Science.gov

Sample records for caga epiya tyrosine

  1. Application of PCR amplicon sequencing using a single primer pair in PCR amplification to assess variations in Helicobacter pylori CagA EPIYA tyrosine phosphorylation motifs

    PubMed Central

    2010-01-01

    Background The presence of various EPIYA tyrosine phosphorylation motifs in the CagA protein of Helicobacter pylori has been suggested to contribute to pathogenesis in adults. In this study, a unique PCR assay and sequencing strategy was developed to establish the number and variation of cagA EPIYA motifs. Findings MDA-DNA derived from gastric biopsy specimens from eleven subjects with gastritis was used with M13- and T7-sequence-tagged primers for amplification of the cagA EPIYA motif region. Automated capillary electrophoresis using a high resolution kit and amplicon sequencing confirmed variations in the cagA EPIYA motif region. In nine cases, sequencing revealed the presence of AB, ABC, or ABCC (Western type) cagA EPIYA motif, respectively. In two cases, double cagA EPIYA motifs were detected (ABC/ABCC or ABC/AB), indicating the presence of two H. pylori strains in the same biopsy. Conclusion Automated capillary electrophoresis and Amplicon sequencing using a single, M13- and T7-sequence-tagged primer pair in PCR amplification enabled a rapid molecular typing of cagA EPIYA motifs. Moreover, the techniques described allowed for a rapid detection of mixed H. pylori strains present in the same biopsy specimen. PMID:20181142

  2. Simple Method for Determination of the Number of Helicobacter pylori CagA Variable-Region EPIYA Tyrosine Phosphorylation Motifs by PCR

    PubMed Central

    Argent, Richard H.; Zhang, Youli; Atherton, John C.

    2005-01-01

    Helicobacter pylori strains possessing the cag pathogenicity island are associated with the development of gastric cancer. The CagA protein is translocated into epithelial cells and becomes phosphorylated on tyrosine residues within EPIYA motifs, which may be repeated within the variable region of the protein. Strains possessing CagA with greater numbers of these repeats have been more closely associated with gastric carcinogenesis. Phosphorylated CagA leads to epithelial cell elongation, which is dependent on the number of variable-region EPIYA motifs. Thus, determination of the degree of CagA phosphorylation and the number of EPIYA motifs appears to be more important than detection of cagA alone. Determination of the number of EPIYA motifs by nucleotide sequencing, however, is a laborious and expensive process. We describe here a novel and rapid PCR method for determination of the pattern of repeats containing the EPIYA motif. This will aid in the identification of those strains that may be more likely to cause disease. PMID:15695681

  3. Prevalence of cagA EPIYA motifs in Helicobacter pylori among dyspeptic patients in northeast Thailand.

    PubMed

    Chomvarin, Chariya; Phusri, Karnchanawadee; Sawadpanich, Kookwan; Mairiang, Pisaln; Namwat, Wises; Wongkham, Chaisiri; Hahnvajanawong, Chariya

    2012-01-01

    The aims of this study were to determine the prevalence of cagA type in Helicobacter pylori isolated from dyspeptic patients in northeastern Thailand and to determine whether the pattern of cagA EPIYA motifs were associated with clinical outcomes. One hundred and forty-seven H. pylori-infected dyspeptic patients were enrolled, of whom 68 had non-ulcer dyspepsia (NUD), 57 peptic ulcer disease (PUD), 18 gastric cancer (GCA), and 4 other gastroduodenal diseases. PCR and DNA sequence analysis were used to determine the cagA genotype and the pattern of EPIYA motifs. cagA-positive H. pylori were identified in 138 (94%) of H. pylori-infected dyspeptic patients of whom 75 (54%) were of the Western-type, 44 (32%) the East Asian type and 19 (14%) of the other types. The Western type is significantly found in PUD patients (p = 0.0175). The majority of cagA EPIYA was EPIYA-ABC (43%) and EPIYA-ABD (28%). There is no significant correlation between the increase in number of EPIYA-C motifs and clinical outcomes. Thus, the most frequent cagA type found among northeastern Thai dyspeptic patients was the Western cagA type, which is significantly associated with PUD indicating a possible predictive parameter for clinical outcome. PMID:23082560

  4. Strategy To Characterize the Number and Type of Repeating EPIYA Phosphorylation Motifs in the Carboxyl Terminus of CagA Protein in Helicobacter pylori Clinical Isolates▿ †

    PubMed Central

    Panayotopoulou, Effrosini G.; Sgouras, Dionyssios N.; Papadakos, Konstantinos; Kalliaropoulos, Antonios; Papatheodoridis, George; Mentis, Andreas F.; Archimandritis, Athanasios J.

    2007-01-01

    Cytotoxin-associated gene A (CagA) diversity with regard to EPIYA-A, -B, -C, or -D phosphorylation motifs may play an important role in Helicobacter pylori pathogenesis, and therefore determination of these motifs in H. pylori clinical isolates can become a useful prognostic tool. We propose a strategy for the accurate determination of CagA EPIYA motifs in clinical strains, based upon one-step PCR amplification using primers that flank the EPIYA coding region. We thus analyzed 135 H. pylori isolates derived from 75 adults and 60 children Greek patients. A total of 34 cases were found to be EPIYA PCR negative and were consequently verified as cagA negative by cagA-specific PCR, empty-site cagA PCR, and Western blotting. Sequencing of the remaining 101 PCR-positive amplicons confirmed that an accurate prediction of the number of EPIYA motifs on the basis of size distribution of the PCR products was feasible in all cases. Furthermore, our assay could identify closely related H. pylori subclones within the same patient, harboring different numbers of EPIYA repeats. The prevalence of CagA proteins with three EPIYA motifs (ABC) or four EPIYA motifs (ABCC) was the same within the adult and children groups. However, CagA species with more than four EPIYA motifs were observed exclusively within adults (8.6%), suggesting that CagA-positive strains may acquire additional EPIYA-C motifs throughout adulthood. Our strategy requires no initial cagA screening of the clinical isolates and can accurately predict the number of EPIYA repeats in single or multiple closely related subclones bearing different numbers of EPIYA motifs in their CagA, which may coexist within the same patient. PMID:17151214

  5. A specific A/T polymorphism in Western tyrosine phosphorylation B-motifs regulates Helicobacter pylori CagA epithelial cell interactions.

    PubMed

    Zhang, Xue-Song; Tegtmeyer, Nicole; Traube, Leah; Jindal, Shawn; Perez-Perez, Guillermo; Sticht, Heinrich; Backert, Steffen; Blaser, Martin J

    2015-02-01

    Helicobacter pylori persistently colonizes the human stomach, with mixed roles in human health. The CagA protein, a key host-interaction factor, is translocated by a type IV secretion system into host epithelial cells, where its EPIYA tyrosine phosphorylation motifs (TPMs) are recognized by host cell kinases, leading to multiple host cell signaling cascades. The CagA TPMs have been described as type A, B, C or D, each with a specific conserved amino acid sequence surrounding EPIYA. Database searching revealed strong non-random distribution of the B-motifs (including EPIYA and EPIYT) in Western H. pylori isolates. In silico analysis of Western H. pylori CagA sequences provided evidence that the EPIYT B-TPMs are significantly less associated with gastric cancer than the EPIYA B-TPMs. By generating and using a phosphorylated CagA B-TPM-specific antibody, we demonstrated the phosphorylated state of the CagA B-TPM EPIYT during H. pylori co-culture with host cells. We also showed that within host cells, CagA interaction with phosphoinositol 3-kinase (PI3-kinase) was B-TPM tyrosine-phosphorylation-dependent, and the recombinant CagA with EPIYT B-TPM had higher affinity to PI3-kinase and enhanced induction of AKT than the isogenic CagA with EPIYA B-TPM. Structural modeling of the CagA B-TPM motif bound to PI3-kinase indicated that the threonine residue at the pY+1 position forms a side-chain hydrogen bond to N-417 of PI3-kinase, which cannot be formed by alanine. During co-culture with AGS cells, an H. pylori strain with a CagA EPIYT B-TPM had significantly attenuated induction of interleukin-8 and hummingbird phenotype, compared to the isogenic strain with B-TPM EPIYA. These results suggest that the A/T polymorphisms could regulate CagA activity through interfering with host signaling pathways related to carcinogenesis, thus influencing cancer risk. PMID:25646814

  6. Role of Helicobacter pylori cagA EPIYA motif and vacA genotypes for the development of gastrointestinal diseases in Southeast Asian countries: a meta-analysis

    PubMed Central

    2012-01-01

    Background Infection with cagA-positive, cagA EPIYA motif ABD type, and vacA s1, m1, and i1 genotype strains of Helicobacter pylori is associated with an exacerbated inflammatory response and increased risk of gastroduodenal diseases. However, it is unclear whether the prevalence and virulence factor genotypes found in Southeast Asia are similar to those in Western countries. Here, we examined the cagA status and prevalence of cagA EPIYA motifs and vacA genotypes among H. pylori strains found in Southeast Asia and examined their association with gastroduodenal disease. Methods To determine the cagA status, cagA EPIYA motifs, and vacA genotypes of H. pylori, we conducted meta-analyses of 13 previous reports for 1,281 H. pylori strains detected from several Southeast Asian countries. Results The respective frequencies of cagA-positive and vacA s1, m1, and i1 genotypes among examined subjects were 93% (1,056/1,133), 98% (1,010/1,033), 58% (581/1,009), and 96% (248/259), respectively. Stratification showed significant variation in the frequencies of cagA status and vacA genotypes among countries and the individual races residing within each respective country. The frequency of the vacA m-region genotype in patients infected with East Asian-type strains differed significantly between the northern and southern areas of Vietnam (p < 0.001). Infection with vacA m1 type or cagA-positive strains was associated with an increased risk of peptic ulcer disease (odds ratio: 1.46, 95%CI: 1.01-2.12, p = 0.046 and 2.83, 1.50-5.34, p = 0.001, respectively) in the examined Southeast Asian populations. Conclusions Both Western- and East Asian-type strains of H. pylori are found in Southeast Asia and are predominantly cagA-positive and vacA s1 type. In Southeast Asia, patients infected with vacA m1 type or cagA-positive strains have an increased risk of peptic ulcer disease. Thus, testing for this genotype and the presence of cagA may have clinical usefulness. PMID

  7. Five-year monitoring of considerable changes in tyrosine phosphorylation motifs of the Helicobacter pylori cagA gene in Iran.

    PubMed

    Kargar, Mohammad; Ghorbani-Dalini, Sadegh; Doosti, Abbas; Najafi, Akram

    2014-08-01

    CagA is a major virulence factor of Helicobacter pylori involved in host cell modulation. The C-terminal part of CagA containing the EPIYA motifs is highly variable and is important for the biological activity of the protein. The aim of this study was consideration of the changes in cagA tyrosine phosphorylation motifs (TPMs) of H. pylori. A set of 302 H. pylori DNA samples from the Iranian population from 2006 to 2011 was selected for the proposed study. The cagA gene and its TPMs were assessed by using polymerase chain reaction (PCR) and specific primers. The prevalence of the cagA gene in our study ranged from 91.43% to 97.06% (with an average of 95.03%). Out of the cagA-positive samples, the prevalence of TPMs A and B increased from 12.5% and 23.44% to 71.2% and 63.63%, respectively. Also, the prevalence of samples infected with Western and East Asian types of H. pylori ranged from 64.06% to 5.73% for the Western type and 17.19% to 51.59% for the East Asian type. Overall, our results showed a high prevalence of the cagA gene. Also, it seems that cagA TPMs of H. pylori is undergoing a change from the Western type to the East Asian type in Iran. PMID:24771298

  8. Analysis of the 3' variable region of the cagA gene of Helicobacter pylori isolated in Koreans.

    PubMed

    Choi, Kee Don; Kim, Nayoung; Lee, Dong Ho; Kim, Jung Mogg; Kim, Joo Sung; Jung, Hyun Chae; Song, In Sung

    2007-04-01

    CagA protein of Helicobacter pylori is injected into epithelial cells, and it undergoes tyrosine phosphorylation, resulting in inducing cytoskeletal rearrangements. A few studies have suggested that the number of CagA tyrosine phosphorylation motifs (EPIYA) and subtypes of CagA were associated with gastric cancer. This study was performed to characterize the 3' variable regions of the cagA gene of H. pylori and to investigate whether or not there is any relationship between the diversities of cagA and the disease outcome in Korea. Seventy-nine patients (chronic gastritis, 15; duodenal ulcer, 27; benign gastric ulcer, 18; gastric cancer, 19) were enrolled. Biopsy specimens were taken from the antrum for H. pylori culture, and genomic DNA was extracted. PCR and DNA sequence analysis was carried out for the 3' variable region of the cagA gene. Seventy-eight strains (98.8%) contained three EPIYA motifs and one strain (1.2%) isolated from a patient with duodenal ulcer contained four EPIYA motifs. Seventy-six strains (96.2%) were the East Asian type. In conclusion, there was no significant difference between the number of EPIYA motifs or CagA subtypes and various gastroduodenal diseases in Korea. PMID:17342405

  9. Tyrosine Phosphorylation of CagA from Chinese Helicobacter pylori Isolates in AGS Gastric Epithelial Cells

    PubMed Central

    Zhang, Youli; Argent, Richard H.; Letley, Darren P.; Thomas, Rachael J.; Atherton, John C.

    2005-01-01

    Helicobacter pylori strains possessing the cag pathogenicity island (PaI) are associated with the development of gastroduodenal diseases, including gastric cancer. cag PaI products induce the secretion of interleukin-8 (IL-8) from epithelial cells and facilitate the translocation of CagA into the cell cytosol. In East Asia, where the incidence of gastric cancer is high, most strains possess the cag PaI. To date, however, no cag PaI phenotypic data have been provided for strains isolated in mainland China. Here we used 31 Chinese strains to determine the genotypic and phenotypic status of the cag PaI. All strains possessed cagA and cagE, and we observed a variation in the length of cagA variable regions. Nucleotide sequencing of the cagA variable region revealed that CagA was of two types, a short “Western” form with two tyrosine phosphorylation sites and a longer “East Asian” form with three tyrosine phosphorylation sites. Coculture of strains with AGS epithelial cells showed that strains could induce IL-8 secretion from the cells and that CagA with three phosphorylation sites became more phosphorylated than that with two and could induce significantly (P < 0.001) more cells to elongate. We hypothesize that the preponderance of the more active East Asian form of cagA may underlie the high rate of gastric cancer in China. PMID:15695680

  10. Helicobacter pylori CagA protein polymorphisms and their lack of association with pathogenesis

    PubMed Central

    Acosta, Nicole; Quiroga, Andrés; Delgado, Pilar; Bravo, María Mercedes; Jaramillo, Carlos

    2010-01-01

    AIM: To investigate Helicobacter pylori (H. pylori) CagA diversity and to evaluate the association between protein polymorphisms and the occurrence of gastric pathologies. METHODS: One hundred and twenty-two clinical isolates of H. pylori cultured from gastric biopsies obtained from Colombian patients with dyspepsia were included as study material. DNA extracted from isolates was used to determine cagA status, amplifying the C-terminal cagA gene region by polymerase chain reaction. One hundred and six strains with a single amplicon were sequenced and results were used to characterize the 3’ variable region of the cagA gene. To establish the number and type of tyrosine phosphorylation motifs Glutamine acid-Proline-Isoleucine-Tyrosine-Alanine (EPIYA) bioinformatic analysis using Amino Acid Sequence Analyzer-Amino Acid Sequence Analyzer software was conducted. Analysis of the association between the number of EPIYA motifs and the gastric pathology was performed using χ2 test and analysis of the presence of EPIYA-C motifs in relation to the pathology was made by logistic regression odds ratios. Comparisons among EPIYA types found and those reported in GenBank were performed using a proportion test in Statistix Analytical Software version 8.0. RESULTS: After amplification of the 3’ of the cagA gene, 106 from 122 isolates presented a single amplicon and 16 showed multiple amplicons. As expected, diversity in the size of the cagA unique fragments among isolates was observed. The 106 strains that presented a single amplicon after 3’ cagA amplification came from patients with gastritis (19 patients), atrophic gastritis (21), intestinal metaplasia (26), duodenal ulcer (22) and gastric cancer. DNA sequence analysis showed that the differences in size of 3’ cagA unique fragments was attributable to the number of EPIYA motifs: 1.9% had two EPIYA motifs, 62.3% had three, 33.0% had four and 2.8% had five motifs. The majority of tested clinical strains (62.3%) were found

  11. C-terminal Src kinase-mediated EPIYA phosphorylation of Pragmin creates a feed-forward C-terminal Src kinase activation loop that promotes cell motility.

    PubMed

    Senda, Yoshie; Murata-Kamiya, Naoko; Hatakeyama, Masanori

    2016-07-01

    Pragmin is one of the few mammalian proteins containing the Glu-Pro-Ile-Tyr-Ala (EPIYA) tyrosine-phosphorylation motif that was originally discovered in the Helicobacter pylori CagA oncoprotein. Following delivery into gastric epithelial cells by type IV secretion and subsequent tyrosine phosphorylation at the EPIYA motifs, CagA serves as an oncogenic scaffold/adaptor that promiscuously interacts with SH2 domain-containing mammalian proteins such as the Src homology 2 (SH2) domain-containing protein tyrosine phosphatase-2 (SHP2) and the C-terminal Src kinase (Csk), a negative regulator of Src family kinases. Like CagA, Pragmin also forms a physical complex with Csk. In the present study, we found that Pragmin directly binds to Csk by the tyrosine-phosphorylated EPIYA motif. The complex formation potentiates kinase activity of Csk, which in turn phosphorylates Pragmin on tyrosine-238 (Y238), Y343, and Y391. As Y391 of Pragmin comprises the EPIYA motif, Pragmin-Csk interaction creates a feed-forward regulatory loop of Csk activation. Together with the finding that Pragmin and Csk are colocalized to focal adhesions, these observations indicate that the Pragmin-Csk interaction, triggered by Pragmin EPIYA phosphorylation, robustly stimulates the kinase activity of Csk at focal adhesions, which direct cell-matrix adhesion that regulates cell morphology and cell motility. As a consequence, expression of Pragmin and/or Csk in epithelial cells induces an elongated cell shape with elevated cell scattering in a manner that is mutually dependent on Pragmin and Csk. Deregulation of the Pragmin-Csk axis may therefore induce aberrant cell migration that contributes to tumor invasion and metastasis. PMID:27116701

  12. Conformational Analysis of Isolated Domains of Helicobacter pylori CagA

    PubMed Central

    Alonso, Hernan; Saijo-Hamano, Yumiko; Kwok, Terry; Roujeinikova, Anna

    2013-01-01

    The CagA protein of Helicobacter pylori is associated with increased virulence and gastric cancer risk. CagA is translocated into the host cell by a H. pylori type IV secretion system via mechanisms that are poorly understood. Translocated CagA interacts with numerous host factors, altering a variety of host signalling pathways. The recently determined crystal structure of C-terminally-truncated CagA indicated the presence of two domains: the smaller, flexible N-terminal domain and the larger, middle domain. In this study, we have investigated the conformation, oligomeric state and stability of the N-terminal, middle and glutamate-proline-isoleucine-tyrosine-alanine (EPIYA)-repeats domains. All three domains are monomeric, suggesting that the multimerisation of CagA observed in infected cells is likely to be mediated not by CagA itself but by its interacting partners. The middle and the C-terminal domains, but not the N-terminal domain, are capable of refolding spontaneously upon heat denaturation, lending support to the hypothesis that unfolded CagA is threaded C-terminus first through the type IV secretion channel with its N-terminal domain, which likely requires interactions with other domains to refold, being threaded last. Our findings also revealed that the C-terminal EPIYA-repeats domain of CagA exists in an intrinsically disordered premolten globule state with regions in PPII conformation - a feature that is shared by many scaffold proteins that bind multiple protein components of signalling pathways. Taken together, these results provide a deeper understanding of the physicochemical properties of CagA that underpin its complex cellular and oncogenic functions. PMID:24223932

  13. Natural variant of the Helicobacter pylori CagA oncoprotein that lost the ability to interact with PAR1.

    PubMed

    Hashi, Kana; Murata-Kamiya, Naoko; Varon, Christine; Mégraud, Francis; Dominguez-Bello, Maria Gloria; Hatakeyama, Masanori

    2014-03-01

    Helicobacter pylori strains carrying the cagA gene are associated with severe disease outcomes, most notably gastric cancer. CagA protein is delivered into gastric epithelial cells by a type IV secretion system. The translocated CagA undergoes tyrosine phosphorylation at the C-terminal EPIYA motifs by host cell kinases. Tyrosine-phosphorylated CagA acquires the ability to interact with and activate SHP2, thereby activating mitogenic signaling and inducing cell morphological transformation (hummingbird phenotype). CagA also interacts with PAR1b via the CM sequence, resulting in induction of junctional and polarity defects. Furthermore, CagA-PAR1b interaction stabilizes the CagA-SHP2 complex. Because transgenic mice systemically expressing CagA develop gastrointestinal and hematological malignancies, CagA is recognized as a bacterium-derived oncoprotein. Interestingly, the C-terminal region of CagA displays a large diversity among H. pylori strains, which influences the ability of CagA to bind to SHP2 and PAR1b. In the present study, we investigated the biological activity of v225d CagA, an Amerindian CagA of H. pylori isolated from a Venezuelan Piaroa Amerindian subject, because the variant CagA does not possess a canonical CM sequence. We found that v225d CagA interacts with SHP2 but not PAR1b. Furthermore, SHP2-binding activity of v225d CagA was much lower than that of CagA of H. pylori isolated from Western countries (Western CagA). v225d CagA also displayed a reduced ability to induce the hummingbird phenotype than that of Western CagA. Given that perturbation of PAR1b and SHP2 by CagA underlies the oncogenic potential of CagA, the v225d strain is considered to be less oncogenic than other well-studied cagA-positive H. pylori strains. PMID:24354359

  14. CagA Phosphorylation in Helicobacter pylori-Infected B Cells Is Mediated by the Nonreceptor Tyrosine Kinases of the Src and Abl Families.

    PubMed

    Krisch, Linda M; Posselt, Gernot; Hammerl, Peter; Wessler, Silja

    2016-09-01

    CagA is one of the most important virulence factors of the human pathogen Helicobacter pylori CagA expression can be associated with the induction of severe gastric disorders such as gastritis, ulceration, gastric cancer, or mucosa-associated lymphoid tissue (MALT) lymphoma. After translocation through a type IV secretion system into epithelial cells, CagA is tyrosine phosphorylated by kinases of the Src and Abl families, leading to drastic cell elongation and motility. While the functional role of CagA in epithelial cells is well investigated, knowledge about CagA phosphorylation and its associated signal transduction pathways in B cells is only marginal. Here, we established the B cell line MEC1 derived from a B cell chronic lymphocytic leukemia (B-CLL) patient as a new infection model to study the signal transduction in B cells controlled by H. pylori We observed that CagA was rapidly injected, strongly tyrosine phosphorylated, and cleaved into a 100-kDa N-terminal and a 40-kDa C-terminal fragment. To identify upstream signal transduction pathways of CagA phosphorylation in MEC1 cells, pharmacological inhibitors were employed to specifically target Src and Abl kinases. We observed that CagA phosphorylation was strongly inhibited upon treatment with an Src inhibitor and slightly diminished when the Abl kinase inhibitor imatinib mesylate (Gleevec) was applied. The addition of dasatinib to block c-Abl and Src kinases led to a complete loss of CagA phosphorylation. In conclusion, these results demonstrate an important role for Src and Abl tyrosine kinases in CagA phosphorylation in B cells, which represent druggable targets in H. pylori-mediated gastric MALT lymphoma. PMID:27382024

  15. CagA Phosphorylation in Helicobacter pylori-Infected B Cells Is Mediated by the Nonreceptor Tyrosine Kinases of the Src and Abl Families

    PubMed Central

    Krisch, Linda M.; Posselt, Gernot; Hammerl, Peter

    2016-01-01

    CagA is one of the most important virulence factors of the human pathogen Helicobacter pylori. CagA expression can be associated with the induction of severe gastric disorders such as gastritis, ulceration, gastric cancer, or mucosa-associated lymphoid tissue (MALT) lymphoma. After translocation through a type IV secretion system into epithelial cells, CagA is tyrosine phosphorylated by kinases of the Src and Abl families, leading to drastic cell elongation and motility. While the functional role of CagA in epithelial cells is well investigated, knowledge about CagA phosphorylation and its associated signal transduction pathways in B cells is only marginal. Here, we established the B cell line MEC1 derived from a B cell chronic lymphocytic leukemia (B-CLL) patient as a new infection model to study the signal transduction in B cells controlled by H. pylori. We observed that CagA was rapidly injected, strongly tyrosine phosphorylated, and cleaved into a 100-kDa N-terminal and a 40-kDa C-terminal fragment. To identify upstream signal transduction pathways of CagA phosphorylation in MEC1 cells, pharmacological inhibitors were employed to specifically target Src and Abl kinases. We observed that CagA phosphorylation was strongly inhibited upon treatment with an Src inhibitor and slightly diminished when the Abl kinase inhibitor imatinib mesylate (Gleevec) was applied. The addition of dasatinib to block c-Abl and Src kinases led to a complete loss of CagA phosphorylation. In conclusion, these results demonstrate an important role for Src and Abl tyrosine kinases in CagA phosphorylation in B cells, which represent druggable targets in H. pylori-mediated gastric MALT lymphoma. PMID:27382024

  16. CagA C-terminal variations in Helicobacter pylori strains from Colombian patients with gastric precancerous lesions

    PubMed Central

    Sicinschi, L. A.; Correa, P.; Peek, R. M.; Camargo, M. C.; Piazuelo, M. B.; Romero-Gallo, J.; Hobbs, S. S.; Krishna, U.; Delgado, A.; Mera, R.; Bravo, L. E.; Schneider, B. G.

    2010-01-01

    The C-terminus of the Helicobacter pylori CagA protein is polymorphic, bearing different EPIYA sequences (EPIYA-A, B, C or D), and one or more CagA multimerization (CM) motifs. The number of EPIYA-C motifs is associated with precancerous lesions and gastric cancer (GC). The relationship between EPIYA, CM motifs and gastric lesions was examined in H. pylori-infected Colombian patients from areas of high and low risk for GC. Genomic DNA was extracted from H. pylori strains cultured from gastric biopsies from 80 adults with dyspeptic symptoms. Sixty-seven (83.8%) of 80 strains were cagA positive. The 3′ region of cagA was sequenced, and EPIYA and CM motifs were identified. CagA proteins contained one (64.2%), two (34.3%) or three EPIYA-C motifs (1.5%), all with Western type CagA-specific sequences. Strains with one EPIYA-C motif were associated with less severe gastric lesions (non-atrophic and multifocal atrophic gastritis), whereas strains with multiple EPIYA-C motifs were associated with more severe lesions (intestinal metaplasia and dysplasia) (p <0.001). In 54 strains, the CM motifs were identical to those common in Western strains. Thirteen strains from the low-risk area contained two different CM motifs: one of Western type located within the EPIYA-C segment and another following the EPIYA-C segment and resembling the CM motif found in East Asian strains. These strains induced significantly shorter projections in AGS cells and an attenuated reduction in levels of CagA upon immunodepletion of SHP-2 than strains possessing Western/Western motifs. This novel finding may partially explain the difference in GC incidence in these populations. PMID:19456839

  17. Evolution of cagA Oncogene of Helicobacter pylori through Recombination

    PubMed Central

    Furuta, Yoshikazu; Yahara, Koji; Hatakeyama, Masanori; Kobayashi, Ichizo

    2011-01-01

    Helicobacter pylori is a gastric pathogen that infects half the human population and causes gastritis, ulcers, and cancer. The cagA gene product is a major virulence factor associated with gastric cancer. It is injected into epithelial cells, undergoes phosphorylation by host cell kinases, and perturbs host signaling pathways. CagA is known for its geographical, structural, and functional diversity in the C-terminal half, where an EPIYA host-interacting motif is repeated. The Western version of CagA carries the EPIYA segment types A, B, and C, while the East Asian CagA carries types A, B, and D and shows higher virulence. Many structural variants such as duplications and deletions are reported. In this study, we gained insight into the relationships of CagA variants through various modes of recombination, by analyzing all known cagA variants at the DNA sequence level with the single nucleotide resolution. Processes that occurred were: (i) homologous recombination between DNA sequences for CagA multimerization (CM) sequence; (ii) recombination between DNA sequences for the EPIYA motif; and (iii) recombination between short similar DNA sequences. The left half of the EPIYA-D segment characteristic of East Asian CagA was derived from Western type EPIYA, with Amerind type EPIYA as the intermediate, through rearrangements of specific sequences within the gene. Adaptive amino acid changes were detected in the variable region as well as in the conserved region at sites to which no specific function has yet been assigned. Each showed a unique evolutionary distribution. These results clarify recombination-mediated routes of cagA evolution and provide a solid basis for a deeper understanding of its function in pathogenesis. PMID:21853141

  18. In vitro effect of amoxicillin and clarithromycin on the 3’ region of cagA gene in Helicobacter pylori isolates

    PubMed Central

    Bustamante-Rengifo, Javier Andrés; Matta, Andrés Januer; Pazos, Alvaro; Bravo, Luis Eduardo

    2013-01-01

    AIM: To evaluate the in vitro effect of amoxicillin and clarithromycin on the cag pathogenicity island (cag PAI). METHODS: One hundred and forty-nine clinical isolates of Helicobacter pylori (H. pylori) cultured from gastric biopsies from 206 Colombian patients with dyspeptic symptoms from a high-risk area for gastric cancer were included as study material. Antimicrobial susceptibility was determined by the agar dilution method. Resistant isolates at baseline and in amoxicillin and clarithromycin serial dilutions were subjected to genotyping (cagA, vacA alleles s and m), Glu-Pro-Ile-Tyr-Ala (EPIYA) polymerase chain reaction and random amplified polymorphic DNA (RAPD). Images of the RAPD amplicons were analyzed by Gel-Pro Analyzer 4.5 program. Cluster analyses was done using SPSS 15.0 statistical package, where each of the fingerprint bands were denoted as variables. Dendrograms were designed by following Ward’s clustering method and the estimation of distances between each pair of H. pylori isolates was calculated with the squared Euclidean distance. RESULTS: Resistance rates were 4% for amoxicillin and 2.7% for clarithromycin with 2% double resistances. Genotyping evidenced a high prevalence of the genotype cagA-positive/vacA s1m1. The 3’ region of cagA gene was successfully amplified in 92.3% (12/13) of the baseline resistant isolates and in 60% (36/60) of the resistant isolates growing in antibiotic dilutions. Upon observing the distribution of the number of EPIYA repetitions in each dilution with respect to baseline isolates, it was found that in 61.5% (8/13) of the baseline isolates, a change in the number of EPIYA repetitions lowered antibiotic pressure. The gain and loss of EPIYA motifs resulted in a diversity of H. pylori subclones after bacterial adjustment to changing conditions product of antibiotic pressure. RAPD PCR evidenced the close clonal relationship between baseline isolates and isolates growing in antibiotic dilutions. CONCLUSION: Antibiotic

  19. Variant of Helicobacter pylori CagA proteins induce different magnitude of morphological changes in gastric epithelial cells.

    PubMed

    Alfizah, Hanafiah; Ramelah, Mohamed

    2012-06-01

    Infection with Helicobacter pylori cagA-positive strains is associated with gastroduodenal diseases. The CagA protein is injected into gastric epithelial cells and supposedly induces morphological changes termed the 'hummingbird phenotype', which is associated with scattering and increased cell motility. The molecular mechanisms leading to the CagA-dependent morphological changes are only partially known. The present study was carried out to investigate the effect of CagA variants on the magnitude of gastric epithelial cell morphological changes. Recombinant 3' terminal domains of cagA were cloned and expressed in a gastric epithelial cell line and the hummingbird phenotype was quantified by microscopy. The 3' region of the cagA gene of Malaysian H. pylori isolates showed six sub-genotypes that differed in the structural organization of the EPIYA repeat sequences. The percentage of hummingbird cells induced by CagA increased with duration of transfection. The hummingbird phenotype was observed to be more pronounced when CagA with 4 EPIYA motifs rather than 3 or 2 EPIYA motifs was produced. The activity of different CagA variants in the induction of the hummingbird phenotype in gastric epithelial cells depends at least in part on EPIYA motif variability. The difference in CagA genotypes might influence the potential of individual CagAs to cause morphological changes in host cells. Depending on the relative exposure of cells to CagA genotypes, this may contribute to the various disease outcomes caused by H. pylori infection in different individuals. PMID:22870595

  20. Study of the Cytoxin-Associated Gene A (CagA Gene) in Helicobacter pylori Using Gastric Biopsies of Iraqi Patients

    PubMed Central

    Kalaf, Elham A.; Al-Khafaji, Zahra M.; Yassen, Nahi Y.; AL-Abbudi, Fadel A.; Sadwen, Saad N.

    2013-01-01

    Background and Aims: The Helicobacter pylori CagA gene is a major virulence factor that plays an important role in gastric pathologies. The size variation of CagA gene, which is dependent on the 3’ repeat region, contains one or more Glu-Pro-Ile-Tyr-Ala (EPIYA) motifs and CagA multimerization (CM) motifs. Four segments flanking the EPIYA motifs, EPIYA −A, −B, −C, or −D, were reported to play a crucial role in the pathogenesis of H. pylori infection. The aim was to determine the roles of EPIYA segments and CM motifs in gastroduodenal pathogenesis in an Iraqi population. Patients and Methods: Gastric biopsies were collected from 210 patients with gastritis, duodenal ulcer (DU), gastric ulcer (GU), and gastric cancer (GC). The EPIYA motif genotyping was determined by polymerase chain reaction and sequencing. The differences in age, gender, and CagA EPIYA motifs of H. pylori between GC, DU, GU and gastritis patients were analyzed using a χ2 -test. Results A total of 22 (45.8%) strains had three copies of EPIYA (ABC type), 2 (4.16%) had four copies (ABCC type), 6 (12.7%) had five copies (ABCCC type), 13 (27.08%) had two copies (AB type), 3 (6.25%) had the BC, and 2 (4.17%) had AC motif. The alignment of the deduced protein sequences confirmed that there were no East Asian type EPIYA-D sequences in Iraqi strains. A significant association was found between increase in number of EPIYA-C motifs and GU (P ≤ 0.01) compared with gastritis. Conclusions: The structure of the 3’ region of the CagA gene in Iraqi strains was Western type with a variable number of EPIYA-C and CM motifs. A significant association was found between increase in number of EPIYA-C motifs and GU compared with gastritis indicating predictive association with the severity of the disease. The GenBank accession numbers for the partial CagA nucleotide sequences determined in this study are JX164093-JX164112. PMID:23481132

  1. Analysis of 3′-end variable region of the cagA gene in Helicobacter pylori isolated from Iranian population

    PubMed Central

    Shokrzadeh, Leila; Baghaei, Kaveh; Yamaoka, Yoshio; Dabiri, Hossein; Jafari, Fereshteh; Sahebekhtiari, Navid; Tahami, Ali; Sugimoto, Mitsushige; Zojaji, Homayon; Zali, Mohammad Reza

    2009-01-01

    Background and Aims The 3′ region of the cagA gene, the most well-known virulence factor of Helicobacter pylori, contains Glu-Pro-Ile-Tyr-Ala (EPIYA) motifs. Four segments flanking the EPIYA motifs, EPIYA-A, -B, -C, or -D, were reported to play important roles in H. pylori-related gastroduodenal pathogenesis. The aim was to determine the roles of EPIYA segments in gastroduodenal pathogenesis in an Iranian population. Methods A total of 92 cagA-positive Iranian strains isolated from dyspepsia patients with non-ulcer dyspepsia (n = 77), peptic ulcer (n = 11) and gastric cancer (n = 4) were studied. The EPIYA motif genotyping was determined by polymerase chain reaction and sequencing. Results A total of 86 (93.5%) strains had three copies of EPIYA (ABC type), three (3.3%) had four copies (ABCC type) and three (3.3%) had two copies (AB type). The alignment of the deduced protein sequences confirmed that there were no East Asian type EPIYA-D sequences (EPIYATIDFDEANQAG) in Iranian strains. When the prevalence of strains with multiple EPIYA-C segments in Iran was compared with previously published data, it was much lower than that in Colombia and Italy, but was higher than that of Iraq, and the patterns were parallel to the incidence of gastric cancer in these countries. Conclusion The structure of the 3′ region of the cagA gene in Iranian strains was Western type. Although we could not find differences between EPIYA types and clinical outcomes, low prevalence of strains with multiple EPIYA-C segments might be reasons for low incidence of gastric cancer in Iran. PMID:19793167

  2. [Production of a recombinant CagA protein for the detection of Helicobacter pylori CagA antibodies].

    PubMed

    Akgüç, Miray; Karatayli, Ersin; Çelik, Esra; Koyuncu, Duygu; Çelik, İnci; Karatayli, Senem Ceren; Özden, Ali; Bozdayi, A Mithat

    2014-07-01

    At present, Helicobacter pylori infections affect approximately 50% of the world population. It is known that H.pylori is related with several gastric diseases including chronic atrophic gastritis, peptic and gastric ulcers as well as gastric carcinomas. CagA (Cytotoxin-associated gene A) protein which is one of the most important virulence factors of H.pylori, is thought to be responsible for the development of gastric cancer. CagA is a 128 kDa hydrophilic protein which binds to the epitelial stomach cells and is known to be phosphorylated on its EPIYA regions. The EPIYA regions are highly variable and carry a higher risk of developing gastric cancer than CagA negative strains. The aim of this study was to construct a prokaryotic expression system expressing a recombinant CagA protein, which can be used for the detection of anti-CagA antibodies. For the isolation of H.pylori genomic DNA, a total of 112 gastric biopsy samples obtained from patients who were previously found positive for rapid urease (CLO) test, were used. H.pylori DNAs were amplified from 57 of those samples by polymerase chain reaction (PCR) and of them 35 were found positive in terms of cagA gene. Different EPIYA motifs were detected in 25 out of 35 cagA positive samples, and one of those samples that contained the highest number of EPIYA motif, was chosen for the cloning procedure. Molecular cloning and expression of the recombinant fragment were performed with Champion Pet151/D expression vector (Invitrogen, USA), the expression of which was induced by the addition of IPTG (Isopropyl-beta-D-thiogalactopyranoside) into the E.coli culture medium. Expression was observed with anti-histidin HRP (Horse Radish Peroxidase) antibodies by SDS-PAGE and Western Blot (WB) analysis. In our study, two clones possessing different fragments from the same H.pylori strain with three different EPIYA motifs were succesfully expressed. Since CagA antigen plays a signicant role in the pathogenesis of H

  3. A Comprehensive Sequence and Disease Correlation Analyses for the C-Terminal Region of CagA Protein of Helicobacter pylori

    PubMed Central

    Xia, Youlin; Yamaoka, Yoshio; Zhu, Qi; Matha, Ivan; Gao, Xiaolian

    2009-01-01

    Chronic Helicobacter pylori infection is known to be associated with the development of peptic ulcer, gastric cancer and gastric lymphoma. Currently, the bacterial factors of H. pylori are reported to be important in the development of gastroduodenal diseases. CagA protein, encoded by the cagA, is the best studied virulence factor of H. pylori. The pathogenic CagA protein contains a highly polymorphic Glu-Pro-Ile-Tyr-Ala (EPIYA) repeat region in the C-terminal. This repeat region is reported to be involved in the pathogenesis of gastroduodenal diseases. The segments containing EPIYA motifs have been designated as segments A, B, C, and D; however the classification and disease relation are still unclear. This study used 560 unique CagA sequences containing 1,796 EPIYA motifs collected from public resources, including 274 Western and 286 East Asian strains with clinical data obtained from 433 entries. Fifteen types of EPIYA or EPIYA-like sequences are defined. In addition to four previously reported major segment types, several minor segment types (e.g., segment B′, B′′) and more than 30 sequence types (e.g., ABC, ABD) were defined using our classification method. We confirm that the sequences from Western and East Asian strains contain segment C and D, respectively. We also confirm that strains with two EPIYA segment C have a greater chance of developing gastric cancer than those with one segment C. Our results shed light on the relationships between the types of CagAs, the country of origin of each sequence type, and the frequency of gastric disease. PMID:19893742

  4. Association between cagA and vacA genotypes and pathogenesis in a Helicobacter pylori infected population from South-eastern Sweden

    PubMed Central

    2012-01-01

    Background Chronic gastritis, peptic ulcer disease, and gastric cancer have been shown to be related to infection with Helicobacter pylori (H. pylori). Two major virulence factors of H. pylori, CagA and VacA, have been associated with these sequelae of the infection. In this study, total DNA was isolated from gastric biopsy specimens to assess the cagA and vacA genotypes. Results Variations in H. pylori cagA EPIYA motifs and the mosaic structure of vacA s/m/i/d regions were analysed in 155 H. pylori-positive gastric biopsies from 71 individuals using PCR and sequencing. Analysis of a possible association between cagA and vacA genotypes and gastroduodenal pathogenesis was made by logistic regression analysis. We found that H. pylori strains with variation in the number of cagA EPIYA motif variants present in the same biopsy correlated with peptic ulcer, while occurrence of two or more EPIYA-C motifs was associated with atrophy in the gastric mucosa. No statistically significant relation between vacA genotypes and gastroduodenal pathogenesis was observed. Conclusions The results of this study indicate that cagA genotypes may be important determinants in the development of gastroduodenal sequelae of H. pylori infection. In contrast to other studies, vacA genotypes were not related to disease progression or outcome. In order to fully understand the relations between cagA, vacA and gastroduodenal pathogenesis, the mechanisms by which CagA and VacA act and interact need to be further investigated. PMID:22747681

  5. [The role of CagA in H. pylori infection].

    PubMed

    Tanaka, Hiroshi; Yoshida, Masaru; Azuma, Takeshi

    2009-12-01

    Helicobacter pylori (H. pylori) chronically colonizes human gastric epithelium and induces various diseases. But the mechanism of carcinogenesis in H. pylori infection remains to be assessed. We described that after attachment of H. pylori to gastric epithelial cells, CagA is injected directly from the bacteria into the cells and undergoes tyrosine phosphorylation. Tyrosine phosphorylated CagA can bind to SHP-2. Deregulation of SHP -2 by CagA may induce abnormal proliferation and movement of gastric epithelial cells. There are two patterns of CagA motifs between East Asian strains and Western strains. East Asian-type CagA confers stronger SHP-2 binding and transforming activities than Western-type CagA. We assessed the association between CagA diversity and clinical outcome in Asian countries, where mortalities from gastric cancer is different. As results, H. pylori infection with East Asian-type CagA was associated with gastric atrophy and cancer. Therefore, persistent active inflammation induced by the East Asian CagA-positive strain may play a role in the pathogenesis of disease. PMID:19999107

  6. Translocation of Helicobacter pylori CagA into Gastric Epithelial Cells by Type IV Secretion

    NASA Astrophysics Data System (ADS)

    Odenbreit, Stefan; Püls, Jürgen; Sedlmaier, Bettina; Gerland, Elke; Fischer, Wolfgang; Haas, Rainer

    2000-02-01

    The Gram-negative bacterium Helicobacter pylori is a causative agent of gastritis and peptic ulcer disease in humans. Strains producing the CagA antigen (cagA+) induce strong gastric inflammation and are strongly associated with gastric adenocarcinoma and MALT lymphoma. We show here that such strains translocate the bacterial protein CagA into gastric epithelial cells by a type IV secretion system, encoded by the cag pathogenicity island. CagA is tyrosine-phosphorylated and induces changes in the tyrosine phosphorylation state of distinct cellular proteins. Modulation of host cells by bacterial protein translocation adds a new dimension to the chronic Helicobacter infection with yet unknown consequences.

  7. Fragmentation of CagA Reduces Hummingbird Phenotype Induction by Helicobactor pylori

    PubMed Central

    Chen, Ying-Chieh; Perng, Chin-Lin; Lin, Hwai-Jeng; Ou, Yueh-Hsing

    2016-01-01

    Infection with Helicobacter pylori (H. pylori) has been linked to various gastro-intestinal diseases; nevertheless it remains to be clarified why only a minority of infected individuals develop illness. Studies from the West have indicated that the cagA gene and the associated EPIYA genotype of H. pylori is closely linked to the development of severe gastritis and gastric carcinoma; however, as yet no consistent correlation has been found among the bacteria from East Asia. In addition to genotype variation, the CagA protein undergoes fragmentation; however, the functional significance of fragmentation with respect to H. pylori infection remains unknown. In this study, we isolated 594 H. pylori colonies from 99 patients and examined the fragmentation patterns of CagA protein using immunoblotting. By analyzing the ability of the isolates to induce the host cell morphological transition to the highly invasive hummingbird phenotype, we demonstrated that H. pylori colonies with substantial CagA fragmentation are less potent in terms of causing this morphological transition. Our results uncovered a functional role for CagA fragmentation with respect to H. pylori-induced hummingbird phenotype formation and these findings suggest the possibility that the post-translational processing of CagA may be involved in H. pylori infection pathogenesis. PMID:26934189

  8. Fragmentation of CagA Reduces Hummingbird Phenotype Induction by Helicobactor pylori.

    PubMed

    Chang, Chih-Chi; Kuo, Wein-Shung; Chen, Ying-Chieh; Perng, Chin-Lin; Lin, Hwai-Jeng; Ou, Yueh-Hsing

    2016-01-01

    Infection with Helicobacter pylori (H. pylori) has been linked to various gastro-intestinal diseases; nevertheless it remains to be clarified why only a minority of infected individuals develop illness. Studies from the West have indicated that the cagA gene and the associated EPIYA genotype of H. pylori is closely linked to the development of severe gastritis and gastric carcinoma; however, as yet no consistent correlation has been found among the bacteria from East Asia. In addition to genotype variation, the CagA protein undergoes fragmentation; however, the functional significance of fragmentation with respect to H. pylori infection remains unknown. In this study, we isolated 594 H. pylori colonies from 99 patients and examined the fragmentation patterns of CagA protein using immunoblotting. By analyzing the ability of the isolates to induce the host cell morphological transition to the highly invasive hummingbird phenotype, we demonstrated that H. pylori colonies with substantial CagA fragmentation are less potent in terms of causing this morphological transition. Our results uncovered a functional role for CagA fragmentation with respect to H. pylori-induced hummingbird phenotype formation and these findings suggest the possibility that the post-translational processing of CagA may be involved in H. pylori infection pathogenesis. PMID:26934189

  9. Attenuated CagA oncoprotein in Helicobacter pylori from Amerindians in Peruvian Amazon.

    PubMed

    Suzuki, Masato; Kiga, Kotaro; Kersulyte, Dangeruta; Cok, Jaime; Hooper, Catherine C; Mimuro, Hitomi; Sanada, Takahito; Suzuki, Shiho; Oyama, Masaaki; Kozuka-Hata, Hiroko; Kamiya, Shigeru; Zou, Quan-Ming; Gilman, Robert H; Berg, Douglas E; Sasakawa, Chihiro

    2011-08-26

    Population genetic analyses of bacterial genes whose products interact with host tissues can give new understanding of infection and disease processes. Here we show that strains of the genetically diverse gastric pathogen Helicobacter pylori from Amerindians from the remote Peruvian Amazon contain novel alleles of cagA, a major virulence gene, and reveal distinctive properties of their encoded CagA proteins. CagA is injected into the gastric epithelium where it hijacks pleiotropic signaling pathways, helps Hp exploit its special gastric mucosal niche, and affects the risk that infection will result in overt gastroduodenal diseases including gastric cancer. The Amerindian CagA proteins contain unusual but functional tyrosine phosphorylation motifs and attenuated CRPIA motifs, which affect gastric epithelial proliferation, inflammation, and bacterial pathogenesis. Amerindian CagA proteins induced less production of IL-8 and cancer-associated Mucin 2 than did those of prototype Western or East Asian strains and behaved as dominant negative inhibitors of action of prototype CagA during mixed infection of Mongolian gerbils. We suggest that Amerindian cagA is of relatively low virulence, that this may have been selected in ancestral strains during infection of the people who migrated from Asia into the Americas many thousands of years ago, and that such attenuated CagA proteins could be useful therapeutically. PMID:21757722

  10. J-Western Forms of Helicobacter pylori cagA Constitute a Distinct Phylogenetic Group with a Widespread Geographic Distribution

    PubMed Central

    Duncan, Stacy S.; Valk, Pieter L.; Shaffer, Carrie L.

    2012-01-01

    Chronic infection with Helicobacter pylori strains expressing the bacterial oncoprotein CagA confers an increased risk of gastric cancer. While much is known about the ancestry and molecular evolution of Western, East Asian, and Amerindian cagA sequences, relatively little is understood about a fourth group, known as “J-Western,” which has been detected mainly in strains from Okinawa, Japan. We show here that J-Western cagA sequences have a more widespread global distribution than previously recognized, occur in strains with multiple different ancestral origins (based on multilocus sequence typing [MLST] analysis), and did not arise recently. As shown by comparisons of Western and J-Western forms of CagA, there are 45 fixed or nearly fixed amino acid differences, and J-Western forms contain a unique 4-amino-acid insertion. The mean nucleotide diversity of synonymous sites (πs) is slightly lower in the J-Western group than in the Western and East Asian groups (0.066, 0.086, and 0.083, respectively), which suggests that the three groups have comparable, but not equivalent, effective population sizes. The reduced πs of the J-Western group is attributable to ancestral recombination events within the 5′ region of cagA. Population genetic analyses suggest that within the cagA region encoding EPIYA motifs, the East Asian group underwent a marked reduction in effective population size compared to the Western and J-Western groups, in association with positive selection. Finally, we show that J-Western cagA sequences are found mainly in strains producing m2 forms of the secreted VacA toxin and propose that these functionally interacting proteins coevolved to optimize the gastric colonization capacity of H. pylori. PMID:22247512

  11. Diverse characteristics of the CagA gene of Helicobacter pylori strains collected from patients from southern vietnam with gastric cancer and peptic ulcer.

    PubMed

    Truong, Bui Xuan; Mai, Vo Thi Chi; Tanaka, Hiroshi; Ly, Le Thanh; Thong, Tran Minh; Hai, Hoang Hoa; Van Long, Dao; Furumatsu, Keisuke; Yoshida, Masaru; Kutsumi, Hiromu; Azuma, Takeshi

    2009-12-01

    The pathogenesis of gastroduodenal diseases is related to the diversity of Helicobacter pylori strains. CagA-positive strains are more likely to cause gastric cancer than CagA-negative strains. Based on EPIYA (Glu-Pro-Ile-Tyr-Ala) motifs at the carboxyl terminus corresponding to phosphorylation sites, H. pylori CagA is divided into East Asian CagA and Western CagA. The former type prevails in East Asia and is more closely associated with gastric cancer. The present study used full sequences of the cagA gene and CagA protein of 22 H. pylori strains in gastric cancer and peptic ulcer patients from Southern Vietnam to make a comparison of genetic homology among Vietnamese strains and between them and other strains in East Asia. A phylogenetic tree was constructed based on full amino acid sequences of 22 Vietnamese strains in accordance with 54 references from around the world. The cagA gene was found in all Vietnamese H. pylori strains. Twenty-one of 22 (95.5%) strains belonged to the East Asian type and had similar characteristics of amino acid sequence at the carboxyl terminus to other strains from the East Asian region. From evidence of East Asian CagA and epidemiologic cancerous lesions in Vietnam, H. pylori-infected Vietnamese can be classified into a high-risk group for gastric cancer, but further studies on the interaction among environmental and virulence factors should be done. Finally, phylogenetic data support that there is a Japanese subtype in the Western CagA type. PMID:19846630

  12. Diverse Characteristics of the cagA Gene of Helicobacter pylori Strains Collected from Patients from Southern Vietnam with Gastric Cancer and Peptic Ulcer▿

    PubMed Central

    Truong, Bui Xuan; Mai, Vo Thi Chi; Tanaka, Hiroshi; Ly, Le Thanh; Thong, Tran Minh; Hai, Hoang Hoa; Van Long, Dao; Furumatsu, Keisuke; Yoshida, Masaru; Kutsumi, Hiromu; Azuma, Takeshi

    2009-01-01

    The pathogenesis of gastroduodenal diseases is related to the diversity of Helicobacter pylori strains. CagA-positive strains are more likely to cause gastric cancer than CagA-negative strains. Based on EPIYA (Glu-Pro-Ile-Tyr-Ala) motifs at the carboxyl terminus corresponding to phosphorylation sites, H. pylori CagA is divided into East Asian CagA and Western CagA. The former type prevails in East Asia and is more closely associated with gastric cancer. The present study used full sequences of the cagA gene and CagA protein of 22 H. pylori strains in gastric cancer and peptic ulcer patients from Southern Vietnam to make a comparison of genetic homology among Vietnamese strains and between them and other strains in East Asia. A phylogenetic tree was constructed based on full amino acid sequences of 22 Vietnamese strains in accordance with 54 references from around the world. The cagA gene was found in all Vietnamese H. pylori strains. Twenty-one of 22 (95.5%) strains belonged to the East Asian type and had similar characteristics of amino acid sequence at the carboxyl terminus to other strains from the East Asian region. From evidence of East Asian CagA and epidemiologic cancerous lesions in Vietnam, H. pylori-infected Vietnamese can be classified into a high-risk group for gastric cancer, but further studies on the interaction among environmental and virulence factors should be done. Finally, phylogenetic data support that there is a Japanese subtype in the Western CagA type. PMID:19846630

  13. Identification of Helicobacter pylori and the cagA genotype in gastric biopsies using highly sensitive real-time PCR as a new diagnostic tool.

    PubMed

    Yamazaki, Shiho; Kato, Shunji; Matsukura, Norio; Ohtani, Masahiro; Ito, Yoshiyuki; Suto, Hiroyuki; Yamazaki, Yukinao; Yamakawa, Akiyo; Tokudome, Shinkan; Higashi, Hideaki; Hatakeyama, Masanori; Azuma, Takeshi

    2005-06-01

    The CagA protein is one of the virulence factors of Helicobacter pylori, and two major subtypes of CagA have been observed, the Western and East Asian type. CagA is injected from the bacteria into gastric epithelial cells, undergoes tyrosine phosphorylation, and binds to Src homology 2 domain-containing protein-tyrosine phosphatase SHP-2. The East Asian type CagA binds to SHP-2 more strongly than the Western type CagA. Here, we tried to distinguish the CagA type by highly sensitive real-time PCR with the objective of establishing a system to detect H. pylori and CagA subtypes from gastric biopsies. We designed primers and probe sets for Western or East Asian-cagA at Western-specific or East Asian-specific sequence regions, respectively, and H. pylori 16S rRNA. We could detect the H. pylori 16S rRNA gene, Western and East Asian-cagA gene from DNA of gastric biopsies. The sensitivity and specificity for H. pylori infection was 100% in this system. In Thai patients, 87.8% (36/41) were cagA-positive; 26.8% (11/41) were Western-cagA positive and 53.7% (22/41) were East Asian-cagA positive, while 7.3% (3/41) reacted with both types of cagA. These results suggest that this real-time PCR system provides a highly sensitive assessment of CagA type as a new diagnostic tool for the pathogenicity of H. pylori infection. PMID:15907447

  14. Heme oxygenase-1 inhibits phosphorylation of the Helicobacter pylori oncoprotein CagA in gastric epithelial cells

    PubMed Central

    Gobert, Alain P.; Verriere, Thomas; de Sablet, Thibaut; Peek, Richard M.; Chaturvedi, Rupesh; Wilson, Keith T.

    2012-01-01

    Summary The cytotoxin-associated gene A protein (CagA) plays a pivotal role in the etiology of Helicobacter (H.) pylori-associated gastric diseases. CagA is injected into the cytoplasm of host cells by a type IV secretion system, and is phosphorylated on tyrosine residues by the host enzyme c-Src. We previously reported that the enzyme heme oxygenase-1 (HO-1) inhibits IL-8 secretion by H. pylori-infected cells. However, the cellular mechanism by which HO-1 regulates the innate immune function of infected cells remains unknown. We now show that nitric oxide and hemin, two inducers of HO-1, decrease the level of phosphorylated CagA (p-CagA) in H. pylori-infected gastric epithelial cells and this is blocked by either pharmacologic inhibition of HO-1 or siRNA knockdown of hmox-1. Moreover, forced expression of HO-1 by transfection of a plasmid expressing hmox-1 also results in a strong attenuation of CagA phosphorylation. This occurs through the inhibition of H. pylori-induced c-Src phosphorylation/activation by HO-1. Consequently, H. pylori-induced cytoskeletal rearrangements and activation of the pro-inflammatory response mediated by p-CagA are inhibited in HO-1-expressing cells. These data highlight a mechanism by which the innate immune response of the host can restrict the pathogenicity of H. pylori by attenuating CagA phosphorylation in gastric epithelial cells. PMID:23051580

  15. Helicobacter pylori CagA Inhibits PAR1-MARK Family Kinases by Mimicking Host Substrates

    SciTech Connect

    Nesic, D.; Miller, M; Quinkert, Z; Stein, M; Chait, B; Stebbins, C

    2010-01-01

    The CagA protein of Helicobacter pylori interacts with numerous cellular factors and is associated with increased virulence and risk of gastric carcinoma. We present here the cocrystal structure of a subdomain of CagA with the human kinase PAR1b/MARK2, revealing that a CagA peptide mimics substrates of this kinase family, resembling eukaryotic protein kinase inhibitors. Mutagenesis of conserved residues central to this interaction renders CagA inactive as an inhibitor of MARK2.

  16. Gastrokine 1 inhibits the carcinogenic potentials of Helicobacter pylori CagA

    PubMed Central

    Yoon, Jung Hwan; Seo, Ho Suk; Choi, Sung Sook; Chae, Hyun Suk; Choi, Won Seok; Kim, Olga; Ashktorab, Hassan; Smoot, Duane T.; Nam, Suk Woo; Lee, Jung Young; Park, Won Sang

    2014-01-01

    Helicobacter pylori CagA directly injected by the bacterium into epithelial cells via a type IV secretion system, leads to cellular changes such as morphology, apoptosis, proliferation and cell motility, and stimulates gastric carcinogenesis. We investigated the effects of cytotoxin-associated gene A (CagA) and gastrokine 1 (GKN1) on cell proliferation, apoptosis, reactive oxygen species (ROS) production, epithelial–mesenchymal transition (EMT) and cell migration in CagA- or GKN1-transfected gastric epithelial cells and mucosal tissues from humans and mice infected with H.pylori. On the molecular level, H.pylori CagA induced increased cell proliferation, ROS production, antiapoptotic activity, cell migration and invasion. Moreover, CagA induced activation of NF-κB and PI3K/Akt signaling pathways and EMT-related proteins. In addition, H.pylori CagA reduced GKN1 gene copy number and expression in gastric cells and mucosal tissues of humans and mice. However, GKN1 overexpression successfully suppressed the carcinogenic effects of CagA through binding to CagA. These results suggest that GKN1 might be a target to inhibit the effects from H.pylori CagA. PMID:25239641

  17. Effect of growth phase and acid shock on Helicobacter pylori cagA expression.

    PubMed Central

    Karita, M; Tummuru, M K; Wirth, H P; Blaser, M J

    1996-01-01

    Helicobacter pylori strains possessing cagA are associated with peptic ulceration. To understand the regulation of expression of cagA, picB, associated with interleukin-8 induction, and ureA, encoding the small urease subunit, we created gene fusions of cagA, ureA, and picB of strain 3401, using a promoterless reporter (xylE). Expression of XylE after growth in broth culture revealed that basal levels of expression of cagA and urea in H. pylori were substantially greater than for picB. For cagA expression in stationary-phase cells, brief exposure to acid pH caused a significant increase in xylE expression compared with neutral pH. In contrast, expression of xylE in urea or picB decreased after parallel exposure to acid pH (pH 7 > 6 > 5 > 4), regardless of the growth phase. Expression of the CagA protein varied with growth phase and pH exposure in parallel with the observed transcriptional variation. The concentration of CagA in a cell membrane-enriched fraction after growth at pH 6 was significantly higher than after growth at pH 5 or 7. We conclude that the promoterless reporter xylE is useful for studying the regulation of gene expression in H. pylori and that regulation of CagA production occurs mainly at the transcriptional level. PMID:8890198

  18. Serum Helicobacter pylori CagA antibody titer was a useful marker for advanced inflammation in the stomach in Japan

    PubMed Central

    Shiota, Seiji; Murakami, Kazunari; Okimoto, Tadayoshi; Kodama, Masaaki; Yamaoka, Yoshio

    2013-01-01

    Background and aim Subjects infected with H. pylori containing cagA do not always induce serum CagA antibody. Our previous meta-analysis showed that serum CagA seropositivity was associated with gastric cancer even in East Asian countries. However, it remains unclear why serum CagA positive status is associated with gastric cancer. In this study, we aimed to examine the relationship between anti CagA antibody titer and the levels of pepsinogen, and histological score. Methods Eighty-eight H. pylori positive Japanese patients with gastritis were included. Serum CagA antibody titer, pepsinogen (PG) I and PG II were evaluated by enzyme-linked immunosorbent assay. Histological scores were evaluated according to Update Sydney System. CagA expression was examined by immunoblot. Results Seroprevalence of CagA antibody was found in 75.0%. Interestingly, serum CagA antibody titer was significantly correlated with PG I and PG II levels (P = 0.003 and 0.004, respectively). Serum CagA antibody titer was also significantly correlated with mucosal inflammation in the corpus (P = 0.04). On the other hand, bacterial density was not related with CagA antibody titer. CagA expression level of the strains was irrespective of the status of PG and serum CagA antibody. Conclusions Subjects with higher serum CagA antibody titer can be considered as high risk population for the development of gastric cancer from the point of strong gastric inflammatory response even in Japan. Host recognition rather than bacterial colonization might be associated with the difference of serum CagA antibody titer. PMID:24033876

  19. Exosomes as nanocarriers for systemic delivery of the Helicobacter pylori virulence factor CagA

    PubMed Central

    Shimoda, Asako; Ueda, Koji; Nishiumi, Shin; Murata-Kamiya, Naoko; Mukai, Sada-atsu; Sawada, Shin-ichi; Azuma, Takeshi; Hatakeyama, Masanori; Akiyoshi, Kazunari

    2016-01-01

    CagA, encoded by cytotoxin-associated gene A (cagA), is a major virulence factor of Helicobacter pylori, a gastric pathogen involved in the development of upper gastrointestinal diseases. Infection with cagA-positive H. pylori may also be associated with diseases outside the stomach, although the mechanisms through which H. pylori infection promotes extragastric diseases remain unknown. Here, we report that CagA is present in serum-derived extracellular vesicles, known as exosomes, in patients infected with cagA-positive H. pylori (n = 4). We also found that gastric epithelial cells inducibly expressing CagA secrete exosomes containing CagA. Addition of purified CagA-containing exosomes to gastric epithelial cells induced an elongated cell shape, indicating that the exosomes deliver functional CagA into cells. These findings indicated that exosomes secreted from CagA-expressing gastric epithelial cells may enter into circulation, delivering CagA to distant organs and tissues. Thus, CagA-containing exosomes may be involved in the development of extragastric disorders associated with cagA-positive H. pylori infection. PMID:26739388

  20. Functional association between the Helicobacter pylori virulence factors VacA and CagA.

    PubMed

    Argent, Richard H; Thomas, Rachael J; Letley, Darren P; Rittig, Michael G; Hardie, Kim R; Atherton, John C

    2008-02-01

    The Helicobacter pylori virulence factors CagA and VacA are implicated in the development of gastroduodenal diseases. Most strains possessing CagA also possess the more virulent vacuolating form of VacA. This study assessed the significance of possession of both virulence factors in terms of their effect on gastric epithelial cells, using a set of minimally passaged, isogenic VacA, CagA and CagE mutants in H. pylori strains 60190 and 84-183. The cagA and cagE mutants were found to significantly increase VacA-induced vacuolation of epithelial cells, and the vacA mutants significantly increased CagA-induced cellular elongations, compared with wild-type strains, indicating that CagA reduces vacuolation and VacA reduces hummingbird formation. Although epithelial cells incubated with the wild-type H. pylori strains may display both vacuolation and hummingbird formation, it was found that (i) hummingbird length was significantly reduced in vacuolated cells compared with those without vacuolation; (ii) the number of vacuoles was significantly reduced in vacuolated cells with hummingbird formation compared with those without hummingbirds; and (iii) cells displaying extensive vacuolation did not subsequently form hummingbirds and vice versa. VacA did not affect the phosphorylation of CagA. These data show that VacA and CagA downregulate each other's effects on epithelial cells, potentially allowing H. pylori interaction with cells whilst avoiding excessive cellular damage. PMID:18201978

  1. The CagA toxin of Helicobacter pylori: abundant production but relatively low amount translocated

    PubMed Central

    Jiménez-Soto, Luisa F.; Haas, Rainer

    2016-01-01

    CagA is one of the most studied pathogenicity factors of the bacterial pathogen Helicobacter pylori. It is injected into host cells via the H. pylori cag-Type IV secretion system. Due to its association with gastric cancer, CagA is classified as oncogenic protein. At the same time CagA represents the 4th most abundant protein produced by H. pylori, suggesting that high amounts of toxin are required to cause the physiological changes or damage observed in cells. We were able to quantify the injection of CagA into gastric AGS epithelial cells in vitro by the adaptation of a novel protease-based approach to remove the tightly adherent extracellular bacteria. After one hour of infection only 1.5% of the total CagA available was injected by the adherent bacteria, whereas after 3 hours 7.5% was found within the host cell. Thus, our data show that only a surprisingly small amount of the CagA available in the infection is finally injected under in vitro infection conditions. PMID:26983895

  2. Sequence analysis of East Asian cagA of Helicobacter pylori isolated from asymptomatic healthy Japanese and Thai individuals.

    PubMed

    Hirai, Itaru; Yoshinaga, Aya; Kimoto, Ai; Sasaki, Tadahiro; Yamamoto, Yoshimasa

    2011-03-01

    CagA, especially East Asian type, is one of the most important virulence factors of Helicobacter pylori, which is believed to contribute to the gastric cancer development. There is extreme sequence heterogeneity on 3' region of cagA gene, demonstrated by the sequence analysis of cagA of H. pylori strains isolated from gastric disease patients. However, whether such heterogeneity of the cagA gene sequence is related to the pathogenicity of H. pylori in the gastric cancer development is not certain. Therefore, in this study, the 3' region of cagA sequences isolated from asymptomatic healthy individuals in Japan and Thailand, which show high and low gastric cancer prevalence, respectively, were analyzed and compared with those from patients with gastric cancer. The CagA sequences analysis in 21 and 12 H. pylori DNA samples obtained from Japanese and Thai individuals, respectively, by the molecular phylogenetic method showed that the sequences were more conserved in the Thai individuals (concordance rates among Thai sequences, 93.9-100%) than in the Japanese individuals (concordance rates among Japanese sequences, 82.8-100%) as shown by unrooted neighbor-joining (N-J) consensus trees constructed with the sequence between Asn869 and Ala967 in CagA. CagA sequences in gastric cancer patients were obtained from published data; analysis of these sequences revealed that CagA sequences from almost all Thai individuals were concentrated in one branch. In contrast, CagA sequences from Japanese individuals were uniformly distributed throughout the N-J consensus tree. These results suggest that the difference in the CagA sequences between asymptomatic healthy Japanese and Thai individuals may be linked to the incidence of gastric cancer in Japan and Thailand. PMID:21046394

  3. Evaluation of the Anti-East Asian CagA-Specific Antibody for CagA Phenotyping▿

    PubMed Central

    Nguyen, Lam Tung; Uchida, Tomohisa; Kuroda, Akiko; Tsukamoto, Yoshiyuki; Trinh, Tuan Dung; Ta, Long; Mai, Hong Bang; Ho, Dang Quy Dung; Hoang, Hoa Hai; Vilaichone, Ratha-Korn; Mahachai, Varocha; Matsuhisa, Takeshi; Kudo, Yoko; Okimoto, Tadayoshi; Kodama, Masaaki; Murakami, Kazunari; Fujioka, Toshio; Yamaoka, Yoshio; Moriyama, Masatsugu

    2009-01-01

    The determination of the cagA genotype is generally based on sequencing the variable 3′ region of the cagA gene. In a previous study, we successfully generated an anti-East Asian CagA-specific antibody (anti-EAS Ab) immunoreactive only with the East Asian CagA and not with the Western CagA. In a small number of Japanese patients, anti-EAS Ab appeared to be a useful tool for phenotyping CagA immunohistochemically. The present study was conducted to validate the anti-EAS Ab immunohistochemistry method in a larger number of patients from Vietnam and Thailand. A total of 385 Vietnamese and Thais were recruited. Helicobacter pylori status was determined by a combination of three methods, including culture, histology, and immunohistochemistry with anti-H. pylori antibody. The sensitivity, specificity, and accuracy of the anti-EAS Ab immunohistochemistry method for the diagnosis of CagA phenotype were calculated based on the results of the cagA sequencing as the gold standard. The sensitivity, specificity, and accuracy of our immunohistochemistry method were 96.7%, 97.9%, and 97.1%, respectively. Moreover, anti-EAS Ab was not cross-reactive with noninfected gastric mucosa. In conclusion, immunohistochemistry with anti-EAS Ab appears to be a good method for determination of CagA phenotype. PMID:19776193

  4. A novel diagnostic monoclonal antibody specific for Helicobacter pylori CagA of East Asian type.

    PubMed

    Yasuda, Aiko; Uchida, Tomohisa; Nguyen, Lam Tung; Kawazato, Hiroaki; Tanigawa, Masato; Murakami, Kazunari; Kishida, Tetsuko; Fujioka, Toshio; Moriyama, Masatsugu

    2009-12-01

    Molecular biological and epidemiological studies have suggested that Helicobacter pylori producing East Asian CagA protein variant is more virulent than that producing Western CagA. In the present study, we developed and validated an enzyme-linked immunosorbent assay (ELISA) using a monoclonal antibody specifically recognizing East Asian CagA-positive H. pylori. A total of 32 H. pylori strains were tested and the data were subjected to receiver-operator characteristic (ROC) curve analysis. The accuracy of the test, determined by calculating the area under the curve, was 0.96, which indicated a high level of accuracy. At the ROC optimized cutoff, the sensitivity and specificity of our ELISA method were 88.0% and 100%, respectively. The validated ELISA showed good performance in terms of sensitivity and specificity. These results suggest that this test is suitable for the diagnostic detection of East Asian CagA carrying strains. We also analyzed the localization of the CagA protein in H. pylori-infected gastric mucosa with fluorescence immunohistochemistry, and found that CagA protein expression was up-regulated by adhesion to epithelial cells. PMID:20078554

  5. Geographic differences and the role of cagA gene in gastroduodenal diseases associated with Helicobacter pylori infection.

    PubMed

    Valmaseda Pérez, T; Gisbert, J P; Pajares García, J M

    2001-07-01

    Helicobacter pylori (H. pylori) is the major causal agent of gastritis, peptic ulcer and gastric cancer. Several bacterium genes seem to be involved in the pathogenicity mechanism. One of them, the cagA gene, has been extensively studied and characterized. In this article we have carried out a study of characteristics and genetic variability of cagA gene in different geographic areas of the world. At the same time, we have summarized several studies that evaluate possible relation of cagA with gastroduodenal diseases associated by H. pylori infection. In our study we found that the presence of the cagA gene has been confirmed in more than 60% H. pylori strains distributed throughout the world. The prevalence of cagA genotype is of 65.4% in gastritis patients, 84.2% in patients with peptic ulcer and 86.5% in those with gastric cancer. It shows a high genetic variability of cagA associated with gastroduodenal diseases that could serve as a virulence marker in H. pylori infected subjects. However, the high prevalence of H. pylori cagA positive strains in some geographic areas does not confirm the strong association between cagA and virulence of strains as described in other countries. Nowadays, cagA gene is considered as a marker for the presence of cag pathogenicity island (cag-PAI) in H. pylori genoma. This region contains several genes that has been involved with the production of cytokines that results in an increased inflammation of host gastric mucosa, but its function is unknown. Probably, others bacterium factors, such as susceptibility host and environmental cofactors could influence in the risk of developing different gastroduodenal diseases associated with H. pylori infection. PMID:11685943

  6. H. pylori virulence factor CagA increases intestinal cell proliferation by Wnt pathway activation in a transgenic zebrafish model

    PubMed Central

    Neal, James T.; Peterson, Tracy S.; Kent, Michael L.; Guillemin, Karen

    2013-01-01

    SUMMARY Infection with Helicobacter pylori is a major risk factor for the development of gastric cancer, and infection with strains carrying the virulence factor CagA significantly increases this risk. To investigate the mechanisms by which CagA promotes carcinogenesis, we generated transgenic zebrafish expressing CagA ubiquitously or in the anterior intestine. Transgenic zebrafish expressing either the wild-type or a phosphorylation-resistant form of CagA exhibited significantly increased rates of intestinal epithelial cell proliferation and showed significant upregulation of the Wnt target genes cyclinD1, axin2 and the zebrafish c-myc ortholog myca. Coexpression of CagA with a loss-of-function allele encoding the β-catenin destruction complex protein Axin1 resulted in a further increase in intestinal proliferation. Coexpression of CagA with a null allele of the key β-catenin transcriptional cofactor Tcf4 restored intestinal proliferation to wild-type levels. These results provide in vivo evidence of Wnt pathway activation by CagA downstream of or in parallel to the β-catenin destruction complex and upstream of Tcf4. Long-term transgenic expression of wild-type CagA, but not the phosphorylation-resistant form, resulted in significant hyperplasia of the adult intestinal epithelium. We further utilized this model to demonstrate that oncogenic cooperation between CagA and a loss-of-function allele of p53 is sufficient to induce high rates of intestinal small cell carcinoma and adenocarcinoma, establishing the utility of our transgenic zebrafish model in the study of CagA-associated gastrointestinal cancers. PMID:23471915

  7. Helicobacter pylori cagA 12-bp insertion can be a marker for duodenal ulcer in Okinawa, Japan

    PubMed Central

    Matsuo, Yuichi; Shiota, Seiji; Matsunari, Osamu; Suzuki, Rumiko; Watada, Masahide; Binh, Tran Thanh; Kinjo, Nagisa; Kinjo, Fukunori; Yamaoka, Yoshio

    2013-01-01

    Backgrounds Helicobacter pylori cagA can be classified into mainly two types (East-Asian-type and Western-type cagA) according to the repeat regions located in the 3′ region. Recent studies showed that the Western-type cagA in strains from Okinawa, Japan formed a different cluster (J-Western-type cagA subtype). We also reported that J-Western-type cagA possess a 12-bp insertion located in the 5′ region of cagA sequence. Methods The prevalence of 12-bp insertion in cagA in Okinawa and the United States (U.S.) was examined by DNA sequencing. We then designed the primer pair which can detect the 12-bp insertion only by polymerase chain reaction (PCR). The prevalence of strains with 12-bp insertion was examined in 336 strains isolated from Okinawa by PCR. Results In case of Western-type cagA/vacA s1m2 strains, the prevalence of 12-bp insertion was significantly higher in strains isolated from Okinawa than that from the U.S. (P = 0.002). Phylogenetic tree showed that strains with 12-bp insertion formed two individual clusters within J-Western-type cagA subtype; one is from Okinawa and another is from the U.S. Our designed primer set showed high sensitivity (100%) and specificity (90.8%) in Okinawa. The 12-bp insertion was found in 23.7%, 14.3%, 4.2%, and 4.0% of strains with duodenal ulcer (DU), gastritis, gastric cancer (GC), and gastric ulcer (GU), respectively (P < 0.001 for DU vs. GU) in Okinawa. Conclusions Although the mechanisms are unknown, the presence of 12-bp insertion was associated with the presence of DU and might have a suppressive action on GU and GC. PMID:23190390

  8. CagA, a major virulence factor of Helicobacter pylori, promotes the production and underglycosylation of IgA1 in DAKIKI cells

    SciTech Connect

    Yang, Man; Li, Fu-gang; Xie, Xi-sheng; Wang, Shao-qing; Fan, Jun-ming

    2014-02-07

    Highlights: • CagA stimulated cell proliferation and the production of IgA1 in DAKIKI cells. • CagA promoted the underglycosylation of IgA1 in DAKIKI cells. • CagA decreased the expression of C1GALT1 and its chaperone Cosmc in DAKIKI cells. • Helicobacter pylori infection may participate in the pathogenesis of IgAN via CagA. - Abstract: While Helicobacter pylori (Hp) infection is closely associated with IgA nephropathy (IgAN), the underlying molecular mechanisms remain to be elucidated. This study was to investigate the effect of cytotoxin associated gene A protein (CagA), a major virulence factor of Hp, on the production and underglycosylation of IgA1 in the B cell line DAKIKI cells. Cells were cultured and treated with recombinant CagA protein. We found that CagA stimulated cell proliferation and the production of IgA1 in a dose-dependent and time-dependent manner. Moreover, CagA promoted the underglycosylation of IgA1, which at least partly attributed to the downregulation of β1,3-galactosyltransferase (C1GALT1) and its chaperone Cosmc. In conclusion, we demonstrated that Hp infection, at least via CagA, may participate in the pathogenesis of IgAN by influencing the production and glycosylation of IgA1 in B cells.

  9. Receptor Tyrosine Kinase and Tyrosine Kinase Inhibitors

    PubMed Central

    Mirshafiey, Abbas; Ghalamfarsa, Ghasem; Asghari, Babak

    2014-01-01

    Receptor tyrosine kinases (RTKs) are essential components of signal transduction pathways that mediate cell-to-cell communication and their function as relay points for signaling pathways. They have a key role in numerous processes that control cellular proliferation and differentiation, regulate cell growth and cellular metabolism, and promote cell survival and apoptosis. Recently, the role of RTKs including TCR, FLT-3, c-Kit, c-Fms, PDGFR, ephrin, neurotrophin receptor, and TAM receptor in autoimmune disorder, especially rheumatoid arthritis and multiple sclerosis has been suggested. In multiple sclerosis pathogenesis, RTKs and their tyrosine kinase enzymes are selective important targets for tyrosine kinase inhibitor (TKI) agents. TKIs, compete with the ATP binding site of the catalytic domain of several tyrosine kinases, and act as small molecules that have a favorable safety profile in disease treatment. Up to now, the efficacy of TKIs in numerous animal models of MS has been demonstrated, but application of these drugs in human diseases should be tested in future clinical trials. PMID:25337443

  10. Characterization of Helicobacter pylori cagA and vacA Genotypes among Alaskans and Their Correlation with Clinical Disease▿

    PubMed Central

    Miernyk, Karen; Morris, Julie; Bruden, Dana; McMahon, Brian; Hurlburt, Debby; Sacco, Frank; Parkinson, Alan; Hennessy, Thomas; Bruce, Michael

    2011-01-01

    Helicobacter pylori infection is common in Alaska. The development of severe H. pylori disease is partially determined by the virulence of the infecting strain. Here we present vacA and cagA genotype data for H. pylori strains isolated from Alaskans and their correlation with clinical disease. We enrolled patients scheduled for esophagogastroduodenoscopy and positive for H. pylori infection. Gastric biopsy specimens from the stomach antrum and fundus were cultured. We performed PCR analysis of the H. pylori vacA gene and for the presence of the cagA gene and cagA empty site. We genotyped 515 H. pylori samples from 220 Native and 66 non-Native Alaskans. We detected the cagA gene in 242/286 (85%) persons; of 222 strains that could be subtyped, 95% (212) were non-Asian cagA and 3% (6) were East Asian cagA. After removing mixed infections (n = 17), 83% of H. pylori strains had either the vacA s1m1 (120/269) or s2m2 (103/269) genotype. Sixty-six percent (68/103) of H. pylori strains with the vacA s2m2 genotype also contained the cagA gene. Infection with an H. pylori strain having the cagA gene or vacA s1m1 genotype (compared with s1m2 and s2m2) was associated with a decreased risk of esophagitis (P = 0.003 and 0.0003, respectively). Infection with an H. pylori strain having the vacA s1m1 genotype (compared with s1m2 and s2m2) was associated with an increased risk of peptic ulcer disease (PUD) (P = 0.003). The majority of H. pylori strains in this study carried the non-Asian cagA gene and either the vacA s1m1 or s2m2 genotype. A majority of H. pylori strains with the vacA s2m2 genotype also contained the cagA gene. There was an association of H. pylori genotype with esophagitis and PUD. PMID:21752979

  11. What exists beyond cagA and vacA? Helicobacter pylori genes in gastric diseases

    PubMed Central

    da Costa, Débora Menezes; Pereira, Eliane dos Santos; Rabenhorst, Silvia Helena Barem

    2015-01-01

    Helicobacter pylori (H. pylori) infection is present in more than half the world’s population and has been associated with several gastric disorders, such as gastritis, peptic ulceration, and gastric adenocarcinoma. The clinical outcome of this infection depends on host and bacterial factors where H. pylori virulence genes seem to play a relevant role. Studies of cagA and vacA genes established that they were determining factors in gastric pathogenesis. However, there are gastric cancer cases that are cagA-negative. Several other virulence genes have been searched for, but these genes remain less well known that cagA and vacA. Thus, this review aimed to establish which genes have been suggested as potentially relevant virulence factors for H. pylori-associated gastrointestinal diseases. We focused on the cag-pathogenicity island, genes with adherence and motility functions, and iceA based on the relevance shown in several studies in the literature. PMID:26457016

  12. Cag Type IV Secretion System: CagI Independent Bacterial Surface Localization of CagA

    PubMed Central

    Kumar, Navin; Shariq, Mohd; Kumari, Rajesh; Tyagi, Rakesh K.; Mukhopadhyay, Gauranga

    2013-01-01

    Helicobacter pylori Cag type IV secretion system (Cag-T4SS) is a multi-component transporter of oncoprotein CagA across the bacterial membranes into the host epithelial cells. To understand the role of unique Cag-T4SS component CagI in CagA translocation, we have characterized it by biochemical and microscopic approaches. We observed that CagI is a predominantly membrane attached periplasmic protein partially exposed to the bacterial surface especially on the pili. The association of the protein with membrane appeared to be loose as it could be easily recovered in soluble fraction. We documented that the stability of the protein is dependent on several key components of the secretion system and it has multiple interacting partners including a non-cag-PAI protein HP1489. Translocation of CagA across the bacterial membranes to cell surface is CagI-independent process. The observations made herein are expected to assist in providing an insight into the substrate translocation by the Cag-T4SS system and Helicobacter pylori pathogenesis. PMID:24040297

  13. Helicobacter pylori CagA Suppresses Apoptosis through Activation of AKT in a Nontransformed Epithelial Cell Model of Glandular Acini Formation

    PubMed Central

    Vallejo-Flores, Gabriela; Torres, Javier; Sandoval-Montes, Claudia; Arévalo-Romero, Haruki; Meza, Isaura; Camorlinga-Ponce, Margarita; Torres-Morales, Julián; Chávez-Rueda, Adriana Karina; Legorreta-Haquet, María Victoria; Fuentes-Pananá, Ezequiel M.

    2015-01-01

    H. pylori infection is the most important environmental risk to develop gastric cancer, mainly through its virulence factor CagA. In vitro models of CagA function have demonstrated a phosphoprotein activity targeting multiple cellular signaling pathways, while cagA transgenic mice develop carcinomas of the gastrointestinal tract, supporting oncogenic functions. However, it is still not completely clear how CagA alters cellular processes associated with carcinogenic events. In this study, we evaluated the capacity of H. pylori CagA positive and negative strains to alter nontransformed MCF-10A glandular acini formation. We found that CagA positive strains inhibited lumen formation arguing for an evasion of apoptosis activity of central acini cells. In agreement, CagA positive strains induced a cell survival activity that correlated with phosphorylation of AKT and of proapoptotic proteins BIM and BAD. Anoikis is a specific type of apoptosis characterized by AKT and BIM activation and it is the mechanism responsible for lumen formation of MCF-10A acini in vitro and mammary glands in vivo. Anoikis resistance is also a common mechanism of invading tumor cells. Our data support that CagA positive strains signaling function targets the AKT and BIM signaling pathway and this could contribute to its oncogenic activity through anoikis evasion. PMID:26557697

  14. Helicobacter pylori induced interleukin-8 expression in gastric epithelial cells is associated with CagA positive phenotype.

    PubMed Central

    Crabtree, J E; Covacci, A; Farmery, S M; Xiang, Z; Tompkins, D S; Perry, S; Lindley, I J; Rappuoli, R

    1995-01-01

    AIMS--To use a range of natural phenotypically variant strains of Helicobacter pylori with disparate CagA and VacA (vacuolating cytotoxin) expression to determine which bacterial factors are more closely associated with epithelial interleukin-8 (IL-8) induction. METHODS--Gastric epithelial cells (AGS and KATO-3) were co-cultured with five H pylori strains which were variously shown to express the cagA gene/CagA protein, VacA and/or to exhibit biological cytotoxicity. Secreted IL-8 was assayed by enzyme leaked immunosorbent assay (ELISA) and IL-8 messenger RNA (mRNA) was assayed using a reverse transcription polymerase chain reaction based technique (RT-PCR). RESULTS--Strains expressing CagA, including a variant strain (D931) which is non-cytotoxic and does not express the VacA protein, were found to upregulate epithelial IL-8 secretion and gene expression. In contrast, strains with no CagA expression, even in the presence of VacA and/or biological cytotoxicity, (G104, BA142), failed to induce IL-8 protein or mRNA above control values. CONCLUSIONS--These results strongly support a role for H pylori CagA or coexpressed factors other than the cytotoxin in upregulation of gastric epithelial IL-8. Increased epithelial IL-8 secretion and concomitant neutrophil chemotaxis and activation in addition to direct cytotoxicity may be an important factor in tissue damage and ulceration. Images PMID:7706517

  15. Influence of H. pylori CagA Coupled with Alcohol Consumption on Cytokine Profiles in Men

    PubMed Central

    Qu, Baoge; Han, Xinghai; Ren, Guangying; Jia, Yiguo; Liu, Yuanxun; Su, Jiliang; Wang, Zhongdong; Wang, Yafei; Wang, Hui; Pan, Jindun; Liu, Li-li; Hu, Wen-Juan

    2016-01-01

    Abstract The aim of this study was to evaluate the effect of Helicobacter pylori (H pylori) cytotoxin-associated gene A (CagA) coupled with chronic alcohol ingestion on cytokine profiles. A total of 215 male subjects were divided into the following 4 groups: 130 alcohol H pylori CagA-negative consumers (CagA−) (group A), 50 alcohol H pylori CagA-positive consumers (CagA+) (group B), 24 nonalcohol H pylori CagA-negative consumers (group C), and 11 nonalcohol H pylori CagA-positive consumers (group D). The serum CagA, C-reactive protein (CRP), interleukin (IL)-6, IL-10, E-selectin, adiponectin (ADP), and tumor necrosis factor-α (TNF-α) levels were measured through enzyme-linked immunosorbent assays (ELISAs). After adjusting for age and mean alcohol drinking history, a multivariable linear regression analysis revealed that the mean daily alcohol consumption, IL-6, TNF-α, and ADP levels were significantly increased with increases in the serum CagA concentrations (P = 0.008, P = 0.000, P = 0.000, and P = 0.006, respectively). The serum IL-6 and IL-10 levels of group A were significantly lower than those of group B (all P = 0.000). Furthermore, the serum IL-6 and IL-10 levels of groups A and C were significantly lower than those of group D (all P = 0.000), and the serum IL-6 and IL-10 levels of group C were significantly lower than those of group B (all P = 0.000). The serum ADP and E-selectin levels of groups B and D were significantly higher than those of group A (P = 0.000). The serum ADP levels of group B were significantly higher than those of group C (P = 0.000), and the serum ADP and E-selectin levels of group C were significantly lower than those of group D (P = 0.000 and P = 0.005, respectively). Finally, the serum TNF-α levels of groups B, C, and D were significantly higher than those of group A (all P = 0.000), and the serum TNF-α levels of group C were significantly higher than those of group D (P = 0

  16. Helicobacter pylori Infection in Thailand: A Nationwide Study of the CagA Phenotype

    PubMed Central

    Uchida, Tomohisa; Miftahussurur, Muhammad; Pittayanon, Rapat; Vilaichone, Ratha-korn; Wisedopas, Naruemon; Ratanachu-ek, Thawee; Kishida, Tetsuko; Moriyama, Masatsugu; Yamaoka, Yoshio; Mahachai, Varocha

    2015-01-01

    Background The risk to develop gastric cancer in Thailand is relatively low among Asian countries. In addition, the age-standardized incidence rate (ASR) of gastric cancer in Thailand varies with geographical distribution; the ASR in the North region is 3.5 times higher than that in the South region. We hypothesized that the prevalence of H. pylori infection and diversity of CagA phenotype contributes to the variety of gastric cancer risk in various regions of Thailand. Methods We conducted a nationwide survey within Thailand. We determined H. pylori infection prevalence by detecting H. pylori, using histochemical and immunohistochemical methods. The anti-CagA antibody and anti-East-Asian type CagA antibody (α-EAS Ab), which showed high accuracy in several East Asian countries, were used to determine CagA phenotype. Results Among 1,546 patients from four regions, including 17 provinces, the overall prevalence of H. pylori infection was 45.9% (710/1,546). Mirroring the prevalence of H. pylori infection, histological scores were the lowest in the South region. Of the 710 H. pylori-positive patients, 93.2% (662) were immunoreactive with the anti-CagA antibody. CagA-negative strain prevalence in the South region was significantly higher than that in other regions (17.9%; 5/28; p < 0.05). Overall, only 77 patients (11.6%) were immunoreactive with the α-EAS Ab. There were no differences in the α-EAS Ab immunoreactive rate across geographical regions. Conclusions This is the first study using immunohistochemistry to confirm H. pylori infections across different regions in Thailand. The prevalence of East-Asian type CagA H. pylori in Thailand was low. The low incidence of gastric cancer in Thailand may be attributed to the low prevalence of precancerous lesions. The low incidence of gastric cancer in the South region might be associated with the lower prevalence of H. pylori infection, precancerous lesions, and CagA-positive H. pylori strains, compared with that in the

  17. Helicobacter pylori CagA and IL-1β Promote the Epithelial-to-Mesenchymal Transition in a Nontransformed Epithelial Cell Model

    PubMed Central

    Arévalo-Romero, Haruki; Meza, Isaura; Vallejo-Flores, Gabriela

    2016-01-01

    Gastric cancer is the third cause of cancer death worldwide and infection by Helicobacter pylori (H. pylori) is considered the most important risk factor, mainly by the activity of its virulence factor CagA. H. pylori/CagA-induced chronic inflammation triggers a series of gastric lesions of increased severity, starting with gastritis and ending with cancer. IL-1β has been associated with tumor development and invasiveness in different types of cancer, including gastric cancer. Currently, it is not clear if there is an association between CagA and IL-1β at a cellular level. In this study, we analyzed the effects of IL-1β and CagA on MCF-10A nontransformed cells. We found evidence that both CagA and IL-1β trigger the initiation of the epithelial-to-mesenchymal transition characterized by β-catenin nuclear translocation, increased expression of Snail1 and ZEB1, downregulation of CDH1, and morphological changes during MCF-10A acini formation. However, only CagA induced MMP9 activity and cell invasion. Our data support that IL-1β and CagA target the β-catenin pathway, with CagA leading to acquisition of a stage related to aggressive tumors. PMID:27525003

  18. Impact of structural polymorphism for the Helicobacter pylori CagA oncoprotein on binding to polarity-regulating kinase PAR1b.

    PubMed

    Nishikawa, Hiroko; Hayashi, Takeru; Arisaka, Fumio; Senda, Toshiya; Hatakeyama, Masanori

    2016-01-01

    Chronic infection with cagA-positive Helicobacter pylori is the strongest risk factor for atrophic gastritis, peptic ulcers, and gastric cancer. CagA, the product of the cagA gene, is a bacterial oncoprotein, which, upon delivery into gastric epithelial cells, binds to and inhibits the polarity-regulating kinase, partitioning-defective 1b (PAR1b) [also known as microtubule affinity-regulating kinase 2 (MARK2)], via its CagA multimerization (CM) motif. The inhibition of PAR1b elicits junctional and polarity defects, rendering cells susceptible to oncogenesis. Notably, the polymorphism in the CM motif has been identified among geographic variants of CagA, differing in either the copy number or the sequence composition. In this study, through quantitative analysis of the complex formation between CagA and PAR1b, we found that several CagA species have acquired elevated PAR1b-binding activity via duplication of the CM motifs, while others have lost their PAR1b-binding activity. We also found that strength of CagA-PAR1b interaction was proportional to the degrees of stress fiber formation and tight junctional disruption by CagA in gastric epithelial cells. These results indicate that the CM polymorphism is a determinant for the magnitude of CagA-mediated deregulation of the cytoskeletal system and thereby possibly affects disease outcome of cagA-positive H. pylori infection, including gastric cancer. PMID:27445265

  19. Helicobacter pylori CagA and IL-1β Promote the Epithelial-to-Mesenchymal Transition in a Nontransformed Epithelial Cell Model.

    PubMed

    Arévalo-Romero, Haruki; Meza, Isaura; Vallejo-Flores, Gabriela; Fuentes-Pananá, Ezequiel M

    2016-01-01

    Gastric cancer is the third cause of cancer death worldwide and infection by Helicobacter pylori (H. pylori) is considered the most important risk factor, mainly by the activity of its virulence factor CagA. H. pylori/CagA-induced chronic inflammation triggers a series of gastric lesions of increased severity, starting with gastritis and ending with cancer. IL-1β has been associated with tumor development and invasiveness in different types of cancer, including gastric cancer. Currently, it is not clear if there is an association between CagA and IL-1β at a cellular level. In this study, we analyzed the effects of IL-1β and CagA on MCF-10A nontransformed cells. We found evidence that both CagA and IL-1β trigger the initiation of the epithelial-to-mesenchymal transition characterized by β-catenin nuclear translocation, increased expression of Snail1 and ZEB1, downregulation of CDH1, and morphological changes during MCF-10A acini formation. However, only CagA induced MMP9 activity and cell invasion. Our data support that IL-1β and CagA target the β-catenin pathway, with CagA leading to acquisition of a stage related to aggressive tumors. PMID:27525003

  20. Impact of structural polymorphism for the Helicobacter pylori CagA oncoprotein on binding to polarity-regulating kinase PAR1b

    PubMed Central

    Nishikawa, Hiroko; Hayashi, Takeru; Arisaka, Fumio; Senda, Toshiya; Hatakeyama, Masanori

    2016-01-01

    Chronic infection with cagA-positive Helicobacter pylori is the strongest risk factor for atrophic gastritis, peptic ulcers, and gastric cancer. CagA, the product of the cagA gene, is a bacterial oncoprotein, which, upon delivery into gastric epithelial cells, binds to and inhibits the polarity-regulating kinase, partitioning-defective 1b (PAR1b) [also known as microtubule affinity-regulating kinase 2 (MARK2)], via its CagA multimerization (CM) motif. The inhibition of PAR1b elicits junctional and polarity defects, rendering cells susceptible to oncogenesis. Notably, the polymorphism in the CM motif has been identified among geographic variants of CagA, differing in either the copy number or the sequence composition. In this study, through quantitative analysis of the complex formation between CagA and PAR1b, we found that several CagA species have acquired elevated PAR1b-binding activity via duplication of the CM motifs, while others have lost their PAR1b-binding activity. We also found that strength of CagA-PAR1b interaction was proportional to the degrees of stress fiber formation and tight junctional disruption by CagA in gastric epithelial cells. These results indicate that the CM polymorphism is a determinant for the magnitude of CagA-mediated deregulation of the cytoskeletal system and thereby possibly affects disease outcome of cagA-positive H. pylori infection, including gastric cancer. PMID:27445265

  1. In Silico Profiling of the Potentiality of Curcumin and Conventional Drugs for CagA Oncoprotein Inactivation.

    PubMed

    Srivastava, Akhileshwar K; Tewari, Mallika; Shukla, Hari S; Roy, Bijoy K

    2015-08-01

    The oncoprotein cytotoxic associated gene A (CagA) of Helicobacter pylori plays a pivotal role in the development of gastric cancer, so it has been an important target for anti-H. pylori drugs. Conventional drugs are currently being implemented against H. pylori. The inhibitory role of plant metabolites like curcumin against H. pylori is still a major scientific challenge. Curcumin may represent a novel promising drug against H. pylori infection without producing side effects. In the present study, a comparative analysis between curcumin and conventional drugs (clarithromycin, amoxicillin, pantoprazole, and metronidazole) was carried out using databases to investigate the potential of curcumin against H. pylori targeting the CagA oncoprotein. Curcumin was filtered using Lipinski's rule of five and the druglikeness property for evaluation of pharmacological properties. Subsequently, molecular docking was employed to determine the binding affinities of curcumin and conventional drugs to the CagA oncoprotein. According to the results obtained from FireDock, the binding energy of curcumin was higher than those of amoxicillin, pantoprazole, and metronidazole, except for clarithromycin, which had the highest binding energy. Accordingly, curcumin may become a promising lead compound against CagA+ H. pylori infection. PMID:25996140

  2. Role of the Helicobacter pylori virulence factors vacuolating cytotoxin, CagA, and urease in a mouse model of disease.

    PubMed Central

    Ghiara, P; Marchetti, M; Blaser, M J; Tummuru, M K; Cover, T L; Segal, E D; Tompkins, L S; Rappuoli, R

    1995-01-01

    The pathogenic role of Helicobacter pylori virulence factors has been studied with a mouse model of gastric disease. BALB/c mice were treated orally with different amounts of sonic extracts of cytotoxic H. pylori strains (NCTC 11637, 60190, 84-183, and 87A300 [CagA+/Tox+]). The pathological effects on histological sections of gastric mucosae were assessed and were compared with the effects of treatments with extracts from noncytotoxic strains (G21 and G50 [CagA-/Tox-]) and from strains that express either CagA alone (D931 [CagA+/Tox-]) or the cytotoxin alone (G104 [CagA-/Tox+]). The treatment with extracts from cytotoxic strains induced various epithelial lesions (vacuolation, erosions, and ulcerations), recruitment of inflammatory cells in the lamina propria, and a marked reduction of the mucin layer. Extracts of noncytotoxic strains induced mucin depletion but no other significant pathology. Crude extracts of strain D931, expressing CagA alone, caused only mild infiltration of inflammatory cells, whereas extracts of strain G104, expressing cytotoxin alone, induced extensive epithelial damage but little inflammatory reaction. Loss of the mucin layer was not associated with a cytotoxic phenotype, since this loss was observed in mice treated with crude extracts of all strains. The pathogenic roles of CagA, cytotoxin, and urease were further assessed by using extracts of mutant strains of H. pylori defective in the expression of each of these virulence factors. The results obtained suggest that (i) urease activity does not play a significant role in inducing the observed gastric damage, (ii) cytotoxin has an important role in the induction of gastric epithelial cell lesions but not in eliciting inflammation, and (iii) other components present in strains which carry the cagA gene, but distinct from CagA itself, are involved in eliciting the inflammatory response. PMID:7558333

  3. Helicobacter pylori CagA induces tumor suppressor gene hypermethylation by upregulating DNMT1 via AKT-NFκB pathway in gastric cancer development.

    PubMed

    Zhang, Bao-Gui; Hu, Lei; Zang, Ming De; Wang, He-Xiao; Zhao, Wei; Li, Jian-Fang; Su, Li-Ping; Shao, Zhifeng; Zhao, Xiaodong; Zhu, Zheng-Gang; Yan, Min; Liu, Bingya

    2016-03-01

    Methylation of CpG islands in tumor suppressor gene prompter is one of the most characteristic abnormalities in Helicobacter pylori (HP)-associated gastric carcinoma (GC). Here, we investigated the pathogenic and molecular mechanisms underlying hypermethylation of tumor suppressor genes in HP induced GC development. We found that tumor suppressor genes hypermethylation, represented by MGMT, positively correlated with CagA in clinical specimens, gastric tissues from HP infected C57 mice and GC cell lines transfected by CagA or treated by HP infection. CagA enhanced PDK1 and AKT interaction and increased AKT phosphorylation. The P-AKT subsequent activated NFκB, which then bound to DNMT1 promoter and increased its expression. Finally, the upregulated DNMT1 promoted tumor suppressor genes hypermethylation with MGMT as a representative. In conclusion, CagA increased tumor suppressor genes hypermethylation via stimulating DNMT1 expression through the AKT-NFκB pathway. PMID:26848521

  4. Helicobacter pylori CagA induces tumor suppressor gene hypermethylation by upregulating DNMT1 via AKT-NFκB pathway in gastric cancer development

    PubMed Central

    Wang, He-xiao; Zhao, Wei; Li, Jian-fang; Su, Li-ping; Shao, Zhifeng; Zhao, Xiaodong; Zhu, Zheng-gang; Yan, Min; Liu, Bingya

    2016-01-01

    Methylation of CpG islands in tumor suppressor gene prompter is one of the most characteristic abnormalities in Helicobacter pylori (HP)-associated gastric carcinoma (GC). Here, we investigated the pathogenic and molecular mechanisms underlying hypermethylation of tumor suppressor genes in HP induced GC development. We found that tumor suppressor genes hypermethylation, represented by MGMT, positively correlated with CagA in clinical specimens, gastric tissues from HP infected C57 mice and GC cell lines transfected by CagA or treated by HP infection. CagA enhanced PDK1 and AKT interaction and increased AKT phosphorylation. The P-AKT subsequent activated NFκB, which then bound to DNMT1 promoter and increased its expression. Finally, the upregulated DNMT1 promoted tumor suppressor genes hypermethylation with MGMT as a representative. In conclusion, CagA increased tumor suppressor genes hypermethylation via stimulating DNMT1 expression through the AKT-NFκB pathway. PMID:26848521

  5. Proteomic Characterization of Helicobacter pylori CagA Antigen Recognized by Child Serum Antibodies and Its Epitope Mapping by Peptide Array

    PubMed Central

    Akada, Junko; Okuda, Masumi; Hiramoto, Narumi; Kitagawa, Takao; Zhang, Xiulian; Kamei, Shuichi; Ito, Akane; Nakamura, Mikiko; Uchida, Tomohisa; Hiwatani, Tomoko; Fukuda, Yoshihiro; Nakazawa, Teruko; Kuramitsu, Yasuhiro; Nakamura, Kazuyuki

    2014-01-01

    Serum antibodies against pathogenic bacteria play immunologically protective roles, and can be utilized as diagnostic markers of infection. This study focused on Japanese child serum antibodies against Helicobacter pylori, a chronically-infected gastric bacterium which causes gastric cancer in adults. Serological diagnosis for H. pylori infection is well established for adults, but it needs to be improved for children. Serum samples from 24 children, 22 H. pylori (Hp)-positive and 2 Hp-negative children, were used to catalogue antigenic proteins of a Japanese strain CPY2052 by two-dimensional electrophoresis followed by immunoblot and LC-MS/MS analysis. In total, 24 proteins were identified as candidate antigen proteins. Among these, the major virulence factor, cytotoxin-associated gene A protein (CagA) was the most reactive antigen recognized by all the Hp-positive sera even from children under the age of 3 years. The major antigenic part of CagA was identified in the middle region, and two peptides containing CagA epitopes were identified using a newly developed peptide/protein-combined array chip method, modified from our previous protein chip method. Each of the epitopes was found to contain amino acid residue(s) unique to East Asian CagA. Epitope analysis of CagA indicated importance of the regional CagA antigens for serodiagnosis of H. pylori infection in children. PMID:25141238

  6. CagA promotes proliferation and secretion of extracellular matrix by inhibiting signaling pathway of apoptosis in rat glomerular mesangial cells.

    PubMed

    Wang, Li; Tan, Rui-Zhi; Chen, Yue; Wang, Hong-Lian; Liu, Yu-Hang; Wen, Dan; Fan, Jun-Ming

    2016-04-01

    Cytotoxin-associated antigen A (CagA), a major virulence factor of Helicobacter pylori (Hp), is associated with the pathogenesis of peptic ulcer and gastric cancer. Recent researches demonstrated that Hp exists in palatine tonsil in all studied IgA nephropathy (IgAN) patients, most of which were CagA-positive, suggesting that CagA may be a causative pathogenic factor of IgAN. However, the underlying molecular mechanisms and signaling pathway are still largely unclear. In the present study, CCK8 assay, enzyme-linked immunosorbent assay, and immunohistochemistry were performed to investigate the effect of CagA on cell proliferation and extracellular matrix secretion in rat glomerular mesangial cells. RT-PCR and western blotting were used to reveal the potential signaling pathway. Rat glomerular mesangial cells were treated with recombinant CagA protein for 72 h, in a dose- and time-dependent manner. We found that CagA promoted cell proliferation and extracellular matrix secretion by inhibiting signaling pathway of apoptosis. Taken together, these findings suggested that CagA induced cellular injury in glomerular mesangium by proliferation and secretion of extracellular matrix, and may play an important role in pathogenesis of IgAN. PMID:26837331

  7. Role of vacuolating cytotoxin VacA and cytotoxin-associated antigen CagA of Helicobacter pylori in the progression of gastric cancer.

    PubMed

    Ki, Mi-Ran; Hwang, Meeyul; Kim, Ah-Young; Lee, Eun-Mi; Lee, Eun-Joo; Lee, Myeong-Mi; Sung, Soo-Eun; Kim, Sang-Hyeob; Lee, Hye Seung; Jeong, Kyu-Shik

    2014-11-01

    Helicobacter (H.) pylori strains that express the cagA and s1a vacA genes are associated with an increased risk for gastric cancer. Here, we examined the association between the products of these virulence genes with the development of gastric cancer by immunohistochemical staining of gastric biopsy specimens taken from 208 routine gastroscopies and 43 gastric cancer patients. The correlation was analyzed by multivariate logistic regression. CagA and VacA expressions in gastric mucosa were significantly associated with chronic gastritis (CG) and intestinal metaplasia (IM), respectively, accompanying CG independent of age. The association of CagA expression with IM accompanying CG was increased in patients over 50-year old (p < 0.01) and that of VacA with CG was significant in patients younger than 50 year (p < 0.05). VacA and CagA were associated with mild IM incidence (p = 0.025 and p = 0.076, respectively) but not advanced IM. In the 43 gastric cancer patients, positivity for VacA was significantly higher in cases of CG and IM than carcinoma (p = 0.042), while that for CagA was slightly higher for individuals with carcinoma than those with CG and IM. These results indicate that CagA and VacA are critical factors for inducing CG and the subsequent progression of IM from CG with an increasing age. PMID:25038872

  8. Hydrogen Metabolism in Helicobacter pylori Plays a Role in Gastric Carcinogenesis through Facilitating CagA Translocation

    PubMed Central

    Wang, Ge; Romero-Gallo, Judith; Benoit, Stéphane L.; Piazuelo, M. Blanca; Dominguez, Ricardo L.; Morgan, Douglas R.; Peek, Richard M.

    2016-01-01

    ABSTRACT A known virulence factor of Helicobacter pylori that augments gastric cancer risk is the CagA cytotoxin. A carcinogenic derivative strain, 7.13, that has a greater ability to translocate CagA exhibits much higher hydrogenase activity than its parent noncarcinogenic strain, B128. A Δhyd mutant strain with deletion of hydrogenase genes was ineffective in CagA translocation into human gastric epithelial AGS cells, while no significant attenuation of cell adhesion was observed. The quinone reductase inhibitor 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO) was used to specifically inhibit the H2-utilizing respiratory chain of outer membrane-permeabilized bacterial cells; that level of inhibitor also greatly attenuated CagA translocation into AGS cells, indicating the H2-generated transmembrane potential is a contributor to toxin translocation. The Δhyd strain showed a decreased frequency of DNA transformation, suggesting that H. pylori hydrogenase is also involved in energizing the DNA uptake apparatus. In a gerbil model of infection, the ability of the Δhyd strain to induce inflammation was significantly attenuated (at 12 weeks postinoculation), while all of the gerbils infected with the parent strain (7.13) exhibited a high level of inflammation. Gastric cancer developed in 50% of gerbils infected with the wild-type strain 7.13 but in none of the animals infected with the Δhyd strain. By examining the hydrogenase activities from well-defined clinical H. pylori isolates, we observed that strains isolated from cancer patients (n = 6) have a significantly higher hydrogenase (H2/O2) activity than the strains isolated from gastritis patients (n = 6), further supporting an association between H. pylori hydrogenase activity and gastric carcinogenesis in humans. PMID:27531909

  9. Transgenic expression of the Helicobacter pylori virulence factor CagA promotes apoptosis or tumorigenesis through JNK activation in Drosophila.

    PubMed

    Wandler, Anica M; Guillemin, Karen

    2012-01-01

    Gastric cancer development is strongly correlated with infection by Helicobacter pylori possessing the effector protein CagA. Using a transgenic Drosophila melanogaster model, we show that CagA expression in the simple model epithelium of the larval wing imaginal disc causes dramatic tissue perturbations and apoptosis when CagA-expressing and non-expressing cells are juxtaposed. This cell death phenotype occurs through activation of JNK signaling and is enhanced by loss of the neoplastic tumor suppressors in CagA-expressing cells or loss of the TNF homolog Eiger in wild type neighboring cells. We further explored the effects of CagA-mediated JNK pathway activation on an epithelium in the context of oncogenic Ras activation, using a Drosophila model of metastasis. In this model, CagA expression in epithelial cells enhances the growth and invasion of tumors in a JNK-dependent manner. These data suggest a potential role for CagA-mediated JNK pathway activation in promoting gastric cancer progression. PMID:23093933

  10. Serum Helicobacter pylori CagA antibody as a biomarker for gastric cancer in east-Asian countries

    PubMed Central

    Shiota, Seiji; Matsunari, Osamu; Watada, Masahide; Yamaoka, Yoshio

    2011-01-01

    Aims In east-Asian countries, while almost all Helicobacter pylori strains possess the cytotokine-associated gene A (CagA) gene, serum CagA antibody is not detected in some infected subjects. We aimed to clarify the association between anti-CagA antibody and gastric cancer in east-Asian countries. Materials & methods We performed a meta-analysis of case–control studies with age- and sex-matched controls, which provided raw data in east-Asian countries. Results Ten studies with a total of 4325 patients were identified in the search. Some reports from Japan, Korea and China showed a positive association between the presence of anti-CagA antibody and gastric cancer; however, the results differed in their various backgrounds. The disparate findings appeared to result from the use of different methods or from variations in the antigens used to detect the anti-CagA antibody. CagA seropositivity was associated with an increased risk of developing gastric cancer. Conclusion Anti-CagA antibody can be used as a biomarker for gastric cancer even in east-Asian countries. PMID:21155667

  11. Genotyping of the Helicobacter pylori cagA Gene Isolated From Gastric Biopsies in Shiraz, Southern Iran: A PCR-RFLP and Sequence Analysis Approach

    PubMed Central

    Moaddeb, Afsaneh; Fattahi, Mohammad Reza; Firouzi, Roya; Derakhshandeh, Abdollah; Farshad, Shohreh

    2016-01-01

    Background Cytotoxin-associated gene A (cagA) is an important virulence factor in the pathogenesis of Helicobacter pylori. Objectives The aim of this study was to genotype the H. pylori cagA gene isolated from antral biopsies of patients with stomach symptoms, using a PCR-restriction fragment length polymorphism (PCR-RFLP) analysis. Patients and Methods A total of 161 gastric biopsies were collected from patients with stomach symptoms. After isolation of H. pylori from the biopsy culture, the cagA gene was assessed using PCR. The PCR products were then digested by the HinfI restriction endonuclease enzyme. A sample of each genotype was also subjected to direct sequencing for further analysis. Results From 161 antral biopsies, 61 (37.9%) were positive for H. pylori in culture. Overall, 24 cagA-positives were detected in the isolates. RFLP indicated three different genotypes (I, II, and III) of cagA with a frequency of 62.5%, 25%, and 12.5% among the isolates, respectively. Genotypes I and II of cagA were predominant in patients who had gastritis. However, genotype III was found in three patients with duodenitis and duodenal ulcers. Alignment of the nucleotide sequences of the three isolated genotypes, with H. pylori 26695 as a reference strain, revealed 12 inserted nucleotides in genotype III. When the sequence of genotype III was aligned with 15 additional H. pylori strains available in GenBank, the same inserted nucleotides were detected in six of them. Conclusions Using the PCR-RFLP method, three distinctive H. pylori cagA genotypes were detected in antral biopsies. Genotype I, which was predominant among the isolates, was significantly associated with gastritis. However, the data showed that cagA genotype III may play a role in duodenitis and duodenal ulcers in patients infected with H. pylori. PMID:27335631

  12. Non-invasive Genotyping of Helicobacter pylori cagA, vacA, and hopQ from Asymptomatic Children

    PubMed Central

    Sicinschi, Liviu A.; Correa, Pelayo; Bravo, Luis E.; Peek, Richard M.; Wilson, Keith T.; Loh, John T.; Yepez, Maria C.; Gold, Benjamin D.; Thompson, Dexter T.; Cover, Timothy L.; Schneider, Barbara G.

    2011-01-01

    Background H. pylori infection is usually acquired in childhood, but little is known about its natural history in asymptomatic children, primarily due to the paucity of non-invasive diagnostic methods. H. pylori strains harboring cagA and specific alleles of hopQ and vacA are associated with increased risk for gastric cancer. Many studies of H. pylori virulence markers in children have the bias that symptomatic subjects are selected for endoscopy, and these children may harbor the most virulent strains. Our aim: to genotype cagA, hopQ and vacA alleles in stool DNA samples of healthy Colombian children residing in an area with high incidence of gastric cancer, in order to avoid selection bias resulting from endoscopy. Methods H. pylori status of 86 asymptomatic children was assessed by 13C-Urea Breath Test (UBT) and PCR. H. pylori 16S rRNA, cagA, hopQ and vacA genes were amplified from stool DNA samples and sequenced. Results UBT was positive in 69 (80.2%) of 86 children; in stool DNA analysis, 78.3% were positive by 16S rRNA PCR. cagA, vacA and hopQ were detected in 66.1%, 84.6%, and 72.3% of stool DNA samples from 16S rRNA positive children. Of the children's DNA samples which revealed vacA and hopQ alleles, 91.7% showed vacA s1 and 73.7% showed type I hopQ. Type I hopQ alleles were associated with cagA-positivity and vacA s1 genotypes (P<0.0001). Conclusions Using stool DNA samples, virulence markers of H. pylori were successfully genotyped in a high percentage of the asymptomatic infected children, revealing a high prevalence of genotypes associated with virulence. Type I hopQ alleles were associated with the presence of cagA and the vacA s1 genotype. PMID:22404439

  13. Prevalence and correlation with clinical diseases of Helicobacter pylori cagA and vacA genotype among gastric patients from Northeast China.

    PubMed

    Aziz, Faisal; Chen, Xin; Yang, Xuesong; Yan, Qiu

    2014-01-01

    Helicobacter pylori vacA and cagA genes have significant genetic heterogenicity, resulting in different clinical outcomes. Northeast part of China has reported high prevalence of H. pylori infections and gastric cancer. Hence, we investigated the H. pylori cagA and vacA genotypes with clinical outcomes in Northeast China. Gastric tissue samples (n = 169), chronic gastritis (GIs), gastric ulcer (GU), and gastric cancer (GC) were analysed for 16S rRNA ureA, cagA, and cagA genotypes by PCR. A total of 141 (84%) cases were found positive for H. pylori by 16S rRNA and ureA. GC showed high H. pylori infection (93%) compared with GIs (72%) and GU (84%). The vacAs1am1 was highly found in GC (40%) and GU (36%), vacAs1am2 in GIs (33%), vacAs1bm1 (14%) and vacAs1bm2 (8%) in GU cases, and s2m1 in normal cases (33%), while vacAs1cm1 showed low frequency in GIs (2%) and GU (3%) and GC showed negative result. The East-Asian cagA strain was highly observed in GC (43%), as compared to GIs (41%) and GU (20%). The East-Asian cagA/vacAs1am1 was significantly higher in GC (23%) than in GU (22%) and GIs (145) patients. The East-Asian type cagA with vacAs1a and vacAm1 is the most predominant genotype in H. pylori strains of Northeast China. PMID:24949419

  14. Risk of advanced gastric precancerous lesions in Helicobacter pylori infected subjects is influenced by ABO blood group and cagA status

    PubMed Central

    Rizzato, Cosmeri; Kato, Ikuko; Plummer, Martyn; Muñoz, Nubia; Stein, Angelika; van Doorn, Leen Jan; Franceschi, Silvia; Canzian, Federico

    2013-01-01

    A higher incidence of stomach cancer in ABO blood type A individuals than in those with blood type O has been known for a long time. We studied this association in relation to Helicobacter pylori (Hp) of different cagA status. For this study we used baseline gastric histopathology data and DNAs from frozen gastric biopsies of 2077 subjects enrolled in a chemoprevention trial for gastric precancerous lesions in Venezuela. We analyzed 6 single nucleotide polymorphisms in the ABO gene and we assessed the presence of the Hp cagA gene. Odds ratios for risk of advanced precancerous gastric lesions were calculated using individuals with normal gastric epithelium or non-atrophic gastritis as a reference. Among individuals carrying a cagA negative Hp infection or no Hp infection, those with blood type A had a lower risk of intestinal metaplasia and dysplasia than those with blood type O (OR=0.60; 95% CI 0.38-0.94). In carriers of cagA positive Hp strains, individuals with blood type A had a higher risk of intestinal metaplasia or dysplasia than those with blood type O (OR=1.42, 95% CI 1.09-1.86) and a higher risk if compared with subjects carrying cagA− strain and non-A blood group (OR=3.82, 95%CI=2.80-5.20). The interaction between Hp cagA status and blood type was statistically significant (P=0.0006). We showed that SNPs in the ABO gene, predictive of ABO blood groups, are associated with risk of advanced precancerous gastric lesions in individuals infected with Hp, but the assessment of the risk is strictly dependent on cagA status. PMID:23319424

  15. Expression of cagA, virB/D Complex and/or vacA Genes in Helicobacter pylori Strains Originating from Patients with Gastric Diseases.

    PubMed

    Szkaradkiewicz, Andrzej; Karpiński, Tomasz M; Linke, Krzysztof; Majewski, Przemysław; Rożkiewicz, Dorota; Goślińska-Kuźniarek, Olga

    2016-01-01

    In order to better understand pathogenicity of Helicobacter pylori, particularly in the context of its carcinogenic activity, we analysed expression of virulence genes: cagA, virB/D complex (virB4, virB7, virB8, virB9, virB10, virB11, virD4) and vacA in strains of the pathogen originating from persons with gastric diseases. The studies were conducted on 42 strains of H. pylori isolated from patients with histological diagnosis of non-atrophic gastritis-NAG (group 1, including subgroup 1 containing cagA+ isolates and subgroup 2 containing cagA- strains), multifocal atrophic gastritis-MAG (group 2) and gastric adenocarcinoma-GC (group 3). Expression of H. pylori genes was studied using microarray technology. In group 1, in all strains of H. pylori cagA+ (subgroup 1) high expression of the gene as well as of virB/D was disclosed, accompanied by moderate expression of vacA. In strains of subgroup 2 a moderate expression of vacA was detected. All strains in groups 2 and 3 carried cagA gene but they differed in its expression: a high expression was detected in isolates of group 2 and its hyperexpression in strains of group 3 (hypervirulent strains). In both groups high expression of virB/D and vacA was disclosed. Our results indicate that chronic active gastritis may be induced by both cagA+ strains of H. pylori, manifesting high expression of virB/D complex but moderate activity of vacA, and cagA- strains with moderate expression of vacA gene. On the other hand, in progression of gastric pathology and carcinogenesis linked to H. pylori a significant role was played by hypervirulent strains, manifesting a very high expression of cagA and high activity of virB/D and vacA genes. PMID:26866365

  16. Detection of serum antibodies to CagA and VacA and of serum neutralizing activity for vacuolating cytotoxin in patients with Helicobacter pylori-induced gastritis.

    PubMed Central

    Donati, M; Moreno, S; Storni, E; Tucci, A; Poli, L; Mazzoni, C; Varoli, O; Sambri, V; Farencena, A; Cevenini, R

    1997-01-01

    Thirty patients with dyspepsia, with histological diagnosis of gastritis, and with endoscopic diagnosis of peptic ulcer disease (PUD) (n = 13) or nonulcer dyspepsia (NUD) (n = 17) were admitted to the study. Helicobacter pylori vacuolating cytotoxin-producing strains (Tox+) were isolated from 14 (46.7%) patients, whereas non-cytotoxin-producing (Tox-) H. pylori strains were isolated from the remaining patients. Of 30 patients studied, 20 (66.7%) had serum cytotoxin neutralizing activity in vitro. Fourteen patients with Tox+ H. pylori strains showed serum cytotoxin neutralizing activity and serum immunoglobulin G (IgG) and IgA antibodies reactive with both 87-kDa H. pylori vacuolating cytotoxin (VacA) and 128-kDa cytotoxin-associated gene product (CagA) by immunoblotting using native enriched preparations of VacA and CagA proteins from H. pylori culture supernatants as the antigens. A 94-kDa antigen cross-reacting with the 87-kDa VacA protein could be demonstrated in culture supernatant with immune sera from humans and animals. All patients (n = 10) lacking serum neutralizing activity were also negative for IgG or IgA against VacA antigen, whereas 6 of the 10 patients showed IgG serum antibody responses against CagA antigen. The prevalence of antibodies to VacA and CagA antigens was significantly (P < 0.001) higher in patients with gastritis (20 and 26 patients for VacA and CagA, respectively, of 30 patients) than in H. pylori culture-negative controls (0 of 27 for both VacA and CagA) and in randomly selected blood donors (17 and 21 for VacA and CagA, respectively, of 120 subjects). All patients with PUD had antibodies to CagA, whereas 13 of 17 (76.5%) patients with NUD had anti-CagA antibodies. Serum IgG antibodies to VacA were present in 9 (69.2%) patients with PUD of 13 patients and in 11 (64.7%) patients with NUD of 17 patients. Anti-CagA antibodies seemed to correlate better with PUD than anti-VacA antibodies. PMID:9220168

  17. Heterogeneity in the Helicobacter pylori vacA and cagA genes: association with gastroduodenal disease in South Africa?

    PubMed Central

    Kidd, M; Lastovica, A; Atherton, J; Louw, J

    1999-01-01

    BACKGROUND—Helicobacter pylori infection is universally associated with gastritis, but only sometimes with clinically significant disease. Candidate virulence markers seem to be useful in identifying the pathogenic infections in some populations.
AIMS—To investigate the association between putative virulence markers and disease in an African population.
METHODS—Fifty nine H pylori strains isolated from dyspeptic patients (11 with peptic ulceration, eight with gastric adenocarcinoma, and 28 with no pathology other than gastritis) were studied for differences in the genes vacA and cagA.
RESULTS—Forty seven (80%) of 59 strains had the vacA signal sequence genotype s1 (one s1a, 46 s1b) and 12 (20%) had subtype s2. vacA mid-region analysis revealed that 40 (68%) strains were vacA m1 and 19 (32%) were m2. All 14 strains from patients with peptic ulceration were vacA s1, in contrast to 23 (66%) of 35 strains from patients with gastritis alone (p<0.01). vacA s2 was found exclusively in patients with gastritis alone (p<0.01). All strains isolated from patients with gastric adenocarcinoma were s1b/m1 (p<0.005 versus gastritis alone). cagA was detectable in 56 (95%) of 59 isolates. Strains from patients with peptic ulceration (12/13 versus 19/30 with gastritis alone, p=0.05) had the shortest fragment length in the 3' region of cagA, while 4/10 strains from patients with gastric cancer had the longest fragment length in this region (p<0.02 versus gastritis alone).
CONCLUSION—In this study, the vacA s1 genotype, and fragment length of the 3' region of cagA identified isolates associated with significant clinical disease. The vacA s1bm1 genotype seems to be strongly associated with gastric cancer.


Keywords: adenocarcinoma; cagA; Helicobacter pylori; peptic ulceration; South Africa; vacuolating cytotoxin PMID:10486355

  18. Tyrosine - Effects on catecholamine release

    NASA Technical Reports Server (NTRS)

    Acworth, Ian N.; During, Matthew J.; Wurtman, Richard J.

    1988-01-01

    Tyrosine administration elevates striatal levels of dopamine metabolites in animals given treatments that accelerate nigrostriatal firing, but not in untreated rats. We examined the possibility that the amino acid might actually enhance dopamine release in untreated animals, but that the technique of measuring striatal dopamine metabolism was too insensitive to demonstrate such an effect. Dopamine release was assessed directly, using brain microdialysis of striatal extracellular fluid. Tyrosine administration (50-200 mg/kg IP) did indeed cause a dose related increase in extracellular fluid dopamine levels with minor elevations in levels of DOPAC and HVA, its major metabolites, which were not dose-related. The rise in dopamine was short-lived, suggesting that receptor-mediated feedback mechanisms responded to the increased dopamine release by diminishing neuronal firing or sensitivity to tyrosine. These observations indicate that measurement of changes in striatal DOPAC and HVA, if negative, need not rule out increases in nigrostriatal dopamine release.

  19. High photoluminescence stability of CaGa4O7:Eu3+ red phosphor in wide excitation intensity interval

    NASA Astrophysics Data System (ADS)

    Leanenia, M. S.; Lutsenko, E. V.; Rzheutski, M. V.; Yablonskii, G. P.; Naghiyev, T. G.; Ganbarova, H. B.; Tagiev, O. B.

    2016-04-01

    The photoluminescence (PL) of CaGa4O7 compound doped with Eu3+ ions is studied. It is shown that room temperature emission spectrum of CaGa4O7 compound consists of groups of lines in the red spectral region, caused by electronic transitions 5D0 → 7Fj (j = 1, 2, 3, 4) in Eu3+ ions with the most intensive lines at 612 nm and 615 nm. It is evaluated that low local symmetry of Eu3+ ion appears in the presence of several lines for each transitions. The PL decay constants were found to be in the range of 1.1-1.3 ms. Non-exponential rise was observed in the beginning of PL kinetics and assumed with energy transfer between Eu3+ ions in different sites in host lattice. Weak thermal quenching is shown in the temperature range of 10-300 K. Extreme stability of PL spectra and efficiency in a wide excitation intensity range of 104-108 W/cm2 were achieved. A slight emission efficiency reversible droop by only 25% is found to be at the excitation intensities from 2 · 107 W/cm2 to 108 W/cm2.

  20. A Tale of Two Toxins: Helicobacter Pylori CagA and VacA Modulate Host Pathways that Impact Disease

    PubMed Central

    Jones, Kathleen R.; Whitmire, Jeannette M.; Merrell, D. Scott

    2010-01-01

    Helicobacter pylori is a pathogenic bacterium that colonizes more than 50% of the world's population, which leads to a tremendous medical burden. H. pylori infection is associated with such varied diseases as gastritis, peptic ulcers, and two forms of gastric cancer: gastric adenocarcinoma and mucosa-associated lymphoid tissue lymphoma. This association represents a novel paradigm for cancer development; H. pylori is currently the only bacterium to be recognized as a carcinogen. Therefore, a significant amount of research has been conducted to identify the bacterial factors and the deregulated host cell pathways that are responsible for the progression to more severe disease states. Two of the virulence factors that have been implicated in this process are cytotoxin-associated gene A (CagA) and vacuolating cytotoxin A (VacA), which are cytotoxins that are injected and secreted by H. pylori, respectively. Both of these virulence factors are polymorphic and affect a multitude of host cellular pathways. These combined facts could easily contribute to differences in disease severity across the population as various CagA and VacA alleles differentially target some pathways. Herein we highlight the diverse types of cellular pathways and processes targeted by these important toxins. PMID:21687723

  1. Discovering the first tyrosine kinase

    PubMed Central

    Hunter, Tony

    2015-01-01

    In the middle of the 20th century, animal tumor viruses were heralded as possible models for understanding human cancer. By the mid-1970s, the molecular basis by which tumor viruses transform cells into a malignant state was beginning to emerge as the first viral genomic sequences were reported and the proteins encoded by their transforming genes were identified and characterized. This was a time of great excitement and rapid progress. In 1978, prompted by the discovery from Ray Erikson’s group that the Rous sarcoma virus (RSV) v-Src–transforming protein had an associated protein kinase activity specific for threonine, my group at the Salk Institute set out to determine whether the polyomavirus middle T-transforming protein had a similar kinase activity. Here, I describe the experiments that led to the identification of a kinase activity associated with middle T antigen and our serendipitous discovery that this activity was specific for tyrosine in vitro, and how this in turn led to the fortuitous observation that the v-Src–associated kinase activity was also specific for tyrosine. Our finding that v-Src increased the level of phosphotyrosine in cellular proteins in RSV-transformed cells confirmed that v-Src is a tyrosine kinase and transforms cells by phosphorylating proteins on tyrosine. My colleague Bart Sefton and I reported these findings in the March issue of PNAS in 1980. Remarkably, all of the experiments in this paper were accomplished in less than one month. PMID:26130799

  2. Prevalence of cagA and vacA among Helicobacter pylori-infected patients in Iran: a systematic review and meta-analysis.

    PubMed

    Sayehmiri, Fatemeh; Kiani, Faezeh; Sayehmiri, Kourosh; Soroush, Setareh; Asadollahi, Khairollah; Alikhani, Mohammad Yousef; Delpisheh, Ali; Emaneini, Mohammad; Bogdanović, Lidija; Varzi, Ali Mohammad; Zarrilli, Raffaele; Taherikalani, Morovat

    2015-07-01

    The varieties of infections caused by Helicobacter pylori may be due to differences in bacterial genotypes and virulence factors as well as environmental and host-related factors. This study aimed to investigate the prevalence of cagA and vacA genes among H. pylori-infected patients in Iran and analyze their relevance to the disease status between two clinical groups via a meta-analysis method. Different databases including PubMed, ISI, Scopus, SID, Magiran, Science Direct, and Medlib were investigated, and 23 relevant articles from the period between 2001 and 2012 were finally analyzed. The relevant data obtained from these papers were analyzed by a random-effects model. Data were analyzed using R software and STATA. The prevalence of cagA and vacA genes among H. pylori-infected patients was 70% (95% CI, 64-75) and 41% (95% CI, 24.3-57.7), respectively. The prevalence of duodenal ulcers, peptic ulcers, and gastritis among cagA+ individuals was 53% (95% CI, 20-86), 65% (95% CI, 34-97), and 71% (95% CI, 59-84), respectively. Odds ratio (OR) between cagA-positive compared with cagA-negative patients showed a 1.89 (95% CI, 1.38-2.57) risk of ulcers. In conclusion, the frequency of cagA gene among H. pylori strains is elevated in Iran and it seems to be more frequently associated with gastritis. Therefore, any information about cagA and vacA prevalence among different H. pylori-infected clinical groups in the country can help public health authorities to plan preventive policies to reduce the prevalence of diseases associated with H. pylori infection. PMID:26230117

  3. CagA status & genetic characterization of metronidazole resistant strains of H. pylori from: A region at high risk of gastric cancer

    PubMed Central

    Yue, Jin-Yong; Yue, Jing; Wang, Ming-Yi; Song, Wen-chong; Gao, Xiao-Zhong

    2014-01-01

    Objective: The aim of study was to determine relationship between cagA and genetic characterization of metronidazole (MTZ) resistant H. pylori strains from a region at high risk of gastric cancer. Methods: 172 H. pylori strains were isolated from the patients with dyspeptic symptoms, and antimicrobial susceptibility testing for MTZ was assessed by E-test. rdxA and frxA genes were amplified using PCR among the MTZ resistant isolates. The status of the plasmid and classes 1~3 integrons were investigated in all isolates. Results: MTZ was detected in 88 isolates (51.16%). Variations in the rdxA gene leading to alterations of amino acids in RdxA proteins were identified in all MTZ resistant strains. FrxA contained missense alterations in 55 MTZ resistant isolates, while the premature truncation of FrxA was caused by frameshift mutations in 9 MTZ resistant strains. Plasmid was found in one MTZ sensitive strain (0.58%), and none of Class 1~3 integrases gene was detected in the studied isolates. The conservative cagA fragment was obtained from all clinical isolates of H. pylori. The sequence of cagA 3' variable region in 164 strains were obtained, including East Asian-type (122, 74.39%) and Western-type (42, 25.61%). Prevalence of Western-type cagA 3' variable region was significantly higher in MTZ resistant (33.73%, 28/83) than those of MTZ-sensitive strains (17.28%, 14/81) (p=0.02). Conclusion: A high prevalence of MTZ resistance was found in the region, and bacterial chromosome mutations in the rdxA and frxA gene still contribute to the high-level MTZ resistance. H. pylori strains characterized with West-type cagA 3’ variable region tend to acquire MTZ resistance in the region. PMID:25097521

  4. Structural basis of tubulin tyrosination by tubulin tyrosine ligase

    PubMed Central

    Prota, Andrea E.; Magiera, Maria M.; Kuijpers, Marijn; Bargsten, Katja; Frey, Daniel; Wieser, Mara; Jaussi, Rolf; Hoogenraad, Casper C.; Kammerer, Richard A.; Janke, Carsten

    2013-01-01

    Tubulin tyrosine ligase (TTL) catalyzes the post-translational retyrosination of detyrosinated α-tubulin. Despite the indispensable role of TTL in cell and organism development, its molecular mechanism of action is poorly understood. By solving crystal structures of TTL in complex with tubulin, we here demonstrate that TTL binds to the α and β subunits of tubulin and recognizes the curved conformation of the dimer. Biochemical and cellular assays revealed that specific tubulin dimer recognition controls the activity of the enzyme, and as a consequence, neuronal development. The TTL–tubulin structure further illustrates how the enzyme binds the functionally crucial C-terminal tail sequence of α-tubulin and how this interaction catalyzes the tyrosination reaction. It also reveals how TTL discriminates between α- and β-tubulin, and between different post-translationally modified forms of α-tubulin. Together, our data suggest that TTL has specifically evolved to recognize and modify tubulin, thus highlighting a fundamental role of the evolutionary conserved tubulin tyrosination cycle in regulating the microtubule cytoskeleton. PMID:23358242

  5. Structural basis of tubulin tyrosination by tubulin tyrosine ligase.

    PubMed

    Prota, Andrea E; Magiera, Maria M; Kuijpers, Marijn; Bargsten, Katja; Frey, Daniel; Wieser, Mara; Jaussi, Rolf; Hoogenraad, Casper C; Kammerer, Richard A; Janke, Carsten; Steinmetz, Michel O

    2013-02-01

    Tubulin tyrosine ligase (TTL) catalyzes the post-translational retyrosination of detyrosinated α-tubulin. Despite the indispensable role of TTL in cell and organism development, its molecular mechanism of action is poorly understood. By solving crystal structures of TTL in complex with tubulin, we here demonstrate that TTL binds to the α and β subunits of tubulin and recognizes the curved conformation of the dimer. Biochemical and cellular assays revealed that specific tubulin dimer recognition controls the activity of the enzyme, and as a consequence, neuronal development. The TTL-tubulin structure further illustrates how the enzyme binds the functionally crucial C-terminal tail sequence of α-tubulin and how this interaction catalyzes the tyrosination reaction. It also reveals how TTL discriminates between α- and β-tubulin, and between different post-translationally modified forms of α-tubulin. Together, our data suggest that TTL has specifically evolved to recognize and modify tubulin, thus highlighting a fundamental role of the evolutionary conserved tubulin tyrosination cycle in regulating the microtubule cytoskeleton. PMID:23358242

  6. Receptor Tyrosine Kinases in Drosophila Development

    PubMed Central

    Sopko, Richelle; Perrimon, Norbert

    2013-01-01

    Tyrosine phosphorylation plays a significant role in a wide range of cellular processes. The Drosophila genome encodes more than 20 receptor tyrosine kinases and extensive studies in the past 20 years have illustrated their diverse roles and complex signaling mechanisms. Although some receptor tyrosine kinases have highly specific functions, others strikingly are used in rather ubiquitous manners. Receptor tyrosine kinases regulate a broad expanse of processes, ranging from cell survival and proliferation to differentiation and patterning. Remarkably, different receptor tyrosine kinases share many of the same effectors and their hierarchical organization is retained in disparate biological contexts. In this comprehensive review, we summarize what is known regarding each receptor tyrosine kinase during Drosophila development. Astonishingly, very little is known for approximately half of all Drosophila receptor tyrosine kinases. PMID:23732470

  7. XAFS of human tyrosine hydroxylase

    NASA Astrophysics Data System (ADS)

    Meyer, W.; Haavik, J.; Winkler, H.; Trautwein, A. X.; Nolting, H.-F.

    1995-02-01

    Tyrosine hydroxylase (TH) catalyses the rate-limiting step (hydroxylation of tyrosine to form dihydroxyphenylalanine) in the biosynthetic pathway leading to the catecholamines dopamine, noradrenaline and adrenaline. The human enzyme (hTH) is present in four isoforms, generated by splicing of pre-mRNA. The purified apoenzyme (metal free) binds stoichiometric amounts of iron. The incorporation of Fe(II) results in a rapid and up to 40-fold increase of activity [1]. Besides the coordination of the metal centers in native enzyme we studied the purported inhibition of TH by its immediate products. So we analysed Fe-hTH isoform 1 native as well as oxidized with dopamine and Co-hTH isoform 2.

  8. Tyrosine Recombinase Retrotransposons and Transposons.

    PubMed

    Poulter, Russell T M; Butler, Margi I

    2015-04-01

    Retrotransposons carrying tyrosine recombinases (YR) are widespread in eukaryotes. The first described tyrosine recombinase mobile element, DIRS1, is a retroelement from the slime mold Dictyostelium discoideum. The YR elements are bordered by terminal repeats related to their replication via free circular dsDNA intermediates. Site-specific recombination is believed to integrate the circle without creating duplications of the target sites. Recently a large number of YR retrotransposons have been described, including elements from fungi (mucorales and basidiomycetes), plants (green algae) and a wide range of animals including nematodes, insects, sea urchins, fish, amphibia and reptiles. YR retrotransposons can be divided into three major groups: the DIRS elements, PAT-like and the Ngaro elements. The three groups form distinct clades on phylogenetic trees based on alignments of reverse transcriptase/ribonuclease H (RT/RH) and YR sequences, and also having some structural distinctions. A group of eukaryote DNA transposons, cryptons, also carry tyrosine recombinases. These DNA transposons do not encode a reverse transcriptase. They have been detected in several pathogenic fungi and oomycetes. Sequence comparisons suggest that the crypton YRs are related to those of the YR retrotransposons. We suggest that the YR retrotransposons arose from the combination of a crypton-like YR DNA transposon and the RT/RH encoding sequence of a retrotransposon. This acquisition must have occurred at a very early point in the evolution of eukaryotes. PMID:26104693

  9. Evaluation of immobilized metal affinity chromatography kits for the purification of histidine-tagged recombinant CagA protein.

    PubMed

    Karakus, Cebrail; Uslu, Merve; Yazici, Duygu; Salih, Barik A

    2016-05-15

    Immobilized metal affinity chromatography (IMAC) technique is used for fast and reliable purification of histidine(His)-tagged recombinant proteins. The technique provides purification under native and denaturing conditions. The aim of this study is to evaluate three commercially available IMAC kits (Thermo Scientific, GE Healthcare and Qiagen) for the purification of a 6xHis-tagged recombinant CagA (cytotoxin-associated gene A) protein from IPTG-induced Escherichia coli BL21(DE3) culture. The kits were tested according to the manufacturer instructions and the protein was purified with only GE Healthcare and Qiagen kits under denaturing conditions. 1% (w/v) SDS was used as denaturing agent in PBS instead of extraction reagent of Thermo Scientific kit to lyse bacterial cells from 100ml culture. The 6xHis-tagged recombinant protein was purified by the three kits equally. PMID:26657801

  10. Distinct Diversity of vacA, cagA, and cagE Genes of Helicobacter pylori Associated with Peptic Ulcer in Japan

    PubMed Central

    Yamazaki, Shiho; Yamakawa, Akiyo; Okuda, Tomoyuki; Ohtani, Masahiro; Suto, Hiroyuki; Ito, Yoshiyuki; Yamazaki, Yukinao; Keida, Yoshihide; Higashi, Hideaki; Hatakeyama, Masanori; Azuma, Takeshi

    2005-01-01

    Colonization of the stomach mucosa by Helicobacter pylori is a major cause of acute and chronic gastric pathologies in humans. Several H. pylori virulence genes that may play a role in its pathogenicity have been identified. The most important determinants are vacA and cagA in the cag pathogenicity island (cagPAI) genes. In the present study, to consider the association of molecular genetics between vacA and the cagPAI regarding clinical outcome, we selected H. pylori strains with various genotypes of vacA in Japan and sequenced full-length vacA, cagA, and cagE genes. Sequencing of vacA and cagA genes revealed variable size, whereas the cagE gene was well conserved among strains. Each of the phylogenetic trees based on the deduced amino acid sequences of VacA, CagA, and CagE indicated that all three proteins were divided into two major groups, a Western group and an East Asian group, and the distributions of isolates exhibited similar patterns among the three proteins. The strains with s2 and s1a/m1a vacA genotypes and the Western-type 3′ region cagA genotype were classified into the Western group, and the strains with the s1c/m1b vacA genotype and the East Asian-type 3′ cagA genotype were included in the East Asian group. In addition, the prevalence of infection with the Western group strain was significantly higher in patients with peptic ulcer (90.0%, 9/10) than in patients with chronic gastritis (22.7%, 5/22) (χ2 = 12.64, P = 0.00057). These data suggest that the molecular genetics of vacA and cagPAI are associated and that the Western group with vacA and cagPAI genes is associated with peptic ulcer disease. PMID:16081930

  11. Distinct diversity of vacA, cagA, and cagE genes of Helicobacter pylori associated with peptic ulcer in Japan.

    PubMed

    Yamazaki, Shiho; Yamakawa, Akiyo; Okuda, Tomoyuki; Ohtani, Masahiro; Suto, Hiroyuki; Ito, Yoshiyuki; Yamazaki, Yukinao; Keida, Yoshihide; Higashi, Hideaki; Hatakeyama, Masanori; Azuma, Takeshi

    2005-08-01

    Colonization of the stomach mucosa by Helicobacter pylori is a major cause of acute and chronic gastric pathologies in humans. Several H. pylori virulence genes that may play a role in its pathogenicity have been identified. The most important determinants are vacA and cagA in the cag pathogenicity island (cagPAI) genes. In the present study, to consider the association of molecular genetics between vacA and the cagPAI regarding clinical outcome, we selected H. pylori strains with various genotypes of vacA in Japan and sequenced full-length vacA, cagA, and cagE genes. Sequencing of vacA and cagA genes revealed variable size, whereas the cagE gene was well conserved among strains. Each of the phylogenetic trees based on the deduced amino acid sequences of VacA, CagA, and CagE indicated that all three proteins were divided into two major groups, a Western group and an East Asian group, and the distributions of isolates exhibited similar patterns among the three proteins. The strains with s2 and s1a/m1a vacA genotypes and the Western-type 3' region cagA genotype were classified into the Western group, and the strains with the s1c/m1b vacA genotype and the East Asian-type 3' cagA genotype were included in the East Asian group. In addition, the prevalence of infection with the Western group strain was significantly higher in patients with peptic ulcer (90.0%, 9/10) than in patients with chronic gastritis (22.7%, 5/22) (chi2 = 12.64, P = 0.00057). These data suggest that the molecular genetics of vacA and cagPAI are associated and that the Western group with vacA and cagPAI genes is associated with peptic ulcer disease. PMID:16081930

  12. Cisplatin stimulates protein tyrosine phosphorylation in macrophages.

    PubMed

    Kumar, R; Shrivastava, A; Sodhi, A

    1995-03-01

    Cisplatin [cis-dichlorodiamine platinum (II)], a potent anti-tumor compound, stimulates immune responses by activating monocyte-macrophages and other cells of the immune system. The mechanism by which cisplatin activates these cells is poorly characterized. Since protein tyrosine phosphorylation appears to be a major intracellular signalling event that mediates cellular responses, we examined whether cisplatin alters tyrosine phosphorylation in macrophages. We found that cisplatin increased tyrosine phosphorylation of several proteins in peritoneal macrophages and in P388D1 and IC-21 macrophage cell lines. Treatment of macrophages with tyrosine kinase inhibitors, genestein and lavendustin A, inhibited cisplatin-stimulated protein tyrosine phosphorylation in macrophages. Macrophages treated with cisplatin also exhibit increased fluorescence with anti-phosphotyrosine-FITC antibody. These data indicate that protein tyrosine phosphorylation plays a role in cisplatin-induced activation of macrophages. PMID:7539662

  13. Zur Biosynthese von Phenylalanin und Tyrosin

    NASA Astrophysics Data System (ADS)

    Lingens, F.; Keller, E.

    1983-03-01

    With the discovery of arogenic acid two new pathways for the biosynthesis of phenylalanine and tyrosine have been revealed. The occurrence of two, three, or four pathways for the biosynthesis of phenylalanine and tyrosine in microorganisms and plants may be a useful tool for taxonomic classifications. Investigations on enterobacteriaceae, pseudomonads, flavobacteria, streptomycetes, archaebacteria, and on Sphaerotilus, Trichococcus and Leptothrix species from bulking sludge are described. The possible role of arogenate in the evolution of the pathways for tyrosine and phenylalanine biosynthesis is discussed.

  14. Evaluation of Clarithromycin Resistance and cagA and vacA Genotyping of Helicobacter pylori Strains from the West of Ireland Using Line Probe Assays

    PubMed Central

    Ryan, Kieran A.; van Doorn, Leen-Jan; Moran, Anthony P.; Glennon, Maura; Smith, Terry; Maher, Majella

    2001-01-01

    The prevalence of clarithromycin resistance-associated mutations, the cytotoxin-associated gene (cagA), and the various vacuolating cytotoxin (vacA) genotypes was determined in 50 gastric biopsy specimens from Helicobacter pylori-infected patients, using line probe assays. The clarithromycin resistance-associated mutation A2143G was detected in H. pylori strains from 26% of the specimens, which suggested that the high rate of H. pylori treatment failure in Ireland may be partly attributable to the presence of these mutations. All strains examined carried the vacA s1 genotype, and 76% were cagA positive. Of these 50 specimens, 13 (26%) carried H. pylori strains with vacA midregion genotype m1, 29 (58%) carried strains that were m2, 1 (2%) was infected by a strain that was positive for both m1 and m2, and 7 (14%) carried strains that could not be typed. PMID:11326028

  15. Disruption of cagA, the apoprotein gene of chromoprotein antibiotic C-1027, eliminates holo-antibiotic production, but not the cytotoxic chromophore.

    PubMed

    Cui, Zhihui; Wang, Lifei; Wang, Songmei; Li, Guangwei; Hong, Bin

    2009-11-01

    C-1027 is a chromoprotein of the nine-membered enediyne antitumour antibiotic family, comprising apoprotein to stabilize and transport the enediyne chromophore. The disruption of apoprotein gene cagA within the C-1027 biosynthetic gene cluster abolished C-1027 holo-antibiotic production detected by an antibacterial assay, as well as the expression of the apoprotein and C-1027 chromophore extracted following protein precipitation of the culture supernatant. Complementation of the cagA-disrupted mutant AKO with the intact cagA gene restored C-1027 production, suggesting that cagA is indispensable for holo-antibiotic production. Overexpression of cagA in the wild-type strain resulted in a significant increase in C-1027 production as expected. Surprisingly, electrospray ionization (ESI)-MS and ESI-MS/MS analyses suggested that the AKO mutant still produced the C-1027 enediyne chromophore [m/z=844 (M+H)(+)] and its aromatized product [m/z=846 (M+H)(+)]. Consistent with this, the results from gene expression analysis using real-time reverse transcriptase-PCR showed that transcripts of the positive regulator sgcR3 and the structural genes sgcA1, sgcC4, sgcD6 and sgcE were readily detected in the AKO mutant as well as in the wild-type and the complementation strain. These results provided, for the first time, evidence suggesting that the apoprotein of C-1027 is not essential in the self-resistance mechanism for the enediyne chromophore. PMID:19845765

  16. Relationship between Tobacco, cagA and vacA i1 Virulence Factors and Bacterial Load in Patients Infected by Helicobacter pylori

    PubMed Central

    Aguirre, Estefanía; Aragones, Nuria; Saez, Jesús; Galiana, Antonio; Sola-Vera, Javier; Ruiz-García, Montserrat; Paz-Zulueta, María; Sarabia-Lavín, Raquel; Brotons, Alicia; López-Girona, Elena; Pérez, Estefanía; Sillero, Carlos

    2015-01-01

    Background and Aim Several biological and epidemiological studies support a relationship between smoking and Helicobacter pylori (H. pylori) to increase the risk of pathology. However, there have been few studies on the potential synergistic association between specific cagA and vacA virulence factors and smoking in patients infected by Helicobacter pylori. We studied the relationship between smoking and cagA, vacA i1 virulence factors and bacterial load in H. pylori infected patients. Methods Biopsies of the gastric corpus and antrum from 155 consecutive patients in whom there was clinical suspicion of infection by H. pylori were processed. In 106 patients H. pylori infection was detected. Molecular methods were used to quantify the number of microorganisms and presence of cagA and vacA i1 genes. A standardized questionnaire was used to obtain patients’ clinical data and lifestyle variables, including tobacco and alcohol consumption. Adjusted Odds Ratios (ORadjusted) were estimated by unconditional logistic regression. Results cagA was significantly associated with active-smoking at endoscope: ORadjusted 4.52. Evidence of association was found for vacA i1 (ORadjusted 3.15). Bacterial load was higher in active-smokers, although these differences did not yield statistical significance (median of 262.2 versus 79.4 copies of H. pylori per cell). Conclusions The association between smoking and a higher risk of being infected by a virulent bacterial population and with higher bacterial load, support a complex interaction between H. pylori infection and environmental factors. PMID:25794002

  17. A CCD-based reader combined with CdS quantum dot-labeled lateral flow strips for ultrasensitive quantitative detection of CagA

    NASA Astrophysics Data System (ADS)

    Gui, Chen; Wang, Kan; Li, Chao; Dai, Xuan; Cui, Daxiang

    2014-02-01

    Immunochromatographic assays are widely used to detect many analytes. CagA is proved to be associated closely with initiation of gastric carcinoma. Here, we reported that a charge-coupled device (CCD)-based test strip reader combined with CdS quantum dot-labeled lateral flow strips for quantitative detection of CagA was developed, which used 365-nm ultraviolet LED as the excitation light source, and captured the test strip images through an acquisition module. Then, the captured image was transferred to the computer and was processed by a software system. A revised weighted threshold histogram equalization (WTHE) image processing algorithm was applied to analyze the result. CdS quantum dot-labeled lateral flow strips for detection of CagA were prepared. One hundred sera samples from clinical patients with gastric cancer and healthy people were prepared for detection, which demonstrated that the device could realize rapid, stable, and point-of-care detection, with a sensitivity of 20 pg/mL.

  18. A CCD-based reader combined with CdS quantum dot-labeled lateral flow strips for ultrasensitive quantitative detection of CagA

    PubMed Central

    2014-01-01

    Immunochromatographic assays are widely used to detect many analytes. CagA is proved to be associated closely with initiation of gastric carcinoma. Here, we reported that a charge-coupled device (CCD)-based test strip reader combined with CdS quantum dot-labeled lateral flow strips for quantitative detection of CagA was developed, which used 365-nm ultraviolet LED as the excitation light source, and captured the test strip images through an acquisition module. Then, the captured image was transferred to the computer and was processed by a software system. A revised weighted threshold histogram equalization (WTHE) image processing algorithm was applied to analyze the result. CdS quantum dot-labeled lateral flow strips for detection of CagA were prepared. One hundred sera samples from clinical patients with gastric cancer and healthy people were prepared for detection, which demonstrated that the device could realize rapid, stable, and point-of-care detection, with a sensitivity of 20 pg/mL. PMID:24495570

  19. Polyclonal antibody to soman-tyrosine

    PubMed Central

    Li, Bin; Duysen, Ellen G.; Froment, Marie-Thérèse; Masson, Patrick; Nachon, Florian; Jiang, Wei; Schopfer, Lawrence M.; Thiele, Geoffrey M.; Klassen, Lynell W.; Cashman, John; Williams, Gareth R.; Lockridge, Oksana

    2013-01-01

    Soman forms a stable, covalent bond with tyrosine 411 of human albumin, with tyrosines 257 and 593 in human transferrin, and with tyrosine in many other proteins. The pinacolyl group of soman is retained, suggesting that pinacolyl methylphosphonate bound to tyrosine could generate specific antibodies. Tyrosine in the pentapeptide RYGRK was covalently modified with soman simply by adding soman to the peptide. The phosphonylated-peptide was linked to keyhole limpet hemocyanin, and the conjugate was injected into rabbits. The polyclonal antiserum recognized soman-labeled human albumin, soman-mouse albumin, and soman human transferrin, but not non-phosphonylated control proteins. The soman-labeled tyrosines in these proteins are surrounded by different amino acid sequences, suggesting that the polyclonal recognizes soman-tyrosine independent of the amino acid sequence. Antiserum obtained after 4 antigen injections over a period of 18 weeks was tested in a competition ELISA where it had an IC50 of 10−11 M. The limit of detection on Western blots was 0.01 μg (15 picomoles) of soman-labeled albumin. In conclusion, a high-affinity, polyclonal antibody that specifically recognizes soman adducts on tyrosine in a variety of proteins has been produced. Such an antibody could be useful for identifying secondary targets of soman toxicity. PMID:23469927

  20. Ocular Toxicity of Tyrosine Kinase Inhibitors

    PubMed Central

    Davis, Mary Elizabeth

    2016-01-01

    Purpose/Objectives To review common tyrosine kinase inhibitors, as well as their ocular side effects and management. Data Sources A comprehensive literature search was conducted using cINahl®, Pubmed, and cochrane databases for articles published since 2004 with the following search terms: ocular toxicities, tyrosine kinase inhibitors, ophthalmology, adverse events, eye, and vision. Data Synthesis Tyrosine kinase inhibitors can cause significant eye toxicity. Conclusions Given the prevalence of new tyrosine kinase inhibitor therapies and the complexity of possible pathogenesis of ocular pathology, oncology nurses can appreciate the occurrence of ocular toxicities and the role of nursing in the management of these problems. Implications for Nursing Knowledge of the risk factors and etiology of ocular toxicity of targeted cancer therapies can guide nursing assessment, enhance patient education, and improve care management. Including a review of eye symptoms and vision issues in nursing assessment can enhance early detection and treatment of ocular toxicity. PMID:26906134

  1. Simultaneous Identification of Tyrosine Phosphorylation and Sulfation Sites Utilizing Tyrosine-Specific Bromination

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Seo; Song, Si-Uk; Kim, Hie-Joon

    2011-11-01

    Tyrosine phosphorylation and sulfation play many key roles in the cell. Isobaric phosphotyrosine and sulfotyrosine residues in peptides were determined by mass spectrometry using phosphatase or sulfatase to remove the phosphate or the sulfate group. Unique Br signature was introduced to the resulting tyrosine residues by incubation with 32% HBr at -20 °C for 20 min. MS/MS analysis of the brominated peptide enabled unambiguous determination of the phosphotyrosine and the sulfotyrosine sites. When phosphotyrosine and sulfotyrosine as well as free tyrosine were present in the same peptide, they could be determined simultaneously using either phosphatase or sulfatase following acetylation of the free tyrosine.

  2. The Tyrosine Aminomutase TAM1 Is Required for β-Tyrosine Biosynthesis in Rice

    PubMed Central

    Yan, Jian; Aboshi, Takako; Teraishi, Masayoshi; Strickler, Susan R.; Spindel, Jennifer E.; Tung, Chih-Wei; Takata, Ryo; Matsumoto, Fuka; Maesaka, Yoshihiro; McCouch, Susan R.; Okumoto, Yutaka; Mori, Naoki; Jander, Georg

    2015-01-01

    Non-protein amino acids, often isomers of the standard 20 protein amino acids, have defense-related functions in many plant species. A targeted search for jasmonate-induced metabolites in cultivated rice (Oryza sativa) identified (R)-β-tyrosine, an isomer of the common amino acid (S)-α-tyrosine in the seeds, leaves, roots, and root exudates of the Nipponbare cultivar. Assays with 119 diverse cultivars showed a distinct presence/absence polymorphism, with β-tyrosine being most prevalent in temperate japonica cultivars. Genetic mapping identified a candidate gene on chromosome 12, which was confirmed to encode a tyrosine aminomutase (TAM1) by transient expression in Nicotiana benthamiana and in vitro enzyme assays. A point mutation in TAM1 eliminated β-tyrosine production in Nipponbare. Rice cultivars that do not produce β-tyrosine have a chromosome 12 deletion that encompasses TAM1. Although β-tyrosine accumulation was induced by the plant defense signaling molecule jasmonic acid, bioassays with hemipteran and lepidopteran herbivores showed no negative effects at physiologically relevant β-tyrosine concentrations. In contrast, root growth of Arabidopsis thaliana and other tested dicot plants was inhibited by concentrations as low as 1 μM. As β-tyrosine is exuded into hydroponic medium at higher concentrations, it may contribute to the allelopathic potential of rice. PMID:25901084

  3. Protein tyrosine nitration in the cell cycle

    SciTech Connect

    Jia, Min; Mateoiu, Claudia; Souchelnytskyi, Serhiy

    2011-09-23

    Highlights: {yields} Enrichment of 3-nitrotyrosine containing proteins from cells synchronized in different phases of the cell cycle. {yields} Identification of 76 tyrosine nitrated proteins that change expression during the cell cycle. {yields} Nineteen identified proteins were previously described as regulators of cell proliferation. -- Abstract: Nitration of tyrosine residues in proteins is associated with cell response to oxidative/nitrosative stress. Tyrosine nitration is relatively low abundant post-translational modification that may affect protein functions. Little is known about the extent of protein tyrosine nitration in cells during progression through the cell cycle. Here we report identification of proteins enriched for tyrosine nitration in cells synchronized in G0/G1, S or G2/M phases of the cell cycle. We identified 27 proteins in cells synchronized in G0/G1 phase, 37 proteins in S phase synchronized cells, and 12 proteins related to G2/M phase. Nineteen of the identified proteins were previously described as regulators of cell proliferation. Thus, our data indicate which tyrosine nitrated proteins may affect regulation of the cell cycle.

  4. Distribution of Helicobacter pylori cagA, cagE, oipA and vacA in different major ethnic groups in Tehran, Iran

    PubMed Central

    Dabiri, Hossein; Maleknejad, Parviz; Yamaoka, Yoshio; Feizabadi, Mohammad M; Jafari, Fereshteh; Rezadehbashi, Maryam; Nakhjavani, Farrokh A; Mirsalehian, Akbar; Zali, Mohammad R

    2011-01-01

    Background and Aim There are geographical variations in Helicobacter pylori virulence genes; cagA, cagE, vacA and oipA. The present study compared the distribution of these genotypes in major ethnic groups residing in Tehran, Iran and their association with clinical outcomes. Methods A total of 124 H. pylori-positive patients living in Tehran were enrolled in this study. The ethnic distribution was 74 Persians, 33 Turks and 17 other ethnics including Kurds, Lurs, Afghanis and Arabs. The presence of the cagA, cagE and oipA genes and vacA alleles (signal [s] and middle [m] region) were determined by polymerase chain reaction (PCR) from H. pylori DNA. Results The cagA-positive status was predominant in all three ethnic groups (e.g. 65% in Persians and 73% in Turks). In contrast, the cagE-positive status was less than half in Persians (47%) and Turks (30%), whereas it was 77% in other ethnicities (P = 0.008). The predominant vacA genotypes were s1 and m1 in all three ethnic groups (e.g. 68% in Persians and 70% in Turks were s1). There was no significant association between cagA and cagE status or vacA genotypes and clinical outcomes. The oipA-positive strains were more common in non-ulcer dyspepsia (NUD) (63%) than in peptic ulcer patients (15%) (P = 0.001) in Persians, but the association was not observed in other ethnic groups. Conclusion There are some differences in the H. pylori genotypes among the ethnic groups in Iran. However, none of these markers seemed to be clinically helpful in predicting the clinical presentation of a H. pylori infection in Iran. PMID:19702906

  5. Capsaicin consumption, Helicobacter pylori CagA status and IL1B-31C > T genotypes: A host and environment interaction in gastric cancer

    PubMed Central

    López-Carrillo, Lizbeth; Camargo, M. Constanza; Schneider, Barbara G.; Sicinschi, Liviu A.; Hernández-Ramírez, Raúl U.; Correa, Pelayo; Cebrian, Mariano E.

    2013-01-01

    Gastric cancer (GC) has been associated with a complex combination of genetic and environmental factors. In contrast to most countries, available information on GC mortality trends showed a gradual increase in Mexico. Our aim was to explore potential interactions among dietary (chili pepper consumption), infectious (Helicobacter pylori) and genetic factors (IL1B-31 genotypes) on GC risk. The study was performed in three areas of Mexico, with different GC mortality rates. We included 158 GC patients and 317 clinical controls. Consumption of capsaicin (Cap), the pungent active substance of chili peppers, was estimated by food frequency questionnaire. H. pylori CagA status was assessed by ELISA, and IL1B-31 genotypes were determined by TaqMan assays and Pyrosequencing in DNA samples. Multivariate unconditional logistic regression was used to estimate potential interactions. Moderate to high Cap consumption synergistically increased GC risk in genetically susceptible individuals (IL1B-31C allele carriers) infected with the more virulent H. pylori (CagA+) strains. The combined presence of these factors might explain the absence of a decreasing trend for GC in Mexico. However, further research on gene–environment interactions is required to fully understand the factors determining GC patterns in susceptible populations, with the aim of recommending preventive measures for high risk individuals. PMID:22414649

  6. Capsaicin consumption, Helicobacter pylori CagA status and IL1B-31C>T genotypes: a host and environment interaction in gastric cancer.

    PubMed

    López-Carrillo, Lizbeth; Camargo, M Constanza; Schneider, Barbara G; Sicinschi, Liviu A; Hernández-Ramírez, Raúl U; Correa, Pelayo; Cebrian, Mariano E

    2012-06-01

    Gastric cancer (GC) has been associated with a complex combination of genetic and environmental factors. In contrast to most countries, available information on GC mortality trends showed a gradual increase in Mexico. Our aim was to explore potential interactions among dietary (chili pepper consumption), infectious (Helicobacter pylori) and genetic factors (IL1B-31 genotypes) on GC risk. The study was performed in three areas of Mexico, with different GC mortality rates. We included 158 GC patients and 317 clinical controls. Consumption of capsaicin (Cap), the pungent active substance of chili peppers, was estimated by food frequency questionnaire. H. pylori CagA status was assessed by ELISA, and IL1B-31 genotypes were determined by TaqMan assays and Pyrosequencing in DNA samples. Multivariate unconditional logistic regression was used to estimate potential interactions. Moderate to high Cap consumption synergistically increased GC risk in genetically susceptible individuals (IL1B-31C allele carriers) infected with the more virulent H. pylori (CagA+) strains. The combined presence of these factors might explain the absence of a decreasing trend for GC in Mexico. However, further research on gene-environment interactions is required to fully understand the factors determining GC patterns in susceptible populations, with the aim of recommending preventive measures for high risk individuals. PMID:22414649

  7. Helicobacter pylori CagA Induces AGS Cell Elongation through a Cell Retraction Defect That Is Independent of Cdc42, Rac1, and Arp2/3▿ †

    PubMed Central

    Bourzac, Kevin M.; Botham, Crystal M.; Guillemin, Karen

    2007-01-01

    Helicobacter pylori, which infects over one-half the world's population, is a significant risk factor in a spectrum of gastric diseases, including peptic ulcers and gastric cancer. Strains of H. pylori that deliver the effector molecule CagA into host cells via a type IV secretion system are associated with more severe disease outcomes. In a tissue culture model of infection, CagA delivery results in a dramatic cellular elongation referred to as the “hummingbird” phenotype, which is characterized by long, thin cellular extensions. These actin-based cytoskeletal rearrangements are reminiscent of structures that are regulated by Rho GTPases and the Arp2/3 complex. We tested whether these signaling pathways were important in the H. pylori-induced cell elongation phenotype. Contrary to our expectations, we found that these molecules are dispensable for cell elongation. Instead, time-lapse video microscopy revealed that cells infected by cagA+ H. pylori become elongated because they fail to release their back ends during cell locomotion. Consistent with a model in which CagA causes cell elongation by inhibiting the disassembly of adhesive cell contacts at migrating cells' lagging ends, immunohistochemical analysis revealed that focal adhesion complexes persist at the distal tips of elongated cell projections. Thus, our data implicate a set of signaling molecules in the hummingbird phenotype that are different than the molecules previously suspected. PMID:17194805

  8. Histone tyrosine phosphorylation comes of age

    PubMed Central

    Singh, Rakesh Kumar

    2011-01-01

    Histones were discovered over a century ago and have since been found to be the most extensively post-translationally modified proteins, although tyrosine phosphorylation of histones had remained elusive until recently. The year 2009 proved to be a landmark year for histone tyrosine (Y) phosphorylation as five research groups independently discovered this modification. Three groups describe phosphorylation of Y142 in the variant histone H2A.X, where it may be involved in the cellular decision making process to either undergo DNA repair or apoptosis in response to DNA damage. Further, one group suggests that phosphorylation of histone H3 on Y99 is crucial for its regulated proteolysis in yeast, while another found that Y41 phosphorylation modulates chromatin architecture and oncogenesis in mammalian cells. These pioneering studies provide the initial conceptual framework for further analyses of the diverse roles of tyrosine phosphorylation on different histones, with far reaching implications for human health and disease. PMID:20935492

  9. Monoclonal antibodies to individual tyrosine-phosphorylated protein substrates of oncogene-encoded tyrosine kinases

    SciTech Connect

    Kanner, S.B.; Reynolds, A.B.; Vines, R.R.; Parsons, J.T. )

    1990-05-01

    Cellular transformation by oncogenic retroviruses encoding protein tyrosine kinases coincides with the tyrosine-specific phosphorylation of multiple protein substrates. Previous studies have shown that tyrosine phosphorylation of a protein of 120 kDa, p120, correlated with src transformation in chicken embryo fibroblasts. Additionally, the authors previously identified two phosphotyrosine-containing cellular proteins, p130 and p110, that formed stable complexes with activated variants of pp60{sup src}, the src-encoded tyrosine kinase. To study transformation-relevant tyrosine kinase substrates, they have generated monoclonal antibodies to individual tyrosine phosphoproteins, including p130, p120, p110, and five additional phosphoproteins (p210, p125, p118, p85, and p185/p64). These antibodies detected several of the same tyrosine phosphoproteins in chicken embryo fibroblasts transformed by avian retroviruses Y73 and CT10, encoding the yes and crk oncogenes, respectively. Protein substrates in mouse, rat, hamster, and human cells overexpressing activated variants of chicken pp60{sup src} were also detected by several of the monoclonal antibodies.

  10. Cell signaling by receptor-tyrosine kinases

    PubMed Central

    Lemmon, Mark A.; Schlessinger, Joseph

    2010-01-01

    Recent structural studies of receptor tyrosine kinases (RTKs) have revealed unexpected diversity in the mechanisms of their activation by growth factor ligands. Strategies for inducing dimerization by ligand binding are surprisingly diverse, as are mechanisms that couple this event to activation of the intracellular tyrosine kinase domains. As our understanding of these details becomes increasingly sophisticated, it provides an important context for therapeutically countering the effects of pathogenic RTK mutations in cancer and other diseases. Much remains to be learned, however, about the complex signaling networks downstream from RTKs and how alterations in these networks are translated into cellular responses. PMID:20602996

  11. 21 CFR 582.5920 - Tyrosine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Tyrosine. 582.5920 Section 582.5920 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  12. Multiple tyrosine metabolites are GPR35 agonists

    PubMed Central

    Deng, Huayun; Hu, Haibei; Fang, Ye

    2012-01-01

    Both kynurenic acid and 2-acyl lysophosphatidic acid have been postulated to be the endogenous agonists of GPR35. However, controversy remains whether alternative endogenous agonists exist. The molecular targets accounted for many nongenomic actions of thyroid hormones are mostly unknown. Here we report the agonist activity of multiple tyrosine metabolites at the GPR35. Tyrosine metabolism intermediates that contain carboxylic acid and/or catechol functional groups were first selected. Whole cell dynamic mass redistribution (DMR) assays enabled by label-free optical biosensor were then used to characterize their agonist activity in native HT-29. Molecular assays including β-arrestin translocation, ERK phosphorylation and receptor internalization confirmed that GPR35 functions as a receptor for 5,6-dihydroxyindole-2-carboxylic acid, 3,3′,5′-triiodothyronine, 3,3′,5-triiodothyronine, gentisate, rosmarinate, and 3-nitrotyrosine. These results suggest that multiple tyrosine metabolites are alternative endogenous ligands of GPR35, and GPR35 may represent a druggable target for treating certain diseases associated with abnormality of tyrosine metabolism. PMID:22523636

  13. Brain catechol synthesis - Control by brain tyrosine concentration

    NASA Technical Reports Server (NTRS)

    Wurtman, R. J.; Larin, F.; Mostafapour, S.; Fernstrom, J. D.

    1974-01-01

    Brain catechol synthesis was estimated by measuring the rate at which brain dopa levels rose following decarboxylase inhibition. Dopa accumulation was accelerated by tyrosine administration, and decreased by treatments that lowered brain tyrosine concentrations (for example, intraperitoneal tryptophan, leucine, or parachlorophenylalanine). A low dose of phenylalanine elevated brain tyrosine without accelerating dopa synthesis. Our findings raise the possibility that nutritional and endocrine factors might influence brain catecholamine synthesis by controlling the availability of tyrosine.

  14. Conservation and Early Expression of Zebrafish Tyrosine Kinases Support the Utility of Zebrafish as a Model for Tyrosine Kinase Biology

    PubMed Central

    Challa, Anil Kumar

    2013-01-01

    Abstract Tyrosine kinases have significant roles in cell growth, apoptosis, development, and disease. To explore the use of zebrafish as a vertebrate model for tyrosine kinase signaling and to better understand their roles, we have identified all of the tyrosine kinases encoded in the zebrafish genome and quantified RNA expression of selected tyrosine kinases during early development. Using profile hidden Markov model analysis, we identified 122 zebrafish tyrosine kinase genes and proposed unambiguous gene names where needed. We found them to be organized into 39 nonreceptor and 83 receptor type, and 30 families consistent with human tyrosine kinase family assignments. We found five human tyrosine kinase genes (epha1, bmx, fgr, srm, and insrr) with no identifiable zebrafish ortholog, and one zebrafish gene (yrk) with no identifiable human ortholog. We also found that receptor tyrosine kinase genes were duplicated more often than nonreceptor tyrosine kinase genes in zebrafish. We profiled expression levels of 30 tyrosine kinases representing all families using direct digital detection at different stages during the first 24 hours of development. The profiling experiments clearly indicate regulated expression of tyrosine kinases in the zebrafish, suggesting their role during early embryonic development. In summary, our study has resulted in the first comprehensive description of the zebrafish tyrosine kinome. PMID:23234507

  15. Conservation and early expression of zebrafish tyrosine kinases support the utility of zebrafish as a model for tyrosine kinase biology.

    PubMed

    Challa, Anil Kumar; Chatti, Kiranam

    2013-09-01

    Tyrosine kinases have significant roles in cell growth, apoptosis, development, and disease. To explore the use of zebrafish as a vertebrate model for tyrosine kinase signaling and to better understand their roles, we have identified all of the tyrosine kinases encoded in the zebrafish genome and quantified RNA expression of selected tyrosine kinases during early development. Using profile hidden Markov model analysis, we identified 122 zebrafish tyrosine kinase genes and proposed unambiguous gene names where needed. We found them to be organized into 39 nonreceptor and 83 receptor type, and 30 families consistent with human tyrosine kinase family assignments. We found five human tyrosine kinase genes (epha1, bmx, fgr, srm, and insrr) with no identifiable zebrafish ortholog, and one zebrafish gene (yrk) with no identifiable human ortholog. We also found that receptor tyrosine kinase genes were duplicated more often than nonreceptor tyrosine kinase genes in zebrafish. We profiled expression levels of 30 tyrosine kinases representing all families using direct digital detection at different stages during the first 24 hours of development. The profiling experiments clearly indicate regulated expression of tyrosine kinases in the zebrafish, suggesting their role during early embryonic development. In summary, our study has resulted in the first comprehensive description of the zebrafish tyrosine kinome. PMID:23234507

  16. Tyrosine and carboxyl protonation changes in the bacteriorhodopsin photocycle. 2. Tyrosine-26 and -64

    SciTech Connect

    Roepe, P.; Scherrer, P.; Ahl, P.L.; Gupta, S.K.D.; Bogomolni, R.A.; Herzfeld, J.; Rothschild, K.J.

    1987-10-20

    Low-temperature Fourier transform infrared (FTIR) and UV difference spectroscopies combined with selective tyrosine nitration and tyrosine isotopic labeling have been used to investigate the participation of tyrosines-26 and -64 in the bacteriorhodopsin (bR) photocycle. Nitration of Tyr-26 has no detectable effect on the FTIR or UV difference spectra of the BR/sub 570/ ..-->.. K/sub 630/ or BR/sub 570/ ..-->.. M/sub 412/ transitions. In contrast, nitration of Tyr-64 causes changes in both the FTIR and UV spectra of these transitions. However, this nitration does not alter tyrosine peaks in the FTIR difference spectra which have previously been associated with the protonation of a tyrosinate by K/sub 630/ and the deprotonation of a tyrosine by M/sub 412/. Instead, Tyr-64 nitration appears to affect other tyrosine peaks. These results and changes in UV difference spectra upon Tyr-64 nitration are consistent with the deprotonation of Tyr-64 by M/sub 412/ as concluded previously. Effects on chromophore vibrations caused by Tyr-64 nitration are unaltered upon reducing the nitrotyrosine to aminotyrosine with sodium dithionite. Finally, nitro-Tyr-64 causes a shift in the frequency of a positive peak at 1739 cm/sup -1/ in the BR/sub 570/ ..-->.. M/sub 412/ FTIR difference spectrum which reflects the protonation of a carboxyl-containing residue. The shift does not occur for samples containing amino-Tyr-64. These data suggest that Tyr-64 may interact with this carboxyl group.

  17. No Association between CagA- and VacA-Positive Strains of Helicobacter pylori and Primary Open-Angle Glaucoma: A Case–Control Study

    PubMed Central

    Noche, C. Domngang; Njajou, O.; Etoa, F. X.

    2016-01-01

    INTRODUCTION Glaucoma is a public health issue worldwide, particularly in Africa. In Cameroon, the prevalence rate of primary open-angle glaucoma (POAG) ranges between 4.5% and 8.2%. Helicobacter pylori (HP) has been implicated in digestive and extra-digestive diseases, including glaucoma. The objective of this work was to evaluate the implication of CagA- and VacA-positive strains of HP in POAG using a case–control design. METHODS An analytical study was conducted from October 2013 to December 2013. Participants were recruited in eye care centers in Yaoundé. Enzyme-linked immunosorbent assays (ELISAs) were carried out in the La Grace Laboratory in Yaoundé. RESULTS The total sample consisted of 50 POAG patients and 31 controls with a mean age of 58.5 ± 12.2 years and 45.5 ± 14.6 years, respectively. The prevalence rates of HP in the POAG and control groups were 74% (37/50) and 87% (27/31), respectively (P = 0.125). The prevalence rates of CagA-positive HP seropositivity in the POAG and control groups were 26% and 22.58%, respectively (P = 0.47), and the prevalence rates of VacA-positive HP participants were 6% and 0%, respectively (P = 0.22). CONCLUSION The HP prevalence rates among POAG patients and controls were 74% and 87%, respectively. There was no significant difference between prevalence rates of HP in the POAG and control groups. There was no association between POAG and CagA- or VacA-positive HP infection. PMID:26917977

  18. Helicobacter pylori Genotyping from American Indigenous Groups Shows Novel Amerindian vacA and cagA Alleles and Asian, African and European Admixture

    PubMed Central

    Camorlinga-Ponce, Margarita; Perez-Perez, Guillermo; Gonzalez-Valencia, Gerardo; Mendoza, Irma; Peñaloza-Espinosa, Rosenda; Ramos, Irma; Kersulyte, Dangeruta; Reyes-Leon, Adriana; Romo, Carolina; Granados, Julio; Muñoz, Leopoldo; Berg, Douglas E.; Torres, Javier

    2011-01-01

    It is valuable to extend genotyping studies of Helicobacter pylori to strains from indigenous communities across the world to better define adaption, evolution, and associated diseases. We aimed to genetically characterize both human individuals and their infecting H. pylori from indigenous communities of Mexico, and to compare them with those from other human groups. We studied individuals from three indigenous groups, Tarahumaras from the North, Huichols from the West and Nahuas from the center of Mexico. Volunteers were sampled at their community site, DNA was isolated from white blood cells and mtDNA, Y-chromosome, and STR alleles were studied. H. pylori was cultured from gastric juice, and DNA extracted for genotyping of virulence and housekeeping genes. We found Amerindian mtDNA haplogroups (A, B, C, and D), Y-chromosome DYS19T, and Amerindian STRs alleles frequent in the three groups, confirming Amerindian ancestry in these Mexican groups. Concerning H.pylori cagA phylogenetic analyses, although most isolates were of the Western type, a new Amerindian cluster neither Western nor Asian, was formed by some indigenous Mexican, Colombian, Peruvian and Venezuelan isolates. Similarly, vacA phylogenetic analyses showed the existence of a novel Amerindian type in isolates from Alaska, Mexico and Colombia. With hspA strains from Mexico and other American groups clustered within the three major groups, Asian, African or European. Genotyping of housekeeping genes confirmed that Mexican strains formed a novel Asian-related Amerindian group together with strains from remote Amazon Aborigines. This study shows that Mexican indigenous people with Amerindian markers are colonized with H. pylori showing admixture of Asian, European and African strains in genes known to interact with the gastric mucosa. We present evidence of novel Amerindian cagA and vacA alleles in indigenous groups of North and South America. PMID:22073291

  19. Evaluation of the effect of cagPAI genes of Helicobacter pylori on AGS epithelial cell morphology and IL-8 secretion.

    PubMed

    Salih, Barik A; Guner, Ahmet; Karademir, Ahu; Uslu, Merve; Ovali, Mehmet Akif; Yazici, Duygu; Bolek, Bora Kazim; Arikan, Soykan

    2014-01-01

    Helicobacter pylori cagPAI genes play an important role in pathogenesis, however little is known about their functions in isolates from Turkish patients. We aimed to evaluate the intactness and the effect of the cagPAI genes (cagT, cagM, cagE, cagA) and cagA EPIYA motifs on the AGS morphological changes and IL-8 induction. Of 53 patients 38 were found infected with H. pylori. PCR amplification of the cagPAI genes showed 42.1 % intact, 39.5 % partially deleted and 18.4 % with complete deletions. Isolates from gastritis, duodenal and gastric ulcer patients with intact and partially deleted cagPAI genes induced higher IL-8 secretion than those with complete deletions. Isolates from gastritis patients had higher deletion frequencies of the cagT and cagM genes than the other two genes. Infection of AGS cells with isolates that possess intact cagPAI and EPIYA-ABC resulted in the formation of the hummingbird phenotype. The cagA positive isolates induced higher IL-8 secretion than cagA negative isolates. Isolates from DU patients with more than one EPIYA-C motif induced higher concentrations of IL-8 than those with EPIYA-ABC. In conclusion, the intactness of the cagPAI in our isolates from different patients was not conserved. An intact cagPAI was found to play an important role in the pathogenesis of DU but not GU or gastritis. The cagA gene, but not other cagPAI genes, was associated with the induction of IL-8 and the morphological changes of the AGS cells. An increase in the number of EPIYA-C motifs had noticeable effect on the formation of the hummingbird phenotype. PMID:24170115

  20. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    SciTech Connect

    Li, Bin; Eyer, Peter; Eddleston, Michael; Jiang, Wei; Schopfer, Lawrence M.; Lockridge, Oksana

    2013-06-15

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. - Highlights: • Chlorpyrifos-poisoned patients have adducts on protein tyrosine. • Diethoxyphosphate-tyrosine does not lose an alkyl group. • Proteins in addition to AChE and BChE are modified by organophosphates.

  1. The Tyrosine Kinome Dictates Breast Cancer Heterogeneity and Therapeutic Responsiveness.

    PubMed

    Ha, Jacqueline R; Siegel, Peter M; Ursini-Siegel, Josie

    2016-09-01

    Phospho-tyrosine signaling networks control numerous biological processes including cellular differentiation, cell growth and survival, motility, and invasion. Aberrant regulation of the tyrosine kinome is a hallmark of malignancy and influences all stages of breast cancer progression, from initiation to the development of metastatic disease. The success of specific tyrosine kinase inhibitors strongly validates the clinical relevance of tyrosine phosphorylation networks in breast cancer pathology. However, a significant degree of redundancy exists within the tyrosine kinome. Numerous receptor and cytoplasmic tyrosine kinases converge on a core set of signaling regulators, including adaptor proteins and tyrosine phosphatases, to amplify pro-tumorigenic signal transduction pathways. Mutational activation, amplification, or overexpression of one or more components of the tyrosine kinome represents key contributing events responsible for the tumor heterogeneity that is observed in breast cancers. It is this molecular heterogeneity that has become the most significant barrier to durable clinical responses due to the development of therapeutic resistance. This review focuses on recent literature that supports a prominent role for specific components of the tyrosine kinome in the emergence of unique breast cancer subtypes and in shaping breast cancer plasticity, sensitivity to targeted therapies, and the eventual emergence of acquired resistance. J. Cell. Biochem. 117: 1971-1990, 2016. © 2016 Wiley Periodicals, Inc. PMID:27392311

  2. Tyrosine Kinase Inhibition: An Approach to Drug Development

    NASA Astrophysics Data System (ADS)

    Levitzki, Alexander; Gazit, Aviv

    1995-03-01

    Protein tyrosine kinases (PTKs) regulate cell proliferation, cell differentiation, and signaling processes in the cells of the immune system. Uncontrolled signaling from receptor tyrosine kinases and intracellular tyrosine kinases can lead to inflammatory responses and to diseases such as cancer, atherosclerosis, and psoriasis. Thus, inhibitors that block the activity of tyrosine kinases and the signaling pathways they activate may provide a useful basis for drug development. This article summarizes recent progress in the development of PTK inhibitors and demonstrates their potential use in the treatment of disease.

  3. Euglena mitochondria and chloroplasts form tyrosine-O-sulfate

    SciTech Connect

    Saidha, T.; Hanfstingl, U.; Schiff, J.A. )

    1989-04-01

    Mitochondria from light-grown wild-type Euglena gracilis var. bacillaris Cori or dark-grown mutant W{sub 10}BSmL incubated with {sup 35}SO{sub 4}{sup 2{minus}} and ATP, or with {sup 14}C-tyrosine, non-radioactive sulfate and ATP accumulate a labeled compound in the medium. Since this compound shows exact coelectrophoresis with tyrosine-O-sulfate (TOS) at pH 2.0, 5.8 or 8.0., yields sulfate and tyrosine on acid hydrolysis, and treatment with aryl sulfatase from Aerobacter aerogenes yields sulfate and tyrosine but no tyrosine methyl ester, it is identified as TOS. No TOS is found outside purified developing chloroplasts incubated with {sup 35}SO{sub 4}{sup 2{minus}} and ATP, but both chloroplasts and mitochondria form to {sup 35}S externally when incubated with adenosine 3{prime} phosphate 5{prime}phospho({sup 35}S) sulfate (PAP{sup 35}S). Since no tyrosine need be added, tyrosine is provided from endogenous sources. Although TOS is found in the free pool of Euglena cells it cannot be detected in proteins of cells or mucus ruling our sulfation of tyrosine of protein or incorporation of TOS into proteins. The system forming TOS is membrane-bound and may be involved in tyrosine transport.

  4. Potential sites of CFTR activation by tyrosine kinases.

    PubMed

    Billet, Arnaud; Jia, Yanlin; Jensen, Timothy J; Hou, Yue-Xian; Chang, Xiu-Bao; Riordan, John R; Hanrahan, John W

    2016-05-01

    The CFTR chloride channel is tightly regulated by phosphorylation at multiple serine residues. Recently it has been proposed that its activity is also regulated by tyrosine kinases, however the tyrosine phosphorylation sites remain to be identified. In this study we examined 2 candidate tyrosine residues near the boundary between the first nucleotide binding domain and the R domain, a region which is important for channel function but devoid of PKA consensus sequences. Mutating tyrosines at positions 625 and 627 dramatically reduced responses to Src or Pyk2 without altering the activation by PKA, suggesting they may contribute to CFTR regulation. PMID:26645934

  5. Tyrosine kinase BMX phosphorylates phosphotyrosine-primed motif mediating the activation of multiple receptor tyrosine kinases.

    PubMed

    Chen, Sen; Jiang, Xinnong; Gewinner, Christina A; Asara, John M; Simon, Nicholas I; Cai, Changmeng; Cantley, Lewis C; Balk, Steven P

    2013-05-28

    The nonreceptor tyrosine kinase BMX (bone marrow tyrosine kinase gene on chromosome X) is abundant in various cell types and activated downstream of phosphatidylinositol-3 kinase (PI3K) and the kinase Src, but its substrates are unknown. Positional scanning peptide library screening revealed a marked preference for a priming phosphorylated tyrosine (pY) in the -1 position, indicating that BMX substrates may include multiple tyrosine kinases that are fully activated by pYpY sites in the kinase domain. BMX phosphorylated focal adhesion kinase (FAK) at Tyr⁵⁷⁷ subsequent to its Src-mediated phosphorylation at Tyr⁵⁷⁶. Loss of BMX by RNA interference or by genetic deletion in mouse embryonic fibroblasts (MEFs) markedly impaired FAK activity. Phosphorylation of the insulin receptor in the kinase domain at Tyr¹¹⁸⁹ and Tyr¹¹⁹⁰, as well as Tyr¹¹⁸⁵, and downstream phosphorylation of the kinase AKT at Thr³⁰⁸ were similarly impaired by BMX deficiency. However, insulin-induced phosphorylation of AKT at Ser⁴⁷³ was not impaired in Bmx knockout MEFs or liver tissue from Bmx knockout mice, which also showed increased insulin-stimulated glucose uptake, possibly because of decreased abundance of the phosphatase PHLPP (PH domain leucine-rich repeat protein phosphatase). Thus, by identifying the pYpY motif as a substrate for BMX, our findings suggest that BMX functions as a central regulator among multiple signaling pathways mediated by tyrosine kinases. PMID:23716717

  6. Inhibition of biofilm formation by D-tyrosine: Effect of bacterial type and D-tyrosine concentration.

    PubMed

    Yu, Cong; Li, Xuening; Zhang, Nan; Wen, Donghui; Liu, Charles; Li, Qilin

    2016-04-01

    D-Tyrosine inhibits formation and triggers disassembly of bacterial biofilm and has been proposed for biofouling control applications. This study probes the impact of D-tyrosine in different biofilm formation stages in both G+ and G- bacteria, and reveals a non-monotonic correlation between D-tyrosine concentration and biofilm inhibition effect. In the attachment stage, cell adhesion was studied in a flow chamber, where D-tyrosine caused significant reduction in cell attachment. Biofilms formed by Pseudomonas aeruginosa and Bacillus subtilis were characterized by confocal laser scanning microscopy as well as quantitative analysis of cellular biomass and extracellular polymeric substances. D-Tyrosine exhibited strong inhibitive effects on both biofilms with an effective concentration as low as 5 nM; the biofilms responded to D-tyrosine concentration change in a non-monotonic, bi-modal pattern. In addition, D-tyrosine showed notable and different impact on EPS production by G+ and G- bacteria. Extracellular protein was decreased in P. aeruginosa biofilms, but increased in those of B. subtilis. Exopolysaccharides production by P. aeruginosa was increased at low concentrations and reduced at high concentrations while no impact was found in B. subtilis. These results suggest that distinct mechanisms are at play at different D-tyrosine concentrations and they may be species specific. Dosage of D-tyrosine must be carefully controlled for biofouling control applications. PMID:26854605

  7. Microtubule-associated protein 1B interaction with tubulin tyrosine ligase contributes to the control of microtubule tyrosination.

    PubMed

    Utreras, Elías; Jiménez-Mateos, Eva Maria; Contreras-Vallejos, Erick; Tortosa, Elena; Pérez, Mar; Rojas, Sebastián; Saragoni, Lorena; Maccioni, Ricardo B; Avila, Jesús; González-Billault, Christian

    2008-01-01

    Microtubule-associated protein 1B (MAP1B) is the first microtubule-associated protein to be expressed during nervous system development. MAP1B belongs to a large family of proteins that contribute to the stabilization and/or enhancement of microtubule polymerization. These functions are related to the control of the dynamic properties of microtubules. The C-terminal domain of the neuronal alpha-tubulin isotype is characterized by the presence of an acidic polypeptide, with the last amino acid being tyrosine. This tyrosine residue may be enzymatically removed from the protein by an unknown carboxypeptidase activity. Subsequently, the tyrosine residue is again incorporated into this tubulin by another enzyme, tubulin tyrosine ligase, to yield tyrosinated tubulin. Because neurons lacking MAP1B have a reduced proportion of tyrosinated microtubules, we analyzed the possible interaction between MAP1B and tubulin tyrosine ligase. Our results show that these proteins indeed interact and that the interaction is not affected by MAP1B phosphorylation. Additionally, neurons lacking MAP1B, when exposed to drugs that reversibly depolymerize microtubules, do not fully recover tyrosinated microtubules upon drug removal. These results suggest that MAP1B regulates tyrosination of alpha-tubulin in neuronal microtubules. This regulation may be important for general processes involved in nervous system development such as axonal guidance and neuronal migration. PMID:18075266

  8. Receptor Tyrosine Kinases with Intracellular Pseudokinase Domains

    PubMed Central

    Mendrola, Jeannine M.; Shi, Fumin; Park, Jin H.; Lemmon, Mark A.

    2013-01-01

    As with other groups of protein kinases, approximately 10% of the receptor tyrosine kinases (RTKs) in the human proteome contain intracellular pseudokinases that lack one or more conserved catalytically important residues. These include ErbB3, a member of the epidermal growth factor receptor (EGFR) family, and a series of unconventional Wnt receptors. We recently showed that, despite its reputation as a pseudokinase, the ErbB3 tyrosine kinase domain (TKD) does retain significant – albeit weak – kinase activity. This led us to suggest that a subgroup of RTKs may be able to signal even with very inefficient kinases. Recent work suggests that this is not the case, however. Other pseudokinase RTKs have not revealed significant kinase activity, and mutations that impair ErbB3’s weak kinase activity have not so far been found to exhibit signaling defects. These findings therefore point to models in which the TKDs of pseudokinase RTKs participate in receptor signaling by allosterically regulating associated kinases (such as ErbB3 regulation of ErbB2) and/or function as regulated ‘scaffolds’ for other intermolecular interactions central to signal propagation. Further structural and functional studies – particularly of the pseudokinase RTKs involved in Wnt signaling – are required to shed new light on these intriguing signaling mechanisms. PMID:23863174

  9. The Extended Family of Protein Tyrosine Phosphatases.

    PubMed

    Alonso, Andrés; Nunes-Xavier, Caroline E; Bayón, Yolanda; Pulido, Rafael

    2016-01-01

    In higher eukaryotes, the Tyr phosphorylation status of cellular proteins results from the coordinated action of Protein Tyrosine Kinases (PTKs) and Protein Tyrosine Phosphatases (PTPs). PTPs have emerged as highly regulated enzymes with diverse substrate specificity, and proteins with Tyr-dephosphorylation or Tyr-dephosphorylation-like properties can be clustered as the PTPome. This includes proteins from the PTP superfamily, which display a Cys-based catalytic mechanism, as well as enzymes from other gene families (Asp-based phosphatases, His-based phosphatases) that have converged in protein Tyr-dephosphorylation-related functions by using non-Cys-based catalytic mechanisms. Within the Cys-based members of the PTPome, classical PTPs dephosphorylate specific phosphoTyr (pTyr) residues from protein substrates, whereas VH1-like dual-specificity PTPs dephosphorylate pTyr, pSer, and pThr residues, as well as nonproteinaceous substrates, including phosphoinositides and phosphorylated carbohydrates. In addition, several PTPs have impaired catalytic activity as a result of amino acid substitutions at their active sites, but retain regulatory functions related with pTyr signaling. As a result of their relevant biological activity, many PTPs are linked to human disease, including cancer, neurodevelopmental, and metabolic diseases, making these proteins important drug targets and molecular markers in the clinic. Here, a brief overview on the biochemistry and physiology of the different groups of proteins that belong to the mammalian PTPome is presented. PMID:27514797

  10. Tyrosine for the treatment of depression.

    PubMed

    Gelenberg, A J; Gibson, C J

    1984-01-01

    The two most widely held biochemical models of depression--the catecholamine (CA) and indoleamine (IA) hypotheses--explain depression as a result of deficient transmission of the CA norepinephrine (NE) or the IA serotonin (5-hydroxytryptamine, 5-HT) respectively. Until recently, all drugs used to treat depression appeared to enhance neurotransmission in one or both of these systems, which was used to explain their antidepressant actions (Gelenberg and Klerman, 1978). In fact, it was this action of antidepressants that gave rise to the models of depression. Another way to increase brain levels of NE and 5-HT, and potentially to increase presynaptic activity, would be the systemic administration of the precursors of the neurotransmitters, an approach something like organic gardening in the brain. For this purpose, the 5-HT precursors tryptophan and 5-hydroxtryptophan (5-HTP), and the NE precursors tyrosine and dihydroxyphenylalanine (DOPA), have been administered to depressed patients. This paper reviews some of the theoretical background and clinical experience with the precursor strategy, focusing primarily on work with L-tyrosine. All four precursors as possible antidepressants have been recently reviewed (Gelenberg, 1982). PMID:6443584

  11. Role of Protein Tyrosine Phosphatases in Plants

    PubMed Central

    Shankar, Alka; Agrawal, Nisha; Sharma, Manisha; Pandey, Amita; Pandey, Girdhar K.

    2015-01-01

    Reversible protein phosphorylation is a crucial regulatory mechanism that controls many biological processes in eukaryotes. In plants, phosphorylation events primarily occur on serine (Ser) and threonine (Thr) residues, while in certain cases, it was also discovered on tyrosine (Tyr) residues. In contrary to plants, extensive reports on Tyr phosphorylation regulating a large numbers of biological processes exist in animals. Despite of such prodigious function in animals, Tyr phosphorylation is a least studied mechanism of protein regulation in plants. Recently, various chemical analytical procedures have strengthened the view that Tyr phosphorylation is equally prevalent in plants as in animals. However, regardless of Tyr phosphorylation events occuring in plants, no evidence could be found for the existence of gene encoding for Tyr phosphorylation i.e. the typical Tyr kinases. Various methodologies have suggested that plant responses to stress signals and developmental processes involved modifications in protein Tyr phosphorylation. Correspondingly, various reports have established the role of PTPs (Protein Tyrosine Phosphatases) in the dephosphorylation and inactivation of mitogen activated protein kinases (MAPKs) hence, in the regulation of MAPK signaling cascade. Besides this, many dual specificity protein phosphatases (DSPs) are also known to bind starch and regulate starch metabolism through reversible phosphorylation. Here, we are emphasizing the significant progress on protein Tyr phosphatases to understand the role of these enzymes in the regulation of post-translational modification in plant physiology and development. PMID:26962298

  12. Bruton tyrosine kinase (Btk) suppresses osteoblastic differentiation.

    PubMed

    Kaneshiro, Shoichi; Ebina, Kosuke; Shi, Kenrin; Yoshida, Kiyoshi; Otsuki, Dai; Yoshikawa, Hideki; Higuchi, Chikahisa

    2015-09-01

    The Tec family of nonreceptor tyrosine kinases has been shown to play a key role in inflammation and bone destruction. Bruton tyrosine kinase (Btk) has been the most widely studied because of its critical role in B cells. Furthermore, recent evidence has demonstrated that blocking Btk signaling is effective in ameliorating lymphoma progression and experimental arthritis. The role of Btk in osteoblastic differentiation has not been well elucidated. In this study, we demonstrated the role of Btk in osteoblastic differentiation and investigated the effects of a Btk inhibitor on osteoblastic differentiation in mouse preosteoblastic MC3T3-E1 cells, primary calvarial osteoblasts, and bone marrow stromal ST2 cells. Btk expression was detected in all three cell lines. Btk inhibition stimulated mRNA expression of osteoblastic markers (alkaline phosphatase, osteocalcin, and osterix) and promoted mineralization of the extracellular matrix. In addition, Btk knockdown caused increased mRNA expression of osteoblastic markers. Furthermore, Btk inhibition suppressed the phosphorylation of mitogen-activated protein kinase (MAPK), nuclear factor kappa B (NFκB), and protein kinase Cα (PKCα). Our results indicate that Btk may regulate osteoblastic differentiation through the MAPK, NFκB, and PKCα signaling pathways. PMID:25230818

  13. Toxicological disruption of signaling homeostasis: Tyrosine phosphatses as targets

    EPA Science Inventory

    The protein tyrosine phosphatases (PTP) comprised a diverse group of enzymes whose activity opposes that of the tyrosine kinases. As such, the PTP have critical roles in maintaining signaling quiescence in resting cells and in restoring homeostasis by effecting signal termination...

  14. Receptor tyrosine kinase targeting in multicellular spheroids.

    PubMed

    Breslin, Susan; O'Driscoll, Lorraine

    2015-01-01

    While growing cells as a monolayer is the traditional method for cell culture, the incorporation of multicellular spheroids into experimental design is becoming increasingly popular. This is due to the understanding that cells grown as spheroids tend to replicate the in vivo situation more reliably than monolayer cells. Thus, the use of multicellular spheroids may be more clinically relevant than monolayer cell cultures. Here, we describe methods for multicellular 3D spheroid generation that may be used to provide samples for receptor tyrosine kinase (and other protein) detection. Methods described include the forced-floating poly-HEMA method, the hanging-drop method, and the use of ECM to form multicellular 3D spheroids. PMID:25319898

  15. The Ror receptor tyrosine kinase family.

    PubMed

    Forrester, W C

    2002-01-01

    Receptor tyrosine kinases (RTKs) participate in numerous developmental decisions. Ror RTKs are a family of orphan receptors that are related to muscle specific kinase (MuSK) and Trk neurotrophin receptors. MuSK assembles acetylcholine receptors at the neuromuscular junction, and Trk receptors function in the developing nervous system (reviewed in [3-5]). Rors have been identified in nematodes, insects and mammals. Recent studies have begun to shed light on Ror function during development. In most species, Rors are expressed in many tissue types during development. Analyses of mutants that are defective in the single nematode Ror demonstrate a role in cell migration and in orienting cell polarity. Mice lacking one of the two Ror gene products display defects in bone and heart formation. Similarly, two different human bone development disorders, dominant brachydactyly B and recessive Robinow syndrome, result from mutations in one of the human Ror genes. PMID:11846036

  16. Antibodies directed against receptor tyrosine kinases

    PubMed Central

    FAUVEL, Bénédicte; Yasri, Aziz

    2014-01-01

    Approximately 30 therapeutic monoclonal antibodies have already been approved for cancers and inflammatory diseases, and monoclonal antibodies continue to be one of the fastest growing classes of therapeutic molecules. Because aberrant signaling by receptor tyrosine kinases (RTKs) is a commonly observed factor in cancer, most of the subclasses of RTKs are being extensively studied as potential targets for treating malignancies. The first two RTKs that have been targeted by antibody therapy, with five currently marketed antibodies, are the growth factor receptors EGFR and HER2. However, due to systemic side effects, refractory patients and the development of drug resistance, these treatments are being challenged by emerging therapeutics. This review examines current monoclonal antibody therapies against RTKs. After an analysis of agents that have already been approved, we present an analysis of antibodies in clinical development that target RTKs. Finally, we highlight promising RTKs that are emerging as new oncological targets for antibody-based therapy. PMID:24859229

  17. Complexity of Receptor Tyrosine Kinase Signal Processing

    PubMed Central

    Volinsky, Natalia; Kholodenko, Boris N.

    2013-01-01

    Our knowledge of molecular mechanisms of receptor tyrosine kinase (RTK) signaling advances with ever-increasing pace. Yet our understanding of how the spatiotemporal dynamics of RTK signaling control specific cellular outcomes has lagged behind. Systems-centered experimental and computational approaches can help reveal how overlapping networks of signal transducers downstream of RTKs orchestrate specific cell-fate decisions. We discuss how RTK network regulatory structures, which involve the immediate posttranslational and delayed transcriptional controls by multiple feed forward and feedback loops together with pathway cross talk, adapt cells to the combinatorial variety of external cues and conditions. This intricate network circuitry endows cells with emerging capabilities for RTK signal processing and decoding. We illustrate how mathematical modeling facilitates our understanding of RTK network behaviors by unraveling specific systems properties, including bistability, oscillations, excitable responses, and generation of intricate landscapes of signaling activities. PMID:23906711

  18. Food for creativity: tyrosine promotes deep thinking.

    PubMed

    Colzato, Lorenza S; de Haan, Annelies M; Hommel, Bernhard

    2015-09-01

    Anecdotal evidence suggests that creative people sometimes use food to overcome mental blocks and lack of inspiration, but empirical support for this possibility is still lacking. In this study, we investigated whether creativity in convergent- and divergent-thinking tasks is promoted by the food supplement L-Tyrosine (TYR)-a biochemical precursor of dopamine, which is assumed to drive cognitive control and creativity. We found no evidence for an impact of TYR on divergent thinking ("brainstorming") but it did promote convergent ("deep") thinking. As convergent thinking arguably requires more cognitive top-down control, this finding suggests that TYR can facilitate control-hungry creative operations. Hence, the food we eat may affect the way we think. PMID:25257259

  19. Tyrosine kinase inhibitors and the thyroid.

    PubMed

    Sherman, Steven I

    2009-12-01

    Protein tyrosine kinase inhibitors (TKIs) have emerged as significant targets for novel cancer therapies. For patients with differentiated or medullary carcinomas unresponsive to conventional treatments, multiple novel therapies primarily targeting angiogenesis have entered clinical trials. Partial response rates up to 30% have been reported in single-agent studies, but prolonged disease stabilisation is more commonly seen. The most successful agents target the vascular endothelial growth factor receptors. Sorafenib and sunitinib have had promising preliminary results reported and are being used selectively for patients who do not qualify for clinical trials. Treatment for patients with metastatic or advanced thyroid carcinoma now emphasises clinical trial opportunities for novel agents with considerable promise. Adverse effects on thyroid function and thyroid hormone metabolism have also been seen with several TKIs, necessitating prospective thyroid function testing for all patients starting therapy. PMID:19942148

  20. The tyrosine kinase FER is responsible for the capacitation-associated increase in tyrosine phosphorylation in murine sperm.

    PubMed

    Alvau, Antonio; Battistone, Maria Agustina; Gervasi, Maria Gracia; Navarrete, Felipe A; Xu, Xinran; Sánchez-Cárdenas, Claudia; De la Vega-Beltran, Jose Luis; Da Ros, Vanina G; Greer, Peter A; Darszon, Alberto; Krapf, Diego; Salicioni, Ana Maria; Cuasnicu, Patricia S; Visconti, Pablo E

    2016-07-01

    Sperm capacitation is required for fertilization. At the molecular level, this process is associated with fast activation of protein kinase A. Downstream of this event, capacitating conditions lead to an increase in tyrosine phosphorylation. The identity of the tyrosine kinase(s) mediating this process has not been conclusively demonstrated. Recent experiments using stallion and human sperm have suggested a role for PYK2 based on the use of small molecule inhibitors directed against this kinase. However, crucially, loss-of-function experiments have not been reported. Here, we used both pharmacological inhibitors and genetically modified mice models to investigate the identity of the tyrosine kinase(s) mediating the increase in tyrosine phosphorylation in mouse sperm. Similar to stallion and human, PF431396 blocks the capacitation-associated increase in tyrosine phosphorylation. Yet, sperm from Pyk2(-/-) mice displayed a normal increase in tyrosine phosphorylation, implying that PYK2 is not responsible for this phosphorylation process. Here, we show that PF431396 can also inhibit FER, a tyrosine kinase known to be present in sperm. Sperm from mice targeted with a kinase-inactivating mutation in Fer failed to undergo capacitation-associated increases in tyrosine phosphorylation. Although these mice are fertile, their sperm displayed a reduced ability to fertilize metaphase II-arrested eggs in vitro. PMID:27226326

  1. NLRP3 tyrosine phosphorylation is controlled by protein tyrosine phosphatase PTPN22

    PubMed Central

    Spalinger, Marianne R.; Kasper, Stephanie; Gottier, Claudia; Lang, Silvia; Atrott, Kirstin; Vavricka, Stephan R.; Scharl, Sylvie; Gutte, Petrus M.; Grütter, Markus G.; Beer, Hans-Dietmar; Contassot, Emmanuel; Chan, Andrew C.; Dai, Xuezhi; Rawlings, David J.; Mair, Florian; Becher, Burkhard; Falk, Werner; Fried, Michael; Rogler, Gerhard

    2016-01-01

    Inflammasomes form as the result of the intracellular presence of danger-associated molecular patterns and mediate the release of active IL-1β, which influences a variety of inflammatory responses. Excessive inflammasome activation results in severe inflammatory conditions, but physiological IL-1β secretion is necessary for intestinal homeostasis. Here, we have described a mechanism of NLRP3 inflammasome regulation by tyrosine phosphorylation of NLRP3 at Tyr861. We demonstrated that protein tyrosine phosphatase non-receptor 22 (PTPN22), variants in which are associated with chronic inflammatory disorders, dephosphorylates NLRP3 upon inflammasome induction, allowing efficient NLRP3 activation and subsequent IL-1β release. In murine models, PTPN22 deficiency resulted in pronounced colitis, increased NLRP3 phosphorylation, but reduced levels of mature IL-1β. Conversely, patients with inflammatory bowel disease (IBD) that carried an autoimmunity-associated PTPN22 variant had increased IL-1β levels. Together, our results identify tyrosine phosphorylation as an important regulatory mechanism for NLRP3 that prevents aberrant inflammasome activation. PMID:27043286

  2. pH regulation of an egg cortex tyrosine kinase.

    PubMed

    Jiang, W P; Veno, P A; Wood, R W; Peaucellier, G; Kinsey, W H

    1991-07-01

    Fertilization of the echinoderm egg is known to result in the phosphorylation, on tyrosine, of a high-molecular-weight cortical protein (HMWCP) localized in the egg cortex. Studies using various parthenogenic agents indicate that this phosphorylation event occurs in response to the alkaline shift in cytoplasmic pHi which normally occurs 1 to 2 min after fertilization. In the present study, the purified egg cell surface complex was used as in vitro system to determine whether a small alkaline shift in pH, such as occurs upon fertilization, could stimulate the activity of the egg cortex-associated tyrosine kinase toward endogenous protein substrates. The results demonstrated that the cell surface complex is highly enriched in a tyrosine kinase activity which accounts for the majority of the protein kinase activity in this preparation. The activity of this tyrosine kinase toward the HMWCP and other cortical proteins was highly dependent on pH over the range pH 6.8 to 7.3. This indicates that the fertilization-associated change in cytoplasmic pH would be sufficient to trigger increased tyrosine phosphorylation of the high-molecular-weight cortical protein in vivo. The regulation of tyrosine phosphorylation by small changes in pH represents a novel control mechanism in which a tyrosine protein kinase may act as a pH-sensitive transducer. PMID:2060713

  3. Tyrosine depletion lowers in vivo DOPA synthesis in ventral hippocampus.

    PubMed

    Bongiovanni, Rodolfo; Kyser, Abby N; Jaskiw, George E

    2012-12-01

    In vivo dopamine synthesis in the medial prefrontal cortex of the rat is sensitive to the availability of tyrosine. Whether other limbic cortical dopamine terminal regions are similarly tyrosine-dependent is not known. In this study we examined the effects of tyrosine depletion on dopamine synthesis and catecholamine levels in the ventral hippocampus. A tyrosine- and phenylalanine-free neutral amino acid mixture was used to lower brain tyrosine levels in rats undergoing in vivo microdialysis. In one group, NSD-1015 was included in perfusate to permit measurement of DOPA levels. In a second group, NSD-1015 was not included in perfusate so that catecholamine levels could be assayed. Tyrosine depletion significantly lowered DOPA levels in the NSD-1015 treated group and lowered DOPAC but not dopamine or noradrenaline levels in the group not exposed to NSD-1015. We conclude that while catecholamine synthesis in the ventral hippocampus declines when tyrosine availability is lowered, under basal conditions, compensatory mechanisms are able to maintain stable extracellular catecholamine levels. PMID:23022716

  4. Dopamine release in rat striatum - Physiological coupling to tyrosine supply

    NASA Technical Reports Server (NTRS)

    During, Matthew J.; Acworth, Ian N.; Wurtman, Richard J.

    1989-01-01

    Intracerebral microdialysis was used to monitor dopamine release in rat striatal extracellular fluid following the intraperitoneal administration of dopamine's precursor amino acid, L-tyrosine. Dopamine concentrations in dialysates increased transiently after tyrosine (50-100 mg/kg) administration. Pretreatment with haloperidol or the partial lesioning of nigrostriatal neurons enhanced the effect of tyrosine on dopamine release, and haloperidol also prolonged this effect. These data suggest that nigrostriatal dopaminergic neurons are responsive to changes in precursor availability under basal conditions, but that receptor-mediated feedback mechanisms limit the magnitude and duration of this effect.

  5. Genetic alterations of protein tyrosine phosphatases in human cancers

    PubMed Central

    Zhao, Shuliang; Sedwick, David; Wang, Zhenghe

    2014-01-01

    Protein tyrosine phosphatases (PTPs) are enzymes that remove phosphate from tyrosine residues in proteins. Recent whole-exome sequencing of human cancer genomes reveals that many PTPs are frequently mutated in a variety of cancers. Among these mutated PTPs, protein tyrosine phosphatase T (PTPRT) appears to be the most frequently mutated PTP in human cancers. Beside PTPN11 which functions as an oncogene in leukemia, genetic and functional studies indicate that most of mutant PTPs are tumor suppressor genes. Identification of the substrates and corresponding kinases of the mutant PTPs may provide novel therapeutic targets for cancers harboring these mutant PTPs. PMID:25263441

  6. Tyrosine hydroxylase deficiency with severe clinical course.

    PubMed

    Zafeiriou, D I; Willemsen, M A; Verbeek, M M; Vargiami, E; Ververi, A; Wevers, R

    2009-05-01

    Tyrosine hydroxylase (TH) deficiency is a rare autosomal recessive disorder mapped to chromosome 11p15.5. Its clinical expression varies with presentations as dopa-responsive dystonia (recessive Segawa's disease), dopa-responsive infantile parkinsonism, dopa-responsive spastic paraplegia, progressive infantile encephalopathy or dopa-non-responsive dystonia. We describe a 7-year-old boy with progressive infantile encephalopathy and non-responsiveness to dopamine. The patient demonstrated generalized hypotonia, pyramidal tract dysfunction and temperature instability after the second month of life. Dystonia, tremor and oculogyric crises complicated the clinical picture during the following months. Neurotransmitter analysis in CSF disclosed almost undetectable levels of HVA and MHPG, whereas serum prolactin was profoundly increased. Subsequent molecular analysis revealed homozygosity for a missense mutation (c.707T>C) in the TH gene. l-Dopa therapy in both high and low doses resulted in massive hyperkinesias, while substitution with selegiline exerted only a mild beneficial effect. Today, at the age of 7 years, the patient demonstrates severe developmental retardation with marked trunkal hypotonia, hypokinesia and occasionally dystonic and/or hyperkinetic crises. He is the third Greek patient with TH deficiency to be reported. Since all three patients carry the same pathogenetic mutation, a founder effect is suspected. PMID:19282209

  7. Therapeutic drug monitoring and tyrosine kinase inhibitors

    PubMed Central

    Herviou, Pauline; Thivat, Emilie; Richard, Damien; Roche, Lucie; Dohou, Joyce; Pouget, Mélanie; Eschalier, Alain; Durando, Xavier; Authier, Nicolas

    2016-01-01

    The therapeutic activity of drugs can be optimized by establishing an individualized dosage, based on the measurement of the drug concentration in the serum, particularly if the drugs are characterized by an inter-individual variation in pharmacokinetics that results in an under- or overexposure to treatment. In recent years, several tyrosine kinase inhibitors (TKIs) have been developed to block intracellular signaling pathways in tumor cells. These oral drugs are candidates for therapeutic drug monitoring (TDM) due to their high inter-individual variability for therapeutic and toxic effects. Following a literature search on PubMed, studies on TKIs and their pharmacokinetic characteristics, plasma quantification and inter-individual variability was studied. TDM is commonly used in various medical fields, including cardiology and psychiatry, but is not often applied in oncology. Plasma concentration monitoring has been thoroughly studied for imatinib, in order to evaluate the usefulness of TDM. The measurement of plasma concentration can be performed by various analytical techniques, with liquid chromatography-mass spectrometry being the reference method. This method is currently used to monitor the efficacy and tolerability of imatinib treatments. Although TDM is already being used for imatinib, additional studies are required in order to improve this practice with the inclusion of other TKIs. PMID:27446421

  8. Structure of tyrosine aminotransferase from Leishmania infantum

    PubMed Central

    Moreno, M. A.; Abramov, A.; Abendroth, J.; Alonso, A.; Zhang, S.; Alcolea, P. J.; Edwards, T.; Lorimer, D.; Myler, P. J.; Larraga, V.

    2014-01-01

    The trypanosomatid parasite Leishmania infantum is the causative agent of visceral leishmaniasis (VL), which is usually fatal unless treated. VL has an incidence of 0.5 million cases every year and is an important opportunistic co-infection in HIV/AIDS. Tyrosine aminotransferase (TAT) has an important role in the metabolism of trypanosomatids, catalyzing the first step in the degradation pathway of aromatic amino acids, which are ultimately converted into their corresponding l-2-oxoacids. Unlike the enzyme in Trypanosoma cruzi and mammals, L. infantum TAT (LiTAT) is not able to transaminate ketoglutarate. Here, the structure of LiTAT at 2.35 Å resolution is reported, and it is confirmed that the presence of two Leishmania-specific residues (Gln55 and Asn58) explains, at least in part, this specific reactivity. The difference in substrate specificity between leishmanial and mammalian TAT and the importance of this enzyme in parasite metabolism suggest that it may be a useful target in the development of new drugs against leishmaniasis. PMID:24817714

  9. Method of making L-dopa from L-tyrosine

    DOEpatents

    Xun, L.; Lee, J.Y.

    1998-11-17

    The invention is a method of making a L-dopa from L-tyrosine in the presence of an enzyme catalyst and oxygen. By starting with L-tyrosine, no variant of the L-dopa is produced and the L-dopa is stable in the presence of the enzyme catalyst. In other words, the reaction favors the L-dopa and is not reversible. 3 figs.

  10. [Side effect management of tyrosine kinase inhibitors in urology : Hypertension].

    PubMed

    Sikic, D; Meidenbauer, N; Lieb, V; Keck, B

    2016-07-01

    Tyrosine kinase inhibitors like sunitinib, sorafenib, pazopanib or axintinib are regarded the standard of care in the systemic therapy of metastatic renal cell carcinoma. However, the many side effects associated with this therapy pose challenges for the treating physician and the patient. This review offers an overview of the classification and the treatment of hypertension, which is one of the major side effects induced by all tyrosine kinase inhibitors, in order to improve treatment efficacy and patient compliance. PMID:27146871

  11. Method of making L-dopa from L-tyrosine

    DOEpatents

    Xun, Luying; Lee, Jang Young

    1998-01-01

    The invention is a method of making a L-dopa from L-tyrosine in the presence of an enzyme catalyst and oxygen. By starting with L-tyrosine, no variant of the L-dopa is produced and the L-dopa is stable in the presence of the enzyme catalyst. In other words, the reaction favors the L-dopa and is not reversible.

  12. Statins Attenuate Helicobacter pylori CagA Translocation and Reduce Incidence of Gastric Cancer: In Vitro and Population-Based Case-Control Studies

    PubMed Central

    Hsu, Yuan-Man; Lin, Cheng-Li; Chen, Yu-An; Feng, Chun-Lung; Chen, Chih-Jung; Kao, Min-Chuan; Lai, Chih-Ho; Kao, Chia-Hung

    2016-01-01

    Gastric cancer is the second leading cause of cancer-related death worldwide. The correlation of Helicobacter pylori and the etiology of gastric cancer was substantially certain. Cholesterol-rich microdomains (also called lipid rafts), which provide platforms for signaling, are associated with H. pylori-induced pathogenesis leading to gastric cancer. Patients who have been prescribed statins, inhibitors of 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) reductase, have exhibited a reduced risk of several types of cancer. However, no studies have addressed the effect of statins on H. pylori-associated gastric cancer from the antineoplastic perspective. In this study, we showed that treatment of gastric epithelial cells with simvastatin reduced the level of cellular cholesterol and led to attenuation of translocation and phosphorylation of H. pylori cytotoxin-associated gene A (CagA), which is recognized as a major determinant of gastric cancer development. Additionally, a nationwide case-control study based on data from the Taiwanese National Health Insurance Research Database (NHIRD) was conducted. A population-based case-control study revealed that patients who used simvastatin exhibited a significantly reduced risk of gastric cancer (adjusted odds ratio (OR) = 0.76, 95% confidence interval (CI) = 0.70–0.83). In patients exhibiting H. pylori infection who were prescribed simvastatin, the adjusted OR for gastric cancer was 0.25 (95% CI = 0.12–0.50). Our results combined an in vitro study with a nationwide population analysis reveal that statin use might be a feasible approach to prevent H. pylori-associated gastric cancer. PMID:26730715

  13. Are Striatal Tyrosine Hydroxylase Interneurons Dopaminergic?

    PubMed Central

    Xenias, Harry S.; Ibáñez-Sandoval, Osvaldo; Koós, Tibor

    2015-01-01

    Striatal GABAergic interneurons that express the gene for tyrosine hydroxylase (TH) have been identified previously by several methods. Although generally assumed to be dopaminergic, possibly serving as a compensatory source of dopamine (DA) in Parkinson's disease, this assumption has never been tested directly. In TH–Cre mice whose nigrostriatal pathway had been eliminated unilaterally with 6-hydroxydopamine, we injected a Cre-dependent virus coding for channelrhodopsin-2 and enhanced yellow fluorescent protein unilaterally into the unlesioned midbrain or bilaterally into the striatum. Fast-scan cyclic voltammetry in striatal slices revealed that both optical and electrical stimulation readily elicited DA release in control striata but not from contralateral striata when nigrostriatal neurons were transduced. In contrast, neither optical nor electrical stimulation could elicit striatal DA release in either the control or lesioned striata when the virus was injected directly into the striatum transducing only striatal TH interneurons. This demonstrates that striatal TH interneurons do not release DA. Fluorescence immunocytochemistry in enhanced green fluorescent protein (EGFP)–TH mice revealed colocalization of DA, l-amino acid decarboxylase, the DA transporter, and vesicular monoamine transporter-2 with EGFP in midbrain dopaminergic neurons but not in any of the striatal EGFP–TH interneurons. Optogenetic activation of striatal EGFP–TH interneurons produced strong GABAergic inhibition in all spiny neurons tested. These results indicate that striatal TH interneurons are not dopaminergic but rather are a type of GABAergic interneuron that expresses TH but none of the other enzymes or transporters necessary to operate as dopaminergic neurons and exert widespread GABAergic inhibition onto direct and indirect spiny neurons. PMID:25904808

  14. Role of Tyrosine Isomers in Acute and Chronic Diseases Leading to Oxidative Stress - A Review

    PubMed Central

    Molnár, Gergő A.; Kun, Szilárd; Sélley, Eszter; Kertész, Melinda; Szélig, Lívia; Csontos, Csaba; Böddi, Katalin; Bogár, Lajos; Miseta, Attila; Wittmann, István

    2016-01-01

    Oxidative stress plays a major role in the pathogenesis of a variety of acute and chronic diseases. Measurement of the oxidative stress-related end products may be performed, e.g. that of structural isomers of the physiological para-tyrosine, namely meta- and ortho-tyrosine, that are oxidized derivatives of phenylalanine. Recent data suggest that in sepsis, serum level of meta-tyrosine increases, which peaks on the 2nd and 3rd days (p<0.05 vs. controls), and the kinetics follows the intensity of the systemic inflammation correlating with serum procalcitonin levels. In a similar study subset, urinary meta-tyrosine excretion correlated with both need of daily insulin dose and the insulin-glucose product in non-diabetic septic cases (p<0.01 for both). Using linear regression model, meta-tyrosine excretion, urinary meta-tyrosine/para-tyrosine, urinary ortho-tyrosine/para-tyrosine and urinary (meta- + ortho-tyrosine)/para-tyrosine proved to be markers of carbohydrate homeostasis. In a chronic rodent model, we tried to compensate the abnormal tyrosine isomers using para-tyrosine, the physiological amino acid. Rats were fed a standard high cholesterol-diet, and were given para-tyrosine or vehicle orally. High-cholesterol feeding lead to a significant increase in aortic wall meta-tyrosine content and a decreased vasorelaxation of the aorta to insulin and the glucagon-like peptide-1 analogue, liraglutide, that both could be prevented by administration of para-tyrosine. Concluding, these data suggest that meta- and ortho-tyrosine are potential markers of oxidative stress in acute diseases related to oxidative stress, and may also interfere with insulin action in septic humans. Competition of meta- and ortho-tyrosine by supplementation of para-tyrosine may exert a protective role in oxidative stress-related diseases. PMID:26785996

  15. A novel nonreceptor tyrosine kinase, Srm: cloning and targeted disruption.

    PubMed Central

    Kohmura, N; Yagi, T; Tomooka, Y; Oyanagi, M; Kominami, R; Takeda, N; Chiba, J; Ikawa, Y; Aizawa, S

    1994-01-01

    We have isolated a novel nonreceptor tyrosine kinase, Srm, that maps to the distal end of chromosome 2. It has SH2, SH2', and SH3 domains and a tyrosine residue for autophosphorylation in the kinase domain but lacks an N-terminal glycine for myristylation and a C-terminal tyrosine which, when phosphorylated, suppresses kinase activity. These are structural features of the recently identified Tec family of nonreceptor tyrosine kinases. The Srm N-terminal unique domain, however, lacks the structural characteristics of the Tec family kinases, and the sequence similarity is highest to Src in the SH region. The expression of two transcripts is rather ubiquitous and changes according to tissue and developmental stage. Mutant mice were generated by gene targeting in embryonic stem cells but displayed no apparent phenotype as in mutant mice expressing Src family kinases. These results suggest that Srm constitutes a new family of nonreceptor tyrosine kinases that may be redundant in function. Images PMID:7935409

  16. Heterologous production of caffeic acid from tyrosine in Escherichia coli.

    PubMed

    Rodrigues, J L; Araújo, R G; Prather, K L J; Kluskens, L D; Rodrigues, L R

    2015-04-01

    Caffeic acid is a plant secondary metabolite and its biological synthesis has attracted increased attention due to its beneficial effects on human health. In this study, Escherichia coli was engineered for the production of caffeic acid using tyrosine as the initial precursor of the pathway. The pathway design included tyrosine ammonia lyase (TAL) from Rhodotorula glutinis to convert tyrosine to p-coumaric acid and 4-coumarate 3-hydroxylase (C3H) from Saccharothrix espanaensis or cytochrome P450 CYP199A2 from Rhodopseudomonas palustris to convert p-coumaric acid to caffeic acid. The genes were codon-optimized and different combinations of plasmids were used to improve the titer of caffeic acid. TAL was able to efficiently convert 3mM of tyrosine to p-coumaric acid with the highest production obtained being 2.62mM (472mg/L). CYP199A2 exhibited higher catalytic activity towards p-coumaric acid than C3H. The highest caffeic acid production obtained using TAL and CYP199A2 and TAL and C3H was 1.56mM (280mg/L) and 1mM (180mg/L), respectively. This is the first study that shows caffeic acid production using CYP199A2 and tyrosine as the initial precursor. This study suggests the possibility of further producing more complex plant secondary metabolites like flavonoids and curcuminoids. PMID:25765308

  17. Tubulin tyrosine nitration regulates microtubule organization in plant cells

    PubMed Central

    Blume, Yaroslav B.; Krasylenko, Yuliya A.; Demchuk, Oleh M.; Yemets, Alla I.

    2013-01-01

    During last years, selective tyrosine nitration of plant proteins gains importance as well-recognized pathway of direct nitric oxide (NO) signal transduction. Plant microtubules are one of the intracellular signaling targets for NO, however, the molecular mechanisms of NO signal transduction with the involvement of cytoskeletal proteins remain to be elucidated. Since biochemical evidence of plant α-tubulin tyrosine nitration has been obtained recently, potential role of this posttranslational modification in regulation of microtubules organization in plant cell is estimated in current paper. It was shown that 3-nitrotyrosine (3-NO2-Tyr) induced partially reversible Arabidopsis primary root growth inhibition, alterations of root hairs morphology and organization of microtubules in root cells. It was also revealed that 3-NO2-Tyr intensively decorates such highly dynamic microtubular arrays as preprophase bands, mitotic spindles and phragmoplasts of Nicotiana tabacum Bright Yellow-2 (BY-2) cells under physiological conditions. Moreover, 3D models of the mitotic kinesin-8 complexes with the tail of detyrosinated, tyrosinated and tyrosine nitrated α-tubulin (on C-terminal Tyr 450 residue) from Arabidopsis were reconstructed in silico to investigate the potential influence of tubulin nitrotyrosination on the molecular dynamics of α-tubulin and kinesin-8 interaction. Generally, presented data suggest that plant α-tubulin tyrosine nitration can be considered as its common posttranslational modification, the direct mechanism of NO signal transduction with the participation of microtubules under physiological conditions and one of the hallmarks of the increased microtubule dynamics. PMID:24421781

  18. A chimeric tyrosine/tryptophan hydroxylase. The tyrosine hydroxylase regulatory domain serves to stabilize enzyme activity.

    PubMed

    Mockus, S M; Kumer, S C; Vrana, K E

    1997-08-01

    The neurotransmitter biosynthetic enzymes, tyrosine hydroxylase (TH), and tryptophan hydroxylase (TPH) are each composed of an amino-terminal regulatory domain and a carboxyl-terminal catalytic domain. A chimeric hydroxylase was generated by coupling the regulatory domain of TH (TH-R) to the catalytic domain of TPH (TPH-C) and expressing the recombinant enzyme in bacteria. The chimeric junction was created at proline 165 in TH and proline 106 in TPH because this residue is within a conserved five amino-acid span (ValProTrpPhePro) that defines the beginning of the highly homologous catalytic domains of TH and TPH. Radioenzymatic activity assays demonstrated that the TH-R/TPH-C chimera hydroxylates tryptophan, but not tyrosine. Therefore, the regulatory domain does not confer substrate specificity. Although the TH-R/TPH-C enzyme did serve as a substrate for protein kinase (PKA), activation was not observed following phosphorylation. Phosphorylation studies in combination with kinetic data provided evidence that TH-R does not exert a dominant influence on TPH-C. Stability assays revealed that, whereas TH exhibited a t1/2 of 84 min at 37 degrees C, TPH was much less stable (t1/2 = 28.3 min). The stability profile of TH-R/TPH-C, however, was superimposable on that of TH. Removal of the regulatory domain (a deletion of 165 amino acids from the N-terminus) of TH rendered the catalytic domain highly unstable, as demonstrated by a t1/2 of 14 min. The authors conclude that the regulatory domain of TH functions as a stabilizer of enzyme activity. As a corollary, the well-characterized instability of TPH may be attributed to the inability of its regulatory domain to stabilize the catalytic domain. PMID:9356925

  19. Role of Tyrosine Isomers in Acute and Chronic Diseases Leading to Oxidative Stress - A Review.

    PubMed

    Molnár, Gergő A; Kun, Szilárd; Sélley, Eszter; Kertész, Melinda; Szélig, Lívia; Csontos, Csaba; Böddi, Katalin; Bogár, Lajos; Miseta, Attila; Wittmann, István

    2016-01-01

    Oxidative stress plays a major role in the pathogenesis of a variety of acute and chronic diseases. Measurement of the oxidative stress-related end products may be performed, e.g. that of structural isomers of the physiological para-tyrosine, namely meta- and ortho-tyrosine, that are oxidized derivatives of phenylalanine. Recent data suggest that in sepsis, serum level of meta-tyrosine increases, which peaks on the 2(nd) and 3(rd) days (p<0.05 vs. controls), and the kinetics follows the intensity of the systemic inflammation correlating with serum procalcitonin levels. In a similar study subset, urinary meta-tyrosine excretion correlated with both need of daily insulin dose and the insulin-glucose product in non-diabetic septic cases (p<0.01 for both). Using linear regression model, meta-tyrosine excretion, urinary meta-tyrosine/para-tyrosine, urinary ortho-tyrosine/para-tyrosine and urinary (meta- + orthotyrosine)/ para-tyrosine proved to be markers of carbohydrate homeostasis. In a chronic rodent model, we tried to compensate the abnormal tyrosine isomers using para-tyrosine, the physiological amino acid. Rats were fed a standard high cholesterol-diet, and were given para-tyrosine or vehicle orally. High-cholesterol feeding lead to a significant increase in aortic wall meta-tyrosine content and a decreased vasorelaxation of the aorta to insulin and the glucagon-like peptide-1 analogue, liraglutide, that both could be prevented by administration of para-tyrosine. Concluding, these data suggest that meta- and ortho-tyrosine are potential markers of oxidative stress in acute diseases related to oxidative stress, and may also interfere with insulin action in septic humans. Competition of meta- and ortho-tyrosine by supplementation of para-tyrosine may exert a protective role in oxidative stress-related diseases. PMID:26785996

  20. Enrichment and detection of tyrosine-nitrated proteins.

    PubMed

    Dekker, Frank; Abello, Nicolas; Wisastra, Rosalina; Bischoff, Rainer

    2012-08-01

    Nitrotyrosine is a post-translationally modified amino acid with distinctly different properties than tyrosine or any other of the genetically encoded amino acids. Detecting proteins containing nitrotyrosine is the first step towards a better understanding of the role of nitrotyrosine in health and disease. Moreover, quantifying the extent of nitrotyrosine and determining its location in a protein forms the basis for a better understanding of the effect of tyrosine nitration on biological function. Described in this unit is a method to detect tyrosine-nitrated proteins in tissue sections and on western blots after creating a fluorescent complex between aminotyrosine, salicylaldehyde, and Al(3+). In addition, an approach is detailed for labeling aminotyrosine with biotin to enrich peptides from complex samples. Both methods require reduction of nitrotyrosine to aminotyrosine, which can be achieved with sodium dithionite or hemin plus dithiothreitol. PMID:22851496

  1. Cysteine mutations cause defective tyrosine phosphorylation in MEGF10 myopathy

    PubMed Central

    Mitsuhashi, Satomi; Mitsuhashi, Hiroaki; Alexander, Matthew S; Sugimoto, Hiroyuki; Kang, Peter B

    2013-01-01

    Recessive mutations in MEGF10 are known to cause a congenital myopathy in humans. Two mutations in the extracellular EGF-like domains of MEGF10, C326R and C774R, were associated with decreased tyrosine phosphorylation of MEGF10 in vitro. Y1030 was identified to be the major tyrosine phosphorylation site in MEGF10 and is phosphorylated at least in part by c-Src. Overexpression of wild-type MEGF10 enhanced C2C12 myoblast proliferation, while overexpression of Y1030F mutated MEGF10 did not. We conclude that MEGF10-mediated signaling via tyrosine phosphorylation helps to regulate myoblast proliferation. Defects in this signaling pathway may contribute to the disease mechanism of MEGF10 myopathy. PMID:23954233

  2. Characterization of the PEST family protein tyrosine phosphatase BDP1.

    PubMed

    Kim, Y W; Wang, H; Sures, I; Lammers, R; Martell, K J; Ullrich, A

    1996-11-21

    Using a polymerase chain reaction (PCR) amplification strategy, we identified a novel protein tyrosine phosphatase (PTPase) designated Brain Derived Phosphatase (BDP1). The full length sequence encoded an open reading frame of 459 amino acids with no transmembrane domain and had a calculated molecular weight of 50 kDa. The predicted amino acid sequence contained a PEST motif and accordingly, BDP1 shared the greatest homology with members of the PTP-PEST family. When transiently expressed in 293 cells BDP1 hydrolyzed p-Nitrophenylphosphate, confirming it as a functional protein tyrosine phosphatase. Northern blot analysis indicated that BDP1 was expressed not only in brain, but also in colon and several different tumor-derived cell lines. Furthermore, BDP1 was found to differentially dephosphorylate autophosphorylated tyrosine kinases which are known to be overexpressed in tumor tissues. PMID:8950995

  3. Tyrosine Kinase Inhibitors and Diabetes: A Novel Treatment Paradigm?

    PubMed

    Fountas, Athanasios; Diamantopoulos, Leonidas-Nikolaos; Tsatsoulis, Agathocles

    2015-11-01

    Deregulation of protein tyrosine kinase (PTK) activity is implicated in various proliferative conditions. Multi-target tyrosine kinase inhibitors (TKIs) are increasingly used for the treatment of different malignancies. Recently, several clinical cases of the reversal of both type 1 and 2 diabetes mellitus (T1DM, T2DM) during TKI administration have been reported. Experimental in vivo and in vitro studies have elucidated some of the mechanisms behind this effect. For example, inhibition of Abelson tyrosine kinase (c-Abl) results in β cell survival and enhanced insulin secretion, while platelet-derived growth factor receptor (PDGFR) and epidermal growth factor receptor (EGFR) inhibition leads to improvement in insulin sensitivity. In addition, inhibition of vascular endothelial growth factor receptor 2 (VEGFR2) reduces the degree of islet cell inflammation (insulitis). Therefore, targeting several PTKs may provide a novel approach for correcting the pathophysiologic disturbances of diabetes. PMID:26492832

  4. L-tyrosine administration increases acetylcholinesterase activity in rats.

    PubMed

    Ferreira, Gabriela K; Carvalho-Silva, Milena; Gonçalves, Cinara L; Vieira, Júlia S; Scaini, Giselli; Ghedim, Fernando V; Deroza, Pedro F; Zugno, Alexandra I; Pereira, Talita C B; Oliveira, Giovanna M T; Kist, Luiza W; Bogo, Maurício R; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L

    2012-12-01

    Tyrosinemia is a rare genetic disease caused by mutations on genes that codify enzymes responsible for tyrosine metabolism. Considering that tyrosinemics patients usually present symptoms associated with central nervous system alterations that ranges from slight decreases in intelligence to severe mental retardation, we decided to investigate whether acute and chronic administration of L-tyrosine in rats would affect acetylcholinesterase mRNA expression and enzymatic activity during their development. In our acute protocol, Wistar rats (10 and 30 days old) were killed one hour after a single intraperitoneal L-tyrosine injection (500 mg/kg) or saline. Chronic administration consisted of L-tyrosine (500 mg/kg) or saline injections 12 h apart for 24 days in Wistar rats (7 days old) and rats were killed 12 h after last injection. Acetylcholinesterase activity was measured by Ellman's method and acetylcholinesterase expression was carried out by a semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) assay. We observed that acute (10 and 30 days old rats) and chronic L-tyrosine administration increased acetylcholinesterase activity in serum and all tested brain areas (hippocampus, striatum and cerebral cortex) when compared to control group. Moreover, there was a significant decrease in mRNA levels of acetylcholinesterase in hippocampus was observed after acute protocol (10 and 30 days old rats) and in striatum after chronic protocol. In case these alterations also occur in the brain of the patients, our results may explain, at least in part, the neurological sequelae associated with high plasma concentrations of tyrosine seen in patients affected by tyrosinemia type II. PMID:23046746

  5. Modular engineering of L-tyrosine production in Escherichia coli.

    PubMed

    Juminaga, Darmawi; Baidoo, Edward E K; Redding-Johanson, Alyssa M; Batth, Tanveer S; Burd, Helcio; Mukhopadhyay, Aindrila; Petzold, Christopher J; Keasling, Jay D

    2012-01-01

    Efficient biosynthesis of L-tyrosine from glucose is necessary to make biological production economically viable. To this end, we designed and constructed a modular biosynthetic pathway for L-tyrosine production in E. coli MG1655 by encoding the enzymes for converting erythrose-4-phosphate (E4P) and phosphoenolpyruvate (PEP) to L-tyrosine on two plasmids. Rational engineering to improve L-tyrosine production and to identify pathway bottlenecks was directed by targeted proteomics and metabolite profiling. The bottlenecks in the pathway were relieved by modifications in plasmid copy numbers, promoter strength, gene codon usage, and the placement of genes in operons. One major bottleneck was due to the bifunctional activities of quinate/shikimate dehydrogenase (YdiB), which caused accumulation of the intermediates dehydroquinate (DHQ) and dehydroshikimate (DHS) and the side product quinate; this bottleneck was relieved by replacing YdiB with its paralog AroE, resulting in the production of over 700 mg/liter of shikimate. Another bottleneck in shikimate production, due to low expression of the dehydroquinate synthase (AroB), was alleviated by optimizing the first 15 codons of the gene. Shikimate conversion to L-tyrosine was improved by replacing the shikimate kinase AroK with its isozyme, AroL, which effectively consumed all intermediates formed in the first half of the pathway. Guided by the protein and metabolite measurements, the best producer, consisting of two medium-copy-number, dual-operon plasmids, was optimized to produce >2 g/liter L-tyrosine at 80% of the theoretical yield. This work demonstrates the utility of targeted proteomics and metabolite profiling in pathway construction and optimization, which should be applicable to other metabolic pathways. PMID:22020510

  6. Growth and characterisation of ?-tyrosine-doped TGS crystals

    NASA Astrophysics Data System (ADS)

    Meera, K.; Aravazhi, S.; Santhana Raghavan, P.; Ramasamy, P.

    2000-04-01

    Single crystals of L-tyrosine-doped triglycine sulphate (LTTGS) were grown by low-temperature solution method. Morphological changes were observed on the grown crystals. Crystalline quality and cell parameter values were determined using rocking curve and powder X-ray diffraction analysis. The presence of L-tyrosine in LTTGS was estimated qualitatively by FTIR analysis. Microhardness studies carried out using Leitz Weitzler hardness tester at room temperature showed a decrease due to doping. Domain studies on b-cut plates were observed using scanning electron microscopy.

  7. Phosphorylated tyrosine in the flagellum filament protein of Pseudomonas aeruginosa

    SciTech Connect

    Kelly-Wintenberg, K.; Anderson, T.; Montie, T.C. )

    1990-09-01

    Purified flagella from two strains of {sup 32}P-labeled Pseudomonas aeruginosa were shown to be phosphorylated. This was confirmed by autoradiography of flagellin protein in polyacrylamide gels. Thin-layer electrophoresis and autoradiography of flagellin partial hydrolysates indicated that phosphotyrosine was the major phosphorylated amino acid. High-pressure liquid chromatographic analysis confirmed the presence of phosphotyrosine in flagellum filament protein. Preliminary data indicated that less than one tyrosine per subunit was phosphorylated. No evidence was found for phosphorylation of serine or threonine. A function related to tyrosine phosphorylation has not been determined.

  8. Biosynthesis of brominated tyrosine metabolites by Aplysina fistularis.

    PubMed

    Carney, J R; Rinehart, K L

    1995-07-01

    The biosynthesis of brominated tyrosine metabolites by the marine sponge Aplysina fistularis was investigated. [U-14C]-L-Tyrosine, [U-14C]-L-3-bromotyrosine, and [U-14C]-L-3,5-dibromotyrosine were incorporated into both dibromoverongiaquinol [1] and aeroplysinin-1 [2], and [methyl-14C]methionine was specifically incorporated into the O-methyl group group of 2. [Methyl-14C]-L-O-methyltyrosine, [methyl-14C]-L-3,5-dibromo-O-methyltyrosine, and several putative nitrile precursors were not incorporated into 1 or 2. PMID:7561906

  9. Cell-free expression of functional receptor tyrosine kinases

    PubMed Central

    He, Wei; Scharadin, Tiffany M.; Saldana, Matthew; Gellner, Candice; Hoang-Phou, Steven; Takanishi, Christina; Hura, Gregory L.; Tainer, John A; Carraway III, Kermit L.; Henderson, Paul T.; Coleman, Matthew A.

    2015-01-01

    Receptor tyrosine kinases (RTKs) play critical roles in physiological and pathological processes, and are important anticancer drug targets. In vitro mechanistic and drug discovery studies of full-length RTKs require protein that is both fully functional and free from contaminating proteins. Here we describe a rapid cell-free and detergent-free co-translation method for producing full-length and functional ERBB2 and EGFR receptor tyrosine kinases supported by water-soluble apolipoprotein A-I based nanolipoprotein particles. PMID:26274523

  10. Inhibition of Bcr serine kinase by tyrosine phosphorylation.

    PubMed Central

    Liu, J; Wu, Y; Ma, G Z; Lu, D; Haataja, L; Heisterkamp, N; Groffen, J; Arlinghaus, R B

    1996-01-01

    The first exon of the BCR gene encodes a new serine/threonine protein kinase. Abnormal fusion of the BCR and ABL genes, resulting from the formation of the Philadelphia chromosome (Ph), is the hallmark of Ph-positive leukemia. We have previously demonstrated that the Bcr protein is tyrosine phosphorylated within first-exon sequences by the Bcr-Abl oncoprotein. Here we report that in addition to tyrose 177 (Y-177), Y-360 and Y283 are phosphorylated in Bcr-Abl proteins in vitro. Moreover, Bcr tyrosine 360 is phosphorylated in vivo within both Bcr-Abl and Bcr. Bcr mutant Y177F had a greatly reduced ability to transphosphorylate casein and histone H1, whereas Bcr mutants Y177F and Y283F had wild-type activities. In contrast, the Y360F mutation had little effect on Bcr's autophosphorylation activity. Tyrosine-phosphorylated Bcr, phosphorylated in vitro by Bcr-Abl, was greatly inhibited in its serine/threonine kinase activity, impairing both auto- and transkinase activities of Bcr. Similarly, the isolation of Bcr from cells expressing Bcr-Abl under conditions that preserve phosphotyrosine residues also reduced Bcr's kinase activity. These results indicate that tyrosine 360 of Bcr is critical for the transphosphorylation activity of Bcr and that in Ph-positive leukemia, Bcr serine/threonine kinase activity is seriously impaired. PMID:8622703

  11. Purification of a specific reversible tyrosine-O-phosphate phosphatase.

    PubMed Central

    Fukami, Y; Lipmann, F

    1982-01-01

    A phosphatase specific for tyrosine-O-phosphate (Tyr-P) was separated from several nonspecific phosphatases present in the third instar larvae of Drosophila melanogaster. The enzyme hydrolyzed L-Tyr-P, with an apparent Km of 0.14 mM, but not D-Tyr-P after being freed from hydrolytic activity toward p-nitrophenyl phosphate, the common phosphatase substrate. Such purified preparations also catalyzed a reversible phosphate transfer reaction from unlabeled Tyr-P to [3H]tyrosine. The transfer activity was L4-14% of the hydrolytic activity, depending on the initial concentration of tyrosine (0.25-4.0 mM). The two activities coincided throughout purification. However, they differed in pH optimum, that of hydrolysis being 6.5-7 and that of phosphate transfer being 7.7.5. The two activities were also differentially inhibited by 1-p-bromotetramisole oxalate in the presence of EDTA and by Mn2+. Addition of Mg2+ did not affect either hydrolysis or phosphate transfer, but 5 mM Zn2+ was 65% inhibitory to both. Sodium fluoride strongly inhibited both reactions, and this inhibition was reversed by EDTA, while EDTA itself had no effect. Pi had no effect and no detectable incorporation of 32Pi into Tyr-P was observed, indicating that the phosphate transfer reaction is not a simple reversal of hydrolysis. No ATP-linked phosphorylation of tyrosine was found. PMID:6181504

  12. ZDHHC3 Tyrosine Phosphorylation Regulates Neural Cell Adhesion Molecule Palmitoylation.

    PubMed

    Lievens, Patricia Marie-Jeanne; Kuznetsova, Tatiana; Kochlamazashvili, Gaga; Cesca, Fabrizia; Gorinski, Natalya; Galil, Dalia Abdel; Cherkas, Volodimir; Ronkina, Natalia; Lafera, Juri; Gaestel, Matthias; Ponimaskin, Evgeni; Dityatev, Alexander

    2016-09-01

    The neural cell adhesion molecule (NCAM) mediates cell-cell and cell-matrix adhesion. It is broadly expressed in the nervous system and regulates neurite outgrowth, synaptogenesis, and synaptic plasticity. Previous in vitro studies revealed that palmitoylation of NCAM is required for fibroblast growth factor 2 (FGF2)-stimulated neurite outgrowth and identified the zinc finger DHHC (Asp-His-His-Cys)-containing proteins ZDHHC3 and ZDHHC7 as specific NCAM-palmitoylating enzymes. Here, we verified that FGF2 controlled NCAM palmitoylation in vivo and investigated molecular mechanisms regulating NCAM palmitoylation by ZDHHC3. Experiments with overexpression and pharmacological inhibition of FGF receptor (FGFR) and Src revealed that these kinases control tyrosine phosphorylation of ZDHHC3 and that ZDHHC3 is phosphorylated by endogenously expressed FGFR and Src proteins. By site-directed mutagenesis, we found that Tyr18 is an FGFR1-specific ZDHHC3 phosphorylation site, while Tyr295 and Tyr297 are specifically phosphorylated by Src kinase in cell-based and cell-free assays. Abrogation of tyrosine phosphorylation increased ZDHHC3 autopalmitoylation, enhanced interaction with NCAM, and upregulated NCAM palmitoylation. Expression of ZDHHC3 with tyrosine mutated in cultured hippocampal neurons promoted neurite outgrowth. Our findings for the first time highlight that FGFR- and Src-mediated tyrosine phosphorylation of ZDHHC3 modulates ZDHHC3 enzymatic activity and plays a role in neuronal morphogenesis. PMID:27247265

  13. Old Tyrosine Kinase Inhibitors and Newcomers in Gastrointestinal Cancer Treatment.

    PubMed

    Erika, Giordani; Federica, Zoratto; Martina, Strudel; Anselmo, Papa; Luigi, Rossi; Marina, Minozzi; Davide, Caruso; Eleonora, Zaccarelli; Monica, Verrico; Silverio, Tomao

    2016-01-01

    Gastrointestinal cancer treatment is based more on molecular biology that has provided increasing knowledge about cancer pathogenesis on which targeted therapy is being developed. Precisely, targeted therapy is defined as a "type of treatment that uses drugs, such as monoclonal antibodies or tyrosine kinase inhibitors, to identify and attack specific cancer cells". Nowadays, the United States Food and Drug Administration has approved many targeted therapies for gastrointestinal cancer treatment, as many are in various phases of development as well. In a previous review we discussed the main monoclonal antibodies used and studied in gastrointestinal cancer. In addition to monoclonal antibodies, tyrosine kinase inhibitors represent another class of targeted therapy and following the approval of imatinib for gastrointestinal stromal tumours, other tyrosine kinase inhibitors have been approved for gastrointestinal cancers treatment such as sunitinib, regoragenib, sorafenib and erlotinib. Moving forward, the purpose of this review is to focus on the efficacy data of main tyrosine kinase inhibitors commonly used in the personalized treatment of each gastrointestinal tumour and to provide a comprehensive overview about experimental targeted therapies ongoing in this setting. PMID:26278713

  14. 21 CFR 862.1730 - Free tyrosine test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Free tyrosine test system. 862.1730 Section 862.1730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... phenylketonuria (a disease that can cause brain damage). (b) Classification. Class I....

  15. 21 CFR 862.1730 - Free tyrosine test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Free tyrosine test system. 862.1730 Section 862.1730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... phenylketonuria (a disease that can cause brain damage). (b) Classification. Class I....

  16. 21 CFR 862.1730 - Free tyrosine test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Free tyrosine test system. 862.1730 Section 862.1730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... phenylketonuria (a disease that can cause brain damage). (b) Classification. Class I....

  17. 21 CFR 862.1730 - Free tyrosine test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Free tyrosine test system. 862.1730 Section 862.1730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... phenylketonuria (a disease that can cause brain damage). (b) Classification. Class I....

  18. 21 CFR 862.1730 - Free tyrosine test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Free tyrosine test system. 862.1730 Section 862.1730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... phenylketonuria (a disease that can cause brain damage). (b) Classification. Class I....

  19. The mitochondrial ATPase. Evidence for a single essential tyrosine residue.

    PubMed

    Ferguson, S J; Lloyd, W J; Lyons, M H; Radda, G K

    1975-05-01

    1. Evidence is presented which indicates that inactivation of the mitochondrial ATPase from bovine heart by the reagent 4-chloro-7-nitrobenzofurazan results from modification of one tyrosine residue per enzyme molecule. Activity can be restored by a variety of sulphydryl reagents. 2. In sodium dodecyl sulphate, the nitrogenzofurazan group on tyrosine is transfered to newly exposed sulphydryl groups on the enzyme. 3. The rate of transfer of the nitrobenzofurazan moiety from theenzyme to sulphydryl compounds is compared with that for transfer from the model compound N-acetyl-tyrosine-0(7-nitrobenzo-furazan) ethyl ester, the synthesis and properties of which are also described. 4. The ligands ATP and ADP exert a protective effect on the rate of reaction between the mitochondrial ATPase and 4-chloro-7-nitrobenzofurazan. The variation in rate of this reaction with change in pH has also been examined and a pKa of 9.5 estimated for the tyrosine residue. 5. The modification does not prevent substrate binding as judged by changes in the fluorescence of aurovertin, an antibiotic with specific affinity for mitochondiral ATPases. 6. When the ATPase activity of submitochondrial particles is inhibited by 4-chloro-7-nitrobenzo-furazan, there is a parallel decrease in the extent of the energy-linked fluorescence enhancement of 1-anilino-naphthalene-8-sulphonate induced by ATP hydrolysis. Both ATPase activity and the fluorescence enhancement are restored by sluphydryl reagents. PMID:238839

  20. Asymmetric Tyrosine Kinase Arrangements in Activation or Autophosphorylation of Receptor Tyrosine Kinases

    SciTech Connect

    J Bae; J Schlessinger

    2011-12-31

    Receptor tyrosine kinases (RTKs) play important roles in the control of many cellular processes including cell proliferation, cell adhesion, angiogenesis, and apoptosis. Ligand-induced dimerization of RTKs leads to autophosphorylation and activation of RTKs. Structural studies have shown that while isolated ectodomains of several RTKs form symmetric dimers the isolated cytoplasmic kinase domains of epidermal growth factor receptor (EGFR) and fibroblast growth factor receptor (FGFR) form asymmetric dimers during their activation. Binding of one kinase molecule of EGFR to a second kinase molecule asymmetrically leads to stimulation of kinase activity and enhanced autophosphorylation. Furthermore, the structures of the kinase domain of FGFR1 and FGFR2 reveal the formation of asymmetric interfaces in the processes of autophosphorylation at their specific phosphotyrosine (pY) sites. Disruption of asymmetric dimer interface of EGFR leads to reduction in enzymatic activity and drastic reduction of autophosphorylation of FGFRs in ligandstimulated live cells. These studies demonstrate that asymmetric dimer formation is as a common phenomenon critical for activation and autophosphorylation of RTKs.

  1. Effects of tyrosine-26 and tyrosine-64 nitration on the photoreactions of bacteriorhodopsin

    NASA Technical Reports Server (NTRS)

    Scherrer, P.; Stoeckenius, W.

    1985-01-01

    The photoreactions of nitrated bacteriorhodopsin (bR) are examined. Flash-induced difference spectra of bR, bR with aminotyrosine in position 26 (bR-N26R) and bR with aminotyrosine in position 64 are analyzed. It is observed that changes in the actinic wavelength (from 520 to 500 or 580 nm) have no affect on the shape of the spectra and the formation and decay kinetics of the O and M intermediates. Nitration of tyrosine-64 decreases the chromophore absorbance, shifts the absorption maximum to 535 nm, and affects photocycle kinetics independent of the pK of its phenolic group. Light-dark adaptation spectra for bR are studied. The kinetics of the M and O intermediates in bR with nitrotyrosine in position 64 (bR-N64) and bR with aminotyrosine in position 64 and bR with nitrotyrosine in position 26 and bR-N26R are described and compared to bR; the pH dependence and M and O decay rates are considered. The deprotonation of bR-N64 during the photoreaction cycle and the effects of nitration on the activity of proton pumping are investigated.

  2. Redundant and selective roles for erythropoietin receptor tyrosines in erythropoiesis in vivo.

    PubMed

    Longmore, G D; You, Y; Molden, J; Liu, K D; Mikami, A; Lai, S Y; Pharr, P; Goldsmith, M A

    1998-02-01

    Cytokine receptors have been shown in cell culture systems to use phosphotyrosine residues as docking sites for certain signal transduction intermediates. Studies using various cellular backgrounds have yielded conflicting information about the importance of such residues. The present studies were undertaken to determine whether or not tyrosine residues within the erythropoietin receptor (EPOR) are essential for biologic activity during hematopoiesis in vivo. A variant of the EPOR was constructed that contains both a substitution (R129C) causing constitutive receptor activation as well as replacement of all eight cytoplasmic tyrosines by phenylalanines (cEPORYF). A comparison between animals exposed to recombinant retroviruses expressing cEPOR and cEPORYF showed that efficient red blood cell (RBC) development in vivo is dependent on the pressence of tyrosine residues in the cytoplasmic domain of the EPOR. In addition, an inefficient EPOR tyrosine independent pathway supporting RBC development was detected. Tyrosine add-back mutants showed that multiple individual tyrosines have the capacity to restore full erythropoietic potential to the EPOR as determined in whole animals. The analysis of primary erythroid progenitors transduced with the various cEPOR tyrosine mutants and tyrosine add-backs showed that only tyrosine 343 (Y1) and tyrosine 479 (Y8) were capable of supporting immature burst-forming unit-erythroid progenitor development. Thus, this receptor is characterized by striking functional redundancy of tyrosines in a biologically relevant context. However, selective tyrosine residues may be uniquely important for early signals supporting erythroid development. PMID:9446647

  3. Inverse correlation between tyrosine phosphorylation and collagenase production in chondrocytes.

    PubMed Central

    Cruz, T F; Mills, G; Pritzker, K P; Kandel, R A

    1990-01-01

    Collagenase production by chondrocytes appears to play a major role in the development of osteoarthritis. Although the mechanisms regulating collagenase production by chondrocytes are not known, incubation of bovine chondrocytes in serum markedly decreases collagenase production. Since serum has been demonstrated to increase levels of phosphotyrosine (P-Tyr) in several cell types, we determined the effect of altering intracellular levels of P-Tyr on collagenase production. Both orthovanadate, a potent inhibitor of tyrosine phosphatases, and serum caused a marked increase in tyrosine phosphorylation. The increase in P-Tyr was associated with a decrease in the production of collagenase, suggesting that two processes may be linked. Orthovanadate caused an increase in P-Tyr in the absence of serum, suggesting that P-Tyr levels in resting chondrocytes are regulated through activity of both tyrosine kinases and phosphatases. Orthovanadate and serum induced a synergistic increase in P-Tyr levels, suggesting that serum functions through increasing kinase activity rather than decreasing phosphatase activity. In the absence of serum, concentrations of orthovanadate which maximally inhibited collagenase production primarily increased phosphorylation of a 36 kDa protein, suggesting that the phosphorylation of this protein may play a major role in regulating collagenase production. Orthovanadate had limited effects on chondrocyte proteoglycan synthesis, morphology or viability in the presence or absence of serum, suggesting that the decrease in collagenase production was not due to non-specific inhibition of protein synthesis or cellular toxicity. Inhibition of tyrosine phosphatases by orthovanadate or activation of tyrosine kinases by addition of serum correlated with the inhibition of collagenase production. Images Fig. 1. Fig. 2. PMID:1697163

  4. Integrin Ligation Results in Nephrin Tyrosine Phosphorylation In Vitro

    PubMed Central

    Verma, Rakesh; Venkatareddy, Madhusudan; Kalinowski, Anne; Patel, Sanjeevkumar R.; Garg, Puneet

    2016-01-01

    Nephrin is expressed at the basolateral aspect of podocytes and is an important signaling protein at the glomerular slit diaphragm. In vitro studies have demonstrated that Nephrin phosphorylation-dependent signaling is able to assemble a protein complex that is able to polymerize actin. However, proximal signaling events that result in nephrin tyrosine phosphorylation are not well understood. Nephrin deletion in mice and human nephrin mutations result in developmental failure of the podocyte intercellular junction resutling in proteinuria. This has been presumed to be due to a failure to respond to an external polarized cue in the absence of nephrin or a failure to transduce an outside-in signal in patients with nephrin mutations. The nephrin extracellular domain binds to itself or neph1 across the foot process intercellular junction. Nephrin is tyrosine phosphorylation-silent in healthy glomeruli when presumably the nephrin extracellular domain is in an engaged state. These observations raise the possibility of an alternate proximal signaling mechanism that might be responsible for nephrin tyrosine phosphorylation. Here we present data showing that integrin engagement at the basal aspect of cultured podocytes results in nephrin tyrosine phosphorylation. This is abrogated by incubating podocytes with an antibody that prevents integrin β1 ligation and activation in response to binding to extracellular matrix. Furthermore, nephrin tyrosine phosphorylation was observed in podocytes expressing a membrane-targeted nephrin construct that lacks the extracellular domain. We propose, integrin-activation based signaling might be responsible for nephrin phosphorylation rather than engagment of the nephrin extracellular domain by a ligand. PMID:26848974

  5. Helicobacter pylori isolated from Iranian drinking water: vacA, cagA, iceA, oipA and babA2 genotype status and antimicrobial resistance properties.

    PubMed

    Ranjbar, Reza; Khamesipour, Faham; Jonaidi-Jafari, Nematollah; Rahimi, Ebrahim

    2016-05-01

    Despite the clinical importance of Helicobacter pylori in human gastric disorders, its exact route of transmission is still uncertain. Based on the contentious hypothesis and findings of previous investigations, water may play an important role in the transmission of H. pylori to humans. This study was carried out to investigate the vacA, cagA, oipA, iceA and babA2 genotype status and antimicrobial resistance properties of H. pylori strains isolated from the drinking water samples of four major provinces in Iran. A total of 400 drinking water samples were cultured and tested. H. pylori-positive strains were analyzed for the presence of various genotypes and antimicrobial resistance. Twelve of 400 (3%) water samples were positive for H. pylori. Samples from Isfahan province had the highest, while those from Shiraz had the lowest prevalence of H. pylori. The seasonal distribution was also determined, with the highest prevalence of bacteria in the summer season (7.36%). H. pylori strains harbored the highest levels of resistance against ampicillin (100%), erythromycin (75%), clarithromycin (75%), and trimethoprim (58.3%). The most commonly detected genotypes were vacAs1a (83.3%), vacAm1a (66.6%), vacAs2 (50%) and cagA (50%). The presence of similar genotypes in the H. pylori strains of drinking water and those of human clinical samples suggest that contaminated water maybe the sources of bacteria. Spiramycin and furazolidone are suggested for the treatment of cases of H. pylori infection. PMID:27419049

  6. Effects of cytotoxin-associated gene A (CagA) positive Helicobacter pylori infection on anti-platelet glycoprotein antibody producing B cells in patients with primary idiopathic thrombocytopenic purpura (ITP)

    PubMed Central

    Cheng, Yuan-Shan; Kuang, Li-Ping; Zhuang, Chun-Lan; Jiang, Jia-Dian; Shi, Man

    2015-01-01

    Objective: To explore the effects of cytotoxin-associated gene A (CagA) positive Helicobacter pylori (H. pylori or HP) infection on circulating B cells producing specific platelet glycoprotein antibodies and the association between therapeutic outcomes in primary idiopathic thrombocytopenic purpura (ITP) patients. Methods: A total of 76 newly diagnosed primary ITP patients were included in the study which was conducted at the first affiliated hospital of Shantou University Medical college, in Shantou city China, between January 2013 and January 2014. These patients were tested for H. pylori infection by 13C urea breath test and for anti-CagA antibody in H. pylori positive cases by enzyme-linked immunosorbent assay (ELISA) method. Anti-GPIb and anti-GPIIb/IIIa antibody-producing B cells were measured using an enzyme-linked immunospot (ELISPOT) assay in all ITP patients and 30 controls. Anti-nuclear antibody (ANA) was also detected in ITP patients. Results: The numbers of anti-GPIIb/IIIa antibody-producing B cells in HP+CagA+ patients were higher than in HP+CagA- or HP- patients. However, anti-GPIb antibody-producing B cells were found higher in HP- patients. Analysis of treatment outcomes showed that a therapeutic response was more likely in patients presenting anti-GPIIb/IIIa B cells, but the poor response was found to be associated with anti-GPIb B cells and ANA presences. Conclusion: CagA antigen of H. pylori may induce anti-GPIIb/IIIa antibodies production by a molecular mimicry mechanism. Anti-GPIIb/IIIa and anti-GPIb antibody producing B Cells detection is useful for predicting treatment effects of primary ITP. PMID:25878627

  7. Co-expression of protein tyrosine kinases EGFR-2 and PDGFRβ with protein tyrosine phosphatase 1B in Pichia pastoris.

    PubMed

    Tu, Pham Ngoc; Wang, Yamin; Cai, Menghao; Zhou, Xiangshan; Zhang, Yuanxing

    2014-02-28

    The regulation of protein tyrosine phosphorylation is mediated by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) and is essential for cellular homeostasis. Coexpression of PTKs with PTPs in Pichia pastoris was used to facilitate the expression of active PTKs by neutralizing their apparent toxicity to cells. In this study, the gene encoding phosphatase PTP1B with or without a blue fluorescent protein or peroxisomal targeting signal 1 was cloned into the expression vector pAG32 to produce four vectors. These vectors were subsequently transformed into P. pastoris GS115. The tyrosine kinases EGFR-2 and PDGFRβ were expressed from vector pPIC3.5K and were fused with a His-tag and green fluorescent protein at the N-terminus. The two plasmids were transformed into P. pastoris with or without PTP1B, resulting in 10 strains. The EGFR-2 and PDGFRβ fusion proteins were purified by Ni(2+) affinity chromatography. In the recombinant P. pastoris, the PTKs co-expressed with PTP1B exhibited higher kinase catalytic activity than did those expressing the PTKs alone. The highest activities were achieved by targeting the PTKs and PTP1B into peroxisomes. Therefore, the EGFR-2 and PDGFRβ fusion proteins expressed in P. pastoris may be attractive drug screening targets for anticancer therapeutics. PMID:24248091

  8. Tyrosine Administration Decreases Vulnerability to Ventricular Fibrillation in the Normal Canine Heart

    NASA Astrophysics Data System (ADS)

    Scott, Neal A.; Desilva, Regis A.; Lown, Bernard; Wurtman, Richard J.

    1981-02-01

    Intravenous infusion of tyrosine (1, 2, or 4 milligrams per kilogram) for 20 to 30 minutes caused dose-dependent increases in the ventricular fibrillation threshold in normal dogs. Administration of valine, a neutral amino acid that competes with tyrosine for uptake at the blood-brain barrier, in a dose equimolar to the most effective dose of tyrosine, slightly decreased the ventricular fibrillation threshold when given alone and significantly blocked elevation of the ventricular fibrillation threshold after tyrosine infusion. Hence, tyrosine, presumably acting in the central nervous system, can protect against certain ventricular arrhythmias.

  9. Subcutaneous L-tyrosine elicits cutaneous analgesia in response to local skin pinprick in rats.

    PubMed

    Hung, Ching-Hsia; Chiu, Chong-Chi; Liu, Kuo-Sheng; Chen, Yu-Wen; Wang, Jhi-Joung

    2015-10-15

    The purpose of the study was to estimate the ability of L-tyrosine to induce cutaneous analgesia and to investigate the interaction between L-tyrosine and the local anesthetic lidocaine. After subcutaneously injecting the rats with L-tyrosine and lidocaine in a dose-dependent manner, cutaneous analgesia (by blocking the cutaneous trunci muscle reflex-CTMR) was evaluated in response to the local pinprick. The drug-drug interaction was analyzed by using an isobolographic method. We showed that both L-tyrosine and lidocaine produced dose-dependent cutaneous analgesia. On the 50% effective dose (ED50) basis, the rank of drug potency was lidocaine (5.09 [4.88-5.38] μmol)>L-tyrosine (39.1 [36.5-41.8] μmol) (P<0.05). At the equipotent doses (ED25, ED50, and ED75), the duration of cutaneous analgesia caused by L-tyrosine lasted longer than that caused by lidocaine (P<0.01). Lidocaine co-administered with L-tyrosine exhibited an additive effect on infiltrative cutaneous analgesia. Our pre-clinical study demonstrated that L-tyrosine elicits the local/cutaneous analgesia, and the interaction between L-tyrosine and lidocaine is additive. L-tyrosine has a lower potency but much greater duration of cutaneous analgesia than lidocaine. Adding L-tyrosine to lidocaine preparations showed greater duration of cutaneous analgesia compared with lidocaine alone. PMID:26376025

  10. Stabilization and purification of tyrosine aminotransferase from rat liver.

    PubMed

    Hargrove, J L

    1990-01-01

    Purification of unmodified tyrosine aminotransferase from rat liver requires that the activity of cathepsin T be minimized, and that losses of enzyme due to dilution or oxidation by prevented. The enzyme was stabilized by pyridoxal 5'-phosphate, dithiothreitol, and potassium phosphate, but was destabilized by L-tyrosine or L-glutamate. A rapid, efficient method for purification of this enzyme included the following steps: twenty-fold induction with a high-casein diet plus dexamethasone phosphate administered in the drinking water; a heat step (65 degrees C) followed by precipitation from 0.20 M sucrose at pH 5.0; and small-scale chromatography on DEAE-cellulose, hydroxyapatite and CM-Sephadex C50 at pH 6.0. These steps yielded more than 10 mg of native enzyme from 35 rats, with a recovery of 68% of the initial activity. PMID:1973296

  11. Bone sialoprotein II synthesized by cultured osteoblasts contains tyrosine sulfate

    SciTech Connect

    Ecarot-Charrier, B.; Bouchard, F.; Delloye, C. )

    1989-11-25

    Isolated mouse osteoblasts that retain their osteogenic activity in culture were incubated with (35S) sulfate. Two radiolabeled proteins, in addition to proteoglycans, were extracted from the calcified matrix of osteoblast cultures. All the sulfate label in both proteins was in the form of tyrosine sulfate as assessed by amino acid analysis and thin layer chromatography following alkaline hydrolysis. The elution behavior on DEAE-Sephacel of the major sulfated protein and the apparent Mr on sodium dodecyl sulfate gels were characteristic of bone sialoprotein II extracted from rat. This protein was shown to cross-react with an antiserum raised against bovine bone sialoprotein II, indicating that bone sialoprotein II synthesized by cultured mouse osteoblasts is a tyrosine-sulfated protein. The minor sulfated protein was tentatively identified as bone sialoprotein I or osteopontin based on its elution properties on DEAE-Sephacel and anomalous behavior on sodium dodecyl sulfate gels similar to those reported for rat bone sialoprotein I.

  12. Targeting Angiogenesis in Colorectal Cancer: Tyrosine Kinase Inhibitors.

    PubMed

    Kircher, Sheetal Mehta; Nimeiri, Halla S; Benson, Al B

    2016-01-01

    Colorectal cancer is commonly diagnosed throughout the world, and treatment options have greatly expanded over the last 2 decades. Targeting angiogenesis has been a major focus of study in a variety of malignancy types. Targeting angiogenesis has been achieved by several mechanisms in colorectal cancer, including use of antiangiogenic small molecule tyrosine kinase inhibitors (TKIs). There have been many attempts and failures to prove efficacy of TKIs in the treatment of colorectal cancer including sorafenib, sunitinib, vatalanib, and tivozanib. Regorafenib was the first TKI to demonstrate efficacy and is an orally active inhibitor of angiogenic (including the vascular endothelial growth factor receptors 1, 2, and 3), stromal, and oncogenic receptor tyrosine kinases. There are ongoing investigations of both regorafenib and ninetanib; however, there remains a critical need to better understand novel combinations with TKIs that could prove more efficacious than available options. PMID:27341596

  13. Tailoring Tyrosine Kinase Inhibitors to Fit the Lung Cancer Genome

    PubMed Central

    Looyenga, Brendan D; Cherni, Irene; MacKeigan, Jeffrey P; Weiss, Glen J

    2011-01-01

    Tyrosine kinase inhibitors (TKIs) have been in use as cancer therapeutics for nearly a decade, and their utility in targeting specific malignancies with defined genetic lesions has proven to be remarkably effective. Recent efforts to characterize the spectrum of genetic lesions found in non-small cell lung carcinoma (NSCLC) have provided important insights into the molecular basis of this disease and have also revealed a wide array of tyrosine kinases that might be effectively targeted for rationally designed therapies. The findings of these studies, however, also provide a cautionary tale about the limitations of single-agent therapies, which fail to account for the genetic heterogeneity and pathway redundancy that characterize advanced NSCLC. Emergence of drug resistance mechanisms to specific TKIs, such as gefitinib and erlotinib, suggests that more sophisticated chemotherapeutic paradigms that target multiple pathways at the same time will be required to effectively treat this disease. PMID:21461169

  14. The role of nitisinone in tyrosine pathway disorders.

    PubMed

    Lock, Edward; Ranganath, Lakshminarayan R; Timmis, Oliver

    2014-11-01

    Nitisinone 2-(2-nitro-4-trifluoromethylbenzoyl)cyclohexane-1,3-dione (NTBC), an effective herbicide, is the licensed treatment for the human condition, hereditary tyrosinaemia type 1 (HT-1). Its mode of action interrupts tyrosine metabolism through inhibition of 4-hydroxyphenylpyruvate dioxygenase (HPPD). Nitisinone is a remarkable safe drug to use with few side effects reported. Therefore, we propose that it should be investigated as a potential treatment for other disorders of tyrosine metabolism. These include alkaptonuria (AKU), a rare disease resulting is severe, early-onset osteoarthritis. We present a case study from the disease, and attempts to use the drug both off-label and in clinical research through the DevelopAKUre consortium. PMID:25266991

  15. Oxidation of Tyrosine-Phosphopeptides by Titanium Dioxide Photocatalysis.

    PubMed

    Ruokolainen, Miina; Ollikainen, Elisa; Sikanen, Tiina; Kotiaho, Tapio; Kostiainen, Risto

    2016-06-22

    Protein phosphorylation has a key role in cell regulation. Oxidation of proteins, in turn, is related to many diseases and to aging, but the effects of phosphorylation on the oxidation of proteins and peptides have been rarely studied. The aim of this study was to examine the mechanistic effect of phosphorylation on peptide oxidation induced by titanium dioxide photocatalysis. The effect of phosphorylation was compared between nonphosphorylated and tyrosine phosphorylated peptides using electrospray tandem mass spectrometry. We observed that tyrosine was the most preferentially oxidized amino acid, but the oxidation reaction was significantly inhibited by its phosphorylation. The study also shows that titanium dioxide photocatalysis provides a fast and easy method to study oxidation reactions of biomolecules, such as peptides. PMID:27268440

  16. Tyrosine phosphorylation of RAS by ABL allosterically enhances effector binding

    PubMed Central

    Ting, Pamela Y.; Johnson, Christian W.; Fang, Cong; Cao, Xiaoqing; Graeber, Thomas G.; Mattos, Carla; Colicelli, John

    2015-01-01

    RAS proteins are signal transduction gatekeepers that mediate cell growth, survival, and differentiation through interactions with multiple effector proteins. The RAS effector RAS- and RAB-interacting protein 1 (RIN1) activates its own downstream effectors, the small GTPase RAB5 and the tyrosine kinase Abelson tyrosine-protein kinase (ABL), to modulate endocytosis and cytoskeleton remodeling. To identify ABL substrates downstream of RAS-to-RIN1 signaling, we examined human HEK293T cells overexpressing components of this pathway. Proteomic analysis revealed several novel phosphotyrosine peptides, including Harvey rat sarcoma oncogene (HRAS)-pTyr137. Here we report that ABL phosphorylates tyrosine 137 of H-, K-, and NRAS. Increased RIN1 levels enhanced HRAS-Tyr137 phosphorylation by nearly 5-fold, suggesting that RAS-stimulated RIN1 can drive ABL-mediated RAS modification in a feedback circuit. Tyr137 is well conserved among RAS orthologs and is part of a transprotein H-bond network. Crystal structures of HRASY137F and HRASY137E revealed conformation changes radiating from the mutated residue. Although consistent with Tyr137 participation in allosteric control of HRAS function, the mutations did not alter intrinsic GTP hydrolysis rates in vitro. HRAS-Tyr137 phosphorylation enhanced HRAS signaling capacity in cells, however, as reflected by a 4-fold increase in the association of phosphorylated HRASG12V with its effector protein RAF proto-oncogene serine/threonine protein kinase 1 (RAF1). These data suggest that RAS phosphorylation at Tyr137 allosterically alters protein conformation and effector binding, providing a mechanism for effector-initiated modulation of RAS signaling.—Ting, P. Y., Johnson, C. W., Fang, C., Cao, X., Graeber, T. G., Mattos, C., Colicelli, J. Tyrosine phosphorylation of RAS by ABL allosterically enhances effector binding. PMID:25999467

  17. Comparative Analysis of Mutant Tyrosine Kinase Chemical Rescue†

    PubMed Central

    Muratore, Kathryn E.; Seeliger, Markus A.; Wang, Zhihong; Fomina, Dina; Neiswinger, Johnathan; Havranek, James J.; Baker, David; Kuriyan, John; Cole, Philip A.

    2009-01-01

    Protein tyrosine kinases are critical cell signaling enzymes. These enzymes have a highly conserved Arg residue in their catalytic loop which is present two residues or four residues downstream from an absolutely conserved Asp catalytic base. Prior studies on protein tyrosine kinases Csk and Src revealed the potential for chemical rescue of catalytically-deficient mutant kinases (Arg to Ala mutations) by small diamino compounds, particularly imidazole, however the potency and efficiency of rescue was greater for Src. This current study further examines the structural and kinetic basis of rescue for mutant Src as compared to mutant Abl tyrosine kinase. An X-ray crystal structure of R388A Src revealed the surprising finding that a histidine residue of the N-terminus of a symmetry-related kinase inserts into the active site of the adjacent Src and mimics the hydrogen bonding pattern seen in wild-type protein tyrosine kinases. Abl R367A shows potent and efficient rescue more comparable to Src, even though its catalytic loop is more like that of Csk. Various enzyme redesigns of the active sites indicate that the degree and specificity of rescue is somewhat flexible, but the overall properties of the enzymes and rescue agents play an overarching role. The newly discovered rescue agent 2-aminoimidazole is about as efficient as imidazole in rescuing R/A Src and Abl. Rate vs. pH studies with these imidazole analogs suggest that the protonated imidazolium is the preferred form for chemical rescue, consistent with structural models. The efficient rescue seen with mutant Abl points to the potential of this approach to be used effectively to analyze Abl phosphorylation pathways in cells. PMID:19260709

  18. Novel Bruton’s tyrosine kinase inhibitors currently in development

    PubMed Central

    D’Cruz, Osmond J; Uckun, Fatih M

    2013-01-01

    Bruton’s tyrosine kinase (Btk) is intimately involved in multiple signal-transduction pathways regulating survival, activation, proliferation, and differentiation of B-lineage lymphoid cells. Btk is overexpressed and constitutively active in several B-lineage lymphoid malignancies. Btk has emerged as a new antiapoptotic molecular target for treatment of B-lineage leukemias and lymphomas. Preclinical and early clinical results indicate that Btk inhibitors may be useful in the treatment of leukemias and lymphomas. PMID:23493945

  19. Characterization of Phospho-(Tyrosine)-Mimetic Calmodulin Mutants

    PubMed Central

    Stateva, Silviya R.; Salas, Valentina; Benaim, Gustavo; Menéndez, Margarita; Solís, Dolores; Villalobo, Antonio

    2015-01-01

    Calmodulin (CaM) phosphorylated at different serine/threonine and tyrosine residues is known to exert differential regulatory effects on a variety of CaM-binding enzymes as compared to non-phosphorylated CaM. In this report we describe the preparation and characterization of a series of phospho-(Y)-mimetic CaM mutants in which either one or the two tyrosine residues present in CaM (Y99 and Y138) were substituted to aspartic acid or glutamic acid. It was expected that the negative charge of the respective carboxyl group of these amino acids mimics the negative charge of phosphate and reproduce the effects that distinct phospho-(Y)-CaM species may have on target proteins. We describe some physicochemical properties of these CaM mutants as compared to wild type CaM, after their expression in Escherichia coli and purification to homogeneity, including: i) changes in their electrophoretic mobility in the absence and presence of Ca2+; ii) ultraviolet (UV) light absorption spectra, far- and near-UV circular dichroism data; iii) thermal stability in the absence and presence of Ca2+; and iv) Tb3+-emitted fluorescence upon tyrosine excitation. We also describe some biochemical properties of these CaM mutants, such as their differential phosphorylation by the tyrosine kinase c-Src, and their action as compared to wild type CaM, on the activity of two CaM-dependent enzymes: cyclic nucleotide phosphodiesterase 1 (PDE1) and endothelial nitric oxide synthase (eNOS) assayed in vitro. PMID:25830911

  20. Involvement of the Tyrosine Kinase Fer in Cell Adhesion

    PubMed Central

    Rosato, Roberto; Veltmaat, Jacqueline M.; Groffen, John; Heisterkamp, Nora

    1998-01-01

    The Fer protein belongs to the fes/fps family of nontransmembrane receptor tyrosine kinases. Lack of success in attempts to establish a permanent cell line overexpressing it at significant levels suggested a strong negative selection against too much Fer protein and pointed to a critical cellular function for Fer. Using a tetracycline-regulatable expression system, overexpression of Fer in embryonic fibroblasts was shown to evoke a massive rounding up, and the subsequent detachment of the cells from the substratum, which eventually led to cell death. Induction of Fer expression coincided with increased complex formation between Fer and the cadherin/src-associated substrate p120cas and elevated tyrosine phosphorylation of p120cas. β-Catenin also exhibited clearly increased phosphotyrosine levels, and Fer and β-catenin were found to be in complex. Significantly, although the levels of α-catenin, β-catenin, and E-cadherin were unaffected by Fer overexpression, decreased amounts of α-catenin and β-catenin were coimmunoprecipitated with E-cadherin, demonstrating a dissolution of adherens junction complexes. A concomitant decrease in levels of phosphotyrosine in the focal adhesion-associated protein p130 was also observed. Together, these results provide a mechanism for explaining the phenotype of cells overexpressing Fer and indicate that the Fer tyrosine kinase has a function in the regulation of cell-cell adhesion. PMID:9742093

  1. cap alpha. -Methyl-p-tyrosine shifts circadian temperature rhythms

    SciTech Connect

    Cahill, A.L.; Ehret, C.F.

    1982-09-01

    ..cap alpha..-Methyl-p-tyrosine shifts the acrophase (time of highest temperature) of the circadian temperature rhythm of the rat to earlier or later times of day depending on the phase of the cicadian cycle at which the drug is administered. When ..cap alpha..-methyl-p-tyrosine methyl ester HCl is injected intraperitoneally at a dose of 100 mg/kg late in the projected 8-h light phase, the acrophase of the intraperitoneal temperature rhythm is delayed by up to 3 h.However, when the same dose of drug is given 9-10 h into the projected 16-h dark phase of the daily cycle, the acrophase of the temperature rhythm occurs about 2 h earlier than expected. The times of ..cap alpha..-methyl-p-tyrosine administration leading to maximal phase delays or advances are correlated with the times of minimal and maximal turnover of norepinephrine in the hypothalamus. These results suggest that changing rates of norepinephrine turnover in the hypothalamus may regulate the circadian temperature rhythm in rats. The results also emphasize the fact that the effects of drugs may vary as a function of the time of administration. This fact must be taken into account in pharmacologic testing.

  2. MERTK receptor tyrosine kinase is a therapeutic target in melanoma

    PubMed Central

    Schlegel, Jennifer; Sambade, Maria J.; Sather, Susan; Moschos, Stergios J.; Tan, Aik-Choon; Winges, Amanda; DeRyckere, Deborah; Carson, Craig C.; Trembath, Dimitri G.; Tentler, John J.; Eckhardt, S. Gail; Kuan, Pei-Fen; Hamilton, Ronald L.; Duncan, Lyn M.; Miller, C. Ryan; Nikolaishvili-Feinberg, Nana; Midkiff, Bentley R.; Liu, Jing; Zhang, Weihe; Yang, Chao; Wang, Xiaodong; Frye, Stephen V.; Earp, H. Shelton; Shields, Janiel M.; Graham, Douglas K.

    2013-01-01

    Metastatic melanoma is one of the most aggressive forms of cutaneous cancers. Although recent therapeutic advances have prolonged patient survival, the prognosis remains dismal. C-MER proto-oncogene tyrosine kinase (MERTK) is a receptor tyrosine kinase with oncogenic properties that is often overexpressed or activated in various malignancies. Using both protein immunohistochemistry and microarray analyses, we demonstrate that MERTK expression correlates with disease progression. MERTK expression was highest in metastatic melanomas, followed by primary melanomas, while the lowest expression was observed in nevi. Additionally, over half of melanoma cell lines overexpressed MERTK compared with normal human melanocytes; however, overexpression did not correlate with mutations in BRAF or RAS. Stimulation of melanoma cells with the MERTK ligand GAS6 resulted in the activation of several downstream signaling pathways including MAPK/ERK, PI3K/AKT, and JAK/STAT. MERTK inhibition via shRNA reduced MERTK-mediated downstream signaling, reduced colony formation by up to 59%, and diminished tumor volume by 60% in a human melanoma murine xenograft model. Treatment of melanoma cells with UNC1062, a novel MERTK-selective small-molecule tyrosine kinase inhibitor, reduced activation of MERTK-mediated downstream signaling, induced apoptosis in culture, reduced colony formation in soft agar, and inhibited invasion of melanoma cells. This work establishes MERTK as a therapeutic target in melanoma and provides a rationale for the continued development of MERTK-targeted therapies. PMID:23585477

  3. Direct Binding of GTP Cyclohydrolase and Tyrosine Hydroxylase

    PubMed Central

    Bowling, Kevin M.; Huang, Zhinong; Xu, Dong; Ferdousy, Faiza; Funderburk, Christopher D.; Karnik, Nirmala; Neckameyer, Wendi; O'Donnell, Janis M.

    2008-01-01

    The signaling functions of dopamine require a finely tuned regulatory network for rapid induction and suppression of output. A key target of regulation is the enzyme tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, which is activated by phosphorylation and modulated by the availability of its cofactor, tetrahydrobiopterin. The first enzyme in the cofactor synthesis pathway, GTP cyclohydrolase I, is activated by phosphorylation and inhibited by tetrahydrobiopterin. We previously reported that deficits in GTP cyclohydrolase activity in Drosophila heterozygous for mutant alleles of the gene encoding this enzyme led to tightly corresponding diminution of in vivo tyrosine hydroxylase activity that could not be rescued by exogenous cofactor. We also found that the two enzymes could be coimmunoprecipitated from tissue extracts and proposed functional interactions between the enzymes that extended beyond provision of cofactor by one pathway for another. Here, we confirm the physical association of these enzymes, identifying interacting regions in both, and we demonstrate that their association can be regulated by phosphorylation. The functional consequences of the interaction include an increase in GTP cyclohydrolase activity, with concomitant protection from end-product feedback inhibition. In vivo, this effect would in turn provide sufficient cofactor when demand for catecholamine synthesis is greatest. The activity of tyrosine hydroxylase is also increased by this interaction, in excess of the stimulation resulting from phosphorylation alone. Vmax is elevated, with no change in Km. These results demonstrate that these enzymes engage in mutual positive regulation. PMID:18801743

  4. Tyrosine phosphorylation of clathrin heavy chain under oxidative stress.

    PubMed

    Ihara, Yoshito; Yasuoka, Chie; Kageyama, Kan; Wada, Yoshinao; Kondo, Takahito

    2002-09-20

    In mouse pancreatic insulin-producing betaTC cells, oxidative stress due to H(2)O(2) causes tyrosine phosphorylation in various proteins. To identify proteins bearing phosphotyrosine under stress, the proteins were affinity purified using an anti-phosphotyrosine antibody-conjugated agarose column. A protein of 180kDa was identified as clathrin heavy chain (CHC) by electrophoresis and mass spectrometry. Immunoprecipitated CHC showed tyrosine phosphorylation upon H(2)O(2) treatment and the phosphorylation was suppressed by the Src kinase inhibitor, PP2. The phosphorylation status of CHC affected the intracellular localization of CHC and the clathrin-dependent endocytosis of transferrin under oxidative stress. In conclusion, CHC is a protein that is phosphorylated at tyrosine by H(2)O(2) and this phosphorylation status is implicated in the intracellular localization and functions of CHC under oxidative stress. The present study demonstrates that oxidative stress affects intracellular vesicular trafficking via the alteration of clathrin-dependent vesicular trafficking. PMID:12237126

  5. Eph-mediated tyrosine phosphorylation of citron kinase controls abscission.

    PubMed

    Jungas, Thomas; Perchey, Renaud T; Fawal, Mohamad; Callot, Caroline; Froment, Carine; Burlet-Schiltz, Odile; Besson, Arnaud; Davy, Alice

    2016-08-29

    Cytokinesis is the last step of cell division, culminating in the physical separation of daughter cells at the end of mitosis. Cytokinesis is a tightly regulated process that until recently was mostly viewed as a cell-autonomous event. Here, we investigated the role of Ephrin/Eph signaling, a well-known local cell-to-cell communication pathway, in cell division. We show that activation of Eph signaling in vitro leads to multinucleation and polyploidy, and we demonstrate that this is caused by alteration of the ultimate step of cytokinesis, abscission. Control of abscission requires Eph kinase activity, and Src and citron kinase (CitK) are downstream effectors in the Eph-induced signal transduction cascade. CitK is phosphorylated on tyrosines in neural progenitors in vivo, and Src kinase directly phosphorylates CitK. We have identified the specific tyrosine residues of CitK that are phosphorylated and show that tyrosine phosphorylation of CitK impairs cytokinesis. Finally, we show that, similar to CitK, Ephrin/Eph signaling controls neuronal ploidy in the developing neocortex. Our study indicates that CitK integrates intracellular and extracellular signals provided by the local environment to coordinate completion of cytokinesis. PMID:27551053

  6. Transformation of erythroid progenitors by viral and cellular tyrosine kinases.

    PubMed

    Beug, H; Schroeder, C; Wessely, O; Deiner, E; Meyer, S; Ischenko, I D; Hayman, M J

    1995-08-01

    Recently, two different normal avian erythroid progenitors were described. They differ in the receptor tyrosine kinases they express and in their ability to undergo self-renewal in culture. A common progenitor, termed stem cell factor (SCF) progenitor, expresses the receptor for avian SCF c-Kit, and undergoes short-term self-renewal when grown in the presence of avian SCF. A second progenitor, referred to as SCF/transforming growth factor-alpha progenitor, coexpresses c-Kit and the avian epidermal growth factor receptor homologue c-ErbB. These progenitors undergo sustained self-renewal when grown in the presence of transforming growth factor-alpha plus estradiol. The phenotype of the normal SCF/transforming growth factor-alpha progenitors closely corresponded to that of erythroid cells transformed by the tyrosine kinase oncogenes v-erbB or v-sea. This suggested that these cells, but not the SCF progenitors, would be the target cells for erythroblast transformation by these oncogenes. However, we demonstrate that both progenitor cells can be transformed by the v-erbB and v-sea oncogenes and also by the ligand-activated proto-oncogene product c-ErbB. We conclude that the target cell specificity of certain tyrosine kinase oncoproteins for erythroid cells is a reflection of their ability to provide signals for self-renewal that normally emanate from the endogenous c-ErbB protein. PMID:8547228

  7. Protein tyrosine phosphorylation during meiotic divisions of starfish oocytes

    SciTech Connect

    Peaucellier, G.; Andersen, A.C.; Kinsey, W.H. )

    1990-04-01

    We have used an antibody specific for phosphotyrosine to investigate protein phosphorylation on tyrosine during hormone-induced maturation of starfish oocytes. Analysis of immunoprecipitates from cortices of in vivo labeled Marthasterias glacialis oocytes revealed the presence of labeled phosphotyrosine-containing proteins only after hormone addition. Six major phosphoproteins of 195, 155, 100, 85, 45, and 35 kDa were detected. Total activity in immunoprecipitates increased until first polar body emission and was greatly reduced upon completion of meiosis but some proteins exhibited different kinetics. The labeling of the 155-kDa protein reached a maximum at germinal vesicle breakdown, while the 35-kDa appeared later and disappeared after polar body emission. Similar results were obtained with Asterias rubens oocytes. In vitro phosphorylation of cortices showed that tyrosine kinase activity is a major protein kinase activity in this fraction, the main endogenous substrate being a 68-kDa protein. The proteins phosphorylated on tyrosine in vitro were almost similar in extracts from oocytes treated or not with the hormone.

  8. eps15, a novel tyrosine kinase substrate, exhibits transforming activity.

    PubMed Central

    Fazioli, F; Minichiello, L; Matoskova, B; Wong, W T; Di Fiore, P P

    1993-01-01

    An expression cloning method which allows direct isolation of cDNAs encoding substrates for tyrosine kinases was applied to the study of the epidermal growth factor (EGF) receptor (EGFR) signaling pathway. A previously undescribed cDNA was isolated and designated eps15. The structural features of the predicted eps15 gene product allow its subdivision into three domains. Domain I contains signatures of a regulatory domain, including a candidate tyrosine phosphorylation site and EF-hand-type calcium-binding domains. Domain II presents the characteristic heptad repeats of coiled-coil rod-like proteins, and domain III displays a repeated aspartic acid-proline-phenylalanine motif similar to a consensus sequence of several methylases. Antibodies specific for the eps15 gene product recognize two proteins: a major species of 142 kDa and a minor component of 155 kDa, both of which are phosphorylated on tyrosine following EGFR activation by EGF in vivo. EGFR is also able to directly phosphorylate the eps15 product in vitro. In addition, phosphorylation of the eps15 gene product in vivo is relatively receptor specific, since the erbB-2 kinase phosphorylates it very inefficiently. Finally, overexpression of eps15 is sufficient to transform NIH 3T3 cells, thus suggesting that the eps15 gene product is involved in the regulation of mitogenic signals. Images PMID:7689153

  9. Protein Tyrosine Phosphatase φ Regulates Paxillin Tyrosine Phosphorylation and Mediates Colony-Stimulating Factor 1-Induced Morphological Changes in Macrophages

    PubMed Central

    Pixley, Fiona J.; Lee, Pierre S. W.; Condeelis, John S.; Stanley, E. Richard

    2001-01-01

    Removal of colony-stimulating factor 1 (CSF-1) causes macrophages to round up and to increase their expression of protein tyrosine phosphatase φ (PTPφ). This is accompanied by the disruption of focal complexes and the formation of ruffles. Here we have overexpressed wild-type (WT) PTPφ and a phosphatase-inactive (C325S) mutant in a macrophage cell line in the presence and absence of CSF-1. In the presence of CSF-1, WT PTPφ induces cell rounding and ruffle formation, while C325S PTPφ has no effect. In contrast, in CSF-1-starved cells, C325S PTPφ behaves in a dominant negative fashion, preventing rounding and ruffling. Furthermore, C325S PTPφ increases adhesion in cycling cells, while WT PTPφ enhances motility. In WT PTPφ-overexpressing cells, the focal contact protein paxillin is selectively depleted from focal complexes and specifically dephosphorylated on tyrosine. In contrast, paxillin is hyperphosphorylated in C325S PTPφ-expressing cells. Moreover, a complex containing PTPφ, paxillin, and a paxillin-associated tyrosine kinase, Pyk2, can be immunoprecipitated from macrophage lysates, and the catalytic domain of PTPφ selectively binds paxillin and Pyk2 in vitro. Although PTPφ and Pyk2 do not colocalize with paxillin in focal complexes, all three proteins are colocalized in dorsal ruffles. The results suggest that paxillin is dephosphorylated by PTPφ in dorsal ruffles, using Pyk2 as a bridging molecule, resulting in a reduced pool of tyrosine-phosphorylated paxillin available for incorporation into focal complexes, thereby mediating CSF-1 regulation of macrophage morphology, adhesion, and motility. PMID:11238916

  10. Effects of hemorrhagic hypotension on tyrosine concentrations in rat spinal cord and plasma

    NASA Technical Reports Server (NTRS)

    Conlay, L. A.; Maher, T. J.; Roberts, C. H.; Wurtman, R. J.

    1988-01-01

    Tyrosine is the precursor for catecholamine neurotransmitters. When catecholamine-containing neurons are physiologically active (as sympathoadrenal cells are in hypotension), tyrosine administration increases catecholamine synthesis and release. Since hypotension can alter plasma amino acid composition, the effects of an acute hypotensive insult on tyrosine concentrations in plasma and spinal cord were examined. Rats were cannulated and bled until the systolic blood pressure was 50 mmHg, or were kept normotensive for 1 h. Tyrosine and other large neutral amino acids (LNAA) known to compete with tyrosine for brain uptake were assayed in plasma and spinal cord. The rate at which intra-arterial (H-3)tyrosine disappeared from the plasma was also estimated in hemorrhaged and control rats. In plasma of hemorrhaged animals, both the tyrosine concentration and the tyrosine/LNAA ratio was elevated; moreover, the disappearance of (H-3)tyrosine was slowed. Tyrosine concentrations also increased in spinal cords of hemorrhaged-hypotensive rats when compared to normotensive controls. Changes in plasma amino acid patterns may thus influence spinal cord concentrations of amino acid precursors for neurotransmitters during the stress of hemorrhagic shock.

  11. Tyrosine Phosphorylation and Dephosphorylation in Burkholderia cenocepacia Affect Biofilm Formation, Growth under Nutritional Deprivation, and Pathogenicity

    PubMed Central

    Andrade, Angel; Tavares-Carreón, Faviola; Khodai-Kalaki, Maryam

    2015-01-01

    Burkholderia cenocepacia, a member of the B. cepacia complex (Bcc), is an opportunistic pathogen causing serious chronic infections in patients with cystic fibrosis. Tyrosine phosphorylation has emerged as an important posttranslational modification modulating the physiology and pathogenicity of Bcc bacteria. Here, we investigated the predicted bacterial tyrosine kinases BCAM1331 and BceF and the low-molecular-weight protein tyrosine phosphatases BCAM0208, BceD, and BCAL2200 of B. cenocepacia K56-2. We show that BCAM1331, BceF, BCAM0208, and BceD contribute to biofilm formation, while BCAL2200 is required for growth under nutrient-limited conditions. Multiple deletions of either tyrosine kinase or low-molecular-weight protein tyrosine phosphatase genes resulted in the attenuation of B. cenocepacia intramacrophage survival and reduced pathogenicity in the Galleria mellonella larval infection model. Experimental evidence indicates that BCAM1331 displays reduced tyrosine autophosphorylation activity compared to that of BceF. With the artificial substrate p-nitrophenyl phosphate, the phosphatase activities of the three low-molecular-weight protein tyrosine phosphatases demonstrated similar kinetic parameters. However, only BCAM0208 and BceD could dephosphorylate BceF. Further, BCAL2200 became tyrosine phosphorylated in vivo and catalyzed its autodephosphorylation. Together, our data suggest that despite having similar biochemical activities, low-molecular-weight protein tyrosine phosphatases and tyrosine kinases have both overlapping and specific roles in the physiology of B. cenocepacia. PMID:26590274

  12. Para-Tyrosine Supplementation Improves Insulin- and Liraglutide- Induced Vasorelaxation in Cholesterol-Fed Rats.

    PubMed

    Sélley, Eszter; Kun, Szilárd; Kürthy, Mária; Kovács, Tibor; Wittmann, István; Molnár, Gergo A

    2015-01-01

    Former data of our workgroup indicated that the accumulation of oxidized amino acids (meta- and ortho-tyrosine) due to oxidative stress may play an important role in the impaired insulininduced vasoactive properties of different arterial segments. There are evidences, that incorporation of these amino acids into cellular proteins leads to certain hormonal resistances, which might be restored by supplementation with the physiologic isoform, para-tyrosine. Rats in the control group were kept on a regular diet, rats in the cholesterol-fed group received high-fat diet, while the third group of rats received high-fat diet with para-tyrosine supplementation for 16 weeks. Plasma cholesterol level was significantly higher in the cholesterol-fed group, while the level of cholesterol in the cholesterol+para-tyrosine group did not differ significantly from that of the controls. Plasma level of insulin after glucose stimulation was decreased in the cholesterol-fed group, while that in the para-tyrosine supplemented group did not differ significantly from the controls. Vascular para-, meta- and ortho-tyrosine content was measured with HPLC. Elevated vascular meta-tyrosine/para-tyrosine ratio of cholesterol fed rats could be avoided by para-tyrosine supplementation. Vascular response of the thoracic aorta to insulin and liraglutide was assessed by a DMT multi-myograph. Cholesterol feeding resulted in vascular insulin-and liraglutide resistance, which was restored by para-tyrosine supplementation. Incorporation of the oxidative stress induced pathological tyrosine isoforms leads to vascular-hormone-resistances. We show that the physiological amino acid para-tyrosine is capable of restoring hypercholesterolemia-induced increased meta-tyrosine content of the vascular wall, thus attenuating functional vascular damage. PMID:26202368

  13. Intracellular Growth Is Dependent on Tyrosine Catabolism in the Dimorphic Fungal Pathogen Penicillium marneffei

    PubMed Central

    Boyce, Kylie J.; McLauchlan, Alisha; Schreider, Lena; Andrianopoulos, Alex

    2015-01-01

    During infection, pathogens must utilise the available nutrient sources in order to grow while simultaneously evading or tolerating the host’s defence systems. Amino acids are an important nutritional source for pathogenic fungi and can be assimilated from host proteins to provide both carbon and nitrogen. The hpdA gene of the dimorphic fungus Penicillium marneffei, which encodes an enzyme which catalyses the second step of tyrosine catabolism, was identified as up-regulated in pathogenic yeast cells. As well as enabling the fungus to acquire carbon and nitrogen, tyrosine is also a precursor in the formation of two types of protective melanin; DOPA melanin and pyomelanin. Chemical inhibition of HpdA in P. marneffei inhibits ex vivo yeast cell production suggesting that tyrosine is a key nutrient source during infectious growth. The genes required for tyrosine catabolism, including hpdA, are located in a gene cluster and the expression of these genes is induced in the presence of tyrosine. A gene (hmgR) encoding a Zn(II)2-Cys6 binuclear cluster transcription factor is present within the cluster and is required for tyrosine induced expression and repression in the presence of a preferred nitrogen source. AreA, the GATA-type transcription factor which regulates the global response to limiting nitrogen conditions negatively regulates expression of cluster genes in the absence of tyrosine and is required for nitrogen metabolite repression. Deletion of the tyrosine catabolic genes in the cluster affects growth on tyrosine as either a nitrogen or carbon source and affects pyomelanin, but not DOPA melanin, production. In contrast to other genes of the tyrosine catabolic cluster, deletion of hpdA results in no growth within macrophages. This suggests that the ability to catabolise tyrosine is not required for macrophage infection and that HpdA has an additional novel role to that of tyrosine catabolism and pyomelanin production during growth in host cells. PMID:25812137

  14. Effects of systemic L-tyrosine on dopamine release from rat corpus striatum and nucleus accumbens

    NASA Technical Reports Server (NTRS)

    During, Matthew J.; Acworth, Ian N.; Wurtman, Richard J.

    1988-01-01

    Intracerebral dialysis was used to monitor extracellular fluid from rat striatum and nucleus accumbens following the intraperitoneal administration of tyrosine. Dopamine concentrations in dialysates from both the striatum and the nucleus accumbens increased significantly in response to the tyrosine. The magnitude of the tyrosine effect was greater in the nucleus accumbens than in the striatum. Hence, mesolimbic dopaminergic neurons may be especially responsive to precursor availability.

  15. Genomic organization of Bruton`s tyrosine kinase

    SciTech Connect

    Rohrer, J.; Conley, M.E.

    1994-09-01

    Bruton`s tyrosine kinase (Btk), is a nonreceptor tyrosine kinase that has been identified as the defective gene in X-linked agammaglobulinemia (XLA). XLA patients have profound hypogammaglobulinemia and markedly reduced numbers of B cells while their T cell and phagocyte numbers remain normal. To determine the genomic organization of Btk, intron/exon borders were identified by sequencing cosmid DNA using cDNA primers. Nineteen exons spanning 37 kb of genomic DNA were identified. All the intron/exon splice junctions followed the GT/AG rule. The translational ATG start codon was in exon 2 which was 6 kb downstream of exon 1. Exon 19, 519 bp in length and 3.8 kb distal to exon 18, was the largest exon and included the 450 bp of the 3{prime} untranslated region. Exons 6 through 18 formed the largest cluster of exons with no intron being longer than 1550 bp. There was no apparent correlation between the exon boundaries of Btk and the functional domains of the protein or the exon boundaries of src, the nonreceptor protein tyrosine kinase prototype. The region 500 bp upstream of the presumed transcriptional start site was sequenced and found to have a G+C content of 52%. No TATA-type promoter elements in the -20 bp to -30 bp region were identified. However, at position -48 bp, a TGTGAA motif was found that bears some similarity to the TATA box. This sequence was preceded by a perfect inverted CCAAT box at position -90 bp. Three retinoic acid binding sites were also identified at positions -50 bp, -83 bp and -197 bp. Defining the genomic structure of Btk will permit us to identify regulatory elements in this gene and to identify mutations in genomic DNA of patients with XLA.

  16. Bosutinib: a novel second-generation tyrosine kinase inhibitor.

    PubMed

    Isfort, Susanne; Keller-v Amsberg, Gunhild; Schafhausen, Philippe; Koschmieder, Steffen; Brümmendorf, Tim H

    2014-01-01

    Bosutinib (SKI-606) is a 4-anilino-3-quinoline carbonitrile, which acts as a dual inhibitor of Src and ABL kinases. In addition, the BCR-ABL fusion gene product, a constitutively activated tyrosine kinase which is crucial for the development of chronic myeloid leukemia (CML), is highly sensitive to bosutinib. Interestingly, distinctly lower concentrations of bosutinib are required to ablate BCR-ABL phosphorylation when compared to the first-generation tyrosine kinase inhibitor imatinib (IM). Bosutinib is a potent inhibitor of CML cell proliferation in vitro and has demonstrated promising activity in CML patients resistant or intolerant to IM as well as in newly diagnosed patients with chronic phase CML (CML-CP). Remarkably, bosutinib has been found to be capable of overcoming the majority of IM-resistant BCR-ABL mutations. Bosutinib has the potency to induce deep and fast responses in second- and third-/fourth-line treatment, and as a consequence, the drug has recently been licensed for patients previously treated with one or more tyrosine kinase inhibitor(s) and for whom imatinib, nilotinib, and dasatinib are not considered appropriate treatment options. Due to its potency and differing toxicity profile, it promises to be a good therapeutic option for a defined cohort of patients. The most common side effects are gastrointestinal with most of the patients suffering from nausea, vomiting, or diarrhea. For the most part, these gastrointestinal symptoms occur early after treatment initiation, are manageable, and often self-limiting. Continuous monitoring of liver enzymes upon treatment initiation is necessary during bosutinib treatment. In addition to CML treatment, bosutinib has shown some efficacy in selected patients suffering from advanced-stage solid tumors. In conclusion, bosutinib is a promising novel small molecule inhibitor approved now for targeted therapy of CML and in clinical development for other malignancies. PMID:24756786

  17. Tyrosine Aminotransferase: Biochemical and Structural Properties and Molecular Dynamics Simulations

    SciTech Connect

    P Mehere; Q Han; J Lemkul; C Vavricka; H Robinson; D Bevan; J Li

    2011-12-31

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  18. Tyrosine aminotransferase: biochemical and structural properties and molecular dynamics simulations

    SciTech Connect

    Mehere, P.; Robinson, H.; Han, Q.; Lemkul, J. A.; Vavricka, C. J.; Bevan, D. R.; Li, J.

    2010-11-01

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  19. Involvement of the N-terminal unique domain of Chk tyrosine kinase in Chk-induced tyrosine phosphorylation in the nucleus

    SciTech Connect

    Nakayama, Yuji; Kawana, Akiko; Igarashi, Asae; Yamaguchi, Naoto . E-mail: nyama@p.chiba-u.ac.jp

    2006-07-15

    Chk tyrosine kinase phosphorylates Src-family kinases and suppresses their kinase activity. We recently showed that Chk localizes to the nucleus as well as the cytoplasm and inhibits cell proliferation. In this study, we explored the role of the N-terminal unique domain of Chk in nuclear localization and Chk-induced tyrosine phosphorylation in the nucleus. In situ binding experiments showed that the N-terminal domain of Chk was associated with the nucleus and the nuclear matrix. The presence of the N-terminal domain of Chk led to a fourfold increase in cell population exhibiting Chk-induced tyrosine phosphorylation in the nucleus. Expression of Chk but not kinase-deficient Chk induced tyrosine phosphorylation of a variety of proteins ranging from 23 kDa to {approx}200 kDa, especially in Triton X-100-insoluble fraction that included chromatin and the nuclear matrix. Intriguingly, in situ subnuclear fractionations revealed that Chk induced tyrosine phosphorylation of proteins that were associated with the nuclear matrix. These results suggest that various unidentified substrates of Chk, besides Src-family kinases, may be present in the nucleus. Thus, our findings indicate that the importance of the N-terminal domain to Chk-induced tyrosine phosphorylation in the nucleus, implicating that these nuclear tyrosine-phosphorylated proteins may contribute to inhibition of cell proliferation.

  20. Monitoring Conformational Changes in the Receptor Tyrosine Kinase EGFR.

    PubMed

    Becker, Christian; Öcal, Sinan; Nguyen, Hoang D; Phan, Trang; Keul, Marina; Simard, Jeffrey R; Rauh, Daniel

    2016-06-01

    The receptor tyrosine kinase EGFR is regulated by complex conformational changes, and this conformational control is disturbed in certain types of cancer. Many ligands are known to bind EGFR in its active conformation, thereby preventing ATP from binding. Only a few ligands are known to stabilize EGFR in its inactive conformation, thus providing novel strategies for perturbing EGFR activity. We report a direct binding assay that enables the identification of novel ligands that bind to and stabilize the inactive conformation of EGFR. PMID:26991964

  1. Tyrosine kinase receptors as molecular targets In pheochromocytomas and paragangliomas

    PubMed Central

    Cassol, Clarissa A.; Winer, Daniel; Liu, Wei; Guo, Miao; Ezzat, Shereen; Asa, Sylvia L.

    2016-01-01

    Pheochromocytomas and paragangliomas are neuroendocrine tumors shown to be responsive to multi-targeted tyrosine kinase inhibitor treatment. Despite growing knowledge regarding their genetic basis, the ability to predict behavior in these tumors remains challenging. There is also limited knowledge of their tyrosine kinase receptor expression and whether the clinical response observed to the tyrosine kinase inhibitor Sunitinib relates only to its anti-angiogenic properties or also due to a direct effect on tumor cells. To answer these questions, an in vitro model of sunitinib treatment of a pheochromocytoma cell line was created. Sunitinib targets (VEGFRs, PDGFRs, C-KIT), FGFRs and cell cycle regulatory proteins were investigated in human tissue microarrays. SDHB immunohistochemistry was used as a surrogate marker for the presence of succinate dehydrogenase mutations. The FGFR4 G388R SNP was also investigated. Sunitinib treatment in vitro decreases cell proliferation mainly by targeting cell cycle, DNA metabolism, and cell organization genes. FGFR1, -2 and -4, VEGFR2, PDGFRα and p16 were overexpressed in primary human pheochromocytomas and paragangliomas. Discordant results were observed for VEGFR1, p27 and p21 (overexpressed in paragangliomas but underexpressed in pheochromoctyomas); PDGFRβ, Rb and Cyclin D1 (overexpressed in paragangliomas only) and FGFR3 (overexpressed in pheochromocytomas and underexpressed in paragangliomas). Low expression of C-KIT, p53, Aurora Kinase A and B was observed. Nuclear FGFR2 expression was associated with increased risk of metastasis (odds ratio [OR]=7.61; p=0.008), as was membranous PDGFRα (OR= 13.71, p=0.015), membranous VEGFR1 (OR=8.01; p=0.037), nuclear MIB1 (OR=1.26, p=0.008) and cytoplasmic p27 (OR=1.037, p=0.030). FGFR3, VEGFR2 and C-KIT levels were associated with decreased risk of metastasis. We provide new insights into the mechanistic actions of sunitinib in pheochromoctyomas and paragangliomas and support current

  2. Gα13 Stimulates the Tyrosine Phosphorylation of Ric-8A

    PubMed Central

    Yan, Mingda; Ha, Ji Hee

    2015-01-01

    The G12 family of heterotrimeric G proteins is defined by their α-subunits, Gα12 and Gα13. These α-subunits regulate cellular homeostasis, cell migration, and oncogenesis in a context-specific manner primarily through their interactions with distinct proteins partners that include diverse effector molecules and scaffold proteins. With a focus on identifying any other novel regulatory protein(s) that can directly interact with Gα13, we subjected Gα13 to tandem affinity purification-coupled mass spectrometric analysis. Our results from such analysis indicate that Gα13 potently interacts with mammalian Ric-8A. Our mass spectrometric analysis data also indicates that Ric-8A, which was tandem affinity purified along with Gα13, is phosphorylated at Ser-436, Thr-441, Thr-443 and Tyr-435. Using a serial deletion approach, we have defined that the C-terminus of Gα13 containing the guanine-ring interaction site is essential and sufficient for its interaction with Ric-8A. Evaluation of Gα13-specific signaling pathways in SKOV3 or HeyA8 ovarian cancer cell lines indicate that Ric-8A potentiates Gα13-mediated activation of RhoA, Cdc42, and the downstream p38MAPK. We also establish that the tyrosine phosphorylation of Ric-8A, thus far unidentified, is potently stimulated by Gα13. Our results also indicate that the stimulation of tyrosine-phosphorylation of Ric-8A by Gα13 is partially sensitive to inhibitors of Src-family of kinases, namely PP2 and SI. Furthermore, we demonstrate that Gα13 promotes the translocation of Ric-8A to plasma membrane and this translocation is attenuated by the Src-inhibitors, SI1 and PP2. Thus, our results demonstrate for the first time that Gα13 stimulates the tyrosine phosphorylation of Ric-8A and Gα13-mediated tyrosine-phosphorylation plays a critical role in the translocation of Ric-8A to plasma membrane. PMID:27096001

  3. Receptor tyrosine kinases: mechanisms of activation and signaling

    PubMed Central

    Hubbard, Stevan R.; Miller, W. Todd

    2008-01-01

    Receptor tyrosine kinases (RTKs) are essential components of signal transduction pathways that mediate cell-to-cell communication. These single-pass transmembrane receptors, which bind polypeptide ligands — mainly growth factors — play key roles in processes such as cellular growth, differentiation, metabolism and motility. Recent progress has been achieved towards an understanding of the precise (and varied) mechanisms by which RTKs are activated by ligand binding and by which signals are propagated from the activated receptors to downstream targets in the cell. PMID:17306972

  4. Organization and evolution of the rat tyrosine hydroxylase gene

    SciTech Connect

    Brown, E.R.; Coker, G.T. III; O'Malley, K.L.

    1987-08-11

    This report describes the organization of the rat tyrosine hydroxylase (TH) gene and compares its structure with the human phenylalanine hydroxylase gene. Both genes are single copy and contain 13 exons separated by 12 introns. Remarkably, the positions of 10 out 12 intron/exon boundaries are identical for the two genes. These results support the idea that these hydroxylases genes are members of a gene family which has a common evolutionary origin. The authors predict that this ancestral gene would have encoded exons similar to those of TH prior to evolutionary drift to other members of this gene family.

  5. Phenylalanine and tyrosine levels in newborn screening blood samples.

    PubMed Central

    Morris, A F; Holton, J B; Burman, D; Colley, J R

    1983-01-01

    A previously described difference in newborn blood phenylalanine concentrations between those living in urban and non-urban areas in the south west of England has been confirmed and shown to be independent of the type of feed. Several factors including the place of abode, type of feed, birthweight, and the accuracy of the test have been found to affect the measured, phenylalanine concentration in the newborn screening blood spot, and the importance of these results to screening practice is considered. Blood tyrosine also varied with the above factors, but severe, neonatal tyrosinaemia was shown to be a rare problem. PMID:6847230

  6. Spectral analysis of interaction between carotenoid and tyrosine in ethanol-water solution

    NASA Astrophysics Data System (ADS)

    Lu, Liping; Liu, Guiling; Ni, Xiaowu; Luo, Xiaosen

    2015-03-01

    In this study we have applied UV/vis absorption spectroscopy, steady state fluorescence, Raman spectra to investigate the effects of tyrosine on the aggregates of lutein and β-carotene. Absorption spectra analysis revealed that hydroxyl and amino groups of tyrosine can affect the aggregate of lutein to a certain extent. In Raman spectra the effect of tyrosine on the length of conjugation was observed in the case of lutein molecule. In addition tyrosine also had a great effect on the excited electronic state of carotenoids, and internal energy transferring among aggregates.

  7. Cross talk of tyrosine kinases with the DNA damage signaling pathways.

    PubMed

    Mahajan, Kiran; Mahajan, Nupam P

    2015-12-15

    Tyrosine kinases respond to extracellular and intracellular cues by activating specific cellular signaling cascades to regulate cell cycle, growth, proliferation, differentiation and survival. Likewise, DNA damage response proteins (DDR) activated by DNA lesions or chromatin alterations recruit the DNA repair and cell cycle checkpoint machinery to restore genome integrity and cellular homeostasis. Several new examples have been uncovered in recent studies which reveal novel epigenetic and non-epigenetic mechanisms by which tyrosine kinases interact with DDR proteins to dictate cell fate, i.e. survival or apoptosis, following DNA damage. These studies reveal the ability of tyrosine kinases to directly regulate the activity of DNA repair and cell cycle check point proteins by tyrosine phosphorylation. In addition, tyrosine kinases epigenetically regulate DNA damage signaling pathways by modifying the core histones as well as chromatin modifiers at critical tyrosine residues. Thus, deregulated tyrosine kinase driven epigenomic alterations have profound implications in cancer, aging and genetic disorders. Consequently, targeting oncogenic tyrosine kinase induced epigenetic alterations has gained significant traction in overcoming cancer cell resistance to various therapies. This review discusses mechanisms by which tyrosine kinases interact with DDR pathways to regulate processes critical for maintaining genome integrity as well as clinical strategies for targeted cancer therapies. PMID:26546517

  8. Distinct tyrosine autophosphorylation sites negatively and positively modulate neu-mediated transformation.

    PubMed Central

    Dankort, D L; Wang, Z; Blackmore, V; Moran, M F; Muller, W J

    1997-01-01

    A number of cytoplasmic signaling molecules are thought to mediate mitogenic signaling from the activated Neu receptor tyrosine kinase through binding specific phosphotyrosine residues located within the intracellular portion of Neu/c-ErbB-2. An activated neu oncogene containing tyrosine-to-phenylalanine substitutions at each of the known autophosphorylation sites was generated and assessed for its specific transforming potential in Rat1 and NIH 3T3 fibroblasts. Mutation of these sites resulted in a dramatic impairment of the transforming potential of neu. To assess the role of these tyrosine phosphorylation sites in cellular transformation, the transforming potential of a series of mutants in which individual tyrosine residues were restored to this transformation-debilitated neu mutant was evaluated. Reversion of any one of four mutated sites to tyrosine residues restored wild-type transforming activity. While each of these transforming mutants displayed Ras-dependent signaling, the transforming activity of two of these mutants was correlated with their ability to bind either the GRB2 or SHC adapter molecules that couple receptor tyrosine kinases to the Ras signaling pathway. By contrast, restoration of a tyrosine residue located at position 1028 completely suppressed the basal transforming activity of this mutated neu molecule or other transforming neu molecules which possessed single tyrosine residues. These data argue that the transforming potential of activated neu is mediated both by positive and negative regulatory tyrosine phosphorylation sites. PMID:9271418

  9. Induction of protein tyrosine phosphorylation in macrophages incubated with tumor cells.

    PubMed

    Sodhi, A; Shrivastava, A; Kumar, R

    1995-03-01

    The cellular and molecular interaction between monocyte/macrophage and tumor cells leading to macrophage activation is not clearly understood. Since protein tyrosine phosphorylation appears to be a major intracellular signalling event, we checked whether the tumor cells alter tyrosine phosphorylation of proteins in macrophages. We found that both L929 and Yac-1 tumor cells induced increased tyrosine phosphorylation of several polypeptides in peritoneal as well as P388D-1 and IC-21 macrophages. Macrophages co-cultured with tumor cells also showed increased fluorescence with anti-phosphotyrosine-FITC antibody. These observations suggest that increased tyrosine phosphorylation plays a role in tumor cell-induced activation of macrophages. PMID:7539664

  10. Cross talk of tyrosine kinases with the DNA damage signaling pathways

    PubMed Central

    Mahajan, Kiran; Mahajan, Nupam P.

    2015-01-01

    Tyrosine kinases respond to extracellular and intracellular cues by activating specific cellular signaling cascades to regulate cell cycle, growth, proliferation, differentiation and survival. Likewise, DNA damage response proteins (DDR) activated by DNA lesions or chromatin alterations recruit the DNA repair and cell cycle checkpoint machinery to restore genome integrity and cellular homeostasis. Several new examples have been uncovered in recent studies which reveal novel epigenetic and non-epigenetic mechanisms by which tyrosine kinases interact with DDR proteins to dictate cell fate, i.e. survival or apoptosis, following DNA damage. These studies reveal the ability of tyrosine kinases to directly regulate the activity of DNA repair and cell cycle check point proteins by tyrosine phosphorylation. In addition, tyrosine kinases epigenetically regulate DNA damage signaling pathways by modifying the core histones as well as chromatin modifiers at critical tyrosine residues. Thus, deregulated tyrosine kinase driven epigenomic alterations have profound implications in cancer, aging and genetic disorders. Consequently, targeting oncogenic tyrosine kinase induced epigenetic alterations has gained significant traction in overcoming cancer cell resistance to various therapies. This review discusses mechanisms by which tyrosine kinases interact with DDR pathways to regulate processes critical for maintaining genome integrity as well as clinical strategies for targeted cancer therapies. PMID:26546517

  11. Tyrosine motifs are required for prestin basolateral membrane targeting

    PubMed Central

    Zhang, Yifan; Moeini-Naghani, Iman; Bai, JunPing; Santos-Sacchi, Joseph; Navaratnam, Dhasakumar S.

    2015-01-01

    ABSTRACT Prestin is targeted to the lateral wall of outer hair cells (OHCs) where its electromotility is critical for cochlear amplification. Using MDCK cells as a model system for polarized epithelial sorting, we demonstrate that prestin uses tyrosine residues, in a YXXΦ motif, to target the basolateral surface. Both Y520 and Y667 are important for basolateral targeting of prestin. Mutation of these residues to glutamine or alanine resulted in retention within the Golgi and delayed egress from the Golgi in Y667Q. Basolateral targeting is restored upon mutation to phenylalanine suggesting the importance of a phenol ring in the tyrosine side chain. We also demonstrate that prestin targeting to the basolateral surface is dependent on AP1B (μ1B), and that prestin uses transferrin containing early endosomes in its passage from the Golgi to the basolateral plasma membrane. The presence of AP1B (μ1B) in OHCs, and parallels between prestin targeting to the basolateral surface of OHCs and polarized epithelial cells suggest that outer hair cells resemble polarized epithelia rather than neurons in this important phenotypic measure. PMID:25596279

  12. Zebrafish tyrosine hydroxylase 2 gene encodes tryptophan hydroxylase.

    PubMed

    Ren, Guiqi; Li, Song; Zhong, Hanbing; Lin, Shuo

    2013-08-01

    The primary pathological hallmark of Parkinson disease (PD) is the profound loss of dopaminergic neurons in the substantia nigra pars compacta. To facilitate the understanding of the underling mechanism of PD, several zebrafish PD models have been generated to recapitulate the characteristics of dopaminergic (DA) neuron loss. In zebrafish studies, tyrosine hydroxylase 1 (th1) has been frequently used as a molecular marker of DA neurons. However, th1 also labels norepinephrine and epinephrine neurons. Recently, a homologue of th1, named tyrosine hydroxylase 2 (th2), was identified based on the sequence homology and subsequently used as a novel marker of DA neurons. In this study, we present evidence that th2 co-localizes with serotonin in the ventral diencephalon and caudal hypothalamus in zebrafish embryos. In addition, knockdown of th2 reduces the level of serotonin in the corresponding th2-positive neurons. This phenotype can be rescued by both zebrafish th2 and mouse tryptophan hydroxylase 1 (Tph1) mRNA as well as by 5-hydroxytryptophan, the product of tryptophan hydroxylase. Moreover, the purified Th2 protein has tryptophan hydroxylase activity comparable with that of the mouse TPH1 protein in vitro. Based on these in vivo and in vitro results, we conclude that th2 is a gene encoding for tryptophan hydroxylase and should be used as a marker gene of serotonergic neurons. PMID:23754283

  13. Growth inhibition by tyrosine kinase inhibitors in mesothelioma cell lines.

    PubMed

    Nutt, Joyce E; O'Toole, Kieran; Gonzalez, David; Lunec, John

    2009-06-01

    Clinical outcome following chemotherapy for malignant pleural mesothelioma is poor and improvements are needed. This preclinical study investigates the effect of five tyrosine kinase inhibitors (PTK787, ZD6474, ZD1839, SU6668 and SU11248) on the growth of three mesothelioma cell lines (NCI H226, NCI H28 and MSTO 211H), the presence of growth factor receptors and inhibition of their downstream signalling pathways. GI50 values were determined: ZD6474 and SU11248, mainly VEGFR2 inhibitors, gave the lowest GI50 across all cell lines (3.5-6.9 microM) whereas ZD1839 gave a GI50 in this range only in H28 cells. All cell lines were positive for EGFR, but only H226 cells were positive for VEGFR2 by Western blotting. ZD6474 and ZD1839 inhibited EGF-induced phosphorylation of EGFR, AKT and ERK, whereas VEGF-induced phosphorylation of VEGFR2 was completely inhibited with 0.1 microM SU11248. VEGFR2 was detected in tumour samples by immunohistochemistry. VEGFR2 tyrosine kinase inhibitors warrant further investigation in mesothelioma. PMID:19318229

  14. Role of Receptor Tyrosine Kinase Signaling in Renal Fibrosis

    PubMed Central

    Liu, Feng; Zhuang, Shougang

    2016-01-01

    Renal fibrosis can be induced in different renal diseases, but ultimately progresses to end stage renal disease. Although the pathophysiologic process of renal fibrosis have not been fully elucidated, it is characterized by glomerulosclerosis and/or tubular interstitial fibrosis, and is believed to be caused by the proliferation of renal inherent cells, including glomerular epithelial cells, mesangial cells, and endothelial cells, along with defective kidney repair, renal interstitial fibroblasts activation, and extracellular matrix deposition. Receptor tyrosine kinases (RTKs) regulate a variety of cell physiological processes, including metabolism, growth, differentiation, and survival. Many studies from in vitro and animal models have provided evidence that RTKs play important roles in the pathogenic process of renal fibrosis. It is also showed that tyrosine kinases inhibitors (TKIs) have anti-fibrotic effects in basic research and clinical trials. In this review, we summarize the evidence for involvement of specific RTKs in renal fibrosis process and the employment of TKIs as a therapeutic approach for renal fibrosis. PMID:27331812

  15. Activity-based kinase profiling of approved tyrosine kinase inhibitors.

    PubMed

    Kitagawa, Daisuke; Yokota, Koichi; Gouda, Masaki; Narumi, Yugo; Ohmoto, Hiroshi; Nishiwaki, Eiji; Akita, Kensaku; Kirii, Yasuyuki

    2013-02-01

    The specificities of nine approved tyrosine kinase inhibitors (imatinib, dasatinib, nilotinib, gefitinib, erlotinib, lapatinib, sorafenib, sunitinib, and pazopanib) were determined by activity-based kinase profiling using a large panel of human recombinant active kinases. This panel consisted of 79 tyrosine kinases, 199 serine/threonine kinases, three lipid kinases, and 29 disease-relevant mutant kinases. Many potential targets of each inhibitor were identified by kinase profiling at the K(m) for ATP. In addition, profiling at a physiological ATP concentration (1 mm) was carried out, and the IC(50) values of the inhibitors against each kinase were compared with the estimated plasma-free concentration (calculated from published pharmacokinetic parameters of plasma C(trough) and C(max) values). This analysis revealed that the approved kinase inhibitors were well optimized for their target kinases. This profiling also implicates activity at particular off-target kinases in drug side effects. Thus, large-scale kinase profiling at both K(m) and physiological ATP concentrations could be useful in characterizing the targets and off-targets of kinase inhibitors. PMID:23279183

  16. Tyrosine-selective protein alkylation using pi-allylpalladium complexes.

    PubMed

    Tilley, S David; Francis, Matthew B

    2006-02-01

    A new protein modification reaction has been developed based on a palladium-catalyzed allylic alkylation of tyrosine residues. This technique employs electrophilic pi-allyl intermediates derived from allylic acetate and carbamate precursors and can be used to modify proteins in aqueous solution at room temperature. To facilitate the detection of modified proteins using SDS-PAGE analysis, a fluorescent allyl acetate was synthesized and coupled to chymotrypsinogen A and bacteriophage MS2. The tyrosine selectivity of the reaction was confirmed through trypsin digest analysis. The utility of the reaction was demonstrated by using taurine-derived carbamates as water solubilizing groups that are cleaved upon protein functionalization. This solubility switching technique was used to install hydrophobic farnesyl and C(17) chains on chymotrypsinogen A in water using little or no cosolvent. Following this, the C(17) alkylated proteins were found to associate with lipid vesicles. In addition to providing a new protein modification strategy targeting an under-utilized amino acid side chain, this method provides convenient access to synthetic lipoproteins. PMID:16433516

  17. The Solution Structure of the Regulatory Domain of Tyrosine Hydroxylase

    PubMed Central

    Zhang, Shengnan; Huang, Tao; Ilangovan, Udayar; Hinck, Andrew P.; Fitzpatrick, Paul F.

    2014-01-01

    Tyrosine hydroxylase (TyrH) catalyzes the hydroxylation of tyrosine to form 3,4-dihydroxyphenylalanine in the biosynthesis of the catecholamine neurotransmitters. The activity of the enzyme is regulated by phosphorylation of serine residues in a regulatory domain and by binding of catecholamines to the active site. Available structures of TyrH lack the regulatory domain, limiting the understanding of the effect of regulation on structure. We report the use of NMR spectroscopy to analyze the solution structure of the isolated regulatory domain of rat TyrH. The protein is composed of a largely unstructured N-terminal region (residues 1-71) and a well-folded C-terminal portion (residues 72-159). The structure of a truncated version of the regulatory domain containing residues 65-159 has been determined and establishes that it is an ACT domain. The isolated domain is a homodimer in solution, with the structure of each monomer very similar to that of the core of the regulatory domain of phenylalanine hydroxylase. Two TyrH regulatory domain monomers form an ACT domain dimer composed of a sheet of eight strands with four α-helices on one side of the sheet. Backbone dynamic analyses were carried out to characterize the conformational flexibility of TyrH65-159. The results provide molecular details critical for understanding the regulatory mechanism of TyrH. PMID:24361276

  18. A Crystallographic Snapshot of Tyrosine Trans-phosphorylation in Action

    SciTech Connect

    Chen, H.; Xu, C; Ma, J; Eliseenkova, A; Li, W; Pollock, P; Pitteloud, N; Miller, W; Neubert, T; Mohammadi, M

    2008-01-01

    Tyrosine trans-phosphorylation is a key event in receptor tyrosine kinase signaling, yet, the structural basis for this process has eluded definition. Here, we present the crystal structure of the FGF receptor 2 kinases caught in the act of trans-phosphorylation of Y769, the major C-terminal phosphorylation site. The structure reveals that enzyme- and substrate-acting kinases engage each other through elaborate and specific interactions not only in the immediate vicinity of Y769 and the enzyme active site, but also in regions that are as much of 18 {angstrom} away from D626, the catalytic base in the enzyme active site. These interactions lead to an unprecedented level of specificity and precision during the trans-phosphorylation on Y769. Time-resolved mass spectrometry analysis supports the observed mechanism of trans-phosphorylation. Our data provide a molecular framework for understanding the mechanism of action of Kallmann syndrome mutations and the order of trans-phosphorylation reactions in FGFRs. We propose that the salient mechanistic features of Y769 trans-phosphorylation are applicable to trans-phosphorylation of the equivalent major phosphorylation sites in many other RTKs.

  19. Role of Receptor Tyrosine Kinase Signaling in Renal Fibrosis.

    PubMed

    Liu, Feng; Zhuang, Shougang

    2016-01-01

    Renal fibrosis can be induced in different renal diseases, but ultimately progresses to end stage renal disease. Although the pathophysiologic process of renal fibrosis have not been fully elucidated, it is characterized by glomerulosclerosis and/or tubular interstitial fibrosis, and is believed to be caused by the proliferation of renal inherent cells, including glomerular epithelial cells, mesangial cells, and endothelial cells, along with defective kidney repair, renal interstitial fibroblasts activation, and extracellular matrix deposition. Receptor tyrosine kinases (RTKs) regulate a variety of cell physiological processes, including metabolism, growth, differentiation, and survival. Many studies from in vitro and animal models have provided evidence that RTKs play important roles in the pathogenic process of renal fibrosis. It is also showed that tyrosine kinases inhibitors (TKIs) have anti-fibrotic effects in basic research and clinical trials. In this review, we summarize the evidence for involvement of specific RTKs in renal fibrosis process and the employment of TKIs as a therapeutic approach for renal fibrosis. PMID:27331812

  20. Phospho-tyrosine dependent protein–protein interaction network

    PubMed Central

    Grossmann, Arndt; Benlasfer, Nouhad; Birth, Petra; Hegele, Anna; Wachsmuth, Franziska; Apelt, Luise; Stelzl, Ulrich

    2015-01-01

    Post-translational protein modifications, such as tyrosine phosphorylation, regulate protein–protein interactions (PPIs) critical for signal processing and cellular phenotypes. We extended an established yeast two-hybrid system employing human protein kinases for the analyses of phospho-tyrosine (pY)-dependent PPIs in a direct experimental, large-scale approach. We identified 292 mostly novel pY-dependent PPIs which showed high specificity with respect to kinases and interacting proteins and validated a large fraction in co-immunoprecipitation experiments from mammalian cells. About one-sixth of the interactions are mediated by known linear sequence binding motifs while the majority of pY-PPIs are mediated by other linear epitopes or governed by alternative recognition modes. Network analysis revealed that pY-mediated recognition events are tied to a highly connected protein module dedicated to signaling and cell growth pathways related to cancer. Using binding assays, protein complementation and phenotypic readouts to characterize the pY-dependent interactions of TSPAN2 (tetraspanin 2) and GRB2 or PIK3R3 (p55γ), we exemplarily provide evidence that the two pY-dependent PPIs dictate cellular cancer phenotypes. PMID:25814554

  1. Tyrosine kinase inhibitors: New class of antimalarials on the horizon?

    PubMed

    Pathak, Vrushali; Colah, Roshan; Ghosh, Kanjaksha

    2015-08-01

    Development of the antimalarial drug resistant strains has currently become a major public health challenge. There is an urgent need to develop new antimalarial drugs. Tyrosine kinase inhibitors (TKIs) are receiving increasing attention as anticancer therapy. It has revolutionarised the management of CML to say the least. TKIs are also increasingly being implicated in complicated but vital life cycle of malaria parasite. Hence we tested two commonly used but different classes of TKIs (imatinib and sorafenib) in-vitro for their antimalarial activity and possible synergistic activity with existing antimalarial drug. Antimalarial activity was tested with the help of modified WHO microtest technique in-vitro for five different Plasmodium falciparum laboratory strains (3D7, Dd2, 7G8, MRC2, PKL9). Imatinib and sorafenib showed a promising antimalarial activity with all the strains. These compounds caused dose dependent inhibition of parasite maturation. The isobologram analysis of the interactions of these TKIs with standard antimalarial drug, artesunate revealed distinct patterns of synergism, additivity and antagonism at different ratios. Imatinib showed worthwhile synergism with artesunate indicating imatinib and other tyrosine kinase inhibitors may have significant antimalarial activity and can be used in combination therapy. PMID:26142327

  2. Virulence genotypes and drug resistance of Helicobacter pylori from Vladivostok, Russia: another feature in the Far East.

    PubMed

    Reva, Ivan; Takano, Tomomi; Higuchi, Wataru; Iwao, Yasuhisa; Taneike, Ikue; Nakagawa, Saori; Ike, Masami; Pererva, Oleg; Tarankov, Alexey; Agapov, Mikhail; Rizhkov, Evgeniy; Singur, Olga; Reva, Galina; Potapov, Vladimir; Yamamoto, Tatsuo

    2012-03-01

    Helicobacter pylori in Vladivostok, Far Eastern Russia, was investigated during 2004 to 2009. The genotype cagA(+) vacA(+) (s1/m1 or m2) accounted for 74.7%, with cagA(-) vacA(+) (s2/m2) at 11.2%. The CagA EPIYA type was mainly Western ABC, with minor types (ABCCC and novel AAABC) or non-Western/non-East Asia type (AB). Regarding drug resistance, metronidazole resistance was the highest, with a marked decrease in 6 years (from 71.4% to 30.8%); in contrast, levofloxacin and clarithromycin resistance increased. The data indicate that in Vladivostok, H. pylori was mainly the Western (not East Asian) type and dynamic changes in drug resistance occurred during 6 years. PMID:22211953

  3. Acute administration of l-tyrosine alters energetic metabolism of hippocampus and striatum of infant rats.

    PubMed

    Ramos, Andrea C; Ferreira, Gabriela K; Carvalho-Silva, Milena; Furlanetto, Camila B; Gonçalves, Cinara L; Ferreira, Gustavo C; Schuck, Patrícia F; Streck, Emilio L

    2013-08-01

    Tyrosinemia type II is an inborn error of metabolism caused by mutations in the gene that encodes tyrosine aminotransferase, which leads to increased blood tyrosine levels. Considering that tyrosine levels are highly elevated in fluids of patients with tyrosinemia type II, and that previous studies demonstrated significant alterations in brain energy metabolism of young rats caused by l-tyrosine, the present study aimed to evaluate the effect of acute administration of l-tyrosine on the activities of citrate synthase, malate dehydrogenase, succinate dehydrogenase, and mitochondrial respiratory chain complexes I, II, II-III, and IV in posterior cortex, hippocampus, and striatum of infant rats. Wistar rats (10 days old) were killed 1h after a single intraperitoneal injection of tyrosine (500 mg/kg) or saline. The activities of energy metabolism enzymes were evaluated in brain of rats. Our results demonstrated that acute administration of l-tyrosine inhibited the activity of citrate synthase activity in striatum and increased the activities of malate dehydrogenase and succinate dehydrogenase in hippocampus. On the other hand, these enzymes were not affected in posterior cortex. The activities of complex I and complex II were inhibited by acute administration of l-tyrosine in striatum. On the other hand, the acute administration of l-tyrosine increased the activity of activity of complex II-III in hippocampus. Complex IV was not affected by acute administration of l-tyrosine in infant rats. Our results indicate an alteration in the energy metabolism in hippocampus and striatum of infant rats after acute administration of l-tyrosine. If the same effects occur in the brain of the patients, it is possible that energy metabolism impairment may be contribute to possible damage in memory and cognitive processes in patients with tyrosinemia type II. PMID:23602810

  4. Electrical stimulation increases phosphorylation of tyrosine hydroxylase in superior cervical ganglion of rat.

    PubMed Central

    Cahill, A L; Perlman, R L

    1984-01-01

    Electrical stimulation of the superior cervical ganglion of the rat increased the phosphorylation of tyrosine hydroxylase (tyrosine 3-monooxygenase, EC 1.14.16.2) in this tissue. Ganglia were incubated with [32P]Pi for 90 min and were then electrically stimulated via the preganglionic nerve. Tyrosine hydroxylase was isolated from homogenates of the ganglia by immunoprecipitation followed by polyacrylamide gel electrophoresis. 32P-labeled tyrosine hydroxylase was visualized by radioautography, and the incorporation of 32P into the enzyme was quantitated by densitometry of the radioautograms. Stimulation of ganglia at 20 Hz for 5 min increased the incorporation of 32P into tyrosine hydroxylase to a level 5-fold that found in unstimulated control ganglia. The increase in phosphorylation of tyrosine hydroxylase was dependent on the duration and frequency of stimulation. Preganglionic stimulation did not increase the phosphorylation of tyrosine hydroxylase in a medium that contained low Ca2+ and high Mg2+. Increases in phosphorylation were reversible; within 30 min after the cessation of stimulation, the incorporation of 32P into tyrosine hydroxylase decreased to the level found in unstimulated ganglia. The nicotinic antagonist hexamethonium reduced the increase in 32P incorporation into tyrosine hydroxylase by about 50%, while the muscarinic antagonist atropine had no effect. Thus, preganglionic stimulation appeared to increase the phosphorylation of tyrosine hydroxylase in part by a nicotinic mechanism and in part by a noncholinergic mechanism. Antidromic stimulation of ganglia also increased the phosphorylation of tyrosine hydroxylase. Two-dimensional gel electrophoresis revealed that electrical stimulation also increased the incorporation of 32P into at least six other phosphoproteins in the ganglion. Images PMID:6150485

  5. Unlocking Doors without Keys: Activation of Src by Truncated C-terminal Intracellular Receptor Tyrosine Kinases Lacking Tyrosine Kinase Activity

    PubMed Central

    Mezquita, Belén; Mezquita, Pau; Pau, Montserrat; Mezquita, Jovita; Mezquita, Cristóbal

    2014-01-01

    One of the best examples of the renaissance of Src as an open door to cancer has been the demonstration that just five min of Src activation is sufficient for transformation and also for induction and maintenance of cancer stem cells [1]. Many tyrosine kinase receptors, through the binding of their ligands, become the keys that unlock the structure of Src and activate its oncogenic transduction pathways. Furthermore, intracellular isoforms of these receptors, devoid of any tyrosine kinase activity, still retain the ability to unlock Src. This has been shown with a truncated isoform of KIT (tr-KIT) and a truncated isoform of VEGFR-1 (i21-VEGFR-1), which are intracellular and require no ligand binding, but are nonetheless able to activate Src and induce cell migration and invasion of cancer cells. Expression of the i21-VEGFR-1 is upregulated by the Notch signaling pathway and repressed by miR-200c and retinoic acid in breast cancer cells. Both Notch inhibitors and retinoic acid have been proposed as potential therapies for invasive breast cancer. PMID:24709904

  6. Defining the role of tyrosine and rational tuning of oxidase activity by genetic incorporation of unnatural tyrosine analogs.

    PubMed

    Yu, Yang; Lv, Xiaoxuan; Li, Jiasong; Zhou, Qing; Cui, Chang; Hosseinzadeh, Parisa; Mukherjee, Arnab; Nilges, Mark J; Wang, Jiangyun; Lu, Yi

    2015-04-15

    While a conserved tyrosine (Tyr) is found in oxidases, the roles of phenol ring pKa and reduction potential in O2 reduction have not been defined despite many years of research on numerous oxidases and their models. These issues represent major challenges in our understanding of O2 reduction mechanism in bioenergetics. Through genetic incorporation of unnatural amino acid analogs of Tyr, with progressively decreasing pKa of the phenol ring and increasing reduction potential, in the active site of a functional model of oxidase in myoglobin, a linear dependence of both the O2 reduction activity and the fraction of H2O formation with the pKa of the phenol ring has been established. By using these unnatural amino acids as spectroscopic probe, we have provided conclusive evidence for the location of a Tyr radical generated during reaction with H2O2, by the distinctive hyperfine splitting patterns of the halogenated tyrosines and one of its deuterated derivatives incorporated at the 33 position of the protein. These results demonstrate for the first time that enhancing the proton donation ability of the Tyr enhances the oxidase activity, allowing the Tyr analogs to augment enzymatic activity beyond that of natural Tyr. PMID:25672571

  7. Novel Anthraquinone-based Derivatives as Potent Inhibitors for Receptor Tyrosine Kinases

    PubMed Central

    Stasevych, M.; Zvarych, V.; Lunin, V.; Halenova, T.; Savchuk, O.; Dudchak, O.; Vovk, M.; Novikov, V.

    2015-01-01

    The influence of new derivatives of 9,10-anthraquinone with benzoylthiourea, thiazole, triazole and amino acid fragments on the activity of membrane-associated tyrosine kinases was investigated. Inhibitors of protein tyrosine kinase activity of the membrane fraction, as promising agents to search for new potential anticancer agents among the studied compounds, were discovered. PMID:26798182

  8. Design and synthesis of constrained analogs of LCRF-0004 as potent RON tyrosine kinase inhibitors.

    PubMed

    Raeppel, Stéphane L; Therrien, Eric; Raeppel, Franck

    2015-09-01

    New fused bicyclic lactam head groups as rigidified analogs of thieno[3,2-b]pyridine-based kinase inhibitor LCRF-0004 were designed and synthesized. Depending on the functionalities and the size of these bicyclic head groups, potent inhibitors of RON tyrosine kinase with various level of selectivity against c-Met tyrosine kinase were obtained. PMID:26112445

  9. Kinetic Characterization of O-Phospho-L-Tyrosine Phosphohydrolase Activity of Two Fungal Phytases.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal phytases belonging to 'Histidine Acid Phosphatase' or HAP class of phosphomonoesterase that catalyzes the hydrolysis of phytic acid could also hydrolyze O-phospho-tyrosine. Two phytases from Aspergillus niger and Aspergillus awamori with pH optima 2.5 were tested for phospho-tyrosine hydrola...

  10. The Next Wave of EGFR Tyrosine Kinase Inhibitors Enter the Clinic.

    PubMed

    Politi, Katerina; Ayeni, Deborah; Lynch, Thomas

    2015-06-01

    The T790M mutation in EGFR accounts for approximately half of all lung cancer cases with acquired resistance to the current clinical EGFR tyrosine kinase inhibitors. In tyrosine kinase inhibitor-resistant lung tumors, rociletinib and AZD9291 are highly active when T790M is present and modestly active when T790M is absent. PMID:26058074