Science.gov

Sample records for caf2 single crystals

  1. Ultra-precision process of CaF2 single crystal

    NASA Astrophysics Data System (ADS)

    Yin, Guoju; Li, Shengyi; Xie, Xuhui; Zhou, Lin

    2014-08-01

    This paper proposes a new chemical mechanical polishing (CMP) process method for CaF2 single crystal to get ultraprecision surface. The CMP processes are improving polishing pad and using alkaline SiO2 polishing slurry with PH=8, PH=11 two phases to polish, respectively, and the roughness can be 0.181nm Rq (10?m10?m). The CMP process can't get high surface figure, so we use ion beam figuring (IBF) technology to obtain high surface figure. However, IBF is difficult to improve the CaF2 surface roughness. We optimize IBF process to improve surface figure and keep good surface roughness too. Different IBF incident ion energy from 400ev to 800ev does not affect on the surface roughness obviously but the depth of material removal is reverse. CaF2 single crystal can get high precision surface figure (RMS=2.251nm) and still keep ultra-smooth surface (Rq=0.207nm) by IBF when removal depth is less than 200nm. The researches above provide important information for CaF2 single crystal to realize ultra-precision manufacture.

  2. SPECIAL ISSUE DEVOTED TO THE 25th ANNIVERSARY OF THE A.M. PROKHOROV GENERAL PHYSICS INSTITUTE: Efficient lasing in diode-pumped Yb3+:CaF2-SrF2 solid-solution single crystals

    NASA Astrophysics Data System (ADS)

    Basiev, T. T.; Vasil'ev, S. V.; Doroshenko, M. E.; Konyushkin, V. A.; Kuznetsov, S. V.; Osiko, V. V.; Fedorov, P. P.

    2007-10-01

    Single crystals of solid solutions of a high optical quality are grown in the concentration vicinity of the saddle point of the ternary CaF2-SrF2-YbF3 system. Efficient lasing with a small Stokes shift (at 1025 nm) was obtained in 980-nm diode-pumped single crystals. The total lasing efficiency (with respect to the absorbed average pump power) was 59% and the slope efficiency was 83%.

  3. Infrared thermooptic coefficient measurement of polycrystalline ZnSe, ZnS, CdTe, CaF(2), and BaF(2), single crystal KCI, and TI-20 glass.

    PubMed

    Harris, R J; Johnston, G T; Kepple, G A; Krok, P C; Mukai, H

    1977-02-01

    An interferometric technique has been used to determine the thermooptic coefficient (dn/dT) of polycrystalline ZnSe and ZnS at 0.6328 microm, 1.15 microm, 3.39 microm, and 10.6 microm; polycrystalline CdTe and TI-20 glass at 1.15 microm, 3.39 microm, and 10.6 microm; polycrystalline CaF(2) and BaF(2) at 0.6328 microm, 1.15 microm, and 3.39 microm, and pure and europium-doped single crystal KCl at 0.6328 microm, 1.15microm, 3.39 microm, and 10.6 microm. The values were obtained over the temperature range of 25-65 degrees C and were calculated using the observed change in optical path of the samples as they were heated. Some difficulties in thermometry were encountered in the standard configuration of sample and thermocouple probe, so measurements were made in an oil bath at the shortest wavelength at which the sample was transparent to provide temperature correction factors for each sample. An empirical dispersion relation for dn/dT has also been found for the semiconductor materials. This dispersion relation is of the form dn/dT = aR(b), where R is defined as lambda(2)/(lambda(2) - lambda(g)(2)), lambda(g) is the short wavelength cutoff associated with the energy gap, and a and b are constants which are different for each material. PMID:20168506

  4. Onset of laser ablation in CaF2 crystal under excimer laser irradiation

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Yoshizo; Narazaki, Aiko; Sato, Tadatake; Niino, Hiroyuki; Yabe, Akira

    2002-06-01

    With the widespread application of excimer lasers for micro- processing, optically transparent materials in the UV region have become more important as optical components. The transparent materials currently available commercially are silica glass and fluoride crystals, CaF2 and MgF2. The resistance of these materials against cumulative irradiation of excimer lasers is required from the viewpoint of application, and it is important to clarify the mechanisms of the optical damage on these materials. In this paper, we report the onset of laser ablation, that is, the initiation of optical breakdown and plume formation, in CaF2 crystal under cumulative irradiation of an ArF excimer laser. When the laser fluence is below the ablation threshold, a blue luminescence due to self-trapped exciton is observed from the whole laser-irradiated region. When the fluence ins increased near the threshold, successive irradiation finally cause a bright, localized luminescence due to the initiation of laser ablation. SEM images of the laser-damaged region show two features: (1) a small bump with pits of the order of 0.1 micrometers formed by UV laser absorption and following local heating, (2) small cracks with triangular fragments caused by mechanisms stress under local heating.

  5. Formation of dissipative structures at hologram recording in CaF2 crystals with color centers

    NASA Astrophysics Data System (ADS)

    Shcheulin, Aleksandr S.; Angervaks, Aleksandr E.; Veniaminov, Andrey V.; Fedorov, Pavel P.; Kuznetsov, Sergey V.; Ryskin, Aleksandr I.

    2015-05-01

    The structurization of holographic planes in holograms recorded in CaF2 crystal with color centers was found. The structurization is apparent in the formation of spiral bundles, which pierce the holographic planes. It testifies to self-organization of color centers in these planes. This process is believed to be linked with colloidal centers, 2D metal islets in the crystal lattice, whose formation and decay during hologram recording at temperatures of 150-190 C may be considered as a dynamic phase transition that facilitates the generation of stable spatially inhomogeneous (dissipative) structures in the form of bundles. The bundles arise during hologram recording process and remain frozen on cooling of the crystal after the process is finished.

  6. Photothermal Conversion of Color Centers in {CaF}2 Crystals: A Process Underlying the Use of Crystals as a Holographic Medium

    NASA Astrophysics Data System (ADS)

    Shcheulin, A. S.; Angervaks, A. E.; Ryskin, A. I.

    2015-09-01

    Photothermal effects in a holographic medium of calcium fluoride crystals with color centers ({CaF}2) are discussed. It is shown that photochromism of this crystal makes it possible to record volume holograms within its volume and to change their physical properties by photothermal treatments. The diffusion-drift mechanism of a hologram recording in {CaF}2 includes the conversion of centers and their redistribution over the crystal bulk. Depending on the readout wavelength, it is possible to read out amplitude, amplitude phase, or phase holograms. The opportunity to record thick holograms in {CaF}2 and their high resistance with respect to non-coherent illumination at an elevated temperature allows forming narrow-band angular and spectral holographic filters in {CaF}2.

  7. Nonlinear Luminescence Response of CaF2:Eu and YAlO3:Ce to Single-Ion Excitation

    SciTech Connect

    Liu, Peng; Zhang, Yanwen; Xiao, Haiyan Y.; Xiang, Xia; Wang, Xuelin; Weber, William J.

    2014-01-21

    Understanding scintillation physics and nonproportionality is essential to accelerate materials discovery that has been restricted due to the difficulties inherent to large crystal growth and complex nature of gamma-solid interaction. Taking advantage of less restrictive growth and deposition techniques for smaller crystal sizes or thin films and better fundamental understanding of ion-solid interactions, a unique ion approach is demonstrated to effectively screen candidate scintillators with relatively small size and evaluate their nonlinear scintillation response. Response of CaF2:Eu and YAlO3:Ce scintillators to single ions of H, He, and O3 are measured by the corresponding pulse height over a continuous energy range using a time-of-flightscintillatorphotoelectric multiplier tube apparatus. Nonlinear response of the scintillators under ionizing ion irradiation is quantitatively evaluated by considering the energy partitioning process. In a differential energy deposition region with negligible displacement damage, the low, medium and high excitation energy deposition density (Dexci) can be produced by energetic H, He and O3 ions, respectively, and significantly different impacts on the response characteristics of these two benchmark scintillators are observed. For CaF2:Eu, the scintillation efficiency under ion irradiation monotonically decreases with increasing excitation-energy density. In contrast, the response efficiency of YAlO3:Ce scintillation initially increases with excitation-energy density at low excitation-energy densities, goes through a maximum, and then decreases with further increasing excitation-energy density. The fundamental mechanism causing these different response behaviours in the scintillators is based on the competition between the scintillation response and the nonradiative quenching process under different excitation densities, which is also the main origin of the nonlinear response of the scintillators to irradiation.

  8. Laser-induced front side etching of CaF2 crystals with KrF excimer laser

    NASA Astrophysics Data System (ADS)

    Lorenz, Pierre; Ehrhardt, Martin; Zimmer, Klaus

    2013-01-01

    The laser-induced front side etching (LIFE) of amorphous materials like fused silica was manifold studied and the LIFE process was sufficient optimized for the fabrication of well-defined etching trenches with a very low surface roughness. The LIFE process is an indirect laser-induced ablation process, the - for the used laser wavelength - transparent substrate was covered by a highly absorbing material and the absorbing process causes a transfer of the laser energy into the substrate and, finally, to an ablation process of the substrate surface. However, the structuring of crystalline materials like CaF2 is a great challenge for the LIFE process. The properties of CaF2(1 1 1) and CaF2(0 0 1) surfaces etched by KrF excimer laser pulses (pulse duration ?tp = 25 ns, wavelength ? = 248 nm) were analysed by white light interferometry (WLI) as well as scanning electron microscopy (SEM). The surface morphologies of laser etched CaF2 surfaces depend on the laser parameters and on the crystal orientation and are frequently characterized by microcracks and flake spallation. The most probable reasons therefore are laser-induced thermal stress or laser-induced shock waves.

  9. Kinetics of Isothermal Melt Crystallization in CaO-SiO2-CaF2-Based Mold Fluxes

    NASA Astrophysics Data System (ADS)

    Seo, Myung-Duk; Shi, Cheng-Bin; Baek, Ji-Yeon; Cho, Jung-Wook; Kim, Seon-Hyo

    2015-10-01

    A kinetic study for isothermal melt crystallization of CaO-SiO2-CaF2-based mold fluxes with different basicity of 0.94 and 1.34 has been carried out systematically by DSC measurements. The kinetic parameters were determined by Johnson-Mehl-Avrami equation. The average Avrami exponent of cuspidine (3CaO2SiO2CaF2) crystallization for mold flux of lower basicity (0.94) is calculated to be 3.1, implying that the crystallization mode is instantaneous nucleation followed by 3-dimensional growth. For the mold flux of higher basicity (1.34), the average Avrami exponent of cuspidine equals to 3.4, strongly suggesting that the growth is still 3 dimensional but the nucleation should be continuous. It was found that the effective crystallization rate constant for both mold fluxes increases as the crystallization temperature decreases, showing that the crystallization rate could be governed by nucleation rate. The negative effective activation energy indicates an anti-Arrhenius behavior for crystallization of the mold fluxes studied. Therefore, it is concluded that the melt crystallization for the commercial mold fluxes will be determined by thermodynamics of nucleation which is relevant to degree of undercooling. The morphology of cuspidine crystals observed by SEM agreeds well with the isothermal crystallization kinetics results.

  10. Influence of some impurities on the emission properties of CaF2:YbF3 crystals

    NASA Astrophysics Data System (ADS)

    Stef, Marius; Nicoara, Irina; Cirlan, Florina; Para, Irina; Velazquez, Matias; Buse, Gabriel

    2015-12-01

    Various concentrations of YbF3 -doped and NaF or PbF2 co-doped CaF2 crystals were grown using the conventional Bridgman method. Transparent colorless crystals were obtained in graphite crucible in vacuum using a shaped graphite furnace. The crystals have been cooled to room temperature using an established procedure. Room temperature absorption spectra have been obtained using a Shimadzu 1650PC spectrophotometer. Photoluminescent properties in IR spectral range were analyzed using a spectrofluorimeter Horiba Fluorolog 3. An IR laser diode at 932 nm was also used an directly injected in the equipment. The emission spectra are influenced by the concentration of co-dopant added to the melt, and the excitation wavelength. The high emission peak at 979 nm overlaps with the absorption peak. The highest intensity in the IR emission (around 1029 nm) is obtained for CaF2:0.72 mol% YbF3 crystal by excitation at 932 nm (diode lamp).

  11. Spectroscopic properties of Yb-doped CaF2-YF3 solid-solution laser crystal

    NASA Astrophysics Data System (ADS)

    Wu, Yeqing; Su, Liangbi; Wang, Qingguo; Li, Hongjun; Zhan, Yaoyu; Jang, Dapeng; Qian, Xiaobo; Wang, Chuanyong; Zheng, Lihe; Chen, Hongbing; Xu, Jun; Ryba-Romanowski, Witold; Solarz, Piotr; Lisiecki, Radoslaw

    2013-10-01

    The spectroscopic properties of Yb:CaF2-YF3 disordered crystals obtained by the vertical Bridgman method were studied. The 3 at.% Yb, 3 at.% Y:CaF2 crystal absorption cross section ?abs centered at 974 nm reached 7.2 10-21 cm2 and the fluorescence lifetime was 3.54 ms at room temperature. Experimental results show that co-doping Y3+ ions at different Y:Yb ratios can modulate the spectroscopy and lengthen the luminescence lifetime of Yb3+ ions in the CaF2 lattice. There are three main kinds of lattice in the 3 at.% Yb, 3 at.% Y:CaF2 crystal, as concluded from the low-temperature spectra.

  12. Self-organization of color centers in holograms recorded in additively colored CaF2 crystals

    NASA Astrophysics Data System (ADS)

    Shcheulin, Aleksandr S.; Angervaks, Aleksandr E.; Veniaminov, Andrey V.; Zakharov, Viktor V.; Fedorov, Pavel P.; Ryskin, Aleksandr I.

    2015-09-01

    The structurization of holographic planes in holograms recorded in CaF2 crystal with color centers was found. It is apparent in the formation of spiral bundles, which pierce the holographic planes. It testifies to the self-organization process of color centers in these planes. This process is supposed to be linked with colloidal centers, 2D metal islets in the crystal lattice, whose formation and decay on hologram recording at temperatures of 150-190 °C may be considered as a dynamic phase transition that facilitates the generation of stable spatially inhomogeneous (dissipative) structures in the form of bundles. They arise on hologram recording and are frozen on cooling of the crystal after the recording process is finished.

  13. Spatially selective Er/Yb-doped CaF2 crystal formation by CO2 laser exposure

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Seon; Lee, Jin-Ho; Lim, Ki-Soo

    2015-04-01

    We report the glass-ceramic precipitation on the oxyfluoride glass surface by spatially selective annealing with a CO2 laser and a heat gun exposure. X-ray diffraction analysis showed the formation of major CaF2 and miner Ca2SiO4 nanoparticles. We observed ?100 nm nanoparticle aggregation by tunneling electron microscopy and element distribution in glass and crystal phases. Spatial distribution of glass ceramics near the glass surface was probed by confocal fluorescence microscope by using much enhanced emission from the Er ions in the laser-treated area. Strong emissions at 365 nm excitation and visible up-conversion emissions at 980 nm excitation also indicated well incorporation of Er and Yb ions into a crystalline environment.

  14. Nonlinear luminescence response of CaF2:Eu and YAlO3:Ce to single-ion excitation

    SciTech Connect

    Liu, Peng; Zhang, Yanwen; Xiao, Haiyan; Xiang, Xia; Wang, Xuelin; Weber, William J

    2014-01-01

    Pulse-height of CaF2:Eu and YAlO3:Ce scintillators to single H+, He+ and O3+ ions are measured over a continuous energy range using a time-of-flight (TOF) - scintillator - photoelectric multiplier tube (PMT) apparatus. A nonlinear response of the scintillators under ionizing ion irradiation is quantitatively evaluated by considering energy partitioning process. The results show that, in a differential energy deposition region with negligible displacement damage, the low, medium and high excitation energy deposition density (Dexci) produced by H+, He+ and O3+ ions irradiation, respectively, have significantly different impacts on the response characteristics of these two benchmark scintillators. For CaF2:Eu, the scintillation efficiency under ion irradiation monotonically decreases with increasing excitation-energy density. In contrast, the response efficiency of YAlO3:Ce scintillation initially increases with excitation-energy density at low excitation-energy densities, goes through a maximum, and then decreases with further increasing excitation-energy density. The fundamental mechanism causing these different response behaviours in the scintillators is based on the competition between the scintillation response and the nonradiative quenching process under different excitation densities, which is also the main origin of the nonlinear response of scintillators to irradiation.

  15. Laser performance of diode-pumped Nd, Y-codoped CaF 2-SrF 2 mixed crystal

    NASA Astrophysics Data System (ADS)

    Liu, J.; Fan, M. W.; Su, L. B.; Jiang, D. P.; Ma, F. K.; Zhang, Q.; Xu, J.

    2014-03-01

    A disordered Nd, Y-codoped CaF2-SrF2 mixed crystal was obtained by the temperature gradient technique (TGT). The absorption and fluorescence spectra of the crystal were measured at room temperature. Diode-pumped continuous-wave (CW) and Q-switched laser operations were demonstrated at 1056 nm with a 0.65 at.% Nd, 10 at.% Y-codoped crystal, for the first time to our knowledge. The CW output power of 724 mW was obtained in a compact linear cavity. Also the Q-switched pulse characteristics of Nd, Y:CaF2-SrF2 laser crystal were reported based on Cr4+:YAG saturable absorbers in a folded cavity. The shortest pulse width of 110 ns and the highest peak power of 383 W were obtained when the initial transmission of the Cr4+:YAG crystals was 90%. The dependence of the operational parameters on the pump power was also investigated experimentally.

  16. X-ray crystal truncation rod scattering from MBE grown (CaF 2-SrF 2)/Si(111) superlattices

    NASA Astrophysics Data System (ADS)

    Harada, J.; Itoh, Y.; Shimura, T.; Takahashi, I.; Alvarez, J. C.; Sokolov, N. S.

    1994-01-01

    Flouride CaF 2-SrF 2 superlattices (SLs) grown by molecular beam epitaxy have been studied by means of X-ray diffractometry for the first time. The diffraction patterns showed reasonably good crystalline quality of the SLs and a type-B epitaxial relation to the Si(111) substrate. From the analysis of the crystal truncation rod (CTR) profiles, based on the pseudomorphic model, it was obtained that despite the same high temperature (770C) of formation of the CaF 2/Si(111) interface its structure depended on the growth temperature of the SLs. The shape of the CTR profiles confirmed the existence of the superlattice which consists of one or two monolayer thick SrF 2 layers. Some CaF 2/SrF 2-interface roughness was noticeable.

  17. Erase-mode recording characteristics of photochromic CaF2, SrTiO3, and CaTiO3 crystals.

    NASA Technical Reports Server (NTRS)

    Duncan, R. C., Jr.

    1972-01-01

    Erase-mode optical recording characteristics of photochromic crystal wafers of CaF2:La,Na; CaF2:Ce,Na; SrTiO3:Ni,Mo,Al; and CaTiO3:Ni,Mo have been measured. An argon laser operating at 5145 A was used for both optical recording and optical readout. Sensitometric curves of optical-density change versus logarithm of exposure are shown for a number of erase-beam intensities between 0.2 mW/sq cm and 2 W/sq cm. In this range, time-intensity reciprocity holds for the CaF2 materials but fails for the titanates, particularly at low intensities. The dependences of sensitivity, gamma, and maximum transmission contrast ratio on wafer thickness and material are discussed. Wafers of SrTiO3, CaTiO3, and CaF2 exhibiting approximately equal maximum contrast ratios have relative sensitivities approximately in the ratio 5:2:1, respectively, at an erase intensity of 1 W/sq cm.

  18. Ca-induced structural transformation of the single-domain Si(001) surface: CaF2/Si(001)-4 off

    NASA Astrophysics Data System (ADS)

    Kim, Hidong; Dugerjav, Otgonbayar; Arvisbaatar, Amarmunkh; Motlak, Moaaed; Seo, Jae M.

    2014-05-01

    By scanning tunneling microscopy and synchrotron photoemission spectroscopy, it has been found that through CaF2 exposure to the single-domain Si(001)-4 off surface held at 750 C, Si dimers on Si(001) terraces are replaced preferentially by dissociated Ca atoms while F atoms are desorbed. The resulting 2 3 reconstruction saturates the (001) terraces at a coverage between 0.1 and 0.3 monolayers. Additional CaF2 exposure triggers a structural transformation to a stable hill-and-valley structure composed of wider (001)-2 3 terraces and compensating facets comprised of (11 17) and (11 13) units, both with a 6 1 surface reconstruction. This study demonstrates that the periodic width of the single domain Si(001) surface can be modulated through adsorbing Ca atoms while maintaining one-dimensional symmetry along the DB steps and the semiconducting nature of the surface.

  19. Spin-Hamiltonian parameters for the tetragonal GdM3+-Fi- centers in CaF2 and SrF2 crystals

    NASA Astrophysics Data System (ADS)

    Yang, Wei-Qing; Zhang, Ying; Lin, Yuan; Zheng, Wen-Chen

    2013-02-01

    The spin-Hamiltonian parameters (g factors g//, g⊥ and zero-field splittings b20, b40, b44, b60, b64) of the tetragonal GdM3+-Fi- centers in CaF2 and SrF2 crystals at T ≈ 1.8 K are calculated from the diagonalization (of energy matrix) method based on the one-electron crystal field mechanism. In the calculations, the crystal field parameters used are estimated from the superposition model with the reported defect structural data obtained from the analyses of superhyperfire interaction constants at the same temperature. The calculated results are in reasonable agreement with the experimental values. It appears that the above defect structural data reported in the previous paper are suitable and the diagonalization (of energy matrix) method is effective to the studies of spin-Hamiltonian parameters for 4f7 ions in crystals.

  20. Effect of SiO2 on the Crystallization Behaviors and In-Mold Performance of CaF2-CaO-Al2O3 Slags for Drawing-Ingot-Type Electroslag Remelting

    NASA Astrophysics Data System (ADS)

    Shi, Cheng-Bin; Li, Jing; Cho, Jung-Wook; Jiang, Fang; Jung, In-Ho

    2015-10-01

    The crystallization characteristics of CaF2-CaO-Al2O3 slags with varying amounts of SiO2 were experimentally studied. The effects of slag crystallization behaviors on the horizontal heat transfer and lubrication performance in drawing-ingot-type electroslag remelting (ESR) were also evaluated in terms of as-cast ingots surface quality and drawing-ingot operation. The results show that increasing SiO2 addition from 0 to 6.8 mass pct strongly suppresses the crystallization of ESR type CaF2-CaO-Al2O3 slags. The crystallization temperature of the studied slags decreases with the increase in SiO2 addition. The liquidus temperatures of the slags also show a decreasing trend with increasing SiO2 content. In CaF2-CaO-Al2O3-(SiO2) slags, faceted 11CaO7Al2O3CaF2 crystals precipitate first during continuous cooling of the slag melts, followed by the formation of CaF2 at lower temperatures. 11CaO7Al2O3CaF2 was confirmed to be the dominant crystalline phase in the studied slags. CaF2-CaO-Al2O3 slags with a small amount of SiO2 addition are favorable for providing sound lubrication and horizontal heat transfer in mold for drawing-ingot-type ESR, which consequently bring the improvement in the surface quality of ESR ingot and drawing-ingot operating practice as demonstrated by plant trials.

  1. Leaky mode suppression in planar optical waveguides written in Er:TeO2-WO3 glass and CaF2 crystal via double energy implantation with MeV N+ ions

    NASA Astrophysics Data System (ADS)

    Bnysz, I.; Zolnai, Z.; Fried, M.; Berneschi, S.; Pelli, S.; Nunzi-Conti, G.

    2014-05-01

    Ion implantation proved to be an universal technique for producing waveguides in most optical materials. Tellurite glasses are good hosts of rare-earth elements for the development of fibre and integrated optical amplifiers and lasers covering all the main telecommunication bands. Er3+-doped tellurite glasses are good candidates for the fabrication of broadband amplifiers in wavelength division multiplexing around 1.55 ?m, as they exhibit large stimulated cross sections and broad emission bandwidth. Calcium fluoride is an excellent optical material, due to its perfect optical characteristics from UV wavelengths up to near IR. It has become a promising laser host material (doped with rare earth elements). Ion implantation was also applied to optical waveguide fabrication in CaF2 and other halide crystals. In the present work first single-energy implantations at 3.5 MeV at various fluences were applied. Waveguide operation up to 1.5 ?m was observed in Er:Te glass, and up to 980 nm in CaF2. Then double-energy implantations at a fixed upper energy of 3.5 MeV and lower energies between 2.5 and 3.2 MeV were performed to suppress leaky modes by increasing barrier width.

  2. Metal-to-metal charge transfer between dopant and host ions: Photoconductivity of Yb-doped CaF2 and SrF2 crystals

    NASA Astrophysics Data System (ADS)

    Barandiarán, Zoila; Seijo, Luis

    2015-10-01

    Dopant-to-host electron transfer is calculated using ab initio wavefunction-based embedded cluster methods for Yb/Ca pairs in CaF2 and Yb/Sr pairs in SrF2 crystals to investigate the mechanism of photoconductivity. The results show that, in these crystals, dopant-to-host electron transfer is a two-photon process mediated by the 4fN-15d excited states of Y b2+: these are reached by the first photon excitation; then, they absorb the second photon, which provokes the Y b2+ + Ca2+ (Sr2+) → Y b3+ + Ca+ (Sr+) electron phototransfer. This mechanism applies to all the observed Y b2+ 4f-5d absorption bands with the exception of the first one: Electron transfer cannot occur at the first band wavelengths in CaF2:Y b2+ because the Y b3+-Ca+ states are not reached by the two-photon absorption. In contrast, Yb-to-host electron transfer is possible in SrF2:Y b2+ at the wavelengths of the first 4f-5d absorption band, but the mechanism is different from that described above: first, the two-photon excitation process occurs within the Y b2+ active center, then, non-radiative Yb-to-Sr electron transfer can occur. All of these features allow to interpret consistently available photoconductivity experiments in these materials, including the modulation of the photoconductivity by the absorption spectrum, the differences in photoconductivity thresholds observed in both hosts, and the peculiar photosensitivity observed in the SrF2 host, associated with the lowest 4f-5d band.

  3. Metal-to-metal charge transfer between dopant and host ions: Photoconductivity of Yb-doped CaF2 and SrF2 crystals.

    PubMed

    Barandiarán, Zoila; Seijo, Luis

    2015-10-14

    Dopant-to-host electron transfer is calculated using ab initio wavefunction-based embedded cluster methods for Yb/Ca pairs in CaF2 and Yb/Sr pairs in SrF2 crystals to investigate the mechanism of photoconductivity. The results show that, in these crystals, dopant-to-host electron transfer is a two-photon process mediated by the 4f(N-1)5d excited states of Y b(2+): these are reached by the first photon excitation; then, they absorb the second photon, which provokes the Y b(2+) + Ca(2+) (Sr(2+)) → Y b(3+) + Ca(+) (Sr(+)) electron phototransfer. This mechanism applies to all the observed Y b(2+) 4f-5d absorption bands with the exception of the first one: Electron transfer cannot occur at the first band wavelengths in CaF2:Y b(2+) because the Y b(3+)-Ca(+) states are not reached by the two-photon absorption. In contrast, Yb-to-host electron transfer is possible in SrF2:Y b(2+) at the wavelengths of the first 4f-5d absorption band, but the mechanism is different from that described above: first, the two-photon excitation process occurs within the Y b(2+) active center, then, non-radiative Yb-to-Sr electron transfer can occur. All of these features allow to interpret consistently available photoconductivity experiments in these materials, including the modulation of the photoconductivity by the absorption spectrum, the differences in photoconductivity thresholds observed in both hosts, and the peculiar photosensitivity observed in the SrF2 host, associated with the lowest 4f-5d band. PMID:26472390

  4. SPECIAL ISSUE DEVOTED TO THE 90TH ANNIVERSARY OF A.M. PROKHOROV: Continuously tunable cw lasing near 2.75 ?m in diode-pumped Er3+ : SrF2 and Er3+ : CaF2 crystals

    NASA Astrophysics Data System (ADS)

    Basiev, Tasoltan T.; Orlovskii, Yu V.; Polyachenkova, M. V.; Fedorov, Pavel P.; Kuznetsov, S. V.; Konyushkin, V. A.; Osiko, Vyacheslav V.; Alimov, Olimkhon K.; Dergachev, Alexey Yu

    2006-07-01

    CW lasing is obtained in Er3+(5%) : CaF2 and Er3+(5%) : SrF2 crystals near 2.75 ?m with 0.4 and 2 W of output powers, respectively, upon transverse diode laser pumping into the upper 4I11/2 laser level of erbium ions at 980 nm. Continuous tuning of the laser wavelength between 2720 and 2760 nm is realised in the Er3+ : SrF2 crystal.

  5. Ionic, electronic and ion-diffusion controlled relaxation processes in CaF2, BaF2 and LiBaF3 crystals

    NASA Astrophysics Data System (ADS)

    Ziraps, V.; Kulis, P.; Tale, I.; Veispals, A.

    The ionic, electronic and anion-diffusion controlled thermally stimulated relaxation (TSR) processes at 80-700 K in CaF2 BaF2 and LiBaF3 crystals (X-ray irradiated or non-irradiated) have been investigated by means of ionic conductivity, ionic thermally stimulated (TS) depolarization current (TSDC); as well as current (TSC), luminescence (TSL) and bleaching (TSB) techniques. Above 250-290 K broad and overlapping anion TSDC peaks and correlated TSB stages are detected. The TSB kinetics is initiated and controlled by anion detrapping and interaction with the localized charges, i.e., the anion-diffusion controlled TSR processes take place in fluorides. The TSL and TSC data for LiBaF3 indicate that the lifetime and drift of electrons at 80-250 K is very small because of deep retrapping. The main TSL peaks at 132K, 170K and 220 K are caused by Vk center detrapping and hole-diffusion controlled tunnel recombination within pairs like .

  6. Growth of YbF 3-doped CaF 2 crystals and characterization of Yb 3+/Yb 2+ conversion

    NASA Astrophysics Data System (ADS)

    Nicoara, Irina; Stef, Marius; Pruna, Andreea

    2008-04-01

    Calcium fluoride crystals doped with YbF 3 and PbF 2-, NaF- and LiF-codoped were grown using the vertical Bridgman method. Transparent, high quality, with various high Yb 2+ contents in the as-grown crystals has been obtained using a special procedure. The optical absorption spectra reveal the characteristic ultraviolet (UV) absorption bands of the divalent Yb ions. Influence of the codoping with Pb 2+, Li + and Na + ions on the absorption spectra and on the Yb 2+ ions content has been studied. High-intensity emission bands in the near-UV spectral region, not reported before, have been observed for excitation by 230 nm. A comparison of our results with those obtained by other authors is also given.

  7. Application of a volume holographic grating in a CaF2 crystal for measuring linear displacements with nanoscale accuracy

    NASA Astrophysics Data System (ADS)

    Shcheulin, A. S.; Angervaks, A. E.; Kupchikov, A. K.; Verkhovskii, E. B.; Ryskin, A. I.

    2014-12-01

    A holographic method for measuring linear displacements based on the use of a highly stable volume scale hologram recorded in an additively colored calcium fluoride crystal with photochromic color centers is proposed and experimentally approved. The essence of this method lies in measuring and analyzing harmonic signals formed during linear displacement of crystal with a volume hologram in an external interference field. A physical model of the formation of harmonic signals in photodetectors when measuring displacements is considered, and a mathematical method for calculating linear displacements by plotting a Lissajous figure is substantiated. A laboratory breadboard of a device for measuring linear displacements in a range of 10 mm, limited by the aperture of crystal with a recorded 8.7-mm-thick hologram, is designed. When using a scale hologram with a period of 2.18 μm and a 632.8-nm He-Ne laser for reading this hologram, the error in measuring displacements by this method is 9 nm at a resolution of 3 nm.

  8. Hardness of CaF2 and BaF2 solid lubricants at 25 to 670 deg C

    NASA Technical Reports Server (NTRS)

    Deadmore, Daniel L.; Sliney, Harold E.

    1987-01-01

    Plastic deformation is a prominent factor in determining the lubricating value of solid lubricants. Little information is available and its direct measurement is difficult so hardness, which is an indirect measure of this property was determined for fluoride solid lubricant compositions. The Vickers hardness of BaF2 and CaF2 single crystals was measured up to 670 C in a vacuum. The orientation of the BaF2 was near the (013) plane and the CaF2 was about 16 degrees from the degrees from the (1'11) plane. The BaF2 has a hardness of 83 kg/sq mm at the 25 C and 9 at the 600 C. The CaF2 is 170 at 25 C and 13 at 670 C. The decrease in hardness in the temperature range of 25 to 100 C is very rapid and amounts to 40% for both materials. Melts of BaF2 and CaF2 were made in a platinum crucible in ambient air with compositions of 50 to 100 wt% BaF2. The Vickers hardness of these polycrystalline binary compositions at 25 C increased with increasing CaF2 reaching a maximum of 150 kn/sq mm near the eutectic. The polycrystalline CaF2 was 14% softer than that of the single crystal surface and BsF2 was 30% harder than the single crystal surface. It is estimated that the brittle to ductile transition temperature for CaF2 and BaF2 is less than 100 C for the conditions present in the hardness tester.

  9. Biaxially-Textured Photovoltaic Film Crystal Silicon on Ion Beam Assisted Deposition CaF2 Seed Layers on Glass

    SciTech Connect

    Groves, J. R.; Li, J. B.; Clemens, B. M.; LaSalvia, V.; Hasoon, F.; Branz, H. M.; Teplin, C. W.

    2012-05-01

    We grow biaxially textured heteroepitaxial crystal silicon (c-Si) films on display glass as a low-cost photovoltaic material. We first fabricate textured CaF{sub 2} seed layers using ion-beam assisted deposition, then coat the CaF{sub 2} with a thin, evaporated epitaxial Ge buffer and finally deposit heteroepitaxial silicon on the Ge. The silicon is grown by hot-wire chemical vapor deposition, a high-rate, scalable epitaxy technology. Electron and X-ray diffraction confirm the biaxial texture of the CaF{sub 2} and epitaxial growth of the subsequent layers. Transmission electron microscopy reveals columnar silicon grains about 500 nm across. We fabricate a proof-of-concept epitaxial film c-Si solar cell with an open circuit voltage of 375 mV that is limited by minority carrier lifetime.

  10. Capillary and van der Waals interactions on CaF2 crystals from amplitude modulation AFM force reconstruction profiles under ambient conditions

    PubMed Central

    Cal, Annalisa; Robles, Oriol Vidal; Santos, Sergio

    2015-01-01

    Summary There has been much interest in the past two decades to produce experimental force profiles characteristic of the interaction between nanoscale objects or a nanoscale object and a plane. Arguably, the advent of the atomic force microscope AFM was instrumental in driving such efforts because, in principle, force profiles could be recovered directly. Nevertheless, it has taken years before techniques have developed enough as to recover the attractive part of the force with relatively low noise and without missing information on critical ranges, particularly under ambient conditions where capillary interactions are believed to dominate. Thus a systematic study of the different profiles that may arise in such situations is still lacking. Here we employ the surfaces of CaF2, on which nanoscale water films form, to report on the range and force profiles that might originate by dynamic capillary interactions occurring between an AFM tip and nanoscale water patches. Three types of force profiles were observed under ambient conditions. One in which the force decay resembles the well-known inverse-square law typical of van der Waals interactions during the first 0.51 nm of decay, a second one in which the force decays almost linearly, in relatively good agreement with capillary force predicted by the constant chemical potential approximation, and a third one in which the attractive force is almost constant, i.e., forms a plateau, up to 34 nm above the surface when the formation of a capillary neck dominates the tipsample interaction. PMID:25977852

  11. Structure and Crystallization Kinetics of Glassy CaO-Al2O3-SiO2-CaF2-Na2O Mold Fluxes with Varying Basicity

    NASA Astrophysics Data System (ADS)

    Li, Jiangling; Yan, Baijun; Shu, Qifeng; Chou, Kuochih

    2015-12-01

    The structure and the crystallization kinetics of CaO-Al2O3-SiO2-CaF2-Na2O mold fluxes with varying basicities were investigated by solid-state 29Si nuclear magnetic resonance with magic angular spinning (MAS-NMR) and differential thermal analysis (DTA) technique, respectively. 29Si MAS-NMR study indicated that the increase of basicity decreased the degree of polymerization of mold fluxes. With the increasing basicity, Q 0, Q 2, and Q 3 gradually decreased, while Q 1 gradually increased, and the overall degree of polymerization was reduced. Crystallization analysis showed the cuspidine first crystallized from glass, and wollastonite crystal crystallized at elevated temperature for the samples with basicity (defined as CaO/SiO2 mass ratio) values of 0.9 and 1.0, respectively. Only cuspidine was found to crystallize from glass for the samples with basicity values of 1.1 and 1.2, indicating that the crystallization of wollastonite was suppressed with the increase of basicity. Crystallization kinetics analysis by DTA and field emission scanning electron microscopy equipped with energy dispersive spectroscopy investigation showed that growth mechanism of cuspidine is mainly of the diffusion-controlled three-dimensional growth with the increasing number of nuclei during heating. Activation energies for growth of cuspidine decreased with the increasing basicity of mold flux, which indicated that the crystallization ability was enhanced with the increase of basicity. The relationship between structure and crystallization of mold fluxes was established.

  12. Defect-induced wetting on BaF 2(111) and CaF 2(111) at ambient conditions

    NASA Astrophysics Data System (ADS)

    Cardellach, M.; Verdaguer, A.; Fraxedas, J.

    2011-12-01

    The interaction of water with freshly cleaved (111) surfaces of isostructural BaF2 and CaF2 single crystals at ambient conditions (room temperature and under controlled humidity) has been studied using scanning force microscopy in different operation modes and optical microscopy. Such surfaces exhibit contrasting behaviors for both materials: while on BaF2(111) two-dimensional water layers are formed after accumulation at step edges, CaF2(111) does not promote the formation of such layers. We attribute such opposed behavior to lattice match (mismatch) between hexagonal water ice and the hexagonal (111) surfaces of BaF2(CaF2). Optical microscope images reveal that this behavior also determines the way the surfaces become wetted at a macroscopic level.

  13. Effect of ZrO(2) additions on the crystallization, mechanical and biological properties of MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) bioactive glass-ceramics.

    PubMed

    Li, H C; Wang, D G; Meng, X G; Chen, C Z

    2014-06-01

    A series of ZrO(2) doped MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) bioactive glass-ceramics were obtained by sintering method. The crystallization behavior, phase composition, morphology and structure of glass-ceramics were characterized. The bending strength, elastic modulus, fracture toughness, micro-hardness and thermal expansion coefficient (TEC) of glass-ceramics were investigated. The in vitro bioactivity and cytotoxicity tests were used to evaluate the bioactivity and biocompatibility of glass-ceramics. The sedimentation mechanism and growth process of apatites on sample surface were discussed. The results showed that the mainly crystalline phases of glass-ceramics were Ca(5)(PO4)3F (fluorapatite) and β-CaSiO(3). (β-wollastonite). m-ZrO(2) (monoclinic zirconia) declined the crystallization temperatures of glasses. t-ZrO(2) (tetragonal zirconia) increased the crystallization temperature of Ca(5)(PO4)(3)F and declined the crystallization temperature of β-CaSiO(3). t-ZrO(2) greatly increased the fracture toughness, bending strength and micro-hardness of glass-ceramics. The nanometer apatites were induced on the surface of glass-ceramic after soaking 28 days in SBF (simulated body fluid), indicating the glass-ceramic has good bioactivity. The in vitro cytotoxicity test demonstrated the glass-ceramic has no toxicity to cell. PMID:24780435

  14. Improvement of superconductivity in Fe1+yTe0.6Se0.4 induced by annealing with CaF2 and SmF3

    NASA Astrophysics Data System (ADS)

    Li, Xiong; Sun, Yue; Zhang, Yufeng; Zhou, Wei; Yuan, Feifei; Shi, Zhixiang

    2015-10-01

    We report detailed studies of the CaF2 and SmF3 annealing effects in Fe1+yTe0.6Se0.4 single crystals. Superconductivity in Fe1+yTe0.6Se0.4 single crystals was improved after annealing, which strongly suggested the effectiveness of the CaF2 and SmF3 annealing. In detail, no matter which annealing material was employed, the largest values of superconducting transition temperature and critical current density reached about 14 K and 1.0 105 A/cm2 (5 K, in self-field), respectively. Furthermore, compared with the pervious annealing materials, CaF2 and SmF3 are safe and easy-handing.

  15. Enhanced susceptibility of CaF 2(1 1 1) to adsorption due to ion irradiation

    NASA Astrophysics Data System (ADS)

    Akcltekin, S.; Roll, T.; Akcltekin, E.; Klusmann, M.; Lebius, H.; Schleberger, M.

    2009-02-01

    We have investigated morphological changes of freshly cleaved CaF2(1 1 1) single crystal surfaces before and after ion irradiation. We show that with or without irradiation the surface undergoes serious changes within minutes after the cleavage if the samples are exposed to ambient conditions. This is most likely due to the adsorption of water and could be avoided only if working under clean ultra-high-vacuum conditions. Ion-induced modifications on this surface seem to act as centers for an increased rate of adsorption so that any quantitative numbers obtained by atomic force microscopy in such experiments have to be treated with caution.

  16. Modification of luminescence spectra of CaF2:Eu2+.

    PubMed

    Singh, Vartika S; Joshi, C P; Moharil, S V; Muthal, P L; Dhopte, S M

    2015-11-01

    CaF2:Eu(2+) is a well known phosphor having efficient excitation in the near ultraviolet (NUV) range. Phosphors with NUV excitation are required in newly emerging applications such as photoluminescence liquid crystal displays (PLLCD), solid-state lighting (SSL), and down-conversion for solar cells. However, emission of CaF2:Eu(2+) is around 424 nm. Eye sensitivity drops considerably at these wavelengths. It is thus not useful for display applications for which emission in one of the primary colours (blue - 450 nm, green - 540 nm or red - 610 nm) is required. Efforts were made to modify the Photoluminescence (PL) spectra of CaF2:Eu(2+) to meet these requirements using co-dopants. A Ca0.49 Sr0.50 Eu0.01 F2 phosphor showing better colour coordinates and having an emission maximum around 440 nm was discovered during these studies. PMID:25736486

  17. Structural and functional characterisation of slab waveguides written in Er3+ - doped tellurite glass, CaF2, Bi4(GeO4)3 and Bi12GeO20 crystals via implantation of MeV N+ ions

    NASA Astrophysics Data System (ADS)

    Bnysz, I.; Berneschi, S.; Khanh, N. Q.; Lohner, T.; Fried, M.; Petrik, P.; Zolnai, Z.; Lengyel, K.; Pter, .; Watterich, A.; Nunzi-Conti, G.; Pelli, S.; Righini, G. C.

    2010-11-01

    Ion implantation proved to be a universal technique for producing waveguides in most optical materials. Tellurite glasses are used as hosts of rare-earth elements for the development of fibre and integrated optic amplifiers and lasers covering all the main telecommunication bands. Er3+- doped tellurite glasses are very attractive materials for the fabrication of broadband amplifiers in wavelength division multiplexing (WDM) around 1.55 ?m, as they exhibit large stimulated cross sections and broad emission bandwidth. First objective of the present research was to optimise parameters of waveguide fabrication in the Er: tellurite glass via implantation of MeV energy N+ ions in a wide range of implanted doses. Besides of glasses, slab optical waveguides were designed and fabricated in CaF2, Bi4Ge3O12 and Bi12GeO20 crystals, also using MeV energy N+ ions. Waveguides were characterised using UV/VIS and NIR absorption spectroscopy, spectroscopic ellipsometry and m-line spectroscopy. Part of the implanted samples was annealed to improve waveguide properties. We report on first working slab waveguides fabricated in CaF2 crystals using implantation of MeV-energy medium-mass ions.

  18. Diode-pumped femtosecond mode-locked Nd, Y-codoped CaF2 laser

    NASA Astrophysics Data System (ADS)

    Zhu, Jiangfeng; Zhang, Lijuan; Gao, Ziye; Wang, Junli; Wang, Zhaohua; Su, Liangbi; Zheng, Lihe; Wang, Jingya; Xu, Jun; Wei, Zhiyi

    2015-03-01

    A passively mode-locked femtosecond laser based on an Nd, Y-codoped CaF2 disordered crystal was demonstrated. The Y3+-codoping in Nd : CaF2 markedly suppressed the quenching effect and improved the fluorescence quantum efficiency and emission spectra. With a fiber-coupled laser diode as the pump source, the continuous wave tuning range covering from 1042 to 1076 nm was realized, while the mode-locked operation generated 264 fs pulses with an average output power of 180 mW at a repetition rate of 85 MHz. The experimental results show that the Nd, Y-codoped CaF2 disordered crystal has potential in a new generation diode-pumped high repetition rate chirped pulse amplifier.

  19. Directionally solidified Eu doped CaF2/Li3AlF6 eutectic scintillator for neutron detection

    NASA Astrophysics Data System (ADS)

    Kamada, Kei; Hishinuma, Kousuke; Kurosawa, Shunsuke; Shoji, Yasuhiro; Pejchal, Jan; Ohashi, Yuji; Yokota, Yuui; Yoshikawa, Akira

    2015-12-01

    Eu doped CaF2/Li3AlF6 eutectics were grown by ?-PD method. The directionally solidified eutectic with well-aligned 600 nm diameter Eu:CaF2 scintillator fibers surrounded with Li3AlF6 was prepared. The grown eutectics showed an emission peak at 422 nm ascribed to Eu2+ 4f-5d transition from Eu:CaF2 scintillation fiber. Li concentration in the Eu:CaF2-Li3AlF6 eutectic is around 0.038 mol/cm3,which is two times higher than that of LiCaAlF6 single crystal (0.016 mol/cm3). The light yield of Eu:CaF2-Li3AlF6 eutectic was around 7000 ph/neutron. The decay time was about 550 ns (89%) and 1450 ns (11%).

  20. Single Crystal Membranes

    NASA Technical Reports Server (NTRS)

    Stormont, R. W.; Morrison, A.

    1974-01-01

    Single crystal a- and c-axis tubes and ribbons of sodium beta-alumina and sodium magnesium beta-alumina were grown from sodium oxide rich melts. Additional experiments grew ribbon crystals containing sodium magnesium beta, beta double prime, beta triple prime, and beta quadruple prime. A high pressure crystal growth chamber, sodium oxide rich melts, and iridium for all surfaces in contact with the melt were combined with the edge-defined, film-fed growth technique to grow the single crystal beta-alumina tubes and ribbons. The crystals were characterized using metallographic and X-ray diffraction techniques, and wet chemical analysis was used to determine the sodium, magnesium, and aluminum content of the grown crystals.

  1. Initial stage of laser ablation of LiCaAlF6 single crystal under F2 laser irradiation

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Y.; Narazaki, A.; Sato, T.; Kurosaki, R.; Niino, H.; Sato, H.; Fukuda, T.

    Initial stage of F2 laser ablation of LiCaAlF6 single crystal was investigated for clarifying the possibility of applying this wide bandgap fluoride crystal to vacuum ultraviolet (VUV) optical components. The ablation threshold, determined by the appearance of line emission from ablated species, was approximately 2 Jcm-2pulse-1, similar to that of VUV grade CaF2 single crystal. The laser-induced damage on the front surface of LiCaAlF6 was faint, though adhesion of aggregated particulates of several microns was observed.

  2. Hyperfine splittings and Zeeman infrared absorption of Tb3+ -doped CaF2 and SrF2

    NASA Astrophysics Data System (ADS)

    Wells, Jon-Paul R.; Jones, Glynn D.

    2009-09-01

    We report on the observation of pseudoquadrupole splittings of sharp infrared-absorption lines of CaF2:Tb3+ . These splittings are large enough to be directly observed because the Tb3+ electronic ground levels consists of two singlets separated by only 0.18cm-1 for the F- C4v center. Both the hyperfine splittings and measured Zeeman splittings for F- C4v centers in CaF2:Tb3+ and SrF2:Tb3+ can be accounted for using wave functions derived from a previously published crystal-field analysis of experimental energy levels.

  3. Understanding single-crystal superalloys

    NASA Technical Reports Server (NTRS)

    Dreshfield, Robert L.

    1986-01-01

    The unique properties of single crystals are considered. The anisotropic properties of single crystals, and the relation between crystal orientation and the fatigue life and slip systems of the crystals are examined. The effect of raft formation on the creep-rupture life of the crystals is studied. Proposed research on the properties of and new applications for single crystals is discussed.

  4. SINGLE CRYSTAL NEUTRON DIFFRACTION.

    SciTech Connect

    KOETZLE,T.F.

    2001-03-13

    Single-crystal neutron diffraction measures the elastic Bragg reflection intensities from crystals of a material, the structure of which is the subject of investigation. A single crystal is placed in a beam of neutrons produced at a nuclear reactor or at a proton accelerator-based spallation source. Single-crystal diffraction measurements are commonly made at thermal neutron beam energies, which correspond to neutron wavelengths in the neighborhood of 1 Angstrom. For high-resolution studies requiring shorter wavelengths (ca. 0.3-0.8 Angstroms), a pulsed spallation source or a high-temperature moderator (a ''hot source'') at a reactor may be used. When complex structures with large unit-cell repeats are under investigation, as is the case in structural biology, a cryogenic-temperature moderator (a ''cold source'') may be employed to obtain longer neutron wavelengths (ca. 4-10 Angstroms). A single-crystal neutron diffraction analysis will determine the crystal structure of the material, typically including its unit cell and space group, the positions of the atomic nuclei and their mean-square displacements, and relevant site occupancies. Because the neutron possesses a magnetic moment, the magnetic structure of the material can be determined as well, from the magnetic contribution to the Bragg intensities. This latter aspect falls beyond the scope of the present unit; for information on magnetic scattering of neutrons see Unit 14.3. Instruments for single-crystal diffraction (single-crystal diffractometers or SCDs) are generally available at the major neutron scattering center facilities. Beam time on many of these instruments is available through a proposal mechanism. A listing of neutron SCD instruments and their corresponding facility contacts is included in an appendix accompanying this unit.

  5. Room temperature fabrication of dielectric Bragg reflectors composed of a CaF2/ZnS multilayered coating.

    PubMed

    Muallem, Merav; Palatnik, Alex; Nessim, Gilbert D; Tischler, Yaakov R

    2015-01-14

    We describe the design, fabrication, and characterization of mechanically stable, reproducible, and highly reflecting distributed Bragg reflectors (DBR) composed of thermally evaporated thin films of calcium fluoride (CaF2) and zinc sulfide (ZnS). CaF2 and ZnS were chosen as the low and high refractive index components of the multilayer DBR structures, with n = 1.43 and n = 2.38 respectively, because neither material requires substrate heating during the deposition process in order to produce optical quality thin films. DBRs consisting of seven pairs of CaF2 and ZnS layers, were fabricated with thicknesses of 96 and 58 nm, respectively, as characterized by high-resolution scanning electron microscopy (HR-SEM), and exhibited a center wavelength of ?c = 550 nm and peak reflectance exceeding 99%. The layers showed good adhesion to each other and to the glass substrate, resulting in mechanically stable DBR coatings. Complete optical microcavities consisting of two such DBR coatings and a CaF2 spacer layer between them could be fabricated in a single deposition run. Optically, these structures exhibited a resonator quality factor of Q > 160. When a CaF2/ZnS DBR was grown, without heating the substrate during deposition, on top of a thin film containing the fluorescent dye Rhodamine 6G, the fluorescence intensity showed no degradation compared to an uncoated film, in contrast to a MgF2/ZnS DBR coating grown with substrate heating which showed a 92% reduction in signal. The ability to fabricate optical quality CaF2/ZnS DBRs without substrate heating, as introduced here, can therefore enable formation of low-loss high-reflectivity coatings on top of more delicate heat-sensitive materials such as organics and other nanostructured emitters, and hence facilitate the development of nanoemitter-based microcavity device applications. PMID:25510469

  6. A solvent extraction route for CaF2 hollow spheres.

    PubMed

    Guo, Fuqiang; Zhang, Zhifeng; Li, Hongfei; Meng, Shulan; Li, Deqian

    2010-11-21

    A solvent extraction route is proposed to synthesize CaF(2) hollow spheres, which are formed by reversed micelles in a solvent extraction system templating the self-assembly of CaF(2) nanoparticles. PMID:20877846

  7. Formation and investigation of ultrathin layers of Co2FeSi ferromagnetic alloy synthesized on silicon covered with a CaF2 barrier layer

    NASA Astrophysics Data System (ADS)

    Grebenyuk, G. S.; Gomoyunova, M. V.; Pronin, I. I.; Vyalikh, D. V.; Molodtsov, S. L.

    2016-03-01

    Ultrathin (∼2 nm) films of Co2FeSi ferromagnetic alloy were formed on silicon by solid-phase epitaxy and studied in situ. Experiments were carried out in an ultrahigh vacuum (UHV) using substrates of Si(1 1 1) single crystals covered with a 5 nm thick CaF2 barrier layer. The elemental and phase composition as well as the magnetic properties of the synthesized films were analyzed by photoelectron spectroscopy using synchrotron radiation and by magnetic linear dichroism in photoemission of Fe 3p and Co 3p electrons. The study shows that the synthesis of the Co2FeSi ferromagnetic alloy occurs in the temperature range of 200-400 °C. At higher temperatures, the films become island-like and lose their ferromagnetic properties, as the CaF2 barrier layer is unable to prevent a mass transfer between the film and the Si substrate, which violates the stoichiometry of the alloy.

  8. Al15Ge4Ni3: A new intergrowth structure with Cu3Au- and CaF2-type building blocks

    NASA Astrophysics Data System (ADS)

    Reichmann, Thomas L.; Jandl, Isabella; Effenberger, Herta S.; Herzig, Peter; Richter, Klaus W.

    2015-05-01

    The new ternary compound Al15Ge4Ni3 (?2 in the system Al-Ge-Ni) was synthesized in single crystalline form by a special annealing procedure from samples located in the three phase fields [L+Al+?2] and [L+Ge+?2]. The crystal structure of Al15Ge4Ni3 was determined by single-crystal X-ray diffraction. The compound crystallizes in a new structure type in space group I43m, Pearson Symbol cI88, cubic lattice parameter a=11.405(1) . Phase diagram investigations indicate stoichiometric composition without considerable homogeneity range; ?2 melts peritectically at T=444 C. The crystal structure of Al15Ge4Ni3 shows a unique combination of simple Cu3Au- and CaF2-type building blocks: a three dimensional network of CaF2-type units, formed by Ni and Al atoms, is interspaced by clusters (Al6Ge8) resembling unit cells of the Cu3Au-type. Both structural motifs are connected by Al-Ge bonds. The ground state energy of the compound was obtained by DFT calculations and the densities of states were analyzed in detail. In addition, electron density maps were calculated in four different sections through the unit cell using the full potential linearized augmented plane-wave (FLAPW) method. The bonding situation in Al15Ge4Ni3 was discussed combining results from electronic calculations with the analysis of the coordination of atoms.

  9. Impurity-trapped excitons and electron traps in CaF2:Yb2+ and SrF2:Yb2+ probed by transient photoluminescence enhancement

    NASA Astrophysics Data System (ADS)

    Senanayake, P. S.; Wells, J. P. R.; Reid, M. F.; Berden, G.; Meijerink, A.; Reeves, R. J.

    2013-01-01

    CaF$_2$:Yb$^{2+}$ and SrF$_2$:Yb$^{2+}$ crystals have been investigated by a two-color UV + IR transient photoluminescence enhancement technique. The enhancement gives information about both changes in internal energy levels of the excitons and liberation of electrons from traps in the crystals.

  10. Paramagnetic hyperfine splitting in the Eu Mssbauer spectra of CaF(2):Eu.

    PubMed

    Selling, J; Bielemeier, B; Wortmann, G; Johnson, J A; Alp, E E; Chen, T; Brown, D E; Johnson, C E; Schweizer, S

    2008-06-30

    (151)Eu Mssbauer spectra in zero magnetic field of highly dilute (0.1 mol%) Eu(2+) ions in CaF(2) showed an almost temperature-independent asymmetrically split pattern, arising from the paramagnetic hyperfine interaction AS. I in a cubic crystal field with slow electron spin relaxation; in a small external magnetic field B of 0.2 T such that g?(B)B>A an almost symmetrical pattern was observed. Both the spectra with and without external field are well described using the spin Hamiltonian and previous electron paramagnetic resonance data. A more concentrated (2 mol% Eu(2+)) sample exhibited a strongly broadened symmetrical resonance line due to an increased Eu-Eu spin relaxation rate; in an external magnetic field of 0.2 T the Mssbauer spectra exhibited further broadening and additional magnetic structures due to the reduced relaxation rate. When a large field of 6 T was applied such that g?(B)B is much larger than the crystal field splitting, a fully resolved hyperfine pattern was observed at 2.5 K, with an effective field at the Eu nuclei of -33.7 T; at higher temperatures superimposed patterns originating from excited electronic states were observed in the spectra. The present results on the highly dilute CaF(2) : 0.1%Eu(2+) sample deliver a straightforward explanation for previous observations of a seemingly large dependence of the Eu(2+) isomer shift on europium concentration. PMID:19816547

  11. CaF2, BaF2 and SrF2 crystals’ optical anisotropy parameters

    NASA Astrophysics Data System (ADS)

    Snetkov, I. L.; Yakovlev, A. I.; Palashov, O. V.

    2015-09-01

    Using the original method, based on measurements of thermally induced depolarization, the optical anisotropy parameters of CaF2, BaF2 and SrF2 cubic crystals were measured and compared with what is known from the literature. Euler angles of crystallographic axis orientation [C], in which the thermally induced depolarization is minimal, were determined using experimental results for studied fluorides.

  12. Insulating epitaxial films of BaF 2, CaF 2 and Ba xCa 1- xF 2 grown by MBE on InP substrates

    NASA Astrophysics Data System (ADS)

    Sullivan, P. W.; Farrow, R. F. C.; Jones, G. R.

    1982-12-01

    Thin films (? 5000 ) of BaF 2, CaF 2, and Ba xCa 1- xF 2 have been grown onto InP (001) substrates in a vacuum locked MBE system. Electron diffraction was used to monitor film nucleation and growth at a variety of substrate temperatures. Subsequent ex-situ analysis included X-ray diffraction, electron microscopy and Auger sputter profiling. In addition, capacitance-voltage and current-voltage analyses were performed on MIS sandwich devices formed by evaporating aluminium onto the semiconductor-flouride samples. Deposition of flourides onto room temperature substrates resulted in the growth of smooth, pinhole free, stoichiometric polycrystalline films with little or no preferred orientation. TEM analysis indicates a grain size of the same order as the film thickness ( 1000 ). Deposition of BaF 2 and CaF 2 onto cleaned, well-ordered (001) InP held at temperatures above 200C resulted in single-crystal, heteroepitaxial growth. In the case of CaF 2, the increase in lattice mismatch on cooling to room temperature resulted in crazing of the epitaxial layer. Film resistivity values around 10 12-10 13? cm and breakdown strengths of 5x10 5V cm -1 have been achieved for both polycrystalline and single-crystal layers. In initial experiments on the growth of Ba xCa 1- xF 2 alloys onto (001) epitaxial films of a single-phase cubic alloy with x 0.2 were obtained.

  13. Development of CaF 2 special refractory components

    NASA Astrophysics Data System (ADS)

    Ghosh, Abhijit; Upadhyaya, D. D.; Prasad, Ram; Suri, A. K.

    2001-12-01

    Among the non-oxide refractories, the fluorides of Ca and Mg are of considerable importance in the processing of reactive metals and alloys in nuclear industry. This work deals with the development of specific CaF 2 shapes for casting of uranium metal ingots. Studies were carried out in optimizing the slip properties to fabricate dense green components which on sintering at 850 C attain a theoretical density of approximately 85%. An important feature of this work is in providing a synergistic approach in waste recycling and, as well, in maintaining the assured high purity of the metal produced.

  14. A Study of the Superfluid Transition in Helium Films Adsorbed to a Rough CaF2 Surface Over a Large Temperature Range

    NASA Astrophysics Data System (ADS)

    Schwarz, Marty; Wadleigh, Laura; Luhman, Dwight

    2013-03-01

    Rough two-dimensional substrates, such as thermally deposited CaF2, have been shown to modify the experimental signatures of the superfluid transition in adsorbed thin helium films. Previous experiments have investigated a series of increasingly rough surfaces over a limited temperature range and found that the features at the superfluid transition become less defined as substrate roughness is increased. In this work we use a single rough CaF2 substrate and study the superfluid transition in adsorbed helium films over a wide range of temperatures. Our results show that as the transition temperature increases the abrupt jump in superfluid density at the transition become less distinct. The changing characteristics of the transition on a single CaF2 substrate with temperature suggest that the reduced observability of the transition on rough substrates cannot be explained entirely by simple surface geometry effects, such as tortuosity.

  15. Relaxation of electronic excitations in CaF2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Vistovskyy, V. V.; Zhyshkovych, A. V.; Mitina, N. E.; Zaichenko, A. S.; Gektin, A. V.; Vasil'ev, A. N.; Voloshinovskii, A. S.

    2012-07-01

    The luminescence properties of CaF2 nanoparticles with various sizes (20-140 nm) are studied upon the excitation by VUV and x-ray quanta in order to reveal the influence of ratio of mean free path and thermalization length of charge carriers and nanoparticle size on the self-trapped exciton luminescence. The luminescence intensity for exciting quantum energies corresponding to optical creation of exciton and to the range of electronic excitation multiplication is not so sensitive to nanoparticle size as for quanta with energy of Eg < h? < 2Eg. The dependences of luminescence intensity on nanoparticle size at the excitation by quanta of various energies are discussed in terms of electron-phonon and electron-electron scattering lengths and energy losses on surface defects.

  16. CO2 laser irradiation enhances CaF2 formation and inhibits lesion progression on demineralized dental enamel-in vitro study.

    PubMed

    Zancopé, Bruna R; Rodrigues, Lívia P; Parisotto, Thais M; Steiner-Oliveira, Carolina; Rodrigues, Lidiany K A; Nobre-Dos-Santos, Marinês

    2016-04-01

    This study evaluated if Carbon dioxide (CO2) (λ 10.6 μm) laser irradiation combined with acidulated phosphate fluoride gel application (APF gel) enhances "CaF2" uptake by demineralized enamel specimens (DES) and inhibits enamel lesion progression. Thus, two studies were conducted and DES were subjected to APF gel combined or not with CO2 laser irradiation (11.3 or 20.0 J/cm(2), 0.4 or 0.7 W) performed before, during, or after APF gel application. In study 1, 165 DES were allocated to 11 groups. Fluoride as "CaF2 like material" formed on enamel was determined in 100 DES (n = 10/group), and the surface morphologies of 50 specimens were evaluated by scanning electron microscopy (SEM) before and after "CaF2" extraction. In study 2, 165 DES (11 groups, n = 15), subjected to the same treatments as in study 1, were further subjected to a pH-cycling model to simulate a high cariogenic challenge. The progression of demineralization in DES was evaluated by cross-sectional microhardness and polarized light microscopy analyses. Laser at 11.3 J/cm(2) applied during APF gel application increased "CaF2" uptake on enamel surface. Laser irradiation and APF gel alone arrested the lesion progression compared with the control (p < 0.05). Areas of melting, fusion, and cracks were observed. CO2 laser irradiation, combined with a single APF application enhanced "CaF2" uptake on enamel surface and a synergistic effect was found. However, regarding the inhibition of caries lesion progression, no synergistic effect could be demonstrated. In conclusion, the results have shown that irradiation with specific laser parameters significantly enhanced CaF2 uptake by demineralized enamel and inhibited lesion progression. PMID:26873502

  17. Laser damage and ablation of differently prepared CaF2(111) surfaces

    NASA Astrophysics Data System (ADS)

    Sils, J.; Reichling, M.; Matthias, E.; Johansen, H.

    1999-12-01

    Ablation thresholds and damage behavior of cleaved and polished CaF2(111) surfaces produced by single shot irradiation with 248 nm/14 ns laser pulses have been investigated using the photoacoustic mirage technique and scanning electron microscopy. The standard polishing yields an ablation threshold of typically 20 J/cm2. When surfaces are polished chemo-mechanically the threshold is raised to 43 J/cm2. Polishing by diamond turning leads to intermediate values around 30 J/cm2. Cleaved surfaces possess no well-defined damage threshold. The damage topography of conventionally polished surfaces shows ablation of flakes across the laser heated area with cracks along the cleavage planes. In the case of chemo-mechanical polishing only a few cracks appear. Diamond turned surfaces show small optical absorption, but cracks and ablation of tiles. The origin of such different damage behavior is discussed.

  18. Luminescence emission of natural fluorite and synthetic CaF2:Mn (TLD-400)

    NASA Astrophysics Data System (ADS)

    Topaksu, Mustafa; Correcher, Virgilio; Garcia-Guinea, Javier

    2016-02-01

    The luminescence properties of natural white fluorite indicate that it could be employed as radiation dosimeter similarly to synthetic CaF2:Mn (TLD-400). The cathodoluminescence emission of the natural sample (two maxima) meanwhile TLD-400 (one peak) exhibits a different behaviour associated with the chemical composition. The mineral sample displays (i) a significant UV-blue emission associated with different structural defects (negligible in the synthetic sample) and (ii) a shift of the green emission to higher wavelengths respect to the TLD-400. The green induced TL emission also shows significant differences in intensity (higher in TLD-400) and sensitivity. Both samples display a complex induced green TL glow curve that could not be analysed assuming the model based on the discrete trap distribution. The Tm-Tstop method indicates the presence of close overlapping groups of components linked probably to a continuum in the trap distribution rather than a single trapping level.

  19. Resistance of LiCaAlF6 Single Crystals against F2 Laser Irradiation

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Yoshizo; Narazaki, Aiko; Niino, Hiroyuki; Sato, Hiroki; Fukuda, Tsuguo; Shimamura, Kiyoshi

    2003-08-01

    The resistance of LiCaAlF6 single crystals against F2 laser irradiation was studied to examine the possible use of LiCaAlF6 as optical components for F2 laser lithography. After the initial increase by F2 laser cleaning, transmittance of LiCaAlF6 at 157 nm remains relatively unchanged even after irradiation with an F2 laser beam up to 105 pulses at a fluence of approximately 160 mJ\\cdotcm-2\\cdotpulse-1, indicating good tolerance against the cumulative irradiation. We also discuss the mechanism of the initial increase in transmittance with the results of X-ray photoelectron spectroscopy (XPS). The threshold fluence for the onset of optical damage of LiCaAlF6 is approximately 2 J\\cdotcm-2\\cdotpulse-1, similar to that of vacuum ultraviolet (VUV) grade CaF2.

  20. High-efficiency broadly tunable Cr:ZnSe single crystal laser pumped by Tm:YLF laser

    NASA Astrophysics Data System (ADS)

    Dai, Y. F.; Li, Y. Y.; Zou, X.; Dong, Y. J.; Leng, Y. X.

    2013-10-01

    A high-efficiency broadly tunable Cr:ZnSe single crystal laser longitudinally pumped by a continuous-wave (CW) Tm:YLF laser at 1918 nm is demonstrated. To our best knowledge, a laser based on a Cr:ZnSe single crystal grown by the temperature gradient technique (TGT) method is investigated here for the first time. Under an incident pump power of 3.5 W, a maximum 383 mW CW output power was obtained at 2391 nm, corresponding to a slope efficiency of 10.6%. Furthermore, the working wavelength can be continuously tuned from 2179 to 2720 nm by means of an intracavity Brewster-cut CaF2 prism.

  1. Development of single crystal membranes

    NASA Technical Reports Server (NTRS)

    Stormont, R. W.; Cocks, F. H.

    1972-01-01

    The design and construction of a high pressure crystal growth chamber was accomplished which would allow the growth of crystals under inert gas pressures of 2 MN/sq m (300 psi). A novel crystal growth technique called EFG was used to grow tubes and rods of the hollandite compounds, BaMgTi7O16, K2MgTi7O16, and tubes of sodium beta-alumina, sodium magnesium-alumina, and potassium beta-alumina. Rods and tubes grown are characterized using metallographic and X-ray diffraction techniques. The hollandite compounds are found to be two or three-phase, composed of coarse grained orientated crystallites. Single crystal c-axis tubes of sodium beta-alumina were grown from melts containing excess sodium oxide. Additional experiments demonstrated that crystals of magnesia doped beta-alumina and potassium beta-alumina also can be achieved by this EFG technique.

  2. Paramagnetic hyperfine splitting in the E151u Mssbauer spectra of CaF2:Eu2+

    NASA Astrophysics Data System (ADS)

    Selling, J.; Bielemeier, B.; Wortmann, G.; Johnson, J. A.; Alp, E. E.; Chen, T.; Brown, D. E.; Johnson, C. E.; Schweizer, S.

    2008-06-01

    E151u Mssbauer spectra in zero magnetic field of highly dilute (0.1 mol%) Eu2+ ions in CaF2 showed an almost temperature-independent asymmetrically split pattern, arising from the paramagnetic hyperfine interaction AS.I in a cubic crystal field with slow electron spin relaxation; in a small external magnetic field B of 0.2 T such that g?BB>A an almost symmetrical pattern was observed. Both the spectra with and without external field are well described using the spin Hamiltonian and previous electron paramagnetic resonance data. A more concentrated (2 mol% Eu2+ ) sample exhibited a strongly broadened symmetrical resonance line due to an increased Eu-Eu spin relaxation rate; in an external magnetic field of 0.2 T the Mssbauer spectra exhibited further broadening and additional magnetic structures due to the reduced relaxation rate. When a large field of 6 T was applied such that g?BB is much larger than the crystal field splitting, a fully resolved hyperfine pattern was observed at 2.5 K, with an effective field at the Eu nuclei of -33.7T ; at higher temperatures superimposed patterns originating from excited electronic states were observed in the spectra. The present results on the highly dilute CaF2:0.1%Eu2+ sample deliver a straightforward explanation for previous observations of a seemingly large dependence of the Eu2+ isomer shift on europium concentration.

  3. Growth of a smooth CaF2 layer on NdFeAsO thin film

    NASA Astrophysics Data System (ADS)

    Sumiya, N.; Kawaguchi, T.; Chihara, M.; Tabuchi, M.; Ujihara, T.; Ichinose, A.; Tsukada, I.; Ikuta, H.

    2014-05-01

    We studied the method to grow a smooth and flat CaF2 layer on NdFeAsO thin films since CaF2 is a promising candidate material for the barrier layer of a superconducting junction. When the CaF2 layer was grown at 800°C, the surface was very rough because {111} facets had grown preferentially. However, when CaF2 was grown at lower temperatures and post-annealed in situ at 800°C for 30 min the facets were eliminated and a CaF2 layer with a smooth surface was obtained. Fluorine diffusing from CaF2 into NdFeAsO was observed when CaF2 was grown at high temperatures, but the diffusion was suppressed by lowering the growth temperature to 400°C.

  4. Thermal conductivity of single crystals with a fluorite structure: Cadmium fluoride

    NASA Astrophysics Data System (ADS)

    Popov, P. A.; Fedorov, P. P.; Osiko, V. V.

    2010-03-01

    The thermal conductivity of Ca, Sr, Ba, and Cd difluoride single crystals and the CdF2 samples doped by 3 mol % NdF3, 15 mol % HoF3, and 10 mol % ErF3 has been studied using the method of steady longitudinal heat flow in the temperature range 50-300 K. The thermal conductivity of the matrices of these compounds decreases in the order CaF2-SrF2-BaF2-CdF2. The temperature dependences of the phonon mean free path for these crystals have been calculated from experimental data and exhibit different behaviors. It has been assumed that the intense phonon scattering observed in the undoped CdF2 sample is caused by the specific features of the processes of phonon-phonon scattering. The formation of heterovalent solid solutions of cadmium difluoride and rare-earth trifluorides is accompanied by a drastic decrease in the thermal conductivity and a change in its character from that typical of dielectric single crystals to that typical of glassy materials.

  5. Characterization of electron-beam induced damage structures in natural fluorite, CaF2, by analytical electron microscopy

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Freund, Friedemann; Allard, L. F.; Echer, C. J.

    1988-01-01

    This paper describes the damage structure induced in natural CaF2 by the electron beam when using TEM. The observed 10-20 nm periodic features with coherent fringe patterns and the pronounced loss of fluorine found after the TEM exposure of 100-line-oriented and 111-oriented sections of CaF2 provides support for the mechanism of damage by decomposition of CaF2 into 2F and Ca, with the Ca precipitates maintaining a close topotaxial relationship with the parent CaF2.

  6. Microwave-assisted solvothermal synthesis and upconversion luminescence of CaF2:Yb3+/Er3+ nanocrystals.

    PubMed

    Zhao, Jing; Zhu, Ying-Jie; Wu, Jin; Chen, Feng

    2015-02-15

    Water-dispersible CaF2 and Yb(3+)/Er(3+) codoped CaF2 (CaF2:Yb(3+)/Er(3+)) nanocrystals with different sizes and different Yb(3+) and Er(3+) dopant concentrations were synthesized using ionic liquid 1-n-butyl-3-methyl imidazolium tetrafluoroborate as a fluorine source by the rapid microwave-assisted solvothermal method. It was found that the morphology, size and crystallinity of CaF2:Yb(3+)/Er(3+) nanocrystals could be adjusted by using adenosine 5'-triphosphate disodium salt (ATP). Yb(3+) and Er(3+) ions were doped into CaF2 nanocrystals to enable upconversion luminescence emission, and the as-prepared CaF2:Yb(3+)/Er(3+) samples exhibited upconversion luminescence upon excitation at 980 nm. Confocal laser scanning microscopy images showed that the CaF2:Yb(3+)/Er(3+) nanocrystals could be used for efficient labeling of human gastric carcinoma cells. Moreover, in vitro cytotoxicity experiments indicated that the as-prepared CaF2:Yb(3+)/Er(3+) nanocrystals had essentially little cytotoxicity. These results indicate that the as-prepared CaF2:Yb(3+)/Er(3+) nanocrystals are promising for the application as a luminescent label material in biological imaging. PMID:25460687

  7. Thermoluminescent dosimetric properties of CaF2:Tm produced by combustion synthesis

    NASA Astrophysics Data System (ADS)

    de Vasconcelos, D. A. A.; Barros, V. S. M.; Khoury, H. J.; Asfora, V. K.; Oliveira, R. A. P.

    2016-04-01

    Calcium Fluoride is one of the oldest known thermoluminescent materials and is considered to be one of the most sensitive. This work presents the dosimetric properties results of CaF2:Tm produced by combustion synthesis. The X-ray diffraction confirmed that CaF2 was successfully produced. TL emission spectra, obtained using a Hammamatsu optical spectrometer, have the same lines of commercial CaF2:Tm, although transitions 3P0→3F4 (455 nm) and 1G4→3H6 (482 nm) are shown to be proportionally more intense. The deconvolution technique was employed and seven glow peaks were found similar to the commercial CaF2:Tm. A linear dose response curve was obtained for the range 0.1 mGy to 100 Gy, with the onset of a supralinear behavior at 50 Gy up to 100 Gy. The minimum measurable dose for gamma was around 100 μGy for a 6.0 mm diameter by 1.0 mm in thickness pellet. No significant fading was observed in 60 days of storage, within experimental uncertainties, showing that the main dosimetric peak is stable.

  8. Synthesis and characterization of CaF2:Dy nanophosphor for dosimetric application

    NASA Astrophysics Data System (ADS)

    Bhadane, Mahesh S.; Patil, B. J.; Dahiwale, S. S.; Kulkarni, M. S.; Bhatt, B. C.; Bhoraskar, V. N.; Dhole, S. D.

    2015-06-01

    In this work, nanoparticles (NPs) of dysprosium doped calcium fluoride (CaF2:Dy) 1 mol % has been prepared using simple chemical co-precipitation method and its thermoluminescence (TL) dosimetric properties were studied. The synthesized nanoparticle sample was characterized by X-ray diffraction (XRD) and the particle size of face centered cubic phase NPs was found around 30 nm. The shape, morphology and size were also observed by scanning electron microscopy (SEM). From gamma irradiated CaF2:Dy TL curves, it was observed that the total areas of all the glow peak intensities are dramatically changed with increase in annealing temperature. Further, TL glow curve of the CaF2:Dy at 183 C annealed at 400 C, showed very sharp linear response in the dose range from 1 Gy to 750 Gy. This linear response of CaF2:Dy nanophosphor as a function of gamma dose is very useful from radiation dosimetric point of view.

  9. Single crystals for welding research

    SciTech Connect

    David, S.A.; Boatner, L.A.

    1991-01-01

    Most welds last for many years, but a few fail after a relatively short time. Knowing the reasons why welds fail is important because cracks in welds can threaten the safety of people in buildings, airplanes, ships, automobiles, and power plants. Bad welds can lead to costly, extended shutdowns of industrial facilities such as petroleum refineries. Thus, research on this very important fabrication technology is critical to the multibillion-dollar welding industry. Research at ORNL and elsewhere strives to determine the structural features that make some welds strong and others weak. The goals are to find cost-effective ways to characterize the structure and strength of a new weld, correctly predict whether it will last a long time, and determine the welding conditions most likely to produce high-quality welds. There is more to welding than meets the eye. The cracks that make welds fail result from the complexities of microstructures formed during welding. Thus weld microstructure is linked to weld properties such as mechanical strength. As the hot weld material cools from a liquid into a solid, the crystalline grains grow at different speeds and in different directions, forming a new microstructure. By using single crystals rather than polycrystalline alloys to study different weld microstructures, scientists at ORNL have developed a way to predict more accurately the microstructures of various welds. The results could guide welders in providing the right conditions (correct welding speed, heat input, and weld thickness) for producing safer, higher-quality, and longer-lasting welds.

  10. Ames Lab 101: Single Crystal Growth

    SciTech Connect

    Schlagel, Deborah

    2013-09-27

    Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples are vital to researchers' understanding of the characteristics of a materials and what gives these materials their particular properties.

  11. Ames Lab 101: Single Crystal Growth

    ScienceCinema

    Schlagel, Deborah

    2014-06-04

    Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples are vital to researchers' understanding of the characteristics of a materials and what gives these materials their particular properties.

  12. Ultratough single crystal boron-doped diamond

    DOEpatents

    Hemley, Russell J [Carnegie Inst. for Science, Washington, DC ; Mao, Ho-Kwang [Carnegie Inst. for Science, Washington, DC ; Yan, Chih-Shiue [Carnegie Inst. for Science, Washington, DC ; Liang, Qi [Carnegie Inst. for Science, Washington, DC

    2015-05-05

    The invention relates to a single crystal boron doped CVD diamond that has a toughness of at least about 22 MPa m.sup.1/2. The invention further relates to a method of manufacturing single crystal boron doped CVD diamond. The growth rate of the diamond can be from about 20-100 .mu.m/h.

  13. Method of making single crystal fibers

    NASA Technical Reports Server (NTRS)

    Westfall, Leonard J. (inventor)

    1990-01-01

    Single crystal fibers are made from miniature extruded ceramic feed rods. A decomposable binder is mixed with powders to inform a slurry which is extruded into a small rod which may be sintered, either in air or in vacuum, or it may be used in the extruded and dried condition. A pair of laser beams focuses onto the tip of the rod to melt it thereby forming a liquid portion. A single crystal seed fiber of the same material as the feed rod contacts this liquid portion to establish a zone of liquid material between the feed rod and the single crystal seed fiber. The feed rod and the single crystal feed fiber are moved at a predetermined speed to solidify the molten zone onto the seed fiber while simultaneously melting additional feed rod. In this manner a single crystal fiber is formed from the liquid portion.

  14. Effect of high-energy electron irradiation in an electron microscope column on fluorides of alkaline earth elements (CaF2, SrF2, and BaF2)

    NASA Astrophysics Data System (ADS)

    Nikolaichik, V. I.; Sobolev, B. P.; Zaporozhets, M. A.; Avilov, A. S.

    2012-03-01

    The effect of high-energy (150 eV) electron irradiation in an electron microscope column on crystals of fluorides of alkaline earth elements CaF2, SrF2, and BaF2 is studied. During structural investigations by electron diffraction and electron microscopy, the electron irradiation causes chemical changes in MF2 crystals such as the desorption of fluorine and the accumulation of oxygen in the irradiated area with the formation of oxide MO. The fluorine desorption rate increases significantly when the electron-beam density exceeds the threshold value of ˜2 × 103 pA/cm2). In BaF2 samples, the transformation of BaO into Ba(OH)2 was observed when irradiation stopped. The renewal of irradiation is accompanied by the inverse transformation of Ba(OH)2 into BaO. In the initial stage of irradiation of all MF2 compounds, the oxide phase is in the single-crystal state with a lattice highly matched with the MF2 matrix. When the irradiation dose is increased, the oxide phase passes to the polycrystalline phase. Gaseous products of MF2 destruction (in the form of bubbles several nanometers in diameter) form a rectangular array with a period of ˜20 nm in the sample.

  15. Direct comparison of Yb3+:CaF2 and heavily doped Yb3+:YLF as laser media at room temperature.

    PubMed

    Pirri, Angela; Alderighi, Daniele; Toci, Guido; Vannini, Matteo; Nikl, Martin; Sato, Hiroki

    2009-09-28

    We report an extensive comparison of the laser performances of diode-pumped Yb(3+):YLF (30% at.) and Yb(3+):CaF(2) (5% at.) crystals, lasing at room-temperature and operating in two different operation mode, i.e. Continuous Wave (CW) and quasi-CW. An in-depth investigation of the crystals behavior by changing the pump power, clearly shows the crystal absorption depends on the lasing conditions. Therefore, we report an unambiguous definition of the slope efficiency calculated taken into account the real measured crystal absorption under laser action. Finally, we present a study of problems related to thermally induced losses which are expected influencing the laser performance. PMID:19907622

  16. Sintering of CaF 2 pellets as nuclear fuel analog for surface stability experiments

    NASA Astrophysics Data System (ADS)

    Godinho, Jos R. A.; Piazolo, Sandra; Stennett, Martin C.; Hyatt, Neil C.

    2011-12-01

    To enable a detailed study of the influence of microstructure and surface properties on the stability of spent nuclear fuel, it is necessary to produce analogs that closely resemble nuclear fuel in terms of crystallography and microstructure. One such analog can be obtained by sintering CaF 2 powder. This paper reports the microstructures obtained after sintering CaF 2 powders at temperatures up to 1240 C. Pellets with microstructure, density and pore structure similar to that of UO 2 spent nuclear fuel pellets were obtained in the temperature range between 900 C and 1000 C. When CaF 2 was sintered above 1100 C the formation of CaO at the grain boundaries caused the disintegration of the pellet due to hydration occurring after sintering. First results from a novel set-up of dissolution experiments show that changes in roughness, dissolution rate and etch pit shape of fluorite surfaces are strongly dependent on the crystallographic orientation of the expose surface. Consequently, the differences observed for each orientation will affect the overall dissolution rate and will lead to uncertainties in the estimation of dissolution rates of spent nuclear fuel.

  17. Cryogenic Temperature-Dependent Refractive Index Measurements of CaF2 and Infrasil 301

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas B.; Madison, TImothy J.

    2007-01-01

    In order to enable high quality lens design using calcium fluoride (CaF2) and Heraeus Infrasil 30 (Infrasil) at cryogenic temperatures, we have measured the absolute refractive index of prisms of these two materials using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, as a function of both wavelength and temperature. For CaF2, we report absolute refractive index and thermo-optic coefficient (dn/dT) at temperatures ranging from 25 to 300 K at wavelengths from 0.4 to 5.6 micrometers; for Infrasil we cover temperatures ranging from 35 to 300K and wavelengths from 0.4 to 3.6 micrometers. We investigate the interspecimen variability between measurements of two unrelated samples of CaF2, and we also compare our results for Infrasil to previous measurements fo Corning 7980 fused silica. Finally, we provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures and compare those results to other data found in the literature.

  18. Single Crystal Sapphire Optical Fiber Sensor Instrumentation

    SciTech Connect

    Anbo Wang; Russell May; Gary R. Pickrell

    2000-10-28

    The goal of this 30 month program is to develop reliable accurate temperature sensors based on single crystal sapphire materials that can withstand the temperatures and corrosive agents present within the gasifier environment. The research for this reporting period has been segregated into two parallel paths--corrosion resistance measurements for single crystal sapphire fibers and investigation of single crystal sapphire sensor configurations. The ultimate goal of this phase one segment is to design, develop and demonstrate on a laboratory scale a suitable temperature measurement device that can be field tested in phase two of the program.

  19. Defects in the reduced rutile single crystal

    NASA Astrophysics Data System (ADS)

    Lu, Tie-Cheng; Wu, Shao-Yi; Lin, Li-Bin; Zheng, Wen-Chen

    2001-09-01

    In this paper, the UV-VIS optical absorption spectra of oxidized and reduced rutile single crystals are measured by means of spectrophotometer and two absorption peaks around 430 and 730 nm are found. These spectral data are analyzed by using the crystal field theory. Based on these studies, we suggest that the reduced crystal contain the defect center [Ti 3+-O v], with the oxygen vacancy (O v) on one of the nearest neighbor sites of the central Ti 3+ ion.

  20. High-performance metal-semiconductor-metal InGaN photodetectors using CaF2 as the insulator

    NASA Astrophysics Data System (ADS)

    Sang, Liwen; Liao, Meiyong; Koide, Yasuo; Sumiya, Masatomo

    2011-03-01

    The authors report on the high-performance metal-semiconductor-metal (MSM) photodetectors (PDs) fabricated on high-quality InGaN film by introducing a superwide bandgap calcium fluoride (CaF2) as the insulator. The dark current of the PDs with CaF2 is drastically reduced by six orders of magnitude compared with those without CaF2, resulting in an extremely high discrimination ratio larger than 106 between ultraviolet and visible light. The responsivity at 338 nm is as high as 10.4 A/W biased at 2 V, corresponding to a photocurrent gain around 40. The CaF2 layer behaves as an excellent insulator for the InGaN-based MSM-PDs in dark condition, while it allows the electron injection through the metal/semiconductor interface under ultraviolet illumination, contributing to the photocurrent gain without sacrificing the response time (˜ms).

  1. Ultrathin single crystal diamond nanomechanical dome resonators.

    PubMed

    Zalalutdinov, Maxim K; Ray, Matthew P; Photiadis, Douglas M; Robinson, Jeremy T; Baldwin, Jeffrey W; Butler, James E; Feygelson, Tatyana I; Pate, Bradford B; Houston, Brian H

    2011-10-12

    We present the first nanomechanical resonators microfabricated in single-crystal diamond. Shell-type resonators only 70 nm thick, the thinnest single crystal diamond structures produced to date, demonstrate a high-quality factor (Q ? 1000 at room temperature, Q ? 20?000 at 10 K) at radio frequencies (50-600 MHz). Quality factor dependence on temperature and frequency suggests an extrinsic origin to the dominant dissipation mechanism and methods to further enhance resonator performance. PMID:21913676

  2. Fabrication of IR-transparent microfluidic devices by anisotropic etching of channels in CaF2.

    PubMed

    Lehmkuhl, Brynson; Noblitt, Scott D; Krummel, Amber T; Henry, Charles S

    2015-11-21

    A simple fabrication method for generating infrared (IR) transparent microfluidic devices using etched CaF2 is demonstrated. To etch microfluidic channels, a poly(dimethylsiloxane) (PDMS) microfluidic device was reversibly sealed on a CaF2 plate and acid was pumped through the channel network to perform anisotropic etching of the underlying CaF2 surface. To complete the CaF2 microfluidic device, another CaF2 plate was sealed over the etched channel using a 700 nm thick layer of PDMS adhesive. The impact of different acids and their concentrations on etching was studied, with HNO3 giving the best results in terms of channel roughness and etch rates. Etch rate was determined at etching times ranging from 4-48 hours and showed a linear correlation with etching time. The IR transparency of the CaF2 device was established using a Fourier Transform IR microscope and showed that the device could be used in the mid-IR region. Finally, utility of the device was demonstrated by following the reaction of N-methylacetamide and D2O, which results in an amide peak shift to 1625 cm(-1) from 1650 cm(-1), using an FTIR microscope. PMID:26450455

  3. Single Crystals Grown Under Unconstrained Conditions

    NASA Astrophysics Data System (ADS)

    Sunagawa, Ichiro

    Based on detailed investigations on morphology (evolution and variation in external forms), surface microtopography of crystal faces (spirals and etch figures), internal morphology (growth sectors, growth banding and associated impurity partitioning) and perfection (dislocations and other lattice defects) in single crystals, we can deduce how and by what mechanism the crystal grew and experienced fluctuation in growth parameters through its growth and post-growth history under unconstrained condition. The information is useful not only in finding appropriate way to growing highly perfect and homogeneous single crystals, but also in deciphering letters sent from the depth of the Earth and the Space. It is also useful in discriminating synthetic from natural gemstones. In this chapter, available methods to obtain molecular information are briefly summarized, and actual examples to demonstrate the importance of this type of investigations are selected from both natural minerals (diamond, quartz, hematite, corundum, beryl, phlogopite) and synthetic crystals (SiC, diamond, corundum, beryl).

  4. Fatigue hardening in niobium single crystals.

    NASA Technical Reports Server (NTRS)

    Doner, M.; Diprimio, J. C.; Salkovitz, E. I.

    1973-01-01

    Nb single crystals of various orientations were cyclically deformed in tension-compression under strain control. At low strain amplitudes all crystals oriented for single slip and some oriented for multiple slip showed a two stage hardening. When present, the first stage was characterized with almost no cyclic work hardening. The rate of hardening in the second stage increased with strain amplitude and the amount of secondary slip. In crystals oriented for single slip kink bands developed on their side faces during rapid hardening stage which resulted in considerable amount of asterism in Laue spots. A cyclic stress-strain curve independent of prior history was found to exist which was also independent of crystal orientation. Furthermore, this curve differed only slightly from that of polycrystalline Nb obtained from data in literature.

  5. Chiral photonic crystal fibers with single mode and single polarization

    NASA Astrophysics Data System (ADS)

    Li, She; Li, Junqing

    2015-12-01

    Chiral photonic crystal fiber (PCF) with a solid core is numerically investigated by a modified chiral plane-wave expansion method. The effects of structural parameters and chirality strength are analyzed on single-polarization single-mode range and polarization states of guided modes. The simulation demonstrates that the chiral photonic crystal fiber compared to its achiral counterpart possesses another single-circular-polarization operation range, which is located in the short-wavelength region. The original single-polarization operation range in the long-wavelength region extends to the short wavelength caused by introducing chirality. Then this range becomes a broadened one with elliptical polarization from linear polarization. With increase of chirality, the two single-polarization single-mode ranges may fuse together. By optimizing the structure, an ultra-wide single-circular-polarization operation range from 0.5 ?m to 1.67 ?m for chiral PCF can be realized with moderate chirality strength.

  6. Energy deposition by heavy ions: additivity of kinetic and potential energy contributions in hillock formation on CaF2.

    PubMed

    Wang, Y Y; Grygiel, C; Dufour, C; Sun, J R; Wang, Z G; Zhao, Y T; Xiao, G Q; Cheng, R; Zhou, X M; Ren, J R; Liu, S D; Lei, Y; Sun, Y B; Ritter, R; Gruber, E; Cassimi, A; Monnet, I; Bouffard, S; Aumayr, F; Toulemonde, M

    2014-01-01

    Modification of surface and bulk properties of solids by irradiation with ion beams is a widely used technique with many applications in material science. In this study, we show that nano-hillocks on CaF2 crystal surfaces can be formed by individual impact of medium energy (3 and 5 MeV) highly charged ions (Xe(22+) to Xe(30+)) as well as swift (kinetic energies between 12 and 58 MeV) heavy xenon ions. For very slow highly charged ions the appearance of hillocks is known to be linked to a threshold in potential energy (Ep) while for swift heavy ions a minimum electronic energy loss per unit length (Se) is necessary. With our results we bridge the gap between these two extreme cases and demonstrate, that with increasing energy deposition via Se the Ep-threshold for hillock production can be lowered substantially. Surprisingly, both mechanisms of energy deposition in the target surface seem to contribute in an additive way, which can be visualized in a phase diagram. We show that the inelastic thermal spike model, originally developed to describe such material modifications for swift heavy ions, can be extended to the case where both kinetic and potential energies are deposited into the surface. PMID:25034006

  7. Ultrathin single crystal ZnS nanowires.

    PubMed

    Zhang, Yejun; Xu, Huarui; Wang, Qiangbin

    2010-12-21

    A facile synthesis of ultrathin single crystal ZnS nanowires with an average diameter of 4.4 nm in high yield (close to 100%) was firstly reported through the pyrolysis of a single-source precursor (zinc diethyldithiocarbamate). The obtained ultrathin ZnS nanowires exhibit good optical properties and hold promise for future applications in nanodevices. PMID:21052583

  8. Ab initio calculations on the O2 3--Y3+ center in CaF2 and SrF2: its electronic structure and hyperfine constants

    NASA Astrophysics Data System (ADS)

    Botis, Sanda M.; Adriaens, Davy A.; Pan, Yuanming

    2009-01-01

    The O2 3--Y3+ center in fluorite-type structures (CaF2 and SrF2) has been investigated at the density functional theory (DFT) level using the CRYSTAL06 code. Our calculations were performed by means of the hybrid B3PW method in which the Hartree-Fock exchange is mixed with the DFT exchange functional, using Becke’s three parameter method, combined with the non-local correlation functionals by Perdew and Wang. Our calculations confirm the stability and the molecular character of the O2 3--Y3+ center. The unpaired electron is shown to be almost exclusively localized on and equally distributed between the two oxygen atoms that are separated by a bond distance of 2.47 Å in CaF2 and 2.57 Å in SrF2. The calculated 17O and 19F hyperfine constants for of the O2 3--Y3+ center are in good agreement with their corresponding experimental values reported by previous electron paramagnetic resonance and electron nuclear double resonance studies, while discrepancies are notable for the 89Y hyperfine constants.

  9. Characterization of zinc selenide single crystals

    NASA Technical Reports Server (NTRS)

    Gerhardt, Rosario A.

    1996-01-01

    ZnSe single crystals of high quality and low impurity levels are desired for use as substrates in optoelectronic devices. This is especially true when the device requires the formation of homoepitaxial layers. While ZnSe is commercially available, it is at present extremely expensive due to the difficulty of growing single crystal boules with low impurity content and the resultant low yields. Many researchers have found it necessary to heat treat the crystals in liquid Zn in order to remove the impurities, lower the resistivity and activate the photoluminescence at room temperature. The physical vapor transport method (PVT) has been successfully used at MSFC to grow many single crystals of II-VI semiconducting materials including ZnSe. The main goal at NASA has been to try to establish the effect of gravity on the growth parameters. To this effect, crystals have been grown vertically upwards or horizontally. Both (111) and (110) oriented ZnSe crystals have been obtained via unseeded PVT growth. Preliminary characterization of the horizontally grown crystals has revealed that Cu is a major impurity and that the low temperature photoluminescence spectra is dominated by the copper peak. The ratio of the copper peak to the free exciton peak is being used to determine variations in composition throughout the crystal. It was the intent of this project to map the copper composition of various crystals via photoluminescence first, then measure their electrical resistivity and capacitance as a function of frequency before proceeding with a heat treatment designed to remove the copper impurities. However, equipment difficulties with the photoluminescence set up, having to establish a procedure for measuring the electrical properties of the as-grown crystals and time limitations made us re-evaluate the project goals. Vertically grown samples designated as ZnSe-25 were chosen to be measured electrically since they were not expected to show as much variation in their composition through their cross-section as the horizontally grown samples.

  10. Neutron detection with single crystal organic scintillators

    SciTech Connect

    Zaitseva, N; Newby, J; Hamel, S; Carman, L; Faust, M; Lordi, V; Cherepy, N; Stoeffl, W; Payne, S

    2009-07-15

    Detection of high-energy neutrons in the presence of gamma radiation background utilizes pulse-shape discrimination (PSD) phenomena in organics studied previously only with limited number of materials, mostly liquid scintillators and single crystal stilbene. The current paper presents the results obtained with broader varieties of luminescent organic single crystals. The studies involve experimental tools of crystal growth and material characterization in combination with the advanced computer modeling, with the final goal of better understanding the relevance between the nature of the organic materials and their PSD properties. Special consideration is given to the factors that may diminish or even completely obscure the PSD properties in scintillating crystals. Among such factors are molecular and crystallographic structures that determine exchange coupling and exciton mobility in organic materials and the impurity effect discussed on the examples of trans-stilbene, bibenzyl, 9,10-diphenylanthracene and diphenylacetylene.

  11. Oxygen Incorporation in Rubrene Single Crystals

    PubMed Central

    Mastrogiovanni, Daniel D. T.; Mayer, Jeff; Wan, Alan S.; Vishnyakov, Aleksey; Neimark, Alexander V.; Podzorov, Vitaly; Feldman, Leonard C.; Garfunkel, Eric

    2014-01-01

    Single crystal rubrene is a model organic electronic material showing high carrier mobility and long exciton lifetime. These properties are detrimentally affected when rubrene is exposed to intense light under ambient conditions for prolonged periods of time, possibly due to oxygen up-take. Using photoelectron, scanning probe and ion-based methods, combined with an isotopic oxygen exposure, we present direct evidence of the light-induced reaction of molecular oxygen with single crystal rubrene. Without a significant exposure to light, there is no reaction of oxygen with rubrene for periods of greater than a year; the crystal's surface (and bulk) morphology and chemical composition remain essentially oxygen-free. Grand canonical Monte Carlo computations show no sorbtion of gases into the bulk of rubrene crystal. A mechanism for photo-induced oxygen inclusion is proposed. PMID:24786311

  12. Single crystals of metal solid solutions

    NASA Technical Reports Server (NTRS)

    Miller, J. F.; Austin, A. E.; Richard, N.; Griesenauer, N. M.; Moak, D. P.; Mehrabian, M. R.; Gelles, S. H.

    1974-01-01

    The following definitions were sought in the research on single crystals of metal solid solutions: (1) the influence of convection and/or gravity present during crystallization on the substructure of a metal solid solution; (2) the influence of a magnetic field applied during crystallization on the substructure of a metal solid solution; and (3) requirements for a space flight experiment to verify the results. Growth conditions for the selected silver-zinc alloy system are described, along with pertinent technical and experimental details of the project.

  13. Magnetoelasticity of Fe-Si single crystals

    SciTech Connect

    Xing, Q; Wu, D.; Lograsso, T. A.

    2010-04-20

    The tetragonal magnetostriction constant, (3/2){lambda}{sub 100}, of Fe-Si single crystals was measured and was found to be structure dependent. Similar to that of Fe-Ge single crystals, (3/2){lambda}{sub 100} is positive in the single phase A2 regime, becomes negative in the single phase D0{sub 3} regime, and changes from positive to negative between the two regimes. Short-range order in the A2 regime decreases the magnetostriction prior to the onset of long range order. In the single phase regions of both A2 and D0{sub 3}, thermal history does not show any obvious effect on the magnetostriction, contrary to that found for Fe-Ga alloys. However, in the regions of phase mixture involving A2, B2, and D0{sub 3} phases, quenching pushes the change in magnetostriction from positive to negative to higher Si contents.

  14. Crystal growth and characterization of MnTe single crystals

    NASA Astrophysics Data System (ADS)

    de Melo, O.; Leccabue, F.; Pelosi, C.; Sagredo, V.; Chourio, M.; Martin, J.; Bocelli, G.; Calestani, G.

    1991-03-01

    The growth of MnTe single crystals by means of a chemical transport technique using iodine as a transport agent is reported. A detailed thermodynamical study of MnTe-I 2 system has been undertaken in order to define the best growth conditions. Moreover, structural, magnetic and electrical properties are reported and discussed.

  15. Graphene single crystals: size and morphology engineering.

    PubMed

    Geng, Dechao; Wang, Huaping; Yu, Gui

    2015-05-13

    Recently developed chemical vapor deposition (CVD) is considered as an effective way to large-area and high-quality graphene preparation due to its ultra-low cost, high controllability, and high scalability. However, CVD-grown graphene film is polycrystalline, and composed of numerous grains separated by grain boundaries, which are detrimental to graphene-based electronics. Intensive investigations have been inspired on the controlled growth of graphene single crystals with the absence of intrinsic defects. As the two most concerned parameters, the size and morphology serve critical roles in affecting properties and understanding the growth mechanism of graphene crystals. Therefore, a precise tuning of the size and morphology will be of great significance in scale-up graphene production and wide applications. Here, recent advances in the synthesis of graphene single crystals on both metals and dielectric substrates by the CVD method are discussed. The review mainly covers the size and morphology engineering of graphene single crystals. Furthermore, recent progress in the growth mechanism and device applications of graphene single crystals are presented. Finally, the opportunities and challenges are discussed. PMID:25809643

  16. First Single-Crystal Mullite Fibers

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Ceramic-matrix composites strengthened by suitable fiber additions are being developed for high-temperature use, particularly for aerospace applications. New oxide-based fibers, such as mullite, are particularly desirable because of their resistance to high-temperature oxidative environments. Mullite is a candidate material in both fiber and matrix form. The primary objective of this work was to determine the growth characteristics of single-crystal mullite fibers produced by the laser-heated floating zone method. Directionally solidified fibers with nominal mullite compositions of 3Al2O3 2SiO2 were grown by the laser-heated floating zone method at the NASA Lewis Research Center. SEM analysis revealed that the single-crystal fibers grown in this study were strongly faceted and that the facets act as critical flaws, limiting fiber strength. The average fiber tensile strength is 1.15 GPa at room temperature. The mullite fibers exhibit superior strength retention (80 percent of their room temperature tensile strength at 1450 C). Examined by transmission electron microscopy, these mullite single crystals are free of dislocations, low-angle boundaries, and voids. In addition, they show a high degree of oxygen vacancy ordering. High-resolution digital images from an optical microscope furnish evidence of the formation of a liquid-liquid miscibility gap during crystal growth. These images represent the first experimental evidence of liquid immiscibility for these compositions and temperatures. Continuing investigation with controlled seeding of mullite single crystals is planned.

  17. Inkjet printing of single-crystal films

    NASA Astrophysics Data System (ADS)

    Minemawari, Hiromi; Yamada, Toshikazu; Matsui, Hiroyuki; Tsutsumi, Jun'ya; Haas, Simon; Chiba, Ryosuke; Kumai, Reiji; Hasegawa, Tatsuo

    2011-07-01

    The use of single crystals has been fundamental to the development of semiconductor microelectronics and solid-state science. Whether based on inorganic or organic materials, the devices that show the highest performance rely on single-crystal interfaces, with their nearly perfect translational symmetry and exceptionally high chemical purity. Attention has recently been focused on developing simple ways of producing electronic devices by means of printing technologies. `Printed electronics' is being explored for the manufacture of large-area and flexible electronic devices by the patterned application of functional inks containing soluble or dispersed semiconducting materials. However, because of the strong self-organizing tendency of the deposited materials, the production of semiconducting thin films of high crystallinity (indispensable for realizing high carrier mobility) may be incompatible with conventional printing processes. Here we develop a method that combines the technique of antisolvent crystallization with inkjet printing to produce organic semiconducting thin films of high crystallinity. Specifically, we show that mixing fine droplets of an antisolvent and a solution of an active semiconducting component within a confined area on an amorphous substrate can trigger the controlled formation of exceptionally uniform single-crystal or polycrystalline thin films that grow at the liquid-air interfaces. Using this approach, we have printed single crystals of the organic semiconductor 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) (ref. 15), yielding thin-film transistors with average carrier mobilities as high as 16.4cm2V-1s-1. This printing technique constitutes a major step towards the use of high-performance single-crystal semiconductor devices for large-area and flexible electronics applications.

  18. Inkjet printing of single-crystal films.

    PubMed

    Minemawari, Hiromi; Yamada, Toshikazu; Matsui, Hiroyuki; Tsutsumi, Jun'ya; Haas, Simon; Chiba, Ryosuke; Kumai, Reiji; Hasegawa, Tatsuo

    2011-07-21

    The use of single crystals has been fundamental to the development of semiconductor microelectronics and solid-state science. Whether based on inorganic or organic materials, the devices that show the highest performance rely on single-crystal interfaces, with their nearly perfect translational symmetry and exceptionally high chemical purity. Attention has recently been focused on developing simple ways of producing electronic devices by means of printing technologies. 'Printed electronics' is being explored for the manufacture of large-area and flexible electronic devices by the patterned application of functional inks containing soluble or dispersed semiconducting materials. However, because of the strong self-organizing tendency of the deposited materials, the production of semiconducting thin films of high crystallinity (indispensable for realizing high carrier mobility) may be incompatible with conventional printing processes. Here we develop a method that combines the technique of antisolvent crystallization with inkjet printing to produce organic semiconducting thin films of high crystallinity. Specifically, we show that mixing fine droplets of an antisolvent and a solution of an active semiconducting component within a confined area on an amorphous substrate can trigger the controlled formation of exceptionally uniform single-crystal or polycrystalline thin films that grow at the liquid-air interfaces. Using this approach, we have printed single crystals of the organic semiconductor 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C(8)-BTBT) (ref. 15), yielding thin-film transistors with average carrier mobilities as high as 16.4?cm(2)?V(-1)?s(-1). This printing technique constitutes a major step towards the use of high-performance single-crystal semiconductor devices for large-area and flexible electronics applications. PMID:21753752

  19. Charge transport in single crystal organic semiconductors

    NASA Astrophysics Data System (ADS)

    Xie, Wei

    Organic electronics have engendered substantial interest in printable, flexible and large-area applications thanks to their low fabrication cost per unit area, chemical versatility and solution processability. Nevertheless, fundamental understanding of device physics and charge transport in organic semiconductors lag somewhat behind, partially due to ubiquitous defects and impurities in technologically useful organic thin films, formed either by vacuum deposition or solution process. In this context, single-crystalline organic semiconductors, or organic single crystals, have therefore provided the ideal system for transport studies. Organic single crystals are characterized by their high chemical purity and outstanding structural perfection, leading to significantly improved electrical properties compared with their thin-film counterparts. Importantly, the surfaces of the crystals are molecularly flat, an ideal condition for building field-effect transistors (FETs). Progress in organic single crystal FETs (SC-FETs) is tremendous during the past decade. Large mobilities ~ 1 - 10 cm2V-1s-1 have been achieved in several crystals, allowing a wide range of electrical, optical, mechanical, structural, and theoretical studies. Several challenges still remain, however, which are the motivation of this thesis. The first challenge is to delineate the crystal structure/electrical property relationship for development of high-performance organic semiconductors. This thesis demonstrates a full spectrum of studies spanning from chemical synthesis, single crystal structure determination, quantum-chemical calculation, SC-OFET fabrication, electrical measurement, photoelectron spectroscopy characterization and extensive device optimization in a series of new rubrene derivatives, motivated by the fact that rubrene is a benchmark semiconductor with record hole mobility ~ 20 cm2V-1s-1. With successful preservation of beneficial pi-stacking structures, these rubrene derivatives form high-quality single crystals and exhibit large ambipolar mobilities. Nevertheless, a gap remains between the theory-predicted properties and this preliminary result, which itself is another fundamental challenge. This is further addressed by appropriate device optimization, and in particular, contact engineering approach to improve the charge injection efficiencies. The outcome is not only the achievement of new record ambipolar mobilities in one of the derivatives, namely, 4.8 cm2V-1s-1 for holes and 4.2 cm2V-1s-1 for electrons, but also provides a comprehensive and rational pathway towards the realization of high-performance organic semiconductors. Efforts to achieve high mobility in other organic single crystals are also presented. The second challenge is tuning the transition of electronic ground states, i.e., semiconducting, metallic and superconducting, in organic single crystals. Despite an active research area since four decades ago, we aim to employ the electrostatic approach instead of chemical doping for reversible and systematic control of charge densities within the same crystal. The key material in this study is the high-capacitance electrolyte, such as ionic liquids (ILs), whose specific capacitance reaches ~ ?F/cm2, thus allowing accumulation of charge carrier above 1013 cm-2 when novel transport phenomena, such as insulator-metal transition and superconductivity, are likely to occur. This thesis addresses the electrical characterization, device physics and transport physics in electrolyte-gated single crystals, in the device architecture known as the electrical double layer transistor (EDLT). A detailed characterization scheme is first demonstrated for accurate determination of several key parameters, e.g., carrier mobility and charge density, in organic EDLTs. Further studies, combining both experiments and theories, are devoted to understanding the unusual charge density dependent channel conductivity and gate-to-channel capacitance behaviors. In addition, Hall effect and temperature-dependent measurements are employed for more in-depth unders

  20. Microhardness studies of sulfamic acid single crystal

    NASA Astrophysics Data System (ADS)

    Santhosh Kumar, A.; Joseph, Cyriac; Paulose, Reshmi; R, Rajesh; Joseph, Georgekutty; Louis, Godfrey

    2015-02-01

    Vicker's microhardness study of (100), (010) and (001) faces of a non-linear optical crystal sulfamic acid have been reported. Single crystals of sulfamic acid have been grown by slow evaporation method. The load dependence of the Vickers microhardness of sulfamic acid crystal were investigated and analyzed from the stand point of various theoretical models. Crystal samples in a, b and c-axes exhibit reverse indentation effect which is best described by Meyer's law, Hays-Kendall's approach and proportional specimen resistance (PSR) models. The negative values of load dependent quantities in Hays-Kendall's approach and PSR model suggest that the origin of indentation size effect is associated with the process of relaxation of indentation stresses.

  1. Growth of single-crystal gallium nitride

    NASA Technical Reports Server (NTRS)

    Clough, R.; Richman, D.; Tietjen, J.

    1970-01-01

    Use of ultrahigh purity ammonia prevents oxygen contamination of GaN during growth, making it possible to grow the GaN at temperatures as high as 825 degrees C, at which point single crystal wafers are deposited on /0001/-oriented sapphire surfaces.

  2. Single crystal tungsten kinetic energy penetrators

    SciTech Connect

    Cline, C.F.; Gogolewski, R.P.

    1992-05-01

    We have explored the terminal ballistic performance of single crystal tungsten as a kinetic energy penetrator. Scientific speculation as to the anticipated penetration performance and nature of the interaction between such a kinetic energy penetrator and semi-infinite and spaced metallic targets has led us to perform laboratory scale experiments and metallographic examinations of post-impact penetrator materials. The single tungsten crystals were ground into kinetic energy penetrators with the {l_angle}111{r_angle} and {l_angle}100{r_angle} crystal direction being coincident with the axis of symmetry of the penetrators. The crystals were electro-polished to their final diameter. We, compared the terminal performance at current ordnance speeds of {l_angle}111{r_angle} single crystal tungsten to 90W-10 (NiFe) cemented tungsten and textured pure tungsten in laboratory scale ballistic experiments against a spaced steel (triple) target at sixty-five degrees obliquity. We also compared the terminal performance of {l_angle}100{r_angle} and {l_angle}111{r_angle} single crystal tungsten with 90W-10 and 98W02 (NiFe) cemented tungsten and textured pure tungsten in laboratory scale ballistic experiments against monolithic 4340 alloy steel (HRC = 36) at normal impact. We radiographed the penetrators during the interactions with the targets, we recovered portions of the penetrators after the ballistic experiments, and we conducted metallographic examinations of penetrator remnants. From the radiographic records and the metallographic examinations, we drew conclusions pertaining to insights into the terminal interactions of the penetrators with the targets and suggestions as to improved compositions of the cemented tungsten penetrators.

  3. Single crystal tungsten kinetic energy penetrators

    SciTech Connect

    Cline, C.F.; Gogolewski, R.P.

    1992-05-01

    We have explored the terminal ballistic performance of single crystal tungsten as a kinetic energy penetrator. Scientific speculation as to the anticipated penetration performance and nature of the interaction between such a kinetic energy penetrator and semi-infinite and spaced metallic targets has led us to perform laboratory scale experiments and metallographic examinations of post-impact penetrator materials. The single tungsten crystals were ground into kinetic energy penetrators with the [l angle]111[r angle] and [l angle]100[r angle] crystal direction being coincident with the axis of symmetry of the penetrators. The crystals were electro-polished to their final diameter. We, compared the terminal performance at current ordnance speeds of [l angle]111[r angle] single crystal tungsten to 90W-10 (NiFe) cemented tungsten and textured pure tungsten in laboratory scale ballistic experiments against a spaced steel (triple) target at sixty-five degrees obliquity. We also compared the terminal performance of [l angle]100[r angle] and [l angle]111[r angle] single crystal tungsten with 90W-10 and 98W02 (NiFe) cemented tungsten and textured pure tungsten in laboratory scale ballistic experiments against monolithic 4340 alloy steel (HRC = 36) at normal impact. We radiographed the penetrators during the interactions with the targets, we recovered portions of the penetrators after the ballistic experiments, and we conducted metallographic examinations of penetrator remnants. From the radiographic records and the metallographic examinations, we drew conclusions pertaining to insights into the terminal interactions of the penetrators with the targets and suggestions as to improved compositions of the cemented tungsten penetrators.

  4. Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials

    NASA Astrophysics Data System (ADS)

    Lyapin, A. A.; Fedorov, P. P.; Garibin, E. A.; Malov, A. V.; Osiko, V. V.; Ryabochkina, P. A.; Ushakov, S. N.

    2013-08-01

    The laser quality transparent СаF2:Tm fluoride ceramics has been prepared by hot forming. Comparative study of absorption and emission spectra of СаF2:Tm (4 mol.% TmF3) ceramic and single crystal samples demonstrated that these materials possess almost identical spectroscopic properties. Laser oscillations of СаF2:Tm ceramics were obtained at 1898 nm under diode pumping, with the slope efficiency of 5.5%. Also, the continuous-wave (CW) laser have been obtained for СаF2:Tm single crystal at 1890 nm pumped by a diode laser was demonstrated.

  5. X-ray excited optical luminescence of CaF2: A candidate for UV water treatment

    NASA Astrophysics Data System (ADS)

    Chen, W.; Ma, L.; Schaeffer, R.; Hoffmeyer, R.; Sham, T.; Belev, G.; Kasap, S.; Sammynaiken, R.

    2015-06-01

    Secondary optical processes are becoming more and more important in health and environmental applications. Ultraviolet produced from secondary emission or scintillation can damage DNA by direct photoexcitation or by the creation of reactive oxygen species. X-ray Excited Optical Luminescence (XEOL) and Time Resolved XEOL (TRXEOL) results for the fast emitter, CaF2:ZnO, that have been treated by heating in air and in vacuum, show that the scintillation from the Self Trapped Exciton (STE) emission of CaF2 at 282 nm is dominated by a slow process (>100 ns). A faster but weaker 10 ns component is also present. The ZnO and CaF2 show independent emission. The ZnO bandgap emission at 390 nm has dominant lifetimes of less than 1 ns.

  6. Multiple single-crystal-to-single-crystal guest exchange in a dynamic 1D coordination polymer.

    PubMed

    Mart-Rujas, Javier; Bonafede, Simone; Tushi, Dorearta; Cametti, Massimo

    2015-08-11

    A novel 1D coordination polymer that dynamically expands or shrinks upon the uptake of vapours of volatile small chlorinated molecules, such as 1,2-dichloroethane (DCE), dichloromethane (DCM) and trichloromethane (TCM), is reported. This system is robust enough to withstand multiple guest exchange via single-crystal-to-single-crystal transformation, as proved by (1)H-NMR and X-ray diffraction. The single crystal of guest-free, host framework, stable at 400 K, can also be obtained. PMID:26097909

  7. Crystal structure and morphology of syndiotactic polypropylene single crystals

    SciTech Connect

    Bu, J.Z.; Cheng, S.Z.D.

    1996-12-31

    In the past several years there have been an increased interest in the crystal structure and morphology of s-PP due to the new development of homogeneous metallocene catalysts which can produce s-PP having a high stereoregularity. In this research, the crystal structure and morphology of s-PP single crystals grown from the melt were investigated. A series of ten fractions of s-PP was studied with different molecular weights ranging from 10,300 to 234,000 (g/mol). These fractions all possess narrow molecular weight distributions (around 1.1-1.2) and high syndiotacticities ([r]{approximately}95%). The main techniques employed including transmission electron microscopy (TEM), atomic force microscopy (AFM), wide-angle X-ray diffraction (WAXD), and small-angle X-ray scattering (SAXS).

  8. Effect of CaF2 Addition on the Silicothermic Reduction of MnO in Ferromanganese Slag

    NASA Astrophysics Data System (ADS)

    Heo, Jung Ho; Chung, Yongsug; Park, Joo Hyun

    2015-04-01

    The effect of temperature and CaF2 (fluorspar) addition on the silicothermic reduction behavior of MnO in the CaO-40 pct MnO-SiO2 (C/S = 1.0) system, which is used to simulate high carbon ferromanganese (HCFeMn) slag, was investigated at 1773 K (1500 C). The production of SiO2 was stoichiometrically balanced with the consumption of MnO in the slag phase in the CaF2-containing systems based on the reaction "[Si] + 2(MnO) = (SiO2) + 2[Mn]," whereas the SiO2 production was lower than the MnO consumption in the CaO-MnO-SiO2 ternary system, which may have originated from the production of SiO gas in the latter. From the temperature dependence of the mass transfer coefficient of SiO2, the activation energy of the silicothermic reduction process was determined to be about 217.9 kJ/mol, which was very close to the activation energy reported in the literature for mass transfer in the slag phase. The mass transfer coefficient of SiO2 exhibited a maximum value at 5 mass pct CaF2, which originated from an increase in the apparent viscosity of the slag due to the precipitation of solid cuspidine at CaF2 content greater than 5 pct. Consequently, the addition of fluxing additive CaF2 should be carefully determined, because an excess of CaF2 results in the formation of cuspidine during silicothermic reactions.

  9. Angular-dependent vortex pinning mechanism and magneto-optical characterizations of FeSe0.5Te0.5 thin films grown on CaF2 substrates

    NASA Astrophysics Data System (ADS)

    Yuan, Pusheng; Xu, Zhongtang; Ma, Yanwei; Sun, Yue; Tamegai, Tsuyoshi

    2016-03-01

    Magneto-optical (MO) characterizations and the angular-dependent critical current density (J c(Θ)) of epitaxial FeSe0.5Te0.5 (FST) thin films grown on CaF2 single-crystalline substrates were performed. The MO images show typical rooftop patterns in the remanent state from which a large, homogeneous, and almost isotropic self-field J c over 2 × 106 A cm‑2 at 8 K was obtained. The vortex pinning mechanism is investigated measuring the magnetic field and angular-dependent critical current density J c. The FST films exhibit small anisotropy of J c in the whole applied magnetic field range below 15 K. The Dew-Hughes model and angular scaling analyses prove that pointlike normal cores, which are distributed randomly in the FST film, dominate the pinning in the FST films on CaF2 substrates.

  10. Single crystal functional oxides on silicon

    PubMed Central

    Bakaul, Saidur Rahman; Serrao, Claudy Rayan; Lee, Michelle; Yeung, Chun Wing; Sarker, Asis; Hsu, Shang-Lin; Yadav, Ajay Kumar; Dedon, Liv; You, Long; Khan, Asif Islam; Clarkson, James David; Hu, Chenming; Ramesh, Ramamoorthy; Salahuddin, Sayeef

    2016-01-01

    Single-crystalline thin films of complex oxides show a rich variety of functional properties such as ferroelectricity, piezoelectricity, ferro and antiferromagnetism and so on that have the potential for completely new electronic applications. Direct synthesis of such oxides on silicon remains challenging because of the fundamental crystal chemistry and mechanical incompatibility of dissimilar interfaces. Here we report integration of thin (down to one unit cell) single crystalline, complex oxide films onto silicon substrates, by epitaxial transfer at room temperature. In a field-effect transistor using a transferred lead zirconate titanate layer as the gate insulator, we demonstrate direct reversible control of the semiconductor channel charge with polarization state. These results represent the realization of long pursued but yet to be demonstrated single-crystal functional oxides on-demand on silicon. PMID:26853112

  11. Single crystal functional oxides on silicon.

    PubMed

    Bakaul, Saidur Rahman; Serrao, Claudy Rayan; Lee, Michelle; Yeung, Chun Wing; Sarker, Asis; Hsu, Shang-Lin; Yadav, Ajay Kumar; Dedon, Liv; You, Long; Khan, Asif Islam; Clarkson, James David; Hu, Chenming; Ramesh, Ramamoorthy; Salahuddin, Sayeef

    2016-01-01

    Single-crystalline thin films of complex oxides show a rich variety of functional properties such as ferroelectricity, piezoelectricity, ferro and antiferromagnetism and so on that have the potential for completely new electronic applications. Direct synthesis of such oxides on silicon remains challenging because of the fundamental crystal chemistry and mechanical incompatibility of dissimilar interfaces. Here we report integration of thin (down to one unit cell) single crystalline, complex oxide films onto silicon substrates, by epitaxial transfer at room temperature. In a field-effect transistor using a transferred lead zirconate titanate layer as the gate insulator, we demonstrate direct reversible control of the semiconductor channel charge with polarization state. These results represent the realization of long pursued but yet to be demonstrated single-crystal functional oxides on-demand on silicon. PMID:26853112

  12. Experimental Investigation of Orthoenstatite Single Crystal Rheology

    NASA Astrophysics Data System (ADS)

    fraysse, G.; Girard, J.; Holyoke, C. W.; Raterron, P.

    2013-12-01

    The plasticity of enstatite, upper mantle second most abundant mineral, is still poorly constrained, mostly because of its high-temperature (T) transformation into proto- and clino-enstatite at low pressure (P). Mackwell (1991, GRL, 18, 2027) reports a pioneer study of protoenstatite (Pbcn) single-crystal rheology, but the results do not directly apply to the orthorhombic (Pbca) mantle phase. Ohuchi et al. (2011, Contri. Mineral. Petrol , 161, 961) carried out deformation experiments at P=1.3 GPa on oriented orthoenstatite crystals, investigating the activity of [001](100) and [001](010) dislocation slip systems; they report the first rheological laws for orthoenstatite crystals. However, strain and stress were indirectly constrained in their experiments, which questioned whether steady state conditions of deformation were achieved. Also, data reported for [001](100) slip system were obtained after specimens had transformed by twinning into clinoenstatite. We report here new data from deformation experiments carried out at high T and P ranging from 3.5 to 6.2 GPa on natural Fe-bearing enstatite single crystals, using the Deformation-DIA apparatus (D-DIA) that equipped the X17B2 beamline of the NSLS (NY, USA). The applied stress and specimen strain rates were measured in situ by X-ray diffraction and imaging techniques (e.g., Raterron & Merkel, 2009, J. Sync. Rad., 16, 748; Raterron et al., 2013, Rev. Sci. Instr., 84, 043906). Three specimen orientations were tested: i) with the compression direction along [101]c crystallographic direction, which forms a 45 angle with both [100] and [001] axes, to investigate [001](100) slip-system activity; ii) along [011]c direction to investigate [001](010) system activity; iii) and along enstatite [125] axis, to activate both slip systems together. Crystals were deformed two by two, to compare slip system activities, or against enstatite aggregates or orientated olivine crystals of known rheology for comparison. Run products microstructures were investigated by transmission electron microscopy. Despite a significant hardening with P, enstatite [001](100) slip system is found to be the easiest system at mantle P and T. Furthermore, orthoenstatite crystals exhibit a higher sensitivity to stress than olivine crystals, i.e. a higher n exponent in classical power laws. At the low stress level prevailing in the Earth mantle, enstatite crystals are thus harder than olivine crystals.

  13. Lightweight optical mirrors formed in single crystal substrate

    NASA Technical Reports Server (NTRS)

    Bly, Vincent T. (Inventor)

    2006-01-01

    This invention is directed to a process for manufacturing a lightweight mirror from a single crystal material, such as single crystal silicon. As a near perfect single crystal material, single crystal silicon has much lower internal stress than a conventional material. This means much less distortion of the optical surface during the light weighting process. After being ground and polished, a single crystal silicon mirror is light weighted by removing material from the back side using ultrasonic machining. After the light weighting process, the single crystal silicon mirror may be used as-is or further figured by conventional polishing or ion milling, depending on the application and the operating wavelength.

  14. SSME single crystal turbine blade dynamics

    NASA Technical Reports Server (NTRS)

    Moss, Larry A.; Smith, Todd E.

    1987-01-01

    A study was performed to determine the dynamic characteristics of the Space Shuttle main engine high pressure fuel turbopump (HPFTP) blades made of single crystal (SC) material. The first and second stage drive turbine blades of HPFTP were examined. The nonrotating natural frequencies were determined experimentally and analytically. The experimental results of the SC second stage blade were used to verify the analytical procedures. The analytical study examined the SC first stage blade natural frequencies with respect to crystal orientation at typical operating conditions. The SC blade dynamic response was predicted to be less than the directionally solidified blade. Crystal axis orientation optimization indicated the third mode interference will exist in any SC orientation.

  15. Growth of Solid Solution Single Crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, Sandor L.; Szofran, Frank R.; Gillies, Donald C.; Watring, Dale A.

    1999-01-01

    The objective of the study is to establish the effects of processing semiconducting, solid solution, single crystals in a microgravity environment on the metallurgical, compositional, electrical, and optical characteristics of the crystals. The alloy system being investigated is the solid solution semiconductor Hg(1-x)Cd(x)Te, with x-values appropriate for infrared detector applications in the 8 to 14 mm wavelength region. Both melt and Te-solvent growth are being performed. The study consists of an extensive ground-based experimental and theoretical research effort followed by flight experimentation where appropriate. The ground-based portion of the investigation also includes the evaluation of the relative effectiveness of stabilizing techniques, such as applied magnetic fields, for suppressing convective flow during the melt growth of the crystals.

  16. Shock Hugoniot of Single Crystal Copper

    SciTech Connect

    Chau, R; Stolken, J; Asoka-Kumar, P; Kumar, M; Holmes, N C

    2009-08-28

    The shock Hugoniot of single crystal copper is reported for stresses below 66 GPa. Symmetric impact experiments were used to measure the Hugoniots of three different crystal orientations of copper, [100], [110], [111]. The photonic doppler velocimetry (PDV) diagnostic was adapted into a very high precision time of arrival detector for these experiments. The measured Hugoniots along all three crystal directions were nearly identical to the experimental Hugoniot for polycrystalline Cu. The predicted orientation dependence of the Hugoniot from MD calculations was not observed. At the lowest stresses, the sound speed in Cu was extracted from the PDV data. The measured sound speeds are in agreement with values calculated from the elastic constants for Cu.

  17. The Creep of Single Crystals of Aluminum

    NASA Technical Reports Server (NTRS)

    Johnson, R D; Shober, F R; Schwope, A D

    1953-01-01

    The creep of single crystals of high-purity aluminum was investigated in the range of temperatures from room temperature to 400 F and at resolved-shear-stress levels of 200, 300, and 400 psi. The tests were designed in an attempt to produce data regarding the relation between the rate of strain and the mechanism of deformation. The creep data are analyzed in terms of shear strain rate and the results are discussed with regard to existing creep theories. Stress-strain curves were determined for the crystals in tinsel and constant-load-rate tests in the same temperature range to supplement the study of plastic deformation by creep with information regarding the part played by crystal orientation, differences in strain markings, and other variables in plastic deformation.

  18. Spectroscopic Studies of Pulsed-Laser-Induced Damage Sites in Heated CaF2 Crystals

    SciTech Connect

    Bozlee, Brian J.; Exarhos, Gregory J.; Teel, Randy W.

    1999-09-01

    Proceedings contain all papers presented at the 13th Symposium on Optical Materials for High-Powered Lasers, held at the National Institute of Standards and Technology in Boulder, CO, 28 Sept. - 1 Oct. 1998.

  19. Single-crystal gallium nitride nanotubes.

    PubMed

    Goldberger, Joshua; He, Rongrui; Zhang, Yanfeng; Lee, Sangkwon; Yan, Haoquan; Choi, Heon-Jin; Yang, Peidong

    2003-04-10

    Since the discovery of carbon nanotubes in 1991 (ref. 1), there have been significant research efforts to synthesize nanometre-scale tubular forms of various solids. The formation of tubular nanostructure generally requires a layered or anisotropic crystal structure. There are reports of nanotubes made from silica, alumina, silicon and metals that do not have a layered crystal structure; they are synthesized by using carbon nanotubes and porous membranes as templates, or by thin-film rolling. These nanotubes, however, are either amorphous, polycrystalline or exist only in ultrahigh vacuum. The growth of single-crystal semiconductor hollow nanotubes would be advantageous in potential nanoscale electronics, optoelectronics and biochemical-sensing applications. Here we report an 'epitaxial casting' approach for the synthesis of single-crystal GaN nanotubes with inner diameters of 30-200 nm and wall thicknesses of 5-50 nm. Hexagonal ZnO nanowires were used as templates for the epitaxial overgrowth of thin GaN layers in a chemical vapour deposition system. The ZnO nanowire templates were subsequently removed by thermal reduction and evaporation, resulting in ordered arrays of GaN nanotubes on the substrates. This templating process should be applicable to many other semiconductor systems. PMID:12686996

  20. Single-Crystal Diamond Nanobeam Waveguide Optomechanics

    NASA Astrophysics Data System (ADS)

    Khanaliloo, Behzad; Jayakumar, Harishankar; Hryciw, Aaron C.; Lake, David P.; Kaviani, Hamidreza; Barclay, Paul E.

    2015-10-01

    Single-crystal diamond optomechanical devices have the potential to enable fundamental studies and technologies coupling mechanical vibrations to both light and electronic quantum systems. Here, we demonstrate a single-crystal diamond optomechanical system and show that it allows excitation of diamond mechanical resonances into self-oscillations with amplitude >200 nm . The resulting internal stress field is predicted to allow driving of electron spin transitions of diamond nitrogen-vacancy centers. The mechanical resonances have a quality factor >7 105 and can be tuned via nonlinear frequency renormalization, while the optomechanical interface has a 150 nm bandwidth and 9.5 fm /?{Hz } sensitivity. In combination, these features make this system a promising platform for interfacing light, nanomechanics, and electron spins.

  1. Biomineralization of nanoscale single crystal hydroxyapatite.

    PubMed

    Omokanwaye, Tiffany; Wilson, Otto C; Gugssa, Ayelle; Anderson, Winston

    2015-11-01

    The chemical and physical characteristics of nanocrystalline hydroxyapatite particles which formed during the subcutaneous implantation of crab shell in Sprague-Dawley rats were studied using selected area electron diffraction (SAED) and high resolution transmission electron microscopy (HRTEM). The initial SAED characterization evidence indicated the presence of an amorphous calcium phosphate phase. The electron dense nanophase particles which formed in the wound healing zone displayed broad diffuse rings which usually indicate a low crystalline order or amorphous phase. High resolution transmission electron microscopy (HRTEM) revealed that these mineralized regions contained discrete single crystal particles less than 5nm in size. Micrographs taken at successively higher magnifications revealed very small nanoparticles with a hexagonal arrangement of ion channels with characteristic spacing of 0.54nm and 0.23nm. This study revealed that single crystal hydroxyapatite nanoparticles consisting of only a few unit cells formed via a biomineralization directed process. PMID:26249568

  2. Optimizing Scale Adhesion on Single Crystal Superalloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Pint, Bruce A.

    2000-01-01

    To improve scale adhesion, single crystal superalloys have been desulfurized to levels below 1 ppmw by hydrogen annealing. A transition to fully adherent behavior has been shown to occur at a sulfur level of about 0.2 ppmw, as demonstrated for PWA 1480, PWA 1484, and Rene N5 single crystal superalloys in 1100-1150 C cyclic oxidation tests up to 2000 h. Small additions of yttrium (15 ppmw) also have been effective in producing adhesion for sulfur contents of about 5 ppmw. Thus the critical Y/S ratio required for adhesion was on the order of 3-to-1 by weight (1-to-1 atomic), in agreement with values estimated from solubility products for yttrium sulfides. While hydrogen annealing greatly improved an undoped alloy, yielding <= 0.01 ppmw S, it also produced benefits for Y-doped alloys without measurably reducing the sulfur content.

  3. Macrodeformation Twins in Single-Crystal Aluminum.

    PubMed

    Zhao, F; Wang, L; Fan, D; Bie, B X; Zhou, X M; Suo, T; Li, Y L; Chen, M W; Liu, C L; Qi, M L; Zhu, M H; Luo, S N

    2016-02-19

    Deformation twinning in pure aluminum has been considered to be a unique property of nanostructured aluminum. A lingering mystery is whether deformation twinning occurs in coarse-grained or single-crystal aluminum at scales beyond nanotwins. Here, we present the first experimental demonstration of macrodeformation twins in single-crystal aluminum formed under an ultrahigh strain rate (∼10^{6}  s^{-1}) and large shear strain (200%) via dynamic equal channel angular pressing. Large-scale molecular dynamics simulations suggest that the frustration of subsonic dislocation motion leads to transonic deformation twinning. Deformation twinning is rooted in the rate dependences of dislocation motion and twinning, which are coupled, complementary processes during severe plastic deformation under ultrahigh strain rates. PMID:26943543

  4. Macrodeformation Twins in Single-Crystal Aluminum

    NASA Astrophysics Data System (ADS)

    Zhao, F.; Wang, L.; Fan, D.; Bie, B. X.; Zhou, X. M.; Suo, T.; Li, Y. L.; Chen, M. W.; Liu, C. L.; Qi, M. L.; Zhu, M. H.; Luo, S. N.

    2016-02-01

    Deformation twinning in pure aluminum has been considered to be a unique property of nanostructured aluminum. A lingering mystery is whether deformation twinning occurs in coarse-grained or single-crystal aluminum at scales beyond nanotwins. Here, we present the first experimental demonstration of macrodeformation twins in single-crystal aluminum formed under an ultrahigh strain rate (˜106 s-1 ) and large shear strain (200%) via dynamic equal channel angular pressing. Large-scale molecular dynamics simulations suggest that the frustration of subsonic dislocation motion leads to transonic deformation twinning. Deformation twinning is rooted in the rate dependences of dislocation motion and twinning, which are coupled, complementary processes during severe plastic deformation under ultrahigh strain rates.

  5. Ionic diffusion in single crystals of vermiculite

    SciTech Connect

    Maraqah, H.R.

    1993-01-01

    Novel guest-host compounds, based on single crystal vermiculite, were synthesized by diffusive techniques through a new hydrogen vermiculite. Single crystals were chosen because of the ease of characterization. An investigation of the ion transport properties of these single crystals was done to determine the mechanism of conductivity including the predominant charge carrier. Measurements of the ionic conductivity using impedance spectroscopy and X-ray lattice parameters of the ion-exchanged samples strongly suggest that the native cations and not protons are the major current carriers. Single crystals of hydrogen vermiculite were synthesized at room temperature by ion exchange from sodium-vermiculite using 1 molar acetic acid for a one week. Subsequent ion exchange with other cations was found to be much enhanced. Thus transition metals were exchanged in about a week in contrast to the need of several months using previous methods. The ionic conductivity of hydrogen vermiculite was measured and shown to be much lower than that of many other monovalent cations in the same host lattice. Its enthalpy of motion is also much lower. These marked differences suggest that protonic species do not play a significant role in charge transport in these layered materials. These materials were characterized by x-ray powder diffraction, thermogravimetric analysis and acid-base titration. Hydrogen-vermiculite was found to react with organic bases, like methylamine, ethylamine, n-butylamine, n-hexylamine, n-octylamine, n-decylamine, aniline, acrylamide, methacrylaminde, urea, 1,10phenanthroline, and 1,1phenanthroline ferrous sulfate complex, to undergo ion exchange with metal cations like sodium, zinc, copper(II) ions and polymerization reactions could be performed in the galleries of the structure like pyrrole and aniline. Its behavior was compared with that of powdered montmorillonite.

  6. Flexible single-crystal silicon nanomembrane photonic crystal cavity.

    PubMed

    Xu, Xiaochuan; Subbaraman, Harish; Chakravarty, Swapnajit; Hosseini, Amir; Covey, John; Yu, Yalin; Kwong, David; Zhang, Yang; Lai, Wei-Cheng; Zou, Yi; Lu, Nanshu; Chen, Ray T

    2014-12-23

    Flexible inorganic electronic devices promise numerous applications, especially in fields that could not be covered satisfactorily by conventional rigid devices. Benefits on a similar scale are also foreseeable for silicon photonic components. However, the difficulty in transferring intricate silicon photonic devices has deterred widespread development. In this paper, we demonstrate a flexible single-crystal silicon nanomembrane photonic crystal microcavity through a bonding and substrate removal approach. The transferred cavity shows a quality factor of 2.210(4) and could be bent to a curvature of 5 mm radius without deteriorating the performance compared to its counterparts on rigid substrates. A thorough characterization of the device reveals that the resonant wavelength is a linear function of the bending-induced strain. The device also shows a curvature-independent sensitivity to the ambient index variation. PMID:25409282

  7. Design of multifunctional alkali ion doped CaF2 upconversion nanoparticles for simultaneous bioimaging and therapy.

    PubMed

    Yin, Wenyan; Tian, Gan; Ren, Wenlu; Yan, Liang; Jin, Shan; Gu, Zhanjun; Zhou, Liangjun; Li, Juan; Zhao, Yuliang

    2014-03-14

    Herein, alkali ion doped CaF2 upconversion nanoparticles (UCNPs) were first reported as a multifunctional theranostic platform for dual-modal imaging and chemotherapy. Interestingly, we found that the alkali ions doping approach could efficiently enhance the upconversion luminescence (UCL) intensity, whereas slightly affect the phase and morphology of the resulting products. In order to further improve the UCL efficacy for bioimaging, a pristine CaF2 shell was grown on the CaF2:Yb, Er core surface to enhance the UCL intensity. After being transferred into hydrophilic UCNPs, these water-soluble UCNPs could be served as contrast agents for in vitro/in vivo UCL imaging and X-ray computed tomography (CT) imaging. Furthermore, the as-prepared UCNPs could also be employed as nano-carriers for drug delivery. Doxorubicin (DOX) can be easily loaded onto the UCNPs and the DOX-loaded UCNPs exhibit a good cell killing ability. Therefore, the multifunctional core-shell CaF2 UCNPs with UCL/CT imaging and drug carrier properties may find extensive applications in simultaneous imaging diagnosis and therapy. PMID:24442070

  8. Ultrafast time and frequency domain vibrational dynamics of the CaF2/H2O interface

    NASA Astrophysics Data System (ADS)

    Eftekhari-Bafrooei, Ali; Nihonyanagi, Satoshi; Borguet, Eric

    The structure of water at the CaF2/KOH interface was studied by vibrational sum-frequency-generation (SFG) spectroscopy and ultrafast SFG-Free Induction Decay, suggesting the presence of weakly hydrogen bonded OH at high pH.

  9. FACTORS AFFECTING THE USE OF CAF2:MN THERMOLUMINESCENT DOSIMETERS FOR LOW-LEVEL ENVIRONMENTAL RADIATION MONITORING

    EPA Science Inventory

    An investigation was made of factors affecting the use of commercially-produced CaF2:Mn thermoluminescent dosimeters for low level environmental radiation monitoring. Calibration factors and self-dosing rates were quantified for 150 thermoluminescent dosimeters. Laboratory studie...

  10. Specific spectroscopic and laser properties of Tm3+ ions in hot-formed CaF2 laser ceramics

    NASA Astrophysics Data System (ADS)

    Doroshenko, M. E.; Papashvili, A. G.; Alimov, O. K.; Martynova, K. A.; Konyushkin, V. A.; Nakladov, A. N.; Osiko, V. V.; Jelinkova, H.; Sulc, J.; Nemec, M.

    2016-01-01

    The formation of new Tm3+ tetragonal optical centers with spectroscopic properties different from those for regular ones in hot-formed CaF2 ceramics is observed. The influence of the new centers formation on the fluorescence and laser properties of the 2 ?m 3F43H6 transition under ~795?nm laser diode excitation is studied.

  11. A spontaneous single-crystal-to-single-crystal polymorphic transition involving major packing changes.

    PubMed

    Krishnan, Baiju P; Sureshan, Kana M

    2015-02-01

    4,6-O-Benzylidene-?-d-galactosyl azide crystallizes into two morphologically distinct polymorphs depending on the solvent. While the ? form appeared as thick rods and crystallized in P21 space group (monoclinic) with a single molecule in the asymmetric unit, the ? form appeared as thin fibers and crystallized in P1 space group (triclinic) with six molecules in the asymmetric unit. Both the polymorphs appeared to melt at the same temperature. Differential scanning calorimetry analysis revealed that polymorph ? irreversibly undergoes endothermic transition to polymorph ? much before its melting point, which accounts for their apparently same melting points. Variable temperature powder X-ray diffraction (PXRD) experiments provided additional proof for the polymorphic transition. Single-crystal XRD analyses revealed that ? to ? transition occurs in a single-crystal-to-single-crystal (SCSC) fashion not only under thermal activation but also spontaneously at room temperature. The SCSC nature of this transition is surprising in light of the large structural differences between these polymorphs. Polarized light microscopy experiments not only proved the SCSC nature of the transition but also suggested nucleation and growth mechanism for the transition. PMID:25585170

  12. Perpetually self-propelling chiral single crystals.

    PubMed

    Panda, Manas K; Run?evski, Tom?e; Husain, Ahmad; Dinnebier, Robert E; Naumov, Pan?e

    2015-02-11

    When heated, single crystals of enantiomerically pure D- and L-pyroglutamic acid (PGA) are capable of recurring self-actuation due to rapid release of latent strain during a structural phase transition, while the racemate is mechanically inactive. Contrary to other thermosalient materials, where the effect is accompanied by crystal explosion due to ejection of debris or splintering, the chiral PGA crystals respond to internal strain with unprecedented robustness and can be actuated repeatedly without deterioration. It is demonstrated that this superelasticity is attained due to the low-dimensional hydrogen-bonding network which effectively accrues internal strain to elicit propulsion solely by elastic deformation without disintegration. One of the two polymorphs (?) associated with the thermosalient phase transition undergoes biaxial negative thermal expansion (?a = -54.8(8) 10(-6) K(-1), ?c = -3.62(8) 10(-6) K(-1)) and exceptionally large uniaxial thermal expansion (?b = 303(1) 10(-6) K(-1)). This second example of a thermosalient solid with anomalous expansion indicates that the thermosalient effect can be expected for first-order phase transitions in soft crystals devoid of an extended 3D hydrogen-bonding network that undergo strongly anisotropic thermal expansion around the phase transition. PMID:25581716

  13. Sponge-like nanoporous single crystals of gold

    NASA Astrophysics Data System (ADS)

    Khristosov, Maria Koifman; Bloch, Leonid; Burghammer, Manfred; Kauffmann, Yaron; Katsman, Alex; Pokroy, Boaz

    2015-11-01

    Single crystals in nature often demonstrate fascinating intricate porous morphologies rather than classical faceted surfaces. We attempt to grow such crystals, drawing inspiration from biogenic porous single crystals. Here we show that nanoporous single crystals of gold can be grown with no need for any elaborate fabrication steps. These crystals are found to grow following solidification of a eutectic composition melt that forms as a result of the dewetting of nanometric thin films. We also present a kinetic model that shows how this nano-porous single-crystalline structure can be obtained, and which allows the potential size of the porous single crystal to be predicted. Retaining their single-crystalline nature is due to the fact that the full crystallization process is faster than the average period between two subsequent nucleation events. Our findings clearly demonstrate that it is possible to form single-crystalline nano porous metal crystals in a controlled manner.

  14. Sponge-like nanoporous single crystals of gold.

    PubMed

    Khristosov, Maria Koifman; Bloch, Leonid; Burghammer, Manfred; Kauffmann, Yaron; Katsman, Alex; Pokroy, Boaz

    2015-01-01

    Single crystals in nature often demonstrate fascinating intricate porous morphologies rather than classical faceted surfaces. We attempt to grow such crystals, drawing inspiration from biogenic porous single crystals. Here we show that nanoporous single crystals of gold can be grown with no need for any elaborate fabrication steps. These crystals are found to grow following solidification of a eutectic composition melt that forms as a result of the dewetting of nanometric thin films. We also present a kinetic model that shows how this nano-porous single-crystalline structure can be obtained, and which allows the potential size of the porous single crystal to be predicted. Retaining their single-crystalline nature is due to the fact that the full crystallization process is faster than the average period between two subsequent nucleation events. Our findings clearly demonstrate that it is possible to form single-crystalline nano porous metal crystals in a controlled manner. PMID:26554856

  15. Bridgman growth of paratellurite single crystals

    NASA Astrophysics Data System (ADS)

    Veber, P.; Mangin, J.; Strimer, P.; Delarue, P.; Josse, C.; Saviot, L.

    2004-09-01

    The growth of paratellurite single crystals by the vertical-gradient freezing technique is reported for the first time. Boules of 120 mm long and 25 mm in diameter were obtained under a temperature gradient of 10C cm-1 and translation rates lower than 0.6 mm h-1. The spatial distribution of defects along the growth axis reveals a continuous evolution of the free convective fluid-flow regime as growth proceeds. Gas bubbles and dark inclusions rejected to the periphery in the upper part of the crystal are observed to lay preferentially in (1 0 0), (0 0 1), (1 1 bar 0) and (1 1 2) crystallographic planes. Among them, SEM and microprobe analyses evidenced the presence of metallic platinum, while micro-Raman experiments allowed to assess oxygen as being actually the gas content of occluded bubbles, originated at the crucible wall through Pt-induced dissociation of Te-O bonds.

  16. ?-Lead tellurite from single-crystal data

    PubMed Central

    Zavodnik, Valery E.; Ivanov, Sergey A.; Stash, Adam I.

    2008-01-01

    The crystal structure of the title compound, ?-PbTeO3 (PTO), has been reported previously by Mariolacos [Anz. Oesterr. Akad. Wiss. Math. Naturwiss. Kl. (1969), 106, 128130], refined on powder data. The current determination at room temperature from data obtained from single crystals grown by the Czochralski method shows a significant improvement in the precision of the geometric parameters when all atoms have been refined anisotropically. The selection of a centrosymmetric (C2/c) structure model was confirmed by the second harmonic generation test. The asymmetric unit contains three formula units. The structure of PTO is built up of three types of distorted [PbOx] polyhedra (x = 7 and 9) which share their O atoms with TeO3 pyramidal units. These main anionic polyhedra are responsible for establishing the two types of tunnel required for the stereochemical activity of the lone pairs of the Pb2+ and Te4+ cations. PMID:21201834

  17. Crystal ion slicing of single-crystal magnetic garnet films

    NASA Astrophysics Data System (ADS)

    Levy, M.; Osgood, R. M.; Kumar, A.; Bakhru, H.

    1998-06-01

    Epitaxial liftoff has been used for achieving heterogeneous integration of many III-V and elemental semiconductor systems. However, it has been heretofore impossible to integrate devices of many other important material systems. A good example of this problem has been the integration of single-crystal transition metal oxides on semiconductor platforms, a system needed for on-chip thin film optical isolators. We report here an implementation of epitaxial liftoff in magnetic garnets. Deep ion implantation is used to create a buried sacrificial layer in single-crystal yttrium iron garnet (YIG) and bismuth-substituted YIG (Bi-YIG) epitaxial layers grown on gadolinium gallium garnet (GGG). The damage generated by the implantation induces a large etch selectivity between the sacrificial layer and the rest of the garnet. Ten-micron-thick films have been lifted off from the original GGG substrates by etching in phosphoric acid. Millimeter-size pieces of excellent quality have been transferred to the silicon and gallium arsenide substrates. Study of the magnetic domain structure in the detached epilayers by Faraday contrast shows no changes in film anisotropy. Optical insertion loss measurements are also presented.

  18. Single crystal to single crystal polymerization of a columnar assembled diacetylene macrocycle

    NASA Astrophysics Data System (ADS)

    Xu, Weiwei

    Organic tubular materials have attracted lots of attentions for their potential applications as nanoscale fluidic transport systems, specific ion sensors, molecular sieves and confined molecular reaction containers. While conjugated polymers, due to delocalized Pi electrons, exhibit interesting solar cells and sensors applications. In this thesis, we developed a conjugated polymer which combines the attributes of conjugated polymers with tubular materials, which should have great potential to work as a sensing material. We reproduced and scaled-up the synthesis of a polymerizable macrocycle 1 that contains two rigidly separated diacetylene units. We found that, through hydrogen bonding, 1 can assemble into columnar crystals and can be polymerized under a single crystal to single crystal transformation process to afford porous polydiacetylene (PDA) crystals. We studied the assembly of the macrocycles 1 under different conditions to give three different crystalline forms and micro-phase crystals, and also investigated their subsequent polymerizations. The macrocycle assembly and polymerized materials were characterized by a variety of technique. Since the gas adsorption measurement exhibited PDA crystals still retained its porosity and the polymer should have ability to uptake suitable guest molecules, therefore the absorption of iodine for PDA crystals was investigated as well.

  19. Chemical vapor deposition of graphene single crystals.

    PubMed

    Yan, Zheng; Peng, Zhiwei; Tour, James M

    2014-04-15

    As a two-dimensional (2D) sp(2)-bonded carbon allotrope, graphene has attracted enormous interest over the past decade due to its unique properties, such as ultrahigh electron mobility, uniform broadband optical absorption and high tensile strength. In the initial research, graphene was isolated from natural graphite, and limited to small sizes and low yields. Recently developed chemical vapor deposition (CVD) techniques have emerged as an important method for the scalable production of large-size and high-quality graphene for various applications. However, CVD-derived graphene is polycrystalline and demonstrates degraded properties induced by grain boundaries. Thus, the next critical step of graphene growth relies on the synthesis of large graphene single crystals. In this Account, we first discuss graphene grain boundaries and their influence on graphene's properties. Mechanical and electrical behaviors of CVD-derived polycrystalline graphene are greatly reduced when compared to that of exfoliated graphene. We then review four representative pathways of pretreating Cu substrates to make millimeter-sized monolayer graphene grains: electrochemical polishing and high-pressure annealing of Cu substrate, adding of additional Cu enclosures, melting and resolidfying Cu substrates, and oxygen-rich Cu substrates. Due to these pretreatments, the nucleation site density on Cu substrates is greatly reduced, resulting in hexagonal-shaped graphene grains that show increased grain domain size and comparable electrical properties as to exfoliated graphene. Also, the properties of graphene can be engineered by its shape, thickness and spatial structure. Thus, we further discuss recently developed methods of making graphene grains with special spatial structures, including snowflakes, six-lobed flowers, pyramids and hexagonal graphene onion rings. The fundamental growth mechanism and practical applications of these well-shaped graphene structures should be interesting topics and deserves more attention in the near future. Following that, recent efforts in fabricating large single-crystal monolayer graphene on other metal substrates, including Ni, Pt, and Ru, are also described. The differences in growth conditions reveal different growth mechanisms on these metals. Another key challenge for graphene growth is to make graphene single crystals on insulating substrates, such as h-BN, SiO2, and ceramic. The recently developed plasma-enhanced CVD method can be used to directly synthesize graphene single crystals on h-BN substrates and is described in this Account as well. To summarize, recent research in synthesizing millimeter-sized monolayer graphene grains with different pretreatments, graphene grain shapes, metal catalysts, and substrates is reviewed. Although great advancements have been achieved in CVD synthesis of graphene single crystals, potential challenges still exist, such as the growth of wafer-sized graphene single crystals to further facilitate the fabrication of graphene-based devices, as well as a deeper understanding of graphene growth mechanisms and growth dynamics in order to make graphene grains with precisely controlled thicknesses and spatial structures. PMID:24527957

  20. Conduction mechanism of single-crystal alumina

    NASA Technical Reports Server (NTRS)

    Will, Fritz G.; Delorenzi, Horst G.; Janora, Kevin H.

    1992-01-01

    The fully guarded three-terminal technique was used to perform conductivity measurements on single-crystal alumina at temperatures of 400-1300 C. The conductivity was also determined as a function of time at various temperatures and applied fields. Further, the fractions of the current carried by Al and O ions (ionic transference numbers) were determined from long-term transference experiments in the temperature range 1100-1300 C. A mathematical model of the conduction mechanism is proposed, and model predictions are compared with experimental results.

  1. Growth and dielectric parameters of DGS single crystal

    NASA Astrophysics Data System (ADS)

    Patel, Vimal; Vyas, S. M.; Patel, Piyush; Jani, M. P.; Pavagadhi, Himanshu

    2015-08-01

    Anhydrous Diglycine sulfate single crystals have been grown from the aqueous solutions, which is made from the glycerin and sulfuric acid at room temperature with pH values. This grown crystal now used to study some optical and dielectric properties. i.e. refractive index, density, molar refraction, Polarizability and Molar Polarization. These all parameter provides information about the DGS single crystals, which is used in various processes of dielectric presentation of DGS single crystals.

  2. Dose response of CaF2:Tm to charged particles of different LET.

    PubMed

    Moyers, M F; Nelson, G A

    2009-08-01

    Thermoluminescent dosimeters are well established for performing calibrations in radiotherapy and for monitoring dose to personnel exposed to low linear energy transfer (LET) ionizing radiation. Patients undergoing light ion therapy and astronauts engaged in space flight are, however, exposed to radiation fields consisting of a mix of low- and high-LET charged particles. In this study, glow curves from CaF2:Tm chips were examined after exposure to various electron and ion beams. The annealing and readout procedures for these chips were optimized for these beams. After a 10 min prereadout annealing at 100 degrees C, the optimized glow curve samples the light output between 95 and 335 degrees C with a heating rate of 2 degrees C/s. The ratio of the integral of the glow curve under peaks 4-6 to the integral under peak 3 was approximately 0.9 for electrons, 1.0 for entrance protons, 1.6 for peak protons, and 2.2 for entrance carbon, silicon, and iron ions. The integral light output per unit dose in water for the iron exposures was about half as much as for the electron exposures. The peak-area-ratio can be used to determine a dose response factor for different LET radiations. PMID:19746804

  3. Fabrication of crystals from single metal atoms

    NASA Astrophysics Data System (ADS)

    Barry, Nicolas P. E.; Pitto-Barry, Anas; Sanchez, Ana M.; Dove, Andrew P.; Procter, Richard J.; Soldevila-Barreda, Joan J.; Kirby, Nigel; Hands-Portman, Ian; Smith, Corinne J.; O'Reilly, Rachel K.; Beanland, Richard; Sadler, Peter J.

    2014-05-01

    Metal nanocrystals offer new concepts for the design of nanodevices with a range of potential applications. Currently the formation of metal nanocrystals cannot be controlled at the level of individual atoms. Here we describe a new general method for the fabrication of multi-heteroatom-doped graphitic matrices decorated with very small, ngstrm-sized, three-dimensional (3D)-metal crystals of defined size. We irradiate boron-rich precious-metal-encapsulated self-spreading polymer micelles with electrons and produce, in real time, a doped graphitic support on which individual osmium atoms hop and migrate to form 3D-nanocrystals, as small as 15? in diameter, within 1?h. Crystal growth can be observed, quantified and controlled in real time. We also synthesize the first examples of mixed ruthenium-osmium 3D-nanocrystals. This technology not only allows the production of ngstrm-sized homo- and hetero-crystals, but also provides new experimental insight into the dynamics of nanocrystals and pathways for their assembly from single atoms.

  4. Fabrication of crystals from single metal atoms

    PubMed Central

    Barry, Nicolas P. E.; Pitto-Barry, Anaïs; Sanchez, Ana M.; Dove, Andrew P.; Procter, Richard J.; Soldevila-Barreda, Joan J.; Kirby, Nigel; Hands-Portman, Ian; Smith, Corinne J.; O’Reilly, Rachel K.; Beanland, Richard; Sadler, Peter J.

    2014-01-01

    Metal nanocrystals offer new concepts for the design of nanodevices with a range of potential applications. Currently the formation of metal nanocrystals cannot be controlled at the level of individual atoms. Here we describe a new general method for the fabrication of multi-heteroatom-doped graphitic matrices decorated with very small, ångström-sized, three-dimensional (3D)-metal crystals of defined size. We irradiate boron-rich precious-metal-encapsulated self-spreading polymer micelles with electrons and produce, in real time, a doped graphitic support on which individual osmium atoms hop and migrate to form 3D-nanocrystals, as small as 15 Å in diameter, within 1 h. Crystal growth can be observed, quantified and controlled in real time. We also synthesize the first examples of mixed ruthenium–osmium 3D-nanocrystals. This technology not only allows the production of ångström-sized homo- and hetero-crystals, but also provides new experimental insight into the dynamics of nanocrystals and pathways for their assembly from single atoms. PMID:24861089

  5. Biaxial constitutive equation development for single crystals

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.

    1984-01-01

    Current gas turbine engines utilize large single crystal superalloy components in the hot section. Structural analysis of these components requires a valid stress strain temperature constitutive equation. The goal of the program described is to create one or more models and verify these models. A constitutive equation based on an assumed slip behavior of a single slip system was formulated, programmed, and debugged. Specifically, the basic theory for a model based on aggravating slip behavior on individual slip systems was formulated and programmed and some simulations were run using assumed values of constants. In addition, a formulation allowing strain controlled simulations was completed. An approach to structural analysis of the specimen was developed. This approach uses long tube consistancy conditions and finite elements specially formulated to take advantage of the symmetry of 100 oriented specimens.

  6. Cutting fluid study for single crystal silicon

    SciTech Connect

    Chargin, D.

    1998-05-05

    An empirical study was conducted to evaluate cutting fluids for Single Point Diamond Turning (SPDT) of single crystal silicon. The pH of distilled waster was adjusted with various additives the examine the effect of pH on cutting operations. Fluids which seemed to promote ductile cutting appeared to increase tool wear as well, an undesirable tradeoff. High Ph sodium hydroxide solutions showed promise for further research, as they yielded the best combination of reduced tool wear and good surface finish in the ductile regime. Negative rake tools were verified to improve the surface finish, but the negative rake tools used in the experiments also showed much higher wear than conventional 0{degree} rake tools. Effects of crystallographic orientation on SPDT, such as star patterns of fracture damage forming near the center of the samples, were observed to decrease with lower feedrates. Silicon chips were observed and photographed, indicative of a ductile materials removal process.

  7. Magnetic anisotropy in pyroxene single crystals

    NASA Astrophysics Data System (ADS)

    Biedermann, Andrea Regina; Hirt, Ann Marie; Pettke, Thomas; Bender Koch, Christian

    2014-05-01

    Anisotropy of magnetic susceptibility (AMS) is often used as a proxy for the mineral fabric in a rock. This requires understanding the intrinsic magnetic anisotropy of the minerals that define the rock fabric. With their prismatic habit, pyroxenes describe the texture in mafic and ultramafic rocks. Magnetic anisotropy in pyroxene crystals often arises from both paramagnetic and ferromagnetic components that can be separated from high-field magnetic data. The paramagnetic component is related to the silicate lattice, whereas the ferromagnetic part arises from the magnetic properties of ferromagnetic inclusions that were further characterized by isothermal remanent magnetization measurements. These inclusions often have needle-like habit and are located on the well-defined cleavage planes within the pyroxenes. We characterize low-field and high-field AMS in pyroxene single crystals of diverse orthopyroxene and clinopyroxene minerals. In addition to the magnetic measurements, we analyzed their chemical composition and Fe2+/Fe3+ distribution. The anisotropy arising from inclusions in some augite crystals displays consistent principal susceptibility directions, whereas no preferred orientation is found in other crystals. The principal susceptibilities of the paramagnetic component can be related to the crystal lattice, with the intermediate susceptibility parallel to the b-axis, and minimum and maximum in the a-c-plane for diopside, augite and spodumene. The degree of anisotropy increases with iron concentration. Aegirine shows a different behavior; not only is its maximum susceptibility parallel to the c-axis, but the anisotropy degree is also lower in relation to its iron concentration. This possibly relates to a predominance of Fe3+ in aegirine, whereas Fe2+ is dominant in the other minerals. In orthopyroxene, the maximum susceptibility is parallel to the c-axis and the minimum is parallel to b. The degree of anisotropy increases linearly with iron concentration. The difference in principal directions between clino- and orthopyroxene reflects their different crystal structure; in clinopyroxene, iron mainly occupies M1 sites, whereas it prefers the distorted M2 sites in orthopyroxene. The difference in anisotropy degree between aegirine and the other clinopyroxenes suggests that Fe2+ causes a stronger anisotropy than Fe3+. Thus, the magnetic anisotropy in pyroxenes is mainly dominated by the concentration, oxidation state and site occupancy of iron. The results from this study are important when interpreting magnetic fabrics in ultramafic rocks that contain both olivine and pyroxenes.

  8. Constitutive modeling for single crystal superalloys

    NASA Technical Reports Server (NTRS)

    Stouffer, D. C.; Jayaraman, N.; Sheh, M.; Alden, D.

    1986-01-01

    The inelastic response of single crystal gamma/gamma prime superalloys is quite different from the behavior of polycrystalline nickel base superalloys. Upto a critical temperature the yield stress of single crystal alloys is a function of the material orientation relative to the direction of the applied stress and the material exhibits significant tension/compression asymmetry. This behavior is primarily due to slip on the octahedral slip system. Above the critical temperature there is a sharp drop in the yield stress, cube slip becomes more predominant and the tension/compression asymmetry is reduced. Similar orientation and tension/compression asymmetry is observed in creep and secondary creep above the critical temperature is inferred to occur by octahedral slip. There are two exceptions to this behavior. First, loading near the (111) orientation exhibits cube slip at all temperatures, and; second, loading near the (001) orientation produces only octahedral slip at all temperatures. The constitutive model is based on separating the total global strain into elastic and inelastic components. This model is developed and briefly discussed.

  9. Phase transition peculiarities in LAMOX single crystals

    NASA Astrophysics Data System (ADS)

    Voronkova, V. I.; Kharitonova, E. P.; Krasilnikova, A. E.; Kononkova, N. N.

    2008-05-01

    The series of oxide-ion-conducting La2Mo2O9 single crystals, undoped and doped with Ca, Bi, W, Nb, Zn and V (LAMOX), was grown by the flux method in the system La2O3-MoO3, which has allowed us to use polarization microscopy for the identification of phases. Phase transition peculiarities in the LAMOX family have been studied by polarization microscopy and calorimetry. The results demonstrate that both the monoclinic phase (α), which is stable at room temperature, and the metastable cubic phase (βms), or a mixture of these phases, may exist at room temperature, depending on the post-growth cooling rate and the nature of the dopant at low doping level. On heating, all of the quenched crystals undergo \\beta_{\\mathrm {ms}} \\to \\alpha (450 °C) and \\alpha \\to \\beta (500-560 °C) phase transitions (where β designates the stable cubic phase). At heavy doping levels, the high-temperature transition is suppressed and the crystals (La2Mo1.95V0.05Oy, La2Mo1.84W0.16Oy in our case) are found in the cubic state. The thermal peak near 450 °C at high doping level is not associated with a \\beta_{\\mathrm {ms}} \\to \\alpha transition and may be the result of defect association/dissociation in the cubic crystals. The thermal history, nature of the dopant and doping level are shown to influence the phase transition sequence and type.

  10. Polarization tomography of residual stresses in trigonal single crystals

    NASA Astrophysics Data System (ADS)

    Puro, A. E.; Karov, D. D.

    2015-11-01

    A way to determine residual stresses in cylindrical trigonal single crystals the optical axis of which is directed along the crystal axis is proposed. It is assumed that the residual deformation tensor is of thermal character and is characterized by fictive temperature. The measurements are performed in the middle part of a single crystal the length of which is much larger than its diameter; therefore, the stresses in this part do not vary along the single crystal axis. The reconstruction of stresses is based on determining characteristic parameters of polarized light by use of the tomographic method in the plane orthogonal to the single crystal axis.

  11. Growing single crystals in silica gel

    NASA Technical Reports Server (NTRS)

    Rubin, B.

    1970-01-01

    Two types of chemical reactions for crystal growing are discussed. The first is a metathetical reaction to produce calcium tartrate tetrahydrate crystals, the second is a decomplexation reaction to produce cuprous chloride crystals.

  12. Generation of Solid-Source H2O Plasma and Its Application to Dry Etching of CaF2

    NASA Astrophysics Data System (ADS)

    Matsutani, Akihiro; Ohtsuki, Hideo; Koyama, Fumio

    2008-06-01

    We demonstrate the discharge of H2O plasma generated by solid-source H2O placed in a process chamber. Also, we investigated the dry etching process of CaF2 using solid-source H2O (ice) plasma. The average roughness of the etched surface was about 1 nm for an etching depth of in 2 m which satisfies the requirements for optical device fabrication. We believe that the proposed CaF2 etching process is suitable for the fabrication of optical devices such as gratings or Fresnel lenses. In addition, we think that the H2O plasma including OH radicals obtained by this proposed method may be useful for sterilization and as a new UV light source.

  13. Comprehensive structural and optical characterization of MBE grown MoSe2 on graphite, CaF2 and graphene

    NASA Astrophysics Data System (ADS)

    Vishwanath, Suresh; Liu, Xinyu; Rouvimov, Sergei; Mende, Patrick C.; Azcatl, Angelica; McDonnell, Stephen; Wallace, Robert M.; Feenstra, Randall M.; Furdyna, Jacek K.; Jena, Debdeep; Xing, Huili Grace

    2015-06-01

    We report the structural and optical properties of a molecular beam epitaxy (MBE) grown 2-dimensional (2D) material molybdenum diselenide (MoSe2) on graphite, CaF2 and epitaxial graphene. Extensive characterizations reveal that 2H-MoSe2 grows by van-der-Waals epitaxy on all three substrates with a preferred crystallographic orientation and a Mo:Se ratio of 1:2. Photoluminescence at room temperature (1.56 eV) is observed in monolayer MoSe2 on both CaF2 and epitaxial graphene. The band edge absorption is very sharp, <60 meV over three decades. Overcoming the observed small grains by promoting mobility of Mo adatoms would make MBE a powerful technique to achieve high quality 2D materials and heterostructures.

  14. Structural plasticity of calmodulin on the surface of CaF2 nanoparticles preserves its biological function

    NASA Astrophysics Data System (ADS)

    Astegno, Alessandra; Maresi, Elena; Marino, Valerio; Dominici, Paola; Pedroni, Marco; Piccinelli, Fabio; Dell'Orco, Daniele

    2014-11-01

    Nanoparticles are increasingly used in biomedical applications and are especially attractive as biocompatible and biodegradable protein delivery systems. Herein, the interaction between biocompatible 25 nm CaF2 nanoparticles and the ubiquitous calcium sensor calmodulin has been investigated in order to assess the potential of these particles to serve as suitable surface protein carriers. Calmodulin is a multifunctional messenger protein that activates a wide variety of signaling pathways in eukaryotic cells by changing its conformation in a calcium-dependent manner. Isothermal titration calorimetry and circular dichroism studies have shown that the interaction between calmodulin and CaF2 nanoparticles occurs with physiologically relevant affinity and that the binding process is fully reversible, occurring without significant alterations in protein secondary and tertiary structures. Experiments performed with a mutant form of calmodulin having an impaired Ca2+-binding ability in the C-terminal lobe suggest that the EF-hand Ca2+-binding motifs are directly involved in the binding of calmodulin to the CaF2 matrix. The residual capability of nanoparticle-bound calmodulin to function as a calcium sensor protein, binding to and altering the activity of a target protein, was successfully probed by biochemical assays. Even if efficiently carried by CaF2 nanoparticles, calmodulin may dissociate, thus retaining the ability to bind the peptide encompassing the putative C-terminal calmodulin-binding domain of glutamate decarboxylase and activate the enzyme. We conclude that the high flexibility and structural plasticity of calmodulin are responsible for the preservation of its function when bound in high amounts to a nanoparticle surface.Nanoparticles are increasingly used in biomedical applications and are especially attractive as biocompatible and biodegradable protein delivery systems. Herein, the interaction between biocompatible 25 nm CaF2 nanoparticles and the ubiquitous calcium sensor calmodulin has been investigated in order to assess the potential of these particles to serve as suitable surface protein carriers. Calmodulin is a multifunctional messenger protein that activates a wide variety of signaling pathways in eukaryotic cells by changing its conformation in a calcium-dependent manner. Isothermal titration calorimetry and circular dichroism studies have shown that the interaction between calmodulin and CaF2 nanoparticles occurs with physiologically relevant affinity and that the binding process is fully reversible, occurring without significant alterations in protein secondary and tertiary structures. Experiments performed with a mutant form of calmodulin having an impaired Ca2+-binding ability in the C-terminal lobe suggest that the EF-hand Ca2+-binding motifs are directly involved in the binding of calmodulin to the CaF2 matrix. The residual capability of nanoparticle-bound calmodulin to function as a calcium sensor protein, binding to and altering the activity of a target protein, was successfully probed by biochemical assays. Even if efficiently carried by CaF2 nanoparticles, calmodulin may dissociate, thus retaining the ability to bind the peptide encompassing the putative C-terminal calmodulin-binding domain of glutamate decarboxylase and activate the enzyme. We conclude that the high flexibility and structural plasticity of calmodulin are responsible for the preservation of its function when bound in high amounts to a nanoparticle surface. Electronic supplementary information (ESI) available: Supplementary methods and figures. See DOI: 10.1039/c4nr04368e

  15. Responsivity enhancement of mid-infrared PbSe detectors using CaF2 nano-structured antireflective coatings

    NASA Astrophysics Data System (ADS)

    Weng, Binbin; Qiu, Jijun; Yuan, Zijian; Larson, Preston R.; Strout, Gregory W.; Shi, Zhisheng

    2014-01-01

    The CaF2 nano-structures grown by thermal vapor deposition are presented. Significant responsivity improvement (>200%) of mid-infrared PbSe detectors incorporating a 200 nm nano-structured CaF2 coating was observed. The detector provides a detectivity of 4.2 1010 cm . Hz1/2/W at 3.8 ?m, which outperforms all the reported un-cooled PbSe detectors. Structural investigations show that the coating is constructed by tapered-shape nanostructures, which creates a gradient refractive-index profile. Analogy to moth-eye antireflective mechanism, the gradient refractive-index nanostructures play the major roles for this antireflection effect. Some other possible mechanisms that help enhance the device performance are also discussed in the work.

  16. Nano-structuring of CaF2 surfaces by slow highly charged ions: simulation and experiment

    NASA Astrophysics Data System (ADS)

    Wachter, G.; Tksi, K.; Betz, G.; Lemell, C.; Burgdrfer, J.; El-Said, A. S.; Wilhelm, R. A.; Heller, R.; Facsko, S.; Ritter, R.; Aumayr, F.

    2014-04-01

    The impact of individual slow highly charged ions (HCI) on insulators can create nano-scale surface modifications. We present recent experimental results on nano-hillock and etch pit formation on CaF2, where the appearance of surface modifications is observed only above a threshold projectile potential and kinetic energy depending on the type of damage. A proof-of-principle molecular dynamics simulation offers insights into the early stages of damage formation.

  17. Monte Carlo Simulation of Gamma-Ray Response of BaF2 and CaF2

    SciTech Connect

    Gao, Fei; Xie, YuLong; Wang, Zhiguo; Kerisit, Sebastien N.; Wu, Dangxin; Campbell, Luke W.; Van Ginhoven, Renee M.; Prange, Micah P.

    2013-12-01

    We have employed a Monte Carlo (MC) method to study intrinsic properties of two alkaline-earth halides, namely BaF2 and CaF2, relevant to their use as radiation detector materials. The MC method follows the fate of individual electron-hole (e-h) pairs and thus allows for a detailed description of the microscopic structure of ionization tracks created by incident ?-ray radiation. The properties of interest include the mean energy required to create an e-h pair, W, Fano factor, F, the maximum theoretical light yield, and the spatial distribution of e-h pairs resulting from ?-ray excitation. Although W and F vary with incident photon energy at low energies, they tend to constant values at energies higher than 1 keV. W is determined to be 18.9 and 19.8 eV for BaF2 and CaF2, respectively, in agreement with published data. The e-h pair spatial distributions exhibit a linear distribution along the fast electron tracks with high e-h pair densities at the end of the tracks. Most e-h pairs are created by interband transition and plasmon excitation in both scintillators, but the e-h pairs along fast electron tracks in BaF2 are slightly clustered, forming nanoscale domains and resulting in the higher e-h pair densities than in CaF2. Combining the maximum theoretical light yields calculated for BaF2 and CaF2 with those obtained for CsI and NaI shows that the theoretical light yield decreases linearly with increasing band gap energy.

  18. Experimental dynamic metamorphism of mineral single crystals

    USGS Publications Warehouse

    Kirby, S.H.; Stern, L.A.

    1993-01-01

    This paper is a review of some of the rich and varied interactions between non-hydrostatic stress and phase transformations or mineral reactions, drawn mainly from results of experiments done on mineral single crystals in our laboratory or our co-authors. The state of stress and inelastic deformation can enter explicitly into the equilibrium phase relations and kinetics of mineral reactions. Alternatively, phase transformations can have prominent effects on theology and on the nature of inelastic deformation. Our examples represent five types of structural phase changes, each of which is distinguished by particular mechanical effects. In increasing structural complexity, these include: (1) displacive phase transformations involving no bond-breaking, which may produce anomalous brittle behavior. A primary example is the a-?? quartz transition which shows anomalously low fracture strength and tertiary creep behavior near the transition temperature; (2) martensitic-like transformations involving transformation strains dominated by shear deformation. Examples include the orthoenstatite ??? clinoenstatite and w u ??rtzite ??? sphalerite transformations; (3) coherent exsolution or precipitation of a mineral solute from a supersaturated solid-solution, with anisotropy of precipitation and creep rates produced under nonhydrostatic stress. Examples include exsolution of corundum from MgO ?? nAl2O3 spinels and Ca-clinopyroxene from orthopyroxene; (4) order-disorder transformations that are believed to cause anomalous plastic yield strengthening, such as MgO - nAl2O3 spinels; and (5) near-surface devolatilization of hydrous silicate single-crystals that produces a fundamental brittleness thought to be connected with dehydration at microcracks at temperatures well below nominal macroscopic dehydration temperatures. As none of these interactions between single-crystal phase transformations and non-hydrostatic stress is understood in detail, this paper serves as a challenge to field structural geologists to test whether interactions of these types occur in nature, and to theoreticians to reach a deeper understanding of the complex relations between phase transformations, the local state of stress and associated deformation and deformation rates. ?? 1993.

  19. Solar cell structure incorporating a novel single crystal silicon material

    DOEpatents

    Pankove, Jacques I.; Wu, Chung P.

    1983-01-01

    A novel hydrogen rich single crystal silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystal silicon without out-gassing the hydrogen. The new material can be used to fabricate semiconductor devices such as single crystal silicon solar cells with surface window regions having a greater band gap energy than that of single crystal silicon without hydrogen.

  20. Hydrothermal synthesis and up-conversion luminescence of Ho3+/Yb3+ co-doped CaF2

    NASA Astrophysics Data System (ADS)

    Yang, Zheng; Guo, Chong-Feng; Chen, Ye-Qing; Li, Lin; Li, Ting; Jeong, Jung-Hyun

    2014-06-01

    CaF2:Ho3+/Yb3+ nano-particles with intense green up-conversion (UC) luminescence are successfully synthesized via a facile hydrothermal approach by using NH4F as the fluoride source and Na2EDTA as a chelating reagent. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), and UC emission spectra are used to characterize the structures, shapes, and luminescent properties of the samples. The effects from fluoride sources and chelating reagents on the formations of CaF2 nano-particles are investigated, and the formation process is also deduced. Under the excitation of a 980-nm laser diode, the samples each show a green up-conversion emission centered at 540 nm corresponding to the 5S2/5F4?5I8 transitions of Ho3+. Moreover, the UC mechanisms of Ho3+/Yb3+ co-doped CaF2 nano-particles are also discussed.

  1. Single crystal fiber for laser sources

    NASA Astrophysics Data System (ADS)

    Dlen, Xavier; Aubourg, Adrien; Deyra, Loc.; Lesparre, Fabien; Martial, Igor; Didierjean, Julien; Balembois, Franois; Georges, Patrick

    2015-02-01

    Single crystal fiber (SCF) is a hybrid laser architecture between conventional bulk laser crystals and active optical fibers allowing higher average powers than with conventional crystals and higher energy than with fibers in pulsed regime. The pump beam delivered by a fiber-coupled laser diode is confined by the guiding capacity of the SCF whereas the signal beam is in free propagation. In this paper, we study the pump guiding in the SCF and give an overview of the results obtained using SCF gain modules in laser oscillators and amplifiers. We report about up to 500 ?J nanosecond pulses at the output of a passively Q-switched Er:YAG SCF oscillator at 1617 nm. High power experiments with Yb:YAG allowed to demonstrate up to 250 W out of a multimode oscillator. High power 946 nm Nd:YAG SCF Q-switched oscillators followed by second and fourth harmonic generation in the blue and the UV is also presented with an average power up to 3.4 W at 473 nm and 600 mW at 236.5 nm. At 1064 nm, we obtain up to 3 mJ with a nearly fundamental mode beam in sub-nanosecond regime with a micro-chip laser amplified in a Nd:YAG SCF. Yb:YAG SCF amplifiers are used to amplify fiber based sources limited by non-linearities such as Stimulated Brillouin Scattering with a narrow linewidth laser and Self Phase Modulation with a femtosecond source. Using chirped pulse amplification, 380 fs pulses are obtained with an energy of 1 mJ and an excellent beam quality (M2<1.1).

  2. Mechanical properties of single crystal YAg

    SciTech Connect

    Russell, A.M.; Zhang, Z.; Lograsso, T.A.; Lo, C.C.H.; Pecharsky, A.O.; Morris, J.R.; Ye, Y.; Gschneidner, K.A.; Slager, A.J

    2004-08-02

    YAg, a rare earth-precious metal 'line compound', is one member of the family of B2 rare earth intermetallic compounds that exhibit high ductilities. Tensile tests of polycrystalline YAg specimens have produced elongations as high as 27% before failure. In the present work, single crystal specimens of YAg with the B2, CsCl-type crystal structure were tensile tested at room temperature. Specimens with a tensile axis orientation of [0 1 1-bar] displayed slip lines on the specimen faces corresponding to slip on the {l_brace}1 1 0{r_brace}<0 1 0> with a critical resolved shear stress of 13 MPa. A specimen with a tensile axis orientation of [1 0 0] showed no slip lines and began to crack at a stress of 300 MPa. The test specimens also displayed some slip lines whose position corresponded to slip on the {l_brace}1 0 0{r_brace}<0 1 0>; these slip lines were found near intersections of {l_brace}1 1 0{r_brace}<0 1 0> slip lines, which suggests that the {l_brace}1 0 0{r_brace}<0 1 0> may be a secondary slip system in YAg. Transmission electron microscope (TEM) examination of the crystals was performed after tensile testing and the dislocations observed were analyzed by g {center_dot} b=0 out of contrast analysis. This TEM analysis indicated that the predominant Burgers vector for the dislocations present was <1 1 1> with some <0 1 1> dislocations also being observed. This finding is inconsistent with the <0 1 0> slip direction determined by slip line analysis, and possible explanations for this surprising finding are presented.

  3. Hydrogen Annealing Of Single-Crystal Superalloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Schaeffer, John C.; Murphy, Wendy

    1995-01-01

    Annealing at temperature equal to or greater than 2,200 degrees F in atmosphere of hydrogen found to increase ability of single-crystal superalloys to resist oxidation when subsequently exposed to oxidizing atmospheres at temperatures almost as high. Supperalloys in question are principal constituents of hot-stage airfoils (blades) in aircraft and ground-based turbine engines; also used in other high-temperature applications like chemical-processing plants, coal-gasification plants, petrochemical refineries, and boilers. Hydrogen anneal provides resistance to oxidation without decreasing fatigue strength and without need for coating or reactive sulfur-gettering constituents. In comparison with coating, hydrogen annealing costs less. Benefits extend to stainless steels, nickel/chromium, and nickel-base alloys, subject to same scale-adhesion and oxidation-resistance considerations, except that scale is chromia instead of alumina.

  4. Low-cobalt single crystal Rene 150

    NASA Technical Reports Server (NTRS)

    Scheuermann, C. M.

    1982-01-01

    The effects of cobalt content on a single crystal version of the advanced, high gamma prime content turbine airfoil alloy Rene 150 were investigated. Cobalt contents under investigation include 12 wt.% (composition level of Rene 150), 6 wt.%, and 0 wt.%. Preliminary test results are presented and compared with the properties of standard DS Rene 150. DTA results indicate that the liquidus goes through a maximum of about 1435 C near 6 wt.% Co. The solidus remains essentially constant at 1390 C with decreasing Co content. The gamma prime solvus appears to go through a minimum of about 1235 C near 6 wt.% Co content. Preliminary as-cast tensile and stress rupture results are presented along with heat treat schedules and future test plans.

  5. Stress- Corrosion cracking of copper single crystals

    NASA Astrophysics Data System (ADS)

    Sieradzki, K.; Sabatini, R. L.; Newman, R. C.

    1984-10-01

    Constant extension rate tests have been carried out on copper single crystals in a sodium nitrite solution, using an applied potential to accelerate the cracking. Crack velocities up to 30 nm per second were obtained at 30 C. The stress-corrosion fracture surfaces are cleavage-like, with curved striations parallel to the crack front. If the dynamic straining is stopped, the cracks apparently stop growing within about 20 /?m. The steps between adjacent flat facets are more energy-absorbing than in a-brass, providing a possible explanation for the importance of dynamic strain. Simultaneous acoustic emission and electrochemical current transients have been measured, and suggest that cracking proceeds by discontinuous cleavage.

  6. Transient thermoelectric effect in bismuth single crystals

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Tai, G. X.; Inoue, M.; Bidadi, H.

    1994-05-01

    The photo-induced transient thermoelectric effect (TTE) has been measured for bismuth single crystals along nearly the X and Y axes over the temperature range 6-300 K and time range 50 ns-2 ms. The decay curves of the TTE voltages are characterized by multiple relaxation processes for thermal diffusions of photogenerated electrons and holes. From the analysis of the relaxation times, we have evaluated the carrier mobilities and their effective masses of each carrier pocket at the L and T points based on the existing band model; in particular, we have found an additional hole pocket at the L point lying below the Fermi energy. This TTE technique is shown to be useful for understanding electronic properties of a multicarrier system.

  7. Vibration-assisted machining of single crystal

    NASA Astrophysics Data System (ADS)

    Zahedi, S. A.; Roy, A.; Silberschmidt, V. V.

    2013-07-01

    Vibration-assisted machining offers a solution to expanding needs for improved machining, especially where accuracy and precision are of importance, such as in micromachining of single crystals of metals and alloys. Crystallographic anisotropy plays a crucial role in determining on overall response to machining. In this study, we intend to address the matter of ultra-precision machining of material at the micron scale using computational modelling. A hybrid modelling approach is implemented that combines two discrete schemes: smoothed particle hydrodynamics and continuum finite elements. The model is implemented in a commercial software ABAQUS/Explicit employing a user-defined subroutine (VUMAT) and used to elucidate the effect of crystallographic anisotropy on a response of face centred cubic (f.c.c.) metals to machining.

  8. Computer simulation of channeling in single crystals

    NASA Astrophysics Data System (ADS)

    Smulders, P. J. M.; Boerma, D. O.

    1987-12-01

    A Monte Carlo program for the calculation of channeling phenomena is described. The program combines the binary collision model and the multistring approximation. The energy loss due to electronic excitation is taken into account, with the use of the model of Dettmann and Robinson for the inner-shell electrons and the theory of Pines for valence electrons. The output of the Monte Carlo program may be used for the determination of the impurity sites in single crystals, via a set of auxiliary programs, that enable that calculation of the impurity yield and the analysis of experimental channeling dips. As an application, the site determination of iodine in silicon is described. Another application is the simulation of RBS spectra of planar channeling ions. Simulated and experimental spectra are compared for 1 MeV ions in the (110), (111) and (100) planes of silicon. A reasonable agreement was found. The possible causes of the remaining deviations are discussed.

  9. Piezomagnetism of FeSe single crystals

    NASA Astrophysics Data System (ADS)

    Fil, V. D.; Fil, D. V.; Zhekov, K. R.; Gaydamak, T. N.; Zvyagina, G. A.; Bilich, I. V.; Chareev, D. A.; Vasiliev, A. N.

    2013-08-01

    The acoustic-electric transformation in high-quality FeSe single crystals is studied. In zero magnetic field we observe an abnormally strong electromagnetic radiation induced by a transverse elastic wave. Usually a radiation of such intensity and polarization is observed only in metals subjected to a high magnetic field (the radiation is caused by the Hall current). We argue that in FeSe in zero magnetic field it is caused by the piezomagnetic effect which is most probably of dynamical origin. We find that the piezomagnetism survives under the transition from the normal to superconducting state. In the superconducting state the electromagnetic signal decreases with decreasing temperature that is connected with the change in the London penetration depth.

  10. Single-crystal AlN nanonecklaces

    NASA Astrophysics Data System (ADS)

    Wang, Huatao; Xie, Zhipeng; Wang, Yiguang; Yang, Weiyou; Zeng, Qingfeng; Xing, Feng; An, Linan

    2009-01-01

    Distinct single-crystal aluminum nitride nanonecklaces with uniform \\{10\\bar {1}1\\} faceted beads are synthesized via catalyst-assisted nitriding of Al. The detailed morphology and structure of the nanonecklaces have been characterized. The growth process has been investigated by comparing the products obtained at different synthesis times. The results reveal that the formation of the nanonecklaces is via a process consisting of facet formation and bead unification. The formation of the \\{10\\bar {1}1\\} facets is due to the presence of a liquid phase that lowers the surface tension of otherwise high-energy \\{10\\bar {1}1\\} planes. The bead unification is driven by minimizing the energy contributed by surface energy and electrostatic energy. The unique morphology of the nanonecklaces could be useful for studying fundamental physical phenomena and fabricating nanodevices.

  11. Electrical switching in cadmium boracite single crystals

    NASA Technical Reports Server (NTRS)

    Takahashi, T.; Yamada, O.

    1981-01-01

    Cadmium boracite single crystals at high temperatures ( 300 C) were found to exhibit a reversible electric field-induced transition between a highly insulative and a conductive state. The switching threshold is smaller than a few volts for an electrode spacing of a few tenth of a millimeter corresponding to an electric field of 100 to 1000 V/cm. This is much smaller than the dielectric break-down field for an insulator such as boracite. The insulative state reappears after voltage removal. A pulse technique revealed two different types of switching. Unstable switching occurs when the pulse voltage slightly exceeds the switching threshold and is characterized by a pre-switching delay and also a residual current after voltage pulse removal. A stable type of switching occurs when the voltage becomes sufficiently high. Possible device applications of this switching phenomenon are discussed.

  12. Method of Making Lightweight, Single Crystal Mirror

    NASA Technical Reports Server (NTRS)

    Bly, Vincent T. (Inventor)

    2015-01-01

    A method of making a mirror from a single crystal blank may include fine grinding top and bottom surfaces of the blank to be parallel. The blank may then be heat treated to near its melting temperature. An optical surface may be created on an optical side of the blank. A protector may be bonded to the optical surface. With the protector in place, the blank may be light weighted by grinding a non-optical surface of the blank using computer controlled grinding. The light weighting may include creating a structure having a substantially minimum mass necessary to maintain distortion of the mirror within a preset limit. A damaged layer of the non-optical surface caused by light weighting may be removed with an isotropic etch and/or repaired by heat treatment. If an oxide layer is present, the entire blank may then be etched using, for example, hydrofluoric acid. A reflecting coating may be deposited on the optical surface.

  13. Mechanical Behavior and Processing of DS and Single Crystal Superalloys

    NASA Astrophysics Data System (ADS)

    Khan, T.; Caron, P.; Nakagawa, Y. G.

    1986-07-01

    This article examines mechanical anisotropy of single crystals, cold work induced surface recrystallization on directionally solidified (DS) materials, and the effect of temperature gradient in a DS furnace on the fatigue strength of single crystals. It draws attention to the highly anisotropic creep behavior of some modern single crystal alloys showing, in particular, extremely poor creep resistance in the <111> orientation. Effects of surface recrystallization on the creep strength are evaluated. The present work incites further investigation on heat treatments and alloy chemistry modifications in order to reduce the effect of mechanical anisotropy. Great care should be taken during the "mechanical" handling of DS or single crystal components to avoid surface recrystallization. HIP'ing or high gradient solidification are shown to be two possible ways for enhancing the durability and the fatigue strength of single crystal superalloys. In certain liquid fuel rocket engine applications, where hydrogen embrittlement of single crystal turbopump blades can be of concern, both these techniques can be useful.

  14. Piezoelectric single crystals for ultrasonic transducers in biomedical applications

    PubMed Central

    Zhou, Qifa; Lam, Kwok Ho; Zheng, Hairong; Qiu, Weibao; Shung, K. Kirk

    2014-01-01

    Piezoelectric single crystals, which have excellent piezoelectric properties, have extensively been employed for various sensors and actuators applications. In this paper, the state–of–art in piezoelectric single crystals for ultrasonic transducer applications is reviewed. Firstly, the basic principles and design considerations of piezoelectric ultrasonic transducers will be addressed. Then, the popular piezoelectric single crystals used for ultrasonic transducer applications, including LiNbO3 (LN), PMN–PT and PIN–PMN–PT, will be introduced. After describing the preparation and performance of the single crystals, the recent development of both the single–element and array transducers fabricated using the single crystals will be presented. Finally, various biomedical applications including eye imaging, intravascular imaging, blood flow measurement, photoacoustic imaging, and microbeam applications of the single crystal transducers will be discussed. PMID:25386032

  15. Three-dimensional single crystal silicon micromachining

    NASA Astrophysics Data System (ADS)

    Hofmann, Wolfgang Maximilian Josef

    1999-11-01

    A monolithic, multiple-level (ML), single-crystal-silicon (SCS) micromachining process called SCREAM3D has been developed. The high-aspect-ratio (HAR) levels are self-aligned and are fabricated from a single substrate by deep etching. Anisotropic reactive ion etching of silicon has been studied in detail and new recipes for the vertical etch and release of HAR ML structures have been developed. The SCREAM3D levels are electrically isolated from the substrate and one another using a novel ML isolation scheme, which requires only a single lithography and metallization step, regardless of the number of levels. Two- and three-level SCREAM3D devices have been fabricated. They demonstrate three device concepts: ML microelectromechanical systems (MEMS), micromachined electron gun arrays (MEGA) and ML actuators for out-of-plane deflection. ML MEMS consist of several suspended levels moving relative to each other. They can be coupled mechanically and/or electrically. One example is a novel clamp-alignment device which uses the relative translation of two initially self-aligned apertures to grip and align an external component (such as an optical fiber) to the wafer. MEGA is a multiple-beam architecture to increase the throughput of electron beam lithography. MEGA is an array of identical electron sources, consisting of silicon field emitters with integrated electrostatic lenses. The parallel operation of a large number (N = 10,000) of sources is required to increase the total current and throughput (60 8"-wafers/hour) of the system while maintaining standard single-beam parameters (10nA, 20MHz exposure rate) and limiting charge-interaction effects. ML actuators have been studied by numerical simulation. All four designs outperform comparable single-level actuators: the generated force is up to five times larger, and the range of motion up to ten times greater. Two of the ML designs operate bi-directionally and one design can be used to form a bi-stable system. Several of the actuators have been integrated with torsional and z-motion-stages and experimentally characterized using laser vibrometry. SCREAM3D extends SCS bulk-micromachining to multiple-level structures. The self-aligned, high-aspect-ratio levels allow the implementation of more efficient device designs and novel ML device concepts. Complex actuators, generating larger forces in reduced chip area, can be fabricated and entire microinstruments can be integrated on a single wafer.

  16. Ultratough CVD single crystal diamond and three dimensional growth thereof

    DOEpatents

    Hemley, Russell J. (Washington, DC); Mao, Ho-kwang (Washington, DC); Yan, Chih-shiue (Washington, DC)

    2009-09-29

    The invention relates to a single-crystal diamond grown by microwave plasma chemical vapor deposition that has a toughness of at least about 30 MPa m.sup.1/2. The invention also relates to a method of producing a single-crystal diamond with a toughness of at least about 30 MPa m.sup.1/2. The invention further relates to a process for producing a single crystal CVD diamond in three dimensions on a single crystal diamond substrate.

  17. Soft X-ray emission spectroscopy study of CaF 2(film)/Si(111): non-destructive buried interface analysis

    NASA Astrophysics Data System (ADS)

    Iwami, M.; Kusaka, M.; Hirai, M.; Tagami, R.; Nakamura, H.; Watabe, H.

    1997-06-01

    A soft X-ray emission spectroscopy (SXES) study under an energetic electron irradiation is first applied to a non-destructive buried interface analysis of a CaF 2(film 40 nm)/Si(111) contact system, where the energy of primary electrons, Ep, is ? 5 keV. The present work has explored the usefulness of the application of the SXES method to the interface study to give rise to the following findings: the CaF 2/Si(111) interface shows rather sharp transition from the top CaF 2 to the substrate Si, there certainly is a Ca-silicide layer at the CaF 2/Si(111) interface, the thickness of the silicide layer is estimated to be less than several nm, and the e-beam excited SXES non-destructive study is very powerful to analyze a specimen with rather thick top film (> 40 nm) and thin interface layer (< several nm).

  18. Large single domain 123 material produced by seeding with single crystal rare earth barium copper oxide single crystals

    DOEpatents

    Todt, Volker; Miller, Dean J.; Shi, Donglu; Sengupta, Suvankar

    1998-01-01

    A method of fabricating bulk YBa.sub.2 Cu.sub.3 O.sub.x where compressed powder oxides and/or carbonates of Y and Ba and Cu present in mole ratios to form YBa.sub.2 Cu.sub.3 O.sub.x are heated in the presence of a Nd.sub.1+x Ba.sub.2-x Cu.sub.3 O.sub.y seed crystal to a temperature sufficient to form a liquid phase in the YBa.sub.2 Cu.sub.3 O.sub.x while maintaining the seed crystal solid. The materials are slowly cooled to provide a YBa.sub.2 Cu.sub.3 O.sub.x material having a predetermined number of domains between 1 and 5. Crack-free single domain materials can be formed using either plate shaped seed crystals or cube shaped seed crystals with a pedestal of preferential orientation material.

  19. Investigation on Growth and Surface Analysis of DAST Single Crystals

    SciTech Connect

    Thomas, Tina; Vijay, R. Jerald; Gunaseelan, R.; Sagayaraj, P.

    2011-07-15

    We have explored the growth of bulk size N, N-dimethylamino-N'-methylstilbazolium p-toluenesulphonate (DAST) using slope nucleation method. The grown crystal was characterized by single crystal X-ray diffraction (XRD), and CHN analyses. The surface morphology of the crystal was analyzed using Scanning electron microscopy (SEM).

  20. Oxygen diffusion in single crystal barium titanate.

    PubMed

    Kessel, Markus; De Souza, Roger A; Martin, Manfred

    2015-05-21

    Oxygen diffusion in cubic, nominally undoped, (100) oriented BaTiO3 single crystals has been studied by means of (18)O2/(16)O2 isotope exchange annealing and subsequent determination of the isotope profiles in the solid by time-of-flight secondary ion mass spectrometry (ToF-SIMS). Experiments were carried out as a function of temperature 973 < T/K < 1173, at an oxygen activity of aO2 = 0.200, and as a function of oxygen activity 0.009 < aO2 < 0.900 at T = 1073 K. The oxygen isotope profiles comprise two parts: slow diffusion through a space-charge zone at the surface depleted of oxygen vacancies followed by faster diffusion in a homogeneous bulk phase. The entire isotope profile can be described by a single solution to the diffusion equation involving only three fitting parameters: the surface exchange coefficient ks*, the space-charge potential ?0 and the bulk diffusion coefficient D*(?). Analysis of the temperature and oxygen activity dependencies of D*(?) and ?0 yields a consistent picture of both the bulk and the interfacial defect chemistry of BaTiO3. Values of the oxygen vacancy diffusion coefficient DV extracted from measured D*(?) data are compared with literature data; consequently a global expression for the vacancy diffusivity in BaTiO3 for the temperature range 466 < T/K < 1273 is obtained, with an activation enthalpy of vacancy migration, ?Hmig,V = (0.70 0.04) eV. PMID:25899818

  1. Electrical and thermal conductivities of congruently melting single crystals of isovalent M 1 - x M'xF2 solid solutions ( M, M' = Ca, Sr, Cd, Pb) in relation to their defect fluorite structure

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.; Karimov, D. N.; Buchinskaya, I. I.; Popov, P. A.; Sobolev, B. P.

    2015-07-01

    The electrical and thermal conductive properties of two-component single crystals of Pb0.67Cd0.33F2, Ca0.59Sr0.41F2, and Cd0.77Sr0.23F2 solid solutions with fluorite-type structure (CaF2), characterized by congruent melting (presence of minima in melting curves) and uniform distribution of components in the crystal bulk. Pb0.67Cd0.33F2 crystals, in contrast to isostructural Ca0.59Sr0.41F2 and Cd0.77Sr0.23F2 crystals, are characterized by high fluorine-ion electrical conductivity (? = 0.02 S/m at 293 K); low ion-transport activation enthalpy (? H ? 0.4 eV); low thermal conductivity ( k = 1.1 W/mK at 300 K); and glassy behavior of heat transfer, which is atypical for crystalline state. This anomalous behavior of the electrical and thermal conductivities of Pb0.67Cd0.33F2 crystals is due to the strong structural disordering of the anionic subsystem (which is retained at room temperature) as a result of isovalent replacements of Pb2+ cations with Cd2+ cations.

  2. Polymer single crystal membranes from curved liquid/liquid interface

    NASA Astrophysics Data System (ADS)

    Wang, Wenda; Li, Christopher; Soft Matter Research Group Team

    2014-03-01

    The weak mechanical properties of the current available vesicles such as liposomes, polymersomes, colloidosomes limit their applications for targeting delivery of drugs/genes. Recently, we developed an emulsion-crystallization method to grow polymer curved single crystals. Using polyethylene and poly(l-lactic acid)as the model systems, enclosed or partially open polymer single crystals have been obtained. Electron diffraction and XRD results confirmed their crystalline structure. The single crystal hollow sphere is structurally close to polymersomes, but with thinner wall and higher modulus.

  3. Microscale Laser Peen Forming of Single Crystal

    SciTech Connect

    Wang,Y.; Fan, Y.; Kysar, J.; Vukelic, S.; Yao, Y.

    2008-01-01

    As the result of quickly increased requirement in many industrial products resulting from microtechnology, laser thermal microforming and microsurface treatment [microscale laser shock peening (?LSP)] have been well studied. By combining the beneficial effects of these two processes with a controlled bending deformation, microscale laser peen forming (?LPF) attracts more attention recently since it not only improves the fatigue life of the material but also shapes microscale metallic parts at the same time. In the present study, ?LSP of single crystal aluminum was presented to study anisotropic material response. Local plastic deformation was characterized by lattice rotation measured through electron backscatter diffraction. Residual stress distributions of both sides of a peened sample, characterized by x-ray microdiffraction, were compared with the results obtained from finite element method simulation. ?LPF anisotropic behavior was investigated in three effective slip systems via both the anisotropic slip line theory and numerical method. Also, the work hardening effect resulted from self-hardening, and latent hardening was analyzed through comparing the results with and without considering hardening.

  4. Advanced single crystal for SSME turbopumps

    NASA Technical Reports Server (NTRS)

    Fritzemeier, L. G.

    1989-01-01

    The objective of this program was to evaluate the influence of high thermal gradient casting, hot isostatic pressing (HIP) and alternate heat treatments on the microstructure and mechanical properties of a single crystal nickel base superalloy. The alloy chosen for the study was PWA 1480, a well characterized, commercial alloy which had previously been chosen as a candidate for the Space Shuttle Main Engine high pressure turbopump turbine blades. Microstructural characterization evaluated the influence of casting thermal gradient on dendrite arm spacing, casting porosity distribution and alloy homogeneity. Hot isostatic pressing was evaluated as a means of eliminating porosity as a preferred fatigue crack initiation site. The alternate heat treatment was chosen to improve hydrogen environment embrittlement resistance and for potential fatigue life improvement. Mechanical property evaluation was aimed primarily at determining improvements in low cycle and high cycle fatigue life due to the advanced processing methods. Statistically significant numbers of tests were conducted to quantitatively demonstrate life differences. High thermal gradient casting improves as-cast homogeneity, which facilitates solution heat treatment of PWA 1480 and provides a decrease in internal pore size, leading to increases in low cycle and high cycle fatigue lives.

  5. A Quick Method for Determining the Density of Single Crystals.

    ERIC Educational Resources Information Center

    Roman, Pascual; Gutierrez-Zorrilla, Juan M.

    1985-01-01

    Shows how the Archimedes method is used to determine the density of a single crystal of ammonium oxalate monohydrate. Also shows how to calculate the density of other chemicals when they are available as single crystals. Experimental procedures and materials needed are included. (JN)

  6. Semiconductor single crystal external ring resonator cavity laser and gyroscope

    SciTech Connect

    Spitzer, M.P.

    1993-08-31

    A ring laser is described comprising: a semiconductor single crystal external ring resonator cavity having a plurality of reflecting surfaces defined by the planes of the crystal and establishing a closed optical path; and a discrete laser medium disposed in said semiconductor single crystal external ring resonator cavity for generating coherent light in said cavity, wherein said resonator cavity is decoupled from the laser medium.

  7. Tunability of laser based on Yb-doped hot-pressed CaF2 ceramics

    NASA Astrophysics Data System (ADS)

    Sulc, Jan; Doroshenko, Maxim E.; Jelnkov, Helena; Basiev, Tasoltan T.; Konyushkin, Vasilii A.; Osiko, Vyacheslav V.

    2012-06-01

    The aim of presented study was an investigation of tunability of diode pumped laser based on hot-pressed Yb:CaF2 ceramics. The tested Yb:CaF2 sample was in the form of 3.5mm thick plane-parallel face-polished plate (without AR coatings). The Yb3+ concentration was 5.5 %. A fiber (core diameter 200 ?m, NA= 0.22) coupled laser diode (LIMO, HLU25F200-980) with emission at wavelength 976 nm, was used for longitudinal Yb:CaF2 pumping. The laser diode was operating in the pulsed regime (4 ms pulse length, 20 Hz repetition rate). The duty-cycle 8% ensured a low thermal load even under the maximum diode pumping power amplitude 10W (crystal sample was only air-cooled). This radiation was focused into the crystal (pumping beam waist diameter ~ 170 ?m). The 145mm long semi-hemispherical laser resonator consisted of a flat pumping mirror (HR @ 1.01 - 1.09 ?m, HT @ 0.97 ?m) and curved (r = 150mm) output coupler with a reflectivity of ~ 98% @ 1.01 - 1.09 ?m. Tuning of the ytterbium laser was accomplished by using a birefringent filter (single 1.5mm thick quartz plate) placed inside the optical resonator at the Brewster angle between the output coupler and the laser active medium. The extremely broad and smooth tuning was obtained. The laser was continuously tunable over ~ 66nm (from 1015nm to 1081 nm) and the tuning band was mostly limited by free spectral range of used birefringent filter. The tunability FWHM was 40 nm corresponding bandwidth 10 THz results in Fourier limited gaussian pulse width ~ 40 fs (FWHM). The maximum output power amplitude 0.68W was obtained at wavelength 1054nm for absorbed pump power amplitude 6W. The laser slope efficiency was 15%.

  8. Reshock and release response of aluminum single crystal

    NASA Astrophysics Data System (ADS)

    Huang, H.; Asay, J. R.

    2007-03-01

    Reshock and release experiments were performed on single crystal aluminum along three orientations and on polycrystalline 1050 aluminum with 50?m grain size at shock stresses of 13 and 21GPa to investigate the mechanisms for previously observed quasielastic recompression behavior. Particle velocity profiles obtained during reshocking both single crystals and polycrystalline aluminum from initial shock stresses of 13-21GPa show similar quasielastic recompression behavior. Quasielastic release response is also observed in all single crystals, but the magnitude of the effect is crystal orientation dependent, with [111] and [110] exhibiting more ideal elastic-plastic release for unloading from the shocked state than for the [100] orientation and polycrystalline aluminum. The quasielastic response of 1050 aluminum is intermediate to that of the [100] and [111] orientations. Comparison of the wave profiles obtained for both unloading and reloading of single crystals and polycrystalline 1050 aluminum from shocked states suggests that the observed quasielastic response of polycrystalline aluminum results from the averaging response of single crystals for shock propagation along different orientations, and that the response of 1050 aluminum with large grain boundaries is not significantly different from the results obtained on single crystal aluminum. The yield strength of the single crystals and 1050 aluminum is found to increase with shock stress, which is consistent with previous results [H. Huang and I. R. Asay, J. Appl. Phys. 98, 033524 (2005)].

  9. Electrical conductivity of NaF-AlF3-CaF2-Al2O3 melts

    NASA Astrophysics Data System (ADS)

    Bakin, K. B.; Simakova, O. N.; Polyakov, P. V.; Mikhalev, Yu. G.; Simakov, D. A.; Gusev, A. O.

    2010-08-01

    The electrical conductivity of NaF-AlF3-Al2O3 melts with a CaF2 concentration of 5 wt % is measured at a continuously varying cell constant when the molar cryolitic ratio CR = [NaF]/[AlF3] changes from 1.2 to 2.0 [1, 2]. The experimental data are used to obtain a regression equation to describe the dependence of the electrical conductivity of the melts under study on CR, the alumina content, and temperature { χ] = f(CR, [Al2O3], T)}.

  10. Development of very high Jc in Ba(Fe1-xCox)2As2 thin films grown on CaF2

    PubMed Central

    Tarantini, C.; Kametani, F.; Lee, S.; Jiang, J.; Weiss, J. D.; Jaroszynski, J.; Hellstrom, E. E.; Eom, C. B.; Larbalestier, D. C.

    2014-01-01

    Ba(Fe1-xCox)2As2 is the most tunable of the Fe-based superconductors (FBS) in terms of acceptance of high densities of self-assembled and artificially introduced pinning centres which are effective in significantly increasing the critical current density, Jc. Moreover, FBS are very sensitive to strain, which induces an important enhancement in critical temperature, Tc, of the material. In this paper we demonstrate that strain induced by the substrate can further improve Jc of both single and multilayer films by more than that expected simply due to the increase in Tc. The multilayer deposition of Ba(Fe1-xCox)2As2 on CaF2 increases the pinning force density (Fp = Jc 0H) by more than 60% compared to a single layer film, reaching a maximum of 84?GN/m3 at 22.5?T and 4.2?K, the highest value ever reported in any 122 phase. PMID:25467177

  11. Development of very high Jc in Ba(Fe1-xCox)2As2 thin films grown on CaF2

    DOE PAGESBeta

    Tarantini, C.; Kametani, F.; Lee, S.; Jiang, J.; Weiss, J. D.; Jaroszynski, J.; Hellstrom, E. E.; Eom, C. B.; Larbalestier, D. C.

    2014-12-03

    Ba(Fe1-xCox)2As2 is the most tunable of the Fe-based superconductors (FBS) in terms of acceptance of high densities of self-assembled and artificially introduced pinning centres which are effective in significantly increasing the critical current density, Jc. Moreover, FBS are very sensitive to strain, which induces an important enhancement in critical temperature,Tc, of the material. In this study we demonstrate that strain induced by the substrate can further improve Jc of both single and multilayer films by more than that expected simply due to the increase in Tc. The multilayer deposition of Ba(Fe1-xCox)2As2 on CaF2 increases the pinning force density (Fp=Jc xmore » μ₀H) by more than 60% compared to a single layer film, reaching a maximum of 84 GN/m3 at 22.5 T and 4.2 K, the highest value ever reported in any 122 phase.« less

  12. Ferroelectric polarization reversal in single crystals

    NASA Technical Reports Server (NTRS)

    Stadler, Henry L.

    1992-01-01

    Research on the reversal of polarization in ferroelectric crystals is reviewed. Particular attention is given to observation methods for polarization reversal, BaTiO3 polarization reversal, crystal thickness dependence of polarization reversal, and domain wall movement during polarization reversal in TGS.

  13. Prospects for the synthesis of large single-crystal diamonds

    NASA Astrophysics Data System (ADS)

    Khmelnitskiy, R. A.

    2015-02-01

    The unique properties of diamond have stimulated the study of and search for its applications in many fields, including optics, optoelectronics, electronics, biology, and electrochemistry. Whereas chemical vapor deposition allows the growth of polycrystalline diamond plates more than 200 mm in diameter, most current diamond application technologies require large-size (25 mm and more) single-crystal diamond substrates or films suitable for the photolithography process. This is quite a challenge, because the largest diamond crystals currently available are 10 mm or less in size. This review examines three promising approaches to fabricating large-size diamond single crystals: growing large-size single crystals, the deposition of heteroepitaxial diamond films on single-crystal substrates, and the preparation of composite diamond substrates.

  14. Method for harvesting single crystals from a peritectic melt

    DOEpatents

    Todt, V.R.; Sengupta, S.; Shi, D.

    1996-08-27

    A method of preparing single crystals is disclosed. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals unmelted, allowing the wicking away of the peritectic liquid. 2 figs.

  15. Method for harvesting single crystals from a peritectic melt

    DOEpatents

    Todt, Volker R. (Lemont, IL); Sengupta, Suvankar (Columbus, OH); Shi, Donglu (Cincinnati, OH)

    1996-01-01

    A method of preparing single crystals. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals unmelted, allowing the wicking away of the peritectic liquid.

  16. Method for harvesting rare earth barium copper oxide single crystals

    DOEpatents

    Todt, Volker R. (Lemont, IL); Sengupta, Suvankar (Columbus, OH); Shi, Donglu (Cincinnati, OH)

    1996-01-01

    A method of preparing high temperature superconductor single crystals. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals of the high temperature superconductor, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals of the high temperature superconductor on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals melted, allowing the wicking away of the peritectic liquid.

  17. Stability of Detached Grown Germanium Single Crystals

    NASA Technical Reports Server (NTRS)

    Schweizer, M.; Volz, M. P.; Cobb, S. D.; Motakef, S.; Szofran, F. R.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Detachment of the melt meniscus from the crucible during semiconductor Bridgman growth experiments has been observed in recent years especially, under microgravity experiments. Under earth conditions, the hydrostatic pressure counteracts the mechanism, whereby it is more difficult to achieve detached Bridgman growth. Attempts to get stable detached growth under terrestrial conditions have been discussed in the literature and have been the subject of recent experiments in our own group. The advantage of crystals grown without wall contact is obvious: In general, they possess a higher crystal quality than conventional Bridgman grown crystals with wall contact. However, due to the interaction of different parameters such as the wetting behavior of the melt with the crucible, and the dependence of the growth angle with the shape of the melt meniscus, the mechanism leading to detachment is very complicated and not completely understood. We have grown several doped and undoped Germanium crystals with the detached Bridgman and the normal Bridgman growth technique. Pyrolytic boron nitride containers were used for all growth experiments. In the detached grown crystals the typical gap thickness between the pBN crucible and the crystal is in the range of 10 to 100 microns, which was determined by performing profilometer measurements. Etch pit density measurements were also performed and a comparison between detached and attached grown crystals will be given. An interesting feature was detected on the surface of a detached grown crystal. Strong surface striations with an average axial distance of 0.5mm were observed around the whole circumference. The maximum fluctuation of the gap thickness is in the range of 5-10 microns. These variations of the detached gap along the crystal axis can be explained by a kind of stiction of the melt/crucible interface and thus by a variation of the meniscus shape. This phenomenon leading to the fluctuation of the gap thickness will be discussed in detail.

  18. Stability of Detached Grown Germanium Single Crystals

    NASA Technical Reports Server (NTRS)

    Schweizer, M.; Volz, M. P.; Cobb, S. D.; Vujisic, L.; Szofran, F. R.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Detachment of the melt meniscus from the crucible during semiconductor Bridgman growth experiments has been observed in recent years, especially under microgravity experiments. Under earth conditions, the hydrostatic pressure counteracts the mechanism, whereby it is more difficult to achieve detached Bridgman growth. Attempts to get stable detached growth under terrestrial conditions have been discussed in the literature and have been the subject of recent experiments in our own group. The advantage of crystals grown without wall contact is obvious: In general, they possess a higher crystal quality than conventional Bridgman grown crystals with wall contact. However, due to the interaction of different parameters such as the wetting behavior of the melt with the crucible, and the dependence of the growth angle with the shape of the melt meniscus, the mechanism leading to detachment is very complicated and not completely understood. We have grown several doped and undoped Germanium crystals with the detached Bridgman and the normal Bridgman growth technique. Pyrolytic boron nitride containers were used for all growth experiments. In the detached grown crystals the typical gap thickness between the pBN crucible and the crystal is in the range of 10 to 100 micrometers, which was determined by performing profilometer measurements. Etch pit density measurements were also performed and a comparison between detached and attached grown crystals will be given. An interesting feature was detected on the surface of a detached grown crystal. Strong surface striations with an average axial distance of 0.5 mm were observed around the whole circumference. The maximum fluctuation of the gap thickness is in the range of 5-10 micrometers. These variations of the detached gap along the crystal axis can be explained by a kind of stiction of the melt/crucible interface and thus by a variation of the meniscus shape. This phenomenon leading to the fluctuation of the gap thickness will be discussed in detail.

  19. Carrier recombination-incited substrate vibrations after pulsed UV-laser photolysis of TiO2 thin single-crystal plate and nanoparticle films.

    PubMed

    Zhu, Ming; Zhu, Gangbei; Weng, Yuxiang

    2013-05-01

    Photo-induced carrier generation and recombination have been regarded as important steps in understanding the photocatalytic reactions on the surfaces of semiconductors such as TiO2. During the investigation of a photocatalytic water-splitting reaction on the surface of semiconductor TiO2 (rutile) single-crystal plate and sintered-nanoparticle (anatase) films coated on a CaF2 plate, a pulsed 355 nm laser was used for band-gap excitation and a continuous-working, mid-infrared laser as the probe to trace the kinetics of the photogenerated electrons. Fast oscillations with periods of 10-50 ?s were observed. We demonstrated experimentally that these oscillations are neither from the nonlinear carrier recombination dynamics nor surface chemical reactions; instead, they are caused by the thermal-induced flexural vibrations initiated by the fast carrier recombination in the light-absorbing area. The observed oscillations can be well accounted for by thermal stress-induced flexural vibrations of the substrates due to rapid charge recombination, and the observed oscillation frequencies match the flexural vibration frequencies predicted by the Kirchhoff-Love thin-plate theory. Light-interference effect caused by the beam reflecting off the surfaces of the substrate and windows, which can amplify the oscillation signals, is also discussed. Several approaches are proposed to minimize or eliminate the interference from the substrate vibration in the transient kinetic measurement when a coherent laser is used as the probe beam. PMID:23643039

  20. The Growth of Large Single Crystals.

    ERIC Educational Resources Information Center

    Baer, Carl D.

    1990-01-01

    Presented is an experiment which demonstrates principles of experimental design, solubility, and crystal growth and structure. Materials, procedures and results are discussed. Suggestions for adapting this activity to the high school laboratory are provided. (CW)

  1. A Single Crystal Niobium RF Cavity of the TESLA Shape

    SciTech Connect

    Singer, W.; Singer, X.; Kneisel, P.

    2007-08-09

    A fabrication method for single crystal niobium cavities of the TESLA shape was proposed on the basis of metallographic investigations and electron beam welding tests on niobium single crystals. These tests showed that a cavity can be produced without grain boundaries even in the welding area. An appropriate annealing allows the outgassing of hydrogen and stress relaxation of the material without destruction of the single crystal. A prototype single crystal single cell cavity was build. An accelerating gradient of 37.5 MV/m was reached after approximately 110 {mu}m of Buffered Chemical Polishing (BCP) and in situ baking at 120 deg. C for 6 hrs with a quality factor exceeding 2x1010 at 1.8 K. The developed fabrication method can be extended to fabrication of multi cell cavities.

  2. A Single Crystal Niobium RF Cavity of the TESLA Shape

    SciTech Connect

    W. Singer; X. Singer; P. Kneisel

    2007-09-01

    A fabrication method for single crystal niobium cavities of the TESLA shape was proposed on the basis of metallographic investigations and electron beam welding tests on niobium single crystals. These tests showed that a cavity can be produced without grain boundaries even in the welding area. An appropriate annealing allows the outgassing of hydrogen and stress relaxation of the material without destruction of the single crystal. A prototype single crystal single cell cavity was built. An accelerating gradient of 37.5 MV/m was reached after approximately 110 mu-m of Buffered Chanical Polishing (BCP) and in situ baking at 120°C for 6 hrs with a quality factor exceeding 2x1010 at 1.8 K. The developed fabrication method can be extended to fabrication of multi cell cavities.

  3. Growing Single Crystals of Compound Semiconductors

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J.; Lehoczky, Sandor L.; Frazier, Donald O.

    1987-01-01

    Defect reduced by preventing melt/furnace contact and suppressing convention. Large crystals of compound semiconductors with few defects grown by proposed new method. Such materials as gallium arsenide and cadmium telluride produced, with quality suitable for very-large-scale integrated circuits or for large focal-plane arrays of photodetectors. Method used on small scale in Earth gravity, but needs microgravity to provide crystals large enough for industrial use.

  4. Single-drop optimization of protein crystallization.

    PubMed

    Meyer, Arne; Dierks, Karsten; Hilterhaus, Dierk; Klupsch, Thomas; Mhlig, Peter; Kleesiek, Jens; Schpflin, Robert; Einspahr, Howard; Hilgenfeld, Rolf; Betzel, Christian

    2012-08-01

    A completely new crystal-growth device has been developed that permits charting a course across the phase diagram to produce crystalline samples optimized for diffraction experiments. The utility of the device is demonstrated for the production of crystals for the traditional X-ray diffraction data-collection experiment, of microcrystals optimal for data-collection experiments at a modern microbeam insertion-device synchrotron beamline and of nanocrystals required for data collection on an X-ray laser beamline. PMID:22869140

  5. Single-drop optimization of protein crystallization

    PubMed Central

    Meyer, Arne; Dierks, Karsten; Hilterhaus, Dierk; Klupsch, Thomas; Mhlig, Peter; Kleesiek, Jens; Schpflin, Robert; Einspahr, Howard; Hilgenfeld, Rolf; Betzel, Christian

    2012-01-01

    A completely new crystal-growth device has been developed that permits charting a course across the phase diagram to produce crystalline samples optimized for diffraction experiments. The utility of the device is demonstrated for the production of crystals for the traditional X-ray diffraction data-collection experiment, of microcrystals optimal for data-collection experiments at a modern microbeam insertion-device synchrotron beamline and of nanocrystals required for data collection on an X-ray laser beamline. PMID:22869140

  6. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization.

    PubMed

    Saidaminov, Makhsud I; Abdelhady, Ahmed L; Murali, Banavoth; Alarousu, Erkki; Burlakov, Victor M; Peng, Wei; Dursun, Ibrahim; Wang, Lingfei; He, Yao; Maculan, Giacomo; Goriely, Alain; Wu, Tom; Mohammed, Omar F; Bakr, Osman M

    2015-01-01

    Single crystals of methylammonium lead trihalide perovskites (MAPbX3; MA = CH3NH3(+), X = Br(-) or I(-)) have shown remarkably low trap density and charge transport properties; however, growth of such high-quality semiconductors is a time-consuming process. Here we present a rapid crystal growth process to obtain MAPbX3 single crystals, an order of magnitude faster than previous reports. The process is based on our observation of the substantial decrease of MAPbX3 solubility, in certain solvents, at elevated temperatures. The crystals can be both size- and shape-controlled by manipulating the different crystallization parameters. Despite the rapidity of the method, the grown crystals exhibit transport properties and trap densities comparable to the highest quality MAPbX3 reported to date. The phenomenon of inverse or retrograde solubility and its correlated inverse temperature crystallization strategy present a major step forward for advancing the field on perovskite crystallization. PMID:26145157

  7. High quality factor single-crystal diamond mechanical resonators

    NASA Astrophysics Data System (ADS)

    Ovartchaiyapong, P.; Pascal, L. M. A.; Myers, B. A.; Lauria, P.; Bleszynski Jayich, A. C.

    2012-10-01

    Single-crystal diamond is a promising material for microelectromechanical systems (MEMs) because of its low mechanical loss, compatibility with extreme environments, and built-in interface to high-quality spin centers. But its use has been limited by challenges in processing and growth. We demonstrate a wafer bonding-based technique to form diamond on insulator, from which we make single-crystal diamond micromechanical resonators with mechanical quality factors as high as 338 000 at room temperature. Variable temperature measurements down to 10 K reveal a nonmonotonic dependence of quality factor on temperature. These resonators enable integration of single-crystal diamond into MEMs technology for classical and quantum applications.

  8. Potassium-Sodium Niobate Single Crystals and Electric Properties

    NASA Astrophysics Data System (ADS)

    Kimura, H.; Tanahashi, R.; Maiwa, K.; Baba, H.; Cheng, Z. X.; Wang, X. L.

    Potassium-sodium-rubidium niobate single crystals are grown using an original pulling down method, to improve their composition change during a crystal growth, by means of co-doping of small ionic size sodium and large ionic size rubidium into potassium niobate. Even by the co-doping, single crystals can be grown with orthorhombic single-phase at room temperature, as well as pure potassium niobate. Their electric properties, such as the dielectric constant and the impedance, are changed depending on the doping ions.

  9. A Study of the Superfluid Transition in $(4) {He} 4 He Films Adsorbed to Rough {CaF}_2$ CaF 2 Over a Large Temperature Range

    NASA Astrophysics Data System (ADS)

    Wadleigh, L. R.; Luhman, D. R.

    2014-11-01

    Rough two-dimensional substrates, such as thermally deposited , have been shown to modify the experimental signatures of the superfluid transition in adsorbed thin helium films. Previous experiments have investigated a series of increasingly rough surfaces over a limited temperature range and found that the features at the superfluid transition become less defined as substrate roughness is increased. In this work we study the superfluid transition in adsorbed helium films over a wide range of temperatures for a series of substrates. Our results show that as the transition temperature increases the abrupt jump in superfluid density at the transition becomes less distinct. The changing characteristics of the transition on a single substrate with temperature suggest that the reduced observability of the transition on rough substrates cannot be explained entirely by superfluid drag. We discuss several other possible scenarios which may be relevant to the helium films on.

  10. Halide electrodeposition on single-crystal electrodes

    NASA Astrophysics Data System (ADS)

    Mitchell, Steven James

    2001-07-01

    In this dissertation, we investigate in depth by computational and theoretical methods the processes and behavior of submonolayer electrochemical deposition of Br onto single-crystal Ag(100) electrodes. Although this system has little direct industrial application, it provides a test bed for developing theoretical and computational techniques which can be used to study systems of more applied interest. Br electrodeposited onto a Ag(100) substrate at room temperature displays a disordered phase at low electrochemical potentials. At higher electrochemical potentials, the adlayer undergoes a disorder-order phase transition to a c(2 x 2) ordered phase. The phase transition, the equilibrium properties of the adlayer, and the dynamics of the ordering and disordering processes are studied by a variety computational techniques, including static and dynamic lattice-gas models, an off-lattice equilibrium model, and Langevin simulations. Using a two-dimensional lattice-gas approximation for the adlayer, Monte Carlo simulations are used to explore the equilibrium properties of the Br adlayer under different values of the electrochemical potential. The model predicts the existence of low-temperature phases which are not stable at room temperature. The effects of these low-temperature phases on the room-temperature properties of the adlayer are discussed. Starting from the lattice-gas model developed for equilibrium simulations, a dynamic Monte Carlo simulation program is constructed, and the phase-ordering, disordering, and hysteresis behaviors are studied. The phase-ordering process is in the dynamic universality class known as Model A (Lifshitz-Allen-Cahn dynamics), but the disordering behavior is not as easily classified. Dynamic simulations of cyclic-voltammetry experiments show hysteresis due to kinetic limitations associated with the ordering and disordering processes. To further investigate the properties of the adlayer, the lattice-gas approximation was relaxed and replaced by a corrugation-potential approximation. Within this two-dimensional off-lattice model, the equilibrium properties were found to be similar to those of the lattice-gas model. However, the off-lattice model obviously allows calculations of additional quantities, such as the average lateral displacement from the adsorption site. Langevin dynamic simulations of the off-lattice model were also performed to test the validity of the assumptions used in the dynamic Monte Carlo simulations. However, these dynamic simulations were far too computationally intensive to allow off-lattice simulations of the ordering, disordering, and hysteresis behaviors. As a first step towards developing accelerated simulation methods for off-lattice simulations, we construct an advanced dynamic algorithm for continuum spin systems.

  11. A study of crystal growth by solution technique. [triglycine sulfate single crystals

    NASA Technical Reports Server (NTRS)

    Lal, R. B.

    1979-01-01

    The advantages and mechanisms of crystal growth from solution are discussed as well as the effects of impurity adsorption on the kinetics of crystal growth. Uncertainities regarding crystal growth in a low gravity environment are examined. Single crystals of triglycine sulfate were grown using a low temperature solution technique. Small components were assembled and fabricated for future space flights. A space processing experiment proposal accepted by NASA for the Spacelab-3 mission is included.

  12. Single crystal Processing and magnetic properties of gadolinium nickel

    SciTech Connect

    Shreve, Andrew John

    2012-11-02

    GdNi is a rare earth intermetallic material that exhibits very interesting magnetic properties. Spontaneous magnetostriction occurs in GdNi at T{sub C}, on the order of 8000ppm strain along the c-axis and only until very recently the mechanism causing this giant magnetostriction was not understood. In order to learn more about the electronic and magnetic structure of GdNi, single crystals are required for anisotropic magnetic property measurements. Single crystal processing is quite challenging for GdNi though since the rare-earth transition-metal composition yields a very reactive intermetallic compound. Many crystal growth methods are pursued in this study including crucible free methods, precipitation growths, and specially developed Bridgman crucibles. A plasma-sprayed Gd{sub 2}O{sub 3} W-backed Bridgman crucible was found to be the best means of GdNi single crystal processing. With a source of high-quality single crystals, many magnetization measurements were collected to reveal the magnetic structure of GdNi. Heat capacity and the magnetocaloric effect are also measured on a single crystal sample. The result is a thorough report on high quality single crystal processing and the magnetic properties of GdNi.

  13. Growth and characterization of organic material 4-dimethylaminobenzaldehyde single crystal.

    PubMed

    Jebin, R P; Suthan, T; Rajesh, N P; Vinitha, G; Madhusoodhanan, U

    2015-01-25

    The organic material 4-dimethylaminobenzaldehyde single crystals were grown by slow evaporation technique. The grown crystal was confirmed by the single crystal and powder X-ray diffraction analyses. The functional groups of the crystal have been identified from the Fourier Transform Infrared (FTIR) and FT-Raman studies. The optical property of the grown crystal was analyzed by UV-Vis-NIR and photoluminescence (PL) spectral measurements. The thermal behavior of the grown crystal was analyzed by thermogravimetric (TG) and differential thermal analyses (DTA). Dielectric measurements were carried out with different frequencies by using parallel plate capacitor method. The third order nonlinear optical properties of 4-dimethylaminobenzaldehyde was measured by the Z-scan technique using 532 nm diode pumped continuous wave (CW) Nd:YAG laser. PMID:25168233

  14. Modification of mechanical properties of e-gun evaporated MgF2 and CaF2 thin films under ion beam bombardment

    NASA Astrophysics Data System (ADS)

    Scaglione, S.; Flori, D.; Emiliani, G.

    1989-12-01

    The effect of ion beam assistance on mechanical properties (hardness and adhesion) of MgF2 and CaF2 thin films has been investigated. These films have been deposited by e-gun evaporation and bombarded during growth with an ion beam produced by a Kaufman source. The Knoop hardness has been calculated after having performed on the samples some indentation by an ultra-microindenter and measured the impression size by an eyepiece mounted on an optical microscope. The film adhesion has been measured by the scratch test technique. To investigate the influence of the ion source parameters on the mechanical properties, different ion beam energies (200-800 eV) have been used. Bombarded samples are harder (610 and 750 kg/mm2 for CaF2 and MgF2 samples, respectively) than unbombarded samples (380 and 300 kg/mm2 for CaF2 and MgF2, respectively). Critical loads (load where the delamination of the coating begins) of 12 and 3 N for bombarded MgF2 and CaF2 respectively and 4 and 1 N for unbombarded MgF2 and CaF2 samples have been found.

  15. Effects of CaF2 Coating on the Microstructures and Mechanical Properties of Tungsten Inert Gas Welded AZ31 Magnesium Alloy Joints

    NASA Astrophysics Data System (ADS)

    Shen, Jun; Wang, Linzhi; Peng, Dong; Wang, Dan

    2012-11-01

    The effects of CaF2 coating on the macromorphologies of the welded seams were studied by morphological analysis. Microstructures and mechanical properties of butt joints welded with different amounts of CaF2 coatings were investigated using optical microscopy and tensile tests. The welding defects formed in the welded seams and the fracture surfaces were analyzed by scanning electron microscopy. An increase in the amount of CaF2 coating deteriorated the appearances of the welded seams but it improved the weld penetration depth and the depth/width ( D/ W) ratio of the tungsten inert gas (TIG) welded joints. The α-Mg grains and Mg17(Al,Zn)12 intermetallic compound (IMC) were coarser in the case of a higher amount of CaF2 coating. The increase in the amount of CaF2 coating reduced the porosities and total length of solidification cracks in the fusion zone (FZ). The ultimate tensile strength (UTS) value and elongation increased at first and then decreased sharply.

  16. Growth and characterization of diammonium copper disulphate hexahydrate single crystal

    SciTech Connect

    Siva Sankari, R.; Perumal, Rajesh Narayana

    2014-03-01

    Graphical abstract: Diammonium copper disulphate hexahydrate (DACS) is one of the most promising inorganic dielectric crystals with exceptional mechanical properties. Good quality crystals of DACS were grown by using solution method in a period of 30 days. The grown crystals were subjected to single crystal X-ray diffraction analysis in order to establish their crystalline nature. Thermo gravimetric, differential thermal analysis, FTIR, and UV–vis–NIR analysis were performed for the crystal. Several solid state physical parameters have been determined for the grown crystals. The dielectric constant and the dielectric loss and AC conductivity of the grown crystal were studied as a function of frequency and temperature has been calculated and plotted. - Highlights: • Diammonium copper disulphate is grown for the first time and CCDC number obtained. • Thermal analysis is done to see the stability range of the crystals. • Band gap and UV cut off wavelength of the crystal are determined to be 2.4 eV and 472.86 nm, respectively. • Dielectric constant, dielectric loss and AC conductivity are plotted as a function of applied field. - Abstract: Diammonium copper disulphate hexahydrate is one of the most promising inorganic crystals with exceptional dielectric properties. A good quality crystal was harvested in a 30-day period using solution growth method. The grown crystal was subjected to various characterization techniques like single crystal X-ray diffraction analysis, thermo gravimetric, differential thermal analysis, FTIR, and UV–vis–NIR analysis. Unit cell dimensions of the grown crystal have been identified from XRD studies. Functional groups of the title compounds have been identified from FTIR studies. Thermal stability of the samples was checked by TG/DTA studies. Band gap of the crystal was calculated. The dielectric constant and dielectric loss were studied as a function of frequency of the applied field. AC conductivity was plotted as a function of temperature.

  17. The growth of multicomponent oxide single crystals by Stepanov's technique

    NASA Astrophysics Data System (ADS)

    Ivleva, L. I.; Kuzminov, Iu. S.; Osiko, V. V.; Polozkov, N. M.

    1987-03-01

    Single crystals of LiNbO3, Sr(x)Ba(1-x)Nb2O6, Ca3(VO4), Bi12SiO20, Bi12GeO20, Bi4Ge3O12 and Nd3Ga5O12 were grown in an apparatus using RF heating of platinum crucibles in air. Stepanov's technique made it possible to increase by several times the rates of solidification needed to obtain optically homogeneous single crystals. Optimum crystallographic directions of pulling were experimentally determined for crystals from various symmetry groups. The shape of a growing crystal was related to the structural defects according to the Curie principle. The experimental data provided support for the growth of profiled multicomponent single crystals.

  18. Three-Dimensional Conformation of Folded Polymers in Single Crystals

    NASA Astrophysics Data System (ADS)

    Hong, You-lee; Yuan, Shichen; Li, Zhen; Ke, Yutian; Nozaki, Koji; Miyoshi, Toshikazu

    2015-10-01

    The chain-folding mechanism and structure of semicrystalline polymers have long been controversial. Solid-state NMR was applied to determine the chain trajectory of 13C CH3 -labeled isotactic poly(1-butene) (i PB 1 ) in form III chiral single crystals blended with nonlabeled i PB 1 crystallized in dilute solutions under low supercooling. An advanced 13C - 13C double-quantum NMR technique probing the spatial proximity pattern of labeled 13C nuclei revealed that the chains adopt a three-dimensional (3D) conformation in single crystals. The determined results indicate a two-step crystallization process of (i) cluster formation via self-folding in the precrystallization stage and (ii) deposition of the nanoclusters as a building block at the growth front in single crystals.

  19. Pulse shape discrimination with new single crystal organic scintillators

    NASA Astrophysics Data System (ADS)

    Newby, Jason; Zaitseva, Natalia; Payne, Stephen; Cherepy, Nerine; Carman, Leslie; Hull, Giulia

    2009-10-01

    Pulse shape discrimination in organic single crystal and liquid scintillators provides a means of identifying fission energy neutrons with high specificity. We present the results of a broad survey of over one hundred single crystal organic scintillators produced from low-temperature solution growth technique. Each crystal was evaluated for light yield and pulse shape discrimination performance. The pulse shape dependence on excitations via a Compton electron from a gamma and a recoil proton from a fast neutron was measured using full waveform digitization. Several groups of compounds were compared in relation to molecular and crystallographic structures, crystal perfection, and the effect of impurities. New prospective materials offering neutron/gamma discrimination comparable or superior to stilbene will be presented. We also report on the growth of large single crystal lithium salicylate and other promising Li compounds which have sensitivity to lower energy neutrons via neutron capture on ^6Li and are separable from other excitations via pulse shape discrimination.

  20. Growing intermetallic single crystals using in situ decanting

    SciTech Connect

    Petrovic, Cedomir; Canfield, Paul; Mellen, Jonathan

    2012-05-16

    High temperature metallic solution growth is one of the most successful and versatile methods for single crystal growth, and is particularly suited for exploratory synthesis. The method commonly utilizes a centrifuge at room temperature and is very successful for the synthesis of single crystal phases that can be decanted from the liquid below the melting point of the silica ampoule. In this paper, we demonstrate the extension of this method that enables single crystal growth and flux decanting inside the furnace at temperatures above 1200C. This not only extends the number of available metallic solvents that can be used in exploratory crystal growth but also can be particularly well suited for crystals that have a rather narrow exposed solidification surface in the equilibrium alloy phase diagram.

  1. Designed three-dimensional freestanding single-crystal carbon architectures.

    PubMed

    Park, Ji-Hoon; Cho, Dae-Hyun; Moon, Youngkwon; Shin, Ha-Chul; Ahn, Sung-Joon; Kwak, Sang Kyu; Shin, Hyeon-Jin; Lee, Changgu; Ahn, Joung Real

    2014-11-25

    Single-crystal carbon nanomaterials have led to great advances in nanotechnology. The first single-crystal carbon nanomaterial, fullerene, was fabricated in a zero-dimensional form. One-dimensional carbon nanotubes and two-dimensional graphene have since followed and continue to provide further impetus to this field. In this study, we fabricated designed three-dimensional (3D) single-crystal carbon architectures by using silicon carbide templates. For this method, a designed 3D SiC structure was transformed into a 3D freestanding single-crystal carbon structure that retained the original SiC structure by performing a simple single-step thermal process. The SiC structure inside the 3D carbon structure is self-etched, which results in a 3D freestanding carbon structure. The 3D carbon structure is a single crystal with the same hexagonal close-packed structure as graphene. The size of the carbon structures can be controlled from the nanoscale to the microscale, and arrays of these structures can be scaled up to the wafer scale. The 3D freestanding carbon structures were found to be mechanically stable even after repeated loading. The relationship between the reversible mechanical deformation of a carbon structure and its electrical conductance was also investigated. Our method of fabricating designed 3D freestanding single-crystal graphene architectures opens up prospects in the field of single-crystal carbon nanomaterials and paves the way for the development of 3D single-crystal carbon devices. PMID:25329767

  2. Study of single crystals of metal solid solutions

    NASA Technical Reports Server (NTRS)

    Doty, J. P.; Reising, J. A.

    1973-01-01

    The parameters and requirements for growing single crystals of relatively high melting point metals in a zero gravity environment are studied. The crystal growth of metals such as silver, copper, gold, and alloys with a melting point between 900-1100 C is examined.

  3. Effect of gamma ray irradiation on sodium borate single crystals

    NASA Astrophysics Data System (ADS)

    Kalidasan, M.; Asokan, K.; Baskar, K.; Dhanasekaran, R.

    2015-12-01

    In this work, the effects of 5 kGy, 10 kGy and 20 kGy doses of gamma ray irradiation on sodium borate, Na2[B4O5(OH)4](H2O)8 single crystals have been studied. Initially these crystals were grown by solution growth technique and identified as monoclinic using X-ray diffraction analysis. X-ray rocking curves confirm the formation of crystalline defects due to gamma rays in sodium borate single crystals. The electron paramagnetic resonance spectra have been recorded to identify the radicals created due to gamma ray irradiation in sodium borate single crystals. The thermoluminescence glow curves due to the defects created by gamma rays in this crystal have been observed and their kinetic parameters were calculated using Chen's peak shape method. The optical absorption increases and photoluminescence spectral intensity decreases for 5 kGy and 20 kGy doses gamma ray irradiated crystals compared to pristine and 10 kGy dose irradiated one. The effect of various doses of gamma rays on vibrational modes of the sodium borate single crystals was studied using FT-Raman and ATR-FTIR spectral analysis. The dielectric permittivity, conductance and dielectric loss versus frequency graphs of these crystals have been analyzed to know the effect of gamma ray irradiation on these parameters.

  4. Large single domain 123 material produced by seeding with single crystal rare earth barium copper oxide single crystals

    DOEpatents

    Todt, V.; Miller, D.J.; Shi, D.; Sengupta, S.

    1998-07-07

    A method of fabricating bulk YBa{sub 2}Cu{sub 3}O{sub x} where compressed powder oxides and/or carbonates of Y and Ba and Cu present in mole ratios to form YBa{sub 2}Cu{sub 3}O{sub x} are heated in the presence of a Nd{sub 1+x}Ba{sub 2{minus}x}Cu{sub 3}O{sub y} seed crystal to a temperature sufficient to form a liquid phase in the YBa{sub 2}Cu{sub 3}O{sub x} while maintaining the seed crystal solid. The materials are slowly cooled to provide a YBa{sub 2}Cu{sub 3}O{sub x} material having a predetermined number of domains between 1 and 5. Crack-free single domain materials can be formed using either plate shaped seed crystals or cube shaped seed crystals with a pedestal of preferential orientation material. 7 figs.

  5. On the deformation mechanisms in single crystal Hadfield manganese steels

    SciTech Connect

    Karaman, I.; Sehitoglu, H.; Gall, K.; Chumlyakov, Y.I.

    1998-02-13

    Austenitic manganese steel, so called Hadfield manganese steel, is frequently used in mining and railroad frog applications requiring excessive deformation and wear resistance. Its work hardening ability is still not completely understood. Previous studies attributed the work-hardening characteristics of this material to dynamic strain aging or an imperfect deformation twin, a so-called pseudotwin. Unfortunately, these previous studies have all focused on polycrystalline Hadfield steels. To properly study the mechanisms of deformation in the absence of grain boundary or texture effects, single crystal specimens are required. The purpose of this work is the following: (1) observe the inelastic stress-strain behavior of Hadfield single crystals in orientations where twinning and slip are individually dominating or when they are competing deformation mechanisms; and (2) determine the microyield points of Hadfield single crystals and use micro-mechanical modeling to predict the stress-strain response of a single crystal undergoing micro-twinning.

  6. Measurement of single crystal surface parameters

    NASA Technical Reports Server (NTRS)

    Swanson, L. W.; Bell, A. E.; Strayer, R. W.

    1972-01-01

    The sticking coefficient and thermal desorption spectra of Cs from the (110) plane of W was investigated. A sticking coefficient of unity for the monolayer region was measured for T 250 K. Several distinct binding states were observed in the thermal desorption spectrum. Work function and electron reflection measurements were made on the (110) and (100) crystal faces of Mo. Both LEED and Auger were used to determine the orientation and cleanliness of the crystal surfaces. The work function values obtained for the (110) and (100) planes of Mo were 4.92 and 4.18 eV respectively.

  7. Piezoelectric properties of tetragonal single-domain Mn-doped NBT-6 %BT single crystals

    NASA Astrophysics Data System (ADS)

    Guennou, Mael; Savinov, Maxim; Drahokoupil, Jan; Luo, Haosu; Hlinka, Jirka

    2014-07-01

    We report a study of properties of Mn-doped NBT-6 %BT single crystals. We show that tetragonal single-domain states can be stabilized by poling along a [001] direction. For carefully prepared crystals, the piezoelectric coefficient can reach 570 pC/N. When poled along non-polar directions, the crystals exhibit ferroelectric domain structures consistent with tetragonal micron-sized domains, as revealed by optical observation and Raman spectroscopy. The multidomain crystals have lower values, 225 and 130 pC/N for [011] and [111]-oriented crystals, respectively. This trend is commented on from a domain-engineering perspective.

  8. Some Properties Of Synthetic Single Crystal And Thin Film Diamonds

    NASA Astrophysics Data System (ADS)

    Yazu, Shuji; Sato, Shuichi; Fujimori, Naoji

    1989-01-01

    Large synthetic diamond single crystals, in sizes up to 1.4 ct, are produced on 4 commercial basis for some industrial application fields by Sumitomo Electric. The crystals are yellow colored type Ib stones which contain lower amounts of nitrogen (up to about 100 ppm) dispersed through the crystal structure in the form of singly substituting atoms. The impurity controlled type lb crystals have the highest thermal conductivity which is equivalent to that of pure type IIa crystals. Optical and thermal properties of diamond crystals are strongly affected by dispersed impurities. We studied the kinds of dispersed impurities and amounts of those impurity atoms in our synthesized crystals by SIMS. A relation of the thermal conductivities and the nitrogen concentrations of the crystals was examined. The state of nitrogen impurity in the crystals could be transformed by electron irradiation and subsequent high temperature annealing. The reaction rates for the transformation Ib nitrogen to type IaA aggregates and differences in crystal growth sectors have been studied. Vapor phase deposited diamond films are hopeful candidates for optical application of diamond. Preliminary spectroscopic analysis has been done for the free standing polycrystalline films.

  9. Inhomogeneities in single crystals of cuprate oxide superconductors

    NASA Technical Reports Server (NTRS)

    Moorjani, K.; Bohandy, J.; Kim, B. F.; Adrian, F. J.

    1991-01-01

    The next stage in the evolution of experimental research on the high temperature superconductors will require high quality single crystals and epitaxially grown crystalline films. However, inhomogeneities and other defects are not uncommon in single crystals of cuprate oxide superconductors, so a corollary requirement will be a reliable method for judging the quality of these materials. The application of magnetically modulated resistance methods in this task is briefly described and illustrated.

  10. Synthesis and Single-Crystal Growth of Ca

    SciTech Connect

    Nakatsuji, Satoru; Maeno, Yoshiteru

    2001-01-01

    For the study of the quasi-two-dimensional Mott transition system Ca{sub 2-x}Sr{sub x}RuO{sub 4}, we have succeeded in synthesizing polycrystalline samples and also growing single crystals by a floating-zone method. Details of the preparations for the entire solution range are described. The structural, transport, and magnetic properties of both polycrystalline and single-crystal samples are fully in agreement.

  11. Single femtosecond laser pulse-single crystal formation of glycine at the solution surface

    NASA Astrophysics Data System (ADS)

    Liu, Tsung-Han; Uwada, Takayuki; Sugiyama, Teruki; Usman, Anwar; Hosokawa, Yoichiroh; Masuhara, Hiroshi; Chiang, Ting-Wei; Chen, Chun-Jung

    2013-03-01

    We demonstrate femtosecond laser-induced crystallization of glycine from its supersaturated solution depending on laser tunable parameters (pulse energy and repetition rate) and focal position, and examine the crystallization probability, crystal morphology, and crystal polymorph. The generation of cavitation bubble through multiphoton absorption of water depends on input laser pulse energy and repetition rate, which strongly determine morphology and number of the obtained crystals. Significant increase in the crystallization probability is observed by irradiating the femtosecond laser pulses to the air/solution interface, and single pulse-induced single crystal formation is successfully achieved. The crystallization mechanism is discussed in view of inhomogeneous mechanical stress induced by cavitation bubble generation and molecular assembly characteristics of the surface.

  12. Synthesis, crystal growth and characterization of an organic material: 2-Aminopyridinium succinate succinic acid single crystal.

    PubMed

    Magesh, M; Bhagavannarayana, G; Ramasamy, P

    2015-11-01

    The 2-aminopyridinium succinate succinic acid (2APS) single crystal was synthesized and grown by slow evaporation method. The crystal structure has been confirmed by powder X-ray diffraction as well as single crystal X-ray diffraction analysis. The crystal perfection has been evaluated by high resolution X-ray diffraction (HRXRD). The grown crystal is transparent in the visible and near infrared region. The optical absorption edge was found to be 348 nm. The fluorescence study was carried out by spectrofluorophotometer. The thermal stability of grown crystal was analyzed by thermal gravimetric and differential thermal gravimetric (TG-DTA) analysis. Vicker's hardness study carried out at room temperature shows increased hardness while increasing the load. Laser damage threshold value was determined by Nd:YAG laser operating at 1064 nm. The grown 2APS crystal was characterized by etching studies using water as etchant. PMID:26099828

  13. Growth technology of piezoelectric langasite single crystal

    NASA Astrophysics Data System (ADS)

    Uda, Satoshi; Wang, Shou-Qi; Konishi, Nozomi; Inaba, Hitoshi; Harada, Jiro

    2005-02-01

    Although langasite (La 3Ga 5SiO 14) is an incongruent material, it can directly grow from the "pseudo-congruent melt" via the Czochralski method using a langasite seed crystal when the appropriate supercooling is provided. This may be explained by the extension of the univariant line of langasite+liquid into the primary phase field of Ga-containing lanthanum silicate. Free energies serving to solute transport, growth kinetics, surface creation and defect generation are summed up to be the total supercooling necessary for growth which may be larger for the formation of Ga-containing lanthanum silicate and smaller for langasite than the actual supercooling. The growth technology of 4-in-size crystal along [0 1 1 1] is optimized by understanding (i) the importance of the prior annealing of the melt to acquire the suitable supercooling for growth, (ii) the transform of the unstable growth interface, (0 1 1 1), into the complex of more stable principal planes, and (iii) the necessity of the accurate evaluation method to examine the homogeneity of the grown crystal. Issues of (i) and (ii) are interrelated. Physical crystal properties at high temperature are also demonstrated.

  14. Synthetic Superconductivity in Single-Layer Crystals

    NASA Astrophysics Data System (ADS)

    Levitov, Leonid; Borgnia, Dan; Lee, Patrick

    2015-03-01

    Electronic states in atomically thin 2D crystals are fully exposed and can couple to extrinsic degrees of freedom via long-range Coulomb interactions. Novel many-body effects in such systems can be engineered by embedding them in a polar environment. Superconducting pairing interaction induced in this way can enhance the intrinsic electron-phonon pairing mechanism. We take on this notion, which was around since the 60's (''excitonic superconductivity''), and consider synthetic superconductivity (SSC) induced in 2D crystals by a polar environment. One interesting aspect of this scenario is that Coulomb repulsion acts as superconductivity friend rather than a foe. Such repulsion-to-attraction transmutation allows to access strong-coupling superconductivity regime even when intrinsic pairing interaction is weak. We analyze pairing interaction in 2D crystals placed atop a highly polarizable dielectric with dispersive permittivity ? (?) and predict that by optimizing system parameters a substantial enhancement can be achieved. We also argue that the SSC mechanism can be responsible, at least in part, for 100 K superconductivity recently observed in FeSe monolayers grown on SrTiO3 substrate, with Tc more than 10 times larger than in bulk 3D FeSe crystals, arxiv:1406.3435.

  15. Exploring the retention properties of CaF2 nanoparticles as possible additives for dental care application with tapping-mode atomic force microscope in liquid

    PubMed Central

    Köser, Joachim; Hess, Sylvia; Gnecco, Enrico; Meyer, Ernst

    2014-01-01

    Summary Amplitude-modulation atomic force microscopy (AM-AFM) is used to determine the retention properties of CaF2 nanoparticles adsorbed on mica and on tooth enamel in liquid. From the phase-lag of the forced cantilever oscillation the local energy dissipation at the detachment point of the nanoparticle was determined. This enabled us to compare different as-synthesized CaF2 nanoparticles that vary in shape, size and surface structure. CaF2 nanoparticles are candidates for additives in dental care products as they could serve as fluorine-releasing containers preventing caries during a cariogenic acid attack on the teeth. We show that the adherence of the nanoparticles is increased on the enamel substrate compared to mica, independently of the substrate roughness, morphology and size of the particles. PMID:24455460

  16. Single crystals of the fluorite nonstoichiometric phase Eu{0.916/2+}Eu{0.084/3+}F2.084 (conductivity, transmission, and hardness)

    NASA Astrophysics Data System (ADS)

    Sobolev, B. P.; Turkina, T. M.; Sorokin, N. I.; Karimov, D. N.; Komar'kova, O. N.; Sulyanova, E. A.

    2010-07-01

    The nonstoichiometric phase EuF2+ x has been obtained via the partial reduction of EuF3 by elementary Si at 900-1100°C. Eu{0.916/2+}Eu{0.084/3+}F2.084 (EuF2.084) single crystals have been grown from melt by the Bridgman method in a fluorinating atmosphere. These crystals belong to the CaF2 structure type (sp. gr. Fm bar 3 m) with the cubic lattice parameter a = 5.8287(2) Å, are transparent in the spectral range of 0.5-11.3 μm, and have microhardness H μ = 3.12 ± 0.13 GPa and ionic conductivity σ = 1.4 × 10-5 S/cm at 400°C with the ion transport activation energy E a = 1.10 ± 0.05 eV. The physicochemical characteristics of the fluorite phases in the EuF2 - EuF3 systems are similar to those of the phases in the SrF2 - EuF3 and SrF2 - GdF3 systems due to the similar lattice parameters of the EuF2 and SrF2 components. Europium difluoride supplements the list of fluorite components MF2 ( M = Ca, Sr, Ba, Cd, Pb), which are crystal matrices for nonstoichiometric (nanostructured) fluoride materials M 1 - x R x F2 + x ( R are rare earth elements).

  17. SINGLE CRYSTAL NIOBIUM TUBES FOR PARTICLE COLLIDERS ACCELERATOR CAVITIES

    SciTech Connect

    MURPHY, JAMES E

    2013-02-28

    The objective of this research project is to produce single crystal niobium (Nb) tubes for use as particle accelerator cavities for the Fermi laboratorys International Linear Collider project. Single crystal Nb tubes may have superior performance compared to a polycrystalline tubes because the absence of grain boundaries may permit the use of higher accelerating voltages. In addition, Nb tubes that are subjected to the high temperature, high vacuum crystallization process are very pure and well annealed. Any impurity with a significantly higher vapor pressure than Nb should be decreased by the relatively long exposure at high temperature to the high vacuum environment. After application of the single crystal process, the surfaces of the Nb tubes are bright and shiny, and the tube resembles an electro polished Nb tube. For these reasons, there is interest in single crystal Nb tubes and in a process that will produce single crystal tubes. To convert a polycrystalline niobium tube into a single crystal, the tube is heated to within a few hundred ?C of the melting temperature of niobium, which is 2477 ?C. RF heating is used to rapidly heat the tube in a narrow zone and after reaching the operating temperature, the hot zone is slowly passed along the length of the tube. For crystallization tests with Nb tubes, the traverse rate was in the range of 1-10 cm per hour. All the crystallization tests in this study were performed in a water-cooled, stainless steel chamber under a vacuum of 5 x10-6 torr or better. In earliest tests of the single crystal growth process, the Nb tubes had an OD of 1.9 cm and a wall thickness of 0.15 mm. With these relatively small Nb tubes, the single crystal process was always successful in producing single crystal tubes. In these early tests, the operating temperature was normally maintained at 2200 ?C, and the traverse rate was 5 cm per hour. In the next test series, the Nb tube size was increased to 3.8 cm OD and the wall thickness was increased 0.18 mm and eventually to 0.21 mm. Again, with these larger tubes, single crystal tubes were usually produced by the crystallization process. The power supply was generally operated at full output during these tests, and the traverse rate was 5 cm per hour. In a few tests, the traverse rate was increased to 10 cm per hour, and at the faster traverse rate, single crystal growth was not achieved. In these tests with a faster traverse rate, it was thought that the tube was not heated to a high enough temperature to achieve single crystal growth. In the next series of tests, the tube OD was unchanged at 3.8 cm and the wall thickness was increased to 0.30 mm. The increased wall thickness made it difficult to reach an operating temperature above 2,000 ?C, and although the single crystal process caused a large increase in the crystal grains, no single crystal tubes were produced. It was assumed that the operating temperature in these tests was not high enough to achieve single crystal growth. In FY 2012, a larger power supply was purchased and installed. With the new power supply, temperatures above the melting point of Nb were easily obtained regardless of the tube thickness. A series of crystallization tests was initiated to determine if indeed the operating temperature of the previous tests was too low to achieve single crystal growth. For these tests, the Nb tube OD remained at 3.8 cm and the wall thickness was 0.30 mm. The first test had an operating temperature of 2,000 ?C. and the operating temperature was increased by 50 ?C increments for each successive test. The final test was very near the Nb melting temperature, and indeed, the Nb tube eventually melted in the center of the tube. These tests showed that higher temperatures did yield larger grain sizes if the traverse rate was held constant at 5 cm per hour, but no single crystal tubes were produced even at the highest operating temperature. In addition, slowing the traverse rate to as low as 1 cm per hour did not yield a single crystal tube regardless of operating temperature. At this time, it appears that the wall thickness of the Nb tube rather than the operating temperature is the most important parameter to achieving single crystal growth. Single crystal growth was easily obtained with thinner wall tubes, but with thicker tubes, it was not achieved under varied growth conditions.

  18. Differences between individual ZSM-5 crystals in forming hollow single crystals and mesopores during base leaching.

    PubMed

    Fodor, Daniel; Krumeich, Frank; Hauert, Roland; van Bokhoven, Jeroen A

    2015-04-13

    After base treatment of ZSM-5 crystals below 100?nm in size, TEM shows hollow single crystals with a 10?nm shell. SEM images confirm that the shell is well- preserved even after prolonged treatment. Determination of the Si/Al ratios with AAS and XPS in combination with argon sputtering reveals aluminum zoning of the parent zeolite, and the total pore volume increases in the first two hours of base treatment. In corresponding TEM images, the amount of hollow crystals are observed to increase during the first two hours of base treatment, and intact crystals are visible even after 10?h of leaching; these observations indicate different dissolution rates between individual crystals. TEM of large, commercially available ZSM-5 crystals shows inhomogeneous distribution of mesopores among different crystals, which points to the existence of structural differences between individual crystals. Only tetrahedrally coordinated aluminum is detected with (27) Al MAS NMR after the base leaching of nano-sized ZSM-5. PMID:25720305

  19. Anisotropy of nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Maier, R. D.; Dreshfield, R. L.

    1980-01-01

    The effects of crystal orientation on the mechanical properties of single crystals of the nickel-based superalloy Mar-M247 are investigated. Tensile tests at temperatures from 23 to 1093 C and stress rupture tests at temperatures from 760 to 1038 C were performed for 52 single crystals at various orientations. During tensile testing between 23 and 760 C, single crystals with high Schmid factors were found to be favorably oriented for slip and to exhibit lower strength and higher ductility than those with low Schmid factors. Crystals which required large rotations to become oriented for cross slip were observed to have the shortest stress rupture lives at 760 C, while those which required little or no rotation had the longest lives. In addition, stereographic triangles obtained for Mar-M247 and Mar-M200 single crystals reveal that crystals with orientations near the -111 had the highest lives, those near the 001 had high lives, and those near the 011 had low lives.

  20. An analytical model for porous single crystals with ellipsoidal voids

    NASA Astrophysics Data System (ADS)

    Mbiakop, A.; Constantinescu, A.; Danas, K.

    2015-11-01

    A rate-(in)dependent constitutive model for porous single crystals with arbitrary crystal anisotropy (e.g., FCC, BCC, HCP, etc.) containing general ellipsoidal voids is developed. The proposed model, denoted as modified variational model (MVAR), is based on the nonlinear variational homogenization method, which makes use of a linear comparison porous material to estimate the response of the nonlinear porous single crystal. Periodic multi-void finite element simulations are used in order to validate the MVAR for a large number of parameters including cubic (FCC, BCC) and hexagonal (HCP) crystal anisotropy, various creep exponents (i.e., nonlinearity), several stress triaxiality ratios, general void shapes and orientations and various porosity levels. The MVAR model, which involves a priori no calibration parameters, is found to be in good agreement with the finite element results for all cases considered in the rate-dependent context. The model is then used in a predictive manner to investigate the complex response of porous single crystals in several cases with strong coupling between the anisotropy of the crystal and the (morphological) anisotropy induced by the shape and orientation of the voids. Finally, a simple way of calibrating the MVAR with just two adjustable parameters is depicted in the rate-independent context so that an excellent agreement with the FE simulation results is obtained. In this last case, this proposed model can be thought as a generalization of the Gurson model in the context of porous single crystals and general ellipsoidal void shapes and orientations.

  1. Fatigue Failure Criteria for Single Crystal Nickel Superalloys

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.

    1999-01-01

    High Cycle Fatigue (HCF) induced failures in aircraft gas-turbine and rocket engine turbopump blades is a pervasive problem. Single crystal turbine blades are being utilized in rocket engine turbopumps and jet engines throughout industry and NASA because of their superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys. Single-crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the pan geometry a significant factor in the overall analysis. The failure modes of single crystal turbine blades is complicated to predict due to the material orthotropy and variations in crystal orientations. A fatigue failure criteria based on the maximum shear stress amplitude [delta t max] on the 30 slip systems, is presented for single crystal nickel superalloys (FCC crystal). This criteria reduces the scatter in uniaxial LCF test data, for four different specimen orientations, for PWA 1484 at 1200 F in air, quite well. A power law curve fit of the failure parameter, delta t max, vs. cycles to failure is presented.

  2. Vapor crystal growth studies of single crystals of mercuric iodide (3-IML-1)

    NASA Technical Reports Server (NTRS)

    Vandenberg, Lodewijk

    1992-01-01

    A single crystal of mercuric iodide (HgI2) will be grown during the International Microgravity Lab. (IML-1) mission. The crystal growth process takes place by sublimation of HgI2 from an aggregate of purified material, transport of the molecules in the vapor from the source to the crystal, and condensation on the crystal surface. The objectives of the experiment are as follow: to grow a high quality crystal of HgI2 of sufficient size so that its properties can be extensively analyzed; and to study the vapor transport process, specifically the rate of diffusion transport at greatly reduced gravity where convection is minimized.

  3. Raman spectra of deuteriated taurine single crystals

    NASA Astrophysics Data System (ADS)

    Souza, J. M. de; Lima, R. J. C.; Freire, P. T. C.; Sasaki, J. M.; Melo, F. E. A.; Filho, J. Mendes; Jones, Derry W.

    2005-05-01

    The polarized Raman spectra of partially deuteriated taurine [(ND 3+) 0.65(NH 3+) 0.35(CH 2) 2SO 3-] crystals from x( zz) x and x( zy) x scattering geometries of the A g and B g irreducible representations of the factor group C 2h are reported. The temperature-dependent Raman spectra of partially deuteriated taurine do not reveal any evidence of the structural phase transition undergone by normal taurine at about 250 K, but an anomaly observed in the 180 cm -1 band at 120 K implies a different dynamic for this band (which is involved in a pressure-induced phase transition) in the deuteriated crystal.

  4. Shock Driven Twinning in Tantalum Single Crystals

    SciTech Connect

    McNaney, J M; HSUING, L M; Barton, N R; Kumar, M

    2009-07-20

    Recovery based observations of high pressure material behavior generated under high explosively driven flyer based loading conditions are reported. Two shock pressures, 25, and 55 GPa and four orientations {l_brace}(100), (110), (111), (123){r_brace} were considered. Recovered material was characterized using electron backscatter diffraction along with a limited amount of transmission electron microscopy to assess the occurrence of twinning under each test condition. Material recovered from 25 GPa had a very small fraction of twinning for the (100), (110), and (111) oriented crystals while a more noticeable fraction of the (123) oriented crystal was twinned. Material recovered from 55 GPa showed little twinning for (100) orientation slightly more for the (111) orientation and a large area fraction for the (123) orientation. The EBSD and TEM observations of the underlying deformation substructure are rationalized by comparing with previous static and dynamic results.

  5. Selective Metal Cation Capture by Soft Anionic Metal-Organic Frameworks via Drastic Single-Crystal-to-Single-Crystal Transformations

    SciTech Connect

    Tian, Jian; Saraf, Laxmikant V.; Schwenzer, Birgit; Taylor, S. M.; Brechin, Euan K.; Liu, Jun; Dalgarno, S. J.; Thallapally, Praveen K.

    2012-05-25

    Flexible anionic metal-organic frameworks transform to neutral heterobimetallic systems via single-crystal-to-single-crystal processes invoked by cation insertion. These transformations are directed by cooperative bond breakage and formation, resulting in expansion or contraction of the 3D framework by up to 33% due to the flexible nature of the organic linker. These MOFs displays highly selective uptake of divalent transition metal cations (Co2+ and Ni2+ for example) over alkali metal cations (Li+ and Na+).

  6. Metal-center exchange of tetrahedral cages: single crystal to single crystal and spin-crossover properties.

    PubMed

    Zhang, Feng-Li; Chen, Jia-Qian; Qin, Long-Fang; Tian, Lei; Li, Zaijun; Ren, Xuehong; Gu, Zhi-Guo

    2016-04-01

    An effective single crystal to single crystal transformation from a tetrahedral Ni cage to an FeNi cage was demonstrated. The iron(ii) centers of the FeNi cage can be induced to display spin crossover behaviors with an increasing amount of Fe(ii) ions. The SCSC metal-center exchange provides a powerful approach to modify solid magnetic properties. PMID:26955799

  7. Photon Cascade from a Single Crystal Phase Nanowire Quantum Dot.

    PubMed

    Bouwes Bavinck, Maaike; Jns, Klaus D; Zieli?ski, Michal; Patriarche, Gilles; Harmand, Jean-Christophe; Akopian, Nika; Zwiller, Val

    2016-02-10

    We report the first comprehensive experimental and theoretical study of the optical properties of single crystal phase quantum dots in InP nanowires. Crystal phase quantum dots are defined by a transition in the crystallographic lattice between zinc blende and wurtzite segments and therefore offer unprecedented potential to be controlled with atomic layer accuracy without random alloying. We show for the first time that crystal phase quantum dots are a source of pure single-photons and cascaded photon-pairs from type II transitions with excellent optical properties in terms of intensity and line width. We notice that the emission spectra consist often of two peaks close in energy, which we explain with a comprehensive theory showing that the symmetry of the system plays a crucial role for the hole levels forming hybridized orbitals. Our results state that crystal phase quantum dots have promising quantum optical properties for single photon application and quantum optics. PMID:26806321

  8. Growth and characterization of ? and ?-glycine single crystals

    NASA Astrophysics Data System (ADS)

    Srinivasan, T. P.; Indirajith, R.; Gopalakrishnan, R.

    2011-03-01

    Single crystals of ?- and ?-glycine were grown by the slow evaporation solution growth method using deionised water as solvent. The ?-glycine was transformed to ?-glycine by addition of KNO3 as additive and both the forms of glycine single crystals were grown and the characteristic properties were studied and compared. From the single crystal XRD analysis the grown ?- and ?-glycine crystals are confirmed. The presence of the functional groups of ?- and ?-glycine was analyzed from the recorded FT-IR spectrum. The optical transmission was ascertained from UV-vis-NIR spectrum. The lower cut-off wavelengths of ?- and ?-glycine are 292 and 272 nm, respectively. The second harmonic generation relative efficiency was measured by the Kurtz and Perry powder technique. Group theoretical analysis predicts 120 vibrational optical modes in ?-glycine and 90 vibrational optical modes in ?-glycine. The TGA, DTA and dielectric studies were carried out to explore information about thermal and dielectric behavior, respectively, for ?- and ?-glycine.

  9. Crystal structure, spectral, thermal and dielectric studies of a new zinc benzoate single crystal

    NASA Astrophysics Data System (ADS)

    Bijini, B. R.; Prasanna, S.; Deepa, M.; Nair, C. M. K.; Rajendra Babu, K.

    2012-11-01

    Single crystals of zinc benzoate with a novel structure were grown in gel media. Sodium metasilicate of gel density 1.04 g/cc at pH 6 was employed to yield transparent single crystals. The crystal structure of the compound was ascertained by single crystal X-ray diffractometry. It was noted that the crystal belongs to monoclinic system with space group P21/c with unit cell parameters a = 10.669(1) , b = 12.995(5) , c = 19.119(3) , and ? = 94.926(3). The crystal was seen to possess a linear polymeric structure along b-axis; with no presence of coordinated or lattice water. CHN analysis established the stoichiometric composition of the crystal. The existence of functional groups present in the single crystal system was confirmed by FT-IR studies. The thermal characteristic of the sample was analysed by TGA-DTA techniques, and the sample was found to be thermally stable up to 280 C. The kinetic and thermodynamic parameters were also determined. UV-Vis spectroscopy corroborated the transparency of the crystal and revealed the optical band gap to be 4 eV. Dielectric studies showed decrease in the dielectric constant of the sample with increase in frequency.

  10. Stroboscopic Picosecond Pulse Radiolysis Using Near-Ultraviolet-Enhanced Femtosecond Continuum Generated by CaF2

    NASA Astrophysics Data System (ADS)

    Saeki, Akinori; Kozawa, Takahiro; Okamoto, Kazumasa; Tagawa, Seiichi

    2007-01-01

    For investigations of ultrafast reactions induced by radiation in the short-wavelength region, a near-ultraviolet-enhanced continuum ranging from ca. 390 to 600 nm was generated by focusing the second-harmonic generation (400 nm) of a femtosecond Ti:sapphire laser into a CaF2 plate and applied to stroboscopic picosecond pulse radiolysis. By utilizing a double-pulse detection scheme, the fluctuation between the signal and reference pulses was improved to 2-12% of the standard deviation. The capability of the system in the wavelength region from 400 to 900 nm is demonstrated by measuring transient photoabsorption spectra in water and in tetrahydrofuran solution of biphenyl, where these spectra are attributed to hydrated electrons and the overlap between biphenyl radical anions and the solvated electrons of tetrahydrofuran, respectively.

  11. Organic single crystal transistor characteristics of single-crystal phase pentacene grown by ionic liquid-assisted vacuum deposition

    NASA Astrophysics Data System (ADS)

    Takeyama, Yoko; Ono, Shimpei; Matsumoto, Yuji

    2012-08-01

    Organic transistor characteristics of single-crystal phase pentacene were investigated. Ionic liquids (ILs) were used as not only a gate dielectric material in the transistors but also a crystallization solvent in vacuum deposition of pentacene. The crystal sizes reached 200 ?m and their surface exhibits a molecularly step-and-terrace structure. There was no sign of IL molecules inside the crystal, and the impurity level of 6,13-pentacenequinone was also reduced. The average value of the field-effect mobility was not so inferior to those for the conventional pentacene single crystals, and the highest value exceeded 5 cm2/Vs, with the on/off current ratio of 104.

  12. Creep of CoO single crystals.

    NASA Technical Reports Server (NTRS)

    Clauer, A. H.; Seltzer, M. S.; Wilcox, B. A.

    1971-01-01

    The crystals were creep tested in compression over ranges of temperature, stress, and oxygen pressure. The creep curves were S-shaped, and only the inflection creep rate was analyzed. A formula is presented for the inflection creep rate in the range from 1000 to 1200 C, 850 to 1700 psi, and 0.001 to 1 atm oxygen. Slip was found to occur on two orthogonal slip systems. The presence of subboundaries was observed by optical and transmission electron microscopy. It is suggested that the creep rate is controlled by oxygen diffusion.

  13. Growth and properties of InP single crystals

    NASA Astrophysics Data System (ADS)

    Dun-fu, Fang; Xiang-xi, Wang; Yong-quan, Xu; Li-tong, Tan

    1984-04-01

    InP single crystals with various dopants including S, Sn, Zn and Fe have been grown successfully by the Czochralski method under high pressure with liquid encapsulation. It is found that by carefully adjusting the thermal symmetry of the heating field and by further improving the quality of the polycrystals and by dehydrating B 2O 3, twin-free InP crystals can be obtained even with a shoulder angle of up to 54, and defects caused by thermal decomposition appear on the surface of the crystals during pulling. Furthermore, a comparison of the crystal perfection and uniformity between S-doped and Sn-doped InP crystals shows that the quality of the former is better than that of the latter. Dislocation-free Zn-doped p-InP single crystals without precipitates have also been easily obtained when the carrier concentration is greater than 210 18 cm -3 and the diameter less than 30 mm. By controlling the iron content, semi-insulating thermally stable single crystals of InP doped with ?0.03 wt% of Fe without precipitates and with a homogeneous resistivity can be produced.

  14. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Arakere, N. K.; Swanson, G.

    2002-01-01

    High cycle fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Single crystal nickel turbine blades are being utilized in rocket engine turbopumps and jet engines throughout industry because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493, PWA 1484, RENE' N-5 and CMSX-4. These alloys play an important role in commercial, military and space propulsion systems. Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. The failure modes of single crystal turbine blades are complicated to predict due to the material orthotropy and variations in crystal orientations. Fatigue life estimation of single crystal turbine blades represents an important aspect of durability assessment. It is therefore of practical interest to develop effective fatigue failure criteria for single crystal nickel alloys and to investigate the effects of variation of primary and secondary crystal orientation on fatigue life. A fatigue failure criterion based on the maximum shear stress amplitude /Delta(sub tau)(sub max))] on the 24 octahedral and 6 cube slip systems, is presented for single crystal nickel superalloys (FCC crystal). This criterion reduces the scatter in uniaxial LCF test data considerably for PWA 1493 at 1200 F in air. Additionally, single crystal turbine blades used in the alternate advanced high-pressure fuel turbopump (AHPFTP/AT) are modeled using a large-scale three-dimensional finite element model. This finite element model is capable of accounting for material orthotrophy and variation in primary and secondary crystal orientation. Effects of variation in crystal orientation on blade stress response are studied based on 297 finite element model runs. Fatigue lives at critical points in the blade are computed using finite element stress results and the failure criterion developed. Stress analysis results in the blade attachment region are also presented. Results presented demonstrates that control of secondary and primary crystallographic orientation has the potential to significantly increase a component S resistance to fatigue crack growth with- out adding additional weight or cost. [DOI: 10.1115/1.1413767

  15. Method of making macrocrystalline or single crystal semiconductor material

    NASA Technical Reports Server (NTRS)

    Shlichta, P. J. (Inventor); Holliday, R. J. (Inventor)

    1986-01-01

    A macrocrystalline or single crystal semiconductive material is formed from a primary substrate including a single crystal or several very large crystals of a relatively low melting material. This primary substrate is deposited on a base such as steel or ceramic, and it may be formed from such metals as zinc, cadmium, germanium, aluminum, tin, lead, copper, brass, magnesium silicide, or magnesium stannide. These materials generally have a melting point below about 1000 C and form on the base crystals the size of fingernails or greater. The primary substrate has an epitaxial relationship with a subsequently applied layer of material, and because of this epitaxial relationship, the material deposited on the primary substrate will have essentially the same crystal size as the crystals in the primary substrate. If required, successive layers are formed, each of a material which has an epitaxial relationship with the previously deposited layer, until a layer is formed which has an epitaxial relationship with the semiconductive material. This layer is referred to as the epitaxial substrate, and its crystals serve as sites for the growth of large crystals of semiconductive material. The primary substrate is passivated to remove or otherwise convert it into a stable or nonreactive state prior to deposition of the seconductive material.

  16. [Study on Spectral Characteristics of Two Kinds of Home-Made Novel Yb-Doped Fluoride Laser Crystals].

    PubMed

    Xu, Wen-bin; Chai, Lu; Shi, Jun-kai; Song, You-jian; Hu, Ming-lie; Wang, Qing-yue; Su, Liang-bi; Jiang, Da-peng; Xu, Jun

    2015-09-01

    Yb-doped fluoride crystals are of important another Yb-doped laser materials besides Yb-doped oxide, which are becoming one of interests for developing tunable lasers and ultrafast lasers. In this paper, the systematic and contrastive experiments of the optical spectral characteristics are presented for two types of home-made novel Yb-doped fluoride laser crystals, namely, Yb-doped CaF2-SrF2 mixed crystal and co-doped Yb, Y:CaF2 single crystal. The fluorescent features of Yb-doped CaF2-SrF2 mixed crystal and co-doped Yb, Y:CaF2 single crystal are apparently different by the fluorescence experiment. The physical mechanism of these fluorescence spectra were analyzed and proposed. The influence of doping concentrations of active Yb(3+) ions or co-doping Y ions on the absorption of Yb-doped CaF2-SrF2 mixed crystal and co-doped Yb, Y:CaF2 single crystal was experimentally investigated, and the optimal values of doping concentrations of active Yb(3+) ions or co-doping Y ions in the two types of fluoride laser crystals were obtained. Continuous-wave laser operation for the two novel fluoride laser crystals has been achieved in three-mirror-folded resonator using a laser diode as the pump source. Therein, the laser operation for the co-doped Yb, Y:CaF2 crystal is demonstrated for the first time. For the two types of fluoride laser crystals (four samples), the input-output power relational curves, the optical slope efficiencies and the laser spectra were demonstrated by the laser experiments. By comparisons between the two types of fluoride laser crystals in the absorbability, fluorescence and laser spectra, laser threshold and slope efficiency of the continuous-wave laser operation, the results show that the best one of the four samples in spectral and laser characteristics is co-doped 3at%Yb, 6at% Y:CaF2 single crystal, which has an expected potential in the application. The research results provide available references for improving further laser performance of Yb-doped fluoride crystals. PMID:26669151

  17. Single crystal growth and characterization of holmium tartrate trihydrate

    NASA Astrophysics Data System (ADS)

    Want, Basharat; Ahmad, Farooq; Kotru, P. N.

    2007-02-01

    The growth of holmium tartrate trihydrate (HTT) single crystals is achieved in organic (agar-agar) as well as in inorganic (silica) gels by single gel diffusion method. Results of the study on nucleation kinetics of crystals grown in silica gel are described. The crystals exhibit the morphological form of a tetragonal dipyramidal class with {0 0 1} and {1 1 1} as dominant faces. Elemental and thermogravimetric analysis (TGA) supplemented by energy dispersive analysis of X-rays (EDAX) support the suggested chemical formula of the grown crystals to be [Ho (C 4H 4O 6) (C 4H 5O 6)3H 2O]. Single crystal X-ray diffraction (XRD) studies indicate that the crystals belong to tetragonal system with the cell parameters a=5.97 , c=36.09 , bearing the space group P4 1. Fourier transform infrared (FT-IR) spectroscopic study indicates the presence of tartrate ligands and suggests that one of the tartrate ions is singly ionized. TGA suggests that the material is thermally stable up to 220 C.

  18. Enhancing the Mechanical Properties of Single-Crystal CVD Diamond

    SciTech Connect

    Liang, Q.; Yan, C; Meng, Y; Lai, J; Krasnicki, S; Mao, H; Hemley, R

    2009-01-01

    Approaches for enhancing the strength and toughness of single-crystal diamond produced by chemical vapor deposition (CVD) at high growth rates are described. CVD processes used to grow single-crystal diamond in high density plasmas were modified to incorporate boron and nitrogen. Semi-quantitative studies of mechanical properties were carried out using Vickers indentation techniques. The introduction of boron in single-crystal CVD diamond can significantly enhance the fracture toughness of this material without sacrificing its high hardness ({approx}78 GPa). Growth conditions were varied to investigate its effect on boron incorporation and optical properties by means of photoluminescence, infrared, and ultraviolet-visible absorption spectroscopy. Boron can be readily incorporated into single-crystal diamond by the methods used, but with nitrogen addition, the incorporation of boron was hindered. The spectroscopic measurements indicate that nitrogen and boron coexist in the diamond structure, which helps explain the origin of the enhanced fracture toughness of this material. Further, low pressure/high temperature annealing can enhance the intrinsic hardness of single-crystal CVD diamond by a factor of two without appreciable loss in fracture toughness. This doping and post-growth treatment of diamond may lead to new technological applications that require enhanced mechanical properties of diamond.

  19. Low-cost single-crystal turbine blades, volume 2

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Dennis, R. E.; Heath, B. R.

    1984-01-01

    The overall objectives of Project 3 were to develop the exothermic casting process to produce uncooled single-crystal (SC) HP turbine blades in MAR-M 247 and higher strength derivative alloys and to validate the materials process and components through extensive mechanical property testing, rig testing, and 200 hours of endurance engine testing. These Program objectives were achieved. The exothermic casting process was successfully developed into a low-cost nonproperietary method for producing single-crystal castings. Single-crystal MAR-M 247 and two derivatives DS alloys developed during this project, NASAIR 100 and SC Alloy 3, were fully characterized through mechanical property testing. SC MAR-M 247 shows no significant improvement in strength over directionally solidified (DS) MAR-M 247, but the derivative alloys, NASAIR 100 and Alloy 3, show significant tensile and fatigue improvements. Firtree testing, holography, and strain-gauge rig testing were used to determine the effects of the anisotropic characteristics of single-crystal materials. No undesirable characteristics were found. In general, the single-crystal material behaved similarly to DS MAR-M 247. Two complete engine sets of SC HP turbine blades were cast using the exothermic casting process and fully machined. These blades were successfully engine-tested.

  20. Method for harvesting rare earth barium copper oxide single crystals

    SciTech Connect

    Todt, V.R.; Sengupta, S.; Shi, D.

    1996-04-02

    A method of preparing high temperature superconductor single crystals is disclosed. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals of the high temperature superconductor, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals of the high temperature superconductor on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals melted, allowing the wicking away of the peritectic liquid. 2 figs.

  1. Single-Crystal Structure of a Covalent Organic Framework

    SciTech Connect

    Zhang, YB; Su, J; Furukawa, H; Yun, YF; Gandara, F; Duong, A; Zou, XD; Yaghi, OM

    2013-11-06

    The crystal structure of a new covalent organic framework, termed COF-320, is determined by single-crystal 3D electron diffraction using the rotation electron diffraction (RED) method for data collection. The COF crystals are prepared by an imine condensation of tetra-(4-anilyl)methane and 4,4'-biphenyldialdehyde in 1,4-dioxane at 120 degrees C to produce a highly porous 9-fold interwoven diamond net. COF-320 exhibits permanent porosity with a Langmuir surface area of 2400 m(2)/g and a methane total uptake of 15.0 wt % (176 cm(3)/cm(3)) at 25 degrees C and 80 bar. The successful determination of the structure of COF-320 directly from single-crystal samples is an important advance in the development of COF chemistry.

  2. Irradiation effects on ammonium penta borate (APB) single crystals

    NASA Astrophysics Data System (ADS)

    Prabha, K.; Babu, M. Ramesh; Prabhukanthan, P.; Chen, H.; Chen, X. L.; Sagayaraj, P.

    2015-02-01

    Single crystals of ammonium penta borate (APB) were irradiated with 120 MeV Ag9+ swift heavy ions (SHI) of fluence 11013 ions/cm2. The UV-visible spectrum of irradiated crystal shows slight shift in the absorption edge and it also indicates the non uniformity in its absorbance level. An attempt was made to explain the surface damage caused due to SHI irradiation using AFM and SEM images.

  3. Growth and characterization of lithium yttrium borate single crystals

    SciTech Connect

    Singh, A. K.; Singh, S. G.; Tyagi, M.; Desai, D. G.; Sen, Shashwati

    2014-04-24

    Single crystals of 0.1% Ce doped Li{sub 6}Y(BO{sub 3}){sub 3} have been grown using the Czochralski technique. The photoluminescence study of these crystals shows a broad emission at ? 420 nm corresponding to Ce{sub 3+} emission from 5d?4f energy levels. The decay profile of this emission shows a fast response of ? 28 ns which is highly desirable for detector applications.

  4. Growth of Solid Solution Single Crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, Sandor L.; Szofran, F. R.; Gillies, Donald C.; Watring, D. A.

    1999-01-01

    The solidification of a solid solution semiconductor, having a wide separation between liquidus and serious has been extensively studied in ground based, high magnetic field and Spacelab experiments. Two alloys of mercury cadmium telluride have been studied; mercury cadmium telluride with 80.0 mole percent of HgTe and 84.8 mole percent respectively. These alloys are extremely difficult to grow by directional solidification on earth due to high solutal and thermal density differences that give rise to fluid flow and consequent loss of interface shape and composition. Diffusion controlled growth is therefore impossible to achieve in conventional directional solidification. The ground based experiments consisted of growing crystals in several different configurations of heat pipe furnaces, NASA's Advanced Automated Directional Solidification Furnace (AADSF), and a similar furnace incorporated in a superconducting magnet capable of operating at up to 5T. The first microgravity experiment took place during the flight of STS-62 in March 1994, with the AADSF installed on the second United States Microgravity Payload (USMP-2). The alloy was solidified at 3/4 inch per day over a 9 day period, and for the first time a detailed evaluation was performed of residual acceleration effects. The second flight experiment took place in the fourth United States Microgravity Payload Mission (USMP-4) in November 1997. Due to contamination of the furnace system by a previously processed sample, the sample was not received until May 1998, and the preliminary analysis shows that the conditions prevailing during the experiment were quite different from the requirements requested prior to the mission. Early results are indicating that the sample may not accomplish the desired objectives. As with the USMP-2 mission, the results of the ground based experiments were compared with the crystal grown in orbit under microgravity conditions. On the earth, it has been demonstrated that the application of the magnetic field leads to a significant reduction in fluid flow, with improved homogeneity of composition. The field strength required to suppress flow increases with diameter of the material. The 8 mm diameter sample used here was less than the upper diameter limit for a ST magnet. The configuration for USMP-4 was changed so that the material was seeded and other processing techniques were also modified. It was decided to examine the effects of a strong magnetic field under the modified configuration and parameters. A further change from USMP-2 was that a different composition of material was grown, namely with 0.152 mole fraction of cadmium telluride rather than the 0.200 of the USMP-2 experiment. The objective was to grow highly homogeneous, low defect density material of a composition at which the conduction band and the valence band of the material impinge against each other. As indicated, the furnace was contaminated during the mission. As a result of solid debris remaining in the furnace bore, the cartridge in this experiment, denoted as SL1-417, was significantly bent during the insertion phase. During translation the cartridge scraped against the plate which isolates the hot and cold zones of the furnace. Thermocouples indicated that a thermal assymetry resulted. The scraping in the slow translation or crystal growth part of the processing was not smooth and it is probable that the jitter was sufficient to give rise to convection in the melt. Early measurements of composition from the surface of the sample have shown that the composition varies in an oscillatory manner.

  5. Lithium niobate single-crystal and photo-functional device

    DOEpatents

    Gopalan, Venkatraman (State College, PA); Mitchell, Terrence E. (Los Alamos, NM); Kitamura, Kenji (Tsukuba, JP); Furukawa, Yasunori (Tsukuba, JP)

    2001-01-01

    Provided are lithium niobate single-crystal that requires a low voltage of not larger than 10 kV/nm for its ferroelectric polarization inversion and of which the polarization can be periodically inverted with accuracy even at such a low voltage, and a photo-functional device comprising the crystal. The crystal has a molar fraction of Li.sub.2 O/(Nb.sub.2 O.sub.5 +Li.sub.2 O) of falling between 0.49 and 0.52. The photo-functional device can convert a laser ray being incident thereon.

  6. Growth and characterization of 4-methyl benzene sulfonamide single crystals

    NASA Astrophysics Data System (ADS)

    Thirumalaiselvam, B.; Kanagadurai, R.; Jayaraman, D.; Natarajan, V.

    2014-11-01

    Single crystals of 4-methyl benzene sulfonamide (4MBS) were successfully grown from aqueous solution by low temperature solution growth technique. The grown crystal was characterized by single crystal XRD and powder XRD methods to obtain the lattice parameters and the diffraction planes of the crystal. UV-vis-NIR absorption spectrum was used to measure the range of optical transmittance and optical band gap energy. The optical transmission range was measured as 250-1200 nm. FTIR spectral studies were carried out to identify the presence of functional groups in the grown crystal. The thermal behavior of the crystal was investigated from thermo gravimetric analysis (TGA) and differential scanning calorimetry (DSC) study. The absence of SHG was noticed by Kurtz and Perry powder technique. The third order NLO behavior of the material was confirmed by measuring the nonlinear optical properties using Z-scan technique and it was found that the crystal is capable of exhibiting saturation absorption and self-defocusing performance.

  7. Synthesis and properties of erbium oxide single crystals

    SciTech Connect

    Petrovic, J.J.; Romero, R.S.; Mendoza, D.; Kukla, A.M.; Hoover, R.C.; McClellan, K.J.

    1999-04-01

    Erbium oxide (Er{sub 2}O{sub 3}, erbia) is a highly stable cubic rare earth oxide with a high melting point of 2,430 C. Because of this, it may have potential applications where high temperature stability and corrosion resistance are required. However, relatively little is known about the properties of this oxide ceramic. The authors have employed a xenon optical floating zone unit with a temperature capability of 3,000 C to grow high quality single crystals of erbia. The conditions for single crystal growth of erbia have been established. The mechanical properties of erbia single crystals have been initially examined using microhardness indentation as a function of temperature.

  8. Internal Hydrogen-induced Embrittlement in Iron Single Crystals

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Sheng

    A thermodynamic model for internal hydrogen-induced embrittlement (HIE) in single crystals is proposed. The model is based on the assumption that the ductile versus brittle transition is controlled by the competition between dislocation emission from the crack tip and cleavage decohesion of the lattice. Embrittlement in single crystals is induced by segregation of hydrogen in solid solution to the crack tip and/or the fracture surfaces during separation, which reduces the cohesive energy of the lattice. This process will occur when the mobility of hydrogen atoms is high so that a surface excess of hydrogen can be built up during separation. The model predictions for hydrogen induced cleavage in iron single crystals are presented.

  9. Deformation Induced Microtwins and Stacking Faults in Aluminum Single Crystal

    NASA Astrophysics Data System (ADS)

    Han, W. Z.; Cheng, G. M.; Li, S. X.; Wu, S. D.; Zhang, Z. F.

    2008-09-01

    Microtwins and stacking faults in plastically deformed aluminum single crystal were successfully observed by high-resolution transmission electron microscope. The occurrence of these microtwins and stacking faults is directly related to the specially designed crystallographic orientation, because they were not observed in pure aluminum single crystal or polycrystal before. Based on the new finding above, we propose a universal dislocation-based model to judge the preference or not for the nucleation of deformation twins and stacking faults in various face-centered-cubic metals in terms of the critical stress for dislocation glide or twinning by considering the intrinsic factors, such as stacking fault energy, crystallographic orientation, and grain size. The new finding of deformation induced microtwins and stacking faults in aluminum single crystal and the proposed model should be of interest to a broad community.

  10. Elastic constants of single crystal Hastelloy X at elevated temperatures

    SciTech Connect

    Canistraro, H.A.; Jordan, E.H.; Shi Shixiang; Favrow, L.H.; Reed, F.A.

    1998-07-01

    An acoustic time of flight technique is described in detail for measuring the elastic constants of cubic single crystals that allows for the constants to be determined at elevated temperature. Although the overall technique is not new, various aspects of the present work may prove extremely useful to others interested in finding these values, especially for aerospace materials applications. Elastic constants were determined for the nickel based alloy, Hastelloy X from room temperature to 1,000 C. Accurate elastic constants were needed as part of an effort to predict both polycrystal mechanical properties and the nature of grain induced heterogeneous mechanical response. The increased accuracy of the acoustically determined constants resulted in up to a 15% change in the predicted stresses in individual grains. These results indicate that the use of elastic single crystal constants of pure nickel as an approximation for the constants of gas turbine single crystal alloys, which is often done today, is inaccurate.

  11. The Load Capability of Piezoelectric Single Crystal Actuators

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Su, Ji; Jiang, Xiaoning; Rehrig, Paul W.; Hackenberger, Wesley S.

    2007-01-01

    Piezoelectric lead magnesium niobate-lead titanate (PMN-PT) single crystal is one of the most promising materials for electromechanical device applications due to its high electrical field induced strain and high electromechanical coupling factor. PMN-PT single crystal-based multilayer stack actuators and multilayer stack-based flextensional actuators have exhibited high stroke and high displacement-voltage ratios. The actuation capabilities of these two actuators were evaluated using a newly developed method based upon a laser vibrometer system under various loading conditions. The measured displacements as a function of mechanical loads at different driving voltages indicate that the displacement response of the actuators is approximately constant under broad ranges of mechanical load. The load capabilities of these PMN-PT single crystal-based actuators and the advantages of the capability for applications will be discussed.

  12. The Load Capability of Piezoelectric Single Crystal Actuators

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Su, Ji; Jiang, Xiaoning; Rehrig, Paul W.; Hackenberger, Wesley S.

    2006-01-01

    Piezoelectric lead magnesium niobate-lead titanate (PMN-PT) single crystal is one of the most promising materials for electromechanical device applications due to its high electrical field induced strain and high electromechanical coupling factor. PMN-PT single crystal-based multilayer stack actuators and multilayer stack-based flextensional actuators have exhibited high stroke and high displacement-voltage ratios. The actuation capabilities of these two actuators were evaluated using a newly developed method based upon a laser vibrometer system under various loading conditions. The measured displacements as a function of mechanical loads at different driving voltages indicate that the displacement response of the actuators is approximately constant under broad ranges of mechanical load. The load capabilities of these PMN-PT single crystal-based actuators and the advantages of the capability for applications will be discussed.

  13. Single Crystal Synthesis and STM Studies of High Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Barrientos, Alfonso

    1997-01-01

    This is a final report for the work initiated in September of 1994 under the grant NAG8-1085 - NASA/OMU, on the fabrication of bulk and single crystal synthesis, specific heat measuring and STM studies of high temperature superconductors. Efforts were made to fabricate bulk and single crystals of mercury based superconducting material. A systematic thermal analysis on the precursors for the corresponding oxides and carbonates were carried out to synthesized bulk samples. Bulk material was used as seed in an attempt to grow single crystals by a two-step self flux process. On the other hand bulk samples were characterized by x-ray diffraction, electrical resistivity and magnetic susceptibility, We studied the specific heat behavior in the range from 80 to 300 K. Some preliminary attempts were made to study the atomic morphology of our samples. As part of our efforts we built an ac susceptibility apparatus for measuring the transition temperature of our sintered samples.

  14. Crystal growth and characterization of semiorganic single crystals of L-histidine family for NLO applications

    NASA Astrophysics Data System (ADS)

    Anandan, Pandurangan; Jayavel, Ramasamy

    2011-05-01

    Single crystals of L-histidine hydrochloride monohydrate and tartaric acid mixed L-histidine hydrochloride monohydrate have been grown by slow evaporation solution growth technique from appropriate mixtures of respective chemicals. Single crystal and powder X-ray diffraction analyses, Fourier transform infrared, nuclear magnetic resonance spectral analysis, thermo-gravimetric (TG), differential thermal analysis (DTA) have been employed to characterize the as-grown crystals. It is observed to be a wide transparency window for both the crystals from 300 to 1000 nm, which is suitable for second harmonic generation of laser in the blue region. Nonlinear optical characteristics have been studied using Q switched Nd: YAG laser ( ?=1064 nm). The second harmonic generation conversion efficiency of the grown crystal shows the suitability for frequency conversion applications.

  15. Effect of Crystal Orientation on Analysis of Single-Crystal, Nickel-Based Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Swanson, G. R.; Arakere, N. K.

    2000-01-01

    High-cycle fatigue-induced failures in turbine and turbopump blades is a pervasive problem. Single-crystal nickel turbine blades are used because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities. Single-crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant and complicating factor. A fatigue failure criterion based on the maximum shear stress amplitude on the 24 octahedral and 6 cube slip systems is presented for single-crystal nickel superalloys (FCC crystal). This criterion greatly reduces the scatter in uniaxial fatigue data for PWA 1493 at 1,200 F in air. Additionally, single-crystal turbine blades used in the Space Shuttle main engine high pressure fuel turbopump/alternate turbopump are modeled using a three-dimensional finite element (FE) model. This model accounts for material orthotrophy and crystal orientation. Fatigue life of the blade tip is computed using FE stress results and the failure criterion that was developed. Stress analysis results in the blade attachment region are also presented. Results demonstrate that control of crystallographic orientation has the potential to significantly increase a component's resistance to fatigue crack growth without adding additional weight or cost.

  16. Anisotropy of nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Dreshfield, R. L.; Maier, R. D.

    1980-01-01

    The influence of orientation on the tensile and stress rupture behavior of 52 Mar-M247 single crystals was studied. Tensile tests were performed at temperatures between 23 and 1093 C; stress rupture behavior was examined between 760 and 1038 C. The mechanical behavior of the single crystals was rationalized on the basis of the Schmid factor contours for the operative slip systems and the lattice rotations which the crystals underwent during deformation. The tensile properties correlated well with the appropriate Schmid factor contours. The stress rupture lives at lower testing temperatures were greatly influenced by the lattice rotations required to produce cross slip. A unified analysis was attained for the stress rupture life data generated for the Mar-M247 single crystals at 760 and 774 C under a stress of 724 MPa and the data reported for Mar-M200 single crystals tested at 760 C under a stress of 689 MPa. Based on this analysis, the stereographic triangle was divided into several regions which were rank ordered according to stress rupture life for this temperature regime.

  17. Crystal growth of alkali metal ion doped potassium niobate fiber single crystals

    NASA Astrophysics Data System (ADS)

    Kimura, H.; Tanahashi, R.; Zhao, H. Y.; Maiwa, K.; Cheng, Z. X.; Wang, X. L.

    2010-05-01

    Alkali metal (Na, Rb or Cs) ion doped KNbO 3 fiber single crystals are grown using an original pulling down method, to improve their composition change during a crystal growth, by means of co-doping of small ionic size Na and large ionic size Rb or Cs into KNbO 3. In spite of the co-doping, single crystals can be grown with orthorhombic single-phase at room temperature, as well as pure KNbO 3. Their electric properties, such as impedance, are changed depending on the doping ions. Na and Rb co-doped KNbO 3 is promising Pb free ferroelectric and piezoelectric crystals.

  18. Preparation of single-crystal copper ferrite nanorods and nanodisks

    SciTech Connect

    Du Jimin; Liu Zhimin . E-mail: liuzm@iccas.ac.cn; Wu Weize; Li Zhonghao; Han Buxing . E-mail: hanbx@iccas.ac.cn; Huang Ying

    2005-06-15

    This article, for the first time, reports the preparation of single-crystal copper ferrite nanorods and nanodisks. Using amorphous copper ferrite nanoparticles synthesized by reverse micelle as reaction precursor, single-crystal copper ferrite nanorods were synthesized via hydrothermal method in the presence of surfactant polyethylene glycol (PEG), however, copper ferrite nanodisks were prepared through the same procedures except the surfactant PEG. The resulting nanomaterials have been characterized by powder X-ray diffraction (XRD), selected electron area diffraction (SEAD), and transmission electron microscopy (TEM). The bulk composition of the samples was determined by means of X-ray photoelectron spectroscopy (XPS)

  19. Imaging linear polarimetry using a single ferroelectric liquid crystal modulator.

    PubMed

    Gendre, Luc; Foulonneau, Alban; Bigué, Laurent

    2010-09-01

    In the field of polarimetry, ferroelectric liquid crystal cells are mostly used as bistable polarization rotators suitable to analyze crossed polarizations. This paper shows that, provided such a cell is used at its nominal wavelength and correctly driven, its behavior is close to that of a tunable half-wave plate, and it can be used with much benefit in lightweight imaging polarimetric setups. A partial Stokes polarimeter using a single digital video camera and a single ferroelectric liquid crystal modulator is designed and implemented for linear polarization analysis. Polarization azimuthal angle and degree of linear polarization are available at 150 frames per second with a good accuracy. PMID:20820209

  20. How a silver dendritic mesocrystal converts to a single crystal

    SciTech Connect

    Fang, J.; Ding, B.; Song, X.; Han, Y.

    2008-05-02

    In this paper, we demonstrate how a silver dendrite transforms from mesocrystal into single crystal and the stability for a dendritic silver mesocrystal within a Sn/AgNO3 galvanic replacement reaction. Our findings provide the direct evidence and visible picture of the transformation from mesocrystal to single crystalline structure and further confirm the particle-mediated crystallization mechanism. At the initial stage of the transformation, there is a crystallographic fusion process, dominated by oriented attachment mechanism. Ostwald ripening also plays an important role in forming smooth surface and regular shape of the final nanocrystal.

  1. Apparatus And Method For Producing Single Crystal Metallic Objects

    DOEpatents

    Huang, Shyh-Chin (Latham, NY); Gigliotti, Jr., Michael Francis X. (Scotia, NY); Rutkowski, Stephen Francis (Duanesburg, NY); Petterson, Roger John (Fultonville, NY); Svec, Paul Steven (Scotia, NY)

    2006-03-14

    A mold is provided for enabling casting of single crystal metallic articles including a part-defining cavity, a sorter passage positioned vertically beneath and in fluid communication with the part-defining cavity, and a seed cavity positioned vertically beneath and in fluid communication with the sorter passage. The sorter passage includes a shape suitable for encouraging a single crystal structure in solidifying molten metal. Additionally, a portion of the mold between the sorter passage and the part-defining cavity includes a notch for facilitating breakage of a cast article proximate the notch during thermal stress build-up, so as to prevent mold breakage or the inclusion of part defects.

  2. Two-photon-induced singlet fission in rubrene single crystal

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Galstyan, Gegham; Zhang, Keke; Kloc, Christian; Sun, Handong; Soci, Cesare; Michel-Beyerle, Maria E.; Gurzadyan, Gagik G.

    2013-05-01

    The two-photon-induced singlet fission was observed in rubrene single crystal and studied by use of femtosecond pump-probe spectroscopy. The location of two-photon excited states was obtained from the nondegenerate two-photon absorption (TPA) spectrum. Time evolution of the two-photon-induced transient absorption spectra reveals the direct singlet fission from the two-photon excited states. The TPA absorption coefficient of rubrene single crystal is 52 cm/GW at 740 nm, as obtained from Z-scan measurements. Quantum chemical calculations based on time-dependent density functional theory support our experimental data.

  3. Performance of a Single-Crystal Diamond-Pixel Telescope

    NASA Astrophysics Data System (ADS)

    Hits, Dmitry; Schnetzer, Steve; Stone, Robert; Bartz, Ed; Doroshenko, John; Halyo, Valerie; Harrop, Bert; Hunt, Adam; Marlow, Dan; Johns, Will; Bugg, William; Hollingsworth, Matt; Spanier, Stefan; Hall-Wilton, Richard; Ryjov, Vladimir; Pernicka, Manfred

    2010-02-01

    We will present the results of a test beam study of a single-crystal, diamond, pixel telescope. This telescope is a prototype for a dedicated luminosity monitor for CMS. The telescope has three equally-spaced planes with a total length of 7.5 cm. Each plane consists of a single-crystal CVD diamond with an active area of 4mm x 4mm bump-bonded to a PSI46v2 pixel readout chip. The study was carried out in a high energy pion beam at the CERN SPS. We will present results on the performance of the telescope including occupancy, efficiency, pulse height distributions and tracking. )

  4. Crystal growth and spectral studies of nonlinear optical ?-glycine single crystal grown from phosphoric acid

    NASA Astrophysics Data System (ADS)

    Parimaladevi, R.; Sekar, C.

    2010-09-01

    Single crystals of the organic nonlinear material ?-glycine have been grown in the presence of phosphoric acid by slow-evaporation method. The crystal structure is confirmed by X-ray powder diffraction method. The thermal stability and decomposition of the sample have been studied by thermal analysis. The result shows that the transition temperature, i.e. transition from ?- to ?-glycine is enhanced from 165 C to 191 C. The modes of vibrations of different molecular groups present in glycine have been identified by spectral analyses. The transmittance spectrum of ?-glycine crystal shows that the lower UV cut-off wavelength lies at 230 nm. Second harmonic generation (SHG) conversion efficiency has been estimated as 125 mV and the output power by the crystal was 1.3 times that of potassium dihydrogen phosphate (KDP) crystal. The dielectric and microhardness measurements have been carried out on the ?-glycine crystal.

  5. Growth of Solid Solution Single Crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, Sandor L.; Szofran, F. R.; Gillies, Donald C.

    2001-01-01

    The solidification of a solid solution semiconductor, having a wide separation between liquidus and solidus has been extensively studied in ground based, high magnetic field and Spacelab experiments. Two alloys of mercury cadmium telluride have been studied; with 80.0 mole percent of HgTe and 84.8 mole percent of HgTe respectively, the remainder being cadmium telluride. Such alloys are extremely difficult to grow by directional solidification on earth due to high solutal and thermal density differences that give rise to fluid flow and consequent loss of interface shape and composition. Diffusion controlled growth is therefore impossible to achieve in conventional directional solidification. The ground based experiments consisted of growing crystals in several different configurations of heat pipe furnaces, NASA's Advanced Automated Directional Solidification Furnace (AADSF), and a similar furnace incorporated in a superconducting magnet capable of operating at up to 5T. The first microgravity experiment took place during the flight of STS-62 in March 1994, with the AADSF installed on the second United States Microgravity Payload (USMP-2). The alloy was solidified at 3/4 inch per day over a 9 day period, and for the first time a detailed evaluation was performed correlating composition variations to measured residual acceleration. The second flight experiment took place in the fourth United States Microgravity Payload Mission (USMP-4) in November 1997. Due to contamination of the furnace system, analysis shows that the conditions prevailing during the experiment were quite different from the requirements requested prior to the mission. The results indicate that the sample did accomplish the desired objectives.

  6. Ultrasonic characterization of single crystal langatate

    NASA Astrophysics Data System (ADS)

    Sturtevant, Blake T.

    Langatate (LGT), a synthetic piezoelectric crystal with chemical composition La3Ga5.5Ta0.5O14, has recently received significant interest in the sensor and frequency control communities as a possible alternative to quartz owing to its higher piezoelectric coupling, structural stability up to 1400C and presence of temperature compensated acoustic wave (AW) orientations. With these exciting properties, LGT is expected to find applications in AW sensor, timing, and frequency control. This thesis focuses on the characterization of the acoustic wave material properties of LGT up to 120C. Such a characterization is critical for the design and fabrication of LGT acoustic wave devices. The elastic and piezoelectric constants were determined through measurements of bulk acoustic wave phase velocities by two independent methods, the pulse echo overlap technique and a combined resonance technique. The extracted constants and temperature coefficients enabled the identification of a range of particularly interesting LGT surface acoustic wave (SAW) orientations with Euler angles (90, 23, 118-124) that exhibits predicted electromechanical coupling up to 0.7% and reduced or zero temperature coefficient of delay (TCD). The consistency of the determined constants and temperature coefficients was established using SAW measurements of seven crystallographic orientations at temperatures ranging up to 120C. Measured SAW phase velocities and TCDs were found to be in agreement with predictions based on the determined constants. Two of the seven SAW orientations exhibited temperature compensation within 40C of room temperature, agreeing with predictions. Deposition of SiAlON films on top of LGT SAW devices for surface protection in chemically and mechanically harsh environments was also investigated. SiAlON films deposited by reactive RF magnetron co-sputtering of Al and Si targets were controlled to within a few percent for film thickness and composition. SiAlON thin film clastic constants were extracted using differential SAW delay line methods and were found to be: C11,s = 160 +/- 30 GPa and C44,s = 55 +/- 5 GPa. SiAlON films up to 800 nm in thickness were shown to have no measurable effect on the TCD of LGT SAW delay lines.

  7. Roflumilast - A reversible single-crystal to single-crystal phase transition at 50 °C

    NASA Astrophysics Data System (ADS)

    Viertelhaus, Martin; Holst, Hans Christof; Volz, Jürgen; Hummel, Rolf-Peter

    2013-01-01

    Roflumilast is a selective phosphodiesterase type 4 inhibitor and is marketed under the brand names Daxas®, Daliresp® and Libertec®. A phase transition of the drug substance roflumilast was observed at 50 °C. The low temperature form, the high temperature form and the phase transition were characterised by differential scanning calorimetry, variable temperature powder X-ray diffraction and single crystal X-ray diffraction, Raman spectroscopy and solid state NMR spectroscopy. The phase transition of roflumilast at 50 °C is completely reversible, the high temperature form cannot be stabilised by quench cooling and the phase transition does not influence the quality of the active pharmaceutical ingredient (API) and the drug product. It was observed to be a single crystal to single crystal phase transition.

  8. Relaxor-PT single crystals: observations and developments.

    PubMed

    Zhang, Shujun; Shrout, Thomas

    2010-10-01

    Relaxor-PT based ferroelectric single crystals Pb(Zn?/?)Nb(?/?)O?-PbTiO? (PZNT) and Pb(Mg?/?)Nb(?/?)O?-PbTiO? (PMNT) offer high performance with ultra-high electromechanical coupling factors k?? > 0.9 and piezoelectric coefficients d??s > 1500 pC/N. However, the usage temperature range of these perovskite single crystals is limited by T(RT)-the rhombohedral to tetragonal phase transition temperature, which occurs at significantly lower temperatures than the Curie temperature T(C), a consequence of curved morphotropic phase boundaries (MPBs). Furthermore, these <001>-oriented crystals exhibit low mechanical quality Q and coercive fields, restricting their usage in high-power applications. In this survey, recent developments on binary and ternary perovskite relaxor-PT crystal systems are reviewed with respect to their temperature usage range. General trends of dielectric and piezoelectric properties of relaxor-PT crystal systems are discussed in relation to their respective T(C)/T(RT). In addition, two approaches have been implemented to improve mechanical Q, including acceptor dopants, analogous to hard polycrystalline ceramics, and anisotropic domain engineering, enabling low-loss crystals with high coupling for high-power applications. PMID:20889397

  9. Recent developments in high curie temperature perovskite single crystals.

    PubMed

    Zhang, Shujun; Randall, Clive A; Shrout, Thomas R

    2005-04-01

    The temperature behavior of various relaxor-PT piezoelectric single crystals was investigated. Owing to a strongly curved morphotropic phase boundary, the usage temperature of these perovskite single crystals is limited by TR-T--the rhombohedral to tetragonal phase transformation temperature--which occurs a significantly lower temperatures than the Curie temperature Tc. Attempts to modify the temperature usage range of Pb(Zn1/3Nb2/3)O3--PbTiO3 (PZNT) and Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMNT) rhombohedral crystals (Tx to approximately 150-170 degrees C, TR-T to approximately 60-120 degrees C) using minor dopant modifications were limited, with little success. Of significant potential are crystals near the mor photropic phase boundary in the Pb(Yb1/2Nb1/2)O3-PbTiO3 (PYNT) system, with a Tc > 330 degrees C, even thoug TR-T was found to be only half that value at approximately 160 degrees C. Single crystals in the novel BiScO3-PbTiO3 system offer significantly higher Tcs > 400 degrees C, while exhibiting electromechanical coupling coefficients k33 > 90% being nearly constant till the TR-T temperature around 350 degrees C, which greatly increases the temperature range for transducer applications. PMID:16060503

  10. Green planting nanostructured single crystal silver

    PubMed Central

    Zhao, Hong; Wang, Fei; Ning, Yuesheng; Zhao, Binyuan; Yin, Fujun; Lai, Yijian; Zheng, Junwei; Hu, Xiaobin; Fan, Tongxiang; Tang, Jianguo; Zhang, Di; Hu, Keao

    2013-01-01

    Design and fabrication of noble metal nanocrystals have attracted much attention due to their wide applications in catalysis, optical detection and biomedicine. However, it still remains a challenge to scale-up the production in a high-quality, low-cost and eco-friendly way. Here we show that single crystalline silver nanobelts grow abundantly on the surface of biomass-derived monolithic activated carbon (MAC), using [Ag(NH3)2]NO3 aqueous solution only. By varying the [Ag(NH3)2]NO3 concentration, silver nanoplates or nanoflowers can also be selectively obtained. The silver growth was illustrated using a galvanic-cell mechanism. The lowering of cell potential via using [Ag(NH3)2]+ precursor, together with the AgCl crystalline seed initiation, and the releasing of OH? in the reaction process, create a stable environment for the self-compensatory growth of silver nanocrystals. Our work revealed the great versatility of a new type of template-directed galvanic-cell reaction for the controlled growth of noble metal nanocrystals. PMID:23515002

  11. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization

    PubMed Central

    Saidaminov, Makhsud I.; Abdelhady, Ahmed L.; Murali, Banavoth; Alarousu, Erkki; Burlakov, Victor M.; Peng, Wei; Dursun, Ibrahim; Wang, Lingfei; He, Yao; Maculan, Giacomo; Goriely, Alain; Wu, Tom; Mohammed, Omar F.; Bakr, Osman M.

    2015-01-01

    Single crystals of methylammonium lead trihalide perovskites (MAPbX3; MA=CH3NH3+, X=Br− or I−) have shown remarkably low trap density and charge transport properties; however, growth of such high-quality semiconductors is a time-consuming process. Here we present a rapid crystal growth process to obtain MAPbX3 single crystals, an order of magnitude faster than previous reports. The process is based on our observation of the substantial decrease of MAPbX3 solubility, in certain solvents, at elevated temperatures. The crystals can be both size- and shape-controlled by manipulating the different crystallization parameters. Despite the rapidity of the method, the grown crystals exhibit transport properties and trap densities comparable to the highest quality MAPbX3 reported to date. The phenomenon of inverse or retrograde solubility and its correlated inverse temperature crystallization strategy present a major step forward for advancing the field on perovskite crystallization. PMID:26145157

  12. Fretting Stresses in Single Crystal Superalloy Turbine Blade Attachments

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Swanson, Gregory

    2000-01-01

    Single crystal nickel base superalloy turbine blades are being utilized in rocket engine turbopumps and turbine engines because of their superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal nickel base turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. High Cycle Fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Blade attachment regions are prone to fretting fatigue failures. Single crystal nickel base superalloy turbine blades are especially prone to fretting damage because the subsurface shear stresses induced by fretting action at the attachment regions can result in crystallographic initiation and crack growth along octahedral planes. Furthermore, crystallographic crack growth on octahedral planes under fretting induced mixed mode loading can be an order of magnitude faster than under pure mode I loading. This paper presents contact stress evaluation in the attachment region for single crystal turbine blades used in the NASA alternate Advanced High Pressure Fuel Turbo Pump (HPFTP/AT) for the Space Shuttle Main Engine (SSME). Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. Blades and the attachment region are modeled using a large-scale 3D finite element (FE) model capable of accounting for contact friction, material orthotrophy, and variation in primary and secondary crystal orientation. Contact stress analysis in the blade attachment regions is presented as a function of coefficient of friction and primary and secondary crystal orientation, Stress results are used to discuss fretting fatigue failure analysis of SSME blades. Attachment stresses are seen to reach peak values at locations where fretting cracks have been observed. Fretting stresses at the attachment region are seen to vary significantly as a function of crystal orientation. Attempts to adapt techniques used for estimating fatigue life in the airfoil region, for life calculations in the attachment region, are presented. An effective model for predicting crystallographic crack initiation under mixed mode loading is required for life prediction under fretting action.

  13. Macroscale Janus polymer single crystal film and its wettability analysis

    NASA Astrophysics Data System (ADS)

    Qi, Hao; Wang, Wenda; Zhou, Tian; Li, Christopher

    2014-03-01

    Liquid-liquid interface between two immiscible solvents is crucial to studying amphiphile and colloidal self-assembly. It can also guide chain folding during the crystallization process. In this presentation, we show that crystallization of dicarboxy end functionalized poly(ɛ-caprolactone) at water/pentyl acetate interface result in millimeter scale, uniform polymer single crystal (PSC) film. Due to the asymmetric nature at the liquid-liquid interface, the PSC film exhibit Janus property - a hydrophobic side and a hydrophilic side, which is confirmed by in-situ nano-condensation experiment using an environmental scanning electron microscope. The thickness of the PSC film changes with different polymer solution concentration, revealing a surface tension dominated crystallization process.

  14. Microhardness studies of vapour grown tin (II) sulfide single crystals

    NASA Astrophysics Data System (ADS)

    Hegde, S. S.; Kunjomana, A. G.; Ramesh, K.

    2015-06-01

    Earth abundant tin sulfide (SnS) has attracted considerable attention as a possible absorber material for low-cost solar cells due to its favourable optoelectronic properties. Single crystals of SnS were grown by physical vapour deposition (PVD) technique. Microindentation studies were carried out on the cleaved surfaces of the crystals to understand their mechanical behaviour. Microhardness increased initially with the load, giving sharp maximum at 15 g. Quenching effect has increased the microhardness, while annealing reduced the microhardness of grown crystals. The hardness values of as-grown, annealed and quenched samples at 15 g load are computed to be 99.69, 44.52 and 106.29 kg/mm2 respectively. The microhardness of PVD grown crystals are high compared to CdTe, a leading low-cost PV material. The as-grown faces are found to be fracture resistant.

  15. Monte Carlo simulations of single crystals from polymer solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Jianing; Muthukumar, M.

    2007-06-01

    A novel "anisotropic aggregation" model is proposed to simulate nucleation and growth of polymer single crystals as functions of temperature and polymer concentration in dilute solutions. Prefolded chains in a dilute solution are assumed to aggregate at a seed nucleus with an anisotropic interaction by a reversible adsorption/desorption mechanism, with temperature, concentration, and seed size being the control variables. The Monte Carlo results of this model resolve the long-standing dilemma regarding the kinetic and thermal roughenings, by producing a rough-flat-rough transition in the crystal morphology with increasing temperature. It is found that the crystal growth rate varies nonlinearly with temperature and concentration without any marked transitions among any regimes of polymer crystallization kinetics. The induction time increases with decreasing the seed nucleus size, increasing temperature, or decreasing concentration. The apparent critical nucleus size is found to increase exponentially with increasing temperature or decreasing concentration, leading to a critical nucleus diagram composed in the temperature-concentration plane with three regions of different nucleation barriers: no growth, nucleation and growth, and spontaneous growth. Melting temperatures as functions of the crystal size, heating rate, and concentration are also reported. The present model, falling in the same category of small molecular crystallization with anisotropic interactions, captures most of the phenomenology of polymer crystallization in dilute solutions.

  16. The viscoplastic behavior of Hastelloy-X single crystal

    NASA Technical Reports Server (NTRS)

    Jordan, Eric H.; Shi, Shixiang; Walker, Kevin P.

    1993-01-01

    A viscoplastic constitutive model for simulating the behavior of Hastelloy-X single crystal material was derived based on crystallographic slip theory. To determine the appropriate constitutive model constants and to test the predictions of the model, tests on Hastelloy-X crystals were carried out, including the rate sensitivity, cyclic hardening, nonproportional hardening, relaxation, and strain rate dip tests. It was found necessary to include cube slip in the model in order to correlate the uniaxial behavior of the single crystal, to incorporate the interaction effects in both the hardening and the dynamic recovery evolution equations for the drag stress, and to successfully capture correct strain rate sensitivity under biaxial tension-torsion loading conditions.

  17. Characterization of hydrogen embrittlement in nickel base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Chene, J.; Baker, C. L.; Bernstein, I. M.; Williams, J. C.

    1986-01-01

    In order to study the role of CMSX2 single crystal microstructure on the combined stress-hydrogen environment effects, hydrogen was introduced by cathodic charging. Concentration measurements were carried out to investigate the dependence of hydrogen solubility and trapping on microstructure. Mechanical properties were measured at room temperature on smooth tensile specimens as a function of heat treatment, crystal orientation and H charging conditions. SEM and TEM allow to study H induced cracks initiation and propagation. A large amount of hydrogen can be dissolved and trapped in CMSX2 single crystals when exposed to a high hydrogen fugacity environment. The strong H trapping evidenced in voids explains the predominant role of these defects as crack initiation sites. The strong detrimental effect of hydrogen on the material tenacity is discussed.

  18. Single crystal plasticity with bend-twist modes

    NASA Astrophysics Data System (ADS)

    Elkhodary, Khalil I.; Bakr, Mohamed A.

    2015-06-01

    In this work a formulation is proposed and computationally implemented for rate dependent single crystal plasticity, which incorporates plastic bend-twist modes that arise from dislocation density based poly-slip mechanisms. The formulation makes use of higher order continuum theory and may be viewed as a generalized micromechanics model. The formulation is then linked to the burgers and Nye tensors, showing how their material rates are derivable from a newly proposed third-rank tensor ?p, which incorporates a crystallographic description of bend-twist plasticity through selectable slip-system level constitutive laws. A simple three-dimensional explicit finite element implementation is outlined and employed in three simulations: (a) bi-crystal bending; (b) tension on a notched single crystal; and (c) the large compression of a microstructure to induce the plastic buckling of secondary phases. All simulation are transient, for computational expediency. The results shed light on the physics resulting from dynamic inhomogeneous plastic deformation.

  19. Growth of hafnium dioxide-based single crystals

    SciTech Connect

    Voronov, V.V.; Lavrishchev, S.V.; Markov, N.I.; Miftyakhetdinova, N.R.; Osiko, V.V.; Tatarintsev, V.M.; Zufarov, M.A.

    1986-03-01

    This paper considers the induction melting of hafnium dioxide with rare earth oxide mixtures, and studies defects in resulting hafnium dioxide single crystals stabilized by the oxides of scandium, yttrium, neodymium, gadolinium, terbium, erbium, and ytterbium at concentrations between 1 and 33 mole %. Crystallization of solid solutions occurs in the systems HfO/sub 2/Ln/sub 2/O/sub 3/. For the HfO/sub 2/-Er/sub 2/O/sub 3/ system, single crystals grow at 11-33 mole %, for HfO/sub 2/-Tb/sub 2/O/sub 3/ at 10-20 mole % and for HfO/sub 3/Sc/sub 2/O/sub 3/ (Nd/sub 2/O/sub 3/) at 10 mole % rare-earth oxide.

  20. Deformation of single crystal Hadfield steel by twinning and slip

    SciTech Connect

    Karaman, I.; Sehitoglu, H.; Gall, K.; Chumlyakov, Y.I.; Maier, H.J.

    2000-04-03

    The stress-strain behavior of Hadfield steel (Fe, 12.34 Mn, 1.03 C, in wt%) single crystals was studied for selected crystallographic orientations ([{bar 1}11 ], [001] and [{bar 1}23]) under tension and compression. The overall stress-strain response was strongly dependent on the crystallographic orientation and applied stress direction. Transmission electron microscopy and in situ optical microscopy demonstrated that twinning is the dominant deformation mechanism in [{bar 1}11] crystals subjected to tension, and [001] crystals subjected to compression at the onset of inelastic deformation. In the orientations that experience twinning, the activation of multiple twinning systems produces a higher strain-hardening coefficient than observed in typical f.c.c. alloys. Based on these experimental observations, a model is presented that predicts the orientation and stress direction effects on the critical stress for initiating twinning. The model incorporates the role of local pile-up stresses, stacking fault energy, the influence of the applied stress on the separation of partial dislocations, and the increase in the friction stress due to a high solute concentration. On the other hand, multiple slip was determined to be the dominant deformation mechanism in [{bar 1}11] crystals subjected to compression, and [001] crystals deformed under tension. Furthermore, the [{bar 1}23] crystals experience single slip in both tension and compression with planar type dislocations. Using electron back-scattered diffraction patterns, macroscopic shear bands (MSBs) were identified with a misorientation of 9 {degree} in the compressed [{bar 1}11] single crystals at strains as low as 1%.

  1. A Study of Single Crystal Fatigue Failure Criteria

    NASA Technical Reports Server (NTRS)

    Sayyah, Tarek; Swanson, Gregory R.; Schonberg, William P.

    2000-01-01

    This paper presents the results of a study whose objective was to study the applicability of different failure equations in modeling low cycle fatigue (LCF) test data for single crystal test specimens. A total of four failure criteria were considered in this study. One of the failure equations was developed by Pratt & Whitney and is based on normal and shear strains on the primary crystallographic slip planes of the single crystal material. Other failure equations considered are based on isotropic criteria. Because these failure equations were originally developed for isotropic materials such as structural steel, they were modified to be applicable to the single crystal slip systems of the LCF specimen material. By observing how closely the various equations were able to reduce the scatter in the LCF test data, the applicability of those equations in modeling the LCF test data was assessed. It is desired to subsequently use the failure equation with the highest correlation in the development of a new single crystal failure criterion for the Alternative Turbopump Development (ATD) for the space shuttle main engine (SSME) High Pressure Fuel Turbopump (HPFTP).

  2. Area detectors in single-crystal neutron diffraction

    NASA Astrophysics Data System (ADS)

    McIntyre, Garry J.

    2015-12-01

    The introduction of area detectors has brought about a gentle revolution in the routine application of single-crystal neutron diffractometry. Implemented first for macromolecular crystallography, electronic detectors subsequently gradually spread to chemical and physics-oriented crystallography at steady-state sources. The volumetric surveying of reciprocal space implicit in the Laue technique has required area detectors right from the start, whether using film and more recently image plates and CCD-based detectors at reactors, or scintillation detectors at spallation sources. Wide-angle volumetric data collection has extended application of neutron single-crystal diffractometry to chemical structures, sample volumes, and physical phenomena previously deemed impossible. More than 30 of the dedicated single-crystal neutron diffractometers at steady-state reactor and neutron spallation sources worldwide and accessible via peer-review proposal mechanisms are currently equipped with area detectors. Here we review the historical development of the various types of area detectors used for single crystals, discuss experimental aspects peculiar to experiments with such detectors, highlight the scientific fields where the use of area detectors has had a special impact, and forecast future developments in hardware, implementation, and software.

  3. Reliability analysis of single crystal NiAl turbine blades

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan; Noebe, Ronald; Wheeler, Donald R.; Holland, Fred; Palko, Joseph; Duffy, Stephen; Wright, P. Kennard

    1995-01-01

    As part of a co-operative agreement with General Electric Aircraft Engines (GEAE), NASA LeRC is modifying and validating the Ceramic Analysis and Reliability Evaluation of Structures algorithm for use in design of components made of high strength NiAl based intermetallic materials. NiAl single crystal alloys are being actively investigated by GEAE as a replacement for Ni-based single crystal superalloys for use in high pressure turbine blades and vanes. The driving force for this research lies in the numerous property advantages offered by NiAl alloys over their superalloy counterparts. These include a reduction of density by as much as a third without significantly sacrificing strength, higher melting point, greater thermal conductivity, better oxidation resistance, and a better response to thermal barrier coatings. The current drawback to high strength NiAl single crystals is their limited ductility. Consequently, significant efforts including the work agreement with GEAE are underway to develop testing and design methodologies for these materials. The approach to validation and component analysis involves the following steps: determination of the statistical nature and source of fracture in a high strength, NiAl single crystal turbine blade material; measurement of the failure strength envelope of the material; coding of statistically based reliability models; verification of the code and model; and modeling of turbine blades and vanes for rig testing.

  4. Single crystal ternary oxide ferroelectric integration with Silicon

    NASA Astrophysics Data System (ADS)

    Bakaul, Saidur; Serrao, Claudy; Youun, Long; Khan, Asif; Salahuddin, Sayeef

    2015-03-01

    Integrating single crystal, ternary oxide ferroelectric thin film with Silicon or other arbitrary substrates has been a holy grail for the researchers since the inception of microelectronics industry. The key motivation is that adding ferroelectric materials to existing electronic devices could bring into new functionality, physics and performance improvement such as non-volatility of information, negative capacitance effect and lowering sub-threshold swing of field effect transistor (FET) below 60 mV/decade in FET [Salahuddin, S, Datta, S. Nano Lett. 8, 405(2008)]. However, fabrication of single crystal ferroelectric thin film demands stringent conditions such as lattice matched single crystal substrate and high processing temperature which are incompatible with Silicon. Here we report on successful integration of PbZr0.2Ti0.8O3 in single crystal form with by using a layer transfer method. The lattice structure, surface morphology, piezoelectric coefficient d33, dielectric constant, ferroelectric domain switching and spontaneous and remnant polarization of the transferred PZT are as good as these characteristics of the best PZT films grown by pulsed laser deposition on lattice matched oxide substrates. We also demonstrate Si based, FE gate controlled FET devices.

  5. Low-cost single-crystal turbine blades, volume 1

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Heath, B.; Fujii, M.

    1983-01-01

    The exothermic casting process was successfully developed into a low cost nonproprietary method for producing single crystal (SC) castings. Casting yields were lower than expected, on the order of 20 percent, but it is felt that the casting yield could be significantly improved with minor modifications to the process. Single crystal Mar-M 247 and two derivative SC alloys were developed. NASAIR 100 and SC Alloy 3 were fully characterized through mechanical property testing. SC Mar-M 247 shows no significant improvement in strength over directionally solidified (DS) Mar-M 247, but the derivative alloys, NASAIR 100 and Alloy 3, show significant tensile and fatigue improvements. The 1000 hr/238 MPa (20 ksi) stress rupture capability compared to DS Mar-M 247 was improved over 28 C. Firtree testing, holography, and strain gauge rig testing were used to evaluate the effects of the anisotropic characteristics of single crystal materials. In general, the single crystal material behaved similarly to DS Mar-M 247. Two complete engine sets of SC HP turbine blades were cast using the exothermic casting process and fully machined.

  6. Transverse Mode Multi-Resonant Single Crystal Transducer

    NASA Technical Reports Server (NTRS)

    Snook, Kevin A. (Inventor); Liang, Yu (Inventor); Luo, Jun (Inventor); Hackenberger, Wesley S. (Inventor); Sahul, Raffi (Inventor)

    2015-01-01

    A transducer is disclosed that includes a multiply resonant composite, the composite having a resonator bar of a piezoelectric single crystal configured in a d(sub 32) transverse length-extensional resonance mode having a crystallographic orientation set such that the thickness axis is in the (110) family and resonance direction is the (001) family.

  7. Unified constitutive model for single crystal deformation behavior with applications

    NASA Technical Reports Server (NTRS)

    Walker, K. P.; Meyer, T. G.; Jordan, E. H.

    1988-01-01

    Single crystal materials are being used in gas turbine airfoils and are candidates for other hot section components because of their increased temperature capabilities and resistance to thermal fatigue. Development of a constitutive model which assesses the inelastic behavior of these materials has been studied in 2 NASA programs: Life Prediction and Constitutive Models for Engine Hot Section Anisotropic Materials and Biaxial Constitutive Equation Development for Single Crystals. The model has been fit to a large body of constitutive data for single crystal PWA 1480 material. The model uses a unified approach for computing total inelastic strains (creep plus plasticity) on crystallographic slip systems reproducing observed directional and strain rate effects as a natural consequence of the summed slip system quantities. The model includes several of the effects that have been reported to influence deformation in single crystal materials, such as shear stress, latent hardening, and cross slip. The model is operational in a commercial Finite Element code and is being installed in a Boundary Element Method code.

  8. Some Debye temperatures from single-crystal elastic constant data

    USGS Publications Warehouse

    Robie, R.A.; Edwards, J.L.

    1966-01-01

    The mean velocity of sound has been calculated for 14 crystalline solids by using the best recent values of their single-crystal elastic stiffness constants. These mean sound velocities have been used to obtain the elastic Debye temperatures ??De for these materials. Models of the three wave velocity surfaces for calcite are illustrated. ?? 1966 The American Institute of Physics.

  9. Dynamic actuation of single-crystal diamond nanobeams

    NASA Astrophysics Data System (ADS)

    Sohn, Young-Ik; Burek, Michael J.; Kara, Vural; Kearns, Ryan; Lon?ar, Marko

    2015-12-01

    We show the dielectrophoretic actuation of single-crystal diamond nanomechanical devices. Gradient radio-frequency electromagnetic forces are used to achieve actuation of both cantilever and doubly clamped beam structures, with operation frequencies ranging from a few MHz to 50 MHz. Frequency tuning and parametric actuation are also studied.

  10. Low temperature magnetic transitions of single crystal HoBi

    SciTech Connect

    Fente, A.; Suderow, H.; Vieira, S.; Nemes, N. M.; Garcia-Hernandez, M.; Budko, Sergei L.; Canfield, Paul C.

    2013-09-04

    We present resistivity, specific heat and magnetization measurements in high quality single crystals of HoBi, with a residual resistivity ratio of 126. We find, from the temperature and field dependence of the magnetization, an antiferromagnetic transition at 5.7 K, which evolves, under magnetic fields, into a series of up to five metamagnetic phases.

  11. Void lattice formation in electron irradiated CaF2: Statistical analysis of experimental data and cellular automata simulations

    NASA Astrophysics Data System (ADS)

    Zvejnieks, G.; Merzlyakov, P.; Kuzovkov, V. N.; Kotomin, E. A.

    2016-02-01

    Calcium fluoride (CaF2) is an important optical material widely used in both microlithography and deep UV windows. It is known that under certain conditions electron beam irradiation can create therein a superlattice consisting of vacancy clusters (called a void lattice). The goal of this paper is twofold. Firstly, to perform a quantitative analysis of experimental TEM images demonstrating void lattice formation, we developed two distinct image filters. As a result, we can easily calculate vacancy concentration, vacancy cluster distribution function as well as average distances between defect clusters. The results for two suggested filters are similar and demonstrate that experimental void cluster growth is accompanied by a slight increase of the void lattice constant. Secondly, we proposed a microscopic model that allows us to reproduce a macroscopic void ordering, in agreement with experimental data, and to resolve existing theoretical and experimental contradictions. Our computer simulations demonstrate that macroscopic void lattice self-organization can occur only in a narrow parameter range. Moreover, we studied the kinetics of a void lattice ordering, starting from an initial disordered stage, in a good agreement with the TEM experimental data.

  12. A viscoplastic model with application to LiF-22 percent CaF2 hypereutectic salt

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Walker, K. P.

    1990-01-01

    A viscoplastic model for class M (metal-like behavior) materials is presented. One novel feature is its use of internal variables to change the stress exponent of creep (where n is approximately = 5) to that of natural creep (where n = 3), in accordance with experimental observations. Another feature is the introduction of a coupling in the evolution equations of the kinematic and isotropic internal variables, making thermal recovery of the kinematic variable implicit. These features enable the viscoplastic model to reduce to that of steady-state creep in closed form. In addition, the hardening parameters associated with the two internal state variables (one scalar-valued, the other tensor-valued) are considered to be functions of state, instead of being taken as constant-valued. This feature enables each internal variable to represent a much wider spectrum of internal states for the material. The model is applied to a LiF-22 percent CaF2 hypereutectic salt, which is being considered as a thermal energy storage material for space-based solar dynamic power systems.

  13. Novel single-mode and polarization maintaining photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Yin, Aihan; Xiong, Lei

    2014-11-01

    In this paper, we present and propose a novel structure for improved birefringence and single-mode propagation condition photonic crystal fiber (PCF) in a broad range of wavelength. The birefringence of the fundamental mode and single mode property in such a PCF is numerically estimated by employing full vector finite element method (FVFEM) and anisotropic perfectly matched layers (APML). The simulation results illustrate that we can achieve a high birefringence and perfect single-mode condition by employing silica-filled into one-line elliptical air holes parallel to x-axis and rotated by an angle. Obviously, the proposed PCF is quite useful for optical devices.

  14. Microwave Induced Direct Bonding of Single Crystal Silicon Wafers

    NASA Technical Reports Server (NTRS)

    Budraa, N. K.; Jackson, H. W.; Barmatz, M.

    1999-01-01

    We have heated polished doped single-crystal silicon wafers in a single mode microwave cavity to temperatures where surface to surface bonding occurred. The absorption of microwaves and heating of the wafers is attributed to the inclusion of n-type or p-type impurities into these substrates. A cylindrical cavity TM (sub 010) standing wave mode was used to irradiate samples of various geometry's at positions of high magnetic field. This process was conducted in vacuum to exclude plasma effects. This initial study suggests that the inclusion of impurities in single crystal silicon significantly improved its microwave absorption (loss factor) to a point where heating silicon wafers directly can be accomplished in minimal time. Bonding of these substrates, however, occurs only at points of intimate surface to surface contact. The inclusion of a thin metallic layer on the surfaces enhances the bonding process.

  15. Single crystal diamond probes for atomic-force microscopy

    NASA Astrophysics Data System (ADS)

    Tuyakova, F. T.; Obraztsova, E. A.; Klinov, D. V.; Ismagilov, R. R.

    2014-07-01

    Results obtained in the development and testing of high-strength, chemically inert, and sharply pointed single crystal diamond probes for atomic-force microscopy are presented. The probes were fabricated on the basis of pyramidal diamond single crystals produced by selective oxidation of polycrystalline films grown by chemical vapor deposition. A procedure was developed for attachment of single needles to cantilevers of silicon probes. A transmission electron microscope was used to find that the apical angle of the pyramidal diamond crystallites is about 10 and the radius of curvature of the apex of the diamond crystallite is 2-10 nm. It is shown for the example of two test samples (graphite surface and DNA molecules) that the diamond probes can be effectively used in atomic-force microscopy and make it possible to improve the image quality compared with standard silicon probes.

  16. ESR and Microwave Absorption in Boron Doped Diamond Single Crystals

    NASA Astrophysics Data System (ADS)

    Timms, Christopher

    2015-03-01

    Superconductivity has been reportedly found in boron-doped diamond. Most research to date has only studied superconductivity in polycrystalline and thin film boron-diamonds, as opposed to a single crystal. In fact, only one other group has examined a macro scale boron-doped diamond crystal. Our group has successfully grown large single crystals by using the High Temperature High Pressure method (HTHP) and observed a transition to metallic and superconducting states for high B concentrations. For the present, we are studying BDD crystal using Electron Spin Resonance. We conducted our ESR analysis over a range of temperatures (2K to 300K) and found several types of signals, proving the existence of charge carriers with spin 1/2 in BDD. Moreover, we have found that with increasing B concentrations, from n ~ 1018 cm-3 to n of over 1020 cm-3, the ESR signal changes from that of localized spins to the Dysonian shape of free carriers. The low magnetic field microwave absorption has also been studied in BDD samples at various B concentrations and the clear transition to superconducting state has been found below Tc that ranges from 2K to 4 K depending on concentration and quality of crystal. Sergey Polyakov, Victor Denisov, Vladimir Blank, Ray Baughman, Anvar Zakhidov.

  17. Single crystal structure analysis of a single Sm2Fe17N3 particle

    NASA Astrophysics Data System (ADS)

    Inami, Nobuhito; Takeichi, Yasuo; Ueno, Tetsuro; Saito, Kotaro; Sagayama, Ryoko; Kumai, Reiji; Ono, Kanta

    2014-05-01

    We performed single crystal structure analysis of Sm2Fe17N3 using X-ray diffraction. A pick-up system combined with a micromanipulation tool driven by piezoelectric actuators and a microgripper was used. A single Sm2Fe17Nx particle with the diameter of about 20 μm was picked up, and X-ray diffraction was measured using an X-ray diffractometer at the synchrotron radiation beamline at the Photon Factory, KEK. Single crystal structure analysis of a Sm2Fe17N3 particle was performed and the structure was successfully determined from X-ray diffraction patterns. The space group and the lattice constants were determined to be R-3m (#166) a = b = 8.7206 Å and c = 12.6345 Å, respectively. Atomic positions of Sm and Fe atoms were accurately determined by single crystal structure analysis of only one particle.

  18. Single crystal to single crystal transition in (10, 3)-d framework with pyrazine-2-carboxylate ligand: Synthesis, structures and magnetism

    SciTech Connect

    Yang, Qian; Department of Chemistry, Tianjin Key Lab on Metal and Molecule-based Material Chemistry, Nankai University, Tianjin 300071 ; Zhao, Jiong-Peng; Liu, Zhong-Yi

    2012-12-15

    Assembling of pyrazine-2-carboxylate (Pzc) acid with nickel chlorine under solvothermal condition with MeOH as solvent gave a porous complex 1 {l_brace}[Ni(Pzc)ClH{sub 2}O]{center_dot}MeOH{r_brace}{sub n} with 1D channels. In 1 the ligands and metal ions are connected by three of each other and a rare (10,3)-d topology net is gained. The MeOH molecules filled in the 1D channels as guests. It is interesting that 1 undergoes a single-crystal-to-single-crystal transformation to another complex 2 when the guest MeOH molecules in the channels are exchanged by water molecules. Magnetic study indicates anti-ferromagnetic couplings exist in the two complexes and the guest exchange in the complex has little influence on the magnetism. - Graphical abstract: A porous complex 1 with rare (10,3)-d net was gained, and 1 underwent a single-crystal-to-single-crystal transformation to another phase 2. Highlights: Black-Right-Pointing-Pointer New (10,3)-d net was obtained with pyrazine-2-carboxylate ligands as a triangular node. Black-Right-Pointing-Pointer The complex 1 has a 1D channel filled with methanol molecules as guests. Black-Right-Pointing-Pointer 1 could undergo SCSC structural transition to 2 after guests exchanged. Black-Right-Pointing-Pointer Antiferromagnetic interactions were found in 1 and 2.

  19. Subsurface Stress Fields In Single Crystal (Anisotropic) Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Knudsen, Erik C.; Duke, Greg; Battista, Gilda; Swanson, Greg

    2004-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent HCF failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and noncrystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is , presented, for evaluating the subsurface stresses in the elastic half-space, using a complex potential method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis. Effects of crystal orientation on stress response and fatigue life are examined.

  20. Crystal structure, physical properties and superconductivity in AxFe2Se2 single crystals

    NASA Astrophysics Data System (ADS)

    Luo, X. G.; Wang, X. F.; Ying, J. J.; Yan, Y. J.; Li, Z. Y.; Zhang, M.; Wang, A. F.; Cheng, P.; Xiang, Z. J.; Ye, G. J.; Liu, R. H.; Chen, X. H.

    2011-05-01

    We studied the correlation among structure, transport properties and superconductivity in different AxFe2Se2 single crystals (A=K, Rb and Cs). Two sets of (00l) reflections are observed in the x-ray single-crystal diffraction patterns, and they arise from the intrinsic inhomogeneous distribution of the intercalated alkali atoms. The occurrence of superconductivity is closely related to the c-axis lattice constant, and the A content is crucial to superconductivity. The hump observed in resistivity seems to be irrelevant to the superconductivity. There exist many deficiencies within the FeSe layers in AxFe2Se2, although their Tc does not change so much. In this sense, superconductivity is robust to the vacancies within the FeSe layers. Very high resistivity in the normal state should be ascribed to such defects in the conducting FeSe layers. AxFe2Se2 (A=K, Rb and Cs) single crystals show the same susceptibility behavior in the normal state, and no anomaly is observed in susceptibility at the hump temperature in resistivity. The clear jump in specific heat for RbxFe2Se2 and KxFe2Se2 single crystals indicates the good bulk superconductivity of these crystals.

  1. Growth and electrical properties of mercury indium telluride single crystals

    SciTech Connect

    Wang Linghang Dong Yangchun; Jie Wanqi

    2007-11-06

    A novel photoelectronic single crystal, mercury indium telluride (MIT), has been successfully grown by using vertical Bridgman method (VB). The crystallinity, thermal and electrical properties of the MIT crystal were investigated. The results of X-ray rocking curve show that the as-grown MIT crystal has good crystal quality with the FWHM on (3 1 1) face of about 173 in. DSC measurement reveals that the Hg element is easy to solely evaporate from the compound when the temperature is higher than 387.9 deg. C in the open system. Hall measurements at room temperature show that the resistivity, carrier density and mobility of the MIT crystal were 4.79 x 10{sup 2} {omega} cm, 2.83 x 10{sup 13} cm{sup -3} and 4.60 x 10{sup 2} cm{sup 2} V{sup -1} s{sup -1}, respectively. The reduction of carrier mobility and the increase of the resistivity are related to the adding of In{sub 2}Te{sub 3} into HgTe, which changes the energy band structure of the crystal.

  2. Structural and thermal properties of MnSi single crystal

    NASA Astrophysics Data System (ADS)

    Tite, T.; Shu, G. J.; Chou, F. C.; Chang, Y.-M.

    2010-07-01

    Polarized Raman spectroscopy of MnSi single crystal was carried out to characterize its phonons, crystal structure, and thermal stability. The Raman spectra show correct Raman selection rules and consistence with those of the other transition metal silicide compounds. The MnSi thermal stability and phase transformation is investigated by monitoring the evolution of Raman spectrum as a function of the laser intensity, in which three compositions, MnSi, MnSiO3, and Mn5Si3, can be identified. The involved oxidation reaction is then proposed and verified by performing the thermogravimetric and x-ray diffraction analysis.

  3. Antifreeze glycopeptide adsorption on single crystal ice surfaces using ellipsometry

    PubMed Central

    Wilson, P. W.; Beaglehole, D.; DeVries, A. L.

    1993-01-01

    Antarctic fishes synthesise antifreeze proteins which can effectively inhibit the growth of ice crystals. The mechanism relies on adsorption of these proteins to the ice surface. Ellipsometry has been used to quantify glycopeptide antifreeze adsorption to the basal and prism faces of single ice crystals. The rate of accumulation was determined as a function of time and at concentrations between 0.0005 and 1.2 mg/ml. Estimates of packing density at saturation coverage have been made for the basal and prism faces. PMID:19431902

  4. Simulation of isotope effects in single crystal sputtering

    NASA Astrophysics Data System (ADS)

    Shulga, V. I.

    Sputtering of isotopic (001), (011), and (111) Mo single crystals with 0.15-10 keV Ar ions at low fluences has been studied by means of computer simulation. Attention was given to the dependence of the preferential emission of light isotopes on ion energy and direction of incidence. It has been shown that the enrichment in light isotopes results mainly from a high contribution to sputtering of recoils of low generations which, in turn, correlates very closely with the crystal transparaency and accompanying channeling effects. At glancing incidence, the preferential emission of light isotopes is strongly affected by the surface channeling of bombarding particles.

  5. Heavy ion passive dosimetry with silver halide single crystals

    NASA Technical Reports Server (NTRS)

    Childs, C. B.; Parnell, T. A.

    1972-01-01

    A method of detecting radiation damage tracks due to heavy particles in large single crystals of the silver halides is described. The tracks, when made visible with a simple electrical apparatus, appear similar to tracks in emulsions. The properties of the crystals, the technique of printing out the tracks, and evidence concerning the threshold energy for registering particles indicates that this method may find application in heavy ion dosimetry. The method has been found to be sensitive to stopping He nuclei and relativistic M group cosmic rays. Some impurities strongly influence the printout of the tracks, and the effects of these impurities are discussed.

  6. A design for single-polarization single-mode photonic crystal fiber with rectangular lattice

    NASA Astrophysics Data System (ADS)

    Zhang, Wan; Li, Shu-guang; Bao, Ya-jie; Fan, Zhen-kai; An, Guo-wen

    2016-01-01

    A design for single-polarization single-mode photonic crystal fiber with rectangular lattice is proposed in this paper. The proposed fiber is studied by the full vector finite element method with perfectly matched layers. The single-polarization single-mode operation region of the fiber is achieved in a certain wavelength range with low confinement loss include the wavelength of 1.55 μm. The loss of one polarization is 0.124 dB/km at the wavelength of 1.55 μm and the confinement loss of the other one polarization is very high which can not ensure the transmission in the fiber. The single-polarization single-mode photonic crystal fiber is desirable for some polarization-sensitive applications such as high-power fiber lasers, fiber optic gyroscopes, current sensors and optical coherent communication systems.

  7. Subsurface Stress Fields in FCC Single Crystal Anisotropic Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Knudsen, Erik; Swanson, Gregory R.; Duke, Gregory; Ham-Battista, Gilda

    2004-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent high cycle fatigue (HCF) failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and non-crystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is presented for evaluating the subsurface stresses in the elastic half-space, based on the adaptation of a stress function method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis (FEA). Effects of crystal orientation on stress response and fatigue life are examined. Obtaining accurate subsurface stress results for anisotropic single crystal contact problems require extremely refined three-dimensional (3-D) finite element grids, especially in the edge of contact region. Obtaining resolved shear stresses (RSS) on the principal slip planes also involves considerable post-processing work. For these reasons it is very advantageous to develop analytical solution schemes for subsurface stresses, whenever possible.

  8. Microcompression Behaviors of Single Crystals Simulated by Crystal Plasticity Finite Element Method

    NASA Astrophysics Data System (ADS)

    Jung, Jae-Ho; Na, Young-Sang; Cho, Kyung-Mox; Dimiduk, Dennis M.; Choi, Yoon Suk

    2015-11-01

    The microcompression behavior of single-slip oriented, single-crystal micro-pillars was simulated using a crystal plasticity finite element method, by varying a primary slip-plane inclination angle from 36.3 to 48.7 deg while keeping the same primary slip system. Simulated global deformation of the micro-pillars was separated into two types, depending upon the primary slip-plane inclination angle: the one consistent with the primary slip direction and the other diagonally opposite to the primary slip direction.

  9. Design of single mode single polarization large mode area photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Naik, Kishor D.; Saini, Than Singh; Kumar, Ajeet; Sinha, Ravindra K.

    2015-08-01

    Recently, photonic crystal fibers have attracted significant attention for their applications in optical fiber communication systems. In some polarization sensitive applications photonic crystal fibers with single-mode and single-polarization are desirable. In this paper, a rectangular-core single-mode single-polarization large-mode-area photonic crystal fiber structure has been designed based on higher order mode filtering. The single-polarization is obtained with asymmetric design and introducing different loss for x-polarization and y-polarization of fundamental mode. Single-polarization single-mode operation of a highly bi-refringent photonic crystal fiber is investigated in detail by using a full-vector finite-element- method with anisotropic perfectly-matched-layer. At optimized parameters, the confinement loss and effective-mode-area is obtained as 0.9 dB/m and 927 ?m2 for x-polarization as well as 12.53 dB/m and 921 ?m2 for y-polarization of fundamental mode respectively at 1.55 ?m. Therefore, 1.6 m length of fiber will be sufficient to get x-polarized fundamental mode with effective-mode-area as large as 927 ?m2.

  10. Growth of CsLiB6O10 thin films on Si substrate by pulsed laser deposition using SiO2 and CaF2 as buffer layers

    NASA Astrophysics Data System (ADS)

    Yeo, J. S.; Akella, A.; Huang, T. F.; Hesselink, L.

    1998-03-01

    CsLiB6O10 (CLBO) thin films are grown on Si (100) and (111) substrates using lower index SiO2 and CaF2 as buffer layers by pulsed KrF (248 nm) excimer laser ablation of stoichiometric CLBO targets over a temperature range of 425 to 725°C. A CaF2 buffer layer is grown on Si by laser ablation while SiO2 is prepared by standard thermal oxidation. From extended x-ray analysis, it is determined that CaF2 is growth with preferred orientation on Si (100) at temperatures lower than 525°C while on Si (111) substrate, CaF2 is grown epitaxially over the temperature range; this agrees well with observed reflection high energy electron diffraction patterns. X-ray 2θ-scans indicate that crystalline CLBO are grown on SiO2/Si and CaF2/Si (100). Analysis of reflectance spectra from CLBO/SiO2/Si yields the absorption edge at 182 nm. Surface roughness of the CaF2 and CLBO/CaF2/Si film are 19 and 15 nm, respectively. This relatively rough surface caused by the ablation of wide bandgap CaF2 and CLBO limits the application of CLBO for waveguiding measurement.

  11. Optical design for single-mode and single-cell gap transflective liquid crystal displays.

    PubMed

    Choi, Gyu Jin; Kwon, Jin Hyuk; Yi, Jonghoon; Yokoyama, Hiroshi; Gwag, Jin Seog

    2016-01-25

    Generally, for transflective liquid crystal displays with different modes and different cell gaps between the refractive and transmissive parts, precise process control to pattern the electrode and match the cell gaps may reduce the yield and thus, require high cost. This paper proposes a simple transflective liquid crystal display with a single-mode and single-cell thickness without a patterned electrode to achieve better productivity. The proposed transflective liquid crystal display consists of three half-wave retardation films, two quarter-wave retardation films, and an LC layer, whose optical performance was confirmed by both simulation and experiment. The optimal optical configuration to obtain an excellent dark state in the visible range was determined by the Mueller matrices calculus, which was applied to each optical component. The calculated and experimental results showed that the proposed transflective LC structure has excellent electro-optical properties and is expected to have many liquid crystal display applications. PMID:26832540

  12. Fatigue behavior of a single-crystal superalloy

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Mcgaw, Michael A.

    1989-01-01

    A single-crystal superalloy, PWA 1480 is under consideration as a replacement material for the turbine blades of the high pressure fuel turbopump (HPFTP) of the space shuttle main engine (SSME). Three separate experimental programs were conducted to characterize the fatigue behavior of this alloy. Fatigue tests were conducted at room temperature (in air) and at 1000 F (in vacuum) on smooth specimens machined from both cast bars and slabs. The data from all of these programs are consolidated to provide a broader characterization of the fatigue behavior of the single crystal PWA 1480. The zero-mean-stress fatigue relationships are expressed in terms of stress range versus cyclic life lines on log-log plots. Characterization of the fatigue behavior of (001) oriented PWA 1480 single crystal under conditions of tensile mean stress was performed by using the unified approach proposed by Heidmann. In this approach the fatigue life is modified by a mean stress parameter so that a single life relationship can be used to represent both zero and tensile mean stress data.

  13. Membrane protein structures without crystals, by single particle electron cryomicroscopy

    PubMed Central

    Vinothkumar, Kutti R

    2015-01-01

    It is an exciting period in membrane protein structural biology with a number of medically important protein structures determined at a rapid pace. However, two major hurdles still remain in the structural biology of membrane proteins. One is the inability to obtain large amounts of protein for crystallization and the other is the failure to get well-diffracting crystals. With single particle electron cryomicroscopy, both these problems can be overcome and high-resolution structures of membrane proteins and other labile protein complexes can be obtained with very little protein and without the need for crystals. In this review, I highlight recent advances in electron microscopy, detectors and software, which have allowed determination of medium to high-resolution structures of membrane proteins and complexes that have been difficult to study by other structural biological techniques. PMID:26435463

  14. Growth and spectral properties of Yb:FAP single crystal

    NASA Astrophysics Data System (ADS)

    Song, Pingxin; Zhao, Zhiwei; Xu, Xiaodong; Deng, Peizhen; Xu, Jun

    2007-01-01

    In this paper, single crystal of ytterbium (Yb) doped Ca 5(PO 4) 3F (FAP) has been grown along the c-axis by using the Czochralski method. The segregation coefficients of Yb 3+ in the Yb:FAP crystal has been determined by ICP-AES method. The absorption spectrum, fluorescence spectrum and fluorescence lifetime of the Yb:FAP crystal has been also measured at room temperature. In the absorption spectra, there are two absorption bands at 904 and 982 nm, respectively, which are suitable for InGaAs diode laser pumping. The absorption cross-section ( ?abs) is 5.117 10 -20 cm 2 with an FWHM of 4 nm at 982 nm. The emission cross-section ( ?em) is 3.678 10 -20 cm 2 at 1042 nm. Favorable values of the absorption cross-section at about 982 nm are promising candidates for laser diode (LD) pumping.

  15. Apparatus for single ice crystal growth from the melt

    NASA Astrophysics Data System (ADS)

    Zepeda, Salvador; Nakatsubo, Shunichi; Furukawa, Yoshinori

    2009-11-01

    A crystal growth apparatus was designed and built to study the effect of growth modifiers, antifreeze proteins and antifreeze glycoproteins (AFGPs), on ice crystal growth kinetics and morphology. We used a capillary growth technique to obtain a single ice crystal with well-defined crystallographic orientation grown in AFGP solution. The basal plane was readily observed by rotation of the capillary. The main growth chamber is approximately a 0.8ml cylindrical volume. A triple window arrangement was used to minimize temperature gradients and allow for up to 10mm working distance objective lens. Temperature could be established to within ±10mK in as little as 3.5min and controlled to within ±2mK after 15min for at least 10h. The small volume growth chamber and fast equilibration times were necessary for parabolic flight microgravity experiments. The apparatus was designed for use with inverted and side mount configurations.

  16. Photonic crystals for long-wavelength single-mode VCSELs

    NASA Astrophysics Data System (ADS)

    Romstad, F.; Bischoff, S.; Juhl, M.; Jacobsen, S.; Birkedal, D.

    2008-02-01

    In this paper, we present the design and manufacturing of photonic-crystal long-wavelength VCSELs. They were developed to provide a high-performance low-cost alternative to Fabry-Perot and DFB lasers for 2.5 Gbps applications within the intermediate range access network. The paper covers photonic-crystal long-wavelength device design, manufacturing process, DC and AC characteristics, as well as reliability studies. The addition of photonic-crystal structures to the long-wavelength vertical-cavity surface-emitting lasers allows us to increase the oxide diameter. This reduces the series resistance as well as the thermal resistance resulting in increased single-mode output-power and an enhanced high-temperature performance of our devices.

  17. Initial CaF2 reactions on Si(1 1 4)-2 1: Isolated silicides, faceting and partial CaF adsorption

    NASA Astrophysics Data System (ADS)

    Kim, Hidong; Duvjir, Ganbat; Dugerjav, Otgonbayar; Li, Huiting; Seo, Jae M.

    2015-12-01

    When CaF2 molecules are deposited on Si(1 1 4)-2 1 held at 500 C, two kinds of isolated and symmetric Ca-silicide units are initially formed. With increasing CaF2 deposition to 0.4 ML, instead of the terrace being filled with them, a trench composed of (1 1 3) and (1 1 7) facets appears on the surface as a result of substrate etching induced by dissociated F atoms. Selectively on this (1 1 3) facet, a 2 2 CaF overlayer is formed uniformly. In the present studies, using scanning tunneling microscopy and synchrotron photoemission spectroscopy, the origins of such isolation of Ca-silicide units on the (1 1 4) terrace as well as selective adsorption of CaF on the (1 1 3) facet have been disclosed.

  18. Absolute refractive indices and thermal coefficients of CaF2, SrF2, BaF2, and LiF near 157 nm.

    PubMed

    Burnett, John H; Gupta, Rajeev; Griesmann, Ulf

    2002-05-01

    We present high-accuracy measurements for wavelengths near 157 nm of the absolute index of refraction, the index dispersion, and the temperature dependence of the index for the ultraviolet optical materials with cubic symmetry: CaF2, SrF2, BaF2, and LiF. Accurate values of these quantities for these materials are needed for designs of the lens systems for F2 excimer-laser-based exposure tools for 157-nm photolithography. These tools are expected to use CaF2 as the primary optical material and possibly one of the others to correct for chromatic aberrations. These optical properties were measured by the minimum deviation method. Absolute refractive indices were obtained with an absolute accuracy of 5 x 10(-6) to 6 x 10(-6). PMID:12009162

  19. Control of Pr for Ba substitution in PBCO single crystals by the crystal pulling method

    NASA Astrophysics Data System (ADS)

    Tagami, Minoru; Shiohara, Yuh

    1997-02-01

    Substitution of Pr for Ba in Pr 1 + xBa 2 - xCu 3O 7 - ? ( x = 0.06-0.29) single crystals was successfully controlled by the crystal pulling method. The substitution ratios x of the grown single crystals from an average composition in the melt of Pr : Ba: Cu = 5 : 30 : 65, Pr : Ba : Cu = 5 : 28 : 67 and Pr : Ba : Cu = 5 : 24 : 71 were x = 0.06, 0.14 and 0.29 respectively. These phenomena appear to depend on the local equilibrium tie-line of {Pr1 + xBa2 - xCu3O7 - ?}/{liquid} on the isothermal section of the PrO y?BaO?CuO ternary phase diagram at the growth temperature. The resistivity of these crystals shows the tendency to increase with decreasing temperature. However, the resistivity of the crystal with x = 0.06 is six orders of magnitude smaller than that of the x = 0.29 crystal at 70 K.

  20. Synthesis of mesoporous zeolite single crystals with cheap porogens

    SciTech Connect

    Tao Haixiang; Li Changlin; Ren Jiawen; Wang Yanqin; Lu Guanzhong

    2011-07-15

    Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals have been successfully synthesized by adding soluble starch or sodium carboxymethyl cellulose (CMC) to a conventional zeolite synthesis system. The obtained samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen sorption analysis, {sup 27}Al magic angle spinning nuclear magnetic resonance ({sup 27}Al MAS NMR), temperature-programmed desorption of ammonia (NH{sub 3}-TPD) and ultraviolet-visible spectroscopy (UV-vis). The SEM images clearly show that all zeolite crystals possess the similar morphology with particle size of about 300 nm, the TEM images reveal that irregular intracrystal pores are randomly distributed in the whole crystal. {sup 27}Al MAS NMR spectra indicate that nearly all of the Al atoms are in tetrahedral co-ordination in ZSM-5, UV-vis spectra confirm that nearly all of titanium atoms are incorporated into the framework of TS-1. The catalytic activity of meso-ZSM-5 in acetalization of cyclohexanone and meso-TS-1 in hydroxylation of phenol was also studied. The synthesis method reported in this paper is cost-effective and environmental friendly, can be easily expended to prepare other hierarchical structured zeolites. - Graphical abstract: Mesoporous zeolite single crystals were synthesized by using cheap porogens as template. Highlights: > Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals were synthesized. > Soluble starch or sodium carboxymethyl cellulose (CMC) was used as porogens. > The mesoporous zeolites had connected mesopores although closed pores existed. > Higher catalytic activities were obtained.

  1. Influence of CaF2 and Li2O on the Viscous Behavior of Calcium Silicate Melts Containing 12 wt pct Na2O

    NASA Astrophysics Data System (ADS)

    Park, Hyun Shik; Kim, Hyuk; Sohn, Il

    2011-04-01

    Understanding the viscous behavior of silica-based molten fluxes is essential in maintaining the reliability of steel casting operations and in preventing breakouts. In particular, high concentrations of aluminum in recently developed transformation induced plasticity (TRIP) and twinning induced plasticity (TWIP) steels tend to promote reduction of silica in the mold fluxes that result in the formation of alumina, which in turn increases the viscosity. To counteract this effect, significant amounts of fluidizers such as CaF2 and Li2O are required to ensure that mold fluxes have acceptable lubrication and heat transfer characteristics. The viscous behavior of the slag system based on CaO-SiO2-12 wt pct Na2O with various concentrations of CaF2 and Li2O has been studied using the rotating spindle method to understand the effects on the viscosity with these additives. CaF2 additions up to 8 wt pct were effective in decreasing the viscosity by breaking the network structure of molten fluxes, but CaF2 concentrations above this level had a negligible effect on viscosity. Li2O additions up to 2 wt pct were also effective in decreasing the viscosity, but the effect was comparatively negligible above 2 wt pct. Using Fourier transform infrared (FTIR) analysis of as-quenched slag samples, it was concluded that the viscosity was controlled more effectively by changing the larger complex silicate structures of rings and chains than by changing the amounts of simpler dimers and monomers.

  2. CaF2-Based Near-Infrared Photocatalyst Using the Multifunctional CaTiO3 Precursors as the Calcium Source.

    PubMed

    Huang, Shouqiang; Guo, Shengjuan; Wang, Qingji; Zhu, Nanwen; Lou, Ziyang; Li, Liang; Shan, Aidang; Yuan, Haiping

    2015-09-16

    Multistage formation of fluoride upconversion agents from the related-semiconductor precursors provides a promising route for the fabrication of near-infrared (NIR) photocatalysts with high photocatalytic activities. Herein, the cotton templated CaTiO3 "semiconduction" precursors (C-CaTiO3) were used to synthesize the NIR photocatalyst of Er3+/Tm3+/Yb3+-(CaTiO3/CaF2/TiO2) (C-ETYCCT), and the functions of the Ca2+ source for CaF2 and the heterostructure formations were displayed by C-CaTiO3. The generated CaF2 acted as the host material for the lanthanide ions, and the heterostructures were constructed among anatase, rutile, and the remaining CaTiO3. The induced oxygen vacancies and Ti3+ ions enabled the samples to utilize most of the upconversion luminescence for photocatalysis. The NIR driven degradation rate of methyl orange (MO) over C-ETYCCT reached 52.34%, which was 1.6 and 2.5 times higher than those of Er3+/Tm3+/Yb3+-(CaTiO3/TiO2) (C-ETYCT) and Er3+/Tm3+/Yb3+-(CaTiO3/CaF2) (C-ETYCC), respectively. The degradation rates of MO and salicylic acid over C-ETYCCT with UV-vis-NIR light irradiation were also much higher than those of other samples, which were mainly results of the contributions of its high upconversion luminescence and the efficient electron-hole pair separation. PMID:26305907

  3. Influence of Fe and Cu seed layers on the magnetoresistance in Fe/Cu superlattices grown on Si(111) and CaF 2(111) /Si(111)

    NASA Astrophysics Data System (ADS)

    Mosca, D. H.; Mattoso, N.; Kakuno, E. M.; Schreiner, W. H.; Mazzaro, I.; Teixeira, S. R.

    1996-04-01

    The structural characterization of superlattices was carried out by X-ray diffraction, reflectivity measurements and TEM. Our results indicate that the superlattices are very different from the structural point of view, whereas the magnetoresistance values are rather similar with respect to the magnitude and field dependence at room temperature, independently of the Cu and Fe 50 seed layers grown on Si(111) or Si(111)/CaF 2(111).

  4. Plastic strain arrangement in copper single crystals in sliding

    SciTech Connect

    Chumaevskii, Andrey V. Lychagin, Dmitry V.; Tarasov, Sergei Yu.

    2014-11-14

    Deformation of tribologically loaded contact zone is one of the wear mechanisms in spite of the fact that no mass loss may occur during this process. Generation of optimal crystallographic orientations of the grains in a polycrystalline materials (texturing) may cause hardening and reducing the deformation wear. To reveal the orientation dependence of an individual gain and simplify the task we use copper single crystals with the orientations of the compression axis along [111] and [110]. The plastic deformation was investigated by means of optical, scanning electron microscopy and EBSD techniques. It was established that at least four different zones were generated in the course of sliding test, such as non-deformed base metal, plastic deformation layer sliding, crystalline lattice reorientation layer and subsurface grain structure layer. The maximum plastic strain penetration depth was observed on [110]-single crystals. The minimum stability of [111]-crystals with respect to rotation deformation mode as well as activation of shear in the sliding contact plane provide for rotation deformation localization below the worn surface. The high-rate accumulation of misorientations and less strain penetration depth was observed on [111]-crystals as compared to those of [110]-oriented ones.

  5. Mutiple Czochralski growth of silicon crystals from a single crucible

    NASA Technical Reports Server (NTRS)

    Lane, R. L.; Kachare, A. H.

    1980-01-01

    An apparatus for the Czochralski growth of silicon crystals is presented which is capable of producing multiple ingots from a single crucible. The growth chamber features a refillable crucible with a water-cooled, vacuum-tight isolation valve located between the pull chamber and the growth furnace tank which allows the melt crucible to always be at vacuum or low argon pressure when retrieving crystal or introducing recharge polysilicon feed stock. The grower can thus be recharged to obtain 100 kg of silicon crystal ingots from one crucible, and may accommodate crucibles up to 35 cm in diameter. Evaluation of the impurity contents and I-V characteristics of solar cells fabricated from seven ingots grown from two crucibles reveals a small but consistent decrease in cell efficiency from 10.4% to 9.6% from the first to the fourth ingot made in a single run, which is explained by impurity build-up in the residual melt. The crystal grower thus may offer economic benefits through the extension of crucible lifetime and the reduction of furnace downtime.

  6. A new material for single crystal modulators: BBO

    NASA Astrophysics Data System (ADS)

    Bammer, F.; Schumi, T.; Petkovsek, R.

    2011-06-01

    Single crystal photo-elastic modulators (SCPEM) are based on a single piezo-electric crystal which is electrically excited on a resonance frequency such that the resulting resonant oscillation causes a modulated artificial birefringence due to the photo-elastic effect. Polarized light experience in such a crystal a strong modulation of polarization, which, in connection with a polarizer, can be used for Q-switching of lasers with pulse repetition frequencies in the range of 100- 1000 kHz. A particularly advantageous configuration is possible with crystals from the symmetry class 3m. Besides LiTaO3 and LiNbO3, both already well explored as SCPEM-materials, we introduce now BBO, which offers a very low absorption in the near infrared region and is therefore particularly suited for Q-switching of solid state lasers. We demonstrate first results of such a BBO-modulator with the dimensions 8.6 x 4.05 x 4.5mm in x-, y-, z- direction, which offers a useful resonance and polarization modulation at 131.9 kHz. Since the piezo-electric effect is small, the voltage amplitude for achieving Q-switching for an Nd:YAG-laser is expected to be in the range of 100V. Nevertheless it is a simple and robust device to achieve Q-switching with a high fixed repetition rate for high power solid state lasers.

  7. Single crystal hexaferrite phase shifter at Ka band

    NASA Astrophysics Data System (ADS)

    Zuo, Xu; Shi, Ping; Oliver, S. A.; Vittoria, C.

    2002-05-01

    A phase shifter was fabricated from a scandium doped M-type (SCM) barium hexaferrite single crystal substrate, and tested over microwave frequencies from 20 to 40 GHz and bias magnetic fields from 0 to 2 kOe. At a microwave frequency of 40 GHz and bias magnetic field of 1.3 kOe, the differential phase-shift rate was 42/kOe mm and the loss rate was 0.7 dB/mm. The phase shifter utilized the large uniaxial anisotropy field inherent in ScM single crystals, where the crystallographic c axis and the magnetic bias field were parallel to each other and in the substrate plane. The performance of the phase shifter was modeled by the conjugate method for transmission electron microscopy wave and compared with experimental results.

  8. Magnetic anisotropy of NaxCoO2 single crystals

    NASA Astrophysics Data System (ADS)

    Chen, D. P.; Wang, Xiaolin; Lin, C. T.; Dou, S. X.

    2008-04-01

    We report the magnetic properties of single crystals of NaxCoO2 (x =0.42, 0.82, and 0.87). The magnetic susceptibility measurements revealed considerable anisotropy along H ?ab and H ?c for the as-grown single crystals. It was found that an antiferromagnetic transition with a Neel temperature TN=21K occurred for the x =0.82 sample, and there was a paramagnetic phase for the x =0.87 sample over a wide temperature range from 2to300K, but the sample with x =0.42 shows a monotonic increase of ? with increasing temperature above 100K. In addition, the x =0.82 sample has the largest derived anisotropic g-factor ratio (gab/gc1.30), whereas the sample with x =0.42 is nearly isotropic (gab/gc0.96).

  9. Nanofluidics of Single-Crystal Diamond Nanomechanical Resonators

    NASA Astrophysics Data System (ADS)

    Kara, V.; Sohn, Y.-I.; Atikian, H.; Yakhot, V.; Lon?ar, M.; Ekinci, K. L.

    2015-12-01

    Single-crystal diamond nanomechanical resonators are being developed for countless applications. A number of these applications require that the resonator be operated in a fluid, i.e., a gas or a liquid. Here, we investigate the fluid dynamics of single-crystal diamond nanomechanical resonators in the form of nanocantilevers. First, we measure the pressure-dependent dissipation of diamond nanocantilevers with different linear dimensions and frequencies in three gases, He, N$_2$, and Ar. We observe that a subtle interplay between the length scale and the frequency governs the scaling of the fluidic dissipation. Second, we obtain a comparison of the surface accommodation of different gases on the diamond surface by analyzing the dissipation in the molecular flow regime. Finally, we measure the thermal fluctuations of the nanocantilevers in water, and compare the observed dissipation and frequency shifts with theoretical predictions. These findings set the stage for developing diamond nanomechanical resonators operable in fluids.

  10. Thermal fatigue of NiAl single crystals

    SciTech Connect

    Kush, M.T.; Holmes, J.W.; Gibala, R.

    1999-07-01

    Single crystals of [001]-oriented NiAl single crystals were subjected to thermal fatigue by a method which employs induction heating of disk-shaped specimens heated in an argon atmosphere. Several time-temperature heating and cooling profiles were used to produce different thermal strain histories in specimens cycled between 973 K and 1,473 K. After thermal cycling, pronounced shape changes in the form of diametrical elongations along {l{underscore}angle}100{r{underscore}angle} directions with accompanying increases in thickness at and near the {l{underscore}angle}100{r{underscore}angle} specimen axes were observed. The deformations were analyzed in terms of operative slip systems in tension and compression, ratchetting (cyclic strain accumulation), and the elastic properties of NiAl. The experimental results correlate best with thermal stresses associated with the large elastic anisotropy of NiAl.

  11. Dynamic gas-inclusion in a single crystal.

    PubMed

    Takamizawa, Satoshi

    2015-06-01

    In solid-state science, most changing phenomena have been mysterious. Furthermore, the changes in chemical composition should be added to mere physical changes to also cover the chemical changes. Here, the first success in characterizing the nature of gas inclusion in a single crystal is reported. The gas inclusion process has been thoroughly investigated by in situ optical microscopy, single-crystal X-ray diffraction analyses, and gas adsorption measurements. The results demonstrated an inclusion action of a first-order transition behavior induced by a critical concentration on the phase boundary. The transfer of phase boundary and included gas are strongly related. This relationship can generate the dynamic features hidden in the inclusion phenomena, which can lead to the guest capturing and transfer mechanism that can apply to spatiotemporal inclusion applications by using host solids. PMID:25925283

  12. Formation of auxetic surfaces in rhombic syngony single crystals

    NASA Astrophysics Data System (ADS)

    Raransky, Mykola D.; Balazyuk, Vitaliy N.; Gunko, Mikhailo M.; Gevik, Vasyl B.; Struk, Andriy Y.

    2015-11-01

    By using elasticity Cijkl and compliance moduli Sijkl for rhombic syngony single crystals the necessary and sufficient conditions for axial and non-axial auxetic properties occurrence were defined. Indicative surfaces for single crystals Ga, I2, SnSe, Hg2Cl2, CaCO3, AgN3, BaMnF4, C6H6, LiGaO2, Cd(COOH)2, (C6H5)2CO, C6H10(CH2)2, Ca(COOH)2, Na2CoGeO4, NH4B5O8.4H2O auxetic properties were built for the first time. The basic mechanisms and regularities of auxetic surfaces formation were stated. The auxetic oscillation effect in C6H6 was found.

  13. Constitutive modeling of superalloy single crystals with verification testing

    NASA Technical Reports Server (NTRS)

    Jordan, Eric; Walker, Kevin P.

    1985-01-01

    The goal is the development of constitutive equations to describe the elevated temperature stress-strain behavior of single crystal turbine blade alloys. The program includes both the development of a suitable model and verification of the model through elevated temperature-torsion testing. A constitutive model is derived from postulated constitutive behavior on individual crystallographic slip systems. The behavior of the entire single crystal is then arrived at by summing up the slip on all the operative crystallographic slip systems. This type of formulation has a number of important advantages, including the prediction orientation dependence and the ability to directly represent the constitutive behavior in terms which metallurgists use in describing the micromechanisms. Here, the model is briefly described, followed by the experimental set-up and some experimental findings to date.

  14. Catalytic Chemistry of Hydrocarbon Conversion Reactions on Metallic Single Crystals

    NASA Astrophysics Data System (ADS)

    Tysoe, Wilfred T.

    The ability to be able to follow the chemistry of adsorbates on model catalyst surfaces has, in principle, allowed us to peer inside the black box of a catalytic reaction and understand the pathway. Such a strategy is most simply implemented for well-ordered single crystal model catalysts for which the catalytic reaction proceeds in ultrahigh vacuum. Thus, in order to be a good model for the supported catalyst, the single crystal should catalyze the reactions with kinetics identical to those for the supported system. This chapter focuses on catalytic systems that fulfill these criteria, namely alkene and alkyne hydrogenation and acetylene cyclotrimerization on Pd(111). The surface chemistry and geometries of the reactants in ultrahigh vacuum are explored in detail allowing fundamental insights into the catalytic reaction pathways to be obtained.

  15. Precipitation strengthening behavior of Al-Li single crystals

    SciTech Connect

    Jeon, S.M.; Park, J.K.

    1996-04-01

    The precipitation strengthening behavior of Al-Li single crystals has been studied using compression test and transmission electron microscopy. The strengthening behavior of Al-Li single crystals during the early stage of aging is well described by a recent version of order hardening theory for a weak obstacle regime in a dilute solution. The interpretation of experimental data differs depending on the exact configuration of the trailing dislocation in the dislocation pair. Experimental results are best interpreted by the equation derived on the assumption that the trailing dislocation completely pulls off from the encountering particles. The antiphase boundary energy is determined to be 0.118 J m{sup {minus}2}, which is in reasonable agreement with that obtained from the measurement of critical loop diameter for the transition from shearing to looping, and from the measurement of dislocation pair spacings.

  16. Nanofluidics of Single-Crystal Diamond Nanomechanical Resonators.

    PubMed

    Kara, V; Sohn, Y-I; Atikian, H; Yakhot, V; Lon?ar, M; Ekinci, K L

    2015-12-01

    Single-crystal diamond nanomechanical resonators are being developed for countless applications. A number of these applications require that the resonator be operated in a fluid, that is, a gas or a liquid. Here, we investigate the fluid dynamics of single-crystal diamond nanomechanical resonators in the form of nanocantilevers. First, we measure the pressure-dependent dissipation of diamond nanocantilevers with different linear dimensions and frequencies in three gases, He, N2, and Ar. We observe that a subtle interplay between the length scale and the frequency governs the scaling of the fluidic dissipation. Second, we obtain a comparison of the surface accommodation of different gases on the diamond surface by analyzing the dissipation in the molecular flow regime. Finally, we measure the thermal fluctuations of the nanocantilevers in water and compare the observed dissipation and frequency shifts with theoretical predictions. These findings set the stage for developing diamond nanomechanical resonators operable in fluids. PMID:26509332

  17. Ultrafast dynamics of excitons in tetracene single crystals

    NASA Astrophysics Data System (ADS)

    Birech, Zephania; Schwoerer, Markus; Schmeiler, Teresa; Pflaum, Jens; Schwoerer, Heinrich

    2014-03-01

    Ultrafast exciton dynamics in free standing 200 nm thin tetracene single crystals were studied at room temperature by femtosecond transient absorption spectroscopy in the visible spectral range. The complex spectrally overlapping transient absorption traces of single crystals were systematically deconvoluted. From this, the ultrafast dynamics of the ground, excited, and transition states were identified including singlet exciton fission into two triplet excitons. Fission is generated through both, direct fission of higher singlet states Sn on a sub-picosecond timescale, and thermally activated fission of the singlet exciton S1 on a 40 ps timescale. The high energy Davydov component of the S1 exciton is proposed to undergo fission on a sub-picoseconds timescale. At high density of triplet excitons their mutual annihilation (triplet-triplet annihilation) occurs on a <10 ps timescale.

  18. Ultrafast dynamics of excitons in tetracene single crystals.

    PubMed

    Birech, Zephania; Schwoerer, Markus; Schmeiler, Teresa; Pflaum, Jens; Schwoerer, Heinrich

    2014-03-21

    Ultrafast exciton dynamics in free standing 200 nm thin tetracene single crystals were studied at room temperature by femtosecond transient absorption spectroscopy in the visible spectral range. The complex spectrally overlapping transient absorption traces of single crystals were systematically deconvoluted. From this, the ultrafast dynamics of the ground, excited, and transition states were identified including singlet exciton fission into two triplet excitons. Fission is generated through both, direct fission of higher singlet states S(n) on a sub-picosecond timescale, and thermally activated fission of the singlet exciton S1 on a 40 ps timescale. The high energy Davydov component of the S1 exciton is proposed to undergo fission on a sub-picoseconds timescale. At high density of triplet excitons their mutual annihilation (triplet-triplet annihilation) occurs on a <10 ps timescale. PMID:24655187

  19. Ultrafast dynamics of excitons in tetracene single crystals

    SciTech Connect

    Birech, Zephania; Schwoerer, Heinrich; Schwoerer, Markus; Schmeiler, Teresa; Pflaum, Jens

    2014-03-21

    Ultrafast exciton dynamics in free standing 200 nm thin tetracene single crystals were studied at room temperature by femtosecond transient absorption spectroscopy in the visible spectral range. The complex spectrally overlapping transient absorption traces of single crystals were systematically deconvoluted. From this, the ultrafast dynamics of the ground, excited, and transition states were identified including singlet exciton fission into two triplet excitons. Fission is generated through both, direct fission of higher singlet states S{sub n} on a sub-picosecond timescale, and thermally activated fission of the singlet exciton S{sub 1} on a 40 ps timescale. The high energy Davydov component of the S{sub 1} exciton is proposed to undergo fission on a sub-picoseconds timescale. At high density of triplet excitons their mutual annihilation (triplet-triplet annihilation) occurs on a <10 ps timescale.

  20. Plastic Deformation of Aluminum Single Crystals at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Johnson, R D; Young, A P; Schwope, A D

    1956-01-01

    This report describes the results of a comprehensive study of plastic deformation of aluminum single crystals over a wide range of temperatures. The results of constant-stress creep tests have been reported for the temperature range from 400 degrees to 900 degrees F. For these tests, a new capacitance-type extensometer was designed. This unit has a range of 0.30 inch over which the sensitivity is very nearly linear and can be varied from as low a sensitivity as is desired to a maximum of 20 microinches per millivolt with good stability. Experiments were carried out to investigate the effect of small amounts of prestraining, by two different methods, on the creep and tensile properties of these aluminum single crystals. From observations it has been concluded that plastic deformation takes place predominantly by slip which is accompanied by the mechanisms of kinking and polygonization.

  1. Investment casting of NiAl single-crystal alloys

    NASA Astrophysics Data System (ADS)

    Yu, K. O.; Oti, J. A.; Walston, W. S.

    1993-05-01

    Significant progress has been made in the understanding of solidification conditions, microstructure evolution, and defect formation during investment casting of NiAl single crystals. The high liquidus temperatures of NiAl alloys result in a larger dendrite arm spacing than is found in superalloy Ren N5. Because of their higher thermal conductivities, NiAl alloys have higher cooling rates and lower temperature gradients during solidification than Ren N5. These differences give NiAl alloys a lower tendency to form freckles and a higher tendency to form equiaxed grains. However, with the aid of process modeling, single crystals of various shapes of NiAl alloys have been produced.

  2. A piezoelectric single-crystal ultrasonic microactuator for driving optics.

    PubMed

    Guo, Mingsen; Dong, Shuxiang; Ren, Bo; Luo, Haosu

    2011-12-01

    At the millimeter scale, the motions or force out puts generated by conventional piezoelectric, magnetostrictive, photostrictive, or electromagnetic actuators are very limited. Here, we report a piezoelectric ultrasonic microactuator (size: 1.5 × 1.5 × 5 mm, weight: 0.1 g) made of PIN-PMN-PT single crystal. The actuator converts its high-frequency microscopic displacements (nanometer to micrometer scale) into a macro scopic, centimeter-scale linear movement of a slider via frictional force, resulting in a speed up to 50 mm/s and a very high unit volume direct driving force of 26 mN/mm(3) (which is ~100 times higher than a voice coil motor and ~4 times higher than a piezoceramic ultrasonic motor). This work shows the feasibility of using piezoelectric single-crystal-based ultrasonic microactuator for miniature drive of optics in next-generation mobiles and cameras. PMID:23443709

  3. Crystal growth and characterization of CuI single crystals by solvent evaporation technique

    SciTech Connect

    Gu, Mu; Gao, Pan; Liu, Xiao-Lin; Huang, Shi-Ming; Liu, Bo; Ni, Chen; Xu, Rong-Kun; Ning, Jia-min

    2010-05-15

    Cuprous iodide (CuI) crystals are grown by slow evaporation technique in three different solvents. Large CuI single crystals with dimensions of 7.5 mm x 5 mm x 3 mm are obtained in pure acetonitrile solvent at 40 {sup o}C. The as-grown crystals are analyzed by X-ray diffraction, energy-dispersive X-ray analysis, differential scanning calorimetry, current-voltage characteristic and photoluminescence spectrum. The results show that the CuI crystal has the zinc-blende structure with no secondary phase. The elemental Cu/I ratio is 1.09:1. The melting point of the crystal is 875 K and two phase transitions occur from room temperature to its melting point. The electrical conductivity of CuI platelet crystal is in the range of 1.11-2.38 {Omega}{sup -1} cm{sup -1}. Under ultraviolet excitation, the CuI crystals exhibit three emission bands with peak positions at 426, 529 and 671 nm. The nature of the luminescence is discussed.

  4. Frictional properties of single crystals HMX, RDX and PETN explosives.

    PubMed

    Wu, Y Q; Huang, F L

    2010-11-15

    The frictional properties of single crystals of cyclotetramethylene tetranitramine (HMX), cyclotrimethylene trinitramine (RDX) and pentaerythritol tetranitrate (PETN) secondary explosives are examined using a sensitive friction machine. The explosive crystals used for the measurements are at least 3.5 mm wide. The friction coefficients between crystals of the same explosive (i.e., HMX on HMX, etc.), crystals of different explosives (i.e., HMX on RDX, etc.), and each explosive and a well-polished gauge steel surface are determined. The frictional surfaces are also studied under an environmental scanning electron microscope (ESEM) to analyze surface microstructural changes under increasing loading forces. The friction coefficients vary considerably with increasing normal loading forces and are particularly sensitive to slider shapes, crystal roughness and the mechanical properties of both the slider and the sample. With increasing loading forces, most friction experiments show surface damage, consisting of grooves, debris, and nano-particles, on both the slider and sample. In some cases, a strong evidence of a localized molten state is found in the central region of the friction track. Possible mechanisms that affect the friction coefficient are discussed based on microscopic observations. PMID:20688432

  5. Effect of local environment on crossluminescence kinetics in SrF2:Ba and CaF2:Ba solid solutions

    NASA Astrophysics Data System (ADS)

    Terekhin, M. A.; Makhov, V. N.; Lebedev, A. I.; Sluchinskaya, I. A.

    2015-10-01

    Spectral and kinetic properties of extrinsic crossluminescence (CL) in SrF2:Ba(1%) and CaF2:Ba(1%) are compared with those of intrinsic CL in BaF2 and are analyzed taking into account EXAFS data obtained at the Ba LIII edge and results of first-principles calculations. The CL decay time was revealed to be longer in SrF2:Ba and CaF2:Ba compared to BaF2. This fact contradicts the expected acceleration of luminescence decay which could result from an increased overlap of wave functions in solid solutions due to shortening of the Ba-F distance obtained in both EXAFS measurements and first-principles calculations. This discrepancy is explained by the effect of migration and subsequent non-radiative decay of the Ba(5p) core holes in BaF2 and by decreasing of the probability of optical transitions between Ba(5p) states and the valence band in SrF2:Ba and CaF2:Ba predicted by first-principles calculations.

  6. Electrons trapped in single crystals of sucrose: Induced spin densities

    SciTech Connect

    Box, H.C.; Budzinski, E.E.; Freund, H.G. )

    1990-07-01

    Electrons are trapped at intermolecular sites in single crystals of sucrose {ital X} irradiated at 4.2 K. The coupling tensors for the hyperfine couplings between the electron and surrounding protons have been deduced from electron-nuclear double resonance (ENDOR) data. Electron spin densities at nearby hydroxy protons are positive, whereas spin densities at the more remote protons of carbon-bound hydrogen atoms are negative. The origin of these negative spin densities is discussed.

  7. Single-domain spectroscopy of self-assembled photonic crystals

    NASA Astrophysics Data System (ADS)

    Vlasov, Yu. A.; Deutsch, M.; Norris, D. J.

    2000-03-01

    We show how optical microscopy can be used to study the optical properties of a single crystalline domain in a self-assembled photonic crystal. By measuring spatially resolved reflection and emission spectra from a synthetic opal, inhomogeneities due to averaging over inherent disorder can be avoided. From "defect-free" reflection and emission spectra, the intrinsic photonic band structure can be extracted and inhibition of spontaneous emission can be verified.

  8. Internal friction measurement in high purity tungsten single crystal

    NASA Technical Reports Server (NTRS)

    Rieu, G. E.

    1974-01-01

    Internal friction peaks observed after small deformation in high purity tungsten single crystals between liquid helium temperature and 800 K in the frequency range 30-50 KHz, are studied as a function of orientation. An orientation effect is observed in the internal friction spectra due to the creation of internal stresses. The elementary processes related to these peaks are discussed in terms of kink generation and geometric kink motion on screw and edge dislocations in an internal stress field.

  9. Ion implantation induced blistering of rutile single crystals

    NASA Astrophysics Data System (ADS)

    Xiang, Bing-Xi; Jiao, Yang; Guan, Jing; Wang, Lei

    2015-07-01

    The rutile single crystals were implanted by 200 keV He+ ions with a series fluence and annealed at different temperatures to investigate the blistering behavior. The Rutherford backscattering spectrometry, optical microscope and X-ray diffraction were employed to characterize the implantation induced lattice damage and blistering. It was found that the blistering on rutile surface region can be realized by He+ ion implantation with appropriate fluence and the following thermal annealing.

  10. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Swanson, Gregory R.

    2000-01-01

    High Cycle Fatigue (HCF) induced failures in aircraft gas-turbine engines is a pervasive problem affecting a wide range of components and materials. HCF is currently the primary cause of component failures in gas turbine aircraft engines. Turbine blades in high performance aircraft and rocket engines are increasingly being made of single crystal nickel superalloys. Single-crystal Nickel-base superalloys were developed to provide superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys previously used in the production of turbine blades and vanes. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. PWA1493, identical to PWA1480, but with tighter chemical constituent control, is used in the NASA SSME (Space Shuttle Main Engine) alternate turbopump, a liquid hydrogen fueled rocket engine. Objectives for this paper are motivated by the need for developing failure criteria and fatigue life evaluation procedures for high temperature single crystal components, using available fatigue data and finite element modeling of turbine blades. Using the FE (finite element) stress analysis results and the fatigue life relations developed, the effect of variation of primary and secondary crystal orientations on life is determined, at critical blade locations. The most advantageous crystal orientation for a given blade design is determined. Results presented demonstrates that control of secondary and primary crystallographic orientation has the potential to optimize blade design by increasing its resistance to fatigue crack growth without adding additional weight or cost.

  11. Nanowire coupling to photonic crystal nanocavities for single photon sources

    NASA Astrophysics Data System (ADS)

    Grillet, Christian; Monat, Christelle; Smith, Cameron L.; Eggleton, Benjamin J.; Moss, David J.; Frdrick, Simon; Dalacu, Dan; Poole, Philip J.; Lapointe, Jean; Aers, Geof; Williams, Robin L.

    2007-02-01

    We demonstrate highly efficient evanescent coupling via a silica loop-nanowire, to ultra-small (0.5 (?/n)3 ), InAs/InP quantum dot photonic crystal cavities, specifically designed for single photon source applications. This coupling technique enables the tuning of both the Q-factor and the wavelength of the cavity mode independently, which is highly relevant for single photon source applications. First, this allows for the optimization of the extraction efficiency while maintaining a high Purcell factor. Second, the cavity mode can be matched with a spectrally misaligned quantum dot without changing the structure or degrading the Q-factor: a 3 nm resonance shift is reported.

  12. ATMOSPHERIC EFFECTS ON THE PERFORMANCE OF CDZNTE SINGLE CRYSTAL DETECTORS

    SciTech Connect

    Washington, A.; Duff, M.; Teague, L.

    2010-05-12

    The production of high-quality ternary single-crystal materials for radiation detectors has progressed over the past 15 years. One of the more common materials being studied is CdZnTe (CZT), which can be grown using several methods to produce detector-grade materials. The work presented herein examines the effects of environmental conditions including temperature and humidity on detector performance [full-width at half-maximum (FWHM)] using the single pixel with guard detector configuration. The effects of electrical probe placement, reproducibility, and aging are also presented.

  13. Diamond turning of Si and Ge single crystals

    SciTech Connect

    Blake, P.; Scattergood, R.O.

    1988-12-01

    Single-point diamond turning studies have been completed on Si and Ge crystals. A new process model was developed for diamond turning which is based on a critical depth of cut for plastic flow-to-brittle fracture transitions. This concept, when combined with the actual machining geometry for single-point turning, predicts that {open_quotes}ductile{close_quotes} machining is a combined action of plasticity and fracture. Interrupted cutting experiments also provide a meant to directly measure the critical depth parameter for given machining conditions.

  14. Oxygen tracer diffusion in single-crystal alumina

    NASA Technical Reports Server (NTRS)

    Cawley, James D.; Halloran, John W.; Cooper, Alfred R.

    1991-01-01

    Oxygen tracer diffusion coefficients are determined in single-crystal alumina samples with differing dopant levels using the gas-exchange technique. The diffusion direction is parallel to the c-axis and the ambient PO2 is 1 atm (100,000 Pa) for all experiments except a single run with a low PO2, approximately 10 to the -15th atm (10 to the -10th Pa) produced by a CO/CO2 mixture. The diffusion is insensitive to both impurities and ambient PO2. The insensitivities are discussed in terms of point-defect clustering. Prior tracer studies are compared and discussed.

  15. Method for thermal processing alumina-enriched spinel single crystals

    DOEpatents

    Jantzen, C.M.

    1995-05-09

    A process for age-hardening alumina-rich magnesium aluminum spinel to obtain the desired combination of characteristics of hardness, clarity, flexural strength and toughness comprises selection of the time-temperature pair for isothermal heating followed by quenching. The time-temperature pair is selected from the region wherein the precipitate groups have the characteristics sought. The single crystal spinel is isothermally heated and will, if heated long enough pass from its single phase through two pre-precipitates and two metastable precipitates to a stable secondary phase precipitate within the spinel matrix. Quenching is done slowly at first to avoid thermal shock, then rapidly. 12 figs.

  16. Method for thermal processing alumina-enriched spinel single crystals

    DOEpatents

    Jantzen, Carol M.

    1995-01-01

    A process for age-hardening alumina-rich magnesium aluminum spinel to obtain the desired combination of characteristics of hardness, clarity, flexural strength and toughness comprises selection of the time-temperature pair for isothermal heating followed by quenching. The time-temperature pair is selected from the region wherein the precipitate groups have the characteristics sought. The single crystal spinel is isothermally heated and will, if heated long enough pass from its single phase through two pre-precipitates and two metastable precipitates to a stable secondary phase precipitate within the spinel matrix. Quenching is done slowly at first to avoid thermal shock, then rapidly.

  17. Interfacial dislocation motion and interactions in single-crystal superalloys

    SciTech Connect

    Liu, B.; Raabe, D.; Roters, F.; Arsenlis, A.

    2014-10-01

    The early stage of high-temperature low-stress creep in single-crystal superalloys is characterized by the rapid development of interfacial dislocation networks. Although interfacial motion and dynamic recovery of these dislocation networks have long been expected to control the subsequent creep behavior, direct observation and hence in-depth understanding of such processes has not been achieved. Incorporating recent developments of discrete dislocation dynamics models, we simulate interfacial dislocation motion in the channel structures of single-crystal superalloys, and investigate how interfacial dislocation motion and dynamic recovery are affected by interfacial dislocation interactions and lattice misfit. Different types of dislocation interactions are considered: self, collinear, coplanar, Lomer junction, glissile junction, and Hirth junction. The simulation results show that strong dynamic recovery occurs due to the short-range reactions of collinear annihilation and Lomer junction formation. The misfit stress is found to induce and accelerate dynamic recovery of interfacial dislocation networks involving self-interaction and Hirth junction formation, but slow down the steady interfacial motion of coplanar and glissile junction forming dislocation networks. The insights gained from these simulations on high-temperature low-stress creep of single-crystal superalloys are also discussed.

  18. Spin reorientation transition in dysprosium-samarium orthoferrite single crystals

    NASA Astrophysics Data System (ADS)

    Zhao, Weiyao; Cao, Shixun; Huang, Ruoxiang; Cao, Yiming; Xu, Kai; Kang, Baojuan; Zhang, Jincang; Ren, Wei

    2015-03-01

    We report the control of spin reorientation (SR) transition in perovskite D y1 -xS mxFe O3 , a whole family of single crystals grown by an optical floating zone method from x =0 to 1 with an interval of 0.1. Powder x-ray diffractions and Rietveld refinements indicate that lattice parameters a and c increase linearly with Sm doping concentration, whereas b keeps a constant. Temperature dependence of the magnetizations under zero-field-cooling (ZFC) and field-cooling (FC) processes are studied in detail. We have found a remarkable linear change of SR transition temperature in Sm-rich samples for x >0.2 , which covers an extremely wide temperature range including room temperature. The a -axis magnetization curves under the FC during cooling (FCC) process bifurcate from and then jump back to that of the ZFC and FC warming process in single crystals when x =0.5 -0.9 , suggesting complicated 4 f -3 d electron interactions among D y3 + -S m3 +,D y3 + -F e3 + , and S m3 + -F e3 + sublattices of diverse magnetic configurations. The magnetic properties from the doping effect on SR transition temperature in these single crystals might be useful in the material physics and device design applications.

  19. Chiral multichromic single crystals for optical devices (LDRD 99406).

    SciTech Connect

    Kemp, Richard Alan; Felix, Ana M. (University of New Mexico, Albuquerque, NM)

    2006-12-01

    This report summarizes our findings during the study of a novel system that yields multi-colored materials as products. This system is quite unusual as it leads to multi-chromic behavior in single crystals, where one would expect that only a single color would exist. We have speculated that these novel solids might play a role in materials applications such as non-linear optics, liquid crystal displays, piezoelectric devices, and other similar applications. The system examined consisted of a main-group alkyl compound (a p block element such as gallium or aluminum) complexed with various organic di-imines. The di-imines had substituents of two types--either alkyl or aromatic groups attached to the nitrogen atoms. We observed that single crystals, characterized by X-ray crystallography, were obtained in most cases. Our research during January-July, 2006, was geared towards understanding the factors leading to the multi-chromic nature of the complexes. The main possibilities put forth initially considered (a) the chiral nature of the main group metal, (b) possible reduction of the metal to a lower-valent, radical state, (c) the nature of the ligand(s) attached to the main group metal, and (d) possible degradation products of the ligand leading to highly-colored products. The work carried out indicates that the most likely explanation considered involves degradation of the aromatic ligands (a combination of (c) and (d)), as the experiments performed can clearly rule out (a) and (b).

  20. Subsurface Stress Fields in Single Crystal (Anisotropic) Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.

    2003-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and fatigue stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent HCF failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and noncrystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. Techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts are presented in this report. Figure 1 shows typical damper contact locations in a turbine blade. The subsurface stress results are used for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades.

  1. Single crystal plasticity by modeling dislocation density rate behavior

    SciTech Connect

    Hansen, Benjamin L; Bronkhorst, Curt; Beyerlein, Irene; Cerreta, E. K.; Dennis-Koller, Darcie

    2010-12-23

    The goal of this work is to formulate a constitutive model for the deformation of metals over a wide range of strain rates. Damage and failure of materials frequently occurs at a variety of deformation rates within the same sample. The present state of the art in single crystal constitutive models relies on thermally-activated models which are believed to become less reliable for problems exceeding strain rates of 10{sup 4} s{sup -1}. This talk presents work in which we extend the applicability of the single crystal model to the strain rate region where dislocation drag is believed to dominate. The elastic model includes effects from volumetric change and pressure sensitive moduli. The plastic model transitions from the low-rate thermally-activated regime to the high-rate drag dominated regime. The direct use of dislocation density as a state parameter gives a measurable physical mechanism to strain hardening. Dislocation densities are separated according to type and given a systematic set of interactions rates adaptable by type. The form of the constitutive model is motivated by previously published dislocation dynamics work which articulated important behaviors unique to high-rate response in fcc systems. The proposed material model incorporates thermal coupling. The hardening model tracks the varying dislocation population with respect to each slip plane and computes the slip resistance based on those values. Comparisons can be made between the responses of single crystals and polycrystals at a variety of strain rates. The material model is fit to copper.

  2. MOFs under pressure: the reversible compression of a single crystal.

    PubMed

    Gagnon, Kevin J; Beavers, Christine M; Clearfield, Abraham

    2013-01-30

    The structural change and resilience of a single crystal of a metal-organic framework (MOF), Zn(HO(3)PC(4)H(8)PO(3)H)2H(2)O (ZAG-4), was investigated under high pressures (0-9.9 GPa) using in situ single crystal X-ray diffraction. Although the unit cell volume decreases over 27%, the quality of the single crystal is retained and the unit cell parameters revert to their original values after pressure has been removed. This framework is considerably compressible with a bulk modulus calculated at ?11.7 GPa. The b-axis also exhibits both positive and negative linear compressibility. Within the applied pressures investigated, there was no discernible failure or amorphization point for this compound. The alkyl chains in the structure provide a spring-like cushion to stabilize the compression of the system allowing for large distortions in the metal coordination environment, without destruction of the material. This intriguing observation only adds to the current speculation as to whether or not MOFs may find a role as a new class of piezofunctional solid-state materials for application as highly sensitive pressure sensors, shock absorbing materials, pressure switches, or smart body armor. PMID:23320490

  3. A method for obtaining single domain superconducting YBa sub 2 Cu sub 3 O sub 7 minus x single crystals

    SciTech Connect

    Giapintzakis, J.; Ginsberg, D.M.; Han, P.D. )

    1989-10-01

    A method is reported for producing an orthorhombic YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} single crystal comprised entirely of a single untwinned domain. The transformation from a polydomain to a single domain single crystal is carried out by applying uniaxial pressure of approximately 25 MPa for about one minute at 450{degree}C in an oxygen atmosphere. They report on some of the superconducting properties of crystals produced in this way.

  4. Acquisition of Single Crystal Growth and Characterization Equipment

    SciTech Connect

    Maple, M. Brian; Zocco, Diego A.

    2008-12-09

    Final Report for DOE Grant No. DE-FG02-04ER46178 'Acquisition of Single Crystal Growth and Characterization Equipment'. There is growing concern in the condensed matter community that the need for quality crystal growth and materials preparation laboratories is not being met in the United States. It has been suggested that there are too many researchers performing measurements on too few materials. As a result, many user facilities are not being used optimally. The number of proficient crystal growers is too small. In addition, insufficient attention is being paid to the enterprise of finding new and interesting materials, which is the driving force behind much of condensed matter research and, ultimately, technology. While a detailed assessment of this situation is clearly needed, enough evidence of a problem already exists to compel a general consensus that the situation must be addressed promptly. This final report describes the work carried out during the last four years in our group, in which a state-of-the-art single crystal growth and characterization facility was established for the study of novel oxides and intermetallic compounds of rare earth, actinide and transition metal elements. Research emphasis is on the physics of superconducting (SC), magnetic, heavy fermion (HF), non-Fermi liquid (NFL) and other types of strongly correlated electron phenomena in bulk single crystals. Properties of these materials are being studied as a function of concentration of chemical constituents, temperature, pressure, and magnetic field, which provide information about the electronic, lattice, and magnetic excitations at the root of various strongly correlated electron phenomena. Most importantly, the facility makes possible the investigation of material properties that can only be achieved in high quality bulk single crystals, including magnetic and transport phenomena, studies of the effects of disorder, properties in the clean limit, and spectroscopic and scattering studies through efforts with numerous collaborators. These endeavors will assist the effort to explain various outstanding theoretical problems, such as order parameter symmetries and electron-pairing mechanisms in unconventional superconductors, the relationship between superconductivity and magnetic order in certain correlated electron systems, the role of disorder in non-Fermi liquid behavior and unconventional superconductivity, and the nature of interactions between localized and itinerant electrons in these materials. Understanding the mechanisms behind strongly correlated electron behavior has important technological implications.

  5. Crystal growth, structure analysis and characterisation of 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid single crystal

    SciTech Connect

    Sankari, R. Siva; Perumal, Rajesh Narayana

    2014-04-24

    Single crystal of dielectric material 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid has been grown by slow evaporation solution growth method. The grown crystal was harvested in 25 days. The crystal structure was analyzed by Single crystal X - ray diffraction. UV-vis-NIR analysis was performed to examine the optical property of the grown crystal. The thermal property of the grown crystal was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The dielectric measurements were carried out and the dielectric constant was calculated and plotted at all frequencies.

  6. Influence of heat treatments upon the mechanical properties and in vitro bioactivity of ZrO2-toughened MgO-CaO-SiO2-P2O5-CaF2 glass-ceramics.

    PubMed

    Li, Huan-Cai; Wang, Dian-Gang; Meng, Xiang-Guo; Chen, Chuan-Zhong

    2014-09-01

    Zirconia-toughened MgO-CaO-SiO2-P2O5-CaF2 glass-ceramics are prepared using sintering techniques, and a series of heat treatment procedures are designed to obtain a glass-ceramic with improved properties. The crystallization behavior, phase composition, and morphology of the glass-ceramics are characterized. The bending strength, elastic modulus, fracture toughness, and microhardness of the glass-ceramics are investigated, and the effect mechanism of heat treatments upon the mechanical properties is discussed. The bioactivity of glass-ceramics is then evaluated using the in vitro simulated body fluid (SBF) soaking test, and the mechanism whereby apatite forms on the glass-ceramic surfaces in the SBF solution is discussed. The results indicate that the main crystal phase of the G-24 sample undergoing two heat treatment procedures is Ca5(PO4)3F (fluorapatite), and those of the G-2444 sample undergoing four heat treatment procedures are Ca5(PO4)3F and β-CaSiO3 (β-wollastonite). The heat treatment procedures are found to greatly influence the mechanical properties of the glass-ceramic, and an apatite layer is induced on the glass-ceramic surface after soaking in the SBF solution. PMID:25280855

  7. Influence of local structural disorders on spectroscopic properties of multi-component CaF2-Bi2O3-P2O5-B2O3 glass ceramics with Cr2O3 as nucleating agent

    NASA Astrophysics Data System (ADS)

    Suresh, S.; Narendrudu, T.; Yusub, S.; Suneel Kumar, A.; Ravi Kumar, V.; Veeraiah, N.; Krishna Rao, D.

    2016-01-01

    Multi-component CaF2-Bi2O3-P2O5-B2O3 glasses doped with different concentrations of Cr2O3 were crystallized through heat treatment. The prepared glass ceramic samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and differential thermal analysis (DTA). Spectroscopic studies viz., optical absorption, Fourier transform infrared (FTIR), Raman and electron paramagnetic resonance (EPR) were carried out. The XRD, SEM and DTA studies indicated that the samples contain different crystalline phases. Results of optical absorption and EPR studies pointed out the gradual conversion of chromium ions from Cr3 + state to Cr6 + state with an increase of Cr2O3 content from 0.1 to 0.5 mol%. The results of FTIR, Raman and EPR studies revealed that Cr6 + ions participate in the glass network in tetrahedral positions and seemed to increase the polymerization of the glass ceramics. The quantitative analysis of results of the spectroscopic studies further indicated that the glasses crystallized with low concentration of Cr2O3 are favourable for solid state laser devices.

  8. Influence of local structural disorders on spectroscopic properties of multi-component CaF2-Bi2O3-P2O5-B2O3 glass ceramics with Cr2O3 as nucleating agent.

    PubMed

    Suresh, S; Narendrudu, T; Yusub, S; Suneel Kumar, A; Ravi Kumar, V; Veeraiah, N; Krishna Rao, D

    2016-01-15

    Multi-component CaF2-Bi2O3-P2O5-B2O3 glasses doped with different concentrations of Cr2O3 were crystallized through heat treatment. The prepared glass ceramic samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and differential thermal analysis (DTA). Spectroscopic studies viz., optical absorption, Fourier transform infrared (FTIR), Raman and electron paramagnetic resonance (EPR) were carried out. The XRD, SEM and DTA studies indicated that the samples contain different crystalline phases. Results of optical absorption and EPR studies pointed out the gradual conversion of chromium ions from Cr(3+) state to Cr(6+) state with an increase of Cr2O3 content from 0.1 to 0.5mol%. The results of FTIR, Raman and EPR studies revealed that Cr(6+) ions participate in the glass network in tetrahedral positions and seemed to increase the polymerization of the glass ceramics. The quantitative analysis of results of the spectroscopic studies further indicated that the glasses crystallized with low concentration of Cr2O3 are favourable for solid state laser devices. PMID:26318703

  9. Advanced piezoelectric single crystal based transducers for naval sonar applications

    NASA Astrophysics Data System (ADS)

    Snook, Kevin A.; Rehrig, Paul W.; Hackenberger, Wesley S.; Jiang, Xiaoning; Meyer, Richard J., Jr.; Markley, Douglas

    2006-03-01

    Transducers incorporating single crystal piezoelectric Pb(Mg 1/3Nb 2/3) x-1Ti xO 3 (PMN-PT) exhibit significant advantages over ceramic piezoelectrics such as PZT, including both high electromechanical coupling (k 33 > 90%) and piezoelectric coefficients (d 33 > 2000 pC/N). Conventional <001> orientation gives inherently larger bandwidth and output power than PZT ceramics, however, the anisotropy of the crystal also allows for tailoring of the performance by orienting the crystal along different crystallographic axes. This attribute combined with composition refinements can be used to improve thermal or mechanical stability, which is important in high power, high duty cycle sonar applications. By utilizing the "31" resonance mode, the high power performance of PMN-PT can be improved over traditional "33" mode single crystal transducers, due to an improved aspect ratio. Utilizing novel geometries, effective piezoelectric constants of -600 pC/N to -1200 pC/N have been measured. The phase transition point induced by temperature, pre-stress or field is close to that in the "33" mode, and since the prestress is applied perpendicular to the poling direction in "31" mode elements, they exhibit lower loss and can therefore be driven harder. The high power characteristics of tonpilz transducers can also be affected by the composition of the PMN-PT crystal. TRS modified the composition of PMN-PT to improve the thermal stability of the material, while keeping the loss as low as possible. Three dimensional modeling shows that the useable bandwidth of these novel compositions nearly equals that of conventional PMN-PT. A decrease in the source level of up to 6 dB was calculated, which can be compensated for by the higher drive voltages possible.

  10. Influence of solvents on the habit modification of alpha lactose monohydrate single crystals

    NASA Astrophysics Data System (ADS)

    Parimaladevi, P.; Srinivasan, K.

    2013-02-01

    Restricted evaporation of solvent method was adopted for the growth of alpha lactose monohydrate single crystals from different solvents. The crystal habits of grown crystals were analysed. The form of crystallization was confirmed by powder x-ray diffraction analysis. Thermal behaviour of the grown crystals was studied by using differential scanning calorimetry.

  11. Single crystal to single crystal transition in (10, 3)-d framework with pyrazine-2-carboxylate ligand: Synthesis, structures and magnetism

    NASA Astrophysics Data System (ADS)

    Yang, Qian; Zhao, Jiong-Peng; Liu, Zhong-Yi

    2012-12-01

    Assembling of pyrazine-2-carboxylate (Pzc) acid with nickel chlorine under solvothermal condition with MeOH as solvent gave a porous complex 1 {[Ni(Pzc)ClH2O]MeOH}n with 1D channels. In 1 the ligands and metal ions are connected by three of each other and a rare (10,3)-d topology net is gained. The MeOH molecules filled in the 1D channels as guests. It is interesting that 1 undergoes a single-crystal-to-single-crystal transformation to another complex 2 when the guest MeOH molecules in the channels are exchanged by water molecules. Magnetic study indicates anti-ferromagnetic couplings exist in the two complexes and the guest exchange in the complex has little influence on the magnetism.

  12. Phase transitions and equations of state of alkaline earth fluorides CaF2 , SrF2 , and BaF2 to Mbar pressures

    NASA Astrophysics Data System (ADS)

    Dorfman, Susannah M.; Jiang, Fuming; Mao, Zhu; Kubo, Atsushi; Meng, Yue; Prakapenka, Vitali B.; Duffy, Thomas S.

    2010-05-01

    Phase transitions and equations of state of the alkaline earth fluorides CaF2 , SrF2 , and BaF2 were examined by static compression to pressures as high as 146 GPa. Angle-dispersive x-ray diffraction experiments were performed on polycrystalline samples in the laser-heated diamond-anvil cell. We confirmed that at pressures less than 10 GPa all three materials undergo a phase transition from the cubic (Fm3¯m) fluorite structure to the orthorhombic (Pnam) cotunnite-type structure. This work has characterized an additional phase transition in CaF2 and SrF2 : these materials were observed to transform to a hexagonal (P63/mmc) Ni2In -type structure between 63-79 GPa and 28-29 GPa, respectively, upon laser heating. For SrF2 , the Ni2In -type phase was confirmed by Rietveld refinement. Volumes were determined as a function of pressure for all high-pressure phases and fit to the third-order Birch-Murnaghan equation of state. For CaF2 and SrF2 , the fluorite-cotunnite transition results in a volume decrease of 8-10% , while the bulk modulus of the cotunnite-type phase is the same or less than that of the fluorite phase within uncertainty. For all three fluorides, the volume reduction associated with the further transition to the Ni2In -type phase is ˜5% . The percentage increase in the bulk modulus (ΔK) across the transition is greater when the cation is smaller. While for BaF2 , ΔK is 10-30% , ΔK values for SrF2 and CaF2 are 45-65% and 20-40% . Although shock data for CaF2 have been interpreted to show a transition to a highly incompressible phase above 100 GPa, this is not consistent with our static equation of state data.

  13. Standard Reference Material (SRM 1990) for Single Crystal Diffractometer Alignment

    USGS Publications Warehouse

    Wong-Ng, W.; Siegrist, T.; DeTitta, G.T.; Finger, L.W.; Evans, H.T., Jr.; Gabe, E.J.; Enright, G.D.; Armstrong, J.T.; Levenson, M.; Cook, L.P.; Hubbard, C.R.

    2001-01-01

    An international project was successfully completed which involved two major undertakings: (1) a round-robin to demonstrate the viability of the selected standard and (2) the certification of the lattice parameters of the SRM 1990, a Standard Reference Material?? for single crystal diffractometer alignment. This SRM is a set of ???3500 units of Cr-doped Al2O3, or ruby spheres [(0 420.011 mole fraction % Cr (expanded uncertainty)]. The round-robin consisted of determination of lattice parameters of a pair of crystals' the ruby sphere as a standard, and a zeolite reference to serve as an unknown. Fifty pairs of crystals were dispatched from Hauptman-Woodward Medical Research Institute to volunteers in x-ray laboratories world-wide. A total of 45 sets of data was received from 32 laboratories. The mean unit cell parameters of the ruby spheres was found to be a=4.7608 A?? ?? 0.0062 A??, and c=12.9979 A?? ?? 0.020 A?? (95 % intervals of the laboratory means). The source of errors of outlier data was identified. The SRM project involved the certification of lattice parameters using four well-aligned single crystal diffractometers at (Bell Laboratories) Lucent Technologies and at NRC of Canada (39 ruby spheres), the quantification of the Cr content using a combined microprobe and SEM/EDS technique, and the evaluation of the mosaicity of the ruby spheres using a double-crystal spectrometry method. A confirmation of the lattice parameters was also conducted using a Guinier-Ha??gg camera. Systematic corrections of thermal expansion and refraction corrections were applied. These rubies_ are rhombohedral, with space group R3c. The certified mean unit cell parameters are a=4.76080 ?? 0.00029 A??, and c=12 99568 A?? ?? 0.00087 A?? (expanded uncertainty). These certified lattice parameters fall well within the results of those obtained from the international round-robin study. The Guinier-Ha??gg transmission measurements on five samples of powdered rubies (a=4.7610 A?? ?? 0.0013 A??, and c=12.9954 A?? ?? 0.0034 A??) agreed well with the values obtained from the single crystal spheres.

  14. Large pyramid shaped single crystals of BiFeO{sub 3} by solvothermal synthesis method

    SciTech Connect

    Sornadurai, D.; Ravindran, T. R.; Paul, V. Thomas; Sastry, V. Sankara

    2012-06-05

    Synthesis parameters are optimized in order to grow single crystals of multiferroic BiFeO{sub 3}. 2 to 3 mm size pyramid (tetrahedron) shaped single crystals were successfully obtained by solvothermal method. Scanning electron microscopy with EDAX confirmed the phase formation. Raman scattering spectra of bulk BiFeO3 single crystals have been measured which match well with reported spectra.

  15. Entropy changes and caloric effects in RAl2 single crystals

    NASA Astrophysics Data System (ADS)

    Antunes de Oliveira, Nilson; Caro Patio, Julieth; von Ranke, Pedro R.

    2015-03-01

    In this work we theoretically discuss the entropy changes and the caloric effects in RAl2 single crystals, which crystalize in the cubic symmetry and have large magneto crystalline anisotropy due to the crystal electric field. For this purpose, we use a model of interacting magnetic moments including a term to account for the crystal electric field. We apply the model to calculate the entropy changes and the magnetocaloric quantities in TmAl2 and NdAl2 by applying magnetic field variations in different crystallographic directions. Our calculations for the entropy changes in these compounds are in a reasonable agreement with the available experimental data for ?B = 7 T. Further experimental data are necessary to compare with our theoretical predictions for the adiabatic temperature change. We also calculate the caloric quantities by fixing the magnitude of the magnetic field and rotating its direction. In this case, our calculations predict an anomaly (i.e. a change of sign) in the caloric quantities of TmAl2 when a magnetic field of 3 T rotates from < 100 > to < 110 > direction. A similar behavior is also observed in NdAl2. This very interesting fact, which is basically due to the magneto crystalline anisotropy, needs experimental data to be confirmed CNPq, CAPES, FAPERJ.

  16. Employing a cylindrical single crystal in gas-surface dynamics

    NASA Astrophysics Data System (ADS)

    Hahn, Christine; Shan, Junjun; Liu, Ying; Berg, Otto; Kleijn, Aart W.; Juurlink, Ludo B. F.

    2012-03-01

    We describe the use of a polished, hollow cylindrical nickel single crystal to study effects of step edges on adsorption and desorption of gas phase molecules. The crystal is held in an ultra-high vacuum apparatus by a crystal holder that provides axial rotation about a [100] direction, and a crystal temperature range of 89 to 1100 K. A microchannel plate-based low energy electron diffraction/retarding field Auger electron spectrometer (AES) apparatus identifies surface structures present on the outer surface of the cylinder, while a separate double pass cylindrical mirror analyzer AES verifies surface cleanliness. A supersonic molecular beam, skimmed by a rectangular slot, impinges molecules on a narrow longitudinal strip of the surface. Here, we use the King and Wells technique to demonstrate how surface structure influences the dissociation probability of deuterium at various kinetic energies. Finally, we introduce spatially-resolved temperature programmed desorption from areas exposed to the supersonic molecular beam to show how surface structures influence desorption features.

  17. ESR Study on Irradiated Ascorbic Acid Single Crystal

    NASA Astrophysics Data System (ADS)

    Tuner, H.; Korkmaz, M.

    2007-04-01

    Food irradiation is a ``cold'' process for preserving food and has been established as a safe and effective method of food processing and preservation after more than five decades of research and development. The small temperature increase, absence of residue and effectiveness of treatment of pre-packed food are the main advantages. In food industry, ascorbic acid and its derivatives are frequently used as antioxidant agents. However, irradiation is expected to produces changes in the molecules of food components and of course in the molecules of the agents added as preservation agents such as ascorbic acid. These changes in the molecular structures could cause decreases in the antioxidant actions of these agents. Therefore, the radiation resistance of these agents must be known to determine the amount of radiation dose to be delivered. Electron spin resonance (ESR) is one of the leading methods for identification of intermediates produced after irradiation. ESR spectrum of irradiated solid powder of ascorbic acid is fairly complex and determinations of involved radical species are difficult. In the present work, single crystals of ascorbic acid irradiated by gamma radiation are used to determine molecular structures of radiation induced radicalic species and four radicalic species related in pair with P21 crystal symmetry are found to be responsible from experimental ESR spectrum of gamma irradiated single crystal of ascorbic acid.

  18. Plastic deformation of Ni{sub 3}Nb single crystals

    SciTech Connect

    Hagihara, Kouji; Nakano, Takayoshi; Umakoshi, Yukichi

    1999-07-01

    Temperature dependence of yield stress and operative slip system in Ni{sub 3}Nb single crystals with the D0{sub a} structure was investigated in comparison with that in an analogous L1{sub 2} structure. Compression tests were performed at temperatures between 20 C and 1,200 C for specimens with loading axes perpendicular to (110), (331) and (270). (010)[100] slip was operative for three orientations, while (010)[001] slip for (331) and {l{underscore}brace}211{r{underscore}brace}{lt}{bar 1}{bar 0} 7 13{gt} twin for (270) orientations were observed, depending on deformation temperature. The critical resolved shear stress (CRSS) for the (010)[100] slip anomaly increased with increasing temperature showing a maximum peak between 400 C and 800 C depending on crystal orientation. The CRSS showed orientation dependence and no significant strain rate dependence in the temperature range for anomalous strengthening. The [100] dislocations with a screw character were aligned on the straight when the anomalous strengthening occurred. The anomalous strengthening mechanism for (010)[100] slip in Ni{sub 3}Nb single crystals is discussed on the basis of a cross slip model which has been widely accepted for some L1{sub 2}-type compounds.

  19. Strength anomaly in B2 FeAl single crystals

    SciTech Connect

    Yoshimi, K.; Hanada, S.; Yoo, M.H.; Matsumoto, N.

    1994-12-31

    Strength and deformation microstructure of B2 Fe-39 and 48%Al single crystals (composition given in atomic percent), which were fully annealed to remove frozen-in vacancies, have been investigated at temperatures between room temperature and 1073K. The hardness of as-homogenized Fe-48Al is higher than that of as-homogenized Fe-39Al while after additional annealing at 698K the hardness of Fe-48Al becomes lower than that of Fe-39Al. Fe-39Al single crystals slowly cooled after homogenizing at a high temperature were deformed in compression as a function of temperature and crystal orientation. A peak of yield strength appears around 0.5T{sub m} (T{sub m} = melting temperature). The orientation dependence of the critical resolved shear stress does not obey Schmid`s law even at room temperature and is quite different from that of b.c.c. metals and B2 intermetallics at low temperatures. At the peak temperature slip transition from <111>-type to <001>-type is found to occur macroscopically and microscopically, while it is observed in TEM that some of the [111] dislocations decompose into [101] and [010] on the (1096I) plane below the peak temperature. The physical sources for the positive temperature dependence of yield stress of B2 FeAl are discussed based on the obtained results.

  20. Lithium containing chalcogenide single crystals for neutron detection

    NASA Astrophysics Data System (ADS)

    Tupitsyn, E.; Bhattacharya, P.; Rowe, E.; Matei, L.; Cui, Y.; Buliga, V.; Groza, M.; Wiggins, B.; Burger, A.; Stowe, A.

    2014-05-01

    Lithium containing semiconductor-grade chalcogenide single crystals were grown using the vertical Bridgman method. The source material was synthesized from elementary precursors in two steps, (i) preparing the metal alloy LiIn or LiGa, and (ii) reaction with chalcogen - Se or Te. In a number of experiments, enriched 6Li isotope was used for synthesis and growth. The composition and structure of the synthesized materials was verified using powder X-Ray diffraction. The energy band gaps of the crystals were determined using optical absorption measurements. The resistivity of LiInSe2 and LiGaSe2, obtained using current-voltage measurements is on the order of 108-1011 ? cm. Photoconductivity measurement of a yellow LiInSe2 sample showed a peak in the photocurrent around 445 nm. Nuclear radiation detectors were fabricated from single crystal wafers and the responses to alpha particles, neutrons and gammas were measured and presented. It suggests that this material is a promising candidate for neutron detection applications.

  1. ESR Study on Irradiated Ascorbic Acid Single Crystal

    SciTech Connect

    Tuner, H.; Korkmaz, M.

    2007-04-23

    Food irradiation is a 'cold' process for preserving food and has been established as a safe and effective method of food processing and preservation after more than five decades of research and development. The small temperature increase, absence of residue and effectiveness of treatment of pre-packed food are the main advantages. In food industry, ascorbic acid and its derivatives are frequently used as antioxidant agents. However, irradiation is expected to produces changes in the molecules of food components and of course in the molecules of the agents added as preservation agents such as ascorbic acid. These changes in the molecular structures could cause decreases in the antioxidant actions of these agents. Therefore, the radiation resistance of these agents must be known to determine the amount of radiation dose to be delivered. Electron spin resonance (ESR) is one of the leading methods for identification of intermediates produced after irradiation. ESR spectrum of irradiated solid powder of ascorbic acid is fairly complex and determinations of involved radical species are difficult. In the present work, single crystals of ascorbic acid irradiated by gamma radiation are used to determine molecular structures of radiation induced radicalic species and four radicalic species related in pair with P21 crystal symmetry are found to be responsible from experimental ESR spectrum of gamma irradiated single crystal of ascorbic acid.

  2. Crystal phase engineering in single InAs nanowires.

    PubMed

    Dick, Kimberly A; Thelander, Claes; Samuelson, Lars; Caroff, Philippe

    2010-09-01

    Achieving phase purity and control in III-V nanowires is a necessity for future nanowire-based device applications. Many works have focused on cleaning specific crystal phases of defects such as twin planes and stacking faults, using parameters such as diameter, temperature, and impurity incorporation. Here we demonstrate an improved method for crystal phase control, where crystal structure variations in single InAs nanowires are designed with alternating wurtzite (WZ) and zinc blende (ZB) segments of precisely controlled length and perfect interfaces. We also demonstrate the inclusion of single twin planes and stacking faults with atomic precision in their placement, designed ZB quantum dots separated by thin segments of WZ, acting as tunnel barriers for electrons, and structural superlattices (polytypic and twin plane). Finally, we present electrical data to demonstrate the applicability of these designed structures to investigation of fundamental properties. From electrical measurements we observe clear signatures of controlled structural quantum dots in nanowires. This method will be directly applicable to a wide range of nanowire systems. PMID:20707361

  3. Single-crystal magnetic anisotropies of rock-forming minerals

    NASA Astrophysics Data System (ADS)

    Biedermann, Andrea Regina; Hirt, Ann Marie; Pettke, Thomas

    2013-04-01

    Anisotropy of magnetic susceptibility (AMS) is often used as an indicator of mineral fabric in rocks. For a quantitative estimate of mineral fabric, it is necessary to know and understand the intrinsic magnetic anisotropy of each mineral in the rock. Susceptibility, and thus AMS, is a superposition of paramagnetic and ferromagnetic components. In general, the paramagnetic contribution can be related to silicates, whereas the ferromagnetic component arises from iron oxide inclusions. We determined single-crystal AMS in both low and high magnetic fields for a series of olivine, amphibole, clinopyroxene and orthopyroxene compositions. Analysis of high-field data allows for separation of ferromagnetic and paramagnetic contributions to the magnetic anisotropy. Acquisition of isothermal remanent magnetization (IRM) was measured in order to further characterize the ferromagnetic inclusions. Often, the iron oxides grow epitaxially on the silicate structure and have specific orientations with respect to the silicate. The ferromagnetic component of the AMS can provide information on the orientation or shape of the inclusions. The paramagnetic AMS in a single crystal is related to the distribution of cations with a strong magnetic moment, e.g. ferric and ferrous iron, in the lattice structure. Relationships between the anisotropy, e.g. the anisotropy degree (delta k) or principal susceptibility directions, and iron content were thus established for each mineral group. For example, the orientation of the intermediate and minimum susceptibility axes in olivine depends on the iron content - the minimum susceptibility is parallel to the crystallographic a-axis for 3-5 wt.% FeO and parallel to b for 7-9 wt.% FeO at room temperature; and for amphiboles, the degree of AMS increases linearly with increasing iron content. AMS in a rock depends on the single-crystal properties, which are influenced by lattice structure and composition, as well as the crystallographic preferred orientation of crystals. Information on single crystal AMS can thus be used to predict bulk AMS of ultrabasic rocks, when the orientation distribution function of the constituent minerals is known.

  4. Electronic properties of graphene-single crystal diamond heterostructures

    SciTech Connect

    Zhao, Fang; Thuong Nguyen, Thuong; Golsharifi, Mohammad; Amakubo, Suguru; Jackman, Richard B.; Loh, K. P.

    2013-08-07

    Single crystal diamond has been used as a substrate to support single layer graphene grown by chemical vapor deposition methods. It is possible to chemically functionalise the diamond surface, and in the present case H-, F-, O-, and N-group have been purposefully added prior to graphene deposition. The electronic properties of the resultant heterostructures vary strongly; a p-type layer with good mobility and a band gap of ?0.7?eV is created when H-terminated diamond layers are used, whilst a layer with more metallic-like character (high carrier density and low carrier mobility) arises when N(O)-terminations are introduced. Since it is relatively easy to pattern these functional groups on the diamond surface, this suggests that this approach may offer an exciting route to 2D device structures on single layer graphene sheets.

  5. Polarization characteristics of zeolite single crystals containing carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Nagasawa, N.; Kudryashov, I.; Tsuda, S.; Tang, Z. K.

    2001-10-01

    Optical polarization anisotropy of single crystals of AlPO4-5 (AFI) containing carbon nanotubes is studied to develop the optical characterization method of the samples by laser micro-polarimetry at 488 nm. The crystals are opaque in the configuration, K⊥C with E∥C, but are almost transparent in the configuration, K⊥C with E⊥C, where K and E are the wave vector and the electric field of the incident light, respectively. The degree of polarization reaches almost unity at the maximum. When K∥C, they are also transparent for any directions of E except for some locations including the surface. The strong luminescence bands are observed at 540 nm and 570 nm with the tail toward long wavelength region. The 3D imaging of the luminescence is performed by Nanofinder to demonstrate their extrinsic origin.

  6. Single-crystal Ti2AlN thin films

    NASA Astrophysics Data System (ADS)

    Joelsson, T.; Hrling, A.; Birch, J.; Hultman, L.

    2005-03-01

    We have produced pure thin-film single-crystal Ti2AlN(0001), a member of the Mn +1AXn class of materials. The method used was UHV dc reactive magnetron sputtering from a 2Ti:Al compound target in a mixed Ar -N2 discharge onto (111) oriented MgO substrates. X-ray diffraction and transmission electron microscopy were used to establish the hexagonal crystal structure with c and a lattice parameters of 13.6 and 3.07, respectively. The hardness H, and elastic modulus E, as determined by nanoindentation measurements, were found to be 16.11GPa and 27020GPa, respectively. A room-temperature resistivity for the films of 39??cm was obtained.

  7. High pressure Raman spectra of monoglycine nitrate single crystal.

    PubMed

    Carvalho, J O; Moura, G M; Dos Santos, A O; Lima, R J C; Freire, P T C; Façanha Filho, P F

    2016-05-15

    Single crystal of monoglycine nitrate has been studied by Raman spectroscopy under high pressures up to 5.5GPa. The results show changes in lattice modes in the pressure ranges of 1.1-1.6GPa and 4.0-4.6GPa. The first change occurs with appearance of bands related to the lattice modes as well as discontinuity in the slope of dΩ/dP of these modes. Moreover, bands associated with the skeleton of glycine suggest that the molecule undergoes conformational modifications. The appearance of a strong band at 55cm(-1) point to a second phase transition associated with the lattice modes, while the internal modes remain unchanged. These anomalies are probably due to rearrangement of hydrogen bonds. Additionally, decompression to ambient pressure shows that the phase transitions are reversible. Finally, the results show that the nitrate anions play an important role on the stability of the monoglycine nitrate crystal. PMID:26967511

  8. Crystal oscillators using negative voltage gain, single pole response amplifiers

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard L. (Inventor)

    1989-01-01

    A simple and inexpensive crystal oscillator is provided which employs negative voltage gain, single pole response amplifiers. The amplifiers may include such configurations as gate inverters, operational amplifiers and conventional bipolar transistor amplifiers, all of which operate at a frequency which is on the roll-off portion of their gain versus frequency curve. Several amplifier feedback circuit variations are employed to set desired bias levels and to allow the oscillator to operate at the crystal's fundamental frequency or at an overtone of the fundamental frequency. The oscillator is made less expensive than comparable oscillators by employing relatively low frequency amplifiers and operating them at roll-off, at frequencies beyond which they are customarily used. Simplicity is provided because operation at roll-off eliminates components ordinarily required in similar circuits to provide sufficient phase-shift in the feedback circuitry for oscillation to occur.

  9. Rolling-contact deformation of MgO single crystals

    NASA Technical Reports Server (NTRS)

    Dufrane, K. F.; Glaeser, W. A.

    1976-01-01

    Magnesium oxide single crystals were used as a model bearing material and deformed by rolling contact with a steel ball 0.64 cm in diameter. A dependence of depth of slip on rolling velocity which persisted with increasing numbers of rolling-contact cycles was discovered. The track width, track hardness and dislocation interactions as observed by transmission electron microscopy all increased in a consistent manner with increasing cycles. The rolling-contact state of stress produces a high density of dislocations in a localized zone. Dislocation interaction in this zone produces cleavage-type cracks after a large number of rolling-contact cycles. The orientation of the crystal influences the character of dislocation accumulation.

  10. Crystal growth and anisotropy of high temperature thermoelectric properties of yttrium borosilicide single crystals

    NASA Astrophysics Data System (ADS)

    Hossain, M. Anwar; Tanaka, Isao; Tanaka, Takaho; Khan, A. Ullah; Mori, Takao

    2016-01-01

    We studied thermoelectric properties of YB41Si1.3 single crystals grown by the floating zone method. The composition of the grown crystal was confirmed by electron probe micro-analysis. We have determined the growth direction for the first time for these borosilicides, and discovered relatively large anisotropy in electrical properties. We measured the electrical resistivity and Seebeck coefficient along [510] (the growth direction) and [052] directions and we found that this crystal exhibits strong electrical anisotropy with a maximum of more than 8 times. An interesting layered structural feature is revealed along [510] with dense boron cluster layers and yttrium layers, with conductivity enhanced along this direction. We obtained 3.6 times higher power factor along [510] compared to that along [052]. Although the ZT of the present system is low, anisotropy in the thermoelectric properties of a boride was reported for the first time, and can be a clue in developing other boride systems also.

  11. One-dimensional photonic crystal cavities in single-crystal diamond

    NASA Astrophysics Data System (ADS)

    Li, Luozhou; Schrder, Tim; Chen, Edward H.; Bakhru, Hassaram; Englund, Dirk

    2015-06-01

    The realization of efficient optical interfaces for nitrogen vacancy centers in diamond is an important problem in quantum science with potential applications in quantum communications and quantum information processing. We describe and demonstrate two techniques for fabricating one-dimensional photonic crystal cavities in single-crystal diamond, using (1) a combination of reactive ion etching and focused ion beam milling and (2) transferred silicon hard mask lithography with reactive ion etching. We use two kinds of one-dimensional photonic crystal cavity designs and discuss their optical performances. We find that transferred silicon mask lithography results in better optical properties than focused ion beam patterning techniques. The silicon masks also exhibit high oxygen plasma etching selectivity in excess of 36:1 (diamond:silicon). We use these masks to produce a variety of diamond photonic devices.

  12. Crystal structures of carbonates up to Mbar pressures determined by single crystal synchrotron radiation diffraction

    NASA Astrophysics Data System (ADS)

    Merlini, M.

    2013-12-01

    The recent improvements at synchrotron beamlines, currently allow single crystal diffraction experiments at extreme pressures and temperatures [1,2] on very small single crystal domains. We successfully applied such technique to determine the crystal structure adopted by carbonates at mantle pressures. The knowledge of carbon-bearing phases is in fact fundamental for any quantitative modelling of global carbon cycle. The major technical difficulty arises after first order transitions or decomposition reactions, since original crystal (apx. 10x10x5 ?m3) is transformed in much smaller crystalline domains often with random orientation. The use of 3D reciprocal space visualization software and the improved resolution of new generation flat panel detectors, however, allow both identification and integration of each single crystal domain, with suitable accuracy for ab-initio structure solution, performed with direct and charge-flipping methods and successive structure refinements. The results obtained on carbonates, indicate two major crystal-chemistry trends established at high pressures. The CO32- units, planar and parallel in ambient pressure calcite and dolomite structures, becomes non parallel in calcite- and dolomite-II and III phases, allowing more flexibility in the structures with possibility to accommodate strain arising from different cation sizes (Ca and Mg in particular). Dolomite-III is therefore also observed to be thermodynamically stable at lower mantle pressures and temperatures, differently from dolomite, which undergoes decomposition into pure end-members in upper mantle. At higher pressure, towards Mbar (lowermost mantle and D'' region) in agreement with theoretical calculations [3,4] and other experimental results [5], carbon coordination transform into 4-fold CO4 units, with different polymerisation in the structure depending on carbonate composition. The second important crystal chemistry feature detected is related to Fe2+ in Fe-bearing magnesite, which spontaneously oxidises at HP/HT, forming Fe3+ carbonates, Fe3+ oxides and reduced carbon (diamonds). Single crystal diffraction approach allowed full structure determination of these phases, yielding to the discovery of few unpredicted structures, such as Mg2Fe2C4O13 and Fe13O19, which can be well reproduced in different experiments. Mg2Fe2C4O13 carbonate present truncated chain C4O13 groups, and Fe13O19 oxide, whose stoichiometry is intermediate between magnetite and hematite, is a one-layer structure, with features encountered in superconducting materials. The results fully support the ideas of unexpected complexities in the mineralogy of the lowermost mantle, and single crystal technique, once properly optimized in ad-hoc synchrotron beamlines, is fundamental for extracting accurate structural information, otherwise rarely accessible with other experimental techniques. References: [1] Merlini M., Hanfland M. (2013). Single crystal diffraction at Mbar conditions by synchrotron radiation. High Pressure Research, in press. [2] Dubrovinsky et al., (2010). High Pressure Research, 30, 620-633. [3] Arapan et al. (1997). Phys. Rev. Lett., 98, 268501. [4] Oganov et al. (2008) EPSL, 273, 38-47. [5] Boulard et al. (2011) PNAS, 108, 5184-5187.

  13. Hydrogen chemisorption on Pt single crystal surfaces in acidic solutions

    NASA Astrophysics Data System (ADS)

    Ross, Philip N.

    1981-01-01

    Hydrogen chemisorption from dilute acidic solution onto Pt single crystal surfaces was examined using an electrochemical cell directly coupled to LEED/Auger analytical system. No pre-anodization was used prior to observing hydrogen adsorption by cyclic voltammetry so that clean surfaces having the ordered structures indicated by LEED were studied. The problem of contributions from non-ordered parts of the electrode like support wires and edges was solved by using a gold evaporation masking technique. The specific contribution of atomic imperfections to the voltammetry curve was deduced from the ordered and countable imperfections occurring on high Miller index single crystal surfaces that have a stepped structure. The H-Pt bond energy was found to be structure sensitive, and sensitive both to local site geometry and long range order in the surface. The bond strength was found to vary systematically: n(111) (100) > (100) > n(111) (111) > (110) > (111). Distinct states for hydrogen at steps versus hydrogen on terraces could be distinguished. The (110) surface is shown to be a (111) vicinal, probably the [3(111) 2(111)] microfacetted surface. The zero coverage heat of adsorption on the well-ordered (111) surface (48 {kJ}/{mol}) in solutions is the same as the value reported by Ertl and co-workers for adsorption on a (111) surface in vacuum. Adsorption isotherms for hydrogen on the (111) and (100) surfaces are adequately fit by the classical model for immobile adsorption at single sites with nearest neighbor repulsive interaction.

  14. Field emission properties of single crystal chromium disilicide nanowires

    SciTech Connect

    Valentin, L. A.; Carpena-Nunez, J.; Yang, D.; Fonseca, L. F.

    2013-01-07

    The composition, crystal structure, and field emission properties of high-crystallinity chromium disilicide (CrSi{sub 2}) nanowires synthesized by a vapor deposition method have been studied. High resolution transmission electron microscopy, energy dispersive spectroscopy, and selected area electron diffraction studies confirm the single-crystalline structure and composition of the CrSi{sub 2} nanowires. Field emission measurements show that an emission current density of 0.1 {mu}A/cm{sup 2} was obtained at a turn-on electric field intensity of 2.80 V/{mu}m. The maximum emission current measured was 1.86 mA/cm{sup 2} at 3.6 V/{mu}m. The relation between the emission current density and the electric field obtained follows the Fowler-Nordheim equation, with an enhancement coefficient of 1140. The electrical conductivity of single nanowires was measured by using four-point-probe specialized microdevices at different temperatures, and the calculated values are close to those reported in previous studies for highly conductive single crystal bulk CrSi{sub 2}. The thermal tolerance of the nanowires was studied up to a temperature of 1100 Degree-Sign C. The stability of the field emission current, the I-E values, their thermal tolerance, and high electrical conductivity make CrSi{sub 2} nanowires a promising material for field emission applications.

  15. Crystal Structure of the Product of Mg 2+Insertion into V 2O 5Single Crystals

    NASA Astrophysics Data System (ADS)

    Shklover, V.; Haibach, T.; Ried, F.; Nesper, R.; Novák, P.

    1996-05-01

    Chemical (by interaction with a dibutylmagnesium solution) and electrochemical (in acetonitrile solution of magnesium perchlorate) insertion of Mg 2+into the single crystals of V 2O 5was performed. The morphology change of V 2O 5crystals as a result of the Mg 2+insertion was studied by scanning electron microscopy. The wavelength dispersive electron probe microanalysis clearly showed the presence of Mg (at least) at the surface of intercalated V 2O 5. Based on the single crystal X-ray diffraction study of intercalated V 2O 5(orthorhombic, Pmn2 1, a= 11.544(6), b= 4.383(3), c= 3.574(2) Å, Z= 4) the location of a small amount of Mg (˜1%) in the bulk V 2O 5may be suggested, with [6 + 4] oxygen atoms surrounding Mg. The resulting Mg-O separations essentially exceed the accepted values for the Mg-O distances in crystals with hexacoordinated Mg atoms, which may be correlated with the structural and electrochemical properties of Mg 2+-inserted V 2O 5.

  16. Shock response of He bubbles in single crystal Cu

    NASA Astrophysics Data System (ADS)

    Li, B.; Wang, L.; E, J. C.; Ma, H. H.; Luo, S. N.

    2014-12-01

    With large-scale molecular dynamics simulations, we investigate shock response of He nanobubbles in single crystal Cu. For sufficient bubble size or internal pressure, a prismatic dislocation loop may form around a bubble in unshocked Cu. The internal He pressure helps to stabilize the bubble against plastic deformation. However, the prismatic dislocation loops may partially heal but facilitate nucleation of new shear and prismatic dislocation loops. For strong shocks, the internal pressure also impedes internal jetting, while a bubble assists local melting; a high speed jet breaks a He bubble into pieces dispersed among Cu. Near-surface He bubbles may burst and form high velocity ejecta containing atoms and small fragments, while the ejecta velocities do not follow the three-dimensional Maxwell-Boltzmann distributions expected for thermal equilibrium. The biggest fragment size deceases with increasing shock strength. With a decrease in ligament thickness or an increase in He bubble size, the critical shock strength required for bubble bursting decreases, while the velocity range, space extension and average velocity component along the shock direction, increase. Small bubbles are more efficient in mass ejecting. Compared to voids and perfect single crystal Cu, He bubbles have pronounced effects on shock response including bubble/void collapse, Hugoniot elastic limit (HEL), deformation mechanisms, and surface jetting. HEL is the highest for perfect single crystal Cu with the same orientations, followed by He bubbles without pre-existing prismatic dislocation loops, and then voids. Complete void collapse and shear dislocations occur for embedded voids, as opposed to partial collapse, and shear and possibly prismatic dislocations for He bubbles. He bubbles lower the threshhold shock strength for ejecta formation, and increase ejecta velocity and ejected mass.

  17. Shock response of He bubbles in single crystal Cu

    SciTech Connect

    Li, B.; Wang, L.; E, J. C.; Luo, S. N.; Ma, H. H.

    2014-12-07

    With large-scale molecular dynamics simulations, we investigate shock response of He nanobubbles in single crystal Cu. For sufficient bubble size or internal pressure, a prismatic dislocation loop may form around a bubble in unshocked Cu. The internal He pressure helps to stabilize the bubble against plastic deformation. However, the prismatic dislocation loops may partially heal but facilitate nucleation of new shear and prismatic dislocation loops. For strong shocks, the internal pressure also impedes internal jetting, while a bubble assists local melting; a high speed jet breaks a He bubble into pieces dispersed among Cu. Near-surface He bubbles may burst and form high velocity ejecta containing atoms and small fragments, while the ejecta velocities do not follow the three-dimensional Maxwell-Boltzmann distributions expected for thermal equilibrium. The biggest fragment size deceases with increasing shock strength. With a decrease in ligament thickness or an increase in He bubble size, the critical shock strength required for bubble bursting decreases, while the velocity range, space extension and average velocity component along the shock direction, increase. Small bubbles are more efficient in mass ejecting. Compared to voids and perfect single crystal Cu, He bubbles have pronounced effects on shock response including bubble/void collapse, Hugoniot elastic limit (HEL), deformation mechanisms, and surface jetting. HEL is the highest for perfect single crystal Cu with the same orientations, followed by He bubbles without pre-existing prismatic dislocation loops, and then voids. Complete void collapse and shear dislocations occur for embedded voids, as opposed to partial collapse, and shear and possibly prismatic dislocations for He bubbles. He bubbles lower the threshhold shock strength for ejecta formation, and increase ejecta velocity and ejected mass.

  18. Advanced piezoelectric single crystal based transducers for naval sonar applications

    NASA Astrophysics Data System (ADS)

    Snook, Kevin A.; Rehrig, Paul W.; Hackenberger, Wesley S.; Jiang, Xiaoning; Meyer, Richard J., Jr.; Markley, Douglas

    2005-05-01

    TRS is developing new transducers based on single crystal piezoelectric materials such as Pb(Mg1/3Nb2/3)x-1TixO3 (PMN-PT). Single crystal piezoelectrics such as PMN-PT exhibit very high piezoelectric coefficients (d33 ~ 1800 to >2000 pC/N) and electromechanical coupling factors (k33 > 0.9), respectively, which may be exploited for improving the performance of broad bandwidth and high frequency sonar. Apart from basic performance, much research has been done on reducing the size and increasing the output power of tonpilz transducers for sonar applications. Results are presented from two different studies. "33" mode single crystal tonpilz transducers have reduced stack lengths due to their low elastic stiffness relative to PZTs, however, this produces non-ideal aspect ratios due to large lateral dimensions. Alternative "31" resonance mode tonpilz elements are proposed to improve performance over these "33" designs. d32 values as high as 1600 pC/N have been observed, and since prestress is applied perpendicular to the poling direction, "31" mode Tonpilz elements exhibit lower loss and higher reliability than "33" mode designs. Planar high power tonpilz arrays are the optimum way to obtain the required acoustic pressure and bandwidth for small footprint, high power sensors. An important issue for these sensors is temperature and prestress stability, since fluctuations in tonpilz properties affects power delivery and sensing electronic design. TRS used the approach of modifying the composition of PMN-PT to improve the temperature dependence of properties of the material. Results show up to a 50% decrease in temperature change while losing minimal source level.

  19. Analysis of synthetic diamond single crystals by X-ray topography and double-crystal diffractometry

    SciTech Connect

    Prokhorov, I. A.; Ralchenko, V. G.; Bolshakov, A. P.; Polskiy, A. V.; Vlasov, A. V.; Subbotin, I. A.; Podurets, K. M.; Pashaev, E. M.; Sozontov, E. A.

    2013-12-15

    Structural features of diamond single crystals synthesized under high pressure and homoepitaxial films grown by chemical vapor deposition (CVD) have been analyzed by double-crystal X-ray diffractometry and topography. The conditions of a diffraction analysis of diamond crystals using Ge monochromators have been optimized. The main structural defects (dislocations, stacking faults, growth striations, second-phase inclusions, etc.) formed during crystal growth have been revealed. The nitrogen concentration in high-pressure/high-temperature (HPHT) diamond substrates is estimated based on X-ray diffraction data. The formation of dislocation bundles at the film-substrate interface in the epitaxial structures has been revealed by plane-wave topography; these dislocations are likely due to the relaxation of elastic macroscopic stresses caused by the lattice mismatch between the substrate and film. The critical thicknesses of plastic relaxation onset in CVD diamond films are calculated. The experimental techniques for studying the real diamond structure in optimizing crystal-growth technology are proven to be highly efficient.

  20. Acoustic and thermal properties of strontium pyroniobate single crystals

    NASA Astrophysics Data System (ADS)

    Shabbir, G.; Kojima, S.

    2003-04-01

    High resolution Brillouin scattering and modulated differential scanning calorimetry (MDSC) experiments were performed to study the acoustic and thermal properties of strontium pyroniobate (Sr2Nb2O7) single crystals. The anomalous temperature dependence of the longitudinal acoustic phonon mode frequency corresponding to c22 elastic stiffness coefficient was observed in the neighbourhood of the normal-incommensurate phase transition temperature Ti (491 K). The specific heat measured by MDSC showed an anomaly around 487+/-2 K. The changes in enthalpy and entropy of the phase transition were estimated as 147 J mol-1 and 0.71 J mol-1 K-1, respectively.

  1. Optical properties of Eu2+ doped antipervoskite fluoride single crystals

    NASA Astrophysics Data System (ADS)

    Daniel, D. Joseph; Nithya, R.; Ramasamy, P.; Madhusoodanan, U.

    2013-02-01

    Single crystals of pure and Eu2+ doped LiBaF3 have been grown from melt by using a vertical Bridgman-Stockbarger method. Absorption and luminescence spectra for pure and rare-earth-doped LiBaF3 were studied. At ambient conditions the photoluminescence spectra consisted of sharp lines peaked at 359 nm attributed to the 6P7/2?8S7/2 transitions in the 4f7 electronic configuration of Eu2+ and a broad band extending between 370 and 450 nm attributed to Eu2+ trapped exciton recombination. The effect of 60Co gamma irradiation has also been investigated.

  2. Single crystal NMR studies of high temperature superconductors

    SciTech Connect

    Pennington, C.H.; Durand, D.J.; Zax, D.B.; Slichter, C.P.; Rice, J.P.; Bukowski, E.D.; Ginsberg, D.M.

    1989-01-01

    The authors report Cu NMR studies in the normal state of a single crystal of the T/sub c/ = 90 K superconductor YBa/sub 2/Cu/sub 3/O/sub 7/minus/delta/. The authors have measured the magnetic shift tensor, the electric field gradient tensor, the nuclear spin-lattice relaxation rate tensor, and the time dependence and functional form of the transverse decay. From these data they obtain information about the charge state and magnetic state of the Cu atoms, and the existence and size of the electronic exchange coupling between spins of adjacent Cu atoms. 18 refs., 3 figs., 2 tabs.

  3. EPR studies of gamma-irradiated taurine single crystals

    NASA Astrophysics Data System (ADS)

    Bulut, A.; Karabulut, B.; Tapramaz, R.; Kksal, F.

    2000-04-01

    An EPR study of gamma-irradiated taurine [C 2H 7NO 3S] single crystal was carried out at room temperature. The EPR spectra were recorded in the three at mutually perpendicular planes. There are two magnetically distinct sites in monoclinic lattice. The principle values of g and hyperfine constants for both sites were calculated. The results have indicated the presence of 32?O -2 and 33?O -2 radicals. The hyperfine values of 33?O -2 radical were used to obtain O-S-O bond angle for both sites.

  4. Single Molecule Studies on Dynamics in Liquid Crystals

    PubMed Central

    Täuber, Daniela; von Borczyskowski, Christian

    2013-01-01

    Single molecule (SM) methods are able to resolve structure related dynamics of guest molecules in liquid crystals (LC). Highly diluted small dye molecules on the one hand explore structure formation and LC dynamics, on the other hand they report about a distortion caused by the guest molecules. The anisotropic structure of LC materials is used to retrieve specific conformation related properties of larger guest molecules like conjugated polymers. This in particular sheds light on organization mechanisms within biological cells, where large molecules are found in nematic LC surroundings. This review gives a short overview related to the application of highly sensitive SM detection schemes in LC. PMID:24077123

  5. Titanium vacancies in nonstoichiometric TiO2 single crystal

    NASA Astrophysics Data System (ADS)

    Nowotny, M. K.; Bak, T.; Nowotny, J.; Sorrell, C. C.

    2005-09-01

    The semiconducting properties of single-crystal TiO2 and their changes during prolonged oxidation at elevated temperatures and under controlled oxygen activity were monitored using measurements of electrical conductivity and thermo-electric power. Two kinetic regimes were revealed: Regime I - rapid oxidation, associated with the transport of oxygen vacancies, and Regime II - prolonged oxidation, which corresponds to the transport of titanium vacancies. The present data represent the first documented evidence for the formation and transport of titanium vacancies in TiO2. This finding allows the processing of p-type TiO2 without the incorporation of aliovalent foreign ions.

  6. Type-I superconductivity in KBi2 single crystals.

    PubMed

    Sun, Shanshan; Liu, Kai; Lei, Hechang

    2016-03-01

    We report on the detailed transport, magnetic, thermodynamic properties and theoretical calculation of KBi2 single crystals in superconducting and normal states. KBi2 exhibits metallic behavior at a normal state and enters the superconducting state below [Formula: see text] K. Moreover, KBi2 exhibits low critical fields in all measurements, field-induced crossover from second- to first-order phase transition in specific heat measurements, the typical magnetization isotherms of type-I superconductors, and a small Ginzburg-Landau parameter [Formula: see text]. These results clearly indicate that KBi2 is a type-I superconductor with a thermodynamic critical field [Formula: see text] Oe. PMID:26836956

  7. The sublimation kinetics of GeSe single crystals

    NASA Technical Reports Server (NTRS)

    Irene, E. A.; Wiedemeier, H.

    1975-01-01

    The sublimation kinetics of (001) oriented GeSe single crystal platelets was studied by high-temperature mass spectroscopy, quantitative vacuum microbalance techniques, and hot stage optical microscopy. For a mean experimental temperature of 563 K, the activation enthalpy and entropy are found to equal 32.3 kcal/mole and 19.1 eu, respectively. The vaporization coefficient is less than unity for the range of test temperatures, and decreases with increasing temperature. The combined experimental data are correlated by means of a multistep surface adsorption mechanism.

  8. Fabrication and characterization of patterned single-crystal silicon nanolines.

    PubMed

    Li, Bin; Kang, Min K; Lu, Kuan; Huang, Rui; Ho, Paul S; Allen, Richard A; Cresswell, Michael W

    2008-01-01

    This letter demonstrates a method for fabricating single-crystal Si nanolines, with rectangular cross sections and nearly atomically flat sidewalls. The high quality of these nanolines leads to superb mechanical properties, with the strain to fracture measured by nanoindentation tests exceeding 8.5% for lines of 74 nm width. A large displacement burst before fracture was observed, which is attributed to a buckling mechanism. Numerical simulations show that the critical load for buckling depends on the friction at the contact surface. PMID:18062713

  9. Nonlinear microwave switching response of BSCCO single crystals

    SciTech Connect

    Jacobs, T.; Sridhar, S.; Willemsen, B.A. |; Li, Qiang; Gu, G.D.; Koshizuka, N.

    1996-06-01

    Measurements of the surface impedance in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} single crystal with microwave currents flowing along the {cflx c} axis show clear evidence of a step-like nonlinearity. The surface resistance switches between apparently quantized levels for microwave field strength changes < 1 mG. This nonlinear response can arise from the presence of intrinsic Josephson junctions along the {cflx c} axis of these samples driven by the microwave current.

  10. Polarization-dependent exciton dynamics in tetracene single crystals.

    PubMed

    Zhang, Bo; Zhang, Chunfeng; Xu, Yanqing; Wang, Rui; He, Bin; Liu, Yunlong; Zhang, Shimeng; Wang, Xiaoyong; Xiao, Min

    2014-12-28

    We conduct polarization-dependent ultrafast spectroscopy to study the dynamics of singlet fission (SF) in tetracene single crystals. The spectrotemporal species for singlet and triplet excitons in transient absorption spectra are found to be strongly dependent on probe polarization. By carefully analyzing the polarization dependence, the signals contributed by different transitions related to singlet excitons have been disentangled, which is further applied to construct the correlation between dynamics of singlet and triplet excitons. The anisotropy of exciton dynamics provides an alternative approach to tackle the long-standing challenge in understanding the mechanism of singlet fission in organic semiconductors. PMID:25554147

  11. Polarization-dependent exciton dynamics in tetracene single crystals

    SciTech Connect

    Zhang, Bo; Zhang, Chunfeng Xu, Yanqing; Wang, Rui; He, Bin; Liu, Yunlong; Zhang, Shimeng; Wang, Xiaoyong; Xiao, Min

    2014-12-28

    We conduct polarization-dependent ultrafast spectroscopy to study the dynamics of singlet fission (SF) in tetracene single crystals. The spectrotemporal species for singlet and triplet excitons in transient absorption spectra are found to be strongly dependent on probe polarization. By carefully analyzing the polarization dependence, the signals contributed by different transitions related to singlet excitons have been disentangled, which is further applied to construct the correlation between dynamics of singlet and triplet excitons. The anisotropy of exciton dynamics provides an alternative approach to tackle the long-standing challenge in understanding the mechanism of singlet fission in organic semiconductors.

  12. Polarization-dependent exciton dynamics in tetracene single crystals

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Zhang, Chunfeng; Xu, Yanqing; Wang, Rui; He, Bin; Liu, Yunlong; Zhang, Shimeng; Wang, Xiaoyong; Xiao, Min

    2014-12-01

    We conduct polarization-dependent ultrafast spectroscopy to study the dynamics of singlet fission (SF) in tetracene single crystals. The spectrotemporal species for singlet and triplet excitons in transient absorption spectra are found to be strongly dependent on probe polarization. By carefully analyzing the polarization dependence, the signals contributed by different transitions related to singlet excitons have been disentangled, which is further applied to construct the correlation between dynamics of singlet and triplet excitons. The anisotropy of exciton dynamics provides an alternative approach to tackle the long-standing challenge in understanding the mechanism of singlet fission in organic semiconductors.

  13. Synthesis and doping of nonmagnetic honeycomb iridate single crystals

    NASA Astrophysics Data System (ADS)

    Lopez, Gilbert; Breznay, Nicholas; Fan, Xue; Analytis, James

    2015-03-01

    The honeycomb iridate Na2IrO3 has been proposed to exhibit many unique properties, including possible spin liquid and topological insulator phases. Although the widely studied layered phase of Na2IrO3 is an antiferromagnetic Mott insulator, I will discuss single-crystal synthesis and electrical and thermodynamic properties of a weakly magnetic Na2Ir1-yO3 relative. I will also discuss the effects of chemical doping on the electrical transport and magnetic properties of honeycomb iridate materials.

  14. Raman Investigations of Rare Earth Arsenate Single Crystals

    SciTech Connect

    Barros, G; Santos, C. C.; Ayala, A. P.; Guedes, I.; Boatner, Lynn A; Loong, C. K.

    2010-01-01

    Polarized Raman Spectroscopy was used to investigate the room-temperature phonon characteristics of a series of rare-earth arsenate (REAsO4, RE = Sm, Eu, Gd, Tb, Dy, Ho, Tm, Yb, and Lu) single crystals. The Raman data were interpreted in a systematic manner based on the known tetragonal zircon structure of these compounds, and assignments and correlations were made for the observed bands. We found that the wavenumber of the internal modes of the AsO4 tetrahedron increased with increasing atomic number, and for three out of four lattice wavenumbers observed, this tendency was not nearly so marked as in the case of the internal mode wavenumber.

  15. Reliability of single-crystal aluminum lines and its limitation

    NASA Astrophysics Data System (ADS)

    Kaneko, Hisashi; Kawanoue, Takashi; Hasunuma, Masahiko; Miyauchi, Masami

    1994-06-01

    The quantitative electromigration (EM) lifetime estimation for single-crystal aluminum (Al) lines has been carried out for the first time. The lifetime limiting factor that degrades the excellent endurance against EM for single-crystal Al lines has turned out to be the temperature difference between the line and the pad due to Joule heating by high current density. No voids were observed in the middle part of the line in accelerated test patterns for 15 hours at 283 C even at a current density of 3.5107 A/cm2. On the other hand, hillocks and/or extrusions were always observed in the line near the positive pad and voids in the negative pad. The voids, initially grown in the line near the negative pad, migrated and accumulated in the negative pad. Al atom flux divergence due to a large temperature difference near the line-pad junction by Joule heating as large as 100 C was the origin of the void and hillock formation. The Al atom flux in the line was calculated from the accumulated void volume with the temperature distribution taken into account. The obtained diffusion coefficient for Al atoms were well explained from the activation energy of 1.28 eV. It has also been found that a violent electrical resistance oscillation take place when the initially grown voids in the line migrate into the negative pad. The elapsed time until this oscillation started was defined as the lifetime of the single-crystal Al lines. The void volume fractions near the line-pad junction that initiated void migration into the negative pad were independent of temperature. By using this void volume fraction, the lifetime was calculated at various current densities and temperatures. It has been clarified that the temperature difference between the line and the pad reduce the lifetime seriously. It is concluded that this temperature difference should be restrained as low as possible when single-crystal Al lines are operated at a current density above 1106 A/cm2 for the guaranteed 10 years.

  16. Annealing of deformed olivine single-crystals under 'dry' conditions

    NASA Astrophysics Data System (ADS)

    Blaha, Stephan; Katsura, Tomoo

    2013-04-01

    Knowledge of rheological properties of Earth's materials is essential to understand geological processes. Open questions are the water content and crystallographic orientation dependences of dislocation creep rate, because the dominant slip system changes with increasing water content, which suggest different dislocations have different water content dependence. This project focuses on olivine, which is the most abundant mineral of the upper mantle. It is also considered to be the weakest phase and hence should control the rheology of the upper mantle. Several slip systems were reported for olivine, which are [100](010), [001](010), [001](100) and [100](001), each of which appear under different water content and stress conditions [1]. For this purpose we started to obtain data for 'dry' conditions, providing basic knowledge to understand the effect of water. Variation in dislocation creep rate according to change in physical conditions can be estimated by dislocation recovery experiments [2]. In this technique, deformed crystals are annealed, in which the dislocation density is expected to decrease due to coalescence of two dislocations. Dislocation densities are measured before and after the annealing. Dislocation mobility, which should be directly proportional to the dislocation creep rate, is estimated based on the change in dislocation density and duration of annealing. This technique has significant advantages partly because informations of strain rate and deviatoric stress, which are difficult to measure, are unnecessary, and partly because dislocation annealing is conducted under quasi-hydrostatic conditions, which allows wide ranges of P and T conditions. The first step of the experiments is to deform a single crystal of olivine. For this purpose, we developed an assembly, which deforms a single crystal in simple-shear geometry and prevent breakage, sub-grain formation and recrystallization of the crystal. Olivine single-crystals were placed in the high-pressure assembly so that a particular slip system is activated. The assemblies were compressed to 3 GPa. The shear deformation was conducted at 1600 K. EBSD measurements indicate that the recovered crystals are single crystals and sub-grain formation did not occur in most cases. The second step is to anneal the samples under the same P-T conditions as those of the deformation experiments. Annealing experiments are also performed at ambient pressures at 1600 K. Dislocation density was measured by means of the oxidation decoration technique [3]. The samples were firstly polished and then oxidized at 1200 K for 50 min. The dislocations are preferably oxidized, so that presence of dislocation can be observed using SEM. First Results indicate that the dislocation density decreased by annealing by 1/4 with an annealing period of 10 h for dislocations with b = [001]. References [1] H. Jung and S. I. Karato. Water-induced fabric transitions in olivine. Science, 293(5534):1460-1463, 2001. [2] S. I. Karato, D. C. Rubie, and H. Yan. Dislocation recovery in olivine under deep upper mantle conditions: Implications for creep and diffusion. Journal of Geophysical Research, 98(B6):9761-9768, 1993. [3] D. L. Kohlstedt, C. Goetze, W. B. Durham, and J. V. Sande. New technique for decorating dislocations in olivine. Science, 191(4231):1045-1046, March 1976.

  17. Photoluminescence properties of MgxZn1-xSe single crystals

    NASA Astrophysics Data System (ADS)

    Park, Sang-An; Song, Ho-Jun; Kim, Wha-Tek; Kim, Hyung-Gon; Jin, Moon-Seog; Kim, Chang-Dae; Yoon, Chang-Sun

    1998-03-01

    MgxZn1-xSe single crystals were grown by the closed tube sublimation method. The MgxZn1-xSe single crystals crystallized into zincblende and wurtzite structures in the composition ranges of x=0.0-0.1 and x=0.2-0.6, respectively. Blue and violet emissions with LO phonon replica and self-activated emissions in the MgxZn1-xSe single crystals were observed at 10 K.

  18. Experiment MA-028 crystal growth. [low gravity manufacturing of single crystals from Apollo/Soyuz Test Project

    NASA Technical Reports Server (NTRS)

    Lind, D. M.

    1976-01-01

    A crystal growth experiment is reported on orbital space flights. The experiment was performed during the Apollo-Soyuz Test Project. The Crystal Growth Experiment assessed a novel process for growing single crystals of insoluble substances by allowing two or more reactant solutions to diffuse toward each other through a region of pure solvent in zero gravity. The experiment was entirely successful and yielded crystals of about the expected size, quality, and number.

  19. Synthesis of mesoporous zeolite single crystals with cheap porogens

    NASA Astrophysics Data System (ADS)

    Tao, Haixiang; Li, Changlin; Ren, Jiawen; Wang, Yanqin; Lu, Guanzhong

    2011-07-01

    Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals have been successfully synthesized by adding soluble starch or sodium carboxymethyl cellulose (CMC) to a conventional zeolite synthesis system. The obtained samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen sorption analysis, 27Al magic angle spinning nuclear magnetic resonance ( 27Al MAS NMR), temperature-programmed desorption of ammonia (NH 3-TPD) and ultraviolet-visible spectroscopy (UV-vis). The SEM images clearly show that all zeolite crystals possess the similar morphology with particle size of about 300 nm, the TEM images reveal that irregular intracrystal pores are randomly distributed in the whole crystal. 27Al MAS NMR spectra indicate that nearly all of the Al atoms are in tetrahedral co-ordination in ZSM-5, UV-vis spectra confirm that nearly all of titanium atoms are incorporated into the framework of TS-1. The catalytic activity of meso-ZSM-5 in acetalization of cyclohexanone and meso-TS-1 in hydroxylation of phenol was also studied. The synthesis method reported in this paper is cost-effective and environmental friendly, can be easily expended to prepare other hierarchical structured zeolites.

  20. Plastic anisotropy in MoSi{sub 2} single crystals

    SciTech Connect

    Mitchell, T.E.; Maloy, S.A.

    1993-05-01

    Single crystals Of MoSi{sub 2} are an order of magnitude stronger when compressed along [001] than along any other orientation. This is because the easy slip systems, <101><100> and <110><111>, have a zero Schmid factor acting on them so that harder slip systems are forced into operation. We find that [001] crystals compressed at 1OOO{degree}C yield by slip on <103><331>. TEM shows that the 1/2<331> dislocations tend to decompose into 1/2<111> and <110> dislocations. This decomposition process apparently inhibits the mobility of 1/2<331> dislocations at higher temperatures and another system, <101><1ll>, becomes operative at 1300{degree}C and above. [021] crystals have been tested for comparison and are found to yield at much lower stresses on the easy systems. In the design of advanced high temperature structural materials based on MOSi{sub 2}, the large plastic anisotropy should be used to advantage.

  1. Modeling of single-crystal laser-weld microstructures

    SciTech Connect

    Vitek, J.M.; Zacharia, T.; David, S.A.; Boatner, L.A.; Rappaz, M.

    1993-07-01

    A heat and fluid-flow model has been used to calculate the weld-pool size and shape for a high-speed, single-pass, autogenous laser weld as a function of time. Based on the calculated weld-pool shape, and with the use of a geometric model relating the dendritic growth to the weld-pool shape, the dendritic growth pattern was calculated for a single-crystal laser weld with an (001) surface that was welded along the [100] direction. The calculated results were compared to an actual experimental laser weld of an Fe-15Cr-15Ni alloy for the same orientation and weld direction. Agreement was obtained between the calculations and the experimental observations and the experimental dendritic growth pattern was accurately reproduced.

  2. Dual-band infrared single-layer metallodielectric photonic crystals

    NASA Astrophysics Data System (ADS)

    Drupp, Robert P.; Bossard, Jeremy A.; Ye, Yong-Hong; Werner, Douglas H.; Mayer, Theresa S.

    2004-09-01

    Metallodielectric photonic crystals (MDPCs) consisting of periodic arrays of self-similar two-stage fractal patch metallic elements patterned on thin dielectric substrates are shown to exhibit excellent mid- and far-infrared dual-band response in a single layer structure. This was achieved by optimizing the element size and interelement spacing of cross-dipole and square-patch fractal elements using full-wave periodic method of moments modeling techniques that calculate electromagnetic scattering from the MDPC surface and are able to account for material loss and loading effects. All structures fabricated based on these designs had two measured stopbands with greater than 10dB attenuation positioned at wavelengths determined by element geometry and size as well as interelement spacing. This simple single layer fractal MDPC geometry will facilitate further scaling into the near-IR wavelength regime.

  3. Heat capacity study of ?-FeSi2 single crystals

    NASA Astrophysics Data System (ADS)

    Alam, Sher; Nagai, T.; Matsui, Y.

    2006-05-01

    Heat capacity of needle-like (length = 5 mm, diameter = 1 mm) ?-FeS2 single crystal grown by chemical vapor transport has been measured. Two anomalies are found; a broad deviation centered around 160 K and a clear deviation at a temperature of (approximately) 255 K. We have attempted to relate these to the anomalies previously reported in the case of the resistivity data. The transient thermoelectric effect (TTE) results lead us to the inference that the system under-goes a transition from a single carrier system to at least a two carrier system at 220 K. Our heat capacity results seem to provide further independent evidence for this transition in this system.

  4. Single crystal magnetic study on ferromagnetic manganese (2) phthalocyanine

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Gregson, A. K.; Hatfield, W. E.; Weller, R. R.

    1982-12-01

    A magnetic study has been carried out in the temperature range 1.2-25 K and magnetic field range 0 to 50 kOe on single crystals of manganese (II) phthalocyanine. At higher temperatures the magnetic properties of manganese (II) phthalocyanine exhibit chain-like characteristics which may be understood in terms of ferromagnetic Heisenberg intrachain exchange of S = 3/2 ions with a weak antiferromagnetic interchain interaction. In the ordered state, Tc, = 8.3 K, MnPc is a canted ferromagnet with easy axes of magnetization being along X1 and X3 directions. A zero-field splitting of the single ion 4A2 state of the manganese (II) ion gives rise to canted ferromagnetism which does not show complete saturation at the high field range of these experiments (50 kOe). The spin structure of manganese (II) phthalocyanine at low temperature is discussed.

  5. Deformation of Single Crystal Molybdenum at High Pressure

    SciTech Connect

    Bonner, B P; Aracne, C; Farber, D L; Boro, C O; Lassila, D H

    2004-02-24

    Single crystal samples of micron dimensions oriented in the [001] direction were shortened 10 to 40% in uniaxial compression with superposed hydrostatic pressure to begin investigation of how the onset of yielding evolves with pressure. A testing machine based on opposed anvil geometry with precision pneumatic control of the applied force and capability to measure sub micron displacements was developed to produce shape changing deformation at pressure. The experiments extend observations of pressure dependent deformation to {approx}5Gpa at shortening rates of {approx}2*10{sup -4}. Samples have been recovered for post run characterization and analysis to determine if deformation mechanisms are altered by pressure. Experiments under hydrostatic pressure provide insight into the nature of materials under extreme conditions, and also provide a means for altering deformation behavior in a controlled fashion. The approach has a long history demonstrating that pressure enhances ductility in general, and produces enhanced hardening relative to that expected from normal cold work in the BCC metals Mo, Ta and Nb{sup 2}. The pressure hardening is in excess of that predicted from the measured increase in shear modulus at pressure, and therefore is likely due to a dislocation mechanism, such as suppression of kink pair formation or the interaction of forest dislocation cores, and not from lattice resistance. The effect has not been observed in FCC metals, suggesting a fundamental difference between deformation mechanisms at pressure for the two classes. The purpose of this letter is to investigate the origin of pressure hardening with new experiments that extend the pressure range beyond 3 GPa, the upper limit of conventional large sample (1cm{sup 3}) testing methods. Most previous high pressure deformation studies have been on poly crystals, relying on model dependent analysis to infer the maximum deviatoric stress that a deformed sample can support. In one experiment, a single crystal of the silicate olivine was compressed at 16 GPa with a sapphire uniaxial stress gage in the sample chamber. Splitting of the ruby fluorescence line increases with deviatoric stress, enabling direct measurement of the sample stress. Unfortunately, this method is not sensitive enough to determine first yielding of [001] single crystal Mo, and was not used in this study.

  6. Structural, optical, mechanical and dielectric studies of pure and doped L-Prolinium Trichloroacetate single crystals

    NASA Astrophysics Data System (ADS)

    Renuka, N.; Ramesh Babu, R.; Vijayan, N.; Vasanthakumar, Geetha; Krishna, Anuj; Ramamurthi, K.

    2015-02-01

    In the present work, pure and metal substituted L-Prolinium trichloroacetate (LPTCA) single crystals were grown by slow evaporation method. The grown crystals were subjected to single crystal X-ray diffraction (XRD), powder X-ray diffraction, FTIR, UV-Visible-NIR, hardness, photoluminescence and dielectric studies. The dopant concentration in the crystals was measured by inductively coupled plasma (ICP) analysis. Single crystal X-ray diffraction studies of the pure and metal substituted LPTCA revealed that the grown crystals belong to the trigonal system. Ni2+ and Co2+ doping slightly altered the lattice parameters of LPTCA without affecting the basic structure of the crystal. FTIR spectral analysis confirms the presence of various functional groups in the grown crystals. The mechanical behavior of pure and doped crystals was analyzed by Vickers's microhardness test. The optical transmittance, dielectric and photoluminescence properties of the pure and doped crystals were analyzed.

  7. Tribological properties of sintered polycrystalline and single crystal silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Srinivasan, M.

    1982-01-01

    Tribological studies and X-ray photoelectron spectroscopy analyses were conducted with sintered polycrystalline and single crystal silicon carbide surfaces in sliding contact with iron at various temperatures to 1500 C in a vacuum of 30 nPa. The results indicate that there is a significant temperature influence on both the friction properties and the surface chemistry of silicon carbide. The main contaminants on the as received sintered polycrystalline silicon carbide surfaces are adsorbed carbon, oxygen, graphite, and silicon dioxide. The surface revealed a low coefficient of friction. This is due to the presence of the graphite on the surface. At temperatures of 400 to 600 C graphite and copious amount of silicon dioxide were observed on the polycrystalline silicon carbide surface in addition to silicon carbide. At 800 C, the amount of the silicon dioxide decreased rapidly and the silicon carbide type silicon and carbon peaks were at a maximum intensity in the XPS spectra. The coefficients of friction were high in the temperature range 400 to 800 C. Small amounts of carbon and oxygen contaminants were observed on the as received single crystal silicon carbide surface below 250 C. Silicon carbide type silicon and carbon peaks were seen on the silicon carbide in addition to very small amount of graphite and silicon dioxide at temperatures of 450 to 800 C.

  8. Joint Development of a Fourth Generation Single Crystal Superalloy

    NASA Technical Reports Server (NTRS)

    Walston, S.; Cetel, A.; MacKay, R.; OHara, K.; Duhl, D.; Dreshfield, R.

    2004-01-01

    A new, fourth generation, single crystal superalloy has been jointly developed by GE Aircraft Engines, Pratt & Whitney, and NASA. The focus of the effort was to develop a turbine airfoil alloy with long-term durability for use in the High Speed Civil Transport. In order to achieve adequate long-time strength improvements at moderate temperatures and retain good microstructural stability, it was necessary to make significant composition changes from 2nd and 3rd generation single crystal superalloys. These included lower chromium levels, higher cobalt and rhenium levels and the inclusion of a new alloying element, ruthenium. It was found that higher Co levels were beneficial to reducing both TCP precipitation and SRZ formation. Ruthenium caused the refractory elements to partition more strongly to the ' phase, which resulted in better overall alloy stability. The final alloy, EPM 102, had significant creep rupture and fatigue improvements over the baseline production alloys and had acceptable microstructural stability. The alloy is currently being engine tested and evaluated for advanced engine applications.

  9. The fatigue damage behavior of a single crystal superalloy

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.

    1988-01-01

    The uniaxial fatigue behavior of a single crystal superalloy, PWA 1480, is described. Both monotonic tensile and constant amplitude fatigue tests were conducted at room temperature, in an effort to assess the applicability of polycrystalline-based fatigue life prediction methods to a single crystal superalloy. The observed constant amplitude behavior correlated best using a stress-based life criterion. Nearly all specimens failed at surface or slightly subsurface microporosity; this is thought to be responsible for the unusually large amount of scatter in the test results. An additional term is developed in the stress-life equation for the purpose of accounting for the effect of microporosity on fatigue life. The form chosen is a function of the effective area of the failure-producing microporosity projected on a plane perpendicular to the loading axis, as well as the applied stress. This additional term correlated the data to within factors of two on life. Although speculative, extrapolation of the microporosity relation to zero micropore area indicates that approximately an order of magnitude improvement in fatigue life should result.

  10. A crystallographic model for nickel base single crystal alloys

    NASA Technical Reports Server (NTRS)

    Dame, L. T.; Stouffer, D. C.

    1988-01-01

    The purpose of this research is to develop a tool for the mechanical analysis of nickel-base single-crystal superalloys, specifically Rene N4, used in gas turbine engine components. This objective is achieved by developing a rate-dependent anisotropic constitutive model and implementing it in a nonlinear three-dimensional finite-element code. The constitutive model is developed from metallurgical concepts utilizing a crystallographic approach. An extension of Schmid's law is combined with the Bodner-Partom equations to model the inelastic tension/compression asymmetry and orientation-dependence in octahedral slip. Schmid's law is used to approximate the inelastic response of the material in cube slip. The constitutive equations model the tensile behavior, creep response and strain-rate sensitivity of the single-crystal superalloys. Methods for deriving the material constants from standard tests are also discussed. The model is implemented in a finite-element code, and the computed and experimental results are compared for several orientations and loading conditions.

  11. Vortex relaxation near the second peak in single crystal YBCO

    NASA Astrophysics Data System (ADS)

    Farmer, J. W.; Kornecki, M.; Cowan, D. L.

    2001-11-01

    Single crystal YBCO samples frequently show a maximum in their critical current density jc( B) at large applied magnetic field Bp (the `second peak', or `fishtail' effect). The origin of this technologically important effect is unclear. The decrease in jc at fields above the peak is probably related to plastic flow in the vortex glass. We have used SQUID based creep data to examine the second peak in both an optimally doped single crystal of YBCO and in a nominally identical sample which has been radiation hardened by fast neutron bombardment. Although the details differ, both samples exhibit a strong second peak. The creep data show a clear change in relaxation mechanism as B crosses the peak. We can also note that the fall in jc( B) for B> Bp is in reasonable agreement with theoretical models for plastic flow depinning. Finally, we can use our data to extract values for the fundamental sample-dependent microscopic pinning parameter V4. In both samples, a clear change in the functional form of V4( B) takes place as B crosses Bp, with BV4 becoming constant with increasing field. Near the peak ( V4)?62 nm in each sample. This equality strongly suggests plastic flow.

  12. Modal reduction in single crystal sapphire optical fiber

    NASA Astrophysics Data System (ADS)

    Cheng, Yujie; Hill, Cary; Liu, Bo; Yu, Zhihao; Xuan, Haifeng; Homa, Daniel; Wang, Anbo; Pickrell, Gary

    2015-10-01

    A type of single crystal sapphire optical fiber (SCSF) design is proposed to reduce the number of guided modes via a highly dispersive cladding with a periodic array of high- and low-index regions in the azimuthal direction. The structure retains a "core" region of pure single crystal (SC) sapphire in the center of the fiber and a "cladding" region of alternating layers of air and SC sapphire in the azimuthal direction that is uniform in the radial direction. The modal characteristics and confinement losses of the fundamental mode were analyzed via the finite element method by varying the effective core diameter and the dimensions of the "windmill"-shaped cladding. The simulation results showed that the number of guided modes was significantly reduced in the windmill fiber design, as the radial dimension of the air and SC sapphire cladding regions increase with corresponding decrease in the azimuthal dimension. It is anticipated that the windmill SCSF will readily improve the performance of current fiber optic sensors in the harsh environment and potentially enable those that were limited by the extremely large modal volume of unclad SCSF.

  13. Single Crystal Si Passive Optical Components for mm-Astronomy

    NASA Astrophysics Data System (ADS)

    Brown, Ari; Chervenak, James; Chuss, David; Wollack, Edward; Henry, Ross; Moseley, S. Harvey

    2006-03-01

    Construction of ultrasensitive, cryogenic-focal-planes for mm-radiation detection requires simultaneous maximization of detector quantum efficiency and minimization of stray light effects, e.g., optical ``ghosting''. To achieve this task in the focal plane detector arrays of the Atacama Cosmology Telescope, integration of two technologies are envisioned; (1) an antireflective (AR) coating for reducing ghosting from the reflected component and increasing absorption at the focal plane, and (2) a backside absorber for suppressing reflections of the transmitted component. We propose a novel approach, involving single crystal Si components, to fabricate AR coatings and backside absorbers. AR coatings are made from Si dielectric honeycombs, in which their dielectric constant may be tuned via honeycomb dimension and wall thickness. Backside absorbers consist of AR Si honeycomb coated-resistors, and the resistors consist of P-implanted Si wafers. This approach enables us to circumvent the mechanical complexities arising from thermal expansion effects, because the detector array, back-short, and AR coating are fabricated out of the same material. We also extend the functionality of single crystal Si in the field of mm-radiation detection by fabricating curved, low-loss, broadband waveguides. These waveguides may enable compact structures for applications requiring variable pathlength, e.g., interferometric spectroscopy.

  14. A study of latent hardening behavior in aluminum single crystals

    SciTech Connect

    Wang Mingzhang; Lin Shi; Li Chenghua; Xiao Jimei; Wang Zhongguang

    1996-11-15

    In order to obtain a better understanding or a complete description of plastic properties of polycrystals, especially in polycrystal modelling viewpoint, investigations on latent hardening behavior of single crystals have been performed in a great number. Recently, however, Wu et al. have pointed out that the definition of the yield stress of latent system using the conventional back extrapolation is ambiguous in terms of determining the latent hardening moduli because the initial rapid work-hardening of the transient zone is neglected. They proposed a more precise measure of the yield stress of latent system based on the decrease of the tangent modulus from the linear elastic modulus, and showed that the latent hardening, which would not plus the initial work-hardening of the transient zone, is actually lower than that obtained from the backward extrapolation. Thus, in their opinion, it is considered that the hardening behavior of latent system (such as the directionality, the effects of relative orientation and prestrain) need be newly or further studied in detail. Single crystals of aluminum have been grown with high purity to investigate this behavior.

  15. Single crystal diamond detectors grown by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Tuv, C.; Angelone, M.; Bellini, V.; Balducci, A.; Donato, M. G.; Faggio, G.; Marinelli, M.; Messina, G.; Milani, E.; Morgada, M. E.; Pillon, M.; Potenza, R.; Pucella, G.; Russo, G.; Santangelo, S.; Scoccia, M.; Sutera, C.; Tucciarone, A.; Verona-Rinati, G.

    2007-01-01

    The detection properties of heteropitaxial (polycrystalline, pCVD) and homoepitaxial (single crystal, scCVD) diamond films grown by microwave chemical vapor deposition (CVD) in the Laboratories of Roma "Tor Vergata" University are reported. The pCVD diamond detectors were tested with ?-particles from different sources and 12C ions produced by 15 MV Tandem accelerator at Southern National Laboratories (LNS) in Catania (Italy). pCVDs were also used to monitor 14 MeV neutrons produced by the D-T plasma at Joint European Torus (JET), Culham, U.K. The limit of pCVDs is the poor energy resolution. To overcome this problem, we developed scCVD diamonds using the same reactor parameters that optimized pCVD diamonds. scCVD were grown on a low cost (1 0 0) HPHT single crystal substrate. A detector 110 ?m thick was tested under ?-particles and under 14 MeV neutron irradiation. The charge collection efficiency spectrum measured under irradiation with a triple ?-particle source shows three clearly resolved peaks, with an energy resolution of about 1.1%. The measured spectra under neutron irradiation show a well separated C(n,?0)9Be12 reaction peak with an energy spread of 0.5 MeV for 14.8 MeV neutrons and 0.3 MeV for 14.1 MeV neutrons, which are fully compatible with the energy spread of the incident neutron beams.

  16. Growth and properties of Lithium Salicylate single crystals

    SciTech Connect

    Zaitseva, N; Newby, J; Hull, G; Saw, C; Carman, L; Cherepy, N; Payne, S

    2009-02-13

    An attractive feature of {sup 6}Li containing fluorescence materials that determines their potential application in radiation detection is the capture reaction with slow ({approx}< 100 keV) neutrons: {sup 6}Li + n = {sup 4}He + {sup 3}H + 4.8MeV. The use of {sup 6}Li-salicylate (LiSal, LiC{sub 6}H{sub 5}O{sub 3}) for thermal neutron detection was previously studied in liquid and polycrystalline scintillators. The studies showed that both liquid and polycrystalline LiSal scintillators could be utilized in pulse shape discrimination (PSD) techniques that enable separation of neutrons from the background gamma radiation. However, it was found that the efficiency of neutron detection using LiSal in liquid solutions was severely limited by its low solubility in commonly used organic solvents like, for example, toluene or xylene. Better results were obtained with neutron detectors containing the compound in its crystalline form, such as pressed pellets, or microscopic-scale (7-14 micron) crystals dispersed in various media. The expectation drown from these studies was that further improvement of pulse height, PSD, and efficiency characteristics could be reached with larger and more transparent LiSal crystals, growth of which has not been reported so far. In this paper, we present the first results on growth and characterization of relatively large, a cm-scale size, single crystals of LiSal with good optical quality. The crystals were grown both from aqueous and anhydrous (methanol) media, mainly for neutron detection studies. However, the results on growth and structural characterization may be interesting for other fields where LiSal, together with other alkali metal salicylates, is used for biological, medical, and chemical (as catalyst) applications.

  17. Process for Making Single-Domain Magnetite Crystals

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, Douglas W.; Morris, Richard V.; Lofgren, Gary E.; McKay, Gordan A.; Schwandt, Craig S.; Lauer, Howard V., Jr.; Socki, Richard A.

    2004-01-01

    A process for making chemically pure, single-domain magnetite crystals substantially free of structural defects has been invented as a byproduct of research into the origin of globules in a meteorite found in Antarctica and believed to have originated on Mars. The globules in the meteorite comprise layers of mixed (Mg, Fe, and Ca) carbonates, magnetite, and iron sulfides. Since the discovery of the meteorite was announced in August 1996, scientists have debated whether the globules are of biological origin or were formed from inorganic materials by processes that could have taken place on Mars. While the research that led to the present invention has not provided a definitive conclusion concerning the origin of the globules, it has shown that globules of a different but related chemically layered structure can be grown from inorganic ingredients in a multistep precipitation process. As described in more detail below, the present invention comprises the multistep precipitation process plus a subsequent heat treatment. The multistep precipitation process was demonstrated in a laboratory experiment on the growth of submicron ankerite crystals, overgrown by submicron siderite and pyrite crystals, overgrown by submicron magnesite crystals, overgrown by submicron siderite and pyrite. In each step, chloride salts of appropriate cations (Ca, Fe, and Mg) were dissolved in deoxygenated, CO2- saturated water. NaHCO3 was added as a pH buffer while CO2 was passed continuously through the solution. A 15-mL aliquot of the resulting solution was transferred into each of several 20 mL, poly(tetrafluoroethylene)-lined hydrothermal pressure vessels. The vessels were closed in a CO2 atmosphere, then transferred into an oven at a temperature of 150 C. After a predetermined time, the hydrothermal vessels were removed from the oven and quenched in a freezer. Supernatant solutions were decanted, and carbonate precipitates were washed free of soluble salts by repeated decantations with deionized water.

  18. Deformation of olivine single crystals under lithospheric conditions

    NASA Astrophysics Data System (ADS)

    Demouchy, S.; Tommasi, A.; Cordier, P.

    2012-12-01

    The rheology of mantle rocks at lithospheric temperatures (<1000°C) remains poorly constrained, in contrast to the extensive experimental data on creep of olivine single crystals and polycrystalline aggregates at high temperature (T > 1200°C). Consequently, we have performed tri-axial compression experiments on oriented single crystals and polycrystalline aggregates of San Carlos olivine at temperatures ranging from 800° to 1090°C. The experiments were carried out at a confining pressure of 300 MPa in a high-resolution gas-medium mechanical testing apparatus at constant strain rates ranging from 7 × 10-6 s-1 to 1 × 10-4 s-1 . Compression was applied along three different crystallographic directions: [101]c, [110]c and [011]c, to activate the several slip systems. Yield differential stresses range from 88 to 1076 MPa. To constrain hardening, stick-and-slip, or strain localization behaviors, all samples were deformed at constant displacement rate for finite strains between 4 to 23 %. Hardening was observed in all experiments and the maximum differential stress often overcame the confining pressure. EBSD mapping highlights macroscale bending of the crystalline network in three crystals. TEM observations on several samples show dislocations with [100] and [001] Burgers vectors in all samples, but dislocation arrangements vary. The results from the present study permit to refining the power-law expressing the strain rate dependence on stress and temperature for olivine, allowing its application to the lithospheric mantle. Our experiments confirm that previous published high-temperature power flow laws overestimate the strength of lithospheric mantle and that the transition to low-temperature creep occurs at higher temperatures than it has previously been established.

  19. Polarised IR and Raman spectra of monoglycine nitrate single crystal

    NASA Astrophysics Data System (ADS)

    Baran, Jan A.; Drozd, Marek A.; Ratajczak, Henryk

    2010-07-01

    Polarised Raman spectra of the monoglycine (monoglycinium) nitrate (hereafter MGN) single crystal are reported. Additionally, the polarised specular reflection spectra for the (1 0 0) single crystal sample (E|| Y( b) and E|| Z( c)) were measured in the region 3600-80 cm -1. The spectra of the imaginary parts of the refractive indices are computed by the Kramers-Kronig transformation (Opus). The polarised spectra are discussed with respect to the diffraction crystal structure and recent literature data on normal co-ordinate analysis for the glycinium cation ( +NH 3CH 2COOH). The stretching vibrations of the NH3+ groups are explained by considering their hydrogen bonds. The intensity of the Raman bands arising from the stretching vibrations of the CH 2 group are explained assuming that each C sbnd H bond stretches independently. This finding is unusual and suggests that the C(2) sbnd H(5) bond is involved in the hydrogen bonding (improper hydrogen bond). The deformation vibrations of the CH 2 group are explained assuming scissoring, twisting, wagging and rocking type of vibrations. The band at 871 cm -1 exhibits the CC stretching character of the CCN skeleton, whereas the band at ca. 1050 cm -1 shows the ?aCCN character. The stretching ?OH vibrations of the C sbnd O sbnd H⋯O hydrogen bond gives rise to a band at ca. 3087 cm -1, clearly seen in the Y( xx) Z Raman spectrum. Its ?OH mode appears at 896 cm -1. The ?OH vibration is coupled to other vibrations, although the IR band at ca. 1375 (E|| Y) likely arises from this mode. It was impossible to define a character of the glycinium cations deformation vibrations giving rise to the bands observed in between 680 and 490 cm -1, on the basis of their polarisation properties. The polarisation properties of the internal modes of the nitrate ions are discussed.

  20. Evolution of the CaF2:Tm (TLD-300) glow curve as an indicator of beam quality for low-energy photon beams

    NASA Astrophysics Data System (ADS)

    Muoz, I. D.; Avila, O.; Gamboa-deBuen, I.; Brandan, M. E.

    2015-03-01

    We study the high- to low- temperature signal ratio (HLTR) of the CaF2:Tm glow curve as a function of beam quality for low-energy photon beams with effective energy between 15.2 and 33.6?keV, generated with W, Mo and Rh anodes. CaF2:Tm dosemeters (TLD-300) were exposed to x-rays and 60Co gamma-rays. Glow curves were deconvoluted into 7 peaks, using computerized glow curve deconvolution and HLTR was evaluated. Air kerma and dose in water were between 2.1-15.0?mGy and 49.8-373.8?mGy, respectively. All peaks in the glow curve showed a linear response with respect to air kerma and dose in water. HLTR values decreased monotonically between 1.029? ?0.010 (at 15.2?keV) and 0.821? ?0.011 (33.6?keV), and no effects due to the use of different anode/filter combinations were observed. The results indicate a relatively high value of HLTR (about 1 for 17?keV effective energy, or 3?keV??m-1 track-average LET) and a measurable dependence on the photon beam quality. Comparison of these photon data with HLTR for ions shows good quantitative agreement. The reported evolution of the CaF2:Tm glow curve could facilitate the estimation of the effective energy of unknown photon fields by this technique.

  1. Growth and characterization of LCOB and NdLCOB single crystals for laser applications

    NASA Astrophysics Data System (ADS)

    Arun Kumar, R.; Dhanasekaran, R.

    2011-03-01

    This paper reports the successful growth and characterization of LCOB and NdLCOB single crystals for nonlinear optical and laser applications. The crystals were obtained from their respective melts. The iso-structural nature of the crystals is identified from their X-ray diffraction results. The crystalline quality of the LCOB and NdLCOB single crystals was assessed using HRXRD analysis. The lower cutoff wavelength for both the crystals is at 210 nm. However, there are sharp absorption peaks in the spectrum of NdLCOB crystal, which are the characteristic absorptions of the neodymium (Nd3+) ion present in the crystal. The functional groups of the crystals were identified and assigned using the FTIR analysis. The dielectric loss measurements on the crystals reveal that the crystal contains minimum defects. The NdLCOB crystal emits at 1064 nm as evident from the PL measurements. The results of the specific heat and laser damage threshold studies are also discussed.

  2. Structures from powders and poor-quality single crystals at high pressure.

    PubMed

    McMahon, Malcolm I

    2005-09-01

    The use of single-crystal techniques and quasi-single-crystal samples in solving and refining complex crystal structures at high pressure is reviewed. In particular, recent studies of the incommensurate and modulated structures found in a number of elemental metals at high pressure are focused on. PMID:16120976

  3. HYDROGEN CHEMISORPTION ON Pt SINGLE CRYSTAL SURFACES IN ACIDIC SOLUTIONS

    SciTech Connect

    Ross, Jr., Philip N.

    1980-04-01

    Hydrogen chemisorption from dilute acidic solution onto Pt single crystal surfaces was examined using an electrochemical cell directly coupled to LEED/Auger analytical system. No pre-anodization was used prior to observing hydrogen adsorption by cyclic voltammetry so that clean surfaces having the ordered structures indicated by LEED were studied. The problem of contributions from non-ordered parts of the electrode like support wires and edges was solved by using a gold evaporation masking technique. The specific contribution of atomic imperfections to the voltammetry curve was deduced from the ordered and countable imperfections occurring on high Miller index single crystal surfaces that have a stepped structure. The H-Pt bond energy Has found to be structure sensitive, and sensitive both to local site geometry and long range order in the surface. The bond strength was found to vary systematically: n(111)x(100) > (100) > n(111)x(111) > (110) > (111). Distinct states for hydrogen at steps versus hydrogen on terraces could be distinguished. The (110) surface is shown to be a (111) vicinal, probably the [3(111) x 2(111)] microfacetted surface. The zero coverage heat of adsorption on the well-ordered (111) surface (48 kJ/mol) in solutions is the same as the value reported by Ertl and co-workers for adsorption on a (111) surface in vacuum. Adsorption Isotherms for hydrogen on the (111) and (100) surfaces is adequately fit by the classical model for immobile adsorption at single sites with nearest neighbor repulsive interaction.

  4. Synthesis, crystal growth, structural, thermal, optical and mechanical properties of solution grown 4-methylpyridinium 4-hydroxybenzoate single crystal

    NASA Astrophysics Data System (ADS)

    Sudhahar, S.; Krishna Kumar, M.; Sornamurthy, B. M.; Mohan Kumar, R.

    2014-01-01

    Organic nonlinear optical material, 4-methylpyridinium 4-hydroxybenzoate (4MPHB) was synthesized and single crystal was grown by slow evaporation solution growth method. Single crystal and powder X-ray diffraction analyses confirm the structure and crystalline perfection of 4MPHB crystal. Infrared, Raman and NMR spectroscopy techniques were used to elucidate the functional groups present in the compound. TG-DTA analysis was carried out in nitrogen atmosphere to study the decomposition stages, endothermic and exothermic reactions. UV-visible and Photoluminescence spectra were recorded for the grown crystal to estimate the transmittance and band gap energy respectively. Linear refractive index, birefringence, and SHG efficiency of the grown crystal were studied. Laser induced surface damage threshold and mechanical properties of grown crystal were studied to assess the suitability of the grown crystals for device applications.

  5. Synthesis, crystal growth, structural, thermal, optical and mechanical properties of solution grown 4-methylpyridinium 4-hydroxybenzoate single crystal.

    PubMed

    Sudhahar, S; Krishna Kumar, M; Sornamurthy, B M; Mohan Kumar, R

    2014-01-24

    Organic nonlinear optical material, 4-methylpyridinium 4-hydroxybenzoate (4MPHB) was synthesized and single crystal was grown by slow evaporation solution growth method. Single crystal and powder X-ray diffraction analyses confirm the structure and crystalline perfection of 4MPHB crystal. Infrared, Raman and NMR spectroscopy techniques were used to elucidate the functional groups present in the compound. TG-DTA analysis was carried out in nitrogen atmosphere to study the decomposition stages, endothermic and exothermic reactions. UV-visible and Photoluminescence spectra were recorded for the grown crystal to estimate the transmittance and band gap energy respectively. Linear refractive index, birefringence, and SHG efficiency of the grown crystal were studied. Laser induced surface damage threshold and mechanical properties of grown crystal were studied to assess the suitability of the grown crystals for device applications. PMID:24184578

  6. Single Crystal DMs for Space-Based Observatories

    NASA Astrophysics Data System (ADS)

    Bierden, Paul

    We propose to demonstrate the feasibility of a new manufacturing process for large aperture, high-actuator count microelectromechanical deformable mirrors (MEMS-DMs). These DMs are designed to fill a critical technology gap in NASA s plan for high- contrast space-based exoplanet observatories. We will manufacture a prototype DM with a continuous mirror facesheet, having an active aperture of 50mm diameter, supported by 2040 electrostatic actuators (50 across the diameter of the active aperture), spaced at a pitch of 1mm. The DM will be manufactured using silicon microfabrication tools. The strategic motivation for the proposed project is to advance MEMS DMs as an enabling technology in NASA s rapidly emerging program for extrasolar planet exploration. That goal is supported by an Astro2010 white paper on Technologies for Direct Optical Imaging of Exoplanets, which concluded that DMs are a critical component for all proposed internal coronagraph instrument concepts. That white paper pointed to great strides made by DM developers in the past decade, and acknowledged the components made by Boston Micromachines Corporation to be the most notable MEMS-based technology option. The principal manufacturing innovation in this project will be assembly of the DM through fusion bonding of three separate single crystal silicon wafers comprising the device s substrate, actuator array, and facesheet. The most significant challenge of this project will be to develop processes that allow reliable fusion bonds between multiple compliant silicon layers while yielding an optically flat surface and a robust electromechanical system. The compliance of the DM, which is required for its electromechanical function, will make it challenging to achieve the intimate, planar contact that is generally needed for success in fusion bonding. The manufacturing approach will use photolithography and reactive ion etching to pattern structural layers. Three wafer-scale devices will be patterned and etched independently: one for the substrate and fixed electrode layer, one for the actuator layer, and one for the mirror layer. Subsequently, each of these wafers will be bonded through a thermal fusion process to the others. In an innovative new processing technique, we will employ sacrificial oxide pillars to add temporary support to the otherwise compliant device structures. These pillars will be dissolved after assembly. The result will be a stress-free, single crystal silicon device with broadly expanded design space for geometric parameters such as actuator pitch, mirror diameter, array size, and actuator gap. Consequently, this approach will allow us to make devices with characteristics that are needed for some important NASA applications in space-based coronography, especially where larger array sizes, greater actuator pitch, and better optical surface quality are needed. The significance of this work is that it will provide a technology platform that meets or exceeds the superb optical performance that has been demonstrated in conventional pizezoelectrically actuated DMs, while retaining the advantages in cost, repeatability, and thermal insensitivity that have been demonstrated in the newer generation of MEMS electrostatically actuated DMs. The shift to bonded single-crystal structures will eliminate the single biggest drawback in previously reported NASA-fielded MEMS DM technology: device susceptibility to stress-induced scalloping and print through artifacts resulting from polycrystalline thin film surface micromachining. With single crystal structures bonded at atomic scales, uncorrected surface topography can be controlled to subnanometer levels, enabling the advancement of NASA s next-generation space-based coronagraphs.

  7. A preliminary review of organic materials single crystal growth by the Czochralski technique

    NASA Technical Reports Server (NTRS)

    Penn, B. G.; Shields, A. W.; Frazier, D. O.

    1988-01-01

    The growth of single crystals of organic compounds by the Czochralski method is reviewed. From the literature it is found that single crystals of benzil, a nonlinear optical material with a d sub 11 value of 11.2 + or - 1.5 x d sub 11 value of alpha quartz, has fewer dislocations than generally contained in Bridgman crystals. More perfect crystals were grown by repeated Czochralski growth. This consists of etching away the defect-containing portion of a Czochralski grown crystal and using it as a seed for further growth. Other compounds used to grow single crystals are benzophenone, 12-tricosanone (laurone), and salol. The physical properties, growth apparatus, and processing conditions presented in the literature are discussed. Moreover, some of the possible advantages of growing single crystals of organic compounds in microgravity to obtain more perfect crystals than on Earth are reviewed.

  8. Imatinib (Gleevec@) conformations observed in single crystals, protein-Imatinib co-crystals and molecular dynamics: Implications for drug selectivity

    NASA Astrophysics Data System (ADS)

    Golzarroshan, B.; Siddegowda, M. S.; Li, Hong qi; Yathirajan, H. S.; Narayana, B.; Rathore, R. S.

    2012-06-01

    Structure and dynamics of the Leukemia drug, Imatinib, were examined using X-ray crystallography and molecular dynamics studies. Comparison of conformations observed in single crystals with several reported co-crystals of protein-drug complexes suggests existence of two conserved conformations of Imatinib, extended and compact (or folded), corresponding to two binding modes of interaction with the receptor. Furthermore, these conformations are conserved throughout a dynamics simulation. The present study attempts to draw a parallel on conformations and binding patterns of interactions, obtained from small-molecule single-crystal and macromolecule co-crystal studies, and provides structural insights for understanding the high selectivity of this drug molecule.

  9. Magnetic anisotropy in clinopyroxene and orthopyroxene single crystals

    NASA Astrophysics Data System (ADS)

    Biedermann, Andrea R.; Pettke, Thomas; Bender Koch, Christian; Hirt, Ann M.

    2015-03-01

    Pyroxenes constitute an important component in mafic igneous and metamorphic rocks. They often possess a prismatic habit, and their long axis, the crystallographic c axis, helps define a lineation in a textured rock. Anisotropy of magnetic susceptibility (AMS) serves as a fabric indicator in igneous and metamorphic rocks. If a rock's AMS is carried by pyroxenes, it can be related to their crystallographic preferred orientation and degree of alignment. This requires knowing the intrinsic AMS of pyroxene single crystals. This study provides a comprehensive low-field and high-field AMS investigation of chemically diverse orthopyroxene and clinopyroxene crystals in relation to crystal structure, chemical composition, oxidation state of Fe, and the possible presence of ferromagnetic inclusions. The paramagnetic anisotropy, extracted from high-field data, shows clear relationships to crystallographic directions and Fe concentration both in clinopyroxene and orthopyroxene. In the diopside-augite series, the intermediate susceptibility is parallel to b, and the maximum is at 45 to the c axis. In aegirine, the intermediate axis remains parallel to b, while the maximum susceptibility is parallel to c. The AMS of spodumene depends on Fe concentration. In enstatite, the maximum susceptibility aligns with c and the minimum with b, and in the case of hypersthene, the maximum susceptibility is normal to the exsolution lamellae. Magnetite inclusions within augite possess a ferromagnetic anisotropy with consistent orientation of the principal susceptibilities, which dominates the low-field anisotropy. These results provide better understanding of magnetic anisotropy in pyroxenes and form a solid basis for interpretation of magnetic fabrics in pyroxene-bearing rocks.

  10. Twin nucleation and migration in FeCr single crystals

    SciTech Connect

    Patriarca, L.; Abuzaid, Wael; Sehitoglu, Huseyin; Maier, Hans J.; Chumlyakov, Y.

    2013-01-15

    Tension and compression experiments were conducted on body-centered cubic Fe -47.8 at pct. Cr single crystals. The critical resolved shear stress (CRSS) magnitudes for slip nucleation, twin nucleation and twin migration were established. We show that the nucleation of slip occurs at a CRSS of about 88 MPa, while twinning nucleates at a CRSS of about 191 MPa with an associated load drop. Following twin nucleation, twin migration proceeds at a CRSS that is lower than the initiation stress ( Almost-Equal-To 114-153 MPa). The experimental results of the nucleation stresses indicate that the Schmid law holds to a first approximation for the slip and twin nucleation cases, but to a lesser extent for twin migration particularly when considerable slip strains preceded twinning. The CRSSs were determined experimentally using digital image correlation (DIC) in conjunction with electron back scattering diffraction (EBSD). The DIC measurements enabled pinpointing the precise stress on the stress-strain curves where twins or slip were activated. The crystal orientations were obtained using EBSD and used to determine the activated twin and slip systems through trace analysis. - Highlights: Black-Right-Pointing-Pointer Digital image correlation allows to capture slip/twin initiation for bcc FeCr. Black-Right-Pointing-Pointer Crystal orientations from EBSD allow slip/twin system indexing. Black-Right-Pointing-Pointer Nucleation of slip always precedes twinning. Black-Right-Pointing-Pointer Twin growth is sustained with a lower stress than required for nucleation. Black-Right-Pointing-Pointer Twin-slip interactions provide high hardening at the onset of plasticity.

  11. Luminescence Properties of ScPO{sub 4} Single Crystals

    SciTech Connect

    Boatner, L.A.; Trukhin, A.N.

    1999-08-16

    Flux-grown ScPO{sub 4} single crystals exhibit a number of luminescence bands in their x-ray-excited luminescence spectra - including sharp lines arising from rare-earth elements plus a number of broad bands at 5.6 cV, 4.4 eV, and 3 eV. The band at 5.6 eV was attributed to a self-trapped exciton (STE) [l], and it could be excited at 7 eV and higher energies. This luminescence is strongly polarized (P = 70 %) along the optical axes of the crystal and exhibits a kinetic decay time constant that varies from several ns at room temperature to {approximately}10 {micro}s at 60 K and up to {approximately}1 ms at 10 K. It is assumed that the STE is localized on the SC ions. The band at 3 eV can be excited in the range of the ScPO{sub 4} crystal transparency (decay time = 3 to 4 {micro}s.) This band is attributed to a lead impurity that creates different luminescence centers. At high temperatures, the band at 4.4 eV is dominant in the x-ray-excited TSL and afterglow spectra. Its intensity increases with irradiation time beginning at zero at the initial irradiation time. The 4.4 eV band does not appear in a fast process under a pulsed electron beam, showing that accumulation is necessary for its observation. A sample of ScPO{sub 4} doped with vanadium exhibited a prevalent band at 4.4 eV at T = 480 K.

  12. Growth, Structural, Spectral and Optical Studies of Glycine Sodium Nitrate Doped Potassium Dihydrogen Phosphate Single Crystals

    NASA Astrophysics Data System (ADS)

    Loretta, Fernando; Rani, T. Josephine; Perumal, S.; Ramalingom, S.

    2011-10-01

    Single crystals of Pure and Glycine sodium nitrate (GSN) doped Potassium dihydrogen Phosphate (KDP) were grown from aqueous solution by slow evaporation technique. The cell parameters of the grown pure and GSN doped KDP crystals were estimated by Single X-ray diffraction studies. The functional groups present in the grown crystals were ascertained using FTIR spectral analysis. The UV-Vis-NIR transmission spectra reveals that the semiorganic dopant has increased the optical transparency of the KDP crystals.

  13. Birefringence simulation of annealed ingot of calcium fluoride single crystal

    NASA Astrophysics Data System (ADS)

    Ogino, H.; Miyazaki, N.; Mabuchi, T.; Nawata, T.

    2008-01-01

    We developed a method for simulating birefringence of an annealed ingot of calcium fluoride single crystal caused by the residual stress after annealing process. The method comprises the heat conduction analysis that provides the temperature distribution during the ingot annealing, the elastic thermal stress analysis using the assumption of the stress-free temperature that provides the residual stress after annealing, and the birefringence analysis of an annealed ingot induced by the residual stress. The finite element method was applied to the heat conduction analysis and the elastic thermal stress analysis. In these analyses, the temperature dependence of material properties and the crystal anisotropy were taken into account. In the birefringence analysis, the photoelastic effect gives the change of refractive indices, from which the optical path difference in the annealed ingot is calculated by the Jones calculus. The relation between the Jones calculus and the approximate method using the stress components averaged along the optical path is discussed theoretically. It is found that the result of the approximate method agrees very well with that of the Jones calculus in birefringence analysis. The distribution pattern of the optical path difference in the annealed ingot obtained from the present birefringence calculation methods agrees reasonably well with that of the experiment. The calculated values also agree reasonably well with those of the experiment, when a stress-free temperature is adequately selected.

  14. Compensation mechanism of bromine dopants in cadmium telluride single crystals

    NASA Astrophysics Data System (ADS)

    Gorichok, I. V.; Fochuk, P. M.; Verzhak, Ye. V.; Parashchuk, T. O.; Freik, D. M.; Panchuk, O. E.; Bolotnikov, A. E.; James, R. B.

    2015-04-01

    Cadmium telluride single crystals, doped by Bromine, were grown by Bridgman method and annealed under cadmium overpressure (PCd=102-105 Pa) at 800-1100 K. Their electrical properties at high- and low-temperature have been investigated. The influence of impurities on the crystal electrical properties has been analyzed by using the defective subsystem model, which includes the possibility of formation of point intrinsic (VCd2-, Cdi2+, VTe2+, Tei2-) and replacement defects (BrTe0, BrTe+), and also point defects complexes (BrTe+ VCd2-), (2Br+Te VCd-)0. It was established that the concentration dependence between free charge carriers and annealing process parameters (n(T), n(PCd)) are determined by two dominant defects -BrTe+ and (2Br+Te V2-Cd)0. Their content varies with the annealing temperature and the vapor pressure of the component; the concentration of other defects is much smaller and almost does not influence the electron density.

  15. Solidification microstructures in single-crystal stainless steel melt pools

    SciTech Connect

    Sipf, J.B.; Boatner, L.A.; David, S.A.

    1994-03-01

    Development of microstructure of stationary melt pools of oriented stainless steel single crystals (70%Fe-15%Ni-15%Cr was analyzed. Stationary melt pools were formed by electron-beam and gas-tungsten-arc heating on (001), (011), and (111) oriented planes of the austenitic, fcc-alloy crystals. Characterization and analysis of resulting microstructure was carried out for each crystallographic plane and welding method. Results showed that crystallography which favors ``easy growth`` along the <100> family of directions is a controlling factor in the microstructural formation along with the melt-pool shape. The microstructure was found to depend on the melting method, since each method forms a unique melt-pool shape. These results are used in making a three-dimensional reconstruction of the microstructure for each plane and melting method employed. This investigation also suggests avenues for future research into the microstructural properties of electron-beam welds as well as providing an experimental basis for mathematical models for the prediction of solidification microstructures.

  16. Gatability of vanadium dioxide single crystal nanobeams and hydrogen doping

    NASA Astrophysics Data System (ADS)

    Wei, Jiang; Ji, Heng; Natelson, Douglas

    2011-03-01

    Vanadium dioxide is famous for its dramatic metal insulator transition, exhibiting up to 4 or 5 orders magnitude change in conductivity. It is also known to be nongatable, although in the insulating phase it behaves like a semiconductor with 0.5-0.7 eV energy gap. With no sign of gating effects using conventional dielectric materials, such as Si O2 , Al 2 O3 and Hf O2 , ionic liquids were used as the gating medium. Ionic liquids form electric double layers (EDL) and could possibly exert an electric field as high as 109 V/m on the interface of ionic liquid and single-crystal vanadium dioxide nanobeam. No gating effect was observed in the vanadium dioxide device. On the other hand, we found that under positive gate voltage the hydrogen ions originating from trace amounts of water diffuse into the vanadium dioxide crystal, acting as dopants. By controlling the gate voltage and temperature, the insulating phase's conductivity can be reversibly increased up to 2-3 orders magnitude by this process. Supported by Robert A.Welch Foundation and Department of Energy award DE-FG02-06ER46337.

  17. Scintillation properties of CsI:In single crystals

    NASA Astrophysics Data System (ADS)

    Gridin, S.; Belsky, A.; Moszynski, M.; Syntfeld-Kazuch, A.; Shiran, N.; Gektin, A.

    2014-10-01

    Scintillation properties of CsI:In single crystals have been investigated. Scintillation yield of CsI:In measured with the 24 ?s integration time is around 27,000 ph/MeV, reaching the saturation at 0.005 mol% of the activator. However, luminescence yield of CsI:In is close to CsI:Tl scintillation crystals, which is around 60,000 ph/MeV. This difference is explained by the presence of an ultra-long afterglow in CsI:In scintillation pulse. Thermoluminescence studies revealed a stable trap around 240 K that is supposed to be related to millisecond decay components. The best measured energy resolution of (8.50.3)% was achieved at 24 ?s peaking time for a CsI sample doped with 0.01 mol% of In. Temperature stability of CsI:In radioluminescence intensity was found to be remarkably high. Its X-ray luminescence yield remains stable up to 600 K, whereafter thermal quenching occurs. The latter property gives CsI:In a potential to be used in well logging applications.

  18. From protein structure to function via single crystal optical spectroscopy

    PubMed Central

    Ronda, Luca; Bruno, Stefano; Bettati, Stefano; Storici, Paola; Mozzarelli, Andrea

    2015-01-01

    The more than 100,000 protein structures determined by X-ray crystallography provide a wealth of information for the characterization of biological processes at the molecular level. However, several crystallographic artifacts, including conformational selection, crystallization conditions and radiation damages, may affect the quality and the interpretation of the electron density maps, thus limiting the relevance of structure determinations. Moreover, for most of these structures, no functional data have been obtained in the crystalline state, thus posing serious questions on their validity in infereing protein mechanisms. In order to solve these issues, spectroscopic methods have been applied for the determination of equilibrium and kinetic properties of proteins in the crystalline state. These methods are UV-vis spectrophotometry, spectrofluorimetry, IR, EPR, Raman, and resonance Raman spectroscopy. Some of these approaches have been implemented with on-line instruments at X-ray synchrotron beamlines. Here, we provide an overview of investigations predominantly carried out in our laboratory by single crystal polarized absorption UV-vis microspectrophotometry, the most applied technique for the functional characterization of proteins in the crystalline state. Studies on hemoglobins, pyridoxal 5?-phosphate dependent enzymes and green fluorescent protein in the crystalline state have addressed key biological issues, leading to either straightforward structure-function correlations or limitations to structure-based mechanisms. PMID:25988179

  19. Compensation mechanism of bromine dopants in cadmium telluride single crystals

    DOE PAGESBeta

    Bolotnikov, A. E.; Fochuk, P. M.; Verzhak, Ye. V.; Parashchuk, T. O.; Freik, D. M.; Panchuk, O. E.; James, R. B.; Gorichok, I. V.

    2015-01-02

    We grew single crystals of cadmium telluride, doped with bromine by the Bridgman method, annealed them under a cadmium overpressure (PCd = 10² - 10⁵ Pa) at 800-1100 K, and investigated their electrical properties at high- and low-temperature. The influence of impurities on the crystals' electrical properties were analyzed using the defect subsystem model; the model includes the possibility of the formation of point intrinsic defects (V²⁻Cd, Cd²⁺i, V²⁺Te, Te²⁻i), and substitutional ones (Br⁰Te, Br⁺Te), as well as complexes of point defects, i.e., (Br⁺Te V²⁻Cd)⁻ and (2Br⁺Te V²⁻Cd)⁰. We established the concentration dependence between free charge carriers and themore » parameters of the annealing process. Here, n(T) and n(PCd) are determined by two dominant defects – Br⁺Te and (2Br⁺Te V²⁻Cd)⁰. Their content varies with the annealing temperature and the vapor pressure of the component; the concentration of other defects is much smaller and almost does not affect the electron density.« less

  20. Compensation mechanism of bromine dopants in cadmium telluride single crystals

    SciTech Connect

    Bolotnikov, A. E.; Fochuk, P. M.; Verzhak, Ye. V.; Parashchuk, T. O.; Freik, D. M.; Panchuk, O. E.; James, R. B.; Gorichok, I. V.

    2015-01-02

    We grew single crystals of cadmium telluride, doped with bromine by the Bridgman method, annealed them under a cadmium overpressure (PCd = 10² - 10⁵ Pa) at 800-1100 K, and investigated their electrical properties at high- and low-temperature. The influence of impurities on the crystals' electrical properties were analyzed using the defect subsystem model; the model includes the possibility of the formation of point intrinsic defects (V²⁻Cd, Cd²⁺i, V²⁺Te, Te²⁻i), and substitutional ones (Br⁰Te, Br⁺Te), as well as complexes of point defects, i.e., (Br⁺Te V²⁻Cd)⁻ and (2Br⁺Te V²⁻Cd)⁰. We established the concentration dependence between free charge carriers and the parameters of the annealing process. Here, n(T) and n(PCd) are determined by two dominant defects – Br⁺Te and (2Br⁺Te V²⁻Cd)⁰. Their content varies with the annealing temperature and the vapor pressure of the component; the concentration of other defects is much smaller and almost does not affect the electron density.

  1. Liquid crystal deposition on poled, single crystalline lithium niobate

    NASA Astrophysics Data System (ADS)

    Bharath, S. C.; Pimputkar, K. R.; Pronschinske, A. M.; Pearl, T. P.

    2008-01-01

    For the purpose of elucidating the mechanisms for molecular organization at poled ferroelectric surfaces, single crystalline lithium niobate (LN), 'Z-cut' along the (0 0 0 1) plane, has been prepared and characterized and subsequently exposed to liquid crystal molecules. As a model system we chose to study the anchoring of 4- n-octyl-4'-cyanobiphenyl (8CB) to LN. Liquid crystalline films are of interest because of their useful electronic and optical properties as well as chemical sensing attributes. Low-energy electron diffraction (LEED), atomic force microscopy (AFM), surface contact angle measurements (CA), and X-ray photoelectron spectroscopy (XPS) were used to characterize the surface of lithium niobate as well as the nature of 8CB films grown on the surface. Atomically flat LN surfaces were prepared as a support for monolayer thick, 8CB molecular domains. 8CB liquid crystal molecules were deposited by an ambient vaporization technique and the films were analyzed using XPS and CA. Understanding electrostatic anchoring mechanisms and thin film organization for this molecule on uniformly poled surfaces allows for a fuller appreciation of how molecular deposition of other polarizable molecules on periodically poled and patterned poled lithium niobate surfaces would occur.

  2. Ion Beam Slicing of Single Crystal Oxide Thin Films

    SciTech Connect

    Thevuthasan, Suntharampillai; Shutthanandan, V; Jiang, Weilin; Weber, William J.; DB Poker, SC Moss, K-H Heinig

    2001-04-25

    Epitaxial thin film liftoff using the ion-slicing method has been applied to SrTiO single crystals. Rutherford backscattering spectrometry along with channeling (RBS/C) has been used to investigate the relative disorder as a function of temperature from the samples that were irradiated by 40 KeV hydrogen ions to a fluence of 5.0x10 16 H/cm. Hydrogen profiles were also measured as a function of annealing temperature to understand the role of hydrogen in the ion slicing process. Film cleavage occurred during or after annealing at 570 K, and cleaved film has been successfully transferred to a silicon substrate using ceramic adhesive.

  3. Nanoindentation and Raman spectroscopy studies of boron carbide single crystals

    NASA Astrophysics Data System (ADS)

    Domnich, Vladislav; Gogotsi, Yury; Trenary, Michael; Tanaka, Takaho

    2002-11-01

    The measurements of hardness and elastic modulus have been conducted on the (0001) and (101¯1) faces of B4.3C single crystals using nanoindentation. The results are in good agreement with the corresponding values obtained using a conventional microhardness technique on polycrystalline ceramics. Raman microspectroscopy analysis of the nanoindentations shows the appearance of several bands which suggest dramatic structural changes in the indented material. Localized contact loading may lead to damage in boron carbide resulting in disorder or a pressure-induced solid state phase transformation in the region under the indenter, although the exact mechanism responsible for the observed Raman spectra could not be identified at this time. This may explain why little variation in mechanical properties was observed with respect to the crystallographic orientation.

  4. Friction and deformation behavior of single-crystal silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1977-01-01

    Friction and deformation studies were conducted with single-crystal silicon carbide in sliding contact with diamond. When the radius of curvature of the spherical diamond rider was large (0.3), deformation of silicon carbide was primarily elastic. Under these conditions the friction coefficient was low and did not show a dependence on the silicon carbide orientation. Further, there was no detectable cracking of the silicon carbide surfaces. When smaller radii of curvature of the spherical diamond riders (0.15 and 0.02 mm) or a conical diamond rider was used, plastic grooving occured and the silicon carbide exhibited anisotropic friction and deformation behavior. Under these conditions the friction coefficient depended on load. Anisotropic friction and deformation of the basal plane of silicon carbide was controlled by the slip system. 10101120and cleavage of1010.

  5. Anisotropic Shock Response of Oriented Nitromethane Single Crystals

    NASA Astrophysics Data System (ADS)

    He, Lan; Sewell, Thomas D.; Thompson, Donald L.

    2011-06-01

    Detailed anisotropic structural and mechanical responses of crystalline nitromethane subjected to shock loading along different crystallographic orientations have been studied using molecular dynamics (MD) simulations with a nonreactive force field. Single- and multi-particle properties prior to and following shock passage have been evaluated using a geometric binning approach that spatially and temporally resolves the shock-induced thermo-physical and geometric changes in the material. Initial partitioning and redistribution pathways of the energy imparted by the shock wave result in orientation-dependent structural relaxation processes among which are elastic deformation; crystal structure reordering; and plane-specific disordering phenomena, in which certain structural properties undergo changes from ordered to disordered states in some crystallographic planes but not others.

  6. Ambient Compression-Compression Fatigue Behavior of Magnesium Single Crystal

    NASA Astrophysics Data System (ADS)

    Li, Qizhen

    2014-01-01

    A magnesium single crystal sample with a near orientation was tested at room temperature under compression-compression cyclic loading, and the microstructure was characterized to disclose the involved deformation mechanisms. No plastic deformation region appeared on the stress-strain curve during the cyclic loading. The stress-strain curve stabilized at the first cycle, the strain range for each cycle fluctuated slightly around a constant value, and the mean strain for each cycle was in a narrow range from 0.0846 to 0.0863 during the whole test. The ratcheting strain rate decreased exponentially from ~0.0003, and reached a relatively small and stable value of about zero. The observed deformation mechanisms were prismatic slip, compression twinning, and tension twinning. The prismatic dislocation slip roughened the cylindrical sample surface by forming extrusions and intrusions, and small cracks were also observed on the surface.

  7. Path to meter class single crystal silicon (SCSi) space optics

    NASA Astrophysics Data System (ADS)

    McCarter, Douglas R.

    2012-03-01

    With the global financial crisis affecting funding for space systems development, customers are calling for lower cost systems. Yet, at the same time, these lower cost systems must have increased thermal response to operational environments and load survivability. We submit that single crystal silicon (SCSi) meets both of these requirements. This paper will highlight some key SCSi material properties, discuss the opportunities that led to the development of McCarter processing methods, and present the latest steps in the manufacturing path of McCarter Mirrors using SCSi, GFB (glass frit bonding) and MSF (McCarter super finish), including the concept drawing of a one meter SCSi lightweight mirror, which together sets up the last step toward a lower cost, high performing one meter SCSi space optic.

  8. Shock compression experiments on Lithium Deuteride single crystals.

    SciTech Connect

    Knudson, Marcus D.; Desjarlais, Michael P.; Lemke, Raymond W.

    2014-10-01

    S hock compression exper iments in the few hundred GPa (multi - Mabr) regime were performed on Lithium Deuteride (LiD) single crystals . This study utilized the high velocity flyer plate capability of the Sandia Z Machine to perform impact experiments at flyer plate velocities in the range of 17 - 32 km/s. Measurements included pressure, density, and temperature between ~200 - 600 GPa along the Principal Hugoniot - the locus of end states achievable through compression by large amplitude shock waves - as well as pressure and density of re - shock states up to ~900 GPa . The experimental measurements are compared with recent density functional theory calculations as well as a new tabular equation of state developed at Los Alamos National Labs.

  9. Analysis of ripple formation in single crystal spot welds

    NASA Technical Reports Server (NTRS)

    Rappaz, M.; Corrigan, D.; Boatner, L. A.

    1997-01-01

    Stationary spot welds have been made at the (001) surface of Fe-l5%Ni-15%Cr single crystals using a Gas Tungsten Arc (GTA). On the top surface of the spot welds, very regular and concentric ripples were observed after solidification by differential interference color microscopy. Their height (typically 1--5 micrometers and spacing, typically approximately 60 micrometers) decreased with the radius of the pool. These ripples were successfully accounted for in terms of capillary-wave theory using the fundamental mode frequency f(sub 0) given by the first zero of the zero-order Bessel function. The spacing d between the ripples was then equated to v(sub s)/f(sub 0), where v(sub s) is the solidification rate. From the measured ripple spacing, the velocity of the pool was deduced as a function of the radius, and this velocity was in good agreement with the results of a heat-flow simulation.

  10. Super-thin single crystal diamond membrane radiation detectors

    SciTech Connect

    Pomorski, Michal; Caylar, Benoit; Bergonzo, Philippe

    2013-09-09

    We propose to use the non-electronic grade (nitrogen content 5 ppb < [N] < 5 ppm) single crystal (sc) chemical vapour deposited (CVD) diamond as a thin-membrane radiation detector. Using deep Ar/O{sub 2} plasma etching it is possible to produce self-supported few micrometres thick scCVD membranes of a size approaching 7 mm 7 mm, with a very good surface quality. After metallization and contacting, electrical properties of diamond membrane detectors were probed with 5.486 MeV ?-particles as an ionization source. Despite nitrogen impurity, scCVD membrane detectors exhibit stable operation, charge collection efficiency close to 100%, with homogenous response, and extraordinary dielectric strength up to 30 V/?m.

  11. Dislocation nucleation in bcc Ta single crystals studied by nanoindentation

    SciTech Connect

    Biener, M M; Biener, J; Hodge, A M; Hamza, A V

    2007-08-08

    The study of dislocation nucleation in closed-packed metals by nanoindentation has recently attracted much interest. Here, we address the peculiarities of the incipient plasticity in body centered cubic (bcc) metals using low index Ta single-crystals as a model system. The combination of nanoindentation with high-resolution atomic force microscopy provides us with experimental atomic-scale information on the process of dislocation nucleation and multiplication. Our results reveal a unique deformation behavior of bcc Ta at the onset of plasticity which is distinctly different from that of closed-packed metals. Most noticeable, we observe only one rather than a sequence of discontinuities in the load-displacement curves. This and other differences are discussed in context of the characteristic plastic deformation behavior of bcc metals.

  12. InPBi single crystals grown by molecular beam epitaxy.

    PubMed

    Wang, K; Gu, Y; Zhou, H F; Zhang, L Y; Kang, C Z; Wu, M J; Pan, W W; Lu, P F; Gong, Q; Wang, S M

    2014-01-01

    InPBi was predicted to be the most robust infrared optoelectronic material but also the most difficult to synthesize within In-VBi (V = P, As and Sb) 25 years ago. We report the first successful growth of InPBi single crystals with Bi concentration far beyond the doping level by gas source molecular beam epitaxy. The InPBi thin films reveal excellent surface, structural and optical qualities making it a promising new III-V compound family member for heterostructures. The Bi concentration is found to be 2.4 0.4% with 94 5% Bi atoms at substitutional sites. Optical absorption indicates a band gap of 1.23 eV at room temperature while photoluminescence shows unexpectedly strong and broad light emission at 1.4-2.7 ?m which can't be explained by the existing theory. PMID:24965260

  13. Electrical conduction in nanodomains in congruent lithium tantalate single crystal

    SciTech Connect

    Cho, Yasuo

    2014-01-27

    The electrical current flow behavior was investigated for nanodomains formed in a thin congruent lithium tantalate (LiTaO{sub 3}) single-crystal plate. When the nanodomains were relatively large, with diameters of about 100 nm, current flow was detected along the domain wall. However, when they were about 40 nm or smaller, the current flowed through the entire nanodomain. Schottky-like rectifying behavior was observed. Unlike the case of LiNbO{sub 3}, optical illumination was not required for current conduction in LiTaO{sub 3}. A clear temperature dependence of the current was found indicating that the conduction mechanism for nanodomains in LiTaO{sub 3} may involve thermally activated carrier hopping.

  14. A face-shear mode single crystal ultrasonic motor

    NASA Astrophysics Data System (ADS)

    Li, Shiyang; Jiang, Wenhua; Zheng, Limei; Cao, Wenwu

    2013-05-01

    We report a face-shear mode ultrasonic motor (USM) made of [011]c poled Zt 45 cut 0.24Pb(In1/2Nb1/2)O3-0.46Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 single crystal, which takes advantage of the extremely large d36 = 2368 pC/N. This motor has a maximum no-load linear velocity of 182.5 mm/s and a maximum output force of 1.03 N under the drive of Vp = 50 V, f = 72 kHz. Compared with the k31 mode USM made of Pb(Zr,Ti)O3 (PZT), our USM has simpler structure, lower driving frequency, much higher electromechanical coupling factor, and twice power density. This USM can be used for low frequency operation as well as cryogenic actuation with a large torque.

  15. Nonlinear pyroelectric energy harvesting from relaxor single crystals.

    PubMed

    Khodayari, Akram; Pruvost, Sebastien; Sebald, Gael; Guyomar, Daniel; Mohammadi, Saber

    2009-04-01

    Energy harvesting from temperature variations in a Pb(Zn(1/3)Nb(2/3))(0.955)Ti(0.045)O(3) single crystal was studied and evaluated using the Ericsson thermodynamic cycle. The efficiency of this cycle related to Carnot cycle is 100 times higher than direct pyroelectric energy harvesting, and it can be as high as 5.5% for a 10 degrees C temperature variation and 2 kV/mm electric field. The amount of harvested energy for a 60 degrees C temperature variation and 2 kV/mm electric field is 242.7 mJ x cm(-3). The influence of ferroelectric phase transitions on the energy harvesting performance is discussed and illustrated with experimental results. PMID:19406698

  16. Fishtail effect in twinned and detwinned YBCO single crystals

    NASA Astrophysics Data System (ADS)

    Boudissa, M.; Halimi, R.; Frikach, K.; Senoussi, S.

    2006-09-01

    We have studied the magnetization hysteresis loops of a twinned and detwinned single crystals in a temperature range between 4.2 and 100 K and a magnetic field (H) range between 0 and 6 T. We carried out relaxation measurements on the samples at different temperatures and magnetic fields. We investigated the twin pinning as a function of temperature (T) and the fishtail anomaly in the critical current density of the two samples. We tried in this study to confirm or infirm the different models which explain the fishtail effect by confronting them to our experimental results We found that the collective creep theory is consistent with the results of our experiment in the field region where the magnetization is at its minimum. This field marks a crossover between the small and large bundle pinning regimes.

  17. Toward Optimum Scale and TBC Adhesion on Single Crystal Superalloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    1998-01-01

    Single crystal superalloys exhibit excellent cyclic oxidation resistance if their sulfur content is reduced from typical impurity levels of approximately 5 ppmw to below 0.5 ppmw. Excellent alumina scale adhesion was documented for PWA 1480 and PWA 1484 without yttrium additions. Hydrogen annealing produced effective desulfurization of PWA 1480 to less than 0.2 ppmw and was also used to achieve controlled intermediate levels. The direct relationship between cyclic oxidation behavior and sulfur content was shown. An adhesion criterion was proposed based on the total amount of sulfur available for interfacial segregation, e.g., less than or equal to 0.2 ppmw S will maximize adhesion for a 1 mm thick sample. PWA 1484, melt desulfurized to 0.3 ppmw S, also exhibited excellent cyclic oxidation resistance and encouraging TBC lives (10 mils of 8YSZ, plasma sprayed without a bond coat) in 1100 C cyclic oxidation tests.

  18. Type-I superconductivity in KBi2 single crystals

    NASA Astrophysics Data System (ADS)

    Sun, Shanshan; Liu, Kai; Lei, Hechang

    2016-03-01

    We report on the detailed transport, magnetic, thermodynamic properties and theoretical calculation of KBi2 single crystals in superconducting and normal states. KBi2 exhibits metallic behavior at a normal state and enters the superconducting state below {{T}\\text{c}}=3.573 K. Moreover, KBi2 exhibits low critical fields in all measurements, field-induced crossover from second- to first-order phase transition in specific heat measurements, the typical magnetization isotherms of type-I superconductors, and a small Ginzburg–Landau parameter {κ\\text{GL}}=0.611 . These results clearly indicate that KBi2 is a type-I superconductor with a thermodynamic critical field {{H}\\text{c}}=234.3(3) Oe.

  19. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, Edward S.

    1982-01-01

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  20. Two-photon absorption spectroscopy of rubrene single crystals

    NASA Astrophysics Data System (ADS)

    Irkhin, Pavel; Biaggio, Ivan

    2014-05-01

    We determine the wavelength dependence of the two-photon absorption cross section in rubrene single crystals both by direct measurement of nonlinear transmission and from the two-photon excitation spectrum of the photoluminescence. The peak two-photon absorption coefficient for b-polarized light was found to be (4.61)10-11 m/W at a wavelength of 85010 nm. It is 2.3 times larger for c-polarized light. The lowest energy two-photon excitation peak corresponds to an excited state energy of 2.920.04 eV and it is followed by a vibronic progression of higher energy peaks separated by 0.14 eV.