic devices. To control the growth of these semiconductor particles in glass, the glass processing conditions were studied. CdS-doped glasses were initially prepared with CdO and ZnS. The sublimation temperature for ZnS is at 1185°C; whereas, CdO sublimes at 1559°C, and CdS at 980°C. Loss of both cadmium and sulfur was observed in open crucible melts, even when CdO and ZnS were used. Improvements in glass processing were made by use of preheat and a cover during the glass melting, resulting in better retention of both dopants. Direct CdS addition to the glasses was possible with these improvements, thus eliminating complications of zinc incorporation during the growth of the semiconductor particles. These methods were successfully applied to the synthesis of PbS-doped glasses. CdS and PbS particles were grown in alkali borosilicate glasses, and their optical absorption spectra were measured as a function of heat treatment temperature and time. The position of the absorption peak and edge shifted to longer wave-lengths, or lower energies, with longer heat treatments at a constant temperature. Both CdS and PbS particles exhibited quantum confinement. These measurements were used to calculate particle sizes from quantum confinement models. Comparisons with transmission electron microscopy (TEM) demonstrated that the 1-term effective-mass approximation was appropriate for estimating CdS particle sizes. A sophisticated four-band envelope

  17. Release of dissolved cadmium and sulfur nanoparticles from oxidizing sulfide minerals

    EPA Science Inventory

    Cadmium enrichment (relative to Fe and Zn) in paddy rice grain occurs during the pre-harvest drainage of flooded soil, which causes oxidative dissolution of sulfide minerals present in reduced soil. We investigated this process over a range of environmentally realistic Cdcontain...

  18. Cadmium sulfide quantum dots induce oxidative stress and behavioral impairments in the marine clam Scrobicularia plana.

    PubMed

    Buffet, Pierre-Emmanuel; Zalouk-Vergnoux, Aurore; Poirier, Laurence; Lopes, Christelle; Risso-de-Faverney, Christine; Guibbolini, Marielle; Gilliland, Douglas; Perrein-Ettajani, Hanane; Valsami-Jones, Eugenia; Mouneyrac, Catherine

    2015-07-01

    Cadmium sulfide (CdS) quantum dots have a number of current applications in electronics and solar cells and significant future potential in medicine. The aim of the present study was to examine the toxic effects of CdS quantum dots on the marine clam Scrobicularia plana exposed for 14 d to these nanomaterials (10 µg Cd L(-1) ) in natural seawater and to compare them with soluble Cd. Measurement of labile Cd released from CdS quantum dots showed that 52% of CdS quantum dots remained in the nanoparticulate form. Clams accumulated the same levels of Cd regardless of the form in which it was delivered (soluble Cd vs CdS quantum dots). However, significant changes in biochemical responses were observed in clams exposed to CdS quantum dots compared with soluble Cd. Increased activities of catalase and glutathione-S-transferase were significantly higher in clams exposed in seawater to Cd as the nanoparticulate versus the soluble form, suggesting a specific nano effect. The behavior of S. plana in sediment showed impairments of foot movements only in the case of exposure to CdS quantum dots. The results show that oxidative stress and behavior biomarkers are sensitive predictors of CdS quantum dots toxicity in S. plana. Such responses, appearing well before changes might occur at the population level, demonstrate the usefulness of this model species and type of biomarker in the assessment of nanoparticle contamination in estuarine ecosystems. PMID:25772261

  19. Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice.

    PubMed

    Mostofa, Mohammad Golam; Rahman, Anisur; Ansary, Md Mesbah Uddin; Watanabe, Ayaka; Fujita, Masayuki; Tran, Lam-Son Phan

    2015-01-01

    We investigated the physiological and biochemical mechanisms by which H2S mitigates the cadmium stress in rice. Results revealed that cadmium exposure resulted in growth inhibition and biomass reduction, which is correlated with the increased uptake of cadmium and depletion of the photosynthetic pigments, leaf water contents, essential minerals, water-soluble proteins, and enzymatic and non-enzymatic antioxidants. Excessive cadmium also potentiated its toxicity by inducing oxidative stress, as evidenced by increased levels of superoxide, hydrogen peroxide, methylglyoxal and malondialdehyde. However, elevating endogenous H2S level improved physiological and biochemical attributes, which was clearly observed in the growth and phenotypes of H2S-treated rice plants under cadmium stress. H2S reduced cadmium-induced oxidative stress, particularly by enhancing redox status and the activities of reactive oxygen species and methylglyoxal detoxifying enzymes. Notably, H2S maintained cadmium and mineral homeostases in roots and leaves of cadmium-stressed plants. By contrast, adding H2S-scavenger hypotaurine abolished the beneficial effect of H2S, further strengthening the clear role of H2S in alleviating cadmium toxicity in rice. Collectively, our findings provide an insight into H2S-induced protective mechanisms of rice exposed to cadmium stress, thus proposing H2S as a potential candidate for managing toxicity of cadmium, and perhaps other heavy metals, in rice and other crops. PMID:26361343

  20. Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice

    PubMed Central

    Mostofa, Mohammad Golam; Rahman, Anisur; Ansary, Md. Mesbah Uddin; Watanabe, Ayaka; Fujita, Masayuki; Phan Tran, Lam-Son

    2015-01-01

    We investigated the physiological and biochemical mechanisms by which H2S mitigates the cadmium stress in rice. Results revealed that cadmium exposure resulted in growth inhibition and biomass reduction, which is correlated with the increased uptake of cadmium and depletion of the photosynthetic pigments, leaf water contents, essential minerals, water-soluble proteins, and enzymatic and non-enzymatic antioxidants. Excessive cadmium also potentiated its toxicity by inducing oxidative stress, as evidenced by increased levels of superoxide, hydrogen peroxide, methylglyoxal and malondialdehyde. However, elevating endogenous H2S level improved physiological and biochemical attributes, which was clearly observed in the growth and phenotypes of H2S-treated rice plants under cadmium stress. H2S reduced cadmium-induced oxidative stress, particularly by enhancing redox status and the activities of reactive oxygen species and methylglyoxal detoxifying enzymes. Notably, H2S maintained cadmium and mineral homeostases in roots and leaves of cadmium-stressed plants. By contrast, adding H2S-scavenger hypotaurine abolished the beneficial effect of H2S, further strengthening the clear role of H2S in alleviating cadmium toxicity in rice. Collectively, our findings provide an insight into H2S-induced protective mechanisms of rice exposed to cadmium stress, thus proposing H2S as a potential candidate for managing toxicity of cadmium, and perhaps other heavy metals, in rice and other crops. PMID:26361343

  1. Stopping cross sections for 0.25-3.0-MeV He-4 ions in cadmium sulfide

    NASA Technical Reports Server (NTRS)

    Miller, W. E.; Hutchby, J. A.

    1975-01-01

    Stopping cross sections of He-4 ions with energies between 0.25 and 3.0 MeV have been measured for cadmium sulfide with a probable error of plus or minus 7% to 8%. The experimental method utilized the Rutherford backscattering technique and measured the energy loss of elastically scattered He-4 ions from films of cadmium sulfide sputtered on carbon substrates. The experimental data are compared with recent experimental and theoretical results.

  2. Triton-X mediated interconnected nanowalls network of cadmium sulfide thin films via chemical bath deposition and their photoelectrochemical performance

    NASA Astrophysics Data System (ADS)

    Vanalakar, S. A.; Mali, S. S.; Jo, E. A.; Kim, J. Y.; Kim, J. H.; Patil, P. S.

    2014-10-01

    Thin films of cadmium sulfide (CdS) have been wet chemically deposited onto fluorine-doped tin oxide (FTO) coated conducting glass substrates by using non-ionic surfactant; Triton-X 100. An aqueous solution contains cadmium sulphate as a cadmium and thiourea as sulphur precursor. Ammonia used as a complexing agent. The results of measurements of the x-ray diffraction, Raman spectroscopy, optical spectroscopy, energy dispersive spectroscopy, scanning electron microscopy, Brunauer Emmett Teller (BET) surface areas and atomic force microscopy were used for the characterization of the films. These results revealed that the films are polycrystalline, consisting of CdS cubic phase. The films show a direct band gap with energy 2.39 eV. The films show interconnected nanowalls like morphology with well-defined surface area. Finally, the photoelectrochemical (PEC) performance of Triton-X mediated CdS thin film samples were studied. The sample shows photoelectrochemical (PEC) performance with maximum short circuit current density (Jsc) 1.71 mA/cm2 for larger area (1 cm2) solar cells.

  3. Preparation and processing of monodisperse colloidal silica-cadmium sulfide nanocomposites

    SciTech Connect

    Chang, S.Y.; Liu, L.; Asher, S.A.

    1994-12-31

    A novel synthetic methodology has been developed for preparing monodisperse colloidal silica-cadmium sulfide nanocomposite spheres in the 50--300 nm size regime. This methodology uses water-in-oil microemulsions as the reaction medium. Monosize silica colloids are first produced by the controlled hydrolysis of tetraethyl orthosilicate in the micro water droplets of the microemulsion. Cadmium sulfide quantum dots are incorporated into the silica colloids during synthesis by the introductions of Cd{sup 2+} and S{sup 2{minus}} microemulsions. Various morphologies of the nanocomposite are fabricated by controlling the heterogeneous coagulation of CdS and SiO{sub 2}. Unique high surface area silica particles can be prepared when nitric acid etches out the CdS and leaves behind topologically defined voids. The CdS nanocomposites are new materials useful for non-linear optics, while the high surface area silica particles should have novel applications in areas such as catalysis.

  4. Effect of pressure on the photoluminescence of polynucleotide-stabilized cadmium sulfide nanocrystals

    SciTech Connect

    Li, X.; Coffer, J.L.

    1999-09-01

    This work describes the effects of pressure on the photoluminescence of Q-CdS (quantum-confined cadmium sulfide) nanoparticles stabilized by hexametaphosphate, calf thymus DNA, polyadenylic acid, polyuridylic acid, and polyadenylic-uridylic acid in the pressure range from atmospheric pressure to 4 kbar. A marked difference is observed between Q-CdS/polyadenylic acid and that of Q-CdS/polyuridylic acid in terms of pressure-induced changes in the luminescence; coating the surface of each type of Q-CdS with cadmium hydroxide results in a leveling effect whereby only a steady diminution of emission intensity is observed in each case. A model involving pressure-induced perturbation of anionic sulfide hole traps at the semiconductor nanocrystal surface is proposed to explain these observations.

  5. Brassica juncea Produces a Phytochelatin-Cadmium-Sulfide Complex 1

    PubMed Central

    Speiser, David M.; Abrahamson, Susan L.; Banuelos, Gary; Ow, David W.

    1992-01-01

    Phytochelatins (PCs) are enzymically synthesized peptides produced in higher plants and some fungi upon exposure to heavy metals. We have examined PC production in the Se-tolerant wild mustard Brassica juncea and found that it produces two types of PC-Cd complexes with the same characteristics as those from fission yeast Schizosaccharomyces pombe, including a high molecular weight PC-Cd-sulfide form. PMID:16669006

  6. Brassica juncea Produces a Phytochelatin-Cadmium-Sulfide Complex.

    PubMed

    Speiser, D M; Abrahamson, S L; Banuelos, G; Ow, D W

    1992-07-01

    Phytochelatins (PCs) are enzymically synthesized peptides produced in higher plants and some fungi upon exposure to heavy metals. We have examined PC production in the Se-tolerant wild mustard Brassica juncea and found that it produces two types of PC-Cd complexes with the same characteristics as those from fission yeast Schizosaccharomyces pombe, including a high molecular weight PC-Cd-sulfide form. PMID:16669006

  7. Cadmium-sulfide crystallites in Cd-(. gamma. EC) sub n G peptide complexes from tomato. [Lycopersicon esculentum

    SciTech Connect

    Reese, R.N.; White, C.A.; Winge, D.R. Univ. of Utah, Salt Lake City )

    1992-01-01

    Hydroponically grown tomato plants (Lycopersicon esculentum P. Mill cv Golden Boy) exposed to 100 micromolar cadmium sulfate produced metal-({gamma}EC){sub n}G peptide complexes containing acid-labile sulfur. The properties of the complexes resemble those of the cadmium-({gamma}EC){sub n}G peptide complexes from Schizo-saccharomyces pombe and Candida glabrata known to contain a cadmium sulfide crystallite core. The crystallite is stabilized by a sheath of peptides of general structure ({gamma}Glu-Cys){sub n}-Gly. The cadmium-peptide complexes of tomato contained predominantly peptides of n{sub 3}, n{sub 4}, and n{sub 5}. Spectroscopic analyses indicated that the tomato cadmium-sulfide-peptide complex contained CdS crystallite core particles smaller than 2.0 nanometers in diameter.

  8. Effects of diallyl sulfide and zinc on testicular steroidogenesis in cadmium-treated male rats.

    PubMed

    Sadik, Nermin A H

    2008-01-01

    Cadmium (Cd) is one of the environmental pollutants that affect various tissues and organs including testis. Harmful effect of cadmium on testis is known to be germ cell degeneration and impairment of testicular steroidogenesis. In the present study, the effect of diallyl sulfide (DAS), a sulfur-containing volatile compound present in garlic, and zinc (Zn) was investigated on cadmium-induced testicular toxicity in rats. Male adult Wistar rats treated with cadmium (2.5 mg/kg body wt, five times a week for 4 weeks) showed decreased body weight, paired testicular weight, relative testicular weight, serum testosterone, luteinizing hormone, follicle-stimulating hormone, and testicular total antioxidant capacity (TAC) and protein levels. Testicular steroidogenic enzymes, such as 3beta-hydroxysteroid dehydrogenase (3beta-HSD) and 17beta-hydroxysteroid dehydrogenase (17beta-HSD), and marker enzymes, such as sorbitol dehydrogenase (SDH), lactate dehydrogenase (LDH), acid phosphatase (ACP), alkaline phosphatase (ALP), and glucose-6-phosphate dehydrogenase (G6PD), showed a significant decrease in activities whereas that of gamma-glutamyl transferase was significantly increased after cadmium exposure. The results have revealed that concurrent treatment with DAS or zinc restored key steroidogenic enzymes, SDH, LDH, and G6PD and increased testicular weight significantly. DAS restored the TAC level and increased testosterone level and relative testicular weight significantly. Zinc restored testicular protein level and body weight. It can be concluded that cadmium causes testicular toxicity and inhibits androgen production in adult male rats probably by affecting pituitary gonadotrophins and that concurrent administration of DAS or zinc provides protection against cadmium-induced testicular toxicity. PMID:18972399

  9. Photodecomposition of 2,4-dichlorophenol in aqueous solution catalyzed by cadmium sulfide particles

    SciTech Connect

    Ku, Y.; Hsieh, C.B.

    1992-07-01

    In this paper the degradation of 2,4-dichlorophenol in the presence of cadmium sulfide suspensions by ultraviolet illumination is studied under various solution pH conditions, reaction times, and CdS loadings. The increase in the 2,4-dichlorophenol removal at alkaline condition by photocatalysis is possibly attributed to the distribution of protonated and deprotonated species at different solution pH conditions. The degradation and demineralization of 2,4-dichlorophenol by the photocatalytic process can be described fairly well by a simplified two step consecutive reaction scheme based on carbon balance.

  10. Some aspects of optical feedback with cadmium sulfide and related photoconductors. [for extended frequency response

    NASA Technical Reports Server (NTRS)

    Katzberg, S. J.

    1974-01-01

    A primary limitation of many solid state photoconductors used in electro-optical systems is their slow response in converting varying light intensities into electrical signals. An optical feedback technique is presented which can extend the frequency response of systems that use these detectors by orders of magnitude without adversely affecting overall signal-to-noise ratio performance. The technique is analyzed to predict the improvement possible and a system is implemented using cadmium sulfide to demonstrate the effectiveness of the technique and the validity of the analysis.

  11. Thin-film cadmium telluride solar cells

    NASA Astrophysics Data System (ADS)

    Chu, T. L.

    1987-10-01

    Cadmium telluride, with a room-temperature band-gap energy of 1.5 eV, is a promising thin-film photovoltaic material. The major objective of this research has been to demonstrate thin-film CdTe heterojunction solar cells with a total area greater than 1 sq cm and photovoltaic efficiencies of 13 percent or more. Thin-film p-CdTe/CdS/SnO2:F/glass solar cells with an AM1.5 efficiency of 10.5 percent have been reported previously. This report contains results of work done on: (1) the deposition, resistivity control, and characterization of p-CdTe films by the close-spaced sublimation process; (2) the deposition of large-band-gap window materials; (3) the electrical properties of CdS/CdTe heterojunctions; (4) the formation of stable, reproducible, ohmic contacts (such as p-HgTe) to p-CdTe; and (5) the preparation and evaluation of heterojunction solar cells.

  12. Morphology and thermal studies of zinc sulfide and cadmium sulfide nanoparticles in polyvinyl alcohol matrix

    NASA Astrophysics Data System (ADS)

    Osuntokun, Jejenija; Ajibade, Peter A.

    2016-09-01

    Zn(II) and Cd(II) metal complexes of 1-cyano-1-carboethoxyethylene-2,2-dithiolato-κS,S'-bis(N,N-dimethylthiourea-κS) have been synthesized and characterized with analytical and spectroscopic techniques. The complexes were thermolysed in hexadecylamine at 200 °C to prepare ZnS and CdS nanoparticles. The nanoparticles were characterized with scanning electron microscope (SEM), transmission electron microscope (TEM), and powder X-ray diffraction (p-XRD). TEM images showed spherically shaped nanoparticles, whose sizes are in the range 4.33-7.21 nm for ZnS and 4.95-7.7 nm CdS respectively and XRD confirmed cubic crystalline phases for the nanoparticles. The optical band gap energy evaluated from the absorption spectra are 2.88 eV (430 nm) and 2.81 eV (440 nm) for the ZnS and CdS nanoparticles respectively. The as-prepared metal sulfide nanoparticles were further incorporated into polyvinyl alcohol (PVA) to give ZnS/PVA and CdS/PVA composites. The polymer nanocomposites were studied to investigate their morphology and thermal properties relative to the pure PVA. XRD diffractions indicated that the crystalline phases of the nanoparticles and the sizes in PVA matrices remained unaltered. Infra-red spectra studies revealed interactions between the PVA and the metal sulfide nanoparticles and TGA studies show that the ZnS/PVA and CdS/PVA nanocomposites exhibit better thermal stability than the pure PVA.

  13. Synthesis and characterization of luminescent cadmium selenide/zinc selenide/zinc sulfide cholinomimetic quantum dots

    NASA Astrophysics Data System (ADS)

    Gégout, Claire; McAtee, Maria L.; Bennett, Nichole M.; Viranga Tillekeratne, L. M.; Kirchhoff, Jon R.

    2012-07-01

    Luminescent quantum dots conjugated with highly selective molecular recognition ligands are widely used for targeting and imaging biological structures. In this paper, water soluble cholinomimetic cadmium selenide (core), zinc selenide/zinc sulfide (shell) quantum dots were synthesized for targeting cholinergic sites. Cholinomimetic specificity was incorporated by conjugation of the quantum dots to an aminated analogue of hemicholinium-15, a well known competitive inhibitor of the high affinity choline uptake transporter. Detailed evaluation of the nanocrystal synthesis and characterization of the final product was conducted by 1H and 31P NMR, absorption and emission spectroscopy, as well as transmission electron microscopy.Luminescent quantum dots conjugated with highly selective molecular recognition ligands are widely used for targeting and imaging biological structures. In this paper, water soluble cholinomimetic cadmium selenide (core), zinc selenide/zinc sulfide (shell) quantum dots were synthesized for targeting cholinergic sites. Cholinomimetic specificity was incorporated by conjugation of the quantum dots to an aminated analogue of hemicholinium-15, a well known competitive inhibitor of the high affinity choline uptake transporter. Detailed evaluation of the nanocrystal synthesis and characterization of the final product was conducted by 1H and 31P NMR, absorption and emission spectroscopy, as well as transmission electron microscopy. Electronic supplementary information (ESI) available: NMR spectra supporting the synthesis of the HC-15 QDs are available. See DOI: 10.1039/c2nr30713h

  14. Thin-film cadmium telluride solar cells

    NASA Astrophysics Data System (ADS)

    1986-09-01

    This is the final technical progress report of a research program entitled Thin-Film Cadmium Telluride Solar Cells. The major objective was to demonstrate chemical vapor deposition (CVD)-grown CdTe devices with a photovoltaic efficiency of at least 10%. The work included: (1) CVD and characterization of p-CdTe films of controlled resistivity; (2) deposition and characterization of heterojunction partners; (3) surface passivation of CdTe; and (4) preparation and characterization of thin-film solar cells. The CVD of p-CdTe was optimized with emphasis on resistivity control through nonstoichiometry and extrinsic doping. Both carbon and oxygen were identified as acceptors. The use of thermal oxidation for surface passivation of CdTe was investigated using capacitance-voltage measurement. Device-quality thermal oxide can be prepared by hydrogen annealing of CdTe before oxidation. Deposition and characterization of CdS, CdO, and ZnO:In were also carried out. The best thin-film cell to date had a conversion efficiency near 9%.

  15. Aerobic transformation of cadmium through metal sulfide biosynthesis in photosynthetic microorganisms

    PubMed Central

    2013-01-01

    Background Cadmium is a non-essential metal that is toxic because of its interference with essential metals such as iron, calcium and zinc causing numerous detrimental metabolic and cellular effects. The amount of this metal in the environment has increased dramatically since the advent of the industrial age as a result of mining activities, the use of fertilizers and sewage sludge in farming, and discharges from manufacturing activities. The metal bioremediation utility of phototrophic microbes has been demonstrated through their ability to detoxify Hg(II) into HgS under aerobic conditions. Metal sulfides are generally very insoluble and therefore, biologically unavailable. Results When Cd(II) was exposed to cells it was bioconverted into CdS by the green alga Chlamydomonas reinhardtii, the red alga Cyanidioschyzon merolae, and the cyanobacterium, Synechoccocus leopoliensis. Supplementation of the two eukaryotic algae with extra sulfate, but not sulfite or cysteine, increased their cadmium tolerances as well as their abilities to produce CdS, indicating an involvement of sulfate assimilation in the detoxification process. However, the combined activities of extracted serine acetyl-transferase (SAT) and O-acetylserine(thiol)lyase (OASTL) used to monitor sulfate assimilation, was not significantly elevated during cell treatments that favored sulfide biosynthesis. It is possible that the prolonged incubation of the experiments occurring over two days could have compensated for the low rates of sulfate assimilation. This was also the case for S. leopoliensis where sulfite and cysteine as well as sulfate supplementation enhanced CdS synthesis. In general, conditions that increased cadmium sulfide production also resulted in elevated cysteine desulfhydrase activities, strongly suggesting that cysteine is the direct source of sulfur for CdS synthesis. Conclusions Cadmium(II) tolerance and CdS formation were significantly enhanced by sulfate supplementation, thus

  16. Chronic effect of cadmium in sediments on colonization by benthic marine organisms: An evaluation of the role of interstitial cadmium and acid-volatile sulfide in biological availability

    SciTech Connect

    Hansen, D.J.; Berry, W.J.; Benyi, S.J.; Mahony, J.D.; Corbin, J.M.; Pratt, S.D.; Toro, D.M. di |; Abel, M.B.

    1996-12-01

    The role of interstitial cadmium and acid-volatile sulfide (AVS) in controlling the bioavailability of sediment-associated metal was examined using the chronic saltwater benthic colonization test. Sediments were spiked to achieve nominal cadmium/AVS molar ratios of 0.0 (control), 0.1, 0.8, and 3.0 in this 118-d test. Oxidation of AVS in the surficial 2.4 cm within 2 to 4 weeks resulted in sulfide profiles similar to those occurring naturally in local sediments. In the nominal 0.1 cadmium/AVS treatment measured simultaneously extracted metal (SEM{sub Cd}) was always less than AVS. Interstitial cadmium concentrations were less than those likely to cause biological effects. No significant biological effects were detected. In the nominal 0.8 cadmium/AVS treatment, measured SEM{sub Cd} commonly exceeded AVS in the surficial 2.4 cm of sediment. Interstitial cadmium concentrations were of likely toxicological significance to highly sensitive species. Shifts in the presence or absence over all taxa, and fewer macrobenthic polychaetes (Mediomastus ambiseta, Streblospio benedicti, and Podarke obscurea) and unidentified meiofaunal nematodes, were observed. In the nominal 3.0 cadmium/AVS treatment, concentrations of SEM{sub Cd} were always greater than AVS throughout the sediment column. Interstitial cadmium ranged from 28,000 to 174,000 {micro}g/L. In addition to the effects above, the sediments were colonized by fewer macrobenthic species, polychaete species, and harpacticoids; had lower densities of diatoms; lacked bivalve molluscs; and exhibited other impacts. Over all treatments, the observed biological responses were consistent with SEM{sub Cd}/AVS ratios in surficial sediments and interstitial water cadmium concentrations.

  17. Thin film cadmium telluride solar cell

    SciTech Connect

    Mitchell, R.

    1987-03-17

    A photovoltaic cell is described comprising: (a) a substrate layer consisting of a transparent or semi-transparent material; (b) an n conductivity type layer of tin oxide contiguous to the substrate layer; (c) a rho conductivity type layer of polycrystalline cadmium telluride contiguous to the layer of tin oxide thereby forming a pn junction, the layer of cadmium telluride containing atoms of phosphorus; and (d) a layer of lead telluride contiguous to the layer of the cadmium telluride.

  18. Cadmium sulfide/copper sulfide heterojunction cell research. Technical progress report, September 1-November 30, 1979

    SciTech Connect

    Anderson, W.W.; Jonath, A.D.

    1980-02-01

    Several all sputter deposited Cu/sub 2/S/CdS cells have been prepared to date with J/sub SC/ approx. = 3 mA/cm/sup 2/ under simulated AM1 illumination. The best AM1 conversion efficiency obtained is 0.6%. This is shown to be typical of sputtered CdS in Cu/sub 2/S/CdS cells investigated to date. The sputtered Cu/sub 2/S appears to be satisfactory for solar cell applications. Presented evidence indicates that the poor conversion efficiency is due to a low-junction electric field intensity on the CdS side of the heterojunction. A multilayer CdS structure has been developed which may allow the tailoring of the junction electric field intensity to a selected high value to obtain high-junction collection efficiency. Other areas of cell development advances included: (1) determination of effect of Cu cones in Cu/sub 2/S on Cu/sub 2/S/CdS cell performance; (2) solution of CdS pinhole problem; and (3) open circuit voltage improvement by heat treatment.

  19. Immobilization of lactobionic acid on the surface of cadmium sulfide nanoparticles and their interaction with hepatocytes.

    PubMed

    Kamruzzaman Selim, K M; Xing, Zhi-Cai; Guo, Haiqing; Kang, Inn-Kyu

    2009-09-01

    In the current study, beta-galactose-carrying lactobionic acid (LA) was conjugated on the surface of mercaptoacetic acid-coated cadmium sulfide nanoparticles (CSNPs) to ensure specific recognition of liver cells (hepatocytes) and to enhance biocompatibility. Maltotrionic acid-coated CSNPs (MCSNPs) were also prepared for use as a control. The results showed that LA-immobilized CSNPs (LCSNPs) were selectively and rapidly internalized into hepatocytes and emitted more intense fluorescence images as well as demonstrated increased biocompatible behavior in vitro than those of CSNPs and MCSNPs. Furthermore, the uptake amount of LCSNPs into hepatocytes was higher than that of CSNPs and MCSNPs. All these results indicate that LCSNPs may find ever-growing applications in biological labels and detection or contrast agents in life science and medical diagnostics. PMID:19365615

  20. The Potential Application of Raw Cadmium Sulfide Nanoparticles as CT Photographic Developer.

    PubMed

    Wu, Qiang; Huang, Lingxin; Li, Zhan; An, Wenzhen; Liu, Dan; Lin, Jin; Tian, Longlong; Wang, Xinling; Liu, Bo; Qi, Wei; Wu, Wangsuo

    2016-12-01

    With the development of science and technology, new applications about nanoparticles should be explored to achieve full-scale knowledge. Therefore, in this work, the toxicity and potential application of raw cadmium sulfide nanoparticles (CdS) in vivo were further studied through ICP-OES and CTs. Surprisingly, CdS exhibited an excellent photographic property, except for finding the accumulation of CdS in the lungs, liver, spleen, and kidney with a strong dependence on time; it is also found that there were a significant uptake in the pancreas for an obvious CT imaging. And the following investigations showed that the raw CdS could damage the tissues accumulating nanoparticles. Through this work, it can be seen that the raw CdS being modified might be an excellent photographic developer for detecting cancers or other diseases. PMID:27121440

  1. Structural and chemical properties of highly oriented cadmium sulfide (CdS) cauliflower films

    NASA Astrophysics Data System (ADS)

    Vemuri, R. S.; Gullapalli, S. K.; Zubia, D.; McClure, J. C.; Ramana, C. V.

    2010-08-01

    Cadmium sulfide (CdS) films have been produced by sputter-deposition varying the sputtering-power ( P) in the range of 60-120 W. The crystal structure, morphology and chemical quality of the CdS films has been investigated employing X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray spectrometry (EDS). Structural characterization indicates that all the CdS layers exhibit cauliflower morphology. Highly oriented, single phase hexagonal-CdS films can be produced at P = 75-105 W while the films at other power contain mixed phases. Characterization using XPS and EDS indicate that the CdS layers are nearly stoichiometric at P = 75-105 W, at which point S-deficiency is induced resulting in Cd-rich-CdS layers.

  2. The synthesis of cadmium sulfide nanoplatelets using a novel continuous flow sonochemical reactor

    DOE PAGESBeta

    Palanisamy, Barath; Paul, Brian; Chang, Chih -hung

    2015-01-21

    A continuous flow sonochemical reactor was developed capable of producing metastable cadmium sulfide (CdS) nanoplatelets with thicknesses at or below 10 nm. The continuous flow sonochemical reactor included the passive in-line micromixing of reagents prior to sonochemical reaction. Synthesis results were compared with those from reactors involving batch conventional heating and batch ultrasound-induced heating. The continuous sonochemical synthesis was found to result in high aspect ratio hexagonal platelets of CdS possessing cubic crystal structures with thicknesses well below 10 nm. The unique shape and crystal structure of the nanoplatelets are suggestive of high localized temperatures within the sonochemical process. Asmore » a result, the particle size uniformity and product throughput are much higher for the continuous sonochemical process in comparison to the batch sonochemical process and conventional synthesis processes.« less

  3. The Potential Application of Raw Cadmium Sulfide Nanoparticles as CT Photographic Developer

    NASA Astrophysics Data System (ADS)

    Wu, Qiang; Huang, Lingxin; Li, Zhan; An, Wenzhen; Liu, Dan; Lin, Jin; Tian, Longlong; Wang, Xinling; Liu, Bo; Qi, Wei; Wu, Wangsuo

    2016-04-01

    With the development of science and technology, new applications about nanoparticles should be explored to achieve full-scale knowledge. Therefore, in this work, the toxicity and potential application of raw cadmium sulfide nanoparticles (CdS) in vivo were further studied through ICP-OES and CTs. Surprisingly, CdS exhibited an excellent photographic property, except for finding the accumulation of CdS in the lungs, liver, spleen, and kidney with a strong dependence on time; it is also found that there were a significant uptake in the pancreas for an obvious CT imaging. And the following investigations showed that the raw CdS could damage the tissues accumulating nanoparticles. Through this work, it can be seen that the raw CdS being modified might be an excellent photographic developer for detecting cancers or other diseases.

  4. Controlled ultraviolet resonance energy transfer between bovine serum albumin donors and cadmium sulfide quantum dots acceptors

    NASA Astrophysics Data System (ADS)

    Ghali, Mohsen; El-Kemary, Maged; Ramadan, Mahmoud

    2015-08-01

    We report on Förester resonance nergy transfer (FRET) within a bioconjugated system composed of cadmium sulfide (CdS) quantum dots (QDs) and transport protein bovine serum albumin (BSA). The optical properties of these two elements of the bioconjugate were exploited to produce FRET in the ultraviolet (UV) region with a maximum efficiency of 22% from BSA donors to QD acceptors. In contrast to previous studies, which were limited to FRET in the visible light, we used 2.6 nm CdS QDs because they emit light with a shorter wavelength (∼370 nm) that facilitates the UV-FRET process. UV-FRET was controlled by tuning the spectral overlap between BSA and CdS QDs.

  5. The synthesis of cadmium sulfide nanoplatelets using a novel continuous flow sonochemical reactor

    SciTech Connect

    Palanisamy, Barath; Paul, Brian; Chang, Chih -hung

    2015-01-21

    A continuous flow sonochemical reactor was developed capable of producing metastable cadmium sulfide (CdS) nanoplatelets with thicknesses at or below 10 nm. The continuous flow sonochemical reactor included the passive in-line micromixing of reagents prior to sonochemical reaction. Synthesis results were compared with those from reactors involving batch conventional heating and batch ultrasound-induced heating. The continuous sonochemical synthesis was found to result in high aspect ratio hexagonal platelets of CdS possessing cubic crystal structures with thicknesses well below 10 nm. The unique shape and crystal structure of the nanoplatelets are suggestive of high localized temperatures within the sonochemical process. As a result, the particle size uniformity and product throughput are much higher for the continuous sonochemical process in comparison to the batch sonochemical process and conventional synthesis processes.

  6. Chemical bath deposition of cadmium sulfide on graphene-coated flexible glass substrate

    SciTech Connect

    Seo, Won-Oh; Jung, Younghun; Kim, Jihyun; Kim, Jiwan; Kim, Donghwan

    2014-03-31

    We demonstrate a flexible structure of cadmium sulfide (CdS) on graphene-coated glass substrate, where CdS was deposited by the chemical bath deposition method on defective tri-layer graphene. The defects in graphene, confirmed by micro-Raman spectroscopy, were created by a ultra-violet treatment with varying exposure time from 10 to 60 min. The number of defect sites in the graphene as a seed layer was related to the quality of the CdS thin films determined from the results from X-ray diffraction, optical transmittance, scanning electron microscopy, and room temperature micro-photoluminescence. Our film-on-substrate structure of CdS-graphene-on-glass was maintained up to a tensile strain of 0.3%, where graphene with a high failure strain was employed as a transparent conductive layer.

  7. Removal of hydrogen sulfide at ambient conditions on cadmium/GO-based composite adsorbents.

    PubMed

    Florent, Marc; Wallace, Rajiv; Bandosz, Teresa J

    2015-06-15

    Cadmium-based materials with various hydroxide to carbonate ratios and their composites with graphite oxide were synthesized by a fast and simple precipitation procedure and then used as H2S adsorbents at ambient conditions in the dark or upon a visible light exposure. The structural properties and chemical features of the adsorbents were analyzed before and after hydrogen sulfide adsorption. The results showed that the high ratio of hydroxide to carbonate led to an improved H2S adsorption capacity. In moist conditions cadmium hydroxide was the best adsorbent. Moreover, it showed photoactive properties. While the incorporation of a graphene-based phase slightly decreased the extent of the improvement in the H2S adsorption capacity in moist conditions caused by photoactivity, its presence in the composites enhanced the performance in dry conditions. This was linked to photoactivity of CdS that can split H2S resulting in the formation of water in the system. The graphene-based phase enhanced the electron transfer and delayed the recombination of photoinduced charges. Carbonate-based materials showed a very good adsorption capacity in dark conditions in the presence of moisture. Upon the light exposure, CdS likely photocatalyzes the reduction of carbonate ions to formates/formaldehydes. Their deposition on the surface limits the number of sites available to H2S adsorption. PMID:25792480

  8. Genotoxicity and Cytotoxicity of Cadmium Sulfide Nanomaterials to Mice: Comparison Between Nanorods and Nanodots

    PubMed Central

    Liu, Lu; Sun, Meiqing; Li, Qingzhao; Zhang, Hongmei; Alvarez, Pedro J.J.; Liu, Huajie; Chen, Wei

    2014-01-01

    Abstract Cadmium sulfide (CdS) nanomaterials (such as CdS nanodots or nanorods) are widely used in optical, electronic, and biological applications. Large-scale production and use of these materials will likely result in accidental and incidental releases, which raise concerns about their potential environmental and human-health impacts. Most studies on toxicity of Cd-containing nanomaterials have focused on nanodots, and the relative toxicity of Cd-containing nanorods is not well understood. Here, we compared genotoxicity and cytotoxicity of CdS nanorods (30–50 nm diameter, 500–1100 nm length) and cubic CdS nanodots (3–5 nm) in mice by examining total cadmium accumulation in organs, acute toxicity, DNA damage, spermatozoon viability and abnormality, kidney and liver damage, and oxidative stress. Compared with (smaller) nanodots, nanorods resulted in relatively low bioaccumulation, acute toxicity, and damage to spermatozoa and the tested organs. Differences in toxicity between CdS nanodots and nanorods could not be fully explained by differences in their metal ion (Cd2+) release patterns, based on control tests with mice gavaged with dissolved CdCl2 at equivalent concentrations. This underscores that toxicity of metallic nanomaterials could not be solely predicted based either on their elemental composition or on the amount of ions released before receptor intake. Particle morphology (including size) may also need to be considered. PMID:25053877

  9. Effect of cadmium in sediments on colonization by benthic marine organisms: Role of interstitial cadmium and acid volatile sulfide in bioavailability

    SciTech Connect

    Hansen, D.; Berry, W.; Benyi, S.; Mahony, J.; Corbin, J.; Pratt, S.; Able, M.

    1995-12-31

    The role of interstitial cadmium and acid volatile sulfide (AVS) in controlling the bioavailability of sediment-associated metal was examined using the chronic saltwater benthic colonization test. Sediments were spiked with cadmium to achieve simultaneously extracted metal (SEM)/AVS molar ratios of 0. 0 (control), 0.1, 0.8 and 3.0 in this 118-day test. Oxidation of AVS in the surficial 2.4 cm within two to four weeks resulted in sulfide profiles similar to those occurring naturally in local sediments. In the nominal 0.1 SEM/AVS treatment, measured SEM was always less than AVS. Interstitial cadmium concentrations (< 3--10 {micro}g/L) were below those likely to cause biological effects. No significant biological effects were detected. In the nominal 0.8 SEM/AVS treatment, measured SEM commonly exceeded AVS in the surficial 2.4 cm of sediment. Interstitial cadmium concentrations (24--157 {micro}g/L) were likely of toxicological significance to sensitive species. Shifts were observed in presence/absence of species, and there were fewer macrobenthic polychaetes (Mediomastus ambiseta, Strebloapio benedicti and Podarke obscura) and unidentified meiofaunal nematodes. In the nominal 3.0 SEM/AVS treatment, concentrations of SEM were always greater than AVS throughout the sediment column. Interstitial cadmium ranged from 28,000 to 174,000 {micro}g/L. In addition to the effects above, these sediments were colonized by fewer macrobenthic species, polychaete species and harpacticoids; had lower densities of diatoms; lacked bivalve molluscs and exhibited other impacts. The observed biological responses were consistent with measured SEM/AVS ratios in surficial sediments and interstitial water cadmium concentrations, further supporting their utility in predicting metals bioavailability.

  10. Physical characterization of cadmium telluride/cadmium sulfide photovoltaics: Defects, fields, and micrononuniformities

    NASA Astrophysics Data System (ADS)

    Shvydka, Diana

    Recent advances in large area thin-film photovoltaic manufacturing have raised a number of problems related to the physical parameters and processes behind the device efficiency and stability. The characteristics of interest include the defect spectra and related optical absorption, the built-in electric field distribution, the degree of lateral uniformity of the device, and the device stability. Established in this thesis is a set of techniques appropriate for the physical characterization of the above features in CdTe/CdS solar cells, addressing the issues of device spectra vs. energy (as revealed in the optical absorption, photoluminescence (PL), and admittance spectroscopy); the electric field distribution analyzed by means of bias dependent PL, and, indirectly, by capacitance measurements; device lateral resistivity and uniformity, through the phenomenon of nonlocal optical response and PL mapping; local parameter fluctuations as appear in virtually all of the above cases. The most important physical conclusions made are: energy spectra of polycrystalline CdTe based photovoltaics combine the features of crystalline materials, such as identifiable point defects, and amorphous materials, which exhibit continuous spectra of localized states; the concept of a single-defect (elemental) capacitance is for the first time defined and applied to estimate the density of states in polycrystalline p-n junctions; a phenomenon of bias-dependent PL in CdTe based photovoltaics is for the first time observed and modeled; a new phenomenon of nonlocal photovoltaic response is observed and interpreted. The results suggest several practical applications, such as: absorption and PL measurements as a diagnostic tool for monitoring the CdCl2, quality of treatments; admittance spectroscopy techniques to diagnose the material quality and degradation through its defect spectra and concentration; bias-dependent PL as a sensitive nondestructive accelerated life testing tool; nonlocal PV

  11. Dual insulated-gate field-effect transistors with cadmium sulfide active layer and a laminated polymer dielectric

    NASA Astrophysics Data System (ADS)

    Meth, J. S.; Zane, S. G.; Nunes, G.

    2004-04-01

    We report the fabrication of dual insulated gate thin-film transistors with chemical-bath deposited cadmium sulfide active layers. The cadmium sulfide was deposited from solution onto thermally oxidized silicon wafers to form the first semiconductor-dielectric interface. The terpolymer poly(tetrafluoroethylene-co-vinylidenefluoride-co-propylene) was laminated onto the semiconductor to create the second semiconductor-dielectric interface. This device geometry allows direct comparison of the behavior of the accumulated charge at these two very different interfaces. The mobility values for these devices are in the 0.1-1 cm2/Vs range, while the on/off ratios vary from 102 to 105. The ability to laminate a dielectric to a semiconductor enables new processing routes for large area transistor arrays.

  12. Carcinogenic sulfide salts of nickel and cadmium induce H2O2 formation by human polymorphonuclear leukocytes.

    PubMed

    Zhong, Z J; Troll, W; Koenig, K L; Frenkel, K

    1990-12-01

    Some derivatives of nickel, cadmium, and cobalt are carcinogenic in humans and/or animals but their mechanisms of action are not known. We show that they are capable of stimulating human polymorphonuclear leukocytes (PMNs), as measured by H2O2 formation, a known tumor promoter. Most effective were the carcinogens nickel subsulfide, which caused a 550% net increase in H2O2 over that formed by resting PMNs, followed by cadmium sulfide, 400%, and nickel disulfide, 200%. Nickel sulfide and cobalt sulfide caused statistically nonsignificant increases of 45 and 20%, respectively. Noncarcinogenic barium and manganese sulfides, and sulfates of nickel, cadmium, and cobalt were inactive. The enhancement of H2O2 formation by CdS and Ni3S2 (1 mumol/2.5 x 10(5) PMNs) was comparable to that mediated by the potent tumor promoter 12-O-tetradecanoylphorbol-13-acetate, used at 0.5 and 1 nM, respectively. Concurrent treatment of 12-O-tetradecanoylphorbol-13-acetate-stimulated PMNs with Ni3S2 or NiS caused a decrease in H2O2 accumulation from that expected if the effects were additive. Including catalase in the reaction mixture proved that the oxidant formed by stimulated PMNs was H2O2, whereas adding superoxide dismutase showed that superoxide was also present in PMN samples treated with NiS but not with Ni3S2. Since nickel- and cadmium-containing particulates are deposited in the lungs and cause infiltration of PMNs, the ability to activate those cells and induce H2O2 formation may contribute to their carcinogenicity. PMID:2253206

  13. Surface modification of cadmium sulfide thin film honey comb nanostructures: Effect of in situ tin doping using chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Wilson, K. C.; Basheer Ahamed, M.

    2016-01-01

    Even though nanostructures possess large surface to volume ratio compared to their thin film counterpart, the complicated procedure that demands for the deposition on a substrate kept them back foot in device fabrication techniques. In this work, a honey comb like cadmium sulfide (CdS) thin films nanostructure are deposited on glass substrates using simple chemical bath deposition technique at 65 °C. Energy band gaps, film thickness and shell size of the honey comb nanostructures are successfully controlled using tin (Sn) doping and number of shells per unit area is found to be maximum for 5% Sn doped (in the reaction mixture) sample. X-ray diffraction and optical absorption analysis showed that cadmium sulfide and cadmium hydroxide coexist in the samples. TEM measurements showed that CdS nanostructures are embedded in cadmium hydroxide just like "plum pudding". Persistent photoconductivity measurements of the samples are also carried out. The decay constants found to be increased with increases in Sn doping.

  14. Cadmium solubility in paddy soils: effects of soil oxidation, metal sulfides and competitive ions.

    PubMed

    de Livera, Jennifer; McLaughlin, Mike J; Hettiarachchi, Ganga M; Kirby, Jason K; Beak, Douglas G

    2011-03-15

    Cadmium (Cd) is a non-essential element for human nutrition and is an agricultural soil contaminant. Cadmium solubility in paddy soils affects Cd accumulation in the grain of rice. This is a human health risk, exacerbated by the fact that rice grains are deficient in iron (Fe) and zinc (Zn) for human nutrition. To find ways of limiting this potential risk, we investigated factors influencing Cd solubility relative to Fe and Zn during pre-harvest drainage of paddy soils, in which soil oxidation is accompanied by the grain-filling stage of rice growth. This was simulated in temperature-controlled "reaction cell" experiments by first excluding oxygen to incubate soil suspensions anaerobically, then inducing aerobic conditions. In treatments without sulfur addition, the ratios of Cd:Fe and Cd:Zn in solution increased during the aerobic phase while Cd concentrations were unaffected and the Fe and Zn concentrations decreased. However, in treatments with added sulfur (as sulfate), up to 34 % of sulfur (S) was precipitated as sulfide minerals during the anaerobic phase and the Cd:Fe and Cd:Zn ratios in solution during the aerobic phase were lower than for treatments without S addition. When S was added, Cd solubility decreased whereas Fe and Zn were unaffected. When soil was spiked with Zn the Cd:Zn ratio was lower in solution during the aerobic phase, due to higher Zn concentrations. Decreased Cd:Fe and Cd:Zn ratios during the grain filling stage could potentially limit Cd enrichment in paddy rice grain due to competitive ion effects for root uptake. PMID:21277005

  15. Screened hybrid and self-consistent GW calculations of cadmium/magnesium indium sulfide materials

    NASA Astrophysics Data System (ADS)

    Lucero, Melissa J.; Aguilera, Irene; Diaconu, Cristian V.; Palacios, Pablo; Wahnón, Perla; Scuseria, Gustavo E.

    2011-05-01

    The cadmium and magnesium indium sulfides are medium-gap semiconductors demonstrating a propensity to form intermediate band materials when doped with transition metals. The inherent structural diversity exhibited by M+2In2S4 thiospinels and related AB2X4 compounds often precludes definitive experimental determination of the band-gap width and type of transition. Employing a series of traditional semilocal functionals (e.g., the local spin density approximation; the Perdew, Burke, and Enzerhof functional; and the Tao, Perdew, Staroverov, and Scuseria functional) the screened hybrid of Heyd, Scuseria, and Ernzerhof (HSE), band gaps, projected densities of states, and band structures are calculated for the normal, full inverse, and intermediate configurations of [Cd/Mg]8In16S32. Band structures and band gaps are also obtained via self-consistent many-body methods, using the static Coulomb-hole and screened exchange approximation to GW as a starting point for perturbative G0W0 calculations. Comparison to experiment indicates that HSE provides an accurate, computationally efficient, and relatively rapid means for predicting band-gap properties in spinel-type photovoltaic materials.

  16. A facile synthesis of novel nanorod-assembling hollow nanowires of cadmium sulfide/DBTU nanocomposite

    SciTech Connect

    Tang, Yu; Mo, Yan-mei; Yang, Kui; Chen, Tie-shi; Yang, Jun; Zhang, Yuan-ming

    2010-11-15

    Novel nanorod-assembling hollow nanowires of cadmium sulfide/DBTU (N,N'-dibutylthiourea) nanocomposite were synthesized by reacting CdCl{sub 2} with in situ produced H{sub 2}S from reaction of butylamine and carbon disulfide at molar ratio 3:3 of CS{sub 2}:BuNH{sub 2} at 50 {sup o}C. This product was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SEAD), energy dispersive X-ray spectroscopy (EDAX), thermogravimetric (TG), Fourier transform infrared (FTIR) and UV-vis absorption spectra. A plausible mechanism that the extending DBTU molecules in solvent of CS{sub 2} induce the formation of CdS/DBTU nanorods by coordinating with the formed CdS particles, and construct these nanorods to hollow nanowires via molecular interactions is proposed and discussed on the basis of experimental results. Photoluminescence (PL) of CdS/DBTU nanocomposite exhibits increasing emission intensity largely.

  17. Aptasensor based on tripetalous cadmium sulfide-graphene electrochemiluminescence for the detection of carcinoembryonic antigen.

    PubMed

    Shi, Gui-Fang; Cao, Jun-Tao; Zhang, Jing-Jing; Huang, Ke-Jing; Liu, Yan-Ming; Chen, Yong-Hong; Ren, Shu-Wei

    2014-11-21

    A facile label-free electrochemiluminescence (ECL) aptasensor, based on the ECL of cadmium sulfide-graphene (CdS-GR) nanocomposites with peroxydisulfate as the coreactant, was designed for the detection of carcinoembryonic antigen (CEA). Tripetalous CdS-GR nanocomposites were synthesized through a simple onepot solvothermal method and immobilized on the glassy carbon electrode surface. L-Cystine (L-cys) could largely promote the electron transfer and enhance the ECL intensity. Gold nanoparticles (AuNPs) were assembled onto the L-cys film modified electrode for aptamer immobilization and ECL signal amplification. The aptamer modified with thiol was adsorbed onto the surface of the AuNPs through a Au-S bond. Upon hybridization of the aptamer with the target protein, the sequence could conjugate CEA to form a Y architecture. With CEA as a model analyte, the decreased ECL intensity is proportional to the CEA concentration in the range of 0.01-10.0 ng mL(-1) with a detection limit of 3.8 pg mL(-1) (S/N = 3). The prepared aptasensor was applied to the determination of CEA in human serum samples. The recoveries of CEA in the human serum samples were between 85.0% and 109.5%, and the RSD values were no more than 3.4%. PMID:25209409

  18. Direct electrochemical stripping detection of cystic-fibrosis-related DNA linked through cadmium sulfide quantum dots

    NASA Astrophysics Data System (ADS)

    Marin, Sergio; Merkoçi, Arben

    2009-02-01

    Electrochemical detection of a cadmium sulfide quantum dots (CdS QDs)-DNA complex connected to paramagnetic microbeads (MB) was performed without the need for chemical dissolving. The method is based on dropping 20 µl of CdS QD-DNA-MB suspension on the surface of a screen-printed electrode. It is followed by magnetic collection on the surface of the working electrode and electrochemical detection using square-wave voltammetry (SWV), giving a well-shaped and sensitive analytical signal. A cystic-fibrosis-related DNA sequence was sandwiched between the two DNA probes. One DNA probe is linked via biotin-streptavidin bonding with MB and the other one via thiol groups with the CdS QD used as tags. Nonspecific signals of DNA were minimized using a blocking agent and the results obtained were successfully employed in a model DNA sensor with an interest in future applications in the clinical field. The developed nanoparticle biosensing system may offer numerous opportunities in other fields where fast, low cost and efficient detection of small volume samples is required.

  19. Synthesis, structural and optical properties of Sm{sup 3+} and Nd{sup 3+} doped cadmium sulfide nanocrystals

    SciTech Connect

    L, Saravanan; R, Jayavel; A, Pandurangan; Jih-Hsin, Liu; Hsin-Yuan, Miao

    2014-04-01

    Graphical abstract: Samarium (Sm{sup 3+}) and neodymium (Nd{sup 3+}) doped cadmium sulfide nanocrystals have been prepared via precipitation method. The structural and the luminescent properties of the as-synthesised nanocrystals have been discussed. - Highlights: • Cubic phase lanthanide ion doped cadmium sulfide nanocrystals were prepared by co-precipitation method. • HRTEM displays randomly aggregated nanoparticles with well-defined lattice fringes. • Energy gap and optical properties were affected by the different doping ions. • Effect of Sm and Nd ion doping on photo-emission of CdS nanocrystals was clarified. - Abstract: Cubic phase samarium (Sm{sup 3+}) and neodymium (Nd{sup 3+}) doped cadmium sulfide nanocrystals were synthesized through the chemical co-precipitation method. The crystallite size computed with high intense (1 1 1) peak using Scherrer formula was ∼3 nm. Morphology was examined with scanning electron microscopy (SEM). The transmission electron microscopy (TEM) images further established the formation of nanoclusters and EDAX spectra confirms the presence of cadmium, sulphide and rare earth elements in the sample. SAED pattern shows the crystallinity of the synthesized sample. Blue shift in the bandgap energy in the reflectance UV spectra, illustrates size quantization effect and dopant ion incorporation into the host lattice. The effect of doping concentrations of Sm{sup 3+} and Nd{sup 3+} on the luminescence spectra of CdS was studied. The emission spectra revealed that the intensity increased considerably in the presence of dopant ions. The variation in the optical properties and the enhancement in the luminescence were discussed for different doping levels.

  20. Indium phosphide/cadmium sulfide thin-film solar cells

    SciTech Connect

    Zanio, K.

    1980-02-01

    Thin-film InP/CdS structures were prepared by depositing, in sequence, ITO on a low-cost glass substrate, CdS on the ITO by thermal evaporation, and InP on the CdS by planar reactive deposition (PRD). Films of CdS, 15 ..mu..m thick, were recrystallized in flowing H/sub 2//H/sub 2/S at 500/sup 0/C. Lateral dimensions of typical grains were 50..mu..m with values up to 200 ..mu..m. The sheet resistance of the recrystallized CdS (RXCdS) was lowered from greater than 10/sup 5/ ..cap omega../O = cm/sup 2/ to values as low as 16 ..cap omega../O = cm/sup 2/ by annealing in either H/sub 2/ Cd atmospheres. Epitaxy of InP was undertaken on (100) InP at a substrate temperature of 320/sup 0/C. Room-temperature electron mobilities of about 2000 cm/sup 2//V-sec were found. Mobilities and hole concentrations of 60 cm/sup 2//V-sec and 10/sup 17/ cm-/sup 3/, respectively, were achieved with Be-doped films. P-type films with hole concentrations as high as a few times 10/sup 18/cm-/sup 3/ were achieved with increased doping. Be-doped InP was deposited onto the RXCdS/ITO/GLASS substrate to form a thin-film cell. However, p-type InP could not be prepared with CdS as a substrat4e, presumably due to interdiffusion or vapor transport of sulfur. Consequently, blocking action and a photovoltage could only be achieved using a gold Schottky barrier on the InP/RXCdS/ITO/GLASS structure. Plans for the next quarter include determining whether n-type doping from the CdS occurs by either interdiffusion or vapor transport, characterizing InP epitaxy on the RXCdS, and preparing additional thin-film structures.

  1. Varying cadmium telluride growth temperature during deposition to increase solar cell reliability

    DOEpatents

    Albin, David S.; Johnson, James Neil; Zhao, Yu; Korevaar, Bastiaan Arie

    2016-04-26

    A method for forming thin films or layers of cadmium telluride (CdTe) for use in photovoltaic modules or solar cells. The method includes varying the substrate temperature during the growth of the CdTe layer by preheating a substrate (e.g., a substrate with a cadmium sulfide (CdS) heterojunction or layer) suspended over a CdTe source to remove moisture to a relatively low preheat temperature. Then, the method includes directly heating only the CdTe source, which in turn indirectly heats the substrate upon which the CdTe is deposited. The method improves the resulting CdTe solar cell reliability. The resulting microstructure exhibits a distinct grain size distribution such that the initial region is composed of smaller grains than the bulk region portion of the deposited CdTe. Resulting devices exhibit a behavior suggesting a more n-like CdTe material near the CdS heterojunction than devices grown with substrate temperatures held constant during CdTe deposition.

  2. Electrodeposited cobalt sulfide hole collecting layer for polymer solar cells

    NASA Astrophysics Data System (ADS)

    Zampetti, Andrea; De Rossi, Francesca; Brunetti, Francesca; Reale, Andrea; Di Carlo, Aldo; Brown, Thomas M.

    2014-08-01

    In polymer solar cells based on the blend of regioregular poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester, the hole collecting layer has to be endowed with its ionization potential close to or greater than that of P3HT (˜5 eV). Conductive polymer blends such as poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and metal oxides such as vanadium pentoxide (V2O5) and molybdenum trioxide (MoO3) satisfy this requirement and have been the most common materials used so far in bulk heterojunction structures. We report here cobalt sulfide (CoS) to be a promising hole collecting material deposited by convenient and room temperature electrodeposition. By simply tuning the CoS electrodeposition parameters, power conversion efficiencies similar (within 15%) to a reference structure with PEDOT:PSS were obtained.

  3. Electrodeposited cobalt sulfide hole collecting layer for polymer solar cells

    SciTech Connect

    Zampetti, Andrea; De Rossi, Francesca; Brunetti, Francesca; Reale, Andrea; Di Carlo, Aldo; Brown, Thomas M.

    2014-08-11

    In polymer solar cells based on the blend of regioregular poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester, the hole collecting layer has to be endowed with its ionization potential close to or greater than that of P3HT (∼5 eV). Conductive polymer blends such as poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and metal oxides such as vanadium pentoxide (V{sub 2}O{sub 5}) and molybdenum trioxide (MoO{sub 3}) satisfy this requirement and have been the most common materials used so far in bulk heterojunction structures. We report here cobalt sulfide (CoS) to be a promising hole collecting material deposited by convenient and room temperature electrodeposition. By simply tuning the CoS electrodeposition parameters, power conversion efficiencies similar (within 15%) to a reference structure with PEDOT:PSS were obtained.

  4. Synthesis and characterization of poly(acrylic acid) stabilized cadmium sulfide quantum dots.

    PubMed

    Celebi, Serdar; Erdamar, A Koray; Sennaroglu, Alphan; Kurt, Adnan; Acar, Havva Yagci

    2007-11-01

    Cadmium sulfide (CdS) nanoparticles (NPs) capped with poly(acrylic acid) (PAA) were prepared in aqueous solutions from Cd(NO3)2 and Na2S. Influence of the COOH/Cd ratio (0.8-12.5), reaction pH (5.5 and 7.5), and PAA molecular weight (2100 and 5100 g/mol) on the particle size, colloidal stability, and photoluminescence were investigated. A Cd/S ratio of <1 causes ineffective passivization of the surface with the carboxylate and therefore results in a red shift of the absorption band and a significant drop in photoluminescence. Therefore, the Cd/S ratio was fixed at 1.1 for all experiments studying the mentioned variables. PAA coating provided excellent colloidal stability at a COOH/Cd ratio above 1. Absorption edges of PAA-coated CdS NPs are in the range of 460-508 nm. The size of the NPs increases slightly with increasing PAA molecular weight and COOH/Cd ratio at pH 7.5. It is demonstrated that there is a critical COOH/Cd ratio (1.5-2) that maximizes the photoluminescence intensity and quantum yield (QY, 17%). Above this critical ratio, which corresponds to smaller crystal sizes (3.7-4.1 nm) for each reaction set, the quantum yield decreases and the crystal size increases. Moreover, CdS NPs prepared at pH 7.5 have significantly higher QY and absorb at lower wavelengths in comparison with those prepared at pH 5.5. Luminescence quenching has not been observed over 8 months. PMID:17929960

  5. Cadmium sulfide quantum dots stabilized by castor oil and ricinoleic acid

    NASA Astrophysics Data System (ADS)

    Kyobe, Joseph William; Mubofu, Egid Beatus; Makame, Yahya M. M.; Mlowe, Sixberth; Revaprasadu, Neerish

    2016-02-01

    Castor oil and ricinoleic acid (an isolate of castor oil) are environmentally friendly bio-based organic surfactants that have been used as capping agents to prepare nearly spherical cadmium sulfide quantum dots (QDs) at 230, 250 and 280 °C. The prepared quantum dots were characterized by Ultra violet-visible (UV-vis), Photoluminescence (PL), Transmission Electron Microscopy (TEM), High Resolution Transmission Electron Microscopy (HRTEM) and X-ray diffraction (XRD) giving an overall CdS QDs average size of 5.14±0.39 nm. The broad XRD pattern and crystal lattice fringes in the HRTEM images showed a hexagonal phase composition of the CdS QDs. The calculated/estimated average size of the prepared castor oil capped CdS QDs for various techniques were 4.64 nm (TEM), 4.65 nm (EMA), 5.35 nm (UV-vis) and 6.46 nm (XRD). For ricinoleic acid capped CdS QDs, the average sizes were 5.56 nm (TEM), 4.78 nm (EMA), 5.52 nm (UV-vis) and 8.21 nm (XRD). Optical properties of CdS QDs showed a change of band gap energy from its bulk band gap of 2.42-2.82 eV due to quantum size confinement effect for temperature range of 230-280 °C. Similarly, a blue shift was observed in the photoluminescence spectra. Scanning electron microscope (SEM) observations show that the as-synthesized CdS QDs structures are spherical in shape. Fourier transform infra-red (FTIR) studies confirms the formation of castor oil and ricinoleic acid capped CdS QDs.

  6. Effects of different annealing atmospheres on the properties of cadmium sulfide thin films

    SciTech Connect

    Yücel, E.; Kahraman, S.; Güder, H.S.

    2015-08-15

    Graphical abstract: The effects of different annealing atmospheres (air and sulfur) on the structural, morphological and optical properties of CdS thin films were studied at three different pH values. - Highlights: • Compactness and smoothness of the films were enhanced after sulfur annealing. • Micro-strain values of some films were improved after sulfur annealing. • Dislocation density values of some films were improved after sulfur annealing. • Band gap values of the films were improved after sulfur annealing. - Abstract: Cadmium sulfide (CdS) thin films were prepared on glass substrates by using chemical bath deposition (CBD) technique. The effects of different annealing atmospheres (air and sulfur) on the structural, morphological and optical properties of CdS thin films were studied at three different pH values. Compactness and smoothness of the films (especially for pH 10.5 and 11) enhanced after sulfur annealing. pH value of the precursor solution remarkably affected the roughness, uniformity and particle sizes of the films. Based on the analysis of X-ray diffraction (XRD) patterns of the films, micro-strain and dislocation density values of the sulfur-annealed films (pH 10.5 and 11) were found to be lower than those of air-annealed films. Air-annealed films (pH 10.5, 11 and 11.5) exhibited higher transmittance than sulfur-annealed films in the wavelength region of 550–800 nm. Optical band gap values of the films were found between 2.31 eV and 2.36 eV.

  7. Flow-injection chemiluminescence analysis for sensitive determination of atenolol using cadmium sulfide quantum dots.

    PubMed

    Khataee, Alireza; Lotfi, Roya; Hasanzadeh, Aliyeh; Iranifam, Mortaza; Joo, Sang Woo

    2016-03-15

    A sensitive, rapid and simple flow-injection chemiluminescence (CL) system based on the light emitted from KMnO4-cadmium sulfide quantum dots (CdS QDs) reaction in the presence of cetyltrimethylammonium bromide (CTAB) in acidic medium was developed as a CL probe for the sensitive determination of atenolol. Optical and structural features of CdS QDs capped with l-cysteine, which synthesized via hydrothermal approach, were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), and UV-Vis spectroscopy. The CL intensity of KMnO4-CdS QDs-CTAB was remarkably enhanced in the presence of trace level of atenolol. Under optimum experimental conditions, there is a linear relationship between the increase in CL intensity of KMnO4-CdS QDs-CTAB system and atenolol concentration in a range of 0.001 to 4.0 mg L(-1) and 4.0 to 18.0 mg L(-1), with a detection limit (3σ) of 0.0010 mg L(-1). A possible mechanism for KMnO4-CdS QDs-CTAB-atenolol CL reaction is proposed. To prove the practical application of the KMnO4-CdS QDs-CTAB CL method, the method was applied for the determination of atenolol in spiked environmental water samples and commercial pharmaceutical formulation. Furthermore, corona discharge ionization ion mobility spectrometry (CD-IMS) technique was utilized for determination of atenolol. PMID:26724494

  8. High efficiency thin film cadmium telluride solar cells

    NASA Astrophysics Data System (ADS)

    Chu, T. L.; Chu, S. S.; Ang, S. T.; Han, K. D.; Liu, Y. Z.

    Thin films of cadmium telluride deposited by the close-spaced sublimation (CSS) technique have been characterized and used for the preparation of CdS/CdTe heterojunction solar cells. The current-voltage and capacitance-voltage relations of CdS/CdTe heterojunctions indicate that the cleanliness of the interface is an important factor affecting the characteristics of the solar cells. The best cell has an area of about 1.2 sq cm and an AM1.5 (global) efficiency of 10.5 percent.

  9. One-pot synthesis of reduced graphene oxide-cadmium sulfide nanocomposite and its photocatalytic hydrogen production.

    PubMed

    Zeng, Peng; Zhang, Qinggang; Peng, Tianyou; Zhang, Xiaohu

    2011-12-28

    Reduced graphene oxide (RGO)-cadmium sulfide (CdS) nanocomposites were successfully prepared by a one-pot solvothermal process without pretreatment of graphene oxide (GO) and a precipitation process, in which GO needs to be pre-reduced by hydrazine. The as-obtained RGO-CdS nanocomposites were used as photocatalysts for hydrogen production under visible light irradiation, and it was found that the product derived from the one-pot solvothermal process showed much better photoactivity than that from the precipitation method. PMID:22068902

  10. Cadmium Telluride Solar Cells with PEDOT:PSS Back Contact

    NASA Astrophysics Data System (ADS)

    Mount, Michael; Duarte, Fernanda; Paudel, Naba; Yan, Yanfa; Wang, Weining

    Cadmium Telluride (CdTe) solar cell is one of the most promising thin film solar cells and its highest efficiency has reached 21%. To keep improving the efficiency of CdTe solar cells, a few issues need to be addressed, one of which is the back contact. The back contact of CdTe solar cells are mostly Cu-base, and the problem with Cu-based back contact is that Cu diffuses into the grain boundary and into the CdS/CdTe junction, causing degradation problem at high temperature and under illumination. To continue improving the efficiency of CdTe/CdS solar cells, a good ohmic back contact with high work function and long term stability is needed. In this work, we report our studies on the potential of conducting polymer being used as the back contact of CdTe/CdS solar cells. Conducting polymers are good candidates because they have high work functions and high conductivities, are easy to process, and cost less, meeting all the requirements of a good ohmic back contact for CdTe. In our studies, we used poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) with different conductivities and compared them with traditional Cu-based back contact. It was observed that the CdTe solar cell performance improves as the conductivity of the PEDOT:PSS increase, and the efficiency (9.1%) is approaching those with traditional Cu/Au back contact (12.5%). Cadmium Telluride Solar Cells with PEDOT:PSS Back Contact.

  11. Efficient iron sulfide counter electrode for quantum dots-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Chen, Haining; Zhu, Liqun; Liu, Huicong; Li, Weiping

    2014-01-01

    Iron sulfide is explored as the counter electrode (CE) in quantum dots-sensitized solar cells (QDSCs), which is prepared by simply immersing carbon steel in Na2S solution. The photoelectrochemical performance and the electrocatalytic property of iron sulfide are much higher than those of Pt and are very close to those of Cu2S. Since the preparation method of iron sulfide CE is simple, carbon steel substrate is stable in polysulfide electrolyte, the storage of Fe element in earth is very abundant and iron ions are environmentally friendly, iron sulfide shows much prospect as the efficient, stable, lost-cost and environmentally friendly CE of QDSCs.

  12. A reactor-receiver for solar thermolysis of hydrogen sulfide

    SciTech Connect

    Lee, C.S.; Fletcher, E.A.; Davidson, J.H.

    1995-10-01

    Use of concentrated solar energy as a source of heat for thermochemical dissociation of hydrogen sulfide is an intriguing method of storing solar energy in the form of hydrogen while eliminating the environmental burden of disposing of a waste product formed during processing of petroleum, coal and natural gas. The major technical challenge is the design of the interface between the solar source and the chemical reactor. As part of an ongoing effort, the authors describe a porous bed, alumina receiver-reactor and characterize and examine its important features. The authors used a one-dimensional, steady state model to predict temperature profiles in both solid and gas phases and the composition profiles in the gas. In this base-line example, with an insolation of 800 W, an inlet gas temperature of 1,000 K, a porosity of 0.5, and a mass flow rate of 0.25 kg/m{sup 2}s, surface temperature of the bed goes to about 1,690 K and the gas products emerge from a 5 cm deep bed at about 1,680 K at 0.95 atm. The gas achieved its equilibrium composition; the conversion of H{sub 2}S to H{sub 2} and S{sub 2} was 0.55. The reaction is the rate determining agent in the process. Thus, kinetics of the chemical reaction will play an essential role in determining what should be the characteristics of a practical device. Results also suggest that the optical characteristics and geometry of the solid substrate should be manipulated to optimize the performance of a commercial receiver-reactor.

  13. Improving the efficiency of cadmium sulfide-sensitized titanium dioxide/indium tin oxide glass photoelectrodes using silver sulfide as an energy barrier layer and a light absorber

    PubMed Central

    2014-01-01

    Cadmium sulfide (CdS) and silver sulfide (Ag2S) nanocrystals are deposited on the titanium dioxide (TiO2) nanocrystalline film on indium tin oxide (ITO) substrate to prepare CdS/Ag2S/TiO2/ITO photoelectrodes through a new method known as the molecular precursor decomposition method. The Ag2S is interposed between the TiO2 nanocrystal film and CdS nanocrystals as an energy barrier layer and a light absorber. As a consequence, the energy conversion efficiency of the CdS/Ag2S/TiO2/ITO electrodes is significantly improved. Under AM 1.5 G sunlight irradiation, the maximum efficiency achieved for the CdS(4)/Ag2S/TiO2/ITO electrode is 3.46%, corresponding to an increase of about 150% as compared to the CdS(4)/TiO2/ITO electrode without the Ag2S layer. Our experimental results show that the improved efficiency is mainly due to the formation of Ag2S layer that may increase the light absorbance and reduce the recombination of photogenerated electrons with redox ions from the electrolyte. PMID:25411566

  14. Thin-film cadmium telluride solar cells

    NASA Astrophysics Data System (ADS)

    Chu, T. L.

    1986-08-01

    The major objective of this work was to demonstrate CdTe devices grown by chemical vapor deposition (CVD) with a total area greater than 1 cm2 and photovoltic efficiencies of at least 13%. During the period covered, various processing steps were investigated for the preparation of thin-film CdTe heterojunction solar cells of the inverted configuration. Glass coated with fluorine-doped tin oxide was used as the substrate. Thin-film heterojunction solar cells were prepared by depositing p-CdTe films on substrates using CVD and close-spaced sublimation (CSS). Cells prepared from CSS CdTe usually have a higher conversion efficiency than those prepared from CVD CdTe, presumably due to the chemical interaction between CdS and CdTe at the interface during the CVD process. The best cell, about 1.2 sq cm in area, had an AM 1.5 (global) efficiency of 10.5%, and further improvements are expected by optimizing the process parameters.

  15. CADMIUM SOLUBILITY IN PADDY SOILS: EFFECTS OF SOIL OXIDATION, METAL SULFIDES AND COMPETITIVE IONS.

    EPA Science Inventory

    Cadmium (Cd) is a non-essential element for human nutrition and is an agricultural soil contaminant. Cadmium solubility in paddy soils affects Cd accumulation in the grain of rice. This is a human health risk, exacerbated by the fact that rice grains are deficient in iron (Fe) an...

  16. Thin film cadmium telluride solar cells

    NASA Astrophysics Data System (ADS)

    Chu, T. L.; Chu, Shirley S.; Ang, S. T.; Mantravadi, M. K.

    1987-08-01

    Thin-film p-CdTe/CdS/SnO2:F/glass solar cells of the inverted configuration were prepared by the deposition of p-type CdTe films onto CdS/SnO2:F/glass substrates using CVD or close-spaced sublimation (CSS) techniques based on the procedures of Chu et al. (1983) and Nicholl (1963), respectively. The deposition rates of p-CdTe films deposited by CSS were higher than those deposited by the CVD technique (4-5 min were sufficient), and the efficiencies higher than 10 percent were obtained. However, the resistivity of films prepared by CSS was not as readily controlled as that of the CVD films. The simplest technique to reduce the resistivity of the CSS p-CdTe films was to incorporate a dopant, such as As or Sb, into the reaction mixture during the preparation of the source material. The films with resistivities in the range of 500-1000 ohm cm were deposited in this manner.

  17. Towards understanding junction degradation in cadmium telluride solar cells

    SciTech Connect

    Nardone, Marco

    2014-06-21

    A degradation mechanism in cadmium telluride (CdTe/CdS) solar cells is investigated using time-dependent numerical modeling to simulate various temperature, bias, and illumination stress conditions. The physical mechanism is based on defect generation rates that are proportional to nonequilibrium charge carrier concentrations. It is found that a commonly observed degradation mode for CdTe/CdS solar cells can be reproduced only if defects are allowed to form in a narrow region of the absorber layer close to the CdTe/CdS junction. A key aspect of this junction degradation is that both mid-gap donor and shallow acceptor-type defects must be generated simultaneously in response to photo-excitation or applied bias. The numerical approach employed here can be extended to study other mechanisms for any photovoltaic technology.

  18. Flow-injection chemiluminescence analysis for sensitive determination of atenolol using cadmium sulfide quantum dots

    NASA Astrophysics Data System (ADS)

    Khataee, Alireza; Lotfi, Roya; Hasanzadeh, Aliyeh; Iranifam, Mortaza; Joo, Sang Woo

    2016-03-01

    A sensitive, rapid and simple flow-injection chemiluminescence (CL) system based on the light emitted from KMnO4-cadmium sulfide quantum dots (CdS QDs) reaction in the presence of cetyltrimethylammonium bromide (CTAB) in acidic medium was developed as a CL probe for the sensitive determination of atenolol. Optical and structural features of CdS QDs capped with L-cysteine, which synthesized via hydrothermal approach, were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), and UV-Vis spectroscopy. The CL intensity of KMnO4-CdS QDs-CTAB was remarkably enhanced in the presence of trace level of atenolol. Under optimum experimental conditions, there is a linear relationship between the increase in CL intensity of KMnO4-CdS QDs-CTAB system and atenolol concentration in a range of 0.001 to 4.0 mg L- 1 and 4.0 to 18.0 mg L- 1, with a detection limit (3σ) of 0.0010 mg L- 1. A possible mechanism for KMnO4-CdS QDs-CTAB-atenolol CL reaction is proposed. To prove the practical application of the KMnO4-CdS QDs-CTAB CL method, the method was applied for the determination of atenolol in spiked environmental water samples and commercial pharmaceutical formulation. Furthermore, corona discharge ionization ion mobility spectrometry (CD-IMS) technique was utilized for determination of atenolol. Figure S2. Optimization of the CL reaction conditions: (a) effect of KMnO4 concentration. Conditions: the concentrations of H2SO4, CdS QDs and atenolol were 1 mol L-1, 0.35 mol L-1, and 4.0 mg L-1, respectively; (b) effect of acidic media. Conditions: the concentrations of KMnO4 was 0.04 mmol L-1, other conditions were as in (a); (c) effect of CdS QDs concentration. Conditions: H2SO4 concentration was 1.0 mol L-1, other conditions were as in (b), and (d) effect of CTAB concentration. Conditions: CdS QDs concentration was 0.35 mmol L-1, other conditions were as in (c). Figure S3. UV-Vis absorption spectra of KMnO4-CdS QDs-atenolol CL system

  19. Effect of cadmium sulfide nanorod content on Freedericksz threshold voltage, splay and bend elastic constants in liquid-crystal nanocomposites

    NASA Astrophysics Data System (ADS)

    Nayek, Prasenjit; Karan, Santanu; Kundu, Sudarshan; Lee, Seung Hee; Das Gupta, Sudeshna; Roy, Soumen Kumar; Roy, Subir Kumar

    2012-06-01

    This report describes how doping liquid crystals (LC) with rod-like hexagonal semiconductor nanoprisms alters the dielectric and elastic properties of the composites as compared with a pristine nematic liquid crystal (NLC). Cadmium sulfide nanorods were synthesized via the solvothermal process and blended with a NLC. Nanorods were highly miscible with NLC and produced a topological defect-free texture up to a certain limit. A good dark state was achieved during the homeotropic configuration of the cell within that limit. Appreciable changes in splay and bend elastic constants of the LCs were observed after blending with nanorods. Long-range order was established in the hybrid system, and consequently the anisotropy was increased. The threshold voltage decreased dramatically by ˜31%. Dielectric study revealed a high-frequency mode, which might be due to anchoring of the LC with nanorods.

  20. Thin films and solar cells of cadmium telluride and cadmium zinc telluride

    NASA Astrophysics Data System (ADS)

    Ferekides, Christos Savva

    The objectives of this dissertation are to investigate (1) the metalorganic chemical vapor deposition (MOCVD) and properties of cadmium telluride (CdTe) and cadmium zinc telluride (Cd(1-x)Zn(z)Te) films and junctions, and their potential application to solar cells, and (2) the fabrication and characterization of CdTe solar cells by the close spaced sublimation (CSS) technique. CdTe and Cd(1-x)Zn(x)Te films have been deposited by MOCVD on a variety of substrates at 300-400 C. The effect of the deposition parameters and post deposition heat treatments on the electrical, optical, and structural properties have been investigated. Heterojunctions of the configuration CdTe/transparent conducting semiconductor (TCS) and Cd(1-x)Zn(x)Te/TCS have been prepared and characterized. CdTe(MOCVD)/CdS and Cd(1-x)Zn(x)Te(E sub g = 1.65eV)/Cd(1-x)Zn(x)S solar cells with efficiencies of 9.9 percent and 2.4 percent, respectively have been fabricated. The as-deposited CdTe(MOCVD)/CdS junctions exhibited high dark current densities due to deflects at the interface associated with small grain size. Their characteristics of the Cd(1-x)Zn(x)Te junctions degraded with increasing Zn concentration due to the crystalline quality and very small grain size (0.3 microns) in films with high ZnTe contents (greater than 25 percent). No effective post-deposition heat treatment has been developed. CdTe/CdS solar cells have also been fabricated by the close spaced sublimation (CSS). Significant improvements in material and processing have been made, and in collaboration with fellow researchers an AM1.5 conversion efficiency of 13.4 percent has been demonstrated, the highest efficiency ever measured for such devices. The highest conversion efficiency for the CdTe(CSS)/CdS solar cell was achieved by reaching high open-circuit voltages and fill factors, while the short-circuit current densities were moderate. These results indicate that further improvements to increase the short-circuit current densities

  1. Methodological approach to study energetic and structural properties of nanostructured cadmium sulfide by using ab-initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Burresi, E.; Celino, M.

    2012-05-01

    A single wurtzite phase of cadmium sulfide cluster is investigated by ab-initio molecular dynamics simulations at different temperatures, ranging from 100 K to 600 K. In this study we propose a possible procedure to characterize the CdS quantum dots system by means of molecular dynamics calculations using a standard Car-Parrinello scheme. In order to ensure the accuracy of the numerical approach, preliminary calculations to test pseudopotentials, cutoff and box size on both single atoms systems and Cd-Cd, S-S, Cd-S dimers have been performed. Calculated binding energies and bond lengths are obtained in good agreement with experimental data. Subsequently, an uncapped CdS cluster with size below 2 nm, 48 atoms of cadmium and 48 atoms of sulfur, in a wurtzite geometry was structurally optimized to minimize internal stresses. The CdS cluster has been carefully characterized structurally at several temperatures up to T = 600 K. At the temperature of 340 K atomic diffusion on the surface allows the onset of a new stable atomic configuration.

  2. Photocatalytic Activities of Copper Doped Cadmium Sulfide Microspheres Prepared by a Facile Ultrasonic Spray-Pyrolysis Method.

    PubMed

    Su, Jinzhan; Zhang, Tao; Li, Yufeng; Chen, Yubin; Liu, Maochang

    2016-01-01

    Ultrasonic spray pyrolysis is a superior method for preparing and synthesizing spherical particles of metal oxide or sulfide semiconductors. Cadmium sulfide (CdS) photocatalysts with different sizes and doped-CdS with different dopants and doping levels have been synthesized to study their properties of photocatalytic hydrogen production from water. The CdS photocatalysts were characterized with scanning electron microscopy (SEM), X-ray fluorescence-spectrometry (XRF), UV-Vis absorption spectra and X-ray diffraction (XRD) to study their morphological and optical properties. The sizes of the prepared CdS particles were found to be proportional to the concentration of the metal nitrates in the solution. The CdS photocatalyst with smaller size showed a better photocatalytic activity. In addition, Cu doped CdS were also deposited and their photocatalytic activities were also investigated. Decreased bandgaps of CdS synthesized with this method were found and could be due to high density surface defects originated from Cd vacancies. Incorporating the Cu elements increased the bandgap by taking the position of Cd vacancies and reducing the surface defect states. The optimal Cu-doped level was found to be 0.5 mol % toward hydrogen evolution from aqueous media in the presence of sacrificial electron donors (Na₂S and Na₂SO₃) at a pH of 13.2. This study demonstrated that ultrasonic spray pyrolysis is a feasible approach for large-scale photocatalyst synthesis and corresponding doping modification. PMID:27314320

  3. Phytochelatins in Cadmium-Sensitive and Cadmium-Tolerant Silene vulgaris (Chain Length Distribution and Sulfide Incorporation).

    PubMed Central

    De Knecht, J. A.; Van Dillen, M.; Koevoets, PLM.; Schat, H.; Verkleij, JAC.; Ernst, WHO.

    1994-01-01

    In response to a range of Cd concentrations, the root tips of Cd-tolerant plants of Silene vulgaris exhibit a lower rate of PC production accompanied by a lower rate of longer chain PC synthesis than those of Cd-sensitive plants. At the same Cd exposure level, stable PC-Cd complexes are more rapidly formed in the roots of Cd-sensitive plants than in those of tolerant plants. At an equal PC concentration in the roots, the PC composition and the amount of sulfide incorporated per unit of PC-thiol is the same in both populations. Although these compounds might play some role in mechanisms that contribute to Cd detoxification, the ability to produce these compounds in greater amounts is not, itself, the mechanism that produces increased Cd tolerance in tolerant S. vulgaris plants. PMID:12232077

  4. Cadmium sulfide nanoparticles trigger DNA alterations and modify the bioturbation activity of tubificidae worms exposed through the sediment.

    PubMed

    Dedeh, Amina; Ciutat, Aurélie; Lecroart, Pascal; Treguer-Delapierre, Mona; Bourdineaud, Jean-Paul

    2016-01-01

    To address the impact of cadmium sulfide nanoparticles (CdS NPs) in freshwater ecosystems, aquatic oligochaete Tubifex tubifex were exposed through the sediment to a low dose (0.52 mg of 8 nm in size of CdS NPs/kg) for 20 days using microcosms. Cadmium (Cd) was released from the CdS NPs-contaminated sediment to the water column, and during this period the average concentrations of Cd in the filtered water fraction were 0.026 ± 0.006 µg/L in presence of oligochaetes. Similar experiments with microparticular CdS and cadmium chloride (CdCl2) were simultaneously performed for comparative purposes. CdS NPs exposure triggered various effects on Tubifex worms compared to control, microsized and ionic reference, including modification of genome composition as assessed using RAPD-PCR genotoxicity tests. Bioaccumulation levels showed that CdS NPs were less bioavailable than CdCl2 to oligochaetes and reached 0.08 ± 0.01 µg Cd/g for CdS NPs exposure versus 0.76 ± 0.3 µg Cd/g for CdCl2 exposure (fresh weight). CdS NPs altered worm's behavior by decreasing significantly the bioturbation activity as assessed after the exposure period using conservative fluorescent particulate tracers. This study demonstrated the high potential harm of the CdS nanoparticular form despite its lower bioavailability for Tubifex worms. PMID:26618487

  5. Effects of Buffer Salt Concentration on the Dominated Deposition Mechanism and Optical Characteristics of Chemically Deposited Cadmium Sulfide Thin Films

    NASA Astrophysics Data System (ADS)

    Kakhaki, Z. Makhdoumi; Youzbashi, A.; Sangpour, P.; Kazemzadeh, A.; Naderi, N.; Bazargan, A. M.

    2016-02-01

    Effects of buffer salt concentration on the rate of deposition, dominated deposition mechanism and subsequently the structural, morphological, and optical properties of cadmium sulfide (CdS) thin films deposited by chemical bath deposition (CBD) on glass substrate were investigated. The precursors were chosen to be cadmium chloride (CdCl2) as the cadmium source, thiourea (CS(NH2)2) as the sulfur source, ammonium nitrate (NH4NO3) as the buffer salt and ammonia as the complexing agent and the pH controller. The influence of the NH4NO3 concentration on the structure, morphology, film uniformity, stoichiometry and optical properties of CdS thin films was also studied by X-ray diffractometer (XRD), field emission scanning electron microscope (FE-SEM), energy dispersive X-ray (EDX) spectroscope, uv-visible and photoluminescence (PL) spectroscopes. The XRD studies revealed that all the deposited films exhibited a (002)h/(111)c preferred orientation. The crystallite size was increased from 20nm to 30nm by the increase of concentration of NH4NO3 from 0.5M to 2.5M. The morphology of CdS thin films were agglomerated spherical particles consisted of smaller particles. The surface of thin films deposited at the NH4NO3 concentration of 0.5M was compact and smooth. The increase of the concentration of NH4NO3 decreased the packing density of the films. The optical band gap was in the range of 2.25-2.4eV, which was decreased by the decrement of packing density. The PL spectra showed two peaks centered at 400nm and 500nm which are attributed to violet and band-to-band emissions, respectively.

  6. Cadmium-Induced Hydrogen Sulfide Synthesis Is Involved in Cadmium Tolerance in Medicago sativa by Reestablishment of Reduced (Homo)glutathione and Reactive Oxygen Species Homeostases

    PubMed Central

    Cui, Weiti; Chen, Huiping; Zhu, Kaikai; Jin, Qijiang; Xie, Yanjie; Cui, Jin; Xia, Yan; Zhang, Jing; Shen, Wenbiao

    2014-01-01

    Until now, physiological mechanisms and downstream targets responsible for the cadmium (Cd) tolerance mediated by endogenous hydrogen sulfide (H2S) have been elusive. To address this gap, a combination of pharmacological, histochemical, biochemical and molecular approaches was applied. The perturbation of reduced (homo)glutathione homeostasis and increased H2S production as well as the activation of two H2S-synthetic enzymes activities, including L-cysteine desulfhydrase (LCD) and D-cysteine desulfhydrase (DCD), in alfalfa seedling roots were early responses to the exposure of Cd. The application of H2S donor sodium hydrosulfide (NaHS), not only mimicked intracellular H2S production triggered by Cd, but also alleviated Cd toxicity in a H2S-dependent fashion. By contrast, the inhibition of H2S production caused by the application of its synthetic inhibitor blocked NaHS-induced Cd tolerance, and destroyed reduced (homo)glutathione and reactive oxygen species (ROS) homeostases. Above mentioned inhibitory responses were further rescued by exogenously applied glutathione (GSH). Meanwhile, NaHS responses were sensitive to a (homo)glutathione synthetic inhibitor, but reversed by the cotreatment with GSH. The possible involvement of cyclic AMP (cAMP) signaling in NaHS responses was also suggested. In summary, LCD/DCD-mediated H2S might be an important signaling molecule in the enhancement of Cd toxicity in alfalfa seedlings mainly by governing reduced (homo)glutathione and ROS homeostases. PMID:25275379

  7. Solar Photovoltaic Cells.

    ERIC Educational Resources Information Center

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  8. Acartia tonsa eggs as a biomonitor to evaluate bioavailability/toxicity of persistent contaminants in anoxic/sulfidic conditions: The case of cadmium and nickel.

    PubMed

    Sei, Sandra; Invidia, Marion; Giannetto, Marco; Gorbi, Gessica

    2016-10-01

    The evaluation of toxicity due to persistent pollutants in anoxic aquatic environments has met with various problems, as most test organisms can not withstand oxygen lack and exposure to free sulfide. We evaluated the suitability of the eggs of the brackish copepod Acartia tonsa for bioassays in anoxic/sulfidic conditions: when exposed to deep hypoxia and free sulfide, the eggs become quiescent and are able to resume hatching after restoring normoxic conditions. Tests with cadmium and nickel were performed in normoxic and deeply hypoxic conditions and in anoxic water containing H2S or H2S+FeSO4 on an equimolar basis. Active and quiescent eggs showed equivalent sensitivity to the metals, both suffering significant reductions in hatching success at 89μM Cd and 17μM Ni. As expected on the basis of the SEM/AVS model, Cd toxicity was almost completely suppressed in presence of sulfides. Dissolved Cd concentration drastically dropped and hatching success was generally >80%, as against values <6% observed in sulfide-free water, indicating that the applied experimental procedure can simulate metal-sulfide interaction. Ni toxicity was only slightly reduced by the presence of sulfides. High dissolved Ni concentrations were detected and mean hatching percentages were ≤32%, suggesting that Ni bioavailability/toxicity was only partially controlled by excess reactive sulfides. The results suggest that A. tonsa eggs could be a useful biomonitor to evaluate toxicity due persistent contaminants in anoxic conditions and the role of sulfides in reducing metal bioavailability/toxicity. PMID:27235834

  9. Integration of Semiconducting Sulfides for Full-Spectrum Solar Energy Absorption and Efficient Charge Separation.

    PubMed

    Zhuang, Tao-Tao; Liu, Yan; Li, Yi; Zhao, Yuan; Wu, Liang; Jiang, Jun; Yu, Shu-Hong

    2016-05-23

    The full harvest of solar energy by semiconductors requires a material that simultaneously absorbs across the whole solar spectrum and collects photogenerated electrons and holes separately. The stepwise integration of three semiconducting sulfides, namely ZnS, CdS, and Cu2-x S, into a single nanocrystal, led to a unique ternary multi-node sheath ZnS-CdS-Cu2-x S heteronanorod for full-spectrum solar energy absorption. Localized surface plasmon resonance (LSPR) in the nonstoichiometric copper sulfide nanostructures enables effective NIR absorption. More significantly, the construction of pn heterojunctions between Cu2-x S and CdS leads to staggered gaps, as confirmed by first-principles simulations. This band alignment causes effective electron-hole separation in the ternary system and hence enables efficient solar energy conversion. PMID:27062543

  10. Solar decomposition of cadmium oxide for hydrogen production. Final subcontract report

    SciTech Connect

    Schreiber, J. D.; Yudow, B. D.; Carty, R. H.; Whaley, T. P.; Pangborn, J. B.

    1981-11-01

    The reactor developed for this study performed satisfactorily in establishing the feasibility of cadmium oxide decomposition under the realistic conditions of the solar-furnace environment. The solar-furnace environment is very appropriate for the evaluation of design concepts. However, the solar furnace probably cannot give precise rate data. The flux is too nonuniform, so temperatures of reactant and corresponding reaction rates are also nonuniform. One of the most important results of this project was the recovery of samples from the quench heat exchanger that contained a surprisingly large amount of metallic cadmium. The fact that the sample taken from the quench heat exchanger was metallic in appearance and contained between 67% and 84% metallic cadmium would tend to indicate recombination of cadmium vapor and oxygen can be effectively prevented by the quenching operation. It would also tend to confirm recent studies that show cadmium oxide does not sublime appreciably. Determination of the decomposition rate of cadmium oxide was severely limited by fluctuating and nonuniform reactant temperatures and baseline drift in the oxygen sensor. However, the estimated rate based on a single run seemed to follow a typical solid decomposition rate pattern with an initial acceleratory period, followed by a longer deceleratory period. From a preliminary flowsheet analysis of the cadmium-cadmium oxide cycle, it was determined that at a cadmium oxide decomposition temperature of 1400/sup 0/C and a requirement of 0.2 V in the electrolyzer the efficiency was 41%, assuming total quenching of the cadmium oxide decomposition products. This efficiency could increase to a maximum of 59% if total recovery of the latent heats of vaporization and fusion of the decomposition products is possible.

  11. A circular dichroism sensor for Ni(2+) and Co(2+) based on L-cysteine capped cadmium sulfide quantum dots.

    PubMed

    Tedsana, Wimonsiri; Tuntulani, Thawatchai; Ngeontae, Wittaya

    2015-03-31

    A new circular dichroism sensor for detecting Ni(2+) and Co(2+) was proposed for the first time using chiral chelating quantum dots. The detection principle was based on changing of circular dichroism signals of the chiral quantum dots when forming a chiral complex with Ni(2+) or Co(2+). L-Cysteine capped cadmium sulfide quantum dots (L-Cyst-CdS QDs) were proposed as a chiral probe. The CD spectrum of L-Cyst-CdS QDs was significantly changed in the presence of Ni(2+) and Co(2+). On the other hand, other studied cations did not alter the original CD spectrum. Moreover, when increasing the concentration of Ni(2+) or Co(2+), the intensity of the CD spectrum linearly increased as a function of concentration and could be useful for the quantitative analysis. The proposed CD sensor showed linear working concentration ranges of 10-60 μM and 4-80 μM with low detection limits of 7.33 μМ and 1.13 μM for the detection of Ni(2+) and Co(2+), respectively. Parameters possibly affected the detection sensitivity such as solution pH and incubation time were studied and optimized. The proposed sensor was applied to detect Ni(2+) and Co(2+) in real water samples, and the results agreed well with the analysis using the standard ICP-OES. PMID:25813022

  12. The Proteomic Response of Arabidopsis thaliana to Cadmium Sulfide Quantum Dots, and Its Correlation with the Transcriptomic Response

    PubMed Central

    Marmiroli, Marta; Imperiale, Davide; Pagano, Luca; Villani, Marco; Zappettini, Andrea; Marmiroli, Nelson

    2015-01-01

    A fuller understanding of the interaction between plants and engineered nanomaterials is of topical relevance because the latter are beginning to find applications in agriculture and the food industry. There is a growing need to establish objective safety criteria for their use. The recognition of two independent Arabidopsis thaliana mutants displaying a greater level of tolerance than the wild type plant to exposure to cadmium sulfide quantum dots (CdS QDs) has offered the opportunity to characterize the tolerance response at the physiological, transcriptomic, and proteomic levels. Here, a proteomics-based comparison confirmed the conclusions drawn from an earlier transcriptomic analysis that the two mutants responded to CdS QD exposure differently both to the wild type and to each other. Just over half of the proteomic changes mirrored documented changes at the level of gene transcription, but a substantial number of transcript/gene product pairs were altered in the opposite direction. An interpretation of the discrepancies is given, along with some considerations regarding the use and significance of -omics when monitoring the potential toxicity of ENMs for health and environment. PMID:26732871

  13. Amorphous silicon/polycrystalline thin film solar cells

    SciTech Connect

    Ullal, H.S.

    1991-03-13

    An improved photovoltaic solar cell is described including a p-type amorphous silicon layer, intrinsic amorphous silicon, and an n-type polycrystalline semiconductor such as cadmium sulfide, cadmium zinc sulfide, zinc selenide, gallium phosphide, and gallium nitride. The polycrystalline semiconductor has an energy bandgap greater than that of the amorphous silicon. The solar cell can be provided as a single-junction device or a multijunction device.

  14. Cadmium-sulfide crystallites in Cd-. gamma. -glutamyl peptide complexes from Lycopersicon and Daucus

    SciTech Connect

    Reese, R.N. ); Winge, D.R. )

    1989-04-01

    Hydroponically-grown tomato plants (Lycopersicon esculentum P. Mill. cv stone) and suspension-cultured carrot cells (Daucus carota L.) exposed to 100 {mu}M cadmium salts produced metal-{gamma}-glutamyl peptide complexes containing acid labile sulfur. The properties of the complexes resemble the Cd-{gamma}-glutamyl complexes from Schizosaccharomyces pombe and Candida glabrata, known to contain a CdS crystallite core. The crystallite core is stabilized by a coating of peptides of the general structure ({gamma}-Glu-Cys){sub n}-Gly. The Cd-peptide complexes contain predominantly peptides of n{sub 2}, n{sub 3}, n{sub 4} and n{sub 3}desGly. Zn-peptide complexes were also isolated from carrot cultures grown in MS medium supplemented with 2 mM Zn and cysteine. Results of preliminary characterization of these complexes are consistent with the presence of a colloidal particle similar to that of the Cd-complexes.

  15. Single-enzyme biomineralization of cadmium sulfide nanocrystals with controlled optical properties.

    PubMed

    Dunleavy, Robert; Lu, Li; Kiely, Christopher J; McIntosh, Steven; Berger, Bryan W

    2016-05-10

    Nature has evolved several unique biomineralization strategies to direct the synthesis and growth of inorganic materials. These natural systems are complex, involving the interaction of multiple biomolecules to catalyze biomineralization and template growth. Herein we describe the first report to our knowledge of a single enzyme capable of both catalyzing mineralization in otherwise unreactive solution and of templating nanocrystal growth. A recombinant putative cystathionine γ-lyase (smCSE) mineralizes CdS from an aqueous cadmium acetate solution via reactive H2S generation from l-cysteine and controls nanocrystal growth within the quantum confined size range. The role of enzymatic nanocrystal templating is demonstrated by substituting reactive Na2S as the sulfur source. Whereas bulk CdS is formed in the absence of the enzyme or other capping agents, nanocrystal formation is observed when smCSE is present to control the growth. This dual-function, single-enzyme, aerobic, and aqueous route to functional material synthesis demonstrates the powerful potential of engineered functional material biomineralization. PMID:27118834

  16. Determination of ciprofloxacin with functionalized cadmium sulfide nanoparticles as a fluorescence probe

    NASA Astrophysics Data System (ADS)

    Li, Dan; Yan, Zheng-Yu; Cheng, Wei-Qing

    2008-12-01

    A novel assay of ciprofloxacin with a sensitivity at the microgram level is proposed based on the measurement of enhanced fluorescence intensity signals resulting from the interaction of functionalized nano-CdS with ciprofloxacin. The CdS nanoparticles was synthesized by thioacetamide (TAA) and cadmium nitrate (Cd(NO 3) 2) in the alkaline solution. At pH 7.4, the fluorescence signals of functionalized nano-CdS were greatly enhanced by ciprofloxacin with the increase concentration of ciprofloxacin. Linear relationship can be established between the enhanced fluorescence intensity and ciprofloxacin concentration in the range of (1.25-8.75) × 10 -4 mg mL -1 ((3.77-26.4) × 10 -4 mmol L -1) or (8.75-1200) × 10 -4 mg mL -1 ((26.4-3625) × 10 -4 mmol L -1). The limit of detection is 7.64 × 10 -6 mg mL -1 (2.31 × 10 -5 mmol L -1). Based on this, a new direct quantitative determination method for ciprofloxacin in human serum samples without separation of foreign substances was established. The contents of ciprofloxacin in human serum samples were determined with recovery of 95-105% and relative standard deviation (R.S.D.) of 1.5-2.5%. This method was proved to be very sensitive, rapid, simple and tolerance of most interfering substances.

  17. Porous copper zinc tin sulfide thin film as photocathode for double junction photoelectrochemical solar cells.

    PubMed

    Dai, Pengcheng; Zhang, Guan; Chen, Yuncheng; Jiang, Hechun; Feng, Zhenyu; Lin, Zhaojun; Zhan, Jinhua

    2012-03-21

    Porous copper zinc tin sulfide (CZTS) thin film was prepared via a solvothermal approach. Compared with conventional dye-sensitized solar cells (DSSCs), double junction photoelectrochemical cells using dye-sensitized n-type TiO(2) (DS-TiO(2)) as the photoanode and porous p-type CZTS film as the photocathode shows an increased short circuit current, external quantum efficiency and power conversion efficiency. PMID:22322239

  18. Inorganic-organic solar cells based on quaternary sulfide as absorber materials.

    PubMed

    Hong, Tiantian; Liu, Zhifeng; Yan, Weiguo; Liu, Junqi; Zhang, Xueqi

    2015-12-14

    We report a novel promising quaternary sulfide (CuAgInS) to serve as a semiconductor sensitizer material in the photoelectrochemical field. In this study, CuAgInS (CAIS) sulfide sensitized ZnO nanorods were fabricated on ITO substrates through a facile and low-cost hydrothermal chemical method and applied on photoanodes for solar cells for the first time. The component and stoichiometry were key factors in determining the photoelectric performance of CAIS sulfide, which were controlled by modulating their reaction time. ZnO/Cu0.7Ag0.3InS2 nanoarrays exhibit an enhanced optical and photoelectric performance and the power conversion efficiency of ITO/ZnO/Cu0.7Ag0.3InS2/P3HT/Pt solid-state solar cell was up to 1.80%. The remarkable performance stems from improved electron transfer, a higher efficiency of light-harvesting and appropriate band gap alignment at the interface of the ZnO/Cu0.7Ag0.3InS2 NTs. The research indicates that CAIS as an absorbing material has enormous potential in solar cell systems. PMID:26553746

  19. Cadmium

    Integrated Risk Information System (IRIS)

    Cadmium ; CASRN 7440 - 43 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  20. Sulfidation of electrodeposited microcrystalline/nanocrystalline cuprous oxide thin films for solar energy applications

    NASA Astrophysics Data System (ADS)

    Jayathilaka, K. M. D. C.; Kapaklis, V.; Siripala, W.; Jayanetti, J. K. D. S.

    2012-12-01

    Grain size of polycrystalline semiconductor thin films in solar cells is optimized to enhance the efficiency of solar cells. This paper reports results on an investigation carried out on electrodeposited n-type cuprous oxide (Cu2O) thin films on Ti substrates with small crystallites and sulfidation of them to produce a thin-film solar cell. During electrodeposition of Cu2O films, pH of an aqueous acetate bath was optimized to obtain films of grain size of about 100 nm, that were then used as templates to grow thicker n-type nanocrystalline Cu2O films. XRD and SEM analysis revealed that the films were of single phase and the substrates were well covered by the films. A junction of Cu2O/CuxS was formed by partially sulfiding the Cu2O films using an aqueous sodium sulfide solution. It was observed that the photovoltaic properties of nano Cu2O/CuxS heterojunction structures are better than micro Cu2O/CuxS heterojunction solar cells. Resulting Ti/nano Cu2O/CuxS/Au solar cell structure produced an energy conversion efficiency of 0.54%, Voc = 610 mV and Jsc = 3.4 mA cm-2, under AM 1.5 illumination. This is a significant improvement compared to the use of microcrystalline thin film Cu2O in the solar cell structure where the efficiency of the cell was limited to 0.11%. This improvement is attributed mainly to the increased film surface area associated with nanocrystalline Cu2O films.

  1. A comparative study of the annealing behavior of Cu(In,Ga)(S,Se){sub 2} based solar cells with an indium sulfide buffer layer, partly submitted to wet chemical treatments

    SciTech Connect

    Hönes, C.; Hackenberg, J.; Zweigart, S.; Wachau, A.; Hergert, F.; Siebentritt, S.

    2015-03-07

    Indium sulfide thin films deposited via thermal evaporation from compound source material have been successfully utilized as a cadmium free buffer layer for Cu(In,Ga)Se{sub 2} based solar cells. However, high efficiencies are only reached after an additional annealing step. In this work, the annealing behavior of Cu(In,Ga)(S,Se){sub 2} based indium sulfide buffered solar cells is compared to the annealing behavior of similar cells, which were submitted to wet chemical treatments partly containing cadmium ions. Upon annealing a significant improvement of the initial solar cell characteristics is observed for the untreated cell and is related to the increase of activation energy for the carrier recombination process and a decrease of the ideality factor within the one diode model. It is shown here that this improvement can also be achieved by wet treatments of the absorber prior to buffer layer deposition. Upon annealing these treated cells still gain in collection length but lose open circuit voltage, which is explained here within a model including a highly p-doped absorber surface layer and supported by simulations showing that a decrease in doping density of such a surface layer would lead to the observed effects.

  2. Cadmium sulfide/copper ternary heterojunction cell research. Final report, January 8, 1979-June 7, 1980

    SciTech Connect

    Fleming, D. L.

    1980-01-01

    Dual source, Se and CuInSe/sub 2/, coevaporation and flash evaporation of stoichiometric CuInSe/sub 2/ powder were investigated to develop a process of fabricating large area CdS/CuInSe/sub 2/ heterojunction solar cells. CuInSe/sub 2/ was seen to decompose upon evaporation, producing layered films in the dual source system. Annealing of these films and alternative dual sources have been considered. Single phase p type films have been produced but no devices have been made from such films. Flash evaporation circumvents the decomposition problem, and if one bakes the powder to obtain a small Cu excess as well as getting a Se excess in the film, p type CuInSe/sub 2/ films can be obtained. A 1% efficient device of 6 cm/sup 2/ area was made using a flash evaporated CuInSe/sub 2/ film. Annealing studies and measurements of spatial uniformity of this device are reported.

  3. Photophysical studies of chromium sensitizers designed for excited state hole transfer to semiconductors and sequential hole/electron transfers from photoexcited cadmium sulfide nanorods to mononuclear ruthenium water-oxidation catalysts

    NASA Astrophysics Data System (ADS)

    Tseng, Huan-Wei

    a photoexcited cadmium sulfide nanorod and [Ru(diethyl 2,2'-bipyridine-4,4'-dicarboxylate)(2,2':6',2"-terpyridine)Cl] +, a mononuclear water-oxidation catalyst. Upon photoexcitation, hole transfer from the cadmium sulfide nanorod oxidizes the catalyst (Ru 2+ → Ru3+) on a 100 ps to 1 ns timescale. This is followed by electron transfer (10-100 ns) from the nanorod to reduce the Ru3+ center. The relatively slow electron transfer dynamics may provide opportunities for the accumulation of multiple holes at the catalyst, which is required for water oxidation.

  4. Chemically deposited thin films of sulfides and selenides of antimony and bismuth as solar energy materials

    NASA Astrophysics Data System (ADS)

    Nair, M. T.; Nair, Padmanabhan K.; Garcia, V. M.; Pena, Y.; Arenas, O. L.; Garcia, J. C.; Gomez-Daza, O.

    1997-10-01

    Chemical bath deposition techniques for bismuth sulfide, bismuth selenide, antimony sulfide, and antimony selenide thin films of about 0.20 - 0.25 micrometer thickness are reported. All these materials may be considered as solar absorber films: strong optical absorption edges, with absorption coefficient, (alpha) , greater than 104 cm-1, are located at 1.31 eV for Bi2Se3, 1.33 eV for Bi2S3, 1.8 eV for Sb2S3, and 1.35 eV for Sb2Se3. As deposited, all the films are nearly amorphous. However, well defined crystalline peaks matching bismuthinite (JCPDS 17- 0320), paraguanajuatite (JCPDS 33-0214), and stibnite (JCPDS 6-0474) and antimony selenide (JCPDS 15-0861) for Bi2S3, Bi2Se3, Sb2S3 and Sb2Se3 respectively, are observed when the films are annealed in nitrogen at 300 degrees Celsius. This is accompanied by a substantial modification of the electrical conductivity in the films: from 10-7 (Omega) -1 cm-1 (in as prepared films) to 10 (Omega) -1 cm-1 in the case of bismuth sulfide and selenide films, and enhancement of photosensitivity in the case of antimony sulfide films. The chemical deposition of a CuS/CuxSe film on these Vx- VIy films and subsequent annealing at 300 degrees Celsius for 1 h at 1 torr of nitrogen leads to the formation of p-type films (conductivity of 1 - 100 (Omega) -1 cm-1) of multinary composition. Among these, the formation of Cu3BiS3 (JCPDS 9-0488) and Cu3SbS4 (JCPDS 35- 0581), CuSbS2 (JCPDS 35-0413) have been clearly detected. Solar energy applications of these films are suggested.

  5. Structural, photoconductivity and photoluminescence characterization of cadmium sulfide quantum dots prepared by a co-precipitation method

    NASA Astrophysics Data System (ADS)

    Mishra, Sheo K.; Srivastava, Rajneesh K.; Prakash, S. G.; Yadav, Raghvendra S.; Panday, A. C.

    2011-03-01

    In this paper, cadmium sulfide (CdS) quantum dots (QDs) are synthesized by a simple co-precipitation method. X-ray diffraction (XRD) confirmed the formation of a cubical zinc blend structure of CdS nanoparticles. Transmission Electron Microscopy (TEM) images revealed that the CdS QDs are of 2-5 nm in size. The UV-vis absorption spectra showed an absorption peak at 427 nm (˜2.90 eV) indicating a blue shift of 0.48 eV as compared to bulk CdS. We estimated the particle sizes with the help of X-ray diffraction (XRD) patterns (3.665 nm) and the shift of the band gap absorption in the UV-vis spectrum (4.276 nm), which is very close to the TEM micrograph result. The photoluminescence spectrum shows three major emission peaks centered at 453 nm (˜2.73 eV), 526 nm (˜2.35 eV) and 551 nm (˜2.24 eV) at room temperature, which may be attributed to excitonic transitions, donor-acceptor (D-A) pairs recombination and the sulphur interstitial defects (Is) present in the band gap. To study the photoconductivity, the field dependence of the photocurrent and the dark-current was assessed, as was the time-resolved rise and decay photocurrent spectrum and wavelength-dependence photocurrent spectrum assessment of the CdS QDs. The time-resolved rise and decay photocurrent spectra exhibited negative photoconductivity (NPC) behavior when the CdS QDs were illuminated with 490 nm light. Such anomalous NPC may be attributed to the light-induced desorption of water molecules. The wavelength-dependence of the photocurrent was found to be close to the absorption and PL spectrum. The photoconductivity properties of the CdS QDs were measured using a thick film of powder without any binder. These CdS QDs can find potential application in optoelectronic devices and photodetectors.

  6. Workshop proceedings: Photovoltaic conversion of solar energy for terrestrial applications. Volume 1: Working group and panel reports

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Technological aspects of solar energy conversion by photovoltaic cells are considered. The advantage of the single crystal silicon solar cell approach is developed through comparisons with polycrystalline silicon, cadmium sulfide/copper sulfide thin film cells, and other materials and devices.

  7. Photoemf in cadmium sulfide

    NASA Technical Reports Server (NTRS)

    Boeer, K. W.

    1971-01-01

    Theoretical and experimental investigations on CdS single crystals and CuxS:CdS photovoltaic cells prepared from CdS single crystals by a chemical-dip procedure are described. The studies are aimed at clarifying cell mechanisms which affect key cell properties (efficiency, reliability, and lifetime) by examining the properties of intrinsic and extrinsic defects in the junction and surface regions and their effects on carrier transport through these regions. The experimental research described includes studies of thermal, infrared, and field quenching of acceptor-doped CdS crystals; investigation of optical and electrical properties of CuxS:CdS photovoltaic cells (current-voltage characteristics, spectral distribution of photocurrent and photovoltage) and the dependence of these properties on temperature and light intensity; measurement of changes, as a result of heat treatment in ultrahigh vacuum, in the spectral distribution of photoconductivity at room temperature and liquid nitrogen temperature, the luminescence spectrum at liquid nitrogen temperature, and the thermally stimulated current curves of CdS crystals; determination of the effect of irradiation with 150 keV (maximum) X-rays on the spectral distribution of photoconductivity and thermally-stimulated current of CdS crystals; and studies of the effect of growth conditions on the photoconductive properties of CdS crystals.

  8. Temperature dependence measurements for Cadmium Telluride (CdTe) solar cells

    NASA Astrophysics Data System (ADS)

    Duarte, Fernanda; Wang, Weining

    2015-03-01

    Traditional silicon (Si)-based solar cells have been studied broadly and have already reached their maximum efficiency. However, their cost is relatively high, preventing them from being widely used. Unlike Si-based solar cells, Cadmium Telluride (CdTe) solar cells are considerably cheap, yet the record efficiency is still lower than that of traditional silicon-based solar cells. More studies are needed to understand and improve the efficiency of CdTe solar cells. In this work, we report our studies of the temperature dependence of CdTe solar cell parameters using the temperature-varying apparatus designed and built by us in-house. This temperature-varying apparatus will be incorporated with a solar cell testing station in order to measure the solar cell parameters while varying the temperature. The solar cell parameters will be measured at different temperatures (with a 100 K temperature range), and the effects of temperature on the open-circuit voltage, short-circuit current and efficiency of the solar cells will be reported. These results allow us to further understand the physics of CdTe solar cells and shine light on how to improve the efficiency of CdTe solar cells.

  9. The impact of sodium contamination in tin sulfide thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Steinmann, Vera; Brandt, Riley E.; Chakraborty, Rupak; Jaramillo, R.; Young, Matthew; Ofori-Okai, Benjamin K.; Yang, Chuanxi; Polizzotti, Alex; Nelson, Keith A.; Gordon, Roy G.; Buonassisi, Tonio

    2016-02-01

    Through empirical observations, sodium (Na) has been identified as a benign contaminant in some thin-film solar cells. Here, we intentionally contaminate thermally evaporated tin sulfide (SnS) thin-films with sodium and measure the SnS absorber properties and solar cell characteristics. The carrier concentration increases from 2 × 1016 cm-3 to 4.3 × 1017 cm-3 in Na-doped SnS thin-films, when using a 13 nm NaCl seed layer, which is detrimental for SnS photovoltaic applications but could make Na-doped SnS an attractive candidate in thermoelectrics. The observed trend in carrier concentration is in good agreement with density functional theory calculations, which predict an acceptor-type NaSn defect with low formation energy.

  10. High-performance cadmium sulphide-based planar perovskite solar cell and the cadmium sulphide/perovskite interfaces

    NASA Astrophysics Data System (ADS)

    Peng, Haitao; Sun, Weihai; Li, Yunlong; Yan, Weibo; Yu, Pingrong; Zhou, Huanping; Bian, Zuqiang; Huang, Chunhui

    2016-04-01

    Planar heterojunction perovskite solar cell is one of the most competitive photovoltaic technologies, while charge transport materials play a crucial role. We successfully demonstrated an effective electron transport material, namely chemical bath deposited cadmium sulphide (CdS) film under low temperature, in perovskite-based solar cells. Power conversion efficiency of 16.1% has been achieved, which is comparable to that of devices based on TiO2 film prepared via low-temperature processes. Electronic impedance spectra reveal that the CdS-based device presents a higher recombination resistance than TiO2-based devices, which reduces carrier recombination and increases the open circuit voltage. The interface between CdS and perovskite was characterized with improved characteristics when compared to TiO2, e.g., efficient carrier extraction and reduced surface defect-associated degradation in the devices, which help to alleviate anomalous hysteresis and long-term instability. Furthermore, the entire device was fabricated via solution process with a processing temperature below 100°C, suggesting a promising method of further development of perovskite solar cells and commercial manufacturing.

  11. Cadmium telluride solar cells: Record-breaking voltages

    SciTech Connect

    Poplawsky, Jonathan D.

    2016-01-01

    Here, the performance of CdTe solar cells — cheaper alternatives to silicon photovoltaics — is hampered by their low output voltages, which are normally well below the theoretical limit. Now, record voltages of over 1 V have been reported in single-crystal CdTe heterostructure solar cells, which are close to those of benchmark GaAs cells.

  12. Cadmium telluride solar cells: Record-breaking voltages

    NASA Astrophysics Data System (ADS)

    Poplawsky, Jonathan D.

    2016-03-01

    The performance of CdTe solar cells — cheaper alternatives to silicon photovoltaics — is hampered by their low output voltages, which are normally well below the theoretical limit. Now, record voltages of over 1 V have been reported in single-crystal CdTe heterostructure solar cells, which are close to those of benchmark GaAs cells.

  13. High efficiency indium oxide/cadmium telluride solar cells

    NASA Astrophysics Data System (ADS)

    Nakazawa, T.; Takamizawa, K.; Ito, K.

    1987-02-01

    Solar cells have been fabricated by reactive deposition of thin-film n-In2O3 onto single-crystal p-CdTe. The cell has a total area solar power conversion efficiency of 13.4 percent which corresponds to an active area efficiency of 14.4 percent at air mass 1.5 without antireflection coatings. The cell consists of a buried homojunction structure with low dark saturation current density.

  14. Direct Synthesis of Novel and Reactive Sulfide-modified Nano Iron through Nanoparticle Seeding for Improved Cadmium-Contaminated Water Treatment

    PubMed Central

    Su, Yiming; Adeleye, Adeyemi S.; Huang, Yuxiong; Zhou, Xuefei; Keller, Arturo A.; Zhang, Yalei

    2016-01-01

    Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) is of great technical and scientific interest because of its promising application in groundwater remediation, although its synthesis is still a challenge. We develop a new nanoparticle seeding method to obtain a novel and reactive nanohybrid, which contains an Fe(0) core covered by a highly sulfidized layer under high extent of sulfidation. Syntheses monitoring experiments show that seeding accelerates the reduction rate from Fe2+ to Fe0 by 19%. X-ray adsorption near edge structure (XANES) spectroscopy and extended X-ray absorption fine structure analyses demonstrate the hexahedral Fe-Fe bond (2.45 and 2.83 Å) formation through breaking down of the 1.99 Å Fe-O bond both in crystalline and amorphous iron oxide. The XANES analysis also shows 24.2% (wt%) of FeS with bond length of 2.4 Å in final nanohybrid. Both X-ray diffraction and Mössbauer analyses further confirm that increased nanoparticle seeding results in formation of more Fe0 crystals. Nano-SiO2 seeding brings down the size of single Fe0 grain from 32.4 nm to 18.7 nm, enhances final Fe0 content from 5.9% to 55.6%, and increases magnetization from 4.7 to 65.5 emu/g. The synthesized nanohybrid has high cadmium removal capacity and holds promising prospects for treatment of metal-contaminated water. PMID:27095387

  15. Direct Synthesis of Novel and Reactive Sulfide-modified Nano Iron through Nanoparticle Seeding for Improved Cadmium-Contaminated Water Treatment.

    PubMed

    Su, Yiming; Adeleye, Adeyemi S; Huang, Yuxiong; Zhou, Xuefei; Keller, Arturo A; Zhang, Yalei

    2016-01-01

    Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) is of great technical and scientific interest because of its promising application in groundwater remediation, although its synthesis is still a challenge. We develop a new nanoparticle seeding method to obtain a novel and reactive nanohybrid, which contains an Fe(0) core covered by a highly sulfidized layer under high extent of sulfidation. Syntheses monitoring experiments show that seeding accelerates the reduction rate from Fe(2+) to Fe(0) by 19%. X-ray adsorption near edge structure (XANES) spectroscopy and extended X-ray absorption fine structure analyses demonstrate the hexahedral Fe-Fe bond (2.45 and 2.83 Å) formation through breaking down of the 1.99 Å Fe-O bond both in crystalline and amorphous iron oxide. The XANES analysis also shows 24.2% (wt%) of FeS with bond length of 2.4 Å in final nanohybrid. Both X-ray diffraction and Mössbauer analyses further confirm that increased nanoparticle seeding results in formation of more Fe(0) crystals. Nano-SiO2 seeding brings down the size of single Fe(0) grain from 32.4 nm to 18.7 nm, enhances final Fe(0) content from 5.9% to 55.6%, and increases magnetization from 4.7 to 65.5 emu/g. The synthesized nanohybrid has high cadmium removal capacity and holds promising prospects for treatment of metal-contaminated water. PMID:27095387

  16. Direct Synthesis of Novel and Reactive Sulfide-modified Nano Iron through Nanoparticle Seeding for Improved Cadmium-Contaminated Water Treatment

    NASA Astrophysics Data System (ADS)

    Su, Yiming; Adeleye, Adeyemi S.; Huang, Yuxiong; Zhou, Xuefei; Keller, Arturo A.; Zhang, Yalei

    2016-04-01

    Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) is of great technical and scientific interest because of its promising application in groundwater remediation, although its synthesis is still a challenge. We develop a new nanoparticle seeding method to obtain a novel and reactive nanohybrid, which contains an Fe(0) core covered by a highly sulfidized layer under high extent of sulfidation. Syntheses monitoring experiments show that seeding accelerates the reduction rate from Fe2+ to Fe0 by 19%. X-ray adsorption near edge structure (XANES) spectroscopy and extended X-ray absorption fine structure analyses demonstrate the hexahedral Fe-Fe bond (2.45 and 2.83 Å) formation through breaking down of the 1.99 Å Fe-O bond both in crystalline and amorphous iron oxide. The XANES analysis also shows 24.2% (wt%) of FeS with bond length of 2.4 Å in final nanohybrid. Both X-ray diffraction and Mössbauer analyses further confirm that increased nanoparticle seeding results in formation of more Fe0 crystals. Nano-SiO2 seeding brings down the size of single Fe0 grain from 32.4 nm to 18.7 nm, enhances final Fe0 content from 5.9% to 55.6%, and increases magnetization from 4.7 to 65.5 emu/g. The synthesized nanohybrid has high cadmium removal capacity and holds promising prospects for treatment of metal-contaminated water.

  17. Atomic layer deposition of titanium sulfide and its application in extremely thin absorber solar cells

    SciTech Connect

    Mahuli, Neha; Sarkar, Shaibal K.

    2015-01-15

    Atomic layer deposition (ALD) of TiS{sub 2} is investigated with titanium tetrachloride and hydrogen sulfide precursors. In-situ quartz crystal microbalance and ex-situ x-ray reflectivity measurements are carried out to study self-limiting deposition chemistry and material growth characteristics. The saturated growth rate is found to be ca. 0.5 Å/cycle within the ALD temperature window of 125–200 °C. As grown material is found poorly crystalline. ALD grown TiS{sub 2} is applied as a photon harvesting material for solid state sensitized solar cells with TiO{sub 2} as electron transport medium. Initial results with Spiro-OMeTAD as hole conducting layer show ca. 0.6% energy conversion efficiency under 1 sun illumination.

  18. Workshop proceedings: Photovoltaic conversion of solar energy for terrestrial applications. Volume 2: Invited papers

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A photovoltaic device development plan is reported that considers technological as well as economical aspects of single crystal silicon, polycrystal silicon, cadmium sulfide/copper sulfide thin films, as well as other materials and devices for solar cell energy conversion systems.

  19. Photon correlation spectroscopic and spectrophotometric studies of the formation of cadmium sulfide nanoparticles in ammonia-thiourea solutions

    NASA Astrophysics Data System (ADS)

    Bulavchenko, A. I.; Kolodin, A. N.; Podlipskaya, T. Yu.; Demidova, M. G.; Maksimovskii, E. A.; Beizel', N. F.; Larionov, S. V.; Okotrub, A. V.

    2016-05-01

    Nucleation of CdS in an aqueous ammonia solution of thiourea and cadmium chloride was studied by photon correlation spectroscopy (PCS), static light scattering, and spectrophotometry. The hydrodynamic diameter of nanoparticles, light scattering intensity, and optical density of the solutions increased with temperature and synthesis time. The processes of formation, growth, and coagulation of nanoparticles can be transferred from solution to the filter surface by continuously filtering the reaction mixture through a 200-nm filter.

  20. Synthesis of Copper-Antimony-Sulfide Nanocrystals for Solution-Processed Solar Cells.

    PubMed

    Suehiro, Satoshi; Horita, Keisuke; Yuasa, Masayoshi; Tanaka, Tooru; Fujita, Katsuhiko; Ishiwata, Yoichi; Shimanoe, Kengo; Kida, Tetsuya

    2015-08-17

    The p-type nanocrystals (NCs) of copper-based chalcogenides, such as CuInSe2 and Cu2ZnSnS4, have attracted increasing attention in photovoltaic applications due to their potential to produce cheap solution-processed solar cells. Herein, we report the synthesis of copper-antimony-sulfide (CAS) NCs with different crystal phases including CuSbS2, Cu3SbS4, and Cu12Sb4S13. In addition, their morphology, crystal phase, and optical properties were characterized using transmission electron microscopy, X-ray diffractometry, UV-vis-near-IR spectroscopy, and photoemission yield spectroscopy. The morphology, crystal phase, and electronic structure were significantly dependent on the chemical composition in the CAS system. Devices were fabricated using particulate films consisting of CAS NCs prepared by spin coating without a high-temperature treatment. The CAS NC-based devices exhibited a diode-like current-voltage characteristic when coupled with an n-type CdS layer. In particular, the CuSbS2 NC devices exhibited photovoltaic responses under simulated sunlight, demonstrating its applicability for use in solution-processed solar cells. PMID:26237216

  1. Polycrystalline cadmium telluride 3n-i-p solar cell

    NASA Astrophysics Data System (ADS)

    Meyers, P. V.

    1989-06-01

    The CdS/CdTe/ZnTe n-i-p solar cell and its ternary relatives have the potential to meet Department of Energy cost, efficiency, and stability goals. This report describes results of a continuing program to achieve these goals. A record-breaking efficiency of 11 percent has been demonstrated and verified at the Solar Energy Research Institute (SERI). Stability testing for 3000 hours indicates that the n-i-p structure is stable. Improving the short-circuit current by substituting Cd/sub x/Zn/sub 1-x/S for CdS has been successful and has produced 8 plus percent efficient cells with 2.6 eV windows using improved pyrolysis equipment. Transparent n-i-p devices have been produced with a SERI-verified efficiency of 9.4 percent . Collaborations with researchers at the Georgia Institute of Technology, the Institute of Energy Conversion, and Jet Propulsion Laboratory have resulted in jointly produced n-i-p cells. Cells produced by molecular beam epitaxy and metal organic chemical vapor deposition had efficiencies greater than 9 percent; cells produced by thermal vacuum evaporation had efficiencies greater than 7 percent.

  2. Performance optimization of solar cells based on colloidal lead sulfide nanocrystals

    SciTech Connect

    Ulfa, Maria

    2014-02-24

    Colloidal semiconducting quantum dot nanocrystals (NCs) have attracted extensive interest as active building-block for low-cost solution-processed photovoltaic due to their size tunable absorption from the visible to near IR. Among various nanocrystal composition, lead sulfide (PbS), having a bulk bandgap of 0.41 eV, are particularly attractive for photovoltaic applications due to their excellent photosensitivity in the near IR. Starting from colloidal synthesis, in this project functional solar cells are fabricated and characterized based on the nearly monodispersed colloidal PbS nanocrystals that we synthesized. These NC-solar cells are fabricated under a “depleted heterojunction” device architecture containing a planar “tipe II” heretojunction formed by a layer of electron-transporting TiO{sub 2} and a layer of PbS NCs. Relevant structural, optical, and electrical characterizations are performed on NCs and their devices. To understand the operational mechanism of these NC-based solar cells, various material and device aspects are investigated in this work aiming for optimized photovoltaic performance. These aspects include the effect of: (1) NC dimensions (and thus their band gaps); (2) passivation of surface traps through post-synthesis treatments; (3) NC surface ligand-exchange; and (4) interfacial modifications at the heterojunction. The most optimized photovoltaic performance is found after combining the surface trap passivation strategy by halides, ligand-exchange by 3-mercaptopropionic acids, and interfacial TiCl4 treatment, leading to a peak open-circuit voltage of 0.53 V, a short-circuit current density of 14.03 mAcm{sup −2}, and a power conversion efficiency of 3.25%.

  3. Cadmium Telluride Solar Cells on Ultrathin Glass for Space Applications

    NASA Astrophysics Data System (ADS)

    Irvine, S. J. C.; Lamb, D. A.; Clayton, A. J.; Kartopu, G.; Barrioz, V.

    2014-08-01

    This paper details the preliminary findings of a study to achieve a durable thin-film CdTe photovoltaic (PV) device structure on ultrathin space-qualified cover glass. An aluminum-doped zinc oxide (AZO) transparent conducting oxide was deposited directly onto the cover glass using metalorganic chemical vapor deposition (MOCVD). The AZO demonstrated low sheet resistance of 10 Ω/□ and high optical transparency of 85% as well as excellent adherence and environmental stability. Preliminary deposition of PV layers onto the AZO on cover glass, by MOCVD, showed the possibility of such a structure, yielding a device conversion efficiency of 7.2%. High series resistance (10 Ω cm2) and low V oc (586 mV) were identified as the limiting factors when compared with the authors' platform process on indium tin oxide-coated aluminosilicate. The coverage of the Cd1- x Zn x S window layer along with the front contacting of the device were shown to be the major causes of the low efficiency. Further deposition of AZO/CdTe employing an oxygen plasma cleaning step to the cover glass and evaporated gold front contacts significantly improved the device performance. With a highest conversion efficiency of 10.2%, series resistance improved to 4.4 Ω cm2, open-circuit voltage ( V oc) up to 667 mV, and good adhesion, this represents the first demonstration of direct deposition of CdTe solar cells onto 100- μm-thick space-qualified cover glass.

  4. Different behavior of Staphylococcus epidermidis in intracellular biosynthesis of silver and cadmium sulfide nanoparticles: more stability and lower toxicity of extracted nanoparticles.

    PubMed

    Rezvani Amin, Zohreh; Khashyarmanesh, Zahra; Fazly Bazzaz, Bibi Sedigheh

    2016-09-01

    Chemical reagents that are used for synthesis of nanoparticles are often toxic, while biological reagents are safer and cost-effective. Here, the behavior of Staphylococcus epidermidis (ATCC 12228) was evaluated for biosynthesis of silver nanoparticles (Ag-NPs) and cadmium sulfide nanoparticles (CdS-NPs) using TEM images intra- and extracellularly. The bacteria only biosynthesized the nanoparticles intracellularly and distributed Ag-NPs throughout the cytoplasm and on outside surface of cell walls, while CdS-NPs only formed in cytoplasm near the cell wall. A new method for purification of the nanoparticles was used. TEM images of pure CdS-NPs confirmed biosynthesis of agglomerated nanoparticles. Biosynthetic Ag-NPs were more stable against bright light and aggregation reaction than synthetic Ag-NPs (prepared chemically) also biosynthetic Ag-NPs displayed lower toxicity in in vitro assays. CdS-NPs indicated no toxicity in in vitro assays. Biosynthetic nanoparticles as product of the detoxification pathway may be safer and more stable for biosensors. PMID:27430507

  5. Enhanced photocatalytic H₂ generation on cadmium sulfide nanorods with cobalt hydroxide as cocatalyst and insights into their photogenerated charge transfer properties.

    PubMed

    Zhang, Li J; Zheng, Rui; Li, Shuo; Liu, Bing K; Wang, De J; Wang, Ling L; Xie, Teng F

    2014-08-27

    Cobalt hydroxide/cadmium sulfide composite was prepared using an easy coprecipitation strategy. The field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) confirmed that Co(OH)2 nanometer particles were modified on CdS. Even without noble-metal cocatalyst, the photocatalytic H2 evolution over CdS after Co(OH)2 loaded was evidently increased. The most excellent Co(OH)2 of 6.8 mol %, resulted in a H2 generation rate of 61 μmol h(-1) g(-1), which exceeded that of pure CdS by a factor of 41 times. Surface photovoltage (SPV) and surface photocurrent (SPC) investigations revealed that the photogenerated electrons could be captured by the loaded Co(OH)2 nanoparticles. The interface formed between Co(OH)2 and CdS is vital to the enhancement of photocatalytic H2 generation. Electrochemical measurement results indicated that another reason for the enhanced photocatalytic activity of Co(OH)2/CdS catalyst is that Co(OH)2 has outstanding H2 generation activity. PMID:25105856

  6. Cadmium sulfide/graphitic carbon nitride heterostructure nanowire loading with a nickel hydroxide cocatalyst for highly efficient photocatalytic hydrogen production in water under visible light.

    PubMed

    Yan, Zhiping; Sun, Zijun; Liu, Xiang; Jia, Hongxing; Du, Pingwu

    2016-02-28

    Photocatalytic hydrogen production from water in a noble-metal-free system has attracted much attention in recent years. Herein we report on the use of core/shell cadmium sulfide/graphitic carbon nitride (CdS/g-C3N4) heterojunction nanorods modified by nickel hydroxide (Ni(OH)2) as a highly efficient photocatalyst for visible light-driven hydrogen production from water. Due to efficient separation of the photoexcited charge carriers in the CdS/g-C3N4 core/shell nanorods and the synergistic effect of Ni(OH)2, the optimal hydrogen evolution rate over Ni(OH)2-CdS/g-C3N4 is 115.18 μmol h(-1) mg(-1) under visible light irradiation (λ > 420 nm), which is ∼26 times higher than the CdS/g-C3N4 nanorod composite without Ni(OH)2 and ∼7 times better than the 0.5 wt% Pt-CdS/g-C3N4 nanorod composite. The apparent quantum efficiency is ∼16.7% at an excitation of 450 nm. During photocatalysis, no degradation of Ni(OH)2 was observed based on the XPS data, indicating that it is a robust cocatalyst. Moreover, the present photocatalyst showed excellent photocatalytic stability for hydrogen production and the turnover number (TON) reached ∼24,600 over 90 hours. PMID:26862011

  7. Flower-like nickel cobalt sulfide microspheres modified with nickel sulfide as Pt-free counter electrode for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Huo, Jinghao; Wu, Jihuai; Zheng, Min; Tu, Yongguang; Lan, Zhang

    2016-02-01

    The nickel cobalt sulfide/nickel sulfide (NiCo2S4/NiS) microspheres which exhibit flower-like morphologies are synthesized by a two-step hydrothermal method. Then the NiCo2S4/NiS microspheres are deposited on a fluorine doped SnO2 substrate by spin-casting the isopropyl alcohol solution of as-prepared microspheres. The cyclic voltammetry, electrochemical impedance spectroscopy and Tafel tests are employed to measure the electrochemical performance of NiCo2S4/NiS counter electrode. The NiCo2S4 and NiS all are used to improve the conductivity and electrocatalytic ability of the films, and the NiS can also increase the specific surface area of microspheres. The dye-sensitized solar cells (DSSCs) with the NiCo2S4/NiS counter electrode exhibite a power conversion efficiency of 8.8%, which is higher than that of DSSC with Pt counter electrode (8.1%) under the light intensity of 100 mW cm-2 (AM 1.5 G).

  8. Annealed single-crystal cadmium selenide electrodes in liquid junction solar cells

    SciTech Connect

    Wessel, S.; Colbow, K.; Mackintosh, A.

    1984-12-01

    I-V characteristics, voltage dependence of the quantum efficiency, and spectral response were compared for annealed single-crystal CdSe photoanodes. Annealing in cadmium atmosphere improved the overall solar response considerably, while annealing under vacuum revealed a poor response for photon energies larger than 1.8 eV and a high quantum efficiency for near-bandgap energies. This behavior may be attributed to electron-hole pai generation from interbandgap states and a large density of minority carrier recombination centers near the crystal surface, owing to a high nonstoichiometry and a selenium layer at the surface. Annealing in selenium atmosphere resulted in very poor solar response caused by compensation. Simultaneous illumination of the electrodes with a He-Ne lase strongly enhanced the quantum efficiency for vacuum-annealed crystals for near-bandgap photons. We attribute this to electron trapping in the selenium-rich surface, with a resulting increase in depletion-layer width in the cadmium selenide.

  9. Dynamic laser-induced effects in nanocomposite systems based on the cadmium sulfide quantum dots in a silicate matrix.

    PubMed

    Voznesenskiy, S S; Sergeev, A A; Postnova, I V; Galkina, A N; Shchipunov, Yu A; Kulchin, Yu N

    2015-02-23

    In this paper we study the laser-induced modification of optical properties of nanocomposite based on cadmium sulphide quantum dots encapsulated into thiomalic acid shell which were embedded into a porous silica matrix. It was found that exposure to laser radiation at λ = 405.9 nm leads to modification of optical properties of nanocomposite. For this exposed area there is a significant amount of photodynamic changes under subsequent exposure to laser radiation at λ = 405.9 nm, namely photoabsorption and photorefraction which were studied at λ = 633 nm. The value of these effects dependent on the concentration of quantum dots and modifying radiation parameters. Moreover, it has dependence from polarization of exposure radiation. PMID:25836478

  10. Zelda and company - Petrogenesis of sulfide-rich Fremdlinge and constraints on solar nebula processes

    NASA Technical Reports Server (NTRS)

    Armstrong, John T.; Hutcheon, Ian D.; Wasserburg, G. J.

    1987-01-01

    A detailed petrographic and chemical study of Zelda (a gigantic sulfide-rich Fremdling from the Allende Ca-rich inclusion, CAI, Egg 6) and its contact with the host was conducted using analytical SEM and electron-microprobe techniques, and the results were compared with those obtained on other sulfide-rich and oxide-rich Fremdlinge. Strong evidence is presented that Zelda, a type-example of sulfide-rich Fremdlinge, has been formed from a preexisting Ur-Fremdling, similar by composition to Willy, by closed-system sulfidization of magnetite and metal. At least two different sulfidization mechanisms appear to have occurred in altering Fremdlinge: one producing compositionally homogeneous equigranular objects such as Zelda, the other producing compositionally and texturally heterogeneous objects.

  11. Cadmium sulfide/graphitic carbon nitride heterostructure nanowire loading with a nickel hydroxide cocatalyst for highly efficient photocatalytic hydrogen production in water under visible light

    NASA Astrophysics Data System (ADS)

    Yan, Zhiping; Sun, Zijun; Liu, Xiang; Jia, Hongxing; Du, Pingwu

    2016-02-01

    Photocatalytic hydrogen production from water in a noble-metal-free system has attracted much attention in recent years. Herein we report on the use of core/shell cadmium sulfide/graphitic carbon nitride (CdS/g-C3N4) heterojunction nanorods modified by nickel hydroxide (Ni(OH)2) as a highly efficient photocatalyst for visible light-driven hydrogen production from water. Due to efficient separation of the photoexcited charge carriers in the CdS/g-C3N4 core/shell nanorods and the synergistic effect of Ni(OH)2, the optimal hydrogen evolution rate over Ni(OH)2-CdS/g-C3N4 is 115.18 μmol h-1 mg-1 under visible light irradiation (λ > 420 nm), which is ~26 times higher than the CdS/g-C3N4 nanorod composite without Ni(OH)2 and ~7 times better than the 0.5 wt% Pt-CdS/g-C3N4 nanorod composite. The apparent quantum efficiency is ~16.7% at an excitation of 450 nm. During photocatalysis, no degradation of Ni(OH)2 was observed based on the XPS data, indicating that it is a robust cocatalyst. Moreover, the present photocatalyst showed excellent photocatalytic stability for hydrogen production and the turnover number (TON) reached ~24 600 over 90 hours.Photocatalytic hydrogen production from water in a noble-metal-free system has attracted much attention in recent years. Herein we report on the use of core/shell cadmium sulfide/graphitic carbon nitride (CdS/g-C3N4) heterojunction nanorods modified by nickel hydroxide (Ni(OH)2) as a highly efficient photocatalyst for visible light-driven hydrogen production from water. Due to efficient separation of the photoexcited charge carriers in the CdS/g-C3N4 core/shell nanorods and the synergistic effect of Ni(OH)2, the optimal hydrogen evolution rate over Ni(OH)2-CdS/g-C3N4 is 115.18 μmol h-1 mg-1 under visible light irradiation (λ > 420 nm), which is ~26 times higher than the CdS/g-C3N4 nanorod composite without Ni(OH)2 and ~7 times better than the 0.5 wt% Pt-CdS/g-C3N4 nanorod composite. The apparent quantum efficiency is ~16.7% at an

  12. Effect of the Concentration on the X-ray Luminescence Efficiency of a Cadmium Selenide/Zinc Sulfide (CdSe/ZnS) Quantum Dot Nanoparticle Solution

    NASA Astrophysics Data System (ADS)

    Valais, I.; Michail, C.; Nikolopoulos, D.; Fountzoula, C.; Bakas, A.; Yannakopoulos, P.; Fountos, G.; Panayiotakis, G.; Kandarakis, I.

    2015-09-01

    In the current study preliminary results on the luminescence efficiency (LE) of toluene dissolved Cadmium Selenide/Zinc Sulfide (CdSe/ZnS, Sigma-Aldrich, Lumidot 694622) quantum dot samples (QDs) after exposure to X-rays of variable radiation flux are shown. The distinctive influence of the weight over volume (w/v) concentration of the samples in LE was investigated. The light emission of the QDs was additionally measured after UV irradiation. The distribution of the emitted light was symmetrical with a maximum at 590 nm. The w/v concentration of the QDs varied between 7.1×10-5 mg/mL to 28.4×10-5 mg/mL. The samples were handled in a cubic 12.5×12.5×45mm3 quartz cuvette. Each sample was excited under X-ray irradiation, in the energy range from 50 to 130 kVp using a BMI General Medical Merate tube with rotating Tungsten anode and inherent filtration equivalent to 2 mm Al. The X-ray LE, induced by the 28.4×10-5 mg/mL QDs found higher, however, the distinction was vague in the highly concentrated samples. The maximum efficiency was obtained at the 90 kVp for QDs with 21.3×10-5 mg/mL w/v concentration. In the high energy range (120-130 kVp) all concentration levels exhibited comparable X-ray induced LE. The luminescence properties of the investigated QDs appear promising for X-ray detection applications.

  13. Utilization of reduced graphene oxide/cadmium sulfide-modified carbon cloth for visible-light-prompt photoelectrochemical sensor for copper (II) ions.

    PubMed

    Foo, C Y; Lim, H N; Pandikumar, A; Huang, N M; Ng, Y H

    2016-03-01

    A newly developed CdS/rGO/CC electrode was prepared based on a flexible carbon cloth (CC) substrate with cadmium sulfide (CdS) nanoparticles and reduced graphene oxide (rGO). The CdS was synthesized using an aerosol-assisted chemical vapor deposition (AACVD) method, and the graphene oxide was thermally reduced on the modified electrode surface. The existence of rGO in the CdS-modified electrode increased the photocurrent intensity of the CdS/rGO/CC-modified electrode by three orders of magnitude, compared to that of the CdS/ITO electrode and two orders of magnitude higher than the CdS/CC electrode. A new visible-light-prompt photoelectrochemical sensor was developed based on the competitive binding reaction of Cu(2+) and CdS on the electrode surface. The results showed that the effect of the Cu(2+) on the photocurrent response was concentration-dependent over the linear ranges of 0.1-1.0 μM and 1.0-40.0 μM with a detection limit of 0.05 μM. The results of a selectivity test showed that this modified electrode has a high response toward Cu(2+) compared to other heavy metal ions. The proposed CdS/rGO/CC electrode provided a significantly high potential current compared to other reported values, and could be a practical tool for the fast, sensitive, and selective determination of Cu(2+). PMID:26595899

  14. Thin film cadmium telluride, zinc telluride, and mercury zinc telluride solar cells

    SciTech Connect

    Chu, T.L. )

    1992-04-01

    This report describes research to demonstrate (1) thin film cadmium telluride solar cells with a quantum efficiency of 75% or higher at 0. 44 {mu}m and a photovoltaic efficiency of 11.5% or greater, and (2) thin film zinc telluride and mercury zinc telluride solar cells with a transparency to sub-band-gap radiation of 65% and a photovoltaic conversion efficiency of 5% and 8%, respectively. Work was directed at (1) depositing transparent conducting semiconductor films by solution growth and metal-organic chemical vapor deposition (MOCVD) technique, (2) depositing CdTe films by close-spaced sublimation (CSS) and MOCVD techniques, (3) preparing and evaluating thin film CdTe solar cells, and (4) preparing and characterizing thin film ZnTe, CD{sub 1-x}Zn{sub 1-x}Te, and Hg{sub 1-x}Zn{sub x}Te solar cells. The deposition of CdS films from aqueous solutions was investigated in detail, and their crystallographic, optical, and electrical properties were characterized. CdTe films were deposited from DMCd and DIPTe at 400{degrees}C using TEGa and AsH{sub 3} as dopants. CdTe films deposited by CSS had significantly better microstructures than those deposited by MOCVD. Deep energy states in CdTe films deposited by CSS and MOCVD were investigated. Thin films of ZnTe, Cd{sub 1- x}Zn{sub x}Te, and Hg{sub 1-x}Zn{sub x}Te were deposited by MOCVD, and their crystallographic, optical, and electrical properties were characterized. 67 refs.

  15. Process for removing cadmium from scrap metal

    DOEpatents

    Kronberg, James W.

    1995-01-01

    A process for the recovery of a metal, in particular, cadmium contained in scrap, in a stable form. The process comprises the steps of mixing the cadmium-containing scrap with an ammonium carbonate solution, preferably at least a stoichiometric amount of ammonium carbonate, and/or free ammonia, and an oxidizing agent to form a first mixture so that the cadmium will react with the ammonium carbonate to form a water-soluble ammine complex; evaporating the first mixture so that ammine complex dissociates from the first mixture leaving carbonate ions to react with the cadmium and form a second mixture that includes cadmium carbonate; optionally adding water to the second mixture to form a third mixture; adjusting the pH of the third mixture to the acid range whereby the cadmium carbonate will dissolve; and adding at least a stoichiometric amount of sulfide, preferably in the form of hydrogen sulfide or an aqueous ammonium sulfide solution, to the third mixture to precipitate cadmium sulfide. This mixture of sulfide is then preferably digested by heating to facilitate precipitation of large particles of cadmium sulfide. The scrap may be divided by shredding or breaking up to expose additional surface area. Finally, the precipitated cadmium sulfide can be mixed with glass formers and vitrified for permanent disposal.

  16. Process for removing cadmium from scrap metal

    DOEpatents

    Kronberg, J.W.

    1994-01-01

    A process for the recovery of a metal, in particular, cadmium contained in scrap, in a stable form. The process comprises the steps of mixing the cadmium-containing scrap with an ammonium carbonate solution, preferably at least a stoichiometric amount of ammonium carbonate, and/or free ammonia, and an oxidizing agent to form a first mixture so that the cadmium will react with the ammonium carbonate to form a water-soluble ammine complex; evaporating the first mixture so that ammine complex dissociates from the first mixture leaving carbonate ions to react with the cadmium and form a second mixture that includes cadmium carbonate; optionally adding water to the second mixture to form a third mixture; adjusting the pH of the third mixture to the acid range whereby the cadmium carbonate will dissolve; and adding at least a stoichiometric amount of sulfide, preferably in the form of hydrogen sulfide or an aqueous ammonium sulfide solution, to the third mixture to precipitate cadmium sulfide. This mixture of sulfide is then preferably digested by heating to facilitate precipitation of large particles of cadmium sulfide. The scrap may be divided by shredding or breaking up to exposure additional surface area. Finally, the precipitated cadmium sulfide can be mixed with glass formers and vitrified for permanent disposal.

  17. Process for removing cadmium from scrap metal

    DOEpatents

    Kronberg, J.W.

    1995-04-11

    A process is described for the recovery of a metal, in particular, cadmium contained in scrap, in a stable form. The process comprises the steps of mixing the cadmium-containing scrap with an ammonium carbonate solution, preferably at least a stoichiometric amount of ammonium carbonate, and/or free ammonia, and an oxidizing agent to form a first mixture so that the cadmium will react with the ammonium carbonate to form a water-soluble ammine complex; evaporating the first mixture so that ammine complex dissociates from the first mixture leaving carbonate ions to react with the cadmium and form a second mixture that includes cadmium carbonate; optionally adding water to the second mixture to form a third mixture; adjusting the pH of the third mixture to the acid range whereby the cadmium carbonate will dissolve; and adding at least a stoichiometric amount of sulfide, preferably in the form of hydrogen sulfide or an aqueous ammonium sulfide solution, to the third mixture to precipitate cadmium sulfide. This mixture of sulfide is then preferably digested by heating to facilitate precipitation of large particles of cadmium sulfide. The scrap may be divided by shredding or breaking up to expose additional surface area. Finally, the precipitated cadmium sulfide can be mixed with glass formers and vitrified for permanent disposal. 2 figures.

  18. Characterization and evaluation of cadmium indate photocatalysts for solar hydrogen conversion

    NASA Astrophysics Data System (ADS)

    Thornton, Jason M.

    Alternative energy sources are needed to respond to the continued increase in the global energy needs and a potential decrease in the future supplies of fossil fuels. Solar hydrogen conversion in which sunlight is harnessed to split water into H2 fuel and O2 is a promising source of energy because it is renewable and produces no CO2. A number of semiconducting oxide materials have shown promise for overall water splitting for the generation of hydrogen over the years. In this work we focus on the synthesis and analysis of undoped and C-doped cadmium indate (CdIn2O 4) thin films and nanoparticle powders, and their evaluation for hydrogen evolution via water splitting. The catalyst was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis, scanning electron microscopy (SEM), and BET surface adsorption measurements. Spray and sol-gel pyrolysis methods were used for the synthesis of the materials. Doping C into CdIn 2O4 leads to enhancement in light absorption and the band gap was determined to be 2.3 eV in the nanoparticle powders. Carbon doping improves the photocurrent density by 33% and the H2 evolution rate by a factor of two. The performance of C-doped CdIn2O4 were optimized with respect to several synthetic parameters, including the In:Cd molar ratio and glucose concentration, calcination temperature, and the film thickness while the nanoparticles were additionally optimized to F127 concentration and platinum cocatalyst loading. Hydrogen generation activity was evaluated under UV-visible irradiation without the use of a sacrificial reagent and using bandpass filters the quantum efficiency was determined. Compared to platinized TiO2 in methanol C-CdIn2O4 showed a 4-fold increase in hydrogen production. The material was capable of hydrogen generation using visible light only and with good efficiency even at 510 nm. Using natural sunlight illumination, the material evolved hydrogen at a rate of 17 micromol h-1. These studies show

  19. Efficient solution-processed small molecule: Cadmium selenide quantum dot bulk heterojunction solar cells

    SciTech Connect

    Gupta, Vinay; Upreti, Tanvi; Chand, Suresh

    2013-12-16

    We report bulk heterojunction solar cells based on blends of solution-processed small molecule [7,7′-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophene-2,6-diyl) bis(6-fluoro-4-(5′-hexyl-[2,2′-bithiophen]-5yl)benzo[c] [1,2,5] thiadiazole)] p-DTS(FBTTh{sub 2}){sub 2}: Cadmium Selenide (CdSe) (70:30, 60:40, 50:50, and 40:60) in the device configuration: Indium Tin Oxide /poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/p-DTS(FBTTh{sub 2}){sub 2}: CdSe/Ca/Al. The optimized ratio of p-DTS(FBTTh{sub 2}){sub 2}:CdSe::60:40 leads to a short circuit current density (J{sub sc}) = 5.45 mA/cm{sup 2}, open circuit voltage (V{sub oc}) = 0.727 V, and fill factor (FF) = 51%, and a power conversion efficiency = 2.02% at 100 mW/cm{sup 2} under AM1.5G illumination. The J{sub sc} and FF are sensitive to the ratio of p-DTS(FBTTh{sub 2}){sub 2}:CdSe, which is a crucial factor for the device performance.

  20. Radiation resistance of thin-film solar cells for space photovoltaic power

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.; Landis, Geoffrey A.

    1991-01-01

    Copper indium diselenide, cadmium telluride, and amorphous silicon alloy solar cells have achieved noteworthy performance and are currently being studied for space power applications. Cadmium sulfide cells had been the subject of much effort but are no longer considered for space applications. A review is presented of what is known about the radiation degradation of thin film solar cells in space. Experimental cadmium telluride and amorphous silicon alloy cells are reviewed. Damage mechanisms and radiation induced defect generation and passivation in the amorphous silicon alloy cell are discussed in detail due to the greater amount of experimental data available.

  1. Discovery of Hg-Cu-bearing metal-sulfide assemblages in a primitive H-3 chondrite: Towards a new insight in early solar system processes

    NASA Astrophysics Data System (ADS)

    Caillet Komorowski, Catherine; El Goresy, Ahmed; Miyahara, Masaaki; Boudouma, Omar; Ma, Chi

    2012-10-01

    We report here the discovery of a novel meteoritic paragenesis consisting of sub-micrometric HgS, Cu sulfides, and Hg metal, associated with polycrystalline fine-grained native Cu in opaque mineral aggregates heterogeneously distributed in the matrix of the H-3 Tieschitz unequilibrated ordinary chondrite (UOC). The systematic association of Hg with Cu in Tieschitz chondrite provides a unique opportunity to place robust constraints on the origin of these assemblages either by condensation and sulfidation in a local nebular reservoir of non-solar composition, followed by gentle and fast accretion, or by sublimation of Hg from the hot interior of the asteroid and recondensation in its cold outer regions. The sulfide phase relations support low temperature conditions (<300 °C), implying that subsequent to accretion indigenous hydrothermal processing, oxidation/sulfidation, transportation, or shock-induced thermal processing of the assemblage on the parent body earlier proposed are very unlikely and unrealistic. Origin of HgS by sublimation of Hg from the hotter asteroid interior and precipitation as cinnabar in the colder surface regions is discrepant with our findings and can be ruled out because cinnabar occurs only in Tieschitz matrix in alternating rhythmic intergrowth with Cu-sulfide. The sublimation scenario calls for co-evaporation of both the highly volatile Hg as HgS and Hg metal and the moderately volatile Cu both as Cu metal, or their sulfides and deposition as sulfides in alternating episodes. Our findings provide further ample evidence refuting the repeated claim of formation of native copper in chondritic metal by shock-induced impact melting. Cold accretion is the only reasonable possibility to preserve the delicate accretionary intergrowth textures, the polycrystallinity of FeNi-metal, native Cu, Hg-Cu-sulfides and native Hg globules and the high Hg concentration retained in this meteorite. Our findings strongly suggest that Tieschitz resided near the

  2. Growth and Process-Induced Defects and Recombination Mechanisms in Aluminum Gallium Arsenide/gallium Arsenide and CADMIUM(1-X) Zinc(x) Tellurium/cadmium Sulfide Photovoltaic Device Structures

    NASA Astrophysics Data System (ADS)

    Ringel, Steven Adam

    The objective of this research was to provide guidelines to improve the performance of crystalline GaAs and polycrystallize CdTe and CdZnTe solar cells through an improved understanding of defects and recombination mechanisms within these structures. Three main issues were investigated: the role of bulk defects and interface recombination on GaAs cell performance and design; performance limiting defects in CdTe thin film cells; and processing of wide bandgap CdZnTe for use as the top cell of a two cell tandem arrangement. In the first part of the research an improved methodology to determine lifetime and recombination velocity within AlGaAs/GaAs heteroface cells was developed. The quantitative dependence of device performance on defect characteristics was demonstrated. A novel device structure was proposed which is shown to minimize the effects of defects while resulting in high efficiency. The second area of research investigated the effects of the commonly used but poorly understood CdCl_2 treatment on CdTe/CdS solar cells. The CdCl_2 treatment was found to improve cell performance via increased carrier collection from the bulk and across the interface, and by a change in the dominant current transport mechanism from interface-assisted tunneling to depletion region recombination. However, an E _{v} + 0.64 eV trap was detected in the CdCl_2-treated cells, resulting from the formation of cadmium vacancy-related defects during processing, that may limit CdTe cell performance. A preliminary correlation between the trap density and cell V_{oc} was established. In the third area, 1.7 eV bandgap CdZnTe was successfully grown on CdS substrates by molecular beam epitaxy. However, subsequent standard cell processing reduced photoresponse, decreased the CdZnTe bandgap, and caused high series resistance. The high series resistance resulted from the preferential oxidation of Zn during the anneal, which was removed by a dichromate etch. The reaction of Zn with CdCl_2 and

  3. First-principles study of the electronic and the magnetic properties of Cr-doped wurtzite cadmium sulfide (Cd1- x Cr x S, x = 12.5% and 6.25%)

    NASA Astrophysics Data System (ADS)

    Nabi, Azeem; Majid, Abdul

    2015-08-01

    The electronic and the magnetic properties of Cr-doped wurtzite cadmium sulfide (Cd1- x Cr x S) at different concentrations ( x = 12.5% and 6.25%) are investigated in the frame work of the generalized gradient approximation (GGA), its extension through on-site Hubbard U interactions (GGA+U), and the Tran Blaha modified Becke-Johnson (TB-mBJ) potential. The ferromagnetic exchange interactions between Cr-Cr atoms via S atoms are studied. The magnetic moments on these atoms are studied in detail by using different charge analysis techniques. The p-d hybridization reduces the local magnetic moment on Cr from its free space charge value and produces a small local magnetic moment on the nonmagnetic Cd and S host sites. Cr-doped CdS provides a half-metallic semiconductor.

  4. A metal sulfide photocatalyst composed of ubiquitous elements for solar hydrogen production.

    PubMed

    Shiga, Y; Umezawa, N; Srinivasan, N; Koyasu, S; Sakai, E; Miyauchi, M

    2016-06-14

    A visible-light-sensitive tin sulfide photocatalyst was designed based on a ubiquitous element strategy and density functional theory (DFT) calculations. Computational analysis suggested that tin monosulfide (SnS) would be more efficient than SnS2 as a photocathode for hydrogen production because of the low ionization potential and weak ionic character of SnS. To test this experimentally, nanoparticles of SnS were loaded onto a mesoporous electrode using a wet chemical method, and the bandgap of the synthesized SnS quantum dots was found to be tunable by adjusting the number of successive ionic layer adsorption and reaction (SILAR) cycles, which controls the magnitude of the quantum confinement effect. Efficient hydrogen production was achieved when the bandgap of SnS was wider than that of the bulk form. PMID:27198730

  5. Tin doping in spray pyrolysed indium sulfide thin films for solar cell applications

    SciTech Connect

    Mathew, Meril; Gopinath, Manju; Kartha, C. Sudha; P.Vijayakumar, K.; Kashiwaba, Y.; Abe, T.

    2010-06-15

    This paper presents studies carried out on tin-doped indium sulfide films prepared using Chemical Spray Pyrolysis (CSP) technique. Effect of both in-situ and ex-situ doping were analyzed. Ex-situ doping was done by thermal diffusion, which was realized by annealing Sn/In{sub 2}S{sub 3} bilayer films. In-situ doping was accomplished by introducing Sn into the spray solution by using SnCl{sub 4}.5H{sub 2}O. Interestingly, it was noted that by ex-situ doping, conductivity of the sample enhanced considerably without affecting any of the physical properties such as crystallinity or band gap. Analysis also showed that higher percentage of doping resulted in samples with low crystallinity and negative photosensitivity. In-situ doping resulted in amorphous films. In contrast to ex-situ doping, 'in- situ doping' resulted in widening of optical band gap through oxygen incorporation; also it gave highly photosensitive films. (author)

  6. Space-based solar power conversion and delivery systems study. Volume 4: Energy conversion systems studies

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Solar cells and optical configurations for the SSPS were examined. In this task, three specific solar cell materials were examined: single crystal silicon, single crystal gallium arsenide, and polycrystalline cadmium sulfide. The comparison of the three different cells on the basis of a subsystem parametric cost per kW of SSPS-generated power at the terrestrial utility interface showed that gallium arsenide was the most promising solar cell material at high concentration ratios. The most promising solar cell material with no concentration, was dependent upon the particular combination of parameters representing cost, mass and performance that were chosen to represent each cell in this deterministic comparative analysis. The potential for mass production, based on the projections of the present state-of-the-art would tend to favor cadmium sulfide in lieu of single crystal silicon or gallium arsenide solar cells.

  7. Efficient Nickel Sulfide and Graphene Counter Electrodes Decorated with Silver Nanoparticles and Application in Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Yue, Gentian; Li, Fumin; Yang, Guang; Zhang, Weifeng

    2016-05-01

    We reported a facile two-step electrochemical-chemical approach for in situ growth of nickel sulfide and graphene counter electrode (CE) decorated with silver nanoparticles (signed NiS/Gr-Ag) and served in dye-sensitized solar cells (DSSCs). Under optimum conditions, the DSSC achieved a remarkable power conversion efficiency of 8.36 % assembled with the NiS/Gr-Ag CE, much higher than that based on the Pt CE (7.76 %). The surface morphology of NiS/Gr-Ag CE exhibited a smooth surface with cross-growth of NiS, graphene, and Ag nanoparticles, which was beneficial to the fast mass transport of electrolytes; increased the contact area of electrolytes and active materials; and enabled to speed up the reduction of triiodide to iodide. The research on the electrochemical properties also showed that the NiS/Gr-Ag CE possessed lower charge transfer resistance and more excellent electrocatalytic activity in iodide/triiodide electrolyte compared to the Pt electrode.

  8. Efficient Nickel Sulfide and Graphene Counter Electrodes Decorated with Silver Nanoparticles and Application in Dye-Sensitized Solar Cells.

    PubMed

    Yue, Gentian; Li, Fumin; Yang, Guang; Zhang, Weifeng

    2016-12-01

    We reported a facile two-step electrochemical-chemical approach for in situ growth of nickel sulfide and graphene counter electrode (CE) decorated with silver nanoparticles (signed NiS/Gr-Ag) and served in dye-sensitized solar cells (DSSCs). Under optimum conditions, the DSSC achieved a remarkable power conversion efficiency of 8.36 % assembled with the NiS/Gr-Ag CE, much higher than that based on the Pt CE (7.76 %). The surface morphology of NiS/Gr-Ag CE exhibited a smooth surface with cross-growth of NiS, graphene, and Ag nanoparticles, which was beneficial to the fast mass transport of electrolytes; increased the contact area of electrolytes and active materials; and enabled to speed up the reduction of triiodide to iodide. The research on the electrochemical properties also showed that the NiS/Gr-Ag CE possessed lower charge transfer resistance and more excellent electrocatalytic activity in iodide/triiodide electrolyte compared to the Pt electrode. PMID:27142877

  9. Batch slurry photocatalytic reactors for the generation of hydrogen from sulfide and sulfite waste streams under solar irradiation

    SciTech Connect

    Priya, R.; Kanmani, S.

    2009-10-15

    In this study, two solar slurry photocatalytic reactors i.e., batch reactor (BR) and batch recycle reactor with continuous supply of inert gas (BRRwCG) were developed for comparing their performance. The performance of the photocatalytic reactors were evaluated based on the generation of hydrogen (H{sub 2}) from water containing sodium sulfide (Na{sub 2}S) and sodium sulfite (Na{sub 2}SO{sub 3}) ions. The photoreactor of capacity 300 mL was developed with UV-vis transparent walls. The catalytic powders ((CdS/ZnS)/Ag{sub 2}S + (RuO{sub 2}/TiO{sub 2})) were kept suspended by means of magnetic stirrer in the BR and gas bubbling and recycling of the suspension in the BRRwCG. The rate constant was found to be 120.86 (einstein{sup -1}) for the BRRwCG whereas, for the BR it was found to be only 10.92 (einstein{sup -1}). The higher rate constant was due to the fast desorption of products and suppression of e{sup -}/h{sup +} recombination. (author)

  10. An efficient and transparent copper sulfide nanosheet film counter electrode for bifacial quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ke, Weijun; Fang, Guojia; Lei, Hongwei; Qin, Pingli; Tao, Hong; Zeng, Wei; Wang, Jing; Zhao, Xingzhong

    2014-02-01

    Copper sulfide (CuS) with nanosheet structure has been synthesized at a low temperature in situ on copper (Cu) film coated fluorine-doped tin oxide glass and bifacial quantum dot-sensitized solar cells (QDSSCs) were herein developed by using these CuS as counter electrodes (CEs). CuS is an environmental compatible and low toxic material. The obtained two-dimensional CuS nanosheet film presents high carrier mobility and exhibits highly catalytic performance for the polysulfide-based electrolyte. The QDSSC based on a CuS CE presents a power conversion efficiency (PCE) of 3.65% by optimizing the thickness of the Cu film under front illumination. The QDSSC based on a CuS CE prepared with a 200 nm thick Cu film shows a very close PCE under front and rear illuminations in which the values are as high as 2.70% and 2.40%, respectively. All the PCEs of the CuS CEs are much higher than that of the Pt CE (1.34%).

  11. Green synthesis of wurtzite copper zinc tin sulfide nanocones for improved solar photovoltaic utilization

    NASA Astrophysics Data System (ADS)

    Arora, Leena; Gupta, Poonam; Chhikara, Nitu; Singh, Om Pal; Muhunthan, N.; Singh, V. N.; Singh, B. P.; Jain, Kiran; Chand, S.

    2015-02-01

    Cu2ZnSnS4 (CZTS) is considered to be one of the most promising light absorbing materials for low-cost and high-efficiency thin-film solar cells. It is composed of earth abundant, non-toxic elements. In the present study, wurtzite CZTS nanocone has been synthesized by a green chemistry route. The nanocones have been characterized for its optical, structural and microstructural properties using UV-Vis spectrophotometer, X-ray diffraction, Raman spectroscopy and high-resolution transmission electron microscopy. Optical absorption result shows a band gap of 1.42 eV. XRD and Raman results show wurtzite structure and TEM studies reveal the nanocone structure of the grown material. Growing vertically aligned nanocone structure having smaller diameter shall help in enhancing the light absorption in broader range which shall enhance the efficiency of solar cell. This study is a step in this direction.

  12. Non-Radiative Energy Transfer for Photovoltaic Solar Energy Conversion: Lead Sulfide Quantum Dots on Silicon Nanopillars

    NASA Astrophysics Data System (ADS)

    Lingley, Zachary R.

    This dissertation comprises a study aimed at understanding the competing dynamics of energy and charge transfer in quantum dot (QD) solids and from QDs to crystalline semiconductor substrates to assess a new type of hybrid solar cell that is based on non-radiative resonant energy transfer (NRET) from light absorbers such as nanocrystal QDs to high mobility charge carrier transport channels such as silicon nanopillars. As a platform to investigate a NRET solar cell we employed lead sulfide nanocrystal QDs as light absorbers and silicon as the acceptor transport channel for the NRET generated electrons and holes. Given NRET as the basic physical process at the core of the new type of solar cell the dissertation focused on examining: (1) synthesis of and surface ligand exchange for high quantum efficiency lead sulfide quantum dots, (2) studies of inter-QD NRET and competing inter-QD charge transfer as a function of inter-QD average separation and temperature, (3) structural and optical characteristics of lead sulfide quantum dots adsorbed on crystalline silicon surfaces, and (4) fabrication and examination of prototype colloidal PbS QD - silicon nanopillar array solar cell. The work in these four areas has each provided insights into and new results for the field of quantum dots, QD-based solids, and QD based opto-electronic devices that are of generic value. The need for maintaining the high quantum efficiency (QE) of the as-synthesized PbS QDs while exchanging the surface ligands with new ones better suited for the device lead us to introduce a new approach to ligand exchange that employs pre-conjugated lead cation -- ligand complexes as units that replace the lead cations bound to their as-grown ligand, thus maintaining the Pb-rich stoichiometry that suppresses defect formation while gaining the ability to control the length of the ligands. The ability to control the length of the ligands allowed control over the QD-QD separation in densely packed films referred to

  13. Indium phosphide/cadmium sulfide thin-film solar cells. Final report, May 1979 through July 1980

    SciTech Connect

    Zanio, K.

    1980-09-01

    Thin-film InP/RXCdS/ITO/GLASS devices were prepared by depositing ITO on low-cost glass substrate, depositing CdS on the ITO by thermal evaporation, increasing the CdS lateral grain size by recrystallization, and depositing p-type InP by planar reactive deposition (PRD) on the recrystallized CdS (RXCdS). Yields of the RXCdS/ITO/GLASS substrates were increased to 90% with lateral dimensions of the RXCdS grains as large as 0.3 mm. P-type InP layers were obtained with Be doping. S-doping via vapor transport from the CdS was eliminated by capping the entire RXCdS substrate with InP. For InP deposited on RXCdS at 380/sup 0/C, devices showed blocking action with a barrier height of about 0.5 V but no light response, possibly due to an intermediate approx. 3-..mu..m-thick n-InP layer from diffusion of S from the RXCdS. These results were achieved despite poor InP epitaxy due to an approx. 0.5-..mu..m-thick In-Cd-S transition layer between the InP and the RXCdS. InP films were subsequently deposited on RXCdS at the reduced substrate temperature of 280/sup 0/C to reduce S-diffusion and improve the quality of the epitaxy. Complete InP epitaxy on RXCdS was achieved with the lateral dimensions of the InP (approx. = 40 ..mu..m) replicating that of the RXCdS. Given the increase in the concentration of n-type native defects as substrate temperature is decreased, the present lower limit for obtaining p-type InP by vacuum technologies appears to be about 300/sup 0/C. A 300 to 350/sup 0/C range of substrate temperature appears to befeasible for preparing large-grained p-type InP for both frontwall and backwall cell. However, if the thickness of the n-type layer due to S diffusion cannot be kept to less than a few thousand Angstroms, then development must be restricted to the frontwall cells.

  14. Selenium Sulfide

    MedlinePlus

    Selenium sulfide, an anti-infective agent, relieves itching and flaking of the scalp and removes the dry, ... Selenium sulfide comes in a lotion and is usually applied as a shampoo. As a shampoo, selenium ...

  15. Graphene assistance enhanced dye-sensitized solar cell performance of tin sulfide microspheres

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Chen, Peng; Zuo, Xueqin; Zhou, Lei; Yang, Xiao; Li, Guang; Wu, Mingzai; Ma, Yongqing; Jin, Shaowei; Zhu, Kerong

    2015-10-01

    In this work, the nanosheet-assembled SnS2 microspheres were synthesized through a solvothermal method, and the catalytic activities of the microspheres were investigated by J-V and power conversion efficiency tests as counter electrodes in dye-sensitized solar cells. The cell showed an energy conversion efficiency up to 6.4%. To further improve the power conversion efficiency of the counter electrode of the microspheres, different amounts of reduced graphene were added into the microspheres by simply physical mixing. With the addition of 6 wt% reduced graphene, the short-circuit current density, open-circuit voltage and fill factor were 15.18 mA cm-2, 775 mV, and 63.4%, respectively. More important, the conversion efficiency reached 7.46%, which is approximately 17% higher than that of the cell with pure SnS2 microspheres as counter electrode. Compared to conventional materials used in dye-sensitized solar cells, SnS2 microspheres have the advantages of facile synthesis, low-cost and high efficiency with graphene assistance.

  16. The 100 kW space station. [regenerative fuel cells and nickel hydrogen and nickel cadmium batteries for solar arrays

    NASA Technical Reports Server (NTRS)

    Mckhann, G.

    1977-01-01

    Solar array power systems for the space construction base are discussed. Nickel cadmium and nickel hydrogen batteries are equally attractive relative to regenerative fuel cell systems at 5 years life. Further evaluation of energy storage system life (low orbit conditions) is required. Shuttle and solid polymer electrolyte fuel cell technology appears adequate; large units (approximately four times shuttle) are most appropriate and should be studied for a 100 KWe SCB system. A conservative NiH2 battery DOD (18.6%) was elected due to lack of test data and offers considerable improvement potential. Multiorbit load averaging and reserve capacity requirements limit nominal DOD to 30% to 50% maximum, independent of life considerations.

  17. Study of copper sulfide counter electrode on the performances of CdS/CdSe/ZnS-sensitized hierarchical TiO2 spheres quantum dots solar cells

    NASA Astrophysics Data System (ADS)

    Buatong, Nattha; Tang, I.-Ming; Pon-On, Weeraphat

    2015-07-01

    The effects of using copper sulfide (CuS) counter electrodes on the performances of solar cells made with CdS/CdSe/ZnS quantum dots co-sensitized onto hierarchical TiO2 spheres (HTS) used as photoelectrode is reported. The HTS in the QDSSCs is composed of an assembly of numerous TiO2 spheres made by the solvolthermal method. The photoelectrical performance of HTS/CdS/CdSe/ZnS coupled to CuS counter electrode was compared to those coupled to Pt CE. The HTS/CdS/CdSe/ZnS coupled to the CuS CE showed the highest power conversion efficiency η (of 1.310 %.) which is significantly higher than those using a standard Pt CE (η = 0.374%) (3.50 fold). This higher efficiency is the results of the higher electrocatalytic activities when the copper sulfide CEs is used.

  18. Solar Hydrogen Production from Zinc Telluride Photocathode Modified with Carbon and Molybdenum Sulfide.

    PubMed

    Jang, Youn Jeong; Lee, Jaehyuk; Lee, Jinwoo; Lee, Jae Sung

    2016-03-30

    A zinc telluride (ZnTe) film modified with MoS2 and carbon has been studied as a new photocathode for solar hydrogen production from photoelectrochemical (PEC) water splitting. The modification enhances PEC activity and stability of the photocathode. Thus, the MoS2/C/ZnTe/ZnO electrode exhibits highly improved activity of -1.48 mA cm(-2) at 0 VRHE with a positively shifted onset potential up to 0.3 VRHE relative to bare ZnO/ZnTe electrode (-0.19 mA cm(-2), 0.18 VRHE) under the simulated 1 sun illumination. This represents the highest value ever reported for ZnTe-based electrodes in PEC water splitting. The carbon densely covers the surface of ZnTe to protect it against photocorrosion in aqueous electrolyte and improves charge separation. In addition, MoS2 further enhances the PEC performance as a hydrogen evolution co-catalyst. PMID:26909873

  19. Sulfide clean-up of solutions from heavy metal ions

    SciTech Connect

    Kislinskaya, G.E.; Kozachek, N.N.; Krasnova, G.M.; Shenk, N.I.

    1982-09-20

    The object of the present research was to determine the conditions for thorough clean-up of solutions from cadmium or mercury contamination by use of iron sulfide. Results indicated that the shape of the dependence of the degree of extraction of copper with iron sulfide on the pH value is analogous to the curve for cadmium; that is, copper, like cadmium, is precipitated by chemical reaction. In distinction from cadmium and copper, mercury is extracted by iron sulfide both in acid and also in neutral solutions, that is, it is possible to attain a direct ion exchange by reaction. At high pH values, only small amounts of iron go into solution, therefore FeS can be used very rationally for the extraction of both small (about 1 mg/liter), and also of large (about 1 mg/liter) amounts of mercury from solutions, which are nearly neutral. By adding sodium sulfide and a flocculant, one can accelerate the process of mercury precipitation, and also reduce the solution of iron sulfide. In the present case, iron sulfide plays the role of a substrate for the crystallization of mercury sulfide, since in dilute solutions the latter forms poorly filterable colloidal solutions. Thus when one uses fused iron sulfide with addition of sodium sulfide, a high degree of mercury extraction is attained, and the spent sorbent is filtered well.

  20. Concentrations of carbonyl sulfide and hydrogen cyanide in the free upper troposphere and lower stratosphere deduced from ATMOS/Spacelab 3 infrared solar occultation spectra

    NASA Technical Reports Server (NTRS)

    Zander, R.; Rinsland, C. P.; Russell, J. M., III; Farmer, C. B.; Norton, R. H.

    1988-01-01

    This paper presents the results on the volume mixing ratio profiles of carbonyl sulfide and hydrogen cyanide, deduced from the spectroscopic analysis of IR solar absorption spectra obtained in the occultation mode with the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument during its mission aboard Spacelab 3. A comparison of the ATMOS measurements for both northern and southern latitudes with previous field investigations at low midlatitudes shows a relatively good agreement. Southern Hemisphere volume mixing ratio profiles for both molecules were obtained for the first time, as were the profiles for the Northern Hemisphere covering the upper troposphere and the lower stratosphere simultaneously.

  1. The role of acid-volatile sulfide and interstitial water metal concentrations in determining bioavailability of cadmium and nickel from contaminated sediments to the marine polychaete Neanthes arenaceodentata

    SciTech Connect

    Pesch, C.E.; Hansen, D.J.; Boothman, W.S. . Environmental Research Lab.); Berry, W.J. ); Mahony, J.D. . Chemistry Dept.)

    1995-01-01

    This study investigated the influence of acid-volatile sulfide (AVS) and interstitial water (IW) metal concentrations on bioavailability and toxicity of Cd and Ni to an infaunal sediment-ingesting marine worm, Neanthes Arenaceodentata. Ten-d exposures were conducted with sediments, contaminated primarily with Cd and Ni, from Foundry Cove (Hudson River, NY), and with uncontaminated sediments spiked with Cd or Ni. Molar ratios of simultaneously extracted metal (SEM)/AVS ranged from < 0.02 to 44 for Cd-spiked, 0.02 to 241 for Ni-spiked, and <0.06 to 125 for Foundry Cove sediments. In all experiments, significant mortality was not observed when SEM/AVS ratios were <1.0 and interstitial water toxic units (IWTU) were <1.0. In the Cd and Ni-spiked experiments, when SEM/AVS ratios or IWTUs were >1.0, sediments were either lethal or worms did not burrow. Mortality of worms in Foundry Cove sediments was [le] 20%, and worms burrowed in all these sediments. However, IW contained <1.0 TU (Ni + Cd) in all Foundry Cove sediments except one (IWTU = 1.69). Metal concentrations in worms generally increased with increases in sediment metal concentration, SEM/AVS molar ratio, and IW metal concentration. The presence of metal in worms from sediments from SEM/AVS ratios <1.0 may be evidence of release of Cd or Ni from oxidized metal sulfide (a result of burrowing), uptake of metal from ingested sediment, or adsorption to body surfaces. These results support the hypothesis that when the concentration of AVS in sediments exceeds that of divalent metals sediments will not be acutely toxic. However, a greater number of sediments was correctly predicted to be nontoxic when interstitial water metal concentration of <1.0 TU was used.

  2. Determination of Hydrogen Sulfide in Fermentation Broths Containing SO21

    PubMed Central

    Acree, T. E.; Sonoff, Elisabeth P.; Splittstoesser, D. F.

    1971-01-01

    A procedure for the determination of hydrogen sulfide in fermentation broths containing up to 100 μg of SO2 per ml is described. The method involves the sparging of H2S from the broth into a cadmium hydroxide absorption solution, the formation of methylene blue from the absorbed sulfide, and the measuring of this color spectrophotometrically. The use of cadmium hydroxide instead of zinc acetate, the common absorbent, substantially reduced the interference of SO2 with the analysis. PMID:5111300

  3. Platinum-Free Counter Electrode Comprised of Metal-Organic-Framework (MOF)-Derived Cobalt Sulfide Nanoparticles for Efficient Dye-Sensitized Solar Cells (DSSCs)

    PubMed Central

    Hsu, Shao-Hui; Li, Chun-Ting; Chien, Heng-Ta; Salunkhe, Rahul R.; Suzuki, Norihiro; Yamauchi, Yusuke; Ho, Kuo-Chuan; Wu, Kevin C.-W.

    2014-01-01

    We fabricated a highly efficient (with a solar-to-electricity conversion efficiency (η) of 8.1%) Pt-free dye-sensitized solar cell (DSSC). The counter electrode was made of cobalt sulfide (CoS) nanoparticles synthesized via surfactant-assisted preparation of a metal organic framework, ZIF-67, with controllable particle sizes (50 to 320 nm) and subsequent oxidation and sulfide conversion. In contrast to conventional Pt counter electrodes, the synthesized CoS nanoparticles exhibited higher external surface areas and roughness factors, as evidenced by X-ray diffraction (XRD), scanning electron microscopy (SEM) element mapping, and electrochemical analysis. Incident photon-to-current conversion efficiency (IPCE) results showed an increase in the open circuit voltage (VOC) and a decrease in the short-circuit photocurrent density (Jsc) for CoS-based DSSCs compared to Pt-based DSSCs, resulting in a similar power conversion efficiency. The CoS-based DSSC fabricated in the study show great potential for economically friendly production of Pt-free DSSCs. PMID:25382139

  4. Platinum-free counter electrode comprised of metal-organic-framework (MOF)-derived cobalt sulfide nanoparticles for efficient dye-sensitized solar cells (DSSCs).

    PubMed

    Hsu, Shao-Hui; Li, Chun-Ting; Chien, Heng-Ta; Salunkhe, Rahul R; Suzuki, Norihiro; Yamauchi, Yusuke; Ho, Kuo-Chuan; Wu, Kevin C-W

    2014-01-01

    We fabricated a highly efficient (with a solar-to-electricity conversion efficiency (η) of 8.1%) Pt-free dye-sensitized solar cell (DSSC). The counter electrode was made of cobalt sulfide (CoS) nanoparticles synthesized via surfactant-assisted preparation of a metal organic framework, ZIF-67, with controllable particle sizes (50 to 320 nm) and subsequent oxidation and sulfide conversion. In contrast to conventional Pt counter electrodes, the synthesized CoS nanoparticles exhibited higher external surface areas and roughness factors, as evidenced by X-ray diffraction (XRD), scanning electron microscopy (SEM) element mapping, and electrochemical analysis. Incident photon-to-current conversion efficiency (IPCE) results showed an increase in the open circuit voltage (VOC) and a decrease in the short-circuit photocurrent density (Jsc) for CoS-based DSSCs compared to Pt-based DSSCs, resulting in a similar power conversion efficiency. The CoS-based DSSC fabricated in the study show great potential for economically friendly production of Pt-free DSSCs. PMID:25382139

  5. Solar electric and thermal conversion system in close proximity to the consumer. [solar panels on house roofs

    NASA Technical Reports Server (NTRS)

    Boeer, K. W.

    1975-01-01

    Solar cells may be used to convert sunlight directly into electrical energy and into lowgrade heat to be used for large-scale terrestrial solar-energy conversion. Both forms of energy can be utilized if such cells are deployed in close proximity to the consumer (rooftop). Cadmium-sulfide/copper-sulfide (CdS/Cu2S) solar cells are an example of cells which may be produced inexpensively enough to become economically attractive. Cell parameters relevant for combined solar conversion are presented. Critical issues, such as production yield, life expectancy, and stability of performance, are discussed. Systems-design parameters related to operating temperatures are analyzed. First results obtained on Solar One, the experimental house of the University of Delaware, are given. Economic aspects are discussed. Different modes of operation are discussed in respect to the power utility and consumer incentives.

  6. Selenium Sulfide

    MedlinePlus

    Selenium sulfide comes in a lotion and is usually applied as a shampoo. As a shampoo, selenium sulfide usually is used twice a week for the first ... it is irritating. Rinse off all of the lotion.Do not use this medication on children younger ...

  7. Polycrystalline thin film cadmium telluride n-i-p solar cells

    NASA Astrophysics Data System (ADS)

    Meyers, P. V.

    1990-06-01

    This paper discusses experiments and analyses of technical, economic and environmental issues relating to CdTe n-i-p solar cells and their potential to satisfy the DOE PV program goals. The basic cell structure is CdS-CdTe-ZnTe. Included is an experimental and theoretical study of the operation of these devices. Experiments related to deposition of the CdS and ZnTe layers, cascaded solar cells, and module fabrication are described. Manufacturing issues relating to costs, worker safety, and environmental security are discussed.

  8. High efficiency cadmium and zinc telluride-based thin film solar cells

    SciTech Connect

    Rohatgi, A.; Summers, C.J.; Erbil, A.; Sudharsanan, R.; Ringel, S. . School of Electrical Engineering)

    1990-10-01

    Polycrystalline Cd{sub 1-x}Zn{sub x}Te and Cd{sub 1-x}Mn{sub x}Te films with a band gap of 1.7 eV were successfully grown on glass/SnO{sub 2}/CdS substrates by molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD), respectively. Polycrystalline Cd{sub 1-x}Zn{sub x}Te films grown by MBE resulted in uniform composition and sharp interfaces. However, polycrystalline Cd{sub 1-x}Mn{sub x}Te films grown by MOCVD showed nonuniform compositions and evidence of manganese accumulation at the Cd{sub 1-x}Mn{sub x}Te/CdS interface. We found that manganese interdiffuses and replaces cadmium in the CdS film. By improving the CdTe/CdS interface and, thus, reducing the collection function effects, the efficiency of the MOCVD CdTe cell can be improved to about 13.5%. MBE-grown CdTe cells also produced 8%--9% efficiencies. The standard CdTe process was not optimum for ternary films and resulted in a decrease in the band gap. Recent results indicate that CdCl{sub 2} + ZnCl{sub 2} chemical treatment may prevent the band-gap reduction, and that chromate etch (rather than bromine etch) may provide the solution to contact resistance in the ternary cells.

  9. Cadmium telluride films for lightweight solar cells for space and terrestrial applications

    SciTech Connect

    Singh, V.P.; Lush, G.B.; Santiesteban, R.; McClure, J.C.; Chavez, H.

    1995-01-25

    Deposition of cadmium telluride (CdTe) films on steel foil substrates was investigated. Adherent CdTe films were vacuum evaporated and a growth rate of 3 nm/sec was obtained at a substrate temperature of 533 K. As deposited films exhibited a preferred (111) orientation. A tellurium interlayer between CdTe and steel yielded larger grains in CdTe than a gold interlayer. Annealing of CdTe films at 823 K increased the grain size and reduced the film resistance; it also tended to transform p-type CdTe into n-type. This was attributed to the diffusion of tellurium from CdTe into steel and diffusion of iron from the steel substrate into the CdTe film. This diffusion was observed using energy dispersive X-ray analysis. A photovoltage was obtained by depositing CdS on top of p-CdTe and a V{sub oc} of 360 mV was obtained. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}

  10. High efficiency cadmium and zinc telluride-based thin film solar cells

    NASA Astrophysics Data System (ADS)

    Rohatgi, A.; Summers, C. J.; Erbil, A.; Sudharsanan, R.; Ringel, S.

    1990-10-01

    Polycrystalline Cd(1-x)Zn(x)Te and Cd(1-x)Mn(x)Te films with a band gap of 1.7 eV were successfully grown on glass/SnO2/CdS substrates by molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD), respectively. Polycrystalline Cd(1-x)Zn(x)Te films grown by MBE resulted in uniform composition and sharp interfaces. However, polycrystalline Cd(1-x)Mn(x)Te films grown by MOCVD showed nonuniform compositions and evidence of manganese accumulation at the Cd(1-x)Mn(x)Te/CdS interface. We found that manganese interdiffuses and replaces cadmium in the CdS film. By improving the CdTe/CdS interface and, thus, reducing the collection function effects, the efficiency of the MOCVD CdTe cell can be improved to about 13.5 percent. MBE-grown CdTe cells also produced 8 to 9 percent efficiencies. The standard CdTe process was not optimum for ternary films and resulted in a decrease in the band gap. Recent results indicate that CdCl2 + ZnCl2 chemical treatment may prevent the band-gap reduction, and that chromate etch (rather than bromine etch) may provide the solution to contact resistance in the ternary cells.

  11. Cadmium Sulfide and Nickel Synergetic Co-catalysts Supported on Graphitic Carbon Nitride for Visible-Light-Driven Photocatalytic Hydrogen Evolution.

    PubMed

    Yue, Xinzheng; Yi, Shasha; Wang, Runwei; Zhang, Zongtao; Qiu, Shilun

    2016-01-01

    Design and preparation of noble-metal-free photocatalysts is of great importance for photocatalytic water splitting harvesting solar energy. Here, we report the high visible-light-driven hydrogen evolution upon the hybrid photocatalyst system consisting of CdS nanocrystals and Ni@NiO nanoparticles grown on the surface of g-C3N4. The hybrid system shows a high H2-production rate of 1258.7 μmol h(-1) g(-1) in the presence of triethanolamine as a sacrificial electron donor under visible light irradiation. The synergetic catalytic mechanism has been studied and the results of photovoltaic and photoluminescence properties show that efficient electron transfer could be achieved from g-C3N4 to CdS nanocrystals and subsequently to Ni@NiO hybrid. PMID:26923439

  12. Cadmium Sulfide and Nickel Synergetic Co-catalysts Supported on Graphitic Carbon Nitride for Visible-Light-Driven Photocatalytic Hydrogen Evolution

    PubMed Central

    Yue, Xinzheng; Yi, Shasha; Wang, Runwei; Zhang, Zongtao; Qiu, Shilun

    2016-01-01

    Design and preparation of noble-metal-free photocatalysts is of great importance for photocatalytic water splitting harvesting solar energy. Here, we report the high visible-light-driven hydrogen evolution upon the hybrid photocatalyst system consisting of CdS nanocrystals and Ni@NiO nanoparticles grown on the surface of g-C3N4. The hybrid system shows a high H2-production rate of 1258.7 μmol h−1 g−1 in the presence of triethanolamine as a sacrificial electron donor under visible light irradiation. The synergetic catalytic mechanism has been studied and the results of photovoltaic and photoluminescence properties show that efficient electron transfer could be achieved from g-C3N4 to CdS nanocrystals and subsequently to Ni@NiO hybrid. PMID:26923439

  13. Cadmium Sulfide and Nickel Synergetic Co-catalysts Supported on Graphitic Carbon Nitride for Visible-Light-Driven Photocatalytic Hydrogen Evolution

    NASA Astrophysics Data System (ADS)

    Yue, Xinzheng; Yi, Shasha; Wang, Runwei; Zhang, Zongtao; Qiu, Shilun

    2016-02-01

    Design and preparation of noble-metal-free photocatalysts is of great importance for photocatalytic water splitting harvesting solar energy. Here, we report the high visible-light-driven hydrogen evolution upon the hybrid photocatalyst system consisting of CdS nanocrystals and Ni@NiO nanoparticles grown on the surface of g-C3N4. The hybrid system shows a high H2-production rate of 1258.7 μmol h-1 g-1 in the presence of triethanolamine as a sacrificial electron donor under visible light irradiation. The synergetic catalytic mechanism has been studied and the results of photovoltaic and photoluminescence properties show that efficient electron transfer could be achieved from g-C3N4 to CdS nanocrystals and subsequently to Ni@NiO hybrid.

  14. CuxS counter electrodes in-situ prepared via the sulfidation of magnetron sputtering Cu film for quantum dot sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Yuanqiang; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi

    2016-06-01

    The nanosheet-structured CuxS thin films used as counter electrodes (CEs) for CdS/CdSe quantum dot sensitized solar cells (QDSSCs) have been in situ prepared via the sulfidation of Cu nanoparticles deposited on F-doped SnO2 glass (FTO glass) substrate by magnetron sputtering method. The thickness of the deposited Cu film affects the morphology and thickness of the obtained CuxS films. The CuxS nanosheet films have good adhesion with FTO glass and the surface exhibits uniform morphology. The characteristics of QDSSCs are studied in more detail by photocurrent-voltage performance measurements, incident photon-to-current conversion efficiency (IPCE) and electrochemical impedance spectroscopy (EIS). The CuxS on FTO glass (CuxS/FTO) CEs show much higher power conversion efficiency (PCE) and IPCE than those of the Pt on FTO (Pt/FTO) CE because of their superior carrier mobility and electro-catalytic ability for the polysulfide redox reactions. Based on an optimal CuxS film thickness of 2.7 μm obtained by the sulfidation of the Cu film thickness of 300 nm on FTO, the best photovoltaic performance with PCE of 3.67% (Jsc = 16.47 mA cm-2, Voc = 0.481 V, FF = 0.46) under full one-sun illumination is achieved.

  15. Non-Uniformities in Thin-Film Cadmium Telluride Solar Cells Using Electroluminescence and Photoluminescence: Preprint

    SciTech Connect

    Zaunbrecher, K.; Johnston, S.; Yan, F.; Sites, J.

    2011-07-01

    It is the purpose of this research to develop specific imaging techniques that have the potential to be fast, in-line tools for quality control in thin-film CdTe solar cells. Electroluminescence (EL) and photoluminescence (PL) are two techniques that are currently under investigation on CdTe small area devices made at Colorado State University. It is our hope to significantly advance the understanding of EL and PL measurements as applied to CdTe. Qualitative analysis of defects and non-uniformities is underway on CdTe using EL, PL, and other imaging techniques.

  16. High efficiency cadmium telluride and zinc telluride based thin-film solar cells

    SciTech Connect

    Rohatgi, A.; Sudharsanan, R.; Ringel, S.A.; Chou, H.C. )

    1992-10-01

    This report describes work to improve the basic understanding of CdTe and ZnTe alloys by growing and characterizing these films along with cell fabrication. The major objective was to develop wide-band-gap (1.6--1.8 eV) material for the top cell, along with compatible window material and transparent ohmic contacts, so that a cascade cell design can be optimized. Front-wall solar cells were fabricated with a glass/SnO{sub 2}/CdS window, where the CdS film is thin to maximize transmission and current. Wide-band-gap absorber films (E{sub g} = 1.75 eV) were grown by molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD) techniques, which provided excellent control for tailoring the film composition and properties. CdZnTe films were grown by both MBE and MOCVD. All the as-grown films were characterized by several techniques (surface photovoltage spectroscopy, Auger electron spectroscopy (AES), and x-ray photoelectron spectroscopy (XPS)) for composition, bulk uniformity, thickness, and film and interface quality. Front-wall-type solar cells were fabricated in collaboration with Ametek Materials Research Laboratory using CdTe and CdZnTe polycrystalline absorber films. The effects of processing on ternary film were studied by AES and XPS coupled with capacitance voltage and current voltage measurements as a function of temperature. Bias-dependent spectral response and electrical measurements were used to test some models in order to identify and quantify dominant loss mechanisms.

  17. Polycrystalline thin-film cadmium telluride solar cells fabricated by electrodeposition. Annual technical report

    SciTech Connect

    Trefny, J.U.; Mao, D.

    1998-01-01

    During the past year, Colorado School of Mines (CSM) researchers performed systematic studies of the growth and properties of electrodeposition CdS and back-contact formation using Cu-doped ZnTe, with an emphasis on low Cu concentrations. CSM also started to explore the stability of its ZnTe-Cu contacted CdTe solar cells. Researchers investigated the electrodeposition of CdS and its application in fabricating CdTe/CdS solar cells. The experimental conditions they explored in this study were pH from 2.0 to 3.0; temperatures of 80 and 90 C; CdCl{sub 2} concentration of 0.2 M; deposition potential from {minus}550 to {minus}600 mV vs. Ag/AgCl electrode; [Na{sub 2}S{sub 2}O{sub 4}] concentration between 0.005 and 0.05 M. The deposition rate increases with increase of the thiosulfate concentration and decrease of solution pH. Researchers also extended their previous research of ZnTe:Cu films by investigating films doped with low Cu concentrations (< 5 at. %). The low Cu concentration enabled them to increase the ZnTe:Cu post-annealing temperature without causing excessive Cu diffusion into CdTe or formation of secondary phases. The effects of Cu doping concentration and post-deposition annealing temperature on the structural, compositional, and electrical properties of ZnTe were studied systematically using X-ray diffraction, atomic force microscopy, electron microprobe, Hall effect, and conductivity measurements.

  18. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production.

    PubMed

    Sakimoto, Kelsey K; Wong, Andrew Barnabas; Yang, Peidong

    2016-01-01

    Improving natural photosynthesis can enable the sustainable production of chemicals. However, neither purely artificial nor purely biological approaches seem poised to realize the potential of solar-to-chemical synthesis. We developed a hybrid approach, whereby we combined the highly efficient light harvesting of inorganic semiconductors with the high specificity, low cost, and self-replication and -repair of biocatalysts. We induced the self-photosensitization of a nonphotosynthetic bacterium, Moorella thermoacetica, with cadmium sulfide nanoparticles, enabling the photosynthesis of acetic acid from carbon dioxide. Biologically precipitated cadmium sulfide nanoparticles served as the light harvester to sustain cellular metabolism. This self-augmented biological system selectively produced acetic acid continuously over several days of light-dark cycles at relatively high quantum yields, demonstrating a self-replicating route toward solar-to-chemical carbon dioxide reduction. PMID:26721997

  19. High-efficiency cadmium and zinc-telluride-based thin-film solar cells

    SciTech Connect

    Rohatgi, A.; Sudharsanan, R.; Ringel, S. )

    1992-02-01

    This report describes research into polycrystalline CdTe solar cells grown by metal-organic chemical vapor deposition. Efficiencies of {approximately}10% were achieved using both p-i-n and p-n structures. A pre-heat treatment of CdS/SnO{sub 2}/glass substrates at 450{degrees}C in hydrogen atmosphere prior to the CdTe growth was found to be essential for high performance because this heat treatment reduces oxygen-related defects from the CdS surface. However, this treatment also resulted in a Cd-deficient CdS surface, which may in part limit the CdTe cell efficiency to 10% due to Cd vacancy-related interface defects. Preliminary model calculations suggest that removing these states can increase the cell efficiency from 10% to 13.5%. Photon absorption in the CdS film also limits the cell performance, and eliminating this loss mechanism can result in CdTe efficiencies in excess of 18%. Polycrystalline, 1.7-e, CdZnTe films were also grown for tandem-cell applications. CdZnTe/CdS cells processed using the standard CdTe cell fabrication procedure resulted in 4.4% efficiency, high series resistance, and a band-gap shift to 1.55 eV. The formation of Zn-O at and near the CdZnTe surface is the source of high contact resistance. A saturated dichromate each prior to contact deposition was found to solve the contact resistance problem. The CdCl{sub 2} treatment was identified as the cause of the observed band-gap shift due to the preferred formation of ZnCl{sub 2}. 59 refs.

  20. Selenium sulfide

    Integrated Risk Information System (IRIS)

    Selenium sulfide ; CASRN 7446 - 34 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  1. Hydrogen sulfide

    Integrated Risk Information System (IRIS)

    Hydrogen sulfide ; 7783 - 06 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  2. Carbonyl sulfide

    Integrated Risk Information System (IRIS)

    Carbonyl sulfide ; CASRN 463 - 58 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  3. Lead antimony sulfide (Pb5Sb8S17) solid-state quantum dot-sensitized solar cells with an efficiency of over 4%

    NASA Astrophysics Data System (ADS)

    Chang, Yi-Cheng; Suriyawong, Nipapon; Aragaw, Belete Asefa; Shi, Jen-Bin; Chen, Peter; Lee, Ming-Way

    2016-04-01

    Lead antimony sulfides are rare in nature and relatively unexplored ternary semiconductors. This work investigates the photovoltaic performance of Pb-Sb-S quantum dot-sensitized solar cells (QDSCs). Pb5Sb8S17 nanoparticles are grown on mesoporous TiO2 electrodes using the successive ionic layer adsorption reaction process. The synthesized Pb5Sb8S17 nanoparticles exhibit two attractive features for a good solar absorber material: a high optical absorption coefficient and a near optimal energy gap. Solid-state QDSCs are fabricated from the synthesized Pb5Sb8S17 nanoparticles using Spiro-OMeTAD as the hole-transporting material. The best cell yields a short-circuit current density Jsc of 11.92 mA cm-2, an open-circuit voltage Voc of 0.48 V, a fill factor FF of 30.7% and a power conversion efficiency (PCE) of 1.76% under 1sun. The external quantum efficiency (EQE) spectrum covers a spectral range of 350-800 nm with a maximal EQE = 65% at λ = 450 nm. At the reduced light intensity of 10% sun, the PCE increases to 4.14% with Jsc = 2.0 mA cm-2 (which could be normalized to 20 mA cm-2 under 1 sun). This PCE is 65% higher than the best previous result. The respectable PCE and Jsc indicate that Pb5Sb8S17 could be a potential candidate for a solar absorber material.

  4. Investigation of photoresponse in cadmium sulfide nanoparticles

    SciTech Connect

    Mishra, Sheo K. E-mail: dr.sheokmishra@gmail.com; Tripathi, Akhilesh; Shukla, R. K.; Srivastava, Rajneesh K.; Dubey, K. C.

    2015-06-24

    In this work, we report on the photo-response of CdS nanoparticles prepared by simple solid state reaction method. The X-ray diffraction (XRD) study has confirmed the formation of cubical zinc blende (c) phase. In the photo-response study, voltage dependence of photocurrent and darkcurrent as well as temporal rise and decay of photocurrent of CdS nanoparticles have been investigated. The photo-response of prepared sample has been measured under visible illumination using thick film of powder with out any binder. The photocurrent (I{sub pc}) and darkcurrent (I{sub dc}) follow power law with applied voltage i.e. I α V{sup r}. The rise and decay of photocurrent show negative photoconductivity.

  5. Sulfidation of Cadmium at the Nanoscale

    SciTech Connect

    Cabot, Andreu; Smith, Rachel; Yin, Yadong; Zheng, Haimei; Reinhard, Bjorn; Liu, Haitao; Alivisatos, A. Paul

    2008-05-22

    We investigate the evolution of structures that result when spherical Cd nanoparticles of a few hundred nanometers in diameter react with dissolved molecular sulfur species in solution to form hollow CdS. Over a wide range of temperatures and concentrations, we find that rapid Cd diffusion through the growing CdS shell localizes the reaction front at the outermost CdS/S interface, leading to hollow particles when all the Cd is consumed. When we examine partially reacted particles, we find that this system differs significantly from others in which the nanoscale Kirkendall effect has been used to create hollow particles. In previously reported systems, partial reaction creates a hollow particle with a spherically symmetric metal core connected to the outer shell by filaments. In contrast, here we obtain a lower symmetry structure, in which the unreacted metal core and the coalesced vacancies separate into two distinct spherical caps, minimizing the metal/void interface. This pattern of void coalescence is likely to occur in situations where the metal/vacancy self-diffusivities in the core are greater than the diffusivity of the cations through the shell.

  6. Cadmium zinc sulfide by solution growth

    SciTech Connect

    Chen, W.S.

    1992-05-12

    This patent describes a photoelectric cell. It comprises a thin film of CdZnS that forms a continuous coating free of pin holes and has a thickness that is sufficiently thin to provide at least 70% transmission of radiation having a wavelength 400 nm.

  7. Errors in short circuit measurements due to spectral mismatch between sunlight and solar simulators

    NASA Technical Reports Server (NTRS)

    Curtis, H. B.

    1976-01-01

    Errors in short circuit current measurement were calculated for a variety of spectral mismatch conditions. The differences in spectral irradiance between terrestrial sunlight and three types of solar simulator were studied, as well as the differences in spectral response between three types of reference solar cells and various test cells. The simulators considered were a short arc xenon lamp AMO sunlight simulator, an ordinary quartz halogen lamp, and an ELH-type quartz halogen lamp. Three types of solar cells studied were a silicon cell, a cadmium sulfide cell and a gallium arsenide cell.

  8. Spectral analysis of the effects of 1.7 MeV electron irradiation on the current transfer characteristic of cadmium telluride solar cells.

    PubMed

    Tian, Jin-Xiu; Zeng, Guang-Gen; He, Xu-Lin; Zhang, Jing-Quan; Wu, Li-Li; Li, Wei; Li, Bing; Wang, Wen-Wu; Feng, Liang-Huan

    2014-04-01

    The effects of device performance of 1.7 MeV electron irradiation on cadmium telluride polycrystalline thin film solar cells with the structure of anti-radiation glass/ITO/ZnO/CdS/CdTe/ZnTe/ZnTe : Cu/Ni have been studied. Light and dark I-V characteristics, dark C-V characteristics, quantum efficiency (QE), admittance spectrum (AS) and other testing methods were used to analyze cells performance such as the open-circuit voltage (Voc), short-circuit current (Isc), fill factor (FF) and conversion efficiency (eta). It was explored to find out the effects of irradiation on the current transfer characteristic of solar cells combined with the dark current density (Jo), diode ideal factor (A), quantum efficiency, carrier concentration and the depletion layer width. The decline in short-circuit current was very large and the efficiency of solar cells decreased obviously after irradiation. Reverse saturation current density increased, which indicates that p-n junction characteristics of solar cells were damaged, and diode ideal factor was almost the same, so current transport mechanism of solar cells has not changed. Quantum efficiency curves proved that the damage of solar cells' p-n junction influenced the collection of photo-generated carriers. Irradiation made carrier concentration reduce to 40.6%. The analyses have shown that. A new defect was induced by electron irradiation, whose position is close to 0.58 eV above the valence band in the forbidden band, and capture cross section is 1.78 x 10(-16) cm2. These results indicate that irradiation influences the generation of photo-generated carriers, increases the risk of the carrier recombination and the reverse dark current, and eventually makes the short-circuit current of solar cells decay. PMID:25007593

  9. Optimized approach to retrieve information on the tropospheric and stratospheric carbonyl sulfide (OCS) vertical distributions above Jungfraujoch from high-resolution FTIR solar spectra.

    NASA Astrophysics Data System (ADS)

    Lejeune, Bernard; Mahieu, Emmanuel; Servais, Christian; Duchatelet, Pierre; Demoulin, Philippe

    2010-05-01

    Carbonyl sulfide (OCS), which is produced in the troposphere from both biogenic and anthropogenic sources, is the most abundant gaseous sulfur species in the unpolluted atmosphere. Due to its low chemical reactivity and water solubility, a significant fraction of OCS is able to reach the stratosphere where it is converted to SO2 and ultimately to H2SO4 aerosols (Junge layer). These aerosols have the potential to amplify stratospheric ozone destruction on a global scale and may influence Earth's radiation budget and climate through increasing solar scattering. The transport of OCS from troposphere to stratosphere is thought to be the primary mechanism by which the Junge layer is sustained during nonvolcanic periods. Because of this, long-term trends in atmospheric OCS concentration, not only in the troposphere but also in the stratosphere, are of great interest. A new approach has been developed and optimized to retrieve atmospheric abundance of OCS from high-resolution ground-based infrared solar spectra by using the SFIT-2 (v3.91) algorithm, including a new model for solar lines simulation (solar lines often produce significant interferences in the OCS microwindows). The strongest lines of the ν3 fundamental band of OCS at 2062 cm-1 have been systematically evaluated with objective criteria to select a new set of microwindows, assuming the HITRAN 2004 spectroscopic parameters with an increase in the OCS line intensities of the ν3band main isotopologue 16O12C32S by 15.79% as compared to HITRAN 2000 (Rothman et al., 2008, and references therein). Two regularization schemes have further been compared (deducted from ATMOS and ACE-FTS measurements or based on a Tikhonov approach), in order to select the one which optimizes the information content while minimizing the error budget. The selected approach has allowed us to determine updated OCS long-term trend from 1988 to 2009 in both the troposphere and the stratosphere, using spectra recorded on a regular basis with

  10. Room-temperature preparation of trisilver-copper-sulfide/polymer based heterojunction thin film for solar cell application

    NASA Astrophysics Data System (ADS)

    Lei, Yan; Yang, Xiaogang; Gu, Longyan; Jia, Huimin; Ge, Suxiang; Xiao, Pin; Fan, Xiaoli; Zheng, Zhi

    2015-04-01

    Solar cells devices based on inorganic/polymer heterojunction can be a possible solution to harvest solar energy and convert to electric energy with high efficiency through a cost-effective fabrication. The solution-process method can be easily used to produce large area devices. Moreover, due to the intrinsic different charge separation, diffusion or recombination in various semiconductors, the interfaces between each component may strongly influence the inorganic/polymer heterojunction performance. Here we prepared a n-type Ag3CuS2 (Eg = 1.25 eV) nanostructured film through a room-temperature element reaction process, which was confirmed as direct bandgap semiconductor through density function theory simulation. This Ag3CuS2 film was spin-coated with an organic semiconducting poly(3-hexythiophene) (P3HT) or polythieno[3,4-b]-thiophene-co-benzodithiophene (PTB7) film, which formed an inorganic/polymer heterojunction. After constructing it to a solar cell device, the power conversion efficiencies of 0.79% and 0.31% were achieved with simulated solar illumination on Ag3CuS2/P3HT and Ag3CuS2/PTB7, respectively. A possible mechanism was discussed and we showed the charge separation at interface of inorganic and polymer semiconductors played an important role.

  11. Tin sulfide (SnS) nanostructured films deposited by continuous spray pyrolysis (CoSP) technique for dye-sensitized solar cells applications

    NASA Astrophysics Data System (ADS)

    Alam, Firoz; Dutta, Viresh

    2015-12-01

    Tin sulfide (SnS) nanostructured films have been deposited on transparent conducting glass substrate using continuous spray pyrolysis (CoSP) technique using aqueous spray solution of tin chloride and thiourea. Structural, morphological and optical properties of as-synthesized SnS nanostructured films showed the formation of (1 0 1) oriented orthorhombic SnS with nanoflakes having a direct band gap of 1.40 eV. X-ray photoelectron spectroscopy (XPS) analysis confirms the formation of pure SnS with Sn in +2 oxidation state. The SnS nanostructured film has also been characterized using Brunauer-Emmett-Teller (BET) technique to determine the surface area and pore volume which are found to be 11.4 m2/g and 0.02 cm2/g, respectively. The film has been used as a counter electrode (CE) in a triiodide/iodide (I3-/I-) based dye-sensitized solar cells (DSSCs). The DSSCs of 0.25 cm2 area with SnS nanostructured CE exhibits a lower power conversion efficiency (2.0 ± 0.06%) than that for the cell with standard platinum (Pt) CE (4.5 ± 0.13%). However, the usefulness of the CoSP technique for deposition of nanostructures SnS CE film has been established in the present study.

  12. Routes to copper zinc tin sulfide Cu2ZnSnS4 a potential material for solar cells.

    PubMed

    Ramasamy, Karthik; Malik, Mohammad A; O'Brien, Paul

    2012-06-11

    Power generation through photovoltaics (PV) has been growing at an average rate of 40% per year over the last decade; but has largely been fuelled by conventional Si-based technologies. Such cells involve expensive processing and many alternatives use either toxic, less-abundant and or expensive elements. Kesterite Cu(2)ZnSnS(4) (CZTS) has been identified as a solar energy material composed of both less toxic and more available elements. Power conversion efficiencies of 8.4% (vacuum processing) and 10.1% (non-vacuum processing) from cells constructed using CZTS have been achieved to date. In this article, we review various deposition methods for CZTS thin films and the synthesis of CZTS nanoparticles. Studies of direct relevance to solar cell applications are emphasised and characteristic properties are collated. PMID:22531115

  13. Wurtzite copper-zinc-tin sulfide as a superior counter electrode material for dye-sensitized solar cells

    PubMed Central

    2013-01-01

    Wurtzite and kesterite Cu2ZnSnS4 (CZTS) nanocrystals were employed as counter electrode (CE) materials for dye-sensitized solar cells (DSSCs). Compared to kesterite CZTS, the wurtzite CZTS exhibited higher electrocatalytic activity for catalyzing reduction of iodide electrolyte and better conductivity. Accordingly, the DSSC with wurtzite CZTS CE generated higher power conversion efficiency (6.89%) than that of Pt (6.23%) and kesterite CZTS (4.89%) CEs. PMID:24191954

  14. Wurtzite copper-zinc-tin sulfide as a superior counter electrode material for dye-sensitized solar cells.

    PubMed

    Kong, Jun; Zhou, Zheng-Ji; Li, Mei; Zhou, Wen-Hui; Yuan, Sheng-Jie; Yao, Rong-Yue; Zhao, Yang; Wu, Si-Xin

    2013-01-01

    Wurtzite and kesterite Cu2ZnSnS4 (CZTS) nanocrystals were employed as counter electrode (CE) materials for dye-sensitized solar cells (DSSCs). Compared to kesterite CZTS, the wurtzite CZTS exhibited higher electrocatalytic activity for catalyzing reduction of iodide electrolyte and better conductivity. Accordingly, the DSSC with wurtzite CZTS CE generated higher power conversion efficiency (6.89%) than that of Pt (6.23%) and kesterite CZTS (4.89%) CEs. PMID:24191954

  15. Wurtzite copper-zinc-tin sulfide as a superior counter electrode material for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kong, Jun; Zhou, Zheng-Ji; Li, Mei; Zhou, Wen-Hui; Yuan, Sheng-Jie; Yao, Rong-Yue; Zhao, Yang; Wu, Si-Xin

    2013-11-01

    Wurtzite and kesterite Cu2ZnSnS4 (CZTS) nanocrystals were employed as counter electrode (CE) materials for dye-sensitized solar cells (DSSCs). Compared to kesterite CZTS, the wurtzite CZTS exhibited higher electrocatalytic activity for catalyzing reduction of iodide electrolyte and better conductivity. Accordingly, the DSSC with wurtzite CZTS CE generated higher power conversion efficiency (6.89%) than that of Pt (6.23%) and kesterite CZTS (4.89%) CEs.

  16. Inorganic phosphate accumulation and cadmium detoxification in Klebsiella aerogenes NCTC 418 growing in continuous culture

    SciTech Connect

    Aiking, H.; Stijnman, A.; van Garderen, C.; van Heerikhuizen, H.; van Riet, J.

    1984-02-01

    Klebsiella aerogenes NCTC-418, growing in the presence of cadmium under glucose-, sulfate-, or phosphate-limited conditions in continuous culture, exhibits two different cadmium detoxifying mechanisms. In addition to sulfide formation, increased accumulation of P/sub i/ is demonstrated as a novel mechanism. Intracellular cadmium is always quantitatively counterbalanced by a concerted increase in both inorganic sulfide and P/sub i/ contents of the cells. This led to the conclusion that production of sulfide and accumulation of P/sub i/ are detoxification mechanisms present in K. aerogenes but that their relative importance is crucially dependent on the strain and the growth conditions employed.

  17. Mineral of the month: cadmium

    USGS Publications Warehouse

    Klimasauskas, Edward

    2005-01-01

    Cadmium, which was once used almost exclusively for pigments, now has many diverse applications. Cadmium’s low melting point, excellent electrical conductivity and resistance to corrosion make it valuable for many products including batteries, electroplated coatings, stabilizers for plastics, solar cells and nonferrous alloys. Today’s cadmium is primarily used in rechargeable batteries, accounting for about 78 percent of consumption in 2004. In 2000, an estimated 3.5 billion consumer batteries were sold in the United States, of which almost 10 percent were nickel-cadmium batteries.

  18. Dip coated nanocrystalline CdZnS thin films for solar cell application

    NASA Astrophysics Data System (ADS)

    Dongre, J. K.; Chaturvedi, Mahim; Patil, Yuvraj; Sharma, Sandhya; Jain, U. K.

    2015-07-01

    Nanocrystalline cadmium sulfide (CdS) and zinc cadmium sulfide (ZnCdS) thin films have been grown via simple and low cost dip coating technique. The prepared films are characterized by X-ray diffraction (XRD), atomic force microscopic (AFM) and UV-VIS spectrophotometer techniques to reveal their structural, morphological and optical properties. XRD shows that both samples grown have zinc blende structure. The grain size is calculated as 6.2 and 8 nm using Scherrer's formula. The band gap value of CdS and CdZnS film is estimated to be 2.58 and 2.69 eV respectively by UV-vis spectroscopy. Photoelectrochemical (PEC) investigations are carried out using cell configuration as n-CdZnS/(1M NaOH + 1M Na2S + 1M S)/C. The photovoltaic output characteristic is used to calculate fill-factor (FF) and solar conversion efficiency (η).

  19. The Determination of Hydrogen Sulfide in Stack Gases, Iodometric Titration After Sulfite Removal.

    ERIC Educational Resources Information Center

    Robles, E. G.

    The determination of hydrogen sulfide in effluents from coal-fired furnaces and incinerators is complicated by the presence of sulfur oxides (which form acids). Organic compounds also may interfere with or prevent the formation of the cadmium sulfide precipitate or give false positive results because of reaction with iodine. The report presents a…

  20. Methods for improving solar cell open circuit voltage

    DOEpatents

    Jordan, John F.; Singh, Vijay P.

    1979-01-01

    A method for producing a solar cell having an increased open circuit voltage. A layer of cadmium sulfide (CdS) produced by a chemical spray technique and having residual chlorides is exposed to a flow of hydrogen sulfide (H.sub.2 S) heated to a temperature of 400.degree.-600.degree. C. The residual chlorides are reduced and any remaining CdCl.sub.2 is converted to CdS. A heterojunction is formed over the CdS and electrodes are formed. Application of chromium as the positive electrode results in a further increase in the open circuit voltage available from the H.sub.2 S-treated solar cell.

  1. Labile sulfide and sulfite in phytochelatin complexes

    SciTech Connect

    Eannetta, N.T.; Steffens, J.C. )

    1989-04-01

    Heavy metals such as cadmium induce tomato cell cultures to synthesize the metal binding polypeptides ({gamma}-Glu-Cys){sub 3} and ({gamma}-Glu-Cys){sub 4}-Gly (phytochelatins). Tomato cells selected for growth on normally lethal concentrations of CdCl{sub 2} synthesize higher quantities of these polypeptides. Cd{sup r} cells are not cross-resistant to other heavy metals, and recent work suggests that metal detoxification by these peptides may be Cd-specific. The occurrence of labile sulfur as a component of the metal complex raises questions concerning possible functions of phytochelatins besides that of Cd binding. The presence of acid-labile sulfide ion in phytochelatin complexes has been reported by several groups. We report the additional finding that labile sulfite is also present in these complexes and in higher amounts than sulfide. Sulfide and sulfite are both released from the metal binding complex by acidification or by treatment with EDTA.

  2. Thin film cadmium telluride, zinc telluride, and mercury zinc telluride solar cells. Final subcontract report, 1 July 1988--31 December 1991

    SciTech Connect

    Chu, T.L.

    1992-04-01

    This report describes research to demonstrate (1) thin film cadmium telluride solar cells with a quantum efficiency of 75% or higher at 0. 44 {mu}m and a photovoltaic efficiency of 11.5% or greater, and (2) thin film zinc telluride and mercury zinc telluride solar cells with a transparency to sub-band-gap radiation of 65% and a photovoltaic conversion efficiency of 5% and 8%, respectively. Work was directed at (1) depositing transparent conducting semiconductor films by solution growth and metal-organic chemical vapor deposition (MOCVD) technique, (2) depositing CdTe films by close-spaced sublimation (CSS) and MOCVD techniques, (3) preparing and evaluating thin film CdTe solar cells, and (4) preparing and characterizing thin film ZnTe, CD{sub 1-x}Zn{sub 1-x}Te, and Hg{sub 1-x}Zn{sub x}Te solar cells. The deposition of CdS films from aqueous solutions was investigated in detail, and their crystallographic, optical, and electrical properties were characterized. CdTe films were deposited from DMCd and DIPTe at 400{degrees}C using TEGa and AsH{sub 3} as dopants. CdTe films deposited by CSS had significantly better microstructures than those deposited by MOCVD. Deep energy states in CdTe films deposited by CSS and MOCVD were investigated. Thin films of ZnTe, Cd{sub 1- x}Zn{sub x}Te, and Hg{sub 1-x}Zn{sub x}Te were deposited by MOCVD, and their crystallographic, optical, and electrical properties were characterized. 67 refs.

  3. In-situ growth of antimony sulfide in carbon nanoparticle matrix: Enhanced electrocatalytic activity as counter electrode in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Sun, Panpan; Zhang, Ming; Ai, Changzhi; Wu, Zhixin; Lu, Shuang; Zhang, Xintong; Huang, Niu; Sun, Yihua; Sun, Xiaohua

    2016-07-01

    Considering the undesirable electrocatalytic activity toward I-/I3- redox system of prinstine antimony sulfide (Sb2S3) fabricated with the existing conditions, a mesoporous carbon nanoparticle film (CNP) is introduced here for in-situ growth of Sb2S3 to construct a Sb2S3@CNP hybrid catalyst. Based on a Sb-thiourea precursor solution, in-situ growth of Sb2S3 can be achieved via solution deposition (denoted as Sb2S3@CNP-S) as well as atmospheric pressure thermal evaporation (denoted as Sb2S3@CNP-T) in CNP matrix. Structural characterizations indicate that Sb2S3 particles have well dispersed in the pores of CNP matrix. Because of the introduction of porous and conductive CNP matrix to support Sb2S3, the hybrid catalyst exhibits lower charge transfer resistance at the catalyst/electrolyte interface and higher electrocatalytic activity. When used as counter electrode (CE) for dye-sensitized solar cells (DSSCs), devices using Sb2S3@CNP hybrid catalyst as CE produce fill factor of 67.6% and 66.3%, which is significantly higher than that using pristine Sb2S3 fabricated in our previous work (52.8%). Finally, the corresponding power conversion efficiencies reach 6.69% (Sb2S3@CNP-S) and 6.24% (Sb2S3@CNP-T), respectively, which are comparable to that using Pt CE measured under the same conditions (6.74%).

  4. Synthesis of Bi2S3 quantum dots for sensitized solar cells by reverse SILAR

    NASA Astrophysics Data System (ADS)

    Singh, Navjot; Sharma, J.; Tripathi, S. K.

    2016-05-01

    Quantum Dot Sensitized Solar cells (QDSSC) have great potential to replace silicon-based solar cells. Quantum dots of various materials and sizes could be used to convert most of the visible light into the electrical current. This paper put emphasis on the synthesis of Bismuth Sulphide quantum dots and selectivity of the anionic precursor by Successive Ionic Layer Adsorption Reaction (SILAR). Bismuth Sulfide (Bi2S3) (group V - Vi semiconductor) is strong contestant for cadmium free solar cells due to its optimum band gap for light harvesting. Optical, structural and electrical measurements are reported and discussed. Problem regarding the choice of precursor for anion extraction is discussed. Band gap of the synthesized quantum dots is 1.2 eV which does not match with the required energy band gap of bismuth sulfide that is 1.7eV.

  5. Hierarchical nickel sulfide/carbon nanotube nanocomposite as a catalytic material toward triiodine reduction in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lu, Man-Ning; Dai, Chao-Shuan; Tai, Sheng-Yen; Lin, Tsung-Wu; Lin, Jeng-Yu

    2014-12-01

    In this study, Ni3S2 nanoparticles are successfully decorated on the backbone of conductive multi-walled carbon nanotubes (denoted as Ni3S2/MWCNT-NC) via a facile glucose-assisted hydrothermal method and employed as a counter electrode (CE) in dye-sensitized solar cells (DSCs). It is noteworthy that the use of glucose in the hydrothermal reaction plays a crucial role in the formation of the nanocomposite structure. Nevertheless, a thick layer of amorphous carbon derived from the hydrothermal carbonization of glucose covers Ni3S2 nanoparticle surface, and thus may inhibit the contact of active sites in Ni3S2 nanoparticles with electrolyte. It is found that the partial amorphous carbon on Ni3S2/MWCNT-NC can be effectively removed after annealing at 400 °C in a nitrogen atmosphere, which further increases the active sites of Ni3S2 nanoparticles on MWCNTs and therefore improves the electrocatalytic activity of the Ni3S2/MWCNT-NC CE. As a result, the DSC with the Ni3S2/MWCNT-NC CE yields a cell efficiency of 6.87%, which is higher than those of DSCs based on the Ni3S2 CE (5.77%) and MWCNT CE (3.76%). Because the Ni3S2/MWCNT-NC CE based DSC shows a comparable photovoltaic performance to the DSC using the Pt CE (7.24%), Ni3S2/MWCNT-NC CE may serve as a promising alternative to Pt CE for DSCs.

  6. Sulfide chemiluminescence detection

    DOEpatents

    Spurlin, Stanford R.; Yeung, Edward S.

    1985-01-01

    A method of chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction and a specifically designed chemiluminescence detection cell for the reaction.

  7. Sulfide chemiluminescence detection

    DOEpatents

    Spurlin, S.R.; Yeung, E.S.

    1985-11-26

    A method is described for chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction and a specifically designed chemiluminescence detection cell for the reaction. 4 figs.

  8. DETERMINATION OF HYDROGEN SULFIDE IN REFINERY FUEL GASES

    EPA Science Inventory

    Several widely employed test methods for the iodimetric measurement of hydrogen sulfide in refinery fuel gases are shown to suffer from serious thiol interferences. An absorbing solution consisting of 0.16 M cadmium sulfate/sulfuric acid at pH 3.0 is shown to be effective for the...

  9. Effects of cadmium particle size on properties of sintered CdS/CdTe thin film solar cells

    NASA Astrophysics Data System (ADS)

    Kim, D. S.; Im, H. B.

    Transparent CdS films with low electrical resistivity have been prepared by coating a CdS slurry on a glass substrate followed by sintering in nitrogen. CdTe slurries consisting of Te powder, Cd powders of various particle sizes, and an appropriate amount of propylene glycol were coated on the sintered CdS films and were sintered in nitrogen to prepare sintered CdS/CdTe solar cells. The efficiency of a sintered CdS/CdTe solar cell increases with increasing Cd particle size up to 3-4 microns and then decreases with a further increase in the Cd particle size. The microstructures of the sintered CdTe layer and of the cross-section of the CdS/CdTe solar cell show that the structures are the most compact in a solar cell which started with a Cd particle size of 3-4 microns. A sintered CdS/CeTe solar cell that was fabricated by using a Cd powder with an average particle size of about 4 microns shows a solar efficiency of 12 percent when measured under a solar intensity of 80 mW/sq cm.

  10. A Genome-Wide Screen of Genes Involved in Cadmium Tolerance in Schizosaccharomyces pombe

    PubMed Central

    Kennedy, Patrick J.; Vashisht, Ajay A.; Hoe, Kwang-Lae; Kim, Dong-Uk; Park, Han-Oh; Hayles, Jacqueline; Russell, Paul

    2008-01-01

    Cadmium is a worldwide environmental toxicant responsible for a range of human diseases including cancer. Cellular injury from cadmium is minimized by stress-responsive detoxification mechanisms. We explored the genetic requirements for cadmium tolerance by individually screening mutants from the fission yeast (Schizosaccharomyces pombe) haploid deletion collection for inhibited growth on agar growth media containing cadmium. Cadmium-sensitive mutants were further tested for sensitivity to oxidative stress (hydrogen peroxide) and osmotic stress (potassium chloride). Of 2649 mutants screened, 237 were sensitive to cadmium, of which 168 were cadmium specific. Most were previously unknown to be involved in cadmium tolerance. The 237 genes represent a number of pathways including sulfate assimilation, phytochelatin synthesis and transport, ubiquinone (Coenzyme Q10) biosynthesis, stress signaling, cell wall biosynthesis and cell morphology, gene expression and chromatin remodeling, vacuole function, and intracellular transport of macromolecules. The ubiquinone biosynthesis mutants are acutely sensitive to cadmium but only mildly sensitive to hydrogen peroxide, indicating that Coenzyme Q10 plays a larger role in cadmium tolerance than just as an antioxidant. These and several other mutants turn yellow when exposed to cadmium, suggesting cadmium sulfide accumulation. This phenotype can potentially be used as a biomarker for cadmium. There is remarkably little overlap with a comparable screen of the Saccharomyces cerevisiae haploid deletion collection, indicating that the two distantly related yeasts utilize significantly different strategies for coping with cadmium stress. These strategies and their relation to cadmium detoxification in humans are discussed. PMID:18684775

  11. I-III-VI.sub.2 based solar cell utilizing the structure CuInGaSe.sub.2 CdZnS/ZnO

    DOEpatents

    Chen, Wen S.; Stewart, John M.

    1992-01-07

    A thin film I-III-VI.sub.2 based solar cell having a first layer of copper indium gallium selenide, a second layer of cadmium zinc sulfide, a double layer of zinc oxide, and a metallization structure comprised of a layer of nickel covered by a layer of aluminum. An optional antireflective coating may be placed on said metallization structure. The cadmium zinc sulfide layer is deposited by means of an aqueous solution growth deposition process and may actually consist of two layers: a low zinc content layer and a high zinc content layer. Photovoltaic efficiencies of 12.5% at Air Mass 1.5 illumination conditions and 10.4% under AMO illumination can be achieved.

  12. Cadmium-free junction fabrication process for CuInSe.sub.2 thin film solar cells

    SciTech Connect

    Ramanathan, Kannan V.; Contreras, Miguel A.; Bhattacharya, Raghu N.; Keane, James; Noufi, Rommel

    1999-01-01

    The present invention provides an economical, simple, dry and controllable semiconductor layer junction forming process to make cadmium free high efficiency photovoltaic cells having a first layer comprised primarily of copper indium diselenide having a thin doped copper indium diselenide n-type region, generated by thermal diffusion with a group II(b) element such as zinc, and a halide, such as chlorine, and a second layer comprised of a conventional zinc oxide bilayer. A photovoltaic device according the present invention includes a first thin film layer of semiconductor material formed primarily from copper indium diselenide. Doping of the copper indium diselenide with zinc chloride is accomplished using either a zinc chloride solution or a solid zinc chloride material. Thermal diffusion of zinc chloride into the copper indium diselenide upper region creates the thin n-type copper indium diselenide surface. A second thin film layer of semiconductor material comprising zinc oxide is then applied in two layers. The first layer comprises a thin layer of high resistivity zinc oxide. The second relatively thick layer of zinc oxide is doped to exhibit low resistivity.

  13. The Search for Interstellar Sulfide Grains

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Messenger, Scott

    2010-01-01

    The lifecycle of sulfur in the galaxy is poorly understood. Fe-sulfide grains are abundant in early solar system materials (e.g. meteorites and comets) and S is highly depleted from the gas phase in cold, dense molecular cloud environments. In stark contrast, sulfur is essentially undepleted from the gas phase in the diffuse interstellar medium, indicating that little sulfur is incorporated into solid grains in this environment. It is widely believed that sulfur is not a component of interstellar dust grains. This is a rather puzzling observation unless Fe-sulfides are not produced in significant quantities in stellar outflows, or their lifetime in the ISM is very short due to rapid destruction. Fe sulfide grains are ubiquitous in cometary samples where they are the dominant host of sulfur. The Fe-sulfides (primarily pyrrhotite; Fe(1-x)S) are common, both as discrete 0.5-10 micron-sized grains and as fine (5-10 nm) nanophase inclusions within amorphous silicate grains. Cometary dust particles contain high abundances of well-preserved presolar silicates and organic matter and we have suggested that they should contain presolar sulfides as well. This hypothesis is supported by the observation of abundant Fe-sulfides grains in dust around pre- and post-main sequence stars inferred from astronomical spectra showing a broad 23 micron IR feature due to FeS. Fe-sulfide grains also occur as inclusions in bona fide circumstellar amorphous silicate grains and as inclusions within deuterium-rich organic matter in cometary dust samples. Our irradiation experiments show that FeS is far more resistant to radiation damage than silicates. Consequently, we expect that Fe sulfide stardust should be as abundant as silicate stardust in solar system materials.

  14. Effect of chlorine activation treatment on electron beam induced current signal distribution of cadmium telluride thin film solar cells

    NASA Astrophysics Data System (ADS)

    Zywitzki, Olaf; Modes, Thomas; Morgner, Henry; Metzner, Christoph; Siepchen, Bastian; Späth, Bettina; Drost, Christian; Krishnakumar, Velappan; Frauenstein, Sven

    2013-10-01

    We have investigated CdTe thin film solar cells without activation treatment and with CdCl2 activation treatment at temperatures between 370 and 430 °C using a constant activation time of 25 min. For this purpose, CdS/CdTe layers were deposited by closed-space-sublimation on FTO coated float glass. The solar cells were characterized by measurements of the JV characteristics and quantum efficiencies. In addition, ion polished cross sections of the solar cells were prepared for high-resolution FE-SEM imaging of the microstructure and the simultaneous registration of electron beam induced current (EBIC) signal distribution. By measurement of the EBIC signal distribution, it can be shown that without activation treatment the CdTe grain boundaries itself and grain boundary near regions exhibit no EBIC signal, whereas centres of some singular grains already show a distinct EBIC signal. In contrast, after the chlorine activation treatment, the grain boundary near regions exhibit a significant higher EBIC signal than the centre of the grains. The results can be discussed as a direct evidence for defect passivation of grain boundary near regions by the chlorine activation treatment. At activation temperature of 430 °C, additionally, a significant grain growth and agglomeration of the CdS layer can be recognized, which is linked with the formation of voids within the CdS layer and a deterioration of pn junction properties.

  15. Surface passivation of lead sulfide nanocrystals with low electron affinity metals: photoluminescence and photovoltaic performance.

    PubMed

    Tavakoli, Mohammad Mahdi; Mirfasih, Mohammad Hassan; Hasanzadeh, Soheil; Aashuri, Hossein; Simchi, Abdolreza

    2016-04-28

    During the last decade, solution-processed colloidal quantum dots (CQDs) have attracted significant attention for low-cost fabrication of optoelectronic devices. In this study, lead sulfide (PbS) CQDs were synthesized via the hot injection method and the effect of doping elements with low electron affinity, including cadmium, calcium and zinc, on the passivation of trap states was investigated. A red-shift in the luminescence emission was observed by doping through passivation of lead dangling bonds. Time-resolved photoluminescence measurements showed that the lifetime of charged carriers was significantly enhanced by cadmium doping (∼80%) which is quite noticeable compared with calcium- and zinc-doped nanocrystals. External quantum efficiency measurements on thin solid films (∼300 nm) prepared by spin coating supported improved lifetime of carriers through passivation of mid-gap trap states. In order to show the potential application of the doping process, bulk heterojunction CQD solar cells were fabricated. It was found that the power conversion efficiency (PCE) was improved up to ∼40%; the highest improvement was observed with the Cd treatment. Finally, density functional theory (DFT) and electrochemical impedance spectroscopy (EIS) were employed to study the effect of doping on the density of states. The results showed that doping with low electron affinity metals effectively reduced the deep trap states of PbS QDs. PMID:27075607

  16. Direct examination of cadmium bonding in rat tissues dosed with mine wastes and cadmium-containing solutions

    SciTech Connect

    Diacomanolis, V.; Ng, J. C.; Sadler, R.; Harris, H. H.; Nomura, M.; Noller, B. N.

    2010-06-23

    Direct examination by XANES and EXAFS of metal bonding in tissue can be demonstrated by examining cadmium uptake and bonding in animal tissue maintained at cryogenic temperatures. XANES at the K-edge of cadmium were collected at the Photon Factory Advanced Ring (PF-AR), NW10A beam line at KEK-Tsukuba-Japan. Rats fed with 1g mine waste containing 8-400 mg/kg cadmium per 200g body weight (b.w.) or dosed by oral gavage with either cadmium chloride solution alone (at 6 mg/kg b.w.) or in combination with other salts (As, Cu or Zn), 5 days/week for 6 weeks, had 0.1-7.5 and 8-86 mg/kg cadmium in the liver or kidney, respectively. Rats given intraperitoneally (ip) or intravenously (iv) 1-4 times with 1 mg/kg b.w. cadmium solution had 30-120 mg/kg cadmium in the liver or kidney. Tissues from rats were kept and transferred at cryogenic temperature and XANES were recorded at 20 K. The spectra for rat liver samples suggested conjugation of cadmium with glutathione or association with the sulfide bond (Cd-S) of proteins and peptides. EXAFS of rat liver fed by Cd and Zn solutions showed that Cd was clearly bound to S ligands with an inter-atomic distance of 2.54 A ring for Cd-S that was similar to cadmium sulfide with an inter-atomic distance of 2.52 A ring for Cd-S. Liver or kidney of rats fed with mine wastes did not give an edge in the XANES spectra indicating little uptake of cadmium by the animals. Longer and higher dosing regimen may be required in order to observe the same Cd-S bond in the rat tissue from mine wastes, including confirmation by EXAFS.

  17. Polycrystalline thin film cadmium telluride solar cells fabricated by electrodeposition. Annual technical report, 20 March 1995--19 March 1996

    SciTech Connect

    Trefny, J U; Mao, D

    1997-04-01

    The objective of this project is to develop improved processes for fabricating CdTe/CdS polycrystalline thin-film solar cells. Researchers used electrodeposition to form CdTe; electrodeposition is a non-vacuum, low-cost technique that is attractive for economic, large-scale production. During the past year, research and development efforts focused on several steps that are most critical to the fabricating high-efficiency CdTe solar cells. These include the optimization of the CdTe electrodeposition process, the effect of pretreatment of CdS substrates, the post-deposition annealing of CdTe, and back-contact formation using Cu-doped ZnTe. Systematic investigations of these processing steps have led to a better understanding and improved performance of the CdTe-based cells. Researchers studied the structural properties of chemical-bath-deposited CdS thin films and their growth mechanisms by investigating CdS samples prepared at different deposition times; investigated the effect of CdCl{sub 2} treatment of CdS films on the photovoltaic performance of CdTe solar cells; studied Cu-doped ZnTe as a promising material for forming stable, low-resistance contacts to the p-type CdTe; and investigated the effect of CdTe and CdS thickness on the photovoltaic performance of the resulting cells. As a result of their systematic investigation and optimization of the processing conditions, researchers improved the efficiency of CdTe/CdS cells using ZnTe back-contact and electrodeposited CdTe. The best CdTe/CdS cell exhibited a V{sub oc} of 0.778 V, a J{sub sc} of 22.4 mA/cm{sup 2}, a FF of 74%, and an efficiency of 12.9% (verified at NREL). In terms of individual parameters, researchers obtained a V{sub oc} over 0.8 V and a FF of 76% on other cells.

  18. CdS and CdS/CdSe sensitized ZnO nanorod array solar cells prepared by a solution ions exchange process

    SciTech Connect

    Chen, Ling; Gong, Haibo; Zheng, Xiaopeng; Zhu, Min; Zhang, Jun; Yang, Shikuan; Cao, Bingqiang

    2013-10-15

    Graphical abstract: - Highlights: • CdS and CdS/CdSe quantum dots are assembled on ZnO nanorods by ion exchange process. • The CdS/CdSe sensitization of ZnO effectively extends the absorption spectrum. • The performance of ZnO/CdS/CdSe cell is improved by extending absorption spectrum. - Abstract: In this paper, cadmium sulfide (CdS) and cadmium sulfide/cadmium selenide (CdS/CdSe) quantum dots (QDs) are assembled onto ZnO nanorod arrays by a solution ion exchange process for QD-sensitized solar cell application. The morphology, composition and absorption properties of different photoanodes were characterized with scanning electron microscope, transmission electron microscope, energy-dispersive X-ray spectrum and Raman spectrum in detail. It is shown that conformal and uniform CdS and CdS/CdSe shells can grow on ZnO nanorod cores. Quantum dot sensitized solar cells based on ZnO/CdS and ZnO/CdS/CdSe nanocable arrays were assembled with gold counter electrode and polysulfide electrolyte solution. The CdS/CdSe sensitization of ZnO can effectively extend the absorption spectrum up to 650 nm, which has a remarkable impact on the performance of a photovoltaic device by extending the absorption spectrum. Preliminary results show one fourth improvement in solar cell efficiency.

  19. Low cost preparation of Cu2ZnSnS4 and Cu2ZnSn(SxSe1-x)4 from binary sulfide nanoparticles for solar cell application

    NASA Astrophysics Data System (ADS)

    Chen, Guilin; Yuan, Chenchen; Liu, Jiwan; Deng, Yitao; Jiang, Guoshun; Liu, Weifeng; Zhu, Changfei

    2014-09-01

    A low-cost non-vacuum process for fabrication of Cu2ZnSnS4 (CZTS) and Cu2ZnSn(SxSe1-x)4 (CZTSSe) films by solvent-free mechanochemical method and doctor blade process is described. First, CuS, ZnS and SnS nanoparticles are synthesized via a facile, solvent-free route, which is low cost and easy to scale-up. Second, the sulfides nanoparticulates precursors are deposited in a thin layer by doctor blade technique. Finally, the dry layers are sintered into CZTS/CZTSSe thin films. Different annealing processes are used, and the influences of incorporation of sulfur/selenium on the CZTS/CZTSSe films have been investigated. These structure, morphology and optical properties of CZTS/CZTSSe films are suitable for thin film solar cell fabrication.

  20. Investigations of Persistent Photoconductivity of Cadmium Sulfide at T = 1-20K: Structure of the Photo - Defect, Transport Properties, and Electric Current Instabilities Associated with Thermal Transport to a Liquid Helium-Ii Film.

    NASA Astrophysics Data System (ADS)

    Dong, Mouqun

    The nature of stored charge and the electric conduction mechanism, two important aspects of persistent photoconductivity (PPC), have been investigated in CdS at low temperatures. A persistent photo-induced electron spin resonance (ESR) center was found for the first time. Correlations between buildups of PPC, edge luminescence and ESR absorption suggest the same charge transfer process responsible for all of the phenomena. Analysis of the ESR spectra indicates that the ESR center is a hole on a sulphur site with a neighboring cadmium-vacancy. From its correlation with luminescence and PPC, this ESR defect is deduced to constitute the acceptor in edge luminescence, which had never previously been conclusively identified. The most probable mechanism for the persistence of both the PPC and the ESR signals is concluded to be the random potential barrier model. Existent theories of hopping conduction are consistent with most aspects of the PPC, for which detailed measurements on the temperature dependence and magnetoresistance were taken. However, for complete quantitative agreement, correction factors of non-understood origin are utilized. An instability in I-V characteristic of PPC, which was first observed in this lab, has been solved by a model of heat transfer between the interface of CdS and He-II film. The observed S-shaped I-V curve can be accounted for by this model quantitatively. Two related effects, anomalous power dependence of the Kapitza resistance and peak heat flux associated with a helium film evaporation mechanism have also been addressed.

  1. Machine vision for solar cell characterization

    NASA Astrophysics Data System (ADS)

    Ordaz, Miguel A.; Lush, Gregory B.

    2000-03-01

    An in-line, non-destructive process is being developed for characterizing polycrystalline thin-film and other large area electronic devices using computer vision based imaging of the manufacturing and inspection steps during the device fabrication process. This process is being applied specifically to Cadmium Telluride/Cadmium Sulfide (CdTe/CdS) thin film, polycrystalline solar cells. Our process involves the acquisition of reflective, transmission and electroluminescence (EL) intensity images for each device. The EL intensity images have been processed by use of a modified median cut segmentation. The processed images reveal different gray level regions corresponding to different intensities of EL originating from radiative recombination events occurring within a biased solar cell. Higher efficiency devices show a more uniform intensity distribution in contrast with lower efficiency devices. The uniform intensity regions are made up of gray level intensity values found near the mean of the histogram distribution these are identified as regions of good device performance and are attributed to better material quality and processing. Low intensity regions indicate either material defects or errors in processing. This novel characterization process and analysis are providing new insights into the causes of poor performance in CdTe-based solar cells.

  2. Controlled cadmium telluride thin films for solar cell applications (emerging materials systems for solar cell applications). Quarterly progress report No. 3, October 9, 1979-January 8, 1980

    SciTech Connect

    Vedam, K; Das, M B; Krishnaswamy, S V

    1980-02-01

    The main emphasis during the third quarter of the program was on the improvement of the quality of sputtered films, their characterization and use in the fabrication of Schottky barrier type diodes and solar cell structures. Films prepared under different conditions and on different substrates were examined by SEM showing nodular growths under certain conditions. I-V, C-V and photovoltaic characteristics were measured on numerous samples based on n- and p-type films on Ni substrates having top metallization of either evaporated Au and Al. The n-type samples showed up to 200mV V/sub oc/ and small short-circuit currents. The characteristics observed are indicative of the presence of interfacial layer and surface states. Surface state's capacitance were measured on p-type samples metallized with Au.

  3. Insights into cadmium diffusion mechanisms in two-stage diffusion profiles in solar-grade Cu(In,Ga)Se2 thin films

    NASA Astrophysics Data System (ADS)

    Biderman, N. J.; Novak, Steven W.; Sundaramoorthy, R.; Haldar, Pradeep; Lloyd, J. R.

    2015-12-01

    Cadmium diffusion experiments were performed on polished copper indium gallium diselenide (Cu(In,Ga)Se2 or CIGS) samples with resulting cadmium diffusion profiles measured by time-of-flight secondary ion mass spectroscopy. Experiments done in the annealing temperature range between 275 °C and 425 °C reveal two-stage cadmium diffusion profiles which may be indicative of multiple diffusion mechanisms. Each stage can be described by the standard solutions of Fick's second law. The slower cadmium diffusion in the first stage can be described by the Arrhenius equation D1 = 3 × 10-4 exp (- 1.53 eV/kBT) cm2 s-1, possibly representing vacancy-meditated diffusion. The faster second-stage diffusion coefficients determined in these experiments match the previously reported cadmium diffusion Arrhenius equation of D2 = 4.8 × 10-4 exp (-1.04 eV/kBT) cm2 s-1, suggesting an interstitial-based mechanism.

  4. Insights into cadmium diffusion mechanisms in two-stage diffusion profiles in solar-grade Cu(In,Ga)Se{sub 2} thin films

    SciTech Connect

    Biderman, N. J.; Sundaramoorthy, R.; Haldar, Pradeep; Novak, Steven W.; Lloyd, J. R.

    2015-12-07

    Cadmium diffusion experiments were performed on polished copper indium gallium diselenide (Cu(In,Ga)Se{sub 2} or CIGS) samples with resulting cadmium diffusion profiles measured by time-of-flight secondary ion mass spectroscopy. Experiments done in the annealing temperature range between 275 °C and 425 °C reveal two-stage cadmium diffusion profiles which may be indicative of multiple diffusion mechanisms. Each stage can be described by the standard solutions of Fick's second law. The slower cadmium diffusion in the first stage can be described by the Arrhenius equation D{sub 1} = 3 × 10{sup −4} exp (− 1.53 eV/k{sub B}T) cm{sup 2} s{sup −1}, possibly representing vacancy-meditated diffusion. The faster second-stage diffusion coefficients determined in these experiments match the previously reported cadmium diffusion Arrhenius equation of D{sub 2} = 4.8 × 10{sup −4} exp (−1.04 eV/k{sub B}T) cm{sup 2} s{sup −1}, suggesting an interstitial-based mechanism.

  5. Sulfide Mineralogy and Geochemistry

    NASA Astrophysics Data System (ADS)

    Dilles, John

    2007-02-01

    Reviews in Mineralogy and Geochemistry Series, Volume 61 David J. Vaughan, Editor Geochemical Society and Mineralogical Society of America; ISBN 0-939950-73-1 xiii + 714 pp.; 2006; $40. Sulfide minerals as a class represent important minor rock-forming minerals, but they are generally known as the chief sources of many economic metallic ores. In the past two decades, sulfide research has been extended to include important roles in environmental geology of sulfide weathering and resultant acid mine drainage, as well as in geomicrobiology in which bacteria make use of sulfides for metabolic energy sources. In the latter respect, sulfides played an important role in early evolution of life on Earth and in geochemical cycling of elements in the Earth's crust and hydrosphere.

  6. Metal Sulfides as Sensing Materials for Chemoresistive Gas Sensors.

    PubMed

    Gaiardo, Andrea; Fabbri, Barbara; Guidi, Vincenzo; Bellutti, Pierluigi; Giberti, Alessio; Gherardi, Sandro; Vanzetti, Lia; Malagù, Cesare; Zonta, Giulia

    2016-01-01

    This work aims at a broad overview of the results obtained with metal-sulfide materials in the field of chemoresistive gas sensing. Indeed, despite the well-known electrical, optical, structural and morphological features previously described in the literature, metal sulfides present lack of investigation for gas sensing applications, a field in which the metal oxides still maintain a leading role owing to their high sensitivity, low cost, small dimensions and simple integration, in spite of the wide assortment of sensing materials. However, despite their great advantages, metal oxides have shown significant drawbacks, which have led to the search for new materials for gas sensing devices. In this work, Cadmium Sulfide and Tin (IV) Sulfide were investigated as functional materials for thick-film chemoresistive gas-sensors fabrication and they were tested both in thermo- and in photo-activation modes. Furthermore, electrical characterization was carried out in order to verify their gas sensing properties and material stability, by comparing the results obtained with metal sulfides to those obtained by using their metal-oxides counterparts. The results highlighted the possibility to use metal sulfides as a novel class of sensing materials, owing to their selectivity to specific compounds, stability, and the possibility to operate at room temperature. PMID:26927120

  7. Metal Sulfides as Sensing Materials for Chemoresistive Gas Sensors

    PubMed Central

    Gaiardo, Andrea; Fabbri, Barbara; Guidi, Vincenzo; Bellutti, Pierluigi; Giberti, Alessio; Gherardi, Sandro; Vanzetti, Lia; Malagù, Cesare; Zonta, Giulia

    2016-01-01

    This work aims at a broad overview of the results obtained with metal-sulfide materials in the field of chemoresistive gas sensing. Indeed, despite the well-known electrical, optical, structural and morphological features previously described in the literature, metal sulfides present lack of investigation for gas sensing applications, a field in which the metal oxides still maintain a leading role owing to their high sensitivity, low cost, small dimensions and simple integration, in spite of the wide assortment of sensing materials. However, despite their great advantages, metal oxides have shown significant drawbacks, which have led to the search for new materials for gas sensing devices. In this work, Cadmium Sulfide and Tin (IV) Sulfide were investigated as functional materials for thick-film chemoresistive gas-sensors fabrication and they were tested both in thermo- and in photo-activation modes. Furthermore, electrical characterization was carried out in order to verify their gas sensing properties and material stability, by comparing the results obtained with metal sulfides to those obtained by using their metal-oxides counterparts. The results highlighted the possibility to use metal sulfides as a novel class of sensing materials, owing to their selectivity to specific compounds, stability, and the possibility to operate at room temperature. PMID:26927120

  8. Effect of aeration of sediment on cadmium binding

    SciTech Connect

    Zhuang, Y.; Allen, H.E.; Fu, G. . Dept. of Civil Engineering)

    1994-05-01

    Acid-volatile sulfide (AVS) has been shown to be the dominant phase reacting with metals in anoxic sediments. The AVS in sediment decreases upon resuspension due to storm and dredging, and in winter when the rate of aeration processes exceeds that of the formation of sulfide. The authors conducted a series of lab aeration experiments in batch reactors to investigate the effects of aeration of sediment on the sulfide content of sediment and on the partitioning of cadmium, a model toxic metal, to the sediment. Aeration of sediment results in rapid decrease of the AVS. The authors studied the sediment characteristics for aeration periods of approximately a month. During this time, the concentrations of dissolved metals increased by 200 to 400% or more, relative to the concentrations present at the beginning of the test. The concentration of metal associated with AVS and with pyrite decreased. During the aeration, there are increases in the concentrations of hydrous iron and manganese oxides, and these materials become increasingly more important in the binding of cadmium. Following the aeration, > 50% of the cadmium was associated with the extractable iron and manganese components of the sediment. Overall, the binding capacity of the sediments for cadmium decreased after aeration.

  9. Cadmium carcinogenesis in review.

    PubMed

    Waalkes, M P

    2000-04-01

    Cadmium is an inorganic toxicant of great environmental and occupational concern which was classified as a human carcinogen in 1993. Occupational cadmium exposure is associated with lung cancer in humans. Cadmium exposure has also, on occasion, been linked to human prostate cancer. The epidemiological data linking cadmium and pulmonary cancer are much stronger than for prostatic cancer. Other target sites for cadmium carcinogenesis in humans (liver, kidney, stomach) are considered equivocal. In rodents, cadmium causes tumors at several sites and by various routes. Cadmium inhalation in rats results in pulmonary adenocarcinomas, supporting a role in human lung cancer. Prostate tumors and preneoplastic proliferative lesions can be induced in rats after cadmium ingestion or injection. Prostatic carcinogenesis in rats occurs only at cadmium doses below those that induce chronic degeneration and dysfunction of the testes, a well-known effect of cadmium, confirming the androgen dependency of prostate tumors. Other targets of cadmium in rodents include the testes, adrenals, injection sites, and hematopoietic system. Various treatments can modify cadmium carcinogenesis including supplemental zinc, which prevents cadmium-induced injection site and testicular tumors while facilitating prostatic tumors. Cadmium is poorly mutagenic and probably acts through indirect mechanisms, although the precise mechanisms remain unknown. PMID:10830873

  10. Nanotoxicological evaluation of oxidative responses in rat nephrocytes induced by cadmium

    PubMed Central

    Trabelsi, Hamdi; Azzouz, Inès; Ferchichi, Soumaya; Tebourbi, Olfa; Sakly, Mohsen; Abdelmelek, Hafedh

    2013-01-01

    The aim of this study was to investigate the interaction of cadmium chloride with mineral elements in rat nephrocytes in terms of the biosynthesis of nanocomplexes. The results show that selenium supplementation enhanced cadmium accumulation in kidneys. Analysis of the fluorescence revealed an increase in red fluorescence in the kidneys of rats co-exposed to cadmium and selenium. Interestingly, X-ray diffraction measurements carried out on kidney fractions of co-exposed rats point to the biosynthesis of cadmium selenide and/or sulfide nanoparticles (about 62 nm in size). Oxidative stress assays showed the ability of selenium to reduce lipid peroxidation and to restore glutathione peroxidase and superoxide dismutase activity in kidneys. Hence, cadmium complexation with selenium and sulfur at a nanoscale level could reduce oxidative stress induced by cadmium in kidneys. PMID:24043937