Science.gov

Sample records for caf2 single crystals

  1. Ultra-precision process of CaF2 single crystal

    NASA Astrophysics Data System (ADS)

    Yin, Guoju; Li, Shengyi; Xie, Xuhui; Zhou, Lin

    2014-08-01

    This paper proposes a new chemical mechanical polishing (CMP) process method for CaF2 single crystal to get ultraprecision surface. The CMP processes are improving polishing pad and using alkaline SiO2 polishing slurry with PH=8, PH=11 two phases to polish, respectively, and the roughness can be 0.181nm Rq (10μm×10μm). The CMP process can't get high surface figure, so we use ion beam figuring (IBF) technology to obtain high surface figure. However, IBF is difficult to improve the CaF2 surface roughness. We optimize IBF process to improve surface figure and keep good surface roughness too. Different IBF incident ion energy from 400ev to 800ev does not affect on the surface roughness obviously but the depth of material removal is reverse. CaF2 single crystal can get high precision surface figure (RMS=2.251nm) and still keep ultra-smooth surface (Rq=0.207nm) by IBF when removal depth is less than 200nm. The researches above provide important information for CaF2 single crystal to realize ultra-precision manufacture.

  2. Surface modifications of BaF2 and CaF2 single crystals by slow highly charged ions

    NASA Astrophysics Data System (ADS)

    El-Said, A. S.; Heller, R.; Wilhelm, R. A.; Facsko, S.; Aumayr, F.

    2014-08-01

    Ion-irradiation of solid surfaces is considered as one of the promising and powerful techniques for material nanostructuring. Recently, slow highly charged ions (HCI) have shown their potential in creating surface nanostructures in various solids. Here, we focus on the surface modifications of BaF2 and CaF2 single crystals by HCI. Despite the fact that both materials belong to alkaline-earth fluorides with the same crystalline structure, they exhibit different sensitivity for HCI-induced nanostructure. We discuss similarities and differences for the creation of HCI-induced nanohillocks and etch pits in both materials and their dependence on potential and kinetic energy deposition. Furthermore, we compare the results with modifications induced by swift heavy ions (SHI), in order to reach a better understanding of the mechanisms responsible for the creation of nanostructures in ionic fluoride single crystals.

  3. Photothermal transformation of color centers in CaF2 crystals

    NASA Astrophysics Data System (ADS)

    Shcheulin, A. S.; Angervaks, A. E.; Aksenova, K. A.; Gainutdinov, R. V.; Ryskin, A. I.

    2015-04-01

    Photothermal transformations of color centers in additively colored calcium fluoride crystals and in a colored crystal with a recorded hologram have been investigated. It is shown that the absorption spectrum of a colored crystal can be reconstructed within the entire transparency range of the matrix crystal by varying both factors affecting the sample—actinic radiation wavelength and temperature—as well as the duration of their effect. This possibility is important for the application of additively colored CaF2 crystals as a holographic medium.

  4. Analysis of the photoconduction in CaF2 : Eu2+ crystals using the microwave resonant cavity technique

    NASA Astrophysics Data System (ADS)

    Loudyi, H.; Guyot, Y.; Kazanskii, S. A.; Gâcon, J.-C.; Moine, B.; Pédrini, C.; Joubert, M.-F.

    2008-07-01

    The microwave resonant cavity technique (MRCT) was used to measure the room-temperature photoconductivity spectrum of a CaF2:Eu2+ single crystal between 275 and 450 nm, with the aim of positioning the Eu2+ levels relatively to the bottom of the host conduction band. A photoconductivity signal was detected at laser wavelengths λl≤430nm (hνl≥2.9eV) . Its intensity was observed to exhibit a superlinear dependence on the laser mean power for λl>280nm and an almost linear one at shorter wavelengths, showing that Eu2+ photoionization may involve either a one-photon or a two-step two-photon absorption process. The probabilities of both linear and quadratic processes were determined from measurements of the dependences of the photoconductivity signal intensity versus the mean laser power for several laser wavelengths within the spectral range that is under investigation. The Eu2+ photoionization threshold was estimated at 4.9 eV from the comparison between the MRCT photoconductivity spectrum, the Eu2+ 4f65d(eg) excited-state absorption spectrum, and the calculated density of states of the CaF2 conduction band. In addition, the photoconduction dynamics in two CaF2:Eu2+ samples grown under different experimental conditions was studied. The MRCT signals from the two samples were observed to exhibit different thermal behaviors. This observation is interpreted in terms of differences in trap densities and depths, in connection with thermoluminescence measurements.

  5. Neutron beam tests of CsI(Na) and CaF2(Eu) crystals for dark matter direct search

    NASA Astrophysics Data System (ADS)

    Guo, C.; Ma, X. H.; Wang, Z. M.; Bao, J.; Dai, C. J.; Guan, M. Y.; Liu, J. C.; Li, Z. H.; Ren, J.; Ruan, X. C.; Yang, C. G.; Yu, Z. Y.; Zhong, W. L.; Huerta, C.

    2016-05-01

    In recent decades, inorganic crystals have been widely used in dark matter direct search experiments. To contribute to the understanding of the capabilities of CsI(Na) and CaF2(Eu) crystals, a mono-energetic neutron beam is utilized to study the properties of nuclear recoils, which are expected to be similar to signals of dark matter direct detection. The quenching factor of nuclear recoils in CsI(Na) and CaF2Eu, as well as an improved discrimination factor between nuclear recoils and γ backgrounds in CsI(Na), are reported.

  6. Crystallization of nano calcium fluoride in CaF2-Al2O3-SiO2 system

    NASA Astrophysics Data System (ADS)

    Imanieh, Mohammad Hassan; Yekta, Bijan Eftekhari; Marghussian, V.; Shakhesi, Saeed; Martín, I. R.

    2013-03-01

    The effects of alumina and CaF2 content on the crystallization behavior, fluorine loss, phase separation mechanism and optical properties of oxyfluoride glass ceramics were investigated. Three series of glasses in which their SiO2/Al2O3 ratio was different such as 1.8, 2.18 and 2.5 were examined. Results showed that the adopted ratios played key role significantly in the mechanism of phase separation of the glass. It modified from spinodal decomposition to nucleation and growth by decreasing the mentioned ratio. UV spectroscopy showed that owing to the small size of precipitated CaF2 crystals, i.e. 20 nm, in the glass with a silicon oxide to alumina ratio of 2.18 and initial CaF2 amount of 35 mol%, it remained transparent after heat treatment at 740 °C.

  7. Photothermal Conversion of Color Centers in {CaF}2 Crystals: A Process Underlying the Use of Crystals as a Holographic Medium

    NASA Astrophysics Data System (ADS)

    Shcheulin, A. S.; Angervaks, A. E.; Ryskin, A. I.

    2015-09-01

    Photothermal effects in a holographic medium of calcium fluoride crystals with color centers ({CaF}2) are discussed. It is shown that photochromism of this crystal makes it possible to record volume holograms within its volume and to change their physical properties by photothermal treatments. The diffusion-drift mechanism of a hologram recording in {CaF}2 includes the conversion of centers and their redistribution over the crystal bulk. Depending on the readout wavelength, it is possible to read out amplitude, amplitude phase, or phase holograms. The opportunity to record thick holograms in {CaF}2 and their high resistance with respect to non-coherent illumination at an elevated temperature allows forming narrow-band angular and spectral holographic filters in {CaF}2.

  8. Nonlinear Luminescence Response of CaF2:Eu and YAlO3:Ce to Single-Ion Excitation

    SciTech Connect

    Liu, Peng; Zhang, Yanwen; Xiao, Haiyan Y.; Xiang, Xia; Wang, Xuelin; Weber, William J.

    2014-01-21

    Understanding scintillation physics and nonproportionality is essential to accelerate materials discovery that has been restricted due to the difficulties inherent to large crystal growth and complex nature of gamma-solid interaction. Taking advantage of less restrictive growth and deposition techniques for smaller crystal sizes or thin films and better fundamental understanding of ion-solid interactions, a unique ion approach is demonstrated to effectively screen candidate scintillators with relatively small size and evaluate their nonlinear scintillation response. Response of CaF2:Eu and YAlO3:Ce scintillators to single ions of H, He, and O3 are measured by the corresponding pulse height over a continuous energy range using a time-of-flightscintillatorphotoelectric multiplier tube apparatus. Nonlinear response of the scintillators under ionizing ion irradiation is quantitatively evaluated by considering the energy partitioning process. In a differential energy deposition region with negligible displacement damage, the low, medium and high excitation energy deposition density (Dexci) can be produced by energetic H, He and O3 ions, respectively, and significantly different impacts on the response characteristics of these two benchmark scintillators are observed. For CaF2:Eu, the scintillation efficiency under ion irradiation monotonically decreases with increasing excitation-energy density. In contrast, the response efficiency of YAlO3:Ce scintillation initially increases with excitation-energy density at low excitation-energy densities, goes through a maximum, and then decreases with further increasing excitation-energy density. The fundamental mechanism causing these different response behaviours in the scintillators is based on the competition between the scintillation response and the nonradiative quenching process under different excitation densities, which is also the main origin of the nonlinear response of the scintillators to irradiation.

  9. Nonlinear luminescence response of CaF2:Eu and YAlO3:Ce to single-ion excitation

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Zhang, Yanwen; Xiao, Haiyan; Xiang, Xia; Wang, Xuelin; Weber, William J.

    2014-01-01

    Understanding scintillation physics and nonproportionality is essential to accelerate materials discovery that has been restricted due to the difficulties inherent to large crystal growth and complex nature of gamma-solid interaction. Taking advantage of less restrictive growth and deposition techniques for smaller crystal sizes or thin films and better fundamental understanding of ion-solid interactions, a unique ion approach is demonstrated to effectively screen candidate scintillators with relatively small size and evaluate their nonlinear scintillation response. Response of CaF2:Eu and YAlO3:Ce scintillators to single ions of H+, He+, and O3+ are measured by the corresponding pulse height over a continuous energy range using a time-of-flight-scintillator-photoelectric multiplier tube apparatus. Nonlinear response of the scintillators under ionizing ion irradiation is quantitatively evaluated by considering the energy partitioning process. In a differential energy deposition region with negligible displacement damage, the low, medium and high excitation energy deposition density (Dexci) can be produced by energetic H+, He+ and O3+ ions, respectively, and significantly different impacts on the response characteristics of these two benchmark scintillators are observed. For CaF2:Eu, the scintillation efficiency under ion irradiation monotonically decreases with increasing excitation-energy density. In contrast, the response efficiency of YAlO3:Ce scintillation initially increases with excitation-energy density at low excitation-energy densities, goes through a maximum, and then decreases with further increasing excitation-energy density. The fundamental mechanism causing these different response behaviours in the scintillators is based on the competition between the scintillation response and the nonradiative quenching process under different excitation densities, which is also the main origin of the nonlinear response of the scintillators to irradiation.

  10. CaF2:Yb laser ceramics

    NASA Astrophysics Data System (ADS)

    Akchurin, M. Sh.; Basiev, T. T.; Demidenko, A. A.; Doroshenko, M. E.; Fedorov, P. P.; Garibin, E. A.; Gusev, P. E.; Kuznetsov, S. V.; Krutov, M. A.; Mironov, I. A.; Osiko, V. V.; Popov, P. A.

    2013-01-01

    CaF2:Yb fluoride laser ceramics, prepared by hot-forming, exhibit the same optical properties as starting single crystals. Slope efficiency of the Сa0.95Yb0.05F2.05 is equal to 35% in the pulsed mode of laser operation. Decrease of ytterbium concentration in CaF2:Yb samples down to 3 mol.% resulted in the essential improvement of Сa0.97Yb0.03F2.03 thermal conductivity from 3.5 to 4.5 W/m K, but slightly decreased (down to 30%) slope efficiency of the samples under both pulsed and CW mode of operation. Alternative hot-pressing synthesis of CaF2:Yb fluoride laser ceramics provided materials with superior mechanical properties (microhardness Н = 3.2 GPa and fracture toughness К1С = 0.65 МPа m1/2) in comparison with hot-formed and/or single crystal CaF2:Yb specimens. For the first time, lasing has been observed for the novel aforementioned hot-pressed CaF2:Yb ceramics.

  11. Deformation luminescence produced during application and release of pressure on to gamma-irradiated CaF2:RE crystals.

    PubMed

    Kher, R S; Brahme, N; Banerjee, M; Dhoble, S J; Khokhar, M S K

    2006-01-01

    Calcium fluoride CaF2 is an interesting host lattice for rare earth (RE) activators. CaF2 crystals doped with different concentrations of Dy, Ce, Er and Gd have been grown by the Bridgman technique and their deformation luminescence (DL) induced by room temperature gamma irradiation has been recorded. When a uniaxial pressure is applied on to gamma-irradiated CaF2:RE crystals, initially the DL intensity increases with time, attains a maximum value and then it decreases with time. Although the DL intensity produced during the release of pressure is less, its rise and decay behaviours are similar to that obtained during the application of pressure. The DL intensity depends on dopant, concentration of dopant, irradiation doses and mass of the load or applied pressure. It is suggested that the moving dislocation produced during deformation of crystals capture holes from hole trapped centres (like perturbed Vk centre) and the subsequent radiative recombination of the dislocation holes with electrons give rise to DL. PMID:16698970

  12. Influence of some impurities on the emission properties of CaF2:YbF3 crystals

    NASA Astrophysics Data System (ADS)

    Stef, Marius; Nicoara, Irina; Cirlan, Florina; Para, Irina; Velazquez, Matias; Buse, Gabriel

    2015-12-01

    Various concentrations of YbF3 -doped and NaF or PbF2 co-doped CaF2 crystals were grown using the conventional Bridgman method. Transparent colorless crystals were obtained in graphite crucible in vacuum using a shaped graphite furnace. The crystals have been cooled to room temperature using an established procedure. Room temperature absorption spectra have been obtained using a Shimadzu 1650PC spectrophotometer. Photoluminescent properties in IR spectral range were analyzed using a spectrofluorimeter Horiba Fluorolog 3. An IR laser diode at 932 nm was also used an directly injected in the equipment. The emission spectra are influenced by the concentration of co-dopant added to the melt, and the excitation wavelength. The high emission peak at 979 nm overlaps with the absorption peak. The highest intensity in the IR emission (around 1029 nm) is obtained for CaF2:0.72 mol% YbF3 crystal by excitation at 932 nm (diode lamp).

  13. Self-organization of color centers in holograms recorded in additively colored CaF2 crystals

    NASA Astrophysics Data System (ADS)

    Shcheulin, Aleksandr S.; Angervaks, Aleksandr E.; Veniaminov, Andrey V.; Zakharov, Viktor V.; Fedorov, Pavel P.; Ryskin, Aleksandr I.

    2015-09-01

    The structurization of holographic planes in holograms recorded in CaF2 crystal with color centers was found. It is apparent in the formation of spiral bundles, which pierce the holographic planes. It testifies to the self-organization process of color centers in these planes. This process is supposed to be linked with colloidal centers, 2D metal islets in the crystal lattice, whose formation and decay on hologram recording at temperatures of 150-190 °C may be considered as a dynamic phase transition that facilitates the generation of stable spatially inhomogeneous (dissipative) structures in the form of bundles. They arise on hologram recording and are frozen on cooling of the crystal after the recording process is finished.

  14. Kinetics of Isothermal Melt Crystallization in CaO-SiO2-CaF2-Based Mold Fluxes

    NASA Astrophysics Data System (ADS)

    Seo, Myung-Duk; Shi, Cheng-Bin; Baek, Ji-Yeon; Cho, Jung-Wook; Kim, Seon-Hyo

    2015-10-01

    A kinetic study for isothermal melt crystallization of CaO-SiO2-CaF2-based mold fluxes with different basicity of 0.94 and 1.34 has been carried out systematically by DSC measurements. The kinetic parameters were determined by Johnson-Mehl-Avrami equation. The average Avrami exponent of cuspidine (3CaO·2SiO2·CaF2) crystallization for mold flux of lower basicity (0.94) is calculated to be 3.1, implying that the crystallization mode is instantaneous nucleation followed by 3-dimensional growth. For the mold flux of higher basicity (1.34), the average Avrami exponent of cuspidine equals to 3.4, strongly suggesting that the growth is still 3 dimensional but the nucleation should be continuous. It was found that the effective crystallization rate constant for both mold fluxes increases as the crystallization temperature decreases, showing that the crystallization rate could be governed by nucleation rate. The negative effective activation energy indicates an anti-Arrhenius behavior for crystallization of the mold fluxes studied. Therefore, it is concluded that the melt crystallization for the commercial mold fluxes will be determined by thermodynamics of nucleation which is relevant to degree of undercooling. The morphology of cuspidine crystals observed by SEM agreeds well with the isothermal crystallization kinetics results.

  15. Laser performance of diode-pumped Nd, Y-codoped CaF 2-SrF 2 mixed crystal

    NASA Astrophysics Data System (ADS)

    Liu, J.; Fan, M. W.; Su, L. B.; Jiang, D. P.; Ma, F. K.; Zhang, Q.; Xu, J.

    2014-03-01

    A disordered Nd, Y-codoped CaF2-SrF2 mixed crystal was obtained by the temperature gradient technique (TGT). The absorption and fluorescence spectra of the crystal were measured at room temperature. Diode-pumped continuous-wave (CW) and Q-switched laser operations were demonstrated at 1056 nm with a 0.65 at.% Nd, 10 at.% Y-codoped crystal, for the first time to our knowledge. The CW output power of 724 mW was obtained in a compact linear cavity. Also the Q-switched pulse characteristics of Nd, Y:CaF2-SrF2 laser crystal were reported based on Cr4+:YAG saturable absorbers in a folded cavity. The shortest pulse width of 110 ns and the highest peak power of 383 W were obtained when the initial transmission of the Cr4+:YAG crystals was 90%. The dependence of the operational parameters on the pump power was also investigated experimentally.

  16. Nonlinear luminescence response of CaF2:Eu and YAlO3:Ce to single-ion excitation

    SciTech Connect

    Liu, Peng; Zhang, Yanwen; Xiao, Haiyan; Xiang, Xia; Wang, Xuelin; Weber, William J

    2014-01-01

    Pulse-height of CaF2:Eu and YAlO3:Ce scintillators to single H+, He+ and O3+ ions are measured over a continuous energy range using a time-of-flight (TOF) - scintillator - photoelectric multiplier tube (PMT) apparatus. A nonlinear response of the scintillators under ionizing ion irradiation is quantitatively evaluated by considering energy partitioning process. The results show that, in a differential energy deposition region with negligible displacement damage, the low, medium and high excitation energy deposition density (Dexci) produced by H+, He+ and O3+ ions irradiation, respectively, have significantly different impacts on the response characteristics of these two benchmark scintillators. For CaF2:Eu, the scintillation efficiency under ion irradiation monotonically decreases with increasing excitation-energy density. In contrast, the response efficiency of YAlO3:Ce scintillation initially increases with excitation-energy density at low excitation-energy densities, goes through a maximum, and then decreases with further increasing excitation-energy density. The fundamental mechanism causing these different response behaviours in the scintillators is based on the competition between the scintillation response and the nonradiative quenching process under different excitation densities, which is also the main origin of the nonlinear response of scintillators to irradiation.

  17. Erase-mode recording characteristics of photochromic CaF2, SrTiO3, and CaTiO3 crystals.

    NASA Technical Reports Server (NTRS)

    Duncan, R. C., Jr.

    1972-01-01

    Erase-mode optical recording characteristics of photochromic crystal wafers of CaF2:La,Na; CaF2:Ce,Na; SrTiO3:Ni,Mo,Al; and CaTiO3:Ni,Mo have been measured. An argon laser operating at 5145 A was used for both optical recording and optical readout. Sensitometric curves of optical-density change versus logarithm of exposure are shown for a number of erase-beam intensities between 0.2 mW/sq cm and 2 W/sq cm. In this range, time-intensity reciprocity holds for the CaF2 materials but fails for the titanates, particularly at low intensities. The dependences of sensitivity, gamma, and maximum transmission contrast ratio on wafer thickness and material are discussed. Wafers of SrTiO3, CaTiO3, and CaF2 exhibiting approximately equal maximum contrast ratios have relative sensitivities approximately in the ratio 5:2:1, respectively, at an erase intensity of 1 W/sq cm.

  18. A high-resolution digital dosimetric system for spatial characterization of radiation fields using a thermoluminescent CaF2:Dy crystal.

    PubMed

    Atari, N A; Svensson, G K

    1986-01-01

    A high-resolution digital dosimetric system has been developed for the spatial characterization of radiation fields. The system comprises the following: 0.5-mm-thick, 25-mm-diam CaF2:Dy thermoluminescent crystal; intensified charge coupled device video camera; video cassette recorder; and a computerized image processing subsystem. The optically flat single crystal is used as a radiation imaging device and the subsequent thermally stimulated phosphorescence is viewed by the intensified camera for further processing and analysis. Parameters governing the performance characteristics of the system were measured. A spatial resolution limit of 31 +/- 2 microns (1 sigma) corresponding to 16 +/- 1 line pairs/mm measured at the 4% level of the modulation transfer function has been achieved. The full width at half maximum of the line spread function measured independently by the slit method or derived from the edge response function was found to be 69 +/- 4 microns (1 sigma). The high resolving power, speed of readout, good precision, wide dynamic range, and the large image storage capacity make the system suitable for the digital mapping of the relative distribution of absorbed doses for various small radiation fields and the edges of larger fields. PMID:3724696

  19. High-resolution digital dosimetric system for spatial characterization of radiation fields using a thermoluminescent CaF2:Dy crystal

    SciTech Connect

    Atari, N.A.; Svensson, G.K.

    1986-05-01

    A high-resolution digital dosimetric system has been developed for the spatial characterization of radiation fields. The system comprises the following: 0.5-mm-thick, 25-mm-diam CaF2:Dy thermoluminescent crystal; intensified charge coupled device video camera; video cassette recorder; and a computerized image processing subsystem. The optically flat single crystal is used as a radiation imaging device and the subsequent thermally stimulated phosphorescence is viewed by the intensified camera for further processing and analysis. Parameters governing the performance characteristics of the system were measured. A spatial resolution limit of 31 +/- 2 microns (1 sigma) corresponding to 16 +/- 1 line pairs/mm measured at the 4% level of the modulation transfer function has been achieved. The full width at half maximum of the line spread function measured independently by the slit method or derived from the edge response function was found to be 69 +/- 4 microns (1 sigma). The high resolving power, speed of readout, good precision, wide dynamic range, and the large image storage capacity make the system suitable for the digital mapping of the relative distribution of absorbed doses for various small radiation fields and the edges of larger fields.

  20. Thermo-optical measurements of ytterbium doped ceramics (Sc2O3, Y203, Lu203, YAG) and crystals (YAG, CaF2) at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Le Garrec, B.; Cardinali, V.; Bourdet, G.

    2013-05-01

    In this paper, we report the measurements of the specific heat, the density and the thermal diffusivity at room and cryogenic temperatures of Ytterbium doped cubic sesquioxides (Sc2O3, Y2O3, Lu2O3) ceramics and of Ytterbium doped crystals (YAG, CaF2). These materials appear to have very interesting properties for setting up high average power laser chains useful for plasma physics and for inertial fusion energy drivers.

  1. Ca-induced structural transformation of the single-domain Si(001) surface: CaF2/Si(001)-4 off

    NASA Astrophysics Data System (ADS)

    Kim, Hidong; Dugerjav, Otgonbayar; Arvisbaatar, Amarmunkh; Motlak, Moaaed; Seo, Jae M.

    2014-05-01

    By scanning tunneling microscopy and synchrotron photoemission spectroscopy, it has been found that through CaF2 exposure to the single-domain Si(001)-4 off surface held at 750 C, Si dimers on Si(001) terraces are replaced preferentially by dissociated Ca atoms while F atoms are desorbed. The resulting 2 3 reconstruction saturates the (001) terraces at a coverage between 0.1 and 0.3 monolayers. Additional CaF2 exposure triggers a structural transformation to a stable hill-and-valley structure composed of wider (001)-2 3 terraces and compensating facets comprised of (11 17) and (11 13) units, both with a 6 1 surface reconstruction. This study demonstrates that the periodic width of the single domain Si(001) surface can be modulated through adsorbing Ca atoms while maintaining one-dimensional symmetry along the DB steps and the semiconducting nature of the surface.

  2. Simple thermodynamic model for the specific heat of the fluorite crystals PbF2, CaF2, and SrCl2

    NASA Astrophysics Data System (ADS)

    Bouteiller, Yves

    1992-04-01

    The excess specific heat for SrCl2, PbF2, and CaF2 fluorite crystals has been computed by means of statistical mechanics using a model derived from the Welch and Dienes phenomenological model for phase transitions. The enthalpy is written in a form that partly takes the long-range interactions into consideration. It is shown that the transition temperature is always attained for low defect concentrations, as experimentally found by Schröter and Nöltig. The calculations are in quantitative agreement with available experimental data.

  3. Spin-Hamiltonian parameters for the tetragonal GdM3+-Fi- centers in CaF2 and SrF2 crystals

    NASA Astrophysics Data System (ADS)

    Yang, Wei-Qing; Zhang, Ying; Lin, Yuan; Zheng, Wen-Chen

    2013-02-01

    The spin-Hamiltonian parameters (g factors g//, g⊥ and zero-field splittings b20, b40, b44, b60, b64) of the tetragonal GdM3+-Fi- centers in CaF2 and SrF2 crystals at T ≈ 1.8 K are calculated from the diagonalization (of energy matrix) method based on the one-electron crystal field mechanism. In the calculations, the crystal field parameters used are estimated from the superposition model with the reported defect structural data obtained from the analyses of superhyperfire interaction constants at the same temperature. The calculated results are in reasonable agreement with the experimental values. It appears that the above defect structural data reported in the previous paper are suitable and the diagonalization (of energy matrix) method is effective to the studies of spin-Hamiltonian parameters for 4f7 ions in crystals.

  4. Metal-to-metal charge transfer between dopant and host ions: Photoconductivity of Yb-doped CaF2 and SrF2 crystals

    NASA Astrophysics Data System (ADS)

    Barandiarán, Zoila; Seijo, Luis

    2015-10-01

    Dopant-to-host electron transfer is calculated using ab initio wavefunction-based embedded cluster methods for Yb/Ca pairs in CaF2 and Yb/Sr pairs in SrF2 crystals to investigate the mechanism of photoconductivity. The results show that, in these crystals, dopant-to-host electron transfer is a two-photon process mediated by the 4fN-15d excited states of Y b2+: these are reached by the first photon excitation; then, they absorb the second photon, which provokes the Y b2+ + Ca2+ (Sr2+) → Y b3+ + Ca+ (Sr+) electron phototransfer. This mechanism applies to all the observed Y b2+ 4f-5d absorption bands with the exception of the first one: Electron transfer cannot occur at the first band wavelengths in CaF2:Y b2+ because the Y b3+-Ca+ states are not reached by the two-photon absorption. In contrast, Yb-to-host electron transfer is possible in SrF2:Y b2+ at the wavelengths of the first 4f-5d absorption band, but the mechanism is different from that described above: first, the two-photon excitation process occurs within the Y b2+ active center, then, non-radiative Yb-to-Sr electron transfer can occur. All of these features allow to interpret consistently available photoconductivity experiments in these materials, including the modulation of the photoconductivity by the absorption spectrum, the differences in photoconductivity thresholds observed in both hosts, and the peculiar photosensitivity observed in the SrF2 host, associated with the lowest 4f-5d band.

  5. Metal-to-metal charge transfer between dopant and host ions: Photoconductivity of Yb-doped CaF2 and SrF2 crystals.

    PubMed

    Barandiarán, Zoila; Seijo, Luis

    2015-10-14

    Dopant-to-host electron transfer is calculated using ab initio wavefunction-based embedded cluster methods for Yb/Ca pairs in CaF2 and Yb/Sr pairs in SrF2 crystals to investigate the mechanism of photoconductivity. The results show that, in these crystals, dopant-to-host electron transfer is a two-photon process mediated by the 4f(N-1)5d excited states of Y b(2+): these are reached by the first photon excitation; then, they absorb the second photon, which provokes the Y b(2+) + Ca(2+) (Sr(2+)) → Y b(3+) + Ca(+) (Sr(+)) electron phototransfer. This mechanism applies to all the observed Y b(2+) 4f-5d absorption bands with the exception of the first one: Electron transfer cannot occur at the first band wavelengths in CaF2:Y b(2+) because the Y b(3+)-Ca(+) states are not reached by the two-photon absorption. In contrast, Yb-to-host electron transfer is possible in SrF2:Y b(2+) at the wavelengths of the first 4f-5d absorption band, but the mechanism is different from that described above: first, the two-photon excitation process occurs within the Y b(2+) active center, then, non-radiative Yb-to-Sr electron transfer can occur. All of these features allow to interpret consistently available photoconductivity experiments in these materials, including the modulation of the photoconductivity by the absorption spectrum, the differences in photoconductivity thresholds observed in both hosts, and the peculiar photosensitivity observed in the SrF2 host, associated with the lowest 4f-5d band. PMID:26472390

  6. Effect of SiO2 on the Crystallization Behaviors and In-Mold Performance of CaF2-CaO-Al2O3 Slags for Drawing-Ingot-Type Electroslag Remelting

    NASA Astrophysics Data System (ADS)

    Shi, Cheng-Bin; Li, Jing; Cho, Jung-Wook; Jiang, Fang; Jung, In-Ho

    2015-10-01

    The crystallization characteristics of CaF2-CaO-Al2O3 slags with varying amounts of SiO2 were experimentally studied. The effects of slag crystallization behaviors on the horizontal heat transfer and lubrication performance in drawing-ingot-type electroslag remelting (ESR) were also evaluated in terms of as-cast ingots surface quality and drawing-ingot operation. The results show that increasing SiO2 addition from 0 to 6.8 mass pct strongly suppresses the crystallization of ESR type CaF2-CaO-Al2O3 slags. The crystallization temperature of the studied slags decreases with the increase in SiO2 addition. The liquidus temperatures of the slags also show a decreasing trend with increasing SiO2 content. In CaF2-CaO-Al2O3-(SiO2) slags, faceted 11CaO·7Al2O3·CaF2 crystals precipitate first during continuous cooling of the slag melts, followed by the formation of CaF2 at lower temperatures. 11CaO·7Al2O3·CaF2 was confirmed to be the dominant crystalline phase in the studied slags. CaF2-CaO-Al2O3 slags with a small amount of SiO2 addition are favorable for providing sound lubrication and horizontal heat transfer in mold for drawing-ingot-type ESR, which consequently bring the improvement in the surface quality of ESR ingot and drawing-ingot operating practice as demonstrated by plant trials.

  7. Hardness of CaF2 and BaF2 solid lubricants at 25 to 670 deg C

    NASA Technical Reports Server (NTRS)

    Deadmore, Daniel L.; Sliney, Harold E.

    1987-01-01

    Plastic deformation is a prominent factor in determining the lubricating value of solid lubricants. Little information is available and its direct measurement is difficult so hardness, which is an indirect measure of this property was determined for fluoride solid lubricant compositions. The Vickers hardness of BaF2 and CaF2 single crystals was measured up to 670 C in a vacuum. The orientation of the BaF2 was near the (013) plane and the CaF2 was about 16 degrees from the degrees from the (1'11) plane. The BaF2 has a hardness of 83 kg/sq mm at the 25 C and 9 at the 600 C. The CaF2 is 170 at 25 C and 13 at 670 C. The decrease in hardness in the temperature range of 25 to 100 C is very rapid and amounts to 40% for both materials. Melts of BaF2 and CaF2 were made in a platinum crucible in ambient air with compositions of 50 to 100 wt% BaF2. The Vickers hardness of these polycrystalline binary compositions at 25 C increased with increasing CaF2 reaching a maximum of 150 kn/sq mm near the eutectic. The polycrystalline CaF2 was 14% softer than that of the single crystal surface and BsF2 was 30% harder than the single crystal surface. It is estimated that the brittle to ductile transition temperature for CaF2 and BaF2 is less than 100 C for the conditions present in the hardness tester.

  8. Growth of YbF 3-doped CaF 2 crystals and characterization of Yb 3+/Yb 2+ conversion

    NASA Astrophysics Data System (ADS)

    Nicoara, Irina; Stef, Marius; Pruna, Andreea

    2008-04-01

    Calcium fluoride crystals doped with YbF 3 and PbF 2-, NaF- and LiF-codoped were grown using the vertical Bridgman method. Transparent, high quality, with various high Yb 2+ contents in the as-grown crystals has been obtained using a special procedure. The optical absorption spectra reveal the characteristic ultraviolet (UV) absorption bands of the divalent Yb ions. Influence of the codoping with Pb 2+, Li + and Na + ions on the absorption spectra and on the Yb 2+ ions content has been studied. High-intensity emission bands in the near-UV spectral region, not reported before, have been observed for excitation by 230 nm. A comparison of our results with those obtained by other authors is also given.

  9. Application of a volume holographic grating in a CaF2 crystal for measuring linear displacements with nanoscale accuracy

    NASA Astrophysics Data System (ADS)

    Shcheulin, A. S.; Angervaks, A. E.; Kupchikov, A. K.; Verkhovskii, E. B.; Ryskin, A. I.

    2014-12-01

    A holographic method for measuring linear displacements based on the use of a highly stable volume scale hologram recorded in an additively colored calcium fluoride crystal with photochromic color centers is proposed and experimentally approved. The essence of this method lies in measuring and analyzing harmonic signals formed during linear displacement of crystal with a volume hologram in an external interference field. A physical model of the formation of harmonic signals in photodetectors when measuring displacements is considered, and a mathematical method for calculating linear displacements by plotting a Lissajous figure is substantiated. A laboratory breadboard of a device for measuring linear displacements in a range of 10 mm, limited by the aperture of crystal with a recorded 8.7-mm-thick hologram, is designed. When using a scale hologram with a period of 2.18 μm and a 632.8-nm He-Ne laser for reading this hologram, the error in measuring displacements by this method is 9 nm at a resolution of 3 nm.

  10. Biaxially-Textured Photovoltaic Film Crystal Silicon on Ion Beam Assisted Deposition CaF2 Seed Layers on Glass

    SciTech Connect

    Groves, J. R.; Li, J. B.; Clemens, B. M.; LaSalvia, V.; Hasoon, F.; Branz, H. M.; Teplin, C. W.

    2012-05-01

    We grow biaxially textured heteroepitaxial crystal silicon (c-Si) films on display glass as a low-cost photovoltaic material. We first fabricate textured CaF{sub 2} seed layers using ion-beam assisted deposition, then coat the CaF{sub 2} with a thin, evaporated epitaxial Ge buffer and finally deposit heteroepitaxial silicon on the Ge. The silicon is grown by hot-wire chemical vapor deposition, a high-rate, scalable epitaxy technology. Electron and X-ray diffraction confirm the biaxial texture of the CaF{sub 2} and epitaxial growth of the subsequent layers. Transmission electron microscopy reveals columnar silicon grains about 500 nm across. We fabricate a proof-of-concept epitaxial film c-Si solar cell with an open circuit voltage of 375 mV that is limited by minority carrier lifetime.

  11. Structure and Crystallization Kinetics of Glassy CaO-Al2O3-SiO2-CaF2-Na2O Mold Fluxes with Varying Basicity

    NASA Astrophysics Data System (ADS)

    Li, Jiangling; Yan, Baijun; Shu, Qifeng; Chou, Kuochih

    2015-12-01

    The structure and the crystallization kinetics of CaO-Al2O3-SiO2-CaF2-Na2O mold fluxes with varying basicities were investigated by solid-state 29Si nuclear magnetic resonance with magic angular spinning (MAS-NMR) and differential thermal analysis (DTA) technique, respectively. 29Si MAS-NMR study indicated that the increase of basicity decreased the degree of polymerization of mold fluxes. With the increasing basicity, Q 0, Q 2, and Q 3 gradually decreased, while Q 1 gradually increased, and the overall degree of polymerization was reduced. Crystallization analysis showed the cuspidine first crystallized from glass, and wollastonite crystal crystallized at elevated temperature for the samples with basicity (defined as CaO/SiO2 mass ratio) values of 0.9 and 1.0, respectively. Only cuspidine was found to crystallize from glass for the samples with basicity values of 1.1 and 1.2, indicating that the crystallization of wollastonite was suppressed with the increase of basicity. Crystallization kinetics analysis by DTA and field emission scanning electron microscopy equipped with energy dispersive spectroscopy investigation showed that growth mechanism of cuspidine is mainly of the diffusion-controlled three-dimensional growth with the increasing number of nuclei during heating. Activation energies for growth of cuspidine decreased with the increasing basicity of mold flux, which indicated that the crystallization ability was enhanced with the increase of basicity. The relationship between structure and crystallization of mold fluxes was established.

  12. Capillary and van der Waals interactions on CaF2 crystals from amplitude modulation AFM force reconstruction profiles under ambient conditions

    PubMed Central

    Calò, Annalisa; Robles, Oriol Vidal; Santos, Sergio

    2015-01-01

    Summary There has been much interest in the past two decades to produce experimental force profiles characteristic of the interaction between nanoscale objects or a nanoscale object and a plane. Arguably, the advent of the atomic force microscope AFM was instrumental in driving such efforts because, in principle, force profiles could be recovered directly. Nevertheless, it has taken years before techniques have developed enough as to recover the attractive part of the force with relatively low noise and without missing information on critical ranges, particularly under ambient conditions where capillary interactions are believed to dominate. Thus a systematic study of the different profiles that may arise in such situations is still lacking. Here we employ the surfaces of CaF2, on which nanoscale water films form, to report on the range and force profiles that might originate by dynamic capillary interactions occurring between an AFM tip and nanoscale water patches. Three types of force profiles were observed under ambient conditions. One in which the force decay resembles the well-known inverse-square law typical of van der Waals interactions during the first 0.5–1 nm of decay, a second one in which the force decays almost linearly, in relatively good agreement with capillary force predicted by the constant chemical potential approximation, and a third one in which the attractive force is almost constant, i.e., forms a plateau, up to 3–4 nm above the surface when the formation of a capillary neck dominates the tip–sample interaction. PMID:25977852

  13. Effect of ZrO(2) additions on the crystallization, mechanical and biological properties of MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) bioactive glass-ceramics.

    PubMed

    Li, H C; Wang, D G; Meng, X G; Chen, C Z

    2014-06-01

    A series of ZrO(2) doped MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) bioactive glass-ceramics were obtained by sintering method. The crystallization behavior, phase composition, morphology and structure of glass-ceramics were characterized. The bending strength, elastic modulus, fracture toughness, micro-hardness and thermal expansion coefficient (TEC) of glass-ceramics were investigated. The in vitro bioactivity and cytotoxicity tests were used to evaluate the bioactivity and biocompatibility of glass-ceramics. The sedimentation mechanism and growth process of apatites on sample surface were discussed. The results showed that the mainly crystalline phases of glass-ceramics were Ca(5)(PO4)3F (fluorapatite) and β-CaSiO(3). (β-wollastonite). m-ZrO(2) (monoclinic zirconia) declined the crystallization temperatures of glasses. t-ZrO(2) (tetragonal zirconia) increased the crystallization temperature of Ca(5)(PO4)(3)F and declined the crystallization temperature of β-CaSiO(3). t-ZrO(2) greatly increased the fracture toughness, bending strength and micro-hardness of glass-ceramics. The nanometer apatites were induced on the surface of glass-ceramic after soaking 28 days in SBF (simulated body fluid), indicating the glass-ceramic has good bioactivity. The in vitro cytotoxicity test demonstrated the glass-ceramic has no toxicity to cell. PMID:24780435

  14. Defect-induced wetting on BaF 2(111) and CaF 2(111) at ambient conditions

    NASA Astrophysics Data System (ADS)

    Cardellach, M.; Verdaguer, A.; Fraxedas, J.

    2011-12-01

    The interaction of water with freshly cleaved (111) surfaces of isostructural BaF2 and CaF2 single crystals at ambient conditions (room temperature and under controlled humidity) has been studied using scanning force microscopy in different operation modes and optical microscopy. Such surfaces exhibit contrasting behaviors for both materials: while on BaF2(111) two-dimensional water layers are formed after accumulation at step edges, CaF2(111) does not promote the formation of such layers. We attribute such opposed behavior to lattice match (mismatch) between hexagonal water ice and the hexagonal (111) surfaces of BaF2(CaF2). Optical microscope images reveal that this behavior also determines the way the surfaces become wetted at a macroscopic level.

  15. Improvement of superconductivity in Fe1+yTe0.6Se0.4 induced by annealing with CaF2 and SmF3

    NASA Astrophysics Data System (ADS)

    Li, Xiong; Sun, Yue; Zhang, Yufeng; Zhou, Wei; Yuan, Feifei; Shi, Zhixiang

    2015-10-01

    We report detailed studies of the CaF2 and SmF3 annealing effects in Fe1+yTe0.6Se0.4 single crystals. Superconductivity in Fe1+yTe0.6Se0.4 single crystals was improved after annealing, which strongly suggested the effectiveness of the CaF2 and SmF3 annealing. In detail, no matter which annealing material was employed, the largest values of superconducting transition temperature and critical current density reached about 14 K and 1.0 105 A/cm2 (5 K, in self-field), respectively. Furthermore, compared with the pervious annealing materials, CaF2 and SmF3 are safe and easy-handing.

  16. A neutron scintillator based on transparent nanocrystalline CaF2:Eu glass ceramic

    NASA Astrophysics Data System (ADS)

    Struebing, Christian; Chong, JooYun; Lee, Gyuhyon; Zavala, Martin; Erickson, Anna; Ding, Yong; Wang, Cai-Lin; Diawara, Yacouba; Engels, Ralf; Wagner, Brent; Kang, Zhitao

    2016-04-01

    There are no efficient Eu2+ doped glass neutron scintillators reported due to low doping concentrations of Eu2+ and the amorphous nature of the glass matrix. In this work, an efficient CaF2:Eu glass ceramic neutron scintillator was prepared by forming CaF2:Eu nanocrystals in a 6Li-containing glass matrix. Through appropriate thermal treatments, the scintillation light yield of the transparent glass ceramic was increased by a factor of at least 46 compared to the as-cast amorphous glass. This improvement was attributed to more efficient energy transfer from the CaF2 crystals to the Eu2+ emitting centers. Further light yield improvement is expected if the refractive index of the glass matrix can be matched to the CaF2 crystal.

  17. Synchrotron spectroscopy of confined carriers in CdF2-CaF2 superlattices

    NASA Astrophysics Data System (ADS)

    Ivanovskikh, K. V.; Hughes-Currie, R. B.; Reid, M. F.; Wells, J.-P. R.; Sokolov, N. S.; Reeves, R. J.

    2016-03-01

    Luminescence spectroscopic and temporal dynamic properties of high energy elementary excitations in CdF2-CaF2 superlattices have been studied utilising excitation with vacuum ultraviolet and X-ray synchrotron radiation while comparing the results with those obtained for CdF2 and CaF2 bulk crystals. It is shown that the optical properties of the superlattice structures are determined by exciton emission in the CdF2 monolayers. The experimental manifestations of exciton confinement phenomena are discussed.

  18. Single Crystal Membranes

    NASA Technical Reports Server (NTRS)

    Stormont, R. W.; Morrison, A.

    1974-01-01

    Single crystal a- and c-axis tubes and ribbons of sodium beta-alumina and sodium magnesium beta-alumina were grown from sodium oxide rich melts. Additional experiments grew ribbon crystals containing sodium magnesium beta, beta double prime, beta triple prime, and beta quadruple prime. A high pressure crystal growth chamber, sodium oxide rich melts, and iridium for all surfaces in contact with the melt were combined with the edge-defined, film-fed growth technique to grow the single crystal beta-alumina tubes and ribbons. The crystals were characterized using metallographic and X-ray diffraction techniques, and wet chemical analysis was used to determine the sodium, magnesium, and aluminum content of the grown crystals.

  19. Modification of luminescence spectra of CaF2:Eu2+.

    PubMed

    Singh, Vartika S; Joshi, C P; Moharil, S V; Muthal, P L; Dhopte, S M

    2015-11-01

    CaF2:Eu(2+) is a well known phosphor having efficient excitation in the near ultraviolet (NUV) range. Phosphors with NUV excitation are required in newly emerging applications such as photoluminescence liquid crystal displays (PLLCD), solid-state lighting (SSL), and down-conversion for solar cells. However, emission of CaF2:Eu(2+) is around 424 nm. Eye sensitivity drops considerably at these wavelengths. It is thus not useful for display applications for which emission in one of the primary colours (blue - 450 nm, green - 540 nm or red - 610 nm) is required. Efforts were made to modify the Photoluminescence (PL) spectra of CaF2:Eu(2+) to meet these requirements using co-dopants. A Ca0.49 Sr0.50 Eu0.01 F2 phosphor showing better colour coordinates and having an emission maximum around 440 nm was discovered during these studies. PMID:25736486

  20. Influence of CaF2 on the Viscosity and Structure of Manganese Ferroalloys Smelting Slags

    NASA Astrophysics Data System (ADS)

    Park, Joo Hyun; Ko, Kyu Yeol; Kim, Tae Sung

    2015-04-01

    Addition of CaF2 to the CaO-SiO2-MnO (CaO/SiO2 = 0.5) system, which corresponds qualitatively to a silicomanganese ferroalloy smelting slag, affected not only the critical (crystallization) temperature ( T CR) but also the viscosity at high temperatures, and its influence on slag properties was strongly dependent on the content of MnO in the slag. The viscosity of CaF2-free 10 mass pct MnO slag was relatively high, i.e., about 10 dPa s at 1773 K (1500 °C), but decreased continuously upon addition of CaF2 to the system. In contrast, the viscosity of the 40 pct MnO system was very low, i.e., 1 dPa s at 1773 K (1500 °C), and CaF2 did not have a large effect. This indicates that Mn2+ is a strong network modifier in manganese ferroalloy smelting slags. Nevertheless, CaF2 addition was very effective at decreasing the viscosity of low MnO slags at low temperatures. The activation energy for the viscous flow of silicate melts decreased linearly in response to CaF2 addition, but this tendency was less pronounced in the more basic composition of the slag. The effect of CaF2 on the viscosity and activation energy for viscous flow of melts was analyzed quantitatively using micro-Raman spectra of quenched glass samples and the silicate polymerization index, i.e., Q3/Q2 ratio. The polymerization index decreased continuously with increasing CaF2 content in less basic (10 pct MnO or C/S = 0.5) slags, whereas it was not affected by CaF2 content in highly basic (40 pct MnO and C/S = 1.0) slags. Bulk thermophysical properties of the CaO-SiO2-MnO-CaF2 slags were quantitatively correlated with the structural information of the slags.

  1. Understanding single-crystal superalloys

    NASA Technical Reports Server (NTRS)

    Dreshfield, Robert L.

    1986-01-01

    The unique properties of single crystals are considered. The anisotropic properties of single crystals, and the relation between crystal orientation and the fatigue life and slip systems of the crystals are examined. The effect of raft formation on the creep-rupture life of the crystals is studied. Proposed research on the properties of and new applications for single crystals is discussed.

  2. SINGLE CRYSTAL NEUTRON DIFFRACTION.

    SciTech Connect

    KOETZLE,T.F.

    2001-03-13

    Single-crystal neutron diffraction measures the elastic Bragg reflection intensities from crystals of a material, the structure of which is the subject of investigation. A single crystal is placed in a beam of neutrons produced at a nuclear reactor or at a proton accelerator-based spallation source. Single-crystal diffraction measurements are commonly made at thermal neutron beam energies, which correspond to neutron wavelengths in the neighborhood of 1 Angstrom. For high-resolution studies requiring shorter wavelengths (ca. 0.3-0.8 Angstroms), a pulsed spallation source or a high-temperature moderator (a ''hot source'') at a reactor may be used. When complex structures with large unit-cell repeats are under investigation, as is the case in structural biology, a cryogenic-temperature moderator (a ''cold source'') may be employed to obtain longer neutron wavelengths (ca. 4-10 Angstroms). A single-crystal neutron diffraction analysis will determine the crystal structure of the material, typically including its unit cell and space group, the positions of the atomic nuclei and their mean-square displacements, and relevant site occupancies. Because the neutron possesses a magnetic moment, the magnetic structure of the material can be determined as well, from the magnetic contribution to the Bragg intensities. This latter aspect falls beyond the scope of the present unit; for information on magnetic scattering of neutrons see Unit 14.3. Instruments for single-crystal diffraction (single-crystal diffractometers or SCDs) are generally available at the major neutron scattering center facilities. Beam time on many of these instruments is available through a proposal mechanism. A listing of neutron SCD instruments and their corresponding facility contacts is included in an appendix accompanying this unit.

  3. Diode-pumped femtosecond mode-locked Nd, Y-codoped CaF2 laser

    NASA Astrophysics Data System (ADS)

    Zhu, Jiangfeng; Zhang, Lijuan; Gao, Ziye; Wang, Junli; Wang, Zhaohua; Su, Liangbi; Zheng, Lihe; Wang, Jingya; Xu, Jun; Wei, Zhiyi

    2015-03-01

    A passively mode-locked femtosecond laser based on an Nd, Y-codoped CaF2 disordered crystal was demonstrated. The Y3+-codoping in Nd : CaF2 markedly suppressed the quenching effect and improved the fluorescence quantum efficiency and emission spectra. With a fiber-coupled laser diode as the pump source, the continuous wave tuning range covering from 1042 to 1076 nm was realized, while the mode-locked operation generated 264 fs pulses with an average output power of 180 mW at a repetition rate of 85 MHz. The experimental results show that the Nd, Y-codoped CaF2 disordered crystal has potential in a new generation diode-pumped high repetition rate chirped pulse amplifier.

  4. Nanostructuring CaF2 surfaces with slow highly charged ions

    NASA Astrophysics Data System (ADS)

    El-Said, A. S.; Wilhelm, R. A.; Heller, R.; Ritter, R.; Wachter, G.; Facsko, S.; Lemell, C.; Burgdörfer, J.; Aumayr, F.

    2014-04-01

    In recent years the potential of slow highly charged ions (HCI) as tools for nanostructuring purposes has received considerable attention and a wide range of material classes, from insulating ionic crystals, polymers and ultrathin films, to semiconducting and conducting substrates have been investigated regarding their response to individual HCI impact. For the majority of investigated materials, however, consistent theoretical modeling to supplement with experimental evidence and to satisfactorily explain the complete physical process from ion approach and impact to the formation of an individual nanostructure is still lacking. CaF2, from both an experimental and theoretical point of view, might be considered the most thoroughly investigated material. Combining results from numerous studies has allowed for the generation of a "phase diagram" for nanostructuring of CaF2 in dependence of ion beam parameters. This paves the way for a first unified picture, as implications from this phase diagram should be applicable to similar materials as well.

  5. Hyperfine splittings and Zeeman infrared absorption of Tb3+ -doped CaF2 and SrF2

    NASA Astrophysics Data System (ADS)

    Wells, Jon-Paul R.; Jones, Glynn D.

    2009-09-01

    We report on the observation of pseudoquadrupole splittings of sharp infrared-absorption lines of CaF2:Tb3+ . These splittings are large enough to be directly observed because the Tb3+ electronic ground levels consists of two singlets separated by only 0.18cm-1 for the F- C4v center. Both the hyperfine splittings and measured Zeeman splittings for F- C4v centers in CaF2:Tb3+ and SrF2:Tb3+ can be accounted for using wave functions derived from a previously published crystal-field analysis of experimental energy levels.

  6. Al15Ge4Ni3: A new intergrowth structure with Cu3Au- and CaF2-type building blocks

    NASA Astrophysics Data System (ADS)

    Reichmann, Thomas L.; Jandl, Isabella; Effenberger, Herta S.; Herzig, Peter; Richter, Klaus W.

    2015-05-01

    The new ternary compound Al15Ge4Ni3 (τ2 in the system Al-Ge-Ni) was synthesized in single crystalline form by a special annealing procedure from samples located in the three phase fields [L+Al+τ2] and [L+Ge+τ2]. The crystal structure of Al15Ge4Ni3 was determined by single-crystal X-ray diffraction. The compound crystallizes in a new structure type in space group I4¯3m, Pearson Symbol cI88, cubic lattice parameter a=11.405(1) Å. Phase diagram investigations indicate stoichiometric composition without considerable homogeneity range; τ2 melts peritectically at T=444 °C. The crystal structure of Al15Ge4Ni3 shows a unique combination of simple Cu3Au- and CaF2-type building blocks: a three dimensional network of CaF2-type units, formed by Ni and Al atoms, is interspaced by clusters (Al6Ge8) resembling unit cells of the Cu3Au-type. Both structural motifs are connected by Al-Ge bonds. The ground state energy of the compound was obtained by DFT calculations and the densities of states were analyzed in detail. In addition, electron density maps were calculated in four different sections through the unit cell using the full potential linearized augmented plane-wave (FLAPW) method. The bonding situation in Al15Ge4Ni3 was discussed combining results from electronic calculations with the analysis of the coordination of atoms.

  7. Formation and investigation of ultrathin layers of Co2FeSi ferromagnetic alloy synthesized on silicon covered with a CaF2 barrier layer

    NASA Astrophysics Data System (ADS)

    Grebenyuk, G. S.; Gomoyunova, M. V.; Pronin, I. I.; Vyalikh, D. V.; Molodtsov, S. L.

    2016-03-01

    Ultrathin (∼2 nm) films of Co2FeSi ferromagnetic alloy were formed on silicon by solid-phase epitaxy and studied in situ. Experiments were carried out in an ultrahigh vacuum (UHV) using substrates of Si(1 1 1) single crystals covered with a 5 nm thick CaF2 barrier layer. The elemental and phase composition as well as the magnetic properties of the synthesized films were analyzed by photoelectron spectroscopy using synchrotron radiation and by magnetic linear dichroism in photoemission of Fe 3p and Co 3p electrons. The study shows that the synthesis of the Co2FeSi ferromagnetic alloy occurs in the temperature range of 200-400 °C. At higher temperatures, the films become island-like and lose their ferromagnetic properties, as the CaF2 barrier layer is unable to prevent a mass transfer between the film and the Si substrate, which violates the stoichiometry of the alloy.

  8. A solvent extraction route for CaF2 hollow spheres.

    PubMed

    Guo, Fuqiang; Zhang, Zhifeng; Li, Hongfei; Meng, Shulan; Li, Deqian

    2010-11-21

    A solvent extraction route is proposed to synthesize CaF(2) hollow spheres, which are formed by reversed micelles in a solvent extraction system templating the self-assembly of CaF(2) nanoparticles. PMID:20877846

  9. Impurity-trapped excitons and electron traps in CaF2:Yb2+ and SrF2:Yb2+ probed by transient photoluminescence enhancement

    NASA Astrophysics Data System (ADS)

    Senanayake, P. S.; Wells, J. P. R.; Reid, M. F.; Berden, G.; Meijerink, A.; Reeves, R. J.

    2013-01-01

    CaF$_2$:Yb$^{2+}$ and SrF$_2$:Yb$^{2+}$ crystals have been investigated by a two-color UV + IR transient photoluminescence enhancement technique. The enhancement gives information about both changes in internal energy levels of the excitons and liberation of electrons from traps in the crystals.

  10. Development of single crystal membranes

    NASA Technical Reports Server (NTRS)

    Stormont, R. W.; Cocks, F. H.

    1972-01-01

    The design and construction of a high pressure crystal growth chamber was accomplished which would allow the growth of crystals under inert gas pressures of 2 MN/sq m (300 psi). A novel crystal growth technique called EFG was used to grow tubes and rods of the hollandite compounds, BaMgTi7O16, K2MgTi7O16, and tubes of sodium beta-alumina, sodium magnesium-alumina, and potassium beta-alumina. Rods and tubes grown are characterized using metallographic and X-ray diffraction techniques. The hollandite compounds are found to be two or three-phase, composed of coarse grained orientated crystallites. Single crystal c-axis tubes of sodium beta-alumina were grown from melts containing excess sodium oxide. Additional experiments demonstrated that crystals of magnesia doped beta-alumina and potassium beta-alumina also can be achieved by this EFG technique.

  11. CaF2, BaF2 and SrF2 crystals’ optical anisotropy parameters

    NASA Astrophysics Data System (ADS)

    Snetkov, I. L.; Yakovlev, A. I.; Palashov, O. V.

    2015-09-01

    Using the original method, based on measurements of thermally induced depolarization, the optical anisotropy parameters of CaF2, BaF2 and SrF2 cubic crystals were measured and compared with what is known from the literature. Euler angles of crystallographic axis orientation [C], in which the thermally induced depolarization is minimal, were determined using experimental results for studied fluorides.

  12. Temperature dependence of the elastic moduli and damping for polycrystalline LiF-22 pct CaF2 eutectic salt

    NASA Technical Reports Server (NTRS)

    Wolfenden, A.; Lastrapes, G.; Duggan, M. B.; Raj, S. V.

    1991-01-01

    Young's and shear moduli and damping were measured for as-cast polycrystalline LiF-(22 mol pct)CaF2 eutectic specimens as a function of temperature using the piezoelectric ultrasonic composite oscillator technique. The shear modulus decreased with increasing temperature from about 40 GPa at 295 K to about 30 GPa at 1000 K, while the Young modulus decreased from about 115 GPa at 295 K to about 35 GPa at 900 K. These values are compared with those derived from the rule of mixtures using elastic moduli data for LiF and CaF2 single crystals. It is shown that, while the shear modulus data agree reasonably well with the predicted trend, there is a large discrepancy between the theoretical calculations and the Young modulus values, where this disagreement increases with increasing temperature.

  13. Stacking fault energy in some single crystals

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2012-06-01

    The stacking fault energy of single crystals has been reported using the peak shift method. Presently studied all single crystals are grown by using a direct vapor transport (DVT) technique in the laboratory. The structural characterizations of these crystals are made by XRD. Considerable variations are shown in deformation (α) and growth (β) probabilities in single crystals due to off-stoichiometry, which possesses the stacking fault in the single crystal.

  14. High-efficiency broadly tunable Cr:ZnSe single crystal laser pumped by Tm:YLF laser

    NASA Astrophysics Data System (ADS)

    Dai, Y. F.; Li, Y. Y.; Zou, X.; Dong, Y. J.; Leng, Y. X.

    2013-10-01

    A high-efficiency broadly tunable Cr:ZnSe single crystal laser longitudinally pumped by a continuous-wave (CW) Tm:YLF laser at 1918 nm is demonstrated. To our best knowledge, a laser based on a Cr:ZnSe single crystal grown by the temperature gradient technique (TGT) method is investigated here for the first time. Under an incident pump power of 3.5 W, a maximum 383 mW CW output power was obtained at 2391 nm, corresponding to a slope efficiency of 10.6%. Furthermore, the working wavelength can be continuously tuned from 2179 to 2720 nm by means of an intracavity Brewster-cut CaF2 prism.

  15. Thermal conductivity of single crystals with a fluorite structure: Cadmium fluoride

    NASA Astrophysics Data System (ADS)

    Popov, P. A.; Fedorov, P. P.; Osiko, V. V.

    2010-03-01

    The thermal conductivity of Ca, Sr, Ba, and Cd difluoride single crystals and the CdF2 samples doped by 3 mol % NdF3, 15 mol % HoF3, and 10 mol % ErF3 has been studied using the method of steady longitudinal heat flow in the temperature range 50-300 K. The thermal conductivity of the matrices of these compounds decreases in the order CaF2-SrF2-BaF2-CdF2. The temperature dependences of the phonon mean free path for these crystals have been calculated from experimental data and exhibit different behaviors. It has been assumed that the intense phonon scattering observed in the undoped CdF2 sample is caused by the specific features of the processes of phonon-phonon scattering. The formation of heterovalent solid solutions of cadmium difluoride and rare-earth trifluorides is accompanied by a drastic decrease in the thermal conductivity and a change in its character from that typical of dielectric single crystals to that typical of glassy materials.

  16. CO2 laser irradiation enhances CaF2 formation and inhibits lesion progression on demineralized dental enamel-in vitro study.

    PubMed

    Zancopé, Bruna R; Rodrigues, Lívia P; Parisotto, Thais M; Steiner-Oliveira, Carolina; Rodrigues, Lidiany K A; Nobre-Dos-Santos, Marinês

    2016-04-01

    This study evaluated if Carbon dioxide (CO2) (λ 10.6 μm) laser irradiation combined with acidulated phosphate fluoride gel application (APF gel) enhances "CaF2" uptake by demineralized enamel specimens (DES) and inhibits enamel lesion progression. Thus, two studies were conducted and DES were subjected to APF gel combined or not with CO2 laser irradiation (11.3 or 20.0 J/cm(2), 0.4 or 0.7 W) performed before, during, or after APF gel application. In study 1, 165 DES were allocated to 11 groups. Fluoride as "CaF2 like material" formed on enamel was determined in 100 DES (n = 10/group), and the surface morphologies of 50 specimens were evaluated by scanning electron microscopy (SEM) before and after "CaF2" extraction. In study 2, 165 DES (11 groups, n = 15), subjected to the same treatments as in study 1, were further subjected to a pH-cycling model to simulate a high cariogenic challenge. The progression of demineralization in DES was evaluated by cross-sectional microhardness and polarized light microscopy analyses. Laser at 11.3 J/cm(2) applied during APF gel application increased "CaF2" uptake on enamel surface. Laser irradiation and APF gel alone arrested the lesion progression compared with the control (p < 0.05). Areas of melting, fusion, and cracks were observed. CO2 laser irradiation, combined with a single APF application enhanced "CaF2" uptake on enamel surface and a synergistic effect was found. However, regarding the inhibition of caries lesion progression, no synergistic effect could be demonstrated. In conclusion, the results have shown that irradiation with specific laser parameters significantly enhanced CaF2 uptake by demineralized enamel and inhibited lesion progression. PMID:26873502

  17. Laser damage and ablation of differently prepared CaF2(111) surfaces

    NASA Astrophysics Data System (ADS)

    Sils, J.; Reichling, M.; Matthias, E.; Johansen, H.

    1999-12-01

    Ablation thresholds and damage behavior of cleaved and polished CaF2(111) surfaces produced by single shot irradiation with 248 nm/14 ns laser pulses have been investigated using the photoacoustic mirage technique and scanning electron microscopy. The standard polishing yields an ablation threshold of typically 20 J/cm2. When surfaces are polished chemo-mechanically the threshold is raised to 43 J/cm2. Polishing by diamond turning leads to intermediate values around 30 J/cm2. Cleaved surfaces possess no well-defined damage threshold. The damage topography of conventionally polished surfaces shows ablation of flakes across the laser heated area with cracks along the cleavage planes. In the case of chemo-mechanical polishing only a few cracks appear. Diamond turned surfaces show small optical absorption, but cracks and ablation of tiles. The origin of such different damage behavior is discussed.

  18. Luminescence emission of natural fluorite and synthetic CaF2:Mn (TLD-400)

    NASA Astrophysics Data System (ADS)

    Topaksu, Mustafa; Correcher, Virgilio; Garcia-Guinea, Javier

    2016-02-01

    The luminescence properties of natural white fluorite indicate that it could be employed as radiation dosimeter similarly to synthetic CaF2:Mn (TLD-400). The cathodoluminescence emission of the natural sample (two maxima) meanwhile TLD-400 (one peak) exhibits a different behaviour associated with the chemical composition. The mineral sample displays (i) a significant UV-blue emission associated with different structural defects (negligible in the synthetic sample) and (ii) a shift of the green emission to higher wavelengths respect to the TLD-400. The green induced TL emission also shows significant differences in intensity (higher in TLD-400) and sensitivity. Both samples display a complex induced green TL glow curve that could not be analysed assuming the model based on the discrete trap distribution. The Tm-Tstop method indicates the presence of close overlapping groups of components linked probably to a continuum in the trap distribution rather than a single trapping level.

  19. Scintillation response of CaF2 to H and He over a continuous energy range

    NASA Astrophysics Data System (ADS)

    Zhang, Yanwen; Xiang, Xia; Weber, William J.

    2008-06-01

    Recent demands for new radiation detector materials with improved γ-ray detection performance at room temperature have prompted research efforts on both accelerated material discovery and efficient techniques that can be used to identify material properties relevant to detector performance. New material discovery has been limited due to the difficulties of large crystal growth to completely absorb γ-energies; whereas high-quality thin films or small crystals of candidate materials can be readily produced by various modern growth techniques. In this work, an ion-scintillator technique is demonstrated that can be applied to study scintillation properties of thin films and small crystals. The scintillation response of a benchmark scintillator, europium-doped calcium fluoride (CaF2:Eu), to energetic proton and helium ions is studied using the ion-scintillator approach based on a time-of-flight (TOF) telescope. Excellent energy resolution and fast response of the TOF telescope allow quantitative measurement of light yield, nonlinearity and energy resolution over an energy range from a few tens to a few thousands of keV.

  20. Fabrication and Transport Properties of FeSe Thin Films on CaF2 Substrates with Increased Tc

    NASA Astrophysics Data System (ADS)

    Nabeshima, Fuyuki; Imai, Yoshinori; Hanawa, Masafumi; Ichinose, Ataru; Tsukada, Ichiro; Maeda, Atsutaka

    2014-03-01

    Fe(Se,Te) has the simplest crystal structure among Fe-based superconductors. Superconducting transition temperature, Tc, is strongly dependent on the applied pressure. Indeed, strained thin films of FeSe0.5Te0.5 have higher Tc than that of bulk crystals. On the other hand, an end member, FeSe, shows large increase in Tc under pressure compared with Te-doped ones. However there is no report on increased Tc of FeSe thin films except for the interface-induced superconductivity. In the presentation we will report on the first successful introduction of compressive strain in FeSe thin films using CaF2 substrates. As a result, Tczero reaches 11.4 K, which is about 1.5 times higher than that of bulk crystals. We will also report on the transport properties of FeSe thin films on CaF2 in the normal state including the THz conductivity and the Hall resistivity comparing them with the results of FeSe0.5Te0.5 films. Partially supported by Strategic International Collaborative Research Program (SICORP) of Japan Science and Technology Agency.

  1. Surface modification of CaF 2 in atomic layer scale by electron beam exposure

    NASA Astrophysics Data System (ADS)

    Hwang, S. M.; Izumi, A.; Tsutsui, K.; Furukawa, S.

    1994-12-01

    Surface modification of CaF 2/Si(111) was studied for the purpose of 1 ML adsorption of group-V atoms on a fluoride surface which is applicable to heteroepitaxy of III—V compound semiconductors on CaF 2. By using Rutherford backscattering (RBS) and X-ray photoelectron spectroscopy (XPS), it was found that 1 ML of As and P were successfully adsorbed on a CaF 2 surface, and that a 1 ML self-limiting adsorption of As for the electron beam exposure was realized. Also, we propose a model for the adsorption conditions depending on the substrate temperature during surface modification.

  2. Ames Lab 101: Single Crystal Growth

    ScienceCinema

    Schlagel, Deborah

    2014-06-04

    Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples are vital to researchers' understanding of the characteristics of a materials and what gives these materials their particular properties.

  3. Ames Lab 101: Single Crystal Growth

    SciTech Connect

    Schlagel, Deborah

    2013-09-27

    Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples are vital to researchers' understanding of the characteristics of a materials and what gives these materials their particular properties.

  4. Ultratough single crystal boron-doped diamond

    DOEpatents

    Hemley, Russell J [Carnegie Inst. for Science, Washington, DC ; Mao, Ho-Kwang [Carnegie Inst. for Science, Washington, DC ; Yan, Chih-Shiue [Carnegie Inst. for Science, Washington, DC ; Liang, Qi [Carnegie Inst. for Science, Washington, DC

    2015-05-05

    The invention relates to a single crystal boron doped CVD diamond that has a toughness of at least about 22 MPa m.sup.1/2. The invention further relates to a method of manufacturing single crystal boron doped CVD diamond. The growth rate of the diamond can be from about 20-100 .mu.m/h.

  5. Organic single-crystal complementary inverter

    NASA Astrophysics Data System (ADS)

    Briseno, Alejandro L.; Tseng, Ricky J.; Li, Sheng-Han; Chu, Chih-Wei; Yang, Yang; Falcao, Eduardo H. L.; Wudl, Fred; Ling, Mang-Mang; Chen, Hong Zheng; Bao, Zhenan; Meng, Hong; Kloc, Christian

    2006-11-01

    The authors demonstrate the operation of an organic single-crystal complementary circuit in the form of a simple inverter. The device is constructed from a high mobility p-type organic single-crystal transistor of tetramethylpentacene (TMPC) and a n-type single-crystal transistor of N ,N'-di[2,4-difluorophenyl]-3,4,9,10-perylenetetracarboxylic diimide (PTCDI). Field-effect mobilities of up to 1.0cm2/Vs are reported for TMPC devices, while a mobility of 0.006cm2/Vs is reported for a n-type PTCDI single-crystal device. Considering that organic single-crystal inverters have not yet been explored, they are representative of potential candidates for use in high-performance complementary circuits.

  6. Advanced piezoelectric single crystal based actuators

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaoning; Rehrig, Paul W.; Hackenberger, Wesley S.; Smith, Edward; Dong, Shuxiang; Viehland, Dwight; Moore, Jim, Jr.; Patrick, Brian

    2005-05-01

    TRS is developing new actuators based on single crystal piezoelectric materials such as Pb(Zn1/3Nb2/3)1-xTixO3 (PZN-PT) and Pb(Mg1/3Nb2/3)x-1TixO3 (PMN-PT) which exhibit very high piezoelectric coefficients (d33 = 1800-2200 pC/N) and electromechanical coupling factors (k33 > 0.9), respectively, for a variety of applications, including active vibration damping, active flow control, high precision positioning, ultrasonic motors, deformable mirrors, and adaptive optics. The d32 cut crystal plate actuators showed d32 ~ -1600 pC/N, inter-digital electroded (IDE) plate actuators showed effective d33 ~ 1100 pC/N. Single crystal stack actuators with stroke of 10 μm-100 μm were developed and tested at both room temperature and cryogenic temperatures. Flextensional single crystal piezoelectric actuators with either stack driver or plate driver were developed with stroke 70 μm - > 250 μm. For large stroke cryogenic actuation (> 1mm), a single crystal piezomotor was developed and tested at temperature of 77 K-300K and stroke of > 10mm and step resolution of 20 nm were achieved. In order to demonstrate the significance of developed single crystal actuators, modeling on single crystal piezoelectric deformable mirrors and helicopter flap control using single crystal actuators were conducted and the modeling results show that more than 20 wavelength wavefront error could be corrected by using the single crystal deformable mirrors and +/- 5.8 ° flap deflection will be obtained for a 36" flap using single crystal stack actuators.

  7. Growth of a smooth CaF2 layer on NdFeAsO thin film

    NASA Astrophysics Data System (ADS)

    Sumiya, N.; Kawaguchi, T.; Chihara, M.; Tabuchi, M.; Ujihara, T.; Ichinose, A.; Tsukada, I.; Ikuta, H.

    2014-05-01

    We studied the method to grow a smooth and flat CaF2 layer on NdFeAsO thin films since CaF2 is a promising candidate material for the barrier layer of a superconducting junction. When the CaF2 layer was grown at 800°C, the surface was very rough because {111} facets had grown preferentially. However, when CaF2 was grown at lower temperatures and post-annealed in situ at 800°C for 30 min the facets were eliminated and a CaF2 layer with a smooth surface was obtained. Fluorine diffusing from CaF2 into NdFeAsO was observed when CaF2 was grown at high temperatures, but the diffusion was suppressed by lowering the growth temperature to 400°C.

  8. Defects in the reduced rutile single crystal

    NASA Astrophysics Data System (ADS)

    Lu, Tie-Cheng; Wu, Shao-Yi; Lin, Li-Bin; Zheng, Wen-Chen

    2001-09-01

    In this paper, the UV-VIS optical absorption spectra of oxidized and reduced rutile single crystals are measured by means of spectrophotometer and two absorption peaks around 430 and 730 nm are found. These spectral data are analyzed by using the crystal field theory. Based on these studies, we suggest that the reduced crystal contain the defect center [Ti 3+-O v], with the oxygen vacancy (O v) on one of the nearest neighbor sites of the central Ti 3+ ion.

  9. Effects of CaF2 vis-a-vis TiO2 as nucleating agent in SiO2-Al2O3-CaO glass-ceramics

    NASA Astrophysics Data System (ADS)

    Mukherjee, Debasis Pradip; Datta, Tanmoy; Das, Sudip Kumar

    2013-06-01

    The independent effects of CaF2 and TiO2 on the glass-ceramics based on SiO2-Al2O3-CaO system have been investigated. The crystallization behavior, microstructure, mechanical properties and chemical resistance of the glass-ceramics were studied by Differential Thermal Analysis (DTA), Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), FTIR, mechanical and chemical resistance measurements. The CaF2 containing glass ceramics are found to be much superior to that of TiO2 containing glass ceramics on the basis of sintering strength, mechanical and chemical properties.

  10. Single Crystals Grown Under Unconstrained Conditions

    NASA Astrophysics Data System (ADS)

    Sunagawa, Ichiro

    Based on detailed investigations on morphology (evolution and variation in external forms), surface microtopography of crystal faces (spirals and etch figures), internal morphology (growth sectors, growth banding and associated impurity partitioning) and perfection (dislocations and other lattice defects) in single crystals, we can deduce how and by what mechanism the crystal grew and experienced fluctuation in growth parameters through its growth and post-growth history under unconstrained condition. The information is useful not only in finding appropriate way to growing highly perfect and homogeneous single crystals, but also in deciphering letters sent from the depth of the Earth and the Space. It is also useful in discriminating synthetic from natural gemstones. In this chapter, available methods to obtain molecular information are briefly summarized, and actual examples to demonstrate the importance of this type of investigations are selected from both natural minerals (diamond, quartz, hematite, corundum, beryl, phlogopite) and synthetic crystals (SiC, diamond, corundum, beryl).

  11. Fatigue hardening in niobium single crystals.

    NASA Technical Reports Server (NTRS)

    Doner, M.; Diprimio, J. C.; Salkovitz, E. I.

    1973-01-01

    Nb single crystals of various orientations were cyclically deformed in tension-compression under strain control. At low strain amplitudes all crystals oriented for single slip and some oriented for multiple slip showed a two stage hardening. When present, the first stage was characterized with almost no cyclic work hardening. The rate of hardening in the second stage increased with strain amplitude and the amount of secondary slip. In crystals oriented for single slip kink bands developed on their side faces during rapid hardening stage which resulted in considerable amount of asterism in Laue spots. A cyclic stress-strain curve independent of prior history was found to exist which was also independent of crystal orientation. Furthermore, this curve differed only slightly from that of polycrystalline Nb obtained from data in literature.

  12. Characterization of zinc selenide single crystals

    NASA Technical Reports Server (NTRS)

    Gerhardt, Rosario A.

    1996-01-01

    ZnSe single crystals of high quality and low impurity levels are desired for use as substrates in optoelectronic devices. This is especially true when the device requires the formation of homoepitaxial layers. While ZnSe is commercially available, it is at present extremely expensive due to the difficulty of growing single crystal boules with low impurity content and the resultant low yields. Many researchers have found it necessary to heat treat the crystals in liquid Zn in order to remove the impurities, lower the resistivity and activate the photoluminescence at room temperature. The physical vapor transport method (PVT) has been successfully used at MSFC to grow many single crystals of II-VI semiconducting materials including ZnSe. The main goal at NASA has been to try to establish the effect of gravity on the growth parameters. To this effect, crystals have been grown vertically upwards or horizontally. Both (111) and (110) oriented ZnSe crystals have been obtained via unseeded PVT growth. Preliminary characterization of the horizontally grown crystals has revealed that Cu is a major impurity and that the low temperature photoluminescence spectra is dominated by the copper peak. The ratio of the copper peak to the free exciton peak is being used to determine variations in composition throughout the crystal. It was the intent of this project to map the copper composition of various crystals via photoluminescence first, then measure their electrical resistivity and capacitance as a function of frequency before proceeding with a heat treatment designed to remove the copper impurities. However, equipment difficulties with the photoluminescence set up, having to establish a procedure for measuring the electrical properties of the as-grown crystals and time limitations made us re-evaluate the project goals. Vertically grown samples designated as ZnSe-25 were chosen to be measured electrically since they were not expected to show as much variation in their composition through their cross-section as the horizontally grown samples.

  13. Oxygen Incorporation in Rubrene Single Crystals

    PubMed Central

    Mastrogiovanni, Daniel D. T.; Mayer, Jeff; Wan, Alan S.; Vishnyakov, Aleksey; Neimark, Alexander V.; Podzorov, Vitaly; Feldman, Leonard C.; Garfunkel, Eric

    2014-01-01

    Single crystal rubrene is a model organic electronic material showing high carrier mobility and long exciton lifetime. These properties are detrimentally affected when rubrene is exposed to intense light under ambient conditions for prolonged periods of time, possibly due to oxygen up-take. Using photoelectron, scanning probe and ion-based methods, combined with an isotopic oxygen exposure, we present direct evidence of the light-induced reaction of molecular oxygen with single crystal rubrene. Without a significant exposure to light, there is no reaction of oxygen with rubrene for periods of greater than a year; the crystal's surface (and bulk) morphology and chemical composition remain essentially oxygen-free. Grand canonical Monte Carlo computations show no sorbtion of gases into the bulk of rubrene crystal. A mechanism for photo-induced oxygen inclusion is proposed. PMID:24786311

  14. Neutron detection with single crystal organic scintillators

    SciTech Connect

    Zaitseva, N; Newby, J; Hamel, S; Carman, L; Faust, M; Lordi, V; Cherepy, N; Stoeffl, W; Payne, S

    2009-07-15

    Detection of high-energy neutrons in the presence of gamma radiation background utilizes pulse-shape discrimination (PSD) phenomena in organics studied previously only with limited number of materials, mostly liquid scintillators and single crystal stilbene. The current paper presents the results obtained with broader varieties of luminescent organic single crystals. The studies involve experimental tools of crystal growth and material characterization in combination with the advanced computer modeling, with the final goal of better understanding the relevance between the nature of the organic materials and their PSD properties. Special consideration is given to the factors that may diminish or even completely obscure the PSD properties in scintillating crystals. Among such factors are molecular and crystallographic structures that determine exchange coupling and exciton mobility in organic materials and the impurity effect discussed on the examples of trans-stilbene, bibenzyl, 9,10-diphenylanthracene and diphenylacetylene.

  15. Characterization of electron-beam induced damage structures in natural fluorite, CaF2, by analytical electron microscopy

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Freund, Friedemann; Allard, L. F.; Echer, C. J.

    1988-01-01

    This paper describes the damage structure induced in natural CaF2 by the electron beam when using TEM. The observed 10-20 nm periodic features with coherent fringe patterns and the pronounced loss of fluorine found after the TEM exposure of 100-line-oriented and 111-oriented sections of CaF2 provides support for the mechanism of damage by decomposition of CaF2 into 2F and Ca, with the Ca precipitates maintaining a close topotaxial relationship with the parent CaF2.

  16. Disappearing Enantiomorphs: Single Handedness in Racemate Crystals.

    PubMed

    Parschau, Manfred; Ernst, Karl-Heinz

    2015-11-23

    Although crystallization is the most important method for the separation of enantiomers of chiral molecules in the chemical industry, the chiral recognition involved in this process is poorly understood at the molecular level. We report on the initial steps in the formation of layered racemate crystals from a racemic mixture, as observed by STM at submolecular resolution. Grown on a copper single-crystal surface, the chiral hydrocarbon heptahelicene formed chiral racemic lattice structures within the first layer. In the second layer, enantiomerically pure domains were observed, underneath which the first layer contained exclusively the other enantiomer. Hence, the system changed from a 2D racemate into a 3D racemate with enantiomerically pure layers after exceeding monolayer-saturation coverage. A chiral bias in form of a small enantiomeric excess suppressed the crystallization of one double-layer enantiomorph so that the pure minor enantiomer crystallized only in the second layer. PMID:26440779

  17. Single crystals of metal solid solutions

    NASA Technical Reports Server (NTRS)

    Miller, J. F.; Austin, A. E.; Richard, N.; Griesenauer, N. M.; Moak, D. P.; Mehrabian, M. R.; Gelles, S. H.

    1974-01-01

    The following definitions were sought in the research on single crystals of metal solid solutions: (1) the influence of convection and/or gravity present during crystallization on the substructure of a metal solid solution; (2) the influence of a magnetic field applied during crystallization on the substructure of a metal solid solution; and (3) requirements for a space flight experiment to verify the results. Growth conditions for the selected silver-zinc alloy system are described, along with pertinent technical and experimental details of the project.

  18. Magnetoelasticity of Fe-Si single crystals

    SciTech Connect

    Xing, Q; Wu, D.; Lograsso, T. A.

    2010-04-20

    The tetragonal magnetostriction constant, (3/2){lambda}{sub 100}, of Fe-Si single crystals was measured and was found to be structure dependent. Similar to that of Fe-Ge single crystals, (3/2){lambda}{sub 100} is positive in the single phase A2 regime, becomes negative in the single phase D0{sub 3} regime, and changes from positive to negative between the two regimes. Short-range order in the A2 regime decreases the magnetostriction prior to the onset of long range order. In the single phase regions of both A2 and D0{sub 3}, thermal history does not show any obvious effect on the magnetostriction, contrary to that found for Fe-Ga alloys. However, in the regions of phase mixture involving A2, B2, and D0{sub 3} phases, quenching pushes the change in magnetostriction from positive to negative to higher Si contents.

  19. Growth of single-crystal gallium nitride

    NASA Technical Reports Server (NTRS)

    Clough, R.; Richman, D.; Tietjen, J.

    1970-01-01

    Use of ultrahigh purity ammonia prevents oxygen contamination of GaN during growth, making it possible to grow the GaN at temperatures as high as 825 degrees C, at which point single crystal wafers are deposited on /0001/-oriented sapphire surfaces.

  20. Single crystal tungsten kinetic energy penetrators

    SciTech Connect

    Cline, C.F.; Gogolewski, R.P.

    1992-05-01

    We have explored the terminal ballistic performance of single crystal tungsten as a kinetic energy penetrator. Scientific speculation as to the anticipated penetration performance and nature of the interaction between such a kinetic energy penetrator and semi-infinite and spaced metallic targets has led us to perform laboratory scale experiments and metallographic examinations of post-impact penetrator materials. The single tungsten crystals were ground into kinetic energy penetrators with the {l_angle}111{r_angle} and {l_angle}100{r_angle} crystal direction being coincident with the axis of symmetry of the penetrators. The crystals were electro-polished to their final diameter. We, compared the terminal performance at current ordnance speeds of {l_angle}111{r_angle} single crystal tungsten to 90W-10 (NiFe) cemented tungsten and textured pure tungsten in laboratory scale ballistic experiments against a spaced steel (triple) target at sixty-five degrees obliquity. We also compared the terminal performance of {l_angle}100{r_angle} and {l_angle}111{r_angle} single crystal tungsten with 90W-10 and 98W02 (NiFe) cemented tungsten and textured pure tungsten in laboratory scale ballistic experiments against monolithic 4340 alloy steel (HRC = 36) at normal impact. We radiographed the penetrators during the interactions with the targets, we recovered portions of the penetrators after the ballistic experiments, and we conducted metallographic examinations of penetrator remnants. From the radiographic records and the metallographic examinations, we drew conclusions pertaining to insights into the terminal interactions of the penetrators with the targets and suggestions as to improved compositions of the cemented tungsten penetrators.

  1. Single crystal tungsten kinetic energy penetrators

    SciTech Connect

    Cline, C.F.; Gogolewski, R.P.

    1992-05-01

    We have explored the terminal ballistic performance of single crystal tungsten as a kinetic energy penetrator. Scientific speculation as to the anticipated penetration performance and nature of the interaction between such a kinetic energy penetrator and semi-infinite and spaced metallic targets has led us to perform laboratory scale experiments and metallographic examinations of post-impact penetrator materials. The single tungsten crystals were ground into kinetic energy penetrators with the [l angle]111[r angle] and [l angle]100[r angle] crystal direction being coincident with the axis of symmetry of the penetrators. The crystals were electro-polished to their final diameter. We, compared the terminal performance at current ordnance speeds of [l angle]111[r angle] single crystal tungsten to 90W-10 (NiFe) cemented tungsten and textured pure tungsten in laboratory scale ballistic experiments against a spaced steel (triple) target at sixty-five degrees obliquity. We also compared the terminal performance of [l angle]100[r angle] and [l angle]111[r angle] single crystal tungsten with 90W-10 and 98W02 (NiFe) cemented tungsten and textured pure tungsten in laboratory scale ballistic experiments against monolithic 4340 alloy steel (HRC = 36) at normal impact. We radiographed the penetrators during the interactions with the targets, we recovered portions of the penetrators after the ballistic experiments, and we conducted metallographic examinations of penetrator remnants. From the radiographic records and the metallographic examinations, we drew conclusions pertaining to insights into the terminal interactions of the penetrators with the targets and suggestions as to improved compositions of the cemented tungsten penetrators.

  2. Thermoluminescent dosimetric properties of CaF2:Tm produced by combustion synthesis

    NASA Astrophysics Data System (ADS)

    de Vasconcelos, D. A. A.; Barros, V. S. M.; Khoury, H. J.; Asfora, V. K.; Oliveira, R. A. P.

    2016-04-01

    Calcium Fluoride is one of the oldest known thermoluminescent materials and is considered to be one of the most sensitive. This work presents the dosimetric properties results of CaF2:Tm produced by combustion synthesis. The X-ray diffraction confirmed that CaF2 was successfully produced. TL emission spectra, obtained using a Hammamatsu optical spectrometer, have the same lines of commercial CaF2:Tm, although transitions 3P0→3F4 (455 nm) and 1G4→3H6 (482 nm) are shown to be proportionally more intense. The deconvolution technique was employed and seven glow peaks were found similar to the commercial CaF2:Tm. A linear dose response curve was obtained for the range 0.1 mGy to 100 Gy, with the onset of a supralinear behavior at 50 Gy up to 100 Gy. The minimum measurable dose for gamma was around 100 μGy for a 6.0 mm diameter by 1.0 mm in thickness pellet. No significant fading was observed in 60 days of storage, within experimental uncertainties, showing that the main dosimetric peak is stable.

  3. Synthesis and characterization of CaF2:Dy nanophosphor for dosimetric application

    NASA Astrophysics Data System (ADS)

    Bhadane, Mahesh S.; Patil, B. J.; Dahiwale, S. S.; Kulkarni, M. S.; Bhatt, B. C.; Bhoraskar, V. N.; Dhole, S. D.

    2015-06-01

    In this work, nanoparticles (NPs) of dysprosium doped calcium fluoride (CaF2:Dy) 1 mol % has been prepared using simple chemical co-precipitation method and its thermoluminescence (TL) dosimetric properties were studied. The synthesized nanoparticle sample was characterized by X-ray diffraction (XRD) and the particle size of face centered cubic phase NPs was found around 30 nm. The shape, morphology and size were also observed by scanning electron microscopy (SEM). From gamma irradiated CaF2:Dy TL curves, it was observed that the total areas of all the glow peak intensities are dramatically changed with increase in annealing temperature. Further, TL glow curve of the CaF2:Dy at 183 °C annealed at 400 °C, showed very sharp linear response in the dose range from 1 Gy to 750 Gy. This linear response of CaF2:Dy nanophosphor as a function of gamma dose is very useful from radiation dosimetric point of view.

  4. Single crystal functional oxides on silicon

    PubMed Central

    Bakaul, Saidur Rahman; Serrao, Claudy Rayan; Lee, Michelle; Yeung, Chun Wing; Sarker, Asis; Hsu, Shang-Lin; Yadav, Ajay Kumar; Dedon, Liv; You, Long; Khan, Asif Islam; Clarkson, James David; Hu, Chenming; Ramesh, Ramamoorthy; Salahuddin, Sayeef

    2016-01-01

    Single-crystalline thin films of complex oxides show a rich variety of functional properties such as ferroelectricity, piezoelectricity, ferro and antiferromagnetism and so on that have the potential for completely new electronic applications. Direct synthesis of such oxides on silicon remains challenging because of the fundamental crystal chemistry and mechanical incompatibility of dissimilar interfaces. Here we report integration of thin (down to one unit cell) single crystalline, complex oxide films onto silicon substrates, by epitaxial transfer at room temperature. In a field-effect transistor using a transferred lead zirconate titanate layer as the gate insulator, we demonstrate direct reversible control of the semiconductor channel charge with polarization state. These results represent the realization of long pursued but yet to be demonstrated single-crystal functional oxides on-demand on silicon. PMID:26853112

  5. Single crystal functional oxides on silicon

    NASA Astrophysics Data System (ADS)

    Bakaul, Saidur Rahman; Serrao, Claudy Rayan; Lee, Michelle; Yeung, Chun Wing; Sarker, Asis; Hsu, Shang-Lin; Yadav, Ajay Kumar; Dedon, Liv; You, Long; Khan, Asif Islam; Clarkson, James David; Hu, Chenming; Ramesh, Ramamoorthy; Salahuddin, Sayeef

    2016-02-01

    Single-crystalline thin films of complex oxides show a rich variety of functional properties such as ferroelectricity, piezoelectricity, ferro and antiferromagnetism and so on that have the potential for completely new electronic applications. Direct synthesis of such oxides on silicon remains challenging because of the fundamental crystal chemistry and mechanical incompatibility of dissimilar interfaces. Here we report integration of thin (down to one unit cell) single crystalline, complex oxide films onto silicon substrates, by epitaxial transfer at room temperature. In a field-effect transistor using a transferred lead zirconate titanate layer as the gate insulator, we demonstrate direct reversible control of the semiconductor channel charge with polarization state. These results represent the realization of long pursued but yet to be demonstrated single-crystal functional oxides on-demand on silicon.

  6. Single crystal functional oxides on silicon.

    PubMed

    Bakaul, Saidur Rahman; Serrao, Claudy Rayan; Lee, Michelle; Yeung, Chun Wing; Sarker, Asis; Hsu, Shang-Lin; Yadav, Ajay Kumar; Dedon, Liv; You, Long; Khan, Asif Islam; Clarkson, James David; Hu, Chenming; Ramesh, Ramamoorthy; Salahuddin, Sayeef

    2016-01-01

    Single-crystalline thin films of complex oxides show a rich variety of functional properties such as ferroelectricity, piezoelectricity, ferro and antiferromagnetism and so on that have the potential for completely new electronic applications. Direct synthesis of such oxides on silicon remains challenging because of the fundamental crystal chemistry and mechanical incompatibility of dissimilar interfaces. Here we report integration of thin (down to one unit cell) single crystalline, complex oxide films onto silicon substrates, by epitaxial transfer at room temperature. In a field-effect transistor using a transferred lead zirconate titanate layer as the gate insulator, we demonstrate direct reversible control of the semiconductor channel charge with polarization state. These results represent the realization of long pursued but yet to be demonstrated single-crystal functional oxides on-demand on silicon. PMID:26853112

  7. Single crystal complex oxide on flexible substrate

    NASA Astrophysics Data System (ADS)

    Bakaul, Saidur; Serrao, Claudy; Lee, Oukjae; Salahuddin, Sayeef

    Flexible ferroelectrics are needed for various applications such as biocompatible energy harvesting and flexible memory. In this sector, most of the current research is focused on organic piezoelectric materials which have advantage of flexibility but suffers severely from poor energy conversion and generation efficiency. On the contrary, owing to very high electromechanical coupling factor (representing energy conversion efficiency) complex oxides are the best choices as energy harvesting and transduction elements, especially for transforming mechanical energies into electronic energy. Still their usage in energy harvesting is very limited mainly due to the stringent growth conditions of single crystals, high temperature needed for crystallization and lack of flexibility and stretchability. We have shown that single crystal Pb0.8Zr0.2TiO3 can be epitaxially transferred on flexible plastic substrate. The transferred PZT shows 70 uC/cm2 remnant polarization and dielectric constant over 100 even when it is bent. These results suggest the possibility of single crystal complex oxide devices on flexible platform.

  8. Effect of high-energy electron irradiation in an electron microscope column on fluorides of alkaline earth elements (CaF2, SrF2, and BaF2)

    NASA Astrophysics Data System (ADS)

    Nikolaichik, V. I.; Sobolev, B. P.; Zaporozhets, M. A.; Avilov, A. S.

    2012-03-01

    The effect of high-energy (150 eV) electron irradiation in an electron microscope column on crystals of fluorides of alkaline earth elements CaF2, SrF2, and BaF2 is studied. During structural investigations by electron diffraction and electron microscopy, the electron irradiation causes chemical changes in MF2 crystals such as the desorption of fluorine and the accumulation of oxygen in the irradiated area with the formation of oxide MO. The fluorine desorption rate increases significantly when the electron-beam density exceeds the threshold value of ˜2 × 103 pA/cm2). In BaF2 samples, the transformation of BaO into Ba(OH)2 was observed when irradiation stopped. The renewal of irradiation is accompanied by the inverse transformation of Ba(OH)2 into BaO. In the initial stage of irradiation of all MF2 compounds, the oxide phase is in the single-crystal state with a lattice highly matched with the MF2 matrix. When the irradiation dose is increased, the oxide phase passes to the polycrystalline phase. Gaseous products of MF2 destruction (in the form of bubbles several nanometers in diameter) form a rectangular array with a period of ˜20 nm in the sample.

  9. Experimental Investigation of Orthoenstatite Single Crystal Rheology

    NASA Astrophysics Data System (ADS)

    fraysse, G.; Girard, J.; Holyoke, C. W.; Raterron, P.

    2013-12-01

    The plasticity of enstatite, upper mantle second most abundant mineral, is still poorly constrained, mostly because of its high-temperature (T) transformation into proto- and clino-enstatite at low pressure (P). Mackwell (1991, GRL, 18, 2027) reports a pioneer study of protoenstatite (Pbcn) single-crystal rheology, but the results do not directly apply to the orthorhombic (Pbca) mantle phase. Ohuchi et al. (2011, Contri. Mineral. Petrol , 161, 961) carried out deformation experiments at P=1.3 GPa on oriented orthoenstatite crystals, investigating the activity of [001](100) and [001](010) dislocation slip systems; they report the first rheological laws for orthoenstatite crystals. However, strain and stress were indirectly constrained in their experiments, which questioned whether steady state conditions of deformation were achieved. Also, data reported for [001](100) slip system were obtained after specimens had transformed by twinning into clinoenstatite. We report here new data from deformation experiments carried out at high T and P ranging from 3.5 to 6.2 GPa on natural Fe-bearing enstatite single crystals, using the Deformation-DIA apparatus (D-DIA) that equipped the X17B2 beamline of the NSLS (NY, USA). The applied stress and specimen strain rates were measured in situ by X-ray diffraction and imaging techniques (e.g., Raterron & Merkel, 2009, J. Sync. Rad., 16, 748; Raterron et al., 2013, Rev. Sci. Instr., 84, 043906). Three specimen orientations were tested: i) with the compression direction along [101]c crystallographic direction, which forms a 45° angle with both [100] and [001] axes, to investigate [001](100) slip-system activity; ii) along [011]c direction to investigate [001](010) system activity; iii) and along enstatite [125] axis, to activate both slip systems together. Crystals were deformed two by two, to compare slip system activities, or against enstatite aggregates or orientated olivine crystals of known rheology for comparison. Run products microstructures were investigated by transmission electron microscopy. Despite a significant hardening with P, enstatite [001](100) slip system is found to be the easiest system at mantle P and T. Furthermore, orthoenstatite crystals exhibit a higher sensitivity to stress than olivine crystals, i.e. a higher n exponent in classical power laws. At the low stress level prevailing in the Earth mantle, enstatite crystals are thus harder than olivine crystals.

  10. Lightweight optical mirrors formed in single crystal substrate

    NASA Technical Reports Server (NTRS)

    Bly, Vincent T. (Inventor)

    2006-01-01

    This invention is directed to a process for manufacturing a lightweight mirror from a single crystal material, such as single crystal silicon. As a near perfect single crystal material, single crystal silicon has much lower internal stress than a conventional material. This means much less distortion of the optical surface during the light weighting process. After being ground and polished, a single crystal silicon mirror is light weighted by removing material from the back side using ultrasonic machining. After the light weighting process, the single crystal silicon mirror may be used as-is or further figured by conventional polishing or ion milling, depending on the application and the operating wavelength.

  11. The Creep of Single Crystals of Aluminum

    NASA Technical Reports Server (NTRS)

    Johnson, R D; Shober, F R; Schwope, A D

    1953-01-01

    The creep of single crystals of high-purity aluminum was investigated in the range of temperatures from room temperature to 400 F and at resolved-shear-stress levels of 200, 300, and 400 psi. The tests were designed in an attempt to produce data regarding the relation between the rate of strain and the mechanism of deformation. The creep data are analyzed in terms of shear strain rate and the results are discussed with regard to existing creep theories. Stress-strain curves were determined for the crystals in tinsel and constant-load-rate tests in the same temperature range to supplement the study of plastic deformation by creep with information regarding the part played by crystal orientation, differences in strain markings, and other variables in plastic deformation.

  12. SSME single crystal turbine blade dynamics

    NASA Technical Reports Server (NTRS)

    Moss, Larry A.; Smith, Todd E.

    1987-01-01

    A study was performed to determine the dynamic characteristics of the Space Shuttle main engine high pressure fuel turbopump (HPFTP) blades made of single crystal (SC) material. The first and second stage drive turbine blades of HPFTP were examined. The nonrotating natural frequencies were determined experimentally and analytically. The experimental results of the SC second stage blade were used to verify the analytical procedures. The analytical study examined the SC first stage blade natural frequencies with respect to crystal orientation at typical operating conditions. The SC blade dynamic response was predicted to be less than the directionally solidified blade. Crystal axis orientation optimization indicated the third mode interference will exist in any SC orientation.

  13. Shock Hugoniot of Single Crystal Copper

    SciTech Connect

    Chau, R; Stolken, J; Asoka-Kumar, P; Kumar, M; Holmes, N C

    2009-08-28

    The shock Hugoniot of single crystal copper is reported for stresses below 66 GPa. Symmetric impact experiments were used to measure the Hugoniots of three different crystal orientations of copper, [100], [110], [111]. The photonic doppler velocimetry (PDV) diagnostic was adapted into a very high precision time of arrival detector for these experiments. The measured Hugoniots along all three crystal directions were nearly identical to the experimental Hugoniot for polycrystalline Cu. The predicted orientation dependence of the Hugoniot from MD calculations was not observed. At the lowest stresses, the sound speed in Cu was extracted from the PDV data. The measured sound speeds are in agreement with values calculated from the elastic constants for Cu.

  14. Growth of Solid Solution Single Crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, Sandor L.; Szofran, Frank R.; Gillies, Donald C.; Watring, Dale A.

    1999-01-01

    The objective of the study is to establish the effects of processing semiconducting, solid solution, single crystals in a microgravity environment on the metallurgical, compositional, electrical, and optical characteristics of the crystals. The alloy system being investigated is the solid solution semiconductor Hg(1-x)Cd(x)Te, with x-values appropriate for infrared detector applications in the 8 to 14 mm wavelength region. Both melt and Te-solvent growth are being performed. The study consists of an extensive ground-based experimental and theoretical research effort followed by flight experimentation where appropriate. The ground-based portion of the investigation also includes the evaluation of the relative effectiveness of stabilizing techniques, such as applied magnetic fields, for suppressing convective flow during the melt growth of the crystals.

  15. Single-crystal gallium nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Goldberger, Joshua; He, Rongrui; Zhang, Yanfeng; Lee, Sangkwon; Yan, Haoquan; Choi, Heon-Jin; Yang, Peidong

    2003-04-01

    Since the discovery of carbon nanotubes in 1991 (ref. 1), there have been significant research efforts to synthesize nanometre-scale tubular forms of various solids. The formation of tubular nanostructure generally requires a layered or anisotropic crystal structure. There are reports of nanotubes made from silica, alumina, silicon and metals that do not have a layered crystal structure; they are synthesized by using carbon nanotubes and porous membranes as templates, or by thin-film rolling. These nanotubes, however, are either amorphous, polycrystalline or exist only in ultrahigh vacuum. The growth of single-crystal semiconductor hollow nanotubes would be advantageous in potential nanoscale electronics, optoelectronics and biochemical-sensing applications. Here we report an `epitaxial casting' approach for the synthesis of single-crystal GaN nanotubes with inner diameters of 30-200nm and wall thicknesses of 5-50nm. Hexagonal ZnO nanowires were used as templates for the epitaxial overgrowth of thin GaN layers in a chemical vapour deposition system. The ZnO nanowire templates were subsequently removed by thermal reduction and evaporation, resulting in ordered arrays of GaN nanotubes on the substrates. This templating process should be applicable to many other semiconductor systems.

  16. Macrodeformation Twins in Single-Crystal Aluminum.

    PubMed

    Zhao, F; Wang, L; Fan, D; Bie, B X; Zhou, X M; Suo, T; Li, Y L; Chen, M W; Liu, C L; Qi, M L; Zhu, M H; Luo, S N

    2016-02-19

    Deformation twinning in pure aluminum has been considered to be a unique property of nanostructured aluminum. A lingering mystery is whether deformation twinning occurs in coarse-grained or single-crystal aluminum at scales beyond nanotwins. Here, we present the first experimental demonstration of macrodeformation twins in single-crystal aluminum formed under an ultrahigh strain rate (∼10^{6}  s^{-1}) and large shear strain (200%) via dynamic equal channel angular pressing. Large-scale molecular dynamics simulations suggest that the frustration of subsonic dislocation motion leads to transonic deformation twinning. Deformation twinning is rooted in the rate dependences of dislocation motion and twinning, which are coupled, complementary processes during severe plastic deformation under ultrahigh strain rates. PMID:26943543

  17. Biomineralization of nanoscale single crystal hydroxyapatite.

    PubMed

    Omokanwaye, Tiffany; Wilson, Otto C; Gugssa, Ayelle; Anderson, Winston

    2015-11-01

    The chemical and physical characteristics of nanocrystalline hydroxyapatite particles which formed during the subcutaneous implantation of crab shell in Sprague-Dawley rats were studied using selected area electron diffraction (SAED) and high resolution transmission electron microscopy (HRTEM). The initial SAED characterization evidence indicated the presence of an amorphous calcium phosphate phase. The electron dense nanophase particles which formed in the wound healing zone displayed broad diffuse rings which usually indicate a low crystalline order or amorphous phase. High resolution transmission electron microscopy (HRTEM) revealed that these mineralized regions contained discrete single crystal particles less than 5nm in size. Micrographs taken at successively higher magnifications revealed very small nanoparticles with a hexagonal arrangement of ion channels with characteristic spacing of 0.54nm and 0.23nm. This study revealed that single crystal hydroxyapatite nanoparticles consisting of only a few unit cells formed via a biomineralization directed process. PMID:26249568

  18. Crack growth in single-crystal silicon

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Leipold, M. H.

    1986-01-01

    Crack growth in single-crystal silicon at room temperature in air was evaluated by double torsion (DT) load-relaxation method and monitored by acoustic emission (AE) technique. Both DT and AE methods indicated lack of subcritical crack growth in silicon. At the critical stress intensity factor, the crack front was found to be jumping several times in a 'mirror' region and then followed by fast crack growth in a 'hackle' region. Hackle marks were found to be associated with plastic deformation at the tip of the fast moving crack. No dislocation etch pits were found in the 'mirror' region, in which crack growth may result from interatomic bonds broken at the crack tip under stress without any plastic deformation. Acoustic emission appears to be spontaneously generated from both interatomic bonds broken and dislocation generation at the moving crack tip during the crack growth in single-crystal silicon.

  19. Optimizing Scale Adhesion on Single Crystal Superalloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Pint, Bruce A.

    2000-01-01

    To improve scale adhesion, single crystal superalloys have been desulfurized to levels below 1 ppmw by hydrogen annealing. A transition to fully adherent behavior has been shown to occur at a sulfur level of about 0.2 ppmw, as demonstrated for PWA 1480, PWA 1484, and Rene N5 single crystal superalloys in 1100-1150 C cyclic oxidation tests up to 2000 h. Small additions of yttrium (15 ppmw) also have been effective in producing adhesion for sulfur contents of about 5 ppmw. Thus the critical Y/S ratio required for adhesion was on the order of 3-to-1 by weight (1-to-1 atomic), in agreement with values estimated from solubility products for yttrium sulfides. While hydrogen annealing greatly improved an undoped alloy, yielding <= 0.01 ppmw S, it also produced benefits for Y-doped alloys without measurably reducing the sulfur content.

  20. Macrodeformation Twins in Single-Crystal Aluminum

    NASA Astrophysics Data System (ADS)

    Zhao, F.; Wang, L.; Fan, D.; Bie, B. X.; Zhou, X. M.; Suo, T.; Li, Y. L.; Chen, M. W.; Liu, C. L.; Qi, M. L.; Zhu, M. H.; Luo, S. N.

    2016-02-01

    Deformation twinning in pure aluminum has been considered to be a unique property of nanostructured aluminum. A lingering mystery is whether deformation twinning occurs in coarse-grained or single-crystal aluminum at scales beyond nanotwins. Here, we present the first experimental demonstration of macrodeformation twins in single-crystal aluminum formed under an ultrahigh strain rate (˜106 s-1 ) and large shear strain (200%) via dynamic equal channel angular pressing. Large-scale molecular dynamics simulations suggest that the frustration of subsonic dislocation motion leads to transonic deformation twinning. Deformation twinning is rooted in the rate dependences of dislocation motion and twinning, which are coupled, complementary processes during severe plastic deformation under ultrahigh strain rates.

  1. Crack Growth in Single-Crystal Silicon

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Leipold, M. H.

    1986-01-01

    Report describes experiments on crack growth in single-crystal silicon at room temperature in air. Crack growth in (111) cleavage plane of wafers, 50 by 100 by 0.76 mm in dimension, cut from Czochralski singlecrystal silicon studied by double-torsion load-relaxation method and by acoustic-emission measurements. Scanning electron microscopy and X-ray topography also employed. Results aid in design and fabrication of silicon photovoltaic and microelectronic devices.

  2. Ionic diffusion in single crystals of vermiculite

    SciTech Connect

    Maraqah, H.R.

    1993-01-01

    Novel guest-host compounds, based on single crystal vermiculite, were synthesized by diffusive techniques through a new hydrogen vermiculite. Single crystals were chosen because of the ease of characterization. An investigation of the ion transport properties of these single crystals was done to determine the mechanism of conductivity including the predominant charge carrier. Measurements of the ionic conductivity using impedance spectroscopy and X-ray lattice parameters of the ion-exchanged samples strongly suggest that the native cations and not protons are the major current carriers. Single crystals of hydrogen vermiculite were synthesized at room temperature by ion exchange from sodium-vermiculite using 1 molar acetic acid for a one week. Subsequent ion exchange with other cations was found to be much enhanced. Thus transition metals were exchanged in about a week in contrast to the need of several months using previous methods. The ionic conductivity of hydrogen vermiculite was measured and shown to be much lower than that of many other monovalent cations in the same host lattice. Its enthalpy of motion is also much lower. These marked differences suggest that protonic species do not play a significant role in charge transport in these layered materials. These materials were characterized by x-ray powder diffraction, thermogravimetric analysis and acid-base titration. Hydrogen-vermiculite was found to react with organic bases, like methylamine, ethylamine, n-butylamine, n-hexylamine, n-octylamine, n-decylamine, aniline, acrylamide, methacrylaminde, urea, 1,10phenanthroline, and 1,1phenanthroline ferrous sulfate complex, to undergo ion exchange with metal cations like sodium, zinc, copper(II) ions and polymerization reactions could be performed in the galleries of the structure like pyrrole and aniline. Its behavior was compared with that of powdered montmorillonite.

  3. Single crystal diffraction by synchrotron radiation

    SciTech Connect

    Kvick, A.

    1988-01-01

    The tunability and access to short wavelengths in combination with high intensity and the low divergence of the x-ray radiation produced by synchrotron storage rings opens up new and challenging fields for single crystal diffraction. These areas include microcrystal diffraction, studies of time-dependent phenomena, element selective diffraction, studies of materials under extreme conditions, solution of the crystallographic phase problem either by the use of the wavelength dependency of the anomalous scattering or by direct experimental determination of the phases. Single crystal diffraction from proteins and macromolecules using photographic film as a detection medium has already reached considerable maturity, but high-precision data collections using diffractometers at storage rings are still not routine because of the severe requirements for beam stability over extended periods of time. Development work at institutions such as the National Synchrotron Light Source, The Photon Factory, SSRL, CHESS, Hasylab and Daresbury, however, suggest that synchrotron single-crystal diffraction will become an essential part of the research at the synchrotron storage rings in the near future. 9 refs., 2 figs.

  4. Analysis of cladded uniaxial single crystal fibers

    NASA Astrophysics Data System (ADS)

    Dai, J. D.; Jen, C. K.

    Integrated optics (IO) devices have become an essential part of the telecommunication industry as signal processing devices and are finding new applications in other areas such as sensors. Recently single crystal fibers are emerging as an attractive component in the area of optical second harmonic generation and fiber lasers due to their long length, small diameter, light weight and high mechanical flexibility. It is expected that single crystal cladded fibers (SCCFs) consisting of both core and cladding regions can be used as key IO components, especially since they can be easily integrated with fiber optic systems. In this article a complete analysis for a uniaxial core uniaxial cladding step-index fiber is presented. Numerical results of a few lowest order modes are presented for weakly guiding LiNbO3 single crystal cladded fibers. It was found that the fundamental mode in a uniaxial fiber is not linearly polarized (LP) but has significant orthogonal components even though the fiber is under weak guidance and has no birefringence. It is concluded that the large anisotropy can cause the invalidity of the linear polarization approximation in a uniaxial fiber, but birefringence are not necessarily involved. The electrical lines of the fundamental modes for a uniaxial fiber are also considerably different from those of an isotropic one but eigenvalues and fractions of power in the core are very similar.

  5. Anisotropy of sapphire single crystal sputtering

    SciTech Connect

    Minnebaev, K. F.; Tolpin, K. A.; Yurasova, V. E.

    2015-08-15

    We have studied the spatial distribution of particles sputtered from the base (0001) plane of a sapphire single crystal with trigonal crystalline lattice (α-Al{sub 2}O{sub 3}) that can be considered a superposition of two hexagonal close packed (hcp) structures–the ideal sublattice of oxygen and a somewhat deformed sublattice of aluminum. It is established that the particles sputtered from the base plane of sapphire are predominantly deposited along the sides of an irregular hexagon with spots at its vertices. The patterns of spots have been also studied for sputtering of particles from the (0001) face of a zinc single crystal with the hcp lattice. The spots of sputtered Zn atoms are arranged at the vertices of concentric equilateral hexagons. In both cases, the observed anisotropy of sputtering is related to focused collisions (direct and assisted focusing) and the channeling process. The chemical composition of spots has been determined in various regions of sputtered sapphire deposition. The results are discussed in comparison to analogous earlier data for secondary ion emission from an α-Al{sub 2}O{sub 3} single crystal.

  6. Charge transport in single crystal organic semiconductors

    NASA Astrophysics Data System (ADS)

    Xie, Wei

    Organic electronics have engendered substantial interest in printable, flexible and large-area applications thanks to their low fabrication cost per unit area, chemical versatility and solution processability. Nevertheless, fundamental understanding of device physics and charge transport in organic semiconductors lag somewhat behind, partially due to ubiquitous defects and impurities in technologically useful organic thin films, formed either by vacuum deposition or solution process. In this context, single-crystalline organic semiconductors, or organic single crystals, have therefore provided the ideal system for transport studies. Organic single crystals are characterized by their high chemical purity and outstanding structural perfection, leading to significantly improved electrical properties compared with their thin-film counterparts. Importantly, the surfaces of the crystals are molecularly flat, an ideal condition for building field-effect transistors (FETs). Progress in organic single crystal FETs (SC-FETs) is tremendous during the past decade. Large mobilities ~ 1 - 10 cm2V-1s-1 have been achieved in several crystals, allowing a wide range of electrical, optical, mechanical, structural, and theoretical studies. Several challenges still remain, however, which are the motivation of this thesis. The first challenge is to delineate the crystal structure/electrical property relationship for development of high-performance organic semiconductors. This thesis demonstrates a full spectrum of studies spanning from chemical synthesis, single crystal structure determination, quantum-chemical calculation, SC-OFET fabrication, electrical measurement, photoelectron spectroscopy characterization and extensive device optimization in a series of new rubrene derivatives, motivated by the fact that rubrene is a benchmark semiconductor with record hole mobility ~ 20 cm2V-1s-1. With successful preservation of beneficial pi-stacking structures, these rubrene derivatives form high-quality single crystals and exhibit large ambipolar mobilities. Nevertheless, a gap remains between the theory-predicted properties and this preliminary result, which itself is another fundamental challenge. This is further addressed by appropriate device optimization, and in particular, contact engineering approach to improve the charge injection efficiencies. The outcome is not only the achievement of new record ambipolar mobilities in one of the derivatives, namely, 4.8 cm2V-1s-1 for holes and 4.2 cm2V-1s-1 for electrons, but also provides a comprehensive and rational pathway towards the realization of high-performance organic semiconductors. Efforts to achieve high mobility in other organic single crystals are also presented. The second challenge is tuning the transition of electronic ground states, i.e., semiconducting, metallic and superconducting, in organic single crystals. Despite an active research area since four decades ago, we aim to employ the electrostatic approach instead of chemical doping for reversible and systematic control of charge densities within the same crystal. The key material in this study is the high-capacitance electrolyte, such as ionic liquids (ILs), whose specific capacitance reaches ~ μF/cm2, thus allowing accumulation of charge carrier above 1013 cm-2 when novel transport phenomena, such as insulator-metal transition and superconductivity, are likely to occur. This thesis addresses the electrical characterization, device physics and transport physics in electrolyte-gated single crystals, in the device architecture known as the electrical double layer transistor (EDLT). A detailed characterization scheme is first demonstrated for accurate determination of several key parameters, e.g., carrier mobility and charge density, in organic EDLTs. Further studies, combining both experiments and theories, are devoted to understanding the unusual charge density dependent channel conductivity and gate-to-channel capacitance behaviors. In addition, Hall effect and temperature-dependent measurements are employed for more in-depth understandings of the transport mechanism in these unconventional devices at the extreme charge densities. Inspiringly, a truly metallic state is within reach of this type of device structure. Overall, this thesis demonstrates high mobility, high charge density and high performance organic single crystal transistors, with versatile fabrication techniques, comprehensive electrical and structural characterizations, well-developed theories and models and advanced transport measurements.

  7. A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization

    NASA Astrophysics Data System (ADS)

    Kissel, Patrick; Murray, Daniel J.; Wulftange, William J.; Catalano, Vincent J.; King, Benjamin T.

    2014-09-01

    In contrast to the wide number and variety of available synthetic routes to conventional linear polymers, the synthesis of two-dimensional polymers and unambiguous proof of their structure remains a challenge. Two-dimensional polymers—single-layered polymers that form a tiling network in exactly two dimensions—have potential for use in nanoporous membranes and other applications. Here, we report the preparation of a fluorinated hydrocarbon two-dimensional polymer that can be exfoliated into single sheets, and its characterization by high-resolution single-crystal X-ray diffraction analysis. The procedure involves three steps: preorganization in a lamellar crystal of a rigid monomer bearing three photoreactive arms, photopolymerization of the crystalline monomers by [4 + 4] cycloaddition, and isolation of individual two-dimensional polymer sheets. This polymer is a molecularly thin (~1 nm) material that combines precisely defined monodisperse pores of ~9 Å with a high pore density of 3.3 × 1013 pores cm-2. Atomic-resolution single-crystal X-ray structures of the monomer, an intermediate dimer and the final crystalline two-dimensional polymer were obtained and prove the single-crystal-to-single-crystal nature and molecular precision of the two-dimensional photopolymerization.

  8. Single crystal x-ray diffraction: optical and micro hardness studies on chalcone derivative single crystal

    NASA Astrophysics Data System (ADS)

    Crasta, Vincent; Ravindrachary, V.; Bhajantri, R. F.; Naveen, S.; Shridar, M. A.; Shashidhara Prasad, J.

    2005-08-01

    1-(4-methylphenyl)-3-(4- N, N dimethyl amino phenyl)-2-propen-1-one, a chalcone derivative nonlinear optical material has been synthesized by standard method. FT-IR and NMR spectral studies have been performed to confirm the molecular structure of the synthesized compound. The single crystals up to a dimension of 13 x 9 x 3 mm3 were grown by slow evaporation method. The grown crystals were transparent in the entire visible region and absorbs in the UV-region. The refractive index has been measured using a He-Ne laser. The grown crystals have been subjected to single crystal X-ray diffraction studies to determine the crystal structure and hence the cell parameters of the crystal. From this study it is found that this compound crystallizes in orthorhombic system with a space group P212121 and corresponding lattice parameters are, a = 7.3610(13) Å, b = 11.651(2) Å, c = 17.6490(17) Å. The Kurtz powder second harmonic generation test shows that the compound is a potential candidate for Photonic application. The micro hardness test on these crystals were carried out and the load dependence hardness was observed

  9. Guest exchange through single crystal-single crystal transformations in a flexible hydrogen-bonded framework.

    PubMed

    Xiao, Wenchang; Hu, Chunhua; Ward, Michael D

    2014-10-01

    A molecular framework based on guanidinium cations and 1,2,4,5-tetra(4-sulfonatophenyl)benzene (TSPB), an aromatic tetrasulfonate with nominal 2-fold and mirror symmetry, exhibits three crystallographically unique one-dimensional channels as a consequence of molecular symmetry and complementary hydrogen bonding between the guanidinium (G) ions and the sulfonate (S) groups of TSPB. Unlike previous GS frameworks, this new topology is sufficiently flexible to permit reversible release and adsorption of guest molecules in large single crystals through a cyclic shrinkage and expansion of the channels with retention of single crystallinity, as verified by single crystal X-ray diffraction. Moreover, the G4TSPB framework permits guest exchange between various guest molecules through SCSCTs as well as exchange discrimination based on the size and character of the three different channels. The exchange of guest molecules during single crystal-single crystal transformations (SCSCT), a rare occurrence for hydrogen-bonded frameworks, is rather fast, with diffusivities of approximately 10(-6) cm(2) s(-1). Rapid diffusion in the two channels having cross sections sufficient to accommodate two guest molecules can be explained by two-way or ring diffusion, most likely vacancy assisted. Surprisingly, rapid guest exchange also is observed in a smaller channel having a cross-section that accommodates only one guest molecule, which can only be explained by guest-assisted single-file unidirectional diffusion. Several single crystals of inclusion compounds can be realized only through guest exchange in the intact framework, suggesting an approach to the synthesis of single crystalline inclusion compounds that otherwise cannot be attained through direct crystallization methods. PMID:25248132

  10. Perpetually self-propelling chiral single crystals.

    PubMed

    Panda, Manas K; Run?evski, Tom?e; Husain, Ahmad; Dinnebier, Robert E; Naumov, Pan?e

    2015-02-11

    When heated, single crystals of enantiomerically pure D- and L-pyroglutamic acid (PGA) are capable of recurring self-actuation due to rapid release of latent strain during a structural phase transition, while the racemate is mechanically inactive. Contrary to other thermosalient materials, where the effect is accompanied by crystal explosion due to ejection of debris or splintering, the chiral PGA crystals respond to internal strain with unprecedented robustness and can be actuated repeatedly without deterioration. It is demonstrated that this superelasticity is attained due to the low-dimensional hydrogen-bonding network which effectively accrues internal strain to elicit propulsion solely by elastic deformation without disintegration. One of the two polymorphs (?) associated with the thermosalient phase transition undergoes biaxial negative thermal expansion (?a = -54.8(8) 10(-6) K(-1), ?c = -3.62(8) 10(-6) K(-1)) and exceptionally large uniaxial thermal expansion (?b = 303(1) 10(-6) K(-1)). This second example of a thermosalient solid with anomalous expansion indicates that the thermosalient effect can be expected for first-order phase transitions in soft crystals devoid of an extended 3D hydrogen-bonding network that undergo strongly anisotropic thermal expansion around the phase transition. PMID:25581716

  11. Dye sensitization of single crystal semiconductor electrodes.

    PubMed

    Spitler, Mark T; Parkinson, B A

    2009-12-21

    Even though investigations of dye-sensitized nanocrystalline semiconductors in solar cells has dominated research on dye-sensitized semiconductors over the past two decades, single crystal electrodes represent far simpler model systems for studying the sensitization process with a continuing train of studies dating back more than 40 years. Even today single crystal surfaces prove to be more controlled experimental models for the study of dye-sensitized semiconductors than the nanocrystalline substrates. This Account analyzes the scientific advances in the model sensitized single crystal systems that preceded the introduction of nanocrystalline semiconductor electrodes. It then follows the single crystal research to the present, illustrating both their striking simplicity of use and clarity of interpretation relative to nanocrystalline electrodes. Researchers have employed many electrochemical, photochemical, and scanning probe techniques for studying monolayer quantities of sensitizing dyes at specific crystallographic faces of different semiconductors. These methods include photochronocoulometry, electronic spectroscopy, and flash photolysis of dyes at potential-controlled semiconductor electrodes and the use of total internal reflection methods. In addition, we describe the preparation of surfaces of single crystal SnS(2) and TiO(2) electrodes to serve as reproducible model systems for charge separation at dye-sensitized solar cells. This process involves cleaving the SnS(2) electrodes and a photoelectrochemical surface treatment for TiO(2) that produces clean surfaces for sensitization (as verified by AFM) resulting in near unity yields for electron transfer from the molecular excited dyes into the conduction band. In recent experiments with ruthenium complexes at TiO(2) and with carboxylated cyanine dyes, we demonstrate the promise of this simple model for understanding dye-sensitized solar cells. In each of these systems, we can observe and analyze the complex photochemistry in a quantitative manner. Molecules of the well-known N3 ruthenium complex attach to four different crystallographic faces of anatase and rutile TiO(2) at different rates and to a different extent. With carboxylated cyanine dye sensitizers on these surfaces, molecular aggregation on the surface is a function of molecular structure and crystallographic face. In contrast with the N3 sensitizer these organic dyes undergo a photoinduced dimerization and desorption reaction when hydroquinone regenerators are present. With both classes of sensitizers, we demonstrate a new photochronocoulometric technique that quantifies the amount of attached dye on the electrode surface. We have completed initial experiments examining quantum dot sensitization of TiO(2) crystals, which could eventually lead to sensitizers with higher stability and absorption coefficients. Although these single crystal electrode models show promise for providing insights and predictive value in understanding the sensitization process, more sophisticated models will be needed to fully understand the charge transfer from the localized electronic states of the sensitizer to the extended states of the semiconductor. PMID:19924998

  12. Sponge-like nanoporous single crystals of gold

    NASA Astrophysics Data System (ADS)

    Khristosov, Maria Koifman; Bloch, Leonid; Burghammer, Manfred; Kauffmann, Yaron; Katsman, Alex; Pokroy, Boaz

    2015-11-01

    Single crystals in nature often demonstrate fascinating intricate porous morphologies rather than classical faceted surfaces. We attempt to grow such crystals, drawing inspiration from biogenic porous single crystals. Here we show that nanoporous single crystals of gold can be grown with no need for any elaborate fabrication steps. These crystals are found to grow following solidification of a eutectic composition melt that forms as a result of the dewetting of nanometric thin films. We also present a kinetic model that shows how this nano-porous single-crystalline structure can be obtained, and which allows the potential size of the porous single crystal to be predicted. Retaining their single-crystalline nature is due to the fact that the full crystallization process is faster than the average period between two subsequent nucleation events. Our findings clearly demonstrate that it is possible to form single-crystalline nano porous metal crystals in a controlled manner.

  13. Sponge-like nanoporous single crystals of gold.

    PubMed

    Khristosov, Maria Koifman; Bloch, Leonid; Burghammer, Manfred; Kauffmann, Yaron; Katsman, Alex; Pokroy, Boaz

    2015-01-01

    Single crystals in nature often demonstrate fascinating intricate porous morphologies rather than classical faceted surfaces. We attempt to grow such crystals, drawing inspiration from biogenic porous single crystals. Here we show that nanoporous single crystals of gold can be grown with no need for any elaborate fabrication steps. These crystals are found to grow following solidification of a eutectic composition melt that forms as a result of the dewetting of nanometric thin films. We also present a kinetic model that shows how this nano-porous single-crystalline structure can be obtained, and which allows the potential size of the porous single crystal to be predicted. Retaining their single-crystalline nature is due to the fact that the full crystallization process is faster than the average period between two subsequent nucleation events. Our findings clearly demonstrate that it is possible to form single-crystalline nano porous metal crystals in a controlled manner. PMID:26554856

  14. Bridgman growth of paratellurite single crystals

    NASA Astrophysics Data System (ADS)

    Veber, P.; Mangin, J.; Strimer, P.; Delarue, P.; Josse, C.; Saviot, L.

    2004-09-01

    The growth of paratellurite single crystals by the vertical-gradient freezing technique is reported for the first time. Boules of 120 mm long and 25 mm in diameter were obtained under a temperature gradient of 10C cm-1 and translation rates lower than 0.6 mm h-1. The spatial distribution of defects along the growth axis reveals a continuous evolution of the free convective fluid-flow regime as growth proceeds. Gas bubbles and dark inclusions rejected to the periphery in the upper part of the crystal are observed to lay preferentially in (1 0 0), (0 0 1), (1 1 bar 0) and (1 1 2) crystallographic planes. Among them, SEM and microprobe analyses evidenced the presence of metallic platinum, while micro-Raman experiments allowed to assess oxygen as being actually the gas content of occluded bubbles, originated at the crucible wall through Pt-induced dissociation of Te-O bonds.

  15. Cryogenic Temperature-Dependent Refractive Index Measurements of CaF2 and Infrasil 301

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas B.; Madison, TImothy J.

    2007-01-01

    In order to enable high quality lens design using calcium fluoride (CaF2) and Heraeus Infrasil 30 (Infrasil) at cryogenic temperatures, we have measured the absolute refractive index of prisms of these two materials using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, as a function of both wavelength and temperature. For CaF2, we report absolute refractive index and thermo-optic coefficient (dn/dT) at temperatures ranging from 25 to 300 K at wavelengths from 0.4 to 5.6 micrometers; for Infrasil we cover temperatures ranging from 35 to 300K and wavelengths from 0.4 to 3.6 micrometers. We investigate the interspecimen variability between measurements of two unrelated samples of CaF2, and we also compare our results for Infrasil to previous measurements fo Corning 7980 fused silica. Finally, we provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures and compare those results to other data found in the literature.

  16. Studies of the facetting of the polished (100) face of CaF 2

    NASA Astrophysics Data System (ADS)

    Deuster, V.; Schick, M.; Kayser, Th.; Dabringhaus, H.; Klapper, H.; Wandelt, K.

    2003-04-01

    The present paper deals with studies of the facetting of the polished (1 0 0) surface of CaF 2 during annealing and growth in UHV using low energy electron diffraction (LEED), atomic force microscopy (AFM), and transmission electron microscopy (TEM). First morphological modifications of the polished surfaces become visible at temperatures of T=874 K. Surfaces annealed at T=974 K exhibit a micro-roughening with pyramidal protrusions and corresponding depressions. LEED studies indicate the evolution of {1 1 1} facets. Reflexes from the (1 0 0) surface are not seen. After growth of about 660 monolayers of CaF 2 at T=1093 K and a saturation ratio S=33 from the vapor phase, larger pyramid-like or hip roof-like crystallites are developed. The results of AFM height profiles as well as of the LEED investigations indicate again the formation of {1 1 1} facets as proved by their angles of 54.7 o with the base (1 0 0) surface. This shows that the crystallites are homoepitaxially grown on the underlying CaF 2 substrate.

  17. Chemical vapor deposition of graphene single crystals.

    PubMed

    Yan, Zheng; Peng, Zhiwei; Tour, James M

    2014-04-15

    As a two-dimensional (2D) sp(2)-bonded carbon allotrope, graphene has attracted enormous interest over the past decade due to its unique properties, such as ultrahigh electron mobility, uniform broadband optical absorption and high tensile strength. In the initial research, graphene was isolated from natural graphite, and limited to small sizes and low yields. Recently developed chemical vapor deposition (CVD) techniques have emerged as an important method for the scalable production of large-size and high-quality graphene for various applications. However, CVD-derived graphene is polycrystalline and demonstrates degraded properties induced by grain boundaries. Thus, the next critical step of graphene growth relies on the synthesis of large graphene single crystals. In this Account, we first discuss graphene grain boundaries and their influence on graphene's properties. Mechanical and electrical behaviors of CVD-derived polycrystalline graphene are greatly reduced when compared to that of exfoliated graphene. We then review four representative pathways of pretreating Cu substrates to make millimeter-sized monolayer graphene grains: electrochemical polishing and high-pressure annealing of Cu substrate, adding of additional Cu enclosures, melting and resolidfying Cu substrates, and oxygen-rich Cu substrates. Due to these pretreatments, the nucleation site density on Cu substrates is greatly reduced, resulting in hexagonal-shaped graphene grains that show increased grain domain size and comparable electrical properties as to exfoliated graphene. Also, the properties of graphene can be engineered by its shape, thickness and spatial structure. Thus, we further discuss recently developed methods of making graphene grains with special spatial structures, including snowflakes, six-lobed flowers, pyramids and hexagonal graphene onion rings. The fundamental growth mechanism and practical applications of these well-shaped graphene structures should be interesting topics and deserves more attention in the near future. Following that, recent efforts in fabricating large single-crystal monolayer graphene on other metal substrates, including Ni, Pt, and Ru, are also described. The differences in growth conditions reveal different growth mechanisms on these metals. Another key challenge for graphene growth is to make graphene single crystals on insulating substrates, such as h-BN, SiO2, and ceramic. The recently developed plasma-enhanced CVD method can be used to directly synthesize graphene single crystals on h-BN substrates and is described in this Account as well. To summarize, recent research in synthesizing millimeter-sized monolayer graphene grains with different pretreatments, graphene grain shapes, metal catalysts, and substrates is reviewed. Although great advancements have been achieved in CVD synthesis of graphene single crystals, potential challenges still exist, such as the growth of wafer-sized graphene single crystals to further facilitate the fabrication of graphene-based devices, as well as a deeper understanding of graphene growth mechanisms and growth dynamics in order to make graphene grains with precisely controlled thicknesses and spatial structures. PMID:24527957

  18. Conduction mechanism of single-crystal alumina

    NASA Technical Reports Server (NTRS)

    Will, Fritz G.; Delorenzi, Horst G.; Janora, Kevin H.

    1992-01-01

    The fully guarded three-terminal technique was used to perform conductivity measurements on single-crystal alumina at temperatures of 400-1300 C. The conductivity was also determined as a function of time at various temperatures and applied fields. Further, the fractions of the current carried by Al and O ions (ionic transference numbers) were determined from long-term transference experiments in the temperature range 1100-1300 C. A mathematical model of the conduction mechanism is proposed, and model predictions are compared with experimental results.

  19. Triplet exciton dynamics in rubrene single crystals

    NASA Astrophysics Data System (ADS)

    Ryasnyanskiy, Aleksandr; Biaggio, Ivan

    2011-11-01

    The decay of the photoluminescence excited in rubrene single crystals by picosecond pulses is measured over 7 orders of magnitude and more than 4 time decades. We identify the typical decay dynamics due to triplet-triplet interaction. We show that singlet exciton fission and triplet fusion quantum yields in rubrene are both very large, and we directly determine a triplet exciton lifetime of 100±20 μs, which explains the delayed buildup of a large photocurrent that has been reported earlier for low excitation densities.

  20. Growth and dielectric parameters of DGS single crystal

    NASA Astrophysics Data System (ADS)

    Patel, Vimal; Vyas, S. M.; Patel, Piyush; Jani, M. P.; Pavagadhi, Himanshu

    2015-08-01

    Anhydrous Diglycine sulfate single crystals have been grown from the aqueous solutions, which is made from the glycerin and sulfuric acid at room temperature with pH values. This grown crystal now used to study some optical and dielectric properties. i.e. refractive index, density, molar refraction, Polarizability and Molar Polarization. These all parameter provides information about the DGS single crystals, which is used in various processes of dielectric presentation of DGS single crystals.

  1. High-performance metal-semiconductor-metal InGaN photodetectors using CaF2 as the insulator

    NASA Astrophysics Data System (ADS)

    Sang, Liwen; Liao, Meiyong; Koide, Yasuo; Sumiya, Masatomo

    2011-03-01

    The authors report on the high-performance metal-semiconductor-metal (MSM) photodetectors (PDs) fabricated on high-quality InGaN film by introducing a superwide bandgap calcium fluoride (CaF2) as the insulator. The dark current of the PDs with CaF2 is drastically reduced by six orders of magnitude compared with those without CaF2, resulting in an extremely high discrimination ratio larger than 106 between ultraviolet and visible light. The responsivity at 338 nm is as high as 10.4 A/W biased at 2 V, corresponding to a photocurrent gain around 40. The CaF2 layer behaves as an excellent insulator for the InGaN-based MSM-PDs in dark condition, while it allows the electron injection through the metal/semiconductor interface under ultraviolet illumination, contributing to the photocurrent gain without sacrificing the response time (˜ms).

  2. Thermodynamic forces in single crystals with dislocations

    NASA Astrophysics Data System (ADS)

    Van Goethem, Nicolas

    2014-06-01

    A simple model for the evolution of macroscopic dislocation regions in a single crystal is presented. This model relies on maximal dissipation principle within Kröner's geometric description of the dislocated crystal. Mathematical methods and tools from shape optimization theory provide equilibrium relations at the dislocation front, similarly to previous work achieved on damage modelling (J Comput Phys 33(16):5010-5044, 2011). The deformation state variable is the incompatible strain as related to the dislocation density tensor by a relation involving the Ricci curvature of the crystal underlying elastic metric. The time evolution of the model variables follows from a novel interpretation of the Einstein-Hilbert flow in terms of dislocation microstructure energy. This flow is interpreted as the dissipation of non-conservative dislocations, due to the climb mechanism, modelled by an average effect of mesoscopic dislocations moving normal to their glide planes by adding or removing points defects. The model equations are a fourth-order tensor parabolic equation involving the operator "incompatibility," here appearing as a tensorial counterpart of the scalar Laplacian. This work encompasses and generalizes results previously announced (C R Acad Sci Paris Ser I 349:923-927, 2011), with in addition a series of physical interpretations to give a meaning to the newly introduced concepts.

  3. Fabrication of crystals from single metal atoms.

    PubMed

    Barry, Nicolas P E; Pitto-Barry, Anaïs; Sanchez, Ana M; Dove, Andrew P; Procter, Richard J; Soldevila-Barreda, Joan J; Kirby, Nigel; Hands-Portman, Ian; Smith, Corinne J; O'Reilly, Rachel K; Beanland, Richard; Sadler, Peter J

    2014-01-01

    Metal nanocrystals offer new concepts for the design of nanodevices with a range of potential applications. Currently the formation of metal nanocrystals cannot be controlled at the level of individual atoms. Here we describe a new general method for the fabrication of multi-heteroatom-doped graphitic matrices decorated with very small, ångström-sized, three-dimensional (3D)-metal crystals of defined size. We irradiate boron-rich precious-metal-encapsulated self-spreading polymer micelles with electrons and produce, in real time, a doped graphitic support on which individual osmium atoms hop and migrate to form 3D-nanocrystals, as small as 15 Å in diameter, within 1 h. Crystal growth can be observed, quantified and controlled in real time. We also synthesize the first examples of mixed ruthenium-osmium 3D-nanocrystals. This technology not only allows the production of ångström-sized homo- and hetero-crystals, but also provides new experimental insight into the dynamics of nanocrystals and pathways for their assembly from single atoms. PMID:24861089

  4. Fabrication of crystals from single metal atoms

    PubMed Central

    Barry, Nicolas P. E.; Pitto-Barry, Anaïs; Sanchez, Ana M.; Dove, Andrew P.; Procter, Richard J.; Soldevila-Barreda, Joan J.; Kirby, Nigel; Hands-Portman, Ian; Smith, Corinne J.; O’Reilly, Rachel K.; Beanland, Richard; Sadler, Peter J.

    2014-01-01

    Metal nanocrystals offer new concepts for the design of nanodevices with a range of potential applications. Currently the formation of metal nanocrystals cannot be controlled at the level of individual atoms. Here we describe a new general method for the fabrication of multi-heteroatom-doped graphitic matrices decorated with very small, ångström-sized, three-dimensional (3D)-metal crystals of defined size. We irradiate boron-rich precious-metal-encapsulated self-spreading polymer micelles with electrons and produce, in real time, a doped graphitic support on which individual osmium atoms hop and migrate to form 3D-nanocrystals, as small as 15 Å in diameter, within 1 h. Crystal growth can be observed, quantified and controlled in real time. We also synthesize the first examples of mixed ruthenium–osmium 3D-nanocrystals. This technology not only allows the production of ångström-sized homo- and hetero-crystals, but also provides new experimental insight into the dynamics of nanocrystals and pathways for their assembly from single atoms. PMID:24861089

  5. Biaxial constitutive equation development for single crystals

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.

    1984-01-01

    Current gas turbine engines utilize large single crystal superalloy components in the hot section. Structural analysis of these components requires a valid stress strain temperature constitutive equation. The goal of the program described is to create one or more models and verify these models. A constitutive equation based on an assumed slip behavior of a single slip system was formulated, programmed, and debugged. Specifically, the basic theory for a model based on aggravating slip behavior on individual slip systems was formulated and programmed and some simulations were run using assumed values of constants. In addition, a formulation allowing strain controlled simulations was completed. An approach to structural analysis of the specimen was developed. This approach uses long tube consistancy conditions and finite elements specially formulated to take advantage of the symmetry of 100 oriented specimens.

  6. Cutting fluid study for single crystal silicon

    SciTech Connect

    Chargin, D.

    1998-05-05

    An empirical study was conducted to evaluate cutting fluids for Single Point Diamond Turning (SPDT) of single crystal silicon. The pH of distilled waster was adjusted with various additives the examine the effect of pH on cutting operations. Fluids which seemed to promote ductile cutting appeared to increase tool wear as well, an undesirable tradeoff. High Ph sodium hydroxide solutions showed promise for further research, as they yielded the best combination of reduced tool wear and good surface finish in the ductile regime. Negative rake tools were verified to improve the surface finish, but the negative rake tools used in the experiments also showed much higher wear than conventional 0{degree} rake tools. Effects of crystallographic orientation on SPDT, such as star patterns of fracture damage forming near the center of the samples, were observed to decrease with lower feedrates. Silicon chips were observed and photographed, indicative of a ductile materials removal process.

  7. Phase transition peculiarities in LAMOX single crystals

    NASA Astrophysics Data System (ADS)

    Voronkova, V. I.; Kharitonova, E. P.; Krasilnikova, A. E.; Kononkova, N. N.

    2008-05-01

    The series of oxide-ion-conducting La2Mo2O9 single crystals, undoped and doped with Ca, Bi, W, Nb, Zn and V (LAMOX), was grown by the flux method in the system La2O3-MoO3, which has allowed us to use polarization microscopy for the identification of phases. Phase transition peculiarities in the LAMOX family have been studied by polarization microscopy and calorimetry. The results demonstrate that both the monoclinic phase (α), which is stable at room temperature, and the metastable cubic phase (βms), or a mixture of these phases, may exist at room temperature, depending on the post-growth cooling rate and the nature of the dopant at low doping level. On heating, all of the quenched crystals undergo \\beta_{\\mathrm {ms}} \\to \\alpha (450 °C) and \\alpha \\to \\beta (500-560 °C) phase transitions (where β designates the stable cubic phase). At heavy doping levels, the high-temperature transition is suppressed and the crystals (La2Mo1.95V0.05Oy, La2Mo1.84W0.16Oy in our case) are found in the cubic state. The thermal peak near 450 °C at high doping level is not associated with a \\beta_{\\mathrm {ms}} \\to \\alpha transition and may be the result of defect association/dissociation in the cubic crystals. The thermal history, nature of the dopant and doping level are shown to influence the phase transition sequence and type.

  8. Growth and surface topography of WSe2 single crystal

    NASA Astrophysics Data System (ADS)

    Dixit, Vijay; Vyas, Chirag; Pataniya, Pratik; Jani, Mihir; Pathak, Vishal; Patel, Abhishek; Pathak, V. M.; Patel, K. D.; Solanki, G. K.

    2016-05-01

    Tungsten Di-Selenide belongs to the family of TMDCs showing their potential applications in the fields of Optoelectronics and PEC solar cells. Here in the present investigation single crystals of WSe2 were grown by Direct Vapour Transport Technique in a dual zone furnace having temperature difference of 50 K between the two zones. These single crystals were characterized by EDAX which confirms the stiochiometry of the grown crystals. Surface topography of the crystal was studied by optical micrograph showing the left handed spirals on the surface of WSe2 crystals. Single crystalline nature of the crystals was confirmed by SAED.

  9. Fabrication of IR-transparent microfluidic devices by anisotropic etching of channels in CaF2.

    PubMed

    Lehmkuhl, Brynson; Noblitt, Scott D; Krummel, Amber T; Henry, Charles S

    2015-11-21

    A simple fabrication method for generating infrared (IR) transparent microfluidic devices using etched CaF2 is demonstrated. To etch microfluidic channels, a poly(dimethylsiloxane) (PDMS) microfluidic device was reversibly sealed on a CaF2 plate and acid was pumped through the channel network to perform anisotropic etching of the underlying CaF2 surface. To complete the CaF2 microfluidic device, another CaF2 plate was sealed over the etched channel using a 700 nm thick layer of PDMS adhesive. The impact of different acids and their concentrations on etching was studied, with HNO3 giving the best results in terms of channel roughness and etch rates. Etch rate was determined at etching times ranging from 4-48 hours and showed a linear correlation with etching time. The IR transparency of the CaF2 device was established using a Fourier Transform IR microscope and showed that the device could be used in the mid-IR region. Finally, utility of the device was demonstrated by following the reaction of N-methylacetamide and D2O, which results in an amide peak shift to 1625 cm(-1) from 1650 cm(-1), using an FTIR microscope. PMID:26450455

  10. Polarization tomography of residual stresses in trigonal single crystals

    NASA Astrophysics Data System (ADS)

    Puro, A. E.; Karov, D. D.

    2015-11-01

    A way to determine residual stresses in cylindrical trigonal single crystals the optical axis of which is directed along the crystal axis is proposed. It is assumed that the residual deformation tensor is of thermal character and is characterized by fictive temperature. The measurements are performed in the middle part of a single crystal the length of which is much larger than its diameter; therefore, the stresses in this part do not vary along the single crystal axis. The reconstruction of stresses is based on determining characteristic parameters of polarized light by use of the tomographic method in the plane orthogonal to the single crystal axis.

  11. Single crystal alumina for dental implants and bone screws.

    PubMed

    Kawahara, H; Hirabayashi, M; Shikita, T

    1980-09-01

    When ground to a suitable form, flexural strength of single crystal alumina (Al2O3) decreases to as low as one third the strength of the intact crystal. This flexural strength decrease is, however, recovered by chemical etching at a high temperature to eliminate surface defects caused by grinding. By using this strength recovery treatment, various types of single crystal implants with fine structure were able to be designed. Four kinds of single crystal bone screws and single crystal dental implants of screw and anchor type were designed. Flexural strength and impact strength of the implants were measured. PMID:7349666

  12. Growing single crystals in silica gel

    NASA Technical Reports Server (NTRS)

    Rubin, B.

    1970-01-01

    Two types of chemical reactions for crystal growing are discussed. The first is a metathetical reaction to produce calcium tartrate tetrahydrate crystals, the second is a decomplexation reaction to produce cuprous chloride crystals.

  13. Energy deposition by heavy ions: Additivity of kinetic and potential energy contributions in hillock formation on CaF2

    NASA Astrophysics Data System (ADS)

    Wang, Y. Y.; Grygiel, C.; Dufour, C.; Sun, J. R.; Wang, Z. G.; Zhao, Y. T.; Xiao, G. Q.; Cheng, R.; Zhou, X. M.; Ren, J. R.; Liu, S. D.; Lei, Y.; Sun, Y. B.; Ritter, R.; Gruber, E.; Cassimi, A.; Monnet, I.; Bouffard, S.; Aumayr, F.; Toulemonde, M.

    2014-07-01

    Modification of surface and bulk properties of solids by irradiation with ion beams is a widely used technique with many applications in material science. In this study, we show that nano-hillocks on CaF2 crystal surfaces can be formed by individual impact of medium energy (3 and 5 MeV) highly charged ions (Xe22+ to Xe30+) as well as swift (kinetic energies between 12 and 58 MeV) heavy xenon ions. For very slow highly charged ions the appearance of hillocks is known to be linked to a threshold in potential energy (Ep) while for swift heavy ions a minimum electronic energy loss per unit length (Se) is necessary. With our results we bridge the gap between these two extreme cases and demonstrate, that with increasing energy deposition via Se the Ep-threshold for hillock production can be lowered substantially. Surprisingly, both mechanisms of energy deposition in the target surface seem to contribute in an additive way, which can be visualized in a phase diagram. We show that the inelastic thermal spike model, originally developed to describe such material modifications for swift heavy ions, can be extended to the case where both kinetic and potential energies are deposited into the surface.

  14. Energy deposition by heavy ions: additivity of kinetic and potential energy contributions in hillock formation on CaF2.

    PubMed

    Wang, Y Y; Grygiel, C; Dufour, C; Sun, J R; Wang, Z G; Zhao, Y T; Xiao, G Q; Cheng, R; Zhou, X M; Ren, J R; Liu, S D; Lei, Y; Sun, Y B; Ritter, R; Gruber, E; Cassimi, A; Monnet, I; Bouffard, S; Aumayr, F; Toulemonde, M

    2014-01-01

    Modification of surface and bulk properties of solids by irradiation with ion beams is a widely used technique with many applications in material science. In this study, we show that nano-hillocks on CaF2 crystal surfaces can be formed by individual impact of medium energy (3 and 5 MeV) highly charged ions (Xe(22+) to Xe(30+)) as well as swift (kinetic energies between 12 and 58 MeV) heavy xenon ions. For very slow highly charged ions the appearance of hillocks is known to be linked to a threshold in potential energy (Ep) while for swift heavy ions a minimum electronic energy loss per unit length (Se) is necessary. With our results we bridge the gap between these two extreme cases and demonstrate, that with increasing energy deposition via Se the Ep-threshold for hillock production can be lowered substantially. Surprisingly, both mechanisms of energy deposition in the target surface seem to contribute in an additive way, which can be visualized in a phase diagram. We show that the inelastic thermal spike model, originally developed to describe such material modifications for swift heavy ions, can be extended to the case where both kinetic and potential energies are deposited into the surface. PMID:25034006

  15. Ab initio calculations on the O2 3--Y3+ center in CaF2 and SrF2: its electronic structure and hyperfine constants

    NASA Astrophysics Data System (ADS)

    Botis, Sanda M.; Adriaens, Davy A.; Pan, Yuanming

    2009-01-01

    The O2 3--Y3+ center in fluorite-type structures (CaF2 and SrF2) has been investigated at the density functional theory (DFT) level using the CRYSTAL06 code. Our calculations were performed by means of the hybrid B3PW method in which the Hartree-Fock exchange is mixed with the DFT exchange functional, using Becke’s three parameter method, combined with the non-local correlation functionals by Perdew and Wang. Our calculations confirm the stability and the molecular character of the O2 3--Y3+ center. The unpaired electron is shown to be almost exclusively localized on and equally distributed between the two oxygen atoms that are separated by a bond distance of 2.47 Å in CaF2 and 2.57 Å in SrF2. The calculated 17O and 19F hyperfine constants for of the O2 3--Y3+ center are in good agreement with their corresponding experimental values reported by previous electron paramagnetic resonance and electron nuclear double resonance studies, while discrepancies are notable for the 89Y hyperfine constants.

  16. Experimental dynamic metamorphism of mineral single crystals

    USGS Publications Warehouse

    Kirby, S.H.; Stern, L.A.

    1993-01-01

    This paper is a review of some of the rich and varied interactions between non-hydrostatic stress and phase transformations or mineral reactions, drawn mainly from results of experiments done on mineral single crystals in our laboratory or our co-authors. The state of stress and inelastic deformation can enter explicitly into the equilibrium phase relations and kinetics of mineral reactions. Alternatively, phase transformations can have prominent effects on theology and on the nature of inelastic deformation. Our examples represent five types of structural phase changes, each of which is distinguished by particular mechanical effects. In increasing structural complexity, these include: (1) displacive phase transformations involving no bond-breaking, which may produce anomalous brittle behavior. A primary example is the a-?? quartz transition which shows anomalously low fracture strength and tertiary creep behavior near the transition temperature; (2) martensitic-like transformations involving transformation strains dominated by shear deformation. Examples include the orthoenstatite ??? clinoenstatite and w u ??rtzite ??? sphalerite transformations; (3) coherent exsolution or precipitation of a mineral solute from a supersaturated solid-solution, with anisotropy of precipitation and creep rates produced under nonhydrostatic stress. Examples include exsolution of corundum from MgO ?? nAl2O3 spinels and Ca-clinopyroxene from orthopyroxene; (4) order-disorder transformations that are believed to cause anomalous plastic yield strengthening, such as MgO - nAl2O3 spinels; and (5) near-surface devolatilization of hydrous silicate single-crystals that produces a fundamental brittleness thought to be connected with dehydration at microcracks at temperatures well below nominal macroscopic dehydration temperatures. As none of these interactions between single-crystal phase transformations and non-hydrostatic stress is understood in detail, this paper serves as a challenge to field structural geologists to test whether interactions of these types occur in nature, and to theoreticians to reach a deeper understanding of the complex relations between phase transformations, the local state of stress and associated deformation and deformation rates. ?? 1993.

  17. Solar cell structure incorporating a novel single crystal silicon material

    DOEpatents

    Pankove, Jacques I.; Wu, Chung P.

    1983-01-01

    A novel hydrogen rich single crystal silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystal silicon without out-gassing the hydrogen. The new material can be used to fabricate semiconductor devices such as single crystal silicon solar cells with surface window regions having a greater band gap energy than that of single crystal silicon without hydrogen.

  18. Mechanical properties of single crystal YAg

    SciTech Connect

    Russell, A.M.; Zhang, Z.; Lograsso, T.A.; Lo, C.C.H.; Pecharsky, A.O.; Morris, J.R.; Ye, Y.; Gschneidner, K.A.; Slager, A.J

    2004-08-02

    YAg, a rare earth-precious metal 'line compound', is one member of the family of B2 rare earth intermetallic compounds that exhibit high ductilities. Tensile tests of polycrystalline YAg specimens have produced elongations as high as 27% before failure. In the present work, single crystal specimens of YAg with the B2, CsCl-type crystal structure were tensile tested at room temperature. Specimens with a tensile axis orientation of [0 1 1-bar] displayed slip lines on the specimen faces corresponding to slip on the {l_brace}1 1 0{r_brace}<0 1 0> with a critical resolved shear stress of 13 MPa. A specimen with a tensile axis orientation of [1 0 0] showed no slip lines and began to crack at a stress of 300 MPa. The test specimens also displayed some slip lines whose position corresponded to slip on the {l_brace}1 0 0{r_brace}<0 1 0>; these slip lines were found near intersections of {l_brace}1 1 0{r_brace}<0 1 0> slip lines, which suggests that the {l_brace}1 0 0{r_brace}<0 1 0> may be a secondary slip system in YAg. Transmission electron microscope (TEM) examination of the crystals was performed after tensile testing and the dislocations observed were analyzed by g {center_dot} b=0 out of contrast analysis. This TEM analysis indicated that the predominant Burgers vector for the dislocations present was <1 1 1> with some <0 1 1> dislocations also being observed. This finding is inconsistent with the <0 1 0> slip direction determined by slip line analysis, and possible explanations for this surprising finding are presented.

  19. Transient thermoelectric effect in bismuth single crystals

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Tai, G. X.; Inoue, M.; Bidadi, H.

    1994-05-01

    The photo-induced transient thermoelectric effect (TTE) has been measured for bismuth single crystals along nearly the X and Y axes over the temperature range 6-300 K and time range 50 ns-2 ms. The decay curves of the TTE voltages are characterized by multiple relaxation processes for thermal diffusions of photogenerated electrons and holes. From the analysis of the relaxation times, we have evaluated the carrier mobilities and their effective masses of each carrier pocket at the L and T points based on the existing band model; in particular, we have found an additional hole pocket at the L point lying below the Fermi energy. This TTE technique is shown to be useful for understanding electronic properties of a multicarrier system.

  20. Method of Making Lightweight, Single Crystal Mirror

    NASA Technical Reports Server (NTRS)

    Bly, Vincent T. (Inventor)

    2015-01-01

    A method of making a mirror from a single crystal blank may include fine grinding top and bottom surfaces of the blank to be parallel. The blank may then be heat treated to near its melting temperature. An optical surface may be created on an optical side of the blank. A protector may be bonded to the optical surface. With the protector in place, the blank may be light weighted by grinding a non-optical surface of the blank using computer controlled grinding. The light weighting may include creating a structure having a substantially minimum mass necessary to maintain distortion of the mirror within a preset limit. A damaged layer of the non-optical surface caused by light weighting may be removed with an isotropic etch and/or repaired by heat treatment. If an oxide layer is present, the entire blank may then be etched using, for example, hydrofluoric acid. A reflecting coating may be deposited on the optical surface.

  1. Single-crystal AlN nanonecklaces.

    PubMed

    Wang, Huatao; Xie, Zhipeng; Wang, Yiguang; Yang, Weiyou; Zeng, Qingfeng; Xing, Feng; An, Linan

    2009-01-14

    Distinct single-crystal aluminum nitride nanonecklaces with uniform [1011] faceted beads are synthesized via catalyst-assisted nitriding of Al. The detailed morphology and structure of the nanonecklaces have been characterized. The growth process has been investigated by comparing the products obtained at different synthesis times. The results reveal that the formation of the nanonecklaces is via a process consisting of facet formation and bead unification. The formation of the [1011] facets is due to the presence of a liquid phase that lowers the surface tension of otherwise high-energy [1011] planes. The bead unification is driven by minimizing the energy contributed by surface energy and electrostatic energy. The unique morphology of the nanonecklaces could be useful for studying fundamental physical phenomena and fabricating nanodevices. PMID:19417280

  2. Low-cobalt single crystal Rene 150

    NASA Technical Reports Server (NTRS)

    Scheuermann, C. M.

    1982-01-01

    The effects of cobalt content on a single crystal version of the advanced, high gamma prime content turbine airfoil alloy Rene 150 were investigated. Cobalt contents under investigation include 12 wt.% (composition level of Rene 150), 6 wt.%, and 0 wt.%. Preliminary test results are presented and compared with the properties of standard DS Rene 150. DTA results indicate that the liquidus goes through a maximum of about 1435 C near 6 wt.% Co. The solidus remains essentially constant at 1390 C with decreasing Co content. The gamma prime solvus appears to go through a minimum of about 1235 C near 6 wt.% Co content. Preliminary as-cast tensile and stress rupture results are presented along with heat treat schedules and future test plans.

  3. Hydrogen Annealing Of Single-Crystal Superalloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Schaeffer, John C.; Murphy, Wendy

    1995-01-01

    Annealing at temperature equal to or greater than 2,200 degrees F in atmosphere of hydrogen found to increase ability of single-crystal superalloys to resist oxidation when subsequently exposed to oxidizing atmospheres at temperatures almost as high. Supperalloys in question are principal constituents of hot-stage airfoils (blades) in aircraft and ground-based turbine engines; also used in other high-temperature applications like chemical-processing plants, coal-gasification plants, petrochemical refineries, and boilers. Hydrogen anneal provides resistance to oxidation without decreasing fatigue strength and without need for coating or reactive sulfur-gettering constituents. In comparison with coating, hydrogen annealing costs less. Benefits extend to stainless steels, nickel/chromium, and nickel-base alloys, subject to same scale-adhesion and oxidation-resistance considerations, except that scale is chromia instead of alumina.

  4. Mechanical Behavior and Processing of DS and Single Crystal Superalloys

    NASA Astrophysics Data System (ADS)

    Khan, T.; Caron, P.; Nakagawa, Y. G.

    1986-07-01

    This article examines mechanical anisotropy of single crystals, cold work induced surface recrystallization on directionally solidified (DS) materials, and the effect of temperature gradient in a DS furnace on the fatigue strength of single crystals. It draws attention to the highly anisotropic creep behavior of some modern single crystal alloys showing, in particular, extremely poor creep resistance in the <111> orientation. Effects of surface recrystallization on the creep strength are evaluated. The present work incites further investigation on heat treatments and alloy chemistry modifications in order to reduce the effect of mechanical anisotropy. Great care should be taken during the "mechanical" handling of DS or single crystal components to avoid surface recrystallization. HIP'ing or high gradient solidification are shown to be two possible ways for enhancing the durability and the fatigue strength of single crystal superalloys. In certain liquid fuel rocket engine applications, where hydrogen embrittlement of single crystal turbopump blades can be of concern, both these techniques can be useful.

  5. Piezoelectric single crystals for ultrasonic transducers in biomedical applications

    PubMed Central

    Zhou, Qifa; Lam, Kwok Ho; Zheng, Hairong; Qiu, Weibao; Shung, K. Kirk

    2014-01-01

    Piezoelectric single crystals, which have excellent piezoelectric properties, have extensively been employed for various sensors and actuators applications. In this paper, the state–of–art in piezoelectric single crystals for ultrasonic transducer applications is reviewed. Firstly, the basic principles and design considerations of piezoelectric ultrasonic transducers will be addressed. Then, the popular piezoelectric single crystals used for ultrasonic transducer applications, including LiNbO3 (LN), PMN–PT and PIN–PMN–PT, will be introduced. After describing the preparation and performance of the single crystals, the recent development of both the single–element and array transducers fabricated using the single crystals will be presented. Finally, various biomedical applications including eye imaging, intravascular imaging, blood flow measurement, photoacoustic imaging, and microbeam applications of the single crystal transducers will be discussed. PMID:25386032

  6. Laser-induced damage resistance of UV coatings on fused silica and CaF2

    NASA Astrophysics Data System (ADS)

    Cho, Byungil; Lyu, Andy; Feldman, Mark

    2012-11-01

    The laser damage resistance (LDR) is a measure of the laser fluence that a coating can withstand without damaging when exposed to a large number of pulses. The LDR of UV coatings has been studied at 266 nm on two common substrate materials. Significantly higher values for the LDR have been measured for the same coating deposited on CaF2 substrate compared to fused silica substrates. Various parameters such as the surface roughness, the absorption and the subsurface damage of these quite different materials were measured in an effort to explain the performance difference. The laser damage morphologies of the coatings were also studied.

  7. Ultratough CVD single crystal diamond and three dimensional growth thereof

    DOEpatents

    Hemley, Russell J.; Mao, Ho-kwang; Yan, Chih-shiue

    2009-09-29

    The invention relates to a single-crystal diamond grown by microwave plasma chemical vapor deposition that has a toughness of at least about 30 MPa m.sup.1/2. The invention also relates to a method of producing a single-crystal diamond with a toughness of at least about 30 MPa m.sup.1/2. The invention further relates to a process for producing a single crystal CVD diamond in three dimensions on a single crystal diamond substrate.

  8. Formation of curved micrometer-sized single crystals.

    PubMed

    Koifman Khristosov, Maria; Kabalah-Amitai, Lee; Burghammer, Manfred; Katsman, Alex; Pokroy, Boaz

    2014-05-27

    Crystals in nature often demonstrate curved morphologies rather than classical faceted surfaces. Inspired by biogenic curved single crystals, we demonstrate that gold single crystals exhibiting curved surfaces can be grown with no need of any fabrication steps. These single crystals grow from the confined volume of a droplet of a eutectic composition melt that forms via the dewetting of nanometric thin films. We can control their curvature by controlling the environment in which the process is carried out, including several parameters, such as the contact angle and the curvature of the drops, by changing the surface tension of the liquid drop during crystal growth. Here we present an energetic model that explains this phenomenon and predicts why and under what conditions crystals will be forced to grow with the curvature of the microdroplet even though the energetic state of a curved single crystal is very high. PMID:24694217

  9. Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials

    NASA Astrophysics Data System (ADS)

    Lyapin, A. A.; Fedorov, P. P.; Garibin, E. A.; Malov, A. V.; Osiko, V. V.; Ryabochkina, P. A.; Ushakov, S. N.

    2013-08-01

    The laser quality transparent СаF2:Tm fluoride ceramics has been prepared by hot forming. Comparative study of absorption and emission spectra of СаF2:Tm (4 mol.% TmF3) ceramic and single crystal samples demonstrated that these materials possess almost identical spectroscopic properties. Laser oscillations of СаF2:Tm ceramics were obtained at 1898 nm under diode pumping, with the slope efficiency of 5.5%. Also, the continuous-wave (CW) laser have been obtained for СаF2:Tm single crystal at 1890 nm pumped by a diode laser was demonstrated.

  10. Large single domain 123 material produced by seeding with single crystal rare earth barium copper oxide single crystals

    DOEpatents

    Todt, Volker; Miller, Dean J.; Shi, Donglu; Sengupta, Suvankar

    1998-01-01

    A method of fabricating bulk YBa.sub.2 Cu.sub.3 O.sub.x where compressed powder oxides and/or carbonates of Y and Ba and Cu present in mole ratios to form YBa.sub.2 Cu.sub.3 O.sub.x are heated in the presence of a Nd.sub.1+x Ba.sub.2-x Cu.sub.3 O.sub.y seed crystal to a temperature sufficient to form a liquid phase in the YBa.sub.2 Cu.sub.3 O.sub.x while maintaining the seed crystal solid. The materials are slowly cooled to provide a YBa.sub.2 Cu.sub.3 O.sub.x material having a predetermined number of domains between 1 and 5. Crack-free single domain materials can be formed using either plate shaped seed crystals or cube shaped seed crystals with a pedestal of preferential orientation material.

  11. Facile and controllable synthesis of monodisperse CaF2 and CaF2:Ce3+/Tb3+ hollow spheres as efficient luminescent materials and smart drug carriers.

    PubMed

    Zhang, Cuimiao; Li, Chunxia; Peng, Chong; Chai, Ruitao; Huang, Shanshan; Yang, Dongmei; Cheng, Ziyong; Lin, Jun

    2010-05-17

    Highly uniform and well-dispersed CaF(2) hollow spheres with tunable particle size (300-930 nm) have been synthesized by a facile hydrothermal process. Their shells are composed of numerous nanocrystals (about 40 nm in diameter). The morphology and size of the CaF(2) products are strongly dependent on experimental parameters such as reaction time, pH value, and organic additives. The size of the CaF(2) hollow spheres can be controlled from 300 to 930 nm by adjusting the pH value. Nitrogen adsorption-desorption measurements suggest that mesopores (av 24.6 nm) exist in these hollow spheres. In addition, Ce(3+)/Tb(3+)-codoped CaF(2) hollow spheres can be prepared similarly, and show efficient energy transfer from Ce(3+) to Tb(3+) and strong green photoluminescence of Tb(3+) (541 nm, (5)D(4)-->(7)F(5) transition of Tb(3+), the highest quantum efficiency reaches 77%). The monodisperse CaF(2):Ce(3+)/Tb(3+) hollow spheres also have desirable properties as drug carriers. Ibuprofen-loaded CaF(2):Ce(3+)/Tb(3+) samples still show green luminescence of Tb(3+) under UV irradiation, and the emission intensity of Tb(3+) in the drug-carrier system varies with the released amount of ibuprofen, so that drug release can be easily tracked and monitored by means of the change in luminescence intensity. The formation mechanism and luminescent and drug-release properties were studied in detail. PMID:20391571

  12. Observation of Lueders bands in single crystals

    SciTech Connect

    Neuhaeuser, H.; Hampel, A. . Inst. fuer Metallphysik und Nukleare Festkoerperphysik)

    1993-11-01

    Depending on specimen and deformation conditions, various kinds of propagating deformation fronts have been observed, mostly in metallic alloys where generation and motion of dislocations is obstructed and the correlated motion of dislocation groups is favored. In fine-grained polycrystals of bcc and fcc alloys at ambient temperature Lueders bands propagate along the specimen length during the early stage of deformation at constant applied load. Here the incompatibility stresses between adjacent grains play an important role in the propagation process. At elevated temperatures, when the solute obstacles attain a certain mobility and can accumulate in the stress field of the dislocations, Portevin-Le Chatelier (PLC) bands of different kinds propagate repeatedly during the characteristically serrated and in the average rising stress course. Here the breakaway process of solute-aged dislocations from their solute atmosphere and their rapid multiplication enters as an additional microprocess. In single crystals the latter phenomenon has been studied only rarely. While in the lower temperature part of the PLC regime, the PLC band corresponds to a repeatedly advancing Lueders front starting at the positions where it stopped at the end of the previous load drop, in the higher temperature part the correlated group of slip bands in a new plastic burst appears randomly somewhere on the specimen length.

  13. Advanced single crystal for SSME turbopumps

    NASA Technical Reports Server (NTRS)

    Fritzemeier, L. G.

    1989-01-01

    The objective of this program was to evaluate the influence of high thermal gradient casting, hot isostatic pressing (HIP) and alternate heat treatments on the microstructure and mechanical properties of a single crystal nickel base superalloy. The alloy chosen for the study was PWA 1480, a well characterized, commercial alloy which had previously been chosen as a candidate for the Space Shuttle Main Engine high pressure turbopump turbine blades. Microstructural characterization evaluated the influence of casting thermal gradient on dendrite arm spacing, casting porosity distribution and alloy homogeneity. Hot isostatic pressing was evaluated as a means of eliminating porosity as a preferred fatigue crack initiation site. The alternate heat treatment was chosen to improve hydrogen environment embrittlement resistance and for potential fatigue life improvement. Mechanical property evaluation was aimed primarily at determining improvements in low cycle and high cycle fatigue life due to the advanced processing methods. Statistically significant numbers of tests were conducted to quantitatively demonstrate life differences. High thermal gradient casting improves as-cast homogeneity, which facilitates solution heat treatment of PWA 1480 and provides a decrease in internal pore size, leading to increases in low cycle and high cycle fatigue lives.

  14. Microscale Laser Peen Forming of Single Crystal

    SciTech Connect

    Wang,Y.; Fan, Y.; Kysar, J.; Vukelic, S.; Yao, Y.

    2008-01-01

    As the result of quickly increased requirement in many industrial products resulting from microtechnology, laser thermal microforming and microsurface treatment [microscale laser shock peening (?LSP)] have been well studied. By combining the beneficial effects of these two processes with a controlled bending deformation, microscale laser peen forming (?LPF) attracts more attention recently since it not only improves the fatigue life of the material but also shapes microscale metallic parts at the same time. In the present study, ?LSP of single crystal aluminum was presented to study anisotropic material response. Local plastic deformation was characterized by lattice rotation measured through electron backscatter diffraction. Residual stress distributions of both sides of a peened sample, characterized by x-ray microdiffraction, were compared with the results obtained from finite element method simulation. ?LPF anisotropic behavior was investigated in three effective slip systems via both the anisotropic slip line theory and numerical method. Also, the work hardening effect resulted from self-hardening, and latent hardening was analyzed through comparing the results with and without considering hardening.

  15. Angular-dependent vortex pinning mechanism and magneto-optical characterizations of FeSe0.5Te0.5 thin films grown on CaF2 substrates

    NASA Astrophysics Data System (ADS)

    Yuan, Pusheng; Xu, Zhongtang; Ma, Yanwei; Sun, Yue; Tamegai, Tsuyoshi

    2016-03-01

    Magneto-optical (MO) characterizations and the angular-dependent critical current density (J c(Θ)) of epitaxial FeSe0.5Te0.5 (FST) thin films grown on CaF2 single-crystalline substrates were performed. The MO images show typical rooftop patterns in the remanent state from which a large, homogeneous, and almost isotropic self-field J c over 2 × 106 A cm-2 at 8 K was obtained. The vortex pinning mechanism is investigated measuring the magnetic field and angular-dependent critical current density J c. The FST films exhibit small anisotropy of J c in the whole applied magnetic field range below 15 K. The Dew-Hughes model and angular scaling analyses prove that pointlike normal cores, which are distributed randomly in the FST film, dominate the pinning in the FST films on CaF2 substrates.

  16. A Quick Method for Determining the Density of Single Crystals.

    ERIC Educational Resources Information Center

    Roman, Pascual; Gutierrez-Zorrilla, Juan M.

    1985-01-01

    Shows how the Archimedes method is used to determine the density of a single crystal of ammonium oxalate monohydrate. Also shows how to calculate the density of other chemicals when they are available as single crystals. Experimental procedures and materials needed are included. (JN)

  17. Thermally induced single crystal to single crystal transformation leading to polymorphism

    NASA Astrophysics Data System (ADS)

    Saha, Rajat; Biswas, Susobhan; Dey, Sanjoy Kumar; Sen, Arijit; Roy, Madhusudan; Steele, Ian M.; Dey, Kamalendu; Ghosh, Ashutosh; Kumar, Sanjay

    2014-09-01

    The robust complex [La(1,10-phen)2(NO3)3] (1,10-phen = 1,10-phenanthroline) exhibits thermally induced single crystal to single crystal transformation from one polymorphic phase to another. The complex crystallizes in monoclinic C2/c space group with C2 molecular symmetry at 293 K while at 100 K it shows P21/c space group with C1 molecular symmetry. Supramolecular investigation shows that at 100 K the complex forms 2D achiral sheets whereas at 293 K forms two different homochiral 2D sheets. Low temperature DSC analysis indicates that this structural transformation occurs at 246 K and also this transformation is reversible in nature. We have shown that thermally induced coherent movement of ligands changes the molecular symmetry of the complex and leads to polymorphism. Photoluminescence property of complex has been studied in both solid state and in methanolic solution at room temperature. The effect of the presence low-lying LUMO orbital of π-character in the complex is elucidated by theoretical calculation using DFT method.

  18. Semiconductor single crystal external ring resonator cavity laser and gyroscope

    SciTech Connect

    Spitzer, M.P.

    1993-08-31

    A ring laser is described comprising: a semiconductor single crystal external ring resonator cavity having a plurality of reflecting surfaces defined by the planes of the crystal and establishing a closed optical path; and a discrete laser medium disposed in said semiconductor single crystal external ring resonator cavity for generating coherent light in said cavity, wherein said resonator cavity is decoupled from the laser medium.

  19. X-ray excited optical luminescence of CaF2: A candidate for UV water treatment

    NASA Astrophysics Data System (ADS)

    Chen, W.; Ma, L.; Schaeffer, R.; Hoffmeyer, R.; Sham, T.; Belev, G.; Kasap, S.; Sammynaiken, R.

    2015-06-01

    Secondary optical processes are becoming more and more important in health and environmental applications. Ultraviolet produced from secondary emission or scintillation can damage DNA by direct photoexcitation or by the creation of reactive oxygen species. X-ray Excited Optical Luminescence (XEOL) and Time Resolved XEOL (TRXEOL) results for the fast emitter, CaF2:ZnO, that have been treated by heating in air and in vacuum, show that the scintillation from the Self Trapped Exciton (STE) emission of CaF2 at 282 nm is dominated by a slow process (>100 ns). A faster but weaker 10 ns component is also present. The ZnO and CaF2 show independent emission. The ZnO bandgap emission at 390 nm has dominant lifetimes of less than 1 ns.

  20. Estimation Model for Electrical Conductivity of CaF2-CaO-Al2O3 Slags

    NASA Astrophysics Data System (ADS)

    Shi, Guan-yong; Zhang, Ting-an; Dou, Zhi-he; Niu, Li-ping

    2016-04-01

    Electrical conductivity is one of the most important properties of molten slags. It has an important influence on process parameter selection of the electroslag remelting process. In the present work, a new model for estimating electrical conductivity of high-temperature slags has been proposed via calculating the conductivity by electrical conductivity of pure substances and interaction parameters between the different components in the slag has been proposed. In this model, the Arrhenius law is used to describe the relationship between electrical conductivity and temperature of slags. This model has been successfully applied to the CaF2-Al2O3, CaF2-CaO, and CaO-Al2O3, as well as CaF2-CaO-Al2O3 systems, and the calculated results are in good agreement with the measured values.

  1. Fluoride rinse effect on retention of CaF2 formed on enamel/dentine by fluoride application.

    PubMed

    Falcão, Amanda; Masson, Nadia; Leitão, Tarcísio Jorge; Botelho, Juliana Nunes; Ferreira-Nóbilo, Naiara de Paula; Tabchoury, Cínthia Pereira Machado; Tenuta, Livia Maria Andaló; Cury, Jaime Aparecido

    2016-01-01

    Calcium fluoride-like materials ("CaF2") formed on dental surfaces after professional fluoride application are unstable in the oral environment but can be retained longer with a daily NaF mouthrinse. We tested the effect of twice daily 0.05% NaF rinses on the retention of "CaF2" formed on enamel and dentine after applying acidulated phosphate fluoride (APF). "CaF2" formed on enamel/dentine by APF application significantly decreased after exposure to artificial saliva and the 0.05% NaF rinse was ineffective to avoid this reduction. These findings suggest that the combination of APF and 0.05% NaF is not clinically relevant, either for caries or dental hypersensitivity. PMID:27050937

  2. Hopping conduction in polydiacetylene single crystals

    NASA Astrophysics Data System (ADS)

    Aleshin, A. N.; Lee, J. Y.; Chu, S. W.; Lee, S. W.; Kim, B.; Ahn, S. J.; Park, Y. W.

    2004-06-01

    The charge transport in polydiacetylene quasi-1D single crystals (PDA-PTS) has been studied as a function of temperature, electric and magnetic fields. In the Ohmic regime the temperature dependence of the resistivity, ρ (T) , is characteristic of hopping conduction with a crossover at T<50 K from activated ρ (T) = ρ0 exp [ ( EA / kB T ) ] , with EA ˜13 19 meV to variable-range hopping transport ρ (T) = ρ0 exp [ ( T0 /T ) p ] , with p˜0.65 0.70 . At modest electric fields the resistivity depends as ρ ( E,T ) =ρ ( 0,T ) exp ( -eEL/ kB T ) , where the characteristic hopping length changes as L˜ T-m with m˜0.5 at T>50 K and m˜0.75 at T<50 K . At high electric fields the low temperature current becomes temperature independent and follows: I (E) = I0 exp [ - ( E0 /E )0.5 ] , which corresponds to the regime of activation-free phonon-emission-assisted hopping conduction. Magnetoresistance at T<4.2 K is negative and depends on magnetic fields H as In [ ρ ( H,T ) /ρ ( 0,T ) ] ˜ H0.5 . The results demonstrate that at low temperature the charge transport is mainly supported due to quasi-1D variable-range hopping with the influence of Coulomb interactions. At higher temperatures the thermally activated nearest-neighbor transport by small polarons is dominant.

  3. Spectroscopic Studies of Pulsed-Laser-Induced Damage Sites in Heated CaF2 Crystals

    SciTech Connect

    Bozlee, Brian J.; Exarhos, Gregory J.; Teel, Randy W.

    1999-09-01

    Proceedings contain all papers presented at the 13th Symposium on Optical Materials for High-Powered Lasers, held at the National Institute of Standards and Technology in Boulder, CO, 28 Sept. - 1 Oct. 1998.

  4. Study of single crystals of metal solid solutions

    NASA Technical Reports Server (NTRS)

    Doty, J. P.; Reising, J. A.

    1973-01-01

    The growth of single crystals of relatively high melting point metals such as silver, copper, gold, and their alloys was investigated. The purpose was to develop background information necessary to support a space flight experiment and to generate ground based data for comparison. The ground based data, when compared to the data from space grown crystals, are intended to identify any effects which zero-gravity might have on the basic process of single crystal growth of these metals. The ultimate purposes of the complete investigation are to: (1) determine specific metals and alloys to be investigated; (2) grow single metal crystals in a terrestrial laboratory; (3) determine crystal characteristics, properties, and growth parameters that will be effected by zero-gravity; (4) evaluate terrestrially grown crystals; (5) grow single metal crystals in a space laboratory such as Skylab; (6) evaluate the space grown crystals; (7) compare for zero-gravity effects of crystal characteristics, properties, and parameters; and (8) make a recommendation as to production of these crystals as a routine space manufacturing proceses.

  5. Prospects for the synthesis of large single-crystal diamonds

    NASA Astrophysics Data System (ADS)

    Khmelnitskiy, R. A.

    2015-02-01

    The unique properties of diamond have stimulated the study of and search for its applications in many fields, including optics, optoelectronics, electronics, biology, and electrochemistry. Whereas chemical vapor deposition allows the growth of polycrystalline diamond plates more than 200 mm in diameter, most current diamond application technologies require large-size (25 mm and more) single-crystal diamond substrates or films suitable for the photolithography process. This is quite a challenge, because the largest diamond crystals currently available are 10 mm or less in size. This review examines three promising approaches to fabricating large-size diamond single crystals: growing large-size single crystals, the deposition of heteroepitaxial diamond films on single-crystal substrates, and the preparation of composite diamond substrates.

  6. Hg-1212 and Hg-1223 single crystals: Synthesis and characterisation

    NASA Astrophysics Data System (ADS)

    Gatt, R.; Olsson, E.; Morawski, A.; Lada, T.; Paszewin, A.; Bryntse, I.; Grishin, A. M.; Eeltsev, Yu.; Berastegui, P.; Johansson, L.-G.

    1997-02-01

    Single crystals of HgBa 2CaCu 2O 6+δ (Hg-1212) and HgBa 2Ca 2Cu 3O 8+δ (Hg-1223) were grown from the melt at an argon pressure of 10 kbar. Electron microscopy, as well as single crystal X-ray diffraction studies show that the crystals are well ordered. The EDS analysis indicates the presence of a minor amount of other cations replacing Hg, Ba and Ca in the structure. Refined fractional coordinates and thermal parameters are given for a crystal of Hg-1223 type. Magnetic and resistive measurements show a Tc of 133 K for the Hg-1223 phase.

  7. Method for harvesting rare earth barium copper oxide single crystals

    DOEpatents

    Todt, Volker R.; Sengupta, Suvankar; Shi, Donglu

    1996-01-01

    A method of preparing high temperature superconductor single crystals. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals of the high temperature superconductor, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals of the high temperature superconductor on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals melted, allowing the wicking away of the peritectic liquid.

  8. Method for harvesting single crystals from a peritectic melt

    DOEpatents

    Todt, V.R.; Sengupta, S.; Shi, D.

    1996-08-27

    A method of preparing single crystals is disclosed. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals unmelted, allowing the wicking away of the peritectic liquid. 2 figs.

  9. Cloning polymer single crystals through self-seeding

    NASA Astrophysics Data System (ADS)

    Xu, Jianjun; Ma, Yu; Hu, Wenbing; Rehahn, Matthias; Reiter, Günter

    2009-04-01

    In general, when a crystal is molten, all molecules forget about their mutual correlations and long-range order is lost. Thus, a regrown crystal does not inherit any features from an initially present crystal. Such is true for materials exhibiting a well-defined melting point. However, polymer crystallites have a wide range of melting temperatures, enabling paradoxical phenomena such as the coexistence of melting and crystallization. Here, we report a self-seeding technique that enables the generation of arrays of orientation-correlated polymer crystals of uniform size and shape (`clones') with their orientation inherited from an initial single crystal. Moreover, the number density and locations of these cloned crystals can to some extent be predetermined through the thermal history of the starting crystal. We attribute this unique behaviour of polymers to the coexistence of variable fold lengths in metastable crystalline lamellae, typical for ordering of complex chain-like molecules.

  10. Stability of Detached Grown Germanium Single Crystals

    NASA Technical Reports Server (NTRS)

    Schweizer, M.; Volz, M. P.; Cobb, S. D.; Vujisic, L.; Szofran, F. R.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Detachment of the melt meniscus from the crucible during semiconductor Bridgman growth experiments has been observed in recent years, especially under microgravity experiments. Under earth conditions, the hydrostatic pressure counteracts the mechanism, whereby it is more difficult to achieve detached Bridgman growth. Attempts to get stable detached growth under terrestrial conditions have been discussed in the literature and have been the subject of recent experiments in our own group. The advantage of crystals grown without wall contact is obvious: In general, they possess a higher crystal quality than conventional Bridgman grown crystals with wall contact. However, due to the interaction of different parameters such as the wetting behavior of the melt with the crucible, and the dependence of the growth angle with the shape of the melt meniscus, the mechanism leading to detachment is very complicated and not completely understood. We have grown several doped and undoped Germanium crystals with the detached Bridgman and the normal Bridgman growth technique. Pyrolytic boron nitride containers were used for all growth experiments. In the detached grown crystals the typical gap thickness between the pBN crucible and the crystal is in the range of 10 to 100 micrometers, which was determined by performing profilometer measurements. Etch pit density measurements were also performed and a comparison between detached and attached grown crystals will be given. An interesting feature was detected on the surface of a detached grown crystal. Strong surface striations with an average axial distance of 0.5 mm were observed around the whole circumference. The maximum fluctuation of the gap thickness is in the range of 5-10 micrometers. These variations of the detached gap along the crystal axis can be explained by a kind of stiction of the melt/crucible interface and thus by a variation of the meniscus shape. This phenomenon leading to the fluctuation of the gap thickness will be discussed in detail.

  11. Stability of Detached Grown Germanium Single Crystals

    NASA Technical Reports Server (NTRS)

    Schweizer, M.; Volz, M. P.; Cobb, S. D.; Motakef, S.; Szofran, F. R.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Detachment of the melt meniscus from the crucible during semiconductor Bridgman growth experiments has been observed in recent years especially, under microgravity experiments. Under earth conditions, the hydrostatic pressure counteracts the mechanism, whereby it is more difficult to achieve detached Bridgman growth. Attempts to get stable detached growth under terrestrial conditions have been discussed in the literature and have been the subject of recent experiments in our own group. The advantage of crystals grown without wall contact is obvious: In general, they possess a higher crystal quality than conventional Bridgman grown crystals with wall contact. However, due to the interaction of different parameters such as the wetting behavior of the melt with the crucible, and the dependence of the growth angle with the shape of the melt meniscus, the mechanism leading to detachment is very complicated and not completely understood. We have grown several doped and undoped Germanium crystals with the detached Bridgman and the normal Bridgman growth technique. Pyrolytic boron nitride containers were used for all growth experiments. In the detached grown crystals the typical gap thickness between the pBN crucible and the crystal is in the range of 10 to 100 microns, which was determined by performing profilometer measurements. Etch pit density measurements were also performed and a comparison between detached and attached grown crystals will be given. An interesting feature was detected on the surface of a detached grown crystal. Strong surface striations with an average axial distance of 0.5mm were observed around the whole circumference. The maximum fluctuation of the gap thickness is in the range of 5-10 microns. These variations of the detached gap along the crystal axis can be explained by a kind of stiction of the melt/crucible interface and thus by a variation of the meniscus shape. This phenomenon leading to the fluctuation of the gap thickness will be discussed in detail.

  12. Annealing effect on ion conduction of nanosized CaF2/BaF2 multilayers

    NASA Astrophysics Data System (ADS)

    Guo, X. X.; Matei, I.; Jin-Phillipp, N. Y.; van Aken, P. A.; Maier, J.

    2009-06-01

    The transient part of the ion conductivity enhancement in CaF2/BaF2 heterolayers on annealing at elevated temperatures is investigated. It is well established that annealed heterolayers exhibit a strongly increased F- conductivity parallel to the interfaces and a substantial but less strong enhancement perpendicular to the interfaces [N. Sata et al., Nature 408, 946 (2000) and X. X. Guo et al., Appl. Phys. Lett. 91, 103102 (2007)]. This is explained by a F- redistribution from BaF2 to CaF2 as a consequence of contact equilibrium. As to the behavior during annealing, two remarkable features are observed: (i) freshly prepared films show an even higher conductance enhancement if measured in the parallel direction, which decreases on annealing toward the equilibrium situation, while (ii) in the perpendicular direction the conductance variation is very small and of opposite sign. On the basis of the conductivity experiments as a function of temperature, layer-thickness, and anisotropy, in combination with structural investigations by transmission electron microscopy, we conclude that in agreement with earlier experience on composite materials, a high density of unstable defects is formed close to the heterointerfaces during multilayer preparation, which heals off during the temper process. In the final contact equilibrium a regular array of misfit dislocations is left, enabling the epitaxial contact. By assuming that the electroactive unstable microstructural defects are arranged at the heterointerfaces and are charged by fluoride ion trapping, we can explain the experimental features including the space charge overlap using the combined Mott-Schottky and Gouy-Chapman models used previously. The results indicate that the charge density stays approximately constant during the annealing process.

  13. Effect of surface orientation on dissolution rates and topography of CaF2

    NASA Astrophysics Data System (ADS)

    Godinho, J. R. A.; Piazolo, S.; Evins, L. Z.

    2012-06-01

    This paper reports how during dissolution differences in surface chemistry affect the evolution of topography of CaF2 pellets with a microstructure similar to UO2 spent nuclear fuel. 3D confocal profilometry and atomic force microscopy were used to quantify retreat rates and analyze topography changes on surfaces with different orientations as dissolution proceeds up to 468 h. A NaClO4 (0.05 M) solution with pH 3.6 which was far from equilibrium relative to CaF2 was used. Measured dissolution rates depend directly on the orientation of the exposed planes. The {1 1 1} is the most stable plane with a dissolution rate of (1.2 ± 0.8) × 10-9 mol m-2 s-1, and {1 1 2} the least stable plane with a dissolution rate 33 times faster that {1 1 1}. Surfaces that expose both Ca and F atoms in the same plane dissolve faster. Dissolution rates were found to be correlated to surface orientation which is characterized by a specific surface chemistry and therefore related to surface energy. It is proposed that every surface is characterized by the relative proportions of the three reference planes {1 1 1}, {1 0 0} and {1 1 0}, and by the high energy sites at their interceptions. Based on the different dissolution rates observed we propose a dissolution model to explain changes of topography during dissolution. Surfaces with slower dissolution rate, and inferred lower surface energy, tend to form while dissolution proceeds leading to an increase of roughness and surface area. This adjustment of the surface suggests that dissolution rates during early stages of dissolution are different from the later stages. The time-dependency of this dynamic system needs to be taken into consideration when predicting long-term dissolution rates.

  14. Growth dynamics of isotactic polypropylene single crystals during isothermal crystallization from a miscible polymeric solvent

    NASA Astrophysics Data System (ADS)

    Mehta, Rujul; Keawwattana, Wirunya; Kyu, Thein

    2004-02-01

    The present article presents a spatiotemporal growth of isotactic polypropylene (iPP) single crystals, melt crystallized from a polymeric solvent, i.e., poly (ethylene octene) copolymer that is known to be miscible with iPP. Optical and atomic force microscopic investigations reveal that the melt grown single crystals of iPP develop in the form of two parallel rows of crystal lamellae, but these crystals merge at the tips. To elucidate the mechanism of these emerging parallel rows of iPP crystals, a phase field model pertaining to solidification phenomena has been employed that involves a nonconserved crystal order parameter and a chain-tilting angle. This phase field model is based on the free energy of crystallization, having an asymmetric double well, and a tensorial surface free energy of the crystal interface coupled with a curvature elastic free energy that is possessed by the solid-liquid interface. The spatiotemporal simulation of iPP single crystal growth has been carried out on a square lattice based on the finite difference method for spatial steps and an explicit method for temporal steps with a periodic boundary condition. The appearance of the seemingly twin crystal is captured in the simulation, which may be attributed to the sector demarcation that is taking place in the anisotropically growing single crystal of iPP.

  15. Growth dynamics of isotactic polypropylene single crystals during isothermal crystallization from a miscible polymeric solvent.

    PubMed

    Mehta, Rujul; Keawwattana, Wirunya; Kyu, Thein

    2004-02-22

    The present article presents a spatiotemporal growth of isotactic polypropylene (iPP) single crystals, melt crystallized from a polymeric solvent, i.e., poly (ethylene octene) copolymer that is known to be miscible with iPP. Optical and atomic force microscopic investigations reveal that the melt grown single crystals of iPP develop in the form of two parallel rows of crystal lamellae, but these crystals merge at the tips. To elucidate the mechanism of these emerging parallel rows of iPP crystals, a phase field model pertaining to solidification phenomena has been employed that involves a nonconserved crystal order parameter and a chain-tilting angle. This phase field model is based on the free energy of crystallization, having an asymmetric double well, and a tensorial surface free energy of the crystal interface coupled with a curvature elastic free energy that is possessed by the solid-liquid interface. The spatiotemporal simulation of iPP single crystal growth has been carried out on a square lattice based on the finite difference method for spatial steps and an explicit method for temporal steps with a periodic boundary condition. The appearance of the seemingly twin crystal is captured in the simulation, which may be attributed to the sector demarcation that is taking place in the anisotropically growing single crystal of iPP. PMID:15268568

  16. Ion crystal transducer for strong coupling between single ions and single photons.

    PubMed

    Lamata, L; Leibrandt, D R; Chuang, I L; Cirac, J I; Lukin, M D; Vuletić, V; Yelin, S F

    2011-07-15

    A new approach for the realization of a quantum interface between single photons and single ions in an ion crystal is proposed and analyzed. In our approach the coupling between a single photon and a single ion is enhanced via the collective degrees of freedom of the ion crystal. Applications including single-photon generation, a memory for a quantum repeater, and a deterministic photon-photon, photon-phonon, or photon-ion entangler are discussed. PMID:21838337

  17. The Growth of Large Single Crystals.

    ERIC Educational Resources Information Center

    Baer, Carl D.

    1990-01-01

    Presented is an experiment which demonstrates principles of experimental design, solubility, and crystal growth and structure. Materials, procedures and results are discussed. Suggestions for adapting this activity to the high school laboratory are provided. (CW)

  18. A Single Crystal Niobium RF Cavity of the TESLA Shape

    SciTech Connect

    Singer, W.; Singer, X.; Kneisel, P.

    2007-08-09

    A fabrication method for single crystal niobium cavities of the TESLA shape was proposed on the basis of metallographic investigations and electron beam welding tests on niobium single crystals. These tests showed that a cavity can be produced without grain boundaries even in the welding area. An appropriate annealing allows the outgassing of hydrogen and stress relaxation of the material without destruction of the single crystal. A prototype single crystal single cell cavity was build. An accelerating gradient of 37.5 MV/m was reached after approximately 110 {mu}m of Buffered Chemical Polishing (BCP) and in situ baking at 120 deg. C for 6 hrs with a quality factor exceeding 2x1010 at 1.8 K. The developed fabrication method can be extended to fabrication of multi cell cavities.

  19. A Single Crystal Niobium RF Cavity of the TESLA Shape

    SciTech Connect

    W. Singer; X. Singer; P. Kneisel

    2007-09-01

    A fabrication method for single crystal niobium cavities of the TESLA shape was proposed on the basis of metallographic investigations and electron beam welding tests on niobium single crystals. These tests showed that a cavity can be produced without grain boundaries even in the welding area. An appropriate annealing allows the outgassing of hydrogen and stress relaxation of the material without destruction of the single crystal. A prototype single crystal single cell cavity was built. An accelerating gradient of 37.5 MV/m was reached after approximately 110 mu-m of Buffered Chanical Polishing (BCP) and in situ baking at 120°C for 6 hrs with a quality factor exceeding 2x1010 at 1.8 K. The developed fabrication method can be extended to fabrication of multi cell cavities.

  20. Single-drop optimization of protein crystallization.

    PubMed

    Meyer, Arne; Dierks, Karsten; Hilterhaus, Dierk; Klupsch, Thomas; Mühlig, Peter; Kleesiek, Jens; Schöpflin, Robert; Einspahr, Howard; Hilgenfeld, Rolf; Betzel, Christian

    2012-08-01

    A completely new crystal-growth device has been developed that permits charting a course across the phase diagram to produce crystalline samples optimized for diffraction experiments. The utility of the device is demonstrated for the production of crystals for the traditional X-ray diffraction data-collection experiment, of microcrystals optimal for data-collection experiments at a modern microbeam insertion-device synchrotron beamline and of nanocrystals required for data collection on an X-ray laser beamline. PMID:22869140

  1. A study of crystal growth by solution technique. [triglycine sulfate single crystals

    NASA Technical Reports Server (NTRS)

    Lal, R. B.

    1979-01-01

    The advantages and mechanisms of crystal growth from solution are discussed as well as the effects of impurity adsorption on the kinetics of crystal growth. Uncertainities regarding crystal growth in a low gravity environment are examined. Single crystals of triglycine sulfate were grown using a low temperature solution technique. Small components were assembled and fabricated for future space flights. A space processing experiment proposal accepted by NASA for the Spacelab-3 mission is included.

  2. Single crystal Processing and magnetic properties of gadolinium nickel

    SciTech Connect

    Shreve, Andrew John

    2012-11-02

    GdNi is a rare earth intermetallic material that exhibits very interesting magnetic properties. Spontaneous magnetostriction occurs in GdNi at T{sub C}, on the order of 8000ppm strain along the c-axis and only until very recently the mechanism causing this giant magnetostriction was not understood. In order to learn more about the electronic and magnetic structure of GdNi, single crystals are required for anisotropic magnetic property measurements. Single crystal processing is quite challenging for GdNi though since the rare-earth transition-metal composition yields a very reactive intermetallic compound. Many crystal growth methods are pursued in this study including crucible free methods, precipitation growths, and specially developed Bridgman crucibles. A plasma-sprayed Gd{sub 2}O{sub 3} W-backed Bridgman crucible was found to be the best means of GdNi single crystal processing. With a source of high-quality single crystals, many magnetization measurements were collected to reveal the magnetic structure of GdNi. Heat capacity and the magnetocaloric effect are also measured on a single crystal sample. The result is a thorough report on high quality single crystal processing and the magnetic properties of GdNi.

  3. Growth and characterization of ammonium acid phthalate single crystals

    NASA Astrophysics Data System (ADS)

    Arunkumar, A.; Ramasamy, P.

    2013-04-01

    Ammonium acid phthalate (AAP) has been synthesized and single crystals were grown by slow evaporation solution growth technique. The unit cell parameters were confirmed by single crystal X-ray diffraction analysis and it belongs to orthorhombic system with the space group of Pcab. The high resolution X-ray diffraction studies revealed the crystalline perfection of the grown crystal. The various functional groups of AAP were identified by FT-IR and Raman spectral analyses. Thermal stability of the grown crystals was studied by TGA/DTA. The optical properties of the grown crystals were analyzed by UV-Vis-NIR and photoluminescence spectral studies. The mechanical property of the grown crystal was studied by Vickers microhardness measurement. The growth features of AAP were analyzed by chemical etching.

  4. Growth and characterization of diammonium copper disulphate hexahydrate single crystal

    SciTech Connect

    Siva Sankari, R.; Perumal, Rajesh Narayana

    2014-03-01

    Graphical abstract: Diammonium copper disulphate hexahydrate (DACS) is one of the most promising inorganic dielectric crystals with exceptional mechanical properties. Good quality crystals of DACS were grown by using solution method in a period of 30 days. The grown crystals were subjected to single crystal X-ray diffraction analysis in order to establish their crystalline nature. Thermo gravimetric, differential thermal analysis, FTIR, and UV–vis–NIR analysis were performed for the crystal. Several solid state physical parameters have been determined for the grown crystals. The dielectric constant and the dielectric loss and AC conductivity of the grown crystal were studied as a function of frequency and temperature has been calculated and plotted. - Highlights: • Diammonium copper disulphate is grown for the first time and CCDC number obtained. • Thermal analysis is done to see the stability range of the crystals. • Band gap and UV cut off wavelength of the crystal are determined to be 2.4 eV and 472.86 nm, respectively. • Dielectric constant, dielectric loss and AC conductivity are plotted as a function of applied field. - Abstract: Diammonium copper disulphate hexahydrate is one of the most promising inorganic crystals with exceptional dielectric properties. A good quality crystal was harvested in a 30-day period using solution growth method. The grown crystal was subjected to various characterization techniques like single crystal X-ray diffraction analysis, thermo gravimetric, differential thermal analysis, FTIR, and UV–vis–NIR analysis. Unit cell dimensions of the grown crystal have been identified from XRD studies. Functional groups of the title compounds have been identified from FTIR studies. Thermal stability of the samples was checked by TG/DTA studies. Band gap of the crystal was calculated. The dielectric constant and dielectric loss were studied as a function of frequency of the applied field. AC conductivity was plotted as a function of temperature.

  5. FACTORS AFFECTING THE USE OF CAF2:MN THERMOLUMINESCENT DOSIMETERS FOR LOW-LEVEL ENVIRONMENTAL RADIATION MONITORING

    EPA Science Inventory

    An investigation was made of factors affecting the use of commercially-produced CaF2:Mn thermoluminescent dosimeters for low level environmental radiation monitoring. Calibration factors and self-dosing rates were quantified for 150 thermoluminescent dosimeters. Laboratory studie...

  6. Electrical and thermal conductivities of congruently melting single crystals of isovalent M 1 - x M'xF2 solid solutions ( M, M' = Ca, Sr, Cd, Pb) in relation to their defect fluorite structure

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.; Karimov, D. N.; Buchinskaya, I. I.; Popov, P. A.; Sobolev, B. P.

    2015-07-01

    The electrical and thermal conductive properties of two-component single crystals of Pb0.67Cd0.33F2, Ca0.59Sr0.41F2, and Cd0.77Sr0.23F2 solid solutions with fluorite-type structure (CaF2), characterized by congruent melting (presence of minima in melting curves) and uniform distribution of components in the crystal bulk. Pb0.67Cd0.33F2 crystals, in contrast to isostructural Ca0.59Sr0.41F2 and Cd0.77Sr0.23F2 crystals, are characterized by high fluorine-ion electrical conductivity (σ = 0.02 S/m at 293 K); low ion-transport activation enthalpy (Δ H ≈ 0.4 eV); low thermal conductivity ( k = 1.1 W/mK at 300 K); and glassy behavior of heat transfer, which is atypical for crystalline state. This anomalous behavior of the electrical and thermal conductivities of Pb0.67Cd0.33F2 crystals is due to the strong structural disordering of the anionic subsystem (which is retained at room temperature) as a result of isovalent replacements of Pb2+ cations with Cd2+ cations.

  7. Effect of gamma ray irradiation on sodium borate single crystals

    NASA Astrophysics Data System (ADS)

    Kalidasan, M.; Asokan, K.; Baskar, K.; Dhanasekaran, R.

    2015-12-01

    In this work, the effects of 5 kGy, 10 kGy and 20 kGy doses of gamma ray irradiation on sodium borate, Na2[B4O5(OH)4]·(H2O)8 single crystals have been studied. Initially these crystals were grown by solution growth technique and identified as monoclinic using X-ray diffraction analysis. X-ray rocking curves confirm the formation of crystalline defects due to gamma rays in sodium borate single crystals. The electron paramagnetic resonance spectra have been recorded to identify the radicals created due to gamma ray irradiation in sodium borate single crystals. The thermoluminescence glow curves due to the defects created by gamma rays in this crystal have been observed and their kinetic parameters were calculated using Chen's peak shape method. The optical absorption increases and photoluminescence spectral intensity decreases for 5 kGy and 20 kGy doses gamma ray irradiated crystals compared to pristine and 10 kGy dose irradiated one. The effect of various doses of gamma rays on vibrational modes of the sodium borate single crystals was studied using FT-Raman and ATR-FTIR spectral analysis. The dielectric permittivity, conductance and dielectric loss versus frequency graphs of these crystals have been analyzed to know the effect of gamma ray irradiation on these parameters.

  8. Large single domain 123 material produced by seeding with single crystal rare earth barium copper oxide single crystals

    DOEpatents

    Todt, V.; Miller, D.J.; Shi, D.; Sengupta, S.

    1998-07-07

    A method of fabricating bulk YBa{sub 2}Cu{sub 3}O{sub x} where compressed powder oxides and/or carbonates of Y and Ba and Cu present in mole ratios to form YBa{sub 2}Cu{sub 3}O{sub x} are heated in the presence of a Nd{sub 1+x}Ba{sub 2{minus}x}Cu{sub 3}O{sub y} seed crystal to a temperature sufficient to form a liquid phase in the YBa{sub 2}Cu{sub 3}O{sub x} while maintaining the seed crystal solid. The materials are slowly cooled to provide a YBa{sub 2}Cu{sub 3}O{sub x} material having a predetermined number of domains between 1 and 5. Crack-free single domain materials can be formed using either plate shaped seed crystals or cube shaped seed crystals with a pedestal of preferential orientation material. 7 figs.

  9. Measurement of single crystal surface parameters

    NASA Technical Reports Server (NTRS)

    Swanson, L. W.; Bell, A. E.; Strayer, R. W.

    1972-01-01

    The sticking coefficient and thermal desorption spectra of Cs from the (110) plane of W was investigated. A sticking coefficient of unity for the monolayer region was measured for T 250 K. Several distinct binding states were observed in the thermal desorption spectrum. Work function and electron reflection measurements were made on the (110) and (100) crystal faces of Mo. Both LEED and Auger were used to determine the orientation and cleanliness of the crystal surfaces. The work function values obtained for the (110) and (100) planes of Mo were 4.92 and 4.18 eV respectively.

  10. Growth of single crystals by vapor transport

    NASA Technical Reports Server (NTRS)

    Wiedemeier, H.

    1978-01-01

    The primary objectives of the program were to establish basic vapor transport and crystal growth properties and to determine thermodynamic, kinetic and structural parameters relevant to chemical vapor transport systems for different classes of materials. An important aspect of these studies was the observation of the effects of gravity-caused convection on the mass transport rate and crystal morphology. These objectives were accomplished through extensive vapor transport, thermochemical and structural studies on selected Mn-chalcogenides, II-VI and IV-VI compounds.

  11. Piezoelectric properties of tetragonal single-domain Mn-doped NBT-6 %BT single crystals

    NASA Astrophysics Data System (ADS)

    Guennou, Mael; Savinov, Maxim; Drahokoupil, Jan; Luo, Haosu; Hlinka, Jirka

    2014-07-01

    We report a study of properties of Mn-doped NBT-6 %BT single crystals. We show that tetragonal single-domain states can be stabilized by poling along a [001] direction. For carefully prepared crystals, the piezoelectric coefficient can reach 570 pC/N. When poled along non-polar directions, the crystals exhibit ferroelectric domain structures consistent with tetragonal micron-sized domains, as revealed by optical observation and Raman spectroscopy. The multidomain crystals have lower values, 225 and 130 pC/N for [011] and [111]-oriented crystals, respectively. This trend is commented on from a domain-engineering perspective.

  12. Synthesis and Single-Crystal Growth of Ca

    SciTech Connect

    Nakatsuji, Satoru; Maeno, Yoshiteru

    2001-01-01

    For the study of the quasi-two-dimensional Mott transition system Ca{sub 2-x}Sr{sub x}RuO{sub 4}, we have succeeded in synthesizing polycrystalline samples and also growing single crystals by a floating-zone method. Details of the preparations for the entire solution range are described. The structural, transport, and magnetic properties of both polycrystalline and single-crystal samples are fully in agreement.

  13. Inhomogeneities in single crystals of cuprate oxide superconductors

    NASA Technical Reports Server (NTRS)

    Moorjani, K.; Bohandy, J.; Kim, B. F.; Adrian, F. J.

    1991-01-01

    The next stage in the evolution of experimental research on the high temperature superconductors will require high quality single crystals and epitaxially grown crystalline films. However, inhomogeneities and other defects are not uncommon in single crystals of cuprate oxide superconductors, so a corollary requirement will be a reliable method for judging the quality of these materials. The application of magnetically modulated resistance methods in this task is briefly described and illustrated.

  14. Synthesis, crystal growth and characterization of an organic material: 2-Aminopyridinium succinate succinic acid single crystal.

    PubMed

    Magesh, M; Bhagavannarayana, G; Ramasamy, P

    2015-11-01

    The 2-aminopyridinium succinate succinic acid (2APS) single crystal was synthesized and grown by slow evaporation method. The crystal structure has been confirmed by powder X-ray diffraction as well as single crystal X-ray diffraction analysis. The crystal perfection has been evaluated by high resolution X-ray diffraction (HRXRD). The grown crystal is transparent in the visible and near infrared region. The optical absorption edge was found to be 348 nm. The fluorescence study was carried out by spectrofluorophotometer. The thermal stability of grown crystal was analyzed by thermal gravimetric and differential thermal gravimetric (TG-DTA) analysis. Vicker's hardness study carried out at room temperature shows increased hardness while increasing the load. Laser damage threshold value was determined by Nd:YAG laser operating at 1064 nm. The grown 2APS crystal was characterized by etching studies using water as etchant. PMID:26099828

  15. Synthetic Superconductivity in Single-Layer Crystals

    NASA Astrophysics Data System (ADS)

    Levitov, Leonid; Borgnia, Dan; Lee, Patrick

    2015-03-01

    Electronic states in atomically thin 2D crystals are fully exposed and can couple to extrinsic degrees of freedom via long-range Coulomb interactions. Novel many-body effects in such systems can be engineered by embedding them in a polar environment. Superconducting pairing interaction induced in this way can enhance the intrinsic electron-phonon pairing mechanism. We take on this notion, which was around since the 60's (''excitonic superconductivity''), and consider synthetic superconductivity (SSC) induced in 2D crystals by a polar environment. One interesting aspect of this scenario is that Coulomb repulsion acts as superconductivity friend rather than a foe. Such repulsion-to-attraction transmutation allows to access strong-coupling superconductivity regime even when intrinsic pairing interaction is weak. We analyze pairing interaction in 2D crystals placed atop a highly polarizable dielectric with dispersive permittivity ɛ (ω) and predict that by optimizing system parameters a substantial enhancement can be achieved. We also argue that the SSC mechanism can be responsible, at least in part, for 100 K superconductivity recently observed in FeSe monolayers grown on SrTiO3 substrate, with Tc more than 10 times larger than in bulk 3D FeSe crystals, arxiv:1406.3435.

  16. SINGLE CRYSTAL NIOBIUM TUBES FOR PARTICLE COLLIDERS ACCELERATOR CAVITIES

    SciTech Connect

    MURPHY, JAMES E

    2013-02-28

    The objective of this research project is to produce single crystal niobium (Nb) tubes for use as particle accelerator cavities for the Fermi laboratory’s International Linear Collider project. Single crystal Nb tubes may have superior performance compared to a polycrystalline tubes because the absence of grain boundaries may permit the use of higher accelerating voltages. In addition, Nb tubes that are subjected to the high temperature, high vacuum crystallization process are very pure and well annealed. Any impurity with a significantly higher vapor pressure than Nb should be decreased by the relatively long exposure at high temperature to the high vacuum environment. After application of the single crystal process, the surfaces of the Nb tubes are bright and shiny, and the tube resembles an electro polished Nb tube. For these reasons, there is interest in single crystal Nb tubes and in a process that will produce single crystal tubes. To convert a polycrystalline niobium tube into a single crystal, the tube is heated to within a few hundred ̊C of the melting temperature of niobium, which is 2477 ̊C. RF heating is used to rapidly heat the tube in a narrow zone and after reaching the operating temperature, the hot zone is slowly passed along the length of the tube. For crystallization tests with Nb tubes, the traverse rate was in the range of 1-10 cm per hour. All the crystallization tests in this study were performed in a water-cooled, stainless steel chamber under a vacuum of 5 x10-6 torr or better. In earliest tests of the single crystal growth process, the Nb tubes had an OD of 1.9 cm and a wall thickness of 0.15 mm. With these relatively small Nb tubes, the single crystal process was always successful in producing single crystal tubes. In these early tests, the operating temperature was normally maintained at 2200 ̊C, and the traverse rate was 5 cm per hour. In the next test series, the Nb tube size was increased to 3.8 cm OD and the wall thickness was increased 0.18 mm and eventually to 0.21 mm. Again, with these larger tubes, single crystal tubes were usually produced by the crystallization process. The power supply was generally operated at full output during these tests, and the traverse rate was 5 cm per hour. In a few tests, the traverse rate was increased to 10 cm per hour, and at the faster traverse rate, single crystal growth was not achieved. In these tests with a faster traverse rate, it was thought that the tube was not heated to a high enough temperature to achieve single crystal growth. In the next series of tests, the tube OD was unchanged at 3.8 cm and the wall thickness was increased to 0.30 mm. The increased wall thickness made it difficult to reach an operating temperature above 2,000 ̊C, and although the single crystal process caused a large increase in the crystal grains, no single crystal tubes were produced. It was assumed that the operating temperature in these tests was not high enough to achieve single crystal growth. In FY 2012, a larger power supply was purchased and installed. With the new power supply, temperatures above the melting point of Nb were easily obtained regardless of the tube thickness. A series of crystallization tests was initiated to determine if indeed the operating temperature of the previous tests was too low to achieve single crystal growth. For these tests, the Nb tube OD remained at 3.8 cm and the wall thickness was 0.30 mm. The first test had an operating temperature of 2,000 ̊C. and the operating temperature was increased by 50 ̊C increments for each successive test. The final test was very near the Nb melting temperature, and indeed, the Nb tube eventually melted in the center of the tube. These tests showed that higher temperatures did yield larger grain sizes if the traverse rate was held constant at 5 cm per hour, but no single crystal tubes were produced even at the highest operating temperature. In addition, slowing the traverse rate to as low as 1 cm per hour did not yield a single crystal tube regardless of operating temperature. At this time, it appears that the wall thickness of the Nb tube rather than the operating temperature is the most important parameter to achieving single crystal growth. Single crystal growth was easily obtained with thinner wall tubes, but with thicker tubes, it was not achieved under varied growth conditions.

  17. Anisotropy of nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Maier, R. D.; Dreshfield, R. L.

    1980-01-01

    The effects of crystal orientation on the mechanical properties of single crystals of the nickel-based superalloy Mar-M247 are investigated. Tensile tests at temperatures from 23 to 1093 C and stress rupture tests at temperatures from 760 to 1038 C were performed for 52 single crystals at various orientations. During tensile testing between 23 and 760 C, single crystals with high Schmid factors were found to be favorably oriented for slip and to exhibit lower strength and higher ductility than those with low Schmid factors. Crystals which required large rotations to become oriented for cross slip were observed to have the shortest stress rupture lives at 760 C, while those which required little or no rotation had the longest lives. In addition, stereographic triangles obtained for Mar-M247 and Mar-M200 single crystals reveal that crystals with orientations near the -111 had the highest lives, those near the 001 had high lives, and those near the 011 had low lives.

  18. An analytical model for porous single crystals with ellipsoidal voids

    NASA Astrophysics Data System (ADS)

    Mbiakop, A.; Constantinescu, A.; Danas, K.

    2015-11-01

    A rate-(in)dependent constitutive model for porous single crystals with arbitrary crystal anisotropy (e.g., FCC, BCC, HCP, etc.) containing general ellipsoidal voids is developed. The proposed model, denoted as modified variational model (MVAR), is based on the nonlinear variational homogenization method, which makes use of a linear comparison porous material to estimate the response of the nonlinear porous single crystal. Periodic multi-void finite element simulations are used in order to validate the MVAR for a large number of parameters including cubic (FCC, BCC) and hexagonal (HCP) crystal anisotropy, various creep exponents (i.e., nonlinearity), several stress triaxiality ratios, general void shapes and orientations and various porosity levels. The MVAR model, which involves a priori no calibration parameters, is found to be in good agreement with the finite element results for all cases considered in the rate-dependent context. The model is then used in a predictive manner to investigate the complex response of porous single crystals in several cases with strong coupling between the anisotropy of the crystal and the (morphological) anisotropy induced by the shape and orientation of the voids. Finally, a simple way of calibrating the MVAR with just two adjustable parameters is depicted in the rate-independent context so that an excellent agreement with the FE simulation results is obtained. In this last case, this proposed model can be thought as a generalization of the Gurson model in the context of porous single crystals and general ellipsoidal void shapes and orientations.

  19. Fatigue Failure Criteria for Single Crystal Nickel Superalloys

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.

    1999-01-01

    High Cycle Fatigue (HCF) induced failures in aircraft gas-turbine and rocket engine turbopump blades is a pervasive problem. Single crystal turbine blades are being utilized in rocket engine turbopumps and jet engines throughout industry and NASA because of their superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys. Single-crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the pan geometry a significant factor in the overall analysis. The failure modes of single crystal turbine blades is complicated to predict due to the material orthotropy and variations in crystal orientations. A fatigue failure criteria based on the maximum shear stress amplitude [delta t max] on the 30 slip systems, is presented for single crystal nickel superalloys (FCC crystal). This criteria reduces the scatter in uniaxial LCF test data, for four different specimen orientations, for PWA 1484 at 1200 F in air, quite well. A power law curve fit of the failure parameter, delta t max, vs. cycles to failure is presented.

  20. Raman spectra of deuteriated taurine single crystals

    NASA Astrophysics Data System (ADS)

    Souza, J. M. de; Lima, R. J. C.; Freire, P. T. C.; Sasaki, J. M.; Melo, F. E. A.; Filho, J. Mendes; Jones, Derry W.

    2005-05-01

    The polarized Raman spectra of partially deuteriated taurine [(ND 3+) 0.65(NH 3+) 0.35(CH 2) 2SO 3-] crystals from x( zz) x and x( zy) x scattering geometries of the A g and B g irreducible representations of the factor group C 2h are reported. The temperature-dependent Raman spectra of partially deuteriated taurine do not reveal any evidence of the structural phase transition undergone by normal taurine at about 250 K, but an anomaly observed in the 180 cm -1 band at ˜120 K implies a different dynamic for this band (which is involved in a pressure-induced phase transition) in the deuteriated crystal.

  1. Shock Driven Twinning in Tantalum Single Crystals

    SciTech Connect

    McNaney, J M; HSUING, L M; Barton, N R; Kumar, M

    2009-07-20

    Recovery based observations of high pressure material behavior generated under high explosively driven flyer based loading conditions are reported. Two shock pressures, 25, and 55 GPa and four orientations {l_brace}(100), (110), (111), (123){r_brace} were considered. Recovered material was characterized using electron backscatter diffraction along with a limited amount of transmission electron microscopy to assess the occurrence of twinning under each test condition. Material recovered from 25 GPa had a very small fraction of twinning for the (100), (110), and (111) oriented crystals while a more noticeable fraction of the (123) oriented crystal was twinned. Material recovered from 55 GPa showed little twinning for (100) orientation slightly more for the (111) orientation and a large area fraction for the (123) orientation. The EBSD and TEM observations of the underlying deformation substructure are rationalized by comparing with previous static and dynamic results.

  2. Metal-center exchange of tetrahedral cages: single crystal to single crystal and spin-crossover properties.

    PubMed

    Zhang, Feng-Li; Chen, Jia-Qian; Qin, Long-Fang; Tian, Lei; Li, Zaijun; Ren, Xuehong; Gu, Zhi-Guo

    2016-04-01

    An effective single crystal to single crystal transformation from a tetrahedral Ni cage to an FeNi cage was demonstrated. The iron(ii) centers of the FeNi cage can be induced to display spin crossover behaviors with an increasing amount of Fe(ii) ions. The SCSC metal-center exchange provides a powerful approach to modify solid magnetic properties. PMID:26955799

  3. Photon Cascade from a Single Crystal Phase Nanowire Quantum Dot.

    PubMed

    Bouwes Bavinck, Maaike; Jöns, Klaus D; Zieliński, Michal; Patriarche, Gilles; Harmand, Jean-Christophe; Akopian, Nika; Zwiller, Val

    2016-02-10

    We report the first comprehensive experimental and theoretical study of the optical properties of single crystal phase quantum dots in InP nanowires. Crystal phase quantum dots are defined by a transition in the crystallographic lattice between zinc blende and wurtzite segments and therefore offer unprecedented potential to be controlled with atomic layer accuracy without random alloying. We show for the first time that crystal phase quantum dots are a source of pure single-photons and cascaded photon-pairs from type II transitions with excellent optical properties in terms of intensity and line width. We notice that the emission spectra consist often of two peaks close in energy, which we explain with a comprehensive theory showing that the symmetry of the system plays a crucial role for the hole levels forming hybridized orbitals. Our results state that crystal phase quantum dots have promising quantum optical properties for single photon application and quantum optics. PMID:26806321

  4. Reversible pressure-induced first-order phase transitions in anion-excess fluorite KY3F10 studied with single-crystal X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Grzechnik, Andrzej; Friese, Karen

    2014-04-01

    KY3F10 (Fm3barmZ = 8) has been studied with single-crystal X-ray diffraction to 9.5 GPa in a diamond anvil cell under hydrostatic conditions. At atmospheric pressure, it is an anion-excess 2 × 2 × 2 superstructure of fluorite with two building blocks Y6F36 and Y6F32. In the Y6F36 block, six square YF8 antiprisms share their corners to form an empty F12 cubooctahedron. In the Y6F32 block, six square YF8 antiprisms share their edges to form an empty F8 cube. Upon compression, there occur phase transitions between 5 and 7 GPa due to an instability of the empty F12 cubooctahedra in the 2 × 2 × 2 superstructure. At about 7 GPa, the cubooctahedra collapse completely and all the cations in the new structure (Pm3barm, Z = 1) are surrounded by cubes of the F atoms. The excessive fluorine is located in the F8 cubes. At hydrostatic conditions, all the transformations are reversible. These observations imply that at high pressures the anion-excess fluorite superstructures in general tend to transform to the CaF2 structure.

  5. Controlled growth of filamentary crystals and fabrication of single-crystal whisker probes

    SciTech Connect

    Givargizov, E. I.

    2006-10-15

    The growth of filamentary crystals (whiskers) on a single-crystal substrate through the vapour-liquid-solid mechanism is described. The possibility of fabricating oriented systems of whiskers on the basis of this mechanism of crystal growth is noted. A phenomenon that is important for nanotechnology is noted: the existence of a critical diameter of whiskers, below which they are not formed. The phenomenon of radial periodic instability, which is characteristic of nanowhiskers, is described and the ways of its elimination are shown. The possibility of transforming whiskers into single-crystal tips and the growth of crystalline diamond particles at their apices are noted as important for practice. Possible applications of systems of whiskers and tips are described briefly. Particular attention is paid to the latest direction in whisker technology-fabrication of single-crystal whisker probes for atomic force microscopy.

  6. Dose response of CaF2:Tm to charged particles of different LET.

    PubMed

    Moyers, M F; Nelson, G A

    2009-08-01

    Thermoluminescent dosimeters are well established for performing calibrations in radiotherapy and for monitoring dose to personnel exposed to low linear energy transfer (LET) ionizing radiation. Patients undergoing light ion therapy and astronauts engaged in space flight are, however, exposed to radiation fields consisting of a mix of low- and high-LET charged particles. In this study, glow curves from CaF2:Tm chips were examined after exposure to various electron and ion beams. The annealing and readout procedures for these chips were optimized for these beams. After a 10 min prereadout annealing at 100 degrees C, the optimized glow curve samples the light output between 95 and 335 degrees C with a heating rate of 2 degrees C/s. The ratio of the integral of the glow curve under peaks 4-6 to the integral under peak 3 was approximately 0.9 for electrons, 1.0 for entrance protons, 1.6 for peak protons, and 2.2 for entrance carbon, silicon, and iron ions. The integral light output per unit dose in water for the iron exposures was about half as much as for the electron exposures. The peak-area-ratio can be used to determine a dose response factor for different LET radiations. PMID:19746804

  7. Ab-initio Calculations of Electronic Properties of Calcium Fluoride (CaF2)

    NASA Astrophysics Data System (ADS)

    Bohara, Bir; Franklin, Lashounda; Malozovsky, Yuriy; Bagayoko, Diola

    We have performed first principle, local density approximation (LDA) calculations of electronic and related properties of cubic calcium fluorite (CaF2) . Our non-relativistic computations employed the Ceperley and Alder LDA potential and the linear combination of atomic orbitals (LCAO) formalism. The implementation of the LCAO formalism followed the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). We discuss the electronic energy bands, including the large band gap, total and partial density of states, electron and hole effective masses, and the bulk modulus. Our calculated, indirect (X- Γ) band gap is 12.98 eV; it is 1 eV above an experimental value of 11.8 eV. The calculated bulk modulus (82.89 GPA) is excellent agreement with the experimental result of 82.0 +/-0.7. Our predicted equilibrium lattice constant is 5.42Å. Acknowledgments: This work is funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR], and NSF HRD-1002541, the US Department of Energy, National, Nuclear Security Administration (NNSA) (Award No. DE-NA-0002630), LaSPACE, and LONI-SUBR.

  8. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Arakere, N. K.; Swanson, G.

    2002-01-01

    High cycle fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Single crystal nickel turbine blades are being utilized in rocket engine turbopumps and jet engines throughout industry because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493, PWA 1484, RENE' N-5 and CMSX-4. These alloys play an important role in commercial, military and space propulsion systems. Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. The failure modes of single crystal turbine blades are complicated to predict due to the material orthotropy and variations in crystal orientations. Fatigue life estimation of single crystal turbine blades represents an important aspect of durability assessment. It is therefore of practical interest to develop effective fatigue failure criteria for single crystal nickel alloys and to investigate the effects of variation of primary and secondary crystal orientation on fatigue life. A fatigue failure criterion based on the maximum shear stress amplitude /Delta(sub tau)(sub max))] on the 24 octahedral and 6 cube slip systems, is presented for single crystal nickel superalloys (FCC crystal). This criterion reduces the scatter in uniaxial LCF test data considerably for PWA 1493 at 1200 F in air. Additionally, single crystal turbine blades used in the alternate advanced high-pressure fuel turbopump (AHPFTP/AT) are modeled using a large-scale three-dimensional finite element model. This finite element model is capable of accounting for material orthotrophy and variation in primary and secondary crystal orientation. Effects of variation in crystal orientation on blade stress response are studied based on 297 finite element model runs. Fatigue lives at critical points in the blade are computed using finite element stress results and the failure criterion developed. Stress analysis results in the blade attachment region are also presented. Results presented demonstrates that control of secondary and primary crystallographic orientation has the potential to significantly increase a component S resistance to fatigue crack growth with- out adding additional weight or cost. [DOI: 10.1115/1.1413767

  9. Method of making macrocrystalline or single crystal semiconductor material

    NASA Technical Reports Server (NTRS)

    Shlichta, P. J. (Inventor); Holliday, R. J. (Inventor)

    1986-01-01

    A macrocrystalline or single crystal semiconductive material is formed from a primary substrate including a single crystal or several very large crystals of a relatively low melting material. This primary substrate is deposited on a base such as steel or ceramic, and it may be formed from such metals as zinc, cadmium, germanium, aluminum, tin, lead, copper, brass, magnesium silicide, or magnesium stannide. These materials generally have a melting point below about 1000 C and form on the base crystals the size of fingernails or greater. The primary substrate has an epitaxial relationship with a subsequently applied layer of material, and because of this epitaxial relationship, the material deposited on the primary substrate will have essentially the same crystal size as the crystals in the primary substrate. If required, successive layers are formed, each of a material which has an epitaxial relationship with the previously deposited layer, until a layer is formed which has an epitaxial relationship with the semiconductive material. This layer is referred to as the epitaxial substrate, and its crystals serve as sites for the growth of large crystals of semiconductive material. The primary substrate is passivated to remove or otherwise convert it into a stable or nonreactive state prior to deposition of the seconductive material.

  10. Optical and structural properties of chalcone NLO single crystals

    NASA Astrophysics Data System (ADS)

    Rajesh Kumar, P. C.; Ravindrachary, V.; Janardhana, K.; Manjunath, H. R.; Karegouda, Prakash; Crasta, Vincent; Sridhar, M. A.

    2011-11-01

    Organic compound (E)-1-(4-methoxyphenyl)-3-(2,3,5-trichlorophenyl)prop-2-en-1-one [MPTCPP] with molecular formula C 16H 11Cl 3O 2 was synthesized using Claisen-Schmidt condensation reaction method. 1H NMR spectra was recorded to identify the various functional groups present in the compound and confirm the chemical structure. The single crystals were grown using slow evaporation solution growth technique. The UV-Visible spectrum study reveals that the crystal is transparent in the entire visible region and the absorption is observed at 364 nm. The Kurtz powder second harmonic generation (SHG) test shows that the MPTCPP is NLO active and its SHG efficiency is three times that of urea. Single crystal XRD study shows that the compound crystallizes in the monoclinic system with a space group Cc. The corresponding lattice parameters of the crystal are a = 28.215(5) Å, b = 3.9740(4) Å, c = 16.178(3) Å and V = 1503.0(4) Å 3. The micro hardness test was carried out and the work hardening coefficient value ( n) of the crystal was found to be 1.48. This indicates that the crystal is hard and is suitable for device application. The thermal study reveals that the thermal stability of the crystal is good.

  11. Measuring the Strength of Single Crystal and Polycrystalline Graphene

    NASA Astrophysics Data System (ADS)

    Rasool, Haider; Ophus, Colin; Klug, William; Zettl, Alex; Gimzewski, James

    2014-03-01

    The mechanical properties of materials depend strongly on their crystallinity. In our work, we measure the yield strength of suspended single crystal and bicrystal graphene membranes fabricated from chemical vapor deposition grown graphene. Membranes are characterized structurally by transmission electron microscopy and mechanically tested using atomic force microscopy. A single crystal diamond tip with a large indentation radius is used to measure the intrinsic strength of suspended membranes for mechanical measurements. Single crystal membranes prepared by chemical vapor deposition retain strengths that are comparable to previous results of single crystal membranes prepared by mechanical exfoliation. Bicrystal grain boundary membranes with large mismatch angles have enhanced strengths when compared to their low angle counterparts. These boundaries show strengths that are comparable to single crystal graphene. To investigate this enhanced strength, we use aberration corrected high resolution transmission electron microscopy to map the atomic scale strain fields in suspended graphene. The enhanced strength of large angle bicrystal membranes is attributed to the presence of low atomic-scale strain at the boundaries.

  12. Low-cost single-crystal turbine blades, volume 2

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Dennis, R. E.; Heath, B. R.

    1984-01-01

    The overall objectives of Project 3 were to develop the exothermic casting process to produce uncooled single-crystal (SC) HP turbine blades in MAR-M 247 and higher strength derivative alloys and to validate the materials process and components through extensive mechanical property testing, rig testing, and 200 hours of endurance engine testing. These Program objectives were achieved. The exothermic casting process was successfully developed into a low-cost nonproperietary method for producing single-crystal castings. Single-crystal MAR-M 247 and two derivatives DS alloys developed during this project, NASAIR 100 and SC Alloy 3, were fully characterized through mechanical property testing. SC MAR-M 247 shows no significant improvement in strength over directionally solidified (DS) MAR-M 247, but the derivative alloys, NASAIR 100 and Alloy 3, show significant tensile and fatigue improvements. Firtree testing, holography, and strain-gauge rig testing were used to determine the effects of the anisotropic characteristics of single-crystal materials. No undesirable characteristics were found. In general, the single-crystal material behaved similarly to DS MAR-M 247. Two complete engine sets of SC HP turbine blades were cast using the exothermic casting process and fully machined. These blades were successfully engine-tested.

  13. Growth of solid solution single crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, S. L.; Szofran, F. R.

    1987-01-01

    Based on the thermophysical properties of Hg sub 1-x Cd sub x Te alloys, the reasons are discussed for the failure of conventional Bridgman-Stockbarger growth methods to produce high quality homogeneous crystals in the presence of Earth's gravity. The deleterious effects are considered which arise from the dependence of the thermophysical properties on temperature and composition and from the large amount of heat carried by the fused silica ampules. An improved growth method, developed to optimize heat flow conditions, is described and experimental results are presented. The problems associated with growth in a gravitational environment are discussed. The anticipated advantages of growth in microgravity are given and the implications of the requirements for spaceflight experiments are summarized.

  14. Limits to Fourier theory in high thermal conductivity single crystals

    NASA Astrophysics Data System (ADS)

    Wilson, R. B.; Cahill, David G.

    2015-11-01

    We report the results of time-domain thermoreflectance (TDTR) experiments that examine the ability of Fourier theory to predict the thermal response in single crystals when heater dimensions are small. We performed TDTR measurements on Al-coated diamond, 6H-SiC, GaP, Ge, MgO, GaAs, and GaSb single crystals with a wide range of laser spot size radii, 0.7 μm < w 0 < 12 μm. When the laser spot-size is large, w 0 ≈ 12 μm, TDTR data for all crystals are in agreement with predictions of Fourier theory with bulk thermal conductivity values. When the laser spot-size is small, w 0 < 2 μm, there are significant differences between the predictions of Fourier theory and TDTR data for all crystals except MgO.

  15. Method for harvesting rare earth barium copper oxide single crystals

    DOEpatents

    Todt, V.R.; Sengupta, S.; Shi, D.

    1996-04-02

    A method of preparing high temperature superconductor single crystals is disclosed. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals of the high temperature superconductor, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals of the high temperature superconductor on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals melted, allowing the wicking away of the peritectic liquid. 2 figs.

  16. Single crystal growth of potassium lithium niobate for SAW applications

    NASA Astrophysics Data System (ADS)

    Neurgaonkar, R. R.

    1982-10-01

    The growth of good quality, crack free medium size KLN single crystals using the Czochralski method, with dielectric and piezoelectric properties comparable or superior to the best known bronze composition SBN was demontrated. However, large ( 1 cm diameter) KLN crystals suitable for SAE Surface Acoustic Waves characterization without considerable cracking were not grown. Therefore, in pursuit of alternative bronze compositions with the potential for large crystal growth, work was initiated or, the growth and characterization of PBN and the stuffed bronze BSKNN. Initial characterization work shows both of these materials to be very promising for future SAW device development, and good quality single crystals of BSKNN with 1 cm square cross-section already were successfully grown. The physical properties of PBN and BSKNN also make them of interest for other piezoelectric, electro-optic, and nonlinear optic applications in addition to SAW devices.

  17. Structural plasticity of calmodulin on the surface of CaF2 nanoparticles preserves its biological function

    NASA Astrophysics Data System (ADS)

    Astegno, Alessandra; Maresi, Elena; Marino, Valerio; Dominici, Paola; Pedroni, Marco; Piccinelli, Fabio; Dell'Orco, Daniele

    2014-11-01

    Nanoparticles are increasingly used in biomedical applications and are especially attractive as biocompatible and biodegradable protein delivery systems. Herein, the interaction between biocompatible 25 nm CaF2 nanoparticles and the ubiquitous calcium sensor calmodulin has been investigated in order to assess the potential of these particles to serve as suitable surface protein carriers. Calmodulin is a multifunctional messenger protein that activates a wide variety of signaling pathways in eukaryotic cells by changing its conformation in a calcium-dependent manner. Isothermal titration calorimetry and circular dichroism studies have shown that the interaction between calmodulin and CaF2 nanoparticles occurs with physiologically relevant affinity and that the binding process is fully reversible, occurring without significant alterations in protein secondary and tertiary structures. Experiments performed with a mutant form of calmodulin having an impaired Ca2+-binding ability in the C-terminal lobe suggest that the EF-hand Ca2+-binding motifs are directly involved in the binding of calmodulin to the CaF2 matrix. The residual capability of nanoparticle-bound calmodulin to function as a calcium sensor protein, binding to and altering the activity of a target protein, was successfully probed by biochemical assays. Even if efficiently carried by CaF2 nanoparticles, calmodulin may dissociate, thus retaining the ability to bind the peptide encompassing the putative C-terminal calmodulin-binding domain of glutamate decarboxylase and activate the enzyme. We conclude that the high flexibility and structural plasticity of calmodulin are responsible for the preservation of its function when bound in high amounts to a nanoparticle surface.Nanoparticles are increasingly used in biomedical applications and are especially attractive as biocompatible and biodegradable protein delivery systems. Herein, the interaction between biocompatible 25 nm CaF2 nanoparticles and the ubiquitous calcium sensor calmodulin has been investigated in order to assess the potential of these particles to serve as suitable surface protein carriers. Calmodulin is a multifunctional messenger protein that activates a wide variety of signaling pathways in eukaryotic cells by changing its conformation in a calcium-dependent manner. Isothermal titration calorimetry and circular dichroism studies have shown that the interaction between calmodulin and CaF2 nanoparticles occurs with physiologically relevant affinity and that the binding process is fully reversible, occurring without significant alterations in protein secondary and tertiary structures. Experiments performed with a mutant form of calmodulin having an impaired Ca2+-binding ability in the C-terminal lobe suggest that the EF-hand Ca2+-binding motifs are directly involved in the binding of calmodulin to the CaF2 matrix. The residual capability of nanoparticle-bound calmodulin to function as a calcium sensor protein, binding to and altering the activity of a target protein, was successfully probed by biochemical assays. Even if efficiently carried by CaF2 nanoparticles, calmodulin may dissociate, thus retaining the ability to bind the peptide encompassing the putative C-terminal calmodulin-binding domain of glutamate decarboxylase and activate the enzyme. We conclude that the high flexibility and structural plasticity of calmodulin are responsible for the preservation of its function when bound in high amounts to a nanoparticle surface. Electronic supplementary information (ESI) available: Supplementary methods and figures. See DOI: 10.1039/c4nr04368e

  18. Responsivity enhancement of mid-infrared PbSe detectors using CaF2 nano-structured antireflective coatings

    NASA Astrophysics Data System (ADS)

    Weng, Binbin; Qiu, Jijun; Yuan, Zijian; Larson, Preston R.; Strout, Gregory W.; Shi, Zhisheng

    2014-01-01

    The CaF2 nano-structures grown by thermal vapor deposition are presented. Significant responsivity improvement (>200%) of mid-infrared PbSe detectors incorporating a 200 nm nano-structured CaF2 coating was observed. The detector provides a detectivity of 4.2 × 1010 cm . Hz1/2/W at 3.8 μm, which outperforms all the reported un-cooled PbSe detectors. Structural investigations show that the coating is constructed by tapered-shape nanostructures, which creates a gradient refractive-index profile. Analogy to moth-eye antireflective mechanism, the gradient refractive-index nanostructures play the major roles for this antireflection effect. Some other possible mechanisms that help enhance the device performance are also discussed in the work.

  19. Growth and characterization of lithium yttrium borate single crystals

    SciTech Connect

    Singh, A. K.; Singh, S. G.; Tyagi, M.; Desai, D. G.; Sen, Shashwati

    2014-04-24

    Single crystals of 0.1% Ce doped Li{sub 6}Y(BO{sub 3}){sub 3} have been grown using the Czochralski technique. The photoluminescence study of these crystals shows a broad emission at ∼ 420 nm corresponding to Ce{sub 3+} emission from 5d→4f energy levels. The decay profile of this emission shows a fast response of ∼ 28 ns which is highly desirable for detector applications.

  20. Growth of Solid Solution Single Crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, Sandor L.; Szofran, F. R.; Gillies, Donald C.; Watring, D. A.

    1999-01-01

    The solidification of a solid solution semiconductor, having a wide separation between liquidus and serious has been extensively studied in ground based, high magnetic field and Spacelab experiments. Two alloys of mercury cadmium telluride have been studied; mercury cadmium telluride with 80.0 mole percent of HgTe and 84.8 mole percent respectively. These alloys are extremely difficult to grow by directional solidification on earth due to high solutal and thermal density differences that give rise to fluid flow and consequent loss of interface shape and composition. Diffusion controlled growth is therefore impossible to achieve in conventional directional solidification. The ground based experiments consisted of growing crystals in several different configurations of heat pipe furnaces, NASA's Advanced Automated Directional Solidification Furnace (AADSF), and a similar furnace incorporated in a superconducting magnet capable of operating at up to 5T. The first microgravity experiment took place during the flight of STS-62 in March 1994, with the AADSF installed on the second United States Microgravity Payload (USMP-2). The alloy was solidified at 3/4 inch per day over a 9 day period, and for the first time a detailed evaluation was performed of residual acceleration effects. The second flight experiment took place in the fourth United States Microgravity Payload Mission (USMP-4) in November 1997. Due to contamination of the furnace system by a previously processed sample, the sample was not received until May 1998, and the preliminary analysis shows that the conditions prevailing during the experiment were quite different from the requirements requested prior to the mission. Early results are indicating that the sample may not accomplish the desired objectives. As with the USMP-2 mission, the results of the ground based experiments were compared with the crystal grown in orbit under microgravity conditions. On the earth, it has been demonstrated that the application of the magnetic field leads to a significant reduction in fluid flow, with improved homogeneity of composition. The field strength required to suppress flow increases with diameter of the material. The 8 mm diameter sample used here was less than the upper diameter limit for a ST magnet. The configuration for USMP-4 was changed so that the material was seeded and other processing techniques were also modified. It was decided to examine the effects of a strong magnetic field under the modified configuration and parameters. A further change from USMP-2 was that a different composition of material was grown, namely with 0.152 mole fraction of cadmium telluride rather than the 0.200 of the USMP-2 experiment. The objective was to grow highly homogeneous, low defect density material of a composition at which the conduction band and the valence band of the material impinge against each other. As indicated, the furnace was contaminated during the mission. As a result of solid debris remaining in the furnace bore, the cartridge in this experiment, denoted as SL1-417, was significantly bent during the insertion phase. During translation the cartridge scraped against the plate which isolates the hot and cold zones of the furnace. Thermocouples indicated that a thermal assymetry resulted. The scraping in the slow translation or crystal growth part of the processing was not smooth and it is probable that the jitter was sufficient to give rise to convection in the melt. Early measurements of composition from the surface of the sample have shown that the composition varies in an oscillatory manner.

  1. Structural plasticity of calmodulin on the surface of CaF2 nanoparticles preserves its biological function.

    PubMed

    Astegno, Alessandra; Maresi, Elena; Marino, Valerio; Dominici, Paola; Pedroni, Marco; Piccinelli, Fabio; Dell'Orco, Daniele

    2014-12-21

    Nanoparticles are increasingly used in biomedical applications and are especially attractive as biocompatible and biodegradable protein delivery systems. Herein, the interaction between biocompatible 25 nm CaF2 nanoparticles and the ubiquitous calcium sensor calmodulin has been investigated in order to assess the potential of these particles to serve as suitable surface protein carriers. Calmodulin is a multifunctional messenger protein that activates a wide variety of signaling pathways in eukaryotic cells by changing its conformation in a calcium-dependent manner. Isothermal titration calorimetry and circular dichroism studies have shown that the interaction between calmodulin and CaF2 nanoparticles occurs with physiologically relevant affinity and that the binding process is fully reversible, occurring without significant alterations in protein secondary and tertiary structures. Experiments performed with a mutant form of calmodulin having an impaired Ca(2+)-binding ability in the C-terminal lobe suggest that the EF-hand Ca(2+)-binding motifs are directly involved in the binding of calmodulin to the CaF2 matrix. The residual capability of nanoparticle-bound calmodulin to function as a calcium sensor protein, binding to and altering the activity of a target protein, was successfully probed by biochemical assays. Even if efficiently carried by CaF2 nanoparticles, calmodulin may dissociate, thus retaining the ability to bind the peptide encompassing the putative C-terminal calmodulin-binding domain of glutamate decarboxylase and activate the enzyme. We conclude that the high flexibility and structural plasticity of calmodulin are responsible for the preservation of its function when bound in high amounts to a nanoparticle surface. PMID:25367003

  2. Nano-structuring of CaF2 surfaces by slow highly charged ions: simulation and experiment

    NASA Astrophysics Data System (ADS)

    Wachter, G.; Tökési, K.; Betz, G.; Lemell, C.; Burgdörfer, J.; El-Said, A. S.; Wilhelm, R. A.; Heller, R.; Facsko, S.; Ritter, R.; Aumayr, F.

    2014-04-01

    The impact of individual slow highly charged ions (HCI) on insulators can create nano-scale surface modifications. We present recent experimental results on nano-hillock and etch pit formation on CaF2, where the appearance of surface modifications is observed only above a threshold projectile potential and kinetic energy depending on the type of damage. A proof-of-principle molecular dynamics simulation offers insights into the early stages of damage formation.

  3. Monte Carlo Simulation of Gamma-Ray Response of BaF2 and CaF2

    SciTech Connect

    Gao, Fei; Xie, YuLong; Wang, Zhiguo; Kerisit, Sebastien N.; Wu, Dangxin; Campbell, Luke W.; Van Ginhoven, Renee M.; Prange, Micah P.

    2013-12-01

    We have employed a Monte Carlo (MC) method to study intrinsic properties of two alkaline-earth halides, namely BaF2 and CaF2, relevant to their use as radiation detector materials. The MC method follows the fate of individual electron-hole (e-h) pairs and thus allows for a detailed description of the microscopic structure of ionization tracks created by incident γ-ray radiation. The properties of interest include the mean energy required to create an e-h pair, W, Fano factor, F, the maximum theoretical light yield, and the spatial distribution of e-h pairs resulting from γ-ray excitation. Although W and F vary with incident photon energy at low energies, they tend to constant values at energies higher than 1 keV. W is determined to be 18.9 and 19.8 eV for BaF2 and CaF2, respectively, in agreement with published data. The e-h pair spatial distributions exhibit a linear distribution along the fast electron tracks with high e-h pair densities at the end of the tracks. Most e-h pairs are created by interband transition and plasmon excitation in both scintillators, but the e-h pairs along fast electron tracks in BaF2 are slightly clustered, forming nanoscale domains and resulting in the higher e-h pair densities than in CaF2. Combining the maximum theoretical light yields calculated for BaF2 and CaF2 with those obtained for CsI and NaI shows that the theoretical light yield decreases linearly with increasing band gap energy.

  4. Skylab experiments on semiconductors and alkali halides. [single crystal growth

    NASA Technical Reports Server (NTRS)

    Lundquist, C. A.

    1974-01-01

    The space processing experiments performed during the Skylab missions included one on single crystal growth of germanium selenide and telluride, one on pure and doped germanium crystals, two on pure and doped indium antimonide, one on gallium-indium-antimony systems, and one on a sodium chloride-sodium fluoride eutectic. In each experiment, three ampoules of sample were processed in the multipurpose electric furnace within the Skylab Materials Processing Facility. All were successful in varying degrees and gave important information about crystal growth removed from the effects of earth surface gravity.

  5. Epitaxial Growth of WOx Nanorod on Single Crystal Tungsten Substrate

    NASA Astrophysics Data System (ADS)

    Shingaya, Yoshitaka; Nakayama, Tomonobu

    Nanorods of substoichiometric tungsten oxide (WOx) were grown on single crystal tungsten substrate. The grown nanorods were investigated with scanning electron micrope and atomic force microscope. WOx nanorods were grown on W(001) in accordance with epitaxial relationship between WO3 crystals and W(001) surface. The results indicate that the WO3 crystals formed at the initial stage act as the nuclei of WOx nanorods. Nanorod growth of certain epitaxial directions can be selectively enhanced by choosing growth methods or choosing suitable crystallographic orientation of substrate surface.

  6. Lithium niobate single-crystal and photo-functional device

    DOEpatents

    Gopalan, Venkatraman; Mitchell, Terrence E.; Kitamura, Kenji; Furukawa, Yasunori

    2001-01-01

    Provided are lithium niobate single-crystal that requires a low voltage of not larger than 10 kV/nm for its ferroelectric polarization inversion and of which the polarization can be periodically inverted with accuracy even at such a low voltage, and a photo-functional device comprising the crystal. The crystal has a molar fraction of Li.sub.2 O/(Nb.sub.2 O.sub.5 +Li.sub.2 O) of falling between 0.49 and 0.52. The photo-functional device can convert a laser ray being incident thereon.

  7. Fabrication and characterization of dielectric strontium titanium oxynitride single crystal

    NASA Astrophysics Data System (ADS)

    Hoshina, Takuya; Sahashi, Akira; Takeda, Hiroaki; Tsurumi, Takaaki

    2015-10-01

    In this paper, we show a fabrication method and the dielectric properties of strontium titanium oxynitride (SrTiO3:N) single crystals. Oxynitride single crystals were prepared by annealing SrTiO3 single crystals in gaseous ammonia. SrTiO3:N was assumed to have the chemical composition SrTiO3-3xN2x, which contained oxygen vacancies. To reduce the number of oxygen vacancies, SrTiO3 crystals co-doped with nitrogen and niobium (SrTiO3:N,Nb) were fabricated. The semiconducting Nb-doped SrTiO3 crystals changed to dielectric N,Nb-codoped SrTiO3 crystals with a resistivity of 6 × 1012 Ω·cm with annealing in gaseous ammonia. XPS measurement indicated that niobium doping was effective for increasing the amount of dopant nitrogen. The dielectric permittivity increased with the amount of dopant nitrogen, indicating the effectivity of nitrogen doping for increasing the dielectric permittivity of perovskite oxides.

  8. Single crystals of the fluorite nonstoichiometric phase Eu{0.916/2+}Eu{0.084/3+}F2.084 (conductivity, transmission, and hardness)

    NASA Astrophysics Data System (ADS)

    Sobolev, B. P.; Turkina, T. M.; Sorokin, N. I.; Karimov, D. N.; Komar'kova, O. N.; Sulyanova, E. A.

    2010-07-01

    The nonstoichiometric phase EuF2+ x has been obtained via the partial reduction of EuF3 by elementary Si at 900-1100°C. Eu{0.916/2+}Eu{0.084/3+}F2.084 (EuF2.084) single crystals have been grown from melt by the Bridgman method in a fluorinating atmosphere. These crystals belong to the CaF2 structure type (sp. gr. Fm bar 3 m) with the cubic lattice parameter a = 5.8287(2) Å, are transparent in the spectral range of 0.5-11.3 μm, and have microhardness H μ = 3.12 ± 0.13 GPa and ionic conductivity σ = 1.4 × 10-5 S/cm at 400°C with the ion transport activation energy E a = 1.10 ± 0.05 eV. The physicochemical characteristics of the fluorite phases in the EuF2 - EuF3 systems are similar to those of the phases in the SrF2 - EuF3 and SrF2 - GdF3 systems due to the similar lattice parameters of the EuF2 and SrF2 components. Europium difluoride supplements the list of fluorite components MF2 ( M = Ca, Sr, Ba, Cd, Pb), which are crystal matrices for nonstoichiometric (nanostructured) fluoride materials M 1 - x R x F2 + x ( R are rare earth elements).

  9. Elastic constants of single crystal Hastelloy X at elevated temperatures

    SciTech Connect

    Canistraro, H.A.; Jordan, E.H.; Shi Shixiang; Favrow, L.H.; Reed, F.A.

    1998-07-01

    An acoustic time of flight technique is described in detail for measuring the elastic constants of cubic single crystals that allows for the constants to be determined at elevated temperature. Although the overall technique is not new, various aspects of the present work may prove extremely useful to others interested in finding these values, especially for aerospace materials applications. Elastic constants were determined for the nickel based alloy, Hastelloy X from room temperature to 1,000 C. Accurate elastic constants were needed as part of an effort to predict both polycrystal mechanical properties and the nature of grain induced heterogeneous mechanical response. The increased accuracy of the acoustically determined constants resulted in up to a 15% change in the predicted stresses in individual grains. These results indicate that the use of elastic single crystal constants of pure nickel as an approximation for the constants of gas turbine single crystal alloys, which is often done today, is inaccurate.

  10. The Load Capability of Piezoelectric Single Crystal Actuators

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Su, Ji; Jiang, Xiaoning; Rehrig, Paul W.; Hackenberger, Wesley S.

    2007-01-01

    Piezoelectric lead magnesium niobate-lead titanate (PMN-PT) single crystal is one of the most promising materials for electromechanical device applications due to its high electrical field induced strain and high electromechanical coupling factor. PMN-PT single crystal-based multilayer stack actuators and multilayer stack-based flextensional actuators have exhibited high stroke and high displacement-voltage ratios. The actuation capabilities of these two actuators were evaluated using a newly developed method based upon a laser vibrometer system under various loading conditions. The measured displacements as a function of mechanical loads at different driving voltages indicate that the displacement response of the actuators is approximately constant under broad ranges of mechanical load. The load capabilities of these PMN-PT single crystal-based actuators and the advantages of the capability for applications will be discussed.

  11. Synthesis and properties of erbium oxide single crystals

    SciTech Connect

    Petrovic, J.J.; Romero, R.S.; Mendoza, D.; Kukla, A.M.; Hoover, R.C.; McClellan, K.J.

    1999-04-01

    Erbium oxide (Er{sub 2}O{sub 3}, erbia) is a highly stable cubic rare earth oxide with a high melting point of 2,430 C. Because of this, it may have potential applications where high temperature stability and corrosion resistance are required. However, relatively little is known about the properties of this oxide ceramic. The authors have employed a xenon optical floating zone unit with a temperature capability of 3,000 C to grow high quality single crystals of erbia. The conditions for single crystal growth of erbia have been established. The mechanical properties of erbia single crystals have been initially examined using microhardness indentation as a function of temperature.

  12. The Load Capability of Piezoelectric Single Crystal Actuators

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Su, Ji; Jiang, Xiaoning; Rehrig, Paul W.; Hackenberger, Wesley S.

    2006-01-01

    Piezoelectric lead magnesium niobate-lead titanate (PMN-PT) single crystal is one of the most promising materials for electromechanical device applications due to its high electrical field induced strain and high electromechanical coupling factor. PMN-PT single crystal-based multilayer stack actuators and multilayer stack-based flextensional actuators have exhibited high stroke and high displacement-voltage ratios. The actuation capabilities of these two actuators were evaluated using a newly developed method based upon a laser vibrometer system under various loading conditions. The measured displacements as a function of mechanical loads at different driving voltages indicate that the displacement response of the actuators is approximately constant under broad ranges of mechanical load. The load capabilities of these PMN-PT single crystal-based actuators and the advantages of the capability for applications will be discussed.

  13. Single Crystal Synthesis and STM Studies of High Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Barrientos, Alfonso

    1997-01-01

    This is a final report for the work initiated in September of 1994 under the grant NAG8-1085 - NASA/OMU, on the fabrication of bulk and single crystal synthesis, specific heat measuring and STM studies of high temperature superconductors. Efforts were made to fabricate bulk and single crystals of mercury based superconducting material. A systematic thermal analysis on the precursors for the corresponding oxides and carbonates were carried out to synthesized bulk samples. Bulk material was used as seed in an attempt to grow single crystals by a two-step self flux process. On the other hand bulk samples were characterized by x-ray diffraction, electrical resistivity and magnetic susceptibility, We studied the specific heat behavior in the range from 80 to 300 K. Some preliminary attempts were made to study the atomic morphology of our samples. As part of our efforts we built an ac susceptibility apparatus for measuring the transition temperature of our sintered samples.

  14. Radial Diffraction Strength and Elastic Behavior of CaF2 in Low- and High-Pressure Phases

    SciTech Connect

    Kavner,A.

    2008-01-01

    The radial-diffraction lattice behavior of CaF2 was analyzed in its low-pressure (fluorite) and high-pressure phase up to 11.5 GPa using radial x-ray diffraction techniques in the diamond anvil cell. Between 3.5 and 7.1 GPa, fluorite develops a radial-diffraction strength of {approx}0.8 GPa. The corresponding lattice anisotropy of the fluorite phase was measured to be equal to 0.73, in good agreement with previous Brillouin spectroscopy measurements. By 8.8 GPa, CaF2 has undergone a phase transformation to its high-pressure (orthorhombic) phase, with a corresponding volume decrease of 10.4%. By 11.5 GPa, the volume drop between the low-pressure and high-pressure phase has increased to 11.5%. In addition, the high-pressure phase is found to withstand a significantly larger differential stress than the low-pressure fluorite phase, with a large degree of lattice anisotropy. In the maximum stress direction at 8.8 GPa, we observe a time-dependent evolution of the lattice parameters of CaF2, indicating that the high-pressure structure is still undergoing deformation on time scales of hours after the phase boundary has been crossed.

  15. Effect of Crystal Orientation on Analysis of Single-Crystal, Nickel-Based Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Swanson, G. R.; Arakere, N. K.

    2000-01-01

    High-cycle fatigue-induced failures in turbine and turbopump blades is a pervasive problem. Single-crystal nickel turbine blades are used because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities. Single-crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant and complicating factor. A fatigue failure criterion based on the maximum shear stress amplitude on the 24 octahedral and 6 cube slip systems is presented for single-crystal nickel superalloys (FCC crystal). This criterion greatly reduces the scatter in uniaxial fatigue data for PWA 1493 at 1,200 F in air. Additionally, single-crystal turbine blades used in the Space Shuttle main engine high pressure fuel turbopump/alternate turbopump are modeled using a three-dimensional finite element (FE) model. This model accounts for material orthotrophy and crystal orientation. Fatigue life of the blade tip is computed using FE stress results and the failure criterion that was developed. Stress analysis results in the blade attachment region are also presented. Results demonstrate that control of crystallographic orientation has the potential to significantly increase a component's resistance to fatigue crack growth without adding additional weight or cost.

  16. Anisotropy of nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Dreshfield, R. L.; Maier, R. D.

    1980-01-01

    The influence of orientation on the tensile and stress rupture behavior of 52 Mar-M247 single crystals was studied. Tensile tests were performed at temperatures between 23 and 1093 C; stress rupture behavior was examined between 760 and 1038 C. The mechanical behavior of the single crystals was rationalized on the basis of the Schmid factor contours for the operative slip systems and the lattice rotations which the crystals underwent during deformation. The tensile properties correlated well with the appropriate Schmid factor contours. The stress rupture lives at lower testing temperatures were greatly influenced by the lattice rotations required to produce cross slip. A unified analysis was attained for the stress rupture life data generated for the Mar-M247 single crystals at 760 and 774 C under a stress of 724 MPa and the data reported for Mar-M200 single crystals tested at 760 C under a stress of 689 MPa. Based on this analysis, the stereographic triangle was divided into several regions which were rank ordered according to stress rupture life for this temperature regime.

  17. Photoreduction of Ag ion on ZnO single crystal

    NASA Astrophysics Data System (ADS)

    Kawano, Kinuyo; Komatsu, Manabu; Yajima, Yoshiyuki; Haneda, Hajime; Maki, Hideyuki; Yamamoto, Taisei

    2002-04-01

    The photoreduction of Ag ion was studied on ZnO single-crystal surface: Zn polar surface (0 0 0 1) and O polar surface (0 0 0 1¯) . The single crystals were prepared by a hydrothermal process. Although Ag precipitate did not grow on a non-photocatalytic crystal, such as Al 2O 3, under UV irradiation, Ag ion in aqueous solution was rapidly reduced on ZnO single-crystal surface under UV irradiation. We found that the reactivity of Zn polar surface was higher than that of O polar surface and that the Ag deposition modes differed. To clarify the reaction mechanism, we performed a chemical analysis of the solution and Ag precipitates on ZnO surfaces by ICP and measured the pH of the solution. The results show that zinc ions were dissolved into solution from ZnO single-crystal surface, i.e., by photolysis, but there was less photolysis at the Zn than O polar surface.

  18. Single crystal diamond tips for scanning probe microscopy.

    PubMed

    Obraztsov, Alexander N; Kopylov, Petr G; Loginov, Boris A; Dolganov, Mathew A; Ismagilov, Rinat R; Savenko, Natalia V

    2010-01-01

    Single crystal diamond tips with perfect pyramidal geometry were obtained by a combination of chemical vapor deposition and selective oxidation of polycrystalline films. The parameters of the deposition process were chosen to provide growth of a textured film consisting of micrometer sized diamond crystallites embedded into nanodiamond ballas-like material. The heating of the film in an air environment was used for selective oxidation of the nanodiamond component. The films obtained contain free standing pyramidal single crystal diamond tips oriented by their apexes to the substrate surface. The tips were used for the fabrication of atomic force microscopy probes and their evaluation in comparison to common silicon probes. PMID:20113103

  19. How a silver dendritic mesocrystal converts to a single crystal

    SciTech Connect

    Fang, J.; Ding, B.; Song, X.; Han, Y.

    2008-05-02

    In this paper, we demonstrate how a silver dendrite transforms from mesocrystal into single crystal and the stability for a dendritic silver mesocrystal within a Sn/AgNO3 galvanic replacement reaction. Our findings provide the direct evidence and visible picture of the transformation from mesocrystal to single crystalline structure and further confirm the particle-mediated crystallization mechanism. At the initial stage of the transformation, there is a crystallographic fusion process, dominated by oriented attachment mechanism. Ostwald ripening also plays an important role in forming smooth surface and regular shape of the final nanocrystal.

  20. Two-photon-induced singlet fission in rubrene single crystal.

    PubMed

    Ma, Lin; Galstyan, Gegham; Zhang, Keke; Kloc, Christian; Sun, Handong; Soci, Cesare; Michel-Beyerle, Maria E; Gurzadyan, Gagik G

    2013-05-14

    The two-photon-induced singlet fission was observed in rubrene single crystal and studied by use of femtosecond pump-probe spectroscopy. The location of two-photon excited states was obtained from the nondegenerate two-photon absorption (TPA) spectrum. Time evolution of the two-photon-induced transient absorption spectra reveals the direct singlet fission from the two-photon excited states. The TPA absorption coefficient of rubrene single crystal is 52 cm∕GW at 740 nm, as obtained from Z-scan measurements. Quantum chemical calculations based on time-dependent density functional theory support our experimental data. PMID:23676057

  1. Lead pyrovanadate single crystal as a new SRS material

    SciTech Connect

    Basiev, Tasoltan T; Voronko, Yu K; Maslov, Vladislav A; Sobol, A A; Shukshin, V E

    2011-02-28

    Lead pyrovanadate Pb{sub 2}V{sub 2}O{sub 7} single crystals of optical quality suitable for laser experiments are obtained. Vibrational modes are identified based on the analysis of the polarised Raman spectra of the single crystals. The main parameters (width at half maximum, peak and integral intensities) of the spectral lines most promising for SRS conversion in this material are estimated. These parameters are compared with the corresponding parameters of the most frequently used lines of known Raman materials: yttrium and gadolinium vanadates, potassium and lead tungstates, and lead molybdate. (active media)

  2. Two-photon-induced singlet fission in rubrene single crystal

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Galstyan, Gegham; Zhang, Keke; Kloc, Christian; Sun, Handong; Soci, Cesare; Michel-Beyerle, Maria E.; Gurzadyan, Gagik G.

    2013-05-01

    The two-photon-induced singlet fission was observed in rubrene single crystal and studied by use of femtosecond pump-probe spectroscopy. The location of two-photon excited states was obtained from the nondegenerate two-photon absorption (TPA) spectrum. Time evolution of the two-photon-induced transient absorption spectra reveals the direct singlet fission from the two-photon excited states. The TPA absorption coefficient of rubrene single crystal is 52 cm/GW at 740 nm, as obtained from Z-scan measurements. Quantum chemical calculations based on time-dependent density functional theory support our experimental data.

  3. Apparatus And Method For Producing Single Crystal Metallic Objects

    DOEpatents

    Huang, Shyh-Chin; Gigliotti, Jr., Michael Francis X.; Rutkowski, Stephen Francis; Petterson, Roger John; Svec, Paul Steven

    2006-03-14

    A mold is provided for enabling casting of single crystal metallic articles including a part-defining cavity, a sorter passage positioned vertically beneath and in fluid communication with the part-defining cavity, and a seed cavity positioned vertically beneath and in fluid communication with the sorter passage. The sorter passage includes a shape suitable for encouraging a single crystal structure in solidifying molten metal. Additionally, a portion of the mold between the sorter passage and the part-defining cavity includes a notch for facilitating breakage of a cast article proximate the notch during thermal stress build-up, so as to prevent mold breakage or the inclusion of part defects.

  4. Imaging linear polarimetry using a single ferroelectric liquid crystal modulator.

    PubMed

    Gendre, Luc; Foulonneau, Alban; Bigué, Laurent

    2010-09-01

    In the field of polarimetry, ferroelectric liquid crystal cells are mostly used as bistable polarization rotators suitable to analyze crossed polarizations. This paper shows that, provided such a cell is used at its nominal wavelength and correctly driven, its behavior is close to that of a tunable half-wave plate, and it can be used with much benefit in lightweight imaging polarimetric setups. A partial Stokes polarimeter using a single digital video camera and a single ferroelectric liquid crystal modulator is designed and implemented for linear polarization analysis. Polarization azimuthal angle and degree of linear polarization are available at 150 frames per second with a good accuracy. PMID:20820209

  5. Growth of Solid Solution Single Crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, Sandor L.; Szofran, F. R.; Gillies, Donald C.

    2001-01-01

    The solidification of a solid solution semiconductor, having a wide separation between liquidus and solidus has been extensively studied in ground based, high magnetic field and Spacelab experiments. Two alloys of mercury cadmium telluride have been studied; with 80.0 mole percent of HgTe and 84.8 mole percent of HgTe respectively, the remainder being cadmium telluride. Such alloys are extremely difficult to grow by directional solidification on earth due to high solutal and thermal density differences that give rise to fluid flow and consequent loss of interface shape and composition. Diffusion controlled growth is therefore impossible to achieve in conventional directional solidification. The ground based experiments consisted of growing crystals in several different configurations of heat pipe furnaces, NASA's Advanced Automated Directional Solidification Furnace (AADSF), and a similar furnace incorporated in a superconducting magnet capable of operating at up to 5T. The first microgravity experiment took place during the flight of STS-62 in March 1994, with the AADSF installed on the second United States Microgravity Payload (USMP-2). The alloy was solidified at 3/4 inch per day over a 9 day period, and for the first time a detailed evaluation was performed correlating composition variations to measured residual acceleration. The second flight experiment took place in the fourth United States Microgravity Payload Mission (USMP-4) in November 1997. Due to contamination of the furnace system, analysis shows that the conditions prevailing during the experiment were quite different from the requirements requested prior to the mission. The results indicate that the sample did accomplish the desired objectives.

  6. Structural and optical properties of a new chalcone single crystal

    NASA Astrophysics Data System (ADS)

    Rajesh Kumar, P. C.; Ravindrachary, V.; Janardhana, K.; Poojary, Boja

    2012-09-01

    A new nonlinear optical material 1-(4-methylthiophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one with molecular formula C17H16O2S was synthesized by using the Claisen-Schmidt condensation reaction method. The Various functional groups present in the compound were identified using recorded FT-IR spectrum. The crystal growth parameters have been studied using solubility test and acetone is found to be a very good solvent for the crystal growth at an ambient temperature. The transparent high quality single crystals up to a size of 26×2×2 mm3 were grown using the slow evaporation solution growth technique. UV-visible study was carried out and the spectrum reveals that the crystal is transparent in the entire visible region and absorptive in the UV region. The refractive index is determined using Brewster's angle method. The optical energy band gap of the material is measured using Tauc's plot and the direct method. The single crystal XRD of MMPP crystal shows the following cell parameters: a=5.9626(2) Å, b=15.3022(6) Å, c=16.0385(7) Å, α=β=γ=90°, volume=1463.37(10) Å3 with a space group of Pna21. The compound MMPP exhibits optical nonlinearity (NLO) and its second order NLO efficiency is 3.15 times to that of urea. The effect of functional groups OCH3 and SCH3 on the non-linearity as well as the structural property of the compound has been discussed. The crystal is thermally stable. High NLO efficiency, good thermal stability, good transparency and ability to grow as a high quality single crystal make this material very attractive for opto-electronic applications.

  7. Crystal growth and characterization of new semiorganic nonlinear optical single crystals

    NASA Astrophysics Data System (ADS)

    Kulshrestha, Shobha; Shrivastava, A. K.

    2016-05-01

    An organic material of a L-histidine monohydrochloride single crystal was grown in a distilled water solution using the slow evaporation method at 40-45°C. The grown crystal was transparent and colourless, with a size of about 20 × 9 × 5 mm3, obtained within a period of 21 days. The solubility of grown crystals have found out at various temperatures. The UV-visible transmittance studies show that the grown crystals have wide optical transparency in the entire visible region It is observed that the crystal has transparency window from 255nm to 700nm and its energy gap (Eg) found to be is 3.1eV. The grown crystal was subjected to powder X-ray diffraction analysis, confirming that the orthorhombic crystalline nature of the crystal. To identify the surface morphology, the as grown crystal was subjected to FE-SEM technique. The chemical composition of the grown crystal was estimated by Energy dispersive X-ray analysis. The optical behaviour of the grown crystal was analyzed by PL study.

  8. Ultrasonic characterization of single crystal langatate

    NASA Astrophysics Data System (ADS)

    Sturtevant, Blake T.

    Langatate (LGT), a synthetic piezoelectric crystal with chemical composition La3Ga5.5Ta0.5O14, has recently received significant interest in the sensor and frequency control communities as a possible alternative to quartz owing to its higher piezoelectric coupling, structural stability up to 1400C and presence of temperature compensated acoustic wave (AW) orientations. With these exciting properties, LGT is expected to find applications in AW sensor, timing, and frequency control. This thesis focuses on the characterization of the acoustic wave material properties of LGT up to 120C. Such a characterization is critical for the design and fabrication of LGT acoustic wave devices. The elastic and piezoelectric constants were determined through measurements of bulk acoustic wave phase velocities by two independent methods, the pulse echo overlap technique and a combined resonance technique. The extracted constants and temperature coefficients enabled the identification of a range of particularly interesting LGT surface acoustic wave (SAW) orientations with Euler angles (90, 23, 118-124) that exhibits predicted electromechanical coupling up to 0.7% and reduced or zero temperature coefficient of delay (TCD). The consistency of the determined constants and temperature coefficients was established using SAW measurements of seven crystallographic orientations at temperatures ranging up to 120C. Measured SAW phase velocities and TCDs were found to be in agreement with predictions based on the determined constants. Two of the seven SAW orientations exhibited temperature compensation within 40C of room temperature, agreeing with predictions. Deposition of SiAlON films on top of LGT SAW devices for surface protection in chemically and mechanically harsh environments was also investigated. SiAlON films deposited by reactive RF magnetron co-sputtering of Al and Si targets were controlled to within a few percent for film thickness and composition. SiAlON thin film clastic constants were extracted using differential SAW delay line methods and were found to be: C11,s = 160 +/- 30 GPa and C44,s = 55 +/- 5 GPa. SiAlON films up to 800 nm in thickness were shown to have no measurable effect on the TCD of LGT SAW delay lines.

  9. Roflumilast - A reversible single-crystal to single-crystal phase transition at 50 °C

    NASA Astrophysics Data System (ADS)

    Viertelhaus, Martin; Holst, Hans Christof; Volz, Jürgen; Hummel, Rolf-Peter

    2013-01-01

    Roflumilast is a selective phosphodiesterase type 4 inhibitor and is marketed under the brand names Daxas®, Daliresp® and Libertec®. A phase transition of the drug substance roflumilast was observed at 50 °C. The low temperature form, the high temperature form and the phase transition were characterised by differential scanning calorimetry, variable temperature powder X-ray diffraction and single crystal X-ray diffraction, Raman spectroscopy and solid state NMR spectroscopy. The phase transition of roflumilast at 50 °C is completely reversible, the high temperature form cannot be stabilised by quench cooling and the phase transition does not influence the quality of the active pharmaceutical ingredient (API) and the drug product. It was observed to be a single crystal to single crystal phase transition.

  10. Twisted Single Crystals in Nonbiological Main-Chain Chiral Polyesters

    NASA Astrophysics Data System (ADS)

    Cheng, S.; Li, Y.; Bai, F.; Harris, F.; Yan, D.; Chen, L.

    1998-03-01

    A series of chiral Poly(R)-(-)-4-(w)-[2-(p-hydroxy-o-nitrophenyloxy)-1-propyloxy]-1- nonyloxy-4-biphenyl carboxylic acid has been synthesized. Singe crystals were grown from the melt. Two very distinct morphological habits can be observed: an elongated flat-on morphology and a helical twist along its long axis. The twisted single crystals show a unique left-handed helical habit with typical pitch length of about 1-2 micrometers. It is expected that this twisted morphology results from a slight deviation of a 21 symmetry in chain packing. In the past, helical morphologies were report in two classes of materials: liquid crystals from the melt and biopolymers in solutions. Liquid crystals only show this kind of morphology when their order is lower than smectic F or I phase, while biopolmers, such as bombyx mori silk fibroin, exhibit similar morphology from solutions due to the existence of the twisted b-sheets. In this case, however, the twisted morphology was identified as crystals via ED and WAXD experiments. Furthermore, neither H-bonding nor b-sheet structure exists in the chemical structure. It is believed that our observation in the twisted single crystals from the melt may represent a class of phases which has not been fully classified.

  11. Relaxor-PT Single crystals: Observations and Developments

    PubMed Central

    Zhang, Shujun; Shrout, Thomas R.

    2011-01-01

    Relaxor-PT based ferroelectric single crystals Pb(Zn1/3Nb2/3)O3–PbTiO3 (PZNT) and Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMNT) attracted lot of attentions in last decade due to their ultra high electromechanical coupling factors and piezoelectric coefficients. However, owing to a strongly curved morphotropic phase boundary (MPB), the usage temperature of these perovskite single crystals is limited by TRT - the rhombohedral to tetragonal phase transition temperature, which occurs at significantly lower temperatures than the Curie temperature TC. Furthermore, the low mechanical quality factors and coercive fields of these crystals, usually being on the order of ~70 and 2–3kV/cm, respectively, restrict their usage in high power applications. Thus, it is desirable to have high performance crystals with high temperature usage range and high power characteristics. In this survey, different binary and ternary crystal systems were explored, with respect to their temperature usage range, general trends of dielectric and piezoelectric properties of relaxor-PT crystal systems were discussed related to their TC/TRT. In addition, two approaches were proposed to improve mechanical Q values, including acceptor dopant strategy, analogous to “hard” polycrystalline ceramics, and anisotropic domain engineering configurations. PMID:20889397

  12. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization

    PubMed Central

    Saidaminov, Makhsud I.; Abdelhady, Ahmed L.; Murali, Banavoth; Alarousu, Erkki; Burlakov, Victor M.; Peng, Wei; Dursun, Ibrahim; Wang, Lingfei; He, Yao; Maculan, Giacomo; Goriely, Alain; Wu, Tom; Mohammed, Omar F.; Bakr, Osman M.

    2015-01-01

    Single crystals of methylammonium lead trihalide perovskites (MAPbX3; MA=CH3NH3+, X=Br− or I−) have shown remarkably low trap density and charge transport properties; however, growth of such high-quality semiconductors is a time-consuming process. Here we present a rapid crystal growth process to obtain MAPbX3 single crystals, an order of magnitude faster than previous reports. The process is based on our observation of the substantial decrease of MAPbX3 solubility, in certain solvents, at elevated temperatures. The crystals can be both size- and shape-controlled by manipulating the different crystallization parameters. Despite the rapidity of the method, the grown crystals exhibit transport properties and trap densities comparable to the highest quality MAPbX3 reported to date. The phenomenon of inverse or retrograde solubility and its correlated inverse temperature crystallization strategy present a major step forward for advancing the field on perovskite crystallization. PMID:26145157

  13. Fretting Stresses in Single Crystal Superalloy Turbine Blade Attachments

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Swanson, Gregory

    2000-01-01

    Single crystal nickel base superalloy turbine blades are being utilized in rocket engine turbopumps and turbine engines because of their superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal nickel base turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. High Cycle Fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Blade attachment regions are prone to fretting fatigue failures. Single crystal nickel base superalloy turbine blades are especially prone to fretting damage because the subsurface shear stresses induced by fretting action at the attachment regions can result in crystallographic initiation and crack growth along octahedral planes. Furthermore, crystallographic crack growth on octahedral planes under fretting induced mixed mode loading can be an order of magnitude faster than under pure mode I loading. This paper presents contact stress evaluation in the attachment region for single crystal turbine blades used in the NASA alternate Advanced High Pressure Fuel Turbo Pump (HPFTP/AT) for the Space Shuttle Main Engine (SSME). Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. Blades and the attachment region are modeled using a large-scale 3D finite element (FE) model capable of accounting for contact friction, material orthotrophy, and variation in primary and secondary crystal orientation. Contact stress analysis in the blade attachment regions is presented as a function of coefficient of friction and primary and secondary crystal orientation, Stress results are used to discuss fretting fatigue failure analysis of SSME blades. Attachment stresses are seen to reach peak values at locations where fretting cracks have been observed. Fretting stresses at the attachment region are seen to vary significantly as a function of crystal orientation. Attempts to adapt techniques used for estimating fatigue life in the airfoil region, for life calculations in the attachment region, are presented. An effective model for predicting crystallographic crack initiation under mixed mode loading is required for life prediction under fretting action.

  14. Macroscale Janus polymer single crystal film and its wettability analysis

    NASA Astrophysics Data System (ADS)

    Qi, Hao; Wang, Wenda; Zhou, Tian; Li, Christopher

    2014-03-01

    Liquid-liquid interface between two immiscible solvents is crucial to studying amphiphile and colloidal self-assembly. It can also guide chain folding during the crystallization process. In this presentation, we show that crystallization of dicarboxy end functionalized poly(ɛ-caprolactone) at water/pentyl acetate interface result in millimeter scale, uniform polymer single crystal (PSC) film. Due to the asymmetric nature at the liquid-liquid interface, the PSC film exhibit Janus property - a hydrophobic side and a hydrophilic side, which is confirmed by in-situ nano-condensation experiment using an environmental scanning electron microscope. The thickness of the PSC film changes with different polymer solution concentration, revealing a surface tension dominated crystallization process.

  15. Microhardness studies of vapour grown tin (II) sulfide single crystals

    NASA Astrophysics Data System (ADS)

    Hegde, S. S.; Kunjomana, A. G.; Ramesh, K.

    2015-06-01

    Earth abundant tin sulfide (SnS) has attracted considerable attention as a possible absorber material for low-cost solar cells due to its favourable optoelectronic properties. Single crystals of SnS were grown by physical vapour deposition (PVD) technique. Microindentation studies were carried out on the cleaved surfaces of the crystals to understand their mechanical behaviour. Microhardness increased initially with the load, giving sharp maximum at 15 g. Quenching effect has increased the microhardness, while annealing reduced the microhardness of grown crystals. The hardness values of as-grown, annealed and quenched samples at 15 g load are computed to be 99.69, 44.52 and 106.29 kg/mm2 respectively. The microhardness of PVD grown crystals are high compared to CdTe, a leading low-cost PV material. The as-grown faces are found to be fracture resistant.

  16. Applications of single crystals in oil well logging

    NASA Astrophysics Data System (ADS)

    Melcher, C. L.; Schweitzer, J. S.; Manente, R. A.; Peterson, C. A.

    1991-02-01

    Both single crystal scintillators and germanium semiconductor detectors are used in oil well-logging tools for gamma-ray detection. Since the scintillator crystals range in size up to 3 inches in diameter and 12 inches long, extremely high crystal quality is necessary to prevent attenuation of the scintillation light over the long light paths. In addition, the elimination of impurities that quench the scintillation light is crucial. NaI(Tl) is the most common scintillator crystal due to its intense emission and good energy resolution. However, recent advances in the crystal growth of Bi 4Ge 3O 12, BaF 2, and CdWO 4 have improved their scintillation properties and made them viable alternatives for certain applications. The only semiconductor crystal in current use is high purity germanium. Other semiconductors such as CdTe and HgI 2 require improvements in crystal growth techniques to improve stoichiometry and remove defects and impurities which inhibit efficient charge collection.

  17. Monte Carlo simulations of single crystals from polymer solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Jianing; Muthukumar, M.

    2007-06-01

    A novel "anisotropic aggregation" model is proposed to simulate nucleation and growth of polymer single crystals as functions of temperature and polymer concentration in dilute solutions. Prefolded chains in a dilute solution are assumed to aggregate at a seed nucleus with an anisotropic interaction by a reversible adsorption/desorption mechanism, with temperature, concentration, and seed size being the control variables. The Monte Carlo results of this model resolve the long-standing dilemma regarding the kinetic and thermal roughenings, by producing a rough-flat-rough transition in the crystal morphology with increasing temperature. It is found that the crystal growth rate varies nonlinearly with temperature and concentration without any marked transitions among any regimes of polymer crystallization kinetics. The induction time increases with decreasing the seed nucleus size, increasing temperature, or decreasing concentration. The apparent critical nucleus size is found to increase exponentially with increasing temperature or decreasing concentration, leading to a critical nucleus diagram composed in the temperature-concentration plane with three regions of different nucleation barriers: no growth, nucleation and growth, and spontaneous growth. Melting temperatures as functions of the crystal size, heating rate, and concentration are also reported. The present model, falling in the same category of small molecular crystallization with anisotropic interactions, captures most of the phenomenology of polymer crystallization in dilute solutions.

  18. Growth of hafnium dioxide-based single crystals

    SciTech Connect

    Voronov, V.V.; Lavrishchev, S.V.; Markov, N.I.; Miftyakhetdinova, N.R.; Osiko, V.V.; Tatarintsev, V.M.; Zufarov, M.A.

    1986-03-01

    This paper considers the induction melting of hafnium dioxide with rare earth oxide mixtures, and studies defects in resulting hafnium dioxide single crystals stabilized by the oxides of scandium, yttrium, neodymium, gadolinium, terbium, erbium, and ytterbium at concentrations between 1 and 33 mole %. Crystallization of solid solutions occurs in the systems HfO/sub 2/Ln/sub 2/O/sub 3/. For the HfO/sub 2/-Er/sub 2/O/sub 3/ system, single crystals grow at 11-33 mole %, for HfO/sub 2/-Tb/sub 2/O/sub 3/ at 10-20 mole % and for HfO/sub 3/Sc/sub 2/O/sub 3/ (Nd/sub 2/O/sub 3/) at 10 mole % rare-earth oxide.

  19. Characterization of hydrogen embrittlement in nickel base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Chene, J.; Baker, C. L.; Bernstein, I. M.; Williams, J. C.

    1986-01-01

    In order to study the role of CMSX2 single crystal microstructure on the combined stress-hydrogen environment effects, hydrogen was introduced by cathodic charging. Concentration measurements were carried out to investigate the dependence of hydrogen solubility and trapping on microstructure. Mechanical properties were measured at room temperature on smooth tensile specimens as a function of heat treatment, crystal orientation and H charging conditions. SEM and TEM allow to study H induced cracks initiation and propagation. A large amount of hydrogen can be dissolved and trapped in CMSX2 single crystals when exposed to a high hydrogen fugacity environment. The strong H trapping evidenced in voids explains the predominant role of these defects as crack initiation sites. The strong detrimental effect of hydrogen on the material tenacity is discussed.

  20. Single-crystal semiconductor films grown on foreign substrates

    NASA Technical Reports Server (NTRS)

    Vohl, P.

    1966-01-01

    Intermediate alloy formed between foreign substrates and semiconductor material enable the growth of single crystal semiconductor films on the alloy layer. The melted film must not ball up on the surface of the substrate and neither chemically react nor alloy with the intermediate alloy formed on the substrate.

  1. Low temperature magnetic transitions of single crystal HoBi

    SciTech Connect

    Fente, A.; Suderow, H.; Vieira, S.; Nemes, N. M.; Garcia-Hernandez, M.; Budko, Sergei L.; Canfield, Paul C.

    2013-09-04

    We present resistivity, specific heat and magnetization measurements in high quality single crystals of HoBi, with a residual resistivity ratio of 126. We find, from the temperature and field dependence of the magnetization, an antiferromagnetic transition at 5.7 K, which evolves, under magnetic fields, into a series of up to five metamagnetic phases.

  2. Transverse Mode Multi-Resonant Single Crystal Transducer

    NASA Technical Reports Server (NTRS)

    Snook, Kevin A. (Inventor); Liang, Yu (Inventor); Luo, Jun (Inventor); Hackenberger, Wesley S. (Inventor); Sahul, Raffi (Inventor)

    2015-01-01

    A transducer is disclosed that includes a multiply resonant composite, the composite having a resonator bar of a piezoelectric single crystal configured in a d(sub 32) transverse length-extensional resonance mode having a crystallographic orientation set such that the thickness axis is in the (110) family and resonance direction is the (001) family.

  3. Unified constitutive model for single crystal deformation behavior with applications

    NASA Technical Reports Server (NTRS)

    Walker, K. P.; Meyer, T. G.; Jordan, E. H.

    1988-01-01

    Single crystal materials are being used in gas turbine airfoils and are candidates for other hot section components because of their increased temperature capabilities and resistance to thermal fatigue. Development of a constitutive model which assesses the inelastic behavior of these materials has been studied in 2 NASA programs: Life Prediction and Constitutive Models for Engine Hot Section Anisotropic Materials and Biaxial Constitutive Equation Development for Single Crystals. The model has been fit to a large body of constitutive data for single crystal PWA 1480 material. The model uses a unified approach for computing total inelastic strains (creep plus plasticity) on crystallographic slip systems reproducing observed directional and strain rate effects as a natural consequence of the summed slip system quantities. The model includes several of the effects that have been reported to influence deformation in single crystal materials, such as shear stress, latent hardening, and cross slip. The model is operational in a commercial Finite Element code and is being installed in a Boundary Element Method code.

  4. Area detectors in single-crystal neutron diffraction

    NASA Astrophysics Data System (ADS)

    McIntyre, Garry J.

    2015-12-01

    The introduction of area detectors has brought about a gentle revolution in the routine application of single-crystal neutron diffractometry. Implemented first for macromolecular crystallography, electronic detectors subsequently gradually spread to chemical and physics-oriented crystallography at steady-state sources. The volumetric surveying of reciprocal space implicit in the Laue technique has required area detectors right from the start, whether using film and more recently image plates and CCD-based detectors at reactors, or scintillation detectors at spallation sources. Wide-angle volumetric data collection has extended application of neutron single-crystal diffractometry to chemical structures, sample volumes, and physical phenomena previously deemed impossible. More than 30 of the dedicated single-crystal neutron diffractometers at steady-state reactor and neutron spallation sources worldwide and accessible via peer-review proposal mechanisms are currently equipped with area detectors. Here we review the historical development of the various types of area detectors used for single crystals, discuss experimental aspects peculiar to experiments with such detectors, highlight the scientific fields where the use of area detectors has had a special impact, and forecast future developments in hardware, implementation, and software.

  5. Low-cost single-crystal turbine blades, volume 1

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Heath, B.; Fujii, M.

    1983-01-01

    The exothermic casting process was successfully developed into a low cost nonproprietary method for producing single crystal (SC) castings. Casting yields were lower than expected, on the order of 20 percent, but it is felt that the casting yield could be significantly improved with minor modifications to the process. Single crystal Mar-M 247 and two derivative SC alloys were developed. NASAIR 100 and SC Alloy 3 were fully characterized through mechanical property testing. SC Mar-M 247 shows no significant improvement in strength over directionally solidified (DS) Mar-M 247, but the derivative alloys, NASAIR 100 and Alloy 3, show significant tensile and fatigue improvements. The 1000 hr/238 MPa (20 ksi) stress rupture capability compared to DS Mar-M 247 was improved over 28 C. Firtree testing, holography, and strain gauge rig testing were used to evaluate the effects of the anisotropic characteristics of single crystal materials. In general, the single crystal material behaved similarly to DS Mar-M 247. Two complete engine sets of SC HP turbine blades were cast using the exothermic casting process and fully machined.

  6. Dynamic actuation of single-crystal diamond nanobeams

    SciTech Connect

    Sohn, Young-Ik; Burek, Michael J.; Lončar, Marko; Kara, Vural; Kearns, Ryan

    2015-12-14

    We show the dielectrophoretic actuation of single-crystal diamond nanomechanical devices. Gradient radio-frequency electromagnetic forces are used to achieve actuation of both cantilever and doubly clamped beam structures, with operation frequencies ranging from a few MHz to ∼50 MHz. Frequency tuning and parametric actuation are also studied.

  7. Single crystal ternary oxide ferroelectric integration with Silicon

    NASA Astrophysics Data System (ADS)

    Bakaul, Saidur; Serrao, Claudy; Youun, Long; Khan, Asif; Salahuddin, Sayeef

    2015-03-01

    Integrating single crystal, ternary oxide ferroelectric thin film with Silicon or other arbitrary substrates has been a holy grail for the researchers since the inception of microelectronics industry. The key motivation is that adding ferroelectric materials to existing electronic devices could bring into new functionality, physics and performance improvement such as non-volatility of information, negative capacitance effect and lowering sub-threshold swing of field effect transistor (FET) below 60 mV/decade in FET [Salahuddin, S, Datta, S. Nano Lett. 8, 405(2008)]. However, fabrication of single crystal ferroelectric thin film demands stringent conditions such as lattice matched single crystal substrate and high processing temperature which are incompatible with Silicon. Here we report on successful integration of PbZr0.2Ti0.8O3 in single crystal form with by using a layer transfer method. The lattice structure, surface morphology, piezoelectric coefficient d33, dielectric constant, ferroelectric domain switching and spontaneous and remnant polarization of the transferred PZT are as good as these characteristics of the best PZT films grown by pulsed laser deposition on lattice matched oxide substrates. We also demonstrate Si based, FE gate controlled FET devices.

  8. Growth, mechanical, thermal and dielectric properties of pure and doped KHP single crystal

    NASA Astrophysics Data System (ADS)

    M, Lakshmipriya.; Babu, D. Rajan; Vizhi, R. Ezhil

    2015-06-01

    L-Arginine doped potassium hydrogen phthalate and L-Histidine doped potassium hydrogen phthalate single crystals were grown by slow evaporation method at room temperature. The grown crystal crystallizes in orthorhombic system which is confirmed by single crystal XRD analysis. The grown crystals are subjected to thermal, mechanical and dielectric analysis.

  9. Growth, characterization, and crystal structure of a new chalcone derivative single crystal

    NASA Astrophysics Data System (ADS)

    Shettigar, Venkataraya; Dharmaprakash, S. M.

    2006-09-01

    A new organic nonlinear optical (NLO) chalcone derivative viz.1- ( 4- methoxyphenyl )-3- (3,4 - dimethoxy phenyl ) - 2 - propene-1-one, has been synthesized by Claisen-Schmidt condensation method. The synthesized compound was purified by repeated recrystallization process. To confirm the identity of the synthesized compound, FTIR spectra was recorded and various functional groups present were identified. NMR spectra were recorded for structural identity and purity confirmation of the synthesized compound. Good quality single crystals were grown by solvent evaporation and slow cooling technique using acetone as solvent. The grown crystals were characterized by UV-Visible , differential thermal analysis and linear refractive index measurement. The hardness of the crystal was determined using Vicker's indentation method. The single crystal structure analysis of the crystal was performed and it is found that the crystal belongs to monoclinic system with space group P2 I. The powder second harmonic generation(SHG)frequency conversion efficiency of the crystal was determined using Nd: YAG laser(λ = 1064nm)and it is 15 times that of Urea.

  10. Novel single-mode and polarization maintaining photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Yin, Aihan; Xiong, Lei

    2014-11-01

    In this paper, we present and propose a novel structure for improved birefringence and single-mode propagation condition photonic crystal fiber (PCF) in a broad range of wavelength. The birefringence of the fundamental mode and single mode property in such a PCF is numerically estimated by employing full vector finite element method (FVFEM) and anisotropic perfectly matched layers (APML). The simulation results illustrate that we can achieve a high birefringence and perfect single-mode condition by employing silica-filled into one-line elliptical air holes parallel to x-axis and rotated by an angle. Obviously, the proposed PCF is quite useful for optical devices.

  11. Design of bent photonic crystal fiber supporting a single polarization.

    PubMed

    Rahman, B M Azizur; Uthman, Muhammad; Kejalakshmy, Namassivayane; Agrawal, Arti; Grattan, Kenneth T V

    2011-12-10

    In this work, it is shown that the differential loss between the TE- and TM-polarized fundamental modes in a highly birefringent photonic crystal fiber (PCF) can be enhanced by bending the fiber. As a result, a design approach for single-mode single-polarization operation has been developed and is discussed. A rigorous full-vectorial H-field-based finite element approach, which includes the conformal transformation and the perfectly matched layer, is used to determine the single-polarization properties of such a highly birefringent PCF by exploiting its differential bending losses. PMID:22193129

  12. Single crystal diamond probes for atomic-force microscopy

    NASA Astrophysics Data System (ADS)

    Tuyakova, F. T.; Obraztsova, E. A.; Klinov, D. V.; Ismagilov, R. R.

    2014-07-01

    Results obtained in the development and testing of high-strength, chemically inert, and sharply pointed single crystal diamond probes for atomic-force microscopy are presented. The probes were fabricated on the basis of pyramidal diamond single crystals produced by selective oxidation of polycrystalline films grown by chemical vapor deposition. A procedure was developed for attachment of single needles to cantilevers of silicon probes. A transmission electron microscope was used to find that the apical angle of the pyramidal diamond crystallites is about 10° and the radius of curvature of the apex of the diamond crystallite is 2-10 nm. It is shown for the example of two test samples (graphite surface and DNA molecules) that the diamond probes can be effectively used in atomic-force microscopy and make it possible to improve the image quality compared with standard silicon probes.

  13. Microwave Induced Direct Bonding of Single Crystal Silicon Wafers

    NASA Technical Reports Server (NTRS)

    Budraa, N. K.; Jackson, H. W.; Barmatz, M.

    1999-01-01

    We have heated polished doped single-crystal silicon wafers in a single mode microwave cavity to temperatures where surface to surface bonding occurred. The absorption of microwaves and heating of the wafers is attributed to the inclusion of n-type or p-type impurities into these substrates. A cylindrical cavity TM (sub 010) standing wave mode was used to irradiate samples of various geometry's at positions of high magnetic field. This process was conducted in vacuum to exclude plasma effects. This initial study suggests that the inclusion of impurities in single crystal silicon significantly improved its microwave absorption (loss factor) to a point where heating silicon wafers directly can be accomplished in minimal time. Bonding of these substrates, however, occurs only at points of intimate surface to surface contact. The inclusion of a thin metallic layer on the surfaces enhances the bonding process.

  14. Single crystal structure analysis of a single Sm2Fe17N3 particle

    NASA Astrophysics Data System (ADS)

    Inami, Nobuhito; Takeichi, Yasuo; Ueno, Tetsuro; Saito, Kotaro; Sagayama, Ryoko; Kumai, Reiji; Ono, Kanta

    2014-05-01

    We performed single crystal structure analysis of Sm2Fe17N3 using X-ray diffraction. A pick-up system combined with a micromanipulation tool driven by piezoelectric actuators and a microgripper was used. A single Sm2Fe17Nx particle with the diameter of about 20 μm was picked up, and X-ray diffraction was measured using an X-ray diffractometer at the synchrotron radiation beamline at the Photon Factory, KEK. Single crystal structure analysis of a Sm2Fe17N3 particle was performed and the structure was successfully determined from X-ray diffraction patterns. The space group and the lattice constants were determined to be R-3m (#166) a = b = 8.7206 Å and c = 12.6345 Å, respectively. Atomic positions of Sm and Fe atoms were accurately determined by single crystal structure analysis of only one particle.

  15. Single crystal to single crystal transition in (10, 3)-d framework with pyrazine-2-carboxylate ligand: Synthesis, structures and magnetism

    SciTech Connect

    Yang, Qian; Department of Chemistry, Tianjin Key Lab on Metal and Molecule-based Material Chemistry, Nankai University, Tianjin 300071 ; Zhao, Jiong-Peng; Liu, Zhong-Yi

    2012-12-15

    Assembling of pyrazine-2-carboxylate (Pzc) acid with nickel chlorine under solvothermal condition with MeOH as solvent gave a porous complex 1 {l_brace}[Ni(Pzc)ClH{sub 2}O]{center_dot}MeOH{r_brace}{sub n} with 1D channels. In 1 the ligands and metal ions are connected by three of each other and a rare (10,3)-d topology net is gained. The MeOH molecules filled in the 1D channels as guests. It is interesting that 1 undergoes a single-crystal-to-single-crystal transformation to another complex 2 when the guest MeOH molecules in the channels are exchanged by water molecules. Magnetic study indicates anti-ferromagnetic couplings exist in the two complexes and the guest exchange in the complex has little influence on the magnetism. - Graphical abstract: A porous complex 1 with rare (10,3)-d net was gained, and 1 underwent a single-crystal-to-single-crystal transformation to another phase 2. Highlights: Black-Right-Pointing-Pointer New (10,3)-d net was obtained with pyrazine-2-carboxylate ligands as a triangular node. Black-Right-Pointing-Pointer The complex 1 has a 1D channel filled with methanol molecules as guests. Black-Right-Pointing-Pointer 1 could undergo SCSC structural transition to 2 after guests exchanged. Black-Right-Pointing-Pointer Antiferromagnetic interactions were found in 1 and 2.

  16. Subsurface Stress Fields In Single Crystal (Anisotropic) Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Knudsen, Erik C.; Duke, Greg; Battista, Gilda; Swanson, Greg

    2004-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent HCF failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and noncrystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is , presented, for evaluating the subsurface stresses in the elastic half-space, using a complex potential method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis. Effects of crystal orientation on stress response and fatigue life are examined.

  17. Tunability of laser based on Yb-doped hot-pressed CaF2 ceramics

    NASA Astrophysics Data System (ADS)

    Sulc, Jan; Doroshenko, Maxim E.; Jelínková, Helena; Basiev, Tasoltan T.; Konyushkin, Vasilii A.; Osiko, Vyacheslav V.

    2012-06-01

    The aim of presented study was an investigation of tunability of diode pumped laser based on hot-pressed Yb:CaF2 ceramics. The tested Yb:CaF2 sample was in the form of 3.5mm thick plane-parallel face-polished plate (without AR coatings). The Yb3+ concentration was 5.5 %. A fiber (core diameter 200 μm, NA= 0.22) coupled laser diode (LIMO, HLU25F200-980) with emission at wavelength 976 nm, was used for longitudinal Yb:CaF2 pumping. The laser diode was operating in the pulsed regime (4 ms pulse length, 20 Hz repetition rate). The duty-cycle 8% ensured a low thermal load even under the maximum diode pumping power amplitude 10W (crystal sample was only air-cooled). This radiation was focused into the crystal (pumping beam waist diameter ~ 170 μm). The 145mm long semi-hemispherical laser resonator consisted of a flat pumping mirror (HR @ 1.01 - 1.09 μm, HT @ 0.97 μm) and curved (r = 150mm) output coupler with a reflectivity of ~ 98% @ 1.01 - 1.09 μm. Tuning of the ytterbium laser was accomplished by using a birefringent filter (single 1.5mm thick quartz plate) placed inside the optical resonator at the Brewster angle between the output coupler and the laser active medium. The extremely broad and smooth tuning was obtained. The laser was continuously tunable over ~ 66nm (from 1015nm to 1081 nm) and the tuning band was mostly limited by free spectral range of used birefringent filter. The tunability FWHM was 40 nm corresponding bandwidth 10 THz results in Fourier limited gaussian pulse width ~ 40 fs (FWHM). The maximum output power amplitude 0.68W was obtained at wavelength 1054nm for absorbed pump power amplitude 6W. The laser slope efficiency was 15%.

  18. Antifreeze glycopeptide adsorption on single crystal ice surfaces using ellipsometry

    PubMed Central

    Wilson, P. W.; Beaglehole, D.; DeVries, A. L.

    1993-01-01

    Antarctic fishes synthesise antifreeze proteins which can effectively inhibit the growth of ice crystals. The mechanism relies on adsorption of these proteins to the ice surface. Ellipsometry has been used to quantify glycopeptide antifreeze adsorption to the basal and prism faces of single ice crystals. The rate of accumulation was determined as a function of time and at concentrations between 0.0005 and 1.2 mg/ml. Estimates of packing density at saturation coverage have been made for the basal and prism faces. PMID:19431902

  19. Heavy ion passive dosimetry with silver halide single crystals

    NASA Technical Reports Server (NTRS)

    Childs, C. B.; Parnell, T. A.

    1972-01-01

    A method of detecting radiation damage tracks due to heavy particles in large single crystals of the silver halides is described. The tracks, when made visible with a simple electrical apparatus, appear similar to tracks in emulsions. The properties of the crystals, the technique of printing out the tracks, and evidence concerning the threshold energy for registering particles indicates that this method may find application in heavy ion dosimetry. The method has been found to be sensitive to stopping He nuclei and relativistic M group cosmic rays. Some impurities strongly influence the printout of the tracks, and the effects of these impurities are discussed.

  20. [Study on Spectral Characteristics of Two Kinds of Home-Made Novel Yb-Doped Fluoride Laser Crystals].

    PubMed

    Xu, Wen-bin; Chai, Lu; Shi, Jun-kai; Song, You-jian; Hu, Ming-lie; Wang, Qing-yue; Su, Liang-bi; Jiang, Da-peng; Xu, Jun

    2015-09-01

    Yb-doped fluoride crystals are of important another Yb-doped laser materials besides Yb-doped oxide, which are becoming one of interests for developing tunable lasers and ultrafast lasers. In this paper, the systematic and contrastive experiments of the optical spectral characteristics are presented for two types of home-made novel Yb-doped fluoride laser crystals, namely, Yb-doped CaF2-SrF2 mixed crystal and co-doped Yb, Y:CaF2 single crystal. The fluorescent features of Yb-doped CaF2-SrF2 mixed crystal and co-doped Yb, Y:CaF2 single crystal are apparently different by the fluorescence experiment. The physical mechanism of these fluorescence spectra were analyzed and proposed. The influence of doping concentrations of active Yb(3+) ions or co-doping Y ions on the absorption of Yb-doped CaF2-SrF2 mixed crystal and co-doped Yb, Y:CaF2 single crystal was experimentally investigated, and the optimal values of doping concentrations of active Yb(3+) ions or co-doping Y ions in the two types of fluoride laser crystals were obtained. Continuous-wave laser operation for the two novel fluoride laser crystals has been achieved in three-mirror-folded resonator using a laser diode as the pump source. Therein, the laser operation for the co-doped Yb, Y:CaF2 crystal is demonstrated for the first time. For the two types of fluoride laser crystals (four samples), the input-output power relational curves, the optical slope efficiencies and the laser spectra were demonstrated by the laser experiments. By comparisons between the two types of fluoride laser crystals in the absorbability, fluorescence and laser spectra, laser threshold and slope efficiency of the continuous-wave laser operation, the results show that the best one of the four samples in spectral and laser characteristics is co-doped 3at%Yb, 6at% Y:CaF2 single crystal, which has an expected potential in the application. The research results provide available references for improving further laser performance of Yb-doped fluoride crystals. PMID:26669151

  1. Differences between individual ZSM-5 crystals in forming hollow single crystals and mesopores during base leaching.

    PubMed

    Fodor, Daniel; Krumeich, Frank; Hauert, Roland; van Bokhoven, Jeroen A

    2015-04-13

    After base treatment of ZSM-5 crystals below 100 nm in size, TEM shows hollow single crystals with a 10 nm shell. SEM images confirm that the shell is well- preserved even after prolonged treatment. Determination of the Si/Al ratios with AAS and XPS in combination with argon sputtering reveals aluminum zoning of the parent zeolite, and the total pore volume increases in the first two hours of base treatment. In corresponding TEM images, the amount of hollow crystals are observed to increase during the first two hours of base treatment, and intact crystals are visible even after 10 h of leaching; these observations indicate different dissolution rates between individual crystals. TEM of large, commercially available ZSM-5 crystals shows inhomogeneous distribution of mesopores among different crystals, which points to the existence of structural differences between individual crystals. Only tetrahedrally coordinated aluminum is detected with (27) Al MAS NMR after the base leaching of nano-sized ZSM-5. PMID:25720305

  2. Subsurface Stress Fields in FCC Single Crystal Anisotropic Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Knudsen, Erik; Swanson, Gregory R.; Duke, Gregory; Ham-Battista, Gilda

    2004-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent high cycle fatigue (HCF) failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and non-crystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is presented for evaluating the subsurface stresses in the elastic half-space, based on the adaptation of a stress function method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis (FEA). Effects of crystal orientation on stress response and fatigue life are examined. Obtaining accurate subsurface stress results for anisotropic single crystal contact problems require extremely refined three-dimensional (3-D) finite element grids, especially in the edge of contact region. Obtaining resolved shear stresses (RSS) on the principal slip planes also involves considerable post-processing work. For these reasons it is very advantageous to develop analytical solution schemes for subsurface stresses, whenever possible.

  3. A design for single-polarization single-mode photonic crystal fiber with rectangular lattice

    NASA Astrophysics Data System (ADS)

    Zhang, Wan; Li, Shu-guang; Bao, Ya-jie; Fan, Zhen-kai; An, Guo-wen

    2016-01-01

    A design for single-polarization single-mode photonic crystal fiber with rectangular lattice is proposed in this paper. The proposed fiber is studied by the full vector finite element method with perfectly matched layers. The single-polarization single-mode operation region of the fiber is achieved in a certain wavelength range with low confinement loss include the wavelength of 1.55 μm. The loss of one polarization is 0.124 dB/km at the wavelength of 1.55 μm and the confinement loss of the other one polarization is very high which can not ensure the transmission in the fiber. The single-polarization single-mode photonic crystal fiber is desirable for some polarization-sensitive applications such as high-power fiber lasers, fiber optic gyroscopes, current sensors and optical coherent communication systems.

  4. Microcompression Behaviors of Single Crystals Simulated by Crystal Plasticity Finite Element Method

    NASA Astrophysics Data System (ADS)

    Jung, Jae-Ho; Na, Young-Sang; Cho, Kyung-Mox; Dimiduk, Dennis M.; Choi, Yoon Suk

    2015-11-01

    The microcompression behavior of single-slip oriented, single-crystal micro-pillars was simulated using a crystal plasticity finite element method, by varying a primary slip-plane inclination angle from 36.3 to 48.7 deg while keeping the same primary slip system. Simulated global deformation of the micro-pillars was separated into two types, depending upon the primary slip-plane inclination angle: the one consistent with the primary slip direction and the other diagonally opposite to the primary slip direction.

  5. Development of very high Jc in Ba(Fe1-xCox)2As2 thin films grown on CaF2

    DOE PAGESBeta

    Tarantini, C.; Kametani, F.; Lee, S.; Jiang, J.; Weiss, J. D.; Jaroszynski, J.; Hellstrom, E. E.; Eom, C. B.; Larbalestier, D. C.

    2014-12-03

    Ba(Fe1-xCox)2As2 is the most tunable of the Fe-based superconductors (FBS) in terms of acceptance of high densities of self-assembled and artificially introduced pinning centres which are effective in significantly increasing the critical current density, Jc. Moreover, FBS are very sensitive to strain, which induces an important enhancement in critical temperature,Tc, of the material. In this study we demonstrate that strain induced by the substrate can further improve Jc of both single and multilayer films by more than that expected simply due to the increase in Tc. The multilayer deposition of Ba(Fe1-xCox)2As2 on CaF2 increases the pinning force density (Fp=Jc xmore » μ₀H) by more than 60% compared to a single layer film, reaching a maximum of 84 GN/m3 at 22.5 T and 4.2 K, the highest value ever reported in any 122 phase.« less

  6. Development of very high Jc in Ba(Fe1-xCox)2As2 thin films grown on CaF2

    PubMed Central

    Tarantini, C.; Kametani, F.; Lee, S.; Jiang, J.; Weiss, J. D.; Jaroszynski, J.; Hellstrom, E. E.; Eom, C. B.; Larbalestier, D. C.

    2014-01-01

    Ba(Fe1-xCox)2As2 is the most tunable of the Fe-based superconductors (FBS) in terms of acceptance of high densities of self-assembled and artificially introduced pinning centres which are effective in significantly increasing the critical current density, Jc. Moreover, FBS are very sensitive to strain, which induces an important enhancement in critical temperature, Tc, of the material. In this paper we demonstrate that strain induced by the substrate can further improve Jc of both single and multilayer films by more than that expected simply due to the increase in Tc. The multilayer deposition of Ba(Fe1-xCox)2As2 on CaF2 increases the pinning force density (Fp = Jc × µ0H) by more than 60% compared to a single layer film, reaching a maximum of 84 GN/m3 at 22.5 T and 4.2 K, the highest value ever reported in any 122 phase. PMID:25467177

  7. Optical design for single-mode and single-cell gap transflective liquid crystal displays.

    PubMed

    Choi, Gyu Jin; Kwon, Jin Hyuk; Yi, Jonghoon; Yokoyama, Hiroshi; Gwag, Jin Seog

    2016-01-25

    Generally, for transflective liquid crystal displays with different modes and different cell gaps between the refractive and transmissive parts, precise process control to pattern the electrode and match the cell gaps may reduce the yield and thus, require high cost. This paper proposes a simple transflective liquid crystal display with a single-mode and single-cell thickness without a patterned electrode to achieve better productivity. The proposed transflective liquid crystal display consists of three half-wave retardation films, two quarter-wave retardation films, and an LC layer, whose optical performance was confirmed by both simulation and experiment. The optimal optical configuration to obtain an excellent dark state in the visible range was determined by the Mueller matrices calculus, which was applied to each optical component. The calculated and experimental results showed that the proposed transflective LC structure has excellent electro-optical properties and is expected to have many liquid crystal display applications. PMID:26832540

  8. Membrane protein structures without crystals, by single particle electron cryomicroscopy

    PubMed Central

    Vinothkumar, Kutti R

    2015-01-01

    It is an exciting period in membrane protein structural biology with a number of medically important protein structures determined at a rapid pace. However, two major hurdles still remain in the structural biology of membrane proteins. One is the inability to obtain large amounts of protein for crystallization and the other is the failure to get well-diffracting crystals. With single particle electron cryomicroscopy, both these problems can be overcome and high-resolution structures of membrane proteins and other labile protein complexes can be obtained with very little protein and without the need for crystals. In this review, I highlight recent advances in electron microscopy, detectors and software, which have allowed determination of medium to high-resolution structures of membrane proteins and complexes that have been difficult to study by other structural biological techniques. PMID:26435463

  9. Apparatus for single ice crystal growth from the melt

    NASA Astrophysics Data System (ADS)

    Zepeda, Salvador; Nakatsubo, Shunichi; Furukawa, Yoshinori

    2009-11-01

    A crystal growth apparatus was designed and built to study the effect of growth modifiers, antifreeze proteins and antifreeze glycoproteins (AFGPs), on ice crystal growth kinetics and morphology. We used a capillary growth technique to obtain a single ice crystal with well-defined crystallographic orientation grown in AFGP solution. The basal plane was readily observed by rotation of the capillary. The main growth chamber is approximately a 0.8ml cylindrical volume. A triple window arrangement was used to minimize temperature gradients and allow for up to 10mm working distance objective lens. Temperature could be established to within ±10mK in as little as 3.5min and controlled to within ±2mK after 15min for at least 10h. The small volume growth chamber and fast equilibration times were necessary for parabolic flight microgravity experiments. The apparatus was designed for use with inverted and side mount configurations.

  10. Electrical conductivity of NaF-AlF3-CaF2-Al2O3 melts

    NASA Astrophysics Data System (ADS)

    Bakin, K. B.; Simakova, O. N.; Polyakov, P. V.; Mikhalev, Yu. G.; Simakov, D. A.; Gusev, A. O.

    2010-08-01

    The electrical conductivity of NaF-AlF3-Al2O3 melts with a CaF2 concentration of 5 wt % is measured at a continuously varying cell constant when the molar cryolitic ratio CR = [NaF]/[AlF3] changes from 1.2 to 2.0 [1, 2]. The experimental data are used to obtain a regression equation to describe the dependence of the electrical conductivity of the melts under study on CR, the alumina content, and temperature { χ] = f(CR, [Al2O3], T)}.

  11. Synthesis of mesoporous zeolite single crystals with cheap porogens

    SciTech Connect

    Tao Haixiang; Li Changlin; Ren Jiawen; Wang Yanqin; Lu Guanzhong

    2011-07-15

    Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals have been successfully synthesized by adding soluble starch or sodium carboxymethyl cellulose (CMC) to a conventional zeolite synthesis system. The obtained samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen sorption analysis, {sup 27}Al magic angle spinning nuclear magnetic resonance ({sup 27}Al MAS NMR), temperature-programmed desorption of ammonia (NH{sub 3}-TPD) and ultraviolet-visible spectroscopy (UV-vis). The SEM images clearly show that all zeolite crystals possess the similar morphology with particle size of about 300 nm, the TEM images reveal that irregular intracrystal pores are randomly distributed in the whole crystal. {sup 27}Al MAS NMR spectra indicate that nearly all of the Al atoms are in tetrahedral co-ordination in ZSM-5, UV-vis spectra confirm that nearly all of titanium atoms are incorporated into the framework of TS-1. The catalytic activity of meso-ZSM-5 in acetalization of cyclohexanone and meso-TS-1 in hydroxylation of phenol was also studied. The synthesis method reported in this paper is cost-effective and environmental friendly, can be easily expended to prepare other hierarchical structured zeolites. - Graphical abstract: Mesoporous zeolite single crystals were synthesized by using cheap porogens as template. Highlights: > Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals were synthesized. > Soluble starch or sodium carboxymethyl cellulose (CMC) was used as porogens. > The mesoporous zeolites had connected mesopores although closed pores existed. > Higher catalytic activities were obtained.

  12. Plastic strain arrangement in copper single crystals in sliding

    SciTech Connect

    Chumaevskii, Andrey V. Lychagin, Dmitry V.; Tarasov, Sergei Yu.

    2014-11-14

    Deformation of tribologically loaded contact zone is one of the wear mechanisms in spite of the fact that no mass loss may occur during this process. Generation of optimal crystallographic orientations of the grains in a polycrystalline materials (texturing) may cause hardening and reducing the deformation wear. To reveal the orientation dependence of an individual gain and simplify the task we use copper single crystals with the orientations of the compression axis along [111] and [110]. The plastic deformation was investigated by means of optical, scanning electron microscopy and EBSD techniques. It was established that at least four different zones were generated in the course of sliding test, such as non-deformed base metal, plastic deformation layer sliding, crystalline lattice reorientation layer and subsurface grain structure layer. The maximum plastic strain penetration depth was observed on [110]-single crystals. The minimum stability of [111]-crystals with respect to rotation deformation mode as well as activation of shear in the sliding contact plane provide for rotation deformation localization below the worn surface. The high-rate accumulation of misorientations and less strain penetration depth was observed on [111]-crystals as compared to those of [110]-oriented ones.

  13. Fluoride single crystals for the next generation lithography

    NASA Astrophysics Data System (ADS)

    Nawata, Teruhiko; Inui, Yoji; Mabuchi, Toshiro; Mochizuki, Naoto; Masada, Isao; Nishijima, Eiichi; Sato, Hiroki; Fukuda, Tsuguo

    2008-03-01

    BaLiF 3 single crystal has been studied as the candidate for the last lens material of the next generation high index immersion lithography system. Although the refractive index of BaLiF 3 is 1.64 at 193nm which is not sufficient for the requirement, other optical properties such as 193nm transparency and laser durability fulfill the requirement. It is estimated that the cause of both high SBR part and inhomogeneity of refractive index of BaLiF 3 seems to present along the faces of slip planes which are observed by crossed Nicol observation. As a result of comparative study of various direction perpendiculars to the growth axis, good crystallinity with less slip planes has been obtained by shifting the growth axis from <100> which is adequate for the last lens production. MgF II single crystal studied as the polarizer material for high power ArF laser oscillator, and crystal with excellent laser durability and large diameter (>100mm) has been developed by CZ technique. In addition crystals oriented along both c-axis and a-axis were successfully grown.

  14. Mutiple Czochralski growth of silicon crystals from a single crucible

    NASA Technical Reports Server (NTRS)

    Lane, R. L.; Kachare, A. H.

    1980-01-01

    An apparatus for the Czochralski growth of silicon crystals is presented which is capable of producing multiple ingots from a single crucible. The growth chamber features a refillable crucible with a water-cooled, vacuum-tight isolation valve located between the pull chamber and the growth furnace tank which allows the melt crucible to always be at vacuum or low argon pressure when retrieving crystal or introducing recharge polysilicon feed stock. The grower can thus be recharged to obtain 100 kg of silicon crystal ingots from one crucible, and may accommodate crucibles up to 35 cm in diameter. Evaluation of the impurity contents and I-V characteristics of solar cells fabricated from seven ingots grown from two crucibles reveals a small but consistent decrease in cell efficiency from 10.4% to 9.6% from the first to the fourth ingot made in a single run, which is explained by impurity build-up in the residual melt. The crystal grower thus may offer economic benefits through the extension of crucible lifetime and the reduction of furnace downtime.

  15. Fabrication and characterization of Cr:forsterite single crystal fiber

    NASA Astrophysics Data System (ADS)

    Yeh, P. S.; Wang, H. Y.; Huang, K. Y.; Huang, S. L.; Hsu, K. Y.; Jheng, D. Y.

    2009-02-01

    Cr:forsterite (Cr:Mg2SiO4) single crystal fibers of diameter less than 100 μm were made for the first time to our knowledge. This novel fiber material will be used to make fiber light sources such as fiber lasers and broadband light sources for applications in biophotonics and optical communications. Cr:forsterite crystal has a broad emission spectrum ranging from 1.1 to 1.4 μm that traditional glass fibers or semiconductor light sources cannot offer. And fiber light sources are compact, efficient, maintenance-free and compatible with fiber-optic components potentially leading to new performance and functions. In this work, bulk Cr:forsterite crystal was melted, pulled and re-grown into a long fiber using laser heated pedestal growth (LHPG) technique. Single crystal rhombic structure was preserved and verified by Xray diffractometer. By using electron probe micro-analyzer, change in Cr dopant concentration and distribution profile for various fiber diameters and growth conditions was studied.

  16. Flextensional Single Crystal Piezoelectric Actuators for Membrane Deformable Mirrors

    NASA Technical Reports Server (NTRS)

    Jiang, Xiaoning; Sahul, Raffi; Hackenberger, Wesley S.

    2006-01-01

    Large aperture and light weight space telescopes requires adaptive optics with deformable mirrors capable of large amplitude aberration corrections at a broad temperature range for space applications including NASA missions such as SAFIR, TPF, Con-X, etc. The single crystal piezoelectric actuators produced at TRS offer large stroke, low hysteresis, and an excellent cryogenic strain response. Specifically, the recently developed low profile, low voltage flextensional single crystal piezoelectric actuators with dimensions of 18 x 5 x 1 mm showed stroke larger than 95 microns under 300 V. Furthermore, flextensional actuator retained approx. 40-50% of its room temperature strain at liquid Nitrogen environment. In this paper, ATILA FEM design of flextensional actuators, actuator fabrication, and characterization results will be presented for the future work on membrane deformable mirror.

  17. Mechanisms for tertiary creep of single crystal superalloy

    NASA Astrophysics Data System (ADS)

    Staroselsky, Alexander; Cassenti, Brice

    2008-12-01

    During the thermal-mechanical loading of high temperature single crystal turbine components, all three creep—stages: primary, secondary and tertiary, manifest themselves and, hence, none of them can be neglected. The development of a creep law that includes all three stages is especially important in the case of non-homogeneous thermal loading of the component where significant stress redistribution and relaxation will result. Thus, local creep analysis is crucial for proper design of damage tolerant airfoils. We have developed a crystallographic-based constitutive model and fully coupled it with damage kinetics. The model extends existing approaches for cyclic and thermal-cyclic loading of anisotropic elasto-viscoplastic deformation behavior and damage kinetics of single-crystal materials, allowing prediction of tertiary creep and failure initiation of high temperature components. Our damage model bridges the gap between dislocation dynamics and the continuum mechanics scales and can be used to represent tertiary as well as primary and secondary creep.

  18. Nanofluidics of Single-Crystal Diamond Nanomechanical Resonators.

    PubMed

    Kara, V; Sohn, Y-I; Atikian, H; Yakhot, V; Lončar, M; Ekinci, K L

    2015-12-01

    Single-crystal diamond nanomechanical resonators are being developed for countless applications. A number of these applications require that the resonator be operated in a fluid, that is, a gas or a liquid. Here, we investigate the fluid dynamics of single-crystal diamond nanomechanical resonators in the form of nanocantilevers. First, we measure the pressure-dependent dissipation of diamond nanocantilevers with different linear dimensions and frequencies in three gases, He, N2, and Ar. We observe that a subtle interplay between the length scale and the frequency governs the scaling of the fluidic dissipation. Second, we obtain a comparison of the surface accommodation of different gases on the diamond surface by analyzing the dissipation in the molecular flow regime. Finally, we measure the thermal fluctuations of the nanocantilevers in water and compare the observed dissipation and frequency shifts with theoretical predictions. These findings set the stage for developing diamond nanomechanical resonators operable in fluids. PMID:26509332

  19. Dynamic gas-inclusion in a single crystal.

    PubMed

    Takamizawa, Satoshi

    2015-06-01

    In solid-state science, most changing phenomena have been mysterious. Furthermore, the changes in chemical composition should be added to mere physical changes to also cover the chemical changes. Here, the first success in characterizing the nature of gas inclusion in a single crystal is reported. The gas inclusion process has been thoroughly investigated by in situ optical microscopy, single-crystal X-ray diffraction analyses, and gas adsorption measurements. The results demonstrated an inclusion action of a first-order transition behavior induced by a critical concentration on the phase boundary. The transfer of phase boundary and included gas are strongly related. This relationship can generate the dynamic features hidden in the inclusion phenomena, which can lead to the guest capturing and transfer mechanism that can apply to spatiotemporal inclusion applications by using host solids. PMID:25925283

  20. Constitutive modeling of superalloy single crystals with verification testing

    NASA Technical Reports Server (NTRS)

    Jordan, Eric; Walker, Kevin P.

    1985-01-01

    The goal is the development of constitutive equations to describe the elevated temperature stress-strain behavior of single crystal turbine blade alloys. The program includes both the development of a suitable model and verification of the model through elevated temperature-torsion testing. A constitutive model is derived from postulated constitutive behavior on individual crystallographic slip systems. The behavior of the entire single crystal is then arrived at by summing up the slip on all the operative crystallographic slip systems. This type of formulation has a number of important advantages, including the prediction orientation dependence and the ability to directly represent the constitutive behavior in terms which metallurgists use in describing the micromechanisms. Here, the model is briefly described, followed by the experimental set-up and some experimental findings to date.

  1. Ultrafast dynamics of excitons in tetracene single crystals

    SciTech Connect

    Birech, Zephania; Schwoerer, Heinrich; Schwoerer, Markus; Schmeiler, Teresa; Pflaum, Jens

    2014-03-21

    Ultrafast exciton dynamics in free standing 200 nm thin tetracene single crystals were studied at room temperature by femtosecond transient absorption spectroscopy in the visible spectral range. The complex spectrally overlapping transient absorption traces of single crystals were systematically deconvoluted. From this, the ultrafast dynamics of the ground, excited, and transition states were identified including singlet exciton fission into two triplet excitons. Fission is generated through both, direct fission of higher singlet states S{sub n} on a sub-picosecond timescale, and thermally activated fission of the singlet exciton S{sub 1} on a 40 ps timescale. The high energy Davydov component of the S{sub 1} exciton is proposed to undergo fission on a sub-picoseconds timescale. At high density of triplet excitons their mutual annihilation (triplet-triplet annihilation) occurs on a <10 ps timescale.

  2. Spectroscopic studies of neodymium and erbium fluoroacetate single crystals

    NASA Astrophysics Data System (ADS)

    Oczko, G.

    2000-02-01

    The spectroscopic (UV/VIS, IR) results of Ln(H xF 3- xCCOO) 3·3H 2O (Ln=Nd, Er; x=0,1) compounds are presented in this paper. Electronic absorption spectra of these single crystals were measured at room and low temperatures. Intensities of f-f transitions were analysed on the basis of Judd-Ofelt theory. The effects of different structures on the spectroscopic properties of the systems under investigation were considered. The results for the single crystals of the title compounds were compared to those for the lanthanide trichloroacetate monocrystals. Vibronic mechanism of the 4f-4f transitions was discussed, and covalent effect in the spectra was considered.

  3. Thermal fatigue of NiAl single crystals

    SciTech Connect

    Kush, M.T.; Holmes, J.W.; Gibala, R.

    1999-07-01

    Single crystals of [001]-oriented NiAl single crystals were subjected to thermal fatigue by a method which employs induction heating of disk-shaped specimens heated in an argon atmosphere. Several time-temperature heating and cooling profiles were used to produce different thermal strain histories in specimens cycled between 973 K and 1,473 K. After thermal cycling, pronounced shape changes in the form of diametrical elongations along {l{underscore}angle}100{r{underscore}angle} directions with accompanying increases in thickness at and near the {l{underscore}angle}100{r{underscore}angle} specimen axes were observed. The deformations were analyzed in terms of operative slip systems in tension and compression, ratchetting (cyclic strain accumulation), and the elastic properties of NiAl. The experimental results correlate best with thermal stresses associated with the large elastic anisotropy of NiAl.

  4. Ultrafast dynamics of excitons in tetracene single crystals.

    PubMed

    Birech, Zephania; Schwoerer, Markus; Schmeiler, Teresa; Pflaum, Jens; Schwoerer, Heinrich

    2014-03-21

    Ultrafast exciton dynamics in free standing 200 nm thin tetracene single crystals were studied at room temperature by femtosecond transient absorption spectroscopy in the visible spectral range. The complex spectrally overlapping transient absorption traces of single crystals were systematically deconvoluted. From this, the ultrafast dynamics of the ground, excited, and transition states were identified including singlet exciton fission into two triplet excitons. Fission is generated through both, direct fission of higher singlet states S(n) on a sub-picosecond timescale, and thermally activated fission of the singlet exciton S1 on a 40 ps timescale. The high energy Davydov component of the S1 exciton is proposed to undergo fission on a sub-picoseconds timescale. At high density of triplet excitons their mutual annihilation (triplet-triplet annihilation) occurs on a <10 ps timescale. PMID:24655187

  5. Ultrafast dynamics of excitons in tetracene single crystals

    NASA Astrophysics Data System (ADS)

    Birech, Zephania; Schwoerer, Markus; Schmeiler, Teresa; Pflaum, Jens; Schwoerer, Heinrich

    2014-03-01

    Ultrafast exciton dynamics in free standing 200 nm thin tetracene single crystals were studied at room temperature by femtosecond transient absorption spectroscopy in the visible spectral range. The complex spectrally overlapping transient absorption traces of single crystals were systematically deconvoluted. From this, the ultrafast dynamics of the ground, excited, and transition states were identified including singlet exciton fission into two triplet excitons. Fission is generated through both, direct fission of higher singlet states Sn on a sub-picosecond timescale, and thermally activated fission of the singlet exciton S1 on a 40 ps timescale. The high energy Davydov component of the S1 exciton is proposed to undergo fission on a sub-picoseconds timescale. At high density of triplet excitons their mutual annihilation (triplet-triplet annihilation) occurs on a <10 ps timescale.

  6. Catalytic Chemistry of Hydrocarbon Conversion Reactions on Metallic Single Crystals

    NASA Astrophysics Data System (ADS)

    Tysoe, Wilfred T.

    The ability to be able to follow the chemistry of adsorbates on model catalyst surfaces has, in principle, allowed us to peer inside the black box of a catalytic reaction and understand the pathway. Such a strategy is most simply implemented for well-ordered single crystal model catalysts for which the catalytic reaction proceeds in ultrahigh vacuum. Thus, in order to be a good model for the supported catalyst, the single crystal should catalyze the reactions with kinetics identical to those for the supported system. This chapter focuses on catalytic systems that fulfill these criteria, namely alkene and alkyne hydrogenation and acetylene cyclotrimerization on Pd(111). The surface chemistry and geometries of the reactants in ultrahigh vacuum are explored in detail allowing fundamental insights into the catalytic reaction pathways to be obtained.

  7. Formation of auxetic surfaces in rhombic syngony single crystals

    NASA Astrophysics Data System (ADS)

    Raransky, Mykola D.; Balazyuk, Vitaliy N.; Gunko, Mikhailo M.; Gevik, Vasyl B.; Struk, Andriy Y.

    2015-11-01

    By using elasticity Cijkl and compliance moduli Sijkl for rhombic syngony single crystals the necessary and sufficient conditions for axial and non-axial auxetic properties occurrence were defined. Indicative surfaces for single crystals Ga, I2, SnSe, Hg2Cl2, CaCO3, AgN3, BaMnF4, C6H6, LiGaO2, Cd(COOH)2, (C6H5)2CO, C6H10(CH2)2, Ca(COOH)2, Na2CoGeO4, NH4B5O8.4H2O auxetic properties were built for the first time. The basic mechanisms and regularities of auxetic surfaces formation were stated. The auxetic oscillation effect in C6H6 was found.

  8. Current Status of LANSCE Single Crystal Diffractometer - SCD

    NASA Astrophysics Data System (ADS)

    Acatrinei, Alice I.; Daemen, Luke L.; Hartl, Monika A.; Urquidi, Jacob

    2006-03-01

    The Single Crystal Diffractometer (SCD) at LANSCE, Los Alamos National Laboratory, represents a powerful tool for many crystallographic and magnetic structure determinations. The instrument is located at the Lujan Neutron Scattering Center and utilizes the time-of-flight (TOF) Laue technique for neutron scattering data collection. This technique, combined with a 25 cm x 25 cm multi-wire 3He position-sensitive detector and the possibility of two axis of rotation for sample orientation yield to an 80% sphere of coverage in reciprocal space. The redesign and status of the Single Crystal Diffractometer at LANSCE are reported. We give an overview of the instrument characteristics and of the of calibration and data evaluation activities (higher intensity, lower background, better profile shape, improved resolution).

  9. A piezoelectric single-crystal ultrasonic microactuator for driving optics.

    PubMed

    Guo, Mingsen; Dong, Shuxiang; Ren, Bo; Luo, Haosu

    2011-12-01

    At the millimeter scale, the motions or force out puts generated by conventional piezoelectric, magnetostrictive, photostrictive, or electromagnetic actuators are very limited. Here, we report a piezoelectric ultrasonic microactuator (size: 1.5 × 1.5 × 5 mm, weight: 0.1 g) made of PIN-PMN-PT single crystal. The actuator converts its high-frequency microscopic displacements (nanometer to micrometer scale) into a macro scopic, centimeter-scale linear movement of a slider via frictional force, resulting in a speed up to 50 mm/s and a very high unit volume direct driving force of 26 mN/mm(3) (which is ~100 times higher than a voice coil motor and ~4 times higher than a piezoceramic ultrasonic motor). This work shows the feasibility of using piezoelectric single-crystal-based ultrasonic microactuator for miniature drive of optics in next-generation mobiles and cameras. PMID:23443709

  10. Plastic Deformation of Aluminum Single Crystals at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Johnson, R D; Young, A P; Schwope, A D

    1956-01-01

    This report describes the results of a comprehensive study of plastic deformation of aluminum single crystals over a wide range of temperatures. The results of constant-stress creep tests have been reported for the temperature range from 400 degrees to 900 degrees F. For these tests, a new capacitance-type extensometer was designed. This unit has a range of 0.30 inch over which the sensitivity is very nearly linear and can be varied from as low a sensitivity as is desired to a maximum of 20 microinches per millivolt with good stability. Experiments were carried out to investigate the effect of small amounts of prestraining, by two different methods, on the creep and tensile properties of these aluminum single crystals. From observations it has been concluded that plastic deformation takes place predominantly by slip which is accompanied by the mechanisms of kinking and polygonization.

  11. Frictional properties of single crystals HMX, RDX and PETN explosives.

    PubMed

    Wu, Y Q; Huang, F L

    2010-11-15

    The frictional properties of single crystals of cyclotetramethylene tetranitramine (HMX), cyclotrimethylene trinitramine (RDX) and pentaerythritol tetranitrate (PETN) secondary explosives are examined using a sensitive friction machine. The explosive crystals used for the measurements are at least 3.5 mm wide. The friction coefficients between crystals of the same explosive (i.e., HMX on HMX, etc.), crystals of different explosives (i.e., HMX on RDX, etc.), and each explosive and a well-polished gauge steel surface are determined. The frictional surfaces are also studied under an environmental scanning electron microscope (ESEM) to analyze surface microstructural changes under increasing loading forces. The friction coefficients vary considerably with increasing normal loading forces and are particularly sensitive to slider shapes, crystal roughness and the mechanical properties of both the slider and the sample. With increasing loading forces, most friction experiments show surface damage, consisting of grooves, debris, and nano-particles, on both the slider and sample. In some cases, a strong evidence of a localized molten state is found in the central region of the friction track. Possible mechanisms that affect the friction coefficient are discussed based on microscopic observations. PMID:20688432

  12. Electrons trapped in single crystals of sucrose: Induced spin densities

    SciTech Connect

    Box, H.C.; Budzinski, E.E.; Freund, H.G. )

    1990-07-01

    Electrons are trapped at intermolecular sites in single crystals of sucrose {ital X} irradiated at 4.2 K. The coupling tensors for the hyperfine couplings between the electron and surrounding protons have been deduced from electron-nuclear double resonance (ENDOR) data. Electron spin densities at nearby hydroxy protons are positive, whereas spin densities at the more remote protons of carbon-bound hydrogen atoms are negative. The origin of these negative spin densities is discussed.

  13. Ion implantation induced blistering of rutile single crystals

    NASA Astrophysics Data System (ADS)

    Xiang, Bing-Xi; Jiao, Yang; Guan, Jing; Wang, Lei

    2015-07-01

    The rutile single crystals were implanted by 200 keV He+ ions with a series fluence and annealed at different temperatures to investigate the blistering behavior. The Rutherford backscattering spectrometry, optical microscope and X-ray diffraction were employed to characterize the implantation induced lattice damage and blistering. It was found that the blistering on rutile surface region can be realized by He+ ion implantation with appropriate fluence and the following thermal annealing.

  14. Single-domain spectroscopy of self-assembled photonic crystals

    NASA Astrophysics Data System (ADS)

    Vlasov, Yu. A.; Deutsch, M.; Norris, D. J.

    2000-03-01

    We show how optical microscopy can be used to study the optical properties of a single crystalline domain in a self-assembled photonic crystal. By measuring spatially resolved reflection and emission spectra from a synthetic opal, inhomogeneities due to averaging over inherent disorder can be avoided. From "defect-free" reflection and emission spectra, the intrinsic photonic band structure can be extracted and inhibition of spontaneous emission can be verified.

  15. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Swanson, Gregory R.

    2000-01-01

    High Cycle Fatigue (HCF) induced failures in aircraft gas-turbine engines is a pervasive problem affecting a wide range of components and materials. HCF is currently the primary cause of component failures in gas turbine aircraft engines. Turbine blades in high performance aircraft and rocket engines are increasingly being made of single crystal nickel superalloys. Single-crystal Nickel-base superalloys were developed to provide superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys previously used in the production of turbine blades and vanes. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. PWA1493, identical to PWA1480, but with tighter chemical constituent control, is used in the NASA SSME (Space Shuttle Main Engine) alternate turbopump, a liquid hydrogen fueled rocket engine. Objectives for this paper are motivated by the need for developing failure criteria and fatigue life evaluation procedures for high temperature single crystal components, using available fatigue data and finite element modeling of turbine blades. Using the FE (finite element) stress analysis results and the fatigue life relations developed, the effect of variation of primary and secondary crystal orientations on life is determined, at critical blade locations. The most advantageous crystal orientation for a given blade design is determined. Results presented demonstrates that control of secondary and primary crystallographic orientation has the potential to optimize blade design by increasing its resistance to fatigue crack growth without adding additional weight or cost.

  16. Diamond turning of Si and Ge single crystals

    SciTech Connect

    Blake, P.; Scattergood, R.O.

    1988-12-01

    Single-point diamond turning studies have been completed on Si and Ge crystals. A new process model was developed for diamond turning which is based on a critical depth of cut for plastic flow-to-brittle fracture transitions. This concept, when combined with the actual machining geometry for single-point turning, predicts that {open_quotes}ductile{close_quotes} machining is a combined action of plasticity and fracture. Interrupted cutting experiments also provide a meant to directly measure the critical depth parameter for given machining conditions.

  17. Method for thermal processing alumina-enriched spinel single crystals

    DOEpatents

    Jantzen, Carol M.

    1995-01-01

    A process for age-hardening alumina-rich magnesium aluminum spinel to obtain the desired combination of characteristics of hardness, clarity, flexural strength and toughness comprises selection of the time-temperature pair for isothermal heating followed by quenching. The time-temperature pair is selected from the region wherein the precipitate groups have the characteristics sought. The single crystal spinel is isothermally heated and will, if heated long enough pass from its single phase through two pre-precipitates and two metastable precipitates to a stable secondary phase precipitate within the spinel matrix. Quenching is done slowly at first to avoid thermal shock, then rapidly.

  18. Method for thermal processing alumina-enriched spinel single crystals

    DOEpatents

    Jantzen, C.M.

    1995-05-09

    A process for age-hardening alumina-rich magnesium aluminum spinel to obtain the desired combination of characteristics of hardness, clarity, flexural strength and toughness comprises selection of the time-temperature pair for isothermal heating followed by quenching. The time-temperature pair is selected from the region wherein the precipitate groups have the characteristics sought. The single crystal spinel is isothermally heated and will, if heated long enough pass from its single phase through two pre-precipitates and two metastable precipitates to a stable secondary phase precipitate within the spinel matrix. Quenching is done slowly at first to avoid thermal shock, then rapidly. 12 figs.

  19. ATMOSPHERIC EFFECTS ON THE PERFORMANCE OF CDZNTE SINGLE CRYSTAL DETECTORS

    SciTech Connect

    Washington, A.; Duff, M.; Teague, L.

    2010-05-12

    The production of high-quality ternary single-crystal materials for radiation detectors has progressed over the past 15 years. One of the more common materials being studied is CdZnTe (CZT), which can be grown using several methods to produce detector-grade materials. The work presented herein examines the effects of environmental conditions including temperature and humidity on detector performance [full-width at half-maximum (FWHM)] using the single pixel with guard detector configuration. The effects of electrical probe placement, reproducibility, and aging are also presented.

  20. Oxygen tracer diffusion in single-crystal alumina

    NASA Technical Reports Server (NTRS)

    Cawley, James D.; Halloran, John W.; Cooper, Alfred R.

    1991-01-01

    Oxygen tracer diffusion coefficients are determined in single-crystal alumina samples with differing dopant levels using the gas-exchange technique. The diffusion direction is parallel to the c-axis and the ambient PO2 is 1 atm (100,000 Pa) for all experiments except a single run with a low PO2, approximately 10 to the -15th atm (10 to the -10th Pa) produced by a CO/CO2 mixture. The diffusion is insensitive to both impurities and ambient PO2. The insensitivities are discussed in terms of point-defect clustering. Prior tracer studies are compared and discussed.

  1. Interfacial dislocation motion and interactions in single-crystal superalloys

    SciTech Connect

    Liu, B.; Raabe, D.; Roters, F.; Arsenlis, A.

    2014-10-01

    The early stage of high-temperature low-stress creep in single-crystal superalloys is characterized by the rapid development of interfacial dislocation networks. Although interfacial motion and dynamic recovery of these dislocation networks have long been expected to control the subsequent creep behavior, direct observation and hence in-depth understanding of such processes has not been achieved. Incorporating recent developments of discrete dislocation dynamics models, we simulate interfacial dislocation motion in the channel structures of single-crystal superalloys, and investigate how interfacial dislocation motion and dynamic recovery are affected by interfacial dislocation interactions and lattice misfit. Different types of dislocation interactions are considered: self, collinear, coplanar, Lomer junction, glissile junction, and Hirth junction. The simulation results show that strong dynamic recovery occurs due to the short-range reactions of collinear annihilation and Lomer junction formation. The misfit stress is found to induce and accelerate dynamic recovery of interfacial dislocation networks involving self-interaction and Hirth junction formation, but slow down the steady interfacial motion of coplanar and glissile junction forming dislocation networks. The insights gained from these simulations on high-temperature low-stress creep of single-crystal superalloys are also discussed.

  2. Self-Organized Single-Crystal Polythiophene Microwires

    NASA Astrophysics Data System (ADS)

    Cho, Kilwon; Kim, Do Hwan

    2006-03-01

    Here we show a well-faceted, high-quality 1D single-crystal poly (3-hexylthiophene), P3HT microwire with unprecedented electrical characteristics such as a low resistance (0.5 Mφ), a channel current as high as 25 μA, and a well-resolved gate modulation via solution growth. We find that 1D single-crystal P3HT microwires are formed spontaneously through facile self-assembly of individual polymer chains, adopting preferential well-ordered inter-chain stacking along the wire axis. Our findings indicate that π-conjugated polymer single-crystals are capable of very efficient charge transport. This approach could lead to the development of chemical and biological sensors which are efficiently capable of electrical and /or optical monitoring. This work was supported by the National Research Laboratory Program, a grant (F0004022) from Information Display R&D Center under the 21st Century Frontier R&D Program, the BK21 Program, and the Pohang Acceleratory Laboratory for providing the synchrotron radiation source at the 4C2, 3C2, and 8C1 beam lines.

  3. Single crystal plasticity by modeling dislocation density rate behavior

    SciTech Connect

    Hansen, Benjamin L; Bronkhorst, Curt; Beyerlein, Irene; Cerreta, E. K.; Dennis-Koller, Darcie

    2010-12-23

    The goal of this work is to formulate a constitutive model for the deformation of metals over a wide range of strain rates. Damage and failure of materials frequently occurs at a variety of deformation rates within the same sample. The present state of the art in single crystal constitutive models relies on thermally-activated models which are believed to become less reliable for problems exceeding strain rates of 10{sup 4} s{sup -1}. This talk presents work in which we extend the applicability of the single crystal model to the strain rate region where dislocation drag is believed to dominate. The elastic model includes effects from volumetric change and pressure sensitive moduli. The plastic model transitions from the low-rate thermally-activated regime to the high-rate drag dominated regime. The direct use of dislocation density as a state parameter gives a measurable physical mechanism to strain hardening. Dislocation densities are separated according to type and given a systematic set of interactions rates adaptable by type. The form of the constitutive model is motivated by previously published dislocation dynamics work which articulated important behaviors unique to high-rate response in fcc systems. The proposed material model incorporates thermal coupling. The hardening model tracks the varying dislocation population with respect to each slip plane and computes the slip resistance based on those values. Comparisons can be made between the responses of single crystals and polycrystals at a variety of strain rates. The material model is fit to copper.

  4. Spin reorientation transition in dysprosium-samarium orthoferrite single crystals

    NASA Astrophysics Data System (ADS)

    Zhao, Weiyao; Cao, Shixun; Huang, Ruoxiang; Cao, Yiming; Xu, Kai; Kang, Baojuan; Zhang, Jincang; Ren, Wei

    2015-03-01

    We report the control of spin reorientation (SR) transition in perovskite D y1 -xS mxFe O3 , a whole family of single crystals grown by an optical floating zone method from x =0 to 1 with an interval of 0.1. Powder x-ray diffractions and Rietveld refinements indicate that lattice parameters a and c increase linearly with Sm doping concentration, whereas b keeps a constant. Temperature dependence of the magnetizations under zero-field-cooling (ZFC) and field-cooling (FC) processes are studied in detail. We have found a remarkable linear change of SR transition temperature in Sm-rich samples for x >0.2 , which covers an extremely wide temperature range including room temperature. The a -axis magnetization curves under the FC during cooling (FCC) process bifurcate from and then jump back to that of the ZFC and FC warming process in single crystals when x =0.5 -0.9 , suggesting complicated 4 f -3 d electron interactions among D y3 + -S m3 +,D y3 + -F e3 + , and S m3 + -F e3 + sublattices of diverse magnetic configurations. The magnetic properties from the doping effect on SR transition temperature in these single crystals might be useful in the material physics and device design applications.

  5. Cluster Dynamics modelling of irradiation growth of zirconium single crystals

    NASA Astrophysics Data System (ADS)

    Christien, F.; Barbu, A.

    2009-08-01

    This paper aims at modelling irradiation growth of zirconium single crystals as a function of neutron fluence. The Cluster Dynamics approach is used, which makes it possible to describe the variation of irradiation microstructure (dislocation loops) with neutron fluence. From the irradiation microstructure, the strain can be calculated along the axes of the lattice structure. The model is applied to the growth of annealed zirconium single crystals at 553 K measured by Carpenter and Rogerson in 1981 and 1987. The model is found to fit the experimentally measured growth of Zr single crystals very nicely, even at large neutron fluence where the 'breakaway growth' occurs. This was made possible by considering in the model the growth of vacancy loops in the basal planes. This growth of vacancy loops in the basal planes could be modelled by taking into account that diffusion of self-interstitial atoms (SIA) is anisotropic and that there exist in the basal planes some nucleation sites for vacancy loops (iron clusters), the density of which is considered constant over time.

  6. Subsurface Stress Fields in Single Crystal (Anisotropic) Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.

    2003-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and fatigue stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent HCF failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and noncrystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. Techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts are presented in this report. Figure 1 shows typical damper contact locations in a turbine blade. The subsurface stress results are used for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades.

  7. Chiral multichromic single crystals for optical devices (LDRD 99406).

    SciTech Connect

    Kemp, Richard Alan; Felix, Ana M. (University of New Mexico, Albuquerque, NM)

    2006-12-01

    This report summarizes our findings during the study of a novel system that yields multi-colored materials as products. This system is quite unusual as it leads to multi-chromic behavior in single crystals, where one would expect that only a single color would exist. We have speculated that these novel solids might play a role in materials applications such as non-linear optics, liquid crystal displays, piezoelectric devices, and other similar applications. The system examined consisted of a main-group alkyl compound (a p block element such as gallium or aluminum) complexed with various organic di-imines. The di-imines had substituents of two types--either alkyl or aromatic groups attached to the nitrogen atoms. We observed that single crystals, characterized by X-ray crystallography, were obtained in most cases. Our research during January-July, 2006, was geared towards understanding the factors leading to the multi-chromic nature of the complexes. The main possibilities put forth initially considered (a) the chiral nature of the main group metal, (b) possible reduction of the metal to a lower-valent, radical state, (c) the nature of the ligand(s) attached to the main group metal, and (d) possible degradation products of the ligand leading to highly-colored products. The work carried out indicates that the most likely explanation considered involves degradation of the aromatic ligands (a combination of (c) and (d)), as the experiments performed can clearly rule out (a) and (b).

  8. Effect of organic dopants on ZTS single crystals

    NASA Astrophysics Data System (ADS)

    Meenakshisundaram, Subbiah; Parthiban, S.; Sarathi, N.; Kalavathy, R.; Bhagavannarayana, G.

    2006-08-01

    The influence of organic dopants on tristhioureazinc(II)sulphate (ZTS) single crystals from aqueous solutions at 30 °C is investigated. The dopants used in the present investigation are disodium salt of ethylenediamminetetraacetic acid (EDTA), benzene and 1,10-phenanthroline (Phen) which are having different structures. Though, all the dopants show better results, prominent influence is observed in case of EDTA dopant with low concentration of 5×10 -3 M L -1 and hence the results pertaining to EDTA dopant are described in detail in the present article. At low concentrations of dopant, an increase in the metastable zone width, leading to an increase in the crystal growth rate is observed. At higher dopant concentration, growth rate decreases. The crystalline perfection of the grown crystals has been evaluated by high-resolution X-ray diffractometry (HRXRD). The diffraction curve (DC) of a typical EDTA-doped as-grown ZTS crystal was observed to contain one additional peak very close to the main peak suggesting the possibility of an epitaxial layer on the surface of the crystal. After removing this layer by lapping followed by chemical etching, the DC was found to contain only a single and very sharp peak showing that the main crystal is having a much better crystalline perfection than that observed for the specimen grown with out using any dopant in the solution. This indicates that the complexation of trace metal ion impurities (present in the solution) with the dopants is responsible for the formation of the layer on the surface of the crystal and prevents the entry of impurities in the growing crystal. The complexation also promotes the growth process leading to a rapid growth with high crystalline quality. Not much variation is observed in FT-IR and XRD of pure and doped ZTS. However, second harmonic generation (SHG) efficiency measurements carried out with different dopants reveal that nonlinear optical (NLO) property is enhanced by EDTA and benzene dopants. However, Phen depresses the NLO efficiency of ZTS.

  9. Acquisition of Single Crystal Growth and Characterization Equipment

    SciTech Connect

    Maple, M. Brian; Zocco, Diego A.

    2008-12-09

    Final Report for DOE Grant No. DE-FG02-04ER46178 'Acquisition of Single Crystal Growth and Characterization Equipment'. There is growing concern in the condensed matter community that the need for quality crystal growth and materials preparation laboratories is not being met in the United States. It has been suggested that there are too many researchers performing measurements on too few materials. As a result, many user facilities are not being used optimally. The number of proficient crystal growers is too small. In addition, insufficient attention is being paid to the enterprise of finding new and interesting materials, which is the driving force behind much of condensed matter research and, ultimately, technology. While a detailed assessment of this situation is clearly needed, enough evidence of a problem already exists to compel a general consensus that the situation must be addressed promptly. This final report describes the work carried out during the last four years in our group, in which a state-of-the-art single crystal growth and characterization facility was established for the study of novel oxides and intermetallic compounds of rare earth, actinide and transition metal elements. Research emphasis is on the physics of superconducting (SC), magnetic, heavy fermion (HF), non-Fermi liquid (NFL) and other types of strongly correlated electron phenomena in bulk single crystals. Properties of these materials are being studied as a function of concentration of chemical constituents, temperature, pressure, and magnetic field, which provide information about the electronic, lattice, and magnetic excitations at the root of various strongly correlated electron phenomena. Most importantly, the facility makes possible the investigation of material properties that can only be achieved in high quality bulk single crystals, including magnetic and transport phenomena, studies of the effects of disorder, properties in the clean limit, and spectroscopic and scattering studies through efforts with numerous collaborators. These endeavors will assist the effort to explain various outstanding theoretical problems, such as order parameter symmetries and electron-pairing mechanisms in unconventional superconductors, the relationship between superconductivity and magnetic order in certain correlated electron systems, the role of disorder in non-Fermi liquid behavior and unconventional superconductivity, and the nature of interactions between localized and itinerant electrons in these materials. Understanding the mechanisms behind strongly correlated electron behavior has important technological implications.

  10. Optical spectroscopy of single crystals and nanoscale films of pentacene

    NASA Astrophysics Data System (ADS)

    He, Rui

    Growing interest in organic molecular semiconductors is stimulated by their promising applications in flexible devices. Transistors based on pentacene have reached device mobilities comparable to amorphous Si. This creates incentives for fundamental studies of organic molecular crystals and nanoscale structures. The research presented in this dissertation demonstrates optical spectroscopy venues for studies of organic molecular semiconductors. Pentacene single crystals and nanoscale films, reaching sub-monolayer thickness, are probed by photoluminescence and resonance Raman spectroscopies. The studies of single crystals reveal new physics linked to intrinsic and extrinsic excitations and provide benchmarks for evaluating the results in nanoscale films. By studying single crystals with different degrees of purities, I identified extrinsic luminescence bands in high quality crystals. Large resonance enhancements of Raman intensities occur when photon energies overlap intrinsic luminescence bands of free and self-trapped excitons. A four-step Raman scattering mechanism is proposed to describe the resonance processes with the self-trapped state. Photoluminescence spectra of discontinuous clusters and ultra-thin films with few monolayers in thickness reveal two fundamental excitations that are assigned to Davydov doublets of the lowest singlet exciton. The observations suggest that pentacene nanoscale films develop a structure with two molecules per unit cell. Pentacene monolayers deposited on substrates functionalized with the polymer of poly alpha-methylstyrene exhibit great lateral uniformity. These monolayers display sharp and intense free exciton luminescence bands which offer giant resonance enhancements of Raman scattering intensities. The enhancements enable the first observations of low-lying lattice modes from pentacene monolayers. The lattice modes show characteristic changes when the number of layers is increased. The low-lying lattice modes reveal inter-layer interactions and suggest that films of two monolayers and thicker develop a structure similar to that of a thin film pentacene phase. The results reported in this dissertation demonstrate that optics experiments probe organic semiconductors including single crystals and nanoscale films that reach an extreme two-dimensional limit. This research creates novel venues for studies of fundamental physics, interface effects, and structural characterization of organic molecular systems.

  11. Crystal growth, structure analysis and characterisation of 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid single crystal

    SciTech Connect

    Sankari, R. Siva; Perumal, Rajesh Narayana

    2014-04-24

    Single crystal of dielectric material 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid has been grown by slow evaporation solution growth method. The grown crystal was harvested in 25 days. The crystal structure was analyzed by Single crystal X - ray diffraction. UV-vis-NIR analysis was performed to examine the optical property of the grown crystal. The thermal property of the grown crystal was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The dielectric measurements were carried out and the dielectric constant was calculated and plotted at all frequencies.

  12. Structural and thermal characterization of CaO-MgO-SiO2-P2O5-CaF2 glasses

    SciTech Connect

    Kansal, Ishu; Goel, Ashutosh; Tulyaganov, Dilshat U.; Rajagopal, Raghu R.; Ferreira, Jose M.

    2012-08-01

    The paper presents the influence of varying CaO/MgO ratio on the structure and thermal properties of CaO-MgO-SiO2-P2O5-CaF2 glasses. A series of eight glass compositions in the glass forming region of diopside (CaMgSi2O6) - fluorapatite [Ca5(PO4)3F] - wollastonite (CaSiO3) ternary system have been designed and synthesized by varying diopside/wollastonite ratio in glasses. The as prepared melt-quenched glasses have been characterized for their structure by infrared spectroscopy (FTIR) and magic angle spinning (MAS)-nuclear magnetic resonance (NMR) spectroscopy. Silicon is predominantly present as Q2 (Si) species, while phosphorus tends to coordinate in orthophosphate environment in all the investigated glasses. The change in CaO/MgO ratio had an insignificant affect on the structure of glasses. The thermal sintering and crystallization parameters for the studied glasses have been obtained from differential thermal analysis (DTA) while crystalline phase fractions in the sintered glass-ceramics have been analyzed by X-ray diffraction adjoined with Rietveld refinement. Diopside, fluorapatite, wollastonite and pseudowollastonite have crystallized as the main crystalline phases in all the glass-ceramics with their content varying with respect to variation in CaO/MgO ratio in glasses. Scanning electron microscopy (SEM) has been used to shed light on the microstructure of glass-ceramics. The possible implications of structure and sintering behaviour of glasses on their bioactivity have been discussed.

  13. Influence of solvents on the habit modification of alpha lactose monohydrate single crystals

    NASA Astrophysics Data System (ADS)

    Parimaladevi, P.; Srinivasan, K.

    2013-02-01

    Restricted evaporation of solvent method was adopted for the growth of alpha lactose monohydrate single crystals from different solvents. The crystal habits of grown crystals were analysed. The form of crystallization was confirmed by powder x-ray diffraction analysis. Thermal behaviour of the grown crystals was studied by using differential scanning calorimetry.

  14. Effects of CaF2 Coating on the Microstructures and Mechanical Properties of Tungsten Inert Gas Welded AZ31 Magnesium Alloy Joints

    NASA Astrophysics Data System (ADS)

    Shen, Jun; Wang, Linzhi; Peng, Dong; Wang, Dan

    2012-11-01

    The effects of CaF2 coating on the macromorphologies of the welded seams were studied by morphological analysis. Microstructures and mechanical properties of butt joints welded with different amounts of CaF2 coatings were investigated using optical microscopy and tensile tests. The welding defects formed in the welded seams and the fracture surfaces were analyzed by scanning electron microscopy. An increase in the amount of CaF2 coating deteriorated the appearances of the welded seams but it improved the weld penetration depth and the depth/width ( D/ W) ratio of the tungsten inert gas (TIG) welded joints. The α-Mg grains and Mg17(Al,Zn)12 intermetallic compound (IMC) were coarser in the case of a higher amount of CaF2 coating. The increase in the amount of CaF2 coating reduced the porosities and total length of solidification cracks in the fusion zone (FZ). The ultimate tensile strength (UTS) value and elongation increased at first and then decreased sharply.

  15. Modification of mechanical properties of e-gun evaporated MgF2 and CaF2 thin films under ion beam bombardment

    NASA Astrophysics Data System (ADS)

    Scaglione, S.; Flori, D.; Emiliani, G.

    1989-12-01

    The effect of ion beam assistance on mechanical properties (hardness and adhesion) of MgF2 and CaF2 thin films has been investigated. These films have been deposited by e-gun evaporation and bombarded during growth with an ion beam produced by a Kaufman source. The Knoop hardness has been calculated after having performed on the samples some indentation by an ultra-microindenter and measured the impression size by an eyepiece mounted on an optical microscope. The film adhesion has been measured by the scratch test technique. To investigate the influence of the ion source parameters on the mechanical properties, different ion beam energies (200-800 eV) have been used. Bombarded samples are harder (610 and 750 kg/mm2 for CaF2 and MgF2 samples, respectively) than unbombarded samples (380 and 300 kg/mm2 for CaF2 and MgF2, respectively). Critical loads (load where the delamination of the coating begins) of 12 and 3 N for bombarded MgF2 and CaF2 respectively and 4 and 1 N for unbombarded MgF2 and CaF2 samples have been found.

  16. Deformation of as-cast LiF-22 mol pct CaF2 hypereutectic salt between 500 and 1015 K

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Whittenberger, J. D.

    1990-01-01

    Results are presented on compression tests conducted on as-cast LiF-22 mol pct CaF2 hypereutectic specimens at nominal strain rates between 1.8 x 10 to the -6th/sec and 0.25/sec over the temperature range 500-1015 K. In all instances, the stress-strain curves showed broad maxima, with negative strain-hardening rates after the peak stress sigma(max). It was found that, at low temperatures and high stresses, the CaF2 lamellae are rigid while the LiF matrix exhibits extensive transgranular cavitation, while at high temperatures and low stresses the CaF2 lamellae break down and spheroidize while the LiF matrix does not cavitate. It was concluded that the mechanical properties of the as-cast hypereutectic LiF-22 mol pct CaF2 are governed by the rate of deformation of the CaF2 phase. It is suggested that, for thermal energy storage applications, a spheroidal microstructure is more desirable than a lamellar structure.

  17. One- and two-dimensional photonic crystal microcavities in single crystal diamond.

    PubMed

    Riedrich-Möller, Janine; Kipfstuhl, Laura; Hepp, Christian; Neu, Elke; Pauly, Christoph; Mücklich, Frank; Baur, Armin; Wandt, Michael; Wolff, Sandra; Fischer, Martin; Gsell, Stefan; Schreck, Matthias; Becher, Christoph

    2012-01-01

    Diamond is an attractive material for photonic quantum technologies because its colour centres have a number of outstanding properties, including bright single photon emission and long spin coherence times. To take advantage of these properties it is favourable to directly fabricate optical microcavities in high-quality diamond samples. Such microcavities could be used to control the photons emitted by the colour centres or to couple widely separated spins. Here, we present a method for the fabrication of one- and two-dimensional photonic crystal microcavities with quality factors of up to 700 in single crystal diamond. Using a post-processing etching technique, we tune the cavity modes into resonance with the zero phonon line of an ensemble of silicon-vacancy colour centres, and we measure an intensity enhancement factor of 2.8. The controlled coupling of colour centres to photonic crystal microcavities could pave the way to larger-scale photonic quantum devices based on single crystal diamond. PMID:22081214

  18. Hystereses of volume changes in liquid single crystal elastomers swollen with low molecular weight liquid crystal

    NASA Astrophysics Data System (ADS)

    Yusuf, Yusril; Cladis, P. E.; Brand, Helmut R.; Finkelmann, Heino; Kai, Shoichi

    2004-05-01

    The hystereses of volume changes in liquid single crystal elastomers (LSCEs) swollen with a low molecular weight liquid crystal (LMWLC), 5CB, are studied as a function of temperature. The swollen LSCE shows significant hystereses in the volume changes at temperatures TNI and TA during the processes on heating and on cooling, where the temperature TNI is the apparent nematic-isotropic transition for outside LMWLC and TA the nematic-isotropic transition for LMWLC inside the LSCE. No significant hysteresis at TB however can be observed which is the nematic-isotropic phase transition temperature for equilibrium shape of the swollen LSCE (networks).

  19. Standard Reference Material (SRM 1990) for Single Crystal Diffractometer Alignment

    USGS Publications Warehouse

    Wong-Ng, W.; Siegrist, T.; DeTitta, G.T.; Finger, L.W.; Evans, H.T., Jr.; Gabe, E.J.; Enright, G.D.; Armstrong, J.T.; Levenson, M.; Cook, L.P.; Hubbard, C.R.

    2001-01-01

    An international project was successfully completed which involved two major undertakings: (1) a round-robin to demonstrate the viability of the selected standard and (2) the certification of the lattice parameters of the SRM 1990, a Standard Reference Material?? for single crystal diffractometer alignment. This SRM is a set of ???3500 units of Cr-doped Al2O3, or ruby spheres [(0 420.011 mole fraction % Cr (expanded uncertainty)]. The round-robin consisted of determination of lattice parameters of a pair of crystals' the ruby sphere as a standard, and a zeolite reference to serve as an unknown. Fifty pairs of crystals were dispatched from Hauptman-Woodward Medical Research Institute to volunteers in x-ray laboratories world-wide. A total of 45 sets of data was received from 32 laboratories. The mean unit cell parameters of the ruby spheres was found to be a=4.7608 A?? ?? 0.0062 A??, and c=12.9979 A?? ?? 0.020 A?? (95 % intervals of the laboratory means). The source of errors of outlier data was identified. The SRM project involved the certification of lattice parameters using four well-aligned single crystal diffractometers at (Bell Laboratories) Lucent Technologies and at NRC of Canada (39 ruby spheres), the quantification of the Cr content using a combined microprobe and SEM/EDS technique, and the evaluation of the mosaicity of the ruby spheres using a double-crystal spectrometry method. A confirmation of the lattice parameters was also conducted using a Guinier-Ha??gg camera. Systematic corrections of thermal expansion and refraction corrections were applied. These rubies_ are rhombohedral, with space group R3c. The certified mean unit cell parameters are a=4.76080 ?? 0.00029 A??, and c=12 99568 A?? ?? 0.00087 A?? (expanded uncertainty). These certified lattice parameters fall well within the results of those obtained from the international round-robin study. The Guinier-Ha??gg transmission measurements on five samples of powdered rubies (a=4.7610 A?? ?? 0.0013 A??, and c=12.9954 A?? ?? 0.0034 A??) agreed well with the values obtained from the single crystal spheres.

  20. Employing a cylindrical single crystal in gas-surface dynamics

    NASA Astrophysics Data System (ADS)

    Hahn, Christine; Shan, Junjun; Liu, Ying; Berg, Otto; Kleijn, Aart W.; Juurlink, Ludo B. F.

    2012-03-01

    We describe the use of a polished, hollow cylindrical nickel single crystal to study effects of step edges on adsorption and desorption of gas phase molecules. The crystal is held in an ultra-high vacuum apparatus by a crystal holder that provides axial rotation about a [100] direction, and a crystal temperature range of 89 to 1100 K. A microchannel plate-based low energy electron diffraction/retarding field Auger electron spectrometer (AES) apparatus identifies surface structures present on the outer surface of the cylinder, while a separate double pass cylindrical mirror analyzer AES verifies surface cleanliness. A supersonic molecular beam, skimmed by a rectangular slot, impinges molecules on a narrow longitudinal strip of the surface. Here, we use the King and Wells technique to demonstrate how surface structure influences the dissociation probability of deuterium at various kinetic energies. Finally, we introduce spatially-resolved temperature programmed desorption from areas exposed to the supersonic molecular beam to show how surface structures influence desorption features.

  1. Growth striations and dislocations in highly doped semiconductor single crystals

    NASA Astrophysics Data System (ADS)

    Prokhorov, I. A.; Serebryakov, Yu. A.; Zakharov, B. G.; Bezbakh, I. Zh.; Ratnikov, V. V.; Shulpina, I. L.

    2008-12-01

    Microsegregation and structural inhomogeneities in highly doped GaSb(Si) and InAs(Ga) single crystals grown under various heat and mass transfer conditions were analyzed using X-ray topography, high-resolution X-ray diffractometry, digital image processing and spectral analysis of signals. It was shown that a decrease in the convective flow intensity during crystal growth by the vertical Bridgman method with axisymmetric upper heat supply eliminates microsegregation growth striations and improves homogeneity of crystals on a micro-scale in comparison with the Czochralski method. Some specific features in X-ray topography images of growth striations caused by a high silicon concentration and dopant state deviation from an ideal substation solid solution were revealed in GaSb(Si). It is established that elastic stresses arising at large compositional variations in growth striations can relax by means of misfit dislocations formation. The magnitude of compositional fluctuations in InAs(Ga) was quantitatively estimated using conditions of misfit dislocation formation in such layered-inhomogeneous crystals.

  2. Entropy changes and caloric effects in RAl2 single crystals

    NASA Astrophysics Data System (ADS)

    Antunes de Oliveira, Nilson; Caro Patiño, Julieth; von Ranke, Pedro R.

    2015-03-01

    In this work we theoretically discuss the entropy changes and the caloric effects in RAl2 single crystals, which crystalize in the cubic symmetry and have large magneto crystalline anisotropy due to the crystal electric field. For this purpose, we use a model of interacting magnetic moments including a term to account for the crystal electric field. We apply the model to calculate the entropy changes and the magnetocaloric quantities in TmAl2 and NdAl2 by applying magnetic field variations in different crystallographic directions. Our calculations for the entropy changes in these compounds are in a reasonable agreement with the available experimental data for ΔB = 7 T. Further experimental data are necessary to compare with our theoretical predictions for the adiabatic temperature change. We also calculate the caloric quantities by fixing the magnitude of the magnetic field and rotating its direction. In this case, our calculations predict an anomaly (i.e. a change of sign) in the caloric quantities of TmAl2 when a magnetic field of 3 T rotates from < 100 > to < 110 > direction. A similar behavior is also observed in NdAl2. This very interesting fact, which is basically due to the magneto crystalline anisotropy, needs experimental data to be confirmed CNPq, CAPES, FAPERJ.

  3. Large pyramid shaped single crystals of BiFeO{sub 3} by solvothermal synthesis method

    SciTech Connect

    Sornadurai, D.; Ravindran, T. R.; Paul, V. Thomas; Sastry, V. Sankara

    2012-06-05

    Synthesis parameters are optimized in order to grow single crystals of multiferroic BiFeO{sub 3}. 2 to 3 mm size pyramid (tetrahedron) shaped single crystals were successfully obtained by solvothermal method. Scanning electron microscopy with EDAX confirmed the phase formation. Raman scattering spectra of bulk BiFeO3 single crystals have been measured which match well with reported spectra.

  4. Plastic deformation of Ni{sub 3}Nb single crystals

    SciTech Connect

    Hagihara, Kouji; Nakano, Takayoshi; Umakoshi, Yukichi

    1999-07-01

    Temperature dependence of yield stress and operative slip system in Ni{sub 3}Nb single crystals with the D0{sub a} structure was investigated in comparison with that in an analogous L1{sub 2} structure. Compression tests were performed at temperatures between 20 C and 1,200 C for specimens with loading axes perpendicular to (110), (331) and (270). (010)[100] slip was operative for three orientations, while (010)[001] slip for (331) and {l{underscore}brace}211{r{underscore}brace}{lt}{bar 1}{bar 0} 7 13{gt} twin for (270) orientations were observed, depending on deformation temperature. The critical resolved shear stress (CRSS) for the (010)[100] slip anomaly increased with increasing temperature showing a maximum peak between 400 C and 800 C depending on crystal orientation. The CRSS showed orientation dependence and no significant strain rate dependence in the temperature range for anomalous strengthening. The [100] dislocations with a screw character were aligned on the straight when the anomalous strengthening occurred. The anomalous strengthening mechanism for (010)[100] slip in Ni{sub 3}Nb single crystals is discussed on the basis of a cross slip model which has been widely accepted for some L1{sub 2}-type compounds.

  5. Nonsymmorphic topological photonic crystal with a single surface Dirac cone

    NASA Astrophysics Data System (ADS)

    Lu, Ling; Fang, Chen; Fu, Liang; Johnson, Steven; Joannopoulos, John; Soljacic, Marin; MIT Collaboration

    We predict a realization of the nonsymmorphic topological crystalline phase: a three-dimensional (3D) photonic crystal with a single surface Dirac cone. A single Dirac cone on the surface is the hallmark of the 3D topological insulators, where the double degeneracy at the Dirac point is protected by time-reversal symmetry and the spin-splitting away from the point is provided by the spin-orbital coupling. In our 3D topological photonic crystal, the degeneracy at the Dirac point is protected by a nonsymmorphic glide reflection and the linear splitting away from it is enabled by breaking time-reversal symmetry. Such a gapless surface state is fully robust against random disorder of any type. This bosonic topological band structure is achieved by applying alternating magnetization to gap out the 3D ''generalized Dirac points'' discovered in the bulk of our crystal. The Z2 bulk invariant is characterized through the evolution of Wannier centers. Our proposal-readily realizable using ferrimagnetic materials at microwave frequencies-can also be regarded as the photonic analog of topological crystalline insulators, providing the first 3D bosonic symmetry-protected topological system.

  6. Strength anomaly in B2 FeAl single crystals

    SciTech Connect

    Yoshimi, K.; Hanada, S.; Yoo, M.H.; Matsumoto, N.

    1994-12-31

    Strength and deformation microstructure of B2 Fe-39 and 48%Al single crystals (composition given in atomic percent), which were fully annealed to remove frozen-in vacancies, have been investigated at temperatures between room temperature and 1073K. The hardness of as-homogenized Fe-48Al is higher than that of as-homogenized Fe-39Al while after additional annealing at 698K the hardness of Fe-48Al becomes lower than that of Fe-39Al. Fe-39Al single crystals slowly cooled after homogenizing at a high temperature were deformed in compression as a function of temperature and crystal orientation. A peak of yield strength appears around 0.5T{sub m} (T{sub m} = melting temperature). The orientation dependence of the critical resolved shear stress does not obey Schmid`s law even at room temperature and is quite different from that of b.c.c. metals and B2 intermetallics at low temperatures. At the peak temperature slip transition from <111>-type to <001>-type is found to occur macroscopically and microscopically, while it is observed in TEM that some of the [111] dislocations decompose into [101] and [010] on the (1096I) plane below the peak temperature. The physical sources for the positive temperature dependence of yield stress of B2 FeAl are discussed based on the obtained results.

  7. ESR Study on Irradiated Ascorbic Acid Single Crystal

    NASA Astrophysics Data System (ADS)

    Tuner, H.; Korkmaz, M.

    2007-04-01

    Food irradiation is a ``cold'' process for preserving food and has been established as a safe and effective method of food processing and preservation after more than five decades of research and development. The small temperature increase, absence of residue and effectiveness of treatment of pre-packed food are the main advantages. In food industry, ascorbic acid and its derivatives are frequently used as antioxidant agents. However, irradiation is expected to produces changes in the molecules of food components and of course in the molecules of the agents added as preservation agents such as ascorbic acid. These changes in the molecular structures could cause decreases in the antioxidant actions of these agents. Therefore, the radiation resistance of these agents must be known to determine the amount of radiation dose to be delivered. Electron spin resonance (ESR) is one of the leading methods for identification of intermediates produced after irradiation. ESR spectrum of irradiated solid powder of ascorbic acid is fairly complex and determinations of involved radical species are difficult. In the present work, single crystals of ascorbic acid irradiated by gamma radiation are used to determine molecular structures of radiation induced radicalic species and four radicalic species related in pair with P21 crystal symmetry are found to be responsible from experimental ESR spectrum of gamma irradiated single crystal of ascorbic acid.

  8. ESR Study on Irradiated Ascorbic Acid Single Crystal

    SciTech Connect

    Tuner, H.; Korkmaz, M.

    2007-04-23

    Food irradiation is a 'cold' process for preserving food and has been established as a safe and effective method of food processing and preservation after more than five decades of research and development. The small temperature increase, absence of residue and effectiveness of treatment of pre-packed food are the main advantages. In food industry, ascorbic acid and its derivatives are frequently used as antioxidant agents. However, irradiation is expected to produces changes in the molecules of food components and of course in the molecules of the agents added as preservation agents such as ascorbic acid. These changes in the molecular structures could cause decreases in the antioxidant actions of these agents. Therefore, the radiation resistance of these agents must be known to determine the amount of radiation dose to be delivered. Electron spin resonance (ESR) is one of the leading methods for identification of intermediates produced after irradiation. ESR spectrum of irradiated solid powder of ascorbic acid is fairly complex and determinations of involved radical species are difficult. In the present work, single crystals of ascorbic acid irradiated by gamma radiation are used to determine molecular structures of radiation induced radicalic species and four radicalic species related in pair with P21 crystal symmetry are found to be responsible from experimental ESR spectrum of gamma irradiated single crystal of ascorbic acid.

  9. Single-crystal magnetic anisotropies of rock-forming minerals

    NASA Astrophysics Data System (ADS)

    Biedermann, Andrea Regina; Hirt, Ann Marie; Pettke, Thomas

    2013-04-01

    Anisotropy of magnetic susceptibility (AMS) is often used as an indicator of mineral fabric in rocks. For a quantitative estimate of mineral fabric, it is necessary to know and understand the intrinsic magnetic anisotropy of each mineral in the rock. Susceptibility, and thus AMS, is a superposition of paramagnetic and ferromagnetic components. In general, the paramagnetic contribution can be related to silicates, whereas the ferromagnetic component arises from iron oxide inclusions. We determined single-crystal AMS in both low and high magnetic fields for a series of olivine, amphibole, clinopyroxene and orthopyroxene compositions. Analysis of high-field data allows for separation of ferromagnetic and paramagnetic contributions to the magnetic anisotropy. Acquisition of isothermal remanent magnetization (IRM) was measured in order to further characterize the ferromagnetic inclusions. Often, the iron oxides grow epitaxially on the silicate structure and have specific orientations with respect to the silicate. The ferromagnetic component of the AMS can provide information on the orientation or shape of the inclusions. The paramagnetic AMS in a single crystal is related to the distribution of cations with a strong magnetic moment, e.g. ferric and ferrous iron, in the lattice structure. Relationships between the anisotropy, e.g. the anisotropy degree (delta k) or principal susceptibility directions, and iron content were thus established for each mineral group. For example, the orientation of the intermediate and minimum susceptibility axes in olivine depends on the iron content - the minimum susceptibility is parallel to the crystallographic a-axis for 3-5 wt.% FeO and parallel to b for 7-9 wt.% FeO at room temperature; and for amphiboles, the degree of AMS increases linearly with increasing iron content. AMS in a rock depends on the single-crystal properties, which are influenced by lattice structure and composition, as well as the crystallographic preferred orientation of crystals. Information on single crystal AMS can thus be used to predict bulk AMS of ultrabasic rocks, when the orientation distribution function of the constituent minerals is known.

  10. Ultra-thin single crystal perovskite ferroelectric on Silicon

    NASA Astrophysics Data System (ADS)

    Bakaul, Saidur; Serrao, Claudy; Ramamoorthy, Ramesh; Salahuddin, Sayeef

    Single crystalline ultra-thin films (sub-10 nm) of ferroelectric complex oxides are important for tunnelling memory devices. Commercially viable realization of such devices requires their integration with the peripheral Si-based input-output electronics. Integration of single crystalline films of such oxides using direct synthesis remains challenging due to the fundamental crystal chemistry and mechanical incompatibility of dissimilar interfaces. In this work we report epitaxial transfer of ultra-thin single crystalline, oxide films (down to 1 unit cell) onto Si substrates, at room temperature. The thickness of the transferred films has been confirmed by atomic force microscopy. Piezoelectric force microscopy shows ferroelectric property is retained in the transferred film. Electrical transport studies on these transferred ultra-thin films are ongoing.

  11. Electronic properties of graphene-single crystal diamond heterostructures

    SciTech Connect

    Zhao, Fang; Thuong Nguyen, Thuong; Golsharifi, Mohammad; Amakubo, Suguru; Jackman, Richard B.; Loh, K. P.

    2013-08-07

    Single crystal diamond has been used as a substrate to support single layer graphene grown by chemical vapor deposition methods. It is possible to chemically functionalise the diamond surface, and in the present case H-, F-, O-, and N-group have been purposefully added prior to graphene deposition. The electronic properties of the resultant heterostructures vary strongly; a p-type layer with good mobility and a band gap of ∼0.7 eV is created when H-terminated diamond layers are used, whilst a layer with more metallic-like character (high carrier density and low carrier mobility) arises when N(O)-terminations are introduced. Since it is relatively easy to pattern these functional groups on the diamond surface, this suggests that this approach may offer an exciting route to 2D device structures on single layer graphene sheets.

  12. Rolling-contact deformation of MgO single crystals

    NASA Technical Reports Server (NTRS)

    Dufrane, K. F.; Glaeser, W. A.

    1976-01-01

    Magnesium oxide single crystals were used as a model bearing material and deformed by rolling contact with a steel ball 0.64 cm in diameter. A dependence of depth of slip on rolling velocity which persisted with increasing numbers of rolling-contact cycles was discovered. The track width, track hardness and dislocation interactions as observed by transmission electron microscopy all increased in a consistent manner with increasing cycles. The rolling-contact state of stress produces a high density of dislocations in a localized zone. Dislocation interaction in this zone produces cleavage-type cracks after a large number of rolling-contact cycles. The orientation of the crystal influences the character of dislocation accumulation.

  13. High pressure Raman spectra of monoglycine nitrate single crystal.

    PubMed

    Carvalho, J O; Moura, G M; Dos Santos, A O; Lima, R J C; Freire, P T C; Façanha Filho, P F

    2016-05-15

    Single crystal of monoglycine nitrate has been studied by Raman spectroscopy under high pressures up to 5.5GPa. The results show changes in lattice modes in the pressure ranges of 1.1-1.6GPa and 4.0-4.6GPa. The first change occurs with appearance of bands related to the lattice modes as well as discontinuity in the slope of dΩ/dP of these modes. Moreover, bands associated with the skeleton of glycine suggest that the molecule undergoes conformational modifications. The appearance of a strong band at 55cm(-1) point to a second phase transition associated with the lattice modes, while the internal modes remain unchanged. These anomalies are probably due to rearrangement of hydrogen bonds. Additionally, decompression to ambient pressure shows that the phase transitions are reversible. Finally, the results show that the nitrate anions play an important role on the stability of the monoglycine nitrate crystal. PMID:26967511

  14. High pressure Raman spectra of monoglycine nitrate single crystal

    NASA Astrophysics Data System (ADS)

    Carvalho, J. O.; Moura, G. M.; Dos Santos, A. O.; Lima, R. J. C.; Freire, P. T. C.; Façanha Filho, P. F.

    2016-05-01

    Single crystal of monoglycine nitrate has been studied by Raman spectroscopy under high pressures up to 5.5 GPa. The results show changes in lattice modes in the pressure ranges of 1.1-1.6 GPa and 4.0-4.6 GPa. The first change occurs with appearance of bands related to the lattice modes as well as discontinuity in the slope of dΩ/dP of these modes. Moreover, bands associated with the skeleton of glycine suggest that the molecule undergoes conformational modifications. The appearance of a strong band at 55 cm- 1 point to a second phase transition associated with the lattice modes, while the internal modes remain unchanged. These anomalies are probably due to rearrangement of hydrogen bonds. Additionally, decompression to ambient pressure shows that the phase transitions are reversible. Finally, the results show that the nitrate anions play an important role on the stability of the monoglycine nitrate crystal.

  15. Polarization characteristics of zeolite single crystals containing carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Nagasawa, N.; Kudryashov, I.; Tsuda, S.; Tang, Z. K.

    2001-10-01

    Optical polarization anisotropy of single crystals of AlPO4-5 (AFI) containing carbon nanotubes is studied to develop the optical characterization method of the samples by laser micro-polarimetry at 488 nm. The crystals are opaque in the configuration, K⊥C with E∥C, but are almost transparent in the configuration, K⊥C with E⊥C, where K and E are the wave vector and the electric field of the incident light, respectively. The degree of polarization reaches almost unity at the maximum. When K∥C, they are also transparent for any directions of E except for some locations including the surface. The strong luminescence bands are observed at 540 nm and 570 nm with the tail toward long wavelength region. The 3D imaging of the luminescence is performed by Nanofinder to demonstrate their extrinsic origin.

  16. Crystal oscillators using negative voltage gain, single pole response amplifiers

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard L. (Inventor)

    1989-01-01

    A simple and inexpensive crystal oscillator is provided which employs negative voltage gain, single pole response amplifiers. The amplifiers may include such configurations as gate inverters, operational amplifiers and conventional bipolar transistor amplifiers, all of which operate at a frequency which is on the roll-off portion of their gain versus frequency curve. Several amplifier feedback circuit variations are employed to set desired bias levels and to allow the oscillator to operate at the crystal's fundamental frequency or at an overtone of the fundamental frequency. The oscillator is made less expensive than comparable oscillators by employing relatively low frequency amplifiers and operating them at roll-off, at frequencies beyond which they are customarily used. Simplicity is provided because operation at roll-off eliminates components ordinarily required in similar circuits to provide sufficient phase-shift in the feedback circuitry for oscillation to occur.

  17. Drift mobility of holes in phenanthrene single crystals

    NASA Technical Reports Server (NTRS)

    Sonnonstine, T. J.; Hermann, A. M.

    1974-01-01

    The temperature dependence of drift mobilities of holes in single crystals of phenanthrene was measured in the range from 203 to 353 K in three crystallographic directions. Below the anomaly temperature of 72 C, the mobility temperature dependences are consistent with the Munn and Siebrand slow-phonon hopping process in the b direction and the Munn and Siebrand slow-phonon coherent mode in the a and c prime directions. The drift mobility temperature dependences in crystals that have been cooled through the anomaly temperature in the presence of illumination and an electric field are consistent with the model of Spielberg et al. (1971), in which the hindered vibration of the 4,5 hydrogens introduces a new degree of freedom above 72 C.

  18. One-dimensional photonic crystal cavities in single-crystal diamond

    NASA Astrophysics Data System (ADS)

    Li, Luozhou; Schröder, Tim; Chen, Edward H.; Bakhru, Hassaram; Englund, Dirk

    2015-06-01

    The realization of efficient optical interfaces for nitrogen vacancy centers in diamond is an important problem in quantum science with potential applications in quantum communications and quantum information processing. We describe and demonstrate two techniques for fabricating one-dimensional photonic crystal cavities in single-crystal diamond, using (1) a combination of reactive ion etching and focused ion beam milling and (2) transferred silicon hard mask lithography with reactive ion etching. We use two kinds of one-dimensional photonic crystal cavity designs and discuss their optical performances. We find that transferred silicon mask lithography results in better optical properties than focused ion beam patterning techniques. The silicon masks also exhibit high oxygen plasma etching selectivity in excess of 36:1 (diamond:silicon). We use these masks to produce a variety of diamond photonic devices.

  19. Crystal growth and anisotropy of high temperature thermoelectric properties of yttrium borosilicide single crystals

    NASA Astrophysics Data System (ADS)

    Hossain, M. Anwar; Tanaka, Isao; Tanaka, Takaho; Khan, A. Ullah; Mori, Takao

    2016-01-01

    We studied thermoelectric properties of YB41Si1.3 single crystals grown by the floating zone method. The composition of the grown crystal was confirmed by electron probe micro-analysis. We have determined the growth direction for the first time for these borosilicides, and discovered relatively large anisotropy in electrical properties. We measured the electrical resistivity and Seebeck coefficient along [510] (the growth direction) and [052] directions and we found that this crystal exhibits strong electrical anisotropy with a maximum of more than 8 times. An interesting layered structural feature is revealed along [510] with dense boron cluster layers and yttrium layers, with conductivity enhanced along this direction. We obtained 3.6 times higher power factor along [510] compared to that along [052]. Although the ZT of the present system is low, anisotropy in the thermoelectric properties of a boride was reported for the first time, and can be a clue in developing other boride systems also.

  20. Crystal structures of carbonates up to Mbar pressures determined by single crystal synchrotron radiation diffraction

    NASA Astrophysics Data System (ADS)

    Merlini, M.

    2013-12-01

    The recent improvements at synchrotron beamlines, currently allow single crystal diffraction experiments at extreme pressures and temperatures [1,2] on very small single crystal domains. We successfully applied such technique to determine the crystal structure adopted by carbonates at mantle pressures. The knowledge of carbon-bearing phases is in fact fundamental for any quantitative modelling of global carbon cycle. The major technical difficulty arises after first order transitions or decomposition reactions, since original crystal (apx. 10x10x5 μm3) is transformed in much smaller crystalline domains often with random orientation. The use of 3D reciprocal space visualization software and the improved resolution of new generation flat panel detectors, however, allow both identification and integration of each single crystal domain, with suitable accuracy for ab-initio structure solution, performed with direct and charge-flipping methods and successive structure refinements. The results obtained on carbonates, indicate two major crystal-chemistry trends established at high pressures. The CO32- units, planar and parallel in ambient pressure calcite and dolomite structures, becomes non parallel in calcite- and dolomite-II and III phases, allowing more flexibility in the structures with possibility to accommodate strain arising from different cation sizes (Ca and Mg in particular). Dolomite-III is therefore also observed to be thermodynamically stable at lower mantle pressures and temperatures, differently from dolomite, which undergoes decomposition into pure end-members in upper mantle. At higher pressure, towards Mbar (lowermost mantle and D'' region) in agreement with theoretical calculations [3,4] and other experimental results [5], carbon coordination transform into 4-fold CO4 units, with different polymerisation in the structure depending on carbonate composition. The second important crystal chemistry feature detected is related to Fe2+ in Fe-bearing magnesite, which spontaneously oxidises at HP/HT, forming Fe3+ carbonates, Fe3+ oxides and reduced carbon (diamonds). Single crystal diffraction approach allowed full structure determination of these phases, yielding to the discovery of few unpredicted structures, such as Mg2Fe2C4O13 and Fe13O19, which can be well reproduced in different experiments. Mg2Fe2C4O13 carbonate present truncated chain C4O13 groups, and Fe13O19 oxide, whose stoichiometry is intermediate between magnetite and hematite, is a one-layer structure, with features encountered in superconducting materials. The results fully support the ideas of unexpected complexities in the mineralogy of the lowermost mantle, and single crystal technique, once properly optimized in ad-hoc synchrotron beamlines, is fundamental for extracting accurate structural information, otherwise rarely accessible with other experimental techniques. References: [1] Merlini M., Hanfland M. (2013). Single crystal diffraction at Mbar conditions by synchrotron radiation. High Pressure Research, in press. [2] Dubrovinsky et al., (2010). High Pressure Research, 30, 620-633. [3] Arapan et al. (1997). Phys. Rev. Lett., 98, 268501. [4] Oganov et al. (2008) EPSL, 273, 38-47. [5] Boulard et al. (2011) PNAS, 108, 5184-5187.

  1. Modeling the anisotropic shock response of single-crystal RDX

    NASA Astrophysics Data System (ADS)

    Luscher, Darby

    Explosives initiate under impacts whose energy, if distributed homogeneously throughout the material, translates to temperature increases that are insufficient to drive the rapid chemistry observed. Heterogeneous thermomechanical interactions at the meso-scale (i.e. between single-crystal and macroscale) leads to the formation of localized hot spots. Direct numerical simulations of mesoscale response can contribute to our understanding of hot spots if they include the relevant deformation mechanisms that are essential to the nonlinear thermomechanical response of explosive molecular crystals. We have developed a single-crystal model for the finite deformation thermomechanical response of cyclotrimethylene trinitramine (RDX). Because of the low symmetry of RDX, a complete description of nonlinear thermoelasticity requires a careful decomposition of free energy into components that represent the pressure-volume-temperature (PVT) response and the coupling between isochoric deformation and both deviatoric and hydrostatic stresses. An equation-of-state (EOS) based on Debye theory that defines the PVT response was constructed using experimental data and density functional theory calculations. This EOS replicates the equilibrium states of phase transformation from alpha to gamma polymorphs observed in static high-pressure experiments. Lattice thermoelastic parameters defining the coupled isochoric free energy were obtained from molecular dynamics calculations and previous experimental data. Anisotropic crystal plasticity is modeled using Orowan's expression relating slip rate to dislocation density and velocity. Details of the theory will be presented followed by discussion of simulations of flyer plate impact experiments, including recent experiments diagnosed with in situ X-ray diffraction at the Advanced Photon Source. Impact conditions explored within the experimental effort have spanned shock pressures ranging from 1-10 GPa for several crystallographic orientations. Simulation results will be used to motivate conclusions about the nature of dislocation-mediated plasticity in RDX, as well as, future directions to improve these models and quantitatively compare them to the average lattice response recorded with in situ X-ray diffraction.

  2. Display projector technology by way of single crystal faceplate technology

    NASA Astrophysics Data System (ADS)

    Tucker, A.; Kindl, H. J.

    1993-09-01

    Three single crystal faceplates were to be integrated into Cathode Ray Tube (CRT) envelopes with the intent of evaluating the light output from Ce:YAG (Green), modified Ce:GD, YAG (Orange), and CE:BEL (Blue). These CRT's were to be mounted in the projection test bed developed under Contract N61339-90-C-0047 and furnished G.F.P. to Trident International, Inc. for use and delivery during this contract. Three 3 inch diameter Ce:YAG faceplates were supplied as G.F.P. from the previous contract N61339-90-C-0047. One of these three was to be used for construction of a CRT, the remaining two were to be used for the coating test. During the processing of the CRT's, one of the crystals was destroyed. The other two single crystal faceplates were incorporated in test CRT's. An additional Ce:Gd, YAG (Red shifted green) faceplate of 1.5 inches diameter and two Ce:BEL (Blue) crystals of 0.75 inch diameter were obtained from Allied Signal, Inc, by Trident. Investigations were made to provide optimum optical coupling of the CRT light output into a projection lens. Index matching heat dissipation fluids were used. A wide angle lens was selected and supplied by the contractor. Filtering of the light output of the Ce:YAG, Ce:Gd, YAG and Ce:BEL faceplates was investigated for use in producing green, red, and blue light outputs suitable for a full color video projector.

  3. Single Crystal Structure Determination of Alumina to 1 Mbar

    NASA Astrophysics Data System (ADS)

    Dong, H.; Zhang, L.; Prakapenka, V.; Mao, H.

    2014-12-01

    Aluminum oxide (Al2O3) is an important ceramic material and a major oxide in the earth. Additionally, alumina is a widely used pressure standard in static high-pressure experiments (Cr3+-bearing corundum, ruby). The changes of its crystal structure with pressure (P) and temperature (T) are important for its applications and understanding its physical properties in the deep Earth. There have been numerous reports on the high P-T polymorphs of alumina. Previous theoretical calculations and experiments suggest that the crystal structure of Al2O3 evolves greatly at high P-T. In this study, we used the newly developed multigrain crystallography method combined with single-crystal x-ray diffraction analysis technique for the structure determination of alumina at high P-T to provide single-crystal structure refinement for high-pressure phases of Al2O3. Alumina powder was mixed with ~10% Pt and Ne was used as both pressure transmitting media and thermal insulating layers during laser-heating. Coarse-grained aggregates of Al2O3 were synthesized in a laser-heated diamond anvil cell. The structure change of Al2O3 was monitored by in situ x-ray diffraction at ~1 Mbar and 2700 K. The results allow us to distinguish the structural differences between the Rh2O3 (II) structure (space group Pbcn) and perovskite structure (space group Pbnm) for the first high-pressure phase of Al2O3. More detailed results will be discussed in the later work.

  4. Exploring the retention properties of CaF2 nanoparticles as possible additives for dental care application with tapping-mode atomic force microscope in liquid.

    PubMed

    Wasem, Matthias; Köser, Joachim; Hess, Sylvia; Gnecco, Enrico; Meyer, Ernst

    2014-01-13

    Amplitude-modulation atomic force microscopy (AM-AFM) is used to determine the retention properties of CaF2 nanoparticles adsorbed on mica and on tooth enamel in liquid. From the phase-lag of the forced cantilever oscillation the local energy dissipation at the detachment point of the nanoparticle was determined. This enabled us to compare different as-synthesized CaF2 nanoparticles that vary in shape, size and surface structure. CaF2 nanoparticles are candidates for additives in dental care products as they could serve as fluorine-releasing containers preventing caries during a cariogenic acid attack on the teeth. We show that the adherence of the nanoparticles is increased on the enamel substrate compared to mica, independently of the substrate roughness, morphology and size of the particles. PMID:24455460

  5. Exploring the retention properties of CaF2 nanoparticles as possible additives for dental care application with tapping-mode atomic force microscope in liquid

    PubMed Central

    Köser, Joachim; Hess, Sylvia; Gnecco, Enrico; Meyer, Ernst

    2014-01-01

    Summary Amplitude-modulation atomic force microscopy (AM-AFM) is used to determine the retention properties of CaF2 nanoparticles adsorbed on mica and on tooth enamel in liquid. From the phase-lag of the forced cantilever oscillation the local energy dissipation at the detachment point of the nanoparticle was determined. This enabled us to compare different as-synthesized CaF2 nanoparticles that vary in shape, size and surface structure. CaF2 nanoparticles are candidates for additives in dental care products as they could serve as fluorine-releasing containers preventing caries during a cariogenic acid attack on the teeth. We show that the adherence of the nanoparticles is increased on the enamel substrate compared to mica, independently of the substrate roughness, morphology and size of the particles. PMID:24455460

  6. Development of a thermal stress analysis system for anisotropic single crystal growth

    NASA Astrophysics Data System (ADS)

    Miyazaki, N.

    2002-03-01

    We developed a thermal stress analysis system for anisotropic single crystal growth. The analysis system takes account of crystal anisotropy in elastic constants and thermal expansion coefficients and can deal with the thermal stress analyses of five kinds of single crystals, that is, cubic crystal, trigonal crystal, monoclinic crystal, tetragonal crystal and orthorhombic crystal. After calculating thermal stress, we can obtain several stress components for evaluation of macro-cracking and crystal quality such as the maximum principal stress, the Mises equivalent stress and stress components acting on the cleavage plane. This analysis system is combined with a pre- and post-processor code MSC/PATRAN to prepare the input data and to visualize the results. As a numerical example obtained from the present system, the results of thermal stress analyses are shown for a lead molybdate (PMO; PbMoO 4) bulk single crystal that belongs to the tetragonal crystal lattice.

  7. Field emission properties of single crystal chromium disilicide nanowires

    SciTech Connect

    Valentin, L. A.; Carpena-Nunez, J.; Yang, D.; Fonseca, L. F.

    2013-01-07

    The composition, crystal structure, and field emission properties of high-crystallinity chromium disilicide (CrSi{sub 2}) nanowires synthesized by a vapor deposition method have been studied. High resolution transmission electron microscopy, energy dispersive spectroscopy, and selected area electron diffraction studies confirm the single-crystalline structure and composition of the CrSi{sub 2} nanowires. Field emission measurements show that an emission current density of 0.1 {mu}A/cm{sup 2} was obtained at a turn-on electric field intensity of 2.80 V/{mu}m. The maximum emission current measured was 1.86 mA/cm{sup 2} at 3.6 V/{mu}m. The relation between the emission current density and the electric field obtained follows the Fowler-Nordheim equation, with an enhancement coefficient of 1140. The electrical conductivity of single nanowires was measured by using four-point-probe specialized microdevices at different temperatures, and the calculated values are close to those reported in previous studies for highly conductive single crystal bulk CrSi{sub 2}. The thermal tolerance of the nanowires was studied up to a temperature of 1100 Degree-Sign C. The stability of the field emission current, the I-E values, their thermal tolerance, and high electrical conductivity make CrSi{sub 2} nanowires a promising material for field emission applications.

  8. Crystal Structure of the Product of Mg 2+Insertion into V 2O 5Single Crystals

    NASA Astrophysics Data System (ADS)

    Shklover, V.; Haibach, T.; Ried, F.; Nesper, R.; Novák, P.

    1996-05-01

    Chemical (by interaction with a dibutylmagnesium solution) and electrochemical (in acetonitrile solution of magnesium perchlorate) insertion of Mg 2+into the single crystals of V 2O 5was performed. The morphology change of V 2O 5crystals as a result of the Mg 2+insertion was studied by scanning electron microscopy. The wavelength dispersive electron probe microanalysis clearly showed the presence of Mg (at least) at the surface of intercalated V 2O 5. Based on the single crystal X-ray diffraction study of intercalated V 2O 5(orthorhombic, Pmn2 1, a= 11.544(6), b= 4.383(3), c= 3.574(2) Å, Z= 4) the location of a small amount of Mg (˜1%) in the bulk V 2O 5may be suggested, with [6 + 4] oxygen atoms surrounding Mg. The resulting Mg-O separations essentially exceed the accepted values for the Mg-O distances in crystals with hexacoordinated Mg atoms, which may be correlated with the structural and electrochemical properties of Mg 2+-inserted V 2O 5.

  9. Shock response of He bubbles in single crystal Cu

    SciTech Connect

    Li, B.; Wang, L.; E, J. C.; Luo, S. N.; Ma, H. H.

    2014-12-07

    With large-scale molecular dynamics simulations, we investigate shock response of He nanobubbles in single crystal Cu. For sufficient bubble size or internal pressure, a prismatic dislocation loop may form around a bubble in unshocked Cu. The internal He pressure helps to stabilize the bubble against plastic deformation. However, the prismatic dislocation loops may partially heal but facilitate nucleation of new shear and prismatic dislocation loops. For strong shocks, the internal pressure also impedes internal jetting, while a bubble assists local melting; a high speed jet breaks a He bubble into pieces dispersed among Cu. Near-surface He bubbles may burst and form high velocity ejecta containing atoms and small fragments, while the ejecta velocities do not follow the three-dimensional Maxwell-Boltzmann distributions expected for thermal equilibrium. The biggest fragment size deceases with increasing shock strength. With a decrease in ligament thickness or an increase in He bubble size, the critical shock strength required for bubble bursting decreases, while the velocity range, space extension and average velocity component along the shock direction, increase. Small bubbles are more efficient in mass ejecting. Compared to voids and perfect single crystal Cu, He bubbles have pronounced effects on shock response including bubble/void collapse, Hugoniot elastic limit (HEL), deformation mechanisms, and surface jetting. HEL is the highest for perfect single crystal Cu with the same orientations, followed by He bubbles without pre-existing prismatic dislocation loops, and then voids. Complete void collapse and shear dislocations occur for embedded voids, as opposed to partial collapse, and shear and possibly prismatic dislocations for He bubbles. He bubbles lower the threshhold shock strength for ejecta formation, and increase ejecta velocity and ejected mass.

  10. Analysis of synthetic diamond single crystals by X-ray topography and double-crystal diffractometry

    SciTech Connect

    Prokhorov, I. A.; Ralchenko, V. G.; Bolshakov, A. P.; Polskiy, A. V.; Vlasov, A. V.; Subbotin, I. A.; Podurets, K. M.; Pashaev, E. M.; Sozontov, E. A.

    2013-12-15

    Structural features of diamond single crystals synthesized under high pressure and homoepitaxial films grown by chemical vapor deposition (CVD) have been analyzed by double-crystal X-ray diffractometry and topography. The conditions of a diffraction analysis of diamond crystals using Ge monochromators have been optimized. The main structural defects (dislocations, stacking faults, growth striations, second-phase inclusions, etc.) formed during crystal growth have been revealed. The nitrogen concentration in high-pressure/high-temperature (HPHT) diamond substrates is estimated based on X-ray diffraction data. The formation of dislocation bundles at the film-substrate interface in the epitaxial structures has been revealed by plane-wave topography; these dislocations are likely due to the relaxation of elastic macroscopic stresses caused by the lattice mismatch between the substrate and film. The critical thicknesses of plastic relaxation onset in CVD diamond films are calculated. The experimental techniques for studying the real diamond structure in optimizing crystal-growth technology are proven to be highly efficient.

  11. Titanium vacancies in nonstoichiometric TiO2 single crystal

    NASA Astrophysics Data System (ADS)

    Nowotny, M. K.; Bak, T.; Nowotny, J.; Sorrell, C. C.

    2005-09-01

    The semiconducting properties of single-crystal TiO2 and their changes during prolonged oxidation at elevated temperatures and under controlled oxygen activity were monitored using measurements of electrical conductivity and thermo-electric power. Two kinetic regimes were revealed: Regime I - rapid oxidation, associated with the transport of oxygen vacancies, and Regime II - prolonged oxidation, which corresponds to the transport of titanium vacancies. The present data represent the first documented evidence for the formation and transport of titanium vacancies in TiO2. This finding allows the processing of p-type TiO2 without the incorporation of aliovalent foreign ions.

  12. Lasing characteristics of Ho:YAG single crystal fiber.

    PubMed

    Li, Yuan; Miller, Keith; Johnson, Eric G; Nie, Craig D; Bera, Subhabrata; Harrington, James A; Shori, Ramesh

    2016-05-01

    Lasing was demonstrated for the first time at 2.09 μm in 0.5% Holmium (Ho) doped YAG single crystal fiber (SCF) fabricated using the Laser Heated Pedestal Growth (LHPG) method. Output power of 23.5 W with 67.5% optical-to-optical slope efficiency is, to the best of our knowledge, the highest output power achieved at 2 µm from a SCF fabricated using LHPG. With continued improvement in the quality of the SCF and better thermal management, output power of few 100s W and higher, especially in the 2 µm spectral region, is realizable in the very near future. PMID:27137589

  13. Onset of bulk pinning in BSCCO single crystals

    SciTech Connect

    Beek, C.J. van der |; Indenbom, M.V.; Berseth, V.; Benoit, W.; Li, T.W. |

    1996-12-01

    The long growth defects often found in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} single crystals effectively weaken the geometrical barrier and lower the field of first flux penetration. This means that the intrinsic (bulk) magnetic properties can be more easily accessed using magnetic measurements. Thus, the onset of strong bulk flux pinning in the sample bulk is determined to lie at T {approximately} 40 K, independent of whether the field strength is above or below the field of the second peak in the magnetization.

  14. EPR studies of gamma-irradiated taurine single crystals

    NASA Astrophysics Data System (ADS)

    Bulut, A.; Karabulut, B.; Tapramaz, R.; Köksal, F.

    2000-04-01

    An EPR study of gamma-irradiated taurine [C 2H 7NO 3S] single crystal was carried out at room temperature. The EPR spectra were recorded in the three at mutually perpendicular planes. There are two magnetically distinct sites in monoclinic lattice. The principle values of g and hyperfine constants for both sites were calculated. The results have indicated the presence of 32ṠO -2 and 33ṠO -2 radicals. The hyperfine values of 33ṠO -2 radical were used to obtain O-S-O bond angle for both sites.

  15. Acoustic and thermal properties of strontium pyroniobate single crystals

    NASA Astrophysics Data System (ADS)

    Shabbir, G.; Kojima, S.

    2003-04-01

    High resolution Brillouin scattering and modulated differential scanning calorimetry (MDSC) experiments were performed to study the acoustic and thermal properties of strontium pyroniobate (Sr2Nb2O7) single crystals. The anomalous temperature dependence of the longitudinal acoustic phonon mode frequency corresponding to c22 elastic stiffness coefficient was observed in the neighbourhood of the normal-incommensurate phase transition temperature Ti (491 K). The specific heat measured by MDSC showed an anomaly around 487+/-2 K. The changes in enthalpy and entropy of the phase transition were estimated as 147 J mol-1 and 0.71 J mol-1 K-1, respectively.

  16. Physical properties of stoichiometric CeN single crystals

    NASA Astrophysics Data System (ADS)

    Wachter, P.; Zhigadlo, N. D.

    The preparation and definition of stoichiometric large (3-5 mm edge length) single crystals of CeN are described. The band structure is discussed and compared with X-ray-photoemission-spectra (XPS), Bremsstrahlen-isochromat-spectroscopy (BIS) and optical reflectivity. CeN is intermediate valent with partially occupied and empty 4f states near EF. The specific heat is measured until 0.3 K and the γ term exhibits a sharp upturn toward the lowest temperatures. The Debye temperature is evaluated. The magnetic susceptibility is a large Pauli term pointing to a high density of states at EF as expected for a fractionally filled 4f1 state.

  17. Raman Investigations of Rare Earth Arsenate Single Crystals

    SciTech Connect

    Barros, G; Santos, C. C.; Ayala, A. P.; Guedes, I.; Boatner, Lynn A; Loong, C. K.

    2010-01-01

    Polarized Raman Spectroscopy was used to investigate the room-temperature phonon characteristics of a series of rare-earth arsenate (REAsO4, RE = Sm, Eu, Gd, Tb, Dy, Ho, Tm, Yb, and Lu) single crystals. The Raman data were interpreted in a systematic manner based on the known tetragonal zircon structure of these compounds, and assignments and correlations were made for the observed bands. We found that the wavenumber of the internal modes of the AsO4 tetrahedron increased with increasing atomic number, and for three out of four lattice wavenumbers observed, this tendency was not nearly so marked as in the case of the internal mode wavenumber.

  18. Nonlinear microwave switching response of BSCCO single crystals

    SciTech Connect

    Jacobs, T.; Sridhar, S.; Willemsen, B.A. |; Li, Qiang; Gu, G.D.; Koshizuka, N.

    1996-06-01

    Measurements of the surface impedance in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} single crystal with microwave currents flowing along the {cflx c} axis show clear evidence of a step-like nonlinearity. The surface resistance switches between apparently quantized levels for microwave field strength changes < 1 mG. This nonlinear response can arise from the presence of intrinsic Josephson junctions along the {cflx c} axis of these samples driven by the microwave current.

  19. Type-I superconductivity in KBi2 single crystals.

    PubMed

    Sun, Shanshan; Liu, Kai; Lei, Hechang

    2016-03-01

    We report on the detailed transport, magnetic, thermodynamic properties and theoretical calculation of KBi2 single crystals in superconducting and normal states. KBi2 exhibits metallic behavior at a normal state and enters the superconducting state below [Formula: see text] K. Moreover, KBi2 exhibits low critical fields in all measurements, field-induced crossover from second- to first-order phase transition in specific heat measurements, the typical magnetization isotherms of type-I superconductors, and a small Ginzburg-Landau parameter [Formula: see text]. These results clearly indicate that KBi2 is a type-I superconductor with a thermodynamic critical field [Formula: see text] Oe. PMID:26836956

  20. Fabrication and characterization of patterned single-crystal silicon nanolines.

    PubMed

    Li, Bin; Kang, Min K; Lu, Kuan; Huang, Rui; Ho, Paul S; Allen, Richard A; Cresswell, Michael W

    2008-01-01

    This letter demonstrates a method for fabricating single-crystal Si nanolines, with rectangular cross sections and nearly atomically flat sidewalls. The high quality of these nanolines leads to superb mechanical properties, with the strain to fracture measured by nanoindentation tests exceeding 8.5% for lines of 74 nm width. A large displacement burst before fracture was observed, which is attributed to a buckling mechanism. Numerical simulations show that the critical load for buckling depends on the friction at the contact surface. PMID:18062713

  1. Polarization-dependent exciton dynamics in tetracene single crystals

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Zhang, Chunfeng; Xu, Yanqing; Wang, Rui; He, Bin; Liu, Yunlong; Zhang, Shimeng; Wang, Xiaoyong; Xiao, Min

    2014-12-01

    We conduct polarization-dependent ultrafast spectroscopy to study the dynamics of singlet fission (SF) in tetracene single crystals. The spectrotemporal species for singlet and triplet excitons in transient absorption spectra are found to be strongly dependent on probe polarization. By carefully analyzing the polarization dependence, the signals contributed by different transitions related to singlet excitons have been disentangled, which is further applied to construct the correlation between dynamics of singlet and triplet excitons. The anisotropy of exciton dynamics provides an alternative approach to tackle the long-standing challenge in understanding the mechanism of singlet fission in organic semiconductors.

  2. Polarization-dependent exciton dynamics in tetracene single crystals

    SciTech Connect

    Zhang, Bo; Zhang, Chunfeng Xu, Yanqing; Wang, Rui; He, Bin; Liu, Yunlong; Zhang, Shimeng; Wang, Xiaoyong; Xiao, Min

    2014-12-28

    We conduct polarization-dependent ultrafast spectroscopy to study the dynamics of singlet fission (SF) in tetracene single crystals. The spectrotemporal species for singlet and triplet excitons in transient absorption spectra are found to be strongly dependent on probe polarization. By carefully analyzing the polarization dependence, the signals contributed by different transitions related to singlet excitons have been disentangled, which is further applied to construct the correlation between dynamics of singlet and triplet excitons. The anisotropy of exciton dynamics provides an alternative approach to tackle the long-standing challenge in understanding the mechanism of singlet fission in organic semiconductors.

  3. Polarization-dependent exciton dynamics in tetracene single crystals.

    PubMed

    Zhang, Bo; Zhang, Chunfeng; Xu, Yanqing; Wang, Rui; He, Bin; Liu, Yunlong; Zhang, Shimeng; Wang, Xiaoyong; Xiao, Min

    2014-12-28

    We conduct polarization-dependent ultrafast spectroscopy to study the dynamics of singlet fission (SF) in tetracene single crystals. The spectrotemporal species for singlet and triplet excitons in transient absorption spectra are found to be strongly dependent on probe polarization. By carefully analyzing the polarization dependence, the signals contributed by different transitions related to singlet excitons have been disentangled, which is further applied to construct the correlation between dynamics of singlet and triplet excitons. The anisotropy of exciton dynamics provides an alternative approach to tackle the long-standing challenge in understanding the mechanism of singlet fission in organic semiconductors. PMID:25554147

  4. Single Molecule Studies on Dynamics in Liquid Crystals

    PubMed Central

    Täuber, Daniela; von Borczyskowski, Christian

    2013-01-01

    Single molecule (SM) methods are able to resolve structure related dynamics of guest molecules in liquid crystals (LC). Highly diluted small dye molecules on the one hand explore structure formation and LC dynamics, on the other hand they report about a distortion caused by the guest molecules. The anisotropic structure of LC materials is used to retrieve specific conformation related properties of larger guest molecules like conjugated polymers. This in particular sheds light on organization mechanisms within biological cells, where large molecules are found in nematic LC surroundings. This review gives a short overview related to the application of highly sensitive SM detection schemes in LC. PMID:24077123

  5. Carrier doping and interlayer coupling in HTSC single crystals

    SciTech Connect

    Kishio, K.; Shimoyama, J.; Kimura, T.; Kotaka, Y.; Kitazawa, K.; Yamafuji, K.; Li, Q.; Suenaga, M.

    1994-09-01

    Experimental results of the effect of carrier doping on the irreversibility lines in (La,Sr){sub 2}CuO{sub 4{minus}{delta}} and Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8 + {delta}} single crystals are summarized. As a function of Sr or oxygen contents, systematic and dramatic widening of the irreversible regions in the B {minus} T phase diagram was observed in both systems. The present study suggests the critical importance of carrier concentration which directly affects the interlayer coupling strength and dimensionality of the flux line lattice in all the layered HTSC compounds as a universal feature.

  6. Mechanical properties of ZnSe : Cr2+ single crystals

    NASA Astrophysics Data System (ADS)

    Fedorenko, O. A.; Zagoruiko, Yu. A.; Kovalenko, N. O.

    2012-11-01

    The microhardness of single-crystal samples of ZnSe: Cr2+ with a chromium concentration in the range from 3.3 × 1017 to 4.0 × 1019 cm-3 has been studied. The microhardness as a function of the load on the indenter on the faces (111), (1bar 10), and (001) of the ZnSe: Cr2+ and ZnSe samples has been measured. It has been established that doping of zinc selenide with chromium leads to a decrease in the anisotropy of the mechanical properties and stabilization of the cubic sphalerite structure.

  7. Depressurization amorphization of single-crystal boron carbide.

    PubMed

    Yan, X Q; Tang, Z; Zhang, L; Guo, J J; Jin, C Q; Zhang, Y; Goto, T; McCauley, J W; Chen, M W

    2009-02-20

    We report depressurization amorphization of single-crystal boron carbide (B4C) investigated by in situ high-pressure Raman spectroscopy. It was found that localized amorphization of B4C takes place during unloading from high pressures, and nonhydrostatic stresses play a critical role in the high-pressure phase transition. First-principles molecular dynamics simulations reveal that the depressurization amorphization results from pressure-induced irreversible bending of C-B-C atomic chains cross-linking 12 atom icosahedra at the rhombohedral vertices. PMID:19257688

  8. Annealing of deformed olivine single-crystals under 'dry' conditions

    NASA Astrophysics Data System (ADS)

    Blaha, Stephan; Katsura, Tomoo

    2013-04-01

    Knowledge of rheological properties of Earth's materials is essential to understand geological processes. Open questions are the water content and crystallographic orientation dependences of dislocation creep rate, because the dominant slip system changes with increasing water content, which suggest different dislocations have different water content dependence. This project focuses on olivine, which is the most abundant mineral of the upper mantle. It is also considered to be the weakest phase and hence should control the rheology of the upper mantle. Several slip systems were reported for olivine, which are [100](010), [001](010), [001](100) and [100](001), each of which appear under different water content and stress conditions [1]. For this purpose we started to obtain data for 'dry' conditions, providing basic knowledge to understand the effect of water. Variation in dislocation creep rate according to change in physical conditions can be estimated by dislocation recovery experiments [2]. In this technique, deformed crystals are annealed, in which the dislocation density is expected to decrease due to coalescence of two dislocations. Dislocation densities are measured before and after the annealing. Dislocation mobility, which should be directly proportional to the dislocation creep rate, is estimated based on the change in dislocation density and duration of annealing. This technique has significant advantages partly because informations of strain rate and deviatoric stress, which are difficult to measure, are unnecessary, and partly because dislocation annealing is conducted under quasi-hydrostatic conditions, which allows wide ranges of P and T conditions. The first step of the experiments is to deform a single crystal of olivine. For this purpose, we developed an assembly, which deforms a single crystal in simple-shear geometry and prevent breakage, sub-grain formation and recrystallization of the crystal. Olivine single-crystals were placed in the high-pressure assembly so that a particular slip system is activated. The assemblies were compressed to 3 GPa. The shear deformation was conducted at 1600 K. EBSD measurements indicate that the recovered crystals are single crystals and sub-grain formation did not occur in most cases. The second step is to anneal the samples under the same P-T conditions as those of the deformation experiments. Annealing experiments are also performed at ambient pressures at 1600 K. Dislocation density was measured by means of the oxidation decoration technique [3]. The samples were firstly polished and then oxidized at 1200 K for 50 min. The dislocations are preferably oxidized, so that presence of dislocation can be observed using SEM. First Results indicate that the dislocation density decreased by annealing by 1/4 with an annealing period of 10 h for dislocations with b = [001]. References [1] H. Jung and S. I. Karato. Water-induced fabric transitions in olivine. Science, 293(5534):1460-1463, 2001. [2] S. I. Karato, D. C. Rubie, and H. Yan. Dislocation recovery in olivine under deep upper mantle conditions: Implications for creep and diffusion. Journal of Geophysical Research, 98(B6):9761-9768, 1993. [3] D. L. Kohlstedt, C. Goetze, W. B. Durham, and J. V. Sande. New technique for decorating dislocations in olivine. Science, 191(4231):1045-1046, March 1976.

  9. Experiment MA-028 crystal growth. [low gravity manufacturing of single crystals from Apollo/Soyuz Test Project

    NASA Technical Reports Server (NTRS)

    Lind, D. M.

    1976-01-01

    A crystal growth experiment is reported on orbital space flights. The experiment was performed during the Apollo-Soyuz Test Project. The Crystal Growth Experiment assessed a novel process for growing single crystals of insoluble substances by allowing two or more reactant solutions to diffuse toward each other through a region of pure solvent in zero gravity. The experiment was entirely successful and yielded crystals of about the expected size, quality, and number.

  10. Elasticity and piezoelectricity of zinc oxide crystals, single layers, and possible single-walled nanotubes

    NASA Astrophysics Data System (ADS)

    Tu, Z. C.; Hu, X.

    2006-07-01

    The elasticity and piezoelectricity of zinc oxide (ZnO) crystals and single layers are investigated from the first-principles calculations. It is found that a ZnO thin film less than three Zn-O layers prefers a planar graphitelike structure to the wurtzite structure. ZnO single layers are much more flexible than graphite single layers in the elasticity and stronger than boron nitride single layers in the piezoelectricity. Single-walled ZnO nanotubes (SWZONTs) can exist in principle because of their negative binding energy. The piezoelectricity of SWZONTs depends on their chirality. For most ZnO nanotubes except the zigzag type, twists around the tube axis will induce axial polarizations. A possible scheme is proposed to achieve the SWZONTs from the solid-vapor phase process with carbon nanotubes as templates.

  11. Experimental deformation of olivine single crystals at lithospheric temperatures

    NASA Astrophysics Data System (ADS)

    Demouchy, Sylvie; Schneider, Stephen E.; Mackwell, Stephen J.; Zimmerman, Mark E.; Kohlstedt, David L.

    2009-02-01

    Rheological properties of mantle minerals and rocks at temperatures (T) appropriate to much of Earth's lithosphere have remained poorly constrained, even though past experimental studies on olivine single crystals and polycrystalline aggregates have quantified the high-temperature creep mechanisms (T > 1200°C). Consequently, we have performed deformation experiments on crystals of San Carlos olivine at lower temperatures, from 900° to 1200°C, in triaxial compression along the [101]c direction. The experiments were carried out at a confining pressure of 300 MPa in a high-resolution gas-medium mechanical testing apparatus at differential stresses of 100 to 500 MPa. Several samples were deformed at constant displacement rate and others at constant load, in order to provide insight into possible effects of work-hardening. Under the deformation conditions investigated, little evidence of work-hardening was observed. The data follow a power-law dependence on stress, as in previous high-temperature deformation studies. The samples were, however, considerably weaker than predicted by the experimentally determined high-temperature constitutive equation for olivine crystals of this orientation from the study of Bai et al. (1991). The mechanical behavior correlates instead with the weaker of the two mechanisms (flow laws) that contribute to the high-temperature constitutive equation. Thus, our experiments demonstrate that published high-temperature constitutive equations overestimate the strength of lithospheric mantle and that the transition to low-temperature creep occurs at lower temperatures than previously inferred.

  12. Synthesis of mesoporous zeolite single crystals with cheap porogens

    NASA Astrophysics Data System (ADS)

    Tao, Haixiang; Li, Changlin; Ren, Jiawen; Wang, Yanqin; Lu, Guanzhong

    2011-07-01

    Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals have been successfully synthesized by adding soluble starch or sodium carboxymethyl cellulose (CMC) to a conventional zeolite synthesis system. The obtained samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen sorption analysis, 27Al magic angle spinning nuclear magnetic resonance ( 27Al MAS NMR), temperature-programmed desorption of ammonia (NH 3-TPD) and ultraviolet-visible spectroscopy (UV-vis). The SEM images clearly show that all zeolite crystals possess the similar morphology with particle size of about 300 nm, the TEM images reveal that irregular intracrystal pores are randomly distributed in the whole crystal. 27Al MAS NMR spectra indicate that nearly all of the Al atoms are in tetrahedral co-ordination in ZSM-5, UV-vis spectra confirm that nearly all of titanium atoms are incorporated into the framework of TS-1. The catalytic activity of meso-ZSM-5 in acetalization of cyclohexanone and meso-TS-1 in hydroxylation of phenol was also studied. The synthesis method reported in this paper is cost-effective and environmental friendly, can be easily expended to prepare other hierarchical structured zeolites.

  13. Heat capacity study of ?-FeSi2 single crystals

    NASA Astrophysics Data System (ADS)

    Alam, Sher; Nagai, T.; Matsui, Y.

    2006-05-01

    Heat capacity of needle-like (length = 5 mm, diameter = 1 mm) ?-FeS2 single crystal grown by chemical vapor transport has been measured. Two anomalies are found; a broad deviation centered around 160 K and a clear deviation at a temperature of (approximately) 255 K. We have attempted to relate these to the anomalies previously reported in the case of the resistivity data. The transient thermoelectric effect (TTE) results lead us to the inference that the system under-goes a transition from a single carrier system to at least a two carrier system at 220 K. Our heat capacity results seem to provide further independent evidence for this transition in this system.

  14. Dual-band infrared single-layer metallodielectric photonic crystals

    NASA Astrophysics Data System (ADS)

    Drupp, Robert P.; Bossard, Jeremy A.; Ye, Yong-Hong; Werner, Douglas H.; Mayer, Theresa S.

    2004-09-01

    Metallodielectric photonic crystals (MDPCs) consisting of periodic arrays of self-similar two-stage fractal patch metallic elements patterned on thin dielectric substrates are shown to exhibit excellent mid- and far-infrared dual-band response in a single layer structure. This was achieved by optimizing the element size and interelement spacing of cross-dipole and square-patch fractal elements using full-wave periodic method of moments modeling techniques that calculate electromagnetic scattering from the MDPC surface and are able to account for material loss and loading effects. All structures fabricated based on these designs had two measured stopbands with greater than 10dB attenuation positioned at wavelengths determined by element geometry and size as well as interelement spacing. This simple single layer fractal MDPC geometry will facilitate further scaling into the near-IR wavelength regime.

  15. Structural, optical, mechanical and dielectric studies of pure and doped L-Prolinium Trichloroacetate single crystals

    NASA Astrophysics Data System (ADS)

    Renuka, N.; Ramesh Babu, R.; Vijayan, N.; Vasanthakumar, Geetha; Krishna, Anuj; Ramamurthi, K.

    2015-02-01

    In the present work, pure and metal substituted L-Prolinium trichloroacetate (LPTCA) single crystals were grown by slow evaporation method. The grown crystals were subjected to single crystal X-ray diffraction (XRD), powder X-ray diffraction, FTIR, UV-Visible-NIR, hardness, photoluminescence and dielectric studies. The dopant concentration in the crystals was measured by inductively coupled plasma (ICP) analysis. Single crystal X-ray diffraction studies of the pure and metal substituted LPTCA revealed that the grown crystals belong to the trigonal system. Ni2+ and Co2+ doping slightly altered the lattice parameters of LPTCA without affecting the basic structure of the crystal. FTIR spectral analysis confirms the presence of various functional groups in the grown crystals. The mechanical behavior of pure and doped crystals was analyzed by Vickers's microhardness test. The optical transmittance, dielectric and photoluminescence properties of the pure and doped crystals were analyzed.

  16. Growth and properties of Lithium Salicylate single crystals

    SciTech Connect

    Zaitseva, N; Newby, J; Hull, G; Saw, C; Carman, L; Cherepy, N; Payne, S

    2009-02-13

    An attractive feature of {sup 6}Li containing fluorescence materials that determines their potential application in radiation detection is the capture reaction with slow ({approx}< 100 keV) neutrons: {sup 6}Li + n = {sup 4}He + {sup 3}H + 4.8MeV. The use of {sup 6}Li-salicylate (LiSal, LiC{sub 6}H{sub 5}O{sub 3}) for thermal neutron detection was previously studied in liquid and polycrystalline scintillators. The studies showed that both liquid and polycrystalline LiSal scintillators could be utilized in pulse shape discrimination (PSD) techniques that enable separation of neutrons from the background gamma radiation. However, it was found that the efficiency of neutron detection using LiSal in liquid solutions was severely limited by its low solubility in commonly used organic solvents like, for example, toluene or xylene. Better results were obtained with neutron detectors containing the compound in its crystalline form, such as pressed pellets, or microscopic-scale (7-14 micron) crystals dispersed in various media. The expectation drown from these studies was that further improvement of pulse height, PSD, and efficiency characteristics could be reached with larger and more transparent LiSal crystals, growth of which has not been reported so far. In this paper, we present the first results on growth and characterization of relatively large, a cm-scale size, single crystals of LiSal with good optical quality. The crystals were grown both from aqueous and anhydrous (methanol) media, mainly for neutron detection studies. However, the results on growth and structural characterization may be interesting for other fields where LiSal, together with other alkali metal salicylates, is used for biological, medical, and chemical (as catalyst) applications.

  17. Anisotropic properties of RFe_2Ge2 single crystals

    NASA Astrophysics Data System (ADS)

    Avila, M. A.; Bud'Ko, S. L.; Canfield, P. C.

    2003-03-01

    We have grown RFe_2Ge2 single crystals for R = Y and ten members of the lanthanide series (Pr, Nd, Sm, Gd-Tm, Lu) using Sn flux as the solvent. The method yields clean, high quality crystal plates as evidenced by residual resistivities and RRR values in the range of 3-12 μΩ cm and 20-70 respectively. The crystals are also virtually free of magnetic impurities or secondary phases, allowing the study of the intrinsic anisotropic magnetic behavior of each compound. Characterization was made with X-Ray diffraction, temperature and field dependent magnetization, specific heat and resistivity. Strong anisotropies arising mostly from CEF effects were observed for all magnetic rare earths except Gd. Anti-ferromagnetic ordering occurred at temperatures between 16.5 K (Nd) and 1.25 K (Ho) and for some members there are further well-defined metamagnetic transitions. The calculated effective moments per rare earth atom tend to be larger than the expected values at high temperatures while smaller at low temperatures, probably indicating temperature-dependent contributions of d-band electrons to the magnetic behavior. We acknowledge the help of R. A. Ribeiro and C. Petrovic in the X-Ray diffraction measurements, and K. Myers in the early development and characterization of the crystals. Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No. W-7405-Eng-82. This work was supported by the Director for Energy Research, Office of Basic Energy Sciences.

  18. Process for Making Single-Domain Magnetite Crystals

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, Douglas W.; Morris, Richard V.; Lofgren, Gary E.; McKay, Gordan A.; Schwandt, Craig S.; Lauer, Howard V., Jr.; Socki, Richard A.

    2004-01-01

    A process for making chemically pure, single-domain magnetite crystals substantially free of structural defects has been invented as a byproduct of research into the origin of globules in a meteorite found in Antarctica and believed to have originated on Mars. The globules in the meteorite comprise layers of mixed (Mg, Fe, and Ca) carbonates, magnetite, and iron sulfides. Since the discovery of the meteorite was announced in August 1996, scientists have debated whether the globules are of biological origin or were formed from inorganic materials by processes that could have taken place on Mars. While the research that led to the present invention has not provided a definitive conclusion concerning the origin of the globules, it has shown that globules of a different but related chemically layered structure can be grown from inorganic ingredients in a multistep precipitation process. As described in more detail below, the present invention comprises the multistep precipitation process plus a subsequent heat treatment. The multistep precipitation process was demonstrated in a laboratory experiment on the growth of submicron ankerite crystals, overgrown by submicron siderite and pyrite crystals, overgrown by submicron magnesite crystals, overgrown by submicron siderite and pyrite. In each step, chloride salts of appropriate cations (Ca, Fe, and Mg) were dissolved in deoxygenated, CO2- saturated water. NaHCO3 was added as a pH buffer while CO2 was passed continuously through the solution. A 15-mL aliquot of the resulting solution was transferred into each of several 20 mL, poly(tetrafluoroethylene)-lined hydrothermal pressure vessels. The vessels were closed in a CO2 atmosphere, then transferred into an oven at a temperature of 150 C. After a predetermined time, the hydrothermal vessels were removed from the oven and quenched in a freezer. Supernatant solutions were decanted, and carbonate precipitates were washed free of soluble salts by repeated decantations with deionized water.

  19. Tribological properties of sintered polycrystalline and single crystal silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Srinivasan, M.

    1982-01-01

    Tribological studies and X-ray photoelectron spectroscopy analyses were conducted with sintered polycrystalline and single crystal silicon carbide surfaces in sliding contact with iron at various temperatures to 1500 C in a vacuum of 30 nPa. The results indicate that there is a significant temperature influence on both the friction properties and the surface chemistry of silicon carbide. The main contaminants on the as received sintered polycrystalline silicon carbide surfaces are adsorbed carbon, oxygen, graphite, and silicon dioxide. The surface revealed a low coefficient of friction. This is due to the presence of the graphite on the surface. At temperatures of 400 to 600 C graphite and copious amount of silicon dioxide were observed on the polycrystalline silicon carbide surface in addition to silicon carbide. At 800 C, the amount of the silicon dioxide decreased rapidly and the silicon carbide type silicon and carbon peaks were at a maximum intensity in the XPS spectra. The coefficients of friction were high in the temperature range 400 to 800 C. Small amounts of carbon and oxygen contaminants were observed on the as received single crystal silicon carbide surface below 250 C. Silicon carbide type silicon and carbon peaks were seen on the silicon carbide in addition to very small amount of graphite and silicon dioxide at temperatures of 450 to 800 C.

  20. Joint Development of a Fourth Generation Single Crystal Superalloy

    NASA Technical Reports Server (NTRS)

    Walston, S.; Cetel, A.; MacKay, R.; OHara, K.; Duhl, D.; Dreshfield, R.

    2004-01-01

    A new, fourth generation, single crystal superalloy has been jointly developed by GE Aircraft Engines, Pratt & Whitney, and NASA. The focus of the effort was to develop a turbine airfoil alloy with long-term durability for use in the High Speed Civil Transport. In order to achieve adequate long-time strength improvements at moderate temperatures and retain good microstructural stability, it was necessary to make significant composition changes from 2nd and 3rd generation single crystal superalloys. These included lower chromium levels, higher cobalt and rhenium levels and the inclusion of a new alloying element, ruthenium. It was found that higher Co levels were beneficial to reducing both TCP precipitation and SRZ formation. Ruthenium caused the refractory elements to partition more strongly to the ' phase, which resulted in better overall alloy stability. The final alloy, EPM 102, had significant creep rupture and fatigue improvements over the baseline production alloys and had acceptable microstructural stability. The alloy is currently being engine tested and evaluated for advanced engine applications.

  1. High yield, single crystal ice via the Bridgman method

    NASA Astrophysics Data System (ADS)

    Bisson, Patrick; Groenzin, Henning; Barnett, Irene Li; Shultz, Mary Jane

    2016-03-01

    The surface chemistry of ice and of water is an important topic of study, especially given the role of ice and water in shaping the environment. Although snow, granular, and polycrystalline ice are often used in research, there are applications where large surface areas of a known crystallographic plane are required. For example, fundamental spectroscopy or scattering studies rely on large area samples of known crystalline orientation. In addition, due to its slower dynamics and decreased number of molecular configurations, ice can be viewed as a reduced complexity model for the complex hydrogen bonding environment found at the surface and within the bulk of liquid water. In our studies using Sum Frequency Generation (SFG) vibrational spectroscopy, we have shown that each crystalline face has a unique spectral signature and therefore a unique chemistry and chemical activity. A reliable, reproducible, high performance method of producing large single crystal samples is needed to support this surface chemistry research. The design, construction, and use of a computer-controlled, ice-growth machine based on the Stockbarger modified Bridgeman technique is described. The instrument reliably produces relatively large single crystals that are optically flawless (that is, no visible flaws when viewed in a crossed polarizer), and in very high yield. Success rates of 95% are typical. Such performance has not been observed in the literature.

  2. Single crystal diamond detectors grown by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Tuv, C.; Angelone, M.; Bellini, V.; Balducci, A.; Donato, M. G.; Faggio, G.; Marinelli, M.; Messina, G.; Milani, E.; Morgada, M. E.; Pillon, M.; Potenza, R.; Pucella, G.; Russo, G.; Santangelo, S.; Scoccia, M.; Sutera, C.; Tucciarone, A.; Verona-Rinati, G.

    2007-01-01

    The detection properties of heteropitaxial (polycrystalline, pCVD) and homoepitaxial (single crystal, scCVD) diamond films grown by microwave chemical vapor deposition (CVD) in the Laboratories of Roma "Tor Vergata" University are reported. The pCVD diamond detectors were tested with ?-particles from different sources and 12C ions produced by 15 MV Tandem accelerator at Southern National Laboratories (LNS) in Catania (Italy). pCVDs were also used to monitor 14 MeV neutrons produced by the D-T plasma at Joint European Torus (JET), Culham, U.K. The limit of pCVDs is the poor energy resolution. To overcome this problem, we developed scCVD diamonds using the same reactor parameters that optimized pCVD diamonds. scCVD were grown on a low cost (1 0 0) HPHT single crystal substrate. A detector 110 ?m thick was tested under ?-particles and under 14 MeV neutron irradiation. The charge collection efficiency spectrum measured under irradiation with a triple ?-particle source shows three clearly resolved peaks, with an energy resolution of about 1.1%. The measured spectra under neutron irradiation show a well separated C(n,?0)9Be12 reaction peak with an energy spread of 0.5 MeV for 14.8 MeV neutrons and 0.3 MeV for 14.1 MeV neutrons, which are fully compatible with the energy spread of the incident neutron beams.

  3. Bithermal fatigue of a nickel-base superalloy single crystal

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.

    1988-01-01

    The thermomechanical fatigue behavior of a nickel-base superalloy single crystal was investigated using a bithermal test technique. The bithermal fatigue test was used as a simple alternative to the more complex thermomechanical fatigue test. Both in-phase and out-of-phase bithermal tests were performed on (100)-oriented coated and bare Rene N4 single crystals. In out-of-plane bithermal tests, the tensile and compressive halves of the cycle were applied isothermally at 760 and 982 C, respectively, while for the in-phase bithermal tests the temperature-loading sequence was reversed. The bithermal fatigue lives of bare specimens were shorter than the isothermal fatigue lives at either temperature extreme when compared on an inelastic strain basis. Both in-phase and out-of-phase bithermal fatigue life curves converged in the large strain regime and diverged in the small strain regime, out-of-phase resulting in the shortest lives. The coating had no effect on life for specimens cycled in-phase; however, the coating was detrimental for isothermal fatigue at 760 C and for out-of-phase fatigue under large strains.

  4. Self-assembled single-crystal silicon circuits on plastic

    PubMed Central

    Stauth, Sean A.; Parviz, Babak A.

    2006-01-01

    We demonstrate the use of self-assembly for the integration of freestanding micrometer-scale components, including single-crystal, silicon field-effect transistors (FETs) and diffusion resistors, onto flexible plastic substrates. Preferential self-assembly of multiple microcomponent types onto a common platform is achieved through complementary shape recognition and aided by capillary, fluidic, and gravitational forces. We outline a microfabrication process that yields single-crystal, silicon FETs in a freestanding, powder-like collection for use with self-assembly. Demonstrations of self-assembled FETs on plastic include logic inverters and measured electron mobility of 592 cm2/V-s. Finally, we extend the self-assembly process to substrates each containing 10,000 binding sites and realize 97% self-assembly yield within 25 min for 100-μm-sized elements. High-yield self-assembly of micrometer-scale functional devices as outlined here provides a powerful approach for production of macroelectronic systems. PMID:16968780

  5. Nonconvex energy minimization and dislocation structures in ductile single crystals

    NASA Astrophysics Data System (ADS)

    Ortiz, M.; Repetto, E. a.

    1999-02-01

    Plastically deformed crystals are often observed to develop intricate dislocation patterns such as the labyrinth, mosaic, fence and carpet structures. In this paper, such dislocation structures are given an energetic interpretation with the aid of direct methods of the calculus of variations. We formulate the theory in terms of deformation fields and regard the dislocations as manifestations of the incompatibility of the plastic deformation gradient field. Within this framework, we show that the incremental displacements of inelastic solids follow as minimizers of a suitably defined pseudoelastic energy function. In crystals exhibiting latent hardening, the energy function is nonconvex and has wells corresponding to single-slip deformations. This favors microstructures consisting locally of single slip. Deformation microstructures constructed in accordance with this prescription are shown to be in correspondence with several commonly observed dislocation structures. Finally, we show that a characteristic length scale can be built into the theory by taking into account the self energy of the dislocations. The extended theory leads to scaling laws which appear to be in good qualitative and quantitative agreement with observation.

  6. Modal reduction in single crystal sapphire optical fiber

    NASA Astrophysics Data System (ADS)

    Cheng, Yujie; Hill, Cary; Liu, Bo; Yu, Zhihao; Xuan, Haifeng; Homa, Daniel; Wang, Anbo; Pickrell, Gary

    2015-10-01

    A type of single crystal sapphire optical fiber (SCSF) design is proposed to reduce the number of guided modes via a highly dispersive cladding with a periodic array of high- and low-index regions in the azimuthal direction. The structure retains a "core" region of pure single crystal (SC) sapphire in the center of the fiber and a "cladding" region of alternating layers of air and SC sapphire in the azimuthal direction that is uniform in the radial direction. The modal characteristics and confinement losses of the fundamental mode were analyzed via the finite element method by varying the effective core diameter and the dimensions of the "windmill"-shaped cladding. The simulation results showed that the number of guided modes was significantly reduced in the windmill fiber design, as the radial dimension of the air and SC sapphire cladding regions increase with corresponding decrease in the azimuthal dimension. It is anticipated that the windmill SCSF will readily improve the performance of current fiber optic sensors in the harsh environment and potentially enable those that were limited by the extremely large modal volume of unclad SCSF.

  7. High yield, single crystal ice via the Bridgman method.

    PubMed

    Bisson, Patrick; Groenzin, Henning; Barnett, Irene Li; Shultz, Mary Jane

    2016-03-01

    The surface chemistry of ice and of water is an important topic of study, especially given the role of ice and water in shaping the environment. Although snow, granular, and polycrystalline ice are often used in research, there are applications where large surface areas of a known crystallographic plane are required. For example, fundamental spectroscopy or scattering studies rely on large area samples of known crystalline orientation. In addition, due to its slower dynamics and decreased number of molecular configurations, ice can be viewed as a reduced complexity model for the complex hydrogen bonding environment found at the surface and within the bulk of liquid water. In our studies using Sum Frequency Generation (SFG) vibrational spectroscopy, we have shown that each crystalline face has a unique spectral signature and therefore a unique chemistry and chemical activity. A reliable, reproducible, high performance method of producing large single crystal samples is needed to support this surface chemistry research. The design, construction, and use of a computer-controlled, ice-growth machine based on the Stockbarger modified Bridgeman technique is described. The instrument reliably produces relatively large single crystals that are optically flawless (that is, no visible flaws when viewed in a crossed polarizer), and in very high yield. Success rates of 95% are typical. Such performance has not been observed in the literature. PMID:27036790

  8. Deformation of olivine single crystals under lithospheric conditions

    NASA Astrophysics Data System (ADS)

    Demouchy, S.; Tommasi, A.; Cordier, P.

    2012-12-01

    The rheology of mantle rocks at lithospheric temperatures (<1000°C) remains poorly constrained, in contrast to the extensive experimental data on creep of olivine single crystals and polycrystalline aggregates at high temperature (T > 1200°C). Consequently, we have performed tri-axial compression experiments on oriented single crystals and polycrystalline aggregates of San Carlos olivine at temperatures ranging from 800° to 1090°C. The experiments were carried out at a confining pressure of 300 MPa in a high-resolution gas-medium mechanical testing apparatus at constant strain rates ranging from 7 × 10-6 s-1 to 1 × 10-4 s-1 . Compression was applied along three different crystallographic directions: [101]c, [110]c and [011]c, to activate the several slip systems. Yield differential stresses range from 88 to 1076 MPa. To constrain hardening, stick-and-slip, or strain localization behaviors, all samples were deformed at constant displacement rate for finite strains between 4 to 23 %. Hardening was observed in all experiments and the maximum differential stress often overcame the confining pressure. EBSD mapping highlights macroscale bending of the crystalline network in three crystals. TEM observations on several samples show dislocations with [100] and [001] Burgers vectors in all samples, but dislocation arrangements vary. The results from the present study permit to refining the power-law expressing the strain rate dependence on stress and temperature for olivine, allowing its application to the lithospheric mantle. Our experiments confirm that previous published high-temperature power flow laws overestimate the strength of lithospheric mantle and that the transition to low-temperature creep occurs at higher temperatures than it has previously been established.

  9. Growth of bulk single crystals of organic materials for nonlinear optical devices - An overview

    NASA Technical Reports Server (NTRS)

    Penn, Benjamin G.; Cardelino, Beatriz H.; Moore, Craig E.; Shields, Angela W.; Frazier, D. O.

    1991-01-01

    Highly perfect single crystals of nonlinear optical organic materials are required for use in optical devices. An overview of the bulk crystal growth of these materials by melt, vapor, and solution processes is presented. Additionally, methods that may be used to purify starting materials, detect impurities at low levels, screen materials for crystal growth, and process grown crystals are discussed.

  10. Structures from powders and poor-quality single crystals at high pressure.

    PubMed

    McMahon, Malcolm I

    2005-09-01

    The use of single-crystal techniques and quasi-single-crystal samples in solving and refining complex crystal structures at high pressure is reviewed. In particular, recent studies of the incommensurate and modulated structures found in a number of elemental metals at high pressure are focused on. PMID:16120976

  11. High-temperature crystallization of novel rare-earth borate materials: Single crystals and thin films

    NASA Astrophysics Data System (ADS)

    Leonyuk, Nikolay; Maltsev, Victor; Volkova, Elena; Koporulina, Elizaveta; Nekrasova, Larisa; Tolstik, Nikolay; Kuleshov, Nikolay

    2009-06-01

    Phase formation has been studied in the complex system YbAl3(BO3)4 - K2Mo3O10 - B2O3 - Yb2O3 within the stability region of YbAl3(BO3)4 (YbAB). The obtained data were compared with those for YAl3(BO3)4 as another end member of the YbAB-YAB solid solutions. Visually transparent (Er,Yb):YAl3(BO3)4 single crystals with a typical size up to 10×10×15 mm3 and crystalline layers were obtained from K2Mo3O10 based fluxed melts. The 1.5 μm emission spectra of (Er,Yb):YAl3(BO3)4 thin films as well as bulk crystals were measured using CW Ti:sapphire laser tuned to 976 nm as a pump source.

  12. Single Crystal DMs for Space-Based Observatories

    NASA Astrophysics Data System (ADS)

    Bierden, Paul

    We propose to demonstrate the feasibility of a new manufacturing process for large aperture, high-actuator count microelectromechanical deformable mirrors (MEMS-DMs). These DMs are designed to fill a critical technology gap in NASA s plan for high- contrast space-based exoplanet observatories. We will manufacture a prototype DM with a continuous mirror facesheet, having an active aperture of 50mm diameter, supported by 2040 electrostatic actuators (50 across the diameter of the active aperture), spaced at a pitch of 1mm. The DM will be manufactured using silicon microfabrication tools. The strategic motivation for the proposed project is to advance MEMS DMs as an enabling technology in NASA s rapidly emerging program for extrasolar planet exploration. That goal is supported by an Astro2010 white paper on Technologies for Direct Optical Imaging of Exoplanets, which concluded that DMs are a critical component for all proposed internal coronagraph instrument concepts. That white paper pointed to great strides made by DM developers in the past decade, and acknowledged the components made by Boston Micromachines Corporation to be the most notable MEMS-based technology option. The principal manufacturing innovation in this project will be assembly of the DM through fusion bonding of three separate single crystal silicon wafers comprising the device s substrate, actuator array, and facesheet. The most significant challenge of this project will be to develop processes that allow reliable fusion bonds between multiple compliant silicon layers while yielding an optically flat surface and a robust electromechanical system. The compliance of the DM, which is required for its electromechanical function, will make it challenging to achieve the intimate, planar contact that is generally needed for success in fusion bonding. The manufacturing approach will use photolithography and reactive ion etching to pattern structural layers. Three wafer-scale devices will be patterned and etched independently: one for the substrate and fixed electrode layer, one for the actuator layer, and one for the mirror layer. Subsequently, each of these wafers will be bonded through a thermal fusion process to the others. In an innovative new processing technique, we will employ sacrificial oxide pillars to add temporary support to the otherwise compliant device structures. These pillars will be dissolved after assembly. The result will be a stress-free, single crystal silicon device with broadly expanded design space for geometric parameters such as actuator pitch, mirror diameter, array size, and actuator gap. Consequently, this approach will allow us to make devices with characteristics that are needed for some important NASA applications in space-based coronography, especially where larger array sizes, greater actuator pitch, and better optical surface quality are needed. The significance of this work is that it will provide a technology platform that meets or exceeds the superb optical performance that has been demonstrated in conventional pizezoelectrically actuated DMs, while retaining the advantages in cost, repeatability, and thermal insensitivity that have been demonstrated in the newer generation of MEMS electrostatically actuated DMs. The shift to bonded single-crystal structures will eliminate the single biggest drawback in previously reported NASA-fielded MEMS DM technology: device susceptibility to stress-induced scalloping and print through artifacts resulting from polycrystalline thin film surface micromachining. With single crystal structures bonded at atomic scales, uncorrected surface topography can be controlled to subnanometer levels, enabling the advancement of NASA s next-generation space-based coronagraphs.

  13. pH-responsive drug delivery system based on luminescent CaF(2):Ce(3+)/Tb(3+)-poly(acrylic acid) hybrid microspheres.

    PubMed

    Dai, Yunlu; Zhang, Cuimiao; Cheng, Ziyong; Ma, Ping'an; Li, Chunxia; Kang, Xiaojiao; Yang, Dongmei; Lin, Jun

    2012-03-01

    In this study, we design a controlled release system based on CaF(2):Ce(3+)/Tb(3+)-poly(acrylic acid) (PAA) composite microspheres, which were fabricated by filling the pH-responsive PAA inside CaF(2):Ce(3+)/Tb(3+) hollow spheres via photopolymerization route. The CaF(2):Ce(3+)/Tb(3+) hollow spheres prepared by hydrothermal route possess mesoporous structure and show strong green fluorescence from Tb(3+) under UV excitation. Doxorubicin hydrochloride (DOX), a widely used anti-cancer drug, was used as a model drug to evaluate the loading and controlled release behaviors of the composite microspheres due to the good biocompatibility of the samples using MTT assay. The composite carriers provide a strongly pH-dependent drug release behavior owing to the intrinsic property of PAA and its interactions with DOX. The endocytosis process of drug-loaded microspheres was observed using confocal laser scanning microscopy (CLSM) and the in vitro cytotoxic effect against SKOV3 ovarian cancer cells of the DOX-loaded carriers was investigated. In addition, the extent of drug release could be monitored by the altering of photoluminescence (PL) intensity of CaF(2):Ce(3+)/Tb(3+). Considering the good biocompatibility, high drug loading content and pH-dependent drug release of the materials, these hybrid luminescent microspheres have potential applications in drug controlled release and disease therapy. PMID:22196902

  14. Single-Crystal Elasticity of Ettringite at ambient conditions

    NASA Astrophysics Data System (ADS)

    Speziale, S.; Jiang, F.; Mao, Z.; Monteiro, P. J.; Wenk, H.; Duffy, T. S.; Schilling, F.

    2006-12-01

    Ettringite, [Ca6Al2 (SO4)3 (OH)12^{.}26H2O] is a natural trigonal sulfate and one of the most relevant crystalline components of Portland cement. It is both a primary crystalline product during cement paste consolidation and a secondary phase which develops during concrete degradation. Even though the understanding of the mechanical properties of cement paste and of consolidated concrete is a longstanding problem of engineering and materials science, we still have a poor knowledge of the physical properties of ettringite. This makes it difficult to develop quantitative models able to predict the behavior and properties of such a complex multi-component system. We have now determined the single-crystal elastic constants of natural ettringite by Brillouin spectroscopy at ambient conditions. Brillouin scattering was measured along 54 different directions from two 2 mm size platelets of approximate orientation (001) and (100) prepared from a large single crystal of ettringite from South Africa. The six non-zero single-crystal elastic constants of this trigonal mineral are: C11 = 35.1(1) GPa, C12 = 21.9(1) GPa, C13 = 20.0(5) GPa, C14 = 0.6(2) GPa, C_{33 = 55(1) GPa, C44 = 11.0(2) GPa. The Hill average of the aggregate bulk and shear modulus are 27.3(9) GPa and 9.9(1) GPa respectively, more than 35 percent smaller than the moduli of gypsum. Ettringite possesses a large elastic anisotropy, with a difference of 50 percent between the Young's modulus along the stiff c- axis and the a- axis. The rigidity in planes containing the c- axis is 40 percent higher than in the basal plane. The pattern of elastic anisotropy in ettringite is directly connected to its crystallographic structure and to its external morphology. In fact, stiff chains of [Al(OH) 6]^{3-} octahedra alternating with triplets of Ca2+ in eight-fold coordination run parallel to the c- axis. Development of secondary fibrous ettringite elongated parallel to c- axis might play a major role as a mechanism for concrete weakening and deterioration.

  15. Imatinib (Gleevec@) conformations observed in single crystals, protein-Imatinib co-crystals and molecular dynamics: Implications for drug selectivity

    NASA Astrophysics Data System (ADS)

    Golzarroshan, B.; Siddegowda, M. S.; Li, Hong qi; Yathirajan, H. S.; Narayana, B.; Rathore, R. S.

    2012-06-01

    Structure and dynamics of the Leukemia drug, Imatinib, were examined using X-ray crystallography and molecular dynamics studies. Comparison of conformations observed in single crystals with several reported co-crystals of protein-drug complexes suggests existence of two conserved conformations of Imatinib, extended and compact (or folded), corresponding to two binding modes of interaction with the receptor. Furthermore, these conformations are conserved throughout a dynamics simulation. The present study attempts to draw a parallel on conformations and binding patterns of interactions, obtained from small-molecule single-crystal and macromolecule co-crystal studies, and provides structural insights for understanding the high selectivity of this drug molecule.

  16. A preliminary review of organic materials single crystal growth by the Czochralski technique

    NASA Technical Reports Server (NTRS)

    Penn, B. G.; Shields, A. W.; Frazier, D. O.

    1988-01-01

    The growth of single crystals of organic compounds by the Czochralski method is reviewed. From the literature it is found that single crystals of benzil, a nonlinear optical material with a d sub 11 value of 11.2 + or - 1.5 x d sub 11 value of alpha quartz, has fewer dislocations than generally contained in Bridgman crystals. More perfect crystals were grown by repeated Czochralski growth. This consists of etching away the defect-containing portion of a Czochralski grown crystal and using it as a seed for further growth. Other compounds used to grow single crystals are benzophenone, 12-tricosanone (laurone), and salol. The physical properties, growth apparatus, and processing conditions presented in the literature are discussed. Moreover, some of the possible advantages of growing single crystals of organic compounds in microgravity to obtain more perfect crystals than on Earth are reviewed.

  17. Determination of subsurface damage in single crystalline optical materials

    NASA Astrophysics Data System (ADS)

    Randi, Joseph A.; Lambropoulos, John C.; Jacobs, Stephen D.; Shafrir, Shai N.

    2003-05-01

    Peak-to-valley surface microroughness measurement data acquired from a white light interferometer are compared with data from the actual depth of subsurface damage (SSD) acquired destructively, in single crystalline optical materials (Si, CaF2, MgF2, LiNbO3, Al2O3) after deterministic microgrinding (DMG). The results demonstrate that SSD is always less than 1.4 times the peak-to-valley surface microroughness for these crystals regardless of crystallographic orientation. These results enable a maximum depth of SSD to be predicted non-invasively for these single crystal materials. The Center for Optics Manufacturing also has an extensive database comparing surface microroughness to SSD in optical glasses. This data will be presented, demonstrating the upper bound for SSD depth in optical glasses based on the surface microroughness. Interferometer settings and destructive techniques for physically determining SSD will be presented.

  18. Twin nucleation and migration in FeCr single crystals

    SciTech Connect

    Patriarca, L.; Abuzaid, Wael; Sehitoglu, Huseyin; Maier, Hans J.; Chumlyakov, Y.

    2013-01-15

    Tension and compression experiments were conducted on body-centered cubic Fe -47.8 at pct. Cr single crystals. The critical resolved shear stress (CRSS) magnitudes for slip nucleation, twin nucleation and twin migration were established. We show that the nucleation of slip occurs at a CRSS of about 88 MPa, while twinning nucleates at a CRSS of about 191 MPa with an associated load drop. Following twin nucleation, twin migration proceeds at a CRSS that is lower than the initiation stress ( Almost-Equal-To 114-153 MPa). The experimental results of the nucleation stresses indicate that the Schmid law holds to a first approximation for the slip and twin nucleation cases, but to a lesser extent for twin migration particularly when considerable slip strains preceded twinning. The CRSSs were determined experimentally using digital image correlation (DIC) in conjunction with electron back scattering diffraction (EBSD). The DIC measurements enabled pinpointing the precise stress on the stress-strain curves where twins or slip were activated. The crystal orientations were obtained using EBSD and used to determine the activated twin and slip systems through trace analysis. - Highlights: Black-Right-Pointing-Pointer Digital image correlation allows to capture slip/twin initiation for bcc FeCr. Black-Right-Pointing-Pointer Crystal orientations from EBSD allow slip/twin system indexing. Black-Right-Pointing-Pointer Nucleation of slip always precedes twinning. Black-Right-Pointing-Pointer Twin growth is sustained with a lower stress than required for nucleation. Black-Right-Pointing-Pointer Twin-slip interactions provide high hardening at the onset of plasticity.

  19. Magnetic anisotropy in clinopyroxene and orthopyroxene single crystals

    NASA Astrophysics Data System (ADS)

    Biedermann, Andrea R.; Pettke, Thomas; Bender Koch, Christian; Hirt, Ann M.

    2015-03-01

    Pyroxenes constitute an important component in mafic igneous and metamorphic rocks. They often possess a prismatic habit, and their long axis, the crystallographic c axis, helps define a lineation in a textured rock. Anisotropy of magnetic susceptibility (AMS) serves as a fabric indicator in igneous and metamorphic rocks. If a rock's AMS is carried by pyroxenes, it can be related to their crystallographic preferred orientation and degree of alignment. This requires knowing the intrinsic AMS of pyroxene single crystals. This study provides a comprehensive low-field and high-field AMS investigation of chemically diverse orthopyroxene and clinopyroxene crystals in relation to crystal structure, chemical composition, oxidation state of Fe, and the possible presence of ferromagnetic inclusions. The paramagnetic anisotropy, extracted from high-field data, shows clear relationships to crystallographic directions and Fe concentration both in clinopyroxene and orthopyroxene. In the diopside-augite series, the intermediate susceptibility is parallel to b, and the maximum is at 45° to the c axis. In aegirine, the intermediate axis remains parallel to b, while the maximum susceptibility is parallel to c. The AMS of spodumene depends on Fe concentration. In enstatite, the maximum susceptibility aligns with c and the minimum with b, and in the case of hypersthene, the maximum susceptibility is normal to the exsolution lamellae. Magnetite inclusions within augite possess a ferromagnetic anisotropy with consistent orientation of the principal susceptibilities, which dominates the low-field anisotropy. These results provide better understanding of magnetic anisotropy in pyroxenes and form a solid basis for interpretation of magnetic fabrics in pyroxene-bearing rocks.

  20. Luminescence Properties of ScPO{sub 4} Single Crystals

    SciTech Connect

    Boatner, L.A.; Trukhin, A.N.

    1999-08-16

    Flux-grown ScPO{sub 4} single crystals exhibit a number of luminescence bands in their x-ray-excited luminescence spectra - including sharp lines arising from rare-earth elements plus a number of broad bands at 5.6 cV, 4.4 eV, and 3 eV. The band at 5.6 eV was attributed to a self-trapped exciton (STE) [l], and it could be excited at 7 eV and higher energies. This luminescence is strongly polarized (P = 70 %) along the optical axes of the crystal and exhibits a kinetic decay time constant that varies from several ns at room temperature to {approximately}10 {micro}s at 60 K and up to {approximately}1 ms at 10 K. It is assumed that the STE is localized on the SC ions. The band at 3 eV can be excited in the range of the ScPO{sub 4} crystal transparency (decay time = 3 to 4 {micro}s.) This band is attributed to a lead impurity that creates different luminescence centers. At high temperatures, the band at 4.4 eV is dominant in the x-ray-excited TSL and afterglow spectra. Its intensity increases with irradiation time beginning at zero at the initial irradiation time. The 4.4 eV band does not appear in a fast process under a pulsed electron beam, showing that accumulation is necessary for its observation. A sample of ScPO{sub 4} doped with vanadium exhibited a prevalent band at 4.4 eV at T = 480 K.

  1. Synthesis, Growth, Spectral and Optical Properties of Glycinyl Urea Single Crystal

    SciTech Connect

    Shanthi, N. Theresita; Selvarajan, P.; Rose, A. S. J. Lucia

    2011-10-20

    Single crystals of Glycinyl Urea were grown from aqueous solution by slow evaporation technique at room temperature. The cell parameters of the grown crystals were estimated by Single X-ray diffraction studies. The functional groups present in the grown crystals were ascertained using FTIR spectrum analysis. UV-visible transmittance spectrum was recorded to study the optical transparency of the grown crystal. The non-linear optical property has been tested by Kurtz powder technique.

  2. From protein structure to function via single crystal optical spectroscopy

    PubMed Central

    Ronda, Luca; Bruno, Stefano; Bettati, Stefano; Storici, Paola; Mozzarelli, Andrea

    2015-01-01

    The more than 100,000 protein structures determined by X-ray crystallography provide a wealth of information for the characterization of biological processes at the molecular level. However, several crystallographic “artifacts,” including conformational selection, crystallization conditions and radiation damages, may affect the quality and the interpretation of the electron density maps, thus limiting the relevance of structure determinations. Moreover, for most of these structures, no functional data have been obtained in the crystalline state, thus posing serious questions on their validity in infereing protein mechanisms. In order to solve these issues, spectroscopic methods have been applied for the determination of equilibrium and kinetic properties of proteins in the crystalline state. These methods are UV-vis spectrophotometry, spectrofluorimetry, IR, EPR, Raman, and resonance Raman spectroscopy. Some of these approaches have been implemented with on-line instruments at X-ray synchrotron beamlines. Here, we provide an overview of investigations predominantly carried out in our laboratory by single crystal polarized absorption UV-vis microspectrophotometry, the most applied technique for the functional characterization of proteins in the crystalline state. Studies on hemoglobins, pyridoxal 5′-phosphate dependent enzymes and green fluorescent protein in the crystalline state have addressed key biological issues, leading to either straightforward structure-function correlations or limitations to structure-based mechanisms. PMID:25988179

  3. Scintillation properties of CsI:In single crystals

    NASA Astrophysics Data System (ADS)

    Gridin, S.; Belsky, A.; Moszynski, M.; Syntfeld-Kazuch, A.; Shiran, N.; Gektin, A.

    2014-10-01

    Scintillation properties of CsI:In single crystals have been investigated. Scintillation yield of CsI:In measured with the 24 μs integration time is around 27,000 ph/MeV, reaching the saturation at 0.005 mol% of the activator. However, luminescence yield of CsI:In is close to CsI:Tl scintillation crystals, which is around 60,000 ph/MeV. This difference is explained by the presence of an ultra-long afterglow in CsI:In scintillation pulse. Thermoluminescence studies revealed a stable trap around 240 K that is supposed to be related to millisecond decay components. The best measured energy resolution of (8.5±0.3)% was achieved at 24 μs peaking time for a CsI sample doped with 0.01 mol% of In. Temperature stability of CsI:In radioluminescence intensity was found to be remarkably high. Its X-ray luminescence yield remains stable up to 600 K, whereafter thermal quenching occurs. The latter property gives CsI:In a potential to be used in well logging applications.

  4. Analysis of Phase Separation in Czochralski Grown Single Crystal Ilmenite

    NASA Technical Reports Server (NTRS)

    Wilkins, R.; Powell, Kirk St. A.; Loregnard, Kieron R.; Lin, Sy-Chyi; Muthusami, Jayakumar; Zhou, Feng; Pandey, R. K.; Brown, Geoff; Hawley, M. E.

    1998-01-01

    Ilmenite (FeTiOs) is a wide bandgap semiconductor with an energy gap of 2.58 eV. Ilmenite has properties suited for radiation tolerant applications, as well as a variety of other electronic applications. Single crystal ilmenite has been grown from the melt using the Czochralski method. Growth conditions have a profound effect on the microstructure of the samples. Here we present data from a variety of analytical techniques which indicate that some grown crystals exhibit distinct phase separation during growth. This phase separation is apparent for both post-growth annealed and unannealed samples. Under optical microscopy, there appear two distinct areas forming a matrix with an array of dots on order of 5 pm diameter. While appearing bright in the optical micrograph, atomic force microscope (AFM) shows the dots to be shallow pits on the surface. Magnetic force microscope (MFM) shows the dots to be magnetic. Phase identification via electron microprobe analysis (EMPA) indicates two major phases in the unannealed samples and four in the annealed samples, where the dots appear to be almost pure iron. This is consistent with micrographs taken with a scanning probe microscope used in the magnetic force mode. Samples that do not exhibit the phase separation have little or no discernible magnetic structure detectable by the MFM.

  5. Compensation mechanism of bromine dopants in cadmium telluride single crystals

    SciTech Connect

    Bolotnikov, A. E.; Fochuk, P. M.; Verzhak, Ye. V.; Parashchuk, T. O.; Freik, D. M.; Panchuk, O. E.; James, R. B.; Gorichok, I. V.

    2015-01-02

    We grew single crystals of cadmium telluride, doped with bromine by the Bridgman method, annealed them under a cadmium overpressure (PCd = 10² - 10⁵ Pa) at 800-1100 K, and investigated their electrical properties at high- and low-temperature. The influence of impurities on the crystals' electrical properties were analyzed using the defect subsystem model; the model includes the possibility of the formation of point intrinsic defects (V²⁻Cd, Cd²⁺i, V²⁺Te, Te²⁻i), and substitutional ones (Br⁰Te, Br⁺Te), as well as complexes of point defects, i.e., (Br⁺Te V²⁻Cd)⁻ and (2Br⁺Te V²⁻Cd)⁰. We established the concentration dependence between free charge carriers and the parameters of the annealing process. Here, n(T) and n(PCd) are determined by two dominant defects – Br⁺Te and (2Br⁺Te V²⁻Cd)⁰. Their content varies with the annealing temperature and the vapor pressure of the component; the concentration of other defects is much smaller and almost does not affect the electron density.

  6. Compensation mechanism of bromine dopants in cadmium telluride single crystals

    DOE PAGESBeta

    Bolotnikov, A. E.; Fochuk, P. M.; Verzhak, Ye. V.; Parashchuk, T. O.; Freik, D. M.; Panchuk, O. E.; James, R. B.; Gorichok, I. V.

    2015-01-02

    We grew single crystals of cadmium telluride, doped with bromine by the Bridgman method, annealed them under a cadmium overpressure (PCd = 10² - 10⁵ Pa) at 800-1100 K, and investigated their electrical properties at high- and low-temperature. The influence of impurities on the crystals' electrical properties were analyzed using the defect subsystem model; the model includes the possibility of the formation of point intrinsic defects (V²⁻Cd, Cd²⁺i, V²⁺Te, Te²⁻i), and substitutional ones (Br⁰Te, Br⁺Te), as well as complexes of point defects, i.e., (Br⁺Te V²⁻Cd)⁻ and (2Br⁺Te V²⁻Cd)⁰. We established the concentration dependence between free charge carriers and themore » parameters of the annealing process. Here, n(T) and n(PCd) are determined by two dominant defects – Br⁺Te and (2Br⁺Te V²⁻Cd)⁰. Their content varies with the annealing temperature and the vapor pressure of the component; the concentration of other defects is much smaller and almost does not affect the electron density.« less

  7. The interface of heterogeneous nucleation on single crystal substrates

    NASA Astrophysics Data System (ADS)

    Yang, L.; Xia, M.; Li, J.

    2016-03-01

    Under controlled nucleation process was achieved by solidifying a high purity Al droplet on a single crystal Al2O3 substrate in a high vacuum chamber. The following X-Ray Diffraction (XRD) analysis and measured undercooling prove that the nucleation was triggered by the substrate. Various lattice mismatches between new crystal and substrate (C/S) were obtained through this approach. Combining XRD patterns and high resolution transmission electron microscope analysis we found that the morphology of interface was affected by lattice misfit. An epitaxial layer was found at C/S interface with larger lattice misfit, as in Al(100)//Al2O3(0001) system. Further experiments on introduced alloying element, Sb, into liquid Al shows a suppressed epitaxial layer of Al. Chemical reaction between liquid and substrate also contributes to the formation of the interface. The nucleation of Al on the MgO substrates was actually nucleated on MgAl2O4, chemical reaction product of Al and MgO, rather than MgO.

  8. Transverse Ultrasound Measurements in 4He Single Crystals

    NASA Astrophysics Data System (ADS)

    Syshchenko, O.; Beamish, J.

    2008-02-01

    Recently, Kim and Chan (Science 305:1941, 2004; Phys. Rev. Lett. 97:115302, 2006) have reported an anomalous decoupling transition of solid 4He in a torsional oscillator measurement, and interpret their results as evidence for non-classical rotational inertia and a possible supersolid phase of 4He. The detailed nature and properties of such a “supersolid” state in 4He are still far from being clear, although there are clues from experiments involving 3He impurities, different sample cell geometries, annealing effects and grain boundary flow. Defects produced during crystal growth or deformation (e.g. dislocations) may affect supersolidity, or even produce it, and they are expected to have significant impact on the elastic properties of the solid. The supersolid fraction could also decouple from the lattice and produce a decrease in the transverse sound speed. We have begun the experiments in this laboratory to study such effects, measuring the velocity and attenuation of transverse ultrasound at 10 MHz in 4He single crystals grown at constant pressure.

  9. Thermoelectric transport properties of In2Se3 single crystal

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi Huong; Duong, Van Thiet; Nguyen, Van Quang; Duong, Anh Tuan; Cho, Sunglae; Song, Jae Yong; Park, Hyun-Min

    In recent years the discovery and development of green energy source are one of the top concerns in science. The enormous efforts have been devoted to search for thermoelectric materials. Enhancement of thermoelectric figure of merit (ZT = (S2 σ / κ) T) is currently research goal of scientists. In2Se3 is one of semiconductors with layered structure, which is good for thermoelectric applications. In this study, we report on the transport and thermoelectric properties of In2Se3 single crystal. The layered crystal structure of In2Se3 was determined by XRD and FE-SEM measurements. Ellipsometry measurement illustrated the indirect band gap of In2Se3, about 1.61 eV. Transport properties have been studied in the temperature range from 20 to 400 K along axis which is parallel to the layers direction. Interestingly, Seebeck coefficient was n-type and increased with temperature and the electrical conductivity increased with temperature. Therefore, power factor increased up to 2.69 µWcm-1K-2at 400 K. In this talk, we will discuss more on transport properties.

  10. Solidification microstructures in single-crystal stainless steel melt pools

    SciTech Connect

    Sipf, J.B.; Boatner, L.A.; David, S.A.

    1994-03-01

    Development of microstructure of stationary melt pools of oriented stainless steel single crystals (70%Fe-15%Ni-15%Cr was analyzed. Stationary melt pools were formed by electron-beam and gas-tungsten-arc heating on (001), (011), and (111) oriented planes of the austenitic, fcc-alloy crystals. Characterization and analysis of resulting microstructure was carried out for each crystallographic plane and welding method. Results showed that crystallography which favors ``easy growth`` along the <100> family of directions is a controlling factor in the microstructural formation along with the melt-pool shape. The microstructure was found to depend on the melting method, since each method forms a unique melt-pool shape. These results are used in making a three-dimensional reconstruction of the microstructure for each plane and melting method employed. This investigation also suggests avenues for future research into the microstructural properties of electron-beam welds as well as providing an experimental basis for mathematical models for the prediction of solidification microstructures.

  11. Photoinduced surface voltage mapping study for large perovskite single crystals

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojing; Liu, Yucheng; Gao, Fei; Yang, Zhou; Liu, Shengzhong Frank

    2016-05-01

    Using a series of illumination sources, including white light (tungsten-halogen lamp), 445-nm, 532-nm, 635-nm, and 730-nm lasers, the surface photovoltage (SPV) images were mapped for centimeter-sized CH3NH3PbX3 (X = Cl, Br, I) perovskite single crystals using Kelvin probe force microscopy. The significant SPV signals were observed to be wavelength-dependent. We attribute the appreciable SPV to the built-in electric field in the space charge region. This study shines light into the understanding of photoinduced charge generation and separation processes at nanoscale to help advance the development of perovskite solar cells, optoelectronics, laser, photodetector, and light-emitting diode (LED).

  12. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, Edward S.

    1982-01-01

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  13. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, E.S.

    1980-05-09

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  14. InPBi single crystals grown by molecular beam epitaxy.

    PubMed

    Wang, K; Gu, Y; Zhou, H F; Zhang, L Y; Kang, C Z; Wu, M J; Pan, W W; Lu, P F; Gong, Q; Wang, S M

    2014-01-01

    InPBi was predicted to be the most robust infrared optoelectronic material but also the most difficult to synthesize within In-VBi (V = P, As and Sb) 25 years ago. We report the first successful growth of InPBi single crystals with Bi concentration far beyond the doping level by gas source molecular beam epitaxy. The InPBi thin films reveal excellent surface, structural and optical qualities making it a promising new III-V compound family member for heterostructures. The Bi concentration is found to be 2.4 0.4% with 94 5% Bi atoms at substitutional sites. Optical absorption indicates a band gap of 1.23 eV at room temperature while photoluminescence shows unexpectedly strong and broad light emission at 1.4-2.7 ?m which can't be explained by the existing theory. PMID:24965260

  15. Friction and deformation behavior of single-crystal silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1977-01-01

    Friction and deformation studies were conducted with single-crystal silicon carbide in sliding contact with diamond. When the radius of curvature of the spherical diamond rider was large (0.3), deformation of silicon carbide was primarily elastic. Under these conditions the friction coefficient was low and did not show a dependence on the silicon carbide orientation. Further, there was no detectable cracking of the silicon carbide surfaces. When smaller radii of curvature of the spherical diamond riders (0.15 and 0.02 mm) or a conical diamond rider was used, plastic grooving occured and the silicon carbide exhibited anisotropic friction and deformation behavior. Under these conditions the friction coefficient depended on load. Anisotropic friction and deformation of the basal plane of silicon carbide was controlled by the slip system. 10101120and cleavage of1010.

  16. Analysis of ripple formation in single crystal spot welds

    NASA Technical Reports Server (NTRS)

    Rappaz, M.; Corrigan, D.; Boatner, L. A.

    1997-01-01

    Stationary spot welds have been made at the (001) surface of Fe-l5%Ni-15%Cr single crystals using a Gas Tungsten Arc (GTA). On the top surface of the spot welds, very regular and concentric ripples were observed after solidification by differential interference color microscopy. Their height (typically 1--5 micrometers and spacing, typically approximately 60 micrometers) decreased with the radius of the pool. These ripples were successfully accounted for in terms of capillary-wave theory using the fundamental mode frequency f(sub 0) given by the first zero of the zero-order Bessel function. The spacing d between the ripples was then equated to v(sub s)/f(sub 0), where v(sub s) is the solidification rate. From the measured ripple spacing, the velocity of the pool was deduced as a function of the radius, and this velocity was in good agreement with the results of a heat-flow simulation.

  17. Dislocation nucleation in bcc Ta single crystals studied by nanoindentation

    SciTech Connect

    Biener, M M; Biener, J; Hodge, A M; Hamza, A V

    2007-08-08

    The study of dislocation nucleation in closed-packed metals by nanoindentation has recently attracted much interest. Here, we address the peculiarities of the incipient plasticity in body centered cubic (bcc) metals using low index Ta single-crystals as a model system. The combination of nanoindentation with high-resolution atomic force microscopy provides us with experimental atomic-scale information on the process of dislocation nucleation and multiplication. Our results reveal a unique deformation behavior of bcc Ta at the onset of plasticity which is distinctly different from that of closed-packed metals. Most noticeable, we observe only one rather than a sequence of discontinuities in the load-displacement curves. This and other differences are discussed in context of the characteristic plastic deformation behavior of bcc metals.

  18. Ultrathin aluminum sample cans for single crystal inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Stone, M. B.; Loguillo, M. J.; Abernathy, D. L.

    2011-05-01

    Single crystal inelastic neutron scattering measurements are often performed using a sample environment for controlling sample temperature. One difficulty associated with this is establishing appropriate thermal coupling from the sample to the temperature controlled portion of the sample environment. This is usually accomplished via a sample can which thermally couples the sample environment to the sample can and the sample can to the sample via an exchange gas. Unfortunately, this can will contribute additional background signal to one's measurement. We present here the design of an ultrathin aluminum sample can based upon established technology for producing aluminum beverage cans. This design minimizes parasitic sample can scattering. Neutron scattering measurements comparing a machined sample can to our beverage can design clearly indicate a large reduction in scattering intensity and texture when using the ultrathin sample can design. We also examine the possibility of using standard commercial beverage cans as sample cans.

  19. Synthesis and characterization of superconducting single-crystal Sn nanowires

    NASA Astrophysics Data System (ADS)

    Tian, Mingliang; Wang, Jinguo; Snyder, Joseph; Kurtz, James; Liu, Ying; Schiffer, Peter; Mallouk, Thomas E.; Chan, M. H. W.

    2003-08-01

    Single-crystal superconducting tin nanowires with diameters of 40-160 nm have been prepared by electrochemical deposition in porous polycarbonate membranes. Structural characterization through transmission electron microscopy and x-ray diffraction showed that the nanowires are highly oriented along the [100] direction. Although the superconducting transition temperature is close to the bulk value of 3.7 K, the effect of reduced dimensionality is clearly evident in the electrical transport properties of the thinnest wires (40 nm diameter). Magnetization measurements show that the critical field of the nanowires increases significantly with decreasing diameter to ˜0.3 T for the thinnest wires, nearly an order of magnitude larger than the bulk value.

  20. Dislocations and mechanical properties of single crystal niobium disilicide

    SciTech Connect

    Maloy, S.A.; Chu, F.; Petrovic, J.J.; Mitchell, T.E.

    1996-09-01

    The mechanical properties of single crystal NbSi{sub 2} have been investigated along [0001] and 45{degree} from [0001] toward [11{bar 2}0] using a Nikon QM-2 hot hardness tester from room temperature to 900 C in vacuum. The hardness along [0001] increases from room temperature to 300 C followed by a sharp decrease in hardness with temperature which is accompanied by a large uplift observed surrounding the indentations. Dislocations surrounding the indentations at room temperature and 300 C were analyzed using techniques in transmission electron microscopy to find slip by <10{bar 1}0> dislocations at room temperature with a change in the active slip systems at 300 C. The hardness along a direction 45{degree} from [0001] toward [11{bar 2}0] sharply decreases with increasing temperature above room temperature. Coarse slip lines surround the indentations referring to slip on the basal plane.

  1. Inelastic neutron scattering studies of single crystal TmSe

    SciTech Connect

    Grier, B H; Shapiro, S M

    1981-01-01

    Inelastic neutron scattering studies have been performed on a single crystal of stoichiometric (a = 5.71 A)TmSe. They confirm previous measurements performed on a polycrystalline sample which showed an inelastic line at h..omega.. approx. = 1 MeV for T < T/sub N/ = 3.0 K. The energy of the 10 MeV line exhibits weak dispersion across the Brillouin zone, while the intensity and linewidth show a stronger q vector dependence. The excitation is broader and less intense near the zone center than at the zone boundary. This feature results from the excitation of f-electrons across the hybridization gap formed when the localized f-electrons hybridize with the conduction band. The temperature and q vector dependences are consistent with a recent theoretical calculation of the neutron cross section for this case.

  2. Toward Optimum Scale and TBC Adhesion on Single Crystal Superalloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    1998-01-01

    Single crystal superalloys exhibit excellent cyclic oxidation resistance if their sulfur content is reduced from typical impurity levels of approximately 5 ppmw to below 0.5 ppmw. Excellent alumina scale adhesion was documented for PWA 1480 and PWA 1484 without yttrium additions. Hydrogen annealing produced effective desulfurization of PWA 1480 to less than 0.2 ppmw and was also used to achieve controlled intermediate levels. The direct relationship between cyclic oxidation behavior and sulfur content was shown. An adhesion criterion was proposed based on the total amount of sulfur available for interfacial segregation, e.g., less than or equal to 0.2 ppmw S will maximize adhesion for a 1 mm thick sample. PWA 1484, melt desulfurized to 0.3 ppmw S, also exhibited excellent cyclic oxidation resistance and encouraging TBC lives (10 mils of 8YSZ, plasma sprayed without a bond coat) in 1100 C cyclic oxidation tests.

  3. Shock compression experiments on Lithium Deuteride single crystals.

    SciTech Connect

    Knudson, Marcus D.; Desjarlais, Michael P.; Lemke, Raymond W.

    2014-10-01

    S hock compression exper iments in the few hundred GPa (multi - Mabr) regime were performed on Lithium Deuteride (LiD) single crystals . This study utilized the high velocity flyer plate capability of the Sandia Z Machine to perform impact experiments at flyer plate velocities in the range of 17 - 32 km/s. Measurements included pressure, density, and temperature between ~200 - 600 GPa along the Principal Hugoniot - the locus of end states achievable through compression by large amplitude shock waves - as well as pressure and density of re - shock states up to ~900 GPa . The experimental measurements are compared with recent density functional theory calculations as well as a new tabular equation of state developed at Los Alamos National Labs.

  4. A face-shear mode single crystal ultrasonic motor

    NASA Astrophysics Data System (ADS)

    Li, Shiyang; Jiang, Wenhua; Zheng, Limei; Cao, Wenwu

    2013-05-01

    We report a face-shear mode ultrasonic motor (USM) made of [011]c poled Zt 45 cut 0.24Pb(In1/2Nb1/2)O3-0.46Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 single crystal, which takes advantage of the extremely large d36 = 2368 pC/N. This motor has a maximum no-load linear velocity of 182.5 mm/s and a maximum output force of 1.03 N under the drive of Vp = 50 V, f = 72 kHz. Compared with the k31 mode USM made of Pb(Zr,Ti)O3 (PZT), our USM has simpler structure, lower driving frequency, much higher electromechanical coupling factor, and twice power density. This USM can be used for low frequency operation as well as cryogenic actuation with a large torque.

  5. Nanoindentation and Raman spectroscopy studies of boron carbide single crystals

    NASA Astrophysics Data System (ADS)

    Domnich, Vladislav; Gogotsi, Yury; Trenary, Michael; Tanaka, Takaho

    2002-11-01

    The measurements of hardness and elastic modulus have been conducted on the (0001) and (101¯1) faces of B4.3C single crystals using nanoindentation. The results are in good agreement with the corresponding values obtained using a conventional microhardness technique on polycrystalline ceramics. Raman microspectroscopy analysis of the nanoindentations shows the appearance of several bands which suggest dramatic structural changes in the indented material. Localized contact loading may lead to damage in boron carbide resulting in disorder or a pressure-induced solid state phase transformation in the region under the indenter, although the exact mechanism responsible for the observed Raman spectra could not be identified at this time. This may explain why little variation in mechanical properties was observed with respect to the crystallographic orientation.

  6. Ion Beam Slicing of Single Crystal Oxide Thin Films

    SciTech Connect

    Thevuthasan, Suntharampillai; Shutthanandan, V; Jiang, Weilin; Weber, William J.; DB Poker, SC Moss, K-H Heinig

    2001-04-25

    Epitaxial thin film liftoff using the ion-slicing method has been applied to SrTiO single crystals. Rutherford backscattering spectrometry along with channeling (RBS/C) has been used to investigate the relative disorder as a function of temperature from the samples that were irradiated by 40 KeV hydrogen ions to a fluence of 5.0x10 16 H/cm. Hydrogen profiles were also measured as a function of annealing temperature to understand the role of hydrogen in the ion slicing process. Film cleavage occurred during or after annealing at 570 K, and cleaved film has been successfully transferred to a silicon substrate using ceramic adhesive.

  7. Cryogenic Scanning Tunneling Spectroscopy of Superconducting Iron Chalcogenide Single Crystals

    NASA Astrophysics Data System (ADS)

    Wei, J. Y. T.; Fridman, Igor; Yeh, Kuo-Wei; Wu, Maw-Kuen; Hu, Rongwei; Petrovic, C.

    2011-03-01

    We report scanning tunneling spectroscopy measurements on the iron-based superconductors of the ``11'' family including Fe 1-y Te 1-x Se x and Fe 1-y Te 1-x Sx . Conductance spectra and atomically-resolved images are obtained on single crystals down to 300 mK. A gap-like structure is observed, showing an asymmetric spectral background, non-trivial spatial variation and temperature dependence. We discuss our data in terms of possible gap anisotropy and doping inhomogeneities, and in relation to other recent spectroscopic measurements on iron-based superconductors. Work supported by NSERC, CFI/OIT, CIFAR, Taiwan National Science Council, U.S. DOE and Brookhaven Science Associates (No. DE-Ac02-98CH10886), and in part by the Center for Emergent Superconductivity, an Energy Frontier Research Center.

  8. Electrical conduction in nanodomains in congruent lithium tantalate single crystal

    SciTech Connect

    Cho, Yasuo

    2014-01-27

    The electrical current flow behavior was investigated for nanodomains formed in a thin congruent lithium tantalate (LiTaO{sub 3}) single-crystal plate. When the nanodomains were relatively large, with diameters of about 100 nm, current flow was detected along the domain wall. However, when they were about 40 nm or smaller, the current flowed through the entire nanodomain. Schottky-like rectifying behavior was observed. Unlike the case of LiNbO{sub 3}, optical illumination was not required for current conduction in LiTaO{sub 3}. A clear temperature dependence of the current was found indicating that the conduction mechanism for nanodomains in LiTaO{sub 3} may involve thermally activated carrier hopping.

  9. Nonlinear pyroelectric energy harvesting from relaxor single crystals.

    PubMed

    Khodayari, Akram; Pruvost, Sebastien; Sebald, Gael; Guyomar, Daniel; Mohammadi, Saber

    2009-04-01

    Energy harvesting from temperature variations in a Pb(Zn(1/3)Nb(2/3))(0.955)Ti(0.045)O(3) single crystal was studied and evaluated using the Ericsson thermodynamic cycle. The efficiency of this cycle related to Carnot cycle is 100 times higher than direct pyroelectric energy harvesting, and it can be as high as 5.5% for a 10 degrees C temperature variation and 2 kV/mm electric field. The amount of harvested energy for a 60 degrees C temperature variation and 2 kV/mm electric field is 242.7 mJ x cm(-3). The influence of ferroelectric phase transitions on the energy harvesting performance is discussed and illustrated with experimental results. PMID:19406698

  10. Superconductivity in SrNi2P2 single crystals

    SciTech Connect

    Ronning, Filip; Bauer, Eric D; Park, Tuscon; Thompson, Joe D

    2009-01-01

    Heat capacity, magnetic susceptibility, and resistivity of SrNi{sub 2}P{sub 2} single crystals are presented, illustrating the structural transition at 325 K, and bulk superconductivity at 1.4 K. The magnitude of {Tc}, fits to the heat capacity data, the small upper critical field H{sub c2} = 390 Oe, and {kappa} = 2.1 suggests a conventional fully gapped superconductor. With applied pressure we find that superconductivity persists into the so-called 'collapsed tetragonal' phase, although the transition temperature is monotonically suppressed with increasing pressure. This argues that reduced dimensionality can be a mechanism for increasing the transition temperatures of layered NiP, as well as layered FeAs and NiAs, superconductors.

  11. Super-thin single crystal diamond membrane radiation detectors

    SciTech Connect

    Pomorski, Michal; Caylar, Benoit; Bergonzo, Philippe

    2013-09-09

    We propose to use the non-electronic grade (nitrogen content 5 ppb < [N] < 5 ppm) single crystal (sc) chemical vapour deposited (CVD) diamond as a thin-membrane radiation detector. Using deep Ar/O{sub 2} plasma etching it is possible to produce self-supported few micrometres thick scCVD membranes of a size approaching 7 mm × 7 mm, with a very good surface quality. After metallization and contacting, electrical properties of diamond membrane detectors were probed with 5.486 MeV α-particles as an ionization source. Despite nitrogen impurity, scCVD membrane detectors exhibit stable operation, charge collection efficiency close to 100%, with homogenous response, and extraordinary dielectric strength up to 30 V/μm.

  12. Type-I superconductivity in KBi2 single crystals

    NASA Astrophysics Data System (ADS)

    Sun, Shanshan; Liu, Kai; Lei, Hechang

    2016-03-01

    We report on the detailed transport, magnetic, thermodynamic properties and theoretical calculation of KBi2 single crystals in superconducting and normal states. KBi2 exhibits metallic behavior at a normal state and enters the superconducting state below {{T}\\text{c}}=3.573 K. Moreover, KBi2 exhibits low critical fields in all measurements, field-induced crossover from second- to first-order phase transition in specific heat measurements, the typical magnetization isotherms of type-I superconductors, and a small Ginzburg–Landau parameter {κ\\text{GL}}=0.611 . These results clearly indicate that KBi2 is a type-I superconductor with a thermodynamic critical field {{H}\\text{c}}=234.3(3) Oe.

  13. InPBi Single Crystals Grown by Molecular Beam Epitaxy

    PubMed Central

    Wang, K.; Gu, Y.; Zhou, H. F.; Zhang, L. Y.; Kang, C. Z.; Wu, M. J.; Pan, W. W.; Lu, P. F.; Gong, Q.; Wang, S. M.

    2014-01-01

    InPBi was predicted to be the most robust infrared optoelectronic material but also the most difficult to synthesize within In-VBi (V = P, As and Sb) 25 years ago. We report the first successful growth of InPBi single crystals with Bi concentration far beyond the doping level by gas source molecular beam epitaxy. The InPBi thin films reveal excellent surface, structural and optical qualities making it a promising new III–V compound family member for heterostructures. The Bi concentration is found to be 2.4 ± 0.4% with 94 ± 5% Bi atoms at substitutional sites. Optical absorption indicates a band gap of 1.23 eV at room temperature while photoluminescence shows unexpectedly strong and broad light emission at 1.4–2.7 μm which can't be explained by the existing theory. PMID:24965260

  14. Path to meter class single crystal silicon (SCSi) space optics

    NASA Astrophysics Data System (ADS)

    McCarter, Douglas R.

    2012-03-01

    With the global financial crisis affecting funding for space systems development, customers are calling for lower cost systems. Yet, at the same time, these lower cost systems must have increased thermal response to operational environments and load survivability. We submit that single crystal silicon (SCSi) meets both of these requirements. This paper will highlight some key SCSi material properties, discuss the opportunities that led to the development of McCarter processing methods, and present the latest steps in the manufacturing path of McCarter Mirrors using SCSi, GFB (glass frit bonding) and MSF (McCarter super finish), including the concept drawing of a one meter SCSi lightweight mirror, which together sets up the last step toward a lower cost, high performing one meter SCSi space optic.

  15. Process development for single-crystal silicon solar cells

    NASA Astrophysics Data System (ADS)

    Bohra, Mihir H.

    Solar energy is a viable, rapidly growing and an important renewable alternative to other sources of energy generation because of its abundant supply and low manufacturing cost. Silicon still remains the major contributor for manufacturing solar cells accounting for 80% of the market share. Of this, single-crystal solar cells account for half of the share. Laboratory cells have demonstrated 25% efficiency; however, commercial cells have efficiencies of 16% - 20% resulting from a focus on implementation processes geared to rapid throughput and low cost, thereby reducing the energy pay-back time. An example would be the use of metal pastes which dissolve the dielectric during the firing process as opposed to lithographically defined contacts. With current trends of single-crystal silicon photovoltaic (PV) module prices down to 0.60/W, almost all other PV technologies are challenged to remain cost competitive. This presents a unique opportunity in revisiting the PV cell fabrication process and incorporating moderately more expensive IC process practices into PV manufacturing. While they may drive the cost toward a 1/W benchmark, there is substantial room to "experiment", leading to higher efficiencies which will help maintain the overall system cost. This work entails a turn-key process designed to provide a platform for rapid evaluation of novel materials and processes. A two-step lithographic process yielding a baseline 11% - 13% efficient cell is described. Results of three studies have shown improvements in solar cell output parameters due to the inclusion of a back-surface field implant, a higher emitter doping and also an additional RCA Clean.

  16. Growth and characterization of nonlinear optical single crystal: Nicotinic L-tartaric

    NASA Astrophysics Data System (ADS)

    Sheelarani, V.; Shanthi, J.

    2015-06-01

    Nonlinear optical single crystals were grown from Nicotinic and L-Tartaric acid by slow evaporation technique at room temperature. Structure of the grown crystal was confirmed by single crystal X-ray diffraction studies, The crystallinity of the Nicotinic L-Tartaric (NLT) crystals was confirmed from the powder XRD pattern. The transparent range and cut off wavelength of the grown crystal was studied by the UV-Vis spectroscopic analysis.The thermal stability of the crystal was studied by TG-DTA. The second harmonic generation (SHG) efficiency of NLT was confirmed by Kurtz Perry technique.

  17. Studies on synthesis, growth, structural, optical properties of organic 8-hydroxyquinolinium succinate single crystals

    SciTech Connect

    Thirumurugan, R. Anitha, K.

    2014-04-24

    8-hydroxyquinolinium succinate (8HQSU), an organic material has been synthesized and single crystals were grown by employing the technique of slow evaporation. The structure of the grown crystal was elucidated by using single crystal X-ray diffraction analysis. 8HQSU crystal belongs to the monoclinic crystallographic system with non-centro symmetric space group of P2{sub 1}. FT-IR spectral investigation has been carried out to identify the various functional groups present in the grown crystal. UV–vis spectral studies reveal that 8HQSU crystals are transparent in the entire visible region and the cut-off wavelength has been found to be 220nm.

  18. Method for the preparation of inorganic single crystal and polycrystalline electronic materials

    NASA Technical Reports Server (NTRS)

    Groves, W. O. (Inventor)

    1969-01-01

    Large area, semiconductor crystals selected from group 3-5 compounds and alloys are provided for semiconductor device fabrication by the use of a selective etching operation which completely removes the substrate on which the desired crystal was deposited. The substrate, selected from the same group as the single crystal, has a higher solution rate than the epitaxial single crystal which is essentially unaffected by the etching solution. The preparation of gallium phosphide single crystals using a gallium arsenide substrate and a concentrated nitric acid etching solution is described.

  19. Comparative study of intrinsic luminescence in undoped transparent ceramic and single crystal garnet scintillators

    NASA Astrophysics Data System (ADS)

    Fujimoto, Yutaka; Yanagida, Takayuki; Yagi, Hideki; Yanagidani, Takagimi; Chani, Valery

    2014-10-01

    Scintillation properties associated with intrinsic lattice defects of undoped Y3A5O12 (YAG) and Lu3A5O12 (LuAG) transparent ceramics and single crystals are compared. The ceramics excited with X-ray demonstrated relatively low emission intensity when compared with that of the single crystals. Decay times of the ceramics and the single crystals were similar. These parameters were approximately 430 ns (YAG ceramic), 460 ns (YAG single crystal), 30 ns and 1090 ns (LuAG ceramic), and 25 ns and 970 ns (LuAG single crystal). According to the pulse height spectra recorded under 137Cs gamma-ray irradiation, the scintillation light yield of the both ceramics were about 2950 ± 290 ph/MeV. However, the single crystals had greater kight yield of about about 14,300 ± 1430 ph/MeV for YAG and 8350 ± 830 ph/MeV for LuAG.

  20. Controlled Synthesis of Polymer Brushes via Polymer Single Crystal Templates

    NASA Astrophysics Data System (ADS)

    Zhou, Tian

    A novel synthetic method of polymer brushes using polymer single crystals (PSCs) as solid-state templates is introduced in this study. PSC has a quasi-2D lamellae structure with polymer chains fold back-and-forth perpendicular to the lamellae surfaces. During crystallization, the chain ends are excluded from the unit cell onto the lamellae surfaces, which makes the material extremely versatile in its functionality. Such structure holds the unique capability to harvest nanoparticles, or being immobilized onto macroscopic flat surfaces. After dissolving PSCs in good solvent, polymer brushes are chemically tethered on either nanoparticles or flat macroscopic surfaces. Because the chain-folding structure can be conveniently tailored by changing the molecular weight of polymer and the crystallization temperature, the thickness, grafting density and morphology of resulted polymer brushes can be precisely controlled. As a model system, poly(?-caprolactone) with thiol or alkoxysilane terminal groups was used, and polymer brushes were successfully prepared on both nanoparticles and glass/Au flat surfaces. The structure-property relationships of the as-prepared polymer brushes were studied in detail using multiple characterization techniques. First of all, when functionalizing nanoparticles, by engineering the chain-folding structure of the PSCs, interesting complex nanostructures can be formed by nanoparticles including Janus nanoparticles and nanoparticle dimers. These unique structures render hybrid nanoparticles very interesting responsive behavior which have been studied in detail in this dissertation. When grafted onto a flat surface on the other hand, not only the molecular weight and grafting density can be precisely controlled, the tethering points of a single polymer chain can also be conveniently tailored, resulting polymer brushes with either tail or loop structures. Such difference in brush structure can significantly alter the properties of functional surface. By using atomic force microscopy based force spectroscopy (AFM-FS) and macroscale shear adhesion measurements, it is thus demonstrated that when polymer loops are grafted, the surface could exhibit much stronger adhesion compared with regular polymer tails when free-dangling polymer chains are allowed to interact with the surface, which is believed to mimic the Velcro-like behavior where polymer loops can withhold strong entanglement with free chain ends upon breaking of the physical bonding.

  1. Structure of cleaved (001) USb2 single crystal

    SciTech Connect

    Chen, Shao-ping; Hawley, Marilyn; Bauer, Eric D; Stockum, Phil B; Manoharan, Hari C

    2009-01-01

    We have achieved what we believe to be the first atomic resolution STM images for a uranium compound taken at room temperature. The a, b, and c lattice parameters in the images confirm that the USb{sub 2} crystals cleave on the (001) basal plane as expected. The a and b dimensions were equal, with the atoms arranged in a cubic pattern. Our calculations indicate a symmetric cut between Sb planes to be the most favorable cleavage plane and U atoms to be responsible for most of the DOS measured by STM. Some strange features observed in the STM will be discussed in conjunction with ab initio calculations. The purpose of this work is to demonstrate the power of scanning tunneling microscopy (STM) techniques combined with a theoretical underpinning to determine the surface atomic structure and properties of actinide materials, such as the quasi 2-dimensional uranium dipnictide USb{sub 2} single crystal, thereby contributing to the understanding of their surface structural and electronic properties. The members of this interesting UX{sub 2} (X=P, As, Sb, Bi) series of compounds display dual localized and itinerant 5f electron behavior within the same compound due to the hybridization of the 5f orbitals with the conduction band. With the exception of UO{sub 2}, which has to be studied at elevated temperature to generate enough carriers for STM imaging, STM techniques have not been applied successfully to the characterization of the surface atomic structure of any other single crystal actinide compound, to the best of our knowledge. However, STM has been used to a limited extent for the study of some cerium compounds. STM probes electronic properties at the atomic level and can directly provide information about the local density of filled and empty states (LDOS) states simultaneously. A STM topograph provides the local atomic arrangement and spacing of the atoms on the surface, local defect structures (e.g. steps, vacancies, and kink sites) and the presence of contaminants, all of which are averaged over when probed in photoemission studies. The quasi two-dimensional USb{sub 2} has a layered tetragonal structure that is easily cleaved and has been extensively studied by a number of different techniques, such as resistivity, Hall effect measurements, photoemission and angle-resolved photoemission spectroscopy, de Haas-van Alphen, neutron diffraction, nuclear magnetic resonance, and U{sup 238} Mossbauer spectroscopy techniques. Here, we provide local information about the surfaces of this interesting compound, which we find to contain a high density of defects.

  2. Shock-induced optical emission from yttria-doped cubic zircon single crystal: crystal orientation effects

    NASA Astrophysics Data System (ADS)

    Cao, Xiuxia; Zhou, Xianming; Meng, Chuanmin

    2015-06-01

    The shock-induced optical emission from yttria (Y2O3) -doped cubic zircon single crystal (< 100 > and < 110 > crystal orientations) under the pressure range from 30 to 52 GPa was measured by the time-resolved 40-channel optical pyrometer at discrete wavelengths ranging from 400 to 800 nm. Clear periodic fluctuation was observed in spectral radiance history of < 110 > ZrO2, while a noise fluctuation was found in < 100 > ZrO2. The gray-body function was used to fit the spectral radiance histories. We found that the obtained apparent temperature varied slightly with time, but the emissivity history showed a fluctuate increase with time. Moreover, all the temperature data were independent of shock stress and were well above the calculated Lindeman melting temperature. Present result suggests that the optical emission relates to the shock-induced local hot spots, and its crystal orientation effect is attributed to the different dynamic deformation response between < 100 > and < 110 > ZrO2.

  3. Quasi-single crystal SiGe on insulator by Au-induced crystallization for flexible electronics

    NASA Astrophysics Data System (ADS)

    Sadoh, Taizoh; Park, Jong-Hyeok; Aoki, Rikuta; Miyao, Masanobu

    2016-03-01

    Orientation-controlled large-grain (≥10 µm) crystal, i.e., quasi-single crystal, Ge-rich (≥50%) SiGe on insulator grown at low temperatures (≤300 °C) are desired for realization of high-performance flexible electronics. To achieve this, the Au-induced crystallization technique using a-SiGe/Au stacked structures has been developed. This enables formation of (111)-oriented large-grain (≥10 µm) Si1‑xGex (x ≥ 0.5) crystals on insulating substrates at low temperatures (300 °C). The surface layers of the grown SiGe crystals have uniform lateral composition profiles. By using this technique, formation of quasi-single crystal Ge on flexible plastic sheets is demonstrated. This technique will be useful to realize high-performance flexible electronics.

  4. Phase Diagram for Nanostructuring CaF2 Surfaces by Slow Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    El-Said, A. S.; Wilhelm, R. A.; Heller, R.; Facsko, S.; Lemell, C.; Wachter, G.; Burgdörfer, J.; Ritter, R.; Aumayr, F.

    2012-09-01

    The impact of individual slow highly charged ions (HCI) on alkaline earth halide and alkali halide surfaces creates nano-scale surface modifications. For different materials and impact energies a wide variety of topographic alterations have been observed, ranging from regularly shaped pits to nanohillocks. We present experimental evidence for the creation of thermodynamically stable defect agglomerations initially hidden after irradiation but becoming visible as pits upon subsequent etching. A well defined threshold separating regions with and without etch-pit formation is found as a function of potential and kinetic energies of the projectile. Combining this novel type of surface defects with the previously identified hillock formation, a phase diagram for HCI induced surface restructuring emerges. The simulation of the energy deposition by the HCI in the crystal provides insight into the early stages of the dynamics of the surface modification and its dependence on the kinetic and potential energies.

  5. Growth and characterization of isotopically enriched [sup 70]Ge and [sup 74]Ge single crystals

    SciTech Connect

    Itoh, K.

    1992-10-01

    Isotopically enriched [sup 70]Ge and [sup 74]Ge single crystals were successfully gown by a newly developed vertical Bridgman method. The system allows us to reliably grow high purity Ge single crystals of approximately 1 cm[sup 3] volume. To our knowledge, we have grown the first [sup 70]Ge single crystal. The electrically active chemical impurity concentration for both crystals was found to be [approximately]2 [times] cm[sup [minus]3] which is two order of magnitude better that of [sup 74]Ge crystals previously grown by two different groups. Isotopic enrichment of the [sup 70]Ge and the [sup 74]Ge crystals is 96.3% and 96.8%, respectively. The residual chemical impurities present in both crystals were identified as phosphorus, copper, aluminum, and indium. A wide variety of experiments which take advantage of the isotopic purity of our crystals are discussed.

  6. Growth and characterization of isotopically enriched {sup 70}Ge and {sup 74}Ge single crystals

    SciTech Connect

    Itoh, K.

    1992-10-01

    Isotopically enriched {sup 70}Ge and {sup 74}Ge single crystals were successfully gown by a newly developed vertical Bridgman method. The system allows us to reliably grow high purity Ge single crystals of approximately 1 cm{sup 3} volume. To our knowledge, we have grown the first {sup 70}Ge single crystal. The electrically active chemical impurity concentration for both crystals was found to be {approximately}2 {times} cm{sup {minus}3} which is two order of magnitude better that of {sup 74}Ge crystals previously grown by two different groups. Isotopic enrichment of the {sup 70}Ge and the {sup 74}Ge crystals is 96.3% and 96.8%, respectively. The residual chemical impurities present in both crystals were identified as phosphorus, copper, aluminum, and indium. A wide variety of experiments which take advantage of the isotopic purity of our crystals are discussed.

  7. Deposition of Cu atoms on a Pb single crystal surface

    NASA Astrophysics Data System (ADS)

    Chladek, J.; Betz, G.

    Surface alloying and the growth of submonolayer films was studied for the system Cu-Pb using the Molecular Dynamics (MD) technique. Cu atoms at thermal energies were deposited on Pb(100) and Pb(111) surfaces near room temperature. For the Cu-Cu and Pb-Pb interactions different many-body potentials were used. The Cu-Pb interaction was derived from pure element interactions using different models proposed in the literature, such as weighted and simple-arithmetic mean of the dimer potentials. The results of the simulations were compared against each other as well as experimental results from the literature using Scanning Tunnelling Microscopy (STM). Despite the known bulk immiscibility of Pb in Cu, during early stages of growth the following behaviour was observed: at very low deposition stages single Cu atoms move into the Pb surface layer. At higher coverage Cu atoms agglomerate forming islands. However, these islands are partly submerged into the crystal (up to 3 layers deep) and are covered by Pb atoms on top. No Cu atoms remain in the top surface layer. Thus in agreement with STM results from the literature Cu deposited on Pb grows in subsurface islands, which are several monolayer thick and covered by a single Pb layer. These results were obtained independently from the used interaction potential, but differences in the details exist. Finally, to give a detailed insight into the embedding process, space trajectories of Cu atoms were monitored.

  8. Kinetics of the single-crystal to single-crystal two-photon photodimerization of alpha-trans-cinnamic acid to alpha-truxillic acid.

    PubMed

    Benedict, Jason B; Coppens, Philip

    2009-04-01

    The quadratic dependence of the rate of photodimerization of alpha-trans-cinnamic acid induced by 532 nm pulsed laser light confirms a two-photon mechanism in the single crystals. Single crystals in well-defined orientations and circularly polarized light were used in the experiments. The reaction rate deviates from first-order kinetics, but fits the JMAK expression with a coefficient indicating a mechanism intermediate between a random distribution of product molecules in the crystal and the existence of growing nuclei. The reaction is accompanied by a large change in the monoclinic beta-angle of the unit cell, corresponding to increased pi-overlap between adjacent molecules and therefore to an increased reaction rate. The improved penetration of the light in the crystal and more homogeneous product formation are significant advantages in studies of mechanisms of chemical reactions in single crystals. PMID:19256472

  9. Neodymium-doped graded-index single-crystal fibre lasers

    SciTech Connect

    Bufetova, G A; Kashin, V V; Nikolaev, D A; Rusanov, S Ya; Seregin, V F; Tsvetkov, V B; Shcherbakov, Ivan A; Yakovlev, A A E-mail: tsvetkov@lsk.gpi.r

    2006-07-31

    The efficient technology is developed for growing high-quality doped single-crystal fibres by the mini-pedestal method with laser heating. The technology can be used to fabricate high-quality doped single-crystal fibres with a controllable radial gradient of the refractive index. The refractive-index profile in single-crystal fibres is studied experimentally. The efficient operation of a Nd{sup 3+} : YAG single-crystal fibre laser in the waveguide regime was demonstrated upon longitudinal pumping by a laser diode. (special issue devoted to the 90th anniversary of a.m. prokhorov)

  10. Single-crystal GaN/AlN layers on CVD diamond

    NASA Astrophysics Data System (ADS)

    Khrykin, O. I.; Drozdov, Yu. N.; Drozdov, M. N.; Yunin, P. A.; Shashkin, V. I.; Bogdanov, S. A.; Muchnikov, A. B.; Vikharev, A. L.; Radishev, D. B.

    2015-10-01

    Original approach to fabricating a GaN/AlN/nanocrystalline diamond structure has been suggested and implemented. The stages of deposition of a structure of this kind include the following: (a) growth of nanocrystalline CVD-diamond on single-crystal AlN (preliminarily grown on a silicon substrate), (b) etch removal of the silicon substrate, and (c) growth of single-crystal GaN on the surface of single-crystal AlN. Single-crystal gallium nitride with a width of the X-ray rocking curve for the (0002) reflection of 0.35° was obtained on a nanocrystalline-diamond substrate.

  11. Electron paramagnetic resonance study of radiation damage in isonipecotic acid single crystal

    NASA Astrophysics Data System (ADS)

    Caliskan, Betul; Caliskan, Ali Cengiz; Yerli, Rabia

    2014-10-01

    The electron spin resonance spectra of the radical produced by gamma-irradiation of a single crystal of isonipecotic acid (piperidine-4-carboxylic acid) were reported, and the structure of the radical was discussed. Isonipecotic acid single crystals were exposed to 60Co-gamma irradiation at room temperature. The irradiated single crystals were investigated by Electron Paramagnetic Resonance (EPR) Spectroscopy between 115 K and 300 K. The spectra were found to be temperature independent. The g values of the radiation damage center observed in isonipecotic acid single crystal and the hyperfine structure constants of the free electron with nearby protons were obtained.

  12. Structural and optical properties of Cd2+ ion on the growth of sulphamic acid single crystals

    NASA Astrophysics Data System (ADS)

    Rajyalakshmi, S.; Rao, Valluru Srinivasa; Reddy, P. V. S. S. S. N.; Krishna, V. Y. Rama; Samatha, K.; Rao, K. Ramachandra

    2016-05-01

    Transparent single crystals of Cadmium doped Sulphamic acid (SA) was grown by Conventional slow evaporation solution technique (SEST) which had the size of 13 × 8 × 7 mm3. The grown single crystals have been characterized using single crystal X-ray diffraction UV-visible Spectral studies and Second harmonic generation (SHG) efficiency and the results were discussed. The lattice parameters of the grown Cd2+ ion doped SA crystal are confirmed by single crystal X-ray diffraction and belong to orthorhombic system. Optical transmittance of the crystal was recorded using UV-vis NIR spectrophotometer with its lower cut off wavelength around 259nm. SHG measurements indicate that the SHG efficiency of the grown Cd2+ ion doped SA crystal at a fundamental wavelength of 1064 nm is approximately equal to KDP.

  13. Enhanced Catalysis Activity in a Coordinatively Unsaturated Cobalt-MOF Generated via Single-Crystal-to-Single-Crystal Dehydration.

    PubMed

    Ren, Hai-Yun; Yao, Ru-Xin; Zhang, Xian-Ming

    2015-07-01

    Hydrothermal reaction of Co(NO3)2 and terphenyl-3,2",5",3'-tetracarboxyate (H4tpta) generated Co3(OH)2 chains based 3D coordination framework Co3(OH)2(tpta)(H2O)4 (1) that suffered from single-crystal-to-single-crystal dehydration by heating at 160 °C and was transformed into dehydrated Co3(OH)2(tpta) (1a). During the dehydration course, the local coordination environment of part of the Co atoms was transformed from saturated octahedron to coordinatively unsaturated tetrahedron. Heterogenous catalytic experiments on allylic oxidation of cyclohexene show that dehydrated 1a has 6 times enhanced catalytic activity than as-synthesized 1 by using tert-butyl hydroperoxide (t-BuOOH) as oxidant. The activation energy for the oxidation of cylcohexene with 1a catalyst was 67.3 kJ/mol, far below the value with 1 catalysts, which clearly suggested that coordinatively unsaturated Co(II) sites in 1a have played a significant role in decreasing the activation energy. It is interestingly found that heterogeneous catalytic oxidation of cyclohexene in 1a not only gives the higher conversion of 73.6% but also shows very high selectivity toward 2-cyclohexene-1-one (ca. 64.9%), as evidenced in high turnover numbers (ca. 161) based on the open Co(II) sites of 1a catalyst. Further experiments with a radical trap indicate a radical chain mechanism. This work demonstrates that creativity of coordinatively unsaturated metal sites in MOFs could significantly enhance heterogeneous catalytic activity and selectivity. PMID:26046376

  14. Studies on the Growth, Spectral, Optical and Thermal Properties of 4-NITROANILINE Picrate Single Crystals

    NASA Astrophysics Data System (ADS)

    Sivakumar, P. K.; Kumar, M. Krishna; Kumar, R. Mohan; Kanagadurai, R.

    2013-12-01

    In this paper, an organic 4-nitroaniline picrate (4NP) single crystal was grown by solution growth method. Single crystal X-ray diffraction study revealed that grown crystal belongs to orthorhombic system with Pbcn space group. The solid state constants such as plasma energy, Penn gap, Fermi energy and polarizability of 4NP crystal were determined theoretically. The functional groups of the grown crystals were confirmed qualitatively from FTIR spectral analysis. The thermal decomposition and melting point of the crystal were determined from thermogravimetric analysis. The optical absorption and cut-off wavelength of the crystal were determined from UV-visible study. The second harmonic generation (SHG) efficiency of the grown crystal was measured by Kurtz-Perry SHG test using Nd:YAG laser. The laser damage threshold value of the grown crystal was estimated by multi-shot method using 1064 nm laser.

  15. Investigation on crystalline perfection, mechanical, piezoelectric and ferroelectric properties of L-tartaric acid single crystal

    NASA Astrophysics Data System (ADS)

    Murugan, G. Senthil; Ramasamy, P.

    2014-04-01

    Polar organic nonlinear optical material, L-tartaric acid single crystals have been grown from slow evaporation solution growth technique. Single crystal X-ray diffraction study indicates that the grown crystal crystallized in monoclinic system with space group P21. Crystalline perfection of the crystal has been evaluated by high resolution X-ray diffraction technique and it reveals that the crystal quality is good and free from structural grain boundaries. Mechanical stability of the crystal has been analyzed by Vickers microhardness measurement and it exhibits reverse indentation size effect. Piezoelectric d33 co-efficient for the crystal has been examined and its value is 47 pC/N. The ferroelectric behaviour of the crystal was analyzed by polarization-electric field hysteresis loop measurement.

  16. Investigation on crystalline perfection, mechanical, piezoelectric and ferroelectric properties of L-tartaric acid single crystal

    SciTech Connect

    Murugan, G. Senthil Ramasamy, P.

    2014-04-24

    Polar organic nonlinear optical material, L-tartaric acid single crystals have been grown from slow evaporation solution growth technique. Single crystal X-ray diffraction study indicates that the grown crystal crystallized in monoclinic system with space group P2{sub 1}. Crystalline perfection of the crystal has been evaluated by high resolution X-ray diffraction technique and it reveals that the crystal quality is good and free from structural grain boundaries. Mechanical stability of the crystal has been analyzed by Vickers microhardness measurement and it exhibits reverse indentation size effect. Piezoelectric d{sub 33} co-efficient for the crystal has been examined and its value is 47 pC/N. The ferroelectric behaviour of the crystal was analyzed by polarization-electric field hysteresis loop measurement.

  17. Polymorphic single crystal {r_reversible} single crystal transition in K{sub 0.975}Rb{sub 0.025}NO{sub 3}

    SciTech Connect

    Asadov, Yu. G. Nasirov, E. V.

    2010-09-15

    Polymorphic transformations in K{sub 0.975}Rb{sub 0.025}NO{sub 3} single crystals have been investigated by optical microscopy and X-ray diffraction. The equilibrium temperature between modifications II and III has been determined. It is established that the crystal growth at II {r_reversible} III polymorphic transitions is accompanied by the formation and growth of daughter-modification nuclei in the matrix crystal.

  18. Phase-field modeling on morphological landscape of isotactic polystyrene single crystals.

    PubMed

    Xu, Haijun; Matkar, Rushikesh; Kyu, Thein

    2005-07-01

    Spatio-temporal growth of isotactic polystyrene single crystals during isothermal crystallization has been investigated theoretically based on the phase field model by solving temporal evolution of a nonconserved phase order parameter coupled with a heat conduction equation. In the description of the total free energy, an asymmetric double-well local free energy density has been adopted to represent the metastable melt and the stable solid crystal. Unlike the small molecule systems, polymer crystallization rarely reaches thermodynamic equilibrium; most polymer crystals are kinetically stabilized in some metastable states. To capture various metastable polymer crystals, the phase field crystal order parameter at the solidification potential has been treated to be supercooling dependent such that it can assume an intermediate value between zero (melt) and unity (perfect crystal), reflecting imperfect polycrystalline nature of polymer crystals. Two-dimensional simulations exhibit various single crystal morphologies of isotactic polystyrene crystals such as faceted hexagonal patterns transforming to nonfaceted snowflakes with increasing supercooling. Of particular interest is that heat liberation from the crystallizing front influences the curvature of the crystal-melt interface, leading to directional growth of lamellar tips and side branches. The landscape of these morphological textures has been established as a function of anisotropy of surface energy and supercooling. With increasing supercooling and decreasing anisotropy, the hexagonal single crystal transforms to the dense lamellar branching morphology in conformity with the experimental findings. PMID:16089990

  19. Fabrication of Single Crystal MgO Capsules

    NASA Technical Reports Server (NTRS)

    Danielson, Lisa

    2012-01-01

    A method has been developed for machining MgO crystal blocks into forms for containing metallic and silicate liquids at temperatures up to 2,400 C, and pressures up to at least 320 kilobars. Possible custom shapes include tubes, rods, insulators, capsules, and guides. Key differences in this innovative method include drilling along the crystallographic zone axes, use of a vibration minimizing material to secure the workpiece, and constant flushing of material swarf with a cooling medium/lubricant (water). A single crystal MgO block is cut into a section .5 mm thick, 1 cm on a side, using a low-speed saw with a 0.004 blade. The cut is made parallel to the direction of cleavage. The block may be cut to any thickness to achieve the desired length of the piece. To minimize drilling vibrations, the MgO block is mounted on a piece of adhesive putty in a vise. The putty wad cradles the bottom half of the entire block. Diamond coring tools are used to drill the MgO to the desired custom shape, with water used to wet and wash the surface of swarf. Compressed air may also be used to remove swarf during breaks in drilling. The MgO workpiece must be kept cool at all times with water. After all the swarf is rinsed off, the piece is left to dry overnight. If the workpiece is still attached to the base of the MgO block after drilling, it may be cut off by using a diamond cutoff wheel on a rotary hand tool or by using a low-speed saw.

  20. Single-crystal II-VI on Si single-junction and tandem solar cells

    NASA Astrophysics Data System (ADS)

    Carmody, M.; Mallick, S.; Margetis, J.; Kodama, R.; Biegala, T.; Xu, D.; Bechmann, P.; Garland, J. W.; Sivananthan, S.

    2010-04-01

    CdTe is one of the leading materials used in solar photovoltaics. However, the maximum reported CdTe cell efficiencies are considerably lower than the theoretically expected efficiencies for the ˜1.48 eV CdTe band gap. We report a class of single crystal CdTe-based solar cells grown epitaxially on crystalline Si that show promise for enhancing the efficiency and greatly lowering the cost per watt of single-junction and multijunction solar cells. The current-voltage results for our CdZnTe on Si solar cells show open-circuit voltages significantly higher than previously reported for any II-VI cells and as close to the thermodynamic limit as the best III-V-based cells.

  1. Broadband single-polarization single-mode photonic crystal fibers with three different background materials.

    PubMed

    Li, Hui; Li, Shu-guang; Li, Jian-She; Zhang, Wan; An, Guo-Wen

    2015-04-01

    A modified structure of single-polarization single-mode (SPSM) photonic crystal fiber (PCF) with different background materials is presented and analyzed by using the full-vector finite-element method. Simulation results confirmed that the proposed PCF can realize low-loss SPSM on three wavebands with the same structure and different background materials. The wavebands are 1.46-1.60 μm for silica-based fiber, 1.97-2.3 μm for lead silicate glass fiber, and 3.16-3.58 μm for chalcogenide glass fiber. For three PCFs with different background materials, only the slow-axis mode exists and the confinement loss is less than 100 dB/m in the SPSM wavebands. PMID:25967199

  2. Investigation of Advanced Processed Single-Crystal Turbine Blade Alloys

    NASA Technical Reports Server (NTRS)

    Peters, B. J.; Biondo, C. M.; DeLuca, D. P.

    1995-01-01

    This investigation studied the influence of thermal processing and microstructure on the mechanical properties of the single-crystal, nickel-based superalloys PWA 1482 and PWA 1484. The objective of the program was to develop an improved single-crystal turbine blade alloy that is specifically tailored for use in hydrogen fueled rocket engine turbopumps. High-gradient casting, hot isostatic pressing (HIP), and alternate heat treatment (HT) processing parameters were developed to produce pore-free, eutectic-free microstructures with different (gamma)' precipitate morphologies. Test materials were cast in high thermal gradient solidification (greater than 30 C/cm (137 F/in.)) casting furnaces for reduced dendrite arm spacing, improved chemical homogeneity, and reduced interdendritic pore size. The HIP processing was conducted in 40 cm (15.7 in.) diameter production furnaces using a set of parameters selected from a trial matrix study. Metallography was conducted on test samples taken from each respective trial run to characterize the as-HIP microstructure. Post-HIP alternate HT processes were developed for each of the two alloys. The goal of the alternate HT processing was to fully solution the eutectic gamma/(gamma)' phase islands and to develop a series of modified (gamma)' morphologies for subsequent characterization testing. This was accomplished by slow cooling through the (gamma)' solvus at controlled rates to precipitate volume fractions of large (gamma)'. Post-solution alternate HT parameters were established for each alloy providing additional volume fractions of finer precipitates. Screening tests included tensile, high-cycle fatigue (HCF), smooth and notched low-cycle fatigue (LCF), creep, and fatigue crack growth evaluations performed in air and high pressure (34.5 MPa (5 ksi)) hydrogen at room and elevated temperature. Under the most severe embrittling conditions (HCF and smooth and notched LCF in 34.5 MPa (5 ksi) hydrogen at 20 C (68 F), screening test results showed increases in fatigue life typically on the order of 1OX, when compared to the current Space Shuttle Main Engine (SSME) Alternate Turbopump (AT) blade alloy (PWA 1480).

  3. SINGLE-CRYSTAL SAPPHIRE OPTICAL FIBER SENSOR INSTRUMENTATION

    SciTech Connect

    A. Wang; G. Pickrell; R. May

    2002-09-10

    Accurate measurement of temperature is essential for the safe and efficient operation and control of a wide range of industrial processes. Appropriate techniques and instrumentation are needed depending on the temperature measurement requirements in different industrial processes and working environments. Harsh environments are common in many industrial applications. These harsh environments may involve extreme physical conditions, such as high-temperature, high-pressure, corrosive agents, toxicity, strong electromagnetic interference, and high-energy radiation exposure. Due to these severe environmental conditions, conventional temperature sensors are often difficult to apply. This situation has opened a new but challenging opportunity for the sensor society to provide robust, high-performance, and cost-effective temperature sensors capable of operating in those harsh environments. The focus of this research program has been to develop a temperature measurement system for temperature measurements in the primary and secondary stages of slagging gasifiers. For this application the temperature measurement system must be able to withstand the extremely harsh environment posed by the high temperatures and corrosive agents present in these systems. Real-time, accurate and reliable monitoring of temperature for the coal gasification process is important to realize the full economic potential of these gasification systems. Long life and stability of operation in the high temperature environment is essential for the temperature measurement system to ensure the continuous running of the coal gasification system over the long term. In this high temperature and chemically corrosive environment, rather limited high temperature measurement techniques such as high temperature thermocouples and optical/acoustic pyrometers are available, each with their own limitations. In this research program, five different temperature sensing schemes based on the single crystal sapphire material were thoroughly investigated to determine an optimal approach for on-line, real-time, reliable, long-term monitoring of temperatures inside the coal gasification environment. Among these were a sapphire fiber extrinsic Fabry-Perot interferometric (EFPI) sensor; an intensity-measurement based polarimetric sapphire sensor and a broadband polarimetric differential interferometric (BPDI) sapphire sensor. Based on the current evaluation and analysis of the experimental results, the broadband polarimetric differential interferometric (BPDI) sensor system was chosen for further prototype instrumentation development because of it's superior performance compared to the other systems. This approach is based on the self-calibrating measurement of the optical path length differences in a single-crystal sapphire disk, which is a function of both the temperature dependent birefringence and the temperature dependent dimensional changes.

  4. A viscoplastic model with application to LiF-22 percent CaF2 hypereutectic salt

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Walker, K. P.

    1990-01-01

    A viscoplastic model for class M (metal-like behavior) materials is presented. One novel feature is its use of internal variables to change the stress exponent of creep (where n is approximately = 5) to that of natural creep (where n = 3), in accordance with experimental observations. Another feature is the introduction of a coupling in the evolution equations of the kinematic and isotropic internal variables, making thermal recovery of the kinematic variable implicit. These features enable the viscoplastic model to reduce to that of steady-state creep in closed form. In addition, the hardening parameters associated with the two internal state variables (one scalar-valued, the other tensor-valued) are considered to be functions of state, instead of being taken as constant-valued. This feature enables each internal variable to represent a much wider spectrum of internal states for the material. The model is applied to a LiF-22 percent CaF2 hypereutectic salt, which is being considered as a thermal energy storage material for space-based solar dynamic power systems.

  5. Void lattice formation in electron irradiated CaF2: Statistical analysis of experimental data and cellular automata simulations

    NASA Astrophysics Data System (ADS)

    Zvejnieks, G.; Merzlyakov, P.; Kuzovkov, V. N.; Kotomin, E. A.

    2016-02-01

    Calcium fluoride (CaF2) is an important optical material widely used in both microlithography and deep UV windows. It is known that under certain conditions electron beam irradiation can create therein a superlattice consisting of vacancy clusters (called a void lattice). The goal of this paper is twofold. Firstly, to perform a quantitative analysis of experimental TEM images demonstrating void lattice formation, we developed two distinct image filters. As a result, we can easily calculate vacancy concentration, vacancy cluster distribution function as well as average distances between defect clusters. The results for two suggested filters are similar and demonstrate that experimental void cluster growth is accompanied by a slight increase of the void lattice constant. Secondly, we proposed a microscopic model that allows us to reproduce a macroscopic void ordering, in agreement with experimental data, and to resolve existing theoretical and experimental contradictions. Our computer simulations demonstrate that macroscopic void lattice self-organization can occur only in a narrow parameter range. Moreover, we studied the kinetics of a void lattice ordering, starting from an initial disordered stage, in a good agreement with the TEM experimental data.

  6. Crystal growth, spectral, optical, laser damage, photoconductivity and dielectric properties of semiorganic L-cystine hydrochloride single crystal.

    PubMed

    Chandran, Senthil Kumar; Paulraj, Rajesh; Ramasamy, P

    2015-12-01

    The semiorganic single crystals of l-cystine hydrochloride have been grown by slow evaporation solution growth technique at 40C. The grown crystals were subjected to single crystal XRD, FTIR, optical absorbance, laser damage threshold, photoluminescence, photoconductivity and dielectric studies. Single crystal XRD studies reveal that the crystal belongs to monoclinic system with space group C2 and the lattice parameters are a=18.63 (), b=5.28 (), c=7.26 (), ?=90, ?=103.70, ?=90 and V=696 ((3)). FTIR spectroscopy confirms that a band at 1731 cm(-1) represents characteristic of ?-amino acid hydrochlorides. The UV-Vis-NIR absorption spectrum was analyzed and the optical band gap energy was found to be 3.8eV. The crystal exhibits sharp emission peak at 388 nm. The thermal characteristics of crystals were studied by TG-DTA, which indicate that there is no weight loss up to 201C. Surface laser damage threshold value of title compound was estimated using high power Q-switched Nd:YAG laser operating at 1064 nm. Dielectric and photoconductivity studies were also carried out for the grown crystals. PMID:26151431

  7. Growth of bulk single crystal of N-acetyl DL-methionine and its spectral characterization

    NASA Astrophysics Data System (ADS)

    Moovendaran, K.; Natarajan, S.

    2015-01-01

    Bulk size single crystal of N-acetyl DL-methionine (C7H13NO3S) (1) was grown using a home-made crystal growth setup (MKN setup). The identity of the grown crystal was confirmed by single crystal X-ray diffraction. The modes of vibrations of the functional groups present were assigned using the infrared (IR) spectrum. UV-vis-NIR spectra showed that the crystals have excellent transparency in the visible and infrared regions. The thermal stability and decomposition of the sample was studied by using thermal analysis (TGA/DTA). Photoluminescence excitation studies showed that the emission occurred at 350 nm for the compound.

  8. Crystal growth and mechanical hardness of In2Se2.7Sb0.3 single crystal

    NASA Astrophysics Data System (ADS)

    Patel, Piyush; Vyas, S. M.; Patel, Vimal; Pavagadhi, Himanshu; Solanki, Mitesh; Jani, Maunik P.

    2015-08-01

    The III-VI compound semiconductors is important for the fabrication of ionizing radiation detectors, solid-state electrodes, and photosensitive heterostructures, solar cell and ionic batteries. In this paper, In2Se2.7 Sb0.3 single crystals were grown by the Bridgman method with temperature gradient of 60 °C/cm and the growth velocity 0.5cm/hr. The as-grown crystals were examined under the optical microscope for surface study, a various growth features observed on top free surface of the single crystal which is predominant of layers growth mechanism. The lattice parameters of as-grown crystal was determined by the XRD analysis. A Vickers' projection microscope were used for the study of microhardness on the as-cleaved, cold-worked and annealed samples of the crystals, the results were discussed, and reported in detail.

  9. Growth of CsLiB6O10 thin films on Si substrate by pulsed laser deposition using SiO2 and CaF2 as buffer layers

    NASA Astrophysics Data System (ADS)

    Yeo, J. S.; Akella, A.; Huang, T. F.; Hesselink, L.

    1998-03-01

    CsLiB6O10 (CLBO) thin films are grown on Si (100) and (111) substrates using lower index SiO2 and CaF2 as buffer layers by pulsed KrF (248 nm) excimer laser ablation of stoichiometric CLBO targets over a temperature range of 425 to 725°C. A CaF2 buffer layer is grown on Si by laser ablation while SiO2 is prepared by standard thermal oxidation. From extended x-ray analysis, it is determined that CaF2 is growth with preferred orientation on Si (100) at temperatures lower than 525°C while on Si (111) substrate, CaF2 is grown epitaxially over the temperature range; this agrees well with observed reflection high energy electron diffraction patterns. X-ray 2θ-scans indicate that crystalline CLBO are grown on SiO2/Si and CaF2/Si (100). Analysis of reflectance spectra from CLBO/SiO2/Si yields the absorption edge at 182 nm. Surface roughness of the CaF2 and CLBO/CaF2/Si film are 19 and 15 nm, respectively. This relatively rough surface caused by the ablation of wide bandgap CaF2 and CLBO limits the application of CLBO for waveguiding measurement.

  10. Single Mode Approximation Spectrum for a Quantum Hall Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Lapilli, Cintia; Wexler, Carlos

    2004-03-01

    The single mode approximation (SMA) has been a useful tool for the determination of the excitation spectra of various systems. For example, Feynman used it successfully for the calculation of the spectrum of sound waves in superfluid ^4He [1]. Within the quantum Hall effect (and using the appropriate projected density operators corresponding to give the dynamics in a single Landau level), Girvin, MacDonald and Platzman successfully used it to calculate the spectrum in the fractional quantum Hall effect [2]. For this talk we consider the excitation spectrum of a quantum Hall liquid crystal by considering nematic, tetratic, and hexatic generalizations of Laughlin's trial wave function [3] having two-, four- and six-fold broken rotational symmetry (BRS) respectively. We perform extensive Monte Carlo simulations to compute the density-coupled spectrum of these liquid crystalline states in the lowest, first- and second-excited Landau levels. We find significant angular dependence of the spectrum with a singular behavior for long wavelengths and considerable deepening of the magneto-rotons as the anisotropy is increased. [1] R.P. Feynman, Phys. Rev. 91, 1291 (1953); ibid 1301 (1953); R.P. Feynman and M. Cohen, Phys. Rev. 102, 1189 (1956). [2] S.M. Girvin, A.H. MacDonald, and P.M. Platzman, Phys. Rev. Lett. 54, 581 (1985); Phys. Rev. B 33, 2481 (1986). [3] R.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983). [4] See, e.g., preceeding abstract and: O. Ciftja and C. Wexler, Phys. Rev. B 65, 045306 (2002); C. Wexler and O. Ciftja, Journal of Physics: Condensed Matter 14, 3705 (2002); A.J. Schmidt, O. Ciftja, and C. Wexler; Phys. Rev. B 67, 155315 (2003).

  11. Vibronic coupling in the lanthanide difluoroacetate single crystals

    NASA Astrophysics Data System (ADS)

    Oczko, Grażyna

    2002-08-01

    The purpose of this work is to study the spectroscopic behaviour of the europium difluoroacetate single crystal—Eu(HF 2CCOO) 3·3H 2O and to compare it to those for the light (Pr, Nd) and heavy (Er) lanthanide difluoroacetates. Electronic spectroscopic investigations point to low symmetry for the neighbouring surrounding of Ln 3+ ions and, in spite of that, vibronic coupling is experimentally observed in these systems. With view to determine the coupling quantitatively, the calculations of rates R= IVIB/ I0-phonon from absorption spectra were performed. The emphasis is given to the 3H 4→ 3F 2; 3P 2; 3P 0, 4I 9/2→ 4G 5/2; 2P 1/2, 7F 0→ 5D 2 and 4I 15/2→ 2H 11/2; 4G 11/2; 4F 7/2 transitions of the Pr 3+, Nd 3+, Eu 3+ and Er 3+ ions, respectively. The presented rates for lanthanide difluoroacetate reproduce the known observation that the vibronic coupling is stronger in the beginning (Pr 3+, Nd 3+), weaker at the centre (Eu 3+) and again a little stronger at the end (Er 3+) of the lanthanide ion series. Furthermore, the contribution of both (M and Δ) mechanisms to the intensity of vibronic transitions for Pr 3+ ions was concluded. The results for PrBr 3·7H 2O single crystals are also included in analysis of vibronic coupling for Pr 3+ ion.

  12. The kinetics of hydrogen diffusion in single crystal orthopyroxene

    NASA Astrophysics Data System (ADS)

    Carpenter, Susan Jean

    The kinetics of hydrogen diffusion in single crystals of orthopyroxene were investigated parallel to the [100], [010] and [001] crystallographic directions during dehydration and hydrogenation. The two groups of samples investigated spanned a range of metal composition, most notably iron, 4.5--8.5 wt % FeO, and aluminum, 2.1--3.5 wt % Al2O3; the aluminum was bound in both regular metal sites (AlVI) and in tetrahedral sites (AlIV). Xenolithic crystals from the San Carlos, Arizona, region contain on average, about 5.3 wt % FeO and 2.4 wt % Al2O3, and the gem-quality crystals from Sri Lanka contain between 4.5 and 8.5 wt % FeO, and between 2.1 and 3.6 wt % Al 2O3. Dehydration was performed in a 1 atm gas-mixing furnace at temperatures between 800 and 1100°C, using mixtures of CO and CO 2 to maintain the oxygen fugacity at 10-14 atm, close to the nickel/nickel oxide (NNO) solid buffer. Hydrogenation was performed in a piston-cylinder apparatus at 1 GPa within the same range of temperatures, using welded platinum capsules to contain the samples, water and NNO solid buffer. After a heating event, samples were polished so that the central region of the crystal could be analyzed. Changes in hydrogen concentration as a function of heating time were plotted as hydroxyl concentration profiles across the central sections of the samples, obtained by using polarized FTIR spectroscopy with the electric vector E, oriented parallel to the c crystallographic direction, the direction in which hydroxyl dipoles in clinopyroxene are primarily oriented. Hydrogen diffusivities were obtained by fitting the hydroxyl concentration profiles to theoretical profiles generated by finite solution numerical modeling for diffusion within a finite slab to/from an infinite source. During dehydration, hydrogen diffusion was found to be anisotropic in San Carlos enstatite and isotropic in the Sri Lankan samples, with more rapid hydrogen diffusion occurring in the Sri Lankan samples that contain greater amounts of iron. Expressed as Arrhenius relations, hydrogen diffusivities parallel to c, the fastest direction of diffusion, are DEN = 1.63 x 10-5 exp[-161 +/- 17 kJ/mol/RT] m2s-1 for San Carlos enstatite, D OPX 14 = 9.12 x 10-5 exp[-195 +/- 48 kJ/mol/RT] m2s-1 for Sri Lankan orthopyroxene containing the lowest amounts of iron, and D OPX 11 = 91.4 exp[-326 +/- 27 kJ/mol/RT] m2s-1, for Sri Lankan orthopyroxene containing the greatest amounts of iron. The mechanism of hydrogen diffusion in orthopyroxene is believed to be that postulated by Skogby and Rossman (1989), i.e., a coupled redox reaction that incorporates (or releases) hydrogen with a concurrent change in the oxidation state of iron. In all cases, hydrogen diffusivities are approximately 30--100 times lower than those determined for San Carlos olivine and Jaipur diopside (Mackwell and Kohlstedt, 1990 and Woods et al., 2000), and it is concluded that the presence of aluminum is most likely responsible for the difference in behavior as a result of higher binding energies of protons to aluminum than in aluminum free systems. (Abstract shortened by UMI.)

  13. Study of growth of single crystal ribbon in space

    NASA Technical Reports Server (NTRS)

    Wood, V. E.; Markworth, A. J.

    1975-01-01

    The technical feasibility is studied of growing single-crystal silicon ribbon in the space environment. Procedures are described for calculating the electromagnetic fields produced in a silicon ribbon by an rf shaping coil. The forces on the ribbon and the degree of shaping to be expected are determined. The expected steady-state temperature distribution in the ribbon is calculated in the one-dimensional approximation. Calculations on simplified models indicate, that lack of flatness of the shaped ribbon and excessive heating of the melt by the eddy currents induced by the shaping fields may pose problems. An analysis of the relative effects of various kinds of forces other than electromagnetic showed that in the space environment capillarity forces would dominate, and that the shape of the melt is thus principally determined by the shape of any solids with which it comes in contact. This suggests that ribbon may be produced simply by drawing between parallel wires. A concept is developed for a process of off-angle growth, in which the ribbon is pulled at an angle to the solidification front. Such a process promises to offer increased growth rate, better homogeneity, and thinner ribbon.

  14. Tilted optical trapping of anisotropic single crystal nanorod (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Brule-Bareil, Paul; Sheng, Yunlong

    2015-08-01

    When a nanorod of typically d=100's nm diameter and h=1-3 micrometers length trapped in the optical tweezers, its orientation is along the trapping beam axis for h/d > 2 and is normal to beam axis for h/d < 2. We report the preliminary experimental observation that some anisotropic single crystal nanorod was stably trapped at a tiled angle to the beam axis. We explain the observation with the T-matrix calculation. In the anisotropic media, as the divergence of is non zero, the conventional vector spherical wave functions (VSWFs) do not individually satisfy the anisotropic vector wave equation. Some new bases, such as the modified VSWFS and qVSWF, have been proposed. Notice that the anisotropic nanorod is floating in the aquatic isotropic medium, we make the VSWF expansions of the incident and scattered fields in terms of, and the VSWF expansion of internal field in the anisotropic nanorod in terms of. Both expansions are therefore legitimate. The boundary condition was chosen as for the normal components of. The internal field is represented as a sum of a set of compoment VSWF expansions to gave better description with more expansion coefficients and to help the convergence of the T-matrix solver. Our calculation showed that when the optical axes of an anisotropic nanorod are not aligned to the nanorod axis, the nanorod may be trapped at a tilted angle position where the lateral torque is zero and its derivative is negative.

  15. Radiation tolerance of piezoelectric bulk single-crystal aluminum nitride

    SciTech Connect

    David A. Parks; Bernhard R. Tittmann

    2014-07-01

    For practical use in harsh radiation environments, we pose selection criteria for piezoelectric materials for nondestructive evaluation (NDE) and material characterization. Using these criteria, piezoelectric aluminum nitride is shown to be an excellent candidate. The results of tests on an aluminumnitride-based transducer operating in a nuclear reactor are also presented. We demonstrate the tolerance of single-crystal piezoelectric aluminum nitride after fast and thermal neutron fluences of 1.85 × 1018 neutron/cm2 and 5.8 × 1018 neutron/cm2, respectively, and a gamma dose of 26.8 MGy. The radiation hardness of AlN is most evident from the unaltered piezoelectric coefficient d33, which measured 5.5 pC/N after a fast and thermal neutron exposure in a nuclear reactor core for over 120 MWh, in agreement with the published literature value. The results offer potential for improving reactor safety and furthering the understanding of radiation effects on materials by enabling structural health monitoring and NDE in spite of the high levels of radiation and high temperatures, which are known to destroy typical commercial ultrasonic transducers.

  16. Ultraviolet Laser-induced ignition of RDX single crystal

    NASA Astrophysics Data System (ADS)

    Yan, Zhonghua; Zhang, Chuanchao; Liu, Wei; Li, Jinshan; Huang, Ming; Wang, Xuming; Zhou, Guorui; Tan, Bisheng; Yang, Zongwei; Li, Zhijie; Li, Li; Yan, Hongwei; Yuan, Xiaodong; Zu, Xiaotao

    2016-02-01

    The RDX single crystals are ignited by ultraviolet laser (355 nm, 6.4 ns) pulses. The laser-induced damage morphology consisted of two distinct regions: a core region of layered fracture and a peripheral region of stripped material surrounding the core. As laser fluence increases, the area of the whole crack region increases all the way, while both the area and depth of the core region increase firstly, and then stay stable over the laser fluence of 12 J/cm2. The experimental details indicate the dynamics during laser ignition process. Plasma fireball of high temperature and pressure occurs firstly, followed by the micro-explosions on the (210) surface, and finally shock waves propagate through the materials to further strip materials outside and yield in-depth cracks in larger surrounding region. The plasma fireball evolves from isotropic to anisotropic under higher laser fluence resulting in the damage expansion only in lateral direction while maintaining the fixed depth. The primary insights into the interaction dynamics between laser and energetic materials can help developing the superior laser ignition technique.

  17. Growth and characterization of RFe_6Ge6 single crystals

    NASA Astrophysics Data System (ADS)

    Avila, M. A.; Bud'Ko, S. L.; Canfield, P. C.

    2003-03-01

    The RFe_6Ge6 family of magnetic compounds is formed by the positioning of a rare earth element (and a few other metals) in between Fe planes of the parent FeGe structure. The Fe ions are reported to order ferromagnetically within each plane, but anti-ferromagnetically between neighboring planes. Thus, there is a cancellation of the net magnetic field due to Fe at the rare earth site and the compounds display independent ordering of the Fe and R sublattices, the former occurring above 400 K and the latter occurring well below 100 K (Ryan and Cadogan, J. Appl. Phys. 79 (1996) 6004). We have successfully obtained the first flux-grown single crystals for several members of this family, which allow for a better understanding of the anisotropic ground state and other properties of this series. Characterizations by X-Ray diffraction, temperature and field dependent magnetization, specific heat and resistivity will be presented and discussed. We acknowledge the help of R. A. Ribeiro and C. Petrovic in the X-Ray measurements. Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No. W-7405-Eng-82. This work was supported by the Director for Energy Research, Office of Basic Energy Sciences.

  18. Crack tip plasticity in single crystal UO2: Atomistic simulations

    SciTech Connect

    Yongfeng Zhang; Paul C. Millett; Michael Tonks; Bulent Biner; Xiang-Yang Liu; David A. Andersson

    2012-11-01

    The fracture behavior of single crystal uranium dioxide is studied using molecular dynamics simulations at room temperature. Initially, an elliptical notch is created on either {111} or {110} planes, and tensile loading is applied normal to the crack planes. For cracks on both planes, shielding of crack tips by plastic deformation is observed, and crack extension occurs for crack on {111} planes only. Two plastic processes, dislocation emission and phase transformation are identified at crack tips. The dislocations have a Burgers vector of ?110?/2, and glide on {100} planes. Two metastable phases, the so-called Rutile and Scrutinyite phases, are identified during the phase transformation, and their relative stability is confirmed by separate density- functional-theory calculations. Examination of stress concentration near crack tips reveals that dislocation emission is not an effective shielding mechanism. The formation of new phases may effectively shield the crack provided all phase interfaces formed near the crack tips are coherent, as in the case of cracks residing on {110} planes.

  19. Lithium niobate miniature lasers and single-crystal fibers

    SciTech Connect

    Cordova-Plaza, A.

    1988-01-01

    LiNbO{sub 3} is a widely used optical material because of its excellent electro-optic and nonlinear properties. By doping LiNbO{sub 3} with an active ion such as Nd, laser oscillation and amplification are added to the panoply of LiNbO{sub 3} device possibilities. Furthermore, by providing LiNbO{sub 3} devices with the waveguide confinement of single-crystal fibers, their performance can be significantly improved. Chapter 1 introduces the subject. Chapter 2 is devoted to miniature continuous-wave Nd:MgO:LiNbO{sub 3} lasers. Important results are the first demonstration of room-temperature, true continuous-wave laser oscillation in Nd-doped LiNbO{sub 3} and the first demonstration of diode-pumped laser action in this material. The Nd:MgO:LiNbO{sub 3} lasers exhibited pump power thresholds (1.9 mW) and slope efficiencies (45%) that are among the state-of-the-art in solid state lasers. Chapter 2 also contains a detailed study on photoconductivity. It explains how the addition of MgO eliminates photorefractive damage. Chapter 3 studies Q-switched laser operation in Nd:MgO:LiNbO{sub 3}. Q-switching consists of generating very intense, nanosecond pulses by rapidly switching the cavity loss.

  20. SHG in DASMS single-crystal film producing ultraviolet

    NASA Astrophysics Data System (ADS)

    Ahyi, Ayayi; Khatavkar, Sanchit; Thakur, Mrinal

    2002-03-01

    Single-crystal film of the molecular salt, DASMS (noncentrosymmetric phase), has been grown using the modified shear method.^1 The DASMS film is orange in color, showing strong birefringence. The absorption spectrum of DASMS has a maximum at 590 nm, with the onset at about 600 nm and continuing to UV but with a dip around 400 nm. Such a spectrum allows efficient SHG at short wavelengths (400 nm). A Ti:Sapphire laser producing 200 fs pulses at 82 MHz with an average power of 50mW was used for the SHG experiment. The fundamental wavelength was 760nm giving SHG at 380 nm corresponding to the dip in the absorption spectrum. The beam was focused on the film using a 4" focal length lens. From the power measurements, an efficiency of 0.1% in SHG has been observed in a 1μm thick film indicating that the magnitude of d-coefficient is larger than 2000 pm/V. 1. M. Thakur and S. Meyler, Macromolecules, 18 2341 (1985); M. Thakur, Y. Shani, G.C. Chi and K. O'Brien, Synth. Met., 28 D595 (1989).