These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Crystal lattice tilting in prismatic calcite.  

PubMed

We analyzed the calcitic prismatic layers in Atrina rigida (Ar), Haliotis iris (Hi), Haliotis laevigata (HL), Haliotis rufescens (Hrf), Mytilus californianus (Mc), Pinctada fucata (Pf), Pinctada margaritifera (Pm) shells, and the aragonitic prismatic layer in the Nautilus pompilius (Np) shell. Dramatic structural differences were observed across species, with 100-?m wide single-crystalline prisms in Hi, HL and Hrf, 1-?m wide needle-shaped calcite prisms in Mc, 1-?m wide spherulitic aragonite prisms in Np, 20-?m wide single-crystalline calcite prisms in Ar, and 20-?m wide polycrystalline calcite prisms in Pf and Pm. The calcite prisms in Pf and Pm are subdivided into sub-prismatic domains of orientations, and within each of these domains the calcite crystal lattice tilts gradually over long distances, on the order of 100 ?m, with an angle spread of crystal orientation of 10-20°. Furthermore, prisms in Pf and Pm are harder than in any other calcite prisms analyzed, their nanoparticles are smaller, and the angle spread is strongly correlated with hardness in all shells that form calcitic prismatic layers. One can hypothesize a causal relationship of these correlated parameters: greater angle spread may confer greater hardness and resistance to wear, thus providing Pf and Pm with a structural advantage in their environment. This is the first structure-property relationship thus far hypothesized in mollusk shell prisms. PMID:23806677

Olson, Ian C; Metzler, Rebecca A; Tamura, Nobumichi; Kunz, Martin; Killian, Christopher E; Gilbert, Pupa U P A

2013-08-01

2

Crystal growth of calcite from calcium bicarbonate solutions at constant PCO2 and 25??C: a test of a calcite dissolution model  

USGS Publications Warehouse

A highly reproducible seeded growth technique was used to study calcite crystallization from calcium bicarbonate solutions at 25??C and fixed carbon dioxide partial pressures between 0.03 and 0.3 atm. The results are not consistent with empirical crystallization models that have successfully described calcite growth at low PCO2 (< 10-3 atm). Good agreement was found between observed crystallization rates and those calculated from the calcite dissolution rate law and mechanism proposed by Plummer et al. (1978). ?? 1981.

Reddy, M.M.; Plummer, L.N.; Busenberg, E.

1981-01-01

3

Brittlestar-Inspired Microlens Arrays Made of Calcite Single Crystals.  

PubMed

Unique concave microlens arrays (MLAs) made of calcite single crystals with tunable crystal orientations can be readily fabricated by template-assisted epitaxial growth in solution without additives under ambient conditions. While the non-birefringent calcite (001) MLA showed excellent imaging performance like brittlestar's microlens arrays, the birefringent calcite (104) MLA exhibited remarkable polarization-dependent optical properties. PMID:25366272

Ye, Xiaozhou; Zhang, Fei; Ma, Yurong; Qi, Limin

2014-11-01

4

Genesis of filamentary pyrite associated with calcite crystals  

E-print Network

Abstract: The calcite of the hydrothermal Surneshko Kladenche copper vein deposit from the Rossen ore field, Bulgaria, sometimes encloses peculiar filamentary pyrite crystals. Three successive calcite generations were observed belonging to a low-temperature (<235°C) carbonate paragenesis formed

Eur J. Mineral; Ivan K. Bonev; Juan Manuel Garcia-ruiz; Radostina Atanassova

2005-01-01

5

Calcite crystal growth rate inhibition by polycarboxylic acids  

USGS Publications Warehouse

Calcite crystal growth rates measured in the presence of several polycarboxyclic acids show that tetrahydrofurantetracarboxylic acid (THFTCA) and cyclopentanetetracarboxylic acid (CPTCA) are effective growth rate inhibitors at low solution concentrations (0.01 to 1 mg/L). In contrast, linear polycarbocylic acids (citric acid and tricarballylic acid) had no inhibiting effect on calcite growth rates at concentrations up to 10 mg/L. Calcite crystal growth rate inhibition by cyclic polycarboxyclic acids appears to involve blockage of crystal growth sites on the mineral surface by several carboxylate groups. Growth morphology varied for growth in the absence and in the presence of both THFTCA and CPTCA. More effective growth rate reduction by CPTCA relative to THFTCA suggests that inhibitor carboxylate stereochemical orientation controls calcite surface interaction with carboxylate inhibitors. ?? 20O1 Academic Press.

Reddy, M.M.; Hoch, A.R.

2001-01-01

6

Ultrasonic reactivation of phosphonate poisoned calcite during crystal growth.  

PubMed

The effect of ultrasonic irradiation (42,150 Hz, 17 W dm(-3)/7.1 W cm(-2)) on the growth of calcite in the presence of the inhibitor nitrilotris(methylene phosphonic acid) (NTMP) was investigated at constant composition conditions. In seeded growth experiments, it was found that the inhibiting effect of NTMP on crystal growth could be seriously mitigated under influence of ultrasonic irradiation. An approximately twofold increase in volumetric growth rate was achieved during ultrasonic irradiation, and recovery of the growth rate following inhibition was strongly enhanced compared to growth experiments without ultrasonic irradiation. The results could be explained in part by the physical effect of ultrasound that causes breakage and attrition of poisoned crystals, which resulted in an increase in fresh surface area. Mass spectroscopy analysis of sonicated NTMP solutions revealed that there is also a chemical effect of ultrasound that plays an important role. Several breakdown products were identified, which showed that ultrasound caused the progressive loss of phosphonate groups from NTMP, probably by means of physicochemically generated free radicals and/or pyrolysis in the hot bubble-bulk interface. PMID:21463963

Boels, L; Wagterveld, R M; Witkamp, G J

2011-09-01

7

Electrical conduction and polarization of calcite single crystals  

NASA Astrophysics Data System (ADS)

The electrical conductivity and polarization properties of calcite single crystals with three orientations, namely, a (00.1) plane perpendicular to the crystallographic c axis (10.0) plane parallel to the crystallographic c axis, and a (10.4) cleavage plane, were studied by both complex impedance and thermally stimulated depolarization current (TSDC) measurements. Conductivities for (00.1)-, (10.0)-, and (10.4)-oriented single calcite crystals at 400-600 °C were 1.16 × 10-7 - 1.05 × 10-5, 7.40 × 10-8 - 4.27 × 10-6, and 4.27 × 10-7 - 2.86 × 10-5 ?-1 m-1, respectively, and the activation energies for conduction were 112, 103, and 101 kJ mol-1, respectively. The TSDC spectra verified the electrical polarizability of calcite crystals. The activation energy for depolarization, estimated from TSDC spectra, of the (00.1)-, (10.0)-, and (10.4)-oriented calcite substrates were 112, 119, and 114 kJ mol-1, respectively. Considering the correlation between the processes of conduction and electric polarization, we proposed the mechanisms of conduction and polarization in calcite on the assumption of oxide ion transport.

Wada, Norio; Horiuchi, Naohiro; Wang, Wei; Hiyama, Tetsuo; Nakamura, Miho; Nagai, Akiko; Yamashita, Kimihiro

2012-10-01

8

The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite.  

E-print Network

The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via calcium carbonate (ACC) crystallization to calcite, via vaterite, were studied at a range controlled by the surface area of calcite. The second stage of the reaction is approximately 10 times slower

Benning, Liane G.

9

Crystallographic orientation inhomogeneity and crystal splitting in biogenic calcite  

PubMed Central

The calcitic prismatic units forming the outer shell of the bivalve Pinctada margaritifera have been analysed using scanning electron microscopy–electron back-scatter diffraction, transmission electron microscopy and atomic force microscopy. In the initial stages of growth, the individual prismatic units are single crystals. Their crystalline orientation is not consistent but rather changes gradually during growth. The gradients in crystallographic orientation occur mainly in a direction parallel to the long axis of the prism, i.e. perpendicular to the shell surface and do not show preferential tilting along any of the calcite lattice axes. At a certain growth stage, gradients begin to spread and diverge, implying that the prismatic units split into several crystalline domains. In this way, a branched crystal, in which the ends of the branches are independent crystalline domains, is formed. At the nanometre scale, the material is composed of slightly misoriented domains, which are separated by planes approximately perpendicular to the c-axis. Orientational gradients and splitting processes are described in biocrystals for the first time and are undoubtedly related to the high content of intracrystalline organic molecules, although the way in which these act to induce the observed crystalline patterns is a matter of future research. PMID:23804442

Checa, Antonio G.; Bonarski, Jan T.; Willinger, Marc G.; Faryna, Marek; Berent, Katarzyna; Kania, Bogusz; González-Segura, Alicia; Pina, Carlos M.; Pospiech, Jan; Morawiec, Adam

2013-01-01

10

Struvite and calcite crystallization induced by cellular membranes of Myxococcus xanthus  

NASA Astrophysics Data System (ADS)

In this work we have proved that struvite and calcite crystals can be obtained in the presence of the cellular membrane fraction of Myxococcus xanthus, when appropriate supersaturated solutions are used. Probably, the negative charged points of the external side of the cellular structures could reduce the metastability field of struvite and calcite, acting as heterogeneous nuclei of crystallization.

González-Muñoz, Ma Teresa; Omar, Nabil Ben; Martínez-Cañamero, Magdalena; Rodríguez-Gallego, Manuel; Galindo, Alberto López; Arias, JoséMa

1996-06-01

11

Growth modification of seeded calcite using carboxylic acids: atomistic simulations.  

PubMed

Molecular dynamics simulations were used to investigate possible explanations for experimentally observed differences in the growth modification of calcite particles by two organic additives, polyacrylic acid (PAA) and polyaspartic acid (p-ASP). The more rigid backbone of p-ASP was found to inhibit the formation of stable complexes with counter-ions in solution, resulting in a higher availability of p-ASP compared to PAA for surface adsorption. Furthermore the presence of nitrogen on the p-ASP backbone yields favorable electrostatic interactions with the surface, resulting in negative adsorption energies, in an upright (brush conformation). This leads to a more rapid binding and longer residence times at calcite surfaces compared to PAA, which adsorbed in a flat (pancake) configuration with positive adsorption energies. The PAA adsorption occurring despite this positive energy difference can be attributed to the disruption of the ordered water layer seen in the simulations and hence a significant entropic contribution to the adsorption free energy. These findings help explain the stronger inhibiting effect on calcite growth observed by p-ASP compared to PAA and can be used as guidelines in the design of additives leading to even more marked growth modifying effects. PMID:20304410

Aschauer, Ulrich; Spagnoli, Dino; Bowen, Paul; Parker, Stephen C

2010-06-01

12

Geobacillus thermoglucosidasius endospores function as nuclei for the formation of single calcite crystals.  

PubMed

Geobacillus thermoglucosidasius colonies were placed on an agar hydrogel containing acetate, calcium ions, and magnesium ions, resulting in the formation of single calcite crystals (calcites) within and peripheral to the plating area or parent colony. Microscopic observation of purified calcites placed on the surface of soybean casein digest (SCD) nutrient medium revealed interior crevices from which bacterial colonies originated. Calcites formed on the gel contained [1-(13)C]- and [2-(13)C]acetate, demonstrating that G. thermoglucosidasius utilizes carbon derived from acetate for calcite formation. During calcite formation, vegetative cells swam away from the parent colony in the hydrogel. Hard-agar hydrogel inhibited the formation of calcites peripheral to the parent colony. The calcite dissolved completely in 1 M HCl, with production of bubbles, and the remaining endospore-like particles were easily stained with Brilliant green dye. The presence of DNA and protein in calcites was demonstrated by electrophoresis. We propose that endospores initiate the nucleation of calcites. Endospores of G. thermoglucosidasius remain alive and encapsulated in calcites. PMID:23455343

Murai, Rie; Yoshida, Naoto

2013-05-01

13

Geobacillus thermoglucosidasius Endospores Function as Nuclei for the Formation of Single Calcite Crystals  

PubMed Central

Geobacillus thermoglucosidasius colonies were placed on an agar hydrogel containing acetate, calcium ions, and magnesium ions, resulting in the formation of single calcite crystals (calcites) within and peripheral to the plating area or parent colony. Microscopic observation of purified calcites placed on the surface of soybean casein digest (SCD) nutrient medium revealed interior crevices from which bacterial colonies originated. Calcites formed on the gel contained [1-13C]- and [2-13C]acetate, demonstrating that G. thermoglucosidasius utilizes carbon derived from acetate for calcite formation. During calcite formation, vegetative cells swam away from the parent colony in the hydrogel. Hard-agar hydrogel inhibited the formation of calcites peripheral to the parent colony. The calcite dissolved completely in 1 M HCl, with production of bubbles, and the remaining endospore-like particles were easily stained with Brilliant green dye. The presence of DNA and protein in calcites was demonstrated by electrophoresis. We propose that endospores initiate the nucleation of calcites. Endospores of G. thermoglucosidasius remain alive and encapsulated in calcites. PMID:23455343

Murai, Rie

2013-01-01

14

An assessment of calcite crystal growth mechanisms based on crystal size distributions  

USGS Publications Warehouse

Calcite crystal growth experiments were undertaken to test a recently proposed model that relates crystal growth mechanisms to the shapes of crystal size distributions (CSDs). According to this approach, CSDs for minerals have three basic shapes: (1) asymptotic, which is related to a crystal growth mechanism having constant-rate nucleation accompanied by surface-controlled growth; (2) lognormal, which results from decaying-rate nucleation accompanied by surface-controlled growth; and (3) a theoretical, universal, steady-state curve attributed to Ostwald ripening. In addition, there is a fourth crystal growth mechanism that does not have a specific CSD shape, but which preserves the relative shapes of previously formed CSDs. This mechanism is attributed to supply-controlled growth. All three shapes were produced experimentally in the calcite growth experiments by modifying nucleation conditions and solution concentrations. The asymptotic CSD formed when additional reactants were added stepwise to the surface of solutions that were supersaturated with respect to calcite (initial ? = 20, where ? = 1 represents saturation), thereby leading to the continuous nucleation and growth of calcite crystals. Lognormal CSDs resulted when reactants were added continuously below the solution surface, via a submerged tube, to similarly supersaturated solutions (initial ? = 22 to 41), thereby leading to a single nucleation event followed by surface-controlled growth. The Ostwald CSD resulted when concentrated reactants were rapidly mixed, leading initially to high levels of supersaturation (? >100), and to the formation and subsequent dissolution of very small nuclei, thereby yielding CSDs having small crystal size variances. The three CSD shapes likely were produced early in the crystallization process, in the nanometer crystal size range, and preserved during subsequent growth. Preservation of the relative shapes of the CSDs indicates that a supply-controlled growth mechanism was established and maintained during the constant-composition experiments. CSDs having shapes intermediate between lognormal and Ostwald also were generated by varying the initial levels of supersaturation (initial ? = 28.2 to 69.2) in rapidly mixed solutions. Lognormal CSDs were observed for natural calcite crystals that are found in septarian concretions occurring in southeastern Colorado. Based on the model described above, these CSDs indicate initial growth by surface control, followed by supply-controlled growth. Thus, CSDs may be used to deduce crystal growth mechanisms from which geologic conditions early in the growth history of a mineral can be inferred. Conversely, CSD shape can be predicted during industrial crystallization by applying the appropriate conditions for a particular growth mechanism.

Kile, D.E.; Eberl, D.D.; Hoch, A.R.; Reddy, M.M.

2000-01-01

15

Effects of chitosan on the alignment, morphology and shape of calcite crystals nucleating under Langmuir monolayers  

SciTech Connect

The growth of calcium carbonate crystals under Langmuir monolayers was investigated in the presence of chitosan, a soluble derivative of chitin added to the subphase to better simulate the polyelectrolyte-containing in vivo environment. Chitosan causes distinct concentration-dependent changes in the orientation, shape and morphology of the calcite crystals nucleating under acid and sulfate monolayers. Our results suggest that polyelectrolytes may play essential roles in controlling the growth of biogenic calcite crystals.

Kim, Kyungil; Uysal, Ahmet; Kewalramani, Sumit; Stripe, Benjamin; Dutta, Pulak; (NWU); (BNL)

2009-04-22

16

Effects of Chitosan on the Morphology and Alignment of Calcite Crystals Nucleating Under Langmuir Monolayers  

SciTech Connect

The growth of calcium carbonate crystals under Langmuir monolayers was investigated in the presence of chitosan, a soluble derivative of chitin added to the subphase to better simulate the polyelectrolyte-containing in vivo environment. Chitosan causes distinct concentration-dependent changes in the orientation, shape and morphology of the calcite crystals nucleating under acid and sulfate monolayers. Our results suggest that polyelectrolytes may play essential roles in controlling the growth of biogenic calcite crystals.

Kim, K.; Uysal, A; Kewalramani, S; Stripe, B; Dutta, P

2009-01-01

17

Skeletal crystals of calcite and trona from hot-spring deposits in Kenya and New Zealand  

SciTech Connect

Skeletal crystals are hollow crystals that develop because their outer walls grow before their cores. The presence of skeletal crystals of calcite (three types--trigonal prisms, hexagonal prisms, and plates) and trona in hot (> 90 C) spring deposits in New Zealand (Waikite Springs and Ohaaki Pool) and Kenya (Lorusio hot springs) shows that they can form in natural sedimentary regimes. Analysis of samples from these deposits shows that this crystal morphology develops under disequilibrium conditions that are unrelated to a specific environmental or diagenetic setting. Skeletal crystals transform into solid crystals when subsequent precipitation fills their hollow cores. In some cases, this may involve precipitation of crystalline material that has a sieve-like texture. In other examples, the skeletal crystal provides a framework upon which other materials can be precipitated. Walls in the skeletal trigonal calcite prisms from Waikite Springs are formed of subcrystals that mimic the shape of the parent crystal. Similarly, plate-like skeletal crystals from Lorusio are formed of densely packed subcrystals that are < 0.5 {micro}m long. Conversely, the walls of the skeletal hexagonal calcite crystals from Ohaaki Pool and the skeletal trona crystals from Lorusio are not formed of subcrystals. Recognition of skeletal crystals is important because they represent growth that follows the reverse pattern of normal growth. Failure to recognize that crystal growth followed the skeletal motif may lead to false interpretations concerning the growth of a crystal.

Jones, B. [Univ. of Alberta, Edmonton, Alberta (Canada). Dept. of Earth and Atmospheric Sciences; Renaut, R.W. [Univ. of Saskatchewan, Saskatoon, Saskatchewan (Canada). Dept. of Geological Sciences

1996-01-01

18

Capillarity creates single-crystal calcite nanowires from amorphous calcium carbonate.  

PubMed

Single-crystal calcite nanowires are formed by crystallization of morphologically equivalent amorphous calcium carbonate (ACC) particles within the pores of track etch membranes. The polyaspartic acid stabilized ACC is drawn into the membrane pores by capillary action, and the single-crystal nature of the nanowires is attributed to the limited contact of the intramembrane ACC particle with the bulk solution. The reaction environment then supports transformation to a single-crystal product. PMID:22069168

Kim, Yi-Yeoun; Hetherington, Nicola B J; Noel, Elizabeth H; Kröger, Roland; Charnock, John M; Christenson, Hugo K; Meldrum, Fiona C

2011-12-23

19

Amelogenin processing by MMP-20 prevents protein occlusion inside calcite crystals  

PubMed Central

Calcite crystals were grown in the presence of full-length amelogenin and during its proteolysis by recombinant human matrix metalloproteinase 20 (rhMMP-20). Recombinant porcine amelogenin (rP172) altered the shape of calcite crystals by inhibiting the growth of steps on the {104} faces and became occluded inside the crystals. Upon co-addition of rhMMP-20, the majority of the protein was digested resulting in a truncated amelogenin lacking the C-terminal segment. In rP172-rhMMP-20 samples, the occlusion of amelogenin into the calcite crystals was drastically decreased. Truncated amelogenin (rP147) and the 25-residue C-terminal domain produced crystals with regular shape and less occluded organic material. Removal of the C-terminal diminished the affinity of amelogenin to the crystals and therefore prevented occlusion. We hypothesize that HAP and calcite interact with amelogenin in a similar manner. In the case of each material, full-length amelogenin binds most strongly, truncated amelogenin binds weakly and the C-terminus alone has the weakest interaction. Regarding enamel crystal growth, the prevention of occlusion into maturing enamel crystals might be a major benefit resulting from the selective cleavage of amelogenin at the C-terminus by MMP-20. Our data have important implications for understanding the hypomineralized enamel phenotype in cases of amelogenesis imperfecta resulting from MMP-20 mutations and will contribute to the design of enamel inspired biomaterials. PMID:23226976

Bromley, Keith M.; Lakshminarayanan, Rajamani; Thompson, Mitchell; Lokappa, Sowmya B.; Gallon, Victoria A.; Cho, Kang R.; Qiu, S. Roger; Moradian-Oldak, Janet

2012-01-01

20

Amelogenin processing by MMP-20 prevents protein occlusion inside calcite crystals.  

PubMed

Calcite crystals were grown in the presence of full-length amelogenin and during its proteolysis by recombinant human matrix metalloproteinase 20 (rhMMP-20). Recombinant porcine amelogenin (rP172) altered the shape of calcite crystals by inhibiting the growth of steps on the {104} faces and became occluded inside the crystals. Upon co-addition of rhMMP-20, the majority of the protein was digested resulting in a truncated amelogenin lacking the C-terminal segment. In rP172-rhMMP-20 samples, the occlusion of amelogenin into the calcite crystals was drastically decreased. Truncated amelogenin (rP147) and the 25-residue C-terminal domain produced crystals with regular shape and less occluded organic material. Removal of the C-terminal diminished the affinity of amelogenin to the crystals and therefore prevented occlusion. We hypothesize that HAP and calcite interact with amelogenin in a similar manner. In the case of each material, full-length amelogenin binds most strongly, truncated amelogenin binds weakly and the C-terminus alone has the weakest interaction. Regarding enamel crystal growth, the prevention of occlusion into maturing enamel crystals might be a major benefit resulting from the selective cleavage of amelogenin at the C-terminus by MMP-20. Our data have important implications for understanding the hypomineralized enamel phenotype in cases of amelogenesis imperfecta resulting from MMP-20 mutations and will contribute to the design of enamel inspired biomaterials. PMID:23226976

Bromley, Keith M; Lakshminarayanan, Rajamani; Thompson, Mitchell; Lokappa, Sowmya B; Gallon, Victoria A; Cho, Kang R; Qiu, S Roger; Moradian-Oldak, Janet

2012-10-01

21

Journal of Crystal Growth 310 (2008) 29462953 Textural properties of synthetic nano-calcite produced by hydrothermal  

E-print Network

-calcite produced by hydrothermal carbonation of calcium hydroxide G. Montes-Hernandeza,Ã, A. Ferna´ ndez carbonation of calcium hydroxide (Ca(OH)2) at high pressure of CO2 (initial PCO2 ¼ 55 bar) and moderate conditions have a strong influence on the crystal size and surface area of the synthesized calcite crystals

Montes-Hernandez, German

2008-01-01

22

The interaction of magnesium with calcite during crystal growth at 25-90°C and one atmosphere  

Microsoft Academic Search

Calcite crystals were grown in a closed system by recrystallization of synthetic and natural aragonite crystals, in the presence of various CaCl 2 -MgCl 2 solutions with and without NaCl. The distribution of Mg 2+ between calcite and solution at the entire temperature range is heterogeneous, closely following the ( and , 1925) distribution law. Mg 2+ C is strongly

Amitai Katz

1973-01-01

23

Supporting Information Figure S1. Calcite crystals nucleated and grown on Kevlar threads in the absence of any  

E-print Network

1 Supporting Information Figure S1. Calcite crystals nucleated and grown on Kevlar threads and SEM imaging techniques. Figure S2. Calcite crystals nucleated and grown on Kevlar threads on Kevlar threads in the presence of 100 µM AP7N in solution. Again surface morphology is altered compared

Coppersmith, Susan N.

24

The grinding tip of the sea urchin tooth exhibits exquisite control over calcite crystal orientation  

E-print Network

The grinding tip of the sea urchin tooth exhibits exquisite control over calcite crystal to the increasing hardness of the tooth from the periphery to the tip. Clearly the formation of the tooth, and the tooth tip in particular, is amazingly well controlled. The improved understanding of these structural

Gilbert, Pupa Gelsomina De Stasio

25

Observation of an Organic-Inorganic Lattice Match during Biomimetic Growth of (001)-Oriented Calcite Crystals under Floating Sulfate Monolayers  

SciTech Connect

Macromolecular layers rich in amino acids and with some sulfated polysaccharides appear to control oriented calcite growth in living organisms. Calcite crystals nucleating under floating acid monolayers have been found to be unoriented on average. We have now observed directly, using in situ grazing incidence X-ray diffraction, that there is a 1:1 match between the monolayer unit cell and the unit cell of the (001) plane of calcite. Thus, sulfate head groups appear to act as templates for the growth of (001)-oriented calcite crystals, which is the orientation commonly found in biominerals.

Kewalramani, S.; Kim, K; Stripe, B; Evmenenko, G; Dommett, G; Dutta, P

2008-01-01

26

The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite  

Microsoft Academic Search

The kinetics and mechanisms of nanoparticulate amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite, were studied at a range of environmentally relevant temperatures (7.5-25 °C) using synchrotron-based in situ time-resolved Energy Dispersive X-ray Diffraction (ED-XRD) in conjunction with high-resolution electron microscopy, ex situ X-ray diffraction and infrared spectroscopy. The crystallization process occurs in two stages; firstly, the particles of

Juan Diego Rodriguez-Blanco; Samuel Shaw; Liane G. Benning

2011-01-01

27

Surrogate Seeds For Growth Of Crystals  

NASA Technical Reports Server (NTRS)

Larger crystals of higher quality grown. Alternative method for starting growth of crystal involves use of seed crystal of different material instead of same material as solution. Intended for growing single-crystal proteins for experiments but applicable in general to growth of crystals from solutions and to growth of semiconductor or other crystals from melts.

Shlichta, Paul J.

1989-01-01

28

Trigonal dendritic calcite crystals forming from hot spring waters at Waikite, North Island, New Zealand  

SciTech Connect

Amorphous silica and calcite form the deposits in the vent and on the discharge apron of Waikite Spring 100 (WS-100), which is located in the Waikite Geothermal area on North Island, New Zealand. These precipitates formed from spring water that has a temperature of >90 C and a pH of 8.1--8.8. The opaline silica is restricted to areas around the vent where cooling and evaporation of the spring water triggered precipitation. The calcite deposits in the spring vent and on the discharge apron are formed of large (up to 15 cm long) asymmetrical dendrite crystals that are characterized by multiple levels of branching. Branches grew preferentially from the downflow side of their parent branch. All branches have a trigonal transverse cross section except in areas where competition for growth space induced merger of neighboring crystals. The primary branches of the dendrite crystals are (sub)perpendicular to the substrate even in areas where the discharge apron slopes at a high angle (up to 80{degree}). On the steeper parts of the discharge apron, the plate-like primary branches form the floors of the small terrace pools whereas their distal edges form the rims of the pools. Growth of these dendrite crystals is attributed to abiotic processes. High levels of saturation with respect to calcite were caused by rapid CO{sub 2} degassing of the sheets of spring water that flowed down the steep discharge apron. Calcite crystals with different crystal morphologies characterize other springs near this spring. The variation in crystal morphologies from spring to spring is attributed to different levels of saturation that are related to the initial PCO{sub 2} of the spring water upon discharge and the rate of CO{sub 2} degassing at each spring.

Jones, B.; Renault, R.W.; Rosen, M.R.

2000-05-01

29

Rapid supercritical CO2 fluid migration in calcite crystals at ambient conditions  

NASA Astrophysics Data System (ADS)

The transport of supercritical fluids is a determining factor for several geological processes as well fundamental in predicting natural resource accumulation and distribution. Calcite, ubiquitous in geological environments may contain supercritical CO2 trapped under fluid inclusions commonly assumed to remain static under ambient conditions. Here, we report nano-meter scale observations on calcite crystal surface indicating the occurrence of fast movement of supercritical CO2 fluid inclusions hosted in the upper part of calcite crystals. Real time monitoring of calcite samples without observable presence of fluid inclusions, by in-situ Atomic Force Microscopy (AFM), shows a flat state of the calcite surface (after freshly cleaving) and the surface state condition did not change during several hours of scanning. However, AFM observations on calcite samples with visible fluid inclusions show rapid formation of nanometre-scale hillocks spontaneously formed on the surface structure of the calcite. They have an averaged height of 1 nm, and varied horizontal dimensions and geometries. The fact that hillocks formed spontaneously on flat terraces in only a few minutes, without evidence of surface dissolution, was unexpected and suggests that the source of hillock material should be derived within the crystal itself. This phenomenon was observed even changing the experimental conditions such a scan frequency of the AFM tip, environmental temperature (between 5° and 50°C) and the surface area of scanning. The observed hillocks can form by the fact that CO2-rich fluid inclusions located just under the mineral surface are at elevated internal pressure and near the rupture limit. Thus, a frail mechanical strain can case them to decrepitated and lose their fluid. Upon reaching the surface, the supercritical CO2 leaked from the fluid inclusions, mixes with the thin water layer in equilibrium with ambient CO2 partial pressure at the calcite surface, causing degassing of CO2 and facilitating calcite precipitation in the form of hillocks. We estimated CO2 supercritical fluid transport assuming a minimum depth of the fluid inclusions involved in the fluid movement and an instantaneous precipitation at the surface. We found that supercritical CO2 fluid transport in calcite is around the value of 10 nm/s. The estimated fast fluid transport rate is about 10 orders of magnitude higher than the estimated low-temperature extrapolation of solid-state diffusion vacancy in calcite crystals. Classical description of fluid transport recognises several distinct paths only for polycrystalline materials assuming the presence of inter-grain pathways as micro and nano-pore tubes. Fluid transport is usually observed in poly-phase material grains can also exhibit clear indications of multi-path migration even when visible evidence of such paths is lacking. Our study quantifies this process in the case of natural calcite at external standard conditions and be of potential importance in the artificial sequestration of CO2 under supercritical conditions.

Zuddas, P.; Lopez, O.; Salvi, S.

2009-12-01

30

Effects of chitosan on the alignment, morphology and shape of calcite crystals nucleating under Langmuir monolayers  

NASA Astrophysics Data System (ADS)

The mechanisms governing selective CaCO3 crystal nucleation in living organisms remain unclear. For example, nacreous layers from the inner surfaces of shells are built as brick-and-mortar complexes of plate-like aragonite single crystals and organic layers. Unstable [001] surfaces of calcite columns in prismatic layers are also stabilized by organic molecules. Biogenic calcite crystals show different morphologies compared to geological calcite minerals. Langmuir monolayers are used as structured templates in simulated biomineralization from CaCO3 supersaturated subphases. But pure or mixed Langmuir monolayers do not mimic the nucleation sites of aspartic-rich proteins found within real biominerals. It has previously been shown that there is organic-inorganic lattice relaxation in the cases of BaF2 and hydrocerussite (2PbCO3·Pb(OH) 2) nucleation under fatty (carboxylate) acid with preferred orientation of crystals, but no lattice match is observed during CaCO3 crystallization under fatty acid Langmuir monolayers. Overall, geometric influences such as structural match between the interfacial lattices and the interactions between monolayer headgroups and aqueous ions do not guarantee any well-defined orientation of CaCO3 crystallization. CaCO3 mineralization on self-assembled monolayers on metal and alloy substrates have achieved higher degrees of orientations, even though molecules in Langmuir monolayers are better ordered than in self-assembled monolayers. Until now, Langmuir monolayer experiments have emphasized only the function of the acidic proteins. To better mimic the real organic template, it is important to include the hydrophobic and polyelectrolyte characteristics of real organic templates in shells. The organic matrix in actual shells contains hydrophobic silk fibroin (which is hydrophobic) and polyelectrolytes. Some acidic proteins reside on the surface of silk fibroins. There is also semi-crystalline beta-chitin structure whose function has not been fully understood. To better simulate the biological system, chitosan was added to the aqueous subphase. The crystallization processes were monitored using in-situ Grazing incidence X-ray diffraction (GID). Scanning electron microscopy (SEM) was used to perform morphological studies on grown crystals. Dissolved chitosan causes distinct concentration-dependent changes in orientation, shape and morphology of the calcite crystals nucleating under acid and sulfate monolayers. Our results suggest that polyelectrolytes may play essential roles in controlling the growth of biogenic calcite crystals.

Kim, Kyungil

31

Patterns of distribution of calcite crystals in soft corals sclerites.  

PubMed

The gross morphology of soft coral surface sclerites has been studied for taxonomic purposes for over a century. In contrast, sclerites located deep in the core of colonies have not received attention. Some soft coral groups develop massive colonies, in these organisms tissue depth can limit light penetration and circulation of internal fluids affecting the physiology of coral tissues and their symbiotic algae; such conditions have the potential to create contrasting calcifying conditions. To test this idea, we analyzed the crystal structure of sclerites extracted from different colony regions in selected specimens of zooxanthellate and azooxanthellate soft corals with different colony morphologies, these were: Sarcophyton mililatensis, Sinularia capillosa, Sinularia flexibilis, Dendronephthya sp. and Ceeceenus levis. We found that the crystals that constitute polyp sclerites differ from those forming stalk sclerites. We also observed different crystals in sclerites located at various depths in the stalk including signs of sclerite breakdown in the stalk core region. These results indicate different modes of calcification within each colonial organism analyzed and illustrate the complexity of organisms usually regarded as repetitive morphological and functional units. Our study indicates that soft corals are ideal material to study natural gradients of calcification conditions. PMID:21433054

Tentori, Ernestina; van Ofwegen, Leen P

2011-05-01

32

Morphology of calcite crystals in clast coatings from four soils in the Mojave desert region  

NASA Technical Reports Server (NTRS)

Pedogenic calcite-crystal coatings on clasts were examined in four soils along an altitudinal gradient on Kyle Canyon alluvium in southern Nevada. Clast coatings were studied rather than matrix carbonate to avoid the effects of soil matrix on crystallization. Six crystal sizes and shapes were recognized and distinguished. Equant micrite was the dominant crystal form with similar abundance at all elevations. The distributions of five categories of spar and microspar appear to be influenced by altitudinally induced changes in effective moisture. In the drier, lower elevation soils, crystals were equant or parallel prismatic with irregular, interlocking boundaries while in the more moist, higher elevation soils they were randomly oriented, euhedral, prismatic, and fibrous. There was little support for the supposition that Mg(+2) substitution or increased (Mg + Ca)/HCO3 ratios in the precipitating solution produced crystal elongation.

Chadwick, Oliver A.; Sowers, Janet M.; Amundson, Ronald G.

1989-01-01

33

Calcite crystal growth inhibition by humic substances with emphasis on hydrophobic acids from the Florida Everglades  

NASA Astrophysics Data System (ADS)

The crystallization of calcium carbonate minerals plays an integral role in the water chemistry of terrestrial ecosystems. Humic substances, which are ubiquitous in natural waters, have been shown to reduce or inhibit calcite crystal growth in experiments. The purpose of this study is to quantify and understand the kinetic effects of hydrophobic organic acids isolated from the Florida Everglades and a fulvic acid from Lake Fryxell, Antarctica, on the crystal growth of calcite (CaCO 3). Highly reproducible calcite growth experiments were performed in a sealed reactor at constant pH, temperature, supersaturation (? = 4.5), P CO2 (10 -3.5atm), and ionic strength (0.1 M) with various concentrations of organic acids. Higher plant-derived aquatic hydrophobic acids from the Everglades were more effective growth inhibitors than microbially derived fulvic acid from Lake Fryxell. Organic acid aromaticity correlated strongly with growth inhibition. Molecular weight and heteroatom content correlated well with growth inhibition, whereas carboxyl content and aliphatic nature did not.

Hoch, A. R.; Reddy, M. M.; Aiken, G. R.

2000-01-01

34

Calcite crystal growth inhibition by humic substances with emphasis on hydrophobic acids from the Florida Everglades  

USGS Publications Warehouse

The crystallization of calcium carbonate minerals plays an integral role in the water chemistry of terrestrial ecosystems. Humic substances, which are ubiquitous in natural waters, have been shown to reduce or inhibit calcite crystal growth in experiments. The purpose of this study is to quantify and understand the kinetic effects of hydrophobic organic acids isolated from the Florida Everglades and a fulvic acid from Lake Fryxell, Antarctica, on the crystal growth of calcite (CaCO3). Highly reproducible calcite growth experiments were performed in a sealed reactor at constant pH, temperature, supersaturation (?? = 4.5), P(CO2) (10-3.5atm), and ionic strength (0.1 M) with various concentrations of organic acids. Higher plant-derived aquatic hydrophobic acids from the Everglades were more effective growth inhibitors than microbially derived fulvic acid from Lake Fryxell. Organic acid aromaticity correlated strongly with growth inhibition. Molecular weight and heteroatom content correlated well with growth inhibition, whereas carboxyl content and aliphatic nature did not. Copyright (C) 1999 Elsevier Science Ltd.

Hoch, A.R.; Reddy, M.M.; Aiken, G.R.

2000-01-01

35

In vitro calcite crystal morphology is modulated by otoconial proteins otolin-1 and otoconin-90.  

PubMed

Otoconia are formed embryonically and are instrumental in detecting linear acceleration and gravity. Degeneration and fragmentation of otoconia in elderly patients leads to imbalance resulting in higher frequency of falls that are positively correlated with the incidence of bone fractures and death. In this work we investigate the roles otoconial proteins Otolin-1 and Otoconin 90 (OC90) perform in the formation of otoconia. We demonstrate by rotary shadowing and atomic force microscopy (AFM) experiments that Otolin-1 forms homomeric protein complexes and self-assembled networks supporting the hypothesis that Otolin-1 serves as a scaffold protein of otoconia. Our calcium carbonate crystal growth data demonstrate that Otolin-1 and OC90 modulate in vitro calcite crystal morphology but neither protein is sufficient to produce the shape of otoconia. Coadministration of these proteins produces synergistic effects on crystal morphology that contribute to morphology resembling otoconia. PMID:24748133

Moreland, K Trent; Hong, Mina; Lu, Wenfu; Rowley, Christopher W; Ornitz, David M; De Yoreo, James J; Thalmann, Ruediger

2014-01-01

36

In Vitro Calcite Crystal Morphology Is Modulated by Otoconial Proteins Otolin-1 and Otoconin-90  

PubMed Central

Otoconia are formed embryonically and are instrumental in detecting linear acceleration and gravity. Degeneration and fragmentation of otoconia in elderly patients leads to imbalance resulting in higher frequency of falls that are positively correlated with the incidence of bone fractures and death. In this work we investigate the roles otoconial proteins Otolin-1 and Otoconin 90 (OC90) perform in the formation of otoconia. We demonstrate by rotary shadowing and atomic force microscopy (AFM) experiments that Otolin-1 forms homomeric protein complexes and self-assembled networks supporting the hypothesis that Otolin-1 serves as a scaffold protein of otoconia. Our calcium carbonate crystal growth data demonstrate that Otolin-1 and OC90 modulate in vitro calcite crystal morphology but neither protein is sufficient to produce the shape of otoconia. Coadministration of these proteins produces synergistic effects on crystal morphology that contribute to morphology resembling otoconia. PMID:24748133

Moreland, K. Trent; Hong, Mina; Lu, Wenfu; Rowley, Christopher W.; Ornitz, David M.; De Yoreo, James J.; Thalmann, Ruediger

2014-01-01

37

In vitro effects of recombinant Otoconin 90 upon calcite crystal growth. Significance of tertiary structure  

PubMed Central

Otoconia are biomineral particles of microscopic size essential for perception of gravity and maintenance of balance. Millions of older Americans are affected in their mobility, quality of life and in their health by progressive demineralization of otoconia. Currently, no effective means to prevent or counteract this process are available. Because of prohibitive anatomical and biological constraints, otoconial research is lagging far behind other systems such as bone and teeth. We have overcome these obstacles by generating otoconial matrix proteins by recombinant techniques. In the present study, we evaluated the effects of recombinant Otoconin 90 (OC90), the principal soluble matrix protein upon calcite crystal growth patterns in vitro. Our findings highlight multiple effects, including facilitation of nucleation, and inhibition of crystal growth in a concentration-dependent manner. Moreover, OC90 induces morphologic changes characteristic of native otoconia. OC90 is considerably less acidic than the prototypical invertebrate CaCO3 –associated protein, but is nevertheless an effective modulator of calcite crystal growth. Based on homology modeling of the sPLA2-like domains of OC90, we propose that the lower density of acidic residues of the primary sequence is compensated by formation of major anionic surface clusters upon folding into tertiary conformation. PMID:20595020

Lu, Wenfu; Zhou, Dan; Freeman, John J.; Thalmann, Isolde; Ornitz, David M.; Thalmann, Ruediger

2010-01-01

38

In vitro effects of recombinant otoconin 90 upon calcite crystal growth. Significance of tertiary structure.  

PubMed

Otoconia are biomineral particles of microscopic size essential for perception of gravity and maintenance of balance. Millions of older Americans are affected in their mobility, quality of life and in their health by progressive demineralization of otoconia. Currently, no effective means to prevent or counteract this process are available. Because of prohibitive anatomical and biological constraints, otoconial research is lagging far behind other systems such as bone and teeth. We have overcome these obstacles by generating otoconial matrix proteins by recombinant techniques. In the present study, we evaluated the effects of recombinant Otoconin 90 (OC90), the principal soluble matrix protein upon calcite crystal growth patterns in vitro. Our findings highlight multiple effects, including facilitation of nucleation, and inhibition of crystal growth in a concentration-dependent manner. Moreover, OC90 induces morphologic changes characteristic of native otoconia. OC90 is considerably less acidic than the prototypical invertebrate CaCO(3) -associated protein, but is nevertheless an effective modulator of calcite crystal growth. Based on homology modeling of the sPLA2-like domains of OC90, we propose that the lower density of acidic residues of the primary sequence is compensated by formation of major anionic surface clusters upon folding into tertiary conformation. PMID:20595020

Lu, Wenfu; Zhou, Dan; Freeman, John J; Thalmann, Isolde; Ornitz, David M; Thalmann, Ruediger

2010-09-01

39

A Chemical Model for the Cooperation of Sulfates and Carboxylates in Calcite Crystal Nucleation: Relevance to Biomineralization  

Microsoft Academic Search

Acidic matrix macromolecules involved in regulation of biological crystal growth often contain aspartic acid-rich domains and covalently bound sulfated polysaccharides. We propose that sulfates and beta -sheet structured carboxylates cooperate in oriented calcite crystal nucleation. The sulfates concentrate calcium, creating the supersaturation necessary for nucleation on the structured carboxylate domains. An artificial model, composed of sulfonated polystyrene surfaces and adsorbed

L. Addadi; J. Moradian; E. Shay; N. G. Maroudas; S. Weiner

1987-01-01

40

Effect of strontium contaminants upon the size and solubility of calcite crystals precipitated by the bacterial hydrolysis of urea.  

PubMed

The nucleation and growth of calcite precipitates induced by the bacterial hydrolysis of urea (ureolysis) from a Sr-contaminant inclusive, and a Sr-free artificial groundwater (AGW) mimicking the composition of the 90Sr contaminated Snake River Plain aquifer were investigated. Sr-free experiments exhibited a gradual increase in mean calcite crystal diameter (<1000 nm) from day (D) 1 to 6, while in the Sr-inclusive experiments, daily diameters were approximately constant from D1 to D6, and crystals were smaller (mean <840 nm). These data demonstrate a steady state had been attained early in the Sr-inclusive experiments from growth inhibition by Sr. Modeling of the crystal growth mechanisms on the USGS GALOPER software suggested crystal size distributions in the Sr-inclusive and Sr-free experiments were generated in the nucleation stage by a decreasing nucleation rate with surface-controlled growth, followed by supply-controlled and random growth. This occurred despite the availability of Ca2+ and HCO3-, implying crystal growth is limited bythe rate of solute advection to the crystal surface. Calculation of the solubility constant (In KsO(A)) demonstrates smaller crystals are more soluble, reflecting a higher molar surface area. The coprecipitation of Sr therefore generates smaller and thus more soluble crystals. However, this is unlikely to dramatically reduce the long-term effectiveness of Sr immobilization because when crystal growth had ceased in the Sr-inclusive AGW, > 99% of calcite precipitated and Sr coprecipitated occurred in large crystals with a low solubility. PMID:16509350

Mitchell, Andrew C; Ferris, F Grant

2006-02-01

41

Fibrous and helical calcite crystals induced by synthetic polypeptides containing o-phospho-L-serine and o-phospho-L-threonine.  

PubMed

The modification of CaCO(3) crystal growth by synthetic L-Ser(PO(3)H(2)) and L-Thr(PO(3)H(2)) containing polypeptides is described. The amino acids Gly, L-Glu, L-Asp, L-Ser, L-Ala, and L-Lys induced rhombohedral calcite with a rough surface. Dipeptides, Xaa-L-Ser(PO(3)H(2)) (Xaa = Gly, L-Glu, L-Asp, L-Ser, L-Ala and L-Lys) induced vaterite crystals in the lower [Ca(2+)]. On the other hand, L-Ser(PO(3)H(2))-containing polypeptides formed spherical vaterite and fibrous calcite. The characteristic helical calcite was found in the presence of copoly[L-Ser(PO(3)H(2))(75)L-Asp(25)] or poly[L-Ser(PO(3)H(2))(3)-L-Asp]. Fibrous calcite, spherical vaterite, and helical calcite crystals were subjected to XRD and EDX analysis. XRD revealed the specific faces of these crystals. EDX spectra and surface analysis visualized the localization of the polypeptides and CaCO(3) components. Together with TEM and SAED data, we propose hypothetical growth mechanisms for the fibrous and helical calcite crystals. PMID:17902188

Hayashi, Shinya; Ohkawa, Kousaku; Suwa, Yukie; Sugawara, Tetsunori; Asami, Takahiro; Yamamoto, Hiroyuki

2008-01-01

42

Controls on the precipitation of barite (BaSO 4) crystals in calcite travertine at Twitya Spring, a warm sulphur spring in Canada's Northwest Territories  

NASA Astrophysics Data System (ADS)

Twitya Spring discharges warm (24 °C), anoxic, sulphide-, calcium- (65 ppm) and barium- (? 0.78 ppm) rich spring water to a steep flow path that is inhabited by streamer and mat-forming microbes ( Thiothrix, Beggiatoa, Oscillatoria, Spirulina, diatoms, rod shaped bacteria). Oxidation and CO 2 degassing drive precipitation of elemental sulphur, barite, opaline silica, and calcite. A mound of travertine at the base of the flow path, dominantly composed of bedded barium-enriched crystallographic and noncrystallographic dendritic calcite crystals and calcite cements, hosts three types of barite crystals: type 1 (T1) intergrown tabular crystals that formed in solution, type 2 (T2) tabular and rhombic crystals that nucleated on calcite, and type 3 (T3) subhedral and anhedral microcrystals that nucleated on microbial cell surfaces and in microbial extracellular polymeric substances. The formation and distribution of T1, T2, and T3 barite in the Twitya Spring flow path are controlled by physiochemical gradients, calcite precipitation rates, and adsorption of barium to microbial biomass, all of which vary seasonally and episodically at Twitya Spring. The complex physiochemical and biological controls on barite formation at Twitya Spring both suggest that the classification of biogenic or inorganic sedimentary barite on the basis of crystal size and morphology may be oversimplified. There is also the potential that primary and authigenic barite crystals hosted in carbonates may yield information about the microbial ecology and ambient physiochemistry of their depositional environments.

Bonny, Sandy M.; Jones, Brian

2008-01-01

43

A Novel Acidic Matrix Protein, PfN44, Stabilizes Magnesium Calcite to Inhibit the Crystallization of Aragonite*  

PubMed Central

Magnesium is widely used to control calcium carbonate deposition in the shell of pearl oysters. Matrix proteins in the shell are responsible for nucleation and growth of calcium carbonate crystals. However, there is no direct evidence supporting a connection between matrix proteins and magnesium. Here, we identified a novel acidic matrix protein named PfN44 that affected aragonite formation in the shell of the pearl oyster Pinctada fucata. Using immunogold labeling assays, we found PfN44 in both the nacreous and prismatic layers. In shell repair, PfN44 was repressed, whereas other matrix proteins were up-regulated. Disturbing the function of PfN44 by RNAi led to the deposition of porous nacreous tablets with overgrowth of crystals in the nacreous layer. By in vitro circular dichroism spectra and fluorescence quenching, we found that PfN44 bound to both calcium and magnesium with a stronger affinity for magnesium. During in vitro calcium carbonate crystallization and calcification of amorphous calcium carbonate, PfN44 regulated the magnesium content of crystalline carbonate polymorphs and stabilized magnesium calcite to inhibit aragonite deposition. Taken together, our results suggested that by stabilizing magnesium calcite to inhibit aragonite deposition, PfN44 participated in P. fucata shell formation. These observations extend our understanding of the connections between matrix proteins and magnesium. PMID:24302723

Pan, Cong; Fang, Dong; Xu, Guangrui; Liang, Jian; Zhang, Guiyou; Wang, Hongzhong; Xie, Liping; Zhang, Rongqing

2014-01-01

44

Realisation of four-wave mixing phase matching for frequency components at intracavity stimulated Raman scattering in a calcite crystal  

SciTech Connect

The possibilities of implementing four-wave mixing (FWM) phase matching at stimulated Raman scattering (SRS) in a birefringent SRS-active crystal placed in a cavity with highly reflecting mirrors have been theoretically and experimentally investigated. Phase-matching angles providing conditions for five types of phase matching are determined for a calcite crystal. These types are characterised by different combinations of polarisation directions for the interacting waves and ensure FWM generation of either an anti-Stokes wave or the second Stokes SRS component. In agreement with the calculation results, low-threshold generation of the second Stokes SRS component with a wavelength 0.602 {mu}m was observed at angles of incidence on a calcite crystal of 4.8 Degree-Sign and 18.2 Degree-Sign , under SRS pumping at a wavelength of 0.532 {mu}m. This generation is due to the FWM coupling of the first and second Stokes SRS components with the SRS-pump wave. (nonlinear optical phenomena)

Smetanin, Sergei N; Fedin, Aleksandr V; Shurygin, Anton S

2013-06-30

45

Homoepitaxial meso- and microscale crystal co-orientation and organic matrix network structure in Mytilus edulis nacre and calcite.  

PubMed

New developments in high-resolution, low accelaration voltage electron backscatter diffraction (EBSD) enable us to resolve and quantify the co-orientation of nanocrystals constituting biological carbonate crystals with a scan step resolution of 125 nm. This allows the investigation of internal structures in carbonate tablets and tower biocrystals in the nacre of mollusc shells, and it provides details on the calcite-aragonite polymorph interface in bivalves. Within the aragonite tablets of Mytilus edulis nacre we find a mesoscale crystallographic mosaic structure with a misorientation distribution of 2° full width at half maximum. Selective etching techniques with critical point drying reveal an organic matrix network inside the nacre tablets. The size scales of the visible aragonite tablet subunits and nanoparticles correspond to those of the open pore system in the organic matrix network. We further observe by EBSD that crystal co-orientation spans over tablet boundaries and forms composite crystal units of up to 20 stacked co-oriented tablets (tower crystals). Statistical evaluation of the misorientation data gives a probability distribution of grain boundary misorientations with two maxima: a dominant peak for very-small-angle grain boundaries and a small maximum near 64°, the latter corresponding to {110} twinning orientations. However, the related twin boundaries are typically the membrane-lined {001} flat faces of the tablets and not {110} twin walls within tablets. We attribute this specific pattern of misorientation distribution to growth by particle accretion and subsequent semicoherent homoepitaxial crystallization. The semicoherent crystallization percolates between the tablets through mineral bridges and across matrix membranes surrounding the tablets. In the "prismatic" calcite layer crystallographic co-orientation of the prisms reaches over more than 50 micrometers. PMID:23896564

Griesshaber, Erika; Schmahl, Wolfgang W; Ubhi, Harbinder Singh; Huber, Julia; Nindiyasari, Fitriana; Maier, Bernd; Ziegler, Andreas

2013-12-01

46

High surface area calcite  

NASA Astrophysics Data System (ADS)

Calcite (CaCO3) is important in many fields—in nature, because it is a component of aquifers, oil reservoirs and prospective CO2 storage sites, and in industry, where it is used in products as diverse as paper, toothpaste, paint, plastic and aspirin. It is difficult to obtain high purity calcite with a high surface area but such material is necessary for industrial applications and for fundamental calcite research. Commercial powder is nearly always contaminated with growth inhibitors such as sugars, citrate or pectin and most laboratory synthesis methods deliver large precipitates, often containing vaterite or aragonite. To address this problem, we (i) adapted the method of carbonating a Ca(OH)2 slurry with CO2 gas to develop the first simple, cheap, safe and reproducible procedure using common laboratory equipment, to obtain calcite that reproducibly had a surface area of 14-17 m2/g and (ii) conducted a thorough characterization of the product. Scanning electron microscopy (SEM) revealed nanometer scale, rhombohedral crystals. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (IR) confirmed highly crystalline, pure calcite that more closely resembles the dimensions of the biogenic calcite produced by algae in coccoliths than other methods for synthesizing calcite. We suggest that this calcite is useful when purity and high surface area are important.

Schultz, L. N.; Andersson, M. P.; Dalby, K. N.; Müter, D.; Okhrimenko, D. V.; Fordsmand, H.; Stipp, S. L. S.

2013-05-01

47

Evolution and the Calcite Eye Lens  

E-print Network

Calcite is a uniaxial, birefringent crystal, which in its optically transparent form, has been used for animal eye lenses, the trilobite being one such animal. Because of the calcite birefringence there is a difficulty in using calcite as a lens. When the propagation direction of incoming light is not exactly on the c-axis, the mages blur. In this paper, calcite blurring is evaluated, and the non-blurring by a crystallin eye lens is compared to a calcite one.

Vernon L. Williams

2013-04-03

48

Production of Calcite (Calcium Carbonate) Crystals by Soil Bacteria is a General Phenomenon  

Microsoft Academic Search

CERTAIN bacteria form crystals from the solutes in their aqueous environment, and some authors have associated this activity with the extensive deposits of CaCO3 in such places as the Grand Bahama, in spite of the belief that physicochemical effects, such as rapid changes in pH, salinity and temperature, are responsible1-4. Drew5 isolated a denitrifying bacterium able to form CaCO3 crystals

E. Boquet; A. Boronat; A. Ramos-Cormenzana

1973-01-01

49

Calcite growth-rate inhibition by fulvic acids isolated from Big Soda Lake, Nevada, USA, The Suwannee River, Georgia, USA and by polycarboxylic acids  

USGS Publications Warehouse

Calcite crystallization rates are characterized using a constant solution composition at 25°C, pH=8.5, and calcite supersaturation (?) of 4.5 in the absence and presence of fulvic acids isolated from Big Soda Lake, Nevada (BSLFA), and a fulvic acid from the Suwannee River, Georgia (SRFA). Rates are also measured in the presence and absence of low-molar mass, aliphatic-alicyclic polycarboxylic acids (PCA). BSLFA inhibits calcite crystal-growth rates with increasing BSLFA concentration, suggesting that BSLFA adsorbs at growth sites on the calcite crystal surface. Calcite growth morphology in the presence of BSLFA differed from growth in its absence, supporting an adsorption mechanism of calcite-growth inhibition by BSLFA. Calcite growth-rate inhibition by BSLFA is consistent with a model indicating that polycarboxylic acid molecules present in BSLFA adsorb at growth sites on the calcite crystal surface. In contrast to published results for an unfractionated SRFA, there is dramatic calcite growth inhibition (at a concentration of 1 mg/L) by a SRFA fraction eluted by pH 5 solution from XAD-8 resin, indicating that calcite growth-rate inhibition is related to specific SRFA component fractions. A cyclic PCA, 1, 2, 3, 4, 5, 6-cyclohexane hexacarboxylic acid (CHXHCA) is a strong calcite growth-rate inhibitor at concentrations less than 0.1 mg/L. Two other cyclic PCAs, 1, 1 cyclopentanedicarboxylic acid (CPDCA) and 1, 1 cyclobutanedicarboxylic acid (CBDCA) with the carboxylic acid groups attached to the same ring carbon atom, have no effect on calcite growth rates up to concentrations of 10 mg/L. Organic matter ad-sorbed from the air onto the seed crystals has no effect on the measured calcite crystal-growth rates.

Reddy, Michael M.; Leenheer, Jerry

2011-01-01

50

Hydration of Cuphea seeds containing crystallized triacylglycerols  

Technology Transfer Automated Retrieval System (TEKTRAN)

Seeds that exhibit intermediate storage behavior do not appear to survive under conventional -18C storage conditions. Cuphea wrightii, C. laminuligera, C. carthagenensis, and C. aequipetala are considered sensitive to low temperature storage. The seeds of these species have triacylglycerols (TAG) ...

51

Bulk AlN crystal growth: self-seeding and seeding on 6H-SiC substrates  

Microsoft Academic Search

The properties of bulk AlN crystals grown by sublimation recondensation and either randomly nucleated (i.e. self-seeded) or seeded on 6H-SiC substrates or compared. Self-seeding produces crystals of the highest perfection, lowest stress, and low Si and C impurity content, but the crystals grow in random crystallographic orientations. Crystals grown in boron nitride crucibles typically form thin platelets with the fastest

J. H Edgar; L Liu; B Liu; D Zhuang; J Chaudhuri; M Kuball; S Rajasingam

2002-01-01

52

Puzzling calcite-III dimorphism: crystallography, high-pressure behavior, and pathway of single-crystal transitions  

NASA Astrophysics Data System (ADS)

High-pressure phase transformations between the polymorphic forms I, II, III, and IIIb of CaCO3 were investigated by analytical in situ high-pressure high-temperature experiments on oriented single-crystal samples. All experiments at non-ambient conditions were carried out by means of Raman scattering, X-ray, and synchrotron diffraction techniques using diamond-anvil cells in the pressure range up to 6.5 GPa. The composite-gasket resistive heating technique was applied for all high-pressure investigations at temperatures up to 550 K. High-pressure Raman spectra reveal distinguishable characteristic spectral differences located in the wave number range of external modes with the occurrence of band splitting and shoulders due to subtle symmetry changes. Constraints from in situ observations suggest a stability field of CaCO3-IIIb at relatively low temperatures adjacent to the calcite-II field. Isothermal compression of calcite provides the sequence from I to II, IIIb, and finally, III, with all transformations showing volume discontinuities. Re-transformation at decreasing pressure from III oversteps the stability field of IIIb and demonstrates the pathway of pressure changes to determine the transition sequence. Clausius-Clapeyron slopes of the phase boundary lines were determined as: ? P/? T = -2.79 ± 0.28 × 10-3 GPa K-1 (I-II); +1.87 ± 0.31 × 10-3 GPa K-1 (II/III); +4.01 ± 0.5 × 10-3 GPa K-1 (II/IIIb); -33.9 ± 0.4 × 10-3 GPa K-1 (IIIb/III). The triple point between phases II, IIIb, and III was determined by intersection and is located at 2.01(7) GPa/338(5) K. The pathway of transition from I over II to IIIb can be interpreted by displacement with small shear involved (by 2.9° on I/II and by 8.2° on II/IIIb). The former triad of calcite-I corresponds to the [20-1] direction in the P21/ c unit cell of phase II and to [101] in the pseudomonoclinic C setting of phase IIIb. Crystal structure investigations of triclinic CaCO3-III at non-ambient pressure-temperature conditions confirm the reported structure, and the small changes associated with the variation in P and T explain the broad stability of this structure with respect to variations in P and T. PVT equation of state parameters was determined from experimental data points in the range of 2.20-6.50 GPa at 298-405 K providing = 87.5(5.1) GPa, ( ?K T/ ?T) P = -0.21(0.23) GPa K-1, ? 0 = 0.8(21.4) × 10-5 K-1, and ? 1 = 1.0(3.7) × 10-7 K-1 using a second-order Birch-Murnaghan equation of state formalism.

Pippinger, T.; Miletich, R.; Merlini, M.; Lotti, P.; Schouwink, P.; Yagi, T.; Crichton, W. A.; Hanfland, M.

2015-01-01

53

Variations in the Sr/Ca, ?44Ca and ?18O composition of calcite as a function of solution chemistry and crystal growth rate  

NASA Astrophysics Data System (ADS)

The trace element and isotopic composition of calcite can be used to probe the temperatures and rates of mineral formation as well as the degree of post-mineralization alteration. The accuracy with which these effects can be interpreted is limited by our ability to distinguish signatures arising from equilibrium partitioning versus kinetic or mass transport effects. Our focus in this work is on mass transport effects in aqueous environments, and specifically, the growth rate-dependence of trace element and isotopic incorporation into calcite. This requires experiments in which the degree of supersaturation, or the solution chemistry, is held constant and the rate of crystal growth can be determined. In our experiments, N2+CO2 gas mixture is bubbled through a beaker containing 1300 mL of solution (30 mM CaCl2 + 5 mM NH4Cl + 0.1 mM SrCl2). The degree of supersaturation with respect to calcite is controlled by the pCO2 of the gas mixture, which is constantly replenished from a gas source. As CO2 from the gas dissolves into solution, calcite crystals grow on the beaker walls and the pH of the solution is maintained by use of an autotitrator with NaOH as the titrant. During an experiment we control the temperature, pH, the pCO2 of the gas inflow, and the gas inflow rate. At the same time we monitor the total alkalinity, the pCO2 of the gas outflow, the gas outflow rate, and the amount of NaOH added. The rate of calcite precipitation can be determined in three ways: (1) the change in total alkalinity due to Ca2+ removal, mass balance of C in the system, and (3) post-run measurement of [Ca2+] in aliquots of solution taken during an experiment. We present results from experiments where growth rates are estimated to range from 0.5 to 16 mmol/m2/hr. Our experiments thus far have yielded calcite crystals that are out of calcium and oxygen isotopic equilibrium with the parent solution. Crystals are enriched in the light isotope of Ca by 0.4 to 1.8‰. The light isotope enrichment increases with growth rate and is correlated with Sr/Ca in calcite. These results are in excellent agreement with the results of Tang et al. (2008) for crystals grown at 25°C and suggest that mass discrimination is controlled by mass transport kinetics at the mineral-solution interface. Oxygen isotopes are more complicated because of the addition of CO2 to the bulk solution. For crystals grown from our stock solution, the O composition is highly variable and not correlated with growth rate. We attribute this to relatively slow kinetics of O isotope exchange between gaseous or dissolved CO2 and water. For crystals grown in the presence of 0.01 grams of bovine carbonic anhydrase (CA), an enzyme which catalyzes the interconversion of CO2 and H2O to bicarbonate and protons, the O isotope composition of calcite appears to be independent of growth rate. Hence addition of CA to solution might offer a means of determining the equilibrium fractionation factor for oxygen isotopes in carbonate minerals. We will present results from additional experiments that test how CA and other organic molecules in solution affect the growth rate and mass discrimination during mineral precipitation.

Watkins, J. M.; DePaolo, D. J.; Ryerson, F. J.

2012-12-01

54

Multi-faceted, micron-scale trace element and isotopic investigation of magmatic apatite and calcite: valuable insights gained into melt crystallization processes  

NASA Astrophysics Data System (ADS)

Deciphering mantle sources and melt crystallization histories of igneous rocks based on whole rock isotopic and trace element data for primitive lavas can be rendered difficult since numerous, previous studies of carbonatite-bearing, alkaline complexes indicate isotopic disequilibrium amongst co-existing minerals. Consequently, we are conducting a multi-faceted study involving in-situ chemical (major and trace element) and isotopic (C, O, Sr, U-Pb) characterization of the dominant minerals (apatite, calcite) at the micron scale in the carbonatites and associated alkaline Si-undersaturated rocks (e.g. okaites) from the Oka carbonatite complex (Canada). Major element analyses reveal that apatite and calcite are both REE-enriched (total REEs >4 wt%), with REEs and SiO2 contents that correlate positively in apatite; this result supports the substitution scheme of REE3+ +Si4+=Ca2++P5+. Trace element abundances both within and amongst different samples exhibit a large variation, which cannot be reconciled by equilibrium or fractional crystallization modeling using available partition coefficient data. In-situ Sr isotope data obtained by laser ablation (LA)-MC-ICP-MS for calcite from one carbonatite yield extremely uniform compositions (0.70322-0.70339) along with similar REE contents. In contrast, Sr isotope data for calcite from one okaite yield variable 87Sr/86Sr values (0.70270 - 0.70303) and these correlate positively with their REE abundances. Individual calcite grains were analyzed for their ?18O and ?13C stable isotope compositions with values indicating a large range from 6.13 to 9.75 % and -5.10 to -6.81%, respectively. Once again, these values cannot be reconciled by simple, closed-system Rayleigh crystal fractionation. Thus, the combined isotope and trace element data obtained to date indicate a complex crystallization history that perhaps involves mixing of melts derived from isotopically (and chemically) distinct mantle sources. U-Pb dates obtained by LA-ICP-MS on individual apatite grains (total of 225 analyses) from 9 carbonatites and 4 okaites define a range in ages between ~111 and ~129 Ma; this result strongly suggests a protracted crystallization history. Moreover, apatites from one carbonatite sample define two distinct ages; an older age of 127.1±3.6 Ma is recorded in apatites found as inclusions within early-formed melanite crystals, whereas grains characterized by the younger age of 114.9±4.5 Ma are found within calcite. The distribution of all ages obtained for apatite from both carbonatite and okaite samples yield two peaks at ~113 and ~125 Ma and ~118 and ~127 Ma, respectively. Combined U-Pb ages and stable C and O isotope data from this preliminary data set indicate a possible correlation that may be related to melting of distinct mantle sources with decreasing time. To-date, our multi-faceted investigation of individual crystals/grains has documented for the first time a bimodal age distribution for the emplacement of the carbonatites and associated silicate rocks at the Oka carbonatite complex; these multiple partial melting events may be related to the involvement of distinct mantle sources.

Chen, W.; Simonetti, A.

2011-12-01

55

Crystallization of struvite from metastable region with different types of seed crystal  

NASA Astrophysics Data System (ADS)

The main feature of this paper was to recognize struvite crystallization in the metastable region of supersaturation. Thermodynamic equilibria of struvite were simulated to identify the minimum struvite solubility limit, thereafter validated by existing thermodynamic modelling packages such as PHREEQC and the derived data from existing struvite solubility curve. Using laser light scattering detection, spontaneous nucleation was identified by the slow increase of pH in a supersaturated solution of struvite. The crystallization experiment, conducted close to the saturation region in metastable zone, initiated struvite growth. The conducted experiment showed that mother crystal (struvite) was more effective as seeds for struvite crystallization.

Ali, Imtiaj; Schneider, Phil Andrew

2005-05-01

56

The Crystallization of Fluorapatite in the Presence of Hydroxyapatite Seeds and of Hydroxyapatite in the Presence of Fluorapatite Seeds  

Microsoft Academic Search

The kinetics of growth of crystals induced by hydroxyapatite (HAP) seed crystals in supersaturated solutions of fluorapatite and of fluorapatite (FAP) seed crystals in supersaturated solutions of hydroxyapatite have been studied using the constant composition method. The reactions were investigated at relative supersaturations ranging from ?FAP= 0.99 to 12.0 at pH 6.5 and for HAP, ?HAP= 3.6 to 12.6 at

Yue Liu; G. Sethuraman; Wenju Wu; G. H. Nancollas; M. Grynpas

1997-01-01

57

MASSIVE CELLULAR DISRUPTION OCCURS DURING EARLY IMBIBITION OF CUPHEA SEEDS CONTAINING CRYSTALLIZED TRIACYLGLYCEROLS  

Technology Transfer Automated Retrieval System (TEKTRAN)

The transition from anhydrobiotic to hydrated state occurs during early imbibition of seeds and is lethal if lipid reserves in seeds are crystalline. Lipids are crystallized by low temperatures used during seed storage. Here, we examine the nature of cellular damage observed in seeds of Cuphea wrig...

58

Elastic constants of calcite  

USGS Publications Warehouse

The recent measurements of the elastic constants of calcite by Reddy and Subrahmanyam (1960) disagree with the values obtained independently by Voigt (1910) and Bhimasenachar (1945). The present authors, using an ultrasonic pulse technique at 3 Mc and 25??C, determined the elastic constants of calcite using the exact equations governing the wave velocities in the single crystal. The results are C11=13.7, C33=8.11, C44=3.50, C12=4.82, C13=5.68, and C14=-2.00, in units of 1011 dyncm2. Independent checks of several of the elastic constants were made employing other directions and polarizations of the wave velocities. With the exception of C13, these values substantially agree with the data of Voigt and Bhimasenachar. ?? 1962 The American Institute of Physics.

Peselnick, L.; Robie, R.A.

1962-01-01

59

Crystallization of pumpkin seed globulin: growth and dissolution kinetics  

NASA Astrophysics Data System (ADS)

Quasi-elastic light scattering was used to investigate the nucleation and crystallization of pumpkin ( Cucurbita) seed globulin. The diameter of the pumpkin globulin monomer was measured to be ? 5-6 nm. The supersaturation dependence of critical nucleus size was obtained, and this allowed an estimate of the interfacial free energy to be ? ? 6.1 x 10 -2 erg/cm 2. The crystallization and dissolution kinetics were investigated for 4.9-16 mg/ml protein solutions containing 1-7% NaCl. The solubility data as a function of precipitant concentration and temperature were obtained and these will be utilized for optimization of the crystallization conditions for the pumpkin globulin.

Malkin, Alexander J.; McPherson, Alexander

1993-10-01

60

Isothermal Crystallization Kinetics of Mango (Mangifera indica) Almond Seed Fat  

NASA Astrophysics Data System (ADS)

In this study, the kinetics of isothermal crystallization of mango (Mangifera indica) almond seed fat var. Manila (MAF) was analyzed, within the theoretical context of the Sestak-Berggren model, the Avrami Equation and its modification by Khanna and Taylor. The results showed that the induction times for the formation of crystalline nuclei increased with the crystallization temperature (3.3 min at 8°C and 10.9 min at 12°C). The supercooling level notably influenced the MAF crystallization rate, since the global constant of crystallization rate, Z, grew 3.3 times from 12 to 8°C (for fractions of fat solids between 0.25 and 0.75, Z was 0.2904, 0.1584 and 0.0879 min-1 at 8, 10 and 12°C, respectively) and the Avrami parameter r was higher than 4; this demonstrates the effect of fat system complexity due to its multi-component nature and the heterogeneous character of this crystallization process, which includes additional participation of nucleation sites. The modified model by Khanna and Taylor provided better parametral values than the other two studied for explaining MAF crystallization kinetic.

Solis-Fuentes, J. A.; Hernandez-Medel, M. R.; Duran-de-Bazua, M. C.

61

Modification of calcite crystal morphology by designed phosphopeptides and primary structures and substrate specifities of the cysteine proteases mexicain and chymomexicain  

NASA Astrophysics Data System (ADS)

In order to better understand the mechanism of biomineralization, we have undertaken to synthesize polypeptide model compounds of well-defined structure that can interact with specific faces of calcite and alter its crystal morphology. These peptides were designed based on the structure of alpha-helical winter flounder antifreeze polypeptide HPLC-6. In these peptides, from one to three of the threonine residues in HPLC-6 were substituted by phosphoserine or phosphotyrosine. CD spectra show that all the peptides have virtually the same alpha-helicity, i.e., about 90% at 4°C and 50% at 25°C. However, only peptides which contain at least two phosphate groups spaced 16.8-A apart can modify the crystal morphology of the calcite. The newly developed surface has been tentatively identified as the (001) basal face. Molecular modeling indicates that the spacing of phosphate groups allows for a good match with crystal lattice ions on the (001) plane. Another peptide, CBP-3D, in which the three threonine residues in HPLC-6 were substituted by aspartic acids, appears to bind only to {104} rhombohedral faces of calcite. These experiments suggest that conformation and orientation of the binding ligands in the peptide are important factors governing the mutual recognition of crystal surface and proteins. The complete amino acid sequences of the cysteine proteases mexicain and chymomexicain, isolated from the latex of the plant Pileus mexicanus , were determined by Edman degradation of proteolytic fragments. Mexicain and chymomexicain show-high sequence homology to the papain family of cysteine protease. Mexicain and chymomexicain are monomeric polypeptides, with molecular masses of 23,762 Da and 23,694 Da, respectively, and both contain three deduced disulfide bonds. The proteolytic substrate specificities of mexicain and chymomexicain were studied by digesting a series of synthetic peptides and analyzing the fragments by mass spectrometry. The two proteases showed virtually the same substrate specificity, having a rather broad specificity, but with some preference for Val, Thr, Phe, Tyr and Leu at the P2 position. However, they do not appear to cleave peptide bonds where P2 is Lys, Arg or Ile. Their computated 3-dimensional structures were found to be nearly identical to papain and related proteins by homology modeling.

Lian, Zhirui

62

The grinding tip of the sea urchin tooth exhibits exquisite control over calcite crystal orientation and Mg distribution  

PubMed Central

The sea urchin tooth is a remarkable grinding tool. Even though the tooth is composed almost entirely of calcite, it is used to grind holes into a rocky substrate itself often composed of calcite. Here, we use 3 complementary high-resolution tools to probe aspects of the structure of the grinding tip: X-ray photoelectron emission spectromicroscopy (X-PEEM), X-ray microdiffraction, and NanoSIMS. We confirm that the needles and plates are aligned and show here that even the high Mg polycrystalline matrix constituents are aligned with the other 2 structural elements when imaged at 20-nm resolution. Furthermore, we show that the entire tooth is composed of 2 cooriented polycrystalline blocks that differ in their orientations by only a few degrees. A unique feature of the grinding tip is that the structural elements from each coaligned block interdigitate. This interdigitation may influence the fracture process by creating a corrugated grinding surface. We also show that the overall Mg content of the tooth structural elements increases toward the grinding tip. This probably contributes to the increasing hardness of the tooth from the periphery to the tip. Clearly the formation of the tooth, and the tooth tip in particular, is amazingly well controlled. The improved understanding of these structural features could lead to the design of better mechanical grinding and cutting tools. PMID:19332795

Ma, Yurong; Aichmayer, Barbara; Paris, Oskar; Fratzl, Peter; Meibom, Anders; Metzler, Rebecca A.; Politi, Yael; Addadi, Lia; Gilbert, P. U. P. A.; Weiner, Steve

2009-01-01

63

The role of silicate surfaces on calcite precipitation kinetics  

NASA Astrophysics Data System (ADS)

The aim of this study is to illuminate how calcite precipitation depends on the identity and structure of the growth substrate. Calcite was precipitated at 25 °C from supersaturated aqueous solutions in the presence of seeds of either calcite or one of six silicate materials: augite, enstatite, labradorite, olivine, basaltic glass and peridotite rock. Calcite saturation was achieved by mixing a CaCl2-rich aqueous solution with a NaHCO3-Na2CO3 aqueous buffer in mixed-flow reactors containing 0.5-2 g of mineral, rock, or glass seeds. This led to an inlet fluid calcite saturation index of 0.6 and a pH equal to 9.1. Although the inlet fluid composition, flow rate, and temperature were identical for all experiments, the onset of calcite precipitation depended on the identity of the seeds present in the reactor. Calcite precipitated instantaneously and at a constant rate in the presence of calcite grains. Calcite precipitated relatively rapidly on labradorite, olivine, enstatite, and peridotite (mainly composed of Mg-olivine) surfaces, but more slowly on augite and basaltic glass. Calcite precipitation rates, however, became independent of substrate identity and mass over time, and all rates approach 10-9.68 ± 0.08 mol/s for ?10 day long experiments and 10-9.21 ± 0.2 mol/s for ?70 day long experiments. Scanning Electron Microscope images showed olivine, enstatite and peridotite surfaces to be covered extensively with calcite coatings at the end of the experiments. Less calcite was found on labradorite and augite, and the least on basaltic glass. In all cases, calcite precipitation occurs on the mineral, rock or glass surfaces. Calcite precipitation on these surfaces, however, negligibly affects the dissolution rates of the silicate grains. These results support ultramafic and basalt carbonation as a long-term carbon storage strategy, as calcite readily precipitates on the surfaces of minerals contained in these rocks without inhibiting their dissolution.

Stockmann, Gabrielle J.; Wolff-Boenisch, Domenik; Bovet, Nicolas; Gislason, Sigurdur R.; Oelkers, Eric H.

2014-06-01

64

Large single domain 123 material produced by seeding with single crystal rare earth barium copper oxide single crystals  

DOEpatents

A method of fabricating bulk YBa.sub.2 Cu.sub.3 O.sub.x where compressed powder oxides and/or carbonates of Y and Ba and Cu present in mole ratios to form YBa.sub.2 Cu.sub.3 O.sub.x are heated in the presence of a Nd.sub.1+x Ba.sub.2-x Cu.sub.3 O.sub.y seed crystal to a temperature sufficient to form a liquid phase in the YBa.sub.2 Cu.sub.3 O.sub.x while maintaining the seed crystal solid. The materials are slowly cooled to provide a YBa.sub.2 Cu.sub.3 O.sub.x material having a predetermined number of domains between 1 and 5. Crack-free single domain materials can be formed using either plate shaped seed crystals or cube shaped seed crystals with a pedestal of preferential orientation material.

Todt, Volker (Lemont, IL); Miller, Dean J. (Darien, IL); Shi, Donglu (Oak Park, OH); Sengupta, Suvankar (Columbus, OH)

1998-01-01

65

Well-defined star-shaped calcite crystals formed in agarose gels Dong Yang, Limin Qi* and Jiming Ma  

E-print Network

such as chitosan/chitin have been used in combination with soluble acidic macromolecules to induce thin in the CaCO3 crystal growth.12 Agarose is a linear polysaccharide extracted from marine red algae

Qi, Limin

66

Fracture-aperture alteration induced by calcite precipitation  

NASA Astrophysics Data System (ADS)

Mineral precipitation significantly alters the transport properties of fractured rock. Chemical solubility gradients that favor precipitation induce mineral growth, which decreases the local aperture and alters preferential flow paths. Understanding the resulting development of spatial heterogeneities is necessary to predict the evolution of transport properties in the subsurface. We present experimental results that quantify the relationship between mineral precipitation and aperture alteration in a transparent analog fracture, 7.62cm x 7.62cm, with a uniform aperture of ~200 ?m. Prior to flow experiments, a pump circulated a super-saturated calcite solution over the bottom glass, coating the glass surface with calcite. This method of seeding resulted in clusters of calcite crystals with large reactive surface area and provided micro-scale variability in the aperture field. A continuous flow syringe pump injected a reactive fluid into the fracture at 0.5 ml/min. The fluid was a mixture of sodium bicarbonate (NaHCO3, 0.02M) and calcium chloride (CaCl2 0.0004M) with a saturation index, ?, of 8.51 with respect to calcite. A strobed LED panel backlit the fracture and a high-resolution CCD camera monitored changes in transmitted light intensity. Light transmission techniques provided a quantitative measurement of fracture aperture over the flow field. Results from these preliminary experiments showed growth near the inlet of the fracture, with decreasing precipitation rates in the flow direction. Over a period of two weeks, the fracture aperture decreased by 17% within the first 4mm of the inlet. Newly precipitated calcite bridged individual crystal clusters and smoothed the reacting surface. This observation is an interesting contradiction to the expectation of surface roughening induced by mineral growth. Additionally, the aperture decreased uniformly across the width of the fracture due to the initial aperture distribution. Future experiments of precipitation within variable-aperture fields will investigate the dependency of growth patterns on heterogeneous aperture distributions. (a) Aperture strain (?b/bi) after 14 days. Precipitation is concentrated near the inlet and decreases in the flow direction. (b) Width-averaged profiles of the initial and final aperture field show changes in aperture and smoothing that results from calcite precipitation between the initial discrete crystals.

Jones, T.; Detwiler, R. L.

2013-12-01

67

Ammonothermal growth of GaN on a self-nucleated GaN seed crystal  

NASA Astrophysics Data System (ADS)

We performed ammonothermal synthesis of a self-nucleated GaN seed and grew crystalline GaN on the seed in the presence of an NH4F-based mineralizer. Our results suggest that spontaneously nucleated, high-quality GaN crystals can be obtained by recrystallization of polycrystalline hydride vapor phase epitaxy (HVPE) GaN under acidic ammonothermal conditions. We achieved average growth speeds of up to 410 and 465 ?m/day on the c- and m-directions, respectively, after four consecutive crystal growths of GaN on a self-nucleated seed. GaN crystals grown on an HVPE seed and on a self-nucleated seed had comparable crystal quality, judged from room-temperature photoluminescence measurements.

Bao, Quanxi; Saito, Makoto; Hazu, Kouji; Kagamitani, Yuji; Kurimoto, Kouhei; Tomida, Daisuke; Qiao, Kun; Ishiguro, Tohru; Yokoyama, Chiaki; Chichibu, Shigefusa F.

2014-10-01

68

Zinc isotope fractionation during adsorption on calcite  

NASA Astrophysics Data System (ADS)

Zinc is an important element as a nutrient in the marine biosphere. However, our understanding of its biogeochemical cycling in the oceans is relatively limited. The Zn stable isotope system holds the promise of providing novel insights, since published Zn isotopic values for various natural samples reveal significant fractionations in the marine environment. Surface seawater, basalts, shales, deep-sea clay sediments, sediment trap material, bulk plankton and zooplankton samples, and eolian dust fall within a tight range (?66/64Zn from -0.1 to 0.5‰), but modern ferromanganese crusts (?66/64Zn from 0.5 to 1.2‰), as well as carbonates (?66/64Zn from 0.3 to 1.4‰), are notably enriched in heavy Zn isotopes [1-4]. In this study we seek to constrain the mechanism by which carbonates are enriched in heavier isotopes. In particular, we have conducted experiments to quantify isotope fractionation during adsorption of Zn onto the surfaces of calcite crystals that are in equilibrium with solution. The adsorption experiments were carried out in a series of small-volume batch reactions in a clean laboratory environment, using high-purity reagents and calcite seed crystals. The calcite was equilibrated with the solution prior to addition of Zn at atmospheric CO2 pressure (i.e., in air) for 5 days until a stable pH of 8.3 was reached. Later, a small aliquot of dissolved ZnCl2 was added such that the solution remained undersaturated with respect to hydrozincite. Experimental duration varied among the replicates from 6 to 144 hours, and then all solids and solutions were separated by filtration, purified by ion exchange chromatography, and analyzed by MC-ICP-MS. Zn adsorbed on calcite is isotopically heavier than in the co-existing solutions, with ?68/66Zncalcite-solution of approximately 0.3‰. The variation of ?68/66Zncalcite-solution beyond 24 hours is insignificant, so we infer that isotopic equilibrium is reached by this time. Previous work strongly suggests that a difference in coordination number between dissolved Zn and adsorbed Zn is drives the observed fractionation. Elzinga and Reeder[5] determined using EXAFS (Extended X-ray Absorption Fine Structure) that Zn adsorbed to calcite surfaces is tetrahedrally coordinated, sharing three oxygens with the calcite surface. Meanwhile density functional theory calculations[6] predicted that tetrahedral Zn-O species should be heavier than octahedral Zn-O species. Thus we infer that equilibrium between octahedrally coordinated, dissolved Zn and tetrahedrally coordinated, adsorbed Zn is the mechanism of fractionation in our experiments. Our further studies will determine whether the isotopically heavy pool of adsorbed Zn becomes the Zn incorporated within carbonates; if so, then we are closer to understanding the mechanism by which carbonate rocks in nature are enriched in heavier isotopes of zinc. [1] Bermin et al., 2006, Chem. Geol. 226, 280. [2] Maréchal et al., 2000, Geochem. Geophys. Geosyst. 1, 1999GC-000029. [3] Dong et al., 2013, Talanta 114, 103-109. [4] Pichat et al., 2003, Earth Planet. Sci. Lett. 210, 167-178. [5] Elzinga and Reeder, 2002, Geochim. Cosmochim. Acta 66, 3943-3954. [6] Schauble, 2003, EOS, Trans. AGU, Fall Meet. Suppl. 84(46), B12B-0781.

Dong, S.; Wasylenki, L. E.

2013-12-01

69

Bulk AlN crystal growth: self-seeding and seeding on 6H-SiC substrates  

NASA Astrophysics Data System (ADS)

The properties of bulk AlN crystals grown by sublimation recondensation and either randomly nucleated (i.e. self-seeded) or seeded on 6H-SiC substrates or compared. Self-seeding produces crystals of the highest perfection, lowest stress, and low Si and C impurity content, but the crystals grow in random crystallographic orientations. Crystals grown in boron nitride crucibles typically form thin platelets with the fastest growth occurring in the c-axis direction. Growth striations run the length of the crystals in the c-axis direction. Anisotropic etching in aqueous 45 wt% KOH solutions shows that the growth (0 0 0 1) planes exposed to the AlN source predominately have an aluminum polarity. AlN crystals seeded on 6H-SiC(0 0 0 1) have a single crystallographic orientation and the largest dimensions are perpendicular to the c-axis, determined by the size of the substrate. Cracking and voids in the AlN layer produced by differences in thermal expansion coefficients of AlN and SiC and decomposition of the SiC were ameliorated by depositing an AlN-SiC alloy layer on the SiC before growing the AlN layer. Raman spectroscopy measurements suggest the AlN and AlN-SiC alloy layer are both under tensile stress. The defect density in AlN crystals grown on composite AlN-SiC/6H-SiC substrates was 3.7×10 5 cm -2, as determined by synchrotron white beam X-ray topography.

Edgar, J. H.; Liu, L.; Liu, B.; Zhuang, D.; Chaudhuri, J.; Kuball, M.; Rajasingam, S.

2002-12-01

70

Unidirectional seeded single crystal growth from solution of benzophenone  

Microsoft Academic Search

A novel crystal growth method has been established for the growth of single crystal with selective orientation at room temperature. Using volatile solvent, the saturated solution containing the material to be crystallized was taken in an ampoule and allowed to crystallize by slow solvent evaporation assisted with a ring heater. The orientation of the growing crystal was imposed by means

K. Sankaranarayanan; P. Ramasamy

2005-01-01

71

Influence of calcium oxalate crystal accumulation on the calcium content of seeds from Medicago truncatula  

Technology Transfer Automated Retrieval System (TEKTRAN)

Crystals of calcium oxalate often form in cells adjacent to the vascular bundles in the tissues along the xylem stream. This spatial crystal pattern suggests a role for calcium oxalate formation in regulating calcium transport and partitioning to edible organs such as seeds. To investigate this pote...

72

Large single domain 123 material produced by seeding with single crystal rare earth barium copper oxide single crystals  

DOEpatents

A method of fabricating bulk YBa{sub 2}Cu{sub 3}O{sub x} where compressed powder oxides and/or carbonates of Y and Ba and Cu present in mole ratios to form YBa{sub 2}Cu{sub 3}O{sub x} are heated in the presence of a Nd{sub 1+x}Ba{sub 2{minus}x}Cu{sub 3}O{sub y} seed crystal to a temperature sufficient to form a liquid phase in the YBa{sub 2}Cu{sub 3}O{sub x} while maintaining the seed crystal solid. The materials are slowly cooled to provide a YBa{sub 2}Cu{sub 3}O{sub x} material having a predetermined number of domains between 1 and 5. Crack-free single domain materials can be formed using either plate shaped seed crystals or cube shaped seed crystals with a pedestal of preferential orientation material. 7 figs.

Todt, V.; Miller, D.J.; Shi, D.; Sengupta, S.

1998-07-07

73

Liquid crystal seed nucleates liquid-solid phase change in ceria nanoparticles.  

PubMed

Molecular dynamics (MD) simulation was used to explore the liquid-solid (crystal) phase change of a ceria nanoparticle. The simulations reveal that the crystalline seed, which spontaneously evolves and nucleates crystallisation, is a liquid rather than a solid. Evidence supporting this concept includes: (a) only 3% of the total latent heat of solidification had been liberated after 25% of the nanoparticle had (visibly) crystallised. (b) Cerium ions, comprising the (liquid) crystal seed had the same mobility as cerium ions comprising the amorphous regions. (c) Cerium ion mobility only started to reduce (indicative of solidification) after 25% of the nanoparticle had crystallised. (d) Calculated radial distribution functions (RDF) revealed no long-range structure when 25% of the nanoparticle had (visibly) crystallised. We present evidence that the concept of a liquid crystal seed is more general phenomenon rather than applicable only to nanoceria. PMID:25578038

Sayle, Thi X T; Sayle, Lewis W L; Sayle, Dean C

2015-01-28

74

Molecular Structure of Calcite  

NSDL National Science Digital Library

Calcite is an essential mineral in limestone and marble which are used in the building, steel, chemical, and glass industries. It is found in abundance on the earth. Calcite was first produced in translucent ("Iceland Spar") form in the seventeenth century for optical uses. In 1928, William Nicol used it for Polaroid Sunglasses in an effort to deflect the sunlight. Today, calcite has a large number of uses: optical and crystallography research; as a component of animal feed, antacids, statues, and dough strengthener; in the production of paper and photography; and to make mortar, cement, concrete and asphalt.

2002-08-14

75

PRIMARY CALCITE Cfluid << Csolid ~  

E-print Network

to foraminfer nannofossil ooze nannofossil chalk to foraminfer nannofossil chalk nannofossil chalk to foraminfer nannofossil chalk Determinng the fractionation factor between Ca in calcite and Ca in solu- tion is important

Fantle, Matthew

76

Paleotransport of lanthanides and strontium recorded in calcite compositions from tuffs at Yucca Mountain, Nevada, USA  

Microsoft Academic Search

Secondary calcite occurs in both saturated and unsaturated hydrologic zones (SZ and UZ, respectively) in the tuffs at Yucca Mountain, Nevada, USA. In the upper UZ, the major constituents of the calcite crystal structure (C, O) have surface origins. At greater depth there is a “barren zone,” straddling the water table, where calcite is rare and mixing of surface and

David T. Vaniman; Steve J. Chipera

1996-01-01

77

Growth of GaN:Mg crystals by high nitrogen pressure solution method in multi-feed-seed configuration  

NASA Astrophysics Data System (ADS)

Crystallization of GaN by High Nitrogen Pressure Solution method in multi-feed-seed (MFS) configuration without intentional doping [1] results in: (1) Growth of strongly n-type crystals with free electron concentration increasing with growth temperature in ranges of 2-6×1019 cm-3 and 1350-1430 °C, (2) stable growth on Ga-polar surface and unstable growth on N-polar surface, crystals slightly brown, (3) improvement of (0001) crystallographic planes curvature (flattening) with respect to bowing of these planes in the seed crystals. The addition of magnesium into the growth solution causes strong compensation of free electrons in the crystals. Therefore, highly resistive GaN crystals can be grown. In this work, the crystallization of Mg doped GaN on flat ?1 in. seeds (substrates) grown by HVPE in MFS configuration has been studied. It is shown that: (1) Highly resistive GaN:Mg crystals with resistivity higher than 107 ? cm were grown, (2) the growth is stable on N-polar surfaces of the seeds whereas it is unstable on the Ga-polar surfaces, which is opposite to the HNPS growth of the n-type crystals. The GaN:Mg crystals are fully transparent with no visible color, (3) shape of (0001) crystallographic planes improves (flattens) with respect to bowing of these planes in the seed crystals (HVPE substrates).

Grzegory, I.; Bo?kowski, M.; ?ucznik, B.; Weyher, J.; Litwin-Staszewska, E.; Konczewicz, L.; Sadovyi, B.; Nowakowski, P.; Porowski, S.

2012-07-01

78

Controls on the precipitation of barite (BaSO 4) crystals in calcite travertine at Twitya Spring, a warm sulphur spring in Canada's Northwest Territories  

Microsoft Academic Search

Twitya Spring discharges warm (24 °C), anoxic, sulphide-, calcium- (65 ppm) and barium- (?0.78 ppm) rich spring water to a steep flow path that is inhabited by streamer and mat-forming microbes (Thiothrix, Beggiatoa, Oscillatoria, Spirulina, diatoms, rod shaped bacteria). Oxidation and CO2 degassing drive precipitation of elemental sulphur, barite, opaline silica, and calcite. A mound of travertine at the base of the flow

Sandy M. Bonny; Brian Jones

2008-01-01

79

Catalytic Biomineralization of Fluorescent Calcite by the Thermophilic Bacterium Geobacillus thermoglucosidasius?  

PubMed Central

The thermophilic Geobacillus bacterium catalyzed the formation of 100-?m hexagonal crystals at 60°C in a hydrogel containing sodium acetate, calcium chloride, and magnesium sulfate. Under fluorescence microscopy, crystals fluoresced upon excitation at 365 ± 5, 480 ± 20, or 545 ± 15 nm. X-ray diffraction indicated that the crystals were magnesium-calcite in calcite-type calcium carbonate. PMID:20851984

Yoshida, Naoto; Higashimura, Eiji; Saeki, Yuichi

2010-01-01

80

Catalytic biomineralization of fluorescent calcite by the thermophilic bacterium Geobacillus thermoglucosidasius.  

PubMed

The thermophilic Geobacillus bacterium catalyzed the formation of 100-?m hexagonal crystals at 60°C in a hydrogel containing sodium acetate, calcium chloride, and magnesium sulfate. Under fluorescence microscopy, crystals fluoresced upon excitation at 365 ± 5, 480 ± 20, or 545 ± 15 nm. X-ray diffraction indicated that the crystals were magnesium-calcite in calcite-type calcium carbonate. PMID:20851984

Yoshida, Naoto; Higashimura, Eiji; Saeki, Yuichi

2010-11-01

81

Top-seeded solution growth of CLBO crystals  

NASA Astrophysics Data System (ADS)

CsLiB6O10 (CLBO) is a highly promising nonlinear optical material. However, its application is limited due to the difficulties in producing optically uniform CLBO crystals. High viscosity of Cs2O-Li2O-B2O3 melt retards both natural and forced convection in the melt. With the goal to improve the heat and mass transfer in the melt, the study of crystallization in the Cs2O-Li2O- B2O3-MoO3 system was carried out. The CLBO crystals 60 X 40 X 20 mm in size grown using LiCsMoO4 as a solvent were found to be free of cracks, bubbles, and inclusions. Nonlinear optical parameters and physical properties of those crystals turned out to be similar to those reported before. Mohs' hardness is 5.5, transparency window ranges from 0.18 to 2.7 micrometers , nonlinear coefficient is 1 pm/V, angular and spectral bandwidth of synchronism are 0.5 mrad-m and 0.1 nm-cm. The walk-off angle is 2 degree(s) at 0.53 micrometers . The nonlinear optical elements for the 4th harmonic of Nd:YAG laser were fabricated and tested.

Pylneva, Ninel A.; Kononova, Nadegda G.; Yurkin, Alexander M.; Kokh, Alexandr E.; Bazarova, Gibzema G.; Danilov, Victor I.; Lisova, Irina A.; Tsirkina, Natalia L.

1999-05-01

82

GaN crystallization by the high-pressure solution growth method on HVPE bulk seed  

NASA Astrophysics Data System (ADS)

Recent results of the bulk GaN crystallization by the high-pressure solution (HPS) growth method are presented. The new experimental configurations for seeded growth on HVPE free-standing GaN crystals are proposed. The growth rate, morphology and basic physical properties of the pressure-grown materials are reported. The finite element calculation is used for modeling the convective transport in the solution. The convectional flow velocity vectors in liquid gallium are determined from experimentally measured temperatures and by solving the set of Navier-Stokes equations.

Bockowski, M.; Strak, P.; Grzegory, I.; Lucznik, B.; Porowski, S.

2008-08-01

83

Y3Fe5O12 single-crystal growth by top seeded solution growth method  

Microsoft Academic Search

Single crystals of yttrium iron garnet have been grown by the top seeded solution growth (TSSG) method with Fe2O3 as the solvent. The starting materials consist of 79%–82% Fe2O3 and 21%–18% Y2O3. Crystals of approximately 38×35×8 mm in size and about 12 g in weight were obtained. The ferromagnetic resonance, magnetization, Ne´el temperature, and Mo¨ssbauer measurements, and the etch-pattern observation

Kunihiko Oka; Hiromi Unoki

1984-01-01

84

?-Linolenic acid enrichment from Borago officinalis and Echium fastuosum seed oils and fatty acids by low temperature crystallization  

Microsoft Academic Search

Solvent winterization of seed oil and free fatty acids (FFAs) was employed to obtain ?-linolenic acid (GLA; 18:3?6) concentrates from seed oils of two Boraginaceae species, Echium fastuosum and Borago officinalis. Different solutions of seed oils and FFAs from these two oils at 10%, 20% and 40% (w\\/w) were crystallized at 4°C, ?24°C and ?70°C, respectively, using hexane, acetone, diethyl

Juan Carlos López-Martínez; Pablo Campra-Madrid; José Luis Guil-Guerrero

2004-01-01

85

Enhanced crystallization of amorphous silicon thin films by nano-crystallite seeding  

NASA Astrophysics Data System (ADS)

Polycrystalline silicon (poly-Si) has become popular in recent years as a candidate for low cost, high efficiency thin film solar cells. The possibility to combine the stability against light degradation and electronic properties approaching melt-grown, wafer-based crystallline silicon, with the cost advantage of Silicon thin films is highly attractive. To fully realize this goal, efforts have been focused on maximizing grain size while reducing the thermal input involved in a critical ``annealing'' step. Of the variety of processes involved in this effort, studies have shown that poly-Si films obtained from solid-phase-crystallization (SPC) of hydrogenated amorphous silicon (a-Si:H), grown from non-thermal plasma-enhanced chemical vapor deposition (PECVD), exhibit the potential to achieve the highest quality grain structures. However, reproducible control of grain size has proven difficult, with larger grains typically requiring longer annealing times. In this work, a novel technique is demonstrated for more effectively controlling the final grain structure of SPC-processed films while simultaneously reducing annealing times. The process utilized involves SPC of a-Si:H thin films containing embedded nanocrystallites, intended to serve as predetermined grain-growth sites, or grain-growth ``seeds'', during the annealing process. Films were produced by PECVD with a system in which two plasmas were operated to produce crystallites and amorphous films separately. This approach allows crystallite synthesis conditions to be tuned independently from a-Si:H film synthesis conditions, providing a large parameter space available for process optimization, including the effects of particle size, shape, quantity, and location within the film. The work contained here-in outlines the effects of select parameters on the both grain size control and thermal budget. Reproducible control of both grain size and crystallization rate were demonstrated through varying initial seed crystal concentrations. Significant reductions in annealing times were demonstrated to occur in seeded films relative to unseeded films, with both seed crystal concentration and seed crystal geometry demonstrating significant effects on crystallization rate. Furthermore, the development of this technique has resulted in potentially new insights on the material system involved, with the observation of a potentially unique phase-transformation mechanism.

Trask, Jason

86

Seed crystals with improved properties for melt processing superconductors for practical applications  

DOEpatents

A method of fabricating bulk superconducting material is disclosed including RBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} comprising heating compressed powder oxides and/or carbonates of R and Ba and Cu present in mole ratios to form RBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} in physical contact with an oxide single crystal seed to a temperature sufficient to form a liquid phase in the RBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} while maintaining the single crystal seed solid to grow the superconducting material and thereafter cooling to provide a material including RBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}}. R is a rare earth or Y or La and the single crystal seed has a lattice mismatch with RBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} of less than about 2% at the growth temperature. The starting material may be such that the final product contains a minor amount of R{sub 2}BaCuO{sub 5}.

Veal, B.W.; Paulikas, A.; Balachandran, U.; Zhong, W.

1997-03-18

87

Seed crystals with improved properties for melt processing superconductors for practical applications  

DOEpatents

A method of fabricating bulk superconducting material including RBa.sub.2 Cu.sub.3 O.sub.7-.delta. comprising heating compressed powder oxides and/or carbonates of R and Ba and Cu present in mole ratios to form RBa.sub.2 Cu.sub.3 O.sub.7-.delta. in physical contact with an oxide single crystal seed to a temperature sufficient to form a liquid phase in the RBa.sub.2 Cu.sub.3 O.sub.7-.delta. while maintaining the single crystal seed solid to grow the superconducting material and thereafter cooling to provide a material including RBa.sub.2 Cu.sub.3 O.sub.7-.delta.. R is a rare earth or Y or La and the single crystal seed has a lattice mismatch with RBa.sub.2 Cu.sub.3 O.sub.7-.delta. of less than about 2% at the growth temperature. The starting material may be such that the final product contains a minor amount of R.sub.2 BaCuO.sub.5.

Veal, Boyd W. (Downers Grove, IL); Paulikas, Arvydas (Downers Grove, IL); Balachandran, Uthamalingam (Hinsdale, IL); Zhong, Wei (Chicago, IL)

1997-01-01

88

Sorption and desorption of arsenate and arsenite on calcite  

NASA Astrophysics Data System (ADS)

The adsorption and desorption of arsenate (As(V)) and arsenite (As(III)) on calcite was investigated in a series of batch experiments in calcite-equilibrated solutions. The solutions covered a broad range of pH, alkalinity, calcium concentration and ionic strength. The initial arsenic concentrations were kept low (<33 ?M) to avoid surface precipitation. The results show that little or no arsenite sorbs on calcite within 24 h at an initial As concentration of 0.67 ?M. In contrast, arsenate sorbs readily and quickly on calcite. Likewise, desorption of arsenate from calcite is fast and complete within hours, indicating that arsenate is not readily incorporated into the calcite crystal lattice. The degree of arsenate sorption depends on the solution chemistry. Sorption increases with decreasing alkalinity, indicating a competition for sorption sites between arsenate and (bi)carbonate. pH also affects the sorption behavior, likely in response to changes in arsenate speciation or protonation/deprotonation of the adsorbing arsenate ion. Finally, sorption is influenced by the ionic strength, possibly due to electrostatic effects. The sorption of arsenate on calcite was modeled successfully using a surface complexation model comprising strong and weak sites. In the model, the adsorbing arsenate species were HAsO4- and CaHAsO40. The model was able to correctly predict the adsorption of arsenate in the wide range of calcite-equilibrated solutions used in the batch experiments and to describe the non-linear shape of the sorption isotherms. Extrapolation of the experimental results to calcite bearing aquifers suggests a large variability in the mobility of arsenic. Under reduced conditions, arsenite, which does not sorb on calcite, will dominate and, hence, As will be highly mobile. In contrast, when conditions are oxidizing, arsenate is the predominant species and, because arsenate adsorbs strongly on calcite, As mobility will be significantly retarded. The estimated retardation factors for arsenate in carbonate aquifers range from 25 to 200.

Sø, Helle U.; Postma, Dieke; Jakobsen, Rasmus; Larsen, Flemming

2008-12-01

89

In vitro regulation of CaCO(3) crystal growth by the highly acidic proteins of calcitic sclerites in soft coral, Sinularia Polydactyla.  

PubMed

Acidic proteins are generally thought to control mineral formation and growth in biocalcification. Analysis of proteinaceous components in the soluble and insoluble matrix fractions of sclerites in Sinularia polydactyla indicates that aspartic acid composes about 60% of the insoluble and 29% of the soluble matrix fractions. We previously analyzed aspartic acids in the matrix fractions (insoluble = 17 mol%; soluble = 38 mol%) of sclerites from a different type of soft coral, Lobophytum crassum, which showed comparatively lower aspartic acid-rich proteins than S. polydactyla. Thus, characterization of highly acidic proteins in the organic matrix of present species is an important first step toward linking function to individual proteins in soft coral. Here, we show that aspartic-acid rich proteins can control the CaCO(3) polymorph in vitro. The CaCO(3) precipitates in vitro in the presence of aspartic acid-rich proteins and 50 mM Mg(2+) was verified by Raman microprobe analysis. The matrix proteins of sclerites demonstrated that the aspartic-acid rich domain is crucial for the calcite precipitation in soft corals. The crystalline form of CaCO(3) in the presence of aspartic acid-rich proteins in vitro was identified by X-ray diffraction and, revealed calcitic polymorphisms with a strong (104) reflection. The structure of soft coral organic matrices containing aspartate-rich proteins and polysaccharides was assessed by Fourier transform infrared spectroscopy. These results strongly suggest that the aspartic acid-rich proteins within the organic matrix of soft corals play a key role in biomineralization regulation. PMID:19863387

Rahman, M Azizur; Oomori, Tamotsu

2009-01-01

90

Demonstration of Single-Crystal Self-Seeded Two-Color X-Ray Free-Electron Lasers  

NASA Astrophysics Data System (ADS)

A scheme for generating two simultaneous hard-x-ray free-electron laser pulses with a controllable difference in photon energy is described and then demonstrated using the self-seeding setup at the Linac Coherent Light Source (LCLS). The scheme takes advantage of the existing LCLS equipment, which allows two independent rotations of the self-seeding diamond crystal. The two degrees of freedom are used to select two nearby crystal reflections, causing two wavelengths to be present in the forward transmitted seeding x-ray pulse. The free-electron laser system must support amplification at both desired wavelengths.

Lutman, A. A.; Decker, F.-J.; Arthur, J.; Chollet, M.; Feng, Y.; Hastings, J.; Huang, Z.; Lemke, H.; Nuhn, H.-D.; Marinelli, A.; Turner, J. L.; Wakatsuki, S.; Welch, J.; Zhu, D.

2014-12-01

91

Demonstration of single-crystal self-seeded two-color x-ray free-electron lasers.  

PubMed

A scheme for generating two simultaneous hard-x-ray free-electron laser pulses with a controllable difference in photon energy is described and then demonstrated using the self-seeding setup at the Linac Coherent Light Source (LCLS). The scheme takes advantage of the existing LCLS equipment, which allows two independent rotations of the self-seeding diamond crystal. The two degrees of freedom are used to select two nearby crystal reflections, causing two wavelengths to be present in the forward transmitted seeding x-ray pulse. The free-electron laser system must support amplification at both desired wavelengths. PMID:25554887

Lutman, A A; Decker, F-J; Arthur, J; Chollet, M; Feng, Y; Hastings, J; Huang, Z; Lemke, H; Nuhn, H-D; Marinelli, A; Turner, J L; Wakatsuki, S; Welch, J; Zhu, D

2014-12-19

92

SEM observations on the replacement of Bahaman aragonitic mud by calcite  

NASA Astrophysics Data System (ADS)

Conversion of Holocene aragonitic mud to calcite microspar occurs in fresh pore waters beneath hammocks on the tidal flats of west Andros Island, Bahamas, to a subsurface depth of 2.7 m. The conversion process involves both dissolution of aragonite and precipitation of calcite as a cement in pre-existing pores and displacive calcite crystallization. Neomorphism of aragonite to calcite with preservation of grain shape has not been observed. Resulting diagenetic products are lithified nodules, composed of well-sorted interlocking rhombs of microspar and of stiff, unlithified calcitic aragonite mud.

Steinen, Randolph P.

1982-09-01

93

Interaction of alcohols with the calcite surface.  

PubMed

A clearer understanding of calcite interactions with organic molecules would contribute to a range of fields including harnessing the secrets of biomineralisation where organisms produce hard parts, increasing oil production from spent reservoirs, remediating contaminated soils and drinking water aquifers and improving manufacturing methods for industrial products such as pigments, soft abrasives, building materials and optical devices. Biomineralisation by some species of blue green algae produces beautifully elaborate platelets of calcite where the individual crystals are of nanometer scale. Controlling their growth requires complex polysaccharides. Polysaccharide activity depends on the functionality of OH groups, so to simplify the system in order to get closer to a molecular level understanding, we investigated the interaction of OH from a suite of alcohols with clean, freshly cleaved calcite surfaces. X-ray photoelectron spectroscopy (XPS) provided binding energies and revealed the extent of surface coverage. Molecular dynamics (MD) simulations supplemented with information about molecule ordering, orientation and packing density. The results show that all alcohols studied bond with the calcite surface through the OH group, with their carbon chains sticking away in a standing-up orientation. Alcohol molecules are closely packed and form a well-ordered monolayer on the surface. PMID:25533590

Bovet, N; Yang, M; Javadi, M S; Stipp, S L S

2015-02-01

94

SIMULATION OF ROCKET SEEDING OF CONVECTIVE CLOUDS WITH COARSE HYGROSCOPIC AEROSOL. 1. CONDENSATION GROWTH OF CLOUD DROPLETS ON SALT CRYSTALS  

Microsoft Academic Search

Laws of aerosol particle distribution at hygroscopic seeding of convective clouds by means of antihail rockets are considered. Influence of salt particle dispersion degree on inten- sity of condensation growth of separate cloud droplets on these particles is investigated. Ana- lytical formulae describing variation of radius of NaCl crystal and cloud droplet growing on the salt crystal until its entire

M. T. Abshaev; A. M. Abshaev; M. K. Zhekamukhov; E. I. Potapov; I. A. Garaba; E. A. Zasavitsky

95

Extracellular matrix protein in calcified endoskeleton: a potential additive for crystal growth and design  

NASA Astrophysics Data System (ADS)

In this study, we demonstrate a key function of extracellular matrix proteins (ECMPs) on seed crystals, which are isolated from calcified endoskeletons of soft coral and contain only CaCO 3 without any living cells. This is the first report that an ECMP protein extracted from a marine organism could potentially influence in modifying the surface of a substrate for designing materials via crystallization. We previously studied with the ECMPs from a different type of soft coral ( Sinularia polydactyla) without introducing any seed crystals in the process , which showed different results. Thus, crystallization on the seed in the presence of ECMPs of present species is an important first step toward linking function to individual proteins from soft coral. For understanding this interesting phenomenon, in vitro crystallization was initiated in a supersaturated solution on seed particles of calcite (1 0 4) with and without ECMPs. No change in the crystal growth shape occurred without ECMPs present during the crystallization process. However, with ECMPs, the morphology and phase of the crystals in the crystallization process changed dramatically. Upon completion of crystallization with ECMPs, an attractive crystal morphology was found. Scanning electron microscopy (SEM) was utilized to observe the crystal morphologies on the seeds surface. The mineral phases of crystals nucleated by ECMPs on the seeds surface were examined by Raman spectroscopy. Although 50 mM Mg 2+ is influential in making aragonite in the crystallization process, the ECMPs significantly made calcite crystals even when 50 mM Mg 2+ was present in the process. Crystallization with the ECMP additive seems to be a technically attractive strategy to generate assembled micro crystals that could be used in crystals growth and design in the Pharmaceutical and biotechnology industries.

Azizur Rahman, M.; Fujimura, Hiroyuki; Shinjo, Ryuichi; Oomori, Tamotsu

2011-06-01

96

Growth of nanofibrous barium carbonate on calcium carbonate seeds  

NASA Astrophysics Data System (ADS)

Fibrous barium carbonate (BaCO 3/witherite) crystals 50-100 nm in diameter and several microns in length were grown on calcium carbonate (CaCO 3) seeds at temperatures as low as 4 °C. The BaCO 3 fibers were deposited onto calcite rhombs or CaCO 3 films using the polymer-induced liquid-precursor (PILP) process, which was induced with the sodium salt of polyacrylic acid (PAA). The structure and morphology of the resultant fibers were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), and polarized light microscopy (PLM). Fibers were successfully grown on calcite seeds of various morphologies, with a range of barium concentrations, and PAA molecular weight and concentration. Two categories of fibers were grown: straight and twisted. Both types of fibers displayed single-crystalline SAED diffraction patterns, but after examining high-resolution TEM lattice images, it was revealed that the fibers were in fact made up of nanocrystalline domains. We postulate that these nanocrystalline domains are well aligned due to a singular nucleation event (i.e., each fiber propagates from a single nucleation event on the seed crystal) with the nanocrystalline domains resulting from stresses caused by dehydration during crystallization of the highly hydrated precursor phase. These BaCO 3 fibers grown on calcite substrates further illustrate the robustness and non-specificity of the PILP process.

Homeijer, Sara J.; Olszta, Matthew J.; Barrett, Richard A.; Gower, Laurie B.

2008-05-01

97

Primary magmatic calcite reveals origin from crustal carbonate  

NASA Astrophysics Data System (ADS)

We have investigated lava flows representative of the whole eruptive history of the Colli Albani ultrapotassic volcanic district (Central Italy). One of the most intriguing features concerning some of these lava flows is the occurrence of primary, magmatic calcite in the groundmass. The primary, magmatic nature of calcite has been inferred by microtextural investigations showing that it typically occurs i) interstitially, associated with clinopyroxene, nepheline and phlogopite, ii) in spherical ocelli, associated with nepheline, fluorite and tangentially arranged clinopyroxene, and iii) in corona-like reaction zones around K-feldspar xenocrysts. These microtextural features distinctly indicate that calcite crystallized from a carbonate melt in a partially molten groundmass, implying that the temperature of the system was above the solidus of the hosted lava flow (> 850 °C). Geochemical features of calcite crystals (i.e., stable isotope values and trace element patterns) corroborate their primary nature and give insights into the origin of the parental carbonate melt. The trace element patterns testify to a high-temperature crystallization process (not hydrothermal) involving a carbonate melt coexisting with a silicate melt. The high ?18O (around 27‰ SMOW) and wide ?13C (- 18 to + 5‰ PDB) values measured in the calcites preclude a mantle origin, but are consistent with an origin in the crust. In this framework, the crystallization of calcite can be linked to the interaction between magmas and carbonate-bearing wall rocks and, in particular, to the entrapment of solid and/or molten carbonate in the silicate magma. The stability of carbonate melt at low pressure and the consequent crystallization of calcite in the lava flow groundmass are ensured by the documented, high activity of fluorine in the studied system and by the limited ability of silicate and carbonate melts to mix at syn-eruptive time scales.

Gozzi, Fernando; Gaeta, Mario; Freda, Carmela; Mollo, Silvio; Di Rocco, Tommaso; Marra, Fabrizio; Dallai, Luigi; Pack, Andreas

2014-03-01

98

Stable (H, O, C) and noble-gas (He and Ar) isotopic compositions from calcite and fluorite in the Speewah Dome, Kimberley Region, Western Australia: implications for the conditions of crystallization and evidence for the influence of crustal-mantle fluid mixing  

NASA Astrophysics Data System (ADS)

In this study, the C-O-isotopic data from calcite at Yungul and Wilmott (Speewah. Western-Australia) are integrated with microthermometry, H2O-, CO2-content and H-He-Ar-isotopic data from fluid inclusions in genetically related calcite and fluorite to map the origin and crystallization paths of the fluids. In addition to the hydrogen isotopic compositions of fluid inclusions in fluorite, oxygen isotopic compositions were also determined by cavity ring-down spectroscopy. The geochemical data suggest mixing of a CO2-dominated mantle fluid and a H2O-domintated crustal brine. The fluid produced by this mixing is characterized by radiogenic (crustal-like) 3He/4He ratios, crustal-like ?D values, relatively high salinity (19 - 24wt.% NaCl eq.), moderate homogenization temperatures (150 - 450 °C) and mantle-like CO2/3He ratios. Moreover, the large isotopic and elemental variations found in calcite indicate that its formation was accompanied by an extensive degassing (open system) leading to a decrease in ?D and an increase in the CO2/3He values relative to the starting fluid composition. This degassing is consistent with the fluidal- and breccia-like texture of calcite observed in the field. In contrast, the fluorite which has coarse-grained banded to vughy textures formed in a passive aqueous system. Apparently the fluid that formed the fluorite has the same origin as the calcite, but the higher water content and the more radiogenic 3He/4He ratios reflect a greater involvement of crustal fluids. The historical description of the calcite-fluorite system in the Speewah area as "carbonatite" is now considered inappropriate because there is no evidence that crystallization is dominated by magmatic processes.

Czuppon, Gy; Ramsay, R. R.; Özgenc, I.; Demény, A.; Gwalani, L. G.; Rogers, K.; Eves, A.; Papp, L.; Palcsu, L.; Berkesi, M.; Downes, P. J.

2014-12-01

99

Sulfated Macromolecules as Templates for Calcite Nucleation and Growth  

NASA Astrophysics Data System (ADS)

Mineralization of egg and seashells is controlled by an intimate association of inorganic materials with organic macromolecules. Among them, particular polyanionic sulfated macromolecules referred to as proteoglycans have been described to be involved in the calcification of these biominerals. The sulfated moieties of the proteoglycans are part of polymer chains constituted of building-blocks of disaccharide units, referred to as sulfated glycosaminoglycans (GAGs), which are covalently attached to a protein core. By using a sitting drop crystallization assay under controlled conditions of time, pH and reactants concentration, we have tested several sulfated and non-sulfated GAGs (i.e.: dermatan and keratan sulfate, hyaluronic acid and heparin), differing in their sulfonate and carboxylate degree and pattern, in their ability to modify calcium carbonate crystal morphology as observed under scanning electron microscopy. Without the addition of GAGs, regular \\{104\\} rhombohedral calcite crystals were obtained. When hyaluronic acid (HA), a non-sulfated but carboxylated GAG, was added, 20 mm long piles of unmodified calcite crystals were observed. When desulfated dermatan, which is an epimeric form of HA but shorter polymer, having their carboxylate groups in an inverted configuration, was added, isolated rhombohedral \\{104\\} calcite crystals showing rounded corners with planes oriented parallel to the c axis were observed. When dermatan sulfated was added, isolated calcite crystals exhibit a columnar morphology as a \\{hk0\\} cylinder with three \\{104\\} faces forming a cap at both ends. Heparin activity depends on the fraction added. Fast-moving heparin fraction (FM), is an undersulfated, low-molecular-weight heterogeneous polymer, while slow-moving heparin fraction (SM) is an high-molecular-weight homogeneous polymer rich in trisulfated-disaccharide units. When FM was added, isolated calcite crystals displayed rhombohedrical \\{104\\} faces but flat corners of \\{111\\} faces. The addition of the hypersulfated heparin SM induce the formation of large rosette-like aggregated calcite crystals, where the majority of the \\{104\\} faces appeared not to be lost, although aggregation is done by different kind of faces. It is concluded that, the variation of the sulfate and carboxylate content and configuration drastically changed the morphology of the calcite crystals. The production of calcite particles with defined morphologies could be interesting for the design of novel materials with desirable shape- and texture-depending properties. Granted by FONDAP 11980002.

David, M.; Passalacqua, K.; Neira, A. C.; Fernandez, M. S.

2003-12-01

100

Characterization of physicochemical and thermal properties and crystallization behavior of krabok (Irvingia Malayana ) and rambutan seed fats.  

PubMed

Fatty acid composition, physicochemical and thermal properties and crystallization behavior of fats extracted from the seeds of krabok (Irvingia Malayana) and rambutan (Nephelium lappaceum L.) trees grown in Thailand were studied and compared with cocoa butter (CB). The krabok seed fat, KSF, consisted of 46.9% lauric and 40.3% myristic acids. It exhibited the highest saponification value and slip melting point but the lowest iodine values. The three fats displayed different crystallization behavior at 25°C. KSF crystallized into a mixture of ?' and pseudo-?' structures with a one-step crystallization curve and high solid fat content (SFC). The fat showed simple DSC crystallization and melting thermograms with one distinct peak. The rambutan seed fat, RSF, consisted of 42.5% arachidic and 33.1% oleic acids. Its crystallization behavior was more similar to CB than KSF, displaying a two-step crystallization curve with SFC lower than that of KSF. RSF solidified into a mixture of ?' and pseudo-?' before transforming to ? after 24 h. The large spherulitic microstructures were observed in both KSF and RSF. According to these results, the Thai KSF and RSF exhibited physicochemical, thermal characteristics and crystallization behavior that could be suitable for specific applications in several areas of the food, cosmetic and pharmaceutical industries. PMID:23196867

Sonwai, Sopark; Ponprachanuvut, Punnee

2012-01-01

101

Low-leakage germanium-seeded laterally-crystallized single-grain 100-nm TFTs for vertical integration applications  

Microsoft Academic Search

We report on 100-nm channel-length thin-film transistors (TFTs) that are fabricated using germanium-seeded lateral crystallization of amorphous silicon. Germanium seeding allows the fabrication of devices with control over grain boundary location. Its effectiveness improves with reduced device geometry, allowing “single-grain” device fabrication. In the first application of this technology to deep submicron devices, we report on 100-nm devices having excellent

Vivek Subramanian; Masato Toita; N. R. Ibrahim; Shukri J. Souri; Krishna C. Saraswat

1999-01-01

102

The effects of initial seed size and transients on dendritic crystal growth  

NASA Astrophysics Data System (ADS)

The transient behavior of growing dendritic crystals can be quite complex, as a growing tip interacts with a sidebranch structure set up under an earlier set of conditions. In this work, we report on two observations of transient growth of NH4Cl dendrites in aqueous solution. First, we study growth from initial nearly-spherical seeds. We have developed a technique to initiate growth from a well-characterized initial seed. We find that the approach to steady state is similar for both large and small seeds, in contrast to the simulation findings of Steinbach, Diepers, and Beckermann[1]. Second, we study the growth of a dendrite subject to rapid changes in temperature. We vary the dimensionless supersaturation ? and monitor the tip speed v and curvature ?. During the transient, the tip shape is noticeably distorted from the steady-state shape, and there is considerable uncertainty in the determination of the curvature of that distorted shape. Nevertheless, it appears that the ``selection parameter'' *circ;= 2 d0D / v 2circ remains approximately constant throughout the transient. [1] I. Steinbach, H.-J. Diepers, and C. Beckermann, J. Cryst. Growth, 275, 624-638 (2005).

Dougherty, Andrew; Nunnally, Thomas

2006-03-01

103

Improving the diffraction of full-length human selenomethionyl metavinculin crystals by streak-seeding  

SciTech Connect

Metavinculin is an alternatively spliced isoform of vinculin that has a 68-residue insert in its tail domain (1134 total residues) and is exclusively expressed in cardiac and smooth muscle tissue, where it plays important roles in myocyte adhesion complexes. Mutations in the metavinculin-specific insert are associated with dilated cardiomyopathy (DCM) in man. Crystals of a DCM-associated mutant of full-length selenomethionine-labeled metavinculin grown by hanging-drop vapor diffusion diffracted poorly and were highly sensitive to radiation, preventing the collection of a complete X-ray diffraction data set at the highest possible resolution. Streak-seeding markedly improved the stability, crystal-growth rate and diffraction quality of DCM-associated mutant metavinculin crystals, allowing complete data collection to 3.9 {angstrom} resolution. These crystals belonged to space group P4{sub 3}2{sub 1}2, with two molecules in the asymmetric unit and unit-cell parameters a = b = 170, c = 211 {angstrom}, {alpha} = {beta} = {gamma} = 90{sup o}.

Rangarajan, Erumbi S.; Izard, Tina (Scripps)

2012-06-28

104

Chemistry and petrography of calcite in the KTB pilot borehole, Bavarian Oberpfalz, Germany  

USGS Publications Warehouse

The KTB pilot borehole in northeast Bavaria, Germany, penetrates 4000 m of gneiss, amphibolite, and subordinate calc-silicate, lamprophyre and metagabbro. There are three types of calcite in the drilled section: 1) metamorphic calcite in calc-silicate and marble; 2) crack-filling calcite in all lithologies; and 3) replacement calcite in altered minerals. Crack-filling and replacement calcite postdate metamorphic calcite. Multiple calcite generations in individual cracks suggest that different generations of water repeatedly flowed through the same cracks. Crack-filling mineral assemblages that include calcite originally formed at temperatures of 150-350??C. Presently, crack-filling calcite is in chemical and isotopic equilibrium with saline to brackish water in the borehole at temperatures of ???120??C. The saline to brackish water contains a significant proportion of meteoric water. Re-equilibration of crack-filling calcite to lower temperatures means that calcite chemistry tells us little about water-rock interactions in the crystal section of temperatures higher than ~120??C. -from Author

Komor, S.C.

1995-01-01

105

Amorphous Calcium Carbonate Transforms into Calcite during Sea Urchin Larval Spicule Growth  

Microsoft Academic Search

Sea urchin larvae form an endoskeleton composed of a pair of spicules. For more than a century it has been stated that each spicule comprises a single crystal of the CaCO3 mineral, calcite. We show that an additional mineral phase, amorphous calcium carbonate, is present in the sea urchin larval spicule, and that this inherently unstable mineral transforms into calcite

Elia Beniash; Joanna Aizenberg; Lia Addadi; Stephen Weiner

1997-01-01

106

Calcite: The multiuse mineral  

SciTech Connect

If people were told that a newly discovered mineral polarizes light, provides a raw material for sculptors, diminishes the danger of hip breakage, makes long-lasting foundations for buildings, reduces pollution at power plants, serves as a soil conditioner and water purifier, and saves life on earth from suffocation, they might be inclined to say either {open_quotes}Ain`t science wonderful!{close_quotes} or {open_quotes}Come on, now!{close_quotes} Luckily for humanity, such a mineral has been around for a billion years or so, and things would not be quite the same without it. It is calcite (CaCO{sub 3}) which in its most common natural form is known as limestone. Hubbard and Ericksen (1973) reported, {open_quotes}Limestone and dolomite [which is calcium or magnesium carbonate and bears the name of the Dolomites of northern Italy], commonly referred to as the carbonate rocks, are among the world`s most widely used mineral commodities and are essential to modern industrial society.{close_quotes}

Paschall, R.

1994-11-01

107

On the complex conductivity signatures of calcite precipitation  

NASA Astrophysics Data System (ADS)

Calcite is a mineral phase that frequently precipitates during subsurface remediation or geotechnical engineering processes. This precipitation can lead to changes in the overall behavior of the system, such as flow alternation and soil strengthening. Because induced calcite precipitation is typically quite variable in space and time, monitoring its distribution in the subsurface is a challenge. In this research, we conducted a laboratory column experiment to investigate the potential of complex conductivity as a mean to remotely monitor calcite precipitation. Calcite precipitation was induced in a glass bead (3 mm) packed column through abiotic mixing of CaCl2 and Na2CO3 solutions. The experiment continued for 12 days with a constant precipitation rate of ˜0.6 milimole/d. Visual observations and scanning electron microscopy imaging revealed two distinct phases of precipitation: an earlier phase dominated by well distributed, discrete precipitates and a later phase characterized by localized precipitate aggregation and associated pore clogging. Complex conductivity measurements exhibited polarization signals that were characteristic of both phases of calcite precipitation, with the precipitation volume and crystal size controlling the overall polarization magnitude and relaxation time constant. We attribute the observed responses to polarization at the electrical double layer surrounding calcite crystals. Our experiment illustrates the potential of electrical methods for characterizing the distribution and aggregation state of nonconductive minerals like calcite. Advancing our ability to quantify geochemical transformations using such noninvasive methods is expected to facilitate our understanding of complex processes associated with natural subsurface systems as well as processes induced through engineered treatments (such as environmental remediation and carbon sequestration).

Wu, Yuxin; Hubbard, Susan; Williams, Kenneth Hurst; Ajo-Franklin, Jonathan

2010-06-01

108

Crystallization and preliminary X-ray diffraction analysis of a new chitin-binding protein from Parkia platycephala seeds  

PubMed Central

A chitin-binding protein named PPL-2 was purified from Parkia platycephala seeds and crystallized. Crystals belong to the orthorhombic space group P212121, with unit-cell parameters a = 55.19, b = 59.95, c = 76.60?Å, and grew over several days at 293?K using the hanging-drop method. Using synchrotron radiation, a complete structural data set was collected to 1.73?Å resolution. The preliminary crystal structure of PPL-2, determined by molecular replacement, presents a correlation coefficient of 0.558 and an R factor of 0.439. Crystallographic refinement is in progress. PMID:16511174

Cavada, Benildo S.; Castellón, Rolando E. R.; Vasconcelos, Georg G.; Rocha, Bruno A. M.; Bezerra, Gustavo A.; Debray, Henri; Delatorre, Plínio; Nagano, Celso S.; Toyama, Marcos; Pinto, Vicente P. T.; Moreno, Frederico B. M. B.; Canduri, Fernanda; de Azevedo, Walter F.

2005-01-01

109

The application of time-dependent ice crystal trajectory and growth model for the evaluation of cloud seeding experiment using liquid carbon dioxide  

NASA Astrophysics Data System (ADS)

This study evaluated the results of cloud seeding experiment conducted on 17th January, 2008, in western Kyushu, Japan, using simplified time-dependent ice crystal growth and trajectory cloud model, which is characterized by 1) depositional diffusion growth process only of an ice crystal, and 2) the pursuit of the growing ice crystal based on wind field and ice crystal terminal velocity. For the estimation of the ice crystal growth and trajectory, the model specifies ice supersaturation ratio that expresses the degree of competition growth among ice crystals formed by LC seeding for existing water vapor, assuming no effect of natural ice crystals. The model is based on ice crystal growth along a- and c-axes depending on air temperature and ice supersatuation, according to Chen and Lamb (1994). The cloud seeding experiment was conducted by applying homogeneous nucleation (rapid cooling of air mass and subsequent formation of many ice crystals~1013/g LC) of Liquid Carbon (LC) dioxide seeding under typical winter-type snowfall-inducing weather situation characterized by the outbreak of cold air masses from the Siberia. The result of aircraft horizontally-penetrating seeding of LC into lower layer (-2 degree C) of supercooled convective cloud with 1km thickness above the freezing level led to the formation of an artificially-induced 'isolated' radar echo (the left figures of Fig. 1) in dominant 'no-natural radar echo region'. In other words, natural biases were eliminated by the formation of the isolated radar echo. This fact provides the shortcut for evaluating the result of cloud seeding experiment. In the next, the observed cloud seeding results were evaluated by estimating the trajectory of artificially-induced growing ice crystal. The results show that the trajectory of artificial ice crystals depends on the degree of completion growth mode. Free growth brings rapid growth of an ice crystal and, therefore, the ice crystal falls into lower layers for a short time. On the other hand, as the degree of competition is higher, ice crystal growth and falling are slower. The result (the right figure of Fig. 1) showed that the movement of observed isolated radar echo formed after LC cloud seeding is closely related to the trajectories of artificially-induced ice crystals depending on the specification of ice supersaturation. Therefore, it was found that time-dependent ice crystal growth and trajectory model is a useful tool for the evaluation of cloud seeding results regardless of its simplification and many uncertain factors. Fig.1 The left figure shows the movement of isolated radar echo formed by LC seeding. The right figure shows the comparison between observed radar echo location and estimated ice crystal location.

Nishiyama, K.; Wakimizu, K.; Maki, T.; Suzuki, Y.; Morita, O.; Tomine, K.

2012-12-01

110

Biotic Control of Skeletal Growth by Scleractinian Corals in Aragonite–Calcite Seas  

PubMed Central

Modern scleractinian coral skeletons are commonly composed of aragonite, the orthorhombic form of CaCO3. Under certain conditions, modern corals produce calcite as a secondary precipitate to fill pore space. However, coral construction of primary skeletons from calcite has yet to be demonstrated. We report a calcitic primary skeleton produced by the modern scleractinian coral Acropora tenuis. When uncalcified juveniles were incubated from the larval stage in seawater with low mMg/Ca levels, the juveniles constructed calcitic crystals in parts of the primary skeleton such as the septa; the deposits were observable under Raman microscopy. Using scanning electron microscopy, we observed different crystal morphologies of aragonite and calcite in a single juvenile skeleton. Quantitative analysis using X-ray diffraction showed that the majority of the skeleton was composed of aragonite even though we had exposed the juveniles to manipulated seawater before their initial crystal nucleation and growth processes. Our results indicate that the modern scleractinian coral Acropora mainly produces aragonite skeletons in both aragonite and calcite seas, but also has the ability to use calcite for part of its skeletal growth when incubated in calcite seas. PMID:24609012

Higuchi, Tomihiko; Fujimura, Hiroyuki; Yuyama, Ikuko; Harii, Saki; Agostini, Sylvain; Oomori, Tamotsu

2014-01-01

111

Biotic control of skeletal growth by scleractinian corals in aragonite-calcite seas.  

PubMed

Modern scleractinian coral skeletons are commonly composed of aragonite, the orthorhombic form of CaCO3. Under certain conditions, modern corals produce calcite as a secondary precipitate to fill pore space. However, coral construction of primary skeletons from calcite has yet to be demonstrated. We report a calcitic primary skeleton produced by the modern scleractinian coral Acropora tenuis. When uncalcified juveniles were incubated from the larval stage in seawater with low mMg/Ca levels, the juveniles constructed calcitic crystals in parts of the primary skeleton such as the septa; the deposits were observable under Raman microscopy. Using scanning electron microscopy, we observed different crystal morphologies of aragonite and calcite in a single juvenile skeleton. Quantitative analysis using X-ray diffraction showed that the majority of the skeleton was composed of aragonite even though we had exposed the juveniles to manipulated seawater before their initial crystal nucleation and growth processes. Our results indicate that the modern scleractinian coral Acropora mainly produces aragonite skeletons in both aragonite and calcite seas, but also has the ability to use calcite for part of its skeletal growth when incubated in calcite seas. PMID:24609012

Higuchi, Tomihiko; Fujimura, Hiroyuki; Yuyama, Ikuko; Harii, Saki; Agostini, Sylvain; Oomori, Tamotsu

2014-01-01

112

Characterization of boron incorporation and speciation in calcite and aragonite from co-precipitation experiments under controlled pH, temperature and precipitation rate  

NASA Astrophysics Data System (ADS)

About 20 years ago, the boron isotopic composition of marine carbonates was proposed as a proxy of ancient seawater pH. Since that time, a large body of studies has used boron isotopes in carbonates to reconstruct seawater paleo-pH and atmospheric paleo-CO2 concentration. To date, however, no systematic investigation of the physicochemical parameters that control boron incorporation in calcite and aragonite (pH, temperature, precipitation rate, etc.) has been performed. To fill this gap, we have experimentally investigated the inorganic co-precipitation of boron with calcite and aragonite at 5 and 25 °C in the presence and absence of seed crystals and over the pHNBS range 7.4 < pH < 9.5 in 0.1 or 0.2 M NaCl solutions. The boron partition coefficient, DB, between CaCO3 and the fluid is defined as: DB = {(XB/XCO3)CaCO3}/([B]/[CO32-])fluid} with Xi and [i] standing for the mole fraction and molality of the ith species in the solid and fluid, respectively. DB measured in this study are very small (DB ? 10-3 and ? 10-4 for aragonite and calcite, respectively) and exhibit a strong dependence on the solution pH and the calcium carbonate precipitation rate. High field 11B MAS NMR analyses of the precipitated carbonates show that boron in aragonite is mostly in the form of tetragonal B (? 85%[IV]B) but that both trigonal and tetragonal B are present in calcite. A significant amount of tetragonal boron in calcite may be in non-lattice (defect) sites, in addition to the structural site. The relative abundance of [III]B and [IV]B in calcite is independent of the parent solution pH but appears to decrease with increasing precipitation rate. The change in boron coordination during its incorporation in calcite and its distribution in, at least, two different sites strongly suggest that the mechanisms controlling B incorporation in this mineral are more complex than for aragonite. It follows that calcite-based calibrations may be less reliable than aragonite calibrations for ocean paleo-pH reconstructions.

Mavromatis, Vasileios; Montouillout, Valérie; Noireaux, Johanna; Gaillardet, Jérôme; Schott, Jacques

2015-02-01

113

Time and metamorphic petrology: Calcite to aragonite experiments  

USGS Publications Warehouse

Although the equilibrium phase relations of many mineral systems are generally well established, the rates of transformations, particularly in polycrystalline rocks, are not. The results of experiments on the calcite to aragonite transformation in polycrystalline marble are different from those for earlier experiments on powdered and single-crystal calcite. The transformation in the polycrystalline samples occurs by different mechanisms, with a different temperature dependence, and at a markedly slower rate. This work demonstrates the importance of kinetic studies on fully dense polycrystalline aggregates for understanding mineralogic phase changes in nature. Extrapolation of these results to geological time scales suggests that transformation of calcite to aragonite does not occur in the absence of volatiles at temperatures below 200??C. Kinetic hindrance is likely to extend to higher temperatures in more complex transformations.

Hacker, B.R.; Kirby, S.H.; Bohlen, S.R.

1992-01-01

114

Sea urchin tooth mineralization: Calcite present early in the aboral plumula  

PubMed Central

In both vertebrate bone, containing carbonated hydroxyapatite as the mineral phase, and in invertebrate hard tissue comprised of calcium carbonate, a popular view is that the mineral phase develops from a long-lived amorphous precursor which later transforms into crystal form. Important questions linked to this popular view are: When and where is the crystallized material formed, and is amorphous solid added subsequently to the crystalline substrate? Sea urchin teeth, in which the earliest mineral forms within isolated compartments, in a time and position dependent manner, allow direct investigation of the timing of crystallization of the calcite primary plates. Living teeth of the sea urchin Lytechinus variegatus, in their native coelomic fluid, were examined by high-energy synchrotron x-ray diffraction. The diffraction data show that calcite is present in the most aboral portions of the plumula, representing the very earliest stages of mineralization, and that this calcite has the same crystal orientation as in the more mature adoral portions of the same tooth. Raman spectroscopy of the aboral plumula confirms the initial primary plate mineral material is calcite and does not detect amorphous calcium carbonate; in the more mature adoral incisal flange, it does detect a broader calcite peak, consistent with two or more magnesium compositions. We hypothesize that some portion of each syncytial membrane in the plumula provides the information for nucleation of identically oriented calcite crystals that subsequently develop to form the complex geometry of the single crystal sea urchin tooth. PMID:22940703

Stock, Stuart R.; Veis, Arthur; Xiao, Xianghui; Almer, Jonathan D.; Dorvee, Jason R.

2012-01-01

115

The calcite ??? aragonite transformation in low-Mg marble: Equilibrium relations, transformations mechanisms, and rates  

USGS Publications Warehouse

Experimental transformation of a rather pure natural calcite marble to aragonite marble did not proceed via the expected straightforward polymorphic replacement. Instead, the small amount of Mg in the starting material (0.36 wt %) was excluded from the growing aragonite and diffused preferentially into the remaining calcite grains, producing Mg-rich calcite rods that persisted as relicts. Nucleation of aragonite occurred exclusively on grain boundaries, with aragonite [001] oriented subparallel to calcite [0001]. The aragonite crystals preferentially consumed the calcite crystal on which they nucleated, and the reaction fronts developed preferentially along the {010} and {110} planes of aragonite. Each aragonite neoblast that grew was nearly free of Mg (typically <0.1 wt %). The excess Mg was taken up by the calcite grains in between, stabilizing them and causing a few volume percent rodlike relicts of Mg-enriched calcite (up to 10 wt % MgO) to be left behind by the advancing reaction front. The aragonite growth rates are approximately linear and range from ???3 ?? 10-11 m s-1 at 600??C to ???9 ?? 10-9 m s-1 at 850??C, with an apparent activation enthalpy of 166 ?? 91 kJ mol-1. This reaction mechanism and the resultant texture are akin to cellular precipitation reactions in metals. Similar transformation textures have been reported from high-Mg marbles in Japan and China that disproportionated to low-Mg calcite and dolomite. Copyright 2005 by the American Geophysical Union.

Hacker, B.R.; Rubie, D.C.; Kirby, S.H.; Bohlen, S.R.

2005-01-01

116

Gamma-linolenic acid enrichment from Borago officinalis and Echium fastuosum seed oils and fatty acids by low temperature crystallization.  

PubMed

Solvent winterization of seed oil and free fatty acids (FFAs) was employed to obtain gamma-linolenic acid (GLA; 18:3omega6) concentrates from seed oils of two Boraginaceae species, Echium fastuosum and Borago officinalis. Different solutions of seed oils and FFAs from these two oils at 10%, 20% and 40% (w/w) were crystallized at 4 degrees C, -24 degrees C and -70 degrees C, respectively, using hexane, acetone, diethyl ether, isobutanol and ethanol as solvents. Best results were obtained for B. officinalis FFAs in hexane, reaching a maximum GLA concentration of 58.8% in the liquid fraction (LF). In E. fastuosum, the highest GLA concentration (39.9%) was also achieved with FFAs in hexane. PMID:16233632

López-Martínez, Juan Carlos; Campra-Madrid, Pablo; Guil-Guerrero, José Luis

2004-01-01

117

Precise tailoring of the crystal size distribution by controlled growth and continuous seeding from impinging jet crystallizers  

E-print Network

. The large crystals typically produced from batch crystallizers require further milling to increase from milling1,3 motivates the development of crystallization processes to directly produce small (API). This paper proposes three control strategies whose goal is to produce crystals with a target

Braatz, Richard D.

118

Improvement in microstructure and crystal alignment of ZnO films grown by metalorganic chemical vapor deposition using a seed layer  

Microsoft Academic Search

An epitaxially aligned ZnO nano-seed layer was used to improve the microstructure and crystal alignment in metalorganic chemical vapor deposited ZnO films on Al2O3 (0001) substrates. Comparative investigations were performed on the properties of the ZnO films grown with and without the seed layer. The ZnO film grown directly on the substrate without applying the seed layer shows an irregular,

Jae Young Park; Dong Ju Lee; Byung-Teak Lee; Jong Ha Moon; Sang Sub Kim

2005-01-01

119

Improvement in microstructure and crystal alignment of ZnO films grown by metalorganic chemical vapor deposition using a seed layer  

Microsoft Academic Search

An epitaxially aligned ZnO nano-seed layer was used to improve the microstructure and crystal alignment in metalorganic chemical vapor deposited ZnO films on Al2O3 (0 0 0 1) substrates. Comparative investigations were performed on the properties of the ZnO films grown with and without the seed layer. The ZnO film grown directly on the substrate without applying the seed layer

Jae Young Park; Dong Ju Lee; Byung-Teak Lee; Jong Ha Moon; Sang Sub Kim

2005-01-01

120

Enhancing mechanical properties of calcite by Mg substitutions: An ab initio study  

NASA Astrophysics Data System (ADS)

Arthropoda representing a majority of all known animal species are protected by an exoskeleton formed by their cuticle. The cuticle represents a hierarchically structured multifunctional bio-composite based on chitin and proteins. Some groups like Crustacea reinforce the load-bearing parts of their cuticle with calcite. As the calcite sometimes contains Mg it was speculated that Mg may have a stiffening impact on the mechanical properties of the cuticle. We present a theoretical parameter-free quantum-mechanical study of thermodynamic, structural and elastic properties of Mg-substituted calcite. Our results show that substituting Ca by Mg causes an almost linear decrease in the crystal volume with Mg concentration and of substituted crystals. As a consequence the calcite crystals become stiffer giving rise e.g. to substantially increased bulk moduli.

Elstnerova, Pavlina; Friak, Martin; Hickel, Tilmann; Fabritius, Helge Otto; Lymperakis, Liverios; Petrov, Michal; Raabe, Dierk; Neugebauer, Joerg; Nikolov, Svetoslav; Zigler, Andreas; Hild, Sabine

2011-03-01

121

Human 17?-hydroxysteroid dehydrogenase-ligand complexes: crystals of different space groups with various cations and combined seeding and co-crystallization  

NASA Astrophysics Data System (ADS)

Human estrogenic 17?-hydroxysteroid dehydrogenase (17?-HSD1) is responsible for the synthesis of active estrogens that stimulate the proliferation of breast cancer cells. The enzyme has been crystallized using a Mg 2+/PEG (3500)/?-octyl glucoside system [Zhu et al., J. Mol. Biol. 234 (1993) 242]. The space group of these crystals is C2. Here we report that cations can affect 17?-HSD1 crystallization significantly. In the presence of Mn 2+ instead of Mg 2+, crystals have been obtained in the same space group with similar unit cell dimensions. In the presence of Li + and Na + instead of Mg 2+, the space group has been changed to P2 12 12 1. A whole data set for a crystal of 17ß-HSD1 complex with progesterone grown in the presence of Li + has been collected to 1.95 Å resolution with a synchrotron source. The cell dimensions are a=41.91 Å, b=108.21 Å, c=117.00 Å. The structure has been preliminarily determined by molecular replacement, yielding important information on crystal packing in the presence of different cations. In order to further understand the structure-function relationship of 17?-HSD1, enzyme complexes with several ligands have been crystallized. As the steroids have very low aqueous solubility, we used a combined method of seeding and co-crystallization to obtain crystals of 17?-HSD1 complexed with various ligands. This method provides ideal conditions for growing complex crystals, with ligands such as 20?-hydroxysteroid progesterone, testosterone and 17?-methyl-estradiol-NADP +. Several complex structures have been determined with reliable electronic density of the bound ligands.

Zhu, D.-W.; Han, Q.; Qiu, W.; Campbell, R. L.; Xie, B.-X.; Azzi, A.; Lin, S.-X.

1999-01-01

122

Controlling the morphology, composition and crystal structure in gold-seeded GaAs1-xSbx nanowires.  

PubMed

While III-V binary nanowires are now well controlled and their growth mechanisms reasonably well understood, growing ternary nanowires, including controlling their morphology, composition and crystal structure remains a challenge. However, understanding and control of ternary alloys is of fundamental interest and critical to enable a new class of nanowire devices. Here, we report on the progress in understanding the complex growth behaviour of gold-seeded GaAs1-xSbx nanowires grown by metalorganic vapour phase epitaxy. The competition between As and Sb atoms for incorporation into the growing crystal leads to a tunability of the Sb content over a broad range (x varies from 0.09 to 0.6), solely by changing the AsH3 flow. In contrast, changing TMSb flow is more effective in affecting the morphology and crystal structure of the nanowires. Inclined faults are found in some of these nanowires and directly related to the kinking of the nanowires and controlled by TMSb flow. Combined with the observed sharp increase of wetting angle between the Au seed and nanowire, the formation of inclined faults are attributed to the Au seed being dislodged from the growth front to wet the sidewalls of the nanowires, and are related to the surfactant role of Sb. The insights provided by this study should benefit future device applications relying on taper- and twin-free ternary antimonide III-V nanowire alloys and their heterostructures. PMID:25692266

Yuan, Xiaoming; Caroff, Philippe; Wong-Leung, Jennifer; Tan, Hark Hoe; Jagadish, Chennupati

2015-03-01

123

Characterization of Al2O3 coatings oxidized from Al with different proportion of seed crystals at a lower temperature  

NASA Astrophysics Data System (ADS)

Al layer with ?-Al2O3 seed crystals was prepared on the surface of 316L stainless steel (SS) by a double cathodes discharge technique, in which the mixed targets of pure Al doped with different proportions of ?-Al2O3 were used. Then, Al2O3 coatings were obtained after plasma oxidization at 580 °C. The phase composition, microstructure and morphology of the coatings were studied respectively by means of glancing-angle (1°) X-ray diffractometry (GAXRD) and scanning electron microscopy (SEM). Furthermore, the bonding force and corrosion resistance of the coatings were measured. The results indicated that ?-Al2O3 nucleated and grew surrounding the seed crystals as the Volmer-Weber Mode. The Al2O3 coating was compact, performing a good corrosion resistance and metallurgical bonding. The inducing effects of ?-Al2O3 with different fractions were discussed. ?-Al2O3 (5.5 wt.%) was distributed in the Al layer when the target possessing 10% ?-Al2O3 was used. After plasma oxidation, 65.54 wt.% ?-Al2O3 was obtained which was 10.34% more than that obtained by the oxidation of pure Al at the same condition. However, the inducing effects became weak with the further increment of content of ?-Al2O3 seed crystals.

Wang, Chen; Lin, Yuebin; He, Fei; Luo, Xinyi; Tao, Jie

2013-10-01

124

Paleotransport of lanthanides and strontium recorded in calcite compositions from tuffs at Yucca Mountain, Nevada, USA  

NASA Astrophysics Data System (ADS)

Secondary calcite occurs in both saturated and unsaturated hydrologic zones (SZ and UZ, respectively) in the tuffs at Yucca Mountain, Nevada, USA. In the upper UZ, the major constituents of the calcite crystal structure (C, O) have surface origins. At greater depth there is a "barren zone," straddling the water table, where calcite is rare and mixing of surface and subsurface sources may occur. Deep in the SZ, distinctive Mn calcites reflect deep sources, including Ca released as analcime or albite formed and carbonates derived from underlying Paleozoic rocks. In the UZ and in the barren zone, above the deep Mn calcites, variations in calcite lanthanide chemistry can be used to distinguish rhyolitic from quartz-latitic sources. Lanthanide ratios and Sr contents of calcites record the chemical evolution of waters flowing through the UZ and upper SZ. Variations in calcite chemistry in the UZ and in the barren zone show that (1) Sr, which is readily exchanged with clays or zeolites, is essentially removed from some flowpaths that are in contact with these minerals and (2) traces of Mn oxides found in the tuffs have a significant effect on groundwater chemistry in the UZ and in the barren zone by removing almost all Ce from solution (evidenced by characteristic Ce depletions in calcite throughout this zone). Extreme Ce removal may be a result of Ce oxidation (Ce 3+? Ce 4+) at the surfaces of some Mn oxides, particularly rancieite. Higher Sr contents and lack of Ce depletions in the deeper Mn calcites reflect different ages, origins, and transport systems. The calcite record of lanthanide and Sr transport in the UZ shows that minor minerals (clays and zeolites) and even trace minerals (Mn oxides) will affect the compositions of groundwaters that flow over distances greater than a few tens of meters.

Vaniman, David T.; Chipera, Steve J.

1996-11-01

125

Student Data Sheet Crystal Experiment: _______________________________  

E-print Network

Student Data Sheet Name: Date: Crystal Experiment: _______________________________ Observations;Student Data Sheet Name: Date: Observations of Crystals Name of Crystal Observation Bismuth Pyrite in Matrix Pyrite Cube Ulexite #12;Iceland Spar (calcite) Quartz Fluorite #12;Student Data Sheet Name: Date

Pike, Robert D.

126

Cooperative effects of polarization and polyaspartic acid on formation of calcium carbonate films with a multiple phase structure on oriented calcite substrates  

NASA Astrophysics Data System (ADS)

We demonstrated the crystallization of calcium carbonate (CaCO3) on polarized calcite single crystal substrates with three different orientations characterized by the (10.0), (00.1), and (10.4) planes in the presence of polyaspartic acid (PAsp) as an organic additive. The precipitates had a multiple phase structure with thin-film-like and hemispherical forms and were a mixture of calcite, aragonite, and vaterite. The main component of the thin-film-like layers was calcite elongated along the c-axis, regardless of the differently oriented calcite substrates, while the main component of the hemispherical layers was aragonite. The individual crystals of each CaCO3 polymorph shaped the morphology of the mesocrystals. Calcite-aragonite complex films with two distinct structures are similar to those found in pearls and bivalve shells. The combined effect of a surface electric field by virtue of the polarized calcite substrates and PAsp promoted the formation of the thin-film-like layers and moreover, acted remarkably on the negatively charged surface of each oriented calcite substrate. The matching between the ?-sheets of PAsp and the calcium-ion arrangement on top of the oriented calcite substrates explained the preferential calcite crystallization in the form of the thin-film-like layers and why calcite precipitates are in the following sequence: (00.1)>(10.4)>(10.0).

Wada, Norio; Horiuchi, Naohiro; Nakamura, Miho; Nozaki, Kosuke; Hiyama, Tetsuo; Nagai, Akiko; Yamashita, Kimihiro

2014-09-01

127

Controlling the morphology, composition and crystal structure in gold-seeded GaAs1-xSbx nanowires  

NASA Astrophysics Data System (ADS)

While III-V binary nanowires are now well controlled and their growth mechanisms reasonably well understood, growing ternary nanowires, including controlling their morphology, composition and crystal structure remains a challenge. However, understanding and control of ternary alloys is of fundamental interest and critical to enable a new class of nanowire devices. Here, we report on the progress in understanding the complex growth behaviour of gold-seeded GaAs1-xSbx nanowires grown by metalorganic vapour phase epitaxy. The competition between As and Sb atoms for incorporation into the growing crystal leads to a tunability of the Sb content over a broad range (x varies from 0.09 to 0.6), solely by changing the AsH3 flow. In contrast, changing TMSb flow is more effective in affecting the morphology and crystal structure of the nanowires. Inclined faults are found in some of these nanowires and directly related to the kinking of the nanowires and controlled by TMSb flow. Combined with the observed sharp increase of wetting angle between the Au seed and nanowire, the formation of inclined faults are attributed to the Au seed being dislodged from the growth front to wet the sidewalls of the nanowires, and are related to the surfactant role of Sb. The insights provided by this study should benefit future device applications relying on taper- and twin-free ternary antimonide III-V nanowire alloys and their heterostructures.While III-V binary nanowires are now well controlled and their growth mechanisms reasonably well understood, growing ternary nanowires, including controlling their morphology, composition and crystal structure remains a challenge. However, understanding and control of ternary alloys is of fundamental interest and critical to enable a new class of nanowire devices. Here, we report on the progress in understanding the complex growth behaviour of gold-seeded GaAs1-xSbx nanowires grown by metalorganic vapour phase epitaxy. The competition between As and Sb atoms for incorporation into the growing crystal leads to a tunability of the Sb content over a broad range (x varies from 0.09 to 0.6), solely by changing the AsH3 flow. In contrast, changing TMSb flow is more effective in affecting the morphology and crystal structure of the nanowires. Inclined faults are found in some of these nanowires and directly related to the kinking of the nanowires and controlled by TMSb flow. Combined with the observed sharp increase of wetting angle between the Au seed and nanowire, the formation of inclined faults are attributed to the Au seed being dislodged from the growth front to wet the sidewalls of the nanowires, and are related to the surfactant role of Sb. The insights provided by this study should benefit future device applications relying on taper- and twin-free ternary antimonide III-V nanowire alloys and their heterostructures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06307d

Yuan, Xiaoming; Caroff, Philippe; Wong-Leung, Jennifer; Tan, Hark Hoe; Jagadish, Chennupati

2015-03-01

128

Chiral solutes can seed the formation of enantiomorphic domains in a twist-bend nematic liquid crystal.  

PubMed

The twist-bend nematic, an enantiomorphic liquid-crystalline phase, exhibited by the structurally symmetric liquid-crystal dimer CB7CB is induced to form a single domain of uniform handedness, in the bulk, by the addition of the dopant chiral solute (S)-1-phenylethanol. Addition of a nonracemic (or scalemic) mixture of both R and S enantiomers of this solute produced equal volumes of P and M chiral domains for the twist-bend nematic phase. This seeding of the domains in an enantiomorphic nematic conglomerate is revealed using deuterium NMR spectroscopy. PMID:23679359

Emsley, James W; Lesot, Philippe; Luckhurst, Geoffrey R; Meddour, Abdelkrim; Merlet, Denis

2013-04-01

129

In-situ observation of ettringite crystals  

NASA Astrophysics Data System (ADS)

In-situ observation of growing ettringite crystals in solution has been carried out and the morphology change of ettringite has been investigated under various conditions. In particular, the acceleration behavior of ettringite growth in the presence of calcite, the cause of which is not yet understood, is examined. Spherulite with calcite in its core is formed first followed by the generation of acicular crystals. Compared with the in-situ observation result of crystal growth in a solution with no calcite, the effect of added calcite can be explained as a decrease in the activation energy of nucleation for ettringite around calcite.

Komatsu, Ryuichi; Mizukoshi, Norihiro; Makida, Koji; Tsukamoto, Katsuo

2009-01-01

130

Seed-mediated growth of noble metal nanocrystals: crystal growth and shape control  

NASA Astrophysics Data System (ADS)

Controlled synthesis of noble metal nanocrystals has received enormous attention due to the ability of tailoring the properties of nanocrystals by tuning their shape, size, and composition. The seed-mediated growth method is one of the most reliable and versatile methods to control the shapes of noble metal nanocrystals. This feature article highlights recent strategies regarding shape-controlled synthesis of noble metal nanocrystals by the seed-mediated growth method, with the aim of introducing new strategies and offering new mechanistic insights into nanocrystal shape evolution. Critical parameters affecting the nucleation and growth of noble metal NCs are systemically introduced and analyzed. New developments of extended seed-mediated growth methods were also introduced. Finally, the perspectives of future research on the seed-mediated growth method are also discussed.

Niu, Wenxin; Zhang, Ling; Xu, Guobao

2013-03-01

131

Thermodynamics of magnesian calcite solid-solutions at 25??C and 1 atm total pressure  

USGS Publications Warehouse

The stability of magnesian calcites was reexamined, and new results are presented for 28 natural inorganic, 12 biogenic, and 32 synthetic magnesian calcites. The magnesian calcite solid-solutions were separated into two groups on the basis of differences in stoichiometric solubility and other physical and chemical properties. Group I consists of solids of mainly metamorphic and hydrothermal origin, synthetic calcites prepared at high temperatures and pressures, and synthetic solids prepared at low temperature and very low calcite supersaturations (??calcite ??? 1.5) from artificial sea water or NaClMgCl2CaCl2 solutions. Group I solids are essentially binary s of CaCO2 and MgCO2, and are thought to be relatively free of structural defects. Group II solid-solutions are of either biogenic origin or are synthetic magnesian calcites and protodolomites (0-20 and ??? 45 mole percent MgCO3) prepared at high calcite supersaturations (??calcite??? 3) from NaClNa2SO4MgCl2CaCl2 or NaClMgCl2CaCl2 solutions. Group II solid-solutions are treated as massively defective solids. The defects include substitution foreign ions (Na+ and SO42-) in the magnesian calcite lattice (point defects) and dislocations (~2 ?? 109 cm-2). Within each group, the excess free energy of mixing, GE, is described by the mixing model ge = X(1- x)[A0 + A1(2x - 1)], where x is the mole fraction of the end-member Ca0.5Mg0.5CO3 in the solid-solution. The values of A0 and A1 for Group I and II solids were evaluated at 25??C. The equilibrium constants of all the solids are closely described by the equation ln Kx = x(1-x) RT[A0 + A1(2x- 1)]+ (1 - x) ln [KC(1- x)]+ x ln (KDx), where KC and KD are the equilibrium constants of calcite and Ca0.5Mg0.5CO3. Group I magnesian calcites were modeled as sub-regular solid-solutions between calcite and dolomite, and between calcite and "disordered dolomite". Both models yield almost identical equilibrium constants for these magnesian calcites. The Group II magnesian calcites were modeled as sub-regular solid-solutions between defective calcite and protodolomite. Group I and II solid-solutions differ significantly in stability. The rate of crystal growth and the chemical composition of the aqueous solutions from which the solids were formed are the main factors controlling stoichiometric solubility of the magnesian calcites and the density of crystal defects. The literature on the occurrence and behavior of magnesian calcites in sea water and other aqueous solutions is also examined. ?? 1989.

Busenberg, E.; Niel, Plummer L.

1989-01-01

132

High performance low temperature polycrystalline Si thin-film transistors fabricated by silicide seed-induced lateral crystallization  

NASA Astrophysics Data System (ADS)

A novel and simple crystallization method for high performance polycrystalline silicon (poly-Si) thin-film transistors (TFTs) using Ni silicide seed-induced lateral crystallization (SILC) was proposed in this study, and it includes no additional deposition and/or etching processes that are not found in the fabrication of conventional metal-induced lateral crystallization (MILC) TFTs. The poly-Si thin films crystallized by SILC were characterized by x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and Micro-Raman spectroscopy. The electrical properties were obtained from I D - V G transfer curves and the interface trap density was determined by Levinson plot analysis. The results show that SILC poly-Si films have lower Ni contamination, better crystallinity, and higher crystalline fraction than MILC poly-Si films. The p-channel SILC poly-Si TFTs exhibited a mobility of 66 cm2/V·s, a minimum leakage current of 3.4 × 10-11 A at V D = -5 V, a subthreshold slope of 0.85 V/dec, and a maximum on/off ratio of 5.0 × 106, all of which resulted in a high-performance device which surpassed conventional MILC poly-Si TFTs.

Byun, Chang Woo; Son, Se Wan; Lee, Yong Woo; Joo, Seung Ki

2012-06-01

133

Design of a diamond-crystal monochromator for the LCLS hard x-ray self-seeding project  

NASA Astrophysics Data System (ADS)

As the result of collaborations between the Advanced Photon Source (APS), Argonne National Laboratory, and the Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory, we have designed and constructed a diamond crystal monochromator for the LCLS hard x-ray self-seeding project. The novel monochromator is ultrahigh-vacuum compatible to meet the LCLS linear accelerator vacuum environmental requirement. A special graphite holder was designed for strain-free mount of the 110-?m thin synthetic diamond crystal plate provided by Technological Institute for Super-hard and Novel Carbon Materials of Russia (TISNCM). An in-vacuum multi-axis precision positioning mechanism is designed to manipulate the thin-film diamond holder with resolutions and stabilities required by the hard x-ray self-seeding physics. Optical encoders, limit switches, and hardware stops are established in the mechanism to ensure system reliability and to meet the accelerator personal and equipment safety interlock requirements. Molybdenum shields are installed in the monochromator to protect the encoders and associated electronics from radiation damage. Mechanical specifications, designs, and preliminary test results of the diamond monochromator are presented in this paper.

Shu, D.; Shvyd'ko, Y.; Amann, J.; Emma, P.; Stoupin, S.; Quintana, J.

2013-03-01

134

Controls of carbonate mineralogy and solid-solution of Mg in calcite: evidence from spelean systems  

SciTech Connect

Precipitation of carbonate minerals in spelean systems occurs under a wide range of fluid chemistry, Mg-Ca ratios, alkalinities, pH and temperatures; thus, spelean systems provide ideal settings to determine factors controlling the mineralogy of precipitated carbonates and solid-solution of Mg in calcite. Cave waters and actively-precipitating carbonate speleothems were collected from Carlsbad Caverns National Park, New Mexico and the Mammoth-Flint Cave System, Kentucky. Carbonate mineralogy of precipitated phases was determined by x-ray diffraction, and major and minor element composition of waters and accompanying minerals were determined by Atomic Absorption Spectrophotometry. Results demonstrate that at a constant CO3 concentration the precipitation threshold for calcite to aragonite is controlled dominantly by the Mg/Ca ratio of the ambient fluid. Aragonite precipitation is favored by high Mg/Ca ratios. Conversely, with increasing CO3 concentration at constant fluid Mg/Ca ratios, calcite is preferentially precipitated. Solid-solution of Mg in calcite is positively correlated with both increased Mg/Ca ratios and CO3 concentrations. These data suggest that Mg contents of calcite can not be defined solely in terms of a homogeneous distribution coefficient. Rather, Mg concentrations can be also be affected by the CO3 concentration and degree of calcite saturation, suggesting that the rate of crystal growth also plays and important role in Mg solid-solution in calcites.

Gonzalez, L.A.; Lohmann, K.C.

1985-01-01

135

Model study of initial adsorption of SO 2 on calcite and dolomite  

NASA Astrophysics Data System (ADS)

The rate of calcareous stone degradation is to a significant extent controlled by their surface chemistry with SO 2. Initial surface sulphite is converted to a harmful gypsum upon, e.g. NO 2 catalysed oxidation. However, it has been observed by scanning electron microscopy that the lateral distributions of gypsum crystals differ between calcitic and dolomitic marbles. The first-principles density functional theory is employed to understand the origin of these fundamentally different morphologies. Here, the stability differences of surface sulphite at calcite CaCO 3 (s) and dolomite Ca xMg 1- xCO 3 (s) are determined. A qualitative difference in surface sulphite stability, favouring the former, is reported. This is taken to imply that calcitic micro-crystals embedded in a dolomitic matrix act as sinks in the surface sulphation process, controlled by SO 2 diffusion. The subsequent formation of gypsum under such conditions will not require SO 42- (aq) ion transport. This explains the homogeneous distribution of gypsum observed on the calcitic micro-crystals in dolomite. In contrast, sulphation on purely calcitic marbles never reaches such high SO 2 coverage. Rather, upon oxidation, SO 42- (aq) transport to nucleation centres, such as grain boundaries, is required for the growth of gypsum crystals.

Malaga-Starzec, Katarina; Panas, Itai; Lindqvist, Oliver

2004-01-01

136

(U-Th)/He dating and He diffusion in calcite from veins and breccia  

NASA Astrophysics Data System (ADS)

Knowledge of He retention in crystalline calcite is mandatory to estimate the possibility of (U-Th)/He dating of calcite. To this aim, fault-filling calcite crystals from the Eocene/Oligocene Gondrecourt graben, Paris Basin, Eastern France, have been sampled, based on their relatively old, Eocene-Oligocene, precipitation age and cold thermal history (<40°C since precipitation). The samples were sorted into three main tectonic and morphological groups, including successively (1) micro-fracture calcites, (2) breccia and associated geodic calcites, and (3) vein and associated geodic calcites. (U-Th)/He dating of 63 calcite fragments yields ages dispersed from 0.2×0.02 to 35.8×2.7 Ma, as well as two older dates of 117×10 and 205×28 Ma (1s). These He ages correlate to grain chemistry, such as to Sr and ?REE concentrations or (La/Yb)N ratios, and these correlations probably reflect the evolution of parent fluid. Only the oldest He ages are in agreement with the He-retentive character of calcite as determined by Copeland et al. (2007), and these ages were obtained for the most recently precipitated crystals. To better understand the large He-age scatter and why calcites precipitated earlier show younger ages, He diffusion experiments have been conducted on 10 Gondrecourt calcite fragments from 3 samples with He ages of 0.2 to 6 Ma. In addition, a crystallographic investigation by X-Ray Diffraction (XRD) performed on similar samples reveals that the crystal structure evolves with increasing temperature, showing with micro-cracks and cleavage opening. These XRD results indicate that, in fault-filling calcite, He retention is controlled by multiple diffusion domains (MDD, Lovera et al., 1991) with various sizes, and therefore, evolves through time with strong consequences on (U-Th)/He age. We thus interpret the Gondrecourt calcite (U-Th)/He age scatter of older samples as a consequence of cleavage opening due to a succession of calcite crystallization phases related to the deformation history. Finally, we propose that the crystallization age of a calcite crystal with a known thermal history can nevertheless be retrieved by the (U-Th)/He method provided the He diffusion pattern can be measured by careful step-heating degassing analysis. Copeland, P., Watson, E.B., Urizar, S.C., Patterson, D., Lapen, T.J., 2007. Alpha thermochronology of carbonates. Geochim. Cosmochim. Acta, 71: 4488-4511. Cros, A. Gautheron, C., Pagel, M., Berthet, P., Tassan-Got, L., Douville, E., Pinna-Jamme, R., Sarda, P., submitted GCA, He behavior in calcite filling viewed by (U-Th)/He dating, He diffusion and crystallographic studies. Lovera, O.M., Richter, F.M., Harrison, T.M., 1991. Diffusion domains determined by 39Ar released during step heating. Journal of Geophysical Research, 96: 2057-2069.

Gautheron, C.; Cros, A.; Pagel, M.; Berthet, P.; Tassan-Got, L.; Douville, E.; Pinna-Jamme, R.; Sarda, P.

2013-12-01

137

HEMATITE AND CALCITE COATINGS ON FOSSIL VERTEBRATES  

Microsoft Academic Search

Hematite coatings are common on vertebrate fossils from Paleocene\\/Eocene paleosol deposits in the Bighorn Basin, Wyoming. In general, hematite coatings are found only on fossils and are limited to soils exhibiting hydromorphic features and moderate maturity. Pet- rographic and isotopic evidence suggests that hematite and micritic calcite formed at nearly the same time in a pedogenic environment, whereas sparry calcite

HUIMING BAO; PAUL L. KOCH; ROBERT P. HEPPLE

138

Effect of inorganic phosphate ions on the spontaneous precipitation of vaterite and on the transformation of vaterite to calcite  

NASA Astrophysics Data System (ADS)

The effect of inorganic orthophosphate ions on both the precipitation of vaterite and the transformation of vaterite to the thermodynamically stable calcite was investigated during the precipitation process of calcium carbonate, under conditions of constant supersaturation at 25°C and at pH 9.0 and 10.0. The calcite content of the solid precipitates was determined quantitatively by powder X-ray diffraction (XRD) using the appropriate standards mixed at known amounts. The presence of very small amounts of inorganic phosphate ions was found to reduce the rate of vaterite crystallization. Application of the kinetic data to a Langmuir-type model suggested that adsorption of phosphate at the active growth sites was responsible for the reduction in the crystal growth rates. At relatively high supersaturation ratios (1.5-2.1), where the transformation rate decreases with increasing supersaturation ratio, it was found that the transformation of the initially formed vaterite to calcite depends only on the supersaturation ratio and not on the pH of the supersaturated solutions in which precipitation takes place. It was suggested on the basis of the kinetic results, that the transformation takes place through dissolution of vaterite followed by crystallization of calcite. At relatively high supersaturation ratios (1.5-2.1) the transformation is controlled by the dissolution of vaterite, whereas at lower supersaturation ratios (1.1-1.5) the rate of vaterite dissolution is comparable with the respective rate of calcite crystallization. Finally, it was found that the presence of phosphate ions in the precipitating solution stabilized the initially formed vaterite, by decreasing markedly the rate of its transformation to calcite. The stability of vaterite in the presence of the phosphate ions was ascribed to the retardation of both the dissolution of vaterite and of the crystallization of calcite, caused by blocking of the active sites for the dissolution of vaterite and for the crystallization of calcite, by the adsorbed phosphates.

Katsifaras, Apostolis; Spanos, Nikos

1999-07-01

139

Nucleation, growth and evolution of calcium phosphate films on calcite.  

PubMed

Marble, a stone composed of the mineral calcite, is subject to chemically induced weathering in nature due to its relatively high dissolution rate in acid rain. To protect monuments and sculpture from corrosion, we are investigating the application of thin layers of hydroxyapatite (HAP) onto marble. The motivation for using HAP is its low dissolution rate and crystal and lattice compatibility with calcite. A mild, wet chemical synthesis route, in which diammonium hydrogen phosphate salt was reacted with marble, alone and with cationic and anionic precursors under different reaction conditions, was used to produce inorganic HAP layers on marble. Nucleation and growth on the calcite substrate was studied, as well as metastable phase evolution, using scanning electron microscopy, grazing incidence X-ray diffraction, and atomic force microscopy. Film nucleation was enhanced by surface roughness. The rate of nucleation and the growth rate of the film increased with cationic (calcium) and anionic (carbonate) precursor additions. Calcium additions also influenced phase formation, introducing a metastable phase (octacalcium phosphate) and a different phase evolution sequence. PMID:25233226

Naidu, Sonia; Scherer, George W

2014-12-01

140

In-Situ Partial Pressure Measurements and Visual Observation during Crystal Growth of ZnSe by Seeded Physical Vapor Transport  

NASA Technical Reports Server (NTRS)

An in-situ monitoring furnace was constructed with side windows to perform partial pressure measurements by optical absorption and visual observation of the growing crystal. A fused silica -rowth ampoule with a 4.5 cm long square tube between the source and the seed was prepared for the optical absorption measurements. A ZnSe crystal was grown by the seeded physical vapor transport (PVT) technique in the horizontal configuration. The growth temperature was 1120 C and the furnace translation rate was 3nmVday. Partial pressures of Se2, P(sub Se2), at three locations along the length of the growth ampoule were measured at 90 min intervals during the growth process. The measured P (sub Se2) were in the range of 2.0 to 6.5 x 10(exp -3) atm. The P(sub Se2) results indicated that the partial pressure profile was inconsistent with the results of the one-dimensional diffusion mass transport model and that the source composition shifted toward Se-rich during the run, i.e. the grown crystal was more Zn-rich than the source. The visual observation showed that the seed crystal first etched back, with greater thermal etching occurring along the edges of the seed crystal. Once the growth started, the crystal crew in a predominately contactless mode and facets were evident during growth. The crystal did not grow symmetrically which is believed to be due to the unintentional asymmetry of the radial thermal profile in the furnace.

Su, Ching-Hua; Feth, Shari; Lehoczky, Sandor L.

1999-01-01

141

Hydrothermal conversion of FAU zeolite into LEV zeolite in the presence of non-calcined seed crystals  

NASA Astrophysics Data System (ADS)

Hydrothermal conversion of Faujasite-type (FAU) zeolite into Levynite (LEV) zeolite without the use of an organic structure-directing agent (OSDA) was successfully achieved in the presence of non-calcined seed crystals. The interzeolite conversion depended strongly upon the alkalinity (OH -/SiO 2) of the starting gel, the Si/Al ratio of the starting FAU zeolite and the type of alkaline metal employed. Successful conversion of FAU zeolites into pure LEV zeolite was achieved only for FAU zeolites with Si/Al ratios in the range of 19-26, under highly alkaline conditions (OH -/SiO 2=0.6) by using NaOH as an alkali source. Although the yield of LEV zeolite prepared by this method was lower (18-26%) than that of the conventional hydrothermal synthesis with the use of SDA, the obtained LEV zeolite exhibited a unique core/shell structure.

Yashiki, Ayako; Honda, Koutaro; Fujimoto, Ayumi; Shibata, Shohei; Ide, Yusuke; Sadakane, Masahiro; Sano, Tsuneji

2011-06-01

142

Preparation of Free-Standing GaN Substrates from Thick GaN Layers Crystallized by Hydride Vapor Phase Epitaxy on Ammonothermally Grown GaN Seeds  

NASA Astrophysics Data System (ADS)

Crystallization of GaN by hydride vapor phase epitaxy (HVPE) on ammonothermally grown GaN seed crystals is described. The initial growth conditions for HVPE are determined and applied for further bulk growth. Smooth GaN layers up to 1.1 mm thick and of excellent crystalline quality, without cracks, and with low dislocation density are obtained. Preparation of the free-standing HVPE-GaN crystal by slicing and structural and optical quality of the resulting wafer are presented.

Sochacki, Tomasz; Bryan, Zachary; Amilusik, Mikolaj; Collazo, Ramon; Lucznik, Boleslaw; Weyher, Jan L.; Nowak, Grzegorz; Sadovyi, Bogdan; Kamler, Grzegorz; Kucharski, Robert; Zajac, Marcin; Doradzinski, Roman; Dwilinski, Robert; Grzegory, Izabella; Bockowski, Michal; Sitar, Zlatko

2013-07-01

143

[Study on microarea characteristics of calcite in Archaean BIF from Wuyang area in south margin of North China Craton and its geological significances].  

PubMed

The results of Raman, SEM, CL and EDS analysis show that the quartz-type BIF (banded iron formation) in Tieshanmiao formation, from Wuyang area of south North China Craton mainly contains quartz, magnetite and a small quantity of calcite. In comparison, magnetites represent the highest automorphic degree, while calcites contribute to the lowest automorphic degree. In addition, the automorphic degree of the quartz lies between magnetite and calcite. In the results of Raman analysis, the crystallinity and order degree are quite diverse in the vertical direction of the calcite band-like, and this is different from the calcite vein precipitating from the upper hydrothermal fluid. There are obvious plastic flow happening to calcite particles. During the process of plastic flow, the calcites are finally filled in the space between quartz and magnetite. This is the reason why the cross sectional shape and distributional characteristics of calcite aggregate are controlled by the particles of quartz and magnetite, which is also evidenced by the calcite filled into the slight interspace between two particles of quartz. In the Raman analysis, there are apparent differences of microarea component in calcite band-like, and this denotes that it is produced by the plastic flow and concourse process. What's more, the calcite acts as the migration intermedium of tiny magnetite during their concourse and crystallization processes, which is witnessed by the concentrated particles of magnetite in small size in local parts of the calcites. With the help of calcite, the small magnetite particles join together to crystallize with bigger size or form aggregate of minerals. PMID:24555381

Li, Hong-Zhong; Zhai, Ming-Guo; Zhang, Lian-Chang; Yang, Zhi-Jun; Zhou, Yong-Zhang; Wang, Chang-Le; Liang, Jin; Luo, An

2013-11-01

144

Alginic Acid Accelerates Calcite Dissolution  

NASA Astrophysics Data System (ADS)

Accelerated carbonate weathering through biological activity affects both geochemical cycling and the local pH and alkalinity of terrestrial and marine waters. Microbes affect carbonate dissolution through metabolic activity, production of acidic or chelating exudates, and cation binding by cell walls. Dissolution occurs within microbial biofilms - communities of microorganisms attached to stone in an exopolymer matrix. We investigated the effect of alginic acid, a common biological polymer produced by bacteria and algae, on calcite dissolution using a paired atomic force microscopy/flow-through reactor apparatus. The alginic acid caused up to an order of magnitude increase in dissolution rate at 3 < pH < 12. Additionally, the polymer preferentially binds to the obtuse pit steps and increases step velocity. We propose that the polymer is actively chelating surficial cations reducing the activation energy and increasing dissolution rate. The role of biologically produced polymers in mineral weathering is important in the protection of cultural heritage materials and understanding of marine and terrestrial systems.

Perry, T. D.; Duckworth, O. W.; McNamara, C. J.; Martin, S. T.; Mitchell, R.

2003-12-01

145

Unravelling the enigmatic origin of calcitic nanofibres in soils and caves: purely physicochemical or biogenic processes?  

NASA Astrophysics Data System (ADS)

Calcitic nanofibres are ubiquitous habits of secondary calcium carbonate (CaCO3) accumulations observed in calcareous vadose environments. Despite their widespread occurrence, the origin of these nanofeatures remains enigmatic. Three possible mechanisms fuel the debate: (i) purely physicochemical processes, (ii) mineralization of rod-shaped bacteria, and (iii) crystal precipitation on organic templates. Nanofibres can be either mineral (calcitic) or organic in nature. They are very often observed in association with Needle Fibre Calcite (NFC), another typical secondary CaCO3 habit in terrestrial environments. This association has contributed to some confusion between both habits, however they are truly two distinct calcitic features and their recurrent association is likely to be an important fact to help understanding the origin of nanofibres. In this manuscript the different hypotheses that currently exist to explain the origin of calcitic nanofibres are critically reviewed. In addition to this, a new hypothesis for the origin of nanofibres is proposed based on the fact that current knowledge attributes a fungal origin to NFC. As this feature and nanofibres are recurrently observed together, a possible fungal origin for nanofibres which are associated with NFC is investigated. Sequential enzymatic digestion of the fungal cell wall of selected fungal species demonstrates that the fungal cell wall can be a source of organic nanofibres. The obtained organic nanofibres show a striking morphological resemblance when compared to their natural counterparts, emphasizing a fungal origin for part of the organic nanofibres observed in association with NFC. It is further hypothesized that these organic nanofibres may act as templates for calcite nucleation in a biologically-influenced mineralization process, generating calcitic nanofibres. This highlights the possible involvement of Fungi in CaCO3 biomineralization processes, a role still poorly documented at present-day. Moreover, on a global scale, the organomineralization of organic nanofibres into calcitic nanofibres might have a great, however overlooked, impact on the biogeochemical cycles of both Ca and C.

Bindschedler, S.; Cailleau, G.; Braissant, O.; Millière, L.; Job, D.; Verrecchia, E. P.

2014-01-01

146

Unravelling the enigmatic origin of calcitic nanofibres in soils and caves: purely physicochemical or biogenic processes?  

NASA Astrophysics Data System (ADS)

Calcitic nanofibres are ubiquitous habits of secondary calcium carbonate (CaCO3) accumulations observed in calcareous vadose environments. Despite their widespread occurrence, the origin of these nanofeatures remains enigmatic. Three possible mechanisms fuel the debate: (i) purely physicochemical processes, (ii) mineralization of rod-shaped bacteria, and (iii) crystal precipitation on organic templates. Nanofibres can be either mineral (calcitic) or organic in nature. They are very often observed in association with needle fibre calcite (NFC), another typical secondary CaCO3 habit in terrestrial environments. This association has contributed to some confusion between both habits, however they are truly two distinct calcitic features and their recurrent association is likely to be an important fact to help understanding the origin of nanofibres. In this paper the different hypotheses that currently exist to explain the origin of calcitic nanofibres are critically reviewed. In addition to this, a new hypothesis for the origin of nanofibres is proposed based on the fact that current knowledge attributes a fungal origin to NFC. As this feature and nanofibres are recurrently observed together, a possible fungal origin for nanofibres which are associated with NFC is investigated. Sequential enzymatic digestion of the fungal cell wall of selected fungal species demonstrates that the fungal cell wall can be a source of organic nanofibres. The obtained organic nanofibres show a striking morphological resemblance when compared to their natural counterparts, emphasizing a fungal origin for part of the organic nanofibres observed in association with NFC. It is further hypothesized that these organic nanofibres may act as templates for calcite nucleation in a biologically influenced mineralization process, generating calcitic nanofibres. This highlights the possible involvement of fungi in CaCO3 biomineralization processes, a role still poorly documented. Moreover, on a global scale, the organomineralization of organic nanofibres into calcitic nanofibres might be an overlooked process deserving more attention to specify its impact on the biogeochemical cycles of both Ca and C.

Bindschedler, S.; Cailleau, G.; Braissant, O.; Millière, L.; Job, D.; Verrecchia, E. P.

2014-05-01

147

Crystallization and preliminary X-ray diffraction analysis of the lectin from Dioclea rostrata Benth seeds  

PubMed Central

Lectins from the Diocleinae subtribe (Leguminosae) are highly similar proteins that promote various biological activities with distinctly differing potencies. The structural basis for this experimental data is not yet fully understood. Dioclea rostrata lectin was purified and crystallized by hanging-drop vapour diffusion at 293?K. The crystal belongs to the orthorhombic space group I222, with unit-cell parameters a = 61.51, b = 88.22, c = 87.76?Å.  Assuming the presence of one monomer per asymmetric unit, the solvent content was estimated to be about 47.9%. A complete data set was collected at 1.87?Å resolution. PMID:16511292

Delatorre, Plínio; Nascimento, Kyria Santiago; Melo, Luciana Magalhães; de Souza, Emmanuel Prata; da Rocha, Bruno Anderson Matias; Benevides, Raquel G.; de Oliveira, Taiana Maia; Bezerra, Gustavo Arruda; Bezerra, Maria Júlia Barbosa; da Cunha, Rodrigo Maranguape Silva; da Cunha, Francisco Assis Bezerra; Freire, Valder Nogueira; Cavada, Benildo Sousa

2006-01-01

148

Timing and mechanism of late-Pleistocene calcite vein formation across the Dead Sea Fault Zone, northern Israel  

NASA Astrophysics Data System (ADS)

The emplacement of calcite-filled veins perpendicular to the Dead Sea Fault Zone in northern Israel reflects strain partitioning during transpression. We present structural, geochemical, and U-Th geochronological data that constrain the mechanism, conditions and timing of vein formation. Vein walls are strongly brecciated and commonly cemented with coarsely crystalline calcite, whereas calcite-filled veins are composed of wall-parallel bands of calcite crystals. Elongated blocky and fibrous calcite crystals grew perpendicular to the vein walls and are characterised by a truncate sealing-hiatus morphology, indicating episodes of partial or complete sealing of the fractures during calcite precipitation. Stable isotope and rare-earth element and yttrium (REY) analyses indicate that calcite-filled veins precipitated by karst processes, involving meteoric water and limited fluid-rock interactions. U-Th dating results show a prolonged history of vein growth. While some veins initiated prior to 500 ka, the majority of the veins were active between 358 and 17 ka. Age constraints on vein activity correspond to an ?E-W regional shortening phase in this sector of the Dead Sea Fault Zone, associated with an increased component of convergence during the late-Pleistocene.

Nuriel, Perach; Weinberger, Ram; Rosenbaum, Gideon; Golding, Suzanne D.; Zhao, Jian-xin; Tonguc Uysal, I.; Bar-Matthews, Miryam; Gross, Michael R.

2012-03-01

149

Towards achieving a flattop crystal size distribution by continuous seeding and controlled growth  

E-print Network

,b,n a University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA b Massachusetts Institute of Technology, 77 distribution. The dual impinging jets combined hot and cold saturated solutions to generate highly uniform 20 control can also eliminate or reduce the amount of post-crystallization processing such as milling

Braatz, Richard D.

150

Sea Urchin Spine Calcite Forms via a Transient Amorphous Calcium Carbonate Phase  

Microsoft Academic Search

The skeletons of adult echinoderms comprise large single crystals of calcite with smooth convoluted fenestrated morphologies, raising many questions about how they form. By using water etching, infrared spectroscopy, electron diffraction, and environmental scanning electron microscopy, we show that sea urchin spine regeneration proceeds via the initial deposition of amorphous calcium carbonate. Because most echinoderms produce the same type of

Yael Politi; Talmon Arad; Eugenia Klein; Steve Weiner; Lia Addadi

2004-01-01

151

Do organic ligands affect calcite dissolution rates?  

NASA Astrophysics Data System (ADS)

Steady state Iceland-spar calcite dissolution rates were measured at 25 °C in aqueous solutions containing 0.1 M NaCl and up to 0.05 M dissolved bicarbonate at pH from 7.9 to 9.1 in the presence of 13 distinct dissolved organic ligands in mixed-flow reactors. The organic ligands considered in this study include those most likely to be present in either (1) aquifers at the conditions pertinent to CO 2 sequestration or (2) soil/early diagenetic environments: acetate, phthalate, citrate, EDTA 4-, succinate, D-glucosaminate, L-glutamate, D-gluconate, 2,4-dihydroxybenzoate, 3,4-dihydroxybenzoate, fumarate, malonate, and gallate. Results show that the presence of <0.05 mol/kg of these organic anions changes calcite dissolution rates by less than a factor of 2.5 with the exception of citrate and EDTA 4-. The presence of 0.05 mol/kg citrate and EDTA 4- increases calcite dissolution rates by as much as a factor of 35 and 500, respectively, compared to rates in organic anion-free solutions. Further calcite dissolution experiments were performed in the presence of organic polymers similar to bacterial exudates, cell exopolysaccharides, and analogs of microbial cell envelopes: alginate, lichen extract, humic acid, pectin, and gum xanthan. In no case did the presence of <100 ppm of these organics change calcite dissolution rates by more than a factor of 2.5. Results obtained in this study suggest that the presence of aqueous organic anions negligibly affects calcite forward dissolution rates in most natural environments. Some effect on calcite reactivity may be observed, however, by the presence of organic anions if they change substantially the chemical affinity of the fluid with respect to calcite.

Oelkers, Eric H.; Golubev, Sergey V.; Pokrovsky, Oleg S.; Bénézeth, Pascale

2011-04-01

152

Effects of temperature and transport conditions on calcite growth in the presence of Mg 2+: Implications for paleothermometry  

Microsoft Academic Search

This study links direct measurement of Mg-calcite growth kinetics with high-spatial-resolution analysis of Mg contents in experimental crystals, with particular attention to the effects of temperature on growth rate and reactant transport conditions on Mg distribution. In contrast to previous experiments on Mg partitioning into calcite, here the layer-growth mechanism was observed in situ and step speeds precisely measured with

Laura E. Wasylenki; Patricia M. Dove; James J. De Yoreo

2005-01-01

153

Hydrothermal replacement of calcite by Mg-carbonates  

NASA Astrophysics Data System (ADS)

The transport of heat and mass through the Earth's crust is coupled to mineral reactions and the exchange of isotopes and elements between different phases. Carbonate minerals are a major constituent of the Earth's crust and play an important role in different physical, chemical and even biological processes. In this experimental study, the element exchange reaction between calcite (CaCO3) and a Mg-rich fluid phase is investigated under hydrothermal conditions. Single crystals of calcite (2x2x2 mm) react with 1 ml of a 1 M MgCl2 solution at 200° C in a Teflon-lined steel autoclave for different times between one day and four weeks. The reaction leads to the formation of a porous reaction front and the pseudomorphic replacement of calcite by dolomite [CaMg(CO3)2] and magnesite (MgCO3). Scanning electron microscopy revealed that the reaction rim consists of small Mg-carbonate rhombs closely attached to each other, suggesting that the replacement reaction takes place by a dissolution-precipitation mechanism. Typically, the observed reaction front can be divided into two different domains. The outer part of the reaction rim, i.e. from the mineral surface in contact to the fluid inwards, consists of magnesite, whereas the inner part of the rim surrounding the unreacted calcite core consists of Ca-rich dolomite. The formation of a porous microstructure that varies in different parts of the reaction rim is a direct result of the large molar volume change induced by the replacement of calcite by magnesite and dolomite. The developing porosity therefore creates fluid pathways that promote the progress of the reaction front towards the unreacted core of the single crystal. Compositional profiles measured perpendicular to the mineral surface across the reactions rims using electron microprobe (EMPA) further revealed a compositional gradient within the reaction rim with regard to the structure-forming elements Mg and Ca. Here, the amount of Mg incorporated in both product phases increases with increasing distance from the unreacted calcite core, countered by a decrease of Ca incorporated. Both the coexistence of two different product phases and the distinct compositional gradient within the forming reaction rim are unequivocal signs of a chemical zonation of Ca and Mg in the fluid phase which mediates the element exchange between the reaction interface and the bulk solution. Atomic adsorption spectroscopy revealed that the Ca/Mg ratio in the reacted fluid increases as a function of time, reflecting the progressive exchange of Mg and Ca between the fluid and the solid phase. The time-dependence of the evolving Ca/Mg ratio can be fitted with a square root of time relation that indicates a transport controlled reaction. We interpret the hydrothermal replacement of calcite to operate via a dissolution/re-precipitation mechanism, whereas the reaction progress is controlled by the transport of the structure forming elements through the developing reaction rim.

Jonas, Laura; Mueller, Thomas; Dohmen, Ralf

2014-05-01

154

Nickel adsorption on chalk and calcite  

NASA Astrophysics Data System (ADS)

Nickel uptake from solution by two types of chalk and calcite was investigated in batch sorption studies. The goal was to understand the difference in sorption behavior between synthetic and biogenic calcite. Experiments at atmospheric partial pressure of CO2, in solutions equilibrated with calcite and chalk and pH ranging from 7.7 to 8.8, explored the influence of initial concentration and the amount and type of sorbent on Ni uptake. Adsorption increases with increased surface area and pH. A surface complexation model describes the data well. Stability constants for the Ni surface complex are log KNi = - 1.12 on calcite and log KNi = - 0.43 and - 0.50 on the two chalk samples. The study confirms that synthetic calcite and chalk both take up nickel, but Ni binds more strongly on the biogenic calcite than on inorganically precipitated, synthetic powder, because of the presence of trace amounts of polysaccharides and clay nanoparticles on the chalk surface.

Belova, D. A.; Lakshtanov, L. Z.; Carneiro, J. F.; Stipp, S. L. S.

2014-12-01

155

4He behavior in calcite filling viewed by (U-Th)/He dating, 4He diffusion and crystallographic studies  

NASA Astrophysics Data System (ADS)

Fault-filling calcite crystals sampled from the Eocene/Oligocene Gondrecourt graben, Paris Basin, Eastern France, have been studied in order to test the potentiality of calcite (U-Th)/He dating, based on recognized He retention behavior in crystal lattice at surface temperature (Copeland et al., 2007). The samples have been selected because of their relatively old Eocene to Oligocene precipitation age and cold thermal history (<40 °C since precipitation). They were sorted into three main tectonic and morphological groups in order of precipitation, including (1) micro-fracture calcites, (2) breccia and associated geodic calcites, and (3) vein and associated geodic calcites. (U-Th)/He dating of 63 calcite fragments yields ages dispersed from 0.2 ± 0.02 to 35.8 ± 2.7 Ma, as well as two older dates of 117 ± 10 and 205 ± 28 Ma (1?). These He ages correlate with grain chemistry, such as Sr, ?REE concentrations or (La/Yb)N ratios, likely reflecting parent fluid evolution. Only the oldest He ages, which correspond to the most recently precipitated crystals, have preserved the total 4He budget since precipitation. To better understand both the age dispersion and why calcites precipitated earlier show younger ages, 4He diffusion experiments have been conducted on 10 Gondrecourt calcite fragments from 3 samples with He ages of ?0.2-6 Ma. Additionally, a crystallographic investigation by X-ray diffraction (XRD) performed on similar samples reveals that crystal structure evolves with increasing temperature, beginning with micro-cracks and cleavage opening. These XRD results shed light on the (U-Th)/He data, indicating that, in fault-filling calcite, He retention is controlled by multiple diffusion domains (MDD) with various sizes, and therefore, evolves through time with strong consequences on (U-Th)/He age. We thus interpret the Gondrecourt calcite (U-Th)/He age scatter as a consequence of the production of defects due to successive calcite crystallization phases associated with the deformation history.

Cros, Alexandre; Gautheron, Cécile; Pagel, Maurice; Berthet, Patrick; Tassan-Got, Laurent; Douville, Eric; Pinna-Jamme, Rosella; Sarda, Philippe

2014-01-01

156

Upscaling Calcite Growth Rates From the Mesoscale to the Macroscale  

SciTech Connect

Quantitative prediction of mineral reaction rates in the subsurface remains a daunting task partly because a key parameter for macroscopic models, the reactive site density, is poorly constrained. Here we report atomic force microscopy (AFM) measurements on the calcite surface of monomolecular step densities, treated as equivalent to the reactive site density, as a function of aqueous calcium-to-carbonate ratio and saturation index. Data for the obtuse step orientation are combined with existing step velocity measurements to generate a model that predicts overall macroscopic calcite growth rates. The model is quantitatively consistent with several published macroscopic rates under a range of alkaline solution conditions, particularly for two of the most comprehensive data sets without the need for additional fit parameters. The model reproduces peak growth rates and its functional form is simple enough to be incorporated into reactive transport or other macroscopic models designed for predictions in porous media. However, it currently cannot model equilibrium, pH effects, and may overestimate rates at high aqueous calcium-to-carbonate ratios. The discrepancies in rates at high calcium-to-carbonate ratios may be due to differences in pre-treatment, such as exposing the seed material to SI 1.0 to generate/develop growth hillocks, or other factors.

Bracco, Jacquelyn N [ORNL; Stack, Andrew G [ORNL; Steefel, Carl I [Lawrence Berkeley National Laboratory (LBNL)

2013-01-01

157

Cocrystallization of Co(II) with calcite: Implications for the mobility of cobalt in aqueous environments  

Microsoft Academic Search

Two different experimental processes (precipitation and crystallization in silica gel) have been carried out to investigate the degree of non-ideality and the crystallization behavior of the calcite–sphaerocobaltite solid solution from aqueous solutions. Solid phases of different compositions were precipitated at 25 °C by mixing a Na2CO3 aqueous solution with solutions with different ratios of CaCl2 and CoCl2. The precipitates were characterized

Dionisis Katsikopoulos; Ángeles Fernández-González; Angel Carmelo Prieto; Manuel Prieto

2008-01-01

158

Structural Characterization of Lateral-grown 6H-SiC am-plane Seed Crystals by Hot Wall CVD Epitaxy  

NASA Technical Reports Server (NTRS)

The performance of commercially available silicon carbide (SiC) power devices is limited due to inherently high density of screw dislocations (SD), which are necessary for maintaining polytype during boule growth and commercially viable growth rates. The NASA Glenn Research Center (GRC) has recently proposed a new bulk growth process based on axial fiber growth (parallel to the c-axis) followed by lateral expansion (perpendicular to the c-axis) for producing multi-faceted m-plane SiC boules that can potentially produce wafers with as few as one SD per wafer. In order to implement this novel growth technique, the lateral homoepitaxial growth expansion of a SiC fiber without introducing a significant number of additional defects is critical. Lateral expansion is being investigated by hot wall chemical vapor deposition (HWCVD) growth of 6H-SiC am-plane seed crystals (0.8mm x 0.5mm x 15mm) designed to replicate axially grown SiC single crystal fibers. The post-growth crystals exhibit hexagonal morphology with approximately 1500 m (1.5 mm) of total lateral expansion. Preliminary analysis by synchrotron white beam x-ray topography (SWBXT) confirms that the growth was homoepitaxial, matching the polytype of the respective underlying region of the seed crystal. Axial and transverse sections from the as grown crystal samples were characterized in detail by a combination of SWBXT, transmission electron microscopy (TEM) and Raman spectroscopy to map defect types and distribution. X-ray diffraction analysis indicates the seed crystal contained stacking disorders and this appears to have been reproduced in the lateral growth sections. Analysis of the relative intensity for folded transverse acoustic (FTA) and optical (FTO) modes on the Raman spectra indicate the existence of stacking faults. Further, the density of stacking faults is higher in the seed than in the grown crystal. Bundles of dislocations are observed propagating from the seed in m-axis lateral directions. Contrast extinction analysis of these dislocation lines reveals they are edge type basal plane dislocations that track the growth direction. Polytype phase transition and stacking faults were observed by high-resolution TEM (HRTEM), in agreement with SWBXT and Raman scattering.

Goue, Ouloide Yannick; Raghothamachar, Balaji; Dudley, Michael; Trunek, Andrew J.; Neudeck, Philip G.; Woodworth, Andrew A.; Spry, David J.

2014-01-01

159

Hydro-gel environment and solution additives modify calcite growth mechanism to an accretion process of amorphous nanospheres  

NASA Astrophysics Data System (ADS)

Various biominerals form via the transformation of a transient amorphous precursor phase into a mature crystalline phase. The mature biominerals usually exhibit morphology reminiscent of aggregated nanoparticles. Although these observations suggest an accretion-based growth process consisting on nanoparticles, the key factors that control the accretion process are unknown. We investigated the transformation of solid amorphous calcium carbonate (ACC) into calcite. When plant cystoliths, a biogenic stable ACC phase, are transformed into calcite in vitro by immersion in water, calcite crystals grow in two distinct steps (Gal et al., Angewandte Chemie, 2013). First, rhombohedral crystals grow that show flat facets as expected from ion-by-ion growth. These crystals then grow by the aggregation and crystallization of the original ACC nanospheres leading to a surface morphology dominated by aggregated spheres. The transformation process occurs within an organic hydro-gel that originates from inside the cystoliths. We tested the importance of the gel phase to the transformation process by transforming synthetic ACC into calcite inside various gels. In all the investigated systems: in gelatin, agarose, and pectin gels, calcite crystals grew that showed the nanosphere aggregation morphology. In additional experiments we demonstrated that also other additives, such as phosphate ions and biogenic macromolecules, that slow down ACC dissolution and calcite precipitation from ions can induce the accretion process dominance (see figure attached). These experiments show that although in solution the dominant process is dissolution to ions of the ACC and crystal growth by ion-by-ion mechanism, the presence of an additive that slows the ion-mediated processes makes the ACC nanospheres stable long enough to interact with the crystal surface. As a result, the metastable ACC nanospheres undergo secondary nucleation on the crystal surface without dissolving. These experiments highlight two factors that may underlie many biomineralization processes in nature: the first formed amorphous mineral phase can transform to a crystalline phase without dissolving if the solution properties of the environment are altered by an additive. And, accretion-based crystal-growth may become dominant when the amorphous precursor is abundant and the competing ion-based process is slowed down. SEM images of: (A) calcite crystal that grew from the transformation of ACC in DDW by ion-by-ion growth mechanism; (B) calcite crystal that grew from the transformation of ACC in 10mM phosphate solution by nanosphere accretion mechanism. Scale bars are 100 nm.

Gal, A.; Kahil, K.; Habraken, W.; Gur, D.; Fratzl, P.; Addadi, L.; Weiner, S.

2013-12-01

160

Calcite dissolution in two deep eutrophic lakes  

SciTech Connect

The calcium cycle, in particular carbonate dissolution, was analyzed in two deep eutrophic lakes, Lago di Lugano (288 m maximum depth) and Sempachersee (87 m) located in Switzerland. A box model approach was used to calculate calcite dissolution in the water column and at the sediment-water interface based on various lake monitoring data such as sediment traps, sediment cores, water and pore-water interface based on various lake monitoring data such as sediment traps, sediment cores, water and pore-water analysis. A model for stationary conditions allowing the calculation of calcite dissolution in the water column for a given particle size distribution was developed. The relative values of the simulated flux were consistent with sediment trap observations. The best fit of the dissolution rate constant of sinking calcite in Lago di Lugano was on the same order of magnitude (3 {center{underscore}dot} 10{sup {minus}10} kg{sup 1/3} s{sup {minus}1}) as published laboratory values for this surface controlled process. Both lakes show a similar specific calcite precipitation rate of 170 g Ca m{sup {minus}2} a{sup {minus}1}. The diffusive flux across the sediment-water interface amounts to about 15 and 10% of total calcite precipitation in Sempachersee and Lago di Lugano, respectively. However, 61% of the precipitated calcite is dissolved in the water column of Lago di Lugano compared to only 13% in Sempachersee. These results point towards the importance of grain size distributions and settling times in stratified deep waters as the two most important factors determining calcite retention in sediments of hard water lakes.

Ramisch, F.; Dittrich, M.; Mattenberger, C.; Wehrli, B.; Wueest, A.

1999-10-01

161

Origin of cone-in-cone calcite veins during calcitization of dolomites and their subsequent diagenesis: A case study from the Gogolin Formation (Middle Triassic), SW Poland  

NASA Astrophysics Data System (ADS)

Although bedding-parallel cone-in-cone structure calcite veins are present in the Middle Triassic Gogolin Formation in Opole Silesia, their occurrence is limited to the Emilówka Cellular Limestone Member. Marly limestones (dedolomites) consisting of calcite pseudospar are the host rocks. The veins, which are up to 3 mm high and 30 cm long, are built of densely packed cone columns, with individual cones up to 0.7 mm high and 0.6 mm wide at their bases, and with vertex angle values ranging from 30° to 50°. The cones are microfractured, and the adjacent cones are vertically shifted in oblique planes. The exceptionally small veins consist of calcite fibres up to 0.15 mm high. The veins are built of low-magnesium and non-ferroan calcite, characterized by low ? 18O values ranging from - 6.8‰ to - 7.4‰, and low ? 13C values ranging from - 2.9‰ to - 4.5‰ vs. PDB. These isotopic values are similar to those obtained from the host rocks (? 18O from - 6.8‰ to - 7.4‰, and ? 13C from - 3.2‰ to - 3.6‰ vs. PDB) and they are strongly depleted in comparison with the isotopic values of other carbonate particles from the Gogolin Formation. The veins only formed in one lithostratigraphic member, suggesting that their origin is related to processes which acted only locally. There are two unique processes that the Emilówka Cellular Limestone Member alone in the Gogolin Formation underwent: early diagenetic evaporitic dolomitization of lime mud in the sabkha environment, and subsequent calcitization of dolomite. Dolomitization led to sediment cohesion loss, porosity increase and initial horizontal laminae separation as a result of the transformation of calcium carbonate to dolomite within anisotropic deposits. Similar values of geochemical parameters obtained from the vein calcite and the host rock calcite are evidence that vein-filling precipitation was contemporary with dedolomitization. Geochemical data combined with sedimentological research and burial history show meteoric-derived waters saturated with respect to calcite as a source of the vein calcite. Dedolomitization and vein precipitation may have taken place from the Norian/Early Jurassic to the Late Jurassic when the study area became eroded land, and the Emilówka Cellular Limestone Member may have acted as a local paleoaquifer conducting the meteoric-derived waters. Solid inclusions in the veins, detached from the host rock and the calcitized nodules, show that the force of calcite crystallization was the main factor responsible for vein widening. Vertical shifts of adjacent cones, remnants of primary fibrous calcite crystals, as well as the burial history justify the application of Tarr's theory in interpreting the origin of the secondary cone-in-cone structure within the fibrous structure veins. The timing and the particular conditions required for the cones to develop are uncertain.

Kowal-Linka, Monika

2010-03-01

162

Ages and Origins of Calcite and Opal in the Exploratory Studies Facility Tunnel, Yucca Mountain, Nevada  

USGS Publications Warehouse

Deposits of calcite and opal are present as coatings on open fractures and lithophysal cavities in unsaturated-zone tuffs at Yucca Mountain, Nevada, site of a potential high-level radioactive waste repository. Outermost layers of calcite and opal have radiocarbon ages of 16,000 to 44,000 years before present and thorium-230/uranium ages of 28,000 to more than 500,000 years before present. These ages are young relative to the 13-million-year age of the host rocks. Multiple subsamples from the same outer layer typically show a range of ages with youngest ages from the thinnest subsamples. Initial uranium-234/uranium-238 activity ratios between 1 and 9.5 show a distinct negative correlation with thorium-230/uranium age and are greater than 4 for all but one sample younger than 100,000 years before present. These data, along with micrometer-scale layering and distinctive crystal morphologies, are interpreted to indicate that deposits formed very slowly from water films migrating through open cavities. Exchanges of carbon dioxide and water vapor probably took place between downward-migrating liquids and upward-migrating gases at low rates, resulting in oversaturation of mineral constituents at crystal extremities and more or less continuous deposition of very thin layers. Therefore, subsamples represent mixtures of older and younger layers on a scale finer than sampling techniques can resolve. Slow, long-term rates of deposition (less than about 5 millimeters of mineral per million years) are inferred from subsamples of outermost calcite and opal. These growth rates are similar to those calculated assuming that total coating thicknesses of 10 to 40 millimeters accumulated over 12 million years. Calcite has a wide range of delta carbon-13 values from about -8.2 to 8.5 per mil and delta oxygen-18 values from about 10 to 21 per mil. Systematic microsampling across individual mineral coatings indicates basal (older) calcite tends to have the largest delta carbon-13 values and smallest delta oxygen-18 values compared to calcite from intermediate and outer positions. Basal calcite has relatively small strontium-87/strontium-86 ratios, between 0.7105 and 0.7120, that are similar to the initial isotopic compositions of the strontium-rich tuff units, whereas outer calcite has more radiogenic strontium-87/strontium-86 ratios between 0.7115 and 0.7127. Isotopic compositions of strontium, oxygen, and carbon in the outer (youngest) unsaturated-zone calcite are coincident with those measured in Yucca Mountain calcrete, which formed by pedogenic processes. The physical and isotopic data from calcite and opal indicate that they formed from solutions of meteoric origin percolating through a limited network of connected fracture pathways in the unsaturated zone rather than by inundation from ascending ground water originating in the saturated zone. Mineral assemblages, textures, and distributions within the unsaturated zone are distinctly different from those deposited below the water table at Yucca Mountain. The calcite and opal typically are present only on footwall surfaces of a small fraction of fractures and only on floors of a small fraction of lithophysal cavities. The similarities in the carbon, oxygen, and strontium isotopic compositions between fracture calcite and soil-zone calcite, as well as the gradation of textures from detritus-rich micrite in the soil to detritus-free spar 10 to 30 meters below the surface, also support a genetic link between the two depositional environments. Older deposits contain oxygen isotope compositions that indicate elevated temperatures of mineral formation during the early stages of deposition; however, in the youngest deposits these values are consistent with deposition under geothermal gradients similar to modern conditions. Correlations between mineral ages and varying Pleistocene climate conditions are not apparent from the current data. Cumulative evidence from calcite and opal deposits indicate

Paces, James B.; Neymark, Leonid A.; Marshall, Brian D.; Whelan, Joseph F.; Peterman, Zell E.

2001-01-01

163

Project Explorer: Get Away Special #007. [alloy solidification, seed germination, crystal growth, and radio transmission of payload data  

NASA Technical Reports Server (NTRS)

Tentatively scheduled to fly on STS-17 (41G), this get away special aims to demonstrate amateur radio transmissions to global ground stations in the English language. Experiments No. 1, 2, and 3 use the micro-gravity of space flight to study the solidification of lead-antimony and aluminum-copper alloys, the germination of radish seeds, and the growth of potassium-tetracyanoplatinate hydrate crystals in an aqueous solution. Flight results are to be compared with Earth-based data. Experiment No. 4 (the Marshall Amateur Radio Club Experiment - MARCE) features radio transmissions and also provides timing for the start of all other experiments. A microprocessor obtains real-time data from all experiments as well as temperature and pressure measurements within the GAS canister. These data are to be transmitted on previously announced amateur radio frequencies after they are converted into the English language by a digitalker for general reception. The support structure for the G #007 experiments consists of two primary plates and four bumper assemblies.

Henderson, A. J., Jr.

1984-01-01

164

Selective adsorption of L- and D-amino acids on calcite: Implications for biochemical homochirality  

NASA Technical Reports Server (NTRS)

The emergence of biochemical homochirality was a key step in the origin of life, yet prebiotic mechanisms for chiral separation are not well constrained. Here we demonstrate a geochemically plausible scenario for chiral separation of amino acids by adsorption on mineral surfaces. Crystals of the common rock-forming mineral calcite (CaCO(3)), when immersed in a racemic aspartic acid solution, display significant adsorption and chiral selectivity of d- and l-enantiomers on pairs of mirror-related crystal-growth surfaces. This selective adsorption is greater on crystals with terraced surface textures, which indicates that d- and l-aspartic acid concentrate along step-like linear growth features. Thus, selective adsorption of linear arrays of d- and l-amino acids on calcite, with subsequent condensation polymerization, represents a plausible geochemical mechanism for the production of homochiral polypeptides on the prebiotic Earth.

Hazen, R. M.; Filley, T. R.; Goodfriend, G. A.

2001-01-01

165

Interaction of europium and nickel with calcite studied by Rutherford Backscattering Spectrometry and Time-Resolved Laser Fluorescence Spectroscopy  

NASA Astrophysics Data System (ADS)

This study aims at elucidating the mechanisms regulating the interaction of Eu and Ni with calcite (CaCO3). Calcite powders or single crystals (some mm sized) were put into contact with Eu or Ni solutions at concentrations ranging from 10-3 to 10-5 mol L-1 for Eu and 10-3 mol L-1 for Ni. The sorption durations ranged from 1 week to 1 month. Rutherford Backscattering Spectrometry (RBS) well adapted to discriminate incorporation processes such as: (i) adsorption or co precipitation at the mineral surfaces or, (ii) incorporation into the mineral structure (through diffusion for instance), has been carried out. Moreover, using the fluorescence properties of europium, the results have been compared to those obtained by Time-Resolved Laser Fluorescence Spectroscopy (TRLFS) on calcite powders. For the single crystals, complementary SEM observations of the mineral surfaces at low voltage were also performed. Results showed that Ni accumulates at the calcite surface whereas Eu is also incorporated at a greater depth. Eu seems therefore to be incorporated into two different states in calcite: (i) heterogeneous surface accumulation and (ii) incorporation at depth greater than 160 nm after 1 month of sorption. Ni was found to accumulate at the surface of calcite without incorporation.

Sabau, A.; Pipon, Y.; Toulhoat, N.; Lomenech, C.; Jordan, N.; Moncoffre, N.; Barkleit, A.; Marmier, N.; Brendler, V.; Surblé, S.; Giffaut, E.

2014-08-01

166

Crystal Growth and Characterization of (Bi0.5Na0.5)TiO3--BaTiO3 Single Crystals Obtained by a Top-Seeded Solution Growth Method under High-Pressure Oxygen Atmosphere  

Microsoft Academic Search

A single crystal of ferroelectric 0.88(Bi,Na)TiO3--0.12BaTiO3 (BNT--BT) solid solution with tetragonal P4mm structure was grown by a top-seeded solution growth (TSSG) method at a high oxygen pressure (PO\\\\scale70%2) of 0.9 MPa. The crystals exhibited a large remanent polarization (Pr) of 54 muC\\/cm2, which leads to a spontaneous polarization estimated to be 54 muC\\/cm2. The large Pr compared with that of

Hiroaki Onozuka; Yuuki Kitanaka; Yuji Noguchi; Masaru Miyayama

2011-01-01

167

1 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim wileyonlinelibrary.com Brittlestar-Inspired Microlens Arrays Made of Calcite  

E-print Network

through template-directed dep- osition and crystallization of amorphous calcium carbonate. As a strategy, micrometer-sized single crystals of calcite with patterned surfaces comprising con- cave lenses were produced on templating against monolayer colloidal crystals (MCCs)[27] combined with the epitaxial growth on large-area

Qi, Limin

168

Effect of hydraulic retention time and seed material on phosphorus recovery and crystal size from urine in an air-agitated reactor.  

PubMed

Phosphorus (P) recovery from urine is affected by various parameters. This study evaluates the effects of hydraulic retention time (HRT) and seed material on P recovery and crystal size in an air-agitated reactor. Results show that ortho-phosphate removal and struvite recovery efficiencies were 96.3% and 89.5%, and 97.1% and 93.0%, after five runs of HRTs of 1 and 2 h, respectively. Low loss of crystals from effluent urine solutions indicates high struvite recovery efficiency and is correlated with the structure and design of the reactor. The average particle size decreased from 40.0 to 31.7 ?m as the HRT increased from 1 to 2 h. The two types of seed materials (zeolite and molecular sieve) did not affect the ortho-phosphate removal efficiency but affected the struvite crystal size. In particular, multi-stage addition of zeolites increased the average crystal size from 33.7 to 57.0 ?m. PMID:24718337

Liu, Xiaoning; Hu, Zhengyi; Wang, Jinzhi; Wen, Guoqi

2014-01-01

169

Calcitic microlenses as part of the photoreceptor system in brittlestars  

NASA Astrophysics Data System (ADS)

Photosensitivity in most echinoderms has been attributed to `diffuse' dermal receptors. Here we report that certain single calcite crystals used by brittlestars for skeletal construction are also a component of specialized photosensory organs, conceivably with the function of a compound eye. The analysis of arm ossicles in Ophiocoma showed that in light-sensitive species, the periphery of the labyrinthic calcitic skeleton extends into a regular array of spherical microstructures that have a characteristic double-lens design. These structures are absent in light-indifferent species. Photolithographic experiments in which a photoresist film was illuminated through the lens array showed selective exposure of the photoresist under the lens centres. These results provide experimental evidence that the microlenses are optical elements that guide and focus the light inside the tissue. The estimated focal distance (4-7µm below the lenses) coincides with the location of nerve bundles-the presumed primary photoreceptors. The lens array is designed to minimize spherical aberration and birefringence and to detect light from a particular direction. The optical performance is further optimized by phototropic chromatophores that regulate the dose of illumination reaching the receptors. These structures represent an example of a multifunctional biomaterial that fulfills both mechanical and optical functions.

Aizenberg, Joanna; Tkachenko, Alexei; Weiner, Steve; Addadi, Lia; Hendler, Gordon

2001-08-01

170

Calcitic microlenses as part of the photoreceptor system in brittlestars.  

PubMed

Photosensitivity in most echinoderms has been attributed to 'diffuse' dermal receptors. Here we report that certain single calcite crystals used by brittlestars for skeletal construction are also a component of specialized photosensory organs, conceivably with the function of a compound eye. The analysis of arm ossicles in Ophiocoma showed that in light-sensitive species, the periphery of the labyrinthic calcitic skeleton extends into a regular array of spherical microstructures that have a characteristic double-lens design. These structures are absent in light-indifferent species. Photolithographic experiments in which a photoresist film was illuminated through the lens array showed selective exposure of the photoresist under the lens centres. These results provide experimental evidence that the microlenses are optical elements that guide and focus the light inside the tissue. The estimated focal distance (4-7 micrometer below the lenses) coincides with the location of nerve bundles-the presumed primary photoreceptors. The lens array is designed to minimize spherical aberration and birefringence and to detect light from a particular direction. The optical performance is further optimized by phototropic chromatophores that regulate the dose of illumination reaching the receptors. These structures represent an example of a multifunctional biomaterial that fulfills both mechanical and optical functions. PMID:11518966

Aizenberg, J; Tkachenko, A; Weiner, S; Addadi, L; Hendler, G

2001-08-23

171

The coordination and distribution of B in foraminiferal calcite  

NASA Astrophysics Data System (ADS)

The isotopic ratio and concentration of B in foraminiferal calcite appear to reflect the pH and bicarbonate concentration of seawater. The use of B as a chemical proxy tracer has the potential to transform our understanding of the global carbon cycle, and ocean acidification processes. However, discrepancies between the theory underpinning the B proxies, and mineralogical observations of B coordination in biomineral carbonates call the basis of these proxies into question. Here, we use synchrotron X-ray spectromicroscopy to show that B is hosted solely as trigonal BO3 in the calcite test of Amphistegina lessonii, and that B concentration exhibits banding at the micron length scale. In contrast to previous results, our observation of trigonal B agrees with the predictions of the theoretical mechanism behind B palaeoproxies. These data strengthen the use of B for producing palaeo-pH records. The observation of systematic B heterogeneity, however, highlights the complexity of foraminiferal biomineralisation, implying that B incorporation is modulated by biological or crystal growth processes.

Branson, Oscar; Kaczmarek, Karina; Redfern, Simon A. T.; Misra, Sambuddha; Langer, Gerald; Tyliszczak, Tolek; Bijma, Jelle; Elderfield, Henry

2015-04-01

172

Strain rate dependent calcite microfabric evolution at natural conditions  

NASA Astrophysics Data System (ADS)

Crystal plastic deformational behaviour of calcite has been the focus of many experimental studies. Different strain rates, pressure and temperature conditions have been addressed to investigate a wide range of deformation regimes. However, a direct comparison with natural fault rocks remains difficult because of extreme differences between experimental and natural strain rates. A flanking structure developed in almost pure calcite marble on Syros (Cyclades, Greece). Due to rotation of a planar feature (crack) a heterogeneous strain field in the surrounding area occurred resulting in different strain domains and the formation of the flanking structure. Assuming that deformation was active continuously during the development of the flanking structure, the different strain domains correspond to different strain-rate domains. The outcrop thus represents the final state of a natural experiment and gives us a great opportunity to get natural constraints on strain rate dependent deformation behaviour of calcite. Comparing the microfabrics in the 1 to 2.5 cm thick shear zone and the surrounding host rocks, which formed under the same metamorphic conditions but with different strain rates, is the central focus of this study. Due to the extreme variation in strain and strain rate, different microstructures and textures can be observed corresponding to different deformation mechanisms. With increasing strain rate we observe a change in dominant deformation mechanism from dislocation glide to dislocation creep and finally diffusion creep. Additionally, a change from subgrain rotation to bulging recrystallization can be observed in the dislocation creep regime. Crystallographic preferred orientations (CPO) and the grade of intracrystalline deformation were measured on a FEI Quanta 3D FEG instrument equipped with an EDAX Digiview IV EBSD camera. At all strain rates clear CPOs developed leading to the assumption that calcite preferentially deforms within the dislocation creep field. However, we can also find clear evidence for grain size sensitive deformation mechanisms at smaller grain sizes (3.6 ?m) consistent with experimental observations and determined flaw laws. The results of this study are compared with experimental data, closing the gap between experimental and natural geological strain rates.

Rogowitz, Anna; Grasemann, Bernhard; Huet, Benjamin; Habler, Gerlinde

2014-05-01

173

Cyclic Cratonic Carbonates and Phanerozoic Calcite Seas.  

ERIC Educational Resources Information Center

Discusses causes of cyclicity in cratonic carbonate sequences and evidence for and potential significance of postulated primary calcite sediment components in past Paleozoic seas, outlining problems, focusing on models explaining existing data, and identifying background. Future sedimentary geologists will need to address these and related areas…

Wilkinson, Bruce H.

1982-01-01

174

The puzzling presence of calcite in skeletons of modern solitary corals from the Mediterranean Sea  

NASA Astrophysics Data System (ADS)

The skeleton of scleractinian corals is commonly believed to be composed entirely of aragonite due to the current Mg/Ca molar ratio of seawater, which thermodynamically favours the deposition of this polymorph of calcium carbonate (CaCO3). However, some studies have shown that other forms of CaCO3 such as calcite can be present in significant amount (1-20%) inside tropical coral skeletons, significantly impacting paleo-reconstructions of SST or other environmental parameters based on geochemical proxies. This study aims at investigating for the first time, (1) the skeletal composition of two Mediterranean solitary corals, the azooxanthellate Leptopsammia pruvoti and the zooxanthellate Balanophyllia europaea, across their life cycle, (2) the distribution of the different CaCO3 forms inside skeletons, and (3) their implications in paleoclimatology. The origin of the different forms of CaCO3 observed inside studied coral skeletons and their relationships with the species' habitat and ecological strategies are also discussed. CaCO3 composition of L. pruvoti and B. europaea was investigated at six sites located along the Italian coasts. Skeleton composition was studied by means of X-ray powder diffraction and Fourier transform infrared spectroscopy. A significant amount of calcite (1-23%) was found in more than 90% of the studied coral skeletons, in addition to aragonite. This calcite was preferentially located in the basal and intermediate areas than at the oral pole of coral skeletons. Calcite was also mainly located in the epitheca that covered the exposed parts of the coral in its aboral region. Interestingly in B. europaea, the calcite content was negatively correlated with skeleton size (age). The presence of calcite in scleractinian corals may result from different mechanisms: (1) corals may biologically precipitate calcite crystals at their early stages in order to insure their settlement on the substrate of fixation, especially in surgy environments; (2) calcite presence may result from skeletons of other calcifying organisms such as crustose coralline algae; and/or (3) calcite may result from the infilling of galleries of boring microorganisms which are known to colonize coral skeletons. We suggest that more than one of the above mentioned processes are involved.

Goffredo, Stefano; Caroselli, Erik; Mezzo, Francesco; Laiolo, Leonardo; Vergni, Patrizia; Pasquini, Luca; Levy, Oren; Zaccanti, Francesco; Tribollet, Aline; Dubinsky, Zvy; Falini, Giuseppe

2012-05-01

175

Controls on trace-element partitioning in cave-analogue calcite  

NASA Astrophysics Data System (ADS)

We report trace-element data from a series of carbonate growth experiments in cave-analogue conditions in the laboratory with the goal of better understanding environmental controls on trace-element incorporation in stalagmites. The experimental setup closely mimics natural processes (e.g. precipitation driven by CO2-degassing, low ionic strength solution, thin solution-film) but with a tight control on growth conditions (temperature, pCO2, drip rate, calcite saturation index and the composition of the initial solution). Calcite is dissolved in deionized water in a 20,000 ppmV pCO2 environment, with trace-elements (Li, Na, Mg, Co, Sr, Cd, Ba, U) at appropriate concentrations to mimic natural cave drip-waters. This solution is dripped onto glass plates (coated with seed-calcite) in a lower pCO2 environment at 7, 15, 25 and 35 °C and drip rates of 2, 6 and 10 drips per minute. D(Sr) was shown to be statistically invariant over the full range of temperature and growth rate studied. No relationship between Sr/Ca and growth rate is therefore expected in stalagmite samples over comparable growth rates. D(Mg) has a relationship with temperature defined by D(Mg) = 0.01e0.02[±0.006]T, but temperature is not expected to be the dominant control on Mg/Ca in cave calcite due to the larger impact of calcite precipitation on Mg/Ca. Over short timescales, in conditions where temperature is well buffered, the fraction of calcium remaining in solution (f) is likely to be the dominant control on Mg/Ca and other trace-element ratios. But differences in the response of trace-elements to f and T may allow their combined use to assess past cave conditions. High Cd/Castalagmite is particularly indicative of low amounts of prior calcite precipitation and Cd/Ca would be a useful addition to trace-element studies of natural stalagmites. Significant scatter is observed in trace-element ratios during the laboratory experiments, which cannot be explained by simple Rayleigh distillation. This scatter is well explained by solution mixing and by the mixing of calcite with different fractions of calcite growth. Accounting for the effects of mixing on trace-element concentrations or ratios may help to achieve more robust interpretations of stalagmite chemistry as part of a multi-proxy approach to assessment of past environments.

Day, Christopher C.; Henderson, Gideon M.

2013-11-01

176

The ionic conductivity in high-pressure polymorphs of calcite  

Microsoft Academic Search

Ionic conductivity of polycrystalline calcite containing varying amounts of PO43-ions was measured in the pressure range of 1–6 GPa and at room temperature. Electrical conductivity increased with pressure corresponding to the phase transition of calcite I to calcite II. The conductivity in calcite III decreased exponentially with pressure. Calculated activation volumes of the conductivity varied with PO43-content in the range

M. Ishikawa; A. Sawaoka; M. Ichikuni

1982-01-01

177

Hypogene calcitization: Evaporite diagenesis in the western Delaware Basin  

Microsoft Academic Search

Evaporite calcitization within the Castile Formation of the Delaware Basin is more widespread and diverse than originally\\u000a recognized. Coupled field and GIS studies have identified more than 1000 individual occurrences of calcitization within the\\u000a Castile Formation outcrop area, which includes both calcitized masses (limestone buttes) and laterally extensive calcitized\\u000a horizons (limestone sheets). Both limestone buttes and sheets commonly contain a

Kevin W. Stafford; Dana Ulmer-Scholle; Laura Rosales-Lagarde

2008-01-01

178

Experimental determination of calcite dissolution rates and equilibrium concentrations in deionized water approaching calcite equilibrium  

Microsoft Academic Search

The calcite dissolution rates at 50–250 °C and 20 MPa in deionized water with flow rate varying from 0.2 to 5 mL\\/min were\\u000a experimentally measured in a continuous flow column pressure vessel reactor. Equilibrium concentration (c\\u000a eq) of calcite dissolution in deionized water at 20 MPa was determined using dissolution data according to the iterative method\\u000a presented by Jeschke and

Qingjie Gong; Jun Deng; Qingfei Wang; Liqiang Yang; Min She

2010-01-01

179

Structural evolution of calcite at high temperatures: Phase V unveiled  

PubMed Central

The calcite form of calcium carbonate CaCO3 undergoes a reversible phase transition between Rc and Rm at ~1240?K under a CO2 atmosphere of ~0.4?MPa. The joint probability density function obtained from the single-crystal X-ray diffraction data revealed that the oxygen triangles of the CO3 group in the high temperature form (Phase V) do not sit still at specified positions in the space group Rm, but migrate along the undulated circular orbital about carbon. The present study also shows how the room temperature form (Phase I) develops into Phase V through an intermediate form (Phase IV) in the temperature range between ~985?K and ~1240?K. PMID:24084871

Ishizawa, Nobuo; Setoguchi, Hayato; Yanagisawa, Kazumichi

2013-01-01

180

Shock-induced effects in calcite from Cactus Crater  

NASA Technical Reports Server (NTRS)

The paper discusses shock metamorphism of calcite from coralline limestone samples retrieved from a borehole drilled into rocks beneath Cactus Crater, a nuclear explosion crater at Eniwetok Atoll. The metamorphism was detected and quantified using electron spin resonance (ESR); the ESR spectra of Mn(+) present as a trace constituent in the coral samples, show a consistent decrease in hyperfine peak splitting with decreasing depth of sample. It is suggested that the decrease in hyperfine peak splitting reflects a decrease in crystal field splitting, and therefore, small increases on cation-anion distances produced by mechanical energy input during the shock process. Two alternative crater models suggested by the ESR results are a depiction of a steady decay of the shock wave, and a delineation of a breccia lens with a breccia-bedrock interface at 20 plus or minus 5 m.

Vizgirda, J.; Ahrens, T. J.; Tsay, F.-D.

1980-01-01

181

Experimental pressure solution compaction of synthetic halite/calcite aggregates  

E-print Network

Experimental pressure solution compaction of synthetic halite/calcite aggregates Sergey Zubtsova of weakening of sediment-like aggregates by addition of hard particles. Sieved mixtures of calcite and halite solution. The individual halite grains deform easily by pressure solution creep whereas calcite grains act

182

Sequestration of Selenium on Calcite Surfaces Revealed by Nanoscale Imaging  

E-print Network

Sequestration of Selenium on Calcite Surfaces Revealed by Nanoscale Imaging Christine V. Putnis provides a new mechanism for selenium sequestration and extends the range of thermodynamic conditions under into calcite during calcite precipitation was the main mechanism of sequestration as they could replace either

183

Crystals  

NSDL National Science Digital Library

In this earth science/math/art activity, learners use simple ingredients to grow crystals and examine the repeating geometric shapes and patterns. Learners compare the growth of crystals from four types of crystal-starters (table salt, Borax, sand, and Epsom salt) to see which starter grows the most crystals in 14 days. Learners report their results online and find out what other learners discovered. Afterward, learners can use the crystals they grew to create works of art.

Lawrence Hall of Science

2009-01-01

184

in situ Calcite Precipitation for Contaminant Immobilization  

SciTech Connect

in situ Calcite Precipitation for Contaminant Immobilization Yoshiko Fujita (Yoshiko.fujita@inl.gov) (Idaho National Laboratory, Idaho Falls, Idaho, USA) Robert W. Smith (University of Idaho-Idaho Falls, Idaho Falls, Idaho, USA) Subsurface radionuclide and trace metal contaminants throughout the U.S. Department of Energy (DOE) complex pose one of DOE’s greatest challenges for long-term stewardship. One promising stabilization mechanism for divalent trace ions, such as the short-lived radionuclide strontium-90, is co-precipitation in calcite. Calcite, a common mineral in the arid western U.S., can form solid solutions with trace metals. The rate of trace metal incorporation is susceptible to manipulation using either abiotic or biotic means. We have previously demonstrated that increasing the calcite precipitation rate by stimulating the activity of urea hydrolyzing microorganisms can result in significantly enhanced Sr uptake. Urea hydrolysis causes the acceleration of calcium carbonate precipitation (and trace metal co-precipitation) by increasing pH and alkalinity, and also by liberating the reactive cations from the aquifer matrix via exchange reactions involving the ammonium ion derived from urea: H2NCONH2 + 3H2O ? 2NH4+ + HCO3- + OH- urea hydrolysis >X:2Ca + 2NH4+ ? 2>X:NH4 + Ca2+ ion exchange Ca2+ + HCO3- + OH- ? CaCO3(s) + H2O calcite precipitation where >X: is a cation exchange site on the aquifer matrix. This contaminant immobilization approach has several attractive features. Urea hydrolysis is catalyzed by the urease enzyme, which is produced by many indigenous subsurface microorganisms. Addition of foreign microbes is unnecessary. In turn the involvement of the native microbes and the consequent in situ generation of reactive components in the aqueous phase (e.g., carbonate and Ca or Sr) can allow dissemination of the reaction over a larger volume and/or farther away from an amendment injection point, as compared to direct addition of the reactants at a well (which can lead to clogging). A final particularly attractive characteristic of this approach is its long-term sustainability; the remediation scheme is geared toward environments that are already saturated with respect to calcite, and in such systems the bulk of any newly precipitated calcite will remain stable once engineered manipulations cease. This means that the co-precipitated contaminants will be effectively sequestered over the long term. We are currently conducting integrated field, laboratory, and computational research to evaluate a) the relationships between urea hydrolysis rate, calcite precipitation rate, and trace metal partitioning under environmentally relevant conditions; and b) the coupling between flow/flux manipulations and calcite precipitate distribution and metal uptake. We are also assessing the application of geophysical and molecular biological tools to monitor the relevant chemical and physical processes. The primary emphasis is on field-scale processes, with the laboratory and modeling activities designed specifically to support the field studies. Field experiments are being conducted in perched water (vadose zone) at the Vadose Zone Research Park (VZRP) at the Idaho National Laboratory; the VZRP provides an uncontaminated setting that is an analog of the 90Sr-contaminated vadose zone at the Idaho Nuclear Technology and Engineering Center. A summary of results to date will be presented.

Yoshiko Fujita; Robert W. Smith

2009-08-01

185

Calcite growth-rate inhibition by fulvic acid and magnesium ion—Possible influence on biogenic calcite formation  

USGS Publications Warehouse

Increases in ocean surface water dissolved carbon dioxide (CO2) concentrations retard biocalcification by reducing calcite supersaturation (?c). Reduced calcification rates may influence growth-rate dependent magnesium ion (Mg) incorporation into biogenic calcite modifying the use of calcifying organisms as paleoclimate proxies. Fulvic acid (FA) at biocalcification sites may further reduce calcification rates. Calcite growth-rate inhibition by FA and Mg, two common constituents of seawater and soil water involved in the formation of biogenic calcite, was measured separately and in combination under identical, highly reproducible experimental conditions. Calcite growth rates (pH=8.5 and ?c=4.5) are reduced by FA (0.5 mg/L) to 47% and by Mg (10?4 M) to 38%, compared to control experiments containing no added growth-rate inhibitor. Humic acid (HA) is twice as effective a calcite growth-rate inhibitor as FA. Calcite growth rate in the presence of both FA (0.5 mg/L) and Mg (10?4 M) is reduced to 5% of the control rate. Mg inhibits calcite growth rates by substitution for calcium ion at the growth site. In contrast, FA inhibits calcite growth rates by binding multiple carboxylate groups on the calcite surface. FA and Mg together have an increased affinity for the calcite growth sites reducing calcite growth rates.

Reddy, Michael M.

2012-01-01

186

Calcite growth-rate inhibition by fulvic acid and magnesium ion—Possible influence on biogenic calcite formation  

NASA Astrophysics Data System (ADS)

Increases in ocean surface water dissolved carbon dioxide (CO2) concentrations retard biocalcification by reducing calcite supersaturation (?c). Reduced calcification rates may influence growth-rate dependent magnesium ion (Mg) incorporation into biogenic calcite modifying the use of calcifying organisms as paleoclimate proxies. Fulvic acid (FA) at biocalcification sites may further reduce calcification rates. Calcite growth-rate inhibition by FA and Mg, two common constituents of seawater and soil water involved in the formation of biogenic calcite, was measured separately and in combination under identical, highly reproducible experimental conditions. Calcite growth rates (pH=8.5 and ?c=4.5) are reduced by FA (0.5 mg/L) to 47% and by Mg (10-4 M) to 38%, compared to control experiments containing no added growth-rate inhibitor. Humic acid (HA) is twice as effective a calcite growth-rate inhibitor as FA. Calcite growth rate in the presence of both FA (0.5 mg/L) and Mg (10-4 M) is reduced to 5% of the control rate. Mg inhibits calcite growth rates by substitution for calcium ion at the growth site. In contrast, FA inhibits calcite growth rates by binding multiple carboxylate groups on the calcite surface. FA and Mg together have an increased affinity for the calcite growth sites reducing calcite growth rates.

Reddy, Michael M.

2012-08-01

187

Rare earth elements in natural calcite  

NASA Astrophysics Data System (ADS)

Rare earth elements (REE) have been used for years as a tool for interpreting rock genesis but recently they have come to be used as good analogues for the tri--valent actinides. Although there are abundant data in the literature describing their relative proportions in rocks, data for individual minerals and factors controlling their uptake are lacking. Better understanding of the extent of REE incorporation in all minerals would provide valuable information about the extent of immobilisation one could expect in the event of escape of radioactive elements. When concrete waste repositories break down, calcite forms in the high pH, Ca-rich solutions. Calcium's electronic structure permits significant distortion in its octahedral coordination, so divalent ions substitute extensively when size is compatible. The trivalent REE's, whose radii are similar to calcium, substitute to some extent but the range of possible uptake is unknown. This study was designed to fill that gap. With help from museums and mineral collectors internationally, we have collected a suite of calcite samples from well--characterised genetic environments. These include limestone, dolomite, marble, pegmatite, hydrothermal vein fillings, regionally metamorphosed settings and skarn, as well as several types of calcitic fossils. We used inductively coupled plasma-mass spectroscopy (ICP--MS) with isotope dilution to analyse the REE content. Data show expected trends. The most interesting result so far is that the highest natural REE concentrations are significantly lower than expected from the distribution coefficients we determined experimentally, suggesting calcite takes up essentially all REE's available from solution. This is good news for natural attenuation in the vicinity of decomposing concrete repositories because one could expect immobilisation of the actinides whose behaviour is similar to that of the lanthanides. The negative side is that recrystallisation or dissolution could release them again.

Jensen, J. T.; Harstad, A. O.; Waight, T. E.; Stipp, S. L. S.

2003-04-01

188

Calcite cements in the modern Floridan aquifer  

SciTech Connect

Calcite cements in the Ocala (Eocene) and Suwannee (Oligocene) formations, southwestern Floridan aquifer have been studied to determine updip to downdip variations in cement chemistries and cathodoluminescence within a modern regional confined aquifer. Interparticle, intraparticle, and fracture-fill cements comprise 5-15% of the limestones. Five different calcite cement morphologies are distinguishable and occur throughout the aquifer: (1) circumgranular microspar, (2) fine- to medium-crystalline rhombs, (3) medium-crystalline syntaxial overgrowths on echinoderms, (4) fine-crystalline pore-filling mosaics, and (5) micrite. Type 5 occurs only below former exposure surfaces. Volumetrically, type 3 is the most important and type 4 is the least. Cathodoluminescence observations reveal only nonluminescent cements updip and an increase in luminescent zones and luminescent intensity downdip. Updip nonluminescent cements have very low Fe and Mn concentrations, but high Mg and Sr concentrations. These relations are interpreted to reflect oxidizing conditions and high rock/water interaction. Fe and Mn concentrations increase and Sr and Mg contents decrease downdip. These trends are interpreted to reflect reducing conditions, cross-formational flow, and slower rock/water interaction. Downdip cathodoluminescence zonations consist of a broad nonluminescent zone, followed by a thin bright orange zone, and then a dull luminescence zone. These geochemical and luminescent patterns along a regional flow line in the confined Floridan aquifer have many similarities to those observed in calcite cements described from ancient aquifers.

Hammes, U.; Budd, D.A. (Univ. of Colorado, Boulder (United States))

1991-03-01

189

Adsorption of ethanol and water on calcite: dependence on surface geometry and effect on surface behavior.  

PubMed

Molecular dynamics (MD) simulations were used to explore adsorption on calcite, from a 1:1 mixture of ethanol and water, on planar {10.4} and stepped, i.e. vicinal, surfaces. Varying the surface geometry resulted in different adsorption patterns, which would directly influence the ability of ethanol to control calcite crystal growth, dissolution, and adsorption/desorption of other ions and molecules. Ethanol forms a well-ordered adsorbed layer on planar faces and on larger terraces, such as between steps and defects, providing little chance for water, with its weaker attachment, to displace it. However, on surfaces with steps, adsorption affinity depends on the length of the terraces between the steps. Long terraces allow ethanol to form a well-ordered, hydrophobic layer, but when step density is high, ethanol adsorption is less ordered, allowing water to associate at and near the steps and even displacing pre-existing ethanol. Water adsorbed at steps forms mass transport pathways between the bulk solution and the solid surface. Our simulations confirm the growth inhibiting properties of ethanol, also explaining how certain crystal faces are more stabilized because of their surface geometry. The -O(H) functional group on ethanol forms tight bonds with calcite; the nonpolar, -CH3 ends, which point away from the surface, create a hydrophobic layer that changes surface charge, thus wettability, and partly protects calcite from precipitation and dissolution. These tricks could easily be adopted by biomineralizing organisms, allowing them to turn on and off crystal growth. They undoubtedly also play a role in the wetting properties of mineral surfaces in commercial CaCO3 manufacture, oil production, and contamination remediation. PMID:25790337

Keller, K S; Olsson, M H M; Yang, M; Stipp, S L S

2015-04-01

190

Seeding Rangeland.  

E-print Network

by percentage purity of the lot of seed. When hard seed are involved, PLS = (percent germination + percent hard seed ) x percent purity. Recommended seeding rates usually call for 20 live seed per square foot. The number of seed per pound varies.... Know the germination and purity of the seed, since seeding rates are based on pure live seed. HOW TO SEED Seedbed Preparation An ideal seedbed is firm below seeding depth, free from live, resident plant competition and has mod erate amounts...

Welch, Tommy G.; Rector, Barron S.; Alderson, James S.

1993-01-01

191

Occurrence of microdiamond in UHP calcite marble from the Kokchetav Massif  

NASA Astrophysics Data System (ADS)

Small amount of microdiamond was discovered in UHP calcite marble from Kumdy-kol, the Kokchetav Massif northern Kazakhstan. UHP calcite marble is characterized by 1) pure calcite (after aragonite) is only one carbonate phase, 2) presence of titanite, K-feldspar and diopside with phengite and K-feldspar lamella, 3) coesite exsolution from supersilicic titanite. This marble contains UHP evidence as coesite of exsolution origin in titanite and lamella texture in diopside. Minimum P condition was constrained as 6 GPa by precursor composition of titanite. So far, we have described this calcite marble as diamond-free UHP carbonate rock (Ogasawara et al., 2002); however, our recent observation found microdiamond in some domains (B-type) of this rock. Microdiamond occurs only in diopside and its amount is very low compared with diamond-bearing dolomite marble. We found 61 microdiamond grains in two thin sections (c.f. in dolomite marble, highest concentration domain contains over 4000 grains in one thin section). Microdiamond grains are heterogeneously distributed in some layers. The domain (A-type) containing relatively large amount of titanite does not contain diamond. The microdiamond in calcite marble shows 3 to 20 micrometers in diameter, rounded or cubic form, pale yellowish color and translucent character. Laser Raman spectroscopy indicated that FWHM of a Raman band at about 1332 cm-1 ranges from 2.99 to 3.64 cm-1 (average: 3.28 cm-1) and this average value is the smallest among core of S-type, rim of S-type, R-type and diamond in gneiss. Based on the morphology and other features except for FWHM of Raman band, the microdiamond in calcite marble is similar to R-type in dolomite marble (Ishida et al., 2003). No S-type diamond (_gStar_h-shaped form with core and rim) occurs in this calcite marble, and this indicates that the second stage growth of microdiamond probably from multicomponent aqueous fluid had not occurred in calcite marble. Low amount of microdiamond occurs only in diopside, no diamond occurs in titanite (stable at extremely low-XCO2 conditions), and lack of the second stage growth of microdiamond in calcite marble; all these features may be related with extremely low-XCO2 condition under UHP metamorphism. One of the possible explanations for this diamond occurrence is that microdiamonds in calcite marble are relic crystal formed before the second stage growth (the rim stage of S-type microdiamond in dolomite marble). Therefore, it is very important to confirm whether these microdiamond in B-type calcite marble had been growing or dissolving under such extremely low-XCO2 conditions. References Ishida et al. (2003): Journal of Metamorphic Geology, Vol. 21, p. 515-522. Ogasawara et al. (2000): The Island Arc, Vol. 9, p. 400-416. Ogasawara et al. (2002): American Mineralogist, Vol. 87, p. 454-461.

Ogasawara, Y.; Adachi, T.; Aoki, K.

2004-12-01

192

Impact of trace metals on the water structure at the calcite surface  

NASA Astrophysics Data System (ADS)

Carbonate minerals play an important role in regulating the chemistry of aquatic environments, including the oceans, aquifers, hydrothermal systems, soils and sediments. Through mineral surface processes such as dissolution, precipitation and sorption, carbonate minerals affect the biogeochemical cycles of not only the constituent elements of carbonates, such as Ca, Mg, Fe and C, but also H, P and trace elements. Surface charging of the calcite mineral-water interface, and its reactivity towards foreign ions can be quantified using a surface structural model that includes, among others, the water structure at the interface (i.e. hydrogen bridging) [1,2] in accordance with the CD-MUSIC formalism [3]. Here we will show the impact of foreign metals such as Mg and Sr on the water structure around different surface sites present in etch pits and on growth terraces at the calcite (10-14) surface. We have performed Molecular Dynamics simulations of metal-doped calcite surfaces, using different interatomic water potentials. Results show that the local environment around the structurally distinct sites differs depending on metal presence, suggesting that metal substitutions in calcite affect its reactivity. The information obtained in this study will help in improving existing macroscopic surface model for the reactivity of calcite [2] and give more general insight in mineral surface reactivity in relation to crystal composition. [1] Wolthers, Charlet, & Van Cappellen (2008). Am. J. Sci., 308, 905-941. [2] Wolthers, Di Tommaso, Du, & de Leeuw (2012). Phys. Chem. Chem. Phys. 14, 15145-15157. [3] Hiemstra and Van Riemsdijk (1996) J. Colloid Interf. Sci. 179, 488-508.

Wolthers, Mariette; Di Tommaso, Devis; De Leeuw, Nora

2014-05-01

193

Removal of organic magnesium in coccolithophore calcite  

NASA Astrophysics Data System (ADS)

Coccolithophore calcite refers to the plates of calcium carbonate (CaCO3) produced by the calcifying phytoplankton, coccolithophores. The empirical study of the elemental composition has a great potential in the development of paleoproxies. However, the difficulties to separate coccolithophore carbonates from organic phases hamper the investigation of coccoliths magnesium to calcium ratios (Mg/Ca) in biogeochemical studies. Magnesium (Mg) is found in organic molecules in the cells at concentrations up to 400 times higher than in inorganically precipitated calcite in present-day seawater. The aim of this study was to optimize a reliable procedure for organic Mg removal from coccolithophore samples to ensure reproducibility in measurements of inorganic Mg in calcite. Two baseline methods comprising organic matter oxidations with (1) bleach and (2) hydrogen peroxide (H2O2) were tested on synthetic pellets, prepared by mixing reagent grade CaCO3 with organic matter from the non-calcifying marine algae Chlorella autotrophica and measured with an ICP-AES (inductively coupled plasma-atomic emission spectrometer). Our results show that treatments with a reductive solution [using hydroxylamine-hydrochloride (NH2OH·HCl + NH4OH)] followed by three consecutive oxidations (using H2O2) yielded the best cleaning efficiencies, removing >99% of organic Mg in 24 h. P/Ca and Fe/Ca were used as indicators for organic contamination in the treated material. The optimized protocol was tested in dried coccolithophore pellets from batch cultures of Emiliania huxleyi, Calcidiscus leptoporus and Gephyrocapsa oceanica. Mg/Ca of treated coccolithophores were 0.151 ± 0.018, 0.220 ± 0.040, and 0.064 ± 0.023 mmol/mol, respectively. Comparison with Mg/Ca literature coccolith values, suggests a tight dependence on modern seawater Mg/Ca, which changes as a consequence of different seawater origins (<10%). The reliable determination of Mg/Ca and Sr/Ca, and the low levels of organic contamination (Fe/Ca and P/Ca) make this protocol applicable to field and laboratory studies of trace elemental composition in coccolithophore calcite.

Blanco-Ameijeiras, S.; Lebrato, M.; Stoll, H. M.; Iglesias-Rodriguez, M. D.; Méndez-Vicente, A.; Sett, S.; Müller, M. N.; Oschlies, A.; Schulz, K. G.

2012-07-01

194

Tuning calcite morphology and growth acceleration by a rational design of highly stable protein-mimetics  

SciTech Connect

In nature, proteins play a significant role in biomineral formation. One of the ultimate goals of bioinspired materials science is to develop highly stable synthetic molecules that mimic the function of these natural proteins by controlling crystal formation. Here, we demonstrate that both the morphology and the degree of acceleration or inhibition observed during growth of calcite in the presence of peptoids can be rationally tuned by balancing the electrostatic interactions (EI) and hydrophobic interactions (HI), with HI playing the dominant role. While either strong EI or HI inhibit growth and suppress (104) face expression, correlations between peptoid-crystal binding energies and observed changes in calcite growth indicate moderate EI allow peptoids to weakly adsorb while moderate HI cause disruption of surface-adsorbed water layers, leading to growth acceleration with retained expression of (104) faces. This study provides fundamental principles for designing peptoids as crystallization promoters, and offers a straightforward screening method based on macroscopic crystal morphology. Because peptoids are sequence-specific, highly stable, and easily synthesized, peptoid-enhanced crystallization offers a broad range of potential applications.

Chen, Chunlong; Qi, Jiahui; Tao, Jinhui; Zuckermann, Ronald; De Yoreo, James J.

2014-09-05

195

Tuning calcite morphology and growth acceleration by a rational design of highly stable protein-mimetics  

NASA Astrophysics Data System (ADS)

In nature, proteins play a significant role in biomineral formation. One of the ultimate goals of bioinspired materials science is to develop highly stable synthetic molecules that mimic the function of these natural proteins by controlling crystal formation. Here, we demonstrate that both the morphology and the degree of acceleration or inhibition observed during growth of calcite in the presence of peptoids can be rationally tuned by balancing the electrostatic and hydrophobic interactions, with hydrophobic interactions playing the dominant role. While either strong electrostatic or hydrophobic interactions inhibit growth and reduces expression of the {104} faces, correlations between peptoid-crystal binding energies and observed changes in calcite growth indicate moderate electrostatic interactions allow peptoids to weakly adsorb while moderate hydrophobic interactions cause disruption of surface-adsorbed water layers, leading to growth acceleration with retained expression of the {104} faces. This study provides fundamental principles for designing peptoids as crystallization promoters, and offers a straightforward screening method based on macroscopic crystal morphology. Because peptoids are sequence-specific, highly stable, and easily synthesized, peptoid-enhanced crystallization offers a broad range of potential applications.

Chen, Chun-Long; Qi, Jiahui; Tao, Jinhui; Zuckermann, Ronald N.; Deyoreo, James J.

2014-09-01

196

Textural properties of synthetic nano-calcite produced by hydrothermal carbonation of calcium hydroxide  

E-print Network

The hydrothermal carbonation of calcium hydroxide (Ca(OH)2) at high pressure of CO2 (initial PCO2 1/4 55 bar) and moderate to high temperature (30 and 90 1C) was used to synthesize fine particles of calcite. This method allows a high carbonation efficiency (about 95% of Ca(OH)2-CaCO3 conversion), a significant production rate (48 kg/m3 h) and high purity of product (about 96%). However, the various initial physicochemical conditions have a strong influence on the crystal size and surface area of the synthesized calcite crystals. The present study is focused on the estimation of the textural properties of synthesized calcite (morphology, specific surface area, average particle size, particle size distribution and particle size evolution with reaction time), using Rietveld refinements of X-ray diffraction (XRD) spectra, Brunauer-Emmett-Teller (BET) measurements, and scanning electron microscope (SEM) and transmission electron microscope (TEM) observations. This study demonstrate that the pressure, the temperatu...

Montes-Hernandez, German; Charlet, L; Tisserand, Delphine; Renard, F

2008-01-01

197

Fibrous calcite from the Middle Ordovician Holston Formation (east Tennessee)  

SciTech Connect

Fibrous calcite from buildups, which occur near the top of the Middle Ordovician Holston Formation, were examined from two localities near Knoxville, TN (Alcoa Highway and Deanne Quarry). Buildups at these localities were deposited under open-marine conditions, slightly down-slope from the platform edge. Fibrous calcite (mainly radiaxial fibrous) occur most commonly as cements in mainly stromatactis structures present in bioherms and intergranular porosity in beds that flank bioherms. Fibrous calcite is interpreted to have been precipitated in a marine setting. Fibrous calcite is uniformly turbid or banded with interlayered turbid and clearer cement. Fibrous calcite most commonly shows patchy or blotchy dull-non-luminescence under cathodoluminescence. Bands of uniformly non-luminescent and relatively bright luminescent calcite are present. [delta][sup 13]C compositions of fibrous calcite vary little (0.6 to 1.0%) but [delta][sup 18]O values are highly variable ([minus]4.8 to [minus]7.1%). Post-marine cement consists of ferroan and non-ferroan, dull luminescent equant calcite ([delta][sup 13]C = 0.3 to 0.8; [delta][sup 18]O = [minus]8.6 to [minus]11.5) and is interpreted as precipitated in a deep meteoric or burial setting. Depleted [delta][sup 18]O compositions of fibrous calcite reflect addition of post-depositional calcite during stabilization. Most enriched [delta][sup 13]C and [delta][sup 18]O fibrous calcite composition are similar to enriched values from other Middle Ordovician southern Appalachian buildups (other localities of Holston (TN) and Effna (VA) formations) ([delta][sup 13]C = 0.3 to 0.8; [delta][sup 18]O = [minus]3.9 to [minus]4.8) and may reflect fibrous calcite precipitated in isotopic equilibrium with Middle Ordovician sea water.

Tobin, K.J.; Walker, K.R. (Univ. of Tennessee, Knoxville, TN (United States). Dept. of Geological Sciences)

1993-03-01

198

Global calcite cycling constrained by sediment preservation controls  

NASA Astrophysics Data System (ADS)

We assess the global balance of calcite export through the water column and burial in sediments as it varies regionally. We first drive a comprehensive 1-D model for sediment calcite preservation with globally gridded field observations and satellite-based syntheses. We then reformulate this model into a simpler five-parameter box model, and combine it with algorithms for surface calcite export and water column dissolution for a single expression for the vertical calcite balance. The resulting metamodel is optimized to fit the observed distributions of calcite burial flux. We quantify the degree to which calcite export, saturation state, organic carbon respiration, and lithogenic sedimentation modulate the burial of calcite. We find that 46% of burial and 88% of dissolution occurs in sediments overlain by undersaturated bottom water with sediment calcite burial strongly modulated by surface export. Relative to organic carbon export, we find surface calcite export skewed geographically toward relatively warm, oligotrophic areas dominated by small, prokaryotic phytoplankton. We assess century-scale projected impacts of warming and acidification on calcite export, finding high sensitive to inferred saturation state controls. With respect to long-term glacial cycling, our analysis supports the hypothesis that strong glacial abyssal stratification drives the lysocline toward much closer correspondence with the saturation horizon. Our analysis suggests that, over the transition from interglacial to glacial ocean, a resulting ˜0.029 PgC a-1decrease in deep Atlantic, Indian and Southern Ocean calcite burial leads to slow increase in ocean alkalinity until Pacific mid-depth calcite burial increases to compensate.

Dunne, John P.; Hales, Burke; Toggweiler, J. R.

2012-09-01

199

Calcite dissolution: Effects of trace cations naturally present in Iceland spar calcites  

NASA Astrophysics Data System (ADS)

In situ dissolution experiments on a set of pure, optical quality Iceland spar calcite samples from four different localities showed etch pit step retreat rates to be inversely proportional to total inherent trace cation composition. Atomic absorption spectroscopy (AAS) revealed Fe 2+, Mg 2+, Mn 2+ and Sr 2+ in amounts varying from a few to hundreds of ppm. We used a very simple experimental set-up, with an Atomic Force Microscope (AFM) fluid cell and a droplet of MilliQ water. As the calcite dissolved and approached equilibrium with the solution, trace cations were released, which were then present for interaction with the dissolving surface. We monitored continuous free-drift dissolution, in situ, on fresh {101¯4} cleavage surfaces for up to 40 min. Dissolution produced one-layer-deep, rhombic etch pits that continually expanded as we collected images. The rhombohedral symmetry of calcite defines two obtuse and two acute edges on the cleavage surface of etch pits and these, as expected from previous work, had different dissolution rates. Despite identical experimental conditions for all samples, we observed lower step retreat rates for both obtuse and acute edges on calcite characterised by relatively high trace cation composition. Increased cation concentration, particularly Mn, was also correlated with rounding of obtuse-obtuse corners, resulting in obtuse step retreat rates similar to those for acute sides. Physcial limitations of the AFM technique were taken into account when measuring step rate retreat and results were collected only from single-layer etch pits, which represent crystalline calcite with minimal defects. Dissolution rates presented here are thus lower than previous reports for studies of deep etch pits and where the physical limitations of imaging may not have been considered. In addition to molecular-level proof that divalent cations inherent at ppm levels in the calcite affect the dissolution process, these results show that pure, optical quality Iceland spar calcite should not be considered pure in the chemical sense. The results imply that dissolution rates determined for ideal systems with pure, synthetic or natural, materials may be considered as the boundary condition for dissolution in real systems in nature, where cations are always present both in the solution and in the initial solid.

Harstad, A. O.; Stipp, S. L. S.

2007-01-01

200

The influence of temperature, pH, and growth rate on the ?18O composition of inorganically precipitated calcite  

NASA Astrophysics Data System (ADS)

The oxygen isotope composition of carbonate minerals varies with temperature as well as other environmental variables. For carbonates that precipitate slowly, under conditions that approach thermodynamic equilibrium, the temperature-dependence of 18O uptake is the dominant signal and the measured 18O content can be used as a paleotemperature proxy. In the more common case where carbonate minerals grow in a regime where they are not in isotopic equilibrium with their host solution, their oxygen isotope compositions are a convolution of multiple environmental variables. Here we present results from calcite growth experiments demonstrating the occurrence of large (>2‰) non-equilibrium oxygen isotope effects under conditions relevant to biogenic calcite growth and many natural inorganic systems. We show that these non-equilibrium effects vary systematically with pH and crystal growth rate. An isotopic ion-by-ion crystal growth model quantifies the competing roles of temperature, pH, and growth rate, and provides a general description of calcite-water oxygen isotope fractionation under non-equilibrium conditions. The crystal growth model results show that (1) there are both equilibrium and kinetic contributions to calcite oxygen isotopes at biogenic growth rates, (2) calcite does not directly inherit the oxygen isotope composition of DIC even at fast growth rates, (3) there is a kinetically controlled variation of about 1‰ per pH unit between pH=7.7 and 9.3 at constant growth rate for inorganic calcite as well as biogenic calcite, and (4) extreme light isotope enrichments in calcite in alkaline environments are likely due to disequilibrium among DIC species in aqueous solution. The model can be extended to 13C uptake into carbonates as well as clumped isotopes but additional data are needed to constrain the kinetic fractionation factors for carbon isotopes. The experimental and model results constitute an important step in separating the relative influence of inorganic and biologic processes on isotopic fractionation and may aid the development of new paleoproxies based on non-equilibrium effects.

Watkins, James M.; Hunt, Jonathan D.; Ryerson, Frederick J.; DePaolo, Donald J.

2014-10-01

201

Dissolution dynamics of the calcite-water interface observed in situ by glancing-incidence X-ray scattering  

SciTech Connect

Glancing-incidence X-ray scattering measurements made at the National Synchrotron Light Source were used to investigate dissolution dynamics in situ at the calcite-water interface. The relation between calcite saturation state and roughness of the calcite (1014) cleavage surface as a function of time was examined during pH titrations of an initially calcite-saturated solution. Systematic variations in roughness were observed as a function of saturation state as pH was titrated to values below that of calcite saturation. Different steady-state values of roughness were evident at fixed values of {Delta}G{sub r}, and these were correlated with the extent of undersaturation. A significant increase in roughness begins to occur with increasing undersaturation at a {Delta}G{sub r} value of approximately {minus}2.0 kcal/mol. The dissolution rate corresponding to this increase is about 1.5 x 10{sup 7} mmol/cm {center_dot} sec. This increase in roughness is attributed to a transition in the principal rate-determining dissolution mechanism, and is consistent with both powder-reaction studies of dissolution kinetics and single-crystal dissolution studies by atomic force microscopy. These data indicate some important potential applications of GIXS in the study of mineral-water interface geochemistry.

Sturchio, N.C.; Chiarello, R.P.

1995-06-02

202

pH-dependence of calcite growth kinetics at constant solution calcium to carbonate activity ratio and supersaturation: an in situ Atomic Force Microscopy study  

NASA Astrophysics Data System (ADS)

Calcite-solution reactions (growth, dissolution and replacement) are critical in a range of both engineering and natural processes. Classical crystal growth theory relates calcite growth rates to the degree of supersaturation. The solution composition may also affect the growth rate of carbonate minerals, via the Ca2+ to CO32- concentration ratio (Nehrke et al., 2007; Perdikouri et al., 2009), ionic strength (Zuddas and Mucci, 1998) or the presence of organic matter (Hoch et al., 2000). Most calcite growth studies so far have been performed at a constant pH of ca. 8 or 10, or changing the pH together with the degree of supersaturation with respect to calcite and/or the aCa2+ to aCO32- ratio in solution, which hinders an evaluation of the pH effect on calcite growth kinetics. In this work, in situ Atomic Force Microscopy (AFM) was employed to study the growth of calcite at a constant supersaturation (? = 6.46) and solution stoichiometry (Ca2+-CO32- = 1) in the pH range 7.5 to 12. How pH may influence calcite growth is relevant to improve our understanding of the effects on carbonate-solution reactions when variations in atmospheric CO2result in changes in the pH of the oceans and surface waters. We observed that the calcite growth rate decreases with increasing pH in the studied range. The results can be successfully explained by the mechanistic model for calcite growth based on surface complexation proposed by Nilsson and Sternbeck (1999) and by solute hydration. At pH below 8.5, growth occurs mainly by CaCO30 incorporation at >CaHCO30 surface sites. CaCO30 should be more easily incorporated than free Ca2+ ions, as water exchange usually is faster if water molecules in the ion hydration shells are substituted for by other ligands, as in CaCO30. However, at pH above 9, Ca2+ incorporation at >CaHCO30 sites also contributes to calcite growth as a result of increased frequency of water exchange in calcium hydration shells due to the presence of strongly hydrated OH-. The decrease in calcite growth rate is a consequence of decreasing surface concentration of growth active sites (i.e. >CaHCO30) with increasing pH in our experimental conditions. Changes in 2D island morphology were observed at high pH (12), possibly due to the stabilization of polar scalenohedral faces by the presence of OH- ions. References Hoch, A.R.; Reddy, M.M.; Aiken, G.R. Calcite crystal growth inhibition by humic substances with emphasis on hydrophobic acids from the Florida Everglades. Geochim. Cosmochim. Acta 2000, 64, 61-72. Nehrke, G.; Reichart, G. J.; Van Cappellen, P.; Meile, C.; Bijma, J. Dependence of calcite growth rate and Sr partitioning on solution stoichiometry: Non-Kossel crystal growth. Geochim. Cosmochim. Acta 2007, 71, 2240-2249 Nilsson O.; Sternbeck J. A mechanistic model for calcite crystal growth using surface speciation. Geochim. Cosmochim.Acta 1999, 63, 217-225. Perdikouri, C.; Putnis, C.V.; Kasioptas, A.; Putnis, A. An Atomic Force Microscopy Study of the Growth of a Calcite Surface as a Function of Calcium/Total Carbonate Concentration Ratio in Solution at Constant Supersaturation. Cryst. Growth Des. 2009, 9, 4344-4350. Zuddas, P.; Mucci, A. Kinetics of Calcite Precipitation from Seawater: II. The Influence of the Ionic Strength. Geochim. Cosmochim. Acta 1998, 62, 757-766.

Ruiz-Agudo, Encarnación; Putnis, Christine V.; Rodriguez-Navarro, Carlos Manuel; Putnis, Andrew

2010-05-01

203

crystal  

NASA Astrophysics Data System (ADS)

A Nd3+:Na2La4(WO4)7 crystal with dimensions of ? 17 × 30 mm3 was grown by the Czochralski method. The thermal expansion coefficients of Nd3+:Na2La4(WO4)7 crystal are 1.32 × 10-5 K-1 along c-axis and 1.23 × 10-5 K-1 along a-axis, respectively. The spectroscopic characteristics of Nd3+:Na2La4(WO4)7 crystal were investigated. The Judd-Ofelt theory was applied to calculate the spectral parameters. The absorption cross sections at 805 nm are 2.17 × 10-20 cm2 with a full width at half maximum (FWHM) of 15 nm for ?-polarization, and 2.29 × 10-20 cm2 with a FWHM of 14 nm for ?-polarization. The emission cross sections are 3.19 × 10-20 cm2 for ?-polarization and 2.67 × 10-20 cm2 for ?-polarization at 1,064 nm. The fluorescence quantum efficiency is 67 %. The quasi-cw laser of Nd3+:Na2La4(WO4)7 crystal was performed. The maximum output power is 80 mW. The slope efficiency is 7.12 %. The results suggest Nd3+:Na2La4(WO4)7 crystal as a promising laser crystal fit for laser diode pumping.

Yu, Yi; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Sun, Shijia; Wang, Guofu

2014-07-01

204

Characterization and In-Situ Monitoring of ZnSe Crystal Growth by Seeded PVT for Microgravity Applications  

NASA Technical Reports Server (NTRS)

Crystal growth from the vapor phase continues to play a significant role in the production of II-VI semiconductor compounds (ZnO, ZnTe, CdTe, etc.) and SiC. As compared to melt growth methods (where available) the advantages are: (1) lower growth temperature(s); (2) reduction in defect concentration; (3) additional purification; and (4) enhanced crystal perfection. A powerful tool in determining the mechanism of PVT is microgravity. Under normal gravity conditions the transport mechanism is a superposition of diffusive and convective fluxes. Microgravity offers the possibility of studying the transport properties without the influence of convective effects. Research on the crystal growth of ZnSe by PVT (P.I.: Su of NASA/MSFC) will help to clarify the effects of convection on crystal growth. A crystal growth furnace with in-situ and real time optical monitoring capabilities was constructed and used to monitor the vapor composition and growing crystal surface morphology during the PVT growth of ZnSe. Using photoluminescence and SIMS, ex-situ, the incorporation of point defects (Zn vacancy) and impurities was found to be correlated to the gravity vector due to the influence of the convective flow. A summary of the results to date will be presented.

Feth, Shari T.

2001-01-01

205

Experimental pressure solution compaction of synthetic halite\\/calcite aggregates  

Microsoft Academic Search

Experimental observations are reported of weakening of sediment-like aggregates by addition of hard particles. Sieved mixtures of calcite and halite grains are experimentally compacted in drained pressure cells in the presence of a saturated aqueous solution. The individual halite grains deform easily by pressure solution creep whereas calcite grains act as hard objects and resist compaction. The fastest rate of

Sergey Zubtsova; François Renard; Jean-Pierre Gratier; Robert Guiguet; Dag K. Dysthe; Vladimir Traskine

2004-01-01

206

The influence of impurities on the growth rate of calcite  

NASA Astrophysics Data System (ADS)

The effects of 34 different additives on the growth rate of calcite were investigated. An initial growth rate of about one crystal monolayer (3 × 10 -8 cm) per minute was adjusted at a constant supersaturation which was maintained by a control circuit. Then the impurity was added step by step and the reduction of the growth rate was measured. The impurity concentration necessary to reduce the initial growth rate by a certain percentage increased in the order Fe 2+, ATP, P 3O 5-10, P 2O 4-7, (PO 3) 6-6, Zn 2+, ADP, Ce 3+, Pb 2+, carbamyl phosphate, Fe 3+, PO 3-4, Co 2+, Mn 2+, Be 2+, ?-glycerophosphate, Ni 2+, Cd 2+, "Tris", phenylphosphate, chondroitine sulphate, Ba 2+, citrate, AMP, Sr 2+, tricarballylate, taurine, SO 2-4, Mg 2+ by 4 orders of magnitude. The most effective additives halved the initial growth rate in concentrations of 2 × 10 -8 mol/1. For Fe 2+ the halving concentration was nearly proportional to the initial rate. The mechanism of inhibition by adsorption of the impurities at growth sites (kinks) is discussed.

Meyer, H. J.

1984-05-01

207

Effect of calcite on lead-rich cementitious solid waste forms  

SciTech Connect

The effect of calcite on lead-rich solidified waste forms generated using Portland cement has been investigated. Samples of cementitious wastes in the absence and presence of Pb and in the absence and presence of calcite were examined separately at 2, 7, 14 and 28 days of hydration by X-ray diffraction and SEM/EDS and for compressive strength. The presence of lead was observed to produce lead carbonate sulfate hydroxide (Pb{sub 4}SO{sub 4}(CO{sub 3}){sub 2}(OH){sub 2}), lead carbonate hydroxide hydrate (3PbCO{sub 3}.2Pb(OH){sub 2}.H{sub 2}O) and two other unidentified lead salts in cavity areas, and was observed to significantly retard the hydration of cement. Calcite addition to the Pb wastes was found to induce the rapid crystallization of calcium hydroxide coincident with the onset of C-S-H gel germination. The rapid dissolution of lead precipitates was observed with the subsequent development of very insoluble gel products of the form C-Pb-S-H. These products are formed by chemical incorporation of re-dissolved Pb species into silicate structures.

Lee, Dongjin [School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Swarbrick, Gareth [School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Waite, T. David [School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)]. E-mail: D.waite@unsw.edu.au

2005-06-01

208

Pomegranate seeds  

NSDL National Science Digital Library

This pomegranate has many seeds inside. These seeds are surrounded individually by red fruit. Some fruits also have many seeds, but all of the seeds are surrounded by the fruit instead of individually, like in an apple.

Peter N/A (None; )

2005-01-01

209

Oriented Calcite Micropillars and Prisms Formed through Aggregation and Recrystallization of Poly(Acrylic Acid) Stabilized  

E-print Network

Oriented Calcite Micropillars and Prisms Formed through Aggregation and Recrystallization of Poly+ into oriented calcite micropillars with {104} faceted coaligned platelike subunits. Moreover, in situ AFM

Qi, Limin

210

Formation of a ternary neptunyl(V) biscarbonato inner-sphere sorption complex inhibits calcite growth rate.  

PubMed

Neptunyl, Np(V)O(2)(+), along with the other actinyl ions U(VI)O(2)(2+) and Pu(V,VI)O(2)((+,2+)), is considered to be highly mobile in the geosphere, while interaction with mineral surfaces (inner- or outer-sphere adsorption, ion-exchange, and coprecipitation/structural incorporation) may retard its migration. Detailed information about the exact interaction mechanisms including the structure and stoichiometry of the adsorption complexes is crucial to predict the retention behavior in diverse geochemical environments. Here, we investigated the structure of the neptunyl adsorption complex at the calcite-water interface at pH 8.3 in equilibrium with air by means of low-temperature (15K) EXAFS spectroscopy at the Np-L(III) edge. The coordination environment of neptunyl consists of two axial oxygen atoms at 1.87(±0.01)Å, and an equatorial oxygen shell of six atoms at 2.51(±0.01)Å. Two oxygen backscatterers at 3.50(±0.04)Å along with calcium backscatterers at 3.95(±0.03)Å suggest that neptunyl is linked to the calcite surface through two monodentate bonds towards carbonate groups of the calcite surface. Two additional carbon backscatterers at 2.94(±0.02)Å are attributed to two carbonate ions in bidentate coordination. This structural environment is conclusively interpreted as a ternary surface complex, where a neptunyl biscarbonato complex sorbs through two monodentate carbonate bonds to steps at the calcite (104) face, while the two bidentately coordinated carbonate groups point away from the surface. This structural information is further supported by Mixed Flow Reactor (MFR) experiments. They show a significant decrease of the calcite growth rate in the presence of neptunyl(V), in line with blockage of the most active crystal growth sites, step and kink sites, by adsorption of neptunyl. Formation of this sorption complex constitutes an important retention mechanism for neptunyl in calcite-rich environments. PMID:21429616

Heberling, Frank; Scheinost, Andreas C; Bosbach, Dirk

2011-06-01

211

Calcite biomineralization by bacterial isolates from the recently discovered pristine karstic herrenberg cave.  

PubMed

Karstic caves represent one of the most important subterranean carbon storages on Earth and provide windows into the subsurface. The recent discovery of the Herrenberg Cave, Germany, gave us the opportunity to investigate the diversity and potential role of bacteria in carbonate mineral formation. Calcite was the only mineral observed by Raman spectroscopy to precipitate as stalactites from seepage water. Bacterial cells were found on the surface and interior of stalactites by confocal laser scanning microscopy. Proteobacteria dominated the microbial communities inhabiting stalactites, representing more than 70% of total 16S rRNA gene clones. Proteobacteria formed 22 to 34% of the detected communities in fluvial sediments, and a large fraction of these bacteria were also metabolically active. A total of 9 isolates, belonging to the genera Arthrobacter, Flavobacterium, Pseudomonas, Rhodococcus, Serratia, and Stenotrophomonas, grew on alkaline carbonate-precipitating medium. Two cultures with the most intense precipitate formation, Arthrobacter sulfonivorans and Rhodococcus globerulus, grew as aggregates, produced extracellular polymeric substances (EPS), and formed mixtures of calcite, vaterite, and monohydrocalcite. R. globerulus formed idiomorphous crystals with rhombohedral morphology, whereas A. sulfonivorans formed xenomorphous globular crystals, evidence for taxon-specific crystal morphologies. The results of this study highlighted the importance of combining various techniques in order to understand the geomicrobiology of karstic caves, but further studies are needed to determine whether the mineralogical biosignatures found in nutrient-rich media can also be found in oligotrophic caves. PMID:22179248

Rusznyák, Anna; Akob, Denise M; Nietzsche, Sándor; Eusterhues, Karin; Totsche, Kai Uwe; Neu, Thomas R; Frosch, Torsten; Popp, Jürgen; Keiner, Robert; Geletneky, Jörn; Katzschmann, Lutz; Schulze, Ernst-Detlef; Küsel, Kirsten

2012-02-01

212

Calcite Biomineralization by Bacterial Isolates from the Recently Discovered Pristine Karstic Herrenberg Cave  

PubMed Central

Karstic caves represent one of the most important subterranean carbon storages on Earth and provide windows into the subsurface. The recent discovery of the Herrenberg Cave, Germany, gave us the opportunity to investigate the diversity and potential role of bacteria in carbonate mineral formation. Calcite was the only mineral observed by Raman spectroscopy to precipitate as stalactites from seepage water. Bacterial cells were found on the surface and interior of stalactites by confocal laser scanning microscopy. Proteobacteria dominated the microbial communities inhabiting stalactites, representing more than 70% of total 16S rRNA gene clones. Proteobacteria formed 22 to 34% of the detected communities in fluvial sediments, and a large fraction of these bacteria were also metabolically active. A total of 9 isolates, belonging to the genera Arthrobacter, Flavobacterium, Pseudomonas, Rhodococcus, Serratia, and Stenotrophomonas, grew on alkaline carbonate-precipitating medium. Two cultures with the most intense precipitate formation, Arthrobacter sulfonivorans and Rhodococcus globerulus, grew as aggregates, produced extracellular polymeric substances (EPS), and formed mixtures of calcite, vaterite, and monohydrocalcite. R. globerulus formed idiomorphous crystals with rhombohedral morphology, whereas A. sulfonivorans formed xenomorphous globular crystals, evidence for taxon-specific crystal morphologies. The results of this study highlighted the importance of combining various techniques in order to understand the geomicrobiology of karstic caves, but further studies are needed to determine whether the mineralogical biosignatures found in nutrient-rich media can also be found in oligotrophic caves. PMID:22179248

Rusznyák, Anna; Akob, Denise M.; Nietzsche, Sándor; Eusterhues, Karin; Totsche, Kai Uwe; Neu, Thomas R.; Frosch, Torsten; Popp, Jürgen; Keiner, Robert; Geletneky, Jörn; Katzschmann, Lutz; Schulze, Ernst-Detlef

2012-01-01

213

Journal of Crystal Growth ] (  

E-print Network

by hydrothermal carbonation of calcium hydroxide G. Montes-Hernandeza,Ã, A. Ferna´ ndez-Marti´neza,b , L. Charleta 2008 Communicated by S. Veesler Abstract The hydrothermal carbonation of calcium hydroxide (Ca(OH)2 and surface area of the synthesized calcite crystals. The present study is focused on the estimation

214

crystal  

NASA Astrophysics Data System (ADS)

An eye-safe Raman laser is realized with BaTeMo2O9 (BTM) nonlinear crystal for the first time. By using a diode-end-pumped acousto-optically Q-switched Nd:YVO4 laser as the pumping source, the BTM crystal converts the fundamental laser at 1,342 nm to first-Stokes laser at 1,531 nm successfully. With an incident power of 10.8 W and a pulse repetition rate of 25 kHz, the average output power at 1,531 nm is obtained to be 0.83 W, corresponding to a diode-to-Stokes conversion efficiency of 7.7 %. The pulse width is 11 ns, and the peak power is 3.0 kW.

Bai, Fen; Wang, Qingpu; Tao, Xutang; Li, Ping; Zhang, Xingyu; Liu, Zhaojun; Shen, Hongbin; Lan, Weixia; Gao, Liang; Gao, Zeliang; Zhang, Junjie; Fang, Jiaxiong

2014-08-01

215

Calcite surface structure and reactivity: molecular dynamics simulations and macroscopic surface modelling of the calcite-water interface.  

PubMed

Calcite-water interactions are important not only in carbon sequestration and the global carbon cycle, but also in contaminant behaviour in calcite-bearing host rock and in many industrial applications. Here we quantify the effect of variations in surface structure on calcite surface reactivity. Firstly, we employ classical Molecular Dynamics simulations of calcite surfaces containing an etch pit and a growth terrace, to show that the local environment in water around structurally different surface sites is distinct. In addition to observing the expected formation of more calcium-water interactions and hydrogen-bonds at lower-coordinated sites, we also observed subtle differences in hydrogen bonding around acute versus obtuse edges and corners. We subsequently used this information to refine the protonation constants for the calcite surface sites, according to the Charge Distribution MUltiSite Ion Complexation (CD-MUSIC) approach. The subtle differences in hydrogen bonding translate into markedly different charging behaviour versus pH, in particular for acute versus obtuse corner sites. The results show quantitatively that calcite surface reactivity is directly related to surface topography. The information obtained in this study is not only crucial for the improvement of existing macroscopic surface models of the reactivity of calcite towards contaminants, but also improves our atomic-level understanding of mineral-water interactions. PMID:23042085

Wolthers, M; Di Tommaso, D; Du, Z; de Leeuw, N H

2012-11-21

216

Frictional Properties and Microstructure of Calcite-Rich Fault Gouges Sheared at Sub-Seismic Sliding Velocities  

NASA Astrophysics Data System (ADS)

We report an experimental and microstructural study of the frictional properties of simulated fault gouges prepared from natural limestone (96 % CaCO3) and pure calcite. Our experiments consisted of direct shear tests performed, under dry and wet conditions, at an effective normal stress of 50 MPa, at 18-150 °C and sliding velocities of 0.1-10 ?m/s. Wet experiments used a pore water pressure of 10 MPa. Wet gouges typically showed a lower steady-state frictional strength ( ? = 0.6) than dry gouges ( ? = 0.7-0.8), particularly in the case of the pure calcite samples. All runs showed a transition from stable velocity strengthening to (potentially) unstable velocity weakening slip above 80-100 °C. All recovered samples showed patchy, mirror-like surfaces marking boundary shear planes. Optical study of sections cut normal to the shear plane and parallel to the shear direction showed both boundary and inclined shear bands, characterized by extreme grain comminution and a crystallographic preferred orientation. Cross-sections of boundary shears, cut normal to the shear direction using focused ion beam—SEM, from pure calcite gouges sheared at 18 and 150 °C, revealed dense arrays of rounded, ~0.3 ?m-sized particles in the shear band core. Transmission electron microscopy showed that these particles consist of 5-20 nm sized calcite nanocrystals. All samples showed evidence for cataclasis and crystal plasticity. Comparing our results with previous models for gouge friction, we suggest that frictional behaviour was controlled by competition between crystal plastic and granular flow processes active in the shear bands, with water facilitating pressure solution, subcritical cracking and intergranular lubrication. Our data have important implications for the depth of the seismogenic zone in tectonically active limestone terrains. Contrary to recent claims, our data also demonstrate that nanocrystalline mirror-like slip surfaces in calcite(-rich) faults are not necessarily indicative of seismic slip rates.

Verberne, B. A.; Spiers, C. J.; Niemeijer, A. R.; De Bresser, J. H. P.; De Winter, D. A. M.; Plümper, O.

2014-10-01

217

High-pressure deformation of calcite marble and its transformation to aragonite under non-hydrostatic conditions  

USGS Publications Warehouse

We conducted deformation experiments on Carrara marble in the aragonite and calcite stability fields to observe the synkinematic transformation of calcite to aragonite, and to identify any relationships between transformation and deformation or sample strength. Deformation-induced microstructures in calcite crystals varied most significantly with temperature, ranging from limited slip and twinning at 400??C, limited recrystallization at 500??C, widespread recrystallization at 600 and 700??C, to grain growth at 800-900??C. Variations in confining pressure from 0.3 to 2.0 GPa have no apparent effect on calcite deformation microstructures. Aragonite grew in 10-6-10-7 s-1strain rate tests conducted for 18-524 h at confining pressures of 1.7-2.0 GPa and temperatures of 500-600??C. As in our previously reported hydrostatic experiments on this same transformation, the aragonite nucleated on calcite grain boundaries. The extent of transformation varied from a few percent conversion near pistons at 400??C, 2.0 GPa and 10-4 s-1 strain rate in a 0.8 h long experiment, to 98% transformation in a 21-day test at a strain rate of 10-7 s-7, a temperature of 600??C and a pressure of 2.0 GPa. At 500??C, porphyroblastic 100-200 ??m aragonite crystals grew at a rate faster than 8 ?? 10-1m s-1. At 600??C, the growth of aragonite neoblasts was slower, ???6 ?? 10-1 m s -1, and formed 'glove-and-finger' cellularprecipitation-like textures identical to those observed in hydrostatic experiments. The transformation to aragonite is not accompanied by a shear instability or anisotropic aragonite growth, consistent with its relatively small volume change and latent heat in comparison with compounds that do display those features. ?? 1993.

Hacker, B.R.; Kirby, S.H.

1993-01-01

218

Seeding Rangeland  

E-print Network

by multiplying percentage germi- nation by percentage purity of the lot of seed. When hard seed are involved, PLS = (percent germination + percent hard seed ) x percent purity. Recommended seeding rates usually call for 20 live seed per square foot. The number..., many introduced species are easier to manage when planted in a pure stand. Use seed of known quality. Know the germination and purity of the seed, since seeding rates are based on pure live seed. HOW TO SEED Seedbed Preparation An ideal seedbed is firm...

Welch, Tommy G.; Hafercamp, Marshall R.

2001-01-04

219

Climate and cave control on Pleistocene/Holocene calcite-to-aragonite transitions in speleothems from Morocco: Elemental and isotopic evidence  

NASA Astrophysics Data System (ADS)

The occurrence of aragonite in speleothems has commonly been related to high dripwater Mg/Ca ratios, because Mg is known to be a growth inhibitor for calcite. Laboratory aragonite precipitation experiments, however, suggested a more complex array of controlling factors. Here, we present data from Pleistocene to Holocene speleothems collected from both a dolostone and a limestone cave in northern Morocco. These stalagmites exhibit both lateral and stratigraphic calcite-to-aragonite transitions. Aragonite fabrics are well-preserved and represent primary features. In order to shed light on the factors that control alternating calcite and aragonite precipitation, elemental (Mg, Sr, Ba, U, P, Y, Pb, Al, Ti and Th) abundances were measured using LA-ICP-MS, and analysed with Principal Component Analysis. Samples were analyzed at 100-200 ?m resolution across stratigraphic and lateral transitions. Carbon and oxygen isotope ratios were analysed at 100 ?m resolution covering stratigraphic calcite-to-aragonite transitions. Results show that the precipitation of aragonite was driven by a decrease in effective rainfall, which enhanced prior calcite precipitation. Different geochemical patterns are observed between calcite and aragonite when comparing data from the Grotte de Piste and Grotte Prison de Chien. This may be explained by the increased dripwater Mg/Ca ratio and enhanced prior aragonite precipitation in the dolostone cave versus lower dripwater Mg/Ca ratio and prior calcite precipitation in the limestone cave. A full understanding for the presence of lateral calcite-to-aragonite transitions is not reached. Trace elemental analysis, however, does suggest that different crystallographic parameters (ionic radius, amount of crystal defect sites, adsorption potential) may have a direct effect on the incorporation of Sr, Mg, Ba, Al, Ti, Th and possibly Y and P.

Wassenburg, Jasper A.; Immenhauser, Adrian; Richter, Detlev K.; Jochum, Klaus Peter; Fietzke, Jan; Deininger, Michael; Goos, Manuela; Scholz, Denis; Sabaoui, Abdellah

2012-09-01

220

Subaerial meteoric calcitization and lithification of high-magnesian calcite muds, Belize  

SciTech Connect

Holocene ({lt}1000-1500 yrs old) high-magnesian calcite-dominated muddy sediments (1 m thick) on subaerially exposed cays in northern Belize are in the process of being converted to low-magnesian calcite micrite. Mineralogic stabilization and attendant lithification result from interaction of the sediments with meteoric fluids believed to be derived from seasonal upward discharge through subjacent Pleistocene limestones. The initial marine-derived sediments, composed of {gt}85% HMC (and minor skeletal aragonite), consist of mud and associated soritid and miliolid foraminifera both with MgCO{sub 3} content of 11-15 mol%, and isotopic compositions of -1.0 to -2.5{per thousand} PDB (O), 0 to +1.5{per thousand} PDB (C). With depth, lithified LMC crusts appear in the section, and the Mg concentration of the sediments and associated crusts decreases rapidly to 3 mol% or less, with a corresponding isotopic depletion to values approaching -7.0{per thousand} (O) and -5.8{per thousand} (C). Concomitantly there is progressive dissolution of skeletal aragonite in the sediments, reduction of porosity due to cementation by LMC, and in the muds, a decrease in Sr and increase in Mn contents. The resultant petrofabric of these lithified LMC deposits, derived from the alteration of HMC-dominated muds, is characterized by micrite with patches of pore-filling micritic and microsparitic LMC cements. Such a fabric is similar to and can be confused easily with calcitized aragonite-dominated precursor muds, except for the relative rarity in the samples examined of aragonite relicts in component microspar and/or pseudospar.

Mazzullo, S.J.; Bischoff, W.D. (Wichita State Univ., KS (United States))

1991-03-01

221

Vertical Distribution of Calcite at Yucca Mountain, Nevada, as an Indicator of Flow Through a Thick Unsaturated Zone  

SciTech Connect

Meteoric water percolating through 500 to 700 m of hydrologically unsaturated felsic tuffs provides a mechanism for release and transport of radionuclides from a potential high-level radioactive waste repository at Yucca Mountain, Nevada. Modern flow through the unsaturated zone (UZ) is low (probably <20 mm/year) and has not been observed directly. However, calcite formed from water percolating through fracture and lithophysal cavities over the last 12.8 million years provides, in part, a time-integrated record of UZ flow. Calcite concentration profiles were determined in dry-drilled boreholes USW WT-24 and USW SD-6 by acidifying samples of powdered rock cuttings collected over 5-foot intervals and measuring the evolved CO{sub 2} using gas chromatography. Resulting CO{sub 2}-derived calcite concentrations ranged from 30,800 to less than 20 ppm. Aliquots of the same powders also were analyzed for Ca, Ti, and Zr by energy-dispersive X-ray fluorescence. Concentrations of Ti and Zr in the crystal-poor, high-silica rhyolite parts of the Topopah Spring Tuff are uniform (standard deviations of 3 to 4%); however, Ca scatters widely (standard deviations of 21 and 32%). Concentrations of Ca are positively correlated to CO{sub 2}-derived calcite concentrations and regressions for samples of the two major rhyolitic tuffs yielded r{sup 2} values >0.9, CO{sub 2}-intercept Ca concentrations in the range of values determined on fresh rock samples, and slopes equivalent to addition of stoichiometric calcite. Therefore, combined CO{sub 2} and Ca data provide a means of determining the amount of secondary calcite added to the rock mass from percolating water. The vertical distribution of calcite is related to lithostratigraphy with the largest concentrations in the welded hydrogeologic unit of the Tiva Canyon Tuff near the land surface and progressively smaller values with depth into the underlying nonwelded units. Large values also may be present in the upper parts of the underlying welded hydrogeologic unit of the Topopah Spring Tuff, but generally decrease in the deeper parts of the unit. The spatial distribution of calcite is complex and likely is related, in part, to spatial variations in the amount of water and vapor transported through the thick UZ.

J.B. Paces; Z.E. Peterman

2001-07-20

222

Relative Shock Effects in Mixed Powders of Calcite, Gypsum, and Quartz: A Calibration Scheme from Shock Experiments  

NASA Technical Reports Server (NTRS)

The shock behavior of calcite and gypsum is important in understanding the Cretaceous/Tertiary event and other terrestrial impacts that contain evaporite sediments in their targets. Most interest focuses on issues of devolatilization to quantify the production of CO2 or SO2 to better understand their role in generating a temporary atmosphere and its effects on climate and biota [e.g., papers in 1,2,3,4]. Devolatilization of carbonate is also important because the dispersion and fragmentation of ejecta is strongly controlled by the expansion of large volumes of gas during the impact process as well [5,6]. Shock recovery experiments for calcite yield seemingly conflicting results: early experimental devolatilization studies [7,8,9] suggested that calcite was substantially outgassed at 30 GPa (> 50%). However, the recent petrographic work of [10,11,12] presented evidence that essentially intact calcite is recovered from 60 GPa experiments. [13] reported results of shock experiments on anhydrite, gypsum, and mixtures of those phases with silica. Their observations indicate little or no devolatilization of anhydrite shocked to 42 GPa and that the fraction of sulfur, by mass, that degassed is approx.10(exp -2) of theoretical prediction. In another (preliminary) report of shock experiments on calcite, anhydrite, and gypsum, [14] observe calcite recrystallization when shock loaded at 61 GPa, only intensive plastic deformation in anhydrite shock loaded at 63 GPa, and gypsum converted to anhydrite when shock loaded at 56 GPa. [15] shock loaded anhydrite and quartz to a peak pressure of 60 GPa. All of the quartz grains were trans-formed to glass and the platy anhydrite grains were completely pseudomorphed by small crystallized anhydrite grains. However, no evidence of interaction between the two phases could be observed and they suggest that recrystallization of anhydrite grains is the result of a solid state transformation. [16] reanalyzed the calcite and anhydrite shock wave experiments of [17] using improved equations of state of porous materials and vaporized products. They determined the pressures for incipient and complete vaporization to be 32.5 and 122 GPa for anhydrite and 17.8 and 54.1 GPa for calcite, respectively, a factor of 2 to 3 lower than reported earlier by [17].

Bell, Mary S.

2009-01-01

223

A new method for the study of trace element partitioning between calcium carbonate and aqueous solution: A test case for Sr and Ba incorporation into calcite  

Microsoft Academic Search

A new experimental method (evaporation method) for calcium carbonate precipitation in aqueous solution was at- tempted in order to develop a convenient and controllable experimental technique for obtaining precise trace element partition coefficients. Calcite crystals were formed by evaporation of H2O from the aqueous mother solution using a dehumidifier, and the consumed Ca ions were supplied from a refill solution

YASUTAKA TERAKADO; MAMI TANIGUCHI

2006-01-01

224

Defluoridation of Drinking Water by Boiling with Brushite and Calcite  

Microsoft Academic Search

Existing methods for defluoridating drinking water involve expensive high technology or are slow, inefficient and\\/or unhygienic. A new method is now suggested, encompassing brushite and calcite suspension followed by boiling. Our aim was to examine the efficiency of the method and the chemical reactions involved. Brushite, 0.3–0.5 g, and an equal weight of calcite were suspended in 1 litre water

M. J. Larsen; E. I. F. Pearce

2002-01-01

225

Calcite Farming at Hollow Ridge Cave: Calibrating Net Rainfall and Cave Microclimate to Dripwater and Calcite Chemical Variability  

NASA Astrophysics Data System (ADS)

Stable isotope (?18O and ?13C) and trace element records in cave speleothems are often interpreted as climate changes in rainfall amount or source, cave air temperature, overlying vegetation and atmospheric pCO2. However, these records are difficult to verify without in situ calibration of changes in cave microclimate (e.g., net rainfall, interior ventilation changes) to contemporaneous variations in dripwater and speleothem chemistry. In this study at Hollow Ridge Cave (HRC) in Marianna, Florida (USA), cave dripwater, bedrock, and modern calcite (farmed in situ) were collected in conjunction with continuous cave air pCO2, temperature, barometric pressure, relative humidity, radon-222 activity, airflow velocity and direction, rainfall amount, and drip rate data [1]. We analyzed rain and dripwater ?D and ?18O, dripwater Ca2+, pH, ?13C and TCO2, cave air pCO2 and ?13C, and farmed calcite ?18O and ?13C to examine the relationships among rainwater isotopic composition, cave air ventilation, cave air temperature, calcite growth rate and seasonal timing, and calcite isotopic composition. Farmed calcite ?13C decreases linearly with distance from the front entrance to the interior of the cave during all seasons, with a maximum entrance-to-interior gradient of ??13C = -7‰ . A whole-cave "Hendy test" at distributed contemporaneous farming sites reveals that ventilation induces a +1.9 ± 0.96‰ ?13C offset between calcite precipitated in a ventilation flow path and out of flow paths. Farmed calcite ?18O exhibits a +0.82 ± 0.24‰ offset from values predicted by both theoretical calcite-water calculations and by laboratory-grown calcite [2]. Unlike calcite ?13C, oxygen isotopes show no ventilation effects and are a function only of temperature. Combining our data with other speleothem studies, we find a new empirical relationship for cave-specific water-calcite oxygen isotope fractionation across a range of temperatures and cave environments: 1000 ln ? = 16.1(1000/T) - 24.6 We analyzed anions, cations, and trace elements in dripwater, bedrock, and farmed calcite to examine the relationships between net rainfall, drip rates, drip water chemistry, and calcite chemistry. Dripwater Mg/Ca and Sr/Ca ratios fall on coherent mixing lines between three geochemical endmembers: rainwater, dissolved dolomite, and dissolved limestone. Dripwater Sr/Ca vs. Mg/Ca ratios are also influenced by evaporative enrichment within the epikarst as a function of net rainfall amount [3]. Farmed calcite trace Cation/Ca ratios faithfully track short-term seasonal variations in dripwater chemistry for Na, Mg, Sr, Ba and U. However, speleothem calibrations are unique to each drip site regardless of proximity to one another, suggesting that individual speleothems are unlikely to be useful as a whole-cave hydrologic proxy. [1] Kowalczk, A. J., Froelich, P. N., 2010. Cave air ventilation and CO2 outgassing by radon-222 modeling: How fast do caves breathe? Earth & Planet. Sci. Lett. 289, 209-219. [2] Tremaine, D. M., Froelich, P. N., Wang, Y., 2011. Speleothem calcite farmed in situ: Modern calibration of ?18O and ?13C paleoclimate proxies in a continuously-monitored natural cave system. Geochim. Cosmochim. Acta 75, 4929-4950. [3] Tremaine, D. M., Froelich, P. N., 2012. Speleothem trace element signatures: A modern hydrologic geochemical study of cave drip waters and farmed calcite. Geochim. Cosmochim. Acta (submitted)

Tremaine, D. M.; Kilgore, B. P.; Froelich, P. N.

2012-04-01

226

Bent crystal spectrometer for both frequency and wavenumber resolved x-ray scattering at a seeded free-electron laser  

SciTech Connect

We present a cylindrically curved GaAs x-ray spectrometer with energy resolution ?E/E = 1.1 ×?10{sup ?4} and wave-number resolution of ?k/k = 3 ×?10{sup ?3}, allowing plasmon scattering at the resolution limits of the Linac Coherent Light Source (LCLS) x-ray free-electron laser. It spans scattering wavenumbers of 3.6 to 5.2/Å in 100 separate bins, with only 0.34% wavenumber blurring. The dispersion of 0.418 eV/13.5??m agrees with predictions within 1.3%. The reflection homogeneity over the entire wavenumber range was measured and used to normalize the amplitude of scattering spectra. The proposed spectrometer is superior to a mosaic highly annealed pyrolytic graphite spectrometer when the energy resolution needs to be comparable to the LCLS seeded bandwidth of 1 eV and a significant range of wavenumbers must be covered in one exposure.

Zastrau, Ulf, E-mail: ulf.zastrau@uni-jena.de [Institute of Optics and Quantum Electronics, Friedrich-Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Fletcher, Luke B.; Galtier, Eric Ch.; Gamboa, Eliseo; Glenzer, Siegfried H.; Heimann, Philipp; Nagler, Bob; Schropp, Andreas; Lee, Hae Ja [Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Förster, Eckhart [Institute of Optics and Quantum Electronics, Friedrich-Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Helmholtz Institute Jena, Fröbelstieg 3, 07743 Jena (Germany); Marschner, Heike; Wehrhan, Ortrud [Institute of Optics and Quantum Electronics, Friedrich-Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany)

2014-09-15

227

Bent crystal spectrometer for both frequency and wavenumber resolved x-ray scattering at a seeded free-electron laser  

NASA Astrophysics Data System (ADS)

We present a cylindrically curved GaAs x-ray spectrometer with energy resolution ?E/E = 1.1 × 10-4 and wave-number resolution of ?k/k = 3 × 10-3, allowing plasmon scattering at the resolution limits of the Linac Coherent Light Source (LCLS) x-ray free-electron laser. It spans scattering wavenumbers of 3.6 to 5.2/Å in 100 separate bins, with only 0.34% wavenumber blurring. The dispersion of 0.418 eV/13.5 ?m agrees with predictions within 1.3%. The reflection homogeneity over the entire wavenumber range was measured and used to normalize the amplitude of scattering spectra. The proposed spectrometer is superior to a mosaic highly annealed pyrolytic graphite spectrometer when the energy resolution needs to be comparable to the LCLS seeded bandwidth of 1 eV and a significant range of wavenumbers must be covered in one exposure.

Zastrau, Ulf; Fletcher, Luke B.; Förster, Eckhart; Galtier, Eric Ch.; Gamboa, Eliseo; Glenzer, Siegfried H.; Heimann, Philipp; Marschner, Heike; Nagler, Bob; Schropp, Andreas; Wehrhan, Ortrud; Lee, Hae Ja

2014-09-01

228

Bent crystal spectrometer for both frequency and wavenumber resolved x-ray scattering at a seeded free-electron laser  

E-print Network

We present a cylindrically curved GaAs x-ray spectrometer with energy resolution $\\Delta E/E = 1.1\\cdot 10^{-4}$ and wave-number resolution of $\\Delta k/k = 3\\cdot 10^{-3}$, allowing plasmon scattering at the resolution limits of the Linac Coherent Light Source (LCLS) x-ray free-electron laser. It spans scattering wavenumbers of 3.6 to $5.2/$\\AA\\ in 100 separate bins, with only 0.34\\% wavenumber blurring. The dispersion of 0.418~eV/$13.5\\,\\mu$m agrees with predictions within 1.3\\%. The reflection homogeneity over the entire wavenumber range was measured and used to normalize the amplitude of scattering spectra. The proposed spectrometer is superior to a mosaic HAPG spectrometer when the energy resolution needs to be comparable to the LCLS seeded bandwidth of 1~eV and a significant range of wavenumbers must be covered in one exposure.

Zastrau, Ulf; Foerster, Eckhart; Galtier, Eric Ch; Gamboa, Eliseo; Glenzer, Siegfried H; Heimann, Philipp; Marschner, Heike; Nagler, Bob; Schropp, Andreas; Wehrhan, Ortrud; Lee, Hae Ja

2014-01-01

229

Epitaxial high saturation magnetization FeN thin films on Fe(001) seeded GaAs(001) single crystal wafer using facing target sputterings  

SciTech Connect

It was demonstrated that Fe-N martensite ({alpha}') films were grown epitaxially on Fe(001) seeded GaAs(001) single crystal wafer by using a facing target sputtering method. X-ray diffraction pattern implies an increasing c lattice constant as the N concentration increases in the films. Partially ordered Fe{sub 16}N{sub 2} films were synthesized after in situ post-annealing the as-sputtered samples with pure Fe{sub 8}N phase. Multiple characterization techniques including XRD, XRR, TEM, and AES were used to determine the sample structure. The saturation magnetization of films with pure Fe{sub 8}N phase measured by VSM was evaluated in the range of 2.0-2.2 T. The post annealed films show systematic and dramatic increase on the saturation magnetization, which possess an average value of 2.6 T. These observations support the existence of giant saturation magnetization in {alpha}''-Fe{sub 16}N{sub 2} phase that is consistent with a recent proposed cluster-atom model and the first principles calculation [N. Ji, X. Q. Liu, and J. P. Wang, New J. Phys. 12 063032 (2010)].

Ji Nian; Wu Yiming; Wang Jianping [Center for Micromagnetics and Information Technologies (MINT) and Department of Electrical and Computer Engineering, University of Minnesota, 200 Union St SE, 4-174 EE/CSci, Minneapolis, Minnesota 55455 (United States)

2011-04-01

230

Evaluation of defects generation in crystalline silicon ingot grown by cast technique with seed crystal for solar cells  

PubMed Central

Although crystalline silicon is widely used as substrate material for solar cell, many defects occur during crystal growth. In this study, the generation of crystalline defects in silicon substrates was evaluated. The distributions of small-angle grain boundaries were observed in substrates sliced parallel to the growth direction. Many precipitates consisting of light elemental impurities and small-angle grain boundaries were confirmed to propagate. The precipitates mainly consisted of Si, C, and N atoms. The small-angle grain boundaries were distributed after the precipitation density increased. Then, precipitates appeared at the small-angle grain boundaries. We consider that the origin of the small-angle grain boundaries was lattice mismatch and/or strain caused by the high-density precipitation. PMID:22536006

Tachibana, Tomihisa; Sameshima, Takashi; Kojima, Takuto; Arafune, Koji; Kakimoto, Koichi; Miyamura, Yoshiji; Harada, Hirofumi; Sekiguchi, Takashi; Ohshita, Yoshio; Ogura, Atsushi

2012-01-01

231

Calcite-specific coupling protein in barnacle underwater cement.  

PubMed

The barnacle relies for its attachment to underwater foreign substrata on the formation of a multiprotein complex called cement. The 20 kDa cement protein is a component of Megabalanus rosa cement, although its specific function in underwater attachment has not, until now, been known. The recombinant form of the protein expressed in bacteria was purified in soluble form under physiological conditions, and confirmed to retain almost the same structure as that of the native protein. Both the protein from the adhesive layer of the barnacle and the recombinant protein were characterized. This revealed that abundant Cys residues, which accounted for 17% of the total residues, were in the intramolecular disulfide form, and were essential for the proper folding of the monomeric protein structure. The recombinant protein was adsorbed to calcite and metal oxides in seawater, but not to glass and synthetic polymers. The adsorption isotherm for adsorption to calcite fitted the Langmuir model well, indicating that the protein is a calcite-specific adsorbent. An evaluation of the distribution of the molecular size in solution by analytical ultracentrifugation indicated that the recombinant protein exists as a monomer in 100 mm to 1 m NaCl solution; thus, the protein acts as a monomer when interacting with the calcite surface. cDNA encoding a homologous protein was isolated from Balanus albicostatus, and its derived amino acid sequence was compared with that from M. rosa. Calcite is the major constituent in both the shell of barnacle base and the periphery, which is also a possible target for the cement, due to the gregarious nature of the organisms. The specificity of the protein for calcite may be related to the fact that calcite is the most frequent material attached by the cement. PMID:18021251

Mori, Youichi; Urushida, Youhei; Nakano, Masahiro; Uchiyama, Susumu; Kamino, Kei

2007-12-01

232

Defluoridation of drinking water by boiling with brushite and calcite.  

PubMed

Existing methods for defluoridating drinking water involve expensive high technology or are slow, inefficient and/or unhygienic. A new method is now suggested, encompassing brushite and calcite suspension followed by boiling. Our aim was to examine the efficiency of the method and the chemical reactions involved. Brushite, 0.3-0.5 g, and an equal weight of calcite were suspended in 1 litre water containing 5-20 ppm fluoride. The suspensions were boiled in an electric kettle, left to cool and the calcium salts to sediment. Solution ion concentrations were determined and sediments were examined by X-ray diffraction. In distilled water initially containing 5, 10 and 20 ppm fluoride the concentration was reduced to 0.06, 0.4 and 5.9 ppm, respectively. Using Aarhus tap water which contained 2.6 mmol/l calcium the final concentrations were 1.2, 2.5 and 7.7 ppm, respectively, and runs without calcite gave results similar to those with calcite. Without boiling the fluoride concentration remained unaltered, as did the brushite and calcite salts, despite occasional agitation by hand. All solutions were supersaturated with respect to fluorapatite and hydroxyapatite and close to saturation with respect to brushite. Boiling produced well-crystallised apatite and traces of calcite, while boiling of brushite alone left a poorly crystallised apatite. We conclude that boiling a brushite/calcite suspension rapidly converts the two salts to apatite which incorporates fluoride if present in solution, and that this process may be exploited to defluoridate drinking water. PMID:12399694

Larsen, M J; Pearce, E I F

2002-01-01

233

Grain size dependency in clumped isotope ratios in high temperature calcites  

NASA Astrophysics Data System (ADS)

Here we have extended the application of clumped isotope thermometry for understanding the geospeedometers using calcite produced at high temperature and pressure. Static recrystallization experiments were conducted on cylindrical discs of AR grade carbonate with three different grain sizes (40?m, 200?m and 400?m) at constant pressure (170×5 MPa) and two different temperatures (6000×10°C and 8000×10°C) for 24 hours. The rate of temperature ramps for heating and cooling were set at 20°C/min and 60°C/min, respectively, mimicking a laboratory scale metamorphic condition of sudden burial and exhumation. The carbonate rocks, with prominent calcite mineral composition were prepared in a cylindrical capsule and were investigated for grain size distribution using Mastersizer, a laser technology to measure grain size. We identified three categories of crystals with grain size varying between 40?m, 200?m and 400?m. 15mg carbonate powder drilled from the periphery of the cylindrical discs were analysed for Clumped isotope ratio (Ghosh et al., 2006). Calcite formation experiment allowed re-crystallization of original powder produced at ambient temperature by subjecting the experimental setup to the temperatures of 800 and 600°C (Pressure was maintained constant at 170×5 MPa). We found broadly three different grain size fractions measured using in-situ laser probe. The present experiments were performed in dry environment unlike the wet high pressure experiment presented in the Passey and Henkes (2012). The present experimental value for ? 47 was translated into absolute temperature using thermometry equation proposed by Ghosh et al., (2006). We observed a strong relationship of clumped isotopic composition with grain sizes of carbonates, which was rather inconsistent with the earlier presumption (Passey and Henkes 2012). The clumped temperature value was found matching with the true temperature in cases where grain size attained 400 micron, while finer fraction registered values of lower temperature. We also observed a lower limit of 150×100° C as clumped temperature for all the Calcite analysed irrespective of final temperature. We attribute this as closure temperature or apparent equilibrium temperature in our experiment. The results of this study have important implication in the application of clumped isotope technique in high temperature carbonates. References: Ghosh et al., 2006, GCA (70) , 1439-1456; Passey and Henkes, 2012, EPSL (351-352) , 223-236 Figure 1: Relationship between clumped isotope based temperature (in degree celsius),calculated using Ghosh et al., 2006 equation and grain size (in micron) of the carbonates of present study.

Banerjee, Y.; Ghosh, P.; Misra, S.

2013-12-01

234

Hydration layer structures on calcite facets and their roles in selective adsorptions of biomolecules: A molecular dynamics study  

NASA Astrophysics Data System (ADS)

The selective adsorptions of biomolecules onto crystal faces are the key issues in the studies of biomineralization. Frequently, the adsorption processes are understood by using the direct binding model between organic compounds and inorganic crystals during the molecular dynamic studies. However, water molecules near crystals always exhibit intense ordering and preferential orientation to form structured hydration layer. By using the adsorption of poly acrylic acid oligomer, acrylic acid (AA) dimer, onto calcite as an example, we demonstrate that the induced hydration layers contribute significant effects on the organic-inorganic interactions. In particular, on calcite (104) plane, two carboxyl groups of AA dimer both interact with the crystal but the molecule has to compete with water due to the well-structured hydration layer. On (110) plane, although only one carboxyl group of AA dimer interacts with this surface, the water layer is relatively loose so that the molecule can easily replace water. With a consideration of the hydration layer, our free energy analysis indicates that AA dimer has a stronger interaction with (110) face than with (104) face, which is consistent with the experimental observations. The study follows that the attachment of organic additive onto inorganic crystal facet is greatly mediated by near-surface hydration layers, and therefore, the critical role of structured water layers must be taken into account in the understanding of biomineralization interfaces.

Zhu, Beibei; Xu, Xurong; Tang, Ruikang

2013-12-01

235

High-pressure EPR study of the calcite-CaCO3(II) displacive phase transformation near 1.6 GPa  

NASA Astrophysics Data System (ADS)

Single-crystal EPR data have been obtained and interpreted for a Mn2+ ion at pressures above the calcite-CaCO3(II) displacive phase transition near 1.6 GPa. In the CaCO3(II) phase the Mn2+ ion (substitutional for Ca) sits at a point with point-group symmetry of 1 (no symmetry). The B20O20 and B22O22 terms dominate the spin Hamiltonian and allow one to define for the crystal field an effective principal axis which is not along any of the crystal-lattice directions. The data can be fit using a spin Hamiltonian of the form scrH=(H-->.gbdyad.S-->)+AI-->.S--> +B20O20+B22O22 &O43 where the B'43O'43 term is referred to the original calcite-site coordinate axes, and the unprimed terms are referred to the reoriented effective principal axes of the site. The new effective axes are rotated by Eulerian angles of (30°, +17°, 30°) from the original calcite lattice axis. At 25 °C and 1.80 GPa, B20=31.4+/-0.2×10-4 cm-1 and B22=36.0+/-0.5×10-4 cm-1, compared to B20=25.3+/-0.2×10-4 cm-1 and B22=0 in calcite. The values of B20, B22, and the Eulerian angle ? (~=17°) vary significantly with pressure in the CaCO3(II) phase.

Barnett, J. Dean; Nelson, H. Mark; Tyagi, Som Dev

1985-02-01

236

The Raman spectrum of CaCO{sub 3} polymorphs calcite and aragonite: A combined experimental and computational study  

SciTech Connect

Powder and single crystal Raman spectra of the two most common phases of calcium carbonate are calculated with ab initio techniques (using a “hybrid” functional and a Gaussian-type basis set) and measured both at 80 K and room temperature. Frequencies of the Raman modes are in very good agreement between calculations and experiments: the mean absolute deviation at 80 K is 4 and 8 cm{sup ?1} for calcite and aragonite, respectively. As regards intensities, the agreement is in general good, although the computed values overestimate the measured ones in many cases. The combined analysis permits to identify almost all the fundamental experimental Raman peaks of the two compounds, with the exception of either modes with zero computed intensity or modes overlapping with more intense peaks. Additional peaks have been identified in both calcite and aragonite, which have been assigned to {sup 18}O satellite modes or overtones. The agreement between the computed and measured spectra is quite satisfactory; in particular, simulation permits to clearly distinguish between calcite and aragonite in the case of powder spectra, and among different polarization directions of each compound in the case of single crystal spectra.

De La Pierre, Marco, E-mail: cedric.carteret@univ-lorraine.fr, E-mail: marco.delapierre@unito.it; Maschio, Lorenzo; Orlando, Roberto; Dovesi, Roberto [Dipartimento di Chimica, Università di Torino and NIS (Nanostructured Interfaces and Surfaces) Centre of Excellence, Via P. Giuria 7, 10125 Torino (Italy)] [Dipartimento di Chimica, Università di Torino and NIS (Nanostructured Interfaces and Surfaces) Centre of Excellence, Via P. Giuria 7, 10125 Torino (Italy); Carteret, Cédric, E-mail: cedric.carteret@univ-lorraine.fr, E-mail: marco.delapierre@unito.it; André, Erwan [Laboratoire de Chimie Physique et Microbiologie pour l’Environnement (LCPME), UMR 7564, Université de Lorraine-CNRS, 405 rue de Vandoeuvre, 54601 Villers-lès-Nancy (France)] [Laboratoire de Chimie Physique et Microbiologie pour l’Environnement (LCPME), UMR 7564, Université de Lorraine-CNRS, 405 rue de Vandoeuvre, 54601 Villers-lès-Nancy (France)

2014-04-28

237

The Raman spectrum of CaCO3 polymorphs calcite and aragonite: a combined experimental and computational study.  

PubMed

Powder and single crystal Raman spectra of the two most common phases of calcium carbonate are calculated with ab initio techniques (using a "hybrid" functional and a Gaussian-type basis set) and measured both at 80 K and room temperature. Frequencies of the Raman modes are in very good agreement between calculations and experiments: the mean absolute deviation at 80 K is 4 and 8 cm(-1) for calcite and aragonite, respectively. As regards intensities, the agreement is in general good, although the computed values overestimate the measured ones in many cases. The combined analysis permits to identify almost all the fundamental experimental Raman peaks of the two compounds, with the exception of either modes with zero computed intensity or modes overlapping with more intense peaks. Additional peaks have been identified in both calcite and aragonite, which have been assigned to (18)O satellite modes or overtones. The agreement between the computed and measured spectra is quite satisfactory; in particular, simulation permits to clearly distinguish between calcite and aragonite in the case of powder spectra, and among different polarization directions of each compound in the case of single crystal spectra. PMID:24784289

De La Pierre, Marco; Carteret, Cédric; Maschio, Lorenzo; André, Erwan; Orlando, Roberto; Dovesi, Roberto

2014-04-28

238

Calcite and Picocyanobacteria in Lakes: Factors Affecting Their Interaction  

NASA Astrophysics Data System (ADS)

Calcites build large deposits which have been observed in the rock record throughout geological time at various localities around the globe. Carbonate deposits have affected atmospheric carbon dioxide concentration. As it has been generally accepted, inorganic precipitation represents a source of carbon dioxide on short geological time scales and a sink of inorganic carbon at long time scales from millions to thousands of millions years. However, recent research indicates that calcite deposits may result from microbial calcification instead of inorganic precipitation. In this case the process may reduce atmospheric carbon dioxide on geologically short time scales. Thus the effect of carbonate sediment deposition on global carbon cycling depends on the origin of carbonate. Thus it is essential to understand the cause and the key parameters affecting calcite precipitation. The role of algae and bacteria in calcite formation in lakes has not been evaluated in detail. Some evidence, however, exists supporting precipitation of calcium carbonate by microbes as the origin of whiting. Several field studies on lakes have also produced puzzling results: The peaks of algal blooms were often not found at the same time as precipitation events of calcite. We suspect that parts of the discrepancies in the interpretation of field observations are due to the activity of autotrophic picoplankton. The unicellular autotrophic picoplankton (APP) is a ubiquitous component of pelagic ecosystems. But it has often been overlooked due to its small cell size of 0.2 - 2 ? m in diameter. Coccoid picocyanobacteria of the Synechococcus-type dominate the picoplankton community in most oligotrophic systems. Recently, laboratory experiments and field observations suggested that APP may play an important role in calcite precipitation. The aim of this study was to examine the influence of environmental factors such as saturation state, concentration of different dissolved ions and characteristics of the surface of cells on interaction between calcite and picocyanobacteria under both laboratory and field conditions. Laboratory experiments were performed with a picocyanobacteria strain Synechococcus-type. Using ion selective electrodes we monitored calcite precipitation induced by bacteria in the solutions of a different composition (calcium 0.7 - 48 mM, inorganic carbonate 6 - 35 ? M). Electron and atomic force microscopy measurements provided insight into the cell-mineral interface. Furthermore, quantitative investigations of the types and densities of proton binding sites on a bacterial surface will be reported from the acid-base titrations on bacteria. Results of these initial experiments are encouraging and demonstrate by direct measurements the potential of picocyanobacteria to precipitate calcite. The amount of the precipitated calcite varied in experiments with a different ratio of dissolved inorganic carbon and calcium. The microscopic observations provide some evidence that the cell walls of cyanobacteria act as a substrate of nucleation of calcite. Temporal and spatial correlations of cyanobacteria and calcite, as well as images of bacterial shape particles indicated that picoplankton plays an important role in calcite precipitation in Lake Lucerne. This class of phytoplankton has to be considered in studying the biogeochemical cycling of oligotrophic hardwater lakes.

Dittrich, M.; Obst, M.; Mavrocordatos, D.

2003-12-01

239

Surface kinetic model for isotopic and trace element fractionation during precipitation of calcite from aqueous solution  

SciTech Connect

A surface reaction kinetic model is developed for predicting Ca isotope fractionation and metal/Ca ratios of calcite as a function of rate of precipitation from aqueous solution. The model is based on the requirements for dynamic equilibrium; i.e. proximity to equilibrium conditions is determined by the ratio of the net precipitation rate (R{sub p}) to the gross forward precipitation rate (R{sub f}), for conditions where ionic transport to the growing crystal surface is not rate-limiting. The value of R{sub p} has been experimentally measured under varying conditions, but the magnitude of R{sub f} is not generally known, and may depend on several factors. It is posited that, for systems with no trace constituents that alter the surface chemistry, R{sub f} can be estimated from the bulk far-from-equilibrium dissolution rate of calcite (R{sub b} or k{sub b}), since at equilibrium R{sub f} = R{sub b}, and R{sub p} = 0. Hence it can be inferred that R{sub f} {approx} R{sub p} + R{sub b}. The dissolution rate of pure calcite is measureable and is known to be a function of temperature and pH. At given temperature and pH, equilibrium precipitation is approached when R{sub p} (= R{sub f} - R{sub b}) << R{sub b}. For precipitation rates high enough that R{sub p} >> R{sub b}, both isotopic and trace element partitioning are controlled by the kinetics of ion attachment to the mineral surface, which tend to favor more rapid incorporation of the light isotopes of Ca and discriminate weakly between trace metals and Ca. With varying precipitation rate, a transition region between equilibrium and kinetic control occurs near R{sub p} {approx} R{sub b} for Ca isotopic fractionation. According to this model, Ca isotopic data can be used to estimate R{sub f} for calcite precipitation. Mechanistic models for calcite precipitation indicate that the molecular exchange rate is not constant at constant T and pH, but rather is dependent also on solution saturation state and hence R{sub p}. Allowing R{sub b} to vary as R{sub p}{sup 1/2}, consistent with available precipitation rate studies, produces a better fit to some trace element and isotopic data than a model where R{sub b} is constant. This model can account for most of the experimental data in the literature on the dependence of {sup 44}Ca/{sup 40}Ca and metal/Ca fractionation in calcite as a function of precipitation rate and temperature, and also accounts for {sup 18}O/{sup 16}O variations with some assumptions. The apparent temperature dependence of Ca isotope fractionation in calcite may stem from the dependence of R{sub b} on temperature; there should be analogous pH dependence at pH < 6. The proposed model may be valuable for predicting the behavior of isotopic and trace element fractionation for a range of elements of interest in low-temperature aqueous geochemistry. The theory presented is based on measureable thermo-kinetic parameters in contrast to models that equire hyper-fast diffusivity in near-surface layers of the solid.

DePaolo, D.

2010-10-15

240

TRIACYLGLYCEROL PHASE AND SEED STORAGE BEHAVIOR  

Technology Transfer Automated Retrieval System (TEKTRAN)

Anecdotal stories have long suggested that oil-rich seeds store poorly; however, laboratory studies show that lipid content does not correlate with seed quality. Recently, we found that the tendency of triacylglycerols (TAG) to crystallize during storage of Cuphea seeds has a profound effect on see...

241

Nuclear anomalies in the buccal cells of calcite factory workers  

PubMed Central

The micronucleus (MN) assay on exfoliated buccal cells is a useful and minimally invasive method for monitoring genetic damage in humans. To determine the genotoxic effects of calcite dust that forms during processing, MN assay was carried out in exfoliated buccal cells of 50 (25 smokers and 25 non-smokers) calcite factory workers and 50 (25 smokers and 25 non-smokers) age- and sex-matched control subjects. Frequencies of nuclear abnormalities (NA) other than micronuclei, such as binucleates, karyorrhexis, karyolysis and ‘broken eggs', were also evaluated. Micronuclei and the other aforementioned anomalies were analysed by two way analysis of covariance. The linear correlations between the types of micronucleus and nuclear abnormalities were determined by Spearman's Rho. There was a positive correlation between micronuclei and other types of nuclear abnormalities in accordance with the Spearman's Rho test. Results showed statistically significant difference between calcite fabric workers and control groups. MN and NA frequencies in calcite fabric workers were significantly higher than those in control groups (p < 0.05). The results of this study indicate that calcite fabric workers are under risk of significant cytogenetic damage. PMID:21637497

2010-01-01

242

Sequestration of selenium on calcite surfaces revealed by nanoscale imaging  

NASA Astrophysics Data System (ADS)

Selenium is an important element because of its high toxicity in natural systems. In-situ atomic force microscopy observations of calcite surfaces during contact with selenium-bearing solutions demonstrate that selenium trapping can occur under conditions in which calcite both dissolves and precipitates. The contact of solutions containing selenium in two states of oxidation (either Se(IV ) or Se(V I)) onto a growing or dissolving calcite surface either changes the growth pattern or results in precipitates formed during dissolution. In the form of selenite (Se(IV )), but not as selenate (Se(IV )), selenium can be incorporated into calcite during growth. During dissolution, in the presence of selenate (Se(V I)), the precipitates formed remained small during the observation period. When injecting selenite (Se(IV )), the precipitates grew significantly, and were identified as CaSeO3·H2O, based on SEM observations, Raman spectroscopy and thermodynamic calculations. An interpretation is proposed where dissolution of calcite increases the calcium concentration in a thin boundary layer in contact with the surface, allowing the precipitation of a selenium phase. This process of dissolution-precipitation provides a new mechanism for selenium sequestration and extends the range of thermodynamic conditions under which such a process is efficient.

Putnis, Christine V.; Renard, François; King, Helen E.; Montes-Hernandez, German; Ruiz-Agudo, Encarnacion

2014-05-01

243

Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies  

PubMed Central

Calcified skeletons are produced within complex assemblages of proteins and polysaccharides whose roles in mineralization are not well understood. Here we quantify the kinetics of calcite nucleation onto a suite of high-purity polysaccharide (PS) substrates under controlled conditions. The energy barriers to nucleation are PS-specific by a systematic relationship to PS charge density and substrate structure that is rooted in minimization of the competing substrate–crystal and substrate–liquid interfacial energies. Chitosan presents a low-energy barrier to nucleation because its near-neutral charge favors formation of a substrate–crystal interface, thus reducing substrate interactions with water. Progressively higher barriers are measured for negatively charged alginates and heparin that favor contact with the solution over the formation of new substrate–crystal interfaces. The findings support a directing role for PS in biomineral formation and demonstrate that substrate–crystal interactions are one end-member in a larger continuum of competing forces that regulate heterogeneous crystal nucleation. PMID:23690577

Hamm, Laura M.; Han, Nizhou; De Yoreo, James J.; Dove, Patricia M.

2013-01-01

244

Solute-sieving-induced calcite precipitation on pulverized quartz sand: Experimental results and implications for the membrane behavior of fault gouge  

NASA Astrophysics Data System (ADS)

We report on a preliminary experiment with an analog for fault gouge composed of clay-sized quartz particles. An undersaturated calcium carbonate solution was forced through a layer of clay-sized quartz particles. Calcite crystals, identified by secondary electron imaging and energy dispersive X-ray analysis, formed on the gouge. Calcite precipitation was not due to changes in temperature or pH related to ion exchange. A rise in Ca and bicarbonate concentrations on the high pressure side of the membrane is the most likely cause of calcite precipitation. Solute-sieving by clay-rich sediments has been previously described. Our results suggest that the solute-sieving properties of fault gouge should be considered as a possible mechanism for the selective cementation of some faults even when the gouge has a low clay mineral content. The formation of calcite cements in one fault zone in central New Mexico may be explained by solute-sieving by fault gouge. This zone is strongly preferentially cemented by calcite relative to the surrounding materials, yet oriented concretions within the cemented zone suggest that the groundwater flow was nearly perpendicular to the fault at the time of cementation.

Whitworth, T. M.; Haneberg, W. C.; Mozley, P. S.; Goodwin, L. B.

245

Radiaxial-fibrous calcites of shallow subsurface diagenetic origin  

SciTech Connect

Radiaxial-fibrous calcites (RFC) in marine carbonates are generally considered syndepositional cements. In Upper Triassic and basal Liassic reef and platform limestones in Austria (Steinplatte complex), however, isopachous RFC is demonstrably a postdepositional diagenetic component that precipitated in shallow-burial phreatic environments during a time of periodic meteoric exposure. Isopachous RFC occurs solely within solution cavities and is interlayered with internal red sediment; discontinuities due to leaching separate sequential generations of RFC in the rocks. Accordingly, one possibility is that the RFC was originally low-magnesium calcite that precipitated in the meteoric phreatic zone during lowstands. Such calcites contain relatively low magnesium concentrations (average 0.87 mole % MgCO/sub 3/) and are /sup 18/O depleted (average - 5.81 /per thousand/ PDB). However, most other RFC cements in the sequence average slightly higher magnesium comparable to crinoidal calcites (1.13 mole % MgCO/sub 3/), are less depleted in /sup 18/O (average - 1.88 /per thousand/ PDB), and are partly dolomitized. Additionally, all the RFC cements are enriched in /sup 13/C to values similar to that of Triassic and Jurassic seawater (+ 2.86 /per thousand/ PDB) and are nonluminescent. Trace element studies indicate alteration of the rocks in partly closed, rock-dominated diagenetic systems. By these facts, the authors favor a precursor high-magnesium calcite mineralogy for the RFC cements, which possibly precipitated during highstands when meteoric pore waters were replaced by marine fluids. Thus, the geochemical trends observed are likely due to variations in the degree of meteoric alteration of high-magnesium calcite RFC rather than to differences in original mineralogy.

Mazzullo, S.J.; Bischoff, W.D.; Lobitzer, H.

1989-03-01

246

Microbially Induced Calcite Precipitation for Subsurface Immobilization of Contaminants  

NASA Astrophysics Data System (ADS)

Subsurface radionuclide and metal contaminants throughout the U.S. Department of Energy (DOE) complex pose one of the greatest challenges for long-term stewardship. One promising stabilization mechanism for divalent trace ions, such as the short-lived radionuclide 90Sr, is co-precipitation in calcite. We have found that calcite precipitation and co-precipitation of Sr can be accelerated by the activity of urea hydrolyzing microorganisms, that higher calcite precipitation rates can result in increased Sr partitioning, and that nutrient additions can stimulate ureolytic activity. To extend our understanding of microbially induced calcite precipitation (MICP) in an aquifer setting a continuous recirculation field experiment evaluating MICP was conducted at the Integrated Field Research Challenge (IFRC) site located at Rifle, CO. In this experiment, groundwater extracted from an onsite well was amended with urea (total mass of 42.5 kg) and molasses (a carbon and electron donor) and re-injected into a well approximately 4 meters up-gradient for a period of 12 days followed by 10 months of groundwater sampling and monitoring. Crosshole radar and electrical tomographic data were collected prior, during, and after the MICP treatment. The urea and molasses treatment resulted in an enhanced population of sediment associated urea hydrolyzing organisms as evidenced by increases in the number of ureC gene copies, increases in 14C urea hydrolysis rates, and long-term observations of ammonium (a urea hydrolysis product) in the injection, extraction and down gradient monitoring wells. Permeability changes and increases in the calcite saturation indexes in the well field suggest that mineral precipitation has occurred; ongoing analysis of field samples seeks to confirm this. Changes in dielectric constant and electrical conductivity were used to interpret the spatiotemporal distribution of the injectate and subsequent calcite precipitation. Modeling activities are underway to define field-scale urea hydrolysis rates.

Smith, R. W.; Fujita, Y.; Ginn, T. R.; Hubbard, S. S.; Dafflon, B.; Delwiche, M.; Gebrehiwet, T.; Henriksen, J. R.; Peterson, J.; Taylor, J. L.

2011-12-01

247

A Cretaceous scleractinian coral with a calcitic skeleton.  

PubMed

It has been generally thought that scleractinian corals form purely aragonitic skeletons. We show that a well-preserved fossil coral, Coelosmilia sp. from the Upper Cretaceous (about 70 million years ago), has preserved skeletal structural features identical to those observed in present-day scleractinians. However, the skeleton of Coelosmilia sp. is entirely calcitic. Its fine-scale structure and chemistry indicate that the calcite is primary and did not form from the diagenetic alteration of aragonite. This result implies that corals, like other groups of marine, calcium carbonate-producing organisms, can form skeletons of different carbonate polymorphs. PMID:17916731

Stolarski, Jaroslaw; Meibom, Anders; Przenioslo, Radoslaw; Mazur, Maciej

2007-10-01

248

Petrology of UHP calcite marble from the Kokchetav Massif  

NASA Astrophysics Data System (ADS)

In the Kumdy-kol area, Kokchetav Massif, northern Kazakhstan, three types of UHP marbles have been described: diamond-bearing dolomite marble, Ti-clinohumite-bearing dolomitic marble (Ogasawara et al., 2000) and titanite-bearing calcite marble (Ogasawara et al., 2002). UHP calcite marble is distinguished from other types of UHP marbles by pure calcite (after aragonite) as a dominant carbonate phase. This calcite marble has unique evidence of UHP metamorphism; titanite with coesite exsolution and its precursor compositions indicated that the peak P-T conditions was > 6 GPa and 980-1250 C (Ogasawara et al., 2000; 2002). This rock shows typical granoblastic texture consisting of calcite, diopside, K-feldspar, titanite and symplectite (diopside + zoisite) after garnet. The peak assemblage was aragonite + diopside + K-feldspar + garnet + titanite. Based on the phase relations in the system CaO-MgO-TiO2-SiO2-CO2-H2O, aragonite + diopside + rutile tie-triangle is stable under UHP conditions and divides the compositional space into dolomite-bearing or dolomite-free tetrahedrons (Kikuchi et al., 2003). The presence of titanite in calcite marble means that P-T condition was located at the right-hand side of the reaction rutile + aragonite + coesite = titanite + CO2. Previously described titanite-bearing calcite marble is diamond-free (A-type) and is characterized by titanite with coesite exsolution (Ogasawara et al., 2002). Recently, we found a small amount of diamond in calcite marble (B-type) that is characterized by microdiamond in diopside, and by the lack of K-feldspar and low amount of titanite. No diamond occurs in titanite. Rutile, aragonite and calcite inclusions in titanite were found in titanite of B-type calcite marble. These three inclusion phases in titanite that were confirmed by laser Raman spectroscopy are the evidence for titanite formation reaction described above. This titanite forming reaction occurs at extremely low XCO2 conditions as 0.02. In B-type calcite marble, microdiamond occurs locally and its amount is low; only 61 grains were found in two thin sections. Distributions of titanite, K-feldspar and diamond are heterogeneous and seem to form layers. Diamond occurs in the domain where amounts of titanite and K-feldspar are relatively low. Low amount of microdiamond may be related with extremely low-XCO2 condition under UHP metamorphism. References Ishida et al. (2003: Journal of Metamorphic Geology, Vol. 21, p. 515-522. Kikuchi et al. (2003): EOS Transactions AGU, Vol. 84, F1532. Ogasawara et al. (2000): The Island Arc, Vol. 9, p 400-416. Ogasawara et al. (2002): American Mineralogist, Vol. 87, p. 454-461.

Aoki, K.; Adachi, T.; Kikuchi, M.; Ogasawara, Y.

2004-12-01

249

Designer Seeds  

NSDL National Science Digital Library

In this activity, learners will examine a variety of seeds, describe them, and determine how they are dispersed. Learners will investigate seed dispersal mechanisms by creating and testing a wind dispersed seed that they have designed themselves. Learners will be limited to using a single piece of white paper, one lima bean to represent a seed, tape and scissors. Seeds will be tested by dropping them in front of a window fan and recording the distance they travel. Repeat trials will be conducted, averages calculated, and group data recorded. Learners will examine the features of successful seeds and redesign their seed to try to increase the distance it can be carried by wind. Results will be analyzed and comparisons made to natural phenomena. This lesson can be incorporated into a unit studying ecology, plants, seed dispersal, or evolution of plant traits. It addresses seed dispersal mechanisms as well as elements of experimental design.

Frank Taylor

2009-01-01

250

Reconstructing Cambro-Ordovician Seawater Composition using Clumped Isotope Paleothermometry on Calcitic and Phosphatic Brachiopods  

NASA Astrophysics Data System (ADS)

A secular increase in ?18O values of marine fossils through early Phanerozoic time raises questions about the evolution of climate and the water cycle. This pattern suggests two end-member hypotheses 1) surface temperatures during early Paleozoic time were very warm, in excess of 40°C (tropical MAT), or 2) the isotopic composition of seawater increased by up to 7-8‰. It has been difficult to evaluate these hypotheses because the ?18O composition of fossils depends on both temperature and the ?18O of water. Furthermore, primary isotopic signatures can be overprinted by diagenetic processes that modify geological materials. This too could explain the decrease in ?18O values of marine fossils with age. Carbonate clumped isotope thermometry can constrain this problem by providing an independent measure of crystallization temperature and, when paired with classical ?18O paleothermometry, can determine the isotopic composition of the fluid the mineral last equilibrated with. Combined with traditional tools, this method has the potential to untangle primary isotopic signatures from diagenetic signals. We measured the isotopic ordering of CO3 groups (?47) substituted into the phosphate lattice of phosphatic brachiopods in Cambrian strata. Phosphatic fossils are generally less soluble than carbonates in surface and diagenetic environments, and so are hypothesized to provide a more robust record of primary growth conditions. They also provide an archive prior to the rise of thick shelled calcitic fossils during the Ordovician Radiation. Additionally, measurements of the ?18O of the CO3 groups can be compared with the ?18O of PO4 groups to test whether their mutual fractionation is consistent with primary growth and the apparent temperature recorded by carbonate clumped isotope measurements. We are constructing a phosphatic brachiopod calibration for carbonate clumped isotope thermometry, and ?47 values of CO2 extracted from modern phosphatic brachiopods suggest they faithfully record seawater temperatures following a calibration similar to the canonical calcite clumped isotope thermometer. Samples from Japan yield a temperature of 23±1.5°C (1 SD) and ?18O water composition of 0.2±0.5‰ VSMOW (calculated assuming CO3 groups have fractionations with respect to water equal to that of calcite). Nine samples of calcitic brachiopods from the 455 Ma Ordovician Decorah Formation yield a mean temperature of 36±3°C and a ?18Owater composition of -0.7±1‰ VSMOW, excluding three brachiopods with temperatures in the low 40s. Four measurements of well-preserved phosphatic brachiopods from the 500 Ma Eau Claire Formation yield a mean temperature of 34±3°C and a ?18Owater composition of -3.3±1‰ VSMOW. The ?18O measurements of PO4 groups from the brachiopods suggest similar water compositions based on equilibrium precipitation at 34°C (Pucéat et al., 2010). These results constrain the climate and potential variation in ?18O of seawater during the early Paleozoic, suggesting that shallow tropical marine environments were somewhat warmer than today, but less so than some predicted (e.g. Trotter et al., 2008). Future measurements of phosphatic brachiopods from the Decorah Formation and modern phosphatic and calcitic brachiopods from a range of environments will provide a direct comparison of the calcitic and phosphatic record.

Bergmann, K.; Robles, M.; Finnegan, S.; Hughes, N. C.; Eiler, J. M.; Fischer, W. W.

2012-12-01

251

Origin of authigenic calcite and aragonite in pelagic sediments of the Mendeleev Ridge (Arctic Ocean) and their paleoceanographicimplications  

NASA Astrophysics Data System (ADS)

Carbonate minerals were discovered from the giant box core (PS72/410-1) of the pelagic sediments recovered from the Canadian Arctic across the central Mendeleev Ridge (Station location= Lat. 80°30.37"N, Long. 175°44.38"W) during the Arctic cruise by Polarstern in 2008. The core was 39 cm long and was collected from the water depth of 1802 meters. The sediments show various colours from grey to brown as previously reported in other Arctic pelagic sediments. The sediments include planktonic foraminifers together with carbonate minerals. The contents of planktonic foraminifers and carbonate minerals vary with core depth, however these carbonate minerals are present through the whole sequence except for a few centimetres. After wet sieving, coarse fractions were texturally examined with binocular microscope and SEM, and stable isotope and trace element contents were obtained. Mineralogy of carbonate minerals were determined using crystal shapes and qualitative Sr contents by EDAX together with trace element analysis. The carbonates are composed of high Mg-calcite, low Mg-calcite and aragonite. Aragonite crystals show (1) radiating fibrous texture, (2) randomly oriented fibrous texture, (3) spherulitic fibrous texture, and (4) bladed texture, and calcite crystals show (1) foliated texture, (2) randomly bladed texture, (3) spherulitic fibrous texture, and (4) equant texture. Various crystal shapes of aragonite and calcite together with clear growth shapes of the crystals suggest that they are inorganic in origin. Highly enriched carbon isotope compositions (?13C = 0 ~ +5‰ vs. PDB) strongly indicate that they formed in methanogenic zone below sediment/water interface by the reaction between anoxic pore fluids and host sediments induced by methanogenic bacteria. However, a wide range of oxygen isotope values (?18O = -5 ~ +5‰ vs. PDB) may indicate that porewater has been changed due to reaction between residual seawater and volcanic sediments. Four types of stable isotope compositions are recognized and they imply complicated evolution of early diagenetic pore waters. Because the core sediments are not organic-rich, the presence of the authigenic carbonates may be related to paleoceanograhic conditions of the Arctic Ocean which resulted in anoxic pore water conditions just a few centimetres below the sediment/water interface. Trace elemental compositions show clear divisions at the boundary of ca. 10 cm in core depth. Carbonates found shallower than this depth show higher Mg, Mn, Fe and Sr compositions which may imply paleoenvironmental changes with time.

Woo, K. S.; Ji, H. S.; Nam, S.; Stein, R. H.; Mackensen, A.; Matthiessen, J. J.

2013-12-01

252

Utricular otoconia of some amphibians have calcitic morphology  

NASA Technical Reports Server (NTRS)

This report concerns the morphological features of otoconia removed from the inner ear of four amphibian species. Results from scanning electron microscopic examination are compared based on the site of origin. These results show that utricular otoconia have a mineral structure that mimics calcite, rather than the widely accepted idea that they are mineralized by calcium carbonate of the aragonite polymorph.

Pote, K. G.; Ross, M. D.

1993-01-01

253

A data-driven model of the global calcite lysocline  

Microsoft Academic Search

Gridded maps of sediment calcium carbonate (calcite) concentration and overlying water saturation state [Archer, 1996] are combined with maps of benthic oxygen fluxes and sediment accumulation rates from Jahnke [1996] and Cweink [1986] to drive a diagenetic model of calcium carbonate preservation in deep-sea sediments. The only model input for which we cannot draw a detailed map is the rain

David Archer

1996-01-01

254

The behavior of Ni 2+ on calcite surfaces  

Microsoft Academic Search

Transport of Ni2+ in the geosphere plays a role in the formation of ore deposits as well as in the dispersion of contaminants in the environment. Some elements (Cd2+, Zn2+, Na+, K+, and Cl?) are known to diffuse in calcite at the rate of nanometers in months, so questions arose about the ability of Ni2+ to move away from adsorption

U. Hoffmann; S. L. S. Stipp

2001-01-01

255

Synthesis of a Se0 /Calcite Composite Using Hydrothermal  

E-print Network

Synthesis of a Se0 /Calcite Composite Using Hydrothermal Carbonation of Ca(OH)2 Coupled in a batch system by hydrothermal carbonation of calcium hydroxide under high CO2-Ar pressure (90 bar of Geological Processes, UniVersity of Oslo, Norway, LCABIE, IPREM, UMR CNRS 5254, UniVersite´ de Pau et des

Montes-Hernandez, German

256

Temperature limits for preservation of primary calcite clumped isotope paleotemperatures  

NASA Astrophysics Data System (ADS)

Solid-state reordering of C-O bonds in the calcite lattice can alter the clumped isotope composition of paleotemperature archives such as fossil brachiopod shells without inducing significant changes in shell microstructure and trace element concentrations, metrics commonly used to gauge preservation quality. To correctly interpret the paleoenvironmental significance of clumped isotope-derived paleotemperatures, it is necessary to understand the temperature-time domain in which solid-state C-O bond reordering is important. We address this question using a combination of laboratory and natural geological experiments on Paleozoic brachiopod shells. The laboratory experiments involve heating fossil brachiopod calcite at different temperatures and times to directly observe rates of 13C-18O bond reordering. The resulting Arrhenius parameters are indistinguishable from values previously determined for an optical calcite with similar trace element compositions. We develop an alternative kinetic model for reordering that accounts for non-first-order reaction progress observed during the initial several hundred minutes of laboratory heating experiments, and show that the simplified first-order approximation model (Passey and Henkes, 2012) predicts reaction progress equally well for temperatures and timescales relevant to sedimentary basins. We evaluate our laboratory-based rate predictions by studying brachiopod calcite from several sedimentary basins with independently constrained burial temperature histories. Specifically, we use the laboratory-derived Arrhenius parameters to predict the evolution of brachiopod calcite clumped isotope compositions during successive one million-year time steps reflecting the burial and exhumation temperature paths of each basin. While this exercise is limited by the relatively large uncertainties in the temperature histories of these basins, we find general correspondence, within error, between predicted and observed clumped isotope values. We present simplified temperature-time diagrams for calcite showing domains where primary clumped isotope compositions will be preserved, partially reordered, and fully reordered. In conclusion, calcite samples dwelling at ?100 °C or lower for 106-108 year timescales should not be affected by solid-state C-O bond reordering.

Henkes, Gregory A.; Passey, Benjamin H.; Grossman, Ethan L.; Shenton, Brock J.; Pérez-Huerta, Alberto; Yancey, Thomas E.

2014-08-01

257

The behavior of Ni 2+ on calcite surfaces  

NASA Astrophysics Data System (ADS)

Transport of Ni 2+ in the geosphere plays a role in the formation of ore deposits as well as in the dispersion of contaminants in the environment. Some elements (Cd 2+, Zn 2+, Na +, K +, and Cl -) are known to diffuse in calcite at the rate of nanometers in months, so questions arose about the ability of Ni 2+ to move away from adsorption sites at the surface into the bulk. Nickel incorporation into calcite is limited by its high dehydration enthalpy and by its ligand field hindrance to entering the distorted octahedra of calcite, but evidence exists that calcite can tolerate several percent Ni 2+ in the structure. Cleaved samples of Iceland spar were exposed for 1 minute to solutions of 10 -3 M and 10 -2 M Ni(ClO 4) 2, the solution was physically removed and the samples were examined using the surface sensitive techniques: X-ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectroscopy (TOF-SIMS) and Atomic Force Microscopy (AFM). XPS and TOF-SIMS showed that Ni 2+ was adsorbed while AFM confirmed that dissolution was taking place. The sample was stored in air and relative surface concentration and physical morphology were monitored for 2 years. Trends in the chemical data suggested statistically significant loss of surface Ni 2+ with time, but the decrease was very close to the limits for significance. AFM images demonstrated that surface topography of the Ni-exposed samples is modified by spontaneous recrystalization in the water layer adsorbed from air in exactly the same way that clean calcite surfaces typically rearrange. This process could bury a small amount of Ni 2+ in the bulk, explaining the very weak loss. Limited burial of Ni 2+ within the near-surface could renew calcite adsorption sites, thus increasing uptake capacity. Evidence indicates that surface recrystalization occurs even in very dry environments (<5% humidity). This means that burial could play a role in Ni 2+ mobility in unsaturated groundwater regimes or in fractures (such as in concrete) where water flow is intermittent. An important point is, however, in comparison to incorporation rates for divalent Cd and Zn, the extent of movement of Ni 2+ is extremely low. Thus, incorporation might have an effect on Ni 2+ retardation in flow paths extending over very long time scales (>10,000 years) such as would be relevant for geological processes and for long-term radioactive waste disposal. However, incorporation by burial would have negligible effect on the amount of Ni 2+ removed from groundwater by adsorption, in systems where the transport times are short (<100 years) such as for drinking water supplies from calcite-bearing porous media.

Hoffmann, U.; Stipp, S. L. S.

2001-11-01

258

Carbon and O Isotopic Ratios, Trace Element Abundances and Cathodoluminescence Observation of Calcite in Murchison  

NASA Astrophysics Data System (ADS)

We found two types of calcite in Murchison with respect to C isotopic ratios, trace element concentrations and CL intensities. In contrast, they have similar O isotopic ratios, suggesting the presence of at least two C sources for calcite.

Fujiya, W.; Sugiura, N.; Marrocchi, Y.; Takahata, N.; Hoppe, P.; Shirai, K.; Sano, Y.; Hiyagon, H.

2014-09-01

259

Aragonite, breunnerite, calcite and dolomite in the CM carbonaceous chondrites: High fidelity recorders of progressive parent body aqueous alteration  

NASA Astrophysics Data System (ADS)

Carbonate minerals in CM carbonaceous chondrite meteorites, along with the silicates and sulphides with which they are intergrown, provide a detailed record of the nature and evolution of parent body porosity and permeability, and the chemical composition, temperature and longevity of aqueous solutions. Fourteen meteorites were studied that range in petrologic subtype from mildly aqueously altered CM2.5 to completely hydrated CM2.0. All of them contain calcite, whereas aragonite occurs only in the CM2.5-CM2.2 meteorites and dolomite in the CM2.2-CM2.0. All of the aragonite crystals, and most of the calcite and dolomite grains, formed during early stages of parent body aqueous alteration by cementation of pores produced by the melting of tens of micrometre size particles of H2O-rich ice. Aragonite was the first carbonate to precipitate in the CM2.5 to CM2.2 meteorites, and grew from magnesium-rich solutions. In the least altered of these meteorites the aragonite crystals formed in clusters owing to physical restriction of aqueous fluids within the low permeability matrix. The strong correlation between the petrologic subtype of a meteorite, the abundance of its aragonite crystals and the proportion of them that have preserved crystal faces, is because aragonite was dissolved in the more altered meteorites on account of their higher permeability, and/or greater longevity of the aqueous solutions. Dolomite and breunnerite formed instead of aragonite in some of the CM2.1 and CM2.2 meteorites owing to higher parent body temperatures. The pore spaces that remained after precipitation of aragonite, dolomite and breunnerite cements were occluded by calcite. Following completion of cementation, the carbonates were partially replaced by phyllosilicates and sulphides. Calcite in the CM2.5-CM2.2 meteorites was replaced by Fe-rich serpentine and tochilinite, followed by Mg-rich serpentine. In the CM2.1 and CM2.0 meteorites dolomite, breunnerite and calcite were replaced by Fe-rich serpentine and Fe-Ni sulphide, again followed by Mg-rich serpentine. The difference between meteorites in the mineralogy of their replacive sulphides may again reflect greater temperatures in the parent body regions from where the more highly altered CMs were derived. This transition from Fe-rich to Mg-rich carbonate replacement products mirrors the chemical evolution of parent body solutions in response to consumption of Fe-rich primary minerals followed by the more resistant Mg-rich anhydrous silicates. Almost all of the CMs examined contain a second generation of calcite that formed after the sulphides and phyllosilicates and by replacement of remaining anhydrous silicates and dolomite (dedolomitization). The Ca and CO2 required for this replacive calcite is likely to have been sourced by dissolution of earlier formed carbonates, and ions may have been transported over metre-plus distances through high permeability conduits that were created by impact fracturing.

Lee, Martin R.; Lindgren, Paula; Sofe, Mahmood R.

2014-11-01

260

Experimental study of the replacement of calcite by calcium sulphates  

NASA Astrophysics Data System (ADS)

Among the most relevant mineral replacement reactions are those involving sulphates and carbonates, which have important geological and technological implications. Here it is shown experimentally that during the interaction of calcite (CaCO3) cleavage surfaces with sulphate-bearing acidic solutions, calcite is ultimately replaced by gypsum (CaSO4 2H2O) and anhydrite (CaSO4), depending on the reaction temperature. Observations suggest that this occurs most likely via an interface-coupled dissolution-precipitation reaction, in which the substrate is replaced pseudomorphically by the product. At 120 and 200 °C gypsum and/or bassanite (CaSO4·0.5H2O) form as precursor phases for the thermodynamically stable anhydrite. Salinity promotes the formation of less hydrated precursor phases during the replacement of calcite by anhydrite. The reaction stops before equilibrium with respect to calcite is reached and during the course of the reaction most of the bulk solutions are undersaturated with respect to the precipitating phase(s). A mechanism consisting of the dissolution of small amounts of solid in a thin layer of fluid at the mineral-fluid interface and the subsequent precipitation of the product phase from this layer is in agreement with these observations. PHREEQC simulations performed in the framework of this mechanism highlight the relevance of transport and surface reaction kinetics on the volume change associated with the CaCO3-CaSO4 replacement. Under our experimental conditions, this reaction occurs with a positive volume change, which ultimately results in passivation of the unreacted substrate before calcite attains equilibrium with respect to the bulk solution.

Ruiz-Agudo, E.; Putnis, C. V.; Hövelmann, J.; Álvarez-Lloret, P.; Ibáñez-Velasco, A.; Putnis, A.

2015-05-01

261

Molecular ordering of ethanol at the calcite surface.  

PubMed

To produce biominerals, such as shells, bones, and teeth, living beings create organic compounds that control the growth of the solid phase. Investigating the atomic scale behavior of individual functional groups at the mineral-fluid interface provides fundamental information that is useful for constructing accurate predictive models for natural systems. Previous investigations of the activity of coccolith-associated polysaccharides (CAP) on calcite, using atomic force microscopy (AFM) [Henriksen, K., Young, J. R., Bown, P. R., and Stipp, S. L. S. Palentology 2004, 43 (Part 3), 725-743] and molecular dynamics (MD) modeling [Yang, M., Stipp, S. L. S., and Harding, J. H. Cryst. Growth Des. 2008, 8 (11), 4066-4074], have suggested that OH functional groups control polysaccharide attachment. The purpose of this work was to characterize, using X-ray reflectivity (XR) combined with molecular dynamics (MD) simulations, the structuring on calcite of a layer of the simplest carbon chain molecule that contains an OH group, ethanol (CH(3)-CH(2)-OH). We found evidence that EtOH forms a highly ordered structure at the calcite surface, where the first layer molecules bond with calcite. The ethanol molecules stand up perpendicularly at the interface or nearly so. As a consequence, the fatty, CH(3) ends form a new surface, about 6 Å from the termination of the bulk calcite, and beyond that, there is a thin gap where ethanol density is low. Following is a more disordered layer that is two to three ethanol molecules thick, about 14 Å, where density more resembles that of bulk liquid ethanol. The good agreement between theory and experiment gives confidence that a theoretical approach can offer information about behavior in more complex systems. PMID:22060260

Pasarín, I S; Yang, M; Bovet, N; Glyvradal, M; Nielsen, M M; Bohr, J; Feidenhans'l, R; Stipp, S L S

2012-02-01

262

Dissolution enthalpies of synthetic magnesian calcites: Comparison with biogenic phases  

SciTech Connect

A series of synthetic magnesian calcites (0--15 mol% MgCO[sub 3]) were dissolved in weak acetic acid solutions to measure enthalpies of the reaction at 25 C. Heat released was 33.5 KJ/mol for calcite, decreasing to 33 KJ/mol for a Mg-Calcite of 2 mol% MgCO[sub 3], and increasing to 35 KJ/mol for a phase of 15 mol%. Excess enthalpies of formation Hf for these phases were calculated using calcite and magnesite as end-members. Values of Hf average about [minus]1 KJ/mol for the synthetic phases with a trend of increasingly negative values of Hf with Mg content. Excess entropies of formation Sf, corrected for excess entropies associated with ideal solid solutions, were calculated form available data on Gibbs free energies of formation and the values of Hf from this study. These values of Sf range from about [minus]2 J/mol-K for the phase with 2 mol% MgCO[sub 3] to [minus]5 J/mol-K at 15 mol%. The values of Sf suggest that some form of ordering (probably cation ordering) is obtained from these phases. In contrast, biogenic phases have positive values of Hf, increasing from about 1 KJ/mol for phases containing 5 mol% MgCO[sub 3] to 3 KJ/mol for those with 20 mol%. Values of Sf for the biogenic phases are positive, approximately 5 J/mol-K for a phase containing 15 mol% MgCO[sub 3]. For the biogenic phases, some form of disordering is suggested from the entropy calculations and may be the result of positional disordering is suggested from the entropy calculations and may be the result of positional disordering of the carbonate ion. The disorder in biogenic phases compared to the ordering in synthetic phases indicates significant structural differences that account for the higher solubilities of biogenic Mg-Calcites.

Bischoff, W.D. (Wichita State Univ., KS (United States). Geology Dept.); Wollast, R. (Univ. Libre de Bruxelles (Belgium))

1992-01-01

263

Atomistic molecular dynamics simulations of carbohydrate-calcite interactions in concentrated brine.  

PubMed

We report atomistic molecular dynamics simulations to study the interactions of a model carbohydrate monomer (Glucopyranose) and calcite slabs in brine. We show that the interactions between the sugar molecules and the mineral decrease with increasing salinity. The decrease is due to the formation of salt layers on the calcite surfaces, which screen the carbohydrate-calcite hydrogen bonding. This screening effect depends on the affinities of calcite surface to specific ions as well as to the carbohydrate molecules. PMID:25665050

Chen, Hsieh; Panagiotopoulos, Athanassios Z; Giannelis, Emmanuel P

2015-03-01

264

Fabrication of NdBa 2Cu 3O 7?? single crystals by the top-seeded solution-growth method in 1%, 21%, and 100% oxygen partial pressure atmosphere  

Microsoft Academic Search

Single crystals of NdBa2Cu3O7?? (Nd123) have been successfully grown by the top-seeded solution-growth (TSSG) method in 1%, 21% and 100% oxygen partial pressure atmosphere ((P(O2) = 0.01 atm, P(O)2) = 0.21 atm and P(O2) = 1.00 atm). Ba?Cu?O solvent with a Ba to Cu ratio of 3:5 was used in a Nd2O3 crucible. Nd is supplied by the reaction between

Masaru Nakamura; Hiroshi Kutami; Yuh Shiohara

1996-01-01

265

Modelling of the thermal dependence of structural and elastic properties of calcite, CaCO3  

NASA Astrophysics Data System (ADS)

A computational method, based on the quasiharmonic approximation, has been computer-coded to calculate the temperature dependence of elastic constants and structural features of crystals. The model is applied to calcite, CaCO3; an interatomic potential based on a C-O Morse function and Ca-O and O-O Borntype interactions, including a shell model for O, has been used. Equilibrations in the range 300 800 K reproduce the experimental unit-cell edges and bond lengths within 1%. The simulated thermal expansion coefficients are 22.3 (//c) and 2.6 (? c), against 25.5 and-3.7×10-6K-1 experimental values, respectively. The thermal coefficients of elastic constants tend to be underestimated; for the bulk modulus, -2.3 against-3.7×10-4K-1 is obtained.

Pavese, A.; Catti, M.; Parker, S. C.; Wall, A.

1996-03-01

266

Cite this: CrystEngComm, 2013, 15, Calcite formation by hydrothermal carbonation of  

E-print Network

Cite this: CrystEngComm, 2013, 15, 3392 Calcite formation by hydrothermal carbonation by hydrothermal carbonation of calcium hydroxide by a simulation strategy, in which both the chemical evolution calcite formation by hydrothermal carbonation of portlandite. Calcite is an important ubiquitous mineral

Montes-Hernandez, German

267

Stability of Basalt plus Anhydrite plus Calcite at HP-HT: Implications for Venus, the Earth and Mars  

NASA Technical Reports Server (NTRS)

"Canali" observed at Venus surface by Magellan are evidence for very long melt flows, but their composition and origin remain uncertain. The hypothesis of water-rich flow is not reasonable regarding the temperature at Venus surface. The length of these channels could not be explained by a silicate melt composition but more likely, by a carbonate-sulfate melt which has a much lower viscosity (Kargel et al 1994). One hypothesis is that calcite CaCO3 and anhydrite CaSO4 which are alteration products of basalts melted during meteorite impacts. A famous example recorded on the Earth (Chicxulub) produced melt and gas rich in carbon and sulfur. Calcite and sulfate evaporites are also present on Mars surface, associated with basalts. An impact on these materials might release C- and S-rich melt or fluid. Another type of planetary phenomenon (affecting only the Earth) might provoke a high pressure destabilization of basalt+anhydrite+calcite. Very high contents of C and S are measured in some Earth s magmas, either dissolved or in the form of crystals (Luhr 2008). As shown by the high H content and high fO2 of primary igneous anhydrite-bearing lavas, the high S content in their source may be explained by subduction of an anhydrite-bearing oceanic crust, either directly (by melting followed by eruption) or indirectly (by release of S-rich melt or fluid that metasomatize the mantle) . Calcite is a major product of oceanic sedimentation and alteration of the crust. Therefore, sulfate- and calcite-rich material may be subducted to high pressures and high temperatures (HP-HT) and release S- and C-rich melts or fluids which could influence the composition of subduction zone lavas or gases. Both phenomena - meteorite impact and subduction - imply HP-HT conditions - although the P-T-time paths are different. Some HP experimental/theoretical studies have been performed on basalt/eclogite, calcite and anhydrite separately or on a combination of two. In this study we performed piston-cylinder experiments at 1 GPa between 950 and 1700 C using a mixture of 70wt% tholeiitic basalt + 15wt% anhydrite + 15wt% calcite. Up to 1440 C, an ultracalcic (CaO>13.5 wt%; CaO/Al2O3>1 wt%) picrobasaltic (SiO240-45 wt%; Na2O+K2O<2 wt%) melt containing up to 5 wt% SO3 and up to 5.3 wt% CO2+H2O (calculated by difference) is present in equilibrium with clinopyroxene, anhydrite, spinel-chromite, a CAS-phase and a gas composed mainly of CO and an aliphatic thiol (CH2)4SH. Hydrogen was incorporated either by contact between the starting material and air or by diffusion through the capsule during the experiments. The S content in the gas increases with temperature and run duration, implying that gases with various C/S ratios might be released during an impact or at subduction zones, depending on the P-T-t path and on the H content. Above approx.1440 C, a Ca-rich carbonate-sulfate melt forms (in equilibrium with the picrobasaltic melt) which contains a few percents of Na and K. Such melt is not expected to form at Earth s subduction temperatures. If it forms by meteorite impact, it might crystallize too fast to explain long flows like Venus canali. A different basalt/anhydrite/calcite ratio might, however, decrease its formation temperature.

Martin, A. M.; Righter, K.; Treiman, A. H.

2010-01-01

268

Microbes Caught in the Act: Disentangling the Role of Biofilms in the Formation of Low Mg Calcite Ooids in a Freshwater Lake  

NASA Astrophysics Data System (ADS)

Biofilms and molds of cyanobacteria infilling depressions within the outermost cortex of ooids have been previously described in recent ooidal sands of Lake Geneva (Switzerland). Detailed sedimentological and mineralogical analyses of these ooids further indicated a low-Mg calcite composition of their cortex. Observed ooidal morphological features called for a fundamental role of biofilms triggering carbonate precipitation. A detailed microbiological study was much needed, however, in order to decipher the relative role of organic versus purely physicochemical processes during ooid formation. An experimental device consisting of frosted microscope slides was set at 2.50 m water depth in western Lake Geneva. These slides provide an attractive substrate for the microorganisms involved in low-Mg calcite precipitation allowing the in-situ harvesting of biofilms on a regular basis during more than three years. The inspection of the frosted slides showed the development of biofilms on their surface containing coccoid and filamentous cyanobacteria, heterotrophic bacteria and diatom frustules. Microscopical observations under natural light and autoflorescence show a close association between freshly low Mg-calcite precipitates and biofilms containing at least five species of filamentous and coccoid cyanobacteria. Carbonate precipitation peaks at early spring and late summer, and low Mg calcite crystals are always in close association with mostly cyanobacteria filaments (e.g., Tolipothrix, Oscillatoria). Ultra high-resolution elemental analyses performed immediately after recovering the samples confirmed the microscopical observations. Further SEM inspection of the samples revealed a clear seasonal pattern of carbonate precipitation identifying low Mg- calcite with crystal shapes varying from poorly to not crystallized compact aggregates; subautomorph to automorph rhomboedric crystals; and snowy cluster in which particles are very little or not crystallized. Liquid and solid cultures were further developed in the laboratory from the harvested biofilms allowing the determination of the microbial community using a PCR-DGGE approach. Two different primers were used to target all bacteria, and cyanobacteria and diatoms (341F-GC/907RM and 359F-GC/781 (a+b), respectively). Initial results indicate a similar microbial diversity between the sampled natural biofilms and those from BG11 enriched cultures. These data will allow us to design further laboratory experiments on low-Mg calcite precipitation including changes in pH, temperature and light intensity that mimic the natural biological and physicochemical cycle of the modern lake water throughout the year. Hence, this first dataset illustrates the significance of the in situ experiment to validate previous observations. Combined with the ongoing microbial cultures under laboratory-controlled conditions the outcome of our investigations will bring new light behind the role of biofilms in freshwater ooids formation.

Plee, K.; Ariztegui, D.; Sahan, E.; Martini, R.; Davaud, E.

2006-12-01

269

Seed Size  

NSDL National Science Digital Library

In this activity, learners collect, arrange, and draw various seeds from smallest to biggest. They also estimate how many of the smallest would fit into the biggest. In addition, learners predict how many seeds they would find inside an apple or lemon, and cut open these fruits to check their prediction against the real seed count. The Did You Know section describes the biggest and smallest seeds on Earth.

2011-08-20

270

Seed Dispersal  

NSDL National Science Digital Library

In this outdoor activity and bingo-like game, learners explore why and how seeds spread far from the plants that produce them. To understand natural adaptions that let seeds and fruit be dispersed, learners make modifications to dried beans and peas so they could be dispersed by natural forces like water, air, or an animal moving from one place to another. In the "Seed-Go" Game, learners match ways that seeds are dispersed, to fill rows on the game board.

2012-06-26

271

Crystallization and preliminary X-ray analysis of ginkbilobin-2 from Ginkgo biloba seeds: a novel antifungal protein with homology to the extracellular domain of plant cysteine-rich receptor-like kinases  

PubMed Central

The antifungal protein ginkbilobin-2 (Gnk2) from Ginkgo biloba seeds does not show homology to other pathogenesis-related proteins, but does show homology to the extracellular domain of plant cysteine-rich receptor-like kinases. Native Gnk2 purified from ginkgo nuts and the selenomethionine derivative of recombinant Gnk2 (SeMet-rGnk2) were crystallized by the sitting-drop vapour-diffusion method using different precipitants. X-ray diffraction data were collected from Gnk2 at 2.38?Å resolution and from SeMet-rGnk2 at 2.79?Å resolution using a synchrotron-radiation source. The crystals of both proteins belonged to the primitive cubic space group P213, with unit-cell parameters a = b = c = 143.2?Å. PMID:17768341

Miyakawa, Takuya; Sawano, Yoriko; Miyazono, Ken-ichi; Hatano, Ken-ichi; Tanokura, Masaru

2007-01-01

272

Kinetics of gypsum nucleation and crystal growth from Dead Sea brine  

NASA Astrophysics Data System (ADS)

The Dead Sea brine is supersaturated with respect to gypsum ( ? = 1.42). Laboratory experiments and evaluation of historical data show that gypsum nucleation and crystal growth kinetics from Dead Sea brine are both slower in comparison with solutions at a similar degree of supersaturation. The slow kinetics of gypsum precipitation in the Dead Sea brine is mainly attributed to the low solubility of gypsum which is due to the high Ca 2+/SO 42- molar ratio (115), high salinity (˜280 g/kg) and to Na + inhibition. Experiments with various clay minerals (montmorillonite, kaolinite) indicate that these minerals do not serve as crystallization seeds. In contrast, calcite and aragonite which contain traces of gypsum impurities do prompt precipitation of gypsum but at a considerable slower rate than with pure gypsum. This implies that transportation inflow of clay minerals, calcite and local crystallization of minerals in the Dead Sea does not prompt significant heterogeneous precipitation of gypsum. Based on historical analyses of the Dead Sea, it is shown that over the last decades, as inflows to the lake decreased and its salinity increased, gypsum continuously precipitated from the brine. The increasing salinity and Ca 2+/SO 42- ratio, which results from the precipitation of gypsum, lead to even slower kinetics of nucleation and crystal growth, which resulted in an increasing degree of supersaturation with respect to gypsum. Therefore, we predict that as the salinity of the Dead Sea brine continues to increase (accompanied by Dead Sea water level decline), although gypsum will continuously precipitate, the degree of supersaturation will increase furthermore due to progressively slower kinetics.

Reznik, Itay J.; Gavrieli, Ittai; Ganor, Jiwchar

2009-10-01

273

High Birefringence Isothiocyanato Tolane Liquid Crystals Sebastian GAUZA, Haiying WANG, Chien-Hui WEN, Shin-Tson WU, Alexander J. SEED1  

E-print Network

for both display and optical communication applications.1) For a cholesteric liquid crystal display (Ch-LCD $ 210 nm which would resemble a normally white Ch-LCD. For a Polymer Dispersed Liquid Crystals (PDLC)3High Birefringence Isothiocyanato Tolane Liquid Crystals Sebastian GAUZA, Haiying WANG, Chien

Wu, Shin-Tson

274

Seed proteomics  

Technology Transfer Automated Retrieval System (TEKTRAN)

Seeds comprise a protective covering, a small embryonic plant, and a nutrient-storage organ. Seeds are protein-rich, and have been the subject of many mass spectrometry-based analyses. Seed storage proteins (SSP), which are transient depots for reduced nitrogen, have been studied for decades by cel...

275

Seeding experiments at SPARC  

NASA Astrophysics Data System (ADS)

In the framework of the DS4 EUROFEL collaboration, a research work plan at the SPARC free-electron laser (FEL) test facility aiming at the investigation of seeded and cascaded FEL configurations is under implementation. The main goal of the collaboration is to study and test the amplification and the FEL harmonic generation process of an input seed signal obtained as higher-order harmonics generated both in crystals (400 and 266 nm) and in gases (266, 160, 114 nm). The SPARC FEL can be configured to test several cascaded FEL configurations. In this paper we introduce SPARC and its main parameters and we analyze the superradiant cascade and the harmonic cascade seeded with a signal with the typical time structure of the harmonics generated in gas.

Giannessi, L.; Alesini, D.; Biagini, M.; Boscolo, M.; Bougeard, M.; Breger, P.; Carré, B.; Castellano, M.; Cianchi, A.; Ciocci, F.; Chiadroni, E.; Clozza, A.; Couprie, M. E.; Cultrera, L.; Dattoli, G.; De Silvestri, S.; Di Pace, A.; Di Pirro, G.; Doria, A.; Drago, A.; Ferrario, M.; Filippetto, D.; Frassetto, F.; Fusco, V.; Gallerano, G. P.; Gallo, A.; Garzella, D.; Ghigo, A.; Germano, M.; Giovenale, E.; Labat, M.; Lambert, G.; Mattioli, M.; Merdji, H.; Monchicourt, P.; Migliorati, M.; Musumeci, P.; Nisoli, M.; Orlandi, G. L.; Ottaviani, P. L.; Pace, E.; Pagnutti, S.; Palumbo, L.; Petralia, A.; Petrarca, M.; Poletto, L.; Quattromini, M.; Reiche, S.; Rosenzweig, J. B.; Ronsivalle, C.; Salières, P.; Sabia, E.; Sansone, G.; Serafini, L.; Spassovsky, I.; Spataro, B.; Stagira, S.; Surrenti, V.; Tchebakoff, O.; Tomassini, S.; Tondello, G.; Vaccarezza, C.; Vicario, C.

2008-08-01

276

U(VI) behaviour in hyperalkaline calcite systems  

NASA Astrophysics Data System (ADS)

The behaviour of U(VI) in hyperalkaline fluid/calcite systems was studied over a range of U(VI) concentrations (5.27 × 10-5 ?M to 42.0 ?M) and in two high pH systems, young and old synthetic cement leachate in batch sorption experiments. These systems were selected to be representative of young- (pH 13.3) and old-stage (pH 10.5) leachate evolution within a cementitious geological disposal facility. Batch sorption experiments, modelling, extended X-ray absorption fine structure spectroscopy, electron microscopy, small angle X-ray scattering and luminescence spectroscopy were used to define the speciation of U(VI) across the systems of study. At the lowest concentrations (5.27 × 10-5 ?M 232U(VI)) significant U removal was observed for both old and young cement leachates, and this was successfully modelled using a first order kinetic adsorption modelling approach. At higher concentrations (>4.20 ?M) in the young cement leachate, U(VI) showed no interaction with the calcite surface over an 18 month period. Small angle X-ray scattering techniques indicated that at high U concentrations (42.0 ?M) and after 18 months, the U(VI) was present in a colloidal form which had little interaction with the calcite surface and consisted of both primary and aggregated particles with a radius of 7.6 ± 1.1 and 217 ± 24 Å, respectively. In the old cement leachate, luminescence spectroscopy identified two surface binding sites for U(VI) on calcite: in the system with 0.21 ?M U(VI), a liebigite-like Ca2UO2(CO3)3 surface complex was identified; at higher U(VI) concentrations (0.42 ?M), a second binding site of undetermined coordination was identified. At elevated U(VI) concentrations (>2.10 ?M) in old cement leachate, both geochemical data and luminescence spectroscopy suggested that surface mediated precipitation was controlling U(VI) behaviour. A focused ion beam mill was used to create a section across the U(VI) precipitate-calcite interface. Transmission electron microscope images of the section revealed that the calcite surface was coated with a nano crystalline, U containing phase. Selected area electron diffraction images of the U precipitate which was formed at a U(VI) concentration of 4.20 ?M were consistent with the formation of calcium uranate. XAS spectroscopy at higher concentrations (?21.0 ?M) suggested the formation of a second U(VI) phase, possibly a uranyl oxyhydroxide phase. These results indicated that in the young cement leachate, U(VI) did not react with the calcite surface unless U(VI) concentrations were very low (5.27 × 10-5 ?M). At higher concentrations, speciation calculations suggested that U(VI) was significantly oversaturated and experimental observations confirmed it existed in a colloidal form that interacted with the mineral surface only weakly. In the old cement leachate systems at low concentrations batch sorption and luminescence data suggested that U(VI) removal was being driven by a surface complexation mechanism. However, at higher concentrations, spectroscopic methods suggest a combination of both surface complexation and surface mediated precipitation was responsible for the observed removal. Overall, U(VI) behaviour in hyperalkaline calcite systems is distinct from that at circumneutral pH conditions: at high pH and anything but low U(VI) concentrations, a surface mediated precipitation mechanism occurs; this is in contrast to circumneutral pH conditions where U(VI) surface complexation reactions tend to dominate.

Smith, Kurt F.; Bryan, Nicholas D.; Swinburne, Adam N.; Bots, Pieter; Shaw, Samuel; Natrajan, Louise S.; Mosselmans, J. Frederick W.; Livens, Francis R.; Morris, Katherine

2015-01-01

277

The solubility of Fish Produced High Magnesium Calcite in Seawater  

NASA Astrophysics Data System (ADS)

Fish have been shown to produce high 10 to 30% magnesium calcite as part of the physiological mechanisms responsible for maintaining salt and water balance. The importance of this source to the marine carbon cycle is only now being considered. In this paper we report the first measurements of the solubility of this CaCO3 in seawater. The resulting solubility (pKsp = 5.85 ± 0.07) is more than two times higher than aragonite and similar to the high magnesium calcite generated on the Bahamas Banks (pKsp = 5.90). This high solubility of fish produced CaCO3 renders it soluble in near surface (<2000 m) waters contributing to the input of carbonate to surface ocean waters, and at least partially explaining the increase in total alkalinity above the aragonite saturation horizon.

Woosley, R. J.; Millero, F. J.; Grosell, M.

2011-12-01

278

Gehlenite and anorthite crystallisation from kaolinite and calcite mix  

Microsoft Academic Search

Clay products can be reinforced by using clay and calcite mixes, even if sintering is at low temperature (1100 °C). The formation of a micro-composite microstructure favours a significant strength increase as fired materials contain anorthite grains embedded in a silico-aluminate matrix. The clay used, rich in kaolinite mineral, is originated from Burkina-Faso. It is contaminated by a moderate iron level,

Karfa Traoré; Tibo Siméon Kabré; Philippe Blanchart

2003-01-01

279

Cosmogenic Chlorine36 Production in Calcite by Muons  

Microsoft Academic Search

At depths below a few metres, 36Cl production in calcite is initiated almost entirely by cosmic ray muons. The principal reactions are (1) direct negative muon capture by Ca; 40Ca(??,?)36Cl, and (2) capture by 35Cl of secondary neutrons produced in muon capture and muon-induced photodisintegration reactions. We have determined rates for 36Cl and neutron production due to muon capture in

J. O. H. Stone; J. M. Evans; L. K. Fifield; G. L. Allan; R. G. Cresswell

1998-01-01

280

A re-evaluation of aragonite versus calcite seas  

Microsoft Academic Search

Some workers have argued that the mineralogy of ancient carbonates may have been different from that of modern sediments,\\u000a with calcite being considered the dominant mineral during the Ordovician, Devonian-mid Carboniferous, and Jurassic-Cretaceous\\u000a to Early\\/Middle Cenozoic (e.g. Sandberg 1983; Wilkinson and Algeo 1989). Variation in carbonate mineralogy has been related\\u000a to the position of global sea level (emergent or submergent

Mohammad H. Adabi

2004-01-01

281

Interaction of copper with the surface of calcite  

SciTech Connect

The interaction of Cu ions in solution with the surface of calcite has been studied in a range of solutions from pure water to seawater. Observations of the uptake of Cu from solution onto calcite indicates that the process is rapid and strong in both distilled water and seawater. In distilled water, Cu uptake is directly proportional to the concentration of Cu in solution; Cu/sub s/ = K/sub s/Cu/sub 1/. This Cu/sub s/ dependence on Cu/sub 1/ is linear over the entire Cu concentration range studied (0.1 to 200 ..mu..M). Results do not indicate the formation of a precipitate of either malachite or copper carbonate. In seawater, the uptake of Cu is also directly proportional to the concentration of Cu/sub 1/ up to a limiting value of approximately 13 ..mu..M. The average value for K/sub s/ in seawater, 0.24 +- 0.06 (Cu/sub 1/ less than or equal to 13 ..mu..M), is approximately an order of magnitude less than in distilled water. This is probably the result of smaller Cu/sub 1/ activity coefficients and increased site competition by other ions in seawater. Attempts to increase the Cu/sub 1/ concentration above 13 ..mu..M resulted in the additional Cu being deposited on the surface of the calcite. A possible explanation for this behavior is the formation of a precipitate of malachite on the calcite surface. The value of K/sub s/ decreased slightly with increasing solid to solution ratios in seawater.

Franklin, M.L.; Morse, J.W.

1981-05-01

282

Siderite and calcite in lignite overburden of East Texas  

E-print Network

Siderite and Calcite in Lignite Overburden of Ease Texas. (December W982) David Hugh Durham, B. S. , Texas A&M University Chairman of Advisory Committee: Dr. Joe B. Dixon Cores from four locations were examined to characterize carbon- ates present.... , 1974; Curtis et al. , 1 972; Curtis et al. , 1 975) . Also, siderite forms in buried plant material (Ho and Coleman, 1969). Genesis of Siderite Siderites of all these different types have something in common. They have formed in a reduced...

Durham, David Hugh

1982-01-01

283

Calcite deposition at Miravalles geothermal field, Costa Rica  

SciTech Connect

The calcite deposition problem at Miravalles has been studied since it was observed in the first three wells drilled on the slopes of the Miravalles Volcano. Long-term tests have been carried out to study reservoir characteristics. The change in the production behavior of the wells with the restriction imposed by the deposited calcite has been studied trying to evaluate and quantify the scaling problem. Work is being done on predictions of the deposition rate, location and distribution of the deposited mineral inside the wells. This work was compared with real data obtained from caliper logs of the wells before and after production. The feasibility of the first 55 MW power plant has been demonstrated. It was considered that the solution for the calcite problem is the reaming during discharge of the wells trying at the same time to minimize the cleaning interventions with a new well design. It is believed, due to the thermodynamics and chemical characteristics of the extracted fluids, that it is possible to find a non-deposition zone which will permit the drilling of wells without a scaling problem.

Vaca, L.; Alvarado, A.; Corrales, R. (Instituto Costarricense de Electricidad, San Jose (Costa Rica))

1989-01-01

284

Earthworm-produced calcite granules: A new terrestrial palaeothermometer?  

NASA Astrophysics Data System (ADS)

In this paper we show for the first time that calcite granules, produced by the earthworm Lumbricus terrestris, and commonly recorded at sites of archaeological interest, accurately reflect temperature and soil water ?18O values. Earthworms were cultivated in an orthogonal combination of two different (granule-free) soils moistened by three types of mineral water and kept at three temperatures (10, 16 and 20 °C) for an acclimatisation period of three weeks followed by transfer to identical treatments and cultivation for a further four weeks. Earthworm-secreted calcite granules were collected from the second set of soils. ?18O values were determined on individual calcite granules (?18Oc) and the soil solution (?18Ow). The ?18Oc values reflect soil solution ?18Ow values and temperature, but are consistently enriched by 1.51 (± 0.12)‰ in comparison to equilibrium in synthetic carbonates. The data fit the equation 1000 ln ? = [20.21 ± 0.92] (103 T-1) - [38.58 ± 3.18] (R2 = 0.95; n = 96; p < 0.0005). As the granules are abundant in modern soils, buried soils and archaeological contexts, and can be dated using U-Th disequilibria, the developed palaeotemperature relationship has enormous potential for application to Holocene and Pleistocene time intervals.

Versteegh, Emma A. A.; Black, Stuart; Canti, Matthew G.; Hodson, Mark E.

2013-12-01

285

Origin of gem corundum in calcite marble: The Revelstoke occurrence in the Canadian Cordillera of British Columbia  

NASA Astrophysics Data System (ADS)

The calcite marble-hosted gem corundum (ruby, sapphire) occurrence near Revelstoke, British Columbia, Canada, occurs in the Monashee Complex of the Omineca Belt of the Canadian Cordillera. Corundum occurs in thin, folded and stretched layers with green muscovite + Ba-bearing K-feldspar + anorthite (An0.85-1) ± phlogopite ± Na-poor scapolite. Other silicate layers within the marble are composed of: (1) diopside + tremolite ± quartz and (2) garnet (Alm0.7-0.5Grs0.2-0.4) + Na-rich scapolite + diopside + tremolite + Na,K-amphiboles. Non-silicate layers in the marble are either magnetite- or graphite-bearing. Predominantly pink (locally red or purple) opaque to transparent corundum crystals have elevated Cr2O3 (? 0.21 wt.%) and variable amounts of TiO2; rare blue rims on the corundum crystals contain higher amounts of TiO2 (? 0.53 wt.%) and Fe2O3 (? 0.07 wt.%). The associated micas have elevated Cr, V, Ti, and Ba contents. Petrography of the silicate layers show that corundum formed from muscovite at the peak of metamorphism (~ 650-700 °C at 8.5-9 kbar). Because the marble is almost pure calcite (dolomite is very rare), the corundum was preserved because it did not react with dolomite to spinel + calcite during decompression. The scapolite-bearing assemblages formed during or after decompression of the rock at ~ 650 °C and 4-6 kbar. Gem-quality corundum crystals formed especially on borders of the mica-feldspar layers in an assemblage with calcite. Whole rock geochemistry data show that the corundum-bearing silicate (mica-feldspar) layers formed by mechanical mixing of carbonate with the host gneiss protolith; the bulk composition of the silicate layers was modified by Si and Fe depletion during prograde metamorphism. High element mobility is supported by the homogenization of ?18O and ?13C values in carbonates and silicates for the marble and silicate layers. The silicate layers and the gneiss contain elevated contents of Cr and V due to the volcanoclastic component of their protolith.

Dzikowski, Tashia J.; Cempírek, Jan; Groat, Lee A.; Dipple, Gregory M.; Giuliani, Gaston

2014-06-01

286

Temperature Dependence of the Structural Parameters in the Transformation of Aragonite to Calcite, as Determined from In Situ Synchrotron Powder X-ray-Diffratction Data  

SciTech Connect

The temperature dependency of the crystal structure and the polymorphic transition of CaCO{sub 3} from aragonite to calcite were studied using Rietveld structure refinement and high-temperature in situ synchrotron powder X-ray-diffraction data at ambient pressure, P. The orthorhombic metastable aragonite at room P, space group Pmcn, transforms to trigonal calcite, space group R{bar 3}c, at about T{sub c} = 468 C. This transformation occurs rapidly; it starts at about 420 C and is completed by 500 C, an 80 C interval that took about 10 minutes using a heating rate of 8 C/min. Structurally, from aragonite to calcite, the distribution of the Ca atom changes from approximately hexagonal to cubic close-packing. A 5.76% discontinuous increase in volume accompanies the reconstructive first-order transition. Besides the change in coordination of the Ca atom from nine to six from aragonite to calcite, the CO{sub 3} groups change by a 30{sup o} rotation across the transition.

Antao, Sytle M.; Hassan, Ishmael (Calgary); (West Indies)

2011-09-06

287

Interaction of copper with the surface of calcite  

SciTech Connect

The interaction of Cu ions in solution with the surface of calcite has been studied in a range of solutions from pure water to seawater. Observations of the uptake of Cu from solution onto calcite indicates that the process is rapid and strong in both distilled water and seawater. In distilled water, Cu uptake is directly proportional to the concentration of Cu in solution; Cu/sub s/ = K/sub s/Cu/sub 1/. The average value for K/sub s/ is 3.5 +- 1.7. The Cu/sub s/ dependence on Cu/sub 1/ is linear over the entire Cu concentration range studied (0.1 to 200 ..mu..M). Results do not indicate the formation of a precipitate of either malachite or copper carbonate. A precipitate of the form Cu/sub x/Ca/sub 1-x/CO/sub 3/ may be deposited onto the calcite surface in distilled water. The value of K/sub s/ in distilled water decreased sharply over the solid to solution ratio range of 0.1 to 2 g CaCO/sub 3/ 1/sup -1/. This was followed by a small change in K/sub s/ for solid to solution ratios in the range of 2 to 10 g CaCO/sub 3/ 1/sup -1/. In seawater, the uptake of Cu is also directly proportional to the concentration of Cu/sub 1/ up to a limiting value of approximately 13 ..mu..M. The average value for K/sub s/ in seawater, 0.24 +- 0.06 (Cu/sub 1/ less than or equal to 13 ..mu..M), is approximately an order of magnitude less than in distilled water. This is probably the result of smaller Cu/sub 1/ activity coefficients and increased site competition by other ions in seawater. Attempts to increase the Cu/sub 1/ concentration above 13 ..mu..M resulted in the additional Cu being deposited on the surface of the calcite. A possible explanation for this behavior is the formation of a precipitate of malachite on the calcite surface. The value of K/sub s/ decreased slightly with increasing solid to solution ratios in seawater.

Franklin, M.L.; Morse, J.W.

1981-12-01

288

Effect of trace lanthanum ion on dissolution and crystal growth of calcium carbonate  

NASA Astrophysics Data System (ADS)

Impurity effects of trace lanthanum ion (La 3+) on the dissolution and growth of calcium carbonate were studied with in situ observation techniques. Dissolution kinetics of two polymorphs of calcium carbonate, calcite and vaterite, were investigated by monitoring the pH in the solution with laser-induced fluorescence spectroscopy using a pH-sensitive reagent, seminaphthorhodafluors. No effect on dissolution of vaterite was observed with the spectroscopic observations, whereas calcite dissolution was significantly inhibited by lanthanum ion with concentrations higher than 1 ?M. Crystal growth and dissolution processes of calcite under the lanthanum-doped condition were observed by means of atomic force microscopy. Step propagations during crystal growth and dissolution of calcite were inhibited by trace lanthanum ion (5 ?M). An insoluble thin layer of lanthanum carbonate deposited on the step site of the calcite surface could be a possible cause of the inhibitions observed both for dissolution and growth.

Kamiya, Natsumi; Kagi, Hiroyuki; Tsunomori, Fumiaki; Tsuno, Hiroshi; Notsu, Kenji

2004-07-01

289

Speciation of As in calcite by micro-XAFS: Implications for remediation of As contamination in groundwater  

NASA Astrophysics Data System (ADS)

To evaluate the role of calcite as a host phase of arsenic (As) in As-contaminated groundwater, distribution behavior of Asbetween natural calcite and groundwater in deep underground was investigated based on As oxidation state. Speciation analyses of As in natural calcite by ?-XRF-XAFS analyses showed (i) preferentialarsenate uptake by calcite, and (ii) promptness of arsenate uptake by minor iron (Fe) carbonate minerals coprecipitated with calcite. These findings suggest that the effect of calcite on As remediation of the As-contamination systems stronglydepends on arsenite to arsenate ratio (i.e., redox condition) in groundwater, and maybe governed bythe amount of Fe coprecipitated with calcite.

Yokoyama, Y.; Iwatsuki, T.; Terada, Y.; Takahashi, Y.

2013-04-01

290

Traveling Seeds  

NSDL National Science Digital Library

In this activity, learners make three different "seed" types and determine which design flies the farthest. Learners wad a piece of paper, wad a piece of tape, and make a paper helicopter to represent plant seeds. Learners measure and record the distance each seed travels. Use this activity to help learners practice measuring and recording data. This activity guide contains sample questions to ask, literary connections, extensions, and alignment to local and national standards.

Children's Museum of Houston

2014-09-19

291

Calcite strains, kinematic indicators, and magnetic flow fabric of a Proterozoic pseudotachylyte swarm, Minnesota River valley, USA  

NASA Astrophysics Data System (ADS)

Near Granite Falls, Minnesota sub-parallel pseudotachylyte, mafic dikes, and calcite veins crosscut Archean granulite facies rocks in the Minnesota River valley adjacent to the north-dipping Yellow Medicine Shear Zone (YMSZ; N80°E) that separates the Montevideo and Morton tectonic terranes. The docking of these two Archean terranes occurred prior to intrusion of the 2.067 Ga Kenora-Kabetogama dike swarm as demonstrated by aeromagnetic anomalies (correlated with field exposures) that cross the YMSZ without offset. Tectonic adjustments along the YMSZ associated with the Penokean Orogeny (˜ 1.8 Ga) are likely responsible for pseudotachylyte formation. Pseudotachylyte is exposed in 22 sub-parallel veins (˜ N80°E, 90°) each less than 2 cm wide across an outcrop width of 45 m. The pseudotachylyte matrix is commonly banded, and contains crystal fragments (quartz, plagioclase, amphibole, rutile, apatite, ilmenite, ulvöspinel), magnetite microlites, flow banding swirls, amygdules (filled with calcite, ankerite and siderite), collapsed vesicles, and abundant lithic clasts. Pseudotachylyte formed in a number of phases. Kinematic reconstruction is complex, utilizing winged porphyroclasts, S-C structures in the country rock, and fault drag indicators along the pseudotachylyte zones. Dextral motion along the YMSZ is the most common observation. Mechanically twinned calcite within amygdules in the pseudotachylyte preserves horizontal shortening normal to the pseudotachylyte strike. Calcite veins are apparently contemporaneous with the pseudotachylyte; one set preserves twinning strains identical to the calcite amygdule strains, and the second set contains a horizontal, vein-parallel (N70°E) shortening strain. The pseudotachylyte contains a flow fabric, as determined by AMS techniques, that is a proxy for vertical flow ( Kmax is vertical). The Kenora-Kabetogama dikes, identified geochemically, are locally parallel to the pseudotachylyte and the adjacent YMSZ tectonic suture and preserve a vertical-to-horizontal, dike-parallel AMS fabric from east (Franklin) to west (Granite Falls). Hornblende andesite dikes (055°, 1.8 Ga) are not found south of the suture, are not associated with pseudotachylyte and have a different paleopole and AMS fabric.

Craddock, John P.; Magloughlin, Jerry F.

2005-06-01

292

SEED PRODUCTION  

Technology Transfer Automated Retrieval System (TEKTRAN)

This book chapter provides information at the upper division undergraduate and graduate student levels that describe the environmental factors and production practices that affect the capacity of forage crops to produce seeds. Consumers require dependable quantities of high quality seeds. Special ru...

293

Principles of calcite dissolution in human and artificial otoconia.  

PubMed

Human otoconia provide mechanical stimuli to deflect hair cells of the vestibular sensory epithelium for purposes of detecting linear acceleration and head tilts. During lifetime, the volume and number of otoconia are gradually reduced. In a process of degeneration morphological changes occur. Structural changes in human otoconia are assumed to cause vertigo and balance disorders such as benign paroxysmal positional vertigo (BPPV). The aim of this study was to investigate the main principles of morphological changes in human otoconia in dissolution experiments by exposure to hydrochloric acid, EDTA, demineralized water and completely purified water respectively. For comparison reasons artificial (biomimetic) otoconia (calcite gelatin nanocomposits) and natural calcite were used. Morphological changes were detected in time steps by the use of environmental scanning electron microscopy (ESEM). Under in vitro conditions three main dissolution mechanisms were identified as causing characteristic morphological changes of the specimen under consideration: pH drops in the acidic range, complex formation with calcium ions and changes of ion concentrations in the vicinity of otoconia. Shifts in pH cause a more uniform reduction of otoconia size (isotropic dissolution) whereas complexation reactions and changes of the ionic concentrations within the surrounding medium bring about preferred attacks at specific areas (anisotropic dissolution) of human and artificial otoconia. Owing to successive reduction of material, all the dissolution mechanisms finally produce fragments and remnants of otoconia. It can be assumed that the organic component of otoconia is not significantly attacked under the given conditions. Artificial otoconia serve as a suitable model system mimicking chemical attacks on biogenic specimens. The underlying principles of calcite dissolution under in vitro conditions may play a role in otoconia degeneration processes such as BPPV. PMID:25048115

Walther, Leif Erik; Blödow, Alexander; Buder, Jana; Kniep, Rüdiger

2014-01-01

294

Principles of Calcite Dissolution in Human and Artificial Otoconia  

PubMed Central

Human otoconia provide mechanical stimuli to deflect hair cells of the vestibular sensory epithelium for purposes of detecting linear acceleration and head tilts. During lifetime, the volume and number of otoconia are gradually reduced. In a process of degeneration morphological changes occur. Structural changes in human otoconia are assumed to cause vertigo and balance disorders such as benign paroxysmal positional vertigo (BPPV). The aim of this study was to investigate the main principles of morphological changes in human otoconia in dissolution experiments by exposure to hydrochloric acid, EDTA, demineralized water and completely purified water respectively. For comparison reasons artificial (biomimetic) otoconia (calcite gelatin nanocomposits) and natural calcite were used. Morphological changes were detected in time steps by the use of environmental scanning electron microscopy (ESEM). Under in vitro conditions three main dissolution mechanisms were identified as causing characteristic morphological changes of the specimen under consideration: pH drops in the acidic range, complex formation with calcium ions and changes of ion concentrations in the vicinity of otoconia. Shifts in pH cause a more uniform reduction of otoconia size (isotropic dissolution) whereas complexation reactions and changes of the ionic concentrations within the surrounding medium bring about preferred attacks at specific areas (anisotropic dissolution) of human and artificial otoconia. Owing to successive reduction of material, all the dissolution mechanisms finally produce fragments and remnants of otoconia. It can be assumed that the organic component of otoconia is not significantly attacked under the given conditions. Artificial otoconia serve as a suitable model system mimicking chemical attacks on biogenic specimens. The underlying principles of calcite dissolution under in vitro conditions may play a role in otoconia degeneration processes such as BPPV. PMID:25048115

Walther, Leif Erik; Blödow, Alexander; Buder, Jana; Kniep, Rüdiger

2014-01-01

295

The sensitized luminescence of manganese-activated calcite  

USGS Publications Warehouse

Synthetic manganese-activated calcites are shown to be practically inert to ultraviolet excitation in the range 2000-3500A, while they are luminescent under cathode-ray excitation. The incorporation of small amounts of an auxiliary impurity along with the manganese produces the strong response to ultraviolet radiation hitherto ascribed to CaCO3:Mn itself. Three such impurities have been studied: lead, thallium, and cerium. The first two induce excitation in the neighborhood of the mercury resonance line, while the cerium introduces a response principally to longer wave ultraviolet. The strong response to 2537A excitation shown by some natural calcites is likewise found to be due to the presence of lead along with the manganese, rather than to the manganese alone. The data do not warrant ascribing the longer wave-length ultraviolet-excited luminescence of all natural calcites to the action of an auxiliary impurity. The essential identity of the cathode-ray excited luminescence spectra of CaCO 3:Mn, CaCO3: (Pb+Mn), CaCO3:(Tl+Mn), and CaCO3:(Ce+Mn) with the 2537A-excited spectra of the latter three is evidence that the luminescent center in all cases is the manganese ion or the MnO6 group. It is shown that a "cascade" mechanism for the action of the auxiliary impurities, lead, thallium, and cerium, is incorrect; and that the phenomenon must be considered as a case of sensitized luminescence. Owing to the nature of cathode-ray excitation, the manganese activator can be excited by this agent even in the absence of a second impurity. For optical excitation, however, an absorption band for the ultraviolet must be established by building into the CaCO3:Mn a second impurity or "sensitizer.".

Schulman, J.H.; Evans, L.W.; Ginther, R.J.; Murata, K.J.

1947-01-01

296

Scattering Seeds  

NSDL National Science Digital Library

In this lesson, students will: 1) Investigate how seeds are dispersed. 2) Understand the variety of seed dispersal that exists in the plant kingdom. 3) Understand how factors in the natural environment can effect how far a seed is dispersed. Included in this one to two day lesson plan are the objectives, needed materials, procedures, adaptations for older students, discussion questions, an evaluation, extensions, suggested reading, links to other sites, vocabulary, and academic standards. Students will collect a variety of seeds and design a wind-dispersed seed mechanism. They can click on a vocabulary word to hear its pronunciation and a sentence using the word. Teachers can purchase the video, The Private Life of Plants 5-Pack (Branching Out) and download comprehension questions and answers. They can link to Teaching Tools to create custom worksheets, puzzles, and quizzes. A printable version of this lesson plan can be downloaded.

DiscoverySchool.com

2007-01-01

297

Aragonite–calcite–vaterite: A temperature influenced sequential polymorphic transformation of CaCO{sub 3} in the presence of DTPA  

SciTech Connect

Highlights: ? Crystallization of CaCO{sub 3} between 60 and 230 °C in the presence of DTPA. ? Formation of exclusive and individual polymorphs at different temperatures. ? Violation of second law of thermodynamics/Ostwald rule of stages has been observed. - Abstract: Calcium carbonate was precipitated from calcium chloride using sodium carbonate in the presence of diethylenetriaminepentaacetic acid (DTPA) between 60 and 230 °C. The samples were characterized by FTIR, Raman, XRD and SEM techniques. CaCO{sub 3} with different crystal morphologies such as spherolite/datura pod, dumbbell, peanut, were obtained depending on the experimental conditions. The results showed that pure aragonite, calcite and vaterite were formed at low, moderate and high temperatures respectively. A binary mixture of calcite and vaterite was resulted between 150 and 200 °C. The data suggested an unusual conversion of stable calcite to meta stable vaterite at higher temperature in presence of DTPA. The study revealed a novel methodology for the exclusive/individual preparation of different crystalline polymorphs of CaCO{sub 3}. Formation of pure vaterite above 200 °C divulged the possibility of DTPA as a potential scale inhibitor and boiler sludge conditioner at elevated temperatures.

Gopi, Shanmukhaprasad [Department of Chemistry, Annamalai University, Annamalainagar 608002, Tamilnadu (India); Subramanian, V.K., E-mail: drvksau@gmail.com [Department of Chemistry, Annamalai University, Annamalainagar 608002, Tamilnadu (India); Palanisamy, K. [Department of Chemistry, Annamalai University, Annamalainagar 608002, Tamilnadu (India)

2013-05-15

298

Water release patterns of heated speleothem calcite and hydrogen isotope composition of fluid inclusions  

Microsoft Academic Search

Speleothem fluid inclusions are a potential paleo-precipitation proxy to reconstruct past rainwater isotopic composition (?18O, ?D). To get a better insight in the extraction of inclusion water from heated speleothem calcite, we monitored the water released from crushed and uncrushed speleothem calcite, heated to 900 °C at a rate of 300 °C\\/h, with a quadrupole mass spectrometer. Crushed calcite released water in

Sophie Verheyden; Dominique Genty; Olivier Cattani; Martin R. van Breukelen

2008-01-01

299

Compaction creep of wet granular calcite by pressure solution at 28°C to 150°C  

Microsoft Academic Search

Uniaxial compaction experiments have been carried out on wet calcite powders prepared from milled limestone, analytical grade calcite, and superpure calcite. The tests were performed at 28°C–150°C, effective stresses of 20–47 MPa, and a pore pressure of 20 MPa, using presaturated CaCO3 solution as the pore fluid. Sample grain sizes ranged from 12 to 86 ?m. The aim was to

Xiangmin Zhang; Christopher J. Spiers; Colin J. Peach

2010-01-01

300

The ubiquitous nature of accessory calcite in granitoid rocks: Implications for weathering, solute evolution, and petrogenesis  

USGS Publications Warehouse

Calcite is frequently cited as a source of excess Ca, Sr and alkalinity in solutes discharging from silicate terrains yet, no previous effort has been made to assess systematically the overall abundance, composition and petrogenesis of accessory calcite in granitoid rocks. This study addresses this issue by analyzing a worldwide distribution of more than 100 granitoid rocks. Calcite is found to be universally present in a concentration range between 0.028 to 18.8 g kg-1 (mean = 2.52 g kg-1). Calcite occurrences include small to large isolated anhedral grains, fracture and cavity infillings, and sericitized cores of plagioclase. No correlation exists between the amount of calcite present and major rock oxide compositions, including CaO. Ion microprobe analyses of in situ calcite grains indicate relatively low Sr (120 to 660 ppm), negligible Rb and 87Sr/86Sr ratios equal to or higher than those of coexisting plagioclase. Solutes, including Ca and alkalinity produced by batch leaching of the granitoid rocks (5% CO2 in DI water for 75 d at 25??C), are dominated by the dissolution of calcite relative to silicate minerals. The correlation of these parameters with higher calcite concentrations decreases as leachates approach thermodynamic saturation. In longer term column experiments (1.5 yr), reactive calcite becomes exhausted, solute Ca and Sr become controlled by feldspar dissolution and 87Sr/ 86Sr by biotite oxidation. Some accessory calcite in granitoid rocks is related to intrusion into carbonate wall rock or produced by later hydrothermal alteration. However, the ubiquitous occurrence of calcite also suggests formation during late stage (subsolidus) magmatic processes. This conclusion is supported by petrographic observations and 87Sr/86Sr analyses. A review of thermodynamic data indicates that at moderate pressures and reasonable CO2 fugacities, calcite is a stable phase at temperatures of 400 to 700??C. Copyright ?? 2005 Elsevier Ltd.

White, A.F.; Schulz, M.S.; Lowenstern, J. B.; Vivit, D.V.; Bullen, T.D.

2005-01-01

301

Addition of calcite reduces iron's bioavailability in the Pennsylvania coals--potential use of calcite for the prevention of coal workers' lung diseases.  

PubMed

In the present study, a hypothesis was tested that the addition of calcite into the Pennsylvania coals may reduce levels of bioavailable iron (BAI), an important component in the mixed coal dust that may contribute to coal workers' lung diseases. Predetermined proportions of calcite (0, 1, 2, 5, 10% w/w) were added into three PA coals. After suspending the mixtures in an aqueous phosphate solution (10 mM, pH 4.5), which mimics the phagolysosomal conditions of the cells, levels of pH as well as calcium ions (Ca2+) in the coals were increased in a calcite concentration-dependent manner. In contrast, levels of BAI (both Fe2+ and Fe3+) were decreased. The inhibitory effects of calcite on the bioavailability of iron in human lung epithelial A549 cells and primary rat alveolar macrophages (AMs) were also examined. It was found that levels of low-molecular-weight (LMW) iron were significantly decreased in both A549 cells and AMs treated with the 10% calcite-PA coal mixture compared to those treated with the PA coal alone, while calcite itself had no effect on intracellular LMW iron. Calcite also showed a significant inhibitory effect on PA coal-induced ferritin synthesis in A549 cells. Reverse-transcription polymerase chain reaction (RT-PCR) studies revealed that the iron-containing PA coal downregulated levels of transferrin receptor (TfR) mRNA in A549 cells, which was partially restored by the addition of calcite. Our results indicate that calcite can inhibit the bioavailability of iron in the iron-containing PA coals. PMID:16195220

Zhang, Qi; Huang, Xi

2005-10-01

302

Texture effects on megahertz dielectric properties of calcite rock samples  

NASA Astrophysics Data System (ADS)

Dielectric measurements have been made from 0.5 to 1300 MHz on Whitestone, a quarried calcite rock, saturated with salty water. Whitestone shows a large increase in dielectric permittivity (dispersion) at the low end of this frequency range. When the conductivity of the water is varied, the dielectric permittivity of Whitestone is found to scale as water conductivity/frequency, i.e., as the complex dielectric constant of water. This is believed to be unique in measurements on insulator-conductor mixtures, and establishes that the dispersion is primarily caused by the geometry of the sample. Two other calcite samples show much lower dielectric dispersion. Micrographs indicate that the variation in dispersion among the three samples is in rough proportion to grain platiness. This is consistent with the platey grain mechanism, one of three mechanisms proposed by Sen to explain dielectric dispersion in water-saturated rocks. A model consisting of water containing insulating spheroids of identical aspect ratio, isotropically distributed in orientation, predicts that increased grain platiness reduces both low-frequency conductivity and high-frequency dielectric permittivity in a closely related way; this is observed experimentally. However, this model does not fit simultaneously all electrical properties of Whitestone; evidently a more complex geometrical model is needed. Dielectric dispersion caused by texture is of practical importance in estimating water content of subsurface rocks from borehole measurements of dielectric permittivity, particularly at high water salinities.

Kenyon, W. E.

1984-04-01

303

Environmental controls on the Emiliania huxleyi calcite mass  

NASA Astrophysics Data System (ADS)

Although ocean acidification is expected to impact (bio) calcification by decreasing the seawater carbonate ion concentration, [CO32-], there is evidence of nonuniform response of marine calcifying plankton to low seawater [CO32-]. This raises questions about the role of environmental factors other than acidification and about the complex physiological responses behind calcification. Here we investigate the synergistic effect of multiple environmental parameters, including seawater temperature, nutrient (nitrate and phosphate) availability, and carbonate chemistry on the coccolith calcite mass of the cosmopolitan coccolithophore Emiliania huxleyi, the most abundant species in the world ocean. We use a suite of surface (late Holocene) sediment samples from the South Atlantic and southwestern Indian Ocean taken from depths lying above the modern lysocline (with the exception of eight samples that are located at or below the lysocline). The coccolith calcite mass in our results presents a latitudinal distribution pattern that mimics the main oceanographic features, thereby pointing to the potential importance of seawater nutrient availability (phosphate and nitrate) and carbonate chemistry (pH and pCO2) in determining coccolith mass by affecting primary calcification and/or the geographic distribution of E. huxleyi morphotypes. Our study highlights the importance of evaluating the combined effect of several environmental stressors on calcifying organisms to project their physiological response(s) in a high-CO2 world and improve interpretation of paleorecords.

Horigome, M. T.; Ziveri, P.; Grelaud, M.; Baumann, K.-H.; Marino, G.; Mortyn, P. G.

2014-04-01

304

A generalised chemical precipitation modelling approach in wastewater treatment applied to calcite.  

PubMed

Process simulation models used across the wastewater industry have inherent limitations due to over-simplistic descriptions of important physico–chemical reactions, especially for mineral solids precipitation. As part of the efforts towards a larger Generalized Physicochemical Modelling Framework, the present study aims to identify a broadly applicable precipitation modelling approach. The study uses two experimental platforms applied to calcite precipitating from synthetic aqueous solutions to identify and validate the model approach. Firstly, dynamic pH titration tests are performed to define the baseline model approach. Constant Composition Method (CCM) experiments are then used to examine influence of environmental factors on the baseline approach. Results show that the baseline model should include precipitation kinetics (not be quasi-equilibrium), should include a 1st order effect of the mineral particulate state (Xcryst) and, for calcite, have a 2nd order dependency (exponent n = 2.05 ± 0.29) on thermodynamic supersaturation (?). Parameter analysis indicated that the model was more tolerant to a fast kinetic coefficient (kcryst) and so, in general, it is recommended that a large kcryst value be nominally selected where insufficient process data is available. Zero seed (self nucleating) conditions were effectively represented by including arbitrarily small amounts of mineral phase in the initial conditions. Both of these aspects are important for wastewater modelling, where knowledge of kinetic coefficients is usually not available, and it is typically uncertain which precipitates are actually present. The CCM experiments confirmed the baseline model, particularly the dependency on supersaturation. Temperature was also identified as an influential factor that should be corrected for via an Arrhenius-style correction of kcryst. The influence of magnesium (a common and representative added impurity) on kcryst was found to be significant but was considered an optional correction because of a lesser influence as compared to that of temperature. Other variables such as ionic strength and pH were adequately captured by the quasi-equilibrium description of the aqueous-phase and no further kinetic corrections were required. The baseline model is readily expandable to include other precipitation reactions. For simple representations, large values for kcryst with n = 2 (or n = 2 or 3 for other minerals, as appropriate) should be selected without corrections to kcryst. Where accuracy is required (e.g., in mechanistic studies), machine estimation of kcryst should be performed with robust process data and kcryst should at least be corrected for temperature. PMID:25462741

Mbamba, Christian Kazadi; Batstone, Damien J; Flores-Alsina, Xavier; Tait, Stephan

2015-01-01

305

Silicon Crystal Pulling  

NSDL National Science Digital Library

This Quicktime animation shows the first step in the silicon wafer manufacturing process. Under 15 seconds in length, the animation shows the melting of polysilicon and the addition of minute amounts of electrically active elements to form the "seed" of the silicon crystal. The crystal is then extracted from the crystal-growing equipment.The next animation in this sequence about Silicon Ingot Rod Grinding can be seen here.

306

Titania single crystals with a curved surface  

NASA Astrophysics Data System (ADS)

Owing to its scientific and technological importance, crystallization as a ubiquitous phenomenon has been widely studied over centuries. Well-developed single crystals are generally enclosed by regular flat facets spontaneously to form polyhedral morphologies because of the well-known self-confinement principle for crystal growth. However, in nature, complex single crystalline calcitic skeleton of biological organisms generally has a curved external surface formed by specific interactions between organic moieties and biocompatible minerals. Here we show a new class of crystal surface of TiO2, which is enclosed by quasi continuous high-index microfacets and thus has a unique truncated biconic morphology. Such single crystals may open a new direction for crystal growth study since, in principle, crystal growth rates of all facets between two normal {101} and {011} crystal surfaces are almost identical. In other words, the facet with continuous Miller index can exist because of the continuous curvature on the crystal surface.

Yang, Shuang; Yang, Bing Xing; Wu, Long; Li, Yu Hang; Liu, Porun; Zhao, Huijun; Yu, Yan Yan; Gong, Xue Qing; Yang, Hua Gui

2014-11-01

307

Circular economy in drinking water treatment: reuse of ground pellets as seeding material in the pellet softening process.  

PubMed

Calcium carbonate pellets are produced as a by-product in the pellet softening process. In the Netherlands, these pellets are applied as a raw material in several industrial and agricultural processes. The sand grain inside the pellet hinders the application in some high-potential market segments such as paper and glass. Substitution of the sand grain with a calcite grain (100% calcium carbonate) is in principle possible, and could significantly improve the pellet quality. In this study, the grinding and sieving of pellets, and the subsequent reuse as seeding material in pellet softening were tested with two pilot reactors in parallel. In one reactor, garnet sand was used as seeding material, in the other ground calcite. Garnet sand and ground calcite performed equally well. An economic comparison and a life-cycle assessment were made as well. The results show that the reuse of ground calcite as seeding material in pellet softening is technologically possible, reduces the operational costs by €38,000 (1%) and reduces the environmental impact by 5%. Therefore, at the drinking water facility, Weesperkarspel of Waternet, the transition from garnet sand to ground calcite will be made at full scale, based on this pilot plant research. PMID:25746637

Schetters, M J A; van der Hoek, J P; Kramer, O J I; Kors, L J; Palmen, L J; Hofs, B; Koppers, H

2015-01-01

308

In situ study of the R{bar 3}c-R{bar 3}m orientational disorder in calcite.  

SciTech Connect

The temperature dependences of the crystal structure and intensities of the (113) and (211) reflections in calcite, CaCO{sub 3}, were studied using Rietveld structure refinements based on synchrotron powder X-ray diffraction data. Calcite transforms from R{bar 3}c to R{bar 3}m at about T{sub c} = 1240 K. A CO{sub 3} group occupies, statistically, two positions with equal frequency in the disordered R{bar 3}m phase, but with unequal frequency in the partially ordered R{bar 3}c phase. One position for the CO{sub 3} group is rotated by 180{sup o} with respect to the other. The unequal occupancy of the two orientations in the partially ordered R{bar 3}c phase is obtained directly from the occupancy factor, x, for the O1 site and gives rise to the order parameter, S = 2x - 1. The a cell parameter shows a negative thermal expansion at low T, followed by a plateau region at higher T, then a steeper contraction towards T{sub c}, where the CO{sub 3} groups disorder in a rapid process. Using a modified Bragg-Williams model, fits were obtained for the order parameter S, and for the intensities of the (113) and (211) reflections.

Antao, S. M.; Hassan, I.; Mulder, W. H.; Lee, P. L.; Toby, B. H.; X-Ray Science Division; Univ. of West Indies

2009-01-01

309

Isotopic, chemical and textural relations during the experimental alteration of biogenic high-magnesian calcite  

Microsoft Academic Search

Dissolution runs with four biogenic high magnesian calcites (HMC) of different magnesium content were conducted in distilled water saturated with 100% CO 2 and 3% CO 2 at 70°C and 35°C in order to study the mechanism of alteration of HMC to low magnesian calcite (LMC). The isotopic composition ( 13 C and 18 O ) of the solutions (-30%.

J. V. Turner; T. F. Anderson; P. A. Sandberg; S. J. Goldstein

1986-01-01

310

Uranium in foraminiferal calcite as a recorder of seawater uranium concentrations  

Microsoft Academic Search

The authors present results of an investigation of uranium\\/calcium ratios in cleaned foraminiferal calcite as a recorder of seawater uranium concentrations. For accurate reconstruction of past seawater uranium content, shell calcite must incorporate uranium in proportion to seawater concentration and must preserve its original uranium composition over time. Laboratory culture experiments with live benthic (Amphistegina lobifera) and live planktonic (Globigerinell

A. D. Russell; S. Emerson; B. K. Nelson; J. Erez; D. W. Lea

1994-01-01

311

Cathodoluminescence of synthetic and natural calcite: the effects of manganese and iron on orange emission  

Microsoft Academic Search

Summary The orange cathodoluminescence (CL) of calcite is known to be due to the presence of Mn 2+ cations. It has been demonstrated here using CL and electron paramagnetic resonance (EPR) crossed analysis from synthetic calcite that neither Fe 2+ nor Fe 3+ ions influence this luminescence emission. More complex natural calcium carbonates have been investigated to check whether or

S. Cazenave; R. Chapoulie; G. Villeneuve

2003-01-01

312

The solubility of fish-produced high magnesium calcite in seawater Ryan J. Woosley,1  

E-print Network

The solubility of fish-produced high magnesium calcite in seawater Ryan J. Woosley,1 Frank J 2012; published 11 April 2012. [1] Fish have been shown to produce high (10 to 48 mol %) magnesium 0.09) is approximately two times higher than aragonite and similar to the high magnesium calcite

Grosell, Martin

313

SEMI-BATCH PRECIPITATION OF CALCIUM SULFATE DIHYDRATE FROM CALCITE AND SULFURIC ACID  

E-print Network

SEMI-BATCH PRECIPITATION OF CALCIUM SULFATE DIHYDRATE FROM CALCITE AND SULFURIC ACID Frédéric BARD1 a calcite suspension to a sulfuric acid solution from industrial waste. The morphology of the precipitated, sulfuric acid, industrial waste. 1. INTRODUCTION Gypsum is a mineral compound of first importance

Paris-Sud XI, Université de

314

Research paper Uranium loss and aragoniteecalcite age discordance in a calcitized aragonite  

E-print Network

Research paper Uranium loss and aragoniteecalcite age discordance in a calcitized aragonite Aragonite Recrystallization Uranium series dating Laser ablation MC-ICPMS a b s t r a c t We analyzed uranium-series concentrations and isotopic ratios in a mixed aragonite and calcite stalagmite from

Asmerom, Yemane

315

A calcite permeable reactive barrier for the remediation of Fluoride from spent potliner (SPL) contaminated groundwater  

Microsoft Academic Search

The use of calcite (CaCO3) as a substrate for a permeable reactive barrier (PRB) for removing fluoride from contaminated groundwater is proposed and is illustrated by application to groundwater contaminated by spent potliner leachate (SPL), a waste derived from the aluminium smelting process. The paper focuses on two issues in the implementation of calcite permeable reactive barriers for remediating fluoride

Brett D. Turner; Philip J. Binning; Scott W. Sloan

2008-01-01

316

Isotopic composition of a calcite-cemented layer in the Lower Jurassic Bridport Sands, southern England: Implications for formation of laterally extensive calcite-cemented layers  

SciTech Connect

[delta][sup 18]O[sub PDB] and [delta][sup 13]C[sub PDB] values have been measured on 107 calcite cement samples from a laterally extensive (> 3 km) and continuous calcite-cemented layer 0.5 m thick in the coastal exposures of the Lower Jurassic shallow-marine Bridport Sands in Dorset, southern England. The samples were taken from a two-dimensional grid with 10-cm horizontal and vertical spacing between samples and along individual vertical lines across the calcite-cemented layer, [delta][sup 18]O[sub PDB] values vary between [minus]4.8% and [minus]9.2% and decrease radially outwards from points with lateral spacings on the order of 0.5-1 m in the middle of the calcite-cemented layer. The [delta][sup 18]O[sub PDB] values therefore indicate that the calcite-cemented layer was formed by merging of concretions. All [delta][sup 13]C[sub PDB] values measured are in the narrow range [minus]2.2% to [minus]0.5%, which suggests that the dominant source of calcite cement in the layer was biogenic carbonate.

Bjoerkum, P.A. (Statoil, Stavanger (Norway)); Walderhaug, O. (Rogaland Research, Stavanger (Norway))

1993-07-01

317

Many Seeds: Estimating Hidden Seeds  

NSDL National Science Digital Library

In this activity, learners will estimate how many seeds are in a fruit or vegetable, then count to find out. The result: mix estimation with healthy eating. Vary the level of difficulty by using different foods: for younger learners, choose something with up to about 15 seeds inside (e.g. apples, snow peas); for a medium level of difficulty, try melon slices or cucumbers; for more challenge, use pomegranates or mini-pumpkins. Available as a web page or downloadable pdf.

2012-06-26

318

Critical occlusion via biofilm induced calcite precipitation in porous media  

NASA Astrophysics Data System (ADS)

A model for biofilm induced calcite precipitation with pressure driven flow is presented at the scale of a single pore within a porous medium. The system, an extension of previous work (Zhang and Klapper 2010 Water Sci. Technol. 61 2957-64, Zhang and Klapper 2011 Int. J. Non-Linear Mech. 46 657-66), is based on a mixture model including biomaterial, mineral, and water with dissolved components. Computational results suggest the possibility of critical occlusion in the sense that there is a distinguished trans-pore pressure head such that for pressure drops below this level, pore clogging occurs relatively quickly while for pressure drops above, clogging occurs after much longer times if at all. Beyond its relevance to engineered biofilm applications, this phenomenon is suggestive of the subtleties of embedding simple biofilm models in larger media.

Zhang, Tianyu; Klapper, Isaac

2014-05-01

319

Age constraints on fluid inclusions in calcite at Yucca Mountain  

SciTech Connect

The {sup 207}Pb/{sup 235}U ages for 14 subsamples of opal or chalcedony layers younger than calcite formed at elevated temperature range between 1.88 {+-} 0.05 and 9.7 {+-} 1.5 Ma with most values older than 6-8 Ma. These data indicate that fluids with elevated temperatures have not been present in the unsaturated zone at Yucca Mountain since about 1.9 Ma and most likely since 6-8 Ma. Discordant U-Pb isotope data for chalcedony subsamples representing the massive silica stage in the formation of the coatings are interpreted using a model of the diffusive loss of U decay products. The model gives an age estimate for the time of chalcedony formation around 10-11 Ma, which overlaps ages of clay minerals formed in tuffs below the water table at Yucca Mountain during the Timber Mountain thermal event.

Neymark, Leonid A.; Amelin, Yuri V.; Paces, James B.; Peterman, Zell E.; Whelan, Joseph F.

2001-04-29

320

Influence of calcite on uranium(VI) reactive transport in the groundwater–river mixing zone  

SciTech Connect

Calcite is an important mineral that can affect uranyl reactive transport in subsurface sediments. This study investigated the distribution of calcite and its influence on uranyl adsorption and reactive transport in the groundwater-river mixing zone at US Hanford 300A, Washington State. Simulations using a 2D reactive transport model under field-relevant hydrogeochemical conditions revealed a complex distribution of calcite concentration as a result of dynamic groundwater-river interactions. The calcite concentration distribution in turn affected the spatial and temporal changes in aqueous carbonate, calcium, and pH, which subsequently influenced U(VI) mobility and discharge rates into the river. The results implied that calcite distribution and its concentration dynamics is an important consideration for field characterization, monitoring, and reactive transport prediction.

Ma, Rui; Liu, Chongxuan; Greskowiak, Janek; Prommer, Henning; Zachara, John M.; Zheng, Chunmiao

2014-01-23

321

Unusual micrometric calcite-aragonite interface in the abalone shell Haliotis (Mollusca, Gastropoda).  

PubMed

Species of Haliotis (abalone) show high variety in structure and mineralogy of the shell. One of the European species (Haliotis tuberculata) in particular has an unusual shell structure in which calcite and aragonite coexist at a microscale with small patches of aragonite embedded in larger calcitic zones. A detailed examination of the boundary between calcite and aragonite using analytical microscopies shows that the organic contents of calcite and aragonite differ. Moreover, changes in the chemical composition of the two minerals seem to be gradual and define a micrometric zone of transition between the two main layers. A similar transition zone has been observed between the layers in more classical and regularly structured mollusk shells. The imbrication of microscopic patches of aragonite within a calcitic zone suggests the occurrence of very fast physiological changes in these taxa. PMID:24188740

Dauphin, Yannicke; Cuif, Jean-Pierre; Castillo-Michel, Hiram; Chevallard, Corinne; Farre, Bastien; Meibom, Anders

2014-02-01

322

Re-evaluating boron speciation in biogenic calcite and aragonite using 11B MAS NMR  

NASA Astrophysics Data System (ADS)

Understanding the partitioning of aqueous boron species into marine carbonates is critical for constraining the boron isotope system for use as a marine pH proxy. Previous studies have assumed that boron was incorporated into carbonate through the preferential uptake of tetrahedral borate B(OH) 4-. In this study we revisit this assumption through a detailed solid state 11B magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopic study of boron speciation in biogenic and hydrothermal carbonates. Our new results contrast with those of the only previous NMR study of carbonates insofar as we observe both trigonal and tetrahedral coordinated boron in almost equal abundances in our biogenic calcite and aragonite samples. In addition, we observe no strict dependency of boron coordination on carbonate crystal structure. These NMR observations coupled with our earlier re-evaluation of the magnitude of boron isotope fractionation between aqueous species suggest that controls on boron isotope composition in marine carbonates, and hence the pH proxy, are more complex that previously suggested.

Klochko, Kateryna; Cody, George D.; Tossell, John A.; Dera, Przemyslaw; Kaufman, Alan J.

2009-04-01

323

Genesis of amethyst geodes in basaltic rocks of the Serra Geral Formation (Ametista do Sul, Rio Grande do Sul, Brazil): a fluid inclusion, REE, oxygen, carbon, and Sr isotope study on basalt, quartz, and calcite  

NASA Astrophysics Data System (ADS)

In the Ametista do Sul area, Rio Grande do Sul, Brazil, amethyst-bearing geodes are hosted by a ~40- to 50-m-thick subhorizontal high-Ti basaltic lava flow of the Lower Cretaceous Paraná Continental Flood Basalt Province. The typically spherical cap-shaped, sometimes vertically elongated geodes display an outer rim of celadonite followed inwards by agate and colorless and finally amethystine quartz. Calcite formed throughout the whole crystallization sequence, but most commonly as very late euhedral crystals, sometimes with gypsum, in the central cavity. Fluid inclusions in colorless quartz and amethyst are predominantly monophase and contain an aqueous liquid. Two-phase liquid-vapor inclusions are rare. Some with a consistent degree of fill homogenize into the liquid between 95 and 98 °C. Ice-melting temperatures in the absence of a vapor phase between -4 and +4 °C indicate low salinities. Chondrite-normalized REE patterns of calcites are highly variable and show generally no systematic correlation with the paragenetic sequence. The oxygen isotope composition of calcites is very homogeneous (?18OVSMOW=24.9±1.1‰, n=34) indicating crystallization temperatures of less than 100 °C. Carbon isotope values of calcites show a considerable variation ranging from -18.7 to -2.9‰ (VPDB). The 87Sr/86Sr ratio of calcites varies between 0.706 and 0.708 and is more radiogenic than that of the host basalt (~0.705). The most likely source of silica, calcium, carbon, and minor elements in the infill of the geodes is the highly reactive interstitial glass of the host basalts leached by gas-poor aqueous solutions of meteoric origin ascending from the locally artesian Botucatú aquifer system in the footwall of the volcanic sequence. The genesis of amethyst geodes in basalts at Ametista do Sul, Brazil, is thus considered as a two-stage process with an early magmatic protogeode formation and a late, low temperature infill of the cavity.

Gilg, H. Albert; Morteani, Giulio; Kostitsyn, Yuri; Preinfalk, Christine; Gatter, Istvan; Strieder, Adelir J.

2003-12-01

324

Diel cycles in calcite production and dissolution in a eutrophic basin  

SciTech Connect

Calcite production is understood largely as a longer-term phenomenon (e.g., seasonal whitings) that can occur in hardwater lakes, and is significant ecologically because it can slow the rate of eutrophication by reducing, through adsorption, the availability of nutrients to primary producers. In this study the authors show that rapid changes in concentration of dissolved CO{sub 2} by photosynthesis and respiration within a eutrophic basin generated strong day-to-night cycles in calcite production and dissolution. Diel cycles in calcite production and dissolution were large enough that they could drive secondary diel cycles in the availability of metals that strongly sorb to the surfaces of calcite particles. They explored the possibility of the secondary diel cycling of metals by intensive 7-d in situ monitoring of water-quality conditions in a shallow, eutrophic spill-control basin near an industrial facility in eastern Tennessee; inspecting data from a 7-year record of water-quality parameters for this basin; analyzing physicochemical characteristics and mineralogic composition of sediments in the basin; and conducting laboratory experiments to characterize the interaction of calcite with Cd, under solid-liquid nonequilibrium conditions. The authors found that the basin accumulated and stored calcite. In situ monitoring showed that calcite was produced during daylight, and tended to dissolve again at night; the calcite production and dissolution processes seemed to be modulated by dissolved-phase CO{sub 2} dynamics, in concert with large diel fluctuations in pCa, pH, and Po{sub 2}. Laboratory experiments showed a rapid interaction ({lt}6 h) of Cd with calcite, in response to dissolved CO{sub 2} changes. Thus, concentrations of dissolved Cd can vary over daily cycles, mediated by diel changes in calcite production and dissolution. Thermodynamic considerations suggest that other metals, such as Zn, Sr, Ni, and Ba, may demonstrate this behavior as well.

Cicerone, D.S.; Stewart, A.J.; Roh, Y.

1999-10-01

325

Top-seed solution growth and characterization of AlSb single crystals for gamma-ray detectors. Final report, 1 October 1994--30 September 1995  

SciTech Connect

The ultimate objective of the conducted research is to ascertain the potential of AlSb (in single crystal form) for application as {gamma}-detector material operating at room temperature. To this end approaches to crystal growth were to be developed which permit control of growth parameters affecting critical application specific properties of AlSb. The research was focused on exploration of the effectiveness of the Czochralski method and on the development of methods and procedures leading to AlSb crystals with low free carrier concentration and a high mobility-lifetime product. Conventional melt growth of AlSb by the Czochralski technique (from stoichiometric charges) generally yielded material with high net carrier concentrations and low mobility-lifetime products. Significant improvement in crystal properties was achieved, when operating with non-stoichiometric melts, containing Sb in excess at levels of 3 to 10 mol%, further improvements were obtained when changing ambient argon pressure from atmospheric to 300 psi, and using high purity alumina crucibles which were inductively heated with a graphite susceptor CVD coated with silicon-carbide. Initial efforts to reduce evaporative loss of Sb through application of the LEC technique (liquid encapsulated Czochralski) with conventional encapsulants (B{sub 2}O{sub 3}, LiF, CaF{sub 2}) failed because of their interaction with the crucible and the AlSb melt. Compensation techniques (based on extrinsic doping) were found to lead to the desired reduction of free carriers in AlSb. Such material, however, exhibits a significant decrease of charge carrier mobility and lifetime. Early termination of this research program prevented optimization of critical materials properties in AlSb and precluded at this time a realistic assessment of the potential of this material for solid state detector applications.

Witt, A.F.; Becla, P.; Counterman, C.; DiFrancesco, J.; Landahl, G.; Morse, K.; Sanchez, J.

1996-01-26

326

Implications of solution chemistry effects: Direction-specific restraints on the step kinetics of calcite growth  

NASA Astrophysics Data System (ADS)

Classical crystallization models successfully depict the dependence of growth kinetics on thermodynamic driving force but cannot predict the roles of solution chemistry. Yet, it has become increasingly clear that crystal growth rate at fixed supersaturations depends on pH, ionic strength, and the relative abundance of cations and anions in the parent solutions. We conducted experiments to isolate the effect of individual solution-chemistry parameters on calcite step growth kinetics. Our results revealed a distinct correlation between step velocity and pH in acute and obtuse directions and a simultaneous trend change at pH ?9.5. Step speeds varied with solution stoichiometry, and each direction reached its maximal rate at a different [Ca]/[CO32-] value. In addition, the solution cation/anion at which maximal step speed occurred appeared to be pH dependent as well. Limited effect of ionic strength on step growth was observed in the obtuse direction at low background electrolyte concentrations, but no obvious change was found for growth at the acute side. We proposed a growth model based upon independent incorporation of cations and anions and interpreted these observations as: (1) solute constituents enter kinks through direct solution diffusion at obtuse steps but surface diffusion at acute steps; (2) growth is limited by Ca2+ dehydration at the obtuse side, but by surface adsorption and reorientation and rearrangement of CO32- in the acute direction; and (3) background electrolyte (NaCl in our study) competes with solutes for surface sites at more easily accessible kinks.

Hong, Mina; Teng, H. Henry

2014-09-01

327

Distinguishing Phosphate Structural Defects From Inclusions in Calcite and Aragonite by NMR Spectroscopy (Invited)  

NASA Astrophysics Data System (ADS)

Variations in the concentration of minor and trace elements are being studied extensively for potential use as proxies to infer environmental conditions at the time of mineral deposition. Such proxies rely fundamentally on a relationship between the activities in the solution and in the solid that would seem to be simple only in the case that the species substitutes into the mineral structure. Other incorporation mechanisms are possible, including inclusions (both mineral and fluid) and occlusion of surface adsorbate complexes, that might be sensitive to other factors, such as crystallization kinetics, and difficult to distinguish analytically. For example, it is known from mineral adsorption studies that surface precipitates can be nanoscopic, and might not be apparent at resolutions typical of microchemical analysis. Techniques by which a structural relationship between the substituting element and the host mineral structure are needed to provide a sound basis for geochemical proxies. NMR spectroscopy offers methods for probing such spatial relationship. We are using solid-state NMR spectroscopy to investigate phosphate incorporation in calcium carbonate minerals, including calcite speleothems and coral skeletal aragonite, at concentrations of the order 100 ?g P g -1. In 31P NMR spectra of most samples, narrow peaks arising from crystalline inclusions can be resolved, including apatite in coral aragonite and an unidentified phase in calcite. All samples studied yield also a broad 31P signal, centered near chemical shifts of +3 to +4 ppm, that could be assigned to phosphate defects in the host mineral and from which the fraction of P occurring in the carbonate mineral structure can be determined. To test this assignment we applied rotational-echo double-resonance (REDOR) NMR techniques that probe the molecular-scale proximity of carbonate groups to the phosphate responsible for the broad 31P peak. This method measures dipole-dipole coupling between 31P of phosphate and carbonate carbon, which varies with the inverse-cube of the internuclear distance. 31P{13C} REDOR NMR results for synthetic phosphate/(13C)-aragonite coprecipitates show that the broad peak is closely associated with carbonate, exhibiting a 31P-13C dipolar coupling qualitatively consistent with phosphate occupying an anion structural site (i.e., 6 C at 0.32 nm). 31P-detected 1H NMR spectra, which contain signal only from H located near P, show that structural water molecules help accommodate phosphate in the structure. Similar methods can be applied to other elements of potential paleo-proxy interest having NMR-active isotopes, including B, Mg, and Cd.

Phillips, B. L.; Mason, H. E.

2010-12-01

328

Orientation with a Viking sun-compass, a shadow-stick, and two calcite sunstones under various weather conditions.  

PubMed

It is widely accepted that Vikings used sun-compasses to derive true directions from the cast shadow of a gnomon. It has been hypothesized that when a cast shadow was not formed, Viking navigators relied on crude skylight polarimetry with the aid of dichroic or birefringent crystals, called "sunstones." We demonstrate here that a simple tool, that we call "shadow-stick," could have allowed orientation by a sun-compass with satisfying accuracy when shadows were not formed, but the sun position could have reliably been estimated. In field tests, we performed orientation trials with a set composed of a sun-compass, two calcite sunstones, and a shadow-stick. We show here that such a set could have been an effective orientation tool for Vikings only when clear, blue patches of the sky were visible. PMID:24085076

Bernáth, Balázs; Blahó, Miklós; Egri, Adám; Barta, András; Kriska, György; Horváth, Gábor

2013-09-01

329

Watermelon Seed Germination  

E-print Network

Watermelon Seed Germination Purdue University Cooperative Extension Service BP-62 Seed Germination of the necessary genetic material or chromosomes. These seed, known as triploid, have special germination requirements. This bulletin addresses triploid watermelon seed germination and transplant production. First

330

STRONTIUM ISOTOPE EVOLUTION OF PORE WATER AND CALCITE IN THE TOPOPAH SPRING TUFF, YUCCA MOUNTAIN , NEVADA  

SciTech Connect

Yucca Mountain, a ridge of Miocene volcanic rocks in southwest Nevada, is being characterized as a site for a potential high-level radioactive waste repository. One issue of concern for the future performance of the potential repository is the movement of water in and around the potential repository horizon. Past water movement in this unsaturated zone is indicated by fluid inclusions trapped in calcite coatings on fracture footwall surfaces and in some lithophysal cavities. Some of the fluid inclusions have homogenization temperatures above the present-day geotherm (J.F. Whelan, written communication), so determining the ages of the calcite associated with those fluid inclusions is important in understanding the thermal history of the potential repository site. Calcite ages have been constrained by uranium-lead dating of silica polymorphs (opal and chalcedony) that are present in most coatings. The opal and chalcedony ages indicate that deposition of the calcite and opal coatings in the welded part of the Topopah Spring Tuff (TSw hydrogeologic unit) spanned nearly the entire history of the 12.8-million-year-old rock mass at fairly uniform overall long-term rates of deposition (within a factor of five). Constraining the age of a layer of calcite associated with specific fluid inclusions is complicated. Calcite is commonly bladed with complex textural relations, and datable opal or chalcedony may be millions of years older or younger than the calcite layer or may be absent from the coating entirely. Therefore, a more direct method of dating the calcite is presented in this paper by developing a model for strontium evolution in pore water in the TSw as recorded by the strontium coprecipitated with calcium in the calcite. Although the water that precipitated the calcite in fractures and cavities may not have been in local isotopic equilibrium with the pore water, the strontium isotope composition of all water in the TSw is primarily controlled by water-rock interaction in the overlying nonwelded and essentially unfractured Paintbrush Group tuffs (PTn). The method of dating secondary minerals from known strontium evolution rates in rocks cannot be used in this study because it assumes the water that deposited the minerals was in isotopic equilibrium with the rock, which is not the case for the pore water in the TSw. Therefore, the evolution of the strontium isotope composition of the water that deposited the calcite, as recorded by the strontium coprecipitated with calcium in the calcite, was used to develop a model for determining the age of the calcite.

B.D. Marshall; K. Futa

2001-02-07

331

Seed Catalogues  

NSDL National Science Digital Library

The Smithsonian Institutions Libraries Web site currently features a unique collection of seed and nursery catalogs dating from 1830 to the present. Online visitors may view a portion of the exhibit, which offers a look at "the history of the seed and agricultural implement business in the United States, as well as provides a history of botany and plant research such as the introduction of plant varieties into the US." Although this site does include much material, gardeners and anyone else with a horticultural bent should enjoy a casual browse through the online exhibit.

332

The surface reactivity of chalk (biogenic calcite) with hydrophilic and hydrophobic functional groups  

NASA Astrophysics Data System (ADS)

The surface properties of calcium carbonate minerals play an important role in a number of industrial and biological processes. Properties such as wettability and adsorption control liquid-solid interface behaviour and thus have a strong influence on processes such as biomineralisation, remediation of aquifers and oil recovery. We investigated how two model molecules of different polarity, namely water and ethanol, interact with reservoir and outcrop chalk samples and we compared their behaviour with that of pure, inorganically precipitated calcite. Thermodynamic quantities, such as the work of wetting, surface energy and isosteric adsorption enthalpy, were determined from vapour adsorption isotherms. The chalks were studied fresh and after extraction of organic residues that were originally present in these samples. The work of wetting correlates with the amount of organic matter present in the chalk samples but we observed a fundamental difference between the adsorption properties of chalk and pure, inorganically precipitated calcite toward the less polar, ethanol molecule. Further analysis of the chemical composition of the organic matter extracted from the chalk samples was made by gas chromatography (GC-MS). Monitoring surface composition by X-ray photoelectron spectroscopy (XPS) before and after extraction of the organic material, and with atomic force microscopy (AFM), showed that nanometer sized clay crystals observed on the chalk particle surfaces could be an important part of the reason for the differences. Removal of the extractable portion of the hydrocarbons liberates adsorption sites that have different wetting properties than the rest of the chalk and these have an energy distribution that is similar to clays. Thus, the results exemplify the complexity of biogenic calcite adsorption behaviour and demonstrate that chalk wetting in drinking water aquifers as well as oil reservoirs is controlled partly by the nanoparticles of clay that have grown on the chalk surfaces and partly by adsorbed organic material. GS < GS after extraction < WS < WS after extraction < Ålborg after extraction ? Ålborg. The increase of spreading work for WS chalk for ethanol is 21 mN/m and for water is 26 mN/m, a ratio of 21/26 = 0.81. The increase of spreading work for GS chalk for ethanol and water are 36 and 42 mN/m, a ratio of 36/42 = 0.86. The similarity between these ratios leads us to conclude, that the surface that was produced by extraction of the organic material is quite similar for these two samples.The total surface energy increase, after the extraction of organics, for GS and WS was 67 and 49 mJ/m2. Further separation of surface energy into polar and dispersive parts showed that, for both samples, removing organic matter by extraction preferably increases the dispersive component of the surface energy. The contribution from dispersive surface energy to the increase in total surface energy was 87% for GS and 73% for WS chalk. A high relative proportion of dispersive component in the total surface energy is also typical for clay minerals (Chassin et al., 1986; Jouany and Chassin, 1987; Kádár et al., 2006).This demonstrates that the additional adsorption sites that are exposed by the extraction procedure are less polar than the sites originally exposed. Based on these results, we can conclude that chalk particles have surface sites of different polarity and that organic compounds preferentially adsorb at the less polar sites. These additional sites have quite similar surface properties for both North Sea chalk samples with an energy distribution that is similar to clays, that are described in the literature (Chassin et al., 1986; Jouany and Chassin, 1987; Kádár et al., 2006).The Ålborg chalk initially has minimal adsorbed organic material and the work of wetting changes very little after the treatment for extracting organic material. Considering the lower reproducibility of the results on Ålborg chalk, the differences in surface energies before and after extraction are considered insignificant and

Okhrimenko, D. V.; Dalby, K. N.; Skovbjerg, L. L.; Bovet, N.; Christensen, J. H.; Stipp, S. L. S.

2014-03-01

333

Direct nanoscale observations of the coupled dissolution of calcite and dolomite and the precipitation of gypsum  

PubMed Central

Summary In-situ atomic force microscopy (AFM) experiments were performed to study the overall process of dissolution of common carbonate minerals (calcite and dolomite) and precipitation of gypsum in Na2SO4 and CaSO4 solutions with pH values ranging from 2 to 6 at room temperature (23 ± 1 °C). The dissolution of the carbonate minerals took place at the (104) cleavage surfaces in sulfate-rich solutions undersaturated with respect to gypsum, by the formation of characteristic rhombohedral-shaped etch pits. Rounding of the etch pit corners was observed as solutions approached close-to-equilibrium conditions with respect to calcite. The calculated dissolution rates of calcite at pH 4.8 and 5.6 agreed with the values reported in the literature. When using solutions previously equilibrated with respect to gypsum, gypsum precipitation coupled with calcite dissolution showed short gypsum nucleation induction times. The gypsum precipitate quickly coated the calcite surface, forming arrow-like forms parallel to the crystallographic orientations of the calcite etch pits. Gypsum precipitation coupled with dolomite dissolution was slower than that of calcite, indicating the dissolution rate to be the rate-controlling step. The resulting gypsum coating partially covered the surface during the experimental duration of a few hours. PMID:25161860

Cama, Jordi; Soler, Josep Maria; Putnis, Christine V

2014-01-01

334

U-Th dating of calcitic corals from the Red Sea  

NASA Astrophysics Data System (ADS)

Pristine aragonite skeletons of reef building corals can be rapidly recrystallized to calcite by the interaction of the corals with freshwater in coastal aquifers. The aragonite/calcite transformation is accompanied by opening the coral's U-Th isotope system in which uranium is partly lost while Th remains adsorbed and reincorporates into the newly formed calcite. Depending on the geological setting of the reef, the corals may incorporate secondary aragonite with higher U and 234U/238U isotope ratio, while still submerged, before the recrystallization process. Recrystallization to calcite occurs during sea level drop or coast tectonic uplift and later may follow a subaerial closed system decay scheme. In this study we examine the behavior of the U and Th in calcitic corals from the last interglacial reefs at the northern Gulf of Aqaba. We analyzed several subsamples from selected reef coral skeletons in an attempt to follow the recrystallization scheme of the corals and find a reliable method to estimate the age of these heavily altered corals. The main assumptions were that all subsamples from the same coral have identical deposition age and the sub-samples Th (and hence 230Th) was fully preserved during recrystallization to calcite (increasing the 230Th/238U isotope ratio). Diagenesis to calcite occurred several thousand years after the initial precipitation of the aragonitic skeleton. This calls for wetter (than present) conditions during the last interglacial in the currently hyperarid northern Red Sea.

Stein, M.; Yehudai, M.; Kohn, N.; Shaked, Y.; Agnon, A.; Lazar, B.

2013-12-01

335

Fabrication of porous calcite using chopped nylon fiber and its evaluation using rats.  

PubMed

Although porous calcite has attracted attention as bone substitutes, limited studies have been made so far. In the present study, porous calcite block was fabricated by introducing chopped nylon fiber as porogen. Ca(OH)2 powder containing 10 wt% chopped nylon fiber was compacted at 150 MPa, and sintered to burn out the fiber and to carbonate the Ca(OH)2 under stream of 1:2 O2-CO2. Sintering of Ca(OH)2 at 750 °C or lower temperature resulted in incomplete burning out of the fiber whereas sintering at 800 °C or higher temperature resulted in the formation of CaO due to the thermal decomposition of Ca(OH)2. However, sintering at 770 °C resulted in complete burning out of the fiber and complete carbonation of Ca(OH)2 to calcite without forming CaO. Macro- and micro-porosities of the porous calcite were approximately 23 and 16 %, respectively. Diameter of the macropores was approximately 100 ?m which is suitable for bone tissue penetration. Porous calcite block fabricated by this method exhibited good tissue response when implanted in the bone defect in femur of 12-weeks-old rat. Four weeks after implantation, bone bonded on the surface of calcite. Furthermore, bone tissue penetrated interior to the macropore at 8 weeks. These results demonstrated the good potential value of porous calcite as artificial bone substitutes. PMID:25649514

Ishikawa, Kunio; Tram, Nguyen Xuan Thanh; Tsuru, Kanji; Toita, Riki

2015-02-01

336

Phosphorus Removal Characteristics in Hydroxyapatite Crystallization Using Converter Slag  

Microsoft Academic Search

This study was performed to investigate the phosphorus removal characteristics in hydroxyapatite (HAP) crystallization using converter slag as a seed crystal and the usefulness of a slag column reactor system. The effects of alkalinity, and the isomorphic-substitutable presence of ionic magnesium, fluoride, and iron on HAP crystallization seeded with converter slag, were examined using a batch reactor system. The phosphorus

EUNG-HO KIM; HWAN-KOOK HWANG; SOO-BIN YIM

2006-01-01

337

Big Seed  

NSDL National Science Digital Library

This free iOS app helps develop spatial reasoning and strategic thinking. Users reflect seed squares (horizontally, vertically and diagonally) to grow larger pieces that eventually cover the given design space without spilling over. A graduated set of difficulty levels makes the game accessible to a wide range of ages.

2012-12-06

338

Mighty Seeds  

NSDL National Science Digital Library

In this biology experiment, learners plant soybean seeds in plaster of Paris, witnessing firsthand the mighty power and ability of plants to grow in adverse conditions. This is also an excellent activity to touch upon exothermic reactions, as warmth is created when the plaster is mixed.

2012-06-26

339

Seed Bargains  

NSDL National Science Digital Library

Children as well as adults are usually intrigued by the ideas of bargains. More seeds for less money is often enough to convince them to buy a larger, cheaper package. In this case, the children are savvy enough to question the value of either package. On

Richard Konicek-Moran

2008-04-01

340

Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate  

PubMed Central

Amorphous calcium carbonate (ACC) is a metastable phase often observed during low temperature inorganic synthesis and biomineralization. ACC transforms with aging or heating into a less hydrated form, and with time crystallizes to calcite or aragonite. The energetics of transformation and crystallization of synthetic and biogenic (extracted from California purple sea urchin larval spicules, Strongylocentrotus purpuratus) ACC were studied using isothermal acid solution calorimetry and differential scanning calorimetry. Transformation and crystallization of ACC can follow an energetically downhill sequence: more metastable hydrated ACC ? less metastable hydrated ACC?anhydrous ACC ? biogenic anhydrous ACC?vaterite ? aragonite ? calcite. In a given reaction sequence, not all these phases need to occur. The transformations involve a series of ordering, dehydration, and crystallization processes, each lowering the enthalpy (and free energy) of the system, with crystallization of the dehydrated amorphous material lowering the enthalpy the most. ACC is much more metastable with respect to calcite than the crystalline polymorphs vaterite or aragonite. The anhydrous ACC is less metastable than the hydrated, implying that the structural reorganization during dehydration is exothermic and irreversible. Dehydrated synthetic and anhydrous biogenic ACC are similar in enthalpy. The transformation sequence observed in biomineralization could be mainly energetically driven; the first phase deposited is hydrated ACC, which then converts to anhydrous ACC, and finally crystallizes to calcite. The initial formation of ACC may be a first step in the precipitation of calcite under a wide variety of conditions, including geological CO2 sequestration. PMID:20810918

Radha, A. V.; Forbes, Tori Z.; Killian, Christopher E.; Gilbert, P. U. P. A.; Navrotsky, Alexandra

2010-01-01

341

Activators of photoluminescence in calcite: evidence from high-resolution, laser-excited luminescence spectroscopy  

USGS Publications Warehouse

Laser-excited luminescence spectroscopy of a red-algal, biogenic calcite and a synthetic Mn-calcite can make the distinction between organic and trace-element activators of photoluminescence. Organic-activated photoluminescence in biogenic calcite is characterized by significant peak shifts and increasing intensity with shorter-wavelength excitation and by significant decreases in intensity after heating to ??? 400??C. In contrast, Mn-activated photoluminescence shows no peak shift, greatest intensity under green excitation and limited changes after heating. Examination of samples with a high-sensitivity spectrometer using several wavelengths of exciting light is necessary for identification of photoluminescence activators. ?? 1990.

Pedone, V.A.; Cercone, K.R.; Burruss, R.C.

1990-01-01

342

Estimation of uncertain parameters to improve modeling of Mirobially Induced Calcite Precipitation  

E-print Network

in the subsurface or fracking could be reduced with sealing technologies like microbially induced calcite Injectionwellvicinity Fracking CO2 Reservoir Figure 1: Potential application sites of MICP as a sealing technology

Cirpka, Olaf Arie

343

Kinetic and Thermodynamic Study of Calcite Marble Samples from Lesser Himalayas  

NASA Astrophysics Data System (ADS)

A kinetic and thermodynamic study of selected calcite marble samples from Lesser Himalayas has been performed using thermogravimetric and differential thermal analyses at heating rates of and . The minero-petrography of calcite grains, phase analysis, chemical analysis, and minor impurities determination were carried out using thin-section polarized light microscopy, X-ray diffraction, X-ray fluorescence, and electron microprobe analysis, respectively. The calcite content of the investigated marble samples varied from 97.50 mass% to 98.70 mass%. The activation energy, , for the decomposition process increased from to and from to for heating rates of and , respectively, with decreasing calcite content. The activation energy values obtained in the present study were in good agreement with previous studies.

Fahad, M.; Iqbal, Y.

2014-02-01

344

High School Forum: "Invitations to Enquiry": The Calcite/Acid Reaction.  

ERIC Educational Resources Information Center

Describes a high school chemistry experiment which involves the reaction between calcite and hydrochloric and sulfuric acids. This reaction can be carried out as a projected demonstration and on an individual basis. (HM)

Herron, J. Dudley, Ed.; Driscoll, D. R.

1979-01-01

345

Origin of sulfate in barite and calcite cements in the Jebel Madar salt dome (Oman)  

NASA Astrophysics Data System (ADS)

Jebel Madar is a 500-m high mountain rising in the desert at the Oman Foothills. The Jebel consists of Triassic to Cretaceous carbonate host rocks forming the carapace of a salt dome. Halokinesis caused major fracturing and faulting at Jebel Madar, and the resulting structures acted as the main pathways for fluids that generated diagenetic cements composed of both barite and calcite. The spatial distribution of calcite and barite occurrences shows that calcite is formed in large abundance along the three main faults, whereas barite is more concentrated along faults further away from the three main ones. The stable carbon and oxygen isotope composition of calcite and fluid inclusion data from both calcite and barite show a distinct evolution of the fluid with a highly saline component towards more mixing with meteoric water. This is in agreement with clumped isotopes data on calcite cements indicating an evolution towards lower temperatures, consistent with doming of the Jebel and greater input of lower-temperature descending meteoric fluids. Here, we present sulphur and oxygen isotopic data on barite that suggest a link between the barite formation and the Precambrian salt underlying Jebel Madar. The average ?34S measured in barite is 33‰ CDT (1? = 5‰; n = 33), which falls at the lower end of the ?34S range reported for the Ara Group anhydrite. The average ?18O in the same barite samples is 23‰ VSMOW (1? = 2‰; n = 33). Data from the barite will be compared with sulphur isotopes from the carbonate-associate sulfate in the calcite cements. The overall goal of our research is to gain a better insight in the formation process of barite and calcite in Jebel Madar and its link with salt tectonics. We would like to acknowledge the financial support of QCCSRC (funded jointly by Qatar Petroleum, Shell and the Qatar Science & Technology Park) and the GSA Laubach fund for this study.

Vandeginste, V.; John, C. M.; Gilhooly, W. P.

2012-12-01

346

Stress and Temperature Dependence of Calcite Twinning: New Experimental and Field Constraints  

Microsoft Academic Search

In low-grade metamorphic terrains at temperatures < 300Ë? C e-twinning of calcite is common. The amount and width of e-twins have been suggested to indicate stress and temperature representing robust paleopiezometers and geothermometers. To evaluate the stress- and temperature dependence of e-twins in calcite we have performed a series of deformation experiments on specimens of Carrara marble in the semibrittle

E. Rybacki; C. Janssen; G. Dresen; B. Evans

2009-01-01

347

Fractionation of carbon and oxygen isotopes and magnesium between coexisting metamorphic calcite and dolomite  

Microsoft Academic Search

Fractionations of carbon and oxygen isotopes and magnesium between coexisting dolomite and calcite have been determined for\\u000a marbles and calcareous schists of a wide variety of metamorphic environments from Vermont and the Grenville Province of Ontario.\\u000a Concordant equilibrium fractionations are given by 83% of the samples. Calibration of the isotopic thermometers using the\\u000a Mg-calcite solvus thermometer gave in the temperature

Simon M. F. Sheppard; Henry P. Schwarcz

1970-01-01

348

Rheology and microstructure of synthetic halite\\/calcite porphyritic aggregates in torsion  

Microsoft Academic Search

Polymer jacketed porphyritic samples of 70% halite+30% coarse calcite were subjected to torsion deformation to investigate the effects of a mixture of coarse calcite on the microstructure and mechanical properties of a two-phase aggregate. The experiments were run at 100 and 200°C, a confining pressure of 250MPa, and a constant shear strain rate of 3E-4s?1. Ultimate strengths of single-phase halite

F. O. Marques; L. Burlini; J.-P. Burg

2010-01-01

349

Distribution of vesicular-arbuscular mycorrhizal fungi in coal, lignite, and calcite mine spoils of India  

Microsoft Academic Search

We assessed vesicular-arbuscular mycorrhizal (VAM) fungi in coal, lignite, and calcite mine spoils. The level of VAM fungal infection and the population of VAM species in plants on the coal-waste sites were similar to those in plants on the calcite mine spoil. The plants on the coal-waste sites and their associated VAM fungi included Tephrosia purpurea (L.) Pers. with Glomus

V. Ganesan; S. Ragupathy; B. Parthipan; D. B. Rajini Rani; A. Mahadevan

1991-01-01

350

NMR characterization of hydrocarbon adsorption on calcite surfaces: a first principles study.  

PubMed

The electronic and coordination environment of minerals surfaces, as calcite, are very difficult to characterize experimentally. This is mainly due to the fact that there are relatively few spectroscopic techniques able to detect Ca(2+). Since calcite is a major constituent of sedimentary rocks in oil reservoir, a more detailed characterization of the interaction between hydrocarbon molecules and mineral surfaces is highly desirable. Here we perform a first principles study on the adsorption of hydrocarbon molecules on calcite surface (CaCO3 (101¯4)). The simulations were based on Density Functional Theory with Solid State Nuclear Magnetic Resonance (SS-NMR) calculations. The Gauge-Including Projector Augmented Wave method was used to compute mainly SS-NMR parameters for (43)Ca, (13)C, and (17)O in calcite surface. It was possible to assign the peaks in the theoretical NMR spectra for all structures studied. Besides showing different chemical shifts for atoms located on different environments (bulk and surface) for calcite, the results also display changes on the chemical shift, mainly for Ca sites, when the hydrocarbon molecules are present. Even though the interaction of the benzene molecule with the calcite surface is weak, there is a clearly distinguishable displacement of the signal of the Ca sites over which the hydrocarbon molecule is located. A similar effect is also observed for hexane adsorption. Through NMR spectroscopy, we show that aromatic and alkane hydrocarbon molecules adsorbed on carbonate surfaces can be differentiated. PMID:25429955

Bevilaqua, Rochele C A; Rigo, Vagner A; Veríssimo-Alves, Marcos; Miranda, Caetano R

2014-11-28

351

Multiple origins for zoned cathodoluminescent and noncathodoluminescent calcite cements in Pennsylvanian limestones  

SciTech Connect

Noncathodoluminescent calcite containing brightly to moderately luminescent zones is a common early cement in limestones. Three such cements in Upper Pennsylvanian limestones from different areas were studied. All three units are overlain up-section by Permian evaporites and consist of carbonate-siliciclastic 'cyclothems' in which individual cycles were subject to subaerial exposure. With such similar settings, one might predict that petrographically similar calcite cements would have similar origins. In the Holder Formation (New Mexico), the zoned calcite predates compaction, and cross-cutting relationships with cycle-capping paleosols show that zoned cements precipitated during 15 events of subaerial exposure. Therefore, cements precipitated from freshwater during early and repeated subaerial exposure. For the Lansing-Kansas City groups in northwestern Kansas, the zoned calcite cements commonly are among the first precipitated but may postdate some compaction. All-liquid fluid inclusions indicated precipitation below about 50C, from brines of approximately 23 weight %. NaCl equivalent. The brines may have refluxed downward during deposition of Permian evaporites. A limestone of the Lansing-Kansas City groups of west-central Kansas contains early zoned calcite cement that predates compaction. The cement contains all-liquid fluid inclusions indicating precipitation below about 50C. The presence of nonluminescent calcite containing bright subzones is not indicative of a single diagenetic environment. Petrographically similar cements from similar settings may originate in markedly different diagenetic environments.

Goldstein, R.H.; Anderson, J.E.; Phares, R.A. (Univ. of Kansas, Lawrence (United States))

1991-03-01

352

NMR characterization of hydrocarbon adsorption on calcite surfaces: A first principles study  

NASA Astrophysics Data System (ADS)

The electronic and coordination environment of minerals surfaces, as calcite, are very difficult to characterize experimentally. This is mainly due to the fact that there are relatively few spectroscopic techniques able to detect Ca2+. Since calcite is a major constituent of sedimentary rocks in oil reservoir, a more detailed characterization of the interaction between hydrocarbon molecules and mineral surfaces is highly desirable. Here we perform a first principles study on the adsorption of hydrocarbon molecules on calcite surface (CaCO3 ( {10bar 14} )). The simulations were based on Density Functional Theory with Solid State Nuclear Magnetic Resonance (SS-NMR) calculations. The Gauge-Including Projector Augmented Wave method was used to compute mainly SS-NMR parameters for 43Ca, 13C, and 17O in calcite surface. It was possible to assign the peaks in the theoretical NMR spectra for all structures studied. Besides showing different chemical shifts for atoms located on different environments (bulk and surface) for calcite, the results also display changes on the chemical shift, mainly for Ca sites, when the hydrocarbon molecules are present. Even though the interaction of the benzene molecule with the calcite surface is weak, there is a clearly distinguishable displacement of the signal of the Ca sites over which the hydrocarbon molecule is located. A similar effect is also observed for hexane adsorption. Through NMR spectroscopy, we show that aromatic and alkane hydrocarbon molecules adsorbed on carbonate surfaces can be differentiated.

Bevilaqua, Rochele C. A.; Rigo, Vagner A.; Veríssimo-Alves, Marcos; Miranda, Caetano R.

2014-11-01

353

Estimation of past seepage volumes from calcite distribution in the Topopah Spring Tuff, Yucca Mountain, Nevada  

USGS Publications Warehouse

Low-temperature calcite and opal record the past seepage of water into open fractures and lithophysal cavities in the unsaturated zone at Yucca Mountain, Nevada, site of a proposed high-level radioactive waste repository. Systematic measurements of calcite and opal coatings in the Exploratory Studies Facility (ESF) tunnel at the proposed repository horizon are used to estimate the volume of calcite at each site of calcite and/or opal deposition. By estimating the volume of water required to precipitate the measured volumes of calcite in the unsaturated zone, seepage rates of 0.005 to 5 liters/year (l/year) are calculated at the median and 95th percentile of the measured volumes, respectively. These seepage rates are at the low end of the range of seepage rates from recent performance assessment (PA) calculations, confirming the conservative nature of the performance assessment. However, the distribution of the calcite and opal coatings indicate that a much larger fraction of the potential waste packages would be contacted by this seepage than is calculated in the performance assessment.

Marshall, B.D.; Neymark, L.A.; Peterman, Z.E.

2003-01-01

354

Estimation of past seepage volumes from calcite distribution in the Topopah Spring Tuff, Yucca Mountain, Nevada.  

PubMed

Low-temperature calcite and opal record the past seepage of water into open fractures and lithophysal cavities in the unsaturated zone at Yucca Mountain, Nevada, site of a proposed high-level radioactive waste repository. Systematic measurements of calcite and opal coatings in the Exploratory Studies Facility (ESF) tunnel at the proposed repository horizon are used to estimate the volume of calcite at each site of calcite and/or opal deposition. By estimating the volume of water required to precipitate the measured volumes of calcite in the unsaturated zone, seepage rates of 0.005 to 5 liters/year (l/year) are calculated at the median and 95th percentile of the measured volumes, respectively. These seepage rates are at the low end of the range of seepage rates from recent performance assessment (PA) calculations, confirming the conservative nature of the performance assessment. However, the distribution of the calcite and opal coatings indicate that a much larger fraction of the potential waste packages would be contacted by this seepage than is calculated in the performance assessment. PMID:12714293

Marshall, Brian D; Neymark, Leonid A; Peterman, Zell E

2003-01-01

355

Mixing-induced calcite precipitation and dissolution kinetics in micromodel experiments.  

SciTech Connect

Dissolved CO2 from geological CO2 sequestration may react with dissolved minerals in fractured rocks or confined aquifers and cause mineral precipitation. The overall rate of reaction can be limited by diffusive or dispersive mixing, and mineral precipitation can block pores and further hinder these processes. Mixing-induced calcite precipitation experiments were performed by injecting solutions containing CaCl2 and Na2CO3 through two separate inlets of a micromodel (1-cm x 2-cm x 40-microns); transverse dispersion caused the two solutions to mix along the center of the micromodel, resulting in calcite precipitation. The amount of calcite precipitation initially increased to a maximum and then decreased to a steady state value. Fluorescent microscopy and imaging techniques were used to visualize calcite precipitation, and the corresponding effects on the flow field. Experimental micromodel results were evaluated with pore-scale simulations using a 2-D Lattice-Boltzmann code for water flow and a finite volume code for reactive transport. The reactive transport model included the impact of pH upon carbonate speciation and calcite dissolution. We found that proper estimation of the effective diffusion coefficient and the reaction surface area is necessary to adequately simulate precipitation and dissolution rates. The effective diffusion coefficient was decreased in grid cells where calcite precipitated, and keeping track of reactive surface over time played a significant role in predicting reaction patterns. Our results may improve understanding of the fundamental physicochemical processes during CO2 sequestration in geologic formations.

Valocchi, Albert J.; Dewers, Thomas A.; Dehoff, Karl; Yoon, Hongkyu; Werth, Charles J.

2010-12-01

356

Diffraction by elliptic and circular apertures in uniaxially anisotropic crystals: theory and experiment  

Microsoft Academic Search

A comparison between theoretical and experimental optical fields diffracted by an elliptic aperture in a calcite crystal is given. The field distribution of a paraxial beam propagating along the optical axis of a uniaxial anisotropic crystal is evaluated by means of a vectorial angular spectrum representation; an acceleration method is used to numerically compute the highly oscillating integrals. The cases

Damiano Provenziani; Alessandro Ciattoni; Gabriella Cincotti; Claudio Palma

2002-01-01

357

Experimental study of the mechanism of the calcite-dolomite replacement  

NASA Astrophysics Data System (ADS)

When a mineral comes into contact with a fluid with which it is out of equilibrium, it may be replaced by a phase with a different composition and crystal structure. The reaction mechanism generally involves a coupled dissolution and precipitation mechanism and may result in a pseudomorphic replacement (Putnis, 2009). The existence of sharp limestone-dolomite contacts in natural rocks suggests that this process may operate in the course of dolomitization during burial and diagenesis. The idealized mass balance reaction is generally written as 2CaCO3+Mg2+?CaMg(CO3)2+Ca2+. However, the mechanism and environmental settings of dolomitization, are still under discussion. In order to explore the mechanism of replacement of calcite by dolomite, we performed hydrothermal experiments on marble cubes (Carrara, Italy) of different edge lengths (1.5 to 5 mm), which reacted with (Ca,Mg)Cl2 solutions of varying compositions, at temperatures between 160 and 200 °C for different duration times. The product phases were identified by X-ray diffraction (XRD), Raman spectroscopy, and electron microprobe analysis (EMPA), and the textural evolution was studied by scanning electron microscopy (SEM). The results show that the amount and type of reaction strongly depend on the Mg/Ca ratio, the fluid/rock ratio, the temperature, and the reaction time. Depending on the solution composition, the reaction rims of the marble cubes are made up of several layers containing dolomite with varying textures and porosities as well as magnesite, MgCO3, in the outer rim. Fluid and mass transport along the grain boundaries controls the overall textural evolution and rate of dolomitization. The replacement reactions are pseudomorphic and take place by a coupled dissolution-precipitation mechanism. Putnis A. Mineral Replacement Reactions. In: Thermodynamics and Kinetics of Water-Rock Interaction. Oelkers E. H & Schott J (eds). Reviews in Mineralogy & Geochemistry 30, 87-124 (2009)

Moraila-Martinez, Teresita; Dunkel, Kristina G.; Putnis, Andrew; Putnis, Christine V.

2014-05-01

358

Seed Treatment. Bulletin 760.  

ERIC Educational Resources Information Center

This manual gives a definition of seed treatment, the types of seeds normally treated, diseases and insects commonly associated with seeds, fungicides and insecticides used, types of equipment used for seed treatment, and information on labeling and coloring of treated seed, pesticide carriers, binders, stickers, and safety precautions. (BB)

Lowery, Harvey C.

359

Seed Treatment. Manual 92.  

ERIC Educational Resources Information Center

This training manual provides information needed to meet minimum EPA standards for certification as a commercial applicator of pesticides in the seed treatment category. The text discusses pests commonly associated with seeds; seed treatment pesticides; labels; chemicals and seed treatment equipment; requirements of federal and state seed laws;…

Missouri Univ., Columbia. Agricultural Experiment Station.

360

Some Debye temperatures from single-crystal elastic constant data  

USGS Publications Warehouse

The mean velocity of sound has been calculated for 14 crystalline solids by using the best recent values of their single-crystal elastic stiffness constants. These mean sound velocities have been used to obtain the elastic Debye temperatures ??De for these materials. Models of the three wave velocity surfaces for calcite are illustrated. ?? 1966 The American Institute of Physics.

Robie, R.A.; Edwards, J.L.

1966-01-01

361

Strain localization and the onset of dynamic weakening in calcite fault gouge  

NASA Astrophysics Data System (ADS)

To determine the role of strain localization during dynamic weakening of calcite gouge at seismic slip rates, single-slide and slide-hold-slide experiments were conducted on 2-3-mm thick layers of calcite gouge at normal stresses up to 26 MPa and slip rates up to 1 m s-1. Microstructures were analyzed from short displacement (< 35 cm) experiments stopped prior to and during the transition to dynamic weakening. In fresh calcite gouge layers, dynamic weakening occurs after a prolonged strengthening phase that becomes shorter with increasing normal stress and decreasing layer thickness. Strain is initially distributed across the full thickness of the gouge layer, but within a few millimeters displacement the strain becomes localized to a boundary-parallel, high-strain shear band c. 20 ?m wide. During the strengthening phase, which lasts between 3 and 30 cm under the investigated conditions, the shear band broadens to become c. 100 ?m wide at peak stress. The transition to dynamic weakening in calcite gouges is associated with the nucleation of micro-slip surfaces dispersed throughout the c. 100 ?m wide shear band. Each slip surface is surrounded by aggregates of extremely fine grained and tightly packed calcite, interpreted to result from grain welding driven by local frictional heating in the shear band. By the end of dynamic weakening strain is localized to a single 2- 3-?m wide principal slip surface, flanked by layers of recrystallized gouge. Calcite gouge layers re-sheared following a hold period weaken nearly instantaneously, much like solid cylinders of calcite marble deformed under the same experimental conditions. This is due to reactivation of the recrystallized and cohesive principal slip surface that formed during the first slide, reducing the effective gouge layer thickness to a few microns. Our results suggest that formation of a high-strain shear band is a critical precursor to dynamic weakening in calcite gouges. Microstructures are most compatible with dynamic weakening resulting from a thermally triggered mechanism such as flash heating that requires both a high degree of strain localization and a minimum slip velocity to activate. The delayed onset of dynamic weakening in fresh calcite gouge layers, particularly at low normal stresses, may inhibit large coseismic slip at shallow crustal levels in calcite-bearing fault zones.

Smith, S. A. F.; Nielsen, S.; Di Toro, G.

2015-03-01

362

The role of disseminated calcite in the chemical weathering of granitoid rocks  

USGS Publications Warehouse

Accessory calcite, present at concentrations between 300 and 3000 mg kg-1, occurs in fresh granitoid rocks sampled from the Merced watershed in Yosemite National Park, CA, USA; Loch Vale in Rocky Mountain National Park CO USA; the Panola watershed, GA USA; and the Rio Icacos, Puerto Rico. Calcite occurs as fillings in microfractures, as disseminated grains within the silicate matrix, and as replacement of calcic cores in plagioclase. Flow-through column experiments, using de-ionized water saturated with 0.05 atm. CO2, produced effluents from the fresh granitoid rocks that were dominated by Ca and bicarbonate and thermodynamically saturated with calcite. During reactions up to 1.7 yr, calcite dissolution progressively decreased and was superceded by steady state dissolution of silicates, principally biotite. Mass balance calculations indicate that most calcite had been removed during this time and accounted for 57-98% of the total Ca released from these rocks. Experimental effluents from surfically weathered granitoids from the same watersheds were consistently dominated by silicate dissolution. The lack of excess Ca and alkalinity indicated that calcite had been previously removed by natural weathering. The extent of Ca enrichment in watershed discharge fluxes corresponds to the amounts of calcite exposed in granitoid rocks. High Ca/Na ratios relative to plagioclase stoichiometries indicate excess Ca in the Yosemite, Loch Vale, and other alpine watersheds in the Sierra Nevada and Rocky Mountains of the western United States. This Ca enrichment correlates with strong preferential weathering of calcite relative to plagioclase in exfoliated granitoids in glaciated terrains. In contrast, Ca/Na flux ratios are comparable to or less than the Ca/Na ratios for plagioclase in the subtropical Panola and tropical Rio Icacos watersheds, in which deeply weathered regoliths exhibit concurrent losses of calcite and much larger masses of plagioclase during transport-limited weathering. These results indicate that the weathering of accessory calcite may strongly influence Ca and alkalinity fluxes from silicate rocks during and following periods of glaciation and tectonism but is much less important for older stable geomorphic surfaces.

White, A.F.; Bullen, T.D.; Vivit, D.V.; Schulz, M.S.; Clow, D.W.

1999-01-01

363

The role of disseminated calcite in the chemical weathering of granitoid rocks  

NASA Astrophysics Data System (ADS)

Accessory calcite, present at concentrations between 300 and 3000 mg kg -1, occurs in fresh granitoid rocks sampled from the Merced watershed in Yosemite National Park, CA, USA; Loch Vale in Rocky Mountain National Park CO USA; the Panola watershed, GA USA; and the Rio Icacos, Puerto Rico. Calcite occurs as fillings in microfractures, as disseminated grains within the silicate matrix, and as replacement of calcic cores in plagioclase. Flow-through column experiments, using de-ionized water saturated with 0.05 atm. CO 2, produced effluents from the fresh granitoid rocks that were dominated by Ca and bicarbonate and thermodynamically saturated with calcite. During reactions up to 1.7 yr, calcite dissolution progressively decreased and was superceded by steady state dissolution of silicates, principally biotite. Mass balance calculations indicate that most calcite had been removed during this time and accounted for 57-98% of the total Ca released from these rocks. Experimental effluents from surfically weathered granitoids from the same watersheds were consistently dominated by silicate dissolution. The lack of excess Ca and alkalinity indicated that calcite had been previously removed by natural weathering. The extent of Ca enrichment in watershed discharge fluxes corresponds to the amounts of calcite exposed in granitoid rocks. High Ca/Na ratios relative to plagioclase stoichiometries indicate excess Ca in the Yosemite, Loch Vale, and other alpine watersheds in the Sierra Nevada and Rocky Mountains of the western United States. This Ca enrichment correlates with strong preferential weathering of calcite relative to plagioclase in exfoliated granitoids in glaciated terrains. In contrast, Ca/Na flux ratios are comparable to or less than the Ca/Na ratios for plagioclase in the subtropical Panola and tropical Rio Icacos watersheds, in which deeply weathered regoliths exhibit concurrent losses of calcite and much larger masses of plagioclase during transport-limited weathering. These results indicate that the weathering of accessory calcite may strongly influence Ca and alkalinity fluxes from silicate rocks during and following periods of glaciation and tectonism but is much less important for older stable geomorphic surfaces.

White, Art F.; Bullen, Thomas D.; Vivit, Davison V.; Schulz, Marjorie S.; Clow, David W.

1999-07-01

364

Seed Magazine  

NSDL National Science Digital Library

Seed is an online (and print) magazine dedicated to increasing the scientific awareness and knowledge of the general public. The site is updated six days a week and features news articles, original-content articles on a variety of science topics, columns, and reviews. "Cribsheets," a downloadable feature, provide brief tutorials on scientific issues and innovations that may occur in everyday conversation. The magazine also features a collection of multimedia materials, such as podcasts, slide shows, and video content. The web site's main page features articles from the latest issue; back issues may be browsed by category, author, or date. Information about subscribing to the print version is also provided.

365

Kinetics and mechanism of formation of gehlenite, Al-Si spinel and anorthite from the mixture of kaolinite and calcite  

NASA Astrophysics Data System (ADS)

The kinetics and mechanism of formation of gehlenite, Al-Si spinel phase, wollastonite and anorthite from the mixture of kaolinite and calcite was investigated by differential thermal analysis under the heating rate from 283 to 293 K min-1 using Kissinger equation. The changes in the phase composition of the sample during the thermal treatment were investigated via simultaneous TG-DTA, in situ high-temperature x-ray diffraction analysis and high-temperature heating-microscopy. The crystallizations of gehlenite and Al-Si spinel phase show apparent activation energy of (411 ± 5) kJ mol-1 and (550 ± 9) kJ mol-1, respectively. The value of kinetic exponent corresponds to the process limited by the decreasing nucleation rate for gehlenite while constant nucleation rate is determined for Al-Si spinel phase. Anorthite crystallizes from the eutectic melt and the process shows the apparent activation energy of (1140 ± 25) kJ mol-1. The process is limited by the constant nucleation rate of a new phase.

Ptá?ek, Petr; Opravil, Tomáš; Šoukal, František; Havlica, Jaromír; Holešinský, Radek

2013-12-01

366

(100) Crystal Plane of Silicon  

NSDL National Science Digital Library

This animation, created by Southwest Center for Microsystems Education (SCME), "illustrates the crystal growth of silicon using a seed crystal (or unit cell) positioned to the (100) plane. The silicon crystal grows into a large ingot which is sliced into silicon wafers. To verify the (100) plane of the wafer, the wafer is broken or cleaved causing it to break at 90 degree angles." The supporting Crystallography Learning Module and activities can be downloaded from the SCME website under Educational Materials.

367

Structure of supersaturated solution and crystal nucleation induced by diffusion  

NASA Astrophysics Data System (ADS)

The effect of a seed crystal on nucleation of L-alanine from a quiescent supersaturated solution was investigated. When a seed crystal was not used, nucleation did not occur at least for 5 h. When a seed crystal was introduced into the supersaturated solution with careful attention to avoid convection of the solution, fine crystals appeared at the place far from the seed crystal. At that time, there was no convection at the place that fine crystals appeared. Namely, there was no possibility that those fine crystals came from the surface of seed crystal. We supposed that nucleation was induced by directional diffusion of solute molecules caused by growth of the seed crystal. In order to prove this hypothesis, we designed an experiment using an apparatus composed of two compartments divided by a dialysis membrane that L-alanine molecules could freely permeate. Two supersaturated solutions having a supersaturation ratio of 1.2 and a smaller ratio were placed in the two compartments in the absence of seed crystals. This apparatus allowed the directional diffusion of solute molecules between two solutions. Nucleation occurred within 30 min. The frequency of nucleation among 7-times repeated experiments was in proportion to the difference of supersaturation ratio between the two solutions. This result poses a new mechanism of the secondary nucleation that the directional diffusion caused by growth of existing crystals induces nucleation.

Ooshima, Hiroshi; Igarashi, Koichi; Iwasa, Hideo; Yamamoto, Ren

2013-06-01

368

Thermal and Evolved Gas Behavior of Calcite Under Mars Phoenix TEGA Operating Conditions  

NASA Technical Reports Server (NTRS)

The Mars Phoenix Scout Mission with its diverse instrument suite successfully examined several soils on the Northern plains of Mars. The Thermal and Evolved Gas Analyzer (TEGA) was employed to detect organic and inorganic materials by coupling a differential scanning calorimeter (DSC) with a magnetic-sector mass spectrometer (MS). Martian soil was heated up to 1000 C in the DSC ovens and evolved gases from mineral decomposition products were examined with the MS. TEGA s DSC has the capability to detect endothermic and exothermic reactions during heating that are characteristic of minerals present in the Martian soil. Initial TEGA results indicated the presence of endothermic peaks with onset temperatures that ranged from 675 C to 750 C with corresponding CO2 release. This result suggests the presence of calcite (CaCO3. CaO + CO2). Organic combustion to CO2 is not likely since this mostly occurs at temperatures below 550 C. Fe-carbonate and Mg-carbonate are not likely because their decomposition temperatures are less than 600 C. TEGA enthalpy determinations suggest that calcite, may occur in the Martian soil in concentrations of approx.1 to 5 wt. %. The detection of calcite could be questioned based on previous results that suggest Mars soils are mostly acidic. However, the Phoenix landing site soil pH was measured at pH 8.3 0.5, which is typical of terrestrial soils where pH is controlled by calcite solubility. The range of onset temperatures and calcite concentration as calculated by TEGA is poorly con-strained in part because of limited thermal data of cal-cite at reduced pressures. TEGA operates at <30 mbar while most calcite literature thermal data was obtained at 1000 mbar or higher pressures.

Ming, D.W.; Niles, P.B.; Morris, R.V.; Boynton, W.V.; Golden, D.C.; Lauer, H.V.; Sutter, B.

2009-01-01

369

Pseudospherulitic fibrous calcite from the Quaternary shallow lacustrine carbonates of the Farafra Oasis, Western Desert, Egypt: A primary precipitate with possible bacterial influence  

NASA Astrophysics Data System (ADS)

Pseudospherulitic fibrous calcite (PFC) has been found as a major constituent (85-90%) within thin massive limestone beds of the Quaternary mudflat-shallow lacustrine facies association (1.5-2 m thick) that forms part of combined facies associations of the Quaternary clastic-carbonate unit (25-30 m thick) at Bir-Karawein area in the Farafra Oasis, Western Desert, Egypt. The thin massive limestone beds (2-5 cm thick) are devoid of pedogenic features and marine fossils. They form a rhythmic cyclic succession with thin massive mudrocks (5-10 cm thick). The mudflat-shallow lacustrine facies association herein occurs within a depositional sequence of distal alluvial-floodplain (6-12 m thick) and palustrine (1.5-4.5 m thick) facies associations. The PFC is a composed of loosely packed rounded to sub-rounded single low-Mg-calcite crystals (150-250 ?m-sized) with intracrystalline fibrous microfabric marked by fibers (150-250 ?m long and 10-20 ?m wide) radiating from the center of the individual crystals and displaying irregular internal growth with lobate pattern. The PFC crystals show non-planar to highly irregular intercrystalline boundaries. Under SEM, the individual crystal fibers group of PFC form ellipsoid to sub-globular bodies. Each PFC crystal exhibits successive zones of thick non-luminescence and thin brightly orange to dull luminescence. The matrix (10-15%) between the PFC crystals is mainly a honeycomb-like smectite. The PFC is postulated to be a primary precipitate. This concept is reached because the PFC: (i) does not display the criteria of typical Microcodium structures, root-calcification, speleothem structures, calcite spherulites of laminar calcretes, and calcitization of precursor dolomite or aragonite, (ii) possesses homogenous compositional and textural characteristics, and (iii) occurs within limestone beds that lie in between impermeable massive mudrock beds that dampen diagenesis. A role for possible bacterial contribution in crystallization of the PFC is assumed in the view of its internal microfabric characteristics (pseudospherulitic and lobate internal growth patterns), and morphological features (ellipsoidal to subglobular appearance), in addition to its slightly negative values of ?13C (-0.51‰ to -2.19‰). The low concentration of Na (0.11-0.20%), Sr (70-110 ppm) and Mn (0.04-0.31%), in addition to the negative values of ?18O (-4.65‰ to -5.96‰) in the PFC reflect its deposition from oxygenated freshwater. In addition, the absence of covariance between ?13C and ?18O values (r = -0.202) of the PFC indicates precipitation in a hydrologically-open, short-lived lake setting. In summary, the PFC is of low-Mg type and formed in a hydrologically-open, short-lived, freshwater lake as a primary precipitate with possible bacterial contribution.

Wanas, H. A.

2012-04-01

370

All-optical pump-seed synchronization for few-cycle OPCPA  

Microsoft Academic Search

We suggest and experimentally verify a simple method for timing-jitter-free synchronization of the seed and pump pulses in an optical parametric chirped-pulse amplifier. A fraction of a broadband seed pulse centered at 800 nm was frequency-shifted in a photonic crystal fiber to enable synchronized seeding of a picosecond Nd:YAG pump laser.

C. Y. Teisset; N. Ishii; T. Fuji; T. Metzger; S. Kohler; A. Baltuska; F. Krausz; A. M. Zheltikov

2005-01-01

371

Improved germination of pansy seed at high temperatures by priming with salt solutions  

E-print Network

and nonprimed seeds. Pansy seeds (Viola x wittrockiana 'Majestic Giant Blue Shade' and 'Crystal Bowl Sky Blue') were primed with several salts and PEG 15,000 at - 1.0 and - 2.0 MPa, for 3, 6, or 9 days at 23 C. Total percent germination (G) of nonprimed seeds...

Yoon, Beyoung-Han

1995-01-01

372

Crystal size distributions of induced calcium carbonate crystals in polyaspartic acid and Mytilus edulis acidic organic proteins aqueous solutions  

NASA Astrophysics Data System (ADS)

Different concentrations of soluble matrix extracts from Mytilus edulis and polyaspartic acid were mixed with CaCl 2 aqueous solutions to produce CaCO 3 crystallizations under controlled conditions. The obtained crystals were observed at several intervals of time by optical microscopy and scanning electron microscopy (SEM). Image treatment of the SEM images allowed quantifying the crystal size distribution (CSD) in different crystallization conditions. CSD graphics showed that polyaspartic acid induced nucleation and inhibited crystal growth, and soluble matrix extracts from Mytilus edulis induced nucleation, but its inhibition rate of crystal growth is less than polyaspartic. Soluble matrix extracts from Mytilus edulis showed an equilibrium between nucleation and crystal growth. Also, XRD patterns have been acquired in order to determine the crystalline phases obtained by inducing crystallization (calcite and vaterite). Vaterite polymorph appeared in all induced crystallization events, but not in blank aqueous solutions.

Roqué, Josep; Molera, Judit; Vendrell-Saz, Màrius; Salvadó, Nativitat

2004-02-01

373

Arsenic removal from high-arsenic water by enhanced coagulation with ferric ions and coarse calcite.  

PubMed

Arsenic removal from high-arsenic water in a mine drainage system has been studied through an enhanced coagulation process with ferric ions and coarse calcite (38-74 microm) in this work. The experimental results have shown that arsenic-borne coagulates produced by coagulation with ferric ions alone were very fine, so micro-filtration (membrane as filter medium) was needed to remove the coagulates from water. In the presence of coarse calcite, small arsenic-borne coagulates coated on coarse calcite surfaces, leading the settling rate of the coagulates to considerably increase. The enhanced coagulation followed by conventional filtration (filter paper as filter medium) achieved a very high arsenic removal (over 99%) from high-arsenic water (5mg/l arsenic concentration), producing a cleaned water with the residual arsenic concentration of 13 microg/l. It has been found that the mechanism by which coarse calcite enhanced the coagulation of high-arsenic water might be due to attractive electrical double layer interaction between small arsenic-borne coagulates and calcite particles, which leads to non-existence of a potential energy barrier between the heterogeneous particles. PMID:16352327

Song, S; Lopez-Valdivieso, A; Hernandez-Campos, D J; Peng, C; Monroy-Fernandez, M G; Razo-Soto, I

2006-01-01

374

Influence of calcite on uranium(VI) reactive transport in the groundwater-river mixing zone.  

PubMed

Calcite is an important, relatively soluble mineral phase that can affect uranium reactive transport in subsurface sediments. This study was conducted to investigate the distribution of calcite and its influence on uranium adsorption and reactive transport in the groundwater-river mixing zone of the Hanford 300A site, Washington State. Simulations using a two-dimensional (2D) reactive transport model under field-relevant hydrological and hydrogeochemical conditions revealed the development of a calcite reaction front through the mixing zone as a result of dynamic groundwater-river interactions. The calcite concentration distribution, in turn, affected the concentrations of aqueous carbonate and calcium, and pH through dissolution, as river waters intruded and receded from the site at different velocities in response to stage changes. The composition variations in groundwater subsequently influenced uranium mobility and discharge rates into the river in a complex fashion. The results implied that calcite distribution and concentration are important variables that need to be quantified for accurate reactive transport predictions of uranium, especially in dynamic groundwater-river mixing zones. PMID:24240103

Ma, Rui; Liu, Chongxuan; Greskowiak, Janek; Prommer, Henning; Zachara, John; Zheng, Chunmiao

2014-01-01

375

Influence of calcite on uranium(VI) reactive transport in the groundwate-river mixing zone  

NASA Astrophysics Data System (ADS)

Calcite is an important, relatively soluble mineral phase that can affect uranium reactive transport in subsurface sediments. This study was conducted to investigate the distribution of calcite and its influence on uranium adsorption and reactive transport in the groundwate-river mixing zone of the Hanford 300A site, Washington State. Simulations using a two-dimensional (2D) reactive transport model under field-relevant hydrological and hydrogeochemical conditions revealed the development of a calcite reaction front through the mixing zone as a result of dynamic groundwate-river interactions. The calcite concentration distribution, in turn, affected the concentrations of aqueous carbonate and calcium, and pH through dissolution, as river waters intruded and receded from the site at different velocities in response to stage changes. The composition variations in groundwater subsequently influenced uranium mobility and discharge rates into the river in a complex fashion. The results implied that calcite distribution and concentration are important variables that need to be quantified for accurate reactive transport predictions of uranium, especially in dynamic groundwate-river mixing zones.

Ma, Rui; Liu, Chongxuan; Greskowiak, Janek; Prommer, Henning; Zachara, John; Zheng, Chunmiao

2014-01-01

376

Monitoring bacterially induced calcite precipitation in porous media using magnetic resonance imaging and flow measurements.  

PubMed

A range of nuclear magnetic resonance (NMR) techniques are employed to provide novel, non-invasive measurements of both the structure and transport properties of porous media following a biologically mediated calcite precipitation reaction. Both a model glass bead pack and a sandstone rock core were considered. Structure was probed using magnetic resonance imaging (MRI) via a combination of quantitative one-dimensional profiles and three-dimensional images, applied before and after the formation of calcite in order to characterise the spatial distribution of the precipitate. It was shown through modification and variations of the calcite precipitation treatment that differences in the calcite fill would occur but all methods were successful in partially blocking the different porous media. Precipitation was seen to occur predominantly at the inlet of the bead pack, whereas precipitation occurred almost uniformly along the sandstone core. Transport properties are quantified using pulse field gradient (PFG) NMR measurements which provide probability distributions of molecular displacement over a set observation time (propagators), supplementing conventional permeability measurements. Propagators quantify the local effect of calcite formation on system hydrodynamics and the extent of stagnant region formation. Collectively, the combination of NMR measurements utilised here provides a toolkit for determining the efficacy of a biological-precipitation reaction for partially blocking porous materials. PMID:23872026

Sham, E; Mantle, M D; Mitchell, J; Tobler, D J; Phoenix, V R; Johns, M L

2013-09-01

377

Stabilities of synthetic magnesian calcites in aqueous solution: comparison with biogenic materials  

SciTech Connect

Free-drift dissolution data and inverse time plots were used to evaluate the stabilities of synthetic and biogenic magnesian calcites in aqueous solutions at 25/sup 0/C and 1 atm total pressure. Synthetic phases with MgCO/sub 3/ concentrations below 6 mole percent have stoichiometric ion activity products that are less than the value for calcite, whereas the values for phases with higher concentrations are greater than that of calcite. For synthetic phases, stability is a smooth function of composition, and all phases have values of ion activity products less than that for aragonite. Average sea water at 25/sup 0/ and 1 atm total pressure is supersaturated with respect to all synthetic phases in the compositional range studied. The difference in stability between biogenic materials and synthetic phases is due to greater variation in chemical and physical heterogeneities found for the biogenic samples. If it is assumed that the results of the dissolution experiments reflect only differences in Gibbs free energies of formation between synthetic phases and biogenic materials of similar Mg concentration, the biogenic materials are 200-850 j/mol less stable than the synthetic phases. Only the results of synthetic dissolution experiments should be used to model the thermodynamic behavior of the magnesian calcite solid solution. The results for the synthetic phases, however, may not be appropriate to use for interpreting diagenetic reaction pathways for magnesian calcites in modern sediments, except as a basis of comparison with the behavior of natural minerals.

Bischoff, W.D.; Mackenzie, F.T.; Bishop, F.C.

1987-06-01

378

Dolomite-magnesian calcite relations at elevated temperatures and CO2 pressures  

USGS Publications Warehouse

The equilibrium thermal decomposition curve of dolomite has been determined up to a CO2 pressure of 20,000 lb/in.2, at which pressure dolomite decomposes at 857??C. Equilibrium was approached from both directions, by the breakdown and by the solid-state synthesis of dolomite. At elevated temperatures and pressures, calcites in equilibrium with periclase as well as those in equilibrium with dolomite contain Mg in solid solution. In the former, the Mg content increases with increasing CO2 pressure, and decreases with increasing temperature. In the latter, it is a function of temperature only. The exsolution curve of dolomite and magnesian calcite has been determined between 500?? and 800??C; at 500?? dolomite is in equilibrium with a magnesian calcite containing ~6 mol per cent MgCO2; at 800??, ~22 mol per cent. There appears to be a small but real deviation from the ideal 1 : 1 Ca : Mg ratio of dolomite, in the direction of excess Ca, for material in equilibrium with magnesian calcite at high temperature. The experimental findings indicate that very little Mg is stable in the calcites of sedimentary environments, but that an appreciable amount is stable under higher-temperature metamorphic conditions, if sufficient CO2 pressure is maintained. ?? 1955.

Graf, D.L.; Goldsmith, J.R.

1955-01-01

379

Evolution of peralkaline calcite carbonatite magma in the Fen complex, southeast Norway  

NASA Astrophysics Data System (ADS)

In the Fen complex, Telemark, SE Norway, peralkaline calcite carbonatite (pyroxene søvite) occurs associated with nepheline syenite, alkali pyroxenite and rocks of the melteigite-ijolite-urtite series. Nepheline line syenite and pyroxene søvite have identical liquidus mineral assemblages (sodic pyroxene + apatite, followed by nepheline + alkali feldspar and, as the last phase, calcite), and pyroxenes defining virtually identical compositional trends (Di 55Hd 25Ac 20 to Ac >90). The pyroxenite formed as a pyroxene cumulate from a magma related to ijolite, and contains a felsic interstitial mineral assemblage (alkali feldspar + nepheline + calcite + apatite) corresponding to a CO 2-rich nepheline syenite in composition. Ocelli of calcite within the nepheline syenite, and microstructural evidence for two concomitant liquids in the interstitial aggregates in the pyroxenite (nepheline syenite and peralkaline calcite carbonatite) suggest that two magma types corresponding to nepheline syenite and pyroxene søvite were present as immiscible liquids in the shallow crust during emplacement of peralkaline magmas in the Fen complex. The overlapping pyroxene trends of these rock types confirm their origin from immiscible liquids. The common parent magma was related to the ijolitic rocks of the Fen complex. The present findings question the relevance of the concept of a universal primitive carbonatite magma, regardless of its assumed composition.

Andersen, Tom

1988-12-01

380

Histochemical and ultrastructural studies on Salix alba and S. matsudana seeds  

Microsoft Academic Search

Mature seeds of Salix alba L. and Salix matsudana Koidz. are exendospermous and consist of an embryo and a seed coat. Ultrastructural studies show the presence of protein bodies, lipid bodies, chloroplasts, and a nucleus in the cells of most of the embryo tissues. Protein bodies always contain two or more globoid crystals. Energy-dispersive X-ray analysis of globoid crystals revealed

Horacio Maroder; Imelda Prego; Sara Maldonado

2003-01-01

381

Strontium isotope evolution of pore water and calcite in the Topopah Spring Tuff, Yucca Mountain, Nevada  

SciTech Connect

Pore water in the Topopah Spring Tuff has a narrow range of {delta}{sup 87}Sr values that can be calculated from the {delta}{sup 87}Sr values of the rock considering advection through and reaction with the overlying nonwelded tuffs of the PTn. This model can be extended to estimate the variation of {delta}{sup 87}Sr in the pore water through time; this approximates the variation of {delta}{sup 87}Sr measured in calcite fracture coatings. In samples of calcite where no silica can be dated by other methods, strontium isotope data may be the only method to determine ages. In addition, other Sr-bearing minerals in the calcite and opal coatings, such as fluorite, may be dated using the same model.

Marshall, Brian D.; Futa, Kiyoto

2001-04-29

382

A U Th calcite isochron age from an active geothermal field in New Zealand  

NASA Astrophysics Data System (ADS)

We report here the first U-Th disequilibrium age for a hydrothermal mineral from an active geothermal system in New Zealand. Vein calcite recovered from a depth of 389 m in Well Thm-1 at the Tauhara geothermal field has an age of 99±44 ka BP. This age was determined using a leachate-leachate isochron technique on four silicate containing sub-samples of calcite from a single vein. Although the error on this isochron age is considerable, it is significantly younger than the earlier estimated age of ˜200 ka BP for the onset of activity at the Tauhara system and probably records the date of brecciation and veining, which may be associated with volcanic activity at the adjacent dacitic Tauhara Volcanic Complex. These results demonstrate that hydrothermal vein calcite can now be dated directly, and opens the way for more detailed studies of the evolution of the New Zealand geothermal systems.

Grimes, Stephen; Rickard, David; Hawkesworth, Chris; van Calsteren, Peter; Browne, Patrick

1998-05-01

383

How Seeds Travel  

NSDL National Science Digital Library

Students will rotate around to 7 different stations to identify how the 7 presented seeds travel, whether it be by wind, water, or animal. They will then record it in their plant journals by illustrating the seed, listing its characteristics, and identifying the way in which it travels. Designer Seeds 7 Stations Coconut-Water Maple Seed- Wind Burdock (burrs) - Animals ...

Mrs Liston

2009-11-09

384

Red peach and seed  

NSDL National Science Digital Library

This peach has only one large seed, as compared to the pomegranate that has many seeds. The peach is like an apple in the way that its seed is surrounded by the entire fruit. The fruit can be eaten by humans, but it is actually there as nourishment and food for the peach seed to grow.

Jack Dykinga (USDA; ARS)

1997-08-01

385