Science.gov

Sample records for calcitic hydrated lime

  1. Effects of direct land application of calcitic lime and lime- and cement kiln dust-sanitized biosolids on the chemical and spectroscopic characteristics of soil lipids

    SciTech Connect

    Dinel, H.; Schnitzer, M.; Pare, T.; Topp, E. ); Lemee, L.; Ambles, A. . Lab. de Chimie); Pelzer, N. )

    1999-05-01

    To determine the extent to which applications of calcitic lime and sanitized biosolids affect the quality of soil organic matter (SOM), lipids extracted from an unamended soil (CON) and from soils amended with calcitic lime (CAL), and lime (LSB)- and cement kiln dust (CDB)-sanitized biosolids were characterized by chemical analysis and Pyrolysis-Gas chromatography (Py-GC). From diethyl ether (DEE) and CHCl[sub 3] soluble lipids, and from weight ratios of the extracts, the organic matter in the soil amended with CDB-treated biosolids seemed to be more biodegraded and biochemically inert than the organic matter in soils that received LSB-treated biosolids and calcitic lime and that in the control soil.

  2. Hydrated lime for metals immobilization and explosives transformation: Treatability study.

    PubMed

    Martin, W Andy; Larson, S L; Nestler, C C; Fabian, G; O'Connor, G; Felt, D R

    2012-05-15

    Fragmentation grenades contain Composition B (RDX and TNT) within a steel shell casing. There is the potential for off-site migration of high explosives and metals from hand grenade training ranges by transport in surface water and subsurface transport in leachate. This treatability study used bench-scale columns and mesocosm-scale laboratory lysimeters to investigate the potential of hydrated lime as a soil amendment for in situ remediation of explosives and metals stabilization in hand grenade range soils. Compared to the unamended soil there was a 26-92% reduction of RDX in the leachate and runoff water from the lime treated soils and a 66-83% reduction of zinc in the leachate and runoff water samples; where the hand grenade range metals of concern were zinc, iron, and manganese. The amended soil was maintained at the target pH of greater than 10.5 for optimum explosives decomposition. The treatability study indicated a high potential of success for scale-up to an in situ field study. PMID:22445717

  3. Disposal, recycle, and utilization of modified fly ash from hydrated lime injection into coal-fired utility boilers

    SciTech Connect

    Dahlin, R.S.; Lishawa, C.L.; Clark, C.C. ); Nolan, P.S. )

    1987-01-01

    This paper presents an assessment of the disposal, utilization, and recycle of a modified fly ash from the injection of hydrated lime into a coal-fired utility boiler. The hydrated lime injection process is being developed by the US Environmental Protection Agency (EPA) as a low-cost alternative for achieving moderate degrees of SO/sub 2/ control at coal-fired power plants. In this process, hydrated lime is injected into the upper furnace where the flue gas temperature is about 2200{sup 0}F (1200{sup 0}C). The hydrated lime decomposes, and the resulting quicklime, CaO, captures SO/sub 2/ according to a formula given.

  4. Effects of three forms of nitrogen fertilizer, phosphorus, and hydrated lime on abandoned mine land reclamation

    SciTech Connect

    Vandevender, J.C.; Sencindiver, J.C.

    1982-12-01

    Three field experiments were established to study the effects of ammonium nitrate (NH/sub 4/NO/sub 3/), sodium nitrate (NaNO/sub 3/), and nitroform (UF), in combinations with hydrated lime and triple superphosphate (TSP), on selected properties and revegetation of mine soils associated with the Little Clarksburg and Upper Freeport coals. The three experimental areas were extremely acid, pH 4.1 or less, and devoid of vegetation. Levels of Ca and Mg were low and levels of K were medium to high. Initial levels of double acid extractable P were medium to high, and levels of sodium bicarbonate extractable P were low. Total N ranged from 0.18% to 0.36%. Hydrated lime increased the neutralization potential, the pH, and the levels of sodium bicarbonate extractable P but not levels of double acid extractable P. Nitrogen applied to limed plots, as NH/sub 4/NO/sub 3/, NaNO/sub 3/ or UF had no effect on the total N levels of the mine soils. Visual estimates of ground cover after one growing season indicated that in comparison to the control the percent ground cover was increased by all fertilizer treatments. The percentage ground cover of the lime-N treatments was not different from that of the lime treatment, nor was the percentage ground cover of the lime-P-N treatments different from that of the lime-P treatment. These results indicate that applications of hydrated lime and P, but not N, were necessary for successful establishment of vegetation on the mine soils used in this study.

  5. Low temperature steam curing hydration of lime-fly-ash compacts

    SciTech Connect

    Marcialis, A.; Massidda, L.; Sanna, U.

    1983-11-01

    Low pressure steam-curing hydration of mixtures with different fly ash-to-lime ratios compacted at 50 and 150 MPa was studied. The pastes were cured for between 8 and 72 h at 60, 75 and 90 degrees C. For comparative purposes duplicate samples were treated for 28 days at 25 degrees C. Compressive strength tests were performed on the hydrated samples and the results obtained compared with those pertaining to combined lime and porosity. Higher lime contents of the anhydrous mixtures correspond to greater amounts of reacted product and enhanced strengths. Higher temperature accelerates the reaction rate and produces a moderate increment in strength in passing from 75 to 90 degrees. This can be attributed to the corresponding increase in porosity of the specimens which contrasts with the positive effect produced by the progression of the pozzolanic reaction. 9 references.

  6. [Bactericidal effect of hydrated lime in aqueous solution].

    PubMed

    Muñoz Ruiz, C; Collazo Ponce, A; Alvarado, F J

    1995-04-01

    This study determined the bactericidal effect of the supernatants of saturated solutions of common lime and of micronized calcium hydroxide (Ca(OH)2) (1500 mg/L), which was used as a control, compared with disinfectants made of solutions of 0.33% colloidal silver (0.0016 mg/L), toluene sulfachloramine (41 mg/L) with sodium bicarbonate (9 mg/L), and sodium hypochlorite (5 mg/L). The test involved four strains of Vibrio cholerae 01, V. parahaemolyticus, Escherichia coli, Salmonella typhimurium, Shigella flexneri, Sh. sonnei, and Sa. enterititidis. These bacteria were inoculated into the bactericidal substances listed above and, after different incubation times, the number of surviving bacteria was determined in vitro by using a counting plate. The results were expressed in colony-forming units (CFU). An in situ estimate was made of the amount of V. cholerae on 35 strawberries and 35 radishes (having a weight of about 10 g per unit) after they were washed under a flow of potable water, submerged in the supernatant of the saturated lime solution (1.5 g/L), or both. The greatest bactericidal effect was obtained against V. cholerae 01 and was observed in 3 minutes. Other enterobacteria were resistant to the effect for up to 30 minutes. PMID:7779285

  7. Full quantitative phase analysis of hydrated lime using the Rietveld method

    SciTech Connect

    Lassinantti Gualtieri, Magdalena

    2012-09-15

    Full quantitative phase analysis (FQPA) using X-ray powder diffraction and Rietveld refinements is a well-established method for the characterization of various hydraulic binders such as Portland cement and hydraulic limes. In this paper, the Rietveld method is applied to hydrated lime, a non-hydraulic traditional binder. The potential presence of an amorphous phase in this material is generally ignored. Both synchrotron radiation and a conventional X-ray source were used for data collection. The applicability of the developed control file for the Rietveld refinements was investigated using samples spiked with glass. The results were cross-checked by other independent methods such as thermal and chemical analyses. The sample microstructure was observed by transmission electron microscopy. It was found that the consistency between the different methods was satisfactory, supporting the validity of FQPA for this material. For the samples studied in this work, the amount of amorphous material was in the range 2-15 wt.%.

  8. CONTROL OF SOX EMISSIONS BY IN-FURNACE SORBENT INJECTION: CARBONATES VS HYDRATES

    EPA Science Inventory

    The paper provides high-temperature isothermal data on SO2 capture by calcium-based sorbents, obtained in a dispersed-phase reactor for limestones, dolomites, hydrated calcitic limes, and hydrated dolomitic limes as a function of Ca/S molar ratio, temperature, and SO2 partial pre...

  9. Methanogenic calcite, 13C-depleted bivalve shells, and gas hydrate from a mud volcano offshore southern California

    USGS Publications Warehouse

    Hein, J.R.; Normark, W.R.; McIntyre, B.R.; Lorenson, T.D.; Powell, C.L., II

    2006-01-01

    Methane and hydrogen sulfide vent from a cold seep above a shallowly buried methane hydrate in a mud volcano located 24 km offshore southern California in?? 800 m of water. Bivalves, authigenic calcite, and methane hydrate were recovered in a 2.1 m piston core. Aragonite shells of two bivalve species are unusually depleted in 13C (to -91??? ??13C), the most 13C-depleted shells of marine macrofauna yet discovered. Carbon isotopes for both living and dead specimens indicate that they used, in part, carbon derived from anaerobically oxidized methane to construct their shells. The ??13C values are highly variable, but most are within the range -12??? to -91???. This variability may be diagnostic for identifying cold-seep-hydrate systems in the geologic record. Authigenic calcite is abundant in the cores down to ???1.5 m subbottom, the top of the methane hydrate. The calcite is depleted in 13C (??13C = -46??? to -58???), indicating that carbon produced by anaerobically oxidized methane is the main source of the calcite. Methane sources include a geologic hydrocarbon reservoir from Miocene source rocks, and biogenic and thermogenic degradation of organic matter in basin sediments. Oxygen isotopes indicate that most calcite formed out of isotopic equilibrium with ambient bottom water, under the influence of gas hydrate dissociation and strong methane flux. High metal content in the mud volcano sediment indicates leaching of basement rocks by fluid circulating along an underlying fault, which also allows for a high flux of fossil methane. ?? 2006 Geological Society of America.

  10. Three-dimensional hydration layer mapping on the (10.4) surface of calcite using amplitude modulation atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Marutschke, Christoph; Walters, Deron; Cleveland, Jason; Hermes, Ilka; Bechstein, Ralf; Kühnle, Angelika

    2014-08-01

    Calcite, the most stable modification of calcium carbonate, is a major mineral in nature. It is, therefore, highly relevant in a broad range of fields such as biomineralization, sea water desalination and oil production. Knowledge of the surface structure and reactivity of the most stable cleavage plane, calcite (10.4), is pivotal for understanding the role of calcite in these diverse areas. Given the fact that most biological processes and technical applications take place in an aqueous environment, perhaps the most basic—yet decisive—question addresses the interaction of water molecules with the calcite (10.4) surface. In this work, amplitude modulation atomic force microscopy is used for three-dimensional (3D) mapping of the surface structure and the hydration layers above the surface. An easy-to-use scanning protocol is implemented for collecting reliable 3D data. We carefully discuss a comprehensible criterion for identifying the solid-liquid interface within our data. In our data three hydration layers form a characteristic pattern that is commensurate with the underlying calcite surface.

  11. DISPOSAL, RECYCLE, AND UTILIZATION OF MODIFIED FLY ASH FROM HYDRATED LIME INJECTION INTO COAL-FIRED UTILITY BOILERS

    EPA Science Inventory

    The paper gives results of an assessment of the disposal, utilization, and recycle os a modified fly ash from the injection of hydrated lime into a coal-fired utility boiler. The process, developed as a low-cost alternative for achieving moderate degrees of SO2 control at coal-fi...

  12. Evaluating slurried-hydrated lime pond-shoreline treatments for reducing populations of rams-horn snails

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trematodes can cause massive infections in fish, and the most promising approach for the control of these infections is the reduction or elimination of snails that vector the trematodes. A recent approach, the application of high concentrations of slurried-hydrated lime (SHL) or copper sulfate pent...

  13. Adsorption Properties of Triethylene Glycol on a Hydrated {101̅4} Calcite Surface and Its Effect on Adsorbed Water.

    PubMed

    Olsen, Richard; Leirvik, Kim N; Kvamme, Bjørn; Kuznetsova, Tatiana

    2015-08-11

    Molecular dynamics (MD) and Born-Oppenheimer MD (BOMD) simulations were employed to investigate adsorption of aqueous triethylene glycol (TEG) on a hydrated {101̅4} calcite surface at 298 K. We analyzed the orientation of TEG adsorbed on calcite, as well as the impact of TEG on the water density and adsorption free energy. The adsorption energies of TEG, free energy profiles for TEG, details of hydrogen bonding between water and adsorbed TEG, and dihedral angle distribution of adsorbed TEG were estimated. We found that while the first layer of water was mostly unaffected by the presence of adsorbed TEG, the density of the second water layer was decreased by 71% at 75% surface coverage of TEG. TEG primarily attached to the calcite surface via two adjacent adsorption sites. Hydrogen bonds between water and adsorbed TEG in the second layer almost exclusively involved the hydroxyl oxygen of TEG. The adsorption energy of TEG on calcite in a vacuum environment calculated by classical MD amounted to 217 kJ/mol, which agreed very well with estimates found by using BOMD. Adsorption on hydrated calcite yielded a drastically lower value of 33 kJ/mol, with the corresponding adsorption free energy of 55.3 kJ/mol, giving an entropy increase of 22.3 kJ/mol due to adsorption. We found that the presence of TEG resulted in a decreased magnitude of the adsorption free energy of water, thus decreasing the calcite wettability. This effect can have a profound effect on oil and gas reservoir properties and must be carefully considered when evaluating the risk of hydrate nucleation. PMID:26161580

  14. Modeling dry-scrubbing of gaseous HCl with hydrated lime in cyclones with and without recirculation.

    PubMed

    Chibante, Vania G; Fonseca, Ana M; Salcedo, Romualdo R

    2010-06-15

    A mathematical model describing the dry-scrubbing of gaseous hydrogen chloride (HCl) with solid hydrated lime particles (Ca(OH)(2)) was developed and experimentally verified. The model applies to cyclone systems with and without recirculation, where reaction and particle collection occurs in the same processing unit. The Modified Grain Model was selected to describe the behavior of the reaction process and it was assumed that the gas and the solid particles flow in the reactor with a plug flow. In this work, this behavior is approximated by a cascade of N CSTRs in series. Some of the model parameters were estimated by optimization taking into account the experimental results obtained. A good agreement was observed between the experimental results and those predicted by the model, where the main control resistance is the diffusion of the gaseous reactant in the layer of solid product formed. PMID:20185231

  15. Investigation of fatigue properties of granite asphalt mixtures containing hydrated lime

    NASA Astrophysics Data System (ADS)

    Wu, Shaopeng; Huang, Xu

    2009-12-01

    This paper presents the results of a laboratory study of evaluating the fatigue characteristics of granite asphalt mixtures (GAM) using different testing methods. In the study, the fatigue performances of GAM were evaluated with Superpave indirect tensile test (IDT) and four-point beam fatigue test. Specimens were conditioned by four different methods: (1) one cycle of freeze-thaw (F-T), (2) two cycles of F-T, (3) immersion in 60C water bath for 30min (4) immersion in 60C water bath for 48h, and contrastive analysis was made with unconditioned specimens. Investigation of moisture damage influence on the fatigue properties of GAM with and without Hydrated Lime (HL) was done. The results from this study indicated that both Superpave IDT and four-point beam fatigue test agreed with each other in ranking the fatigue property of GAM. Increasing F-T cycles or immersion time would decrease fatigue life in GAM, and the addition of HL was effective to prolong the fatigue life in GAM.

  16. Investigation of fatigue properties of granite asphalt mixtures containing hydrated lime

    NASA Astrophysics Data System (ADS)

    Wu, Shaopeng; Huang, Xu

    2010-03-01

    This paper presents the results of a laboratory study of evaluating the fatigue characteristics of granite asphalt mixtures (GAM) using different testing methods. In the study, the fatigue performances of GAM were evaluated with Superpave indirect tensile test (IDT) and four-point beam fatigue test. Specimens were conditioned by four different methods: (1) one cycle of freeze-thaw (F-T), (2) two cycles of F-T, (3) immersion in 60C water bath for 30min (4) immersion in 60C water bath for 48h, and contrastive analysis was made with unconditioned specimens. Investigation of moisture damage influence on the fatigue properties of GAM with and without Hydrated Lime (HL) was done. The results from this study indicated that both Superpave IDT and four-point beam fatigue test agreed with each other in ranking the fatigue property of GAM. Increasing F-T cycles or immersion time would decrease fatigue life in GAM, and the addition of HL was effective to prolong the fatigue life in GAM.

  17. Long-term effects of hydrated lime and quicklime on the decay of human remains using pig cadavers as human body analogues: Field experiments.

    PubMed

    Schotsmans, Eline M J; Fletcher, Jonathan N; Denton, John; Janaway, Robert C; Wilson, Andrew S

    2014-05-01

    An increased number of police enquiries involving human remains buried with lime have demonstrated the need for more research into the effect of different types of lime on cadaver decomposition and its micro-environment. This study follows previous studies by the authors who have investigated the effects of lime on the decay of human remains in laboratory conditions and 6 months of field experiments. Six pig carcasses (Sus scrofa), used as human body analogues, were buried without lime with hydrated lime (Ca(OH)2) and quicklime (CaO) in shallow graves in sandy-loam soil in Belgium and recovered after 17 and 42 months of burial. Analysis of the soil, lime and carcasses included entomology, pH, moisture content, microbial activity, histology and lime carbonation. The results of this study demonstrate that despite conflicting evidence in the literature, the extent of decomposition is slowed down by burial with both hydrated lime and quicklime. The more advanced the decay process, the more similar the degree of liquefaction between the limed and unlimed remains. The end result for each mode of burial will ultimately result in skeletonisation. This study has implications for the investigation of clandestine burials, for a better understanding of archaeological plaster burials and potentially for the interpretation of mass graves and management of mass disasters by humanitarian organisation and DVI teams. PMID:24513400

  18. Calcium sulfoaluminate (Ye'elimite) hydration in the presence of gypsum, calcite, and vaterite

    SciTech Connect

    Hargis, Craig W.; Telesca, Antonio; Monteiro, Paulo J.M.

    2014-11-15

    Six calcium sulfoaluminate-based cementitious systems composed of calcium sulfoaluminate, calcite, vaterite, and gypsum were cured as pastes and mortars for 1, 7, 28 and 84 days. Pastes were analyzed with X-ray diffraction, thermogravimetric and differential thermal analyses. Mortars were tested for compressive strength, dimensional stability and setting time. Furthermore, pastes with a water/cementitious material mass ratio of 0.80 were tested for heat evolution during the first 48 h by means of isothermal conduction calorimetry. It has been found that: (1) both calcite and vaterite reacted with monosulfoaluminate to give monocarboaluminate and ettringite, with vaterite being more reactive; (2) gypsum lowered the reactivity of both carbonates; (3) expansion was reduced by calcite and vaterite, irrespective of the presence of gypsum; and (4) both carbonates increased compressive strength in the absence of gypsum and decreased compressive strength less in the presence of gypsum, with vaterite's action more effective than that of calcite.

  19. Utilization of calcite and waste glass for preparing construction materials with a low environmental load.

    PubMed

    Maeda, Hirotaka; Imaizumi, Haruki; Ishida, Emile Hideki

    2011-11-01

    In this study, porous calcite materials are hydrothermally treated at 200 °C using powder compacts consisting of calcite and glasses composed of silica-rich soda-lime. After treatment, the glasses are converted into calcium aluminosilicate hydrates, such as zeolite phases, which increase their strength. The porosity and morphology of new deposits of hydrothermally solidified materials depend up on the chemical composition of glass. The use of calcite and glass in the hydrothermal treatment plays an important role in the solidification of calcite without thermal decomposition. PMID:21794973

  20. Toward a conceptual model of the calcite surface: hydration, hydrolysis, and surface potential

    NASA Astrophysics Data System (ADS)

    Stipp, S. L. S.

    1999-10-01

    Because of a recent increase in interest in the properties of the calcite surface, there has also been an increase in activity toward development of mathematical models to describe calcite’s surface behaviour, particularly with respect to adsorption and precipitation. For a mathematical model to be realistic, it must be based on a sound conceptual model of atomic structure at the interface. New observations from high resolution techniques have been combined with previously published data to resolve the apparent conflict with results from electrokinetic studies and to present a picture of what the calcite surface probably looks like at the atomic scale. In ultra-high vacuum (10-10 mbar), a cleaved surface remains unreacted for at least an hour, but the unreacted surface does not remain as a termination of the bulk structure. X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED), and atomic force microscopy (AFM) show that the outer-most atomic layer relaxes and the surface slightly restructures. In air, dangling bonds are satisfied by hydrolysed water. XPS and time-of-flight secondary ion mass spectrometry (TOF-SIMS) reveal the presence of adsorbed OH and H. In AFM images, the features so typical of calcite, namely, alternate-row offset, pairing and height difference, as well as the consistent dependence of these features on the force and direction of tip scanning, are best explained by OH filling of the vacant O sites created during cleavage on the Ca octahedra. Thus there is solid evidence to indicate the presence of OH and H chemi-sorbed at the termination of the bulk calcite structure. Wet chemical studies, however, show that calcite’s pHpzc (zero point of charge) varies with sample history and solution composition. Electrophoretic mobility measurements indicate that the potential-determining ions are not H+ and OH-, but rather Ca2+ and CO32- (or HCO3- or H2CO30). This apparent conflict is resolved by a slight modification of the electrical double layer (EDL) model. At the bulk termination, hydrolysis species are chemi-bonded. At the Stern layer, adsorption attaches Ca2+ and CO32- (or other carbonate species), but the hydrolysis layer keeps them in outer-sphere coordination to the surface. With dehydration, loss of the hydrolysis species results in direct contact between adsorbed ions and the bulk termination, therefore, inner-sphere sorption is equivalent to extension of the three dimensional bulk network, which is precipitation. Attachment of ions with size and charge compatible with Ca and CO3 likewise results in coprecipitation and solid-solution formation.

  1. Genesis and geometry of the Meiklejohn Peak lime mud-mound, Bare Mountain Quadrangle, Nevada, USA: Ordovician limestone with submarine frost heave structures—a possible response to gas clathrate hydrate evolution

    NASA Astrophysics Data System (ADS)

    Krause, Federico F.

    2001-12-01

    During the Early Middle Ordovician (Early Whiterockian) the Meiklejohn Peak lime mud-mound, a large whaleback or dolphin back dome, grew on a carbonate ramp tens to hundreds of kilometres offshore. This ramp extended from the northwest margin of Laurentia into the open waters of the ancestral Pacific Ocean to the north. The mound developed in an outer ramp environment, in relatively deep and cold water. A steep northern margin with a slope that exceeds 55° characterizes the mound. This margin is split by a 14-m long vertical fracture that separates a zone of slumped, drag-folded and brecciated rocks from the main mass of the mound. Failure along this fracture occurred subcutaneously, as highlighted by covering beds that are folded next to the mound. Brecciated blocks and clasts contain zebra and stromatactis structures indicating that these rocks and structures were lithified early in the history of the mound. The southern end of the mound is less steep and is characterized by large, echinodermal grainstone cross-beds. These deposits are part of a large, subaqueous dune that grew northwards and preceded the main development of the mound. Southward dipping and downlapping layers of mud-mound mudstone and wackestone overlie the dune. These muddy limestone layers are cut in several places by injection dykes and are pierced, near the contact with the underlying dune, by a 25-m long pipe filled with rotated nodular and brecciated mud-mound clasts. This long pipe extends to the edge of the mound and appears to have been a conduit where fluidized materials that came from the mound's interior were vented. The interior of the mound is typified by light grey limestone with zebra bands and stromatactis structures. Both structures represent former cavity systems that are filled with fibrous and bladed calcite and pelleted and laminated geopetal mudstone. Spar bands of zebra limestone often extend for several metres and appear to have been unsupported over these distances. Zebra banded rocks are also accompanied by snout and socket structures and, in some instances, are folded and sheared by curving kink bands. Zebra and stromatactis limestone structures found throughout the mud-mound resemble frost heave and cryoturbation structures identified in both Holocene and Pleistocene cryosols, and in laboratory experiments with advancing freezing fronts in clay-size sediment. Significantly, modern occurrences of methane clathrate hydrate (methane-charged ice) display parallel and digitate layering similar in depositional appearance to that of zebra and stromatactis limestone from Meiklejohn Peak. Early carbonate cements are also commonly associated with these modern clathrate hydrate deposits. Consequently, gas clathrate hydrates may have been the propping agent for zebra and stromatactis structures observed in the mud-mound. In this scenario, carbonate cements would have precipitated and stabilized these structures, both with the consolidation and dissociation of gas clathrate hydrates, and with the oxidation and reduction of associated gases. Stable δ13C and δ18O isotope ratios collected from mudstone and spar of zebra and stromatactis structures indicate that they were lithified in equilibrium with Ordovician seawater. The δ13C isotope ratios recorded at Meiklejohn Peak are similar to δ13C isotopic ratios obtained from ∑CO 2 evolving from modern seafloor. These isotopic ratios may indicate that frost heave structures in the Meiklejohn Peak mud-mound are the result of consolidation and dissociation of carbon dioxide clathrate hydrates. Even though the bulk of gas clathrate hydrates identified to date in modern ocean floors are composed of methane, carbon dioxide clathrate hydrates are known from the modern seafloor of the Okinawa Trough. They may also be common in areas of abundant carbonate sediment accumulation, as suggested by recent observations from the Great Australian Bight.

  2. Evaluation of Ohio fly ash/hydrated lime slurries and Type 1 cement sorbent slurries in the U.C. Pilot spray dryer facility. Final report, September 1, 1993--August 31, 1994

    SciTech Connect

    Keener, T.C.; Khang, S.J.; Meyers, G.R.

    1995-02-01

    The objectives of this year`s work included an evaluation of the performance of fly ash/hydrated lime as well as hydrated cement sorbents for spray drying adsorption (SDA) of SO{sub 2} from a simulated high-sulfur flue gas. These sorbents were evaluated for several different hydration methods, and under different SDA operating conditions. In addition, the physical properties of surface area and porosity of the sorbents was determined. The most reactive fly ash/hydrated lime sorbent studied was prepared at room temperature with milled fly ash. Milling fly ash prior to hydration with lime did have a beneficial effect on calcium utilization. No benefit in utilization was experienced either by hydrating the slurries at a temperature of 90{degrees}C as compared to hydration at room temperature, or by increasing hydration time. While the surface areas varied greatly from sorbent to sorbent, the pore size distributions indicated ``ink bottle`` pores with surface porosity on the order of 0.5 microns. No correlation could be drawn between the surface area of the sorbents and calcium utilization. These results suggest that the composition of the resulting sorbent might be more important than its surface area. The most effective sorbent studied this year was produced by hydrating cement for 3 days at room temperature. This sorbent provided a removal efficiency and a calcium utilization over 25 percent higher than baseline results at an approach to saturation temperature of 30{degrees}F and a stoichiometric ratio of 0.9. A maximum SO{sub 2} removal efficiency of about 90 percent was experienced with this sorbent at an approach to saturation temperature of 20{degrees}F.

  3. Summary report on geochemical barrier special study. [Geochemically modify tailings to immobilize contaminants with modifiers such as peat, limestone, and hydrated lime

    SciTech Connect

    Not Available

    1988-12-01

    Long-term management of uranium mill tailings must provide assurance that soluble contaminants will not migrate beyond the Point of Compliance. Conventional management alternatives provide containment through the use of physical barriers which are designed to prevent migration of water through the tailings pile. An alternative is to geochemically modify the tailings to immobilize the contaminants. This investigation examined three potential geochemical modifiers to determine their ability to immobilize inorganic groundwater contaminants found in uranium mill tailings. These modifiers were hydrated lime (Ca(OH)[sub 2]), limestone (CaCO[sub 3]), and a sphaegnum peat moss. This investigation focused on both the geochemical interactions between the tailings and the modifiers, and the effects the modifiers had on the physical strength of the tailings. The geochemical investigations began with characterization of the tailings by X-ray diffraction and scanning electron microscopy. This was followed by batch leaching experiments in which various concentrations of each modifier were added to tailings in shaker flasks and allowed to come to equilibrium. Finally, column experiments were conducted to simulate flow through a tailings pile. The results show that all of the modifiers were at least moderately effective at immobilizing most of the groundwater contaminants of concern at uranium mill tailings sites. Hydrated lime was able to achieve 90 percent concentration reduction of arsenic, cadmium, selenium, uranium, and sulfate when added at a two percent concentration. Limestone was somewhat less effective and peat removed greater than 90 percent of arsenic, lead, uranium, and sulfate at a one percent concentration. The column tests showed that kinetic and/or mass transfer limitations are important and that sufficient time must be allowed for the immobilization reactions to occur.

  4. Liming acid ponds in New York

    SciTech Connect

    Blake, L.M.

    1981-01-01

    Cost-benefit ratios are considered. Application of hydrated lime in New York State is limited to open-water periods for economic reasons. Hydrated lime is superior to the less potent agricultural lime, calcium carbonate, although the latter permits a longer time between treatments. No matter which type of lime is used, the lime is dumped from bags from a slowly moving boat. More lime is spread in shallow water areas than over deep water areas so that the lime is placed where the fish live and it is exposed more effectively to wave action and currents. The use of lime in remote areas is more difficult due to the high cost of transport. Possible increases in mercury content of fish after lime treatment were studied. Mercury levels were determined in brook trout from selected lakes, limed and unlimed. No increase in mercury levels was apparent in either limed or unlimed control waters. Costs for liming remote ponds range as high as $297 per acre. Experience with the dry dispersal method has shown that lime can be moved at a rate of 5 tons per hour. The average cost of this method should be about $100 per acre. It was concluded that for both accessible and remote ponds, liming is an effective and economically feasible tool which can be used to counteract the adverse impact of acid precipitation and maintain selected fisheries. 8 references, 1 figure, 2 tables.

  5. A Reacidification Model for Acidified Lakes Neutralized With Calcite

    NASA Astrophysics Data System (ADS)

    Sverdrup, Harald; Warfvinge, Per

    1985-09-01

    In lake liming operations in Sweden, acidified lakes are reclaimed by neutralization with calcite powder. The amount added is intended to neutralize the water column as well as to delay the reacidification. The reacidification of limed lakes is dependent on the dilution of the dissolved calcium carbonate with time and, for a limited period of time, the dissolution of calcite from the lake sediments. Calcite on the lake bottom will, in addition to being covered by sedimentation, become inactivated by precipitates of humus and clay minerals clogging the calcite surfaces. A model has been developed to calculate the reacidification of a limed lake which includes the following mechanisms: (1) the dissolution of calcite and a subsequent neutralization of acid water, (2) owing to the increase inpH value, occurrence of precipitation of humus and dissolved metals onto the calcite surface and inhibition of the dissolution of calcite (3) reversible sorbtion of calcium from the water column by sediments not covered with calcite, and (4) diffusive transport through a boundary bottom layer to the water column. In a first approach the lake was modeled as a continuously stirred tank. The equations were derived from a mass balance and the dissolution kinetics for calcite to describe the long-term development ofpH, alkalinity, and calcium concentration in the lake. The differential equations describing the mechanisms were solved with the help of a computer code. The model accurately describes the reacidification and the mass balances observed in several limed lakes.

  6. [Study on Archaeological Lime Powders from Taosi and Yinxu Sites by FTIR].

    PubMed

    Wei, Guo-feng; Zhang, Chen; Chen, Guo-liang; He, Yu-ling; Gao, Jiang-tao; Zhang, Bing-jian

    2015-03-01

    Archaeological lime powders samples from Taosi and Yinxu sites, natural limestone and experimentally prepared lime mortar were investigated by means of Fourier transform infrared spectrometry (FTIR) to identify the raw material of lime powders from Taosi and Yinxu sites. Results show that ν2/ν4 ratio of calcite resulted from carbonation reaction of man-made lime is around 6.31, which is higher than that of calcite in natural limestone and reflects the difference in the disorder of calcite crystal structure among the natural limestone and prepared lime mortar. With additional grinding, the values of v2 and ν4 in natural limestone and prepared lime mortar decrease. Meanwhile, the trend lines of ν2 versus ν4 for calcite in experimentally prepared lime mortar have a steeper slope when compared to calcite in natural limestone. These imply that ν2/ν4 ratio and the slope of the trend lines of ν2 versus ν4 can be used to determine the archaeological man-made lime. Based on the experiment results, it is possible that the archaeological lime powder from Taosi and Yinxu sites was prepared using man-made lime and the ancient Chinese have mastered the calcining technology of man-made lime in the late Neolithic period about 4 300 years ago. PMID:26117865

  7. Microstructure and rheology of lime putty.

    PubMed

    Ruiz-Agudo, E; Rodriguez-Navarro, C

    2010-03-16

    The rheology of lime binders, which is critical in the final performance of lime mortars and plasters, is poorly understood, particularly in its relationship with the microstructure and colloidal characteristics of slaked lime (Ca(OH)(2)) suspensions (i.e., lime putties). Here, the contrasting flow behavior of lime putties obtained upon slaking (hydration) of soft and hard burnt quicklimes (CaO) is compared and discussed in terms of the differences found in particle size, morphology, degree of aggregation, and fractal nature of aggregates as well as their evolution with aging time. We show that lime putties behave as non-Newtonian fluids, with thixotropic and rheopectic behavior observed for hard and soft burnt limes, respectively. Aggregation of portlandite nanoparticles in the aqueous suspension controls the time evolution of the rheological properties of lime putty, which is also influenced by the dominant slaking mechanism, that is, liquid versus vapor slaking in hard and soft burnt quicklimes, respectively. These results may be of relevance in the selection of optimal procedures and conditions for the preparation of lime mortars used in the conservation of historical buildings. PMID:19916534

  8. An integrated study of limestone behavior during calcination and hydration processes

    NASA Astrophysics Data System (ADS)

    Leontakianakos, George; Baziotis, Ioannis; Kiousis, George; Giavis, Dimitrios; Tsimas, Stamatios

    2010-05-01

    One of the most important processes in industrial scale, represents the dissociation of carbonates to lime and CO2. This process, called calcination, occur at relative high temperatures (>9000C). Lime rapidly reacts with the water, liberating high amounts of heat producing Ca(OH)2. For the purpose of the present study five samples of different limestones from different quarries from Greece were collected. The aim of the study was to analyze the behavior of the limestones during calcination and test the hydraulic properties of the quick lime. Limestone particles (1.6-2 cm) were reacted in a pre-heated oven at three different temperatures (900, 1050 and 1200oC) for 30 min in order to produce quick lime. Petrographic features of studied limestones were done using secondary electron microscopy (SEM). X-ray diffractometry and Raman micro-spectroscopy were applied in order to identify the carbonate phases (calcite and dolomite) in the studied limestones. Chemical composition of limestones and limes were determined by Atomic absorption spectroscopy (AAS) method. 25 gr of the produced lime were hydrated by adding 100 ml distilled water having a room temperature (~250C) to produce Ca(OH)2 through the exothermic reaction CaO(s) + H2O(l)-Ca(OH)2(aq). We measured the temperature difference in the water until a maximum value is reached; this value represents the reactivity of the produced slaked lime. Chemical composition and reactivity estimation were done following European Standards EN-459-2. The reactivity of quick lime depends on various factors with the most important being the internal structure of the limestone, calcination temperature/duration applied to the limestone, the admixtures such as the MgO content, hard-burned phenomena etc. The treatment of the experimental results suggests the following: i) The (CaO+MgO)Lime value have similar variation for both samples calcined at temperatures of 1050oC (58-90 wt%) and 1200oC (57-94 wt%); whereas the samples calcined at 900oC share a small (CaO+MgO)Lime value (5-17wt%). ii) The limestones calcined at 9000C have the lowest reactivity values in oppose to the samples calcined at 10500C which show the highest reactivity. The temperature rise of the limestone samples calcined at 12000C was lower than that of the 10500C. iii) At constant reactivity rate the water required to complete hydration is lower; for example, the quick lime calcined at temperature of 10500C needs much less water for hydration relative to the equivalent samples at 12000C. A thorough interpretation of our results suggest that the low reactivity values for the samples calcined at 9000C could be due to the low calcination temperature or the calcination time of 30 min was too short to produce enough lime. The differences in hydraulic behavior of the samples calcined at higher temperatures of 12000C probably indicates that the structure of quick lime becomes more dense and compact and the grains recrystallized tending to become larger, leading to reduction of the existing pore space. Consequently, the hydration process cannot entirely proceed into the interior mass of the quick lime requiring more time to be accomplished.

  9. Kinetics of the reaction of iron blast furnace slag/hydrated lime sorbents with SO{sub 2} at low temperatures: effects of the presence of CO{sub 2}, O{sub 2}, and NOx

    SciTech Connect

    Liu, C.F.; Shih, S.M.

    2009-09-15

    The effects of the presence of CO{sub 2}, O{sub 2}, and NOx in the flue gas on the kinetics of the sulfation of blast furnace slag/hydrated lime sorbents at low temperatures were studied using a differential fixed-bed reactor. When O{sub 2} and NOx were not present simultaneously, the reaction kinetics was about the same as that under the gas mixtures containing SO{sub 2}, H{sub 2}O, and N{sub 2} only, being affected mainly by the relative humidity. The sulfation of sorbents can be described by the surface coverage model and the model equations derived for the latter case. When both O{sub 2} and NOx, were present, the sulfation of sorbents was greatly enhanced, forming a great amount of sulfate in addition to sulfite. The surface coverage model is still valid in this case, but the model equations obtained show a more marked effect of relative humidity and negligible effects of SO{sub 2} concentration and temperature on the reaction. The effect of sorbent composition on the reaction kinetics was entirely represented by the effects of the initial specific surface area (S{sub g0}) and the Ca molar content (M{sup -1}) of sorbent. The initial conversion rate of sorbent increased linearly with increasing S{sub g0}, and the ultimate conversion increased linearly with increasing S{sub g0}M{sup -1}. The model equations obtained in this work are applicable to describe the kinetics of the sulfation of the sorbents in the low-temperature dry and semidry fine gas desulfurization processes either with an upstream NOx, removal unit or without.111

  10. Tetravalent uranium in calcite.

    SciTech Connect

    Sturchio, N. C.; Antonio, M. R.; Soderholm, L.; Sutton, S. R.; Brannon, J. C.; Univ. of Chicago; Washington Univ.

    1998-08-14

    X-ray absorption spectroscopy and x-ray fluorescence microprobe studies of 35-million-year-old calcite from a Mississippi Valley-type zinc ore deposit indicate substitution of tetravalent uranium for divalent calcium. Thus, tetravalent uranium has a stable location in calcite deposited under reducing conditions. This result validates uranium-series dating methods (including uranium/lead dating) for ancient calcite and shows that calcite provides a sink for uranium in deep groundwater aquifers and anoxic lacustrine and marine basins.

  11. Tetravalent uranium in calcite

    PubMed

    Sturchio; Antonio; Soderholm; Sutton; Brannon

    1998-08-14

    X-ray absorption spectroscopy and x-ray fluorescence microprobe studies of 35-million-year-old calcite from a Mississippi Valley-type zinc ore deposit indicate substitution of tetravalent uranium for divalent calcium. Thus, tetravalent uranium has a stable location in calcite deposited under reducing conditions. This result validates uranium-series dating methods (including uranium/lead dating) for ancient calcite and shows that calcite provides a sink for uranium in deep groundwater aquifers and anoxic lacustrine and marine basins. PMID:9703507

  12. High surface area calcite

    NASA Astrophysics Data System (ADS)

    Schultz, L. N.; Andersson, M. P.; Dalby, K. N.; Müter, D.; Okhrimenko, D. V.; Fordsmand, H.; Stipp, S. L. S.

    2013-05-01

    Calcite (CaCO3) is important in many fields—in nature, because it is a component of aquifers, oil reservoirs and prospective CO2 storage sites, and in industry, where it is used in products as diverse as paper, toothpaste, paint, plastic and aspirin. It is difficult to obtain high purity calcite with a high surface area but such material is necessary for industrial applications and for fundamental calcite research. Commercial powder is nearly always contaminated with growth inhibitors such as sugars, citrate or pectin and most laboratory synthesis methods deliver large precipitates, often containing vaterite or aragonite. To address this problem, we (i) adapted the method of carbonating a Ca(OH)2 slurry with CO2 gas to develop the first simple, cheap, safe and reproducible procedure using common laboratory equipment, to obtain calcite that reproducibly had a surface area of 14-17 m2/g and (ii) conducted a thorough characterization of the product. Scanning electron microscopy (SEM) revealed nanometer scale, rhombohedral crystals. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (IR) confirmed highly crystalline, pure calcite that more closely resembles the dimensions of the biogenic calcite produced by algae in coccoliths than other methods for synthesizing calcite. We suggest that this calcite is useful when purity and high surface area are important.

  13. The mechanism of vapor phase hydration of calcium oxide: implications for CO2 capture.

    PubMed

    Kudłacz, Krzysztof; Rodriguez-Navarro, Carlos

    2014-10-21

    Lime-based sorbents are used for fuel- and flue-gas capture, thereby representing an economic and effective way to reduce CO2 emissions. Their use involves cyclic carbonation/calcination which results in a significant conversion reduction with increasing number of cycles. To reactivate spent CaO, vapor phase hydration is typically performed. However, little is known about the ultimate mechanism of such a hydration process. Here, we show that the vapor phase hydration of CaO formed after calcination of calcite (CaCO3) single crystals is a pseudomorphic, topotactic process, which progresses via an intermediate disordered phase prior to the final formation of oriented Ca(OH)2 nanocrystals. The strong structural control during this solid-state phase transition implies that the microstructural features of the CaO parent phase predetermine the final structural and physicochemical (reactivity and attrition) features of the product hydroxide. The higher molar volume of the product can create an impervious shell around unreacted CaO, thereby limiting the efficiency of the reactivation process. However, in the case of compact, sintered CaO structures, volume expansion cannot be accommodated in the reduced pore volume, and stress generation leads to pervasive cracking. This favors complete hydration but also detrimental attrition. Implications of these results in carbon capture and storage (CCS) are discussed. PMID:25233236

  14. Flash calcining system converts waste lime to usable products while running on gas, oil or coal

    SciTech Connect

    Not Available

    1982-07-01

    This article focuses on the energy efficiency of a flash calcining system which converts waste lime to usable products while running on gas, oil, or coal. The flash calciner can turn significant amounts of undercalcined and normally wasted lime into useful products such as hydrated lime, soil stabilizers and neutralizers. The system has demonstrated that waste fines and dust can be processed into a product having less than two percent loss-on-ignition.

  15. LIMESTONE AND LIME NEUTRALIZATION OF FERROUS IRON ACID MINE DRAINAGE

    EPA Science Inventory

    The U.S. Environmental Protection Agency conducted a 2-yr study on hydrated lime and rock-dust limestone neutralization of acid mine drainage containing ferrous iron at the EPA Crown Mine Drainage Control Field Site near Rivesville, West Virginia. The study investigated optimizat...

  16. Elastic constants of calcite

    USGS Publications Warehouse

    Peselnick, L.; Robie, R.A.

    1962-01-01

    The recent measurements of the elastic constants of calcite by Reddy and Subrahmanyam (1960) disagree with the values obtained independently by Voigt (1910) and Bhimasenachar (1945). The present authors, using an ultrasonic pulse technique at 3 Mc and 25??C, determined the elastic constants of calcite using the exact equations governing the wave velocities in the single crystal. The results are C11=13.7, C33=8.11, C44=3.50, C12=4.82, C13=5.68, and C14=-2.00, in units of 1011 dyncm2. Independent checks of several of the elastic constants were made employing other directions and polarizations of the wave velocities. With the exception of C13, these values substantially agree with the data of Voigt and Bhimasenachar. ?? 1962 The American Institute of Physics.

  17. Hydrate detection

    SciTech Connect

    Dillon, W.P.; Ahlbrandt, T.S.

    1992-01-01

    Project objectives were: (1) to create methods of analyzing gas hydrates in natural sea-floor sediments, using available data, (2) to make estimates of the amount of gas hydrates in marine sediments, (3) to map the distribution of hydrates, (4) to relate concentrations of gas hydrates to natural processes and infer the factors that control hydrate concentration or that result in loss of hydrate from the sea floor. (VC)

  18. Hydrate detection

    SciTech Connect

    Dillon, W.P.; Ahlbrandt, T.S.

    1992-06-01

    Project objectives were: (1) to create methods of analyzing gas hydrates in natural sea-floor sediments, using available data, (2) to make estimates of the amount of gas hydrates in marine sediments, (3) to map the distribution of hydrates, (4) to relate concentrations of gas hydrates to natural processes and infer the factors that control hydrate concentration or that result in loss of hydrate from the sea floor. (VC)

  19. LIME 0.5

    Energy Science and Technology Software Center (ESTSC)

    2011-01-14

    LIME 0.5 is an initial version of a Lightweight Integrating Multi-physics Environment for coupling codes. LIME by itself is not a code for doing multiphysics simulations. Instead, LIME provides the key high-level software, a flexible but defined approach, and interface requirements for a collection of (potentially disparate) physics codes to be combined with strong coupling (when needed) though non-linear solution methods (e.g. JFNK, fixed point), thus creating a new multi-physics simulation capability customized for amore » particular need. ! ! The approach taken is designed to! •! preserve and leverage any important specialized algorithms and/or functionality an existing application may provide,! •! minimize the requirements barrier for an application to participate,! •! work within advanced solver frameworks (e.g. as extensions to the Trilinos/NOX nonlinear solver libraries, PETSc, . . .),! Of note is that components/physics codes that can be coupled within LIME are NOT limited to:! •! components written in one particular language,! •! a particular numerical discretization approach ( e.g. Finite Element), or! •! physical models expressed as PDEʼs.!« less

  20. Fluidized bed combustion residue as an alternative liming material and Ca source. [Prunus persica

    SciTech Connect

    Edwards, J.H.; Horton, B.D.; White, A.W. Jr.; Bennett, O.L.

    1985-01-01

    Fluidized bed combustion residue (FBCR), a by-product of fossil fuel fired boilers, was evaluated as a liming material and a source of calcium for peaches (Prunus persica (L.) Batsch). Incubation studies involving a medium textured soil indicated that FBCR (calcite (FBCRC) or dolomitic (FBCRD) sources) was as effective a liming amendment as the respective agricultural limestone. Maximum soil pH occurred after 26 days incubation with FBCRC, but soil pH increased continuously throughout 137 days incubation with dolomitic limestone. Ammonium acetate extractable Ca was not affected by calcitic source, but Mg concentration increased with rates with the two dolomitic sources, and was highest in the FBCRD source after 137 days incubation. In greenhouse studies with Elberta peach seedlings, FBCRC was more effective in neutralizing soil acidity and increasing extractable soil Ca than calcitic limestone.

  1. Lime-induced phytophotodermatitis

    PubMed Central

    Hankinson, Andrew; Lloyd, Benjamin; Alweis, Richard

    2014-01-01

    This case describes a scenario of lime-induced phytophotodermatitis. Phytophotodermatitis is a dermatitis caused after the skin is exposed to photosensitizing compounds in plants and then exposed to sunlight. Many common plants including citrus fruits, celery, and wild parsnip contain these photosensitizing compounds which cause phytophotodermatitis. It is important for a physician to be aware of phytophotodermatitis because it may often be misdiagnosed as other skin conditions including fungal infection, cellulitis, allergic contact dermatitis, and even child abuse. PMID:25317269

  2. Lime-induced phytophotodermatitis.

    PubMed

    Hankinson, Andrew; Lloyd, Benjamin; Alweis, Richard

    2014-01-01

    This case describes a scenario of lime-induced phytophotodermatitis. Phytophotodermatitis is a dermatitis caused after the skin is exposed to photosensitizing compounds in plants and then exposed to sunlight. Many common plants including citrus fruits, celery, and wild parsnip contain these photosensitizing compounds which cause phytophotodermatitis. It is important for a physician to be aware of phytophotodermatitis because it may often be misdiagnosed as other skin conditions including fungal infection, cellulitis, allergic contact dermatitis, and even child abuse. PMID:25317269

  3. Water transfer properties and shrinkage in lime-based rendering mortars

    NASA Astrophysics Data System (ADS)

    Arizzi, A.; Cultrone, G.

    2012-04-01

    Rendering is the practice of covering a wall or a building façade with one or more layers of mortar, with the main aim to protect the masonry structure against weathering. The render applied must show high flexibility, good adhesion and compatibility with the support (i.e. stone, brick) and, overall, it should be characterised by low water absorption and high water vapour permeability. Water (in the solid, liquid and vapour state) is one of the main factors that drive construction materials to deterioration. Therefore, to evaluate the quality and durability of a rendering mortar, thus ensuring its protective function in the masonry structure, it is fundamental to assess the behaviour of this mortar towards water. Mortars were elaborated with a calcitic dry hydrated lime, a calcareous aggregate, a pozzolan, a lightweight aggregate, a water-retaining agent and a plasticiser. Four types of lime mortars were prepared, in which the binder-to-aggregate ratios were 1:3, 1:4, 1:6 and 1:9 by weight, whilst the pozzolan was kept at 10% of the lime (by mass) and the total admixtures proportion was less than 2% of the total mass. The influence of the characteristics of mortars pore system on the amount of water absorbed and the kinetics of absorption was investigated by means of: free water absorption and drying; capillary uptake; water permeability; water vapour permeability. Interesting deductions can be made from the values of water and water vapour permeability found for mortars: the former increases exponentially with the sand volume of the mortar, whilst the latter increases almost exponentially with the initial water content added to the mortar mixes during their elaboration. However, the relationship obtained between porosity of mortars and permeability values is not really clear. This finding suggests that the permeability of a material cannot be estimated on the basis of its porosity as it can be made for the capillary uptake and free water absorption. Another aspect to be considered in the evaluation of the decay caused by water is the high shrinkage suffered by renders when they are applied on an extended surface (i.e. a wall), especially when they are aerial lime-based mortars. The shrinkage causes the formation of fissures that become an easy way for water to entry and diffuse through the mortar pore system. This factor is rarely taken into consideration during the hydric assays performed in the laboratory, since mortar samples of 4x4x16 or 4x4x4 cm in size do not undergo to such degree of shrinkage. For this reason, we have also studied the shrinkage of these mortars and considered it in the final assessment of mortars hydric properties. The shrinkage was evaluated according to a non-standardized method, by means of a shrinkage-measuring device that measures the mortar dimensional variations over time. This measurement has shown that the highest the lime content the biggest the mortar shrinkage and, consequently, the strongest the decay due to water.

  4. Tracing formation and durability of calcite in a Punic-Roman cistern mortar (Pantelleria Island, Italy).

    PubMed

    Dietzel, Martin; Schön, Frerich; Heinrichs, Jens; Deditius, Artur P; Leis, Albrecht

    2016-01-01

    Ancient hydraulic lime mortar preserves chemical and isotopic signatures that provide important information about historical processing and its durability. The distribution and isotopic composition of calcite in a mortar of a well-preserved Punic-Roman cistern at Pantelleria Island (Italy) was used to trace the formation conditions, durability, and individual processing periods of the cistern mortar. The analyses of stable carbon and oxygen isotopes of calcite revealed four individual horizons, D, E, B-1 and B-2, of mortar from the top to the bottom of the cistern floor. Volcanic and ceramic aggregates were used for the production of the mortar of horizons E/D and B-1/B-2, respectively. All horizons comprise hydraulic lime mortar characterized by a mean cementation index of 1.5 ± 1, and a constant binder to aggregate ratio of 0.31 ± 0.01. This suggests standardized and highly effective processing of the cistern. The high durability of calcite formed during carbonation of slaked lime within the matrix of the ancient mortar, and thus the excellent resistance of the hydraulic lime mortar against water, was documented by (i) a distinct positive correlation of δ(18)Ocalcite and δ(13)Ccalcite; typical for carbonation through a mortar horizon, (ii) a characteristic evolution of δ(18)Ocalcite and δ(13)Ccalcite through each of the four mortar horizons; lighter follow heavier isotopic values from upper to lower part of the cistern floor, and (iii) δ(18)Ocalcite varying from -10 to -5 ‰ Vienna Pee Dee belemnite (VPDB). The range of δ(18)Ocalcite values rule out recrystallization and/or neoformation of calcite through chemical attack of water stored in cistern. The combined studies of the chemical composition of the binder and the isotopic composition of the calcite in an ancient mortar provide powerful tools for elucidating the ancient techniques and processing periods. This approach helps to evaluate the durability of primary calcite and demonstrates the importance of calcite as a proxy for chemical attack and quality of the ancient inorganic binder. PMID:25760891

  5. Clathrate hydrates

    SciTech Connect

    Englezos, P. . Dept. of Chemical Engineering)

    1993-07-01

    Clathrate hydrates or gas hydrates are solid solutions. Water molecules are linked through hydrogen bonding and create cavities (host lattice) that can enclose a large variety of molecules (guests). There is no chemical bonding between the host water molecules and the enclosed guest molecule. The clathrate hydrate crystal may exist at temperatures below as well as above the normal freezing point of water. Clathrate hydrates have been a source of problems in the energy industry because the conditions at which oil and gas are produced, transported, and processed are frequently suitable for clathrate hydrate formation. Naturally occurring clathrate hydrates in the earth, containing mostly methane, are regarded as a future energy resource. These methane hydrates, however, are potentially threatening to the global environment if they decompose due to the greenhouse effect. Several innovative separations based on clathrate hydrate formation with applications in a variety of industrial sectors have been examined in the laboratory and pilot-plant stage. This paper reviews the status of current knowledge on clathrate hydrates. The emphasis is on the aspects related to technological problems and opportunities that arise from the artificial or natural formation and decomposition of clathrate hydrates. However, a description of the fundamentals of formation, properties, and structure is also presented, and aspects related to the molecular simulation are discussed. Studies on calorimetric properties, orientational disorder, guest-guest interactions, and nuclear magnetic resonance are not reviewed, but literature references are made. Clathrate hydrates arouse great interest within chemical and petroleum engineering, chemistry, earth, and environmental sciences.

  6. Setting process of lime-based conservation mortars with barium hydroxide

    SciTech Connect

    Karatasios, Ioannis . E-mail: ikarat@ims.demokritos.gr; Kilikoglou, Vassilis; Colston, Belinda; Theoulakis, Panagiotis; Watt, David

    2007-06-15

    This paper presents the effect of barium hydroxide on the setting mechanism of lime-based conservation mortars, when used as an additive material. The study focuses on the monitoring of the setting process and the identification of the mineral phases formed, which are essential for furthering the study of the durability of barium mixtures against chemical degradation. X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and thermal analysis (DTA-TG) were used to monitor the setting processes of these mixtures and identify new phases formed. The results suggest that barium hydroxide is evenly distributed within the lime and produces a homogeneous binding material, consisting of calcite (CaCO{sub 3}), witherite (BaCO{sub 3}) and barium-calcium carbonate [BaCa(CO{sub 3}){sub 2}]. Finally, it was found that barium carbonate can be directly bonded to calcitic aggregates and therefore increases its chemical compatibility with the binding material.

  7. Experimental study of the replacement of calcite by calcium sulphates

    NASA Astrophysics Data System (ADS)

    Ruiz-Agudo, E.; Putnis, C. V.; Hövelmann, J.; Álvarez-Lloret, P.; Ibáñez-Velasco, A.; Putnis, A.

    2015-05-01

    Among the most relevant mineral replacement reactions are those involving sulphates and carbonates, which have important geological and technological implications. Here it is shown experimentally that during the interaction of calcite (CaCO3) cleavage surfaces with sulphate-bearing acidic solutions, calcite is ultimately replaced by gypsum (CaSO4 2H2O) and anhydrite (CaSO4), depending on the reaction temperature. Observations suggest that this occurs most likely via an interface-coupled dissolution-precipitation reaction, in which the substrate is replaced pseudomorphically by the product. At 120 and 200 °C gypsum and/or bassanite (CaSO4·0.5H2O) form as precursor phases for the thermodynamically stable anhydrite. Salinity promotes the formation of less hydrated precursor phases during the replacement of calcite by anhydrite. The reaction stops before equilibrium with respect to calcite is reached and during the course of the reaction most of the bulk solutions are undersaturated with respect to the precipitating phase(s). A mechanism consisting of the dissolution of small amounts of solid in a thin layer of fluid at the mineral-fluid interface and the subsequent precipitation of the product phase from this layer is in agreement with these observations. PHREEQC simulations performed in the framework of this mechanism highlight the relevance of transport and surface reaction kinetics on the volume change associated with the CaCO3-CaSO4 replacement. Under our experimental conditions, this reaction occurs with a positive volume change, which ultimately results in passivation of the unreacted substrate before calcite attains equilibrium with respect to the bulk solution.

  8. A study on engineering characteristics of asphalt concrete using filler with recycled waste lime.

    PubMed

    Sung Do, Hwang; Hee Mun, Park; Suk keun, Rhee

    2008-01-01

    This study focuses on determining the engineering characteristics of asphalt concrete using mineral fillers with recycled waste lime, which is a by-product of the production of soda ash (Na(2)CO(3)). The materials tested in this study were made using a 25%, 50%, 75%, and 100% mixing ratio based on the conventional mineral filler ratio to analyze the possibility of using recycled waste lime. The asphalt concretes, made of recycled waste lime, hydrated lime, and conventional asphalt concrete, were evaluated through their fundamental engineering properties such as Marshall stability, indirect tensile strength, resilient modulus, permanent deformation characteristics, moisture susceptibility, and fatigue resistance. The results indicate that the application of recycled waste lime as mineral filler improves the permanent deformation characteristics, stiffness and fatigue endurance of asphalt concrete at the wide range of temperatures. It was also determined that the mixtures with recycled waste lime showed higher resistance against stripping than conventional asphalt concrete. It was concluded from various test results that a waste lime can be used as mineral filler and, especially, can greatly improve the resistance of asphalt concrete to permanent deformation at high temperatures. PMID:17408942

  9. Structure and phase investigations on crystallization of 11 A tobermorite in lime sand pellets

    SciTech Connect

    Hartmann, A. . E-mail: a.hartmann@tudelft.nl; Buhl, J.-Ch.; Breugel, K. van

    2007-01-15

    The present work examines the crystallization behaviour of 11 A tobermorite and its dependence on the reactivity of different silica sources (quartz sand, grain-size {<=} 0.30 mm; quartz powder, grain-size {<=} 0.08 mm; inflated clay sand, grain-size {<=} 0.50 mm and raw perlite, grain-size {<=} 1 mm). The influence of different C/S ratios (calcium/silica ratio: 0.53, 0.83) was also investigated. For simulation of the industrial production process of lime sand products, a synthesis of lime sand pellets was carried out with a hydrothermal treatment (T = 200 deg. C, t = 40.5 h). The C-S-H phases were characterized by ESEM, EDX and X-ray powder diffraction. The investigations revealed that the grain-size, C/S ratio and porosity of the silica sources influence the formation of 11 A tobermorite. A formation of 11 A tobermorite using inflated clay sand with a grain-size {<=} 0.50 mm and a high porosity was only found with a C/S ratio of 0.53. This indicates a negative influence of an increase of lime content inside the synthesis mixture for tobermorite crystallization. Besides, a formation of xonotlite inside big pores of the lime sand pellet with inflated clay sand could be observed. The formation of portlandite and calcite was detected in all samples. The amount of calcite increased with the grain-size and with a higher C/S ratio.

  10. Isotopic analysis for degradation diagnosis of calcite matrix in mortar.

    PubMed

    Dotsika, E; Psomiadis, D; Poutoukis, D; Raco, B; Gamaletsos, P

    2009-12-01

    Mortar that was used in building as well as in conservation and restoration works of wall paintings have been analysed isotopically (delta(13)C and delta(18)O) in order to evaluate the setting environments and secondary processes, to distinguish the structural components used and to determine the exact causes that incurred the degradation phenomena. The material undergoes weathering and decay on a large proportion of its surface and in depth, due to the infiltration of water through the structural blocks. Mineralogical analysis indicated signs of sulphation and dissolution/recrystallisation processes taking place on the material, whereas stable isotopes provided information relative to the origin of the CO(2) and water during calcite formation and degradation processes. Isotopic change of the initial delta(13)C and delta(18)O in carbonate matrix was caused by alteration of the primary source of CO(2) and H(2)O in mortar over time, particularly by recrystallisation of calcite with porewater, evaporated or re-condensed water, and CO(2) from various sources of atmospheric and biogenic origin. Human influence (surface treatment) and biological growth (e.g. fungus) are major exogenic processes which may alter delta(18)O and delta(13)C in lime mortar. PMID:19784637

  11. Lime pretreatment of lignocellulosic biomass

    NASA Astrophysics Data System (ADS)

    Chang, Shushien

    Lignocellulose is a valuable alternative energy source. The susceptibility of lignocellulosic biomass to enzymatic hydrolysis is constrained due to its structural features, so pretreatment is essential to enhance enzymatic digestibility. Of the chemicals used as pretreatment agents, it has been reported that alkalis improve biomass digestibility significantly. In comparison with other alkalis such as NaOH and ammonia, lime (calcium hydroxide) has many advantages; it is very inexpensive, is safe, and can be recovered by carbonating wash water. The effects of lime pretreatment were explored on switchgrass and poplar wood, representing herbaceous and woody biomass, respectively. The effects of pretreatment conditions (time, temperature, lime loading, water loading, particle size, and oxygen pressure) have been systematically studies. Lime alone enhances the digestibility of switchgrass significantly; under the recommended conditions, the 3-d total sugar (glucose + xylose) yields of lime-treated switchgrass were 7 times that of untreated sample. When treating poplar wood, lime must be combined with oxygen to achieve high digestibility; oxidative lime pretreatment increased the 3-d total sugar yield of poplar wood to 12 times that of untreated sample. In a fundamental study, to determine why lime pretreatment is effective, the effects of three structural features on enzymatic digestibility were studied: lignin content, acetyl content, and crystallinity index (CrI). Poplar wood was treated with peracetic acid, potassium hydroxide, and ball milling to produce model lignocelluloses with a broad spectrum of lignin contents, acetyl contents, and CrI, respectively. Enzymatic hydrolysis was performed on the model lignocelluloses to determine the digestibility. Correlations between lignin/carbohydrate ratio, acetyl/carbohydrate ratio, CrI and digestibility were developed. The 95% prediction intervals show that the correlations predict the 1-h and 3-d total sugar conversions of a biomass sample within a precision of 5% and 20%, respectively. The digestibility of a variety of lime-treated biomass and ball-milled alpha-cellulose was compared to the correlations determined from the model compounds. The agreement between the measured and predicted values shows that the correlations are satisfactory and the three structural features---lignin content, acetyl content, and CrI---are the major factors that determine enzymatic digestibility.

  12. A thermodynamic approach to the hydration of sulphate-resisting Portland cement

    SciTech Connect

    Lothenbach, Barbara . E-mail: barbara.lothenbach@empa.ch; Wieland, Erich

    2006-07-01

    A thermodynamic approach is used to model changes in the hydrate assemblage and the composition of the pore solution during the hydration of calcite-free and calcite-containing sulphate-resisting Portland cement CEM I 52.5 N HTS. Modelling is based on thermodynamic data for the hydration products and calculated hydration rates for the individual clinker phases, which are used as time-dependent input parameters. Model predictions compare well with the composition of the hydrate assemblage as observed by TGA and semi-quantitative XRD and with the experimentally determined compositions of the pore solutions. The calculations show that in the presence of small amounts of calcite typically associated with Portland cement, C-S-H, portlandite, ettringite and calcium monocarbonate are the main hydration products. In the absence of calcite in the cement, however, siliceous hydrogarnet instead of calcium monocarbonate is observed to precipitate. The use of a higher water-to-cement ratio for the preparation of a calcite-containing cement paste has a minor effect on the composition of the hydrate assemblage, while it significantly changes the composition of the pore solution. In particular, lower pH value and higher Ca concentrations appear that could potentially influence the solubility and uptake of heavy metals and anions by cementitious materials.

  13. Structure of the (1014) Surfaces of Calcite, Dolomite, and Magnesite under Wet and Dry Conditions

    SciTech Connect

    WRIGHT,KATE; CYGAN,RANDALL T.; SLATER,BEN

    2000-06-12

    Atomistic computer simulation methods have been employed to model the structure of the (10{bar 1}4) surfaces of calcite, dolomite and magnesite. The authors calculations show that under vacuum conditions, calcite undergoes the greatest degree of surface relaxation with rotation and distortion of the carbonate group accompanied by movement of the calcium ion. The magnesite surface is the least distorted of the three carbonates, with dolomite being intermediate to the two end members. When water molecules are placed on the surface to produce complete monolayer coverage, the calcite surface is stabilized and the amount of relaxation is substantially reduced. In contrast, the dolomite and magnesite surfaces are destabilized by hydration as indicated by a significant increase in the surface energies relative to the dry surface.

  14. Stabilities of calcite and aragonite

    USGS Publications Warehouse

    Christ, C.L.; Hostetler, P.B.; Siebert, R.M.

    1974-01-01

    A revaluation of the 25° C activity-product constants of calcite (KC) and aragonite (KA) was made on the basis of the known solubilities of these phases for which the activity of total dissolved calcium was corrected for the presence of the ion pair CaHCO3+ in the aqueous phase. The value of the dissociation constant of CaHCO3+ was taken to be 10-1.225±0.02. This value, combined with values of the analytical concentrations in solutions with partial pressure PCO2 =0.97 atmosphere, leads to KC=l0-8.52±0.04 and KA= 10-8.36±0.04. Based on these K values, standard free energies of formation of calcite and aragonite were calculated to be -270,144±375 and -269,926±375 calories mole-1, (-1,130,282±1,569 and -1,129,370±1,569 joules mole-1), respectively. From the 25°C K values, using appropriate entropy and heat capacity data, values of KC and KA were calculated over the temperature range 0° to 200°C. Possible errors in interpretation of measured pH values and inferred PCO2values and the bearing of these errors on calculations of K values are discussed.

  15. A model for trace metal sorption processes at the calcite surface: Adsorption of Cd2+ and subsequent solid solution formation

    USGS Publications Warehouse

    Davis, J.A.; Fuller, C.C.; Cook, A.D.

    1987-01-01

    The rate of Cd2+ sorption by calcite was determined as a function of pH and Mg2+ in aqueous solutions saturated with respect to calcite but undersaturated with respect to CdCO3. The sorption is characterized by two reaction steps, with the first reaching completion within 24 hours. The second step proceeded at a slow and nearly constant rate for at least 7 days. The rate of calcite recrystallization was also studied, using a Ca2+ isotopic exchange technique. Both the recrystallization rate of calcite and the rate of slow Cd2+ sorption decrease with increasing pH or with increasing Mg2+. The recrystallization rate could be predicted from the number of moles of Ca present in the hydrated surface layer. A model is presented which is consistent with the rates of Cd2+ sorption and Ca2+ isotopic exchange. In the model, the first step in Cd2+ sorption involves a fast adsorption reaction that is followed by diffusion of Cd2+ into a surface layer of hydrated CaCO3 that overlies crystalline calcite. Desorption of Cd2+ from the hydrated layer is slow. The second step is solid solution formation in new crystalline material, which grows from the disordered mixture of Cd and Ca carbonate in the hydrated surface layer. Calculated distribution coefficients for solid solutions formed at the surface are slightly greater than the ratio of equilibrium constants for dissolution of calcite and CdCO3, which is the value that would be expected for an ideal solid solution in equilibrium with the aqueous solution. ?? 1987.

  16. Metallurgical properties of iron-bearing lime

    SciTech Connect

    Sokolova, T.G.; Khaidukov, V.P.; Markov, B.L.; Trubnikov, A.A.; Dereza, V.P.

    1988-05-01

    The Novolipetsk Metallurgical Combine developed a technology for producing iron-bearing lime by the combined calcining of limestone and converter slag in kilns. The resulting flux was a lumpy two-layer product with a core consisting of high reactivity lime and a surrounding shell of calcium ferrites. Compared to conventional lime, iron-bearing lime has smaller losses during calcining and contains less sulfur and more iron oxides. The cooling effect was 8.2% less than for normal lime. Replacing conventional lime with iron-bearing lime also makes it possible to reduce the amount of sulfur contributed to the bath by the fluxing materials and to increase the output of usable metal.

  17. Effect of calcite on lead-rich cementitious solid waste forms

    SciTech Connect

    Lee, Dongjin; Swarbrick, Gareth; Waite, T. David . E-mail: D.waite@unsw.edu.au

    2005-06-01

    The effect of calcite on lead-rich solidified waste forms generated using Portland cement has been investigated. Samples of cementitious wastes in the absence and presence of Pb and in the absence and presence of calcite were examined separately at 2, 7, 14 and 28 days of hydration by X-ray diffraction and SEM/EDS and for compressive strength. The presence of lead was observed to produce lead carbonate sulfate hydroxide (Pb{sub 4}SO{sub 4}(CO{sub 3}){sub 2}(OH){sub 2}), lead carbonate hydroxide hydrate (3PbCO{sub 3}.2Pb(OH){sub 2}.H{sub 2}O) and two other unidentified lead salts in cavity areas, and was observed to significantly retard the hydration of cement. Calcite addition to the Pb wastes was found to induce the rapid crystallization of calcium hydroxide coincident with the onset of C-S-H gel germination. The rapid dissolution of lead precipitates was observed with the subsequent development of very insoluble gel products of the form C-Pb-S-H. These products are formed by chemical incorporation of re-dissolved Pb species into silicate structures.

  18. Chloral hydrate

    Integrated Risk Information System (IRIS)

    Chloral hydrate ; CASRN 302 - 17 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  19. Lime application for the efficient production of nutraceutical glucooligosaccharides from Leuconostoc mesenteroides NRRL B-742 (ATCC13146).

    PubMed

    Moon, Young Hwan; Madsen, Lee; Chung, Chang-Ho; Kim, Doman; Day, Donal F

    2015-02-01

    We have previously demonstrated the production of glucooligosaccharides via a fermentation of sucrose with Leuconostoc mesenteroides NRRL B-742 using sodium hydroxide (NaOH) to control the pH. Because NaOH is expensive, we sought to minimize the cost of our process by substituting hydrated lime and saccharate of lime (lime sucrate) in its place. The yield of glucooligosaccharides using either 5 % lime (41.4 ± 0.5 g/100 g) or 5 % lime sucrate (40.0 ± 1.4 g/100 g) were both similar to the NaOH control (42.4 ± 1.5 g/100 g). Based on this, it appears that the cost associated with pH control in our process can be reduced by a factor of approximately 2.4 using lime instead of NaOH. Because our chromatographic stage is based on a Ca(2+)-form resin to separate glucooligosaccharides, the use of lime not only negates the need for costly de-salting via ion-exchange (elimination of two ion-exchange sections) prior to separation, but also greatly reduces the resin regeneration cost. PMID:25533635

  20. Crystal lattice tilting in prismatic calcite.

    PubMed

    Olson, Ian C; Metzler, Rebecca A; Tamura, Nobumichi; Kunz, Martin; Killian, Christopher E; Gilbert, Pupa U P A

    2013-08-01

    We analyzed the calcitic prismatic layers in Atrina rigida (Ar), Haliotis iris (Hi), Haliotis laevigata (HL), Haliotis rufescens (Hrf), Mytilus californianus (Mc), Pinctada fucata (Pf), Pinctada margaritifera (Pm) shells, and the aragonitic prismatic layer in the Nautilus pompilius (Np) shell. Dramatic structural differences were observed across species, with 100-μm wide single-crystalline prisms in Hi, HL and Hrf, 1-μm wide needle-shaped calcite prisms in Mc, 1-μm wide spherulitic aragonite prisms in Np, 20-μm wide single-crystalline calcite prisms in Ar, and 20-μm wide polycrystalline calcite prisms in Pf and Pm. The calcite prisms in Pf and Pm are subdivided into sub-prismatic domains of orientations, and within each of these domains the calcite crystal lattice tilts gradually over long distances, on the order of 100 μm, with an angle spread of crystal orientation of 10-20°. Furthermore, prisms in Pf and Pm are harder than in any other calcite prisms analyzed, their nanoparticles are smaller, and the angle spread is strongly correlated with hardness in all shells that form calcitic prismatic layers. One can hypothesize a causal relationship of these correlated parameters: greater angle spread may confer greater hardness and resistance to wear, thus providing Pf and Pm with a structural advantage in their environment. This is the first structure-property relationship thus far hypothesized in mollusk shell prisms. PMID:23806677

  1. Hydrothermal calcite in the Elephant Moraine

    SciTech Connect

    Faure, G.; Taylor, K.S.; Jones, L.M.

    1986-01-01

    In the course of geologic mapping of the Elephant Moraine on the east antarctic ice sheet, Faure and Taylor (1985) collected several specimens of black botryoidal calcite, composed of radiating acicular crystals that resemble stromatolites. Calcite from this and other specimens is significantly enriched in strontium-87 (the strontium-87/strontium-86 ratio equals 0.71417 +/- 0.00002), carbon-12 (delta carbon-13 equals -22.9 parts per thousand, PDB standard) and oxygen-16 (delta oxygen-18 equals -21.1 parts per thousand, standard mean ocean water) compared with calcite of marine origin. The enrichment in carbon-12 is similar to that of calcite associated with coal in the Allan Hills. The enrichment in oxygen-16 indicates that the calcite from the Elephant Moraine could only have precipitated in isotopic equilibrium with glacial melt water. Therefore, the temperature at which the black calcite precipitated from water of that isotope composition was about 85/sup 0/C. A temperature of this magnitude implies that the black calcite formed as a result of volcanic activity under the east antarctic ice sheet. The enrichment of the black calcite in carbon-12 suggests that it formed in part from carbon dioxide derived from the coal seams of the Weller Formation in the Beacon Supergroup. The isotopic composition of strontium in the black calcite is similar to that of carbonate beds and concretions in the Beacon rocks of southern Victoria Land. A volcanic-hydrothermal origin is also consistent with the very low total organic carbon content of 0.15% in the calcite.

  2. Thermodynamic modelling of the hydration of Portland cement

    SciTech Connect

    Lothenbach, Barbara . E-mail: barbara.lothenbach@empa.ch; Winnefeld, Frank

    2006-02-15

    A thermodynamic model is developed and applied to calculate the composition of the pore solution and the hydrate assemblage during the hydration of an OPC. The calculated hydration rates of the individual clinker phases are used as time dependent input. The modelled data compare well with the measured composition of pore solutions gained from OPC as well as with TGA and semi-quantitative XRD data. The thermodynamic calculations indicate that in the presence of small amounts of calcite typically included in OPC cements, C-S-H, portlandite, ettringite and calcium monocarbonates are the main hydration products. The thermodynamic model presented in this paper helps to understand the interactions between the different components and the environment and to predict the influence of changes in cement composition on the hydrate assemblage.

  3. Fly ash chemical classification based on lime

    SciTech Connect

    Fox, J.

    2007-07-01

    Typically, total lime content (CaO) of fly ash is shown in fly ash reports, but its significance is not addressed in US specifications. For certain applications a low lime ash is preferred. When a class C fly ash must be cementitious, lime content above 20% is required. A ternary S-A-C phase diagram pilot is given showing the location of fly ash compositions by coal rank and source in North America. Fly ashes from subbituminous coal from the Powder River Basin usually contain sufficient lime to be cementitious but blending with other coals may result in calcium being present in phases other than tricalcium aluminate. 9 refs., 1 fig.

  4. Lime for environmental uses. STP 931

    SciTech Connect

    Gutschick, K.A.

    1987-01-01

    This book STP 931 discusses the use of lime and industrial limestone for the control of factors that influence the environment - including the treatment of gaseous, liquid, and solid wastes. Current research shows that lime is one of the key chemicals that can help solve the problem of air, water, and land pollution. Topics covered are: the many environmental uses of lime including water treatment, sewage and industrial waste treatment, and the scrubbing of sulfur dioxide from power plant gases; various lime types and the engineering considerations in the design of lime handling systems; a hazardous waste incident where the waste was solidified with quicklime and lime kiln dust for burial; the growing use of lime and fly-ash for stabilizing scrubber sludges produced in wet scrubbing installations at more than 20 power plants in the United States; use of lime for stabilizing sewage sludge for land fill disposal; neutralization of calcium and magnesium calcium hydroxides through the use of carbon dioxide; and lime stabilization of expansive clays and silty clays for use in earth dams, irrigation canals, and levees.

  5. Evidence for carbon sequestration by agricultural liming

    NASA Astrophysics Data System (ADS)

    Hamilton, Stephen K.; Kurzman, Amanda L.; Arango, Clay; Jin, Lixin; Robertson, G. Philip

    2007-06-01

    Agricultural lime can be a source or a sink for CO2, depending on whether reaction occurs with strong acids or carbonic acid. Here we examine the impact of liming on global warming potential by comparing the sum of Ca2+ and Mg2+ to carbonate alkalinity in soil solutions beneath unmanaged vegetation versus limed row crops, and of streams and rivers in agricultural versus forested watersheds, mainly in southern Michigan. Soil solutions sampled by tension indicated that lime can act as either a source or a sink for CO2. However, infiltrating waters tended to indicate net CO2 uptake, as did tile drainage waters and streams draining agricultural watersheds. As nitrate concentrations increased in infiltrating waters, lime switched from a net CO2 sink to a source, implying nitrification as a major acidifying process. Dissolution of lime may sequester CO2 equal to roughly 25-50% of its C content, in contrast to the prevailing assumption that all of the carbon in lime becomes CO2. The ˜30 Tg/yr of agricultural lime applied in the United States could thus sequester up to 1.9 Tg C/yr, about 15% of the annual change in the U.S. CO2 emissions (12 Tg C/yr for 2002-2003). The implications of liming for atmospheric CO2 stabilization should be considered in strategies to mitigate global climate change.

  6. Rehabilitating acid soils for increasing crop productivity through low-cost liming material.

    PubMed

    Bhat, Javid Ahmad; Kundu, Manik Chandra; Hazra, Gora Chand; Santra, Gour Hari; Mandal, Biswapati

    2010-09-15

    Productivity of red and lateritic soils is low because of their acidity and deficiencies in few essential nutrients viz., nitrogen, phosphorus, calcium, zinc, boron, molybdenum etc. We compared the effectiveness of basic slag, a low-cost liming material, with that of calcite as an ameliorant for these soils using mustard followed by rice as test crops. Experiments were conducted with three levels of each of basic slag and calcite along with a control on farmers' fields at 14 different locations. Influence of farmyard manure (FYM) and poultry manure (PM) on the effectiveness of the slag was also tested. On an average, basic slag performed better than calcite in increasing yields of both mustard and rice and left over higher amounts of available Ca, Si and Zn in residual soils. The slag also improved N, P, K and Ca nutrition of mustard and Si and Zn nutrition of rice with a favorable benefit:cost (B:C) ratio over the calcite (4.82 vs. 1.44). Effectiveness of the basic slag improved when it was applied in combination with FYM or PM (B:C, 5.83 and 6.27). Basic slag can, therefore, be advocated for use in the acidic red and lateritic soils for economically improving their productivity. PMID:20659758

  7. Hydrate habitat

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Whoever said there is nothing new under the sun did not delve deeply enough to the bottom of the ocean. There in the Gulf of Mexico, about 150 miles south of New Orleans, scientists have just discovered what could be a new species of centipede—like worms living on or within gas hydrates— mounds of methane ice— rising from the ocean floor.Scientists have previously recognized an association between some bacteria and these hydrates. However, this is the first discovery of a higher life form there.

  8. Do organic ligands affect calcite dissolution rates?

    NASA Astrophysics Data System (ADS)

    Oelkers, Eric H.; Golubev, Sergey V.; Pokrovsky, Oleg S.; Bénézeth, Pascale

    2011-04-01

    Steady state Iceland-spar calcite dissolution rates were measured at 25 °C in aqueous solutions containing 0.1 M NaCl and up to 0.05 M dissolved bicarbonate at pH from 7.9 to 9.1 in the presence of 13 distinct dissolved organic ligands in mixed-flow reactors. The organic ligands considered in this study include those most likely to be present in either (1) aquifers at the conditions pertinent to CO 2 sequestration or (2) soil/early diagenetic environments: acetate, phthalate, citrate, EDTA 4-, succinate, D-glucosaminate, L-glutamate, D-gluconate, 2,4-dihydroxybenzoate, 3,4-dihydroxybenzoate, fumarate, malonate, and gallate. Results show that the presence of <0.05 mol/kg of these organic anions changes calcite dissolution rates by less than a factor of 2.5 with the exception of citrate and EDTA 4-. The presence of 0.05 mol/kg citrate and EDTA 4- increases calcite dissolution rates by as much as a factor of 35 and 500, respectively, compared to rates in organic anion-free solutions. Further calcite dissolution experiments were performed in the presence of organic polymers similar to bacterial exudates, cell exopolysaccharides, and analogs of microbial cell envelopes: alginate, lichen extract, humic acid, pectin, and gum xanthan. In no case did the presence of <100 ppm of these organics change calcite dissolution rates by more than a factor of 2.5. Results obtained in this study suggest that the presence of aqueous organic anions negligibly affects calcite forward dissolution rates in most natural environments. Some effect on calcite reactivity may be observed, however, by the presence of organic anions if they change substantially the chemical affinity of the fluid with respect to calcite.

  9. Nickel adsorption on chalk and calcite.

    PubMed

    Belova, D A; Lakshtanov, L Z; Carneiro, J F; Stipp, S L S

    2014-12-01

    Nickel uptake from solution by two types of chalk and calcite was investigated in batch sorption studies. The goal was to understand the difference in sorption behavior between synthetic and biogenic calcite. Experiments at atmospheric partial pressure of CO2, in solutions equilibrated with calcite and chalk and pH ranging from 7.7 to 8.8, explored the influence of initial concentration and the amount and type of sorbent on Ni uptake. Adsorption increases with increased surface area and pH. A surface complexation model describes the data well. Stability constants for the Ni surface complex are log KNi=-1.12 on calcite and log KNi=-0.43 and -0.50 on the two chalk samples. The study confirms that synthetic calcite and chalk both take up nickel, but Ni binds more strongly on the biogenic calcite than on inorganically precipitated, synthetic powder, because of the presence of trace amounts of polysaccharides and clay nanoparticles on the chalk surface. PMID:25300061

  10. Diffusion of Ca and Mg in Calcite

    SciTech Connect

    Cygan, R.T.; Fisler, D.K.

    1999-02-10

    The self-diffusion of Ca and the tracer diffusion of Mg in calcite have been experimentally measured using isotopic tracers of {sup 25}Mg and {sup 44}Ca. Natural single crystals of calcite were coated with a thermally-sputtered oxide thin film and then annealed in a CO{sub 2} gas at one atmosphere total pressure and temperatures from 550 to 800 C. Diffusion coefficient values were derived from the depth profiles obtained by ion microprobe analysis. The resultant activation energies for Mg tracer diffusion and Ca self-diffusion are respectively: E{sub a}(Mg) = 284 {+-} 74 kJ/mol and E{sub a}(Ca) = 271 {+-} 80 kJ/mol. For the temperature ranges in these experiments, the diffusion of Mg is faster than Ca. The results are generally consistent in magnitude with divalent cation diffusion rates obtained in previous studies and provide a means of interpreting the thermal histories of carbonate minerals, the mechanism of dolomitization, and other diffusion-controlled processes. The results indicate that cation diffusion in calcite is relatively slow and cations are the rate-limiting diffusing species for the deformation of calcite and carbonate rocks. Application of the calcite-dolomite geothermometer to metamorphic assemblages will be constrained by cation diffusion and cooling rates. The direct measurement of Mg tracer diffusion in calcite indicates that dolomitization is unlikely to be accomplished by Mg diffusion in the solid state but by a recrystallization process.

  11. Nickel adsorption on chalk and calcite

    NASA Astrophysics Data System (ADS)

    Belova, D. A.; Lakshtanov, L. Z.; Carneiro, J. F.; Stipp, S. L. S.

    2014-12-01

    Nickel uptake from solution by two types of chalk and calcite was investigated in batch sorption studies. The goal was to understand the difference in sorption behavior between synthetic and biogenic calcite. Experiments at atmospheric partial pressure of CO2, in solutions equilibrated with calcite and chalk and pH ranging from 7.7 to 8.8, explored the influence of initial concentration and the amount and type of sorbent on Ni uptake. Adsorption increases with increased surface area and pH. A surface complexation model describes the data well. Stability constants for the Ni surface complex are log KNi = - 1.12 on calcite and log KNi = - 0.43 and - 0.50 on the two chalk samples. The study confirms that synthetic calcite and chalk both take up nickel, but Ni binds more strongly on the biogenic calcite than on inorganically precipitated, synthetic powder, because of the presence of trace amounts of polysaccharides and clay nanoparticles on the chalk surface.

  12. Examination of the system fly ash lime calcined gypsum water

    NASA Astrophysics Data System (ADS)

    Marinkovic, S.; Kostic-Pulek, A.

    2007-05-01

    The feasibility of the utilization of the system fly ash lime calcined gypsum (β-hemihydrate) water (the mass ratio 2:1:2:2.5) for the production of building ceramics was investigated. The system was cured under different conditions, i.e., tap water and ambient air. It was confirmed by X-ray diffraction analysis that three hydration products (gypsum, portlandite and ettringite) were formed in the water-cured system and two (gypsum and portlandite) in the air-cured system. Due to the formation of these products, a compressive strength of 4.01 MPa in the water-cured and 7.83 MPa in air-cured system developed. When the air-cured system was exposed to three alternate heating cooling or three alternate cooling heating cycles, the compressive strength increased (from 7.83 to 9.47 and 10.55 MPa, respectively). The fly ash lime calcined gypsum water systems prepared in this work can be applied for the manufacture of products for internal walls (bricks and blocks).

  13. Effect of calcite on Pb-doped solidified waste forms in leaching.

    PubMed

    Lee, Dong-Jin

    2006-06-01

    The alkalinity of cementitious materials rectifies a low pH of leachant to be over 12 in leaching. The rapid change of leachant pH produces the remarked variation of solubility of heavy metals in the toxicity characteristic leaching procedure. The release of lead on cementitious solid waste forms in leaching was observed in the pH range of particularly 12. The release of lead is significant dependant on the changed values of leachant pH. The pH static leaching procedure (PSLP) was implemented for assessing a quantitative measurement of total potential leachability with the continuing addition of acidic leachant up to the point of no change of leachant pH. The release of lead on Pb-doped solidified waste forms (SWF), in the PSLP, was 27.0% of initial concentration at the maximum meq CH3COOH (about 24.0) added to g dry solidified wastes. In this study, the immobilization effect of calcite on SWF was investigated in the acidic condition by the PSLP. Calcite additions to SWF make a good fixation efficiency of about 92%. Calcite addition abundantly provides the acid neutralization capacity to protect SWF from the attack of acid, with the marked development of hydrated minerals (mainly portlandite and C-S-H) in accordance with the accelerating effect of cement hydration. PMID:16376409

  14. Simple Analysis of Historical Lime Mortars

    ERIC Educational Resources Information Center

    Pires, Joa~o

    2015-01-01

    A laboratory experiment is described in which a simple characterization of a historical lime mortar is made by the determination of its approximate composition by a gravimetric method. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) are also used for the qualitative characterization of the lime mortar components. These

  15. Simple Analysis of Historical Lime Mortars

    ERIC Educational Resources Information Center

    Pires, Joa~o

    2015-01-01

    A laboratory experiment is described in which a simple characterization of a historical lime mortar is made by the determination of its approximate composition by a gravimetric method. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) are also used for the qualitative characterization of the lime mortar components. These…

  16. Calcite dissolution in two deep eutrophic lakes

    SciTech Connect

    Ramisch, F.; Dittrich, M.; Mattenberger, C.; Wehrli, B.; Wueest, A.

    1999-10-01

    The calcium cycle, in particular carbonate dissolution, was analyzed in two deep eutrophic lakes, Lago di Lugano (288 m maximum depth) and Sempachersee (87 m) located in Switzerland. A box model approach was used to calculate calcite dissolution in the water column and at the sediment-water interface based on various lake monitoring data such as sediment traps, sediment cores, water and pore-water interface based on various lake monitoring data such as sediment traps, sediment cores, water and pore-water analysis. A model for stationary conditions allowing the calculation of calcite dissolution in the water column for a given particle size distribution was developed. The relative values of the simulated flux were consistent with sediment trap observations. The best fit of the dissolution rate constant of sinking calcite in Lago di Lugano was on the same order of magnitude (3 {center{underscore}dot} 10{sup {minus}10} kg{sup 1/3} s{sup {minus}1}) as published laboratory values for this surface controlled process. Both lakes show a similar specific calcite precipitation rate of 170 g Ca m{sup {minus}2} a{sup {minus}1}. The diffusive flux across the sediment-water interface amounts to about 15 and 10% of total calcite precipitation in Sempachersee and Lago di Lugano, respectively. However, 61% of the precipitated calcite is dissolved in the water column of Lago di Lugano compared to only 13% in Sempachersee. These results point towards the importance of grain size distributions and settling times in stratified deep waters as the two most important factors determining calcite retention in sediments of hard water lakes.

  17. Controlled calcite nucleation on polarized calcite single crystal substrates in the presence of polyacrylic acid

    NASA Astrophysics Data System (ADS)

    Wada, Norio; Horiuchi, Naohiro; Nakamura, Miho; Nozaki, Kosuke; Hiyama, Tetsuo; Nagai, Akiko; Yamashita, Kimihiro

    2015-04-01

    We studied theoretically and experimentally the effects of the surface electric field generated by polarization and polyacrylic acid (PAA) additives on the heterogeneous nucleation of calcite on the calcite single crystal substrates with (10.4), (10.0) and (00.1) orientations. A set of "in-situ" experiments with optical microscopy was performed to determine the waiting time of CaCO3 nucleation, defined as the time interval between the onset of the diffusion of CO2 and the appearance of the first visible precipitation. Calcite was nucleated on the oriented calcite substrates through diffusion of NH3 and CO2 gas from a solid ammonium carbonate into calcium chloride solutions. A theoretical analysis showed that the surface electric field of the polarized calcite substrate decrease the activation energy for nucleation and consequently promotes nucleation. Experimentally, the surface electric field and PAA addition were found to decrease both contact angles and waiting times, and as a result, promote the heterogeneous nucleation. Combined effect of PAA and surface electric field further reduced contact angles and waiting times regardless of orientation differences of the calcite substrates. The cooperation acts remarkably on N-surface of the respective calcite substrates. The results were explained by the Cassie's equation, a classical heterogeneous nucleation theory under a surface electric field, and matching of the charged sites on the PAA chain with the ion arrangement on the calcite substrate.

  18. Lactic Acid Fermentation, Urea and Lime Addition: Promising Faecal Sludge Sanitizing Methods for Emergency Sanitation

    PubMed Central

    Anderson, Catherine; Malambo, Dennis Hanjalika; Gonzalez Perez, Maria Eliette; Nobela, Happiness Ngwanamoseka; de Pooter, Lobke; Spit, Jan; Hooijmans, Christine Maria; van de Vossenberg, Jack; Greya, Wilson; Thole, Bernard; van Lier, Jules B.; Brdjanovic, Damir

    2015-01-01

    In this research, three faecal sludge sanitizing methods—lactic acid fermentation, urea treatment and lime treatment—were studied for application in emergency situations. These methods were investigated by undertaking small scale field trials with pit latrine sludge in Blantyre, Malawi. Hydrated lime was able to reduce the E. coli count in the sludge to below the detectable limit within 1 h applying a pH > 11 (using a dosage from 7% to 17% w/w, depending faecal sludge alkalinity), urea treatment required about 4 days using 2.5% wet weight urea addition, and lactic acid fermentation needed approximately 1 week after being dosed with 10% wet weight molasses (2 g (glucose/fructose)/kg) and 10% wet weight pre-culture (99.8% pasteurised whole milk and 0.02% fermented milk drink containing Lactobacillus casei Shirota). Based on Malawian prices, the cost of sanitizing 1 m3 of faecal sludge was estimated to be €32 for lactic acid fermentation, €20 for urea treatment and €12 for hydrated lime treatment. PMID:26528995

  19. Lactic Acid Fermentation, Urea and Lime Addition: Promising Faecal Sludge Sanitizing Methods for Emergency Sanitation.

    PubMed

    Anderson, Catherine; Malambo, Dennis Hanjalika; Perez, Maria Eliette Gonzalez; Nobela, Happiness Ngwanamoseka; de Pooter, Lobke; Spit, Jan; Hooijmans, Christine Maria; de Vossenberg, Jack van; Greya, Wilson; Thole, Bernard; van Lier, Jules B; Brdjanovic, Damir

    2015-11-01

    In this research, three faecal sludge sanitizing methods-lactic acid fermentation, urea treatment and lime treatment-were studied for application in emergency situations. These methods were investigated by undertaking small scale field trials with pit latrine sludge in Blantyre, Malawi. Hydrated lime was able to reduce the E. coli count in the sludge to below the detectable limit within 1 h applying a pH > 11 (using a dosage from 7% to 17% w/w, depending faecal sludge alkalinity), urea treatment required about 4 days using 2.5% wet weight urea addition, and lactic acid fermentation needed approximately 1 week after being dosed with 10% wet weight molasses (2 g (glucose/fructose)/kg) and 10% wet weight pre-culture (99.8% pasteurised whole milk and 0.02% fermented milk drink containing Lactobacillus casei Shirota). Based on Malawian prices, the cost of sanitizing 1 m³ of faecal sludge was estimated to be €32 for lactic acid fermentation, €20 for urea treatment and €12 for hydrated lime treatment. PMID:26528995

  20. Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule

    PubMed Central

    Politi, Yael; Metzler, Rebecca A.; Abrecht, Mike; Gilbert, Benjamin; Wilt, Fred H.; Sagi, Irit; Addadi, Lia; Weiner, Steve; Gilbert, P. U. P. A.

    2008-01-01

    Sea urchin larval spicules transform amorphous calcium carbonate (ACC) into calcite single crystals. The mechanism of transformation is enigmatic: the transforming spicule displays both amorphous and crystalline properties, with no defined crystallization front. Here, we use X-ray photoelectron emission spectromicroscopy with probing size of 40–200 nm. We resolve 3 distinct mineral phases: An initial short-lived, presumably hydrated ACC phase, followed by an intermediate transient form of ACC, and finally the biogenic crystalline calcite phase. The amorphous and crystalline phases are juxtaposed, often appearing in adjacent sites at a scale of tens of nanometers. We propose that the amorphous-crystal transformation propagates in a tortuous path through preexisting 40- to 100-nm amorphous units, via a secondary nucleation mechanism. PMID:18987314

  1. The coordination of Mg in foraminiferal calcite

    NASA Astrophysics Data System (ADS)

    Branson, Oscar; Redfern, Simon A. T.; Tyliszczak, Tolek; Sadekov, Aleksey; Langer, Gerald; Kimoto, Katsunori; Elderfield, Henry

    2013-12-01

    The Mg/Ca ratio of foraminiferal calcite is a widely accepted and applied empirical proxy for ocean temperature. The analysis of foraminifera preserved in ocean sediments has been instrumental in developing our understanding of global climate, but the mechanisms behind the proxy are largely unknown. Analogies have been drawn to the inorganic precipitation of calcite, where the endothermic substitution of Mg for Ca is favoured at higher temperatures. However, evidence suggests that foraminiferal Mg incorporation may be more complex: foraminiferal magnesium is highly heterogeneous at the sub-micron scale, and high Mg areas coincide with elevated concentrations of organic molecules, Na, S and other trace elements. Fundamentally, the incorporation mode of Mg in foraminifera is unknown. Here we show that Mg is uniformly substituted for Ca within the calcite mineral lattice. The consistency of Mg-specific X-ray spectra gathered from nano-scale regions across the shell (‘test’) reveals that the coordination of Mg is uniform. The similarity of these spectra to that produced by dolomite shows that Mg is present in an octahedral coordination, ideally substituted for Ca in a calcite crystal structure. This demonstrates that Mg is heterogeneous in concentration, but not in structure. The degree of this uniformity implies the action of a continuous Mg incorporation mechanism, and therefore calcification mechanism, across these compositional bands in foraminifera. This constitutes a fundamental step towards a mechanistic understanding of foraminiferal calcification processes and the incorporation of calcite-bound palaeoenvironment proxies, such as Mg.

  2. Calcite solubility in simulated geothermal brines

    SciTech Connect

    Pool, K.H.; Raney, P.J.; Shannon, D.W.

    1987-02-01

    The deposition of scale on geothermal piping surfaces has been recognized as a cause of increased pressure drop and diminished fluid flow. The two most common scales encountered in the geothermal energy field are silica and calcite. The main purpose of this study was to obtain accurate, reliable calcite solubility data in brines similar to natural geothermal brines over the temperature range of most known exploitable geothermal resources. In addition, geothermal fluid equilibrium modeling efforts and data bases can be refined and fine-turned with respect to the commercially important calcite-geothermal fluid stability problem with these data. The effect of sodium chloride and sodium bicarbonate on the solubility of CaCO/sub 3/ (calcite) in high temperature solutions was measured over the 100 to 300/sup 0/C temperature range. The brines studied contained 0 to 5 wt % NaCl, 0 to 5 mM NaHCO/sub 3/, and 0.003 to 0.1 M CO/sub 2/. The data detailing calcite solubility at various temperatures are presented in tabular, graphical, and regression-equation form for each brine composition tested.

  3. Arsenic removal in conjunction with lime softening

    DOEpatents

    Khandaker, Nadim R.; Brady, Patrick V.; Teter, David M.; Krumhansl, James L.

    2004-10-12

    A method for removing dissolved arsenic from an aqueous medium comprising adding lime to the aqueous medium, and adding one or more sources of divalent metal ions other than calcium and magnesium to the aqueous medium, whereby dissolved arsenic in the aqueous medium is reduced to a lower level than possible if only the step of adding lime were performed. Also a composition of matter for removing dissolved arsenic from an aqueous medium comprising lime and one or more sources of divalent copper and/or zinc metal ions.

  4. Mathematical model of biofilm induced calcite precipitation.

    PubMed

    Zhang, T; Klapper, I

    2010-01-01

    Microbially modulated carbonate precipitation is a fundamentally important phenomenon of both engineered and natural environments. In this paper, we propose a mixture model for biofilm induced calcite precipitation. The model consists of three phases - calcite, biofilm and solvent - which satisfy conservation of mass and momentum laws with addition of a free energy of mixing. The model also accounts for chemistry, mechanics, thermodynamics, fluid and electrodiffusion transport effects. Numerical simulations qualitatively capturing the dynamics of this process and revealing effects of kinetic parameters and external flow conditions are presented. PMID:20489270

  5. Two-phase flow and calcite deposition

    SciTech Connect

    Gudmudsson, J.S.; Granadso-G, E.; Ortiz-R, J.

    1984-04-01

    The literature on two-phase flow in geothermal wells shows that the Orkiszewski method has found wide application in state-of-the-art wellbore simulators. Such a simulator was developed and then used for the problem of wellbore deposition of calcite in the Miravalles geothermal field in Costa Rica. The output of wells suffering calcite deposition decreases slowly at early time but rapidly at late time. The simulator was also used to estimate the deliverability curve for a large diameter well in the Svartsengi geothemal field in Iceland. The view is presented that more accurate wellbore simulators will make new reservoir engineering studies possible in geothermal fields.

  6. Isotopic fractionation of cadmium into calcite

    NASA Astrophysics Data System (ADS)

    Horner, Tristan J.; Rickaby, Rosalind E. M.; Henderson, Gideon M.

    2011-12-01

    Cadmium mimics the distribution of the macronutrient phosphate in the oceans, and has uses as a palaeoproxy of past ocean circulation and nutrient utilization. Isotopic analyses of dissolved Cd in modern seawater show potential as a new tool for disentangling phytoplankton utilization of Cd from abiotic processes, such as ocean mixing. Extending this information into the past requires the Cd isotope signal to be captured and faithfully preserved in a suitable sedimentary archive. However, the role that environmental factors, such as temperature, may play in controlling Cd isotope fractionation into such archives has not been assessed. To this end, we have performed controlled inorganic CaCO 3 precipitation experiments in artificial seawater solutions. We grew calcite under different precipitation rates, temperatures, salinities, and ambient [Mg 2 + ], before measuring Cd isotopic compositions by double spike MC-ICPMS. We find that the isotopic fractionation factor for Cd into calcite ( α-C) in seawater is always less than one (i.e. light isotopes of Cd are preferred in calcite). The fractionation factor has a value of 0.99955 ± 0.00012 and shows no response to temperature, [Mg 2 + ], or precipitation rate across the range studied. The constancy of this fractionation in seawater suggests that marine calcites may provide a record of the local seawater composition, without the need to correct for effects due to environmental variables. We also performed CaCO 3 growth in freshwater and, in contrast to calcite precipitated from artificial seawater solutions, no isotopic offset was recorded between the growth solution and calcite ( α-Cd=1.0000±0.0001). Cadmium isotope fractionation during calcite growth can be explained by a kinetic isotope effect during the largely unidirectional incorporation of Cd at the mineral surface. Further, the rate of Cd uptake and isotopic fractionation can be modulated by increased ion blocking of crystal surface sites at high salinity. The fractionation of Cd isotopes observed during precipitation of calcite has the same direction and similar magnitude to that implicated for Cd removal from the surface ocean by seawater measurements. However, flux calculations show that CaCO 3 precipitation is unlikely to play a significant role in setting the Cd isotope composition in seawater, compared to Cd utilization in phytoplankton soft tissue. Marine carbonates therefore record seawater Cd isotope chemistry - with potential as a palaeoceanographic proxy - rather than drive oceanic Cd isotope compositions.

  7. Lime or lime:fly ash pretreated pavement construction material and method

    SciTech Connect

    Gnaedinger, J.P.

    1985-01-29

    A composition for use as a base course in a pavement construction is prepared by prereacting uncompacted incinerator ash with 2-10% by weight lime or 2-10% by weight of a 2:3 lime:fly ash mixture for several days and then adding 2-10% by weight lime and 20-25% by weight water to the composition before compaction.

  8. pH-dependence of calcite growth kinetics at constant solution calcium to carbonate activity ratio and supersaturation: an in situ Atomic Force Microscopy study

    NASA Astrophysics Data System (ADS)

    Ruiz-Agudo, Encarnacin; Putnis, Christine V.; Rodriguez-Navarro, Carlos Manuel; Putnis, Andrew

    2010-05-01

    Calcite-solution reactions (growth, dissolution and replacement) are critical in a range of both engineering and natural processes. Classical crystal growth theory relates calcite growth rates to the degree of supersaturation. The solution composition may also affect the growth rate of carbonate minerals, via the Ca2+ to CO32- concentration ratio (Nehrke et al., 2007; Perdikouri et al., 2009), ionic strength (Zuddas and Mucci, 1998) or the presence of organic matter (Hoch et al., 2000). Most calcite growth studies so far have been performed at a constant pH of ca. 8 or 10, or changing the pH together with the degree of supersaturation with respect to calcite and/or the aCa2+ to aCO32- ratio in solution, which hinders an evaluation of the pH effect on calcite growth kinetics. In this work, in situ Atomic Force Microscopy (AFM) was employed to study the growth of calcite at a constant supersaturation (? = 6.46) and solution stoichiometry (Ca2+-CO32- = 1) in the pH range 7.5 to 12. How pH may influence calcite growth is relevant to improve our understanding of the effects on carbonate-solution reactions when variations in atmospheric CO2result in changes in the pH of the oceans and surface waters. We observed that the calcite growth rate decreases with increasing pH in the studied range. The results can be successfully explained by the mechanistic model for calcite growth based on surface complexation proposed by Nilsson and Sternbeck (1999) and by solute hydration. At pH below 8.5, growth occurs mainly by CaCO30 incorporation at >CaHCO30 surface sites. CaCO30 should be more easily incorporated than free Ca2+ ions, as water exchange usually is faster if water molecules in the ion hydration shells are substituted for by other ligands, as in CaCO30. However, at pH above 9, Ca2+ incorporation at >CaHCO30 sites also contributes to calcite growth as a result of increased frequency of water exchange in calcium hydration shells due to the presence of strongly hydrated OH-. The decrease in calcite growth rate is a consequence of decreasing surface concentration of growth active sites (i.e. >CaHCO30) with increasing pH in our experimental conditions. Changes in 2D island morphology were observed at high pH (12), possibly due to the stabilization of polar scalenohedral faces by the presence of OH- ions. References Hoch, A.R.; Reddy, M.M.; Aiken, G.R. Calcite crystal growth inhibition by humic substances with emphasis on hydrophobic acids from the Florida Everglades. Geochim. Cosmochim. Acta 2000, 64, 61-72. Nehrke, G.; Reichart, G. J.; Van Cappellen, P.; Meile, C.; Bijma, J. Dependence of calcite growth rate and Sr partitioning on solution stoichiometry: Non-Kossel crystal growth. Geochim. Cosmochim. Acta 2007, 71, 2240-2249 Nilsson O.; Sternbeck J. A mechanistic model for calcite crystal growth using surface speciation. Geochim. Cosmochim.Acta 1999, 63, 217-225. Perdikouri, C.; Putnis, C.V.; Kasioptas, A.; Putnis, A. An Atomic Force Microscopy Study of the Growth of a Calcite Surface as a Function of Calcium/Total Carbonate Concentration Ratio in Solution at Constant Supersaturation. Cryst. Growth Des. 2009, 9, 4344-4350. Zuddas, P.; Mucci, A. Kinetics of Calcite Precipitation from Seawater: II. The Influence of the Ionic Strength. Geochim. Cosmochim. Acta 1998, 62, 757-766.

  9. New Origins of the Vital Effect in Calcites: Mg-Enhancing Influence of Biomolecules

    NASA Astrophysics Data System (ADS)

    Stephenson, A. E.; Wu, L.; Wu, K. J.; Deyoreo, J. J.; Dove, P. M.

    2007-12-01

    Owing to the intense interest in the compositional signatures of biominerals, the mechanistic basis for vital effects and their roles in modifying or masking impurity contents are receiving increasing scrutiny. To date, much of the effort has been focused on the influence of physical environment and inorganic chemical factors. In a recent study that investigated the effects of acidic proteins on calcite growth, our research group found that nanomolar concentratios of acidic amino acids, peptides, and full proteins accelerate the rate of mineral formation by a relationship that correlates with the acidity (hydrophilicity) of the biomolecule (Elhadj et al., 2006, PNAS). Experimental and theoretical evidence suggest that the measured rate-enhancing effect (up to 25X) arises from weak interactions of the biomolecule with the calcite surface to alter the local solvation environment. This relation suggests that the acidic macromolecules that have been isolated from diverse calcifying taxa may have yet unrecognized effects on mineralization. Because Mg has a strong hydration shell relative to Ca, we hypothesized that the presence of these rate-modifying peptides in growth solutions would also lower the barrier to incorporating Mg, and thereby increase the MgCO3 content of calcite overgrowths. To test this idea, measurements of calcite growth rate were made using Atomic Force Microscopy, and in the presence or absence of acidic, hydrophilic 27-mer peptides. The peptide increased the growth rate of obtuse flanks (42% faster, on average, and up to 92% faster) and acute flanks (17% faster on average; up to 54% faster). The calcite overgrowths from AFM experiments were then analyzed for corresponding MgCO3 compositions by Time-of-Flight Secondary Ion Mass Spectrometry. The data yield an inorganic baseline that quantifies the relation between Mg content and the solution concentration. Comparisons of the baseline Mg content to that of peptide-enriched overgrowths show the MgCO3 composition is enhanced by 50 to 70% (in acute and obtuse flanks respectively) in calcite grown in the presence of peptides. Comparisons of these measurements to the MgCO3 compositions reported by Mucci (1987, GCA) for 5-40?C synthetic seawater show that these differences are equivalent to the offset induced by a temperature change of several degrees. Two possible explanations for the enhanced Mg content in the presence of peptide are 1) step roughening increasing the kink density and 2) partial desolvation of the hydrated Mg ion, which lowers the energy barrier to incorporation.

  10. Characterization of a lime-pozzolan plaster containing phase change material

    SciTech Connect

    Pavlíková, Milena; Pavlík, Zbyšek; Trník, Anton; Pokorný, Jaroslav; Černý, Robert

    2015-03-10

    A PCM (Phase Change Material) modified lime-pozzolan plaster for improvement of thermal energy storage of building envelopes is studied in the paper. The investigated plaster is composed of lime hydrate, pozzolan admixture based on metakaolin and mudstone, silica sand, water and paraffin wax encapsulated in polymer capsule. The reference plaster without PCM application is studied as well. The analyzed materials are characterized by bulk density, matrix density, total open porosity, compressive strength and pore size distribution. The temperature of phase change, heat of fusion and crystallization are studied using DSC (Difference Scanning Calorimetry) analysis performed in air atmosphere. In order to get information on materials hygrothermal performance, determination of thermal and hygric properties is done in laboratory conditions. Experimental data reveal a substantial improvement of heat storage capacity of PCM-modified plaster as compared to the reference material without PCM.

  11. Lime-pozzolana mortars in Roman catacombs: composition, structures and restoration

    SciTech Connect

    Sanchez-Moral, Sergio; Soler, Vicente; Garcia-Guinea, Javier

    2005-08-01

    Analyses of microsamples collected from Roman catacombs and samples of lime-pozzolana mortars hardened in the laboratory display higher contents in carbonated binder than other subaerial Roman monuments. The measured environmental data inside the Saint Callistus and Domitilla catacombs show a constant temperature of 15-17 deg C, a high CO{sub 2} content (1700 to 3500 ppm) and a relative humidity close to 100%. These conditions and particularly the high CO{sub 2} concentration speed-up the lime calcitization roughly by 500% and reduce the cationic diffusion to form hydrous calcium aluminosilicates. The structure of Roman catacomb mortars shows (i) coarser aggregates and thicker beds on the inside, (ii) thin, smoothed, light and fine-grained external surfaces with low content of aggregates and (iii) paintings and frescoes on the outside. The observed high porosity of the mortars can be attributed to cracking after drying linked with the high binder content. Hardened lime lumps inside the binder denote low water/mortar ratios for slaking. The aggregate tephra pyroclasts rich in aluminosilicate phases with accessorial amounts of Ba, Sr, Rb, Cu and Pb were analysed through X-ray diffraction (XRD), electron microprobe analysis (EMPA) and also by environmental scanning electron microscopy (ESEM) to identify the size and distribution of porosity. Results support procedures using local materials, special mortars and classic techniques for restoration purposes in hypogeal backgrounds.

  12. FULL SCALE DEMONSTRATION OF LIME STABILIZATION

    EPA Science Inventory

    The project objective was to demonstrate and evaluate the feasibility, economics, and benefits of stabilizing primary, waste activated, septic, and anaerobically digested sludges by lime addition. The project confirmed the findings of previous laboratory and pilot scale tests and...

  13. Interaction of alcohols with the calcite surface.

    PubMed

    Bovet, N; Yang, M; Javadi, M S; Stipp, S L S

    2015-02-01

    A clearer understanding of calcite interactions with organic molecules would contribute to a range of fields including harnessing the secrets of biomineralisation where organisms produce hard parts, increasing oil production from spent reservoirs, remediating contaminated soils and drinking water aquifers and improving manufacturing methods for industrial products such as pigments, soft abrasives, building materials and optical devices. Biomineralisation by some species of blue green algae produces beautifully elaborate platelets of calcite where the individual crystals are of nanometer scale. Controlling their growth requires complex polysaccharides. Polysaccharide activity depends on the functionality of OH groups, so to simplify the system in order to get closer to a molecular level understanding, we investigated the interaction of OH from a suite of alcohols with clean, freshly cleaved calcite surfaces. X-ray photoelectron spectroscopy (XPS) provided binding energies and revealed the extent of surface coverage. Molecular dynamics (MD) simulations supplemented with information about molecule ordering, orientation and packing density. The results show that all alcohols studied bond with the calcite surface through the OH group, with their carbon chains sticking away in a standing-up orientation. Alcohol molecules are closely packed and form a well-ordered monolayer on the surface. PMID:25533590

  14. Cyclic Cratonic Carbonates and Phanerozoic Calcite Seas.

    ERIC Educational Resources Information Center

    Wilkinson, Bruce H.

    1982-01-01

    Discusses causes of cyclicity in cratonic carbonate sequences and evidence for and potential significance of postulated primary calcite sediment components in past Paleozoic seas, outlining problems, focusing on models explaining existing data, and identifying background. Future sedimentary geologists will need to address these and related areas…

  15. Recycled sand in lime-based mortars.

    PubMed

    Stefanidou, M; Anastasiou, E; Georgiadis Filikas, K

    2014-12-01

    The increasing awareness of the society about safe guarding heritage buildings and at the same time protecting the environment promotes strategies of combining principles of restoration with environmentally friendly materials and techniques. Along these lines, an experimental program was carried out in order to investigate the possibility of producing repair, lime-based mortars used in historic buildings incorporating secondary materials. The alternative material tested was recycled fine aggregates originating from mixed construction and demolition waste. Extensive tests on the raw materials have been performed and mortar mixtures were produced using different binding systems with natural, standard and recycled sand in order to compare their mechanical, physical and microstructure properties. The study reveals the improved behavior of lime mortars, even at early ages, due to the reaction of lime with the Al and Si constituents of the fine recycled sand. The role of the recycled sand was more beneficial in lime mortars rather than the lime-pozzolan or lime-pozzolan-cement mortars as a decrease in their performance was recorded in the latter cases due to the mortars' structure. PMID:25266158

  16. Planktic Foraminiferal Sedimentation and Calcite Budget

    NASA Astrophysics Data System (ADS)

    Schiebel, R.

    2002-12-01

    Vertical flux and sedimentation rate of planktic foraminiferal tests is quantified on a global scale. The planktic foraminiferal test flux is a consequence of the population dynamics, and the differential settling modes for different species are a precondition for the differences in the regional flux rates. The average planktic foraminiferal calcite flux rate at the 100-m depth-level is estimated at 50% of the global-marine calcite flux and 6% of the total carbon flux. The most significant decrease in the planktic foraminiferal test flux rates between 100-700 m water depth possibly results from increased bacterially-mediated decomposition of cytoplasm and a decreasing pH in microenvironments within foraminiferal tests. Throughout most of the year, on average only 1-3% of the initially exported CaCO3 reaches the deep sea floor. Pulsed flux events, mass dumps of fast settling particles, yield a major contribution of tests to the formation of deep-sea sediments. On a global average, ~25% of the total calcite produced by planktic foraminifers arrives in the deep ocean and at the sediment surface. To complete the open-marine, particulate CaCO3 inventory, the contribution of coccolithophores, pteropods, and calcareous dinophytes is discussed. The global planktic foraminiferal calcite flux rate at 100 m depth amounts to 23-56% of the total open marine CaCO3 flux. The total planktic foraminiferal contribution of CaCO3 to global surface sediments is estimated at 0.36-0.88 Gt per year, ~30-80% of the total deep-marine calcite budget.

  17. Effect of micromorphological development on the elastic moduli of fly ash-lime stabilized bentonite

    SciTech Connect

    Baykal, G.I.

    1987-01-01

    The mineralogical and micromorphological changes occurring in fly ash-lime stabilized bentonite were observed and related to changes in elastic moduli of the stabilized mixture. Compacted fly ash, fly ash-lime, bentonite-lime, bentonite-fly ash, and bentonite-fly ash-lime mixtures were prepared and cured at 23C and 50C, for 1, 28, 90 and 180 days. The development of microstructure and cementitous crystals were observed by a scanning electron microscope, and energy dispersive spectrum analyzer and a X-ray diffractometer. The elastic moduli and strengths were obtained from unconsolidated undrained triaxial and unconfined compressive strength tests. The physical test results were compared with changes observed by scanning electron microscopy and X-ray diffraction. CSH gel Type I, II and III, ettringite, afwillite and tetracalcium aluminate thirteen hydrate crystals were identified in the cured specimens. The elastic modulus of the fly ash-lime stabilized bentonite was higher than the untreated bentonite and the increase in elastic modulus corresponded to the curing times when new cementitious crystals were observed. Acicular crystals (CSH Type I and II) and ettringite crystals spanned the pores and increased the contact points where blocky aggregates of equant crystals (CSH III) engulfed the fly ash grains providing support. The compressive strength increased, and the strain at a failure decreased resulting in an increase in the elastic modulus. Some fly ash grains providing support for montmorillonite aggregates dissolved and created weak spots in the matrix, causing a decrease in elastic modulus at longer curing periods. At 50C curing temperature the same cementitious crystals were observed as at 23C. However, the rate of the reactions increased considerably.

  18. Improved control of sucrose losses and clarified juice turbidity with lime saccharate in hot lime clarification of sugarcane juice and other comparisons with milk of lime

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A comparative investigation of adding milk of lime (MOL) versus lime saccharate (SACCH) in hot lime clarification of juice at a U.S. sugarcane factory was undertaken to quantify performance across the 2009 processing season after a preliminary factory study in 2008. SACCH was prepared by adding hyd...

  19. in situ Calcite Precipitation for Contaminant Immobilization

    SciTech Connect

    Yoshiko Fujita; Robert W. Smith

    2009-08-01

    in situ Calcite Precipitation for Contaminant Immobilization Yoshiko Fujita (Yoshiko.fujita@inl.gov) (Idaho National Laboratory, Idaho Falls, Idaho, USA) Robert W. Smith (University of Idaho-Idaho Falls, Idaho Falls, Idaho, USA) Subsurface radionuclide and trace metal contaminants throughout the U.S. Department of Energy (DOE) complex pose one of DOE’s greatest challenges for long-term stewardship. One promising stabilization mechanism for divalent trace ions, such as the short-lived radionuclide strontium-90, is co-precipitation in calcite. Calcite, a common mineral in the arid western U.S., can form solid solutions with trace metals. The rate of trace metal incorporation is susceptible to manipulation using either abiotic or biotic means. We have previously demonstrated that increasing the calcite precipitation rate by stimulating the activity of urea hydrolyzing microorganisms can result in significantly enhanced Sr uptake. Urea hydrolysis causes the acceleration of calcium carbonate precipitation (and trace metal co-precipitation) by increasing pH and alkalinity, and also by liberating the reactive cations from the aquifer matrix via exchange reactions involving the ammonium ion derived from urea: H2NCONH2 + 3H2O ? 2NH4+ + HCO3- + OH- urea hydrolysis >X:2Ca + 2NH4+ ? 2>X:NH4 + Ca2+ ion exchange Ca2+ + HCO3- + OH- ? CaCO3(s) + H2O calcite precipitation where >X: is a cation exchange site on the aquifer matrix. This contaminant immobilization approach has several attractive features. Urea hydrolysis is catalyzed by the urease enzyme, which is produced by many indigenous subsurface microorganisms. Addition of foreign microbes is unnecessary. In turn the involvement of the native microbes and the consequent in situ generation of reactive components in the aqueous phase (e.g., carbonate and Ca or Sr) can allow dissemination of the reaction over a larger volume and/or farther away from an amendment injection point, as compared to direct addition of the reactants at a well (which can lead to clogging). A final particularly attractive characteristic of this approach is its long-term sustainability; the remediation scheme is geared toward environments that are already saturated with respect to calcite, and in such systems the bulk of any newly precipitated calcite will remain stable once engineered manipulations cease. This means that the co-precipitated contaminants will be effectively sequestered over the long term. We are currently conducting integrated field, laboratory, and computational research to evaluate a) the relationships between urea hydrolysis rate, calcite precipitation rate, and trace metal partitioning under environmentally relevant conditions; and b) the coupling between flow/flux manipulations and calcite precipitate distribution and metal uptake. We are also assessing the application of geophysical and molecular biological tools to monitor the relevant chemical and physical processes. The primary emphasis is on field-scale processes, with the laboratory and modeling activities designed specifically to support the field studies. Field experiments are being conducted in perched water (vadose zone) at the Vadose Zone Research Park (VZRP) at the Idaho National Laboratory; the VZRP provides an uncontaminated setting that is an analog of the 90Sr-contaminated vadose zone at the Idaho Nuclear Technology and Engineering Center. A summary of results to date will be presented.

  20. Molecular Dynamics Study of the Interactions Between Minerals and Gas Hydrate Species

    NASA Astrophysics Data System (ADS)

    Kvamme, B.; Leirvik, K. N.; Olsen, R.; Kuznetsova, T.

    2014-12-01

    The need for knowledge on gas hydrate "host" and "guest" interactions with reservoir rocks comes from the two folded exploitation of gas hydrates. On one hand natural gas hydrates represent an immense energy source, on the other hand carbon sequestration in the form of CO2 hydrates represents a long-term storage of carbon dioxide. Whether one's goal is to extract methane from natural gas hydrates or store carbon dioxide in the form of hydrates, it requires an understanding of the complex phenomena involving coupled dynamics of hydrates and hydrate stability in porous media. Hydrates can never attach directly to solid mineral surfaces because of the incompatibility of charges between the mineral surfaces and the hydrates. However, adsorption of water and carbon dioxide on mineral surfaces may favor heterogeneous nucleation of hydrate in the immediate vicinity. Different surfaces have their own specific adsorption preferences and corresponding adsorption thermodynamics. We have selected calcite, a common mineral found in porous media. Using molecular dynamics we have initially focused on the water interface in order to evaluate the "host" interactions towards the surface. We also aimed at evaluating the model before including guest molecules.

  1. Effect of whole catchment liming on the episodic acidification of two adirondack streams

    USGS Publications Warehouse

    Newton, R.M.; Burns, D.A.; Blette, V.L.; Driscoll, C.T.

    1996-01-01

    During the fall of 1989 7.7Mg/ha of calcium carbonate was applied on two tributary catchments (40 ha and 60 ha) to Woods Lake, a small (25 ha) acidic headwater lake in the western Adirondack region of New York. Stream-water chemistry in both catchment tributaries responded immediately. Acid-neutralizing capacity (ANC) increased by more than 200 ??eq/L in one of the streams and more than 1000 ??eq/L in the other, from pre-liming values which ranged from -25 to +40 ??eq/L. The increase in ANC was primarily due to increases in dissolved Ca2+ concentrations. Most of the initial response of the streams was due to the dissolution of calcite that fell directly into the stream channels and adjacent wetlands. A small beaver impoundment and associated wetlands were probably responsible for the greater response observed in one of the streams. After the liming of subcatchmentIV (60 ha), Ca2+ concentrations increased with increasing stream discharge in the stream during fall rain events, suggesting a contribution from calcite dissolved within the soil and transported to the stream by surface runoff or shallow interflow. Concentrations of other ions not associated with the calcite (e.g. Na+) decreased during fall rain events, presumably due to mixing of solute-rich base flow with more dilute shallow interflow. The strong relation between changes in Ca2+ and changes in NO3- concentrations during spring snowmelt, (r2 = 0.93, slope = 0.96, on an equivalent basis) suggests that both solutes had a common source in the organic horizon of the soil. Increases in NO3- concentrations during snowmelt were balanced by increases in Ca2+ that was released either directly from the calcite or from exchange sites, mitigating episodic acidification of the stream. However, high ambient NO3- concentrations and relatively low ambient Ca2+ concentrations in the stream during the spring caused the stream to become acidic despite the CaCO3 treatment. In stream WO2 (40ha), Ca2+ concentrations were much higher than in stream WO4 because of the dissolution of calcite which fell directly into the upstream beaver pond and its associated wetlands. Calcium concentrations decreased as both NO3- concentrations and stream discharge increased, due to the dilution of Ca-enriched beaver pond water by shallow interflow. Despite this dilution, Ca2+ concentrations were high enough to more than balance strong acid anion (SO42-, NO3-, Cl-) concentrations, resulting in a positive ANC in this stream throughout the year. These data indicate that liming of wetlands and beaver ponds is more effective than whole catchment liming in neutralizing acidic surface waters. ?? 1996 Kluwer Academic Publishers.

  2. Dissolution Kinetics of Biogenic Magnesian Calcites

    NASA Astrophysics Data System (ADS)

    Thompson, R.; Guidry, M.; Mackenzie, F. T.; De Carlo, E. H.

    2014-12-01

    Ocean acidification (OA) is a serious concern for the health of calcifying ecosystems in the near future. During the past century, surface ocean pH has decreased by ~0.1 pH units, and is expected to decrease further by 0.3-0.4 pH units by the end of this century. The process of OA will likely result in both decreased calcification rates and increased rates of carbonate mineral dissolution, particularly involving the magnesian calcite (Mg-calcite) calcifiers found in shallow-water reef and other carbonate environments. Many Mg-calcite compositions are the most soluble of the carbonate phases commonly found in reef environments (often comprising much of the cementation and structure within a reef), and are therefore potentially the most susceptible to dissolution processes associated with OA. However, the dissolution kinetics of these phases is poorly known, limiting our ability to understand their behavior in nature. Laboratory experiments designed to investigate the mechanisms and dissolution rates of biogenic Mg-calcite mineral phases in distilled water and seawater over a range of CO2 and T conditions were conducted employing both batch and fluidized-bed reactor systems and using a variety of cleaned and annealed biogenic Mg-calcite phases. Our initial results have shown that the dissolution rate at 298 K and a pCO2 of ~350 ppm of the crustose coralline alga Amphiroa rigida (~20 mol% MgCO3) in seawater undersaturated with respect to this phase is 3.6 μmol g-1 hr-1, nearly 50% greater than that under similar conditions for aragonite. This rate and the derived experimental rate law are consistent with the preliminary findings of Walter and Morse (1985). Additional kinetic (and also solubility) data will be presented for the following species: Chiton tuberculatus (~0-4 mol% MgCO3); Echinometra mathei and/or Lytechinus variegatus (~8-12 mol% MgCO3); Homotrema rubrum (12-16 mol% MgCO3); and Lithothamnion sp. (~18-24 mol% MgCO3). Quantification of the rates of dissolution for a broad range of Mg-calcite phases, along with determination of sediment mineralogy, is necessary to allow managers to model and predict quantitatively the impacts of OA on a variety of coral reef and other carbonate-dominated sedimentary environments.

  3. Stable isotopic composition of meteoric calcites: Evidence for early mississippian climate change in the mission canyon formation, Montana

    NASA Astrophysics Data System (ADS)

    Smith, Tad M.; Dorobek, Steven L.

    1993-07-01

    The Lower Mississippian Mission Canyon Formation of central to southwestern Montana was deposited under dominantly semiarid to arid climatic conditions during Osagean to early Meramecian times. Following deposition, a pronounced climatic shift to more humid conditions occurred during middle Meramecian times. This climatic change is indicated by extensive, post-depositional karst fabrics and in the stable isotopic composition of early, meteoric calcite cements and diagenetically altered sediments. Early meteoric calcite cement in Mission Canyon limestones is generally nonluminescent and fills intergranular and fenestral porosity. Petrographic data indicate that this cement formed during intermittent subaerial exposure of the Mission Canyon platform during Osagean times. This initial generation of meteoric calcite cement has ?18O values from -8.1 to -2.6%. PDB. These data, and the oxygen isotopic values from nonluminescent skeletal grains and micrite in host limestone indicate that Osagean meteoric water may have had ?18O values as low as -6.0%. SMOW. A second generation of petrographicalty similar, but isotopically distinct, calcite cement fills biomolds and porosity within solution-collapse breccias in the Mission Canyon Formation. This cement generation postdates earlier nonluminescent Osagean calcite cement and is volumetrically most abundant near the top of the Mission Canyon Formation. ?18O values from these cements and from nonluminescent lime mudstone clasts and matrix in solution collapse breccias range from - 13.8 to - 8.2%. PDB. These data indicate that Meramecian meteoric water may have had ?18O values as low as - 12.0%. However, a higher-temperature burial overprint on the ?18O values of the calcite cement cannot he ruled out. The more positive ?18O values of the Osagean calcite components probably indicate warm and arid conditions during short-term [10 4(?) yr] subaerial exposure along intraformational sequence and parasequence boundaries. The more negative ?18O values from Meramecian calcite components and the extensive karst associated with the post-Mission Canyon unconformity may have developed because of cooler and more humid climatic conditions and possible rain-out effects during middle Meramecian times. A dramatic shift towards cooler and more humid climatic conditions may be coincident with the onset of major continental glaciation in the Early Carboniferous. The post-Mission Canyon unconformity has been attributed to a major fall in sea level that may have glacio-eustatic origins. Growth of continental glaciers during a time of global cooling would have caused migration of polar fronts further toward the paleoequator. These polar fronts in turn, would have pushed moist, mid-latitude weather systems toward the paleoequator, resulting in cooler, more humid conditions in low-latitude settings during "icehouse" times.

  4. The role of silicate surfaces on calcite precipitation kinetics

    NASA Astrophysics Data System (ADS)

    Stockmann, Gabrielle J.; Wolff-Boenisch, Domenik; Bovet, Nicolas; Gislason, Sigurdur R.; Oelkers, Eric H.

    2014-06-01

    The aim of this study is to illuminate how calcite precipitation depends on the identity and structure of the growth substrate. Calcite was precipitated at 25 C from supersaturated aqueous solutions in the presence of seeds of either calcite or one of six silicate materials: augite, enstatite, labradorite, olivine, basaltic glass and peridotite rock. Calcite saturation was achieved by mixing a CaCl2-rich aqueous solution with a NaHCO3-Na2CO3 aqueous buffer in mixed-flow reactors containing 0.5-2 g of mineral, rock, or glass seeds. This led to an inlet fluid calcite saturation index of 0.6 and a pH equal to 9.1. Although the inlet fluid composition, flow rate, and temperature were identical for all experiments, the onset of calcite precipitation depended on the identity of the seeds present in the reactor. Calcite precipitated instantaneously and at a constant rate in the presence of calcite grains. Calcite precipitated relatively rapidly on labradorite, olivine, enstatite, and peridotite (mainly composed of Mg-olivine) surfaces, but more slowly on augite and basaltic glass. Calcite precipitation rates, however, became independent of substrate identity and mass over time, and all rates approach 10-9.68 0.08 mol/s for ?10 day long experiments and 10-9.21 0.2 mol/s for ?70 day long experiments. Scanning Electron Microscope images showed olivine, enstatite and peridotite surfaces to be covered extensively with calcite coatings at the end of the experiments. Less calcite was found on labradorite and augite, and the least on basaltic glass. In all cases, calcite precipitation occurs on the mineral, rock or glass surfaces. Calcite precipitation on these surfaces, however, negligibly affects the dissolution rates of the silicate grains. These results support ultramafic and basalt carbonation as a long-term carbon storage strategy, as calcite readily precipitates on the surfaces of minerals contained in these rocks without inhibiting their dissolution.

  5. Calcite growth-rate inhibition by fulvic acid and magnesium ion—Possible influence on biogenic calcite formation

    USGS Publications Warehouse

    Reddy, Michael M.

    2012-01-01

    Increases in ocean surface water dissolved carbon dioxide (CO2) concentrations retard biocalcification by reducing calcite supersaturation (Ωc). Reduced calcification rates may influence growth-rate dependent magnesium ion (Mg) incorporation into biogenic calcite modifying the use of calcifying organisms as paleoclimate proxies. Fulvic acid (FA) at biocalcification sites may further reduce calcification rates. Calcite growth-rate inhibition by FA and Mg, two common constituents of seawater and soil water involved in the formation of biogenic calcite, was measured separately and in combination under identical, highly reproducible experimental conditions. Calcite growth rates (pH=8.5 and Ωc=4.5) are reduced by FA (0.5 mg/L) to 47% and by Mg (10−4 M) to 38%, compared to control experiments containing no added growth-rate inhibitor. Humic acid (HA) is twice as effective a calcite growth-rate inhibitor as FA. Calcite growth rate in the presence of both FA (0.5 mg/L) and Mg (10−4 M) is reduced to 5% of the control rate. Mg inhibits calcite growth rates by substitution for calcium ion at the growth site. In contrast, FA inhibits calcite growth rates by binding multiple carboxylate groups on the calcite surface. FA and Mg together have an increased affinity for the calcite growth sites reducing calcite growth rates.

  6. Frictional behavior of talc-calcite mixtures

    NASA Astrophysics Data System (ADS)

    Giorgetti, C.; Carpenter, B. M.; Collettini, C.

    2015-09-01

    Faults involving phyllosilicates appear weak when compared to the laboratory-derived strength of most crustal rocks. Among phyllosilicates, talc, with very low friction, is one of the weakest minerals involved in various tectonic settings. As the presence of talc has been recently documented in carbonate faults, we performed laboratory friction experiments to better constrain how various amounts of talc could alter these fault's frictional properties. We used a biaxial apparatus to systematically shear different mixtures of talc and calcite as powdered gouge at room temperature, normal stresses up to 50 MPa and under different pore fluid saturated conditions, i.e., CaCO3-equilibrated water and silicone oil. We performed slide-hold-slide tests, 1-3000 s, to measure the amount of frictional healing and velocity-stepping tests, 0.1-1000 µm/s, to evaluate frictional stability. We then analyzed microstructures developed during our experiments. Our results show that with the addition of 20% talc the calcite gouge undergoes a 70% reduction in steady state frictional strength, a complete reduction of frictional healing and a transition from velocity-weakening to velocity-strengthening behavior. Microstructural analysis shows that with increasing talc content, deformation mechanisms evolve from distributed cataclastic flow of the granular calcite to localized sliding along talc-rich shear planes, resulting in a fully interconnected network of talc lamellae from 20% talc onward. Our observations indicate that in faults where talc and calcite are present, a low concentration of talc is enough to strongly modify the gouge's frictional properties and specifically to weaken the fault, reduce its ability to sustain future stress drops, and stabilize slip.

  7. Bendable, free-standing calcite thin films.

    PubMed

    Nakamura, Shiho; Naka, Kensuke

    2015-02-17

    Since the hardness and toughness of natural nacre are determined by hierarchical microstructures with organic matters, it is of great importance to control the microstructures of artificial free-standing CaCO3 thin films. However, the fabrication of such films has so far been quite limited, to the extent that their mechanical properties have not been reported. To address this, free-standing calcite thin films were prepared through repeated cycles of layer-by-layer deposition of vaterite precursor composite particles with organic polymers, followed by a phase transition to calcite. In this way, two distinct calcite thin film types were produced based on either 3.2 or 1.0 wt % organic material, with subsequent three-point bending tests revealing that both exhibit elastic bending prior to fracture. More importantly, by increasing the organic content from 1.0 to 3.2 wt %, the bending strength increased from 0.95 ± 0.26 MPa to 1.90 ± 0.21 MPa. PMID:25621634

  8. Dynamic Response of Soda-Lime Glass

    NASA Astrophysics Data System (ADS)

    Alexander, C. Scott

    2007-06-01

    Soda-lime glass (SLG) is a highly available low cost glass formulation commonly used in window applications and it may have potential use in transparent ceramic armor. While there has been a great deal of work done to characterize the shock response of fused silica, the primary component of SLG, comparatively little is known about SLG itself. This paper will report the results of characterization experiments conducted at Sandia National Laboratories on a low iron content soda-lime glass commercially available from PPG Industries. Data have been collected over a wide range of stress levels from 4 to 65 GPa. Topics will include the Hugoniot response including non-linear elastic behavior, support for a high stress phase transition, material strength, and evidence for failure of the material under certain conditions. Further, the results will be compared and contrasted with related findings in fused silica as well as work on similar soda-lime glass formulations reported by other researchers.

  9. Atomistic simulations of calcium uranyl(VI) carbonate adsorption on calcite and stepped-calcite surfaces.

    PubMed

    Doudou, Slimane; Vaughan, David J; Livens, Francis R; Burton, Neil A

    2012-07-17

    Adsorption of actinyl ions onto mineral surfaces is one of the main mechanisms that control the migration of these ions in environmental systems. Here, we present computational classical molecular dynamics (MD) simulations to investigate the behavior of U(VI) in contact with different calcite surfaces. The calcium-uranyl-carbonate [Ca(2)UO(2)(CO(3))(3)] species is shown to display both inner- and outer-sphere adsorption to the flat {101̅4} and the stepped {314̅8} and {31̅2̅16} planes of calcite. Free energy calculations, using the umbrella sampling method, are employed to simulate adsorption paths of the same uranyl species on the different calcite surfaces under aqueous condition. Outer-sphere adsorption is found to dominate over inner-sphere adsorption because of the high free energy barrier of removing a uranyl-carbonate interaction and replacing it with a new uranyl-surface interaction. An important binding mode is proposed involving a single vicinal water monolayer between the surface and the sorbed complex. From the free energy profiles of the different calcite surfaces, the uranyl complex was also found to adsorb preferentially on the acute-stepped {314̅8} face of calcite, in agreement with experiment. PMID:22642750

  10. 62. INTERIOR VIEW OF THE LIME KILN BUILDING, LOOKING AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. INTERIOR VIEW OF THE LIME KILN BUILDING, LOOKING AT THE LIME KILNS AND MOTOR DRIVES FOR THE KILNS. (DATE UNKNOWN). - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  11. VIEW OF LIME KILN BUILDING LOOKING NORTHWEST, SHOWING STONE ELEVATOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF LIME KILN BUILDING LOOKING NORTHWEST, SHOWING STONE ELEVATOR (ON THE LEFT) AND SOUTH CONVEYOR. - Solvay Process Company, Lime Kiln Building, Between Willis & Milton Avenues, Solvay, Onondaga County, NY

  12. LIME KILN BUILDING, KILN BOTTOM SHOWING ROTATOR GEAR. (GEAR IS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LIME KILN BUILDING, KILN BOTTOM SHOWING ROTATOR GEAR. (GEAR IS POINTED DOWN FOR PROPER ORIENTATION). - Solvay Process Company, Lime Kiln Building, Between Willis & Milton Avenues, Solvay, Onondaga County, NY

  13. VIEW OF MLT BUILDING (LIME KILN BUILDING DIRECTLY BEHIND IT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF MLT BUILDING (LIME KILN BUILDING DIRECTLY BEHIND IT WITH GOOD VIEW OF SKIP CAR TRACK) LOOKING EAST. - Solvay Process Company, Lime Kiln Building, Between Willis & Milton Avenues, Solvay, Onondaga County, NY

  14. 19. LOOKING NORTH ALONG ROAD BISECTING SITE; PEBBLE LIME SILO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. LOOKING NORTH ALONG ROAD BISECTING SITE; PEBBLE LIME SILO ON THE RIGHT, MAIN SUPPLY BUILDING AND MACHINE SHOP ON THE LEFT. - Standard Lime & Stone Quarry, County Route 27, Millville, Jefferson County, WV

  15. Understanding gas hydrate dissolution

    NASA Astrophysics Data System (ADS)

    Lapham, Laura; Chanton, Jeffrey; MacDonald, Ian; Martens, Christopher

    2010-05-01

    In order to understand the role gas hydrates play in climate change or their potential as an energy source, we must first understand their basic behaviors. One such behavior not well understood is their dissolution and the factors that control it. Theoretically, hydrates are stable in areas of high pressure, low temperature, moderate salt concentrations, and saturated methane. Yet in nature, we observe hydrate to outcrop seafloor sediments into overlying water that is under-saturated with respect to methane. How do these hydrates not dissolve away? To address this question, we combine both field and laboratory experiments. In the field, we have collected pore-waters directly surrounding gas hydrate outcrops and measured for in situ methane concentrations. This gives us an understanding of the concentration gradients, and thus methane flux, directly from the hydrate to the surrounding environment. From these samples, we found that methane concentrations decreased further from hydrate yet are always under-saturated with respect to methane hydrate. The resulting low methane gradients were then used to calculate low dissolution rates. This result suggests that hydrates are meta-stable in the environment. What controls their apparent meta-stability? We hypothesize that surrounding oils or microbial slimes help protect the hydrate and slow down their dissolution. To test this hypothesis, we conducted a series of laboratory experiments where hydrate was formed at in situ pressure and temperature and the source gas removed; first with no oils, then with oils. Dissolved methane concentrations were then measured in surrounding fluids over time and dissolution rates calculated. To date, both methane and mixed gas hydrate (methane, ethane, and propane) have similar dissolution rates of 0.12 mM/hr. Future experiments will add oils to determine how different hydrate dissolves with such contaminants. This study will further our understanding of factors that control hydrate stability in nature.

  16. Effects of calcite and magnesite application to a declining Masson pine forest on strongly acidified soil in Southwestern China.

    PubMed

    Huang, Yongmei; Kang, Ronghua; Ma, Xiaoxiao; Qi, Yu; Mulder, Jan; Duan, Lei

    2014-05-15

    Liming of strongly acidified soil under a Masson pine (Pinus massoniana Lamb.) forest was studied through a seven-year field manipulation experiment at Tieshanping, Chongqing in Southwestern China. To distinguish between the individual effects of Ca(2+) and Mg(2+) addition, we separately applied calcite (CaCO3) and magnesite (MgCO3), rather than using dolomite [CaMg(CO3)2]. Both calcite and magnesite additions caused a significant increase in pH and a decrease in dissolved inorganic monomeric aluminium (Ali) concentration of soil water. Ecological recovery included increases of herb biomass (both treatments) and Mg content in Masson pine needles (magnesite treatment only). However, the growth rate of Masson pine did not increase under either treatment, possibly because of nutrient imbalance due to phosphorus (P) deficiency or limited observation period. In China, acid deposition in forest ecosystems commonly coincides with large inputs of atmogenic Ca(2+), both enhancing Mg(2+) leaching. Calcite addition may further decrease the Mg(2+) availability in soil water, thereby exacerbating Mg(2+) deficiency in the acidified forest soils of southern and southwestern China. The effect of anthropogenic acidification of naturally acid forest soils on P availability needs further study. PMID:24631610

  17. 46 CFR 148.230 - Calcium oxide (lime, unslaked).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Calcium oxide (lime, unslaked). 148.230 Section 148.230... MATERIALS THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain Materials § 148.230 Calcium oxide (lime, unslaked). (a) When transported by barge, unslaked lime (calcium oxide) must be carried in...

  18. 46 CFR 148.230 - Calcium oxide (lime, unslaked).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Calcium oxide (lime, unslaked). 148.230 Section 148.230... MATERIALS THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain Materials § 148.230 Calcium oxide (lime, unslaked). (a) When transported by barge, unslaked lime (calcium oxide) must be carried in...

  19. 46 CFR 148.230 - Calcium oxide (lime, unslaked).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Calcium oxide (lime, unslaked). 148.230 Section 148.230... MATERIALS THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain Materials § 148.230 Calcium oxide (lime, unslaked). (a) When transported by barge, unslaked lime (calcium oxide) must be carried in...

  20. 46 CFR 148.230 - Calcium oxide (lime, unslaked).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Calcium oxide (lime, unslaked). 148.230 Section 148.230... MATERIALS THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain Materials § 148.230 Calcium oxide (lime, unslaked). (a) When transported by barge, unslaked lime (calcium oxide) must be carried in...

  1. LIME STABILIZATION AND ULTIMATE DISPOSAL OF MUNICIPAL WASTEWATER SLUDGES

    EPA Science Inventory

    Twenty-eight lime stabilization facilities were visited. None of these plants were originally designed for sludge lime stabilization. Lime stabilization was instituted either as a permanent sludge handling mechanism to replace a more costly process, as an interim sludge handling ...

  2. 27 CFR 9.27 - Lime Kiln Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Lime Kiln Valley. 9.27... Kiln Valley. (a) Name. The name of the viticultural area described in this section is “Lime Kiln Valley.” (b) Approved Map. The appropriate map for determining the boundaries of the Lime Kiln...

  3. 27 CFR 9.27 - Lime Kiln Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Lime Kiln Valley. 9.27... Kiln Valley. (a) Name. The name of the viticultural area described in this section is “Lime Kiln Valley.” (b) Approved Map. The appropriate map for determining the boundaries of the Lime Kiln...

  4. 27 CFR 9.27 - Lime Kiln Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Lime Kiln Valley. 9.27... Kiln Valley. (a) Name. The name of the viticultural area described in this section is “Lime Kiln Valley.” (b) Approved Map. The appropriate map for determining the boundaries of the Lime Kiln...

  5. 27 CFR 9.27 - Lime Kiln Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Lime Kiln Valley. 9.27... Kiln Valley. (a) Name. The name of the viticultural area described in this section is “Lime Kiln Valley.” (b) Approved Map. The appropriate map for determining the boundaries of the Lime Kiln...

  6. 27 CFR 9.27 - Lime Kiln Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Lime Kiln Valley. 9.27... Kiln Valley. (a) Name. The name of the viticultural area described in this section is “Lime Kiln Valley.” (b) Approved Map. The appropriate map for determining the boundaries of the Lime Kiln...

  7. 46 CFR 148.04-23 - Unslaked lime in bulk.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Unslaked lime in bulk. 148.04-23 Section 148.04-23 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES CARRIAGE OF SOLID HAZARDOUS MATERIALS IN BULK Special Additional Requirements for Certain Material § 148.04-23 Unslaked lime in bulk. (a) Unslaked lime in bulk must...

  8. Zinc isotope fractionation during adsorption on calcite

    NASA Astrophysics Data System (ADS)

    Dong, S.; Wasylenki, L. E.

    2013-12-01

    Zinc is an important element as a nutrient in the marine biosphere. However, our understanding of its biogeochemical cycling in the oceans is relatively limited. The Zn stable isotope system holds the promise of providing novel insights, since published Zn isotopic values for various natural samples reveal significant fractionations in the marine environment. Surface seawater, basalts, shales, deep-sea clay sediments, sediment trap material, bulk plankton and zooplankton samples, and eolian dust fall within a tight range (δ66/64Zn from -0.1 to 0.5‰), but modern ferromanganese crusts (δ66/64Zn from 0.5 to 1.2‰), as well as carbonates (δ66/64Zn from 0.3 to 1.4‰), are notably enriched in heavy Zn isotopes [1-4]. In this study we seek to constrain the mechanism by which carbonates are enriched in heavier isotopes. In particular, we have conducted experiments to quantify isotope fractionation during adsorption of Zn onto the surfaces of calcite crystals that are in equilibrium with solution. The adsorption experiments were carried out in a series of small-volume batch reactions in a clean laboratory environment, using high-purity reagents and calcite seed crystals. The calcite was equilibrated with the solution prior to addition of Zn at atmospheric CO2 pressure (i.e., in air) for 5 days until a stable pH of 8.3 was reached. Later, a small aliquot of dissolved ZnCl2 was added such that the solution remained undersaturated with respect to hydrozincite. Experimental duration varied among the replicates from 6 to 144 hours, and then all solids and solutions were separated by filtration, purified by ion exchange chromatography, and analyzed by MC-ICP-MS. Zn adsorbed on calcite is isotopically heavier than in the co-existing solutions, with Δ68/66Zncalcite-solution of approximately 0.3‰. The variation of Δ68/66Zncalcite-solution beyond 24 hours is insignificant, so we infer that isotopic equilibrium is reached by this time. Previous work strongly suggests that a difference in coordination number between dissolved Zn and adsorbed Zn is drives the observed fractionation. Elzinga and Reeder[5] determined using EXAFS (Extended X-ray Absorption Fine Structure) that Zn adsorbed to calcite surfaces is tetrahedrally coordinated, sharing three oxygens with the calcite surface. Meanwhile density functional theory calculations[6] predicted that tetrahedral Zn-O species should be heavier than octahedral Zn-O species. Thus we infer that equilibrium between octahedrally coordinated, dissolved Zn and tetrahedrally coordinated, adsorbed Zn is the mechanism of fractionation in our experiments. Our further studies will determine whether the isotopically heavy pool of adsorbed Zn becomes the Zn incorporated within carbonates; if so, then we are closer to understanding the mechanism by which carbonate rocks in nature are enriched in heavier isotopes of zinc. [1] Bermin et al., 2006, Chem. Geol. 226, 280. [2] Maréchal et al., 2000, Geochem. Geophys. Geosyst. 1, 1999GC-000029. [3] Dong et al., 2013, Talanta 114, 103-109. [4] Pichat et al., 2003, Earth Planet. Sci. Lett. 210, 167-178. [5] Elzinga and Reeder, 2002, Geochim. Cosmochim. Acta 66, 3943-3954. [6] Schauble, 2003, EOS, Trans. AGU, Fall Meet. Suppl. 84(46), B12B-0781.

  9. Fertilizer and Lime: Why They Are Used.

    ERIC Educational Resources Information Center

    McCaslin, Judith Strand

    This unit teaching guide is designed to help teachers explain the principles of fertilizer and lime use. The first of four major sections is a teaching outline keyed to transparency masters and student handouts. Thirteen major areas are covered in the teaching outline: (1) plant needs; (2) uses of fertilizer; (3) nutrients for plant growth; (4)

  10. Microstructure evolution of lime putty upon aging

    NASA Astrophysics Data System (ADS)

    Mascolo, Giuseppe; Mascolo, Maria Cristina; Vitale, Alessandro; Marino, Ottavio

    2010-08-01

    The microstructure evolution of lime putty upon aging was investigated by slaking quicklime (CaO) with an excess of water for 3, 12, 24, 36, 48 and 66 months. The as-obtained lime putties were characterized in the water retention and in the particle size distribution using the static laser scattering (SLS). The same lime putties, dehydrated by lyophilization, were also investigated in the pore size distribution by mercury intrusion porosimetry, in the surface area by the BET method and, finally, in particle morphology by scanning electron microscopy (SEM). The effect of the extended exposure of quicklime to water confirms a shape change from prismatic crystals of portlandite, Ca(OH) 2, into platelike ones. Simultaneously a growth of larger hexagonal crystals at the expense of the smallest ones (Ostwald ripening) favours a secondary precipitation of submicrometer platelike crystals of portlandite. The shape change and the broader particles size distribution of portlandite crystals upon aging seem to contribute to a better plasticity of lime putty.

  11. Fertilizer and Lime: Why They Are Used.

    ERIC Educational Resources Information Center

    McCaslin, Judith Strand

    This unit teaching guide is designed to help teachers explain the principles of fertilizer and lime use. The first of four major sections is a teaching outline keyed to transparency masters and student handouts. Thirteen major areas are covered in the teaching outline: (1) plant needs; (2) uses of fertilizer; (3) nutrients for plant growth; (4)…

  12. What controls boron incorporation into foraminiferal calcite?

    NASA Astrophysics Data System (ADS)

    Allen, K. A.; Hoenisch, B.; Eggins, S. M.; Rosenthal, Y.; Spero, H. J.

    2012-12-01

    In recent years, the ratio of boron to calcium (B/Ca) in foraminiferal calcite has emerged as a new and promising candidate for reconstructing marine carbonate chemistry. In addition to the expected primary control of aqueous borate and bicarbonate concentrations, calcification temperature and aqueous carbonate ion ([CO32-]) appear to exert secondary influences on B/Ca, based on sediment coretop data. In these studies, partitioning of B between seawater and calcite was described by an empirical coefficient, KD, and application of temperature- and [CO32-]-dependent KD calibrations to fossil calcite yielded pCO2 reconstructions that appeared consistent with ice-core records. Identification of controlling parameters from coretop samples alone can be difficult because many environmental parameters covary in the surface ocean (e.g., temperature and [CO32-]). To quantify the different controls on B/Ca, we performed culture experiments with live planktic foraminifers that enabled us to test the respective influences of pH, temperature, salinity, dissolved boron, and dissolved inorganic carbon. Unlike prior studies, we did not discern any influence of temperature on B partitioning. This result prompted us to reconsider KD calibrations and their corresponding pH and pCO2 reconstructions. The new culture calibrations (salinity and carbonate system) allow prediction of coretop planktic foraminiferal B/Ca from surface seawater properties, suggesting that these culture relationships are applicable to specimens growing in the open ocean. Benthic foraminiferal B/Ca, however, is not well-described by planktic culture calibrations. Instead, it is most closely correlated with bottom water carbonate saturation (ΔCO32-), suggesting that planktic and benthic foraminifera may incorporate B via different mechanisms. Here, we discuss existing B/Ca calibrations and KD-based pH reconstructions, and suggest directions for proxy applications and further development.

  13. A mild alkali treated jute fibre controlling the hydration behaviour of greener cement paste

    NASA Astrophysics Data System (ADS)

    Jo, Byung-Wan; Chakraborty, Sumit

    2015-01-01

    To reduce the antagonistic effect of jute fibre on the setting and hydration of jute reinforced cement, modified jute fibre reinforcement would be a unique approach. The present investigation deals with the effectiveness of mild alkali treated (0.5%) jute fibre on the setting and hydration behaviour of cement. Setting time measurement, hydration test and analytical characterizations of the hardened samples (viz., FTIR, XRD, DSC, TGA, and free lime estimation) were used to evaluate the effect of alkali treated jute fibre. From the hydration test, the time (t) required to reach maximum temperature for the hydration of control cement sample is estimated to be 860 min, whilst the time (t) is measured to be 1040 min for the hydration of a raw jute reinforced cement sample. However, the time (t) is estimated to be 1020 min for the hydration of an alkali treated jute reinforced cement sample. Additionally, from the analytical characterizations, it is determined that fibre-cement compatibility is increased and hydration delaying effect is minimized by using alkali treated jute fibre as fibre reinforcement. Based on the analyses, a model has been proposed to explain the setting and hydration behaviour of alkali treated jute fibre reinforced cement composite.

  14. A mild alkali treated jute fibre controlling the hydration behaviour of greener cement paste

    PubMed Central

    Jo, Byung-Wan; Chakraborty, Sumit

    2015-01-01

    To reduce the antagonistic effect of jute fibre on the setting and hydration of jute reinforced cement, modified jute fibre reinforcement would be a unique approach. The present investigation deals with the effectiveness of mild alkali treated (0.5%) jute fibre on the setting and hydration behaviour of cement. Setting time measurement, hydration test and analytical characterizations of the hardened samples (viz., FTIR, XRD, DSC, TGA, and free lime estimation) were used to evaluate the effect of alkali treated jute fibre. From the hydration test, the time (t) required to reach maximum temperature for the hydration of control cement sample is estimated to be 860 min, whilst the time (t) is measured to be 1040 min for the hydration of a raw jute reinforced cement sample. However, the time (t) is estimated to be 1020 min for the hydration of an alkali treated jute reinforced cement sample. Additionally, from the analytical characterizations, it is determined that fibre-cement compatibility is increased and hydration delaying effect is minimized by using alkali treated jute fibre as fibre reinforcement. Based on the analyses, a model has been proposed to explain the setting and hydration behaviour of alkali treated jute fibre reinforced cement composite. PMID:25592665

  15. A mild alkali treated jute fibre controlling the hydration behaviour of greener cement paste.

    PubMed

    Jo, Byung-Wan; Chakraborty, Sumit

    2015-01-01

    To reduce the antagonistic effect of jute fibre on the setting and hydration of jute reinforced cement, modified jute fibre reinforcement would be a unique approach. The present investigation deals with the effectiveness of mild alkali treated (0.5%) jute fibre on the setting and hydration behaviour of cement. Setting time measurement, hydration test and analytical characterizations of the hardened samples (viz., FTIR, XRD, DSC, TGA, and free lime estimation) were used to evaluate the effect of alkali treated jute fibre. From the hydration test, the time (t) required to reach maximum temperature for the hydration of control cement sample is estimated to be 860 min, whilst the time (t) is measured to be 1040 min for the hydration of a raw jute reinforced cement sample. However, the time (t) is estimated to be 1020 min for the hydration of an alkali treated jute reinforced cement sample. Additionally, from the analytical characterizations, it is determined that fibre-cement compatibility is increased and hydration delaying effect is minimized by using alkali treated jute fibre as fibre reinforcement. Based on the analyses, a model has been proposed to explain the setting and hydration behaviour of alkali treated jute fibre reinforced cement composite. PMID:25592665

  16. Use of wastes of the sugar industry as pozzolana in lime-pozzolana binders: Study of the reaction

    SciTech Connect

    Hernandez, J.F.M.; Middendorf, B.; Gehrke, M.; Budelmann, H.

    1998-11-01

    Mineralogical studies of different wastes of the sugar industry, mainly sugar cane bagasse ash and sugar cane straw ash, have shown that such by-products are likely to be pozzolanic. Their use in lime-pozzolana binders could become an interesting alternative for developing countries. This paper presents a study that was aimed at monitoring the reaction between lime and wastes of the sugar industry having pozzolanic properties by evaluating (1) content of calcium hydroxide, dependent on time; (2) development of the pore structure, dependent on time; (3) study on the reaction products at different stages; and (4) mechanical properties of hardened pastes. The presence of calcium hydroxide was confirmed by x-ray diffraction analysis and thermogravimetric analysis of powder from samples of hydrated lime-pozzolana pastes. The reaction products in hydrated pastes were observed in a scanning electron microscope, and the pore structure was assessed using a mercury intrusion porosimeter. The results of the study show that sugar cane bagasse ash does not act like a reactive pozzolana, mainly due to the presence of unburned material and carbon, whereas sugar cane straw ash shows good pozzolanic activity comparable to that of rice husk ash.

  17. Determination of the pozzolanic activity of fluid catalytic cracking residue. Thermogravimetric analysis studies on FC3R-lime pastes

    SciTech Connect

    Paya, J.; Monzo, J.; Borrachero, M.V.; Velazquez, S.; Bonilla, M

    2003-07-01

    Spent fluid catalytic cracking catalyst (FC3R) from a petrol refinery played a pozzolanic role in portland cement system as revealed by previous experimental data. In the present study, the pozzolanic activity of FC3R was investigated by means thermogravimetry (TG) of cured lime-FC3R pastes. The influence of pozzolan/lime ratio on the pozzolanic activity was investigated. Due to the chemical composition of FC3R is similar to metakaolin (MK), and knowing that MK has a high pozzolanic activity, the latter was used as a material of comparison in this study. The scope of the study is the determination of the pozzolanic activity of FC3R and the evaluation of amount and nature of pozzolanic products. The products obtained from the reaction between FC3R components (SiO{sub 2}/Al{sub 2}O{sub 3}) and calcium hydroxide (CH) have been characterized, finding that the main pozzolanic reaction product was similar to hydrated gehlenite (calcium aluminosilicate hydrate) CSH and CAH were also formed in the reaction. FC3R showed higher pozzolanic reactivity than metakaolin, for low-lime content pastes and early curing age. Thermogravimetry, Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) became very useful techniques for evaluation of reactivity.

  18. Removal of organic magnesium in coccolithophore calcite

    NASA Astrophysics Data System (ADS)

    Blanco-Ameijeiras, S.; Lebrato, M.; Stoll, H. M.; Iglesias-Rodriguez, M. D.; Méndez-Vicente, A.; Sett, S.; Müller, M. N.; Oschlies, A.; Schulz, K. G.

    2012-07-01

    Coccolithophore calcite refers to the plates of calcium carbonate (CaCO3) produced by the calcifying phytoplankton, coccolithophores. The empirical study of the elemental composition has a great potential in the development of paleoproxies. However, the difficulties to separate coccolithophore carbonates from organic phases hamper the investigation of coccoliths magnesium to calcium ratios (Mg/Ca) in biogeochemical studies. Magnesium (Mg) is found in organic molecules in the cells at concentrations up to 400 times higher than in inorganically precipitated calcite in present-day seawater. The aim of this study was to optimize a reliable procedure for organic Mg removal from coccolithophore samples to ensure reproducibility in measurements of inorganic Mg in calcite. Two baseline methods comprising organic matter oxidations with (1) bleach and (2) hydrogen peroxide (H2O2) were tested on synthetic pellets, prepared by mixing reagent grade CaCO3 with organic matter from the non-calcifying marine algae Chlorella autotrophica and measured with an ICP-AES (inductively coupled plasma-atomic emission spectrometer). Our results show that treatments with a reductive solution [using hydroxylamine-hydrochloride (NH2OH·HCl + NH4OH)] followed by three consecutive oxidations (using H2O2) yielded the best cleaning efficiencies, removing >99% of organic Mg in 24 h. P/Ca and Fe/Ca were used as indicators for organic contamination in the treated material. The optimized protocol was tested in dried coccolithophore pellets from batch cultures of Emiliania huxleyi, Calcidiscus leptoporus and Gephyrocapsa oceanica. Mg/Ca of treated coccolithophores were 0.151 ± 0.018, 0.220 ± 0.040, and 0.064 ± 0.023 mmol/mol, respectively. Comparison with Mg/Ca literature coccolith values, suggests a tight dependence on modern seawater Mg/Ca, which changes as a consequence of different seawater origins (<10%). The reliable determination of Mg/Ca and Sr/Ca, and the low levels of organic contamination (Fe/Ca and P/Ca) make this protocol applicable to field and laboratory studies of trace elemental composition in coccolithophore calcite.

  19. Origins of hydration lubrication

    NASA Astrophysics Data System (ADS)

    Ma, Liran; Gaisinskaya-Kipnis, Anastasia; Kampf, Nir; Klein, Jacob

    2015-01-01

    Why is friction in healthy hips and knees so low? Hydration lubrication, according to which hydration shells surrounding charges act as lubricating elements in boundary layers (including those coating cartilage in joints), has been invoked to account for the extremely low sliding friction between surfaces in aqueous media, but not well understood. Here we report the direct determination of energy dissipation within such sheared hydration shells. By trapping hydrated ions in a 0.4-1 nm gap between atomically smooth charged surfaces as they slide past each other, we are able to separate the dissipation modes of the friction and, in particular, identify the viscous losses in the subnanometre hydration shells. Our results shed light on the origins of hydration lubrication, with potential implications both for aqueous boundary lubricants and for biolubrication.

  20. Methane Hydrate Field Program

    SciTech Connect

    2013-12-31

    This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report. • Historical Methane Hydrate Project Review Report • Methane Hydrate Workshop Report • Topical Report: Marine Methane Hydrate Field Research Plan • Final Scientific/Technical Report

  1. 10,000 hours commercial operating experience with advanced-design, reflux circulating fluid bed scrubbing employing slaked lime reagent

    SciTech Connect

    Graf, R.E.; Huckriede, B.W.

    1995-06-01

    Details are presented of design, operating and maintenance experience with a commercial installation in Germany of a circulating fluid bed scrubber of advanced design (Reflux Circulating Fluid Bed Scrubber utilizing slaked lime slurry) retrofitted to a pulverized coal fired, 220 t/h, steam generating boiler, including problems encountered, corrections made and resulting technical improvements achieved. This state-of-the-art process design technology is described to highlight newly demonstrated innovative features that include cost effective means for minimizing amount of purchase of hydrated lime, at the same time substantially decreasing reagent cost. Other key details included are system effectiveness in achieving very high lime-utilization (free lime concentration in the residue below 1 %); means for by-product (residue) utilization; very high operational availability since initial startup in May 1993; SO{sub 2} removal efficiency up to 97 %; and optimization of process economics through efforts for simplification of system operation and maintenance; and attractiveness in cost-effectively meeting diverse environmental pollution control objectives in varied, worldwide, FGD applications.

  2. Global calcite cycling constrained by sediment preservation controls

    NASA Astrophysics Data System (ADS)

    Dunne, John P.; Hales, Burke; Toggweiler, J. R.

    2012-09-01

    We assess the global balance of calcite export through the water column and burial in sediments as it varies regionally. We first drive a comprehensive 1-D model for sediment calcite preservation with globally gridded field observations and satellite-based syntheses. We then reformulate this model into a simpler five-parameter box model, and combine it with algorithms for surface calcite export and water column dissolution for a single expression for the vertical calcite balance. The resulting metamodel is optimized to fit the observed distributions of calcite burial flux. We quantify the degree to which calcite export, saturation state, organic carbon respiration, and lithogenic sedimentation modulate the burial of calcite. We find that 46% of burial and 88% of dissolution occurs in sediments overlain by undersaturated bottom water with sediment calcite burial strongly modulated by surface export. Relative to organic carbon export, we find surface calcite export skewed geographically toward relatively warm, oligotrophic areas dominated by small, prokaryotic phytoplankton. We assess century-scale projected impacts of warming and acidification on calcite export, finding high sensitive to inferred saturation state controls. With respect to long-term glacial cycling, our analysis supports the hypothesis that strong glacial abyssal stratification drives the lysocline toward much closer correspondence with the saturation horizon. Our analysis suggests that, over the transition from interglacial to glacial ocean, a resulting ˜0.029 PgC a-1decrease in deep Atlantic, Indian and Southern Ocean calcite burial leads to slow increase in ocean alkalinity until Pacific mid-depth calcite burial increases to compensate.

  3. Spectroscopic characterization of natural calcite minerals

    NASA Astrophysics Data System (ADS)

    Gunasekaran, S.; Anbalagan, G.

    2007-11-01

    The FT-IR, FT-Raman, NMR spectral data of ten different limestone samples have been compared. FT-IR and FT-Raman spectral data show that calcium carbonate in limestone, principally in the form of calcite, as identified by its main absorption bands at 1426, 1092, 876 and 712 cm -1. The sharp diffractions at the d-spacings, 3.0348, 1.9166 and 1.8796 confirm the presence of calcite structure and the calculated lattice parameters are: a = 4.9781 Å, c = 17.1188 Å. The range of 13C chemical shifts for different limestone samples is very small, varying from 198.38 to 198.42 ppm. The observed chemical shifts are consistent with the identical C-O bonding in different limestone samples. 27Al MAS NMR spectra of the samples exhibit a central line at 1 ppm and another line at 60 ppm corresponding to octahedral and tetrahedral Al ions, respectively. The five component resonances were observed in 29Si MAS NMR spectrum of limestone and these resonances were assigned to Si (4 Al), Si (3 Al), Si (2 Al), Si (1 Al) and Si (0 Al) from low field to high field.

  4. Gas Hydrates-bearing Sediments from Southern Hydrate Ridge (ODP Leg 204): Geochemical and Mineralogical Approach

    NASA Astrophysics Data System (ADS)

    Piñero, E.; Martinez-Ruiz, F.; Gràcia, E.; Larrasoaña, J. C.; Dañobeitia, J.

    2006-12-01

    Mineralogical and geochemical analyses of more than 500 samples were carried out in order to characterize the southern Hydrate Ridge sediments and to evaluate the role of sediment composition in fluid migration and gas hydrate (GH) distribution. Bulk and clay mineralogy were obtained by XRD and trace element contents by ICP-MS. Bulk mineral composition of southern Hydrate Ridge sediments does not change significantly from the summit to the flanks and slope basin. This composition is dominated by clays (30-60% ), quartz (25- 40% ), feldspars (10-25% ) and calcite (<5% ). Regarding the clay mineralogy, the most abundant mineral is detrital mica (50% ), whereas smectites, kaolinite and chlorite are less abundant (<30% ). Some noticeable trends are recognized in smectite content, increasing with depth at both flanks, from low values near the seafloor to high values (>40% ) downcore. Such increase is accompanied by a decrease in detrital mica content, suggesting the presence of deep fluid flows from below the accretionary complex. Sediments from all sites show high TOC contents from seafloor down to 50 mbsf. Within this interval, high CaCO3 contents and carbonate nodules are observed. High values of REE, Hf and Zr concentrations correlate with increasing terrigenous input, which resulted in coarse grain-size layers, identified as turbidites and formed by silty-clay sediments with different amounts of sand content (up to 10% ). The comparison between turbidite and gas hydrate distributions (inferred from IR imaging, disturbance fabrics and gas hydrate identification) suggests that GH predominantly form within the terrigenous coarser grain-size layers. At the summit, near the seafloor, where the highest GH content was observed (40% of pore volume), this trend is not recognizable, suggesting that gas-methane availability is high enough to generate GH even within finer grain-size layers.

  5. Mallik Gas Hydrate Sample

    A sample of gas hydrates collected from Mallik, Canada. Gas hydrates are naturally-occurring “ice-like” combinations of natural gas and water that have the potential to provide an immense resource of natural gas from the world’s oceans and polar regions....

  6. Gas Hydrates Burning

    An image of gas hydrates burning. Gas hydrates are naturally-occurring ice-like combinations of natural gas and water that have the potential to provide an immense resource of natural gas from the worlds oceans and polar regions....

  7. Gas Hydrates Burning

    An image of gas hydrates burning. Gas hydrates are naturally-occurring “ice-like” combinations of natural gas and water that have the potential to provide an immense resource of natural gas from the world’s oceans and polar regions....

  8. TOUGH-Fx/Hydrate

    Energy Science and Technology Software Center (ESTSC)

    2005-02-01

    TOUGH-Fx/HYORATL can model the non-isothermal gas release. phase behavior and flow of fluids and heat in complex geologic media. The code can simulate production from natural gas hydrate deposits in the subsurtace (i.e., in the permafrost and in deep ocean sediments), as well as laboratory experiments of hydrate dissociation/formation in porous/fractured media. T006H-Fx/HYDRATE vi .0 includes both an equilibrium and a kinetic model of hydrate Ibmiation and dissociation. The model accounts for heat and upmore » to four mass components-- i.e., water, CH4, hydrate, and water-soluble inhibitors such as salts or alcohols. These are partitioned among four possible phases (gas phase, liquid phase, ice phase and hydrate phase). Hydrate dIssociation or formation, phase changes, and the corresponding thermal effects are fully described, as are the effects of inhibitors. The model can describe all possible hydrate dissociation mechanisms, i.e., depressurization, thermal stimulation, salting-out effects, and inhibItor-Induced effects.« less

  9. Mechanisms of Subcritical Cracking in Calcite

    NASA Astrophysics Data System (ADS)

    Royne, A.; Dysthe, D. K.; Bisschop, J.

    2008-12-01

    Brittle materials are characterized by a critical stress intensity factor above which they will fail catastrophically by dynamic cracking. However, it has been observed that materials can also fail at much lower stresses, through slow crack growth, often referred to as subcritical cracking. This phenomenon can take place even in vacuum, but is greatly enhanced by water and other reactive species in the environment. For a given material and environmental condition there is a systematic relationship between the crack tip velocity and the stress intensity factor. The presence of a lower stress limit to subcritical cracking has been predicted from thermodynamics but has not been firmly demonstrated experimentally. This parameter would control the long- term strength of geological materials. Subcritical cracking must necessarily be important in controlling the rock strength in near-surface processes where water and other active species are present and the displacements and stresses are low. Weathering is one example of such a process. Modelling has shown that fracture networks generated by a high degree of subcritical cracking will percolate at much lower fracture densities than purely stochastical fracture networks. This has important implications for how water can move through the crust. Understanding the mechanisms for subcritical crack growth in geological materials is also important in assessing the stability and long term performance of sequestration reservoirs for CO2 or nuclear waste. The mechanism for stress corrosion is well known for glasses and quartz. For carbonate minerals, the mechanism for subcritical crack growth has not been identified, and the only experimental studies on calcitic materials have been on polycrystalline rocks such as marble. Suggested mechanisms include stress corrosion (weakening reactions at the crack tip), preferential dissolution at the crack tip with rapid removal of dissolved species, and environmentally controlled microplasticity (pile-up of dislocations in the process zone around the crack tip). In our experiment, we study the subcritical growth of a cleavage crack through a single calcite crystal. We use the well documented Double Torsion method which allows for easy study of a tensile crack growing in the specimen. We find that the environmental conditions, and in particular the availability of water, has a significant influence on both the crack tip velocity at a given load, but also the behaviour of the crack movement. Based on our experimental data, we propose what mechanisms are dominant for subcritical crack growth in calcite at various load levels.

  10. Fly ash as a liming material for corn production

    SciTech Connect

    Tarkalson, D.D.; Hergert, G.W.; Stevens, W.B.; McCallister, D.L.; Kackman, S.D.

    2005-05-01

    Fly ash produced as a by-product of subbituminous coal combustion can potentially serve as an alternative liming material without negatively affecting corn (Zea mays L.) production in areas where use of conventional liming materials can be uneconomical due to transportation costs. A study was conducted to determine if fly ash produced from the Nebraska Public Power District Gerald Gentleman Power Station located in Sutherland, NE could be used as an alternative liming material. Combinations of dry fly ash (DFA), wet fly ash (WFA), beet lime (by-product of sugar beet (Beta vulgaris L.) processing) (BL), and agricultural lime (AGL) were applied at rates ranging from 0.43 to 1.62 times the recommended lime rate to plots on four acidic soils (Anselmo fine sandy loam, Hord fine sandy loam, Holdrege sandy loam, and Valentine fine sand). Soil samples were collected to a depth of 0.2 m from plots and analyzed for pH before lime applications and twice periodically after lime application. The Hord and Valentine soils were analyzed for exchangeable Ca, Mg, K, Na,and Al for determination of percent Al saturation on selected treatments and sampling dates. Corn grain yields were determined annually. It is concluded that the fly ash utilized in this study and applied at rates in this study, increases soil pH comparable to agricultural lime and is an appropriate alternative liming material.

  11. The response of stream-dwelling fish to liming.

    PubMed

    Degerman, E; Appelberg, M

    1992-01-01

    The fish fauna in 22 limed and seven unlimed small streams was monitored using yearly electrofishing to assess the effects of liming on species occurrence and abundance. The liming techniques were divided into three main methods, lake liming, doser liming and wetland liming, to evaluate whether different strategies had different effects on the fish fauna. The predominant species at the investigated stations were salmonids, mainly brown trout (Salmo trutta) and Atlantic salmon (Salmo salar). Other species generally occurred in low numbers. The average number of fish species did not increase significantly after liming, which was probably due to recolonization difficulties caused by the frequent occurrence of migration obstacles in the streams. After liming the density of salmonids increased significantly, irrespective of the liming method. Other fish species showed no general increase, but in individual streams significant increases of European minnow (Phoxinus phoxinus) and bullhead (Cottus gobio) occurred. Some unlimed streams had acid spates with a pH below 6, which immediately lowered the numbers of salmonid parr. Other unlimed streams lost fish species progressively due to increasing acidification. pH, and probably increased levels of metals, were the major factors regulating the fish fauna. Few examples of biotic interactions were observed, but with an increase of Atlantic salmon parr after liming, brown trout abundances decreased in three streams. PMID:15091941

  12. Friction characteristics of Cd-rich carbonate films on calcite surfaces: implications for compositional differentiation at the nanometer scale

    PubMed Central

    2009-01-01

    Lateral Force Microscopy (LFM) studies were carried out on cleaved calcite sections in contact with solutions supersaturated with respect to otavite (CdCO3) or calcite-otavite solid solutions (SS) as a means to examine the potential for future application of LFM as a nanometer-scale mineral surface composition mapping technique. Layer-by-layer growth of surface films took place either by step advancement or by a surface nucleation and step advancement mechanisms. Friction vs. applied load data acquired on the films and the calcite substrate were successfully fitted to the Johnson Kendall Roberts (JKR) model for single asperity contacts. Following this model, friction differences between film and substrate at low loads were dictated by differences in adhesion, whereas at higher load they reflect differences in contact shear strength. In most experiments at fixed load, the film showed higher friction than the calcite surface, but the friction-load dependence for the different surfaces revealed that at low loads (0–40 nN), a calcian otavite film has lower friction than calcite; a result that is contrary to earlier LFM reports of the same system. Multilayer films of calcian-otavite displayed increasing friction with film thickness, consistent with the expectation that the film surface composition will become increasingly Cd-rich with increasing thickness. Both load- and thickness-dependence trends support the hypothesis that the contact shear strength correlates with the hydration enthalpy of the surface ions, thereby imparting friction sensitivity in the LFM to mineral-water interface composition. PMID:19549312

  13. Dissolution of coccolithophorid calcite by microzooplankton and copepod grazing

    NASA Astrophysics Data System (ADS)

    Antia, A. N.; Suffrian, K.; Holste, L.; Müller, M. N.; Nejstgaard, J. C.; Simonelli, P.; Carotenuto, Y.; Putzeys, S.

    2008-01-01

    Independent of the ongoing acidification of surface seawater, the majority of the calcium carbonate produced in the pelagial is dissolved by natural processes above the lysocline. We investigate to what extent grazing and passage of coccolithophorids through the guts of copepods and the food vacuoles of microzooplankton contribute to calcite dissolution. In laboratory experiments where the coccolithophorid Emiliania huxleyi was fed to the rotifer Brachionus plicatilis, the heterotrophic flagellate Oxyrrhis marina and the copepod Acartia tonsa, calcite dissolution rates of 45-55%, 37-53% and 5-22% of ingested calcite were found. We ascribe higher loss rates in microzooplankton food vacuoles as compared to copepod guts to the strongly acidic digestion and the individual packaging of algal cells. In further experiments, specific rates of calcification and calcite dissolution were also measured in natural populations during the PeECE III mesocosm study under differing ambient pCO2 concentrations. Microzooplankton grazing accounted for between 27 and 70% of the dynamic calcite stock being lost per day, with no measurable effect of CO2 treatment. These measured calcite dissolution rates indicate that dissolution of calcite in the guts of microzooplankton and copepods can account for the calcite losses calculated for the global ocean using budget and model estimates.

  14. Preparation and evaluation of modified lime and silica-lime sorbents for mercury vapor emissions control

    SciTech Connect

    Ghorishi, S.B.; Singer, C.F.; Sedman, C.B.

    1999-01-01

    The paper discusses current efforts to improve the uptake of mercury species by increasing active sites and adding oxiditive species to the sorbent. (NOTE: Previous work showed that mercury chloride vapor is readily absorbed by calcium-based sorbents as an acid gas in environments typical of coal-fired boiler flue gas, white elemental mercury vapor is absorbed by calcium-based sorbents only when sulfur oxides are also present.) Preparation of modified lime and silica-lime sorbents and their behavior toward mercury species are compared to those of commercially available lime on a fixed-bed bench reactor. The implications of findings toward development of mutipollutant control technologies and planned field toward development of multipollutant control technologies and planned field pilot evaluations of more multipollutant control concepts are discussed.

  15. Hydration rate of obsidian.

    PubMed

    Friedman, I; Long, W

    1976-01-30

    The hydration rates of 12 obsidian samples of different chemical compositions were measured at temperatures from 95 degrees to 245 degrees C. An expression relating hydration rate to temperature was derived for each sample. The SiO(2) content and refractive index are related to the hydration rate, as are the CaO, MgO, and original water contents. With this information it is possible to calculate the hydration rate of a sample from its silica content, refractive index, or chemical index and a knowledge of the effective temperature at which the hydration occurred. The effective hydration temperature can be either measured or approximated from weather records. Rates have been calculated by both methods, and the results show that weather records can give a good approximation to the true EHT, particularly in tropical and subtropical climates. If one determines the EHT by any of the methods suggested, and also measures or knows the rate of hydration of the particular obsidian used, it should be possible to carry out absolute dating to +/- 10 percent of the true age over periods as short as several years and as long as millions of years. PMID:17782901

  16. Sugarcane factory performance of cold, intermediate, and hot lime clarification processes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A comparative factory investigation of hot versus intermediate and cold lime clarification was undertaken to quantify performance. In cold liming, mixed cane juice (MJ) was incubated (8 min) and then limed in a lime tank (4 minutes), both at -IO5F. For intermediate liming, 50% of the MJ was heated (...

  17. Liming of acidified waters: issues and research - a report of the International Liming Workshop

    USGS Publications Warehouse

    Schreiber, R. Kent

    1982-01-01

    Acidic deposition is a problem of significant national and international concern. It is strongly suspected that acidic deposition has adversely affected aquatic resources in Scandinavia and North America. While substantial resources are being devoted to understanding the causative factors associated with surface water acidification, much less research is being conducted on mitigative strategies. Mitigative techniques involving liming may be useful for short-term protection of specific component of aquatic communities or for renovation of seriously impacted aquatic ecosystems. The selection of effective liming strategies is based on an integrated understanding of the following key factors: biological systems, water chemistry, sediment chemistry, hydrology, and watershed characteristics, effectiveness of neutralizing materials, and application techniques. Research in Scandinavia, Canada, and the U.S. has led to a partial understanding of some of the key factors for successful neutralization of surface waters (Bengtsson, 1982; Fraser and Britt, 1982). However, conflicting results of liming operations and experiments have been reported. (Fraser et al., 1982; Fraser and Britt, 1982; Sverdrup and Bjerle, 1982). Additional research is required to improve the ability of scientists and resource managers to select effective liming strategies. An International Liming workshop was convened during 19-25 September 1982 at the University of Washington's Friday Harbor Laboratories. The major objective of this workshop were: - To identify the most critical deficiencies in the scientific understanding of liming techniques and their long-term consequences. - To develop and document a research strategy to address information deficiencies that are pertinent to the protection or renovation of acidic surface waters in the United States. The participants who contributed to this workshop are listed in Table 1.

  18. Methane Hydrates: Chapter 8

    USGS Publications Warehouse

    Boswell, Ray; Yamamoto, Koji; Lee, Sung-Rock; Collett, Timothy S.; Kumar, Pushpendra; Dallimore, Scott

    2008-01-01

    Gas hydrate is a solid, naturally occurring substance consisting predominantly of methane gas and water. Recent scientific drilling programs in Japan, Canada, the United States, Korea and India have demonstrated that gas hydrate occurs broadly and in a variety of forms in shallow sediments of the outer continental shelves and in Arctic regions. Field, laboratory and numerical modelling studies conducted to date indicate that gas can be extracted from gas hydrates with existing production technologies, particularly for those deposits in which the gas hydrate exists as pore-filling grains at high saturation in sand-rich reservoirs. A series of regional resource assessments indicate that substantial volumes of gas hydrate likely exist in sand-rich deposits. Recent field programs in Japan, Canada and in the United States have demonstrated the technical viability of methane extraction from gas-hydrate-bearing sand reservoirs and have investigated a range of potential production scenarios. At present, basic reservoir depressurisation shows the greatest promise and can be conducted using primarily standard industry equipment and procedures. Depressurisation is expected to be the foundation of future production systems; additional processes, such as thermal stimulation, mechanical stimulation and chemical injection, will likely also be integrated as dictated by local geological and other conditions. An innovative carbon dioxide and methane swapping technology is also being studied as a method to produce gas from select gas hydrate deposits. In addition, substantial additional volumes of gas hydrate have been found in dense arrays of grain-displacing veins and nodules in fine-grained, clay-dominated sediments; however, to date, no field tests, and very limited numerical modelling, have been conducted with regard to the production potential of such accumulations. Work remains to further refine: (1) the marine resource volumes within potential accumulations that can be produced through exploratory drilling programs; (2) the tools for gas hydrate detection and characterisation from remote sensing data; (3) the details of gas hydrate reservoir production behaviour through additional, well-monitored and longer duration field tests and (4) the understanding of the potential environmental impacts of gas hydrate resource development. The results of future production tests, in the context of varying market and energy supply conditions around the globe, will be the key to determine the ultimate timing and scale of the commercial production of natural gas from gas hydrates.

  19. Differences in the immobilization of arsenite and arsenate by calcite

    NASA Astrophysics Data System (ADS)

    Yokoyama, Yuka; Tanaka, Kazuya; Takahashi, Yoshio

    2012-08-01

    The sorption and coprecipitation experiments of arsenic (As) with calcite coupled with determinations of the chemical state of As both in the reaction fluid and in calcite were conducted to investigate the influence of the As oxidation state on its immobilization into calcite. The oxidation states of As in calcite and water were determined via As K-edge XANES and HPLC-ICP-MS analysis, respectively. The results of the sorption experiments at pH 8.2 show that only As(V) is distributed to calcite regardless of the As oxidation state in the solution. In coprecipitation experiments, As(V) is preferentially incorporated into calcite over a wide range of pH (7-12). On the other hand, the incorporation of As(III) into calcite is not observed at circumneutral pH. This difference between As(III) and As(V) is attributed to the fact that their dissolved species are neutral vs. negatively charged, respectively, at circumneutral pH (arsenite as H3AsO3; arsenate as H2AsO4- or HAsO42-). As the pH increases (>9), up to 33% of As(III)/Astotal ratio is partitioned into calcite or a precursor of calcite (metastable vaterite formed during the early stage of precipitation). The higher interaction of As with calcite at an alkaline pH compared with circumneutral pH is due to the negative charge of As(III) at alkaline pH. However, the As(III)/Astotal ratio decreases as time progresses and only As(V) can be found finally in calcite. The ratio of distribution coefficients of As(III) and As(V) into calcite (KAs(V)/KAs(III)) at pH ˜7 is larger than 2.1 × 103, suggesting that the oxidation state of As is a significant issue in considering the interaction between As and calcite in groundwater. Moreover, low KAs(III) shows that the sequestration of As via coprecipitation with calcite is not an important chemical process under reducing conditions, such as in the groundwaters in Bangladesh and other As-contaminated areas where As(III) is the dominant dissolved species of As. In the system spiked only with As(III), the XANES analysis detected As(V) in calcite, where the partitioning of As into calcite is very limited as stated above. Therefore, HPLC-ICP-MS and cyclic voltammetric measurements were performed to clarify the As(V)-incorporation mechanism in the As(III) system. As a result, the oxidation of As(III) to As(V) and the stabilization of As(V) in a solution in the presence of the Ca2+ ion are observed. These phenomena result from the formation of calcium arsenate complexes in the aqueous phase. This complexation is an important process for the coprecipitation of As with calcite. Hence, As is incorporated into calcite as As(V) even from the As(III) solution at circumneutral pH, wherein As(III) exists as neutral arsenite with little interaction with calcite.

  20. Effect of Microorganism Sporosarcina pasteurii on the Hydration of Cement Paste.

    PubMed

    Lee, Jun Cheol; Lee, Chang Joon; Chun, Woo Young; Kim, Wha Jung; Chung, Chul-Woo

    2015-08-01

    Years of research have shown that the application of microorganisms increases the compressive strength of cement-based material when it is cured in a culture medium. Because the compressive strength is strongly affected by the hydration of cement paste, this research aimed to investigate the role of the microorganism Sporosarcina pasteurii in hydration of cement paste. The microorganism's role was investigated with and without the presence of a urea-CaCl2 culture medium (i.e., without curing the specimens in the culture medium). The results showed that S. pasteurii accelerated the early hydration of cement paste. The addition of the urea-CaCl2 culture medium also increased the speed of hydration. However, no clear evidence of microbially induced calcite precipitation appeared when the microorganisms were directly mixed with cement paste. PMID:25876598

  1. Future of gas hydrate research

    NASA Astrophysics Data System (ADS)

    Sloan, E. D.; Brewer, P. G.; Paull, C. K.; Collett, T. S.; Dillon, W. P.; Holbrook, W. S.; Kvenvolden, K. A.

    Methane hydrates are ice-like inclusion compounds, in which every volume of hydrate can contain as much as 180 volumes (STP) of gas.The amount of methane in natural gas hydrates is twice the total recoverable fossil fuel reserve. Because of their natural abundance in oceans and permafrost, hydrates have become an exciting national and international research issue. The movement of the gas and oil industry to ever deepening waters where hydrates occur, the compelling size and distribution of hydrate deposits, and strong international interest all support identification of crucial elements in a hydrate research program.

  2. Withdrawing Nutrition, Hydration

    Cancer.gov

    Module eleven of the EPEC-O Self-Study Original Version discusses the general aspects of withholding or withdrawing of life-sustaining therapies, and presents a specific application to artificial nutrition and hydration.

  3. Transformations in methane hydrates

    USGS Publications Warehouse

    Chou, I.-Ming; Sharma, A.; Burruss, R.C.; Shu, J.; Mao, Ho-kwang; Hemley, R.J.; Goncharov, A.F.; Stern, L.A.; Kirby, S.H.

    2000-01-01

    Detailed study of pure methane hydrate in a diamond cell with in situ optical, Raman, and x-ray microprobe techniques reveals two previously unknown structures, structure II and structure H, at high pressures. The structure II methane hydrate at 250 MPa has a cubic unit cell of a = 17.158(2) A?? and volume V = 5051.3(13) A??3; structure H at 600 MPa has a hexagonal unit cell of a = 11.980(2) A??, c = 9.992(3) A??, and V = 1241.9(5) A??3. The compositions of these two investigated phases are still not known. With the effects of pressure and the presence of other gases in the structure, the structure II phase is likely to dominate over the known structure I methane hydrate within deep hydrate-bearing sediments underlying continental margins.

  4. Hydrate morphology: Physical properties of sands with patchy hydrate saturation

    USGS Publications Warehouse

    Dai, S.; Santamarina, J.C.; Waite, William F.; Kneafsey, T.J.

    2012-01-01

    The physical properties of gas hydrate-bearing sediments depend on the volume fraction and spatial distribution of the hydrate phase. The host sediment grain size and the state of effective stress determine the hydrate morphology in sediments; this information can be used to significantly constrain estimates of the physical properties of hydrate-bearing sediments, including the coarse-grained sands subjected to high effective stress that are of interest as potential energy resources. Reported data and physical analyses suggest hydrate-bearing sands contain a heterogeneous, patchy hydrate distribution, whereby zones with 100% pore-space hydrate saturation are embedded in hydrate-free sand. Accounting for patchy rather than homogeneous hydrate distribution yields more tightly constrained estimates of physical properties in hydrate-bearing sands and captures observed physical-property dependencies on hydrate saturation. For example, numerical modeling results of sands with patchy saturation agree with experimental observation, showing a transition in stiffness starting near the series bound at low hydrate saturations but moving toward the parallel bound at high hydrate saturations. The hydrate-patch size itself impacts the physical properties of hydrate-bearing sediments; for example, at constant hydrate saturation, we find that conductivity (electrical, hydraulic and thermal) increases as the number of hydrate-saturated patches increases. This increase reflects the larger number of conductive flow paths that exist in specimens with many small hydrate-saturated patches in comparison to specimens in which a few large hydrate saturated patches can block flow over a significant cross-section of the specimen.

  5. Adsorption and precipitation of an aminoalkylphosphonate onto calcite.

    PubMed

    Kan, Amy T; Fu, Gongmin; Tomson, Mason B

    2005-01-15

    The mechanism of nitrilotris(methylenephosphonic acid) (H6NTMP)/calcite reaction was studied with a large number of batch experiments where phosphonic acid was neutralized with 0 to 5 equivalents of NaOH per phosphonic acid and the concentration ranged from about 10 nmol/L to 1 mol/L. It is proposed that the phosphonate/calcite reactions are characterized in three steps. At low phosphonate concentration (<1 micromol/L NTMP concentration), the phosphonate/calcite reaction can be characterized as a Langmuir isotherm. At saturation, only approximately 7% of the calcite surface is covered with phosphonate; presumably these are the kinks, step edges, or other imperfect sites. At higher phosphonate concentrations, the attachment is characterized by calcium phosphonate crystal growth to a maximum of four to five surface layer thick, with solid phase stoichiometry of Ca(2.5)HNTMP and a constant solubility product of 10(-24.11). After multiple layers of phosphonate are formed on the calcite surface, the solution is no longer at equilibrium with calcite. Further phosphonate retention is probably due to mixed calcium phosphonate solid phase formation at lower pH and depleted solution phase Ca conditions. The proposed mechanism is consistent with phosphate/calcite reaction and can be used to explain the fate of phosphonate in brines from oil producing wells and the results are compared with two oil wells. PMID:15571682

  6. Strontium Incorporation into Calcite Generated by Bacterial Ureolysis

    SciTech Connect

    Yoshiko Fujita; George D. Redden; Jani C. Ingram; Marnie M. Cortez; Robert W. Smith

    2004-08-01

    Strontium incorporation into calcite generated by bacterial ureolysis was investigated as part of an assessment of a proposed remediation approach for 90Sr contamination in groundwater. Urea hydrolysis produces ammonium and carbonate and elevates pH, resulting in the promotion of calcium carbonate precipitation. Urea hydrolysis by the bacterium Bacillus pasteurii in a medium designed to mimic the chemistry of the Snake River Plain Aquifer in Idaho resulted in a pH rise from 7.5 to 9.1. Measured average distribution coefficients (DEX) for Sr in the calcite produced by ureolysis (0.5) were up to an order of magnitude higher than values reported in the literature for natural and synthetic calcites (0.02–0.4). They were also higher than values for calcite produced abiotically by ammonium carbonate addition (0.3). The precipitation of calcite in these experiments was verified by X-ray diffraction. Time-of-flight secondary ion mass spectrometry (ToF SIMS) depth profiling (up to 350 nm) suggested that the Sr was not merely sorbed on the surface, but was present at depth within the particles. X-ray absorption near edge spectra showed that Sr was present in the calcite samples as a solid solution. The extent of Sr incorporation appeared to be driven primarily by the overall rate of calcite precipitation, where faster precipitation was associated with greater Sr uptake into the solid. The presence of bacterial surfaces as potential nucleation sites in the ammonium carbonate precipitation treatment did not enhance overall precipitation or the Sr distribution coefficient. Because bacterial ureolysis can generate high rates of calcite precipitation, the application of this approach is promising for remediation of 90Sr contamination in environments where calcite is stable over the long term.

  7. EVALUATION OF HAZARDOUS WASTE INCINERATION IN A LIME KILN: ROCKWELL LIME COMPANY

    EPA Science Inventory

    During a one-week test burn, hazardous waste was used as supplemental fuel and co-fired with petroleum coke in a lime kiln in eastern Wisconsin. Detailed sampling and analysis was conducted on the stack gas for principal organic hazardous constituents (POHCs), particulates, parti...

  8. Sulfate attack in lime-treated subbases

    SciTech Connect

    Day, D.C.; Salami, M.R.; Rollings, R.S.

    1995-06-01

    Sulfate-induced heave or buckling in pavements is the phenomenon that occurs when the calcium in various lime-based stabilizers combines with the alumina and sulfate present in clay to form calcium sulfoaluminate, or ettringite. Ettringite, a crystal, can grow between clay particles, pushing them apart and causing swelling in the soil. When this happens in pavement subbases, the resulting heaving may cause the pavement to rupture and fail, sometimes in a dramatic way. In this paper the authors examine the mechanism of sulfate attack, review some of the work done on this problem, and present some examples of pavement failures.

  9. Capture of gas-phase arsenic oxide by lime: kinetic and mechanistic studies.

    PubMed

    Jadhav, R A; Fan, L S

    2001-02-15

    Trace metal emission from coal combustion is a major concern for coal-burning utilities. Toxic compounds such as arsenic species are difficult to control because of their high volatility. Mineral sorbents such as lime and hydrated lime have been shown to be effective in capturing arsenic from the gas phase over a wide temperature range. In this study, the mechanism of interaction between arsenic oxide (As2O3) and lime (CaO) is studied over the range of 300-1000 degrees C. The interaction between these two components is found to depend on the temperature; tricalcium orthoarsenate (Ca3As2O8) is found to be the product of the reaction below 600 degrees C, whereas dicalcium pyroarsenate (Ca2As2O7) is found to be the reaction product in the range of 700-900 degrees C. Maximum capture of arsenic oxide is found to occur in the range of 500-600 degrees C. At 500 degrees C, a high reactivity calcium carbonate is found to capture arsenic oxide by a combination of physical and chemical adsorption. Intrinsic kinetics of the reaction between calcium oxide and arsenic oxide in the medium-temperature range of 300-500 degrees C is studied in a differential bed flow-through reactor. Using the shrinking core model, the order of reaction with respect to arsenic oxide concentration is found to be about 1, and the activation energy is calculated to be 5.1 kcal/mol. The effect of initial surface area of CaO sorbent is studied over a range of 2.7-45 m2/g using the grain model. The effect of other major acidic flue gas species (SO2 and HCl) on arsenic capture is found to be minimal under the conditions of the experiment. PMID:11349294

  10. Calcite surface structure and reactivity: molecular dynamics simulations and macroscopic surface modelling of the calcite-water interface.

    PubMed

    Wolthers, M; Di Tommaso, D; Du, Z; de Leeuw, N H

    2012-11-21

    Calcite-water interactions are important not only in carbon sequestration and the global carbon cycle, but also in contaminant behaviour in calcite-bearing host rock and in many industrial applications. Here we quantify the effect of variations in surface structure on calcite surface reactivity. Firstly, we employ classical Molecular Dynamics simulations of calcite surfaces containing an etch pit and a growth terrace, to show that the local environment in water around structurally different surface sites is distinct. In addition to observing the expected formation of more calcium-water interactions and hydrogen-bonds at lower-coordinated sites, we also observed subtle differences in hydrogen bonding around acute versus obtuse edges and corners. We subsequently used this information to refine the protonation constants for the calcite surface sites, according to the Charge Distribution MUltiSite Ion Complexation (CD-MUSIC) approach. The subtle differences in hydrogen bonding translate into markedly different charging behaviour versus pH, in particular for acute versus obtuse corner sites. The results show quantitatively that calcite surface reactivity is directly related to surface topography. The information obtained in this study is not only crucial for the improvement of existing macroscopic surface models of the reactivity of calcite towards contaminants, but also improves our atomic-level understanding of mineral-water interactions. PMID:23042085

  11. Preheating and incubation of cane juice prior to liming: a comparison of intermediate and cold lime clarification.

    PubMed

    Eggleston, Gillian; Monge, Adrian; Pepperman, Armand

    2002-01-30

    In the U.S., cold lime clarification remains the clarification process of choice in raw sugar manufacturing. A comparative study of cold vs intermediate lime clarification was undertaken at a factory that operated intermediate liming (approximately 30% mixed juice (MJ) of pH 5.2 +/- 0.3 was preheated to 87-93 degrees C to help maintain clean limed juice heaters, incubated at approximately 54 degrees C, and then limed) but still had the pipes to revert to cold liming (MJ incubated and limed at approximately 40 degrees C) for this study. Hourly samples were collected over a 6 h sampling period across cold and intermediate clarification processes on two consecutive days, respectively, and this was repeated three times across the 1999 grinding season. A total of 1.57% less sucrose was lost to inversion reactions across intermediate rather than cold liming. In intermediate liming, which required approximately 4.6% less lime, preheating of only 30% of the MJ markedly removed color (-29%), dextran (-10%), and starch (-24%) and caused large flocs to form that settled faster in the clarifiers. Faster settling led to an impressive 4.6% (season average) more turbidity removal across the clarifiers in intermediate rather than cold liming. Intermediate clarified juice (CJ) turbidity (season average 2028 ICU +/- 675) was approximately half of cold CJ turbidity (average 3952 ICU +/- 1450) with over 2-fold more CJ turbidity control. Subsequent turbidity values and control were significantly improved in the final evaporator syrup samples too. For both processes, juice incubation caused approximately 10% color removal, but this was offset by color formation on liming, because of the alkaline degradation of invert; however, overall, more color was removed than formed in intermediate liming. Starch was reduced in the incubator tank, for both processes, because added filtrate reduced the acidity enabling natural diastase from the cane to degrade starch. Some dextran occasionally formed in the incubator tank, in both processes. Summed across measured parameters, intermediate liming appears to offer several advantages over cold liming. PMID:11804517

  12. Atomic Resolution of Calcium and Oxygen Sublattices of Calcite in Ambient Conditions by Atomic Force Microscopy Using qPlus Sensors with Sapphire Tips.

    PubMed

    Wastl, Daniel S; Judmann, Michael; Weymouth, Alfred J; Giessibl, Franz J

    2015-01-01

    Characterization and imaging at the atomic scale with atomic force microscopy in biocompatible environments is an ongoing challenge. We demonstrate atomically resolved imaging of the calcite (101̅4) surface plane using stiff quartz cantilevers ("qPlus sensors", stiffness k = 1280 N/m) equipped with sapphire tips in ambient conditions without any surface preparation. With 10 atoms in one surface unit cell, calcite has a highly complex surface structure comprising three different chemical elements (Ca, C, and O). We obtain true atomic resolution of calcite in air at relative humidity ranging from 20% to 40%, imaging atomic steps and single atomic defects. We observe a great durability of sapphire tips with their Mohs hardness of 9, only one step below diamond. Depending on the state of the sapphire tip, we resolve either the calcium or the oxygen sublattice. We determine the tip termination by comparing the experimental images with simulations and discuss the possibility of chemical tip identification in air. The main challenges for imaging arise from the presence of water layers, which form on almost all surfaces and have the potential to dissolve the crystal surface. Frequency shift versus distance spectra show the presence of at least three ordered hydration layers. The measured height of the first hydration layer corresponds well to X-ray diffraction data and molecular dynamic simulations, namely, ∼220 pm. For the following hydration layers we measure ∼380 pm for the second and third layer, ending up in a total hydration layer thickness of at least 1 nm. Understanding the influence of water layers and their structure is important for surface segregation, surface reactions including reconstructions, healing of defects, and corrosion. PMID:25816927

  13. Investigation of Copper Sorption by Sugar Beet Processing Lime Waste

    EPA Science Inventory

    In the western United States, sugar beet processing for sugar recovery generates a lime-based waste product (~250,000 Mg yr-1) that has little liming value in the regions calcareous soils. This area has recently experienced an increase in dairy production, with dairi...

  14. Fly Ash as a Liming Material for Corn Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fly ash produced as a by-product of sub-bituminous coal combustion can potentially serve as an alternative liming material without negatively affecting corn (Zea mays L.) production in areas where use of conventional liming materials can be uneconomical due to transportation costs. A study was cond...

  15. Mitigation of acid deposition: Liming of surface waters. Final report

    SciTech Connect

    Bartoshesky, J.; Price, R.; DeMuro, J.

    1989-05-01

    In recent years acid deposition has become a serious concern internationally. Scientific literature has documented the acidification of numerous lakes and streams in North America and Scandinavia resulting in the depletion or total loss of fisheries and other aquatic biota. Liming represents the only common corrective practice aimed specifically at remediating an affected acid receptor. This report reviews a range of liming technologies and liming materials, as well as the effect of surface-water liming on water quality and aquatic biota. As background to the liming discussion, the hydrologic cycle and the factors that make surface waters sensitive to acid deposition are also discussed. Finally, a brief review of some of the liming projects that have been conducted, or are currently in operation is presented, giving special emphasis to mitigation efforts in Maryland. Liming has been effectively used to counteract surface-water acidification in parts of Scandinavia, Canada, and the U.S. To date, liming has generally been shown to improve physical and chemical conditions and enhance the biological recovery of aquatic ecosystems affected by acidification.

  16. Investigation of Copper Sorption by Sugar Beet Processing Lime Waste

    EPA Science Inventory

    In the western United States, sugar beet processing for sugar recovery generates a lime-based waste product (~250,000 Mg yr-1) that has little liming value in the region’s calcareous soils. This area has recently experienced an increase in dairy production, with dairi...

  17. Bioconversion of lime pretreated wheat straw to fuel ethanol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lime pretreatment and enzymatic saccharification methods were evaluated for conversion of wheat straw cellulose and hemicellulose to fermentable sugars. The maximum yield of monomeric sugars from wheat straw (8.6%, w/v) by lime pretreatment (100 mg/g straw, 121 deg C, 1 h) and enzymatic hydrolysis ...

  18. Investigation of copper sorption by sugar beet processing lime waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the western US, sugar beet processing for sugar recovery generates a lime-based waste product (~250,000 megagrams/yr) that has little liming value in the region’s calcareous soils. This area has recently experienced an increase in dairy production, with dairies utilizing copper-based hoof baths ...

  19. 76 FR 82295 - Central Power & Lime LLC; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Central Power & Lime LLC; Notice of Filing December 23, 2011. Take notice that on December 22, 2011, Central Power & Lime LLC, pursuant to sections 18 CFR 292.205(c) and...

  20. Thermoluminescence dating of calcite shells in the pectinidae family

    NASA Astrophysics Data System (ADS)

    Ninagawa, Kiyotaka; Adachi, Kenji; Uchimura, Noboru; Yamamoto, Isao; Wada, Tomonori; Yamashita, Yoshihiko; Takashima, Isao; Sekimoto, Katsuhisa; Hasegawa, Hiroichi

    Previously we investigated the thermoluminescence (TL) of a calcite shell, Pectinidae Pecten (Notovola) albicans (Schröter) (abbreviated to albicans), and we found that TL dating was possible for fossil calcite shells of albicans from 5 × 10 5 years ago to the present. In the present work, we investigate the TL emission spectra and the first glow-growth of 5 other species in the Pectinidae family, and it is found that the TL characteristics of these species are the same as those of the albicans. This means that the application of TL dating can be extended to these species. Furthermore, we tried to date fossil calcite shells older than 5 × 10 5 years ago, and we found that the upper limit for TL dating of fossil calcite shells is about 6 × 10 5 years.

  1. Calcite crystal growth rate inhibition by polycarboxylic acids

    USGS Publications Warehouse

    Reddy, M.M.; Hoch, A.R.

    2001-01-01

    Calcite crystal growth rates measured in the presence of several polycarboxyclic acids show that tetrahydrofurantetracarboxylic acid (THFTCA) and cyclopentanetetracarboxylic acid (CPTCA) are effective growth rate inhibitors at low solution concentrations (0.01 to 1 mg/L). In contrast, linear polycarbocylic acids (citric acid and tricarballylic acid) had no inhibiting effect on calcite growth rates at concentrations up to 10 mg/L. Calcite crystal growth rate inhibition by cyclic polycarboxyclic acids appears to involve blockage of crystal growth sites on the mineral surface by several carboxylate groups. Growth morphology varied for growth in the absence and in the presence of both THFTCA and CPTCA. More effective growth rate reduction by CPTCA relative to THFTCA suggests that inhibitor carboxylate stereochemical orientation controls calcite surface interaction with carboxylate inhibitors. ?? 20O1 Academic Press.

  2. Kinetics and Mechanisms of Calcite Reactions with Saline Waters

    SciTech Connect

    Chapman, Piers; *Morse, John W.

    2010-11-15

    1. Objective The general objective of this research was to determine the kinetics and mechanisms of calcite reactions with saline waters over a wide range of saline water composition, carbon dioxide partial pressure (pCO2), and modest ranges of T and P. This would be done by studying both reaction rates and solubility from changes in solution chemistry. Also, nanoscale observations of calcite surface morphology and composition would be made to provide an understanding of rate controlling mechanisms.

  3. Experimental investigation of sediment control on the saturation level of gas hydrate in sediments

    NASA Astrophysics Data System (ADS)

    Lu, H.; Ukita, T.; Noguchi, S.; Moudrakovski, I.; Shimada, T.; Ripmeester, J.; Ratcliffe, C.

    2010-12-01

    Except for those occurring at the seafloor, most natural gas hydrates form in sediments and are subject to the influence of the sediment. Investigations on natural gas hydrate have found that the saturation level of gas hydrate in sediments is closely related to the sediment type: comparatively enriched in coarse sediments such as sands but poorly saturated in fine sediments such as clay. However, due to the limitation of the current geological and geophysical investigations and the rarity of the recovery of intact hydrate samples, the knowledge about sediment control on hydrate saturation in sediments is still limited, and the mechanism is not yet understood. This research investigated the possible factors involved in sediment control on hydrate saturation using an experimental approach. The experiments were carried out with both natural and artificial sediments. The natural sediments were recovered from gas hydrate reservoirs in the Nankai Trough, offshore Japan, Cascadia, offshore Vancouver Island, K-G basin, offshore India, and offshore Andaman Island. The artificial sediments were prepared with quartz powder, a representative of silicates and aluminosilicates, kaolinite and Na-montmorillonite, representatives of clay minerals, and calcite, representative of carbonate minerals. Methane hydrate was synthesized in the artificial sediments under conditions simulating the reservoir of natural gas hydrate, and its saturation levels were determined from the gas amount released from a known volume of sediment. The results indicate that particle size and mineral composition are the two main factors affecting hydrate saturation in sediments. In the range from 20 to 250 μm, the degree of conversion of water into hydrate increases dramatically with increase in particle size, from 3% to 82%, corresponding to a pore saturation from 4% to ~ 100%. Studies also found that the sorting effect of sediment particles can also play a certain role in affecting hydrate saturation, although not as significantly as particle size. With increasing clay content, hydrate saturation decreased dramatically. When the clay content is over 40%, the degree of pore water converted to hydrate is only about 2%, corresponding to hydrate saturation lower than 3%. The NMR proton relaxation times of water confined in silica sands, show a logarithmic relationship with particle size, and it was found that the samples with higher hydrate saturation are those with longer proton relaxation times.

  4. Natural gas hydrates

    SciTech Connect

    Sloan, E.D. Jr. )

    1991-12-01

    This paper reports on gas clathrates (commonly called hydrates), which are crystalline compounds that occur when water form a cage-like structure around smaller guest molecules. Gas hydrates of interest to the natural gas hydrocarbon industry are composed of water and eight molecules: methane, ethane, propane, isobutane, normal butane, nitrogen, carbon dioxide, and hydrogen sulfide. Hydrate formation is possible in any place where water exists with such molecules - in natural or artificial environments and at temperatures above and below 32{degrees} F when the pressure is elevated. Hydrates are considered a nuisance because they block transmission lines, plug blowout preventers, jeopardize the foundations of deepwater platforms and pipelines, cause tubing and casing collapse, and foul process heat exchangers, valves, and expanders. Common examples of preventive measures are the regulation of pipeline water content, unusual drilling-mud compositions, and large quantities of methanol injection into pipelines. We encounter conditions that encourage hydrate formation as we explore more unusual environments for gas and oil, including deepwater frontiers and permafrost regions.

  5. Uptake of chloride and carbonate ions by calcium monosulfoaluminate hydrate

    SciTech Connect

    Mesbah, Adel; Cau-dit-Coumes, Celine; Frizon, Fabien

    2012-08-15

    Decommissioning of old nuclear reactors may produce waste streams containing chlorides and carbonates, including radioactive {sup 36}Cl{sup -} and {sup 14}CO{sub 3}{sup 2-}. Their insolubilization by calcium monosulfoaluminate hydrate was investigated. Carbonates were readily depleted from the solution, giving at thermodynamic equilibrium monocarboaluminate, monocarboaluminate + calcite, or calcite only, depending on the initial ratio between the anion and calcium monosulfoaluminate hydrate. Chloride ions reacted more slowly and were precipitated as Kuzel's salt, Kuzel's and Friedel's salts, or Friedel's salt only. Rietveld refinement of X-Ray powder diffraction patterns was successfully used to quantify the phase distributions, which were compared to thermodynamic calculations. Moreover, analysing the lattice parameters of Kuzel's salt as a function of its chloride content showed the occurrence of a restricted solid solution towards the sulfate side with general formula 3CaO{center_dot}Al{sub 2}O{sub 3}{center_dot}xCaCl{sub 2}{center_dot}(1 - x)CaSO{sub 4}{center_dot}(12 - 2x){center_dot}H{sub 2}O (0.36 {<=} x {<=} 0.50).

  6. A novel determination of calcite dissolution kinetics in seawater

    NASA Astrophysics Data System (ADS)

    Subhas, Adam V.; Rollins, Nick E.; Berelson, William M.; Dong, Sijia; Erez, Jonathan; Adkins, Jess F.

    2015-12-01

    We present a novel determination of the dissolution kinetics of inorganic calcite in seawater. We dissolved 13 C -labeled calcite in unlabeled seawater, and traced the evolving δ13 C composition of the fluid over time to establish dissolution rates. This method provides sensitive determinations of dissolution rate, which we couple with tight constraints on both seawater saturation state and surface area of the dissolving minerals. We have determined dissolution rates for two different abiotic calcite materials and three different grain sizes. Near-equilibrium dissolution rates are highly nonlinear, and are well normalized by geometric surface area, giving an empirical dissolution rate dependence on saturation state (Ω) of: This result substantiates the non-linear response of calcite dissolution to undersaturation. The bulk dissolution rate constant calculated here is in excellent agreement with those determined in far from equilibrium and dilute solution experiments. Plots of dissolution versus undersaturation indicates the presence of at least two dissolution mechanisms, implying a criticality in the calcite-seawater system. Finally, our new rate determination has implications for modeling of pelagic and seafloor dissolution. Nonlinear dissolution kinetics in a simple 1-D lysocline model indicate a possible transition from kinetic to diffusive control with increasing water depth, and also confirm the importance of respiration-driven dissolution in setting the shape of the calcite lysocline.

  7. Calcite Farming at Hollow Ridge Cave: Calibrating Net Rainfall and Cave Microclimate to Dripwater and Calcite Chemical Variability

    NASA Astrophysics Data System (ADS)

    Tremaine, D. M.; Kilgore, B. P.; Froelich, P. N.

    2012-04-01

    Stable isotope (δ18O and δ13C) and trace element records in cave speleothems are often interpreted as climate changes in rainfall amount or source, cave air temperature, overlying vegetation and atmospheric pCO2. However, these records are difficult to verify without in situ calibration of changes in cave microclimate (e.g., net rainfall, interior ventilation changes) to contemporaneous variations in dripwater and speleothem chemistry. In this study at Hollow Ridge Cave (HRC) in Marianna, Florida (USA), cave dripwater, bedrock, and modern calcite (farmed in situ) were collected in conjunction with continuous cave air pCO2, temperature, barometric pressure, relative humidity, radon-222 activity, airflow velocity and direction, rainfall amount, and drip rate data [1]. We analyzed rain and dripwater δD and δ18O, dripwater Ca2+, pH, δ13C and TCO2, cave air pCO2 and δ13C, and farmed calcite δ18O and δ13C to examine the relationships among rainwater isotopic composition, cave air ventilation, cave air temperature, calcite growth rate and seasonal timing, and calcite isotopic composition. Farmed calcite δ13C decreases linearly with distance from the front entrance to the interior of the cave during all seasons, with a maximum entrance-to-interior gradient of Δδ13C = -7‰ . A whole-cave "Hendy test" at distributed contemporaneous farming sites reveals that ventilation induces a +1.9 ± 0.96‰ δ13C offset between calcite precipitated in a ventilation flow path and out of flow paths. Farmed calcite δ18O exhibits a +0.82 ± 0.24‰ offset from values predicted by both theoretical calcite-water calculations and by laboratory-grown calcite [2]. Unlike calcite δ13C, oxygen isotopes show no ventilation effects and are a function only of temperature. Combining our data with other speleothem studies, we find a new empirical relationship for cave-specific water-calcite oxygen isotope fractionation across a range of temperatures and cave environments: 1000 ln α = 16.1(1000/T) - 24.6 We analyzed anions, cations, and trace elements in dripwater, bedrock, and farmed calcite to examine the relationships between net rainfall, drip rates, drip water chemistry, and calcite chemistry. Dripwater Mg/Ca and Sr/Ca ratios fall on coherent mixing lines between three geochemical endmembers: rainwater, dissolved dolomite, and dissolved limestone. Dripwater Sr/Ca vs. Mg/Ca ratios are also influenced by evaporative enrichment within the epikarst as a function of net rainfall amount [3]. Farmed calcite trace Cation/Ca ratios faithfully track short-term seasonal variations in dripwater chemistry for Na, Mg, Sr, Ba and U. However, speleothem calibrations are unique to each drip site regardless of proximity to one another, suggesting that individual speleothems are unlikely to be useful as a whole-cave hydrologic proxy. [1] Kowalczk, A. J., Froelich, P. N., 2010. Cave air ventilation and CO2 outgassing by radon-222 modeling: How fast do caves breathe? Earth & Planet. Sci. Lett. 289, 209-219. [2] Tremaine, D. M., Froelich, P. N., Wang, Y., 2011. Speleothem calcite farmed in situ: Modern calibration of δ18O and δ13C paleoclimate proxies in a continuously-monitored natural cave system. Geochim. Cosmochim. Acta 75, 4929-4950. [3] Tremaine, D. M., Froelich, P. N., 2012. Speleothem trace element signatures: A modern hydrologic geochemical study of cave drip waters and farmed calcite. Geochim. Cosmochim. Acta (submitted)

  8. HYDRATE CORE DRILLING TESTS

    SciTech Connect

    John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

    2002-11-01

    The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate formation comprised of coarse, large-grain sand in ice. Results with this core showed that the viscosity of the drilling fluid must also be carefully controlled. When coarse sand was being cored, the core barrel became stuck because the drilling fluid was not viscous enough to completely remove the large grains of sand. These tests were very valuable to the project by showing the difficulties in coring permafrost or hydrates in a laboratory environment (as opposed to a field environment where drilling costs are much higher and the potential loss of equipment greater). Among the conclusions reached from these simulated hydrate coring tests are the following: Frozen hydrate core samples can be recovered successfully; A spring-finger core catcher works best for catching hydrate cores; Drilling fluid can erode the core and reduces its diameter, making it more difficult to capture the core; Mud must be designed with proper viscosity to lift larger cuttings; and The bottom 6 inches of core may need to be drilled dry to capture the core successfully.

  9. The relative merits of dolomitic and calcitic limestone in detoxifying and revegetating acidic, nickel- and copper-contaminated soils in the Sudbury mining and smelting region of Canada

    SciTech Connect

    McHale, D.; Winterhalder, K.

    1996-12-31

    Soils in the Sudbury mining and smelting region have been rendered phytotoxic and barren by acidification and Particulate metal contamination, but can be detoxified revegetated by the surface application of an growth is better on soil treated ground limestone. On certain barren sites, plant growth is better on soil treated with dolomitic limestone than with calcitic limestone and greenhouse experiments using mung beans (Vigna radiata) have shown superior root and shoot growth on certain contaminated soils when the limestone is dolomitic rather than calcitic. Results of experiments with species used in revegetation (Agrostis gigantea and Lotus corniculatus) suggest that leguminous species are more sensitive to Ca:Mg ratio than grasses, that the plant response to this ratio is greater at lowering liming levels, and that the response is more marked on more toxic soils. The effects of calcium:magnesium ratio of the limestone used in revegetating acidic, metal-contaminated soils are clearly complex, interactive and difficult to interpret. Further studies are needed, but meanwhile it is recommended that the practice of using dolomitic limestone to detoxify barren Sudbury soils be continued, since there is a risk of induced magnesium deficiency at certain sites when calcitic limestone is used.

  10. Post-Laramide Epiorogeny through Crustal Hydration?

    NASA Astrophysics Data System (ADS)

    Jones, C. H.; Mahan, K. H.; Farmer, G.

    2011-12-01

    The most perplexing part of the Cordilleran orogen in the western U.S. has been the Cenozoic uplift of broad regions with insufficient crustal shortening to produce the change in elevation following retreat of the Western Interior Seaway. These regions (most notably the High Plains, Wyoming craton, and Colorado Plateau) generally also have heat flow values comparable to much of the tectonically inactive (and low) parts of the U.S. Explanations have included dynamic effects, erosion of mantle lithosphere, cryptic crustal thickening, and hydration of the mantle lithosphere. We suggest that an alternative worthy of investigation is the hypothesis that a garnet-rich lower crust throughout the region was hydrated, producing increased buoyancy capable of driving uplift. A profile from Canada to southernmost Wyoming contains coincident increases in lower crustal hydration, decreases in lower crustal wavespeed, and increases in elevation. Xenoliths from near the Canadian border in Montana are pristine and lack hydrous alteration. Similar xenoliths from the lower crust at the 50 Ma Homestead kimberlite in central Montana have been altered such that garnet+feldspar is partially replaced by a chlorite-calcite-albite assemblage that may have occurred under high-pressure conditions, reducing the rock density from 3.19 Mg/m3 to 3.05 Mg/m3. Farther south, lower crustal hornblende granulite xenoliths from Quaternary volcanic rocks in the Leucite Hills lack garnet and exhibit evidence for hydration reactions, some of which are late Archean. Along the same general trend, the DeepProbe seismic profile yielded a ~20 km thick lower crustal layer with wavespeeds decreasing from 7.7 km/s in Canada to ~7.2 km/s in central Wyoming to <7.0 km/s in southern Wyoming (Gorman et al., 2002). If this variation coincides with a 5-10% decrease in density of this layer, 1-2 km of topography should be produced, comparable to the ~1.5 km difference observed. Evidence for late-stage deep crustal hydration has also been described from xenoliths in the Four Corners region of the Colorado Plateau (Broadhurst, 1986; Selverstone et al., 1999). The presence of a partially hydrated high-wavespeed layer at the base of the crust could complicate attempts to define the Moho using receiver functions, a problem encountered in several areas in Wyoming and the Colorado Plateau.The timing of the observed lower crustal hydration is unknown, but if related to Cenozoic uplift this implies that fluids were added in Late Cretaceous to Early Tertiary, potentially via dehydration of shallowly subducting oceanic lithosphere. If correct, this idea requires some means of passing significant amounts of fluid to the lower crust through the lithospheric mantle.

  11. Dynamics of protein hydration water

    NASA Astrophysics Data System (ADS)

    Wolf, M.; Emmert, S.; Gulich, R.; Lunkenheimer, P.; Loidl, A.

    2015-09-01

    We present the frequency- and temperature-dependent dielectric properties of lysozyme solutions in a broad concentration regime, measured at subzero temperatures, and compare the results with measurements above the freezing point of water and on hydrated lysozyme powder. Our experiments allow examining the dynamics of unfreezable hydration water in a broad temperature range. The obtained results prove the bimodality of the hydration shell dynamics. In addition, we find indications of a fragile-to-strong transition of hydration water.

  12. Photoinduced synthesis of single-digit micrometer-size spheroidal calcite composites in the presence of partially hydrolyzed poly(vinyl alcohol)

    NASA Astrophysics Data System (ADS)

    Nishio, Takashi; Naka, Kensuke

    2015-06-01

    Photoinduced crystallization of calcium carbonate (CaCO3), which was based on the photodecarboxylation of ketoprofen (KP, 2-(3-benzoylphyenyl)propionic acid) under alkaline conditions of pH 8.4 and 10 was studied for preparation of CaCO3 composite particles in single-digit micrometer-sizes. In this method, a homogeneous solution comprising KP, calcium chloride, ammonia, and partially hydrolyzed poly(vinyl alcohol) (PVAPS, degree of saponification: 86.5-89.0 mol%) was used as a precursor solution and was exposed to ultraviolet (UV) irradiation for different time periods. After the UV irradiation for 50 min, calcite spheroids in single-digit micrometer-sizes were obtained as major products at pH 8.4. The obtained calcite spheroids contained organic components of about 10 wt%. The comparison of the characteristics of the CaCO3 obtained at pH 8.4 and 10 suggests that the nucleation and crystallization of both vaterite and calcite continuously took place in a moderated supersaturation owing to the CO2 hydration equilibrium as long as the photodecarboxylation of KP continued. Consequently, the aggregation-based crystal growth in the presence of PVAPS seemed to enable the formation of the spheroidal composites of calcite in single-digit micrometer-sizes.

  13. Phytochemical fingerprints of lime honey collected in serbia.

    PubMed

    Gašić, Uroš; Šikoparija, Branko; Tosti, Tomislav; Trifković, Jelena; Milojković-Opsenica, Dušanka; Natić, Maja; Tešić, Živoslav

    2014-01-01

    Composition of phenolic compounds and the sugar content were determined as the basis for characterization of lime honey from Serbia. Particular attention was given to differences in phytochemical profiles of ripe and unripe lime honey and lime tree nectar. Melissopalynological analysis confirmed domination of Tilia nectar in all analyzed samples. Phenolic acids, abscisic acid, flavonoids, and flavonoid glycosides were determined by means of ultra-HPLC coupled with a hybrid mass spectrometer (UHPLC-OrbiTrap). Sugar content was determined using high-performance anion-exchange chromatography with amperometric detection. Similar phenolic compounds characterized unripe and ripe honeys, while the lime tree nectar profile showed notable differences. Compared to lime tree nectar, a high amount of chrysin, pinocembrin, and galangin were detected in both ripe and unripe lime honey. Fructose and glucose were the major constituents of all investigated samples, and amounts were within the limits established by European Union legislation. Sucrose content in the nectar sample was up to two-fold higher when compared to all honey samples. Isomaltose and gentiobiose with turanose content were different in analyzed production stages of lime honey. PMID:25902974

  14. Effect of lime concentration on gelatinized maize starch dispersions properties.

    PubMed

    Lobato-Calleros, C; Hernandez-Jaimes, C; Chavez-Esquivel, G; Meraz, M; Sosa, E; Lara, V H; Alvarez-Ramirez, J; Vernon-Carter, E J

    2015-04-01

    Maize starch was lime-cooked at 92 °C with 0.0-0.40% w/w Ca(OH)2. Optical micrographs showed that lime disrupted the integrity of insoluble remnants (ghosts) and increased the degree of syneresis of the gelatinized starch dispersions (GSD). The particle size distribution was monomodal, shifting to smaller sizes and narrower distributions with increasing lime concentration. X-ray patterns and FTIR spectra showed that crystallinity decreased to a minimum at lime concentration of 0.20% w/w. Lime-treated GSD exhibited thixotropic and viscoelastic behaviour. In the linear viscoelastic region the storage modulus was higher than the loss modulus, but a crossover between these moduli occurred in the non-linear viscoelastic region. The viscoelastic properties decreased with increased lime concentration. The electrochemical properties suggested that the amylopectin-rich remnants and the released amylose contained in the continuous matrix was firstly attacked by calcium ions at low lime levels (<0.20% w/w), disrupting the starch gel microstructure. PMID:25442564

  15. [Retention of selenium volatility using lime in coal combustion].

    PubMed

    Zhang, J; Ren, D; Zhong, Q; Xu, F; Zhang, Y; Yin, J

    2001-05-01

    For understanding the volatility of selenium, the effect of the contents of exchangeable cations of coal on it, and the retention of selenium using CaO in coal combustion, the sequential chemistry extraction, the fixed bed and circulating fluidized bed (CFB) combustion, X-ray diffraction (XRD) and atomic fluorescence spectrometry (AFS) were undertaken. The results showed that the volatility of selenium was more than 97% in coal combustion at 815 degrees C, and the volatility of selenium was affected by the content of exchangeable cations of coal in low-middle temperature. It was identified that lime can restrain the volatility of selenium. In fixed bed combustion of coal, the retention rates of selenium volatility were between 11.6% and 50.7% using lime. In circulating fluidized bed combustion of coal, partitioning of selenium changed very much in ash of different size fraction between without lime and with lime. Comparing with combustion without lime, the content of selenium in ash from chimney was less than fourth times and that in leaching water from chimney decreased by two orders of magnitude using lime. Retention of selenium volatility using lime is so effective in coal combustion, especially in CFB combustion of coal. PMID:11507891

  16. On the complex conductivity signatures of calcite precipitation

    SciTech Connect

    Wu, Yuxin; Hubbard, Susan; Williams, Kenneth Hurst; Ajo-Franklin, Jonathan

    2009-11-01

    Calcite is a mineral phase that frequently precipitates during subsurface remediation or geotechnical engineering processes. This precipitation can lead to changes in the overall behavior of the system, such as flow alternation and soil strengthening. Because induced calcite precipitation is typically quite variable in space and time, monitoring its distribution in the subsurface is a challenge. In this research, we conducted a laboratory column experiment to investigate the potential of complex conductivity as a mean to remotely monitor calcite precipitation. Calcite precipitation was induced in a glass bead (3 mm) packed column through abiotic mixing of CaCl{sub 2} and Na{sub 2}CO{sub 3} solutions. The experiment continued for 12 days with a constant precipitation rate of {approx}0.6 milimole/d. Visual observations and scanning electron microscopy imaging revealed two distinct phases of precipitation: an earlier phase dominated by well distributed, discrete precipitates and a later phase characterized by localized precipitate aggregation and associated pore clogging. Complex conductivity measurements exhibited polarization signals that were characteristic of both phases of calcite precipitation, with the precipitation volume and crystal size controlling the overall polarization magnitude and relaxation time constant. We attribute the observed responses to polarization at the electrical double layer surrounding calcite crystals. Our experiment illustrates the potential of electrical methods for characterizing the distribution and aggregation state of nonconductive minerals like calcite. Advancing our ability to quantify geochemical transformations using such noninvasive methods is expected to facilitate our understanding of complex processes associated with natural subsurface systems as well as processes induced through engineered treatments (such as environmental remediation and carbon sequestration).

  17. Primary magmatic calcite reveals origin from crustal carbonate

    NASA Astrophysics Data System (ADS)

    Gozzi, Fernando; Gaeta, Mario; Freda, Carmela; Mollo, Silvio; Di Rocco, Tommaso; Marra, Fabrizio; Dallai, Luigi; Pack, Andreas

    2014-03-01

    We have investigated lava flows representative of the whole eruptive history of the Colli Albani ultrapotassic volcanic district (Central Italy). One of the most intriguing features concerning some of these lava flows is the occurrence of primary, magmatic calcite in the groundmass. The primary, magmatic nature of calcite has been inferred by microtextural investigations showing that it typically occurs i) interstitially, associated with clinopyroxene, nepheline and phlogopite, ii) in spherical ocelli, associated with nepheline, fluorite and tangentially arranged clinopyroxene, and iii) in corona-like reaction zones around K-feldspar xenocrysts. These microtextural features distinctly indicate that calcite crystallized from a carbonate melt in a partially molten groundmass, implying that the temperature of the system was above the solidus of the hosted lava flow (> 850 °C). Geochemical features of calcite crystals (i.e., stable isotope values and trace element patterns) corroborate their primary nature and give insights into the origin of the parental carbonate melt. The trace element patterns testify to a high-temperature crystallization process (not hydrothermal) involving a carbonate melt coexisting with a silicate melt. The high δ18O (around 27‰ SMOW) and wide δ13C (- 18 to + 5‰ PDB) values measured in the calcites preclude a mantle origin, but are consistent with an origin in the crust. In this framework, the crystallization of calcite can be linked to the interaction between magmas and carbonate-bearing wall rocks and, in particular, to the entrapment of solid and/or molten carbonate in the silicate magma. The stability of carbonate melt at low pressure and the consequent crystallization of calcite in the lava flow groundmass are ensured by the documented, high activity of fluorine in the studied system and by the limited ability of silicate and carbonate melts to mix at syn-eruptive time scales.

  18. The effect of additives on lime dissolution rates. Final report

    SciTech Connect

    Khang, S.J.

    1996-07-31

    Based on the previous years` studies concerning the efficiency of SO{sub 2} removal by spray dryers with high sulfur coal flue gas, the work for year five included investigations of lime dissolution rates at different slaking conditions and with the effect of additives. The prominent additives that have significant effects on lime dissolution rates were tested with the mini pilot spray drying absorber to see their effects on spray drying desulfurization applications. The mechanisms of these additive effects along with the properties of hygroscopic additives have been discussed and incorporated into the spray drying desulfurization model ``SPRAYMOD-M.`` Slaking conditions are very important factors in producing high quality lime slurry in spray drying desulfurization processes. At optimal slaking conditions, the slaked lime particles are very fine (3-5{mu}m) and the slaked lime has high BET surface areas which are beneficial to the desulfurization. The slaked lime dissolution rate experiments in our study are designed to determine how much lime can dissolve in a unit time if the initial lime surface area is kept constant. The purpose of the dissolution rate study for different additives is to find those effective additives that can enhance lime dissolution rates and to investigate the mechanisms of the dissolution rate enhancement properties for these additives. The applications of these additives on spray drying desulfurization are to further verify the theory that dissolution rate is a rate limiting step in the whole spray drying desulfurization process as well as to test the feasibility of these additives on enhancing SO{sub 2} removal in spray dryers.

  19. Leaching behavior of lime-fly ash mixtures

    SciTech Connect

    Daniels, J.L.; Das, G.P.

    2006-01-15

    As part of a larger investigation that included numerical and field-based components, the use of lime to reduce the leachability of a coal combustion fly ash was evaluated in the laboratory. The focus of this paper is on the experimental assessment of lime-fly ash leachability through sequential leach (SL), freeze-thaw (FT), and wet-dry (WD) leaching as well as multileachant sequential extraction (SE) tests. The results suggest that lime addition reduces the leachability for Cd, Se, and to some extent As. They also suggest that Cr is rendered more leachable with increasing lime content, for the conditions and low levels tested. It appears that there is a threshold lime content ({gt} 1.0%) that must be exceeded prior to reducing the leachability of As and Se. In particular, this threshold likely corresponds to the level at which appreciable cementitious reactions have developed. For example, in the case of As after the first cycle of leaching, the concentration was below the reporting limit (10 {mu} g/L) for 0% lime. However, at 0.5% lime amendment, the leached concentration increased to nearly 50 {mu} g/L. Subsequent lime additions reduced this concentration. No such threshold was observed for Cd leachability as was expected as a direct consequence of hydroxide precipitation, which is well established under the measured pH conditions. As such, Cd mobility is insensitive to the extent to which cementitious reactions are initiated. Overall, the results suggest that while lime stabilization may be effective for reducing leachability, sufficient amounts must be added; otherwise, the leachability of some constituents can actually be exacerbated.

  20. Aluminum Sulfate 18 Hydrate

    ERIC Educational Resources Information Center

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) of the chemical, aluminum sulfate 18 hydrate, is presented. The profile lists physical and harmful properties, exposure limits, reactivity risks, and symptoms of major exposure for the benefit of teachers and students using the chemical in the laboratory.

  1. Regeneration of lime from sulfates for fluidized-bed combustion

    DOEpatents

    Yang, Ralph T.; Steinberg, Meyer

    1980-01-01

    In a fluidized-bed combustor the evolving sulfur oxides are reacted with CaO to form calcium sulfate which is then decomposed in the presence of carbonaceous material, such as the fly ash recovered from the combustion, at temperatures of about 900.degree. to 1000.degree. C., to regenerate lime. The regenerated lime is then recycled to the fluidized bed combustor to further react with the evolving sulfur oxides. The lime regenerated in this manner is quite effective in removing the sulfur oxides.

  2. DEFINITIVE SOX CONTROL PROCESS EVALUATIONS: LIMESTONE, LIME, AND MAGNESIA FGD PROCESSES

    EPA Science Inventory

    The report gives economic and ground-to-ground energy evaluations of limestone slurry, lime slurry, and magnesia (producing sulfuric acid) flue gas desulfurization (FGD) processes. The lime slurry process, using purchased lime and lime calcined onsite, remains lower in capital in...

  3. Hydration in children.

    PubMed

    Manz, Friedrich

    2007-10-01

    Water supply is a basic public problem. In modern science, three periods with different approaches to define recommended water intake in adults can be distinguished. Pediatricians agree that hydration in children may be optimal only in breastfed infants. More data are required on the health effects of different hydration states and varying water intakes in particular age and gender groups to define optimal ranges of water intake. The fetus grows in an exceptionally well-hydrated environment. Water metabolism shows several peculiarities in preterm and term infants. Infant diarrhea remains a major topic of basic and clinical research. Water intoxication in infants, toddlers, and children is rare and can only be found in exceptional circumstances. Hydration status characterized by hyponatremia may play a role in the pathogenesis of febrile convulsions in toddlers. There is increasing indirect evidence that spontaneous drinking behavior of a population may be fixed and anchored in the age range of toddlers. Sex differences in hydration status are common, but not obligatory. What causes theses differences? What is behind the various circadian rhythms of urine osmolality in children? At what age and in what quantities can alcohol and caffeine consumption be tolerated? How can individual susceptibility be defined? Reflecting on the modern epidemic of obesity in children and adolescents, a public consensus concerning use and misuse of sweetened drinks seems mandatory. Dietary reference intakes of water refer to 24-hour intake. In nutritional counselling, food and meal-based dietary advice is primarily given. Young parents are confronted with a flood of advice of varying quality. Recommendations on fluid consumption should be collated and revised. PMID:17921466

  4. A Raman spectroscopic comparison of calcite and dolomite.

    PubMed

    Sun, Junmin; Wu, Zeguang; Cheng, Hongfei; Zhang, Zhanjun; Frost, Ray L

    2014-01-01

    Raman spectroscopy was used to characterize and differentiate the two minerals calcite and dolomite and the bands related to the mineral structure. The (CO3)(2-) group is characterized by four prominent Raman vibrational modes: (a) the symmetric stretching, (b) the asymmetric deformation, (c) asymmetric stretching and (d) symmetric deformation. These vibrational modes of the calcite and dolomite were observed at 1440, 1088, 715 and 278 cm(-1). The significant differences between the minerals calcite and dolomite are observed by Raman spectroscopy. Calcite shows the typical bands observed at 1361, 1047, 715 and 157 cm(-1), and the special bands at 1393, 1098, 1069, 1019, 299, 258 and 176 cm(-1) for dolomite are observed. The difference is explained on the basis of the structure variation of the two minerals. Calcite has a trigonal structure with two molecules per unit cell, and dolomite has a hexagonal structure. This is more likely to cause the splitting and distorting of the carbonate groups. Another cause for the difference is the cation substituting for Mg in the dolomite mineral. PMID:23988531

  5. A Raman spectroscopic comparison of calcite and dolomite

    NASA Astrophysics Data System (ADS)

    Sun, Junmin; Wu, Zeguang; Cheng, Hongfei; Zhang, Zhanjun; Frost, Ray L.

    2014-01-01

    Raman spectroscopy was used to characterize and differentiate the two minerals calcite and dolomite and the bands related to the mineral structure. The (CO3)2- group is characterized by four prominent Raman vibrational modes: (a) the symmetric stretching, (b) the asymmetric deformation, (c) asymmetric stretching and (d) symmetric deformation. These vibrational modes of the calcite and dolomite were observed at 1440, 1088, 715 and 278 cm-1. The significant differences between the minerals calcite and dolomite are observed by Raman spectroscopy. Calcite shows the typical bands observed at 1361, 1047, 715 and 157 cm-1, and the special bands at 1393, 1098, 1069, 1019, 299, 258 and 176 cm-1 for dolomite are observed. The difference is explained on the basis of the structure variation of the two minerals. Calcite has a trigonal structure with two molecules per unit cell, and dolomite has a hexagonal structure. This is more likely to cause the splitting and distorting of the carbonate groups. Another cause for the difference is the cation substituting for Mg in the dolomite mineral.

  6. Effect of microstructure and microchemistry on improvement of hydration and slag attack resistance of ilmenite-doped refractory limestone

    NASA Astrophysics Data System (ADS)

    Soltan, Abdel Monem; Serry, Mohamed

    2015-02-01

    This work studies densification, resistance to hydration and slag attack of 0.0-2.0 wt% ilmenite-doped lime refractories in relation to their thermal equilibrium and microfabric after firing at 1,400-1,700 °C. XRF, XRD, SEM-EDAX, transmitted light microscopy and mercury intrusion methods were used to characterize the fired samples. The ternary diagram CaO-C2S-C4AF was applied to the thermal equilibrium data. The rates of hydration and attack by steel-slag were also assessed using cathode-luminescence microscope. Doping limestone with 0.5 wt% ilmenite leads maximizes the rate of densification after firing for 2 h at 1,600 °C. A direct-bonded CaO-CaO network is found in the doped sample with separated islands of Ca-silicate, alumino-ferrite and TiO2-rich Ca, Mg- solid solutions all filling the pores and triple points of the lime grains. Due to the dense microstructure of the doped sample with the direct-bonded lime grains, hydration and slag-attack resistance are enhanced compared with the un-doped sample.

  7. Time and metamorphic petrology: Calcite to aragonite experiments

    USGS Publications Warehouse

    Hacker, B.R.; Kirby, S.H.; Bohlen, S.R.

    1992-01-01

    Although the equilibrium phase relations of many mineral systems are generally well established, the rates of transformations, particularly in polycrystalline rocks, are not. The results of experiments on the calcite to aragonite transformation in polycrystalline marble are different from those for earlier experiments on powdered and single-crystal calcite. The transformation in the polycrystalline samples occurs by different mechanisms, with a different temperature dependence, and at a markedly slower rate. This work demonstrates the importance of kinetic studies on fully dense polycrystalline aggregates for understanding mineralogic phase changes in nature. Extrapolation of these results to geological time scales suggests that transformation of calcite to aragonite does not occur in the absence of volatiles at temperatures below 200??C. Kinetic hindrance is likely to extend to higher temperatures in more complex transformations.

  8. Rapid Migration of CO2 Supercritical Fluids in Calcite Cristals

    NASA Astrophysics Data System (ADS)

    Zuddas, P.; Lopez, O.; Salvi, S.; Earth Sciences Umr5123

    2010-12-01

    The transport of supercritical fluids is a determining factor for several geological processes as well fundamental in predicting natural resource accumulation and distribution. Calcite, ubiquitous in geological environments may contain supercritical CO2 trapped under fluid inclusions commonly assumed to remain static under ambient conditions. Here, we report nano-meter scale observations on calcite crystal surface indicating the occurrence of fast movement of supercritical CO2 fluid inclusions hosted in the upper part of calcite crystals. Real time monitoring of calcite samples without observable presence of fluid inclusions, by in-situ Atomic Force Microscopy (AFM), shows a flat state of the calcite surface (after freshly cleaving) and the surface state condition did not change during several hours of scanning. However, AFM observations on calcite samples with visible fluid inclusions show rapid formation of nanometre-scale hillocks spontaneously formed on the surface structure of the calcite. They have an averaged height of 1 nm, and varied horizontal dimensions and geometries. The fact that hillocks formed spontaneously on flat terraces in only a few minutes, without evidence of surface dissolution, was unexpected and suggests that the source of hillock material should be derived within the crystal itself. This phenomenon was observed even changing the experimental conditions such a scan frequency of the AFM tip, environmental temperature (between 5° and 50°C) and the surface area of scanning. The observed hillocks can form by the fact that CO2-rich fluid inclusions located just under the mineral surface are at elevated internal pressure and near the rupture limit. Thus, a frail mechanical strain can case them to decrepitated and lose their fluid. Upon reaching the surface, the supercritical CO2 leaked from the fluid inclusions, mixes with the thin water layer in equilibrium with ambient CO2 partial pressure at the calcite surface, causing degassing of CO2 and facilitating calcite precipitation in the form of hillocks. We estimated CO2 supercritical fluid transport assuming a minimum depth of the fluid inclusions involved in the fluid movement and an instantaneous precipitation at the surface. We found that supercritical CO2 fluid transport in calcite is around the value of 10nm/s. The estimated fast fluid transport rate is about 10 orders of magnitude higher than the estimated low-temperature extrapolation of solid-state diffusion vacancy in calcite crystals. Classical description of fluid transport recognises several distinct paths only for polycrystalline materials assuming the presence of inter-grain pathways as micro and nano-pore tubes. Fluid transport is usually observed in poly-phase material grains can also exhibit clear indications of multi-path migration even when visible evidence of such paths is lacking. Our study quantifies this process in the case of natural calcite at external standard conditions and be of potential importance in movement of CO2 rich fluids under supercritical conditions.

  9. Spectroscopic study of phase transitions in natural calcite mineral

    NASA Astrophysics Data System (ADS)

    Gunasekaran, S.; Anbalagan, G.

    2008-04-01

    The process and the formation of new minerals upon heating the carbonate rocks containing clay minerals, together with calcite are determined with thermal analysis, X-ray diffraction, infrared and Raman spectroscopy. The calcite-calcium oxide phase transition sequence was followed up to 947 °C in naturally occurring limestone samples. The spectral variations of the internal modes of the carbonate trigonal ( ν1, ν2, ν3 and ν4) were used to probe the structural phase transitions. The calcium oxide phase (which on reaction with atmospheric water forms portlandite) with an onset temperature of around 950 °C was also characterized by the appearance of the infrared mode around 450 cm -1. The minerals, which were formed upon heating the calcite, were calcium oxide and wollastonite.

  10. 63. INTERIOR VIEW OF THE LIME KILN BUILDING, LOOKING AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. INTERIOR VIEW OF THE LIME KILN BUILDING, LOOKING AT THE FIRE BOX AND KILN FOR DILLUTANT. APRIL 22, 1919. - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  11. EVALUATION OF LIME PRECIPITATION FOR TREATING BOILER TUBE CLEANING WASTES

    EPA Science Inventory

    The report gives results of an evaluation of lime precipitation for treating boiler tube cleaning wastes. In this project, wastewater samples were collected from six boiler tubeside chemical cleanings, using complexing and chelating agents. The samples represented: (1) ammoniacal...

  12. Is bicarbonate stable in and on the calcite surface?

    NASA Astrophysics Data System (ADS)

    Andersson, M. P.; Rodriguez-Blanco, J. D.; Stipp, S. L. S.

    2016-03-01

    We have used density functional theory with the COSMO-RS implicit solvent model to predict the pKa for the deprotonation of bicarbonate to carbonate, i.e. HCO3- <=> CO32- + H+, when HCO3- is included in, and adsorbed on, a calcite surface. We have used cluster models (80-100 atoms) to represent the flat {10.4} surface, acute steps, obtuse steps, two types of kinks on the acute step and two types of kinks on the obtuse steps. Based on the predicted pKa values, which range from -6.0 to 2.4 depending on the surface site, we conclude that bicarbonate deprotonates to carbonate when it is in calcite even when pH in solution is very low. This is true for all surface sites, even for solutions where 2.4 < pH < 6.35, where H2CO30 is the dominant dissolved species. When bicarbonate is adsorbed on calcite, the predicted pKa for deprotonation is 7.5, which is ∼3 pH units lower than in aqueous solution, 10.35. This means that adsorbed carbonate is stable even when the concentration of dissolved CO32- is several orders of magnitude lower. This has a significant effect on surface charge and thus the behaviour of the calcite surface. Our results help explain the potential determining behaviour of the carbonate species in calcite-water systems, particularly in the pH range where the bicarbonate species dominates in water and where the carbonate species dominates at the surface, i.e. when 7.5 < pH < 10.35. Our atomic scale data for the various calcite surface sites provide the needed input to improve and constrain surface complexation modelling and are especially useful for predicting behaviour in systems where experiments are difficult or impossible, such as at high temperature and pressure.

  13. Microbially Induced Calcite Precipitation for Subsurface Immobilization of Contaminants

    NASA Astrophysics Data System (ADS)

    Smith, R. W.; Fujita, Y.; Ginn, T. R.; Hubbard, S. S.; Dafflon, B.; Delwiche, M.; Gebrehiwet, T.; Henriksen, J. R.; Peterson, J.; Taylor, J. L.

    2011-12-01

    Subsurface radionuclide and metal contaminants throughout the U.S. Department of Energy (DOE) complex pose one of the greatest challenges for long-term stewardship. One promising stabilization mechanism for divalent trace ions, such as the short-lived radionuclide 90Sr, is co-precipitation in calcite. We have found that calcite precipitation and co-precipitation of Sr can be accelerated by the activity of urea hydrolyzing microorganisms, that higher calcite precipitation rates can result in increased Sr partitioning, and that nutrient additions can stimulate ureolytic activity. To extend our understanding of microbially induced calcite precipitation (MICP) in an aquifer setting a continuous recirculation field experiment evaluating MICP was conducted at the Integrated Field Research Challenge (IFRC) site located at Rifle, CO. In this experiment, groundwater extracted from an onsite well was amended with urea (total mass of 42.5 kg) and molasses (a carbon and electron donor) and re-injected into a well approximately 4 meters up-gradient for a period of 12 days followed by 10 months of groundwater sampling and monitoring. Crosshole radar and electrical tomographic data were collected prior, during, and after the MICP treatment. The urea and molasses treatment resulted in an enhanced population of sediment associated urea hydrolyzing organisms as evidenced by increases in the number of ureC gene copies, increases in 14C urea hydrolysis rates, and long-term observations of ammonium (a urea hydrolysis product) in the injection, extraction and down gradient monitoring wells. Permeability changes and increases in the calcite saturation indexes in the well field suggest that mineral precipitation has occurred; ongoing analysis of field samples seeks to confirm this. Changes in dielectric constant and electrical conductivity were used to interpret the spatiotemporal distribution of the injectate and subsequent calcite precipitation. Modeling activities are underway to define field-scale urea hydrolysis rates.

  14. Micromachining soda-lime glass by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Jia, Wei; Yu, Jian; Chai, Lu; Wang, Ching-Yue

    2015-08-01

    The physical process of forming a modified region in soda-lime glass was investigated using 1 kHz intense femtosecond laser pulses from a Ti: sapphire laser at 775 nm. Through the modifications induced by the femtosecond laser radiation using selective chemical etching techniques, we fabricated reproducible and defined microstructures and further studied their morphologies and etching properties. Moreover, a possible physical mechanism for the femtosecond laser modification in soda-lime glass was proposed.

  15. Magnesium incorporation in calcite in the presence of organic ligands

    NASA Astrophysics Data System (ADS)

    Mavromatis, Vasileios; Baldermann, Andre; Purgstaller, Bettina; Dietzel, Martin

    2015-04-01

    The formation of authigenic Mg-calcites in marine early diagenetic environments is commonly driven by a bio-induced process, the anaerobic oxidation of methane (AOM), which provides inorganic carbon required for the precipitation of such authigenic carbonates. In such settings the availability of major and/or trace divalent metal cations (Me2+) incorporated in calcite and their aqueous speciation are controlled by the presence of aqueous organic molecules that are produced either as (by-)products of biological activity (i.e. exopolymeric substances) or during degradation of allochthonous organic matter in the sediments. Despite the fact that the presence of aqueous organic ligands strongly affects the growth rates and the mineralogy of precipitating CaCO3 polymorphs, till now no study addresses the role of Me2+-ligand aqueous complexes on the extent of Mg and/or other trace element content of Mg-calcites. In order to shed light on this process, relevant to authigenic calcite formation in organic-rich marine sediments and continental soils, we precipitated calcite in the presence of aqueous Mg and a variety of low molecular weight carboxylic- and aminoacids. Our experimental data indicate that the presence of organic ligands augments significantly the saturation state of calcite in the parent fluid during its precipitation. Moreover, they suggest that the higher the ligand concentration, the higher the obtained distribution coefficient of Mg in calcite. The latter is directly proportional to the ratio of Mg2+/Ca2+ aqueous ions for all ligands used. Hydrogeochemical modelling of the aqueous fluids indicate that the observed correlation can be explained by the stronger complexation of Ca2+ with organic ligands compared to Mg2+, which results in higher availability of Mg2+ vs. Ca2+ aqueous ions. Overall the obtained results suggest that the higher the organic ligand aqueous concentration the higher the Mg content of calcite forming from this fluid. These findings are of great importance for the understanding of the mechanisms controlling impurities and trace element incorporation in carbonates forming in marine diagenetic and soil environments.

  16. Magnesium stable isotope fractionation in marine biogenic calcite and aragonite

    NASA Astrophysics Data System (ADS)

    Wombacher, F.; Eisenhauer, A.; Böhm, F.; Gussone, N.; Regenberg, M.; Dullo, W.-Chr.; Rüggeberg, A.

    2011-10-01

    This survey of magnesium stable isotope compositions in marine biogenic aragonite and calcite includes samples from corals, sclerosponges, benthic porcelaneous and planktonic perforate foraminifera, coccolith oozes, red algae, and an echinoid and brachiopod test. The analyses were carried out using MC-ICP-MS with an external repeatability of ±0.22‰ (2SD for δ 26Mg; n = 37), obtained from a coral reference sample (JCp-1). Magnesium isotope fractionation in calcitic corals and sclerosponges agrees with published data for calcitic speleothems with an average Δ 26Mg calcite-seawater = -2.6 ± 0.3‰ that appears to be weakly related to temperature. With one exception ( Vaceletia spp.), aragonitic corals and sclerosponges also display uniform Mg isotope fractionations relative to seawater with Δ 26Mg biogenic aragonite-seawater = -0.9 ± 0.2. Magnesium isotopes in high-Mg calcites from red algae, echinoids and perhaps some porcelaneous foraminifera as well as in all low-Mg calcites (perforate foraminifera, coccoliths and brachiopods) display significant biological influences. For planktonic foraminifera, the Mg isotope data is consistent with the fixation of Mg by organic material under equilibrium conditions, but appears to be inconsistent with Mg removal from vacuoles. Our preferred model, however, suggests that planktonic foraminifera synthesize biomolecules that increase the energetic barrier for Mg incorporation. In this model, the need to remove large quantities of Mg from vacuole solutions is avoided. For the high-Mg calcites from echinoids, the precipitation of amorphous calcium carbonate may be responsible for their weaker Mg isotope fractionation. Disregarding superimposed biological effects, it appears that cation light isotope enrichments in CaCO 3 principally result from a chemical kinetic isotope effect, related to the incorporation of cations at kink sites. In this model, the systematics of cation isotope fractionations in CaCO 3 relate to the activation energy required for cation incorporation, which probably reflects the dehydration of the cation and the crystal surface and bond formation at the incorporation site. This kinetic incorporation model predicts (i) no intrinsic dependence on growth rate, unless significant back reaction upon slow growth reduces the isotope fractionation towards that characteristic for equilibrium isotope partitioning (this may be observed for Ca isotopes in calcites), (ii) a small decrease of isotope fractionation with increasing temperature that may be amplified if higher temperatures promote back reaction and (iii) a sensitivity to changes in the activation barrier caused by additives such as anions or biomolecules or by the initial formation of amorphous CaCO 3.

  17. Sulfated Macromolecules as Templates for Calcite Nucleation and Growth

    NASA Astrophysics Data System (ADS)

    David, M.; Passalacqua, K.; Neira, A. C.; Fernandez, M. S.

    2003-12-01

    Mineralization of egg and seashells is controlled by an intimate association of inorganic materials with organic macromolecules. Among them, particular polyanionic sulfated macromolecules referred to as proteoglycans have been described to be involved in the calcification of these biominerals. The sulfated moieties of the proteoglycans are part of polymer chains constituted of building-blocks of disaccharide units, referred to as sulfated glycosaminoglycans (GAGs), which are covalently attached to a protein core. By using a sitting drop crystallization assay under controlled conditions of time, pH and reactants concentration, we have tested several sulfated and non-sulfated GAGs (i.e.: dermatan and keratan sulfate, hyaluronic acid and heparin), differing in their sulfonate and carboxylate degree and pattern, in their ability to modify calcium carbonate crystal morphology as observed under scanning electron microscopy. Without the addition of GAGs, regular \\{104\\} rhombohedral calcite crystals were obtained. When hyaluronic acid (HA), a non-sulfated but carboxylated GAG, was added, 20 mm long piles of unmodified calcite crystals were observed. When desulfated dermatan, which is an epimeric form of HA but shorter polymer, having their carboxylate groups in an inverted configuration, was added, isolated rhombohedral \\{104\\} calcite crystals showing rounded corners with planes oriented parallel to the c axis were observed. When dermatan sulfated was added, isolated calcite crystals exhibit a columnar morphology as a \\{hk0\\} cylinder with three \\{104\\} faces forming a cap at both ends. Heparin activity depends on the fraction added. Fast-moving heparin fraction (FM), is an undersulfated, low-molecular-weight heterogeneous polymer, while slow-moving heparin fraction (SM) is an high-molecular-weight homogeneous polymer rich in trisulfated-disaccharide units. When FM was added, isolated calcite crystals displayed rhombohedrical \\{104\\} faces but flat corners of \\{111\\} faces. The addition of the hypersulfated heparin SM induce the formation of large rosette-like aggregated calcite crystals, where the majority of the \\{104\\} faces appeared not to be lost, although aggregation is done by different kind of faces. It is concluded that, the variation of the sulfate and carboxylate content and configuration drastically changed the morphology of the calcite crystals. The production of calcite particles with defined morphologies could be interesting for the design of novel materials with desirable shape- and texture-depending properties. Granted by FONDAP 11980002.

  18. Soil liming as a measure to mitigate acid runoff

    SciTech Connect

    Warfvinge, P.; Sverdrup, H.

    1988-05-01

    Watershed liming is one method to decrease the acidity of surface waters. To gain an understanding of the mechanisms involved in terrestrial liming and to develop a tool for planning and evaluation, a mathematical model has been developed. The model includes key chemical processes such as limestone dissolution, cation-exchange reactions, and leaching and accumulation of dissolved species. The ability of the model to describe the short and long-term improvement in stream water quality following wetland liming is demonstrated by comparing the model calculations with data from two Swedish full-scale liming experiments. The influence of temporal hydrological and chemical variations on model output is assessed. The sensitivity of the system response to liming is analyzed with respect to three design parameters: the amount and the fineness of the liming material, and the fraction of the watershed that is treated. The simulations illustrate the importance of careful soil and hydrological characterization of treated watersheds to ensure that the limestone dose and the treated area are sufficient to ensure a satisfactory increase in stream pH and resistance to reacidification.

  19. Soil liming as a measure to mitigate acid runoff

    NASA Astrophysics Data System (ADS)

    Warfvinge, Per; Sverdrup, Harald

    1988-05-01

    Watershed liming is one method to decrease the acidity of surface waters. To gain an understanding of the mechanisms involved in terrestrial liming and to develop a tool for planning and evaluation, a mathematical model has been developed. The model includes key chemical processes such as limestone dissolution, cation-exchange reactions, and leaching and accumulation of dissolved species. The ability of the model to describe the short and long-term improvement in stream water quality following wetland liming is demonstrated by comparing the model calculations with data from two Swedish full-scale liming experiments. The influence of temporal hydrological and chemical variations on model output is assessed. The sensitivity of the system response to liming is analyzed with respect to three design parameters: the amount and the fineness of the liming material, and the fraction of the watershed that is treated. The simulations illustrate the importance of careful soil and hydrological characterization of treated watersheds to ensure that the limestome dose and the treated area are sufficient to ensure a satisfactory increase in stream pH and resistance to reacidification.

  20. High strain deformation of calcite-anhydrite aggregates

    NASA Astrophysics Data System (ADS)

    Barnhoorn, A.; Bystricky, M.; Kunze, K.; Burlini, L.

    2003-04-01

    Localization of deformation in nature occurs dominantly in polyphase rocks. However, high strain experimental deformation studies have up to now mainly been performed on monophase materials. In order to study the process of localization as well as the interaction between different phases during deformation, a calcite-anhydrite aggregate was deformed in torsion to large amounts of shear strain. Calcite and anhydrite do not chemically react and have similar strengths at the deformation conditions performed in this study. However, the deformation behaviour of the two phases is strikingly different with increasing strain. The synthetic calcite-anhydrite aggregates were produced from reagent powders by HIP-ping (Bruhn et al., 1999). Torsion experiments were performed on fine-grained (5-8 micrometers) calcite-anhydrite samples with volume proportions of 30/70, 50/50 and 70/30 and on the pure end-member samples (100% calcite and 100% anhydrite). The experiments were performed at 600 °C, 300 MPa confining pressure and a constant shear strain rate of 1.10-3 s-1. A maximum shear strain of 12.5 was reached. With progressive deformation the samples deformed more and more inhomogeneously. On a bulk sample scale progressive localization of the deformation was observed. This is in contrast to previous experiments in torsion performed on monophase materials (including calcite and anhydrite) where deformation always remained very homogeneous. The rheological data showed that the pure anhydrite was the strongest material and calcite the weakest. However after a shear strain of 1, the anhydrite end-member weakened dramatically until similar stresses were reached at high shear strains of 3 as for the pure calcite end-member. The calcite-anhydrite mixtures had strengths in between those of the end-members and showed a weakening behaviour between the end-members. Microstructural analysis of SEM backscatter electron images of the two phase samples show that in the localized zones preferred alignments of both phases are present. Very thin layers (about 5 micrometer thick, roughly one grain) of calcite and anhydrite alternate with each other. By contrast, in the non-localized parts of the sample the two phases are still homogeneously mixed as in the starting material. The alignment of single phases causes localization of deformation in this two-phase aggregate, because the laminar microstructure corresponds to the minimum strength (lower bound) configuration in simple shear. These results suggest that the presence of two or more phases may play an important role in localization in nature. Reference: Bruhn, D.F., Olgaard, D.L., Dell'Angelo, L.N., 1999. Evidence for enhanced deformation in two-phase rocks: Experiments on the rheology of calcite-anhydrite aggregates. Journal of Geophysical Research B104, 707-724.

  1. Methane Clathrate Hydrate Prospecting

    NASA Technical Reports Server (NTRS)

    Duxbury, N.; Romanovsky, V.

    2003-01-01

    A method of prospecting for methane has been devised. The impetus for this method lies in the abundance of CH4 and the growing shortages of other fuels. The method is intended especially to enable identification of subpermafrost locations where significant amounts of methane are trapped in the form of methane gas hydrate (CH4(raised dot)6H2O). It has been estimated by the U.S. Geological Survey that the total CH4 resource in CH4(raised dot) 6H2O exceeds the energy content of all other fossil fuels (oil, coal, and natural gas from non-hydrate sources). Also, CH4(raised dot)6H2O is among the cleanest-burning fuels, and CH4 is the most efficient fuel because the carbon in CH4 is in its most reduced state. The method involves looking for a proxy for methane gas hydrate, by means of the combination of a thermal-analysis submethod and a field submethod that does not involve drilling. The absence of drilling makes this method easier and less expensive, in comparison with prior methods of prospecting for oil and natural gas. The proposed method would include thermoprospecting in combination with one more of the other non-drilling measurement techniques, which could include magneto-telluric sounding and/or a subsurface-electrical-resistivity technique. The method would exploit the fact that the electrical conductivity in the underlying thawed region is greater than that in the overlying permafrost.

  2. Long-Term Effects of a Watershed Liming Experiment on Soils and Surface Waters at Woods Lake, New York

    NASA Astrophysics Data System (ADS)

    Newton, R. M.

    2005-12-01

    In October 1989, approximately 1000 Mg of pelletized limestone was applied to two subcatchments of the Woods Lake Watershed located in the western Adirondacks of New York State. This experiment was designed to evaluate the effectiveness of calcite addition to watershed soils as a strategy to mitigate the effects of surface water acidification from acidic deposition. Woods Lake is 23 ha in size and lies within a 207 ha thin-till dominated watershed. In 1979 the lake was highly acidic (pH 4.8, ANC -8 μeq/L). The watershed treatment followed two earlier lake liming experiments. These experiments successfully raised the pH and ANC of the lake but only for a short time as the residence time of water in the lake is only 174 days. Because calcite applied to the soil would be continuously exposed to precipitation falling on the land surface, it was hypothesized that watershed liming would have a much longer impact. The limed subcatchments (102 ha) were treated with limestone that had been crushed to the consistency of fine sand and pelletized with a lignosulfonate binder to form pellets 1.41 to 4.00 mm in diameter. The chemical composition of the pellets was approximately 82% CaCO3, 8% MgCO3, 4% organic binder, and 6% inorganic salts and insoluble silicate minerals. Application rates were targeted at 10 Mg CaCO3/ha but limefall collectors measured lower rates with a mean of 7.85 Mg/ha falling in subcatchment II and 3.42 Mg/ha in subcatchment IV. During the first two years after watershed liming lake pH averaged 6.62, ANC 138 μeq/L and Ca2+ 119 μeq/L. Samples collected during the summer of 2005 show that, even after 16 years, the lake has maintained its positive ANC (37.7 μeq/L) and still has high concentrations of Ca2+ (151.7 μeq/L). A viable fish population has also survived in this previously fishless lake. Even more surprising, soil samples collected in 2005 still have significant quantities of undissolved CaCO3. In the time since treatment, the CaCO3 has been displaced downward through the organic horizon of the soil through seasonal deposition of organic debris from above. It now lies within an Oa horizon having a pH of approximately 4.5. Organic coatings on the CaCO3 are likely inhibiting reactions with soil water. Some reaction must still be occurring as the pH is higher and exchangeable acidity lower in treated catchments as compared to untreated control catchments. The pH of the organic horizons in the control catchments is as low as 3.6 while the exchangeable acidity is as high as 11.2 meq/100 gm. Exchangeable acidity of organic horizons in the treated catchments is generally less than 2 meq/100 gm. Calcite weathering rates are likely lower in this field experiment than expected due to the presence of organic coatings on the mineral grain surfaces that are formed during organic decomposition reactions in the soil. Despite this, the rate of Ca2+ release from the treated catchments is high enough to maintain a positive ANC in the lake.

  3. Interpretation of the lime column penetration test

    NASA Astrophysics Data System (ADS)

    Liyanapathirana, D. S.; Kelly, R. B.

    2010-06-01

    Dry soil mix (DSM) columns are used to reduce the settlement and to improve the stability of embankments constructed on soft clays. During construction the shear strength of the columns needs to be confirmed for compliance with technical assumptions. A specialized blade shaped penetrometer known as the lime column probe, has been developed for testing DSM columns. This test can be carried out as a pull out resistance test (PORT) or a push in resistance test (PIRT). The test is considered to be more representative of average column shear strength than methods that test only a limited area of the column. Both PORT and PIRT tests require empirical correlations of measured resistance to an absolute measure of shear strength, in a similar manner to the cone penetration test. In this paper, finite element method is used to assess the probe factor, N, for the PORT test. Due to the large soil deformations around the probe, an Arbitrary Lagrangian Eulerian (ALE) based finite element formulation has been used. Variation of N with rigidity index and the friction at the probe-soil interface are investigated to establish a range for the probe factor.

  4. Anthropogenic oligotrophication via liming: Long-term phosphorus trends in acidified, limed, and neutral reference lakes in Sweden.

    PubMed

    Hu, Qian; Huser, Brian J

    2014-01-01

    Restoration of acidified lakes by liming does not, in many cases, improve productivity to a pre-acidified state. We hypothesize that the poor recovery detected in many of these lakes is due to constrained in-lake phosphorous (P) cycling caused by enhanced precipitation of metals in higher pH, limed waters. Long-term (1990-2012) data for 65 limed, circum-neutral (pH 6-8), and acidified lakes in Sweden were analyzed to determine trends for P and potential drivers of these trends. Limed lakes not only had lower mean values and stronger decreasing trends for total P than non-limed lakes, but they also had the highest percentage of decreasing trends (85 %). A P release factor (Hypolimnetic P/Epilimnetic P) was developed to elucidate differences in internal P cycling between lake groups. Consistently, lower P release factors in limed lakes show limitation of internal P cycling during summer months that may be a factor limiting P bioavailability and thus productivity of these systems. PMID:25403973

  5. Utricular otoconia of some amphibians have calcitic morphology

    NASA Technical Reports Server (NTRS)

    Pote, K. G.; Ross, M. D.

    1993-01-01

    This report concerns the morphological features of otoconia removed from the inner ear of four amphibian species. Results from scanning electron microscopic examination are compared based on the site of origin. These results show that utricular otoconia have a mineral structure that mimics calcite, rather than the widely accepted idea that they are mineralized by calcium carbonate of the aragonite polymorph.

  6. Aragonite / Calcite seas and the evolution of biomineralization

    NASA Astrophysics Data System (ADS)

    Balthasar, Uwe

    2015-04-01

    The vast majority of marine invertebrate skeletons are composed of the CaCO3 polymorphs aragonite and calcite, yet the influence of seawater composition on the evolution of calcareous skeletal composition is poorly understood. The main theoretical framework in which the evolution of CaCO3 shell mineralogy is assessed is the aragonite-calcite sea hypothesis with conventional thinking suggesting that a threshold in the marine Mg:Ca ratio determines CaCO3 polymorph formation. I present data from CaCO3 precipitation experiments to show that the concept of a distinct threshold is misleading because Mg:Ca ratio and temperature combined result in a Phanerozoic continuum of co-existing aragonite-calcite seas with aragonite-facilitating conditions existing throughout the Phanerozoic in shallow warm-water (>20° C) environments. The stable reservoir of aragonite-favouring conditions in shallow warm water environments potentially explains the trend of increasing occurrences of skeletal aragonite throughout the Phanerozoic, particularly in the context of the 'out of the tropics' hypothesis. By contrast, the most prominent fluctuations with respect to aragonite-calcite sea conditions can be expected to have occurred in mid- to high latitudes.

  7. Cross-section of Calcite Crystal Covering in Jewel Cave

    Jewel Cave is currently the 3rd most extensive cave network in the world. It is believed to have formed completely underwater, thus leading to the extensive coating of calcite crystals. A cross-sectional view of the crystal coating can be seen in the center of the image, with the surface of the cal...

  8. Rapid gas hydrate formation process

    DOEpatents

    Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.

    2013-01-15

    The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.

  9. Clathrate hydrates for ozone preservation.

    PubMed

    Muromachi, Sanehiro; Ohmura, Ryo; Takeya, Satoshi; Mori, Yasuhiko H

    2010-09-01

    We report the experimental evidence for the preservation of ozone (O(3)) encaged in a clathrate hydrate. Although ozone is an unstable substance and is apt to decay to oxygen (O(2)), it may be preserved for a prolonged time if it is encaged in hydrate cavities in the form of isolated molecules. This possibility was assessed using a hydrate formed from an ozone + oxygen gas mixture coexisting with carbon tetrachloride or xenon. Each hydrate sample was stored in an air-filled container at atmospheric pressure and a constant temperature in the range between -20 and 2 degrees C and was continually subjected to iodometric measurements of its fractional ozone content. Such chronological measurements and structure analysis using powder X-ray diffraction have revealed that ozone can be preserved in a hydrate-lattice structure for more than 20 days at a concentration on the order of 0.1% (hydrate-mass basis). PMID:20707330

  10. The behavior of Ni 2+ on calcite surfaces

    NASA Astrophysics Data System (ADS)

    Hoffmann, U.; Stipp, S. L. S.

    2001-11-01

    Transport of Ni 2+ in the geosphere plays a role in the formation of ore deposits as well as in the dispersion of contaminants in the environment. Some elements (Cd 2+, Zn 2+, Na +, K +, and Cl -) are known to diffuse in calcite at the rate of nanometers in months, so questions arose about the ability of Ni 2+ to move away from adsorption sites at the surface into the bulk. Nickel incorporation into calcite is limited by its high dehydration enthalpy and by its ligand field hindrance to entering the distorted octahedra of calcite, but evidence exists that calcite can tolerate several percent Ni 2+ in the structure. Cleaved samples of Iceland spar were exposed for 1 minute to solutions of 10 -3 M and 10 -2 M Ni(ClO 4) 2, the solution was physically removed and the samples were examined using the surface sensitive techniques: X-ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectroscopy (TOF-SIMS) and Atomic Force Microscopy (AFM). XPS and TOF-SIMS showed that Ni 2+ was adsorbed while AFM confirmed that dissolution was taking place. The sample was stored in air and relative surface concentration and physical morphology were monitored for 2 years. Trends in the chemical data suggested statistically significant loss of surface Ni 2+ with time, but the decrease was very close to the limits for significance. AFM images demonstrated that surface topography of the Ni-exposed samples is modified by spontaneous recrystalization in the water layer adsorbed from air in exactly the same way that clean calcite surfaces typically rearrange. This process could bury a small amount of Ni 2+ in the bulk, explaining the very weak loss. Limited burial of Ni 2+ within the near-surface could renew calcite adsorption sites, thus increasing uptake capacity. Evidence indicates that surface recrystalization occurs even in very dry environments (<5% humidity). This means that burial could play a role in Ni 2+ mobility in unsaturated groundwater regimes or in fractures (such as in concrete) where water flow is intermittent. An important point is, however, in comparison to incorporation rates for divalent Cd and Zn, the extent of movement of Ni 2+ is extremely low. Thus, incorporation might have an effect on Ni 2+ retardation in flow paths extending over very long time scales (>10,000 years) such as would be relevant for geological processes and for long-term radioactive waste disposal. However, incorporation by burial would have negligible effect on the amount of Ni 2+ removed from groundwater by adsorption, in systems where the transport times are short (<100 years) such as for drinking water supplies from calcite-bearing porous media.

  11. NMR spectroscopic study of organic phosphate esters coprecipitated with calcite

    NASA Astrophysics Data System (ADS)

    Phillips, Brian L.; Zhang, Zelong; Kubista, Laura; Frisia, Silvia; Borsato, Andrea

    2016-06-01

    Organic phosphorus incorporated in calcite during laboratory precipitation experiments and in natural cave deposits was investigated by solid-state NMR spectroscopy. For calcite precipitated in the presence of organic phosphoesters of varying size and functionality, solid-state 31P{1H} CP/MAS NMR shows that the phosphoesters were incorporated intact into the solid. Systematic changes in the 31P NMR chemical shift of the phosphate group were observed between the solid phosphoester and that incorporated in the solid precipitate, yielding 31P NMR chemical shifts of the coprecipitates in the range of +1.8 to -2.2 ppm. These chemical shifts are distinct from that of similarly prepared calcite coprecipitated with inorganic phosphate, 3.5 ppm. Only minor changes were noted in the phosphoester 31P chemical shift anisotropy (CSA) which suggests no significant change in the local structure of the phosphate group, which is dominated by C-O-P bonding. Close spatial proximity of the organic phosphate group to calcite structural components was revealed by 31P/13C rotational echo double resonance (REDOR) experiments for coprecipitates prepared with 13C-labeled carbonate. All coprecipitates showed significant 31P dephasing effects upon 13C-irradiation, signaling atomic-scale proximity to carbonate carbon. The dephasing rate for smaller organophosphate molecules is similar to that observed for inorganic phosphate, whereas much slower dephasing was observed for larger molecules having long and/or bulky side-chains. This result suggests that small organic molecules can be tightly enclosed within the calcite structure, whereas significant structural disruption required to accommodate the larger organic molecules leads to longer phosphate-carbonate distances. Comparison of 31P NMR spectroscopic data from the synthetic coprecipitates with those from calcite moonmilk speleothems indicates that phosphorus occurs mainly as inorganic orthophosphate in the natural deposits, although small signals occur with characteristics consistent with phosphate monoesters. The results of this study indicate that trace- to minor concentrations of dissolved organic molecules can be effectively taken up during calcite precipitation and incorporated in the structure, leaving a resilient record of materials present during crystallization.

  12. Uranium Isotope Fractionation During Coprecipitation with Aragonite and Calcite

    NASA Astrophysics Data System (ADS)

    Chen, X.; Romaniello, S. J.; Herrmann, A. D.; Wasylenki, L. E.; Anbar, A. D.

    2014-12-01

    Natural variations in the 238U/235U ratio of marine carbonates may provide a useful way of constraining past variations in ocean redox conditions. However, before applying this novel redox proxy, it is essential to explore possible isotopic fractionation during U coprecipitation with aragonite and calcite. We investigated these effects in laboratory experiments. Aragonite and calcite coprecipitation experiments were conducted at pH 8.5±0.1 using a constant addition method [1]. More than 90% of the U was incorporated into the solid phase at the end of each experiment. Samples were purified using UTEVA chemistry and δ238/235U was measured using 233U-236U double-spike MC-ICP-MS with a precision of ±0.10‰ [2]. The aragonite experiment demonstrated a 238U/235U Rayleigh fractionation factor of α=1.00008±0.00002 with the 238U preferentially incorporated. In contrast, the calcite experiment demonstrated no resolvable U isotope fractionation (α=1.00001±0.00003). To determine if U isotopes are affected during the early diagenetic conversion of aragonite to calcite, natural carbonate samples were collected along an aragonite-calcite transition across a single coral head in the Key Largo limestone, and characterized for U concentration and δ238/235U [3]. We found that the mean δ238/235U in aragonite (-0.33±0.07‰ 2se) was slightly heavier than that in calcite (-0.37±0.02‰ 2se). Further work is needed to address the mechanisms leading to differential isotopic fractionation of U(VI) during incorporation into aragonite and calcite. Possible drivers include differences in coordination in the crystal structure or equilibrium isotopic fractionation between various aqueous U(VI) species prior to incorporation. [1] Reeder et al. (2001) GCA 65, 3491-3503. [2] Weyer et al., (2008) GCA 72, 345-359. [3] Gill et al., (2008) GCA 72, 4699-4722.

  13. Temperature limits for preservation of primary calcite clumped isotope paleotemperatures

    NASA Astrophysics Data System (ADS)

    Henkes, Gregory A.; Passey, Benjamin H.; Grossman, Ethan L.; Shenton, Brock J.; Pérez-Huerta, Alberto; Yancey, Thomas E.

    2014-08-01

    Solid-state reordering of C-O bonds in the calcite lattice can alter the clumped isotope composition of paleotemperature archives such as fossil brachiopod shells without inducing significant changes in shell microstructure and trace element concentrations, metrics commonly used to gauge preservation quality. To correctly interpret the paleoenvironmental significance of clumped isotope-derived paleotemperatures, it is necessary to understand the temperature-time domain in which solid-state C-O bond reordering is important. We address this question using a combination of laboratory and natural geological experiments on Paleozoic brachiopod shells. The laboratory experiments involve heating fossil brachiopod calcite at different temperatures and times to directly observe rates of 13C-18O bond reordering. The resulting Arrhenius parameters are indistinguishable from values previously determined for an optical calcite with similar trace element compositions. We develop an alternative kinetic model for reordering that accounts for non-first-order reaction progress observed during the initial several hundred minutes of laboratory heating experiments, and show that the simplified first-order approximation model (Passey and Henkes, 2012) predicts reaction progress equally well for temperatures and timescales relevant to sedimentary basins. We evaluate our laboratory-based rate predictions by studying brachiopod calcite from several sedimentary basins with independently constrained burial temperature histories. Specifically, we use the laboratory-derived Arrhenius parameters to predict the evolution of brachiopod calcite clumped isotope compositions during successive one million-year time steps reflecting the burial and exhumation temperature paths of each basin. While this exercise is limited by the relatively large uncertainties in the temperature histories of these basins, we find general correspondence, within error, between predicted and observed clumped isotope values. We present simplified temperature-time diagrams for calcite showing domains where primary clumped isotope compositions will be preserved, partially reordered, and fully reordered. In conclusion, calcite samples dwelling at ∼100 °C or lower for 106-108 year timescales should not be affected by solid-state C-O bond reordering.

  14. Gas hydrate cool storage system

    DOEpatents

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  15. Soil pH management without lime, a strategy to reduce greenhouse gas emissions from cultivated soils

    NASA Astrophysics Data System (ADS)

    Nadeem, Shahid; Bakken, Lars; Reent Köster, Jan; Tore Mørkved, Pål; Simon, Nina; Dörsch, Peter

    2015-04-01

    For decades, agricultural scientists have searched for methods to reduce the climate forcing of food production by increasing carbon sequestration in the soil and reducing the emissions of nitrous oxide (N2O). The outcome of this research is depressingly meagre and the two targets appear incompatible: efforts to increase carbon sequestration appear to enhance the emissions of N2O. Currently there is a need to find alternative management strategies which may effectively reduce both the CO2 and N2O footprints of food production. Soil pH is a master variable in soil productivity and plays an important role in controlling the chemical and biological activity in soil. Recent investigations of the physiology of denitrification have provided compelling evidence that the emission of N2O declines with increasing pH within the range 5-7. Thus, by managing the soil pH at a near neutral level appears to be a feasible way to reduce N2O emissions. Such pH management has been a target in conventional agriculture for a long time, since a near-neutral pH is optimal for a majority of cultivated plants. The traditional way to counteract acidification of agricultural soils is to apply lime, which inevitably leads to emission of CO2. An alternative way to increase the soil pH is the use of mafic rock powders, which have been shown to counteract soil acidification, albeit with a slower reaction than lime. Here we report a newly established field trail in Norway, in which we compare the effects of lime and different mafic mineral and rock powders (olivine, different types of plagioclase) on CO2 and N2O emissions under natural agricultural conditions. Soil pH is measured on a monthly basis from all treatment plots. Greenhouse gas (GHG) emission measurements are carried out on a weekly basis using static chambers and an autonomous robot using fast box technique. Field results from the first winter (fallow) show immediate effect of lime on soil pH, and slower effects of the mafic rocks. The plots with mafic rock powders have lower CO2 and N2O emissions as compared with calcite and dolomite. The experiment will be continued for several years under conventionally managed continuous grass, and is unique in its kind allowing to compare different strategies for pH management on GHG emissions.

  16. Atomistic molecular dynamics simulations of carbohydrate-calcite interactions in concentrated brine.

    PubMed

    Chen, Hsieh; Panagiotopoulos, Athanassios Z; Giannelis, Emmanuel P

    2015-03-01

    We report atomistic molecular dynamics simulations to study the interactions of a model carbohydrate monomer (Glucopyranose) and calcite slabs in brine. We show that the interactions between the sugar molecules and the mineral decrease with increasing salinity. The decrease is due to the formation of salt layers on the calcite surfaces, which screen the carbohydrate-calcite hydrogen bonding. This screening effect depends on the affinities of calcite surface to specific ions as well as to the carbohydrate molecules. PMID:25665050

  17. Hydration of small peptides

    NASA Astrophysics Data System (ADS)

    Wyttenbach, Thomas; Liu, Dengfeng; Bowers, Michael T.

    2005-02-01

    The results for the sequential hydration of small peptides (<15 residues) obtained in our group are reviewed and put in perspective with other work published in the literature where appropriate. Our findings are based on hydration equilibrium measurements in a high-pressure drift cell inserted into an electrospray mass spectrometer and on calculations employing molecular mechanics and density functional theory methods. It is found that the ionic functional groups typically present in peptides, the ammonium, guanidinium, and carboxylate groups, are the primary target of water molecules binding to peptides. Whereas the water-guanidinium binding energy is fairly constant at 9 +/- 1 kcal/mol, the water binding energy of an ammonium group ranges from 7 to 15 kcal/mol depending on how exposed the ammonium group is. A five-residue peptide containing an ammonium group is in favorable cases large enough to fully self-solvate the charge, but a pentapeptide containing a guanidinium group is too small to efficiently shield the charge of this much larger ionic group. The water-carboxylate interaction amounts to 13 kcal/mol with smaller values for a shielded carboxylate group. Both water bound to water in a second solvation shell and charge remote water molecules on the surface of the peptide are bound by 7-8 kcal/mol. The presence of several ionic groups in multiply charged peptides increases the number of favorable hydration sites, but does not enhance the water-peptide binding energy significantly. Water binding energies measured for the first four water molecules bound to protonated bradykinin do not show the declining trend typically observed for other peptides but are constant at 10 kcal/mol, a result consistent with a molecule containing a salt bridge with several good hydration sites. Questions regarding peptide structural changes as a function of number of solvating water molecules are discussed. Not much is known at present about the effect of individual water molecules on the conformation of peptides and on the stability of peptide zwitterions.

  18. Anomalous porosity preservation and preferential accumulation of gas hydrate in the Andaman accretionary wedge, NGHP-01 site 17A

    SciTech Connect

    Rose, Kelly K.; Johnson, Joel E.; Torres, Marta E.; Hong, WeiLi; Giosan, Liviu; Solomon, E.; Kastner, Miriam; Cawthern, Thomas; Long, Philip E.; Schaef, Herbert T.

    2014-12-01

    In addition to well established properties that control the presence or absence of the hydrate stability zone, such as pressure, temperature, and salinity, additional parameters appear to influence the concentration of gas hydrate in host sediments. The stratigraphic record at Site 17A in the Andaman Sea, eastern Indian Ocean, illustrates the need to better understand the role pore-scale phenomena play in the distribution and presence of marine gas hydrates in a variety of subsurface settings. In this paper we integrate field-generated datasets with newly acquired sedimentology, physical property, imaging and geochemical data with mineral saturation and ion activity products of key mineral phases such as amorphous silica and calcite, to document the presence and nature of secondary precipitates that contributed to anomalous porosity preservation at Site 17A in the Andaman Sea. This study demonstrates the importance of grain-scale subsurface heterogeneities in controlling the occurrence and distribution of concentrated gas hydrate accumulations in marine sediments, and document the importance that increased permeability and enhanced porosity play in supporting gas concentrations sufficient to support gas hydrate formation. The grain scale relationships between porosity, permeability, and gas hydrate saturation documented at Site 17A likely offer insights into what may control the occurrence and distribution of gas hydrate in other sedimentary settings.

  19. Engineering properties of cement/lime-stabilized Egyptian soft clay

    NASA Astrophysics Data System (ADS)

    Mansour, M. A.; Samieh, A. M.; Matter, H. E.

    2015-09-01

    Soft clay formations are extensively located in many coastal areas around the world. The significant high compressibility and low shear strength of these formations impose challenging engineering problems. The deep cement/lime-mix-in-place method is one of the ground improvement techniques exhibiting successful use in stabilizing soft clay. Analysis and design of the deep mixing systems necessitate the identification of the additive content, the proportions of the lime to cement and the characteristics of the stabilized clay. This paper investigates experimentally the influence of adding lime and cement or cement alone, as stabilizing additives, on the engineering behavior of an Egyptian soft clay extracted from the north delta region. A series of laboratory tests were carried out considering, different additive contents of 8, 10, 12, and 14% of the dry weight, with different proportions of lime to cement of 50:50, 25:75 and 0:100. A series of unconfined compression strength tests were performed after different periods; one week, four weeks and 8 weeks, to assess the effect of curing period on the stabilized clay response. In addition, one dimensional consolidation tests were carried out to evaluate the compressibility properties of the stabilized clay. This study declared that the use of an additive content in the range of 12% and more is recommended to improve the characteristics of the considered Egyptian clay. It was pointed out that addition of lime and cement to soft clay significantly increases the strength characteristics and significantly reduces the compressibility characteristics of such clay.

  20. Fluid mediated transformation of aragonitic cuttlebone to calcite

    NASA Astrophysics Data System (ADS)

    Perdikouri, C.; Kasioptas, A.; Putnis, A.

    2009-04-01

    The aragonite to calcite transition has been studied extensively over the years because of its wide spectra of applications and of its significant geochemical interest. While studies of kinetics (e.g. Topor et al., 1981), thermodynamics (e.g. Wolf et al., 1996) and behavior of ions such as Sr and Mg (e.g. Yoshioka et al., 1986) have been made there are still unanswered questions regarding this reaction especially in the cases where the effects of fluid composition are considered. It is well known that when heated in air, aragonite transforms by a solid state reaction to calcite. The aragonite cuttlebone of the sepia officinalis that was used for our experiments undergoes a phase transition at ~370-390˚ C, measured by in situ heating experiments in a Philips X'pert X-ray powder diffractometer equipped with a HTK 1200 High temperature oven. Successive X-ray scans were taken at isothermal temperatures at 200C intervals. A similar temperature range was found by Vongsavat et al. 2006, who studied this transition in Acropora corals. It is possible however to promote this transition at considerably lower temperatures by means of a fluid mediated reaction where the replacement takes place by a dissolution-precipitation mechanism (Putnis & Putnis, 2007). We have successfully carried out hydrothermal experiments where cuttlebone has been converted to calcite at 200˚ C. Using the PhreeqC program we calculated the required composition of a solution that would be undersaturated with respect to aragonite and saturated with respect to calcite leading to dissolution of the aragonite and to a consequent precipitation of the new calcite phase, similar to the experiments described in an earlier study (Perdikouri et al, 2008). This reaction is not pseudomorphic and results in the destruction of the morphology, presumably due to the molar volume increase. A total transformation of the cuttlebone produced a fine calcite powder. The cuttlebone exhibits a unique microstructure, made up of interconnected chambers. The aragonite grown during biomineralization of the cuttlebone is interlaced with a β-chitin organic phase that provides the framework for the morphology that is observed. Experiments carried out with the same constant conditions but for different periods of time have revealed the evolution of the transformation to calcite. At shorter reaction times the product was made up of calcite powder and of well preserved aragonite septa, as was confirmed by powder X-ray diffraction. In other words, the vertical pillars appear to react at faster rates than the horizontal septa. It has been reported by Florek et al. 2008 that the septa contain higher quantities of β-chitin. The aim of this study is the investigation of these observations and the determination of the effect of the organic component on the kinetics of the aragonite to calcite transformation. Florek M., Fornal E., Gómez-Romero P., Zieba E., Paszkowicz W., Lekki J.,Nowak J., Kuczumow A. Materials Science and Engineering C, In Press (2008) Perdikouri C., Kasioptas A., Putnis C.V., Putnis A. Mineralogical Magazine 72, 111-114 (2008) Putnis A., Putnis C.V. Solid State Chemistry 180, 1783-1786 (2007) Topor N. D., Tolokonnikova L. I., Kadenatsi B. M. Journal of Thermal Analysis 20, 169-174 (1981) Vongsavat V., Winotai P., Meejoo S. Nuclear Instruments and Methods in Physics Research B 243, 167-173 (2006) Wolf G., Lerchner J., Schmidt H., Gamsjäger H., Königsberger E., Schmidt P. Journal of Thermal Analysis 46, 353-359 (1996) Yoshioka S., Ohde S., Kitano Y., Kanamori N. Marine Chemistry 18, 35-48 (1986)

  1. Aragonite, breunnerite, calcite and dolomite in the CM carbonaceous chondrites: High fidelity recorders of progressive parent body aqueous alteration

    NASA Astrophysics Data System (ADS)

    Lee, Martin R.; Lindgren, Paula; Sofe, Mahmood R.

    2014-11-01

    Carbonate minerals in CM carbonaceous chondrite meteorites, along with the silicates and sulphides with which they are intergrown, provide a detailed record of the nature and evolution of parent body porosity and permeability, and the chemical composition, temperature and longevity of aqueous solutions. Fourteen meteorites were studied that range in petrologic subtype from mildly aqueously altered CM2.5 to completely hydrated CM2.0. All of them contain calcite, whereas aragonite occurs only in the CM2.5-CM2.2 meteorites and dolomite in the CM2.2-CM2.0. All of the aragonite crystals, and most of the calcite and dolomite grains, formed during early stages of parent body aqueous alteration by cementation of pores produced by the melting of tens of micrometre size particles of H2O-rich ice. Aragonite was the first carbonate to precipitate in the CM2.5 to CM2.2 meteorites, and grew from magnesium-rich solutions. In the least altered of these meteorites the aragonite crystals formed in clusters owing to physical restriction of aqueous fluids within the low permeability matrix. The strong correlation between the petrologic subtype of a meteorite, the abundance of its aragonite crystals and the proportion of them that have preserved crystal faces, is because aragonite was dissolved in the more altered meteorites on account of their higher permeability, and/or greater longevity of the aqueous solutions. Dolomite and breunnerite formed instead of aragonite in some of the CM2.1 and CM2.2 meteorites owing to higher parent body temperatures. The pore spaces that remained after precipitation of aragonite, dolomite and breunnerite cements were occluded by calcite. Following completion of cementation, the carbonates were partially replaced by phyllosilicates and sulphides. Calcite in the CM2.5-CM2.2 meteorites was replaced by Fe-rich serpentine and tochilinite, followed by Mg-rich serpentine. In the CM2.1 and CM2.0 meteorites dolomite, breunnerite and calcite were replaced by Fe-rich serpentine and Fe-Ni sulphide, again followed by Mg-rich serpentine. The difference between meteorites in the mineralogy of their replacive sulphides may again reflect greater temperatures in the parent body regions from where the more highly altered CMs were derived. This transition from Fe-rich to Mg-rich carbonate replacement products mirrors the chemical evolution of parent body solutions in response to consumption of Fe-rich primary minerals followed by the more resistant Mg-rich anhydrous silicates. Almost all of the CMs examined contain a second generation of calcite that formed after the sulphides and phyllosilicates and by replacement of remaining anhydrous silicates and dolomite (dedolomitization). The Ca and CO2 required for this replacive calcite is likely to have been sourced by dissolution of earlier formed carbonates, and ions may have been transported over metre-plus distances through high permeability conduits that were created by impact fracturing.

  2. Carbonate "clumped" isotope signatures in aragonitic scleractinian and calcitic gorgonian deep-sea corals

    NASA Astrophysics Data System (ADS)

    Kimball, J.; Tripati, R. E.; Dunbar, R.

    2015-12-01

    Deep-sea corals are a potentially valuable archive of the temperature and ocean chemistry of intermediate and deep waters. Living in near constant temperature, salinity and pH, and having amongst the slowest calcification rates observed in carbonate-precipitating biological organisms, deep-sea corals can provide valuable constraints on processes driving mineral equilibrium and disequilibrium isotope signatures. Here we report new data to further develop "clumped" isotopes as a paleothermometer in deep-sea corals as well as to investigate mineral-specific, taxon-specific, and growth-rate related effects. Carbonate clumped isotope thermometry is based on measurements of the abundance of the doubly-substituted isotopologue 13C18O16O2 in carbonate minerals, analyzed in CO2 gas liberated on phosphoric acid digestion of carbonates and reported as Δ47 values. We analyzed Δ47 in live-collected aragonitic scleractinian (Enallopsammia sp.) and calcitic gorgonian (Isididae and Coralliidae) deep-sea corals, and compared results to published data for other aragonitic scleractinian taxa. Measured Δ47 values were compared to in situ temperatures and the relationship between Δ47 and temperature was determined for each group to investigate taxon-specific effects. We find that aragonitic scleractinian deep-sea corals exhibit higher values than calcitic gorgonian corals and the two groups of coral produce statistically different relationship between Δ47-temperature calibrations. These data are significant in the interpretation of all carbonate "clumped" isotope calibration data as they show that distinct Δ47-temperature calibrations can be observed in different materials recovered from the same environment and analyzed using the same instrumentation, phosphoric acid composition, digestion temperature and technique, CO2 gas purification apparatus, and data handling. There are three possible explanations for the origin of these different calibrations. The offset between the corals of different mineralogy is in the same direction as published theoretical predictions for the offset between calcite and aragonite, although the magnitude of the offset is different. One possibility is that the deep-sea coral results reflect that crystals may attain nominal mineral equilibrium clumped isotope signatures only under conditions of extremely slow growth. In that case, a possible explanation for the attainment of disequilibrium bulk isotope signatures and equilibrium clumped isotope signatures by deep-sea corals is that extraordinarily slow growth rates can promote the occurrence of isotopic reordering in the interfacial region of growing crystals. We also cannot rule out a component of a biological "vital-effect" influencing clumped isotope signatures in one or both orders of coral. Based on published experimental data and theoretical calculations, these biological "vital" effects could arise from kinetic isotope effects due to the source of carbon used for calcification, temperature- and pH-dependent rates of CO2 hydration and/or hydroxylation, calcifying fluid pH, the activity of carbonic anhydrase, the residence time of dissolved inorganic carbon in the calcifying fluid, and calcification rate. A third possible explanation is the occurrence of variable acid digestion fractionation factors. Although a recent study has suggested that dolomite, calcite, and aragonite may have similar clumped isotope acid digestion fractionation factors, the influence of acid digestion kinetics on Δ47 is a subject that warrants further investigation.

  3. Fracture-aperture alteration induced by calcite precipitation

    NASA Astrophysics Data System (ADS)

    Jones, T.; Detwiler, R. L.

    2013-12-01

    Mineral precipitation significantly alters the transport properties of fractured rock. Chemical solubility gradients that favor precipitation induce mineral growth, which decreases the local aperture and alters preferential flow paths. Understanding the resulting development of spatial heterogeneities is necessary to predict the evolution of transport properties in the subsurface. We present experimental results that quantify the relationship between mineral precipitation and aperture alteration in a transparent analog fracture, 7.62cm x 7.62cm, with a uniform aperture of ~200 μm. Prior to flow experiments, a pump circulated a super-saturated calcite solution over the bottom glass, coating the glass surface with calcite. This method of seeding resulted in clusters of calcite crystals with large reactive surface area and provided micro-scale variability in the aperture field. A continuous flow syringe pump injected a reactive fluid into the fracture at 0.5 ml/min. The fluid was a mixture of sodium bicarbonate (NaHCO3, 0.02M) and calcium chloride (CaCl2 0.0004M) with a saturation index, Ω, of 8.51 with respect to calcite. A strobed LED panel backlit the fracture and a high-resolution CCD camera monitored changes in transmitted light intensity. Light transmission techniques provided a quantitative measurement of fracture aperture over the flow field. Results from these preliminary experiments showed growth near the inlet of the fracture, with decreasing precipitation rates in the flow direction. Over a period of two weeks, the fracture aperture decreased by 17% within the first 4mm of the inlet. Newly precipitated calcite bridged individual crystal clusters and smoothed the reacting surface. This observation is an interesting contradiction to the expectation of surface roughening induced by mineral growth. Additionally, the aperture decreased uniformly across the width of the fracture due to the initial aperture distribution. Future experiments of precipitation within variable-aperture fields will investigate the dependency of growth patterns on heterogeneous aperture distributions. (a) Aperture strain (Δb/bi) after 14 days. Precipitation is concentrated near the inlet and decreases in the flow direction. (b) Width-averaged profiles of the initial and final aperture field show changes in aperture and smoothing that results from calcite precipitation between the initial discrete crystals.

  4. Recovery of aluminum oxide by the Ames lime-soda sinter process: scale-up using a rotary kiln

    SciTech Connect

    Murtha, M.J.; Burnet, G.; Harnby, N.

    1985-01-01

    The Ames Lime-Soda Sinter Process provides a means for recovering aluminum oxide from power plant fly ash while producing a residue that can be used in the manufacture of sulfate resistant (Type V) portland cement. The process has been fully researched and its feasibility is now being demonstrated through pilot plant scale investigation. This paper reports results of the pelletized feed preparation by agglomeration in a rotary pan granulator, continuous feed sintering in an electrically heated rotary kiln, and product recovery from the clinker by aqueous extraction, desilication of the filtrate, and precipitation of a hydrated aluminum oxide. Results from earlier bench-scale research have been found to apply consistently to the pilot plant scale work.

  5. Bubble migration during hydrate formation

    NASA Astrophysics Data System (ADS)

    Shagapov, V. Sh.; Chiglintseva, A. S.; Rusinov, A. A.

    2015-03-01

    A model of the process of migration of methane bubbles in water under thermobaric conditions of hydrate formation is proposed. The peculiarities of the temperature field evolution, migration rate, and changes in the radius and volume fraction of gas hydrate bubbles are studied. It is shown that, with a constant mass flow of gas from the reservoir bottom, for all parameters of the surfacing gas hydrate disperse system, there is a quasistationary pattern in the form of a "step"-like wave. Depending on the relationship of the initial gas bubble density with the average gas density in the hydrate composition determined by the depth from which bubbles rise to the surface, the final radius of hydrate particles may be larger or smaller than the initial gas bubble radii. It is established that the speed at which gas hydrate inclusions rise to the surface decreases by several times due to an increase in their weight during hydrate formation. The influence of the depth of the water reservoir whose bottom is a gas flow source on the dynamics of hydrate formation is studied.

  6. Mallik Gas Hydrates Test Well

    A test-well for collecting gas hydrates in Mallik, Canada. Gas hydrates are naturally-occurring “ice-like” combinations of natural gas and water that have the potential to provide an immense resource of natural gas from the world’s oceans and polar regions....

  7. Ductile flow of methane hydrate

    USGS Publications Warehouse

    Durham, W.B.; Stern, L.A.; Kirby, S.H.

    2003-01-01

    Compressional creep tests (i.e., constant applied stress) conducted on pure, polycrystalline methane hydrate over the temperature range 260-287 K and confining pressures of 50-100 MPa show this material to be extraordinarily strong compared to other icy compounds. The contrast with hexagonal water ice, sometimes used as a proxy for gas hydrate properties, is impressive: over the thermal range where both are solid, methane hydrate is as much as 40 times stronger than ice at a given strain rate. The specific mechanical response of naturally occurring methane hydrate in sediments to environmental changes is expected to be dependent on the distribution of the hydrate phase within the formation - whether arranged structurally between and (or) cementing sediments grains versus passively in pore space within a sediment framework. If hydrate is in the former mode, the very high strength of methane hydrate implies a significantly greater strain-energy release upon decomposition and subsequent failure of hydrate-cemented formations than previously expected.

  8. Some thermodynamical aspects of protein hydration water

    SciTech Connect

    Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Vasi, Sebastiano; Vasi, Cirino; Stanley, H. Eugene; Chen, Sow-Hsin

    2015-06-07

    We study by means of nuclear magnetic resonance the self-diffusion of protein hydration water at different hydration levels across a large temperature range that includes the deeply supercooled regime. Starting with a single hydration shell (h = 0.3), we consider different hydrations up to h = 0.65. Our experimental evidence indicates that two phenomena play a significant role in the dynamics of protein hydration water: (i) the measured fragile-to-strong dynamic crossover temperature is unaffected by the hydration level and (ii) the first hydration shell remains liquid at all hydrations, even at the lowest temperature.

  9. Some thermodynamical aspects of protein hydration water.

    PubMed

    Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Vasi, Sebastiano; Vasi, Cirino; Stanley, H Eugene; Chen, Sow-Hsin

    2015-06-01

    We study by means of nuclear magnetic resonance the self-diffusion of protein hydration water at different hydration levels across a large temperature range that includes the deeply supercooled regime. Starting with a single hydration shell (h = 0.3), we consider different hydrations up to h = 0.65. Our experimental evidence indicates that two phenomena play a significant role in the dynamics of protein hydration water: (i) the measured fragile-to-strong dynamic crossover temperature is unaffected by the hydration level and (ii) the first hydration shell remains liquid at all hydrations, even at the lowest temperature. PMID:26049527

  10. Rotary atomization of lime slurries for dry flue gas desulfurization

    SciTech Connect

    Snaddon, R.W.L.; Johnson, N.A.

    1985-01-01

    Lime slurries are widely used as a sorbent in Spray Dryer Flue Gas Desulfurization systems. In the present General Electric design, a rotary atomizer is employed to break up and disperse the sorbent within the reactor vessel. The purpose of the work reported here was to develop a means for predicting the size distribution of the non-Newtonian lime slurry droplets produced by such devices. A correlation is developed from measurements of water sprays made on two wheels, 101.6mm and 400mm in diameter. This correlation is then successfully extended to cover the breakup of dilute lime slurries (<250 mg/ml) by observing that the viscosity of these non-Newtonian fluids tends asympotically to that of the water carrier at the very high rates of shear that characterize the drop formation process.

  11. Kinetics of lime/bentonite pozzolanic reactions at 20 and 50 °C: Batch tests and modeling

    SciTech Connect

    De Windt, Laurent; Deneele, Dimitri; Maubec, Nicolas

    2014-05-01

    The effects of duration (1–100 days) and temperature (20 and 50 °C) were assessed from batch tests for Ca-bentonite mixed with 10 wt.% lime. The pozzolanic processes were monitored over time by {sup 29}Si NMR (Cement Concr. Res. 42, 2012), TGA-DTA, XRD and chemical analysis. Modeling considered kinetics and thermodynamics of mineralogical transformations and cation exchange. Kinetic laws were dependent on pH and temperature (Arrhenius energy). Lime hydration occurs within hours, modifying the bentonite exchangeable population and increasing the pH. These alkaline conditions initiate the pozzolanic reactions in a second stage. The rate-limiting step is the dissolution kinetics of the bentonite minerals, i.e. a relatively fast and total consumption of cristobalite in parallel to a long-term slower dissolution of montmorillonite. First C–S–H and then C–A–S–H are formed consequently. Temperature speeds up the pozzolanic reaction kinetics by a factor 5 from 20 to 50 °C, corresponding to an apparent activation energy of 40–50 kJ/mol.

  12. Hydration of a low-alkali CEM III/B-SiO{sub 2} cement (LAC)

    SciTech Connect

    Lothenbach, Barbara; Le Saout, Gwenn; Ben Haha, Mohsen; Figi, Renato; Wieland, Erich

    2012-02-15

    The hydration of a low-alkali cement based on CEM III/B blended with 10 wt.% of nanosilica has been studied. The nanosilica reacted within the first days and 90% of the slag reacted within 3.5 years. C-S-H (Ca/Si {approx} 1.2, Al/Si {approx} 0.12), calcite, hydrotalcite, ettringite and possibly straetlingite were the main hydrates. The pore water composition revealed ten times lower alkali concentrations than in Portland cements. Reducing conditions (HS{sup -}) and a pH value of 12.2 were observed. Between 1 month and 3.5 years of hydration more hydrates were formed due to the ongoing slag reaction but no significant differences in the composition of the pore solution or solid phase assemblage were observed. On the basis of thermodynamic calculations it is predicted that siliceous hydrogarnet could form in the long-term and, in the presence of siliceous hydrogarnet, also thaumasite. Nevertheless, even after 3.5 year hydration, neither siliceous hydrogarnet nor thaumasite have been observed.

  13. Gas Hydrate Petroleum System Analysis

    NASA Astrophysics Data System (ADS)

    Collett, T. S.

    2012-12-01

    In a gas hydrate petroleum system, the individual factors that contribute to the formation of gas hydrate accumulations, such as (1) gas hydrate pressure-temperature stability conditions, (2) gas source, (3) gas migration, and (4) the growth of the gas hydrate in suitable host sediment can identified and quantified. The study of know and inferred gas hydrate accumulations reveal the occurrence of concentrated gas hydrate is mostly controlled by the presence of fractures and/or coarser grained sediments. Field studies have concluded that hydrate grows preferentially in coarse-grained sediments because lower capillary pressures in these sediments permit the migration of gas and nucleation of hydrate. Due to the relatively distal nature of the deep marine geologic settings, the overall abundance of sand within the shallow geologic section is usually low. However, drilling projects in the offshore of Japan, Korea, and in the Gulf of Mexico has revealed the occurrence of significant hydrate-bearing sand reservoirs. The 1999/2000 Japan Nankai Trough drilling confirmed occurrence of hydrate-bearing sand-rich intervals (interpreted as turbidite fan deposits). Gas hydrate was determined to fill the pore spaces in these deposits, reaching saturations up to 80% in some layers. A multi-well drilling program titled "METI Toaki-oki to Kumano-nada" also identified sand-rich reservoirs with pore-filling hydrate. The recovered hydrate-bearing sand layers were described as very-fine- to fine-grained turbidite sand layers measuring from several centimeters up to a meter thick. However, the gross thickness of the hydrate-bearing sand layers were up to 50 m. In 2010, the Republic of Korea conducted the Second Ulleung Basin Gas Hydrate (UBGH2) Drilling Expedition. Seismic data clearly showed the development of a thick, potential basin wide, sedimentary sections characterized by mostly debris flows. The downhole LWD logs and core data from Site UBGH2-5 reveal that each debris flows is characterized by basal silt- to sand-rich clay dominated stratigraphic units. The upper most debris flow at Site UBGH2-5 extends into the overlying gas hydrate stability zone and IR core scans indicate that this section contains some amount of gas hydrate. The UBGH2 LWD and coring program also confirmed the occurrence of numerous volcaniclastic and siliciclastic sand reservoirs that were deposited as part of local to basin-wide turbidite events. Gas hydrate saturations within the turbidite sands ranged between 60-80 percent. In 2009, the Gulf of Mexico (GOM) Joint Industry Project (JIP) drilled seven wells at three sites, finding gas hydrate at high concentration in sands in four wells, with suspected gas hydrate at low to moderate saturations in two other wells. In the northern GOM, high sedimentation rates in conjunction with salt tectonism, has promoted the formation of complex seafloor topography. As a result, coarse-grained deposition can occur as gravity-driven sedimentation traversing the slope within intra-slope "ponded" accommodation spaces.

  14. Liming Poultry Manures to Kill Pathogens and Decrease Soluble Phosphorus

    SciTech Connect

    Maguire,R.; Hesterberg, D.; Gernat, A.; Anderson, K.; Wineland, M.; Grimes, J.

    2006-01-01

    Received for publication September 9, 2005. Stabilizing phosphorus (P) in poultry waste to reduce P losses from manured soils is important to protect surface waters, while pathogens in manures are an emerging issue. This study was conducted to evaluate CaO and Ca(OH){sub 2} for killing manure bacterial populations (pathogens) and stabilizing P in poultry wastes and to investigate the influence on soils following amendment with the treated wastes. Layer manure and broiler litter varying in moisture content were treated with CaO and Ca(OH){sub 2} at rates of 2.5, 5, 10, and 15% by weight. All treated wastes were analyzed for microbial plate counts, pH, and water-soluble phosphorus (WSP), while a few selected layer manures were analyzed by phosphorus X-ray absorption near edge structure (XANES). A loamy sand and a silt loam were amended with broiler litter and layer manure treated with CaO at rates of 0, 2.5, 5, 10, and 15% and soil WSP and pH were measured at times 1, 8, and 29 d. Liming reduced bacterial populations, with greater rates of lime leading to greater reductions; for example 10% CaO applied to 20% solids broiler litter reduced the plate counts from 793 000 to 6500 mL{sup -1}. Liming also reduced the WSP in the manures by over 90% in all cases where at least 10% CaO was added. Liming the manures also reduced WSP in soils immediately following application and raised soil pH. The liming process used successfully reduced plate counts and concerns about P losses in runoff following land application of these limed products due to decreased WSP.

  15. U(VI) behaviour in hyperalkaline calcite systems

    NASA Astrophysics Data System (ADS)

    Smith, Kurt F.; Bryan, Nicholas D.; Swinburne, Adam N.; Bots, Pieter; Shaw, Samuel; Natrajan, Louise S.; Mosselmans, J. Frederick W.; Livens, Francis R.; Morris, Katherine

    2015-01-01

    The behaviour of U(VI) in hyperalkaline fluid/calcite systems was studied over a range of U(VI) concentrations (5.27 × 10-5 μM to 42.0 μM) and in two high pH systems, young and old synthetic cement leachate in batch sorption experiments. These systems were selected to be representative of young- (pH 13.3) and old-stage (pH 10.5) leachate evolution within a cementitious geological disposal facility. Batch sorption experiments, modelling, extended X-ray absorption fine structure spectroscopy, electron microscopy, small angle X-ray scattering and luminescence spectroscopy were used to define the speciation of U(VI) across the systems of study. At the lowest concentrations (5.27 × 10-5 μM 232U(VI)) significant U removal was observed for both old and young cement leachates, and this was successfully modelled using a first order kinetic adsorption modelling approach. At higher concentrations (>4.20 μM) in the young cement leachate, U(VI) showed no interaction with the calcite surface over an 18 month period. Small angle X-ray scattering techniques indicated that at high U concentrations (42.0 μM) and after 18 months, the U(VI) was present in a colloidal form which had little interaction with the calcite surface and consisted of both primary and aggregated particles with a radius of 7.6 ± 1.1 and 217 ± 24 Å, respectively. In the old cement leachate, luminescence spectroscopy identified two surface binding sites for U(VI) on calcite: in the system with 0.21 μM U(VI), a liebigite-like Ca2UO2(CO3)3 surface complex was identified; at higher U(VI) concentrations (0.42 μM), a second binding site of undetermined coordination was identified. At elevated U(VI) concentrations (>2.10 μM) in old cement leachate, both geochemical data and luminescence spectroscopy suggested that surface mediated precipitation was controlling U(VI) behaviour. A focused ion beam mill was used to create a section across the U(VI) precipitate-calcite interface. Transmission electron microscope images of the section revealed that the calcite surface was coated with a nano crystalline, U containing phase. Selected area electron diffraction images of the U precipitate which was formed at a U(VI) concentration of 4.20 μM were consistent with the formation of calcium uranate. XAS spectroscopy at higher concentrations (⩾21.0 μM) suggested the formation of a second U(VI) phase, possibly a uranyl oxyhydroxide phase. These results indicated that in the young cement leachate, U(VI) did not react with the calcite surface unless U(VI) concentrations were very low (5.27 × 10-5 μM). At higher concentrations, speciation calculations suggested that U(VI) was significantly oversaturated and experimental observations confirmed it existed in a colloidal form that interacted with the mineral surface only weakly. In the old cement leachate systems at low concentrations batch sorption and luminescence data suggested that U(VI) removal was being driven by a surface complexation mechanism. However, at higher concentrations, spectroscopic methods suggest a combination of both surface complexation and surface mediated precipitation was responsible for the observed removal. Overall, U(VI) behaviour in hyperalkaline calcite systems is distinct from that at circumneutral pH conditions: at high pH and anything but low U(VI) concentrations, a surface mediated precipitation mechanism occurs; this is in contrast to circumneutral pH conditions where U(VI) surface complexation reactions tend to dominate.

  16. REMOVAL OF BERYLLIUM FROM DRINKING WATER BY CHEMICAL COAGULATION AND LIME SOFTENING

    EPA Science Inventory

    The effectiveness of conventional drinking water treatment and lime softening was evaluated for beryllium removal from two drinking water sources. ar test studies were conducted to determine how common coagulants (aluminum sulfate and ferric chloride and lime softening performed ...

  17. EVALUATION OF BIOAEROSOL COMPONENTS, GENERATION FACTORS, AND AIRBORNE TRANSPORT ASSOCIATED WITH LIME TREATMENT OF CONTAMINATED SEDIMENT

    EPA Science Inventory

    Lime treatment has been used in contaminated sediment management activities for many purposes such as dewatering, improvement of physical properties, and reducing contaminant mobility. Exothermic volatilization of volatile organic compounds from lime-treated sediment is well kno...

  18. Incorporation of Mg and Sr in calcite of cultured benthic foraminifera: impact of calcium concentration and associated calcite saturation state

    NASA Astrophysics Data System (ADS)

    Raitzsch, M.; Dueas-Bohrquez, A.; Reichart, G.-J.; de Nooijer, L. J.; Bickert, T.

    2010-03-01

    We investigated the effect of the calcium concentration in seawater and thereby the calcite saturation state (?) on the magnesium and strontium incorporation into benthic foraminiferal calcite under laboratory conditions. For this purpose individuals of the shallow-water species Heterostegina depressa (precipitating high-Mg calcite, symbiont-bearing) and Ammonia tepida (low-Mg calcite, symbiont-barren) were cultured in media under a range of [Ca2+], but similar Mg/Ca ratios. Trace element/Ca ratios of newly formed calcite were analysed with Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) and normalized to the seawater elemental composition using the equation DTE=(TE/Cacalcite)/(TE/Caseawater). The culturing study shows that DMg of A. tepida significantly decreases with increasing ? at a gradient of -4.310-5 per ? unit. The DSr value of A. tepida does not change with ?, suggesting that fossil Sr/Ca in this species may be a potential tool to reconstruct past variations in seawater Sr/Ca. Conversely, DMg of H. depressa shows only a minor decrease with increasing ?, while DSr increases considerably with ? at a gradient of 0.009 per ? unit. The different responses to seawater chemistry of the two species may be explained by a difference in the calcification pathway that is, at the same time, responsible for the variation in the total Mg incorporation between the two species. Since the Mg/Ca ratio in H. depressa is 50-100 times higher than that of A. tepida, it is suggested that the latter exhibits a mechanism that decreases the Mg/Ca ratio of the calcification fluid, while the high-Mg calcite forming species may not have this physiological tool. If the dependency of Mg incorporation on seawater [Ca2+] is also valid for deep-sea benthic foraminifera typically used for paleostudies, the higher Ca concentrations in the past may potentially bias temperature reconstructions to a considerable degree. For instance, 25 Myr ago Mg/Ca ratios in A. tepida would have been 0.2 mmol/mol lower than today, due to the 1.5 times higher [Ca2+] of seawater, which in turn would lead to a temperature underestimation of more than 2 C.

  19. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates.

    PubMed

    Pustovgar, Elizaveta; Sangodkar, Rahul P; Andreev, Andrey S; Palacios, Marta; Chmelka, Bradley F; Flatt, Robert J; d'Espinose de Lacaillerie, Jean-Baptiste

    2016-01-01

    Silicate hydration is prevalent in natural and technological processes, such as, mineral weathering, glass alteration, zeolite syntheses and cement hydration. Tricalcium silicate (Ca3SiO5), the main constituent of Portland cement, is amongst the most reactive silicates in water. Despite its widespread industrial use, the reaction of Ca3SiO5 with water to form calcium-silicate-hydrates (C-S-H) still hosts many open questions. Here, we show that solid-state nuclear magnetic resonance measurements of (29)Si-enriched triclinic Ca3SiO5 enable the quantitative monitoring of the hydration process in terms of transient local molecular composition, extent of silicate hydration and polymerization. This provides insights on the relative influence of surface hydroxylation and hydrate precipitation on the hydration rate. When the rate drops, the amount of hydroxylated Ca3SiO5 decreases, thus demonstrating the partial passivation of the surface during the deceleration stage. Moreover, the relative quantities of monomers, dimers, pentamers and octamers in the C-S-H structure are measured. PMID:27009966

  20. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates

    NASA Astrophysics Data System (ADS)

    Pustovgar, Elizaveta; Sangodkar, Rahul P.; Andreev, Andrey S.; Palacios, Marta; Chmelka, Bradley F.; Flatt, Robert J.; D'Espinose de Lacaillerie, Jean-Baptiste

    2016-03-01

    Silicate hydration is prevalent in natural and technological processes, such as, mineral weathering, glass alteration, zeolite syntheses and cement hydration. Tricalcium silicate (Ca3SiO5), the main constituent of Portland cement, is amongst the most reactive silicates in water. Despite its widespread industrial use, the reaction of Ca3SiO5 with water to form calcium-silicate-hydrates (C-S-H) still hosts many open questions. Here, we show that solid-state nuclear magnetic resonance measurements of 29Si-enriched triclinic Ca3SiO5 enable the quantitative monitoring of the hydration process in terms of transient local molecular composition, extent of silicate hydration and polymerization. This provides insights on the relative influence of surface hydroxylation and hydrate precipitation on the hydration rate. When the rate drops, the amount of hydroxylated Ca3SiO5 decreases, thus demonstrating the partial passivation of the surface during the deceleration stage. Moreover, the relative quantities of monomers, dimers, pentamers and octamers in the C-S-H structure are measured.

  1. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates

    PubMed Central

    Pustovgar, Elizaveta; Sangodkar, Rahul P.; Andreev, Andrey S.; Palacios, Marta; Chmelka, Bradley F.; Flatt, Robert J.; d'Espinose de Lacaillerie, Jean-Baptiste

    2016-01-01

    Silicate hydration is prevalent in natural and technological processes, such as, mineral weathering, glass alteration, zeolite syntheses and cement hydration. Tricalcium silicate (Ca3SiO5), the main constituent of Portland cement, is amongst the most reactive silicates in water. Despite its widespread industrial use, the reaction of Ca3SiO5 with water to form calcium-silicate-hydrates (C-S-H) still hosts many open questions. Here, we show that solid-state nuclear magnetic resonance measurements of 29Si-enriched triclinic Ca3SiO5 enable the quantitative monitoring of the hydration process in terms of transient local molecular composition, extent of silicate hydration and polymerization. This provides insights on the relative influence of surface hydroxylation and hydrate precipitation on the hydration rate. When the rate drops, the amount of hydroxylated Ca3SiO5 decreases, thus demonstrating the partial passivation of the surface during the deceleration stage. Moreover, the relative quantities of monomers, dimers, pentamers and octamers in the C-S-H structure are measured. PMID:27009966

  2. Catalytic iron oxide for lime regeneration in carbonaceous fuel combustion

    DOEpatents

    Shen, Ming-Shing; Yang, Ralph T.

    1980-01-01

    Lime utilization for sulfurous oxides absorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron oxide at the limestone surface. It is found that iron oxide present in the spent limestone acts as a catalyst to regenerate the spent limestone in a reducing environment. With only small quantities of iron oxide the calcium can be recycled at a significantly increased rate.

  3. Solidification of radioactive waste in a cement/lime mixture

    SciTech Connect

    Zhou, H.; Colombo, P.

    1984-01-01

    The suitability of a cement/lime mixture for use as a solidification agent for different types of wastes was investigated. This work includes studies directed towards determining the wasted/binder compositional field over which successful solidification occurs with various wastes and the measurement of some of the waste from properties relevant to evaluating the potential for the release of radionuclides to the environment. In this study, four types of low-level radioactive wastes were simulated for incorporation into a cement/lime mixture. These were boric acid waste, sodium sulfate wastes, aion exchange resins and incinerator ash. 7 references, 3 figures, 2 tables.

  4. Interaction of copper with the surface of calcite

    SciTech Connect

    Franklin, M.L.; Morse, J.W.

    1981-05-01

    The interaction of Cu ions in solution with the surface of calcite has been studied in a range of solutions from pure water to seawater. Observations of the uptake of Cu from solution onto calcite indicates that the process is rapid and strong in both distilled water and seawater. In distilled water, Cu uptake is directly proportional to the concentration of Cu in solution; Cu/sub s/ = K/sub s/Cu/sub 1/. This Cu/sub s/ dependence on Cu/sub 1/ is linear over the entire Cu concentration range studied (0.1 to 200 ..mu..M). Results do not indicate the formation of a precipitate of either malachite or copper carbonate. In seawater, the uptake of Cu is also directly proportional to the concentration of Cu/sub 1/ up to a limiting value of approximately 13 ..mu..M. The average value for K/sub s/ in seawater, 0.24 +- 0.06 (Cu/sub 1/ less than or equal to 13 ..mu..M), is approximately an order of magnitude less than in distilled water. This is probably the result of smaller Cu/sub 1/ activity coefficients and increased site competition by other ions in seawater. Attempts to increase the Cu/sub 1/ concentration above 13 ..mu..M resulted in the additional Cu being deposited on the surface of the calcite. A possible explanation for this behavior is the formation of a precipitate of malachite on the calcite surface. The value of K/sub s/ decreased slightly with increasing solid to solution ratios in seawater.

  5. The effect of sulfated polysaccharides on the crystallization of calcite superstructures

    NASA Astrophysics Data System (ADS)

    Fried, Ruth; Mastai, Yitzhak

    2012-01-01

    Calcite with unique morphology and uniform size has been successfully synthesized in the presence of classes of polysaccharides based on carrageenans. In the crystallization of calcite, the choice of different carrageenans, (iota, lambda and kappa), as additives concedes systematic study of the influence of different chemical structures and particularly molecular charge on the formation of CaCO 3 crystals. The uniform calcite superstructures are formed by assemblies and aggregation of calcite crystals. The mechanism for the formation of calcite superstructures was studied by a variety of techniques, SEM, TEM, XRD, time-resolved conductivity and light scattering measurements, focusing on the early stages of crystals' nucleation and aggregation.

  6. Calcite deposition at Miravalles geothermal field, Costa Rica

    SciTech Connect

    Vaca, L.; Alvarado, A.; Corrales, R. )

    1989-01-01

    The calcite deposition problem at Miravalles has been studied since it was observed in the first three wells drilled on the slopes of the Miravalles Volcano. Long-term tests have been carried out to study reservoir characteristics. The change in the production behavior of the wells with the restriction imposed by the deposited calcite has been studied trying to evaluate and quantify the scaling problem. Work is being done on predictions of the deposition rate, location and distribution of the deposited mineral inside the wells. This work was compared with real data obtained from caliper logs of the wells before and after production. The feasibility of the first 55 MW power plant has been demonstrated. It was considered that the solution for the calcite problem is the reaming during discharge of the wells trying at the same time to minimize the cleaning interventions with a new well design. It is believed, due to the thermodynamics and chemical characteristics of the extracted fluids, that it is possible to find a non-deposition zone which will permit the drilling of wells without a scaling problem.

  7. Earthworm-produced calcite granules: A new terrestrial palaeothermometer?

    NASA Astrophysics Data System (ADS)

    Versteegh, Emma A. A.; Black, Stuart; Canti, Matthew G.; Hodson, Mark E.

    2013-12-01

    In this paper we show for the first time that calcite granules, produced by the earthworm Lumbricus terrestris, and commonly recorded at sites of archaeological interest, accurately reflect temperature and soil water δ18O values. Earthworms were cultivated in an orthogonal combination of two different (granule-free) soils moistened by three types of mineral water and kept at three temperatures (10, 16 and 20 °C) for an acclimatisation period of three weeks followed by transfer to identical treatments and cultivation for a further four weeks. Earthworm-secreted calcite granules were collected from the second set of soils. δ18O values were determined on individual calcite granules (δ18Oc) and the soil solution (δ18Ow). The δ18Oc values reflect soil solution δ18Ow values and temperature, but are consistently enriched by 1.51 (± 0.12)‰ in comparison to equilibrium in synthetic carbonates. The data fit the equation 1000 ln α = [20.21 ± 0.92] (103 T-1) - [38.58 ± 3.18] (R2 = 0.95; n = 96; p < 0.0005). As the granules are abundant in modern soils, buried soils and archaeological contexts, and can be dated using U-Th disequilibria, the developed palaeotemperature relationship has enormous potential for application to Holocene and Pleistocene time intervals.

  8. Nucleation, growth and evolution of calcium phosphate films on calcite.

    PubMed

    Naidu, Sonia; Scherer, George W

    2014-12-01

    Marble, a stone composed of the mineral calcite, is subject to chemically induced weathering in nature due to its relatively high dissolution rate in acid rain. To protect monuments and sculpture from corrosion, we are investigating the application of thin layers of hydroxyapatite (HAP) onto marble. The motivation for using HAP is its low dissolution rate and crystal and lattice compatibility with calcite. A mild, wet chemical synthesis route, in which diammonium hydrogen phosphate salt was reacted with marble, alone and with cationic and anionic precursors under different reaction conditions, was used to produce inorganic HAP layers on marble. Nucleation and growth on the calcite substrate was studied, as well as metastable phase evolution, using scanning electron microscopy, grazing incidence X-ray diffraction, and atomic force microscopy. Film nucleation was enhanced by surface roughness. The rate of nucleation and the growth rate of the film increased with cationic (calcium) and anionic (carbonate) precursor additions. Calcium additions also influenced phase formation, introducing a metastable phase (octacalcium phosphate) and a different phase evolution sequence. PMID:25233226

  9. Influence of chemical and physical characteristics of cement kiln dusts (CKDs) on their hydration behavior and potential suitability for soil stabilization

    SciTech Connect

    Peethamparan, Sulapha Olek, Jan Lovell, Janet

    2008-06-15

    The interaction of CKDs with a given soil depends on the chemical and physical characteristics of the CKDs. Hence, the characterization of CKDs and their hydration products may lead to better understanding of their suitability as soil stabilizers. In the present article, four different CKD powders are characterized and their hydration products are evaluated. A detailed chemical (X-ray diffraction), thermogravimetric and morphological (scanning electron microscope) analyses of both the CKD powders and the hydrated CKD pastes are presented. In general, high free-lime content ({approx} 14-29%) CKDs, when reacted with water produced significant amounts of calcium hydroxide, ettringite and syngenite. These CKDs also developed higher unconfined compressive strength and higher temperature of hydration compared to CKDs with lower amounts of free-lime. An attempt was made to qualitatively correlate the performance of CKD pastes with the chemical and physical characteristics of the original CKD powders and to determine their potential suitability as soil stabilizers. To that effect a limited unconfined compressive strength testing of CKD-treated kaolinite clays was performed. The results of this study suggest that both the compressive strength and the temperature of hydration of the CKD paste can give early indications of the suitability of particular CKD for soil stabilization.

  10. Imaging surface contacts: Power law contact distributions and contact stresses in quartz, calcite, glass and acrylic plastic

    USGS Publications Warehouse

    Dieterich, J.H.; Kilgore, B.D.

    1996-01-01

    A procedure has been developed to obtain microscope images of regions of contact between roughened surfaces of transparent materials, while the surfaces are subjected to static loads or undergoing frictional slip. Static loading experiments with quartz, calcite, soda-lime glass and acrylic plastic at normal stresses to 30 MPa yield power law distributions of contact areas from the smallest contacts that can be resolved (3.5 ??m2) up to a limiting size that correlates with the grain size of the abrasive grit used to roughen the surfaces. In each material, increasing normal stress results in a roughly linear increase of the real area of contact. Mechanisms of contact area increase are by growth of existing contacts, coalescence of contacts and appearance of new contacts. Mean contacts stresses are consistent with the indentation strength of each material. Contact size distributions are insensitive to normal stress indicating that the increase of contact area is approximately self-similar. The contact images and contact distributions are modeled using simulations of surfaces with random fractal topographies. The contact process for model fractal surfaces is represented by the simple expedient of removing material at regions where surface irregularities overlap. Synthetic contact images created by this approach reproduce observed characteristics of the contacts and demonstrate that the exponent in the power law distributions depends on the scaling exponent used to generate the surface topography.

  11. Chemistry and petrography of calcite in the KTB pilot borehole, Bavarian Oberpfalz, Germany

    USGS Publications Warehouse

    Komor, S.C.

    1995-01-01

    The KTB pilot borehole in northeast Bavaria, Germany, penetrates 4000 m of gneiss, amphibolite, and subordinate calc-silicate, lamprophyre and metagabbro. There are three types of calcite in the drilled section: 1) metamorphic calcite in calc-silicate and marble; 2) crack-filling calcite in all lithologies; and 3) replacement calcite in altered minerals. Crack-filling and replacement calcite postdate metamorphic calcite. Multiple calcite generations in individual cracks suggest that different generations of water repeatedly flowed through the same cracks. Crack-filling mineral assemblages that include calcite originally formed at temperatures of 150-350??C. Presently, crack-filling calcite is in chemical and isotopic equilibrium with saline to brackish water in the borehole at temperatures of ???120??C. The saline to brackish water contains a significant proportion of meteoric water. Re-equilibration of crack-filling calcite to lower temperatures means that calcite chemistry tells us little about water-rock interactions in the crystal section of temperatures higher than ~120??C. -from Author

  12. Geobacillus thermoglucosidasius Endospores Function as Nuclei for the Formation of Single Calcite Crystals

    PubMed Central

    Murai, Rie

    2013-01-01

    Geobacillus thermoglucosidasius colonies were placed on an agar hydrogel containing acetate, calcium ions, and magnesium ions, resulting in the formation of single calcite crystals (calcites) within and peripheral to the plating area or parent colony. Microscopic observation of purified calcites placed on the surface of soybean casein digest (SCD) nutrient medium revealed interior crevices from which bacterial colonies originated. Calcites formed on the gel contained [1-13C]- and [2-13C]acetate, demonstrating that G. thermoglucosidasius utilizes carbon derived from acetate for calcite formation. During calcite formation, vegetative cells swam away from the parent colony in the hydrogel. Hard-agar hydrogel inhibited the formation of calcites peripheral to the parent colony. The calcite dissolved completely in 1 M HCl, with production of bubbles, and the remaining endospore-like particles were easily stained with Brilliant green dye. The presence of DNA and protein in calcites was demonstrated by electrophoresis. We propose that endospores initiate the nucleation of calcites. Endospores of G. thermoglucosidasius remain alive and encapsulated in calcites. PMID:23455343

  13. Microbially-Mediated Subsurface Calcite Precipitation for Removal of Hazardous Divalent Cations

    SciTech Connect

    Colwell, Frederick S.; Smith, R.W.; Ferris, F. Gratn; Ingram, Jani C.; Reysenbach, A.-L.; Fujita, Yoshiko; Tyler, T.L.; Taylor, J.L.; Banta, A.; Delwiche, M.E.; McLing, T.; Cortez, Marnie, M.; Watwood, M.E.

    2003-03-27

    We are investigating microbially-mediated acceleration of calcite precipitation and co-precipitation of hazardous divalent cations (e.g., 90Sr) in calcite saturated subsurface systems. In theory, the addition of urea to an aquifer or vadose zone and its subsequent hydrolysis by indigenous microbes will cause an increase in alkalinity, pH and calcite precipitation. Lab studies indicated the ability of various bacteria to precipitate calcite through urea hydrolysis and that incorporation of strontium in biogenically-formed calcite is greater than in abiotically formed calcite. Results from a field experiment in a pristine location in the Snake River Plain aquifer involving the phased addition of molasses and then urea showed increases in total cell numbers, rate of urea hydrolysis and calcite formation during the study. The combined diagnostic approaches of microbiology, molecular ecology and analytical chemistry demonstrate the feasibility of this biogeochemical manipulation for subsurface remediation at arid Western DOE sites such as Hanford and INEEL.

  14. Water, Hydration and Health

    PubMed Central

    Popkin, Barry M.; D’Anci, Kristen E.; Rosenberg, Irwin H.

    2010-01-01

    This review attempts to provide some sense of our current knowledge of water including overall patterns of intake and some factors linked with intake, the complex mechanisms behind water homeostasis, the effects of variation in water intake on health and energy intake, weight, and human performance and functioning. Water represents a critical nutrient whose absence will be lethal within days. Water’s importance for prevention of nutrition-related noncommunicable diseases has emerged more recently because of the shift toward large proportions of fluids coming from caloric beverages. Nevertheless, there are major gaps in knowledge related to measurement of total fluid intake, hydration status at the population level, and few longer-term systematic interventions and no published random-controlled longer-term trials. We suggest some ways to examine water requirements as a means to encouraging more dialogue on this important topic. PMID:20646222

  15. 40 CFR 180.1232 - Lime-sulfur; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Lime-sulfur; exemption from the... Exemptions From Tolerances § 180.1232 Lime-sulfur; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of lime-sulfur....

  16. 40 CFR 180.1232 - Lime-sulfur; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Lime-sulfur; exemption from the... Exemptions From Tolerances § 180.1232 Lime-sulfur; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of lime-sulfur....

  17. 40 CFR 180.1232 - Lime-sulfur; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Lime-sulfur; exemption from the... Exemptions From Tolerances § 180.1232 Lime-sulfur; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of lime-sulfur....

  18. 40 CFR 180.1232 - Lime-sulfur; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Lime-sulfur; exemption from the... Exemptions From Tolerances § 180.1232 Lime-sulfur; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of lime-sulfur....

  19. 40 CFR 180.1232 - Lime-sulfur; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Lime-sulfur; exemption from the... Exemptions From Tolerances § 180.1232 Lime-sulfur; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of lime-sulfur....

  20. Interaction of copper with the surface of calcite

    SciTech Connect

    Franklin, M.L.; Morse, J.W.

    1981-12-01

    The interaction of Cu ions in solution with the surface of calcite has been studied in a range of solutions from pure water to seawater. Observations of the uptake of Cu from solution onto calcite indicates that the process is rapid and strong in both distilled water and seawater. In distilled water, Cu uptake is directly proportional to the concentration of Cu in solution; Cu/sub s/ = K/sub s/Cu/sub 1/. The average value for K/sub s/ is 3.5 +- 1.7. The Cu/sub s/ dependence on Cu/sub 1/ is linear over the entire Cu concentration range studied (0.1 to 200 ..mu..M). Results do not indicate the formation of a precipitate of either malachite or copper carbonate. A precipitate of the form Cu/sub x/Ca/sub 1-x/CO/sub 3/ may be deposited onto the calcite surface in distilled water. The value of K/sub s/ in distilled water decreased sharply over the solid to solution ratio range of 0.1 to 2 g CaCO/sub 3/ 1/sup -1/. This was followed by a small change in K/sub s/ for solid to solution ratios in the range of 2 to 10 g CaCO/sub 3/ 1/sup -1/. In seawater, the uptake of Cu is also directly proportional to the concentration of Cu/sub 1/ up to a limiting value of approximately 13 ..mu..M. The average value for K/sub s/ in seawater, 0.24 +- 0.06 (Cu/sub 1/ less than or equal to 13 ..mu..M), is approximately an order of magnitude less than in distilled water. This is probably the result of smaller Cu/sub 1/ activity coefficients and increased site competition by other ions in seawater. Attempts to increase the Cu/sub 1/ concentration above 13 ..mu..M resulted in the additional Cu being deposited on the surface of the calcite. A possible explanation for this behavior is the formation of a precipitate of malachite on the calcite surface. The value of K/sub s/ decreased slightly with increasing solid to solution ratios in seawater.

  1. Alcohol cosurfactants in hydrate antiagglomeration.

    PubMed

    York, J Dalton; Firoozabadi, Abbas

    2008-08-28

    Because of availability, as well as economical and environmental considerations, natural gas is projected to be the premium fuel of the 21st century. Natural gas production involves risk of the shut down of onshore and offshore operations because of blockage from hydrates formed from coproduced water and hydrate-forming species in natural gas. Industry practice has been usage of thermodynamic inhibitors such as alcohols often in significant amounts, which have undesirable environmental and safety impacts. Thermodynamic inhibitors affect bulk-phase properties and inhibit hydrate formation. An alternative is changing surface properties through usage of polymers and surfactants, effective at 0.5 to 3 weight % of coproduced water. One group of low dosage hydrate inhibitors (LDHI) are kinetic inhibitors, which affect nucleation rate and growth. A second group of LDHI are antiagglomerants, which prevent agglomeration of small hydrate crystallites. Despite great potential, work on hydrate antiagglomeration is very limited. This work centers on the effect of small amounts of alcohol cosurfactant in mixtures of two vastly different antiagglomerants. We use a model oil, water, and tetrahydrofuran as a hydrate-forming species. Results show that alcohol cosurfactants may help with antiagglomeration when traditional antiagglomerants alone are ineffective. Specifically, as low as 0.5 wt. % methanol cosurfactant used in this study is shown to be effective in antiagglomeration. Without the cosurfactant there will be agglomeration independent of the AA concentration. To our knowledge, this is the first report of alcohol cosurfactants in hydrate antiagglomerants. It is also shown that a rhamnolipid biosurfactant is effective down to only 0.5 wt. % in such mixtures, yet a quaternary ammonium chloride salt, i. e., quat, results in hydrate slurries down to 0.01 wt. %. However, biochemical surfactants are less toxic and biodegradable, and thus their use may prove beneficial even if at concentrations higher than chemical surfactants. PMID:18671355

  2. Hydrothermal replacement of calcite by Mg-carbonates

    NASA Astrophysics Data System (ADS)

    Jonas, Laura; Mueller, Thomas; Dohmen, Ralf

    2014-05-01

    The transport of heat and mass through the Earth's crust is coupled to mineral reactions and the exchange of isotopes and elements between different phases. Carbonate minerals are a major constituent of the Earth's crust and play an important role in different physical, chemical and even biological processes. In this experimental study, the element exchange reaction between calcite (CaCO3) and a Mg-rich fluid phase is investigated under hydrothermal conditions. Single crystals of calcite (2x2x2 mm) react with 1 ml of a 1 M MgCl2 solution at 200° C in a Teflon-lined steel autoclave for different times between one day and four weeks. The reaction leads to the formation of a porous reaction front and the pseudomorphic replacement of calcite by dolomite [CaMg(CO3)2] and magnesite (MgCO3). Scanning electron microscopy revealed that the reaction rim consists of small Mg-carbonate rhombs closely attached to each other, suggesting that the replacement reaction takes place by a dissolution-precipitation mechanism. Typically, the observed reaction front can be divided into two different domains. The outer part of the reaction rim, i.e. from the mineral surface in contact to the fluid inwards, consists of magnesite, whereas the inner part of the rim surrounding the unreacted calcite core consists of Ca-rich dolomite. The formation of a porous microstructure that varies in different parts of the reaction rim is a direct result of the large molar volume change induced by the replacement of calcite by magnesite and dolomite. The developing porosity therefore creates fluid pathways that promote the progress of the reaction front towards the unreacted core of the single crystal. Compositional profiles measured perpendicular to the mineral surface across the reactions rims using electron microprobe (EMPA) further revealed a compositional gradient within the reaction rim with regard to the structure-forming elements Mg and Ca. Here, the amount of Mg incorporated in both product phases increases with increasing distance from the unreacted calcite core, countered by a decrease of Ca incorporated. Both the coexistence of two different product phases and the distinct compositional gradient within the forming reaction rim are unequivocal signs of a chemical zonation of Ca and Mg in the fluid phase which mediates the element exchange between the reaction interface and the bulk solution. Atomic adsorption spectroscopy revealed that the Ca/Mg ratio in the reacted fluid increases as a function of time, reflecting the progressive exchange of Mg and Ca between the fluid and the solid phase. The time-dependence of the evolving Ca/Mg ratio can be fitted with a square root of time relation that indicates a transport controlled reaction. We interpret the hydrothermal replacement of calcite to operate via a dissolution/re-precipitation mechanism, whereas the reaction progress is controlled by the transport of the structure forming elements through the developing reaction rim.

  3. LIME SPRAY DRYER FLUE GAS DESULFURIZATION COMPUTER MODEL USERS MANUAL

    EPA Science Inventory

    The report describes a lime spray dryer/baghouse (FORTRAN) computer model that simulates SO2 removal and permits study of related impacts on design and economics as functions of design parameters and operating conditions for coal-fired electric generating units. The model allows ...

  4. Variable rate lime application in Louisiana sugarcane production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision agriculture may offer sugarcane growers a management system that decreases costs and maximizes profits, while minimizing any potential negative environmental impact. The utility of variable-rate (VR) lime application in the initial production year (plant cane) of a 3-yr sugarcane crop cyc...

  5. HAZARDOUS WASTE COMBUSTION IN INDUSTRIAL PROCESSES: CEMENT AND LIME KILNS

    EPA Science Inventory

    The report summarizes the results of several studies relating to hazardous waste combustion in cement and lime kilns. The tests included in the study are four kilns tested by the U.S. Environmental Protection Agency, four kilns tested by State agencies or the kiln operator, two C...

  6. EFFECTS OF LIME (CAO) ON THE ENDOTOXIN LEVELS OF BIOSOLIDS

    EPA Science Inventory

    Lime addition is a common practice for treating biosolids in order to meet EPA 503 requirements for land application. Since this treatment kills the majority of microorganisms, will it increase the level of endotoxins present in biosolids? And, if endotoxin levels are increased, ...

  7. COMPUTERIZED SHAWNEE LIME/LIMESTONE SCRUBBING MODEL USERS MANUAL

    EPA Science Inventory

    The manual gives a general description of a computerized model for estimating design and cost of lime or limestone scrubber systems for flue gas desulfurization (FGD). It supplements PB80-123037 by extending the number of scrubber options which can be evaluated. It includes spray...

  8. Shock-wave properties of soda-lime glass

    SciTech Connect

    Grady, D.E.; Chhabildas, L.C.

    1996-11-01

    Planar impact experiments and wave profile measurements provided single and double shock equation of state data to 30 GPa. Both compression wave wave profile structure and release wave data were used to infer time-dependent strength and equation of state properties for soda-lime glass.

  9. K'qizaghetnu Ht'ana (Stories from Lime Village).

    ERIC Educational Resources Information Center

    Bobby, Pete; And Others

    A cross section of Athabascan life as related by eight inhabitants of Lime Village, Alaska, is given in this document. The short narratives are printed in English and in Dena'ina. Illustrations accompany the text. The stories tell of making eagle feather robes, birchbark or mooseskin boats, a raincoat from black bear intestines, and boots from…

  10. Coal conversion of a multiple burner lime kiln

    SciTech Connect

    Jones, G.; Thornton, L.W.

    1984-02-01

    During 1982 Ash Grove Cement Company contracted with Wagester, Walker, Thornton and Company to convert a Calcimatic rotating hearth kiln at its Portland, Oregon lime plant from gas/oil to coal firing. Increasing costs of natural gas and No. 6 fuel oil made this conversion mandatory if the plant was to remain competitive. Unique features of this project are the distributors of pulverized coal to eighteen small burners around the inner and outer perimeters of the doughnut-shaped kiln, and the attrition-dryer-pulverizer mill. Ash Grove, a century-old lime and cement producer headquartered in Overland Park, Kansas (Kansas City area), looked at various schemes for multiple burner firing before employing Wagester, Walker, Thornton and Company. W.W.T. of Pittsburgh, Pennsylvania was formed in 1980 by acquiring the Solid Fuels Division of the Pullman Swindell Corporation. This division had been active in developing solid fuel firing for brick tunnel kilns, principally in the Southeast. They continue to supply such systems firing wood waste as well as coal to the brick industry and have also converted two Calcimatic lime kilns for Dixie Lime, Sumterville, Florida, a fluid bed calciner for Texas Gulf in Aurora, North Carolina, and a chrome concentrate kiln for Diamond Chemicals at Castle Hayne, North Carolina. Testing and a proposal have been made for INMETCO, Elwood City, Pennsylvania, on an annular hearth furnace for direct reduction of iron ore to metallic iron.

  11. Method for lime stabilization of wastewater treatment plant sludges

    SciTech Connect

    Wurtz, W.O.

    1981-12-22

    A method for the lime stabilization of wastewater sludge, includes the steps of dewatering sludge so as to produce a sludge cake containing from about 10 to 60% by weight of dry solids and rapidly and intimately mixing and reacting the sludge cake with calcium oxide so as to produce stabilized sludge pellets. An apparatus for performing the process is also provided.

  12. K'qizaghetnu Ht'ana (Stories from Lime Village).

    ERIC Educational Resources Information Center

    Bobby, Pete; And Others

    A cross section of Athabascan life as related by eight inhabitants of Lime Village, Alaska, is given in this document. The short narratives are printed in English and in Dena'ina. Illustrations accompany the text. The stories tell of making eagle feather robes, birchbark or mooseskin boats, a raincoat from black bear intestines, and boots from

  13. CHARACTERIZATION OF CARBIDE LIME TO IDENTIFY SULFITE OXIDATION INHIBITORS

    EPA Science Inventory

    The report gives results of a study of carbide lime--a by-product of acetylene manufacture, primarily calcium hydroxide--used in a flue gas desulfurization (FGD) system at Louisville Gas and Electric (LGE). The study was undertaken to: identify sulfite ion oxidation inhibitors in...

  14. Distribution of polycyclic aromatic hydrocarbons in lime spray dryer ash

    SciTech Connect

    Ping Sun; Panuwat Taerakul; Linda K. Weavers; Harold W. Walker

    2005-10-01

    Four lime spray dryer (LSD) ash samples were collected from a spreader stoker boiler and measured for their concentrations of 16 U.S. EPA specified polycyclic aromatic hydrocarbons (PAHs). Results showed that the total measured PAH concentration correlated with the organic carbon content of the LSD ash. Each LSD ash sample was then separated using a 140 mesh sieve into two fractions: a carbon-enriched fraction ({gt}140 mesh) and a lime-enriched fraction ({lt}140 mesh). Unburned carbon was further separated from the carbon-enriched fraction with a lithiumheteropolytungstate (LST) solution. PAH measurements on these different fractions showed that unburned carbon had the highest PAH concentrations followed by the carbon-enriched fraction, indicating that PAHs were primarily associated with the carbonaceous material in LSD ash. However, detectable levels of PAHs were also found in the lime-enriched fraction, suggesting that the fine spray of slaked lime may sorb PAH compounds from the flue gas in the LSD process. 37 refs., 5 figs., 4 tabs.

  15. Lime pretreatment and fermentation of enzymatically hydrolyzed sugarcane bagasse.

    PubMed

    Rabelo, Sarita C; Maciel Filho, Rubens; Costa, Aline C

    2013-03-01

    Sugarcane bagasse was subjected to lime (calcium hydroxide) pretreatment and enzymatic hydrolysis for second-generation ethanol production. A central composite factorial design was performed to determine the best combination of pretreatment time, temperature, and lime loading, as well as to evaluate the influence of enzymatic loadings on hydrolysis conversion. The influence of increasing solids loading in the pretreatment and enzymatic hydrolysis stages was also determined. The hydrolysate was fermented using Saccharomyces cerevisiae in batch and continuous mode. In the continuous fermentation, the hydrolysates were concentrated with molasses. Lime pretreatment significantly increased the enzymatic digestibility of sugarcane bagasse without the need for prior particle size reduction. In the optimal pretreatment conditions (90 h, 90 °C, 0.47 glime/g bagasse) and industrially realistic conditions of hydrolysis (12.7 FPU/g of cellulase and 7.3 CBU/g of β-glucosidase), 139.6 kglignin/ton raw bagasse and 126.0 kg hemicellulose in the pretreatment liquor per ton raw bagasse were obtained. The hydrolysate from lime pretreated sugarcane bagasse presented low amounts of inhibitors, leading to ethanol yield of 164.1 kgethanol/ton raw bagasse. PMID:23334836

  16. Variable-Rate Lime Application for Louisiana Sugarcane Production Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision agriculture may offer sugarcane growers a management system that decreases costs and maximizes profits, while minimizing any potential negative environmental impact. Variable rate (VR) application of lime and fertilizers is one area in which significant advantages may be realized. A seri...

  17. A Model for Dissolution of Lime in Steelmaking Slags

    NASA Astrophysics Data System (ADS)

    Sarkar, Rahul; Roy, Ushasi; Ghosh, Dinabandhu

    2016-04-01

    In a previous study by Sarkar et al. (Metall. Mater. Trans. B 46B:961 2015), a dynamic model of the LD steelmaking was developed. The prediction of the previous model (Sarkar et al. in Metall. Mater. Trans. B 46B:961 2015) for the bath (metal) composition matched well with the plant data (Cicutti et al. in Proceedings of 6th International Conference on Molten Slags, Fluxes and Salts, Stockholm City, 2000). However, with respect to the slag composition, the prediction was not satisfactory. The current study aims to improve upon the previous model Sarkar et al. (Metall. Mater. Trans. B 46B:961 2015) by incorporating a lime dissolution submodel into the earlier one. From the industrial point of view, the understanding of the lime dissolution kinetics is important to meet the ever-increasing demand of producing low-P steel at a low basicity. In the current study, three-step kinetics for the lime dissolution is hypothesized on the assumption that a solid layer of 2CaO·SiO2 should form around the unreacted core of the lime. From the available experimental data, it seems improbable that the observed kinetics should be controlled singly by any one kinetic step. Accordingly, a general, mixed control model has been proposed to calculate the dissolution rate of the lime under varying slag compositions and temperatures. First, the rate equation for each of the three rate-controlling steps has been derived, for three different lime geometries. Next, the rate equation for the mixed control kinetics has been derived and solved to find the dissolution rate. The model predictions have been validated by means of the experimental data available in the literature. In addition, the effects of the process conditions on the dissolution rate have been studied, and compared with the experimental results wherever possible. Incorporation of this submodel into the earlier global model (Sarkar et al. in Metall. Mater. Trans. B 46B:961 2015) enables the prediction of the lime dissolution rate in the dynamic system of LD steelmaking. In addition, with the inclusion of this submodel, significant improvement in the prediction of the slag composition during the main blow period has been observed.

  18. Adhesive carrier particles for rapidly hydrated sorbent for moderate-temperature dry flue gas desulfurization.

    PubMed

    Li, Yuan; You, Changfu; Song, Chenxing

    2010-06-15

    A rapidly hydrated sorbent for moderate-temperature dry flue gas desulfurization was prepared by rapidly hydrating adhesive carrier particles and lime. The circulation ash from a circulating fluidized bed boiler and chain boiler ash, both of which have rough surfaces with large specific surface areas and specific pore volumes, can improve the adhesion, abrasion resistance, and desulfurization characteristics of rapidly hydrated sorbent when used as the adhesive carrier particles. The adhesion ability of sorbent made from circulation ash is 67.4% higher than that of the existing rapidly hydrated sorbent made from fly ash, the abrasion ratio is 76.2% lower, and desulfurization ability is 14.1% higher. For sorbent made from chain boiler ash, the adhesion ability is increased by 74.7%, the desulfurization ability is increased by 30.3%, and abrasion ratio is decreased by 52.4%. The abrasion ratios of the sorbent made from circulation ash having various average diameters were all about 9%, and their desulfurization abilities were similar (approximately 150 mg/g). PMID:20481549

  19. Microstructure and hydration characteristics of artificial pozzolana-cement pastes containing burnt kaolinite clay

    SciTech Connect

    Morsy, M.S.; Hanna, G.B.; El-Enein, S.A.A.

    1997-09-01

    The reaction of pozzolana with the lime liberated during the hydration process of Portland cement modifies some properties of cement and resulting concrete. This study aimed to investigate experimentally the change occurring in the phase composition and microstructure of pozzolanic cement pastes containing activated kaolinite clay. The artificial pozzolana (burnt kaolinite clay) were thermally activated by firing at 850 C for two hours. The ordinary Portland cement (OPC) was partially replaced by different amounts of activated kaolinite clay by weight. The changes in the electrical conductivity were reported during setting and hardening processes after gauging with water. The change occurring in the phase composition and microstructure of cement pastes were investigated by differential thermal analysis and scanning electron microscopy. The results of this investigation show that, the thermal activated kaolinite clay prolonged the initial and final setting times and reduced the porosity, it also improved the microstructure of the formed hydrates by recrystallization of hydrated calcium silicates (mainly as CSH-(I)) together with the formation of hexagonal calcium aluminate hydrate (mainly as C{sub 4}AH{sub 13}).

  20. Obsidian hydration dates glacial loading?

    PubMed

    Friedman, I; Pierce, K L; Obradovich, J D; Long, W D

    1973-05-18

    Three different groups of hydration rinds have been measured on thin sections of obsidian from Obsidian Cliff, Yellowstone National Park, Wyoming. The average thickness of the thickest (oldest) group of hydration rinds is 16.3 micrometers and can be related to the original emplacement of the flow 176,000 years ago (potassium-argon age). In addition to these original surfaces, most thin sections show cracks and surfaces which have average hydration rind thicknesses of 14.5 and 7.9 micrometers. These later two hydration rinds compare closely in thickness with those on obsidian pebbles in the Bull Lake and Pinedale terminal moraines in the West Yellowstone Basin, which are 14 to 15 and 7 to 8 micrometers thick, respectively. The later cracks are thought to have been formed by glacial loading during the Bull Lake and Pinedale glaciations, when an estimated 800 meters of ice covered the Obsidian Cliff flow. PMID:17806883

  1. Obsidian hydration dates glacial loading?

    USGS Publications Warehouse

    Friedman, I.; Pierce, K.L.; Obradovich, J.D.; Long, W.D.

    1973-01-01

    Three different groups of hydration rinds have been measured on thin sections of obsidian from Obsidian Cliff, Yellowstone National Park, Wyoming . The average thickness of the thickest (oldest) group of hydration rinds is 16.3 micrometers and can be related to the original emplacement of the flow 176,000 years ago (potassium-argon age). In addition to these original surfaces, most thin sections show cracks and surfaces which have average hydration rind thicknesses of 14.5 and 7.9 micrometers. These later two hydration rinds compare closely in thickness with those on obsidian pebbles in the Bull Lake and Pinedale terminal moraines in the West Yellowstone Basin, which are 14 to 15 and 7 to 8 micrometers thick, respectively. The later cracks are thought to have been formed by glacial loading during the Bull Lake and Pinedale glaciations, when an estimated 800 meters of ice covered the Obsidian Cliff flow.

  2. Obsidian Hydration: A New Paleothermometer

    SciTech Connect

    Anovitz, Lawrence {Larry} M; Riciputi, Lee R; Cole, David R; Fayek, Mostafa; Elam, J. Michael

    2006-01-01

    The natural hydration of obsidian was first proposed as a dating technique for young geological and archaeological specimens by Friedman and Smith (1960), who noted that the thickness of the hydrated layer on obsidian artifacts increases with time. This approach is, however, sensitive to temperature and humidity under earth-surface conditions. This has made obsidian hydration dating more difficult, but potentially provides a unique tool for paleoclimatic reconstructions. In this paper we present the first successful application of this approach, based on combining laboratory-based experimental calibrations with archaeological samples from the Chalco site in the Basin of Mexico, dated using stratigraphically correlated 14C results and measuring hydration depths by secondary ion mass spectrometry. The resultant data suggest, first, that this approach is viable, even given the existing uncertainties, and that a cooling trend occurred in the Basin of Mexico over the past 1450 yr, a result corroborated by other paleoclimatic data.

  3. Oxygen isotopes in calcite grown under cave-analogue conditions

    NASA Astrophysics Data System (ADS)

    Day, C. C.; Henderson, G. M.

    2011-07-01

    Speleothem oxygen isotopes and growth rates are valuable proxies for reconstructing climate history. There is debate, however, about the conditions that allow speleothems to grow in oxygen isotope equilibrium, and about the correct equilibrium fractionation factors. We report results from a series of carbonate growth experiments in karst-analogue conditions in the laboratory. The setup closely mimics natural processes (e.g. precipitation driven by CO 2-degassing, low ionic strength solution, thin solution film) but with a tight control on growth conditions (temperature, pCO 2, drip rate, calcite saturation index and the composition of the initial solution). Calcite is dissolved in water in a 20,000 ppmV pCO 2 environment. This solution is dripped onto glass plates (coated with seed-carbonate) in a lower pCO 2 environment (<2500 ppmV), where degassing leads to calcite growth. Experiments were performed at 7, 15, 25 and 35 °C. At each temperature, calcite was grown at three drip rates (2, 6 and 10 drips per minute) on separate plates. The mass of calcite grown in these experiments varies with temperature ( T in K) and drip rate ( d_ r in drips min -1) according to the relationship daily growth mass = 1.254 + 1.478 ∗ 10 -9 ∗ e0.0679 T + ( e0.00248 T - 2) ∗ (-0.779 d_ r2 + 10.05 d_ r + 11.69). This relationship indicates a substantial increase of growth mass with temperature, a smaller influence of drip rate on growth mass at low temperature and a non-linear relationship between drip rate and growth mass at higher temperatures. Low temperature, fast dripping conditions are found to be the most favourable for reducing effects associated with evaporation and rapid depletion of the dissolved inorganic carbon reservoir (rapid DIC-depletion). The impact of evaporation can be large so caves with high relative humidity are also preferable for palaeoclimate reconstruction. Even allowing for the maximum offsets that may have been induced by evaporation and rapid DIC-depletion, δ 18O measured in some of our experiments remain higher than those predicted by Kim and O'Neil (1997). Our new results are well explained by equilibrium at a significantly higher αcalcite-water, with a kinetic-isotope effect that favours 16O incorporation as growth rate increases. This scenario agrees with recent studies by Coplen (2007) and Dietzel et al. (2009). Overall, our results suggest that three separate processes cause δ 18O to deviate from true isotope equilibrium in the cave environment. Two of these drive δ 18O to higher values (evaporation and rapid DIC-depletion) while one drives δ 18O to lower values (preferential incorporation of 16O in the solid carbonate at faster growth rates). While evaporation and DIC-depletion can be avoided in some settings, the third may be inescapable in the cave environment and means that any temperature to δ 18O relationship is an approximation. The controlled conditions of the present experiments also display limitations in the use of the Hendy test to identifying equilibrium growth.

  4. Hydrate formation and growth in pores

    NASA Astrophysics Data System (ADS)

    Jung, Jong-Won; Santamarina, J. Carlos

    2012-04-01

    Gas hydrates consist of guest gas molecules encaged in water cages. Methane hydrate forms in marine and permafrost sediments. In this study, we use optical, mechanical and electrical measurements to monitor hydrate formation and growth in small pores to better understand the hydrate pore habit in hydrate-bearing sediments. Hydrate formation in capillary tubes exposes the complex and dynamic interactions between nucleation, gas diffusion and gas solubility. The observation of hydrate growth in a droplet between transparent plates shows that the hydrate shell does not grow homogeneously but advances in the form of lobes that invade the water phase; in fact, the hydrate shell must be discontinuous and possibly cracked to justify the relatively fast growth rates observed in these experiments. Volume expansion during hydrate formation causes water to flow out of menisci; expelled water either spreads on the surface of water-wet substrates and forms a thin hydrate sheet, or remains next to menisci when substrates are oil-wet. Hydrate formation is accompanied by ion exclusion, yet, there is an overall increase in electrical resistance during hydrate formation. Hydrate growth may become salt-limited in trapped water conditions; in this case, aqueous brine and gas CH4 may be separated by hydrate and the three-phase system remains stable within the pore space of sediments.

  5. Hydrate control in deepwater drilling

    SciTech Connect

    1997-09-01

    Gas-hydrate formation during deepwater offshore drilling and production is a well-recognized operational hazard. In water depths greater than 1,000 ft, seabed conditions of pressure and temperature become conducive to gas-hydrate formation. In a well-control situation, although the kick fluid leaves the formation at a high temperature, it can cool to seabed temperature with an extended shut-in period. With high enough hydrostatic pressure at the mudline, hydrates could form in the blowout-preventer (BOP) stack and choke and kill lines, as has been observed in field operations. The current practice in deepwater drilling is to suppress the hydrate-formation temperature by use of highly saline drilling fluids formulated from NaCl or other salts. This solution is applicable for the Gulf of Mexico but insufficient for the conditions encountered in Norwegian deep waters. At extreme water depths or extremely low mudline temperatures, this thermodynamic inhibition alone may not be sufficient to prevent hydrate formation. Instead, the use of kinetic inhibitors or crystal modifiers, in conjunction with thermodynamic inhibitors, may allow successful operations in such an environment. The definition of kinetic inhibitors (to distinguish them from the classic thermodynamic inhibitors, such as polar compounds and electrolytes) comes from the effect of the chemicals on the nucleation and growth of natural gas hydrates, both of which are time-dependent, stochastic processes. The paper describes deepwater drilling fluids, polar and surface-active additives, kinetic inhibition and crystal modifiers, laboratory measurements, and test results.

  6. Principles of Calcite Dissolution in Human and Artificial Otoconia

    PubMed Central

    Walther, Leif Erik; Blödow, Alexander; Buder, Jana; Kniep, Rüdiger

    2014-01-01

    Human otoconia provide mechanical stimuli to deflect hair cells of the vestibular sensory epithelium for purposes of detecting linear acceleration and head tilts. During lifetime, the volume and number of otoconia are gradually reduced. In a process of degeneration morphological changes occur. Structural changes in human otoconia are assumed to cause vertigo and balance disorders such as benign paroxysmal positional vertigo (BPPV). The aim of this study was to investigate the main principles of morphological changes in human otoconia in dissolution experiments by exposure to hydrochloric acid, EDTA, demineralized water and completely purified water respectively. For comparison reasons artificial (biomimetic) otoconia (calcite gelatin nanocomposits) and natural calcite were used. Morphological changes were detected in time steps by the use of environmental scanning electron microscopy (ESEM). Under in vitro conditions three main dissolution mechanisms were identified as causing characteristic morphological changes of the specimen under consideration: pH drops in the acidic range, complex formation with calcium ions and changes of ion concentrations in the vicinity of otoconia. Shifts in pH cause a more uniform reduction of otoconia size (isotropic dissolution) whereas complexation reactions and changes of the ionic concentrations within the surrounding medium bring about preferred attacks at specific areas (anisotropic dissolution) of human and artificial otoconia. Owing to successive reduction of material, all the dissolution mechanisms finally produce fragments and remnants of otoconia. It can be assumed that the organic component of otoconia is not significantly attacked under the given conditions. Artificial otoconia serve as a suitable model system mimicking chemical attacks on biogenic specimens. The underlying principles of calcite dissolution under in vitro conditions may play a role in otoconia degeneration processes such as BPPV. PMID:25048115

  7. Principles of calcite dissolution in human and artificial otoconia.

    PubMed

    Walther, Leif Erik; Blödow, Alexander; Buder, Jana; Kniep, Rüdiger

    2014-01-01

    Human otoconia provide mechanical stimuli to deflect hair cells of the vestibular sensory epithelium for purposes of detecting linear acceleration and head tilts. During lifetime, the volume and number of otoconia are gradually reduced. In a process of degeneration morphological changes occur. Structural changes in human otoconia are assumed to cause vertigo and balance disorders such as benign paroxysmal positional vertigo (BPPV). The aim of this study was to investigate the main principles of morphological changes in human otoconia in dissolution experiments by exposure to hydrochloric acid, EDTA, demineralized water and completely purified water respectively. For comparison reasons artificial (biomimetic) otoconia (calcite gelatin nanocomposits) and natural calcite were used. Morphological changes were detected in time steps by the use of environmental scanning electron microscopy (ESEM). Under in vitro conditions three main dissolution mechanisms were identified as causing characteristic morphological changes of the specimen under consideration: pH drops in the acidic range, complex formation with calcium ions and changes of ion concentrations in the vicinity of otoconia. Shifts in pH cause a more uniform reduction of otoconia size (isotropic dissolution) whereas complexation reactions and changes of the ionic concentrations within the surrounding medium bring about preferred attacks at specific areas (anisotropic dissolution) of human and artificial otoconia. Owing to successive reduction of material, all the dissolution mechanisms finally produce fragments and remnants of otoconia. It can be assumed that the organic component of otoconia is not significantly attacked under the given conditions. Artificial otoconia serve as a suitable model system mimicking chemical attacks on biogenic specimens. The underlying principles of calcite dissolution under in vitro conditions may play a role in otoconia degeneration processes such as BPPV. PMID:25048115

  8. Evaluation of a lime-mediated sewage sludge stabilisation process. Product characterisation and technological validation for its use in the cement industry.

    PubMed

    Rodríguez, N Husillos; Granados, R J; Blanco-Varela, M T; Cortina, J L; Martínez-Ramírez, S; Marsal, M; Guillem, M; Puig, J; Fos, C; Larrotcha, E; Flores, J

    2012-03-01

    This paper describes an industrial process for stabilising sewage sludge (SS) with lime and evaluates the viability of the stabilised product, denominated Neutral, as a raw material for the cement industry. Lime not only stabilised the sludge, raised the temperature of the mix to 80-100°C, furthering water evaporation, portlandite formation and the partial oxidation of the organic matter present in the sludge. Process mass and energy balances were determined. Neutral, a white powder consisting of portlandite (49.8%), calcite (16.6%), inorganic oxides (13.4%) and organic matter and moisture (20.2%), proved to be technologically apt for inclusion as a component in cement raw mixes. In this study, it was used instead of limestone in raw mixes clinkerised at 1400, 1450 and 1500°C. These raw meals exhibited greater reactivity at high temperatures than the limestone product and their calcination at 1500°C yielded clinker containing over 75% calcium silicates, the key phases in Portland clinker. Finally, the two types of raw meal (Neutral and limestone) were observed to exhibit similar mineralogy and crystal size and distribution. PMID:22119052

  9. Calcite saturation in the River Dee, NE Scotland.

    PubMed

    Wade, A J; Neal, C; Smart, R P; Edwards, A C

    2002-01-23

    The spatial and temporal variations in calcite (calcium carbonate) solubility within the Dee basin of NE Scotland were assessed using water chemistry data gathered from a network of 59 sites monitored for water quality from June 1996 to May 1997. Calcite solubility, expressed in terms of a saturation index (SIcalcite), was determined from measured streamwater pH, Gran alkalinity and calcium concentrations and water temperature. In general, the waters of the Dee system are undersaturated with respect to calcite, though the saturation index is higher during the summer months indicating a dependency on flow conditions and biological activity. Under low-flow conditions, the streamwaters are dominated by water derived from the lower soil horizons and deeper groundwater stores and therefore, ions such as Gran alkalinity and calcium are at their highest concentrations as they are derived mainly from bedrock weathering. The influence of biological activity on the carbonate system is also evident as the observed pH and estimated EpCO2 values indicate strong seasonal patterns, with the highest pH and lowest EpCO2 values occurring during the summer low-flow periods. Only at three sites in the lowland region of the catchment, during the summer low-flow period, are the waters oversaturated. As such, the Dee system represents an extreme 'end-member' case when compared to many UK rivers that span both under- and oversaturated conditions during the year. Regression analysis highlights a systematic change in the SIcalcite-pH relationship in a broad east-west direction across the Dee system. At sites draining the relatively impermeable upland areas, the regression of SIcalcite against pH gives a straight line with a gradient in the range 1.6-2.4. Correspondingly, under the most extreme alkaline conditions found at sites draining lowland agricultural areas, a straight-line relationship exists but with a gradient of unity. It is concluded that these changes in the SIcalcite-pH relationship are due to variations in the bicarbonate system induced by the flow conditions and biological activity. Given the waters are undersaturated, then calcite precipitation and hence phosphorus co-precipitation cannot occur within the water column. PMID:11846077

  10. Relating Mechanical Behavior and Microstructural Observations in Calcite Fault Gouge

    NASA Astrophysics Data System (ADS)

    Carpenter, B. M.; Di Stefano, G.; Viti, C.; Collettini, C.

    2013-12-01

    Many important earthquakes, magnitude 5-7, nucleate and/or propagate through carbonate-dominated lithologies. Additionally, the presence of precipitated calcite in (cement) and near (vein fill) faults indicates that the mechanical behavior of carbonate-dominated material likely plays an important role in shallow- and mid-crustal faulting. We report on laboratory experiments designed to explore the mechanical behavior of calcite and relate that behavior to post experiment microstructural observations. We sheared powdered gouge of Carrara Marble, >98% CaCO3, at constant normal stresses between 1 and 50 MPa under saturated conditions at room temperature. We performed velocity-stepping tests, 0.1-1000 μm/s, to evaluate frictional stability, and slide-hold-slide tests, 1-10,000 seconds, to measure the amount of frictional healing. Small subsets of experiments were performed under different environmental conditions and shearing velocities to better elucidate physicochemical processes and their role in the mechanical behavior of calcite fault gouge. All experimental samples were collected for SEM analysis. We find that the frictional healing rate is 7X higher under saturated conditions than under nominally dry conditions. We also observe a divergence between the rates of creep relaxation (increasing) and frictional healing (decreasing) as shear velocity is increased from 1 to 3000 μm/s. Our highest healing rates are observed at our lowest normal stresses. We observe a frictional strength of μ = 0.64, consistent with previous data under similar conditions. Furthermore, although we observe velocity-weakening frictional behavior in both the saturated and dry cases, rate- and-state friction parameters are distinctly different for each case. Our combined observations of rapid healing and of velocity-weakening frictional behavior indicate that faults where calcite-dominated gouge is present are likely to be seismic and have the ability to regain their strength quickly. Furthermore, our mechanical results highlight the important role of fluids in the evolution of frictional strength and thus fault behavior.

  11. Calcite dissolution: an in situ study in the Panama Basin

    SciTech Connect

    Thunell, R.C.; Keir, R.S.; Honjo, S.

    1981-05-08

    The results of an in situ study of calcite dissolution in the Panama Basin indicate that the rate of dissolution in the water column increases suddenly below a water depth of about 2800 meters. This coincides with the depth at which the calcium carbonate content of surface sediments begins to decrease rapidly or the sedimentary lysocline. Since this level of increased dissolution both in the water column and on the sea floor does not appear to be related to the transition from supersaturation to undersaturation with respect to carbonate, there may be a kinetic origin for the lysocline in this region.

  12. Energy resource potential of natural gas hydrates

    USGS Publications Warehouse

    Collett, T.S.

    2002-01-01

    The discovery of large gas hydrate accumulations in terrestrial permafrost regions of the Arctic and beneath the sea along the outer continental margins of the world's oceans has heightened interest in gas hydrates as a possible energy resource. However, significant to potentially insurmountable technical issues must be resolved before gas hydrates can be considered a viable option for affordable supplies of natural gas. The combined information from Arctic gas hydrate studies shows that, in permafrost regions, gas hydrates may exist at subsurface depths ranging from about 130 to 2000 m. The presence of gas hydrates in offshore continental margins has been inferred mainly from anomalous seismic reflectors, known as bottom-simulating reflectors, that have been mapped at depths below the sea floor ranging from about 100 to 1100 m. Current estimates of the amount of gas in the world's marine and permafrost gas hydrate accumulations are in rough accord at about 20,000 trillion m3. Disagreements over fundamental issues such as the volume of gas stored within delineated gas hydrate accumulations and the concentration of gas hydrates within hydrate-bearing strata have demonstrated that we know little about gas hydrates. Recently, however, several countries, including Japan, India, and the United States, have launched ambitious national projects to further examine the resource potential of gas hydrates. These projects may help answer key questions dealing with the properties of gas hydrate reservoirs, the design of production systems, and, most important, the costs and economics of gas hydrate production.

  13. The ubiquitous nature of accessory calcite in granitoid rocks: Implications for weathering, solute evolution, and petrogenesis

    USGS Publications Warehouse

    White, A.F.; Schulz, M.S.; Lowenstern, J. B.; Vivit, D.V.; Bullen, T.D.

    2005-01-01

    Calcite is frequently cited as a source of excess Ca, Sr and alkalinity in solutes discharging from silicate terrains yet, no previous effort has been made to assess systematically the overall abundance, composition and petrogenesis of accessory calcite in granitoid rocks. This study addresses this issue by analyzing a worldwide distribution of more than 100 granitoid rocks. Calcite is found to be universally present in a concentration range between 0.028 to 18.8 g kg-1 (mean = 2.52 g kg-1). Calcite occurrences include small to large isolated anhedral grains, fracture and cavity infillings, and sericitized cores of plagioclase. No correlation exists between the amount of calcite present and major rock oxide compositions, including CaO. Ion microprobe analyses of in situ calcite grains indicate relatively low Sr (120 to 660 ppm), negligible Rb and 87Sr/86Sr ratios equal to or higher than those of coexisting plagioclase. Solutes, including Ca and alkalinity produced by batch leaching of the granitoid rocks (5% CO2 in DI water for 75 d at 25??C), are dominated by the dissolution of calcite relative to silicate minerals. The correlation of these parameters with higher calcite concentrations decreases as leachates approach thermodynamic saturation. In longer term column experiments (1.5 yr), reactive calcite becomes exhausted, solute Ca and Sr become controlled by feldspar dissolution and 87Sr/ 86Sr by biotite oxidation. Some accessory calcite in granitoid rocks is related to intrusion into carbonate wall rock or produced by later hydrothermal alteration. However, the ubiquitous occurrence of calcite also suggests formation during late stage (subsolidus) magmatic processes. This conclusion is supported by petrographic observations and 87Sr/86Sr analyses. A review of thermodynamic data indicates that at moderate pressures and reasonable CO2 fugacities, calcite is a stable phase at temperatures of 400 to 700??C. Copyright ?? 2005 Elsevier Ltd.

  14. Application of calcite Mg partitioning functions to the reconstruction of paleocean Mg/Ca

    NASA Astrophysics Data System (ADS)

    Hasiuk, Franciszek J.; Lohmann, Kyger C.

    2010-12-01

    Calcite Mg/Ca is usually assumed to vary linearly with solution Mg/Ca, that a constant partition coefficient describes the relationship between these two ratios. Numerous published empirical datasets suggests that this relationship is better described by a power function. We provide a compilation of these literature data for biotic and abiotic calcite in the form of Calcite Mg/Ca = F(Solution Mg/Ca) H, where F and H are empirically determined fitting parameters describing the slope and deviation from linearity, respectively, of the function. This is equivalent to Freundlich sorption behavior controlling Mg incorporation in calcite. Using a power function, instead of a partition coefficient, lowers Phanerozoic seawater Mg/Ca estimates based on echinoderm skeletal material by, on average, 0.5 mol/mol from previous estimates. These functions can also be used to model the primary skeletal calcite Mg/Ca of numerous calcite phases through geologic time. Such modeling suggests that the Mg/Ca of all calcite precipitated from seawater has varied through the Phanerozoic in response to changing seawater Mg/Ca and that the overall range in Mg/Ca measured among various calcite phases would be greatest when seawater Mg/Ca was also high (e.g., "aragonite seas") and lowest when seawater Mg/Ca was low (e.g., "calcite seas"). It follows that, during times of "calcite seas" when the seawater Mg/Ca is presumed to have been lower, deposition of calcite with low Mg contents would have resulted in a depressed drive for diagenetic stabilization of shelfal carbonate and, in turn, lead to greater preservation of crystal and skeletal microfabrics and primary chemistries in biotic and abiotic calcites.

  15. Anisotropic Transverse Stress in Calcite and Sapphire Measured Using Birefringence

    NASA Astrophysics Data System (ADS)

    Tear, Gareth R.; Chapman, David J.; Eakins, Daniel E.; Proud, William G.

    2015-06-01

    Many significant geological minerals have anisotropic crystal structures leading to material properties that are anisotropic, including compressive elastic behaviour. A non-invasive approach to investigate the directional dependence of transverse stress in these materials during shock compression would supplement current understanding. As many geological minerals are transparent and hence optically anisotropic, measuring the change in birefringence induced by transverse stress in the material offers the possibility of a fast, non-invasive approach to probe transverse behaviour. Shock compression experiments have been performed on a-cut calcite and a-cut sapphire for strain rates of order 105 s-1 and up to longitudinal stresses of 2 GPa for calcite and 12 GPa for sapphire. We present measured changes in birefringence for these materials under shock compression, comparing with current and past literature as well as an in house optical model. The authors would like to thank Mr Steve Johnson and Mr David Pittman for technical support. The Institute of Shock Physics acknowledges the continued support of AWE and Imperial College London.

  16. Environmental controls on the Emiliania huxleyi calcite mass

    NASA Astrophysics Data System (ADS)

    Horigome, M. T.; Ziveri, P.; Grelaud, M.; Baumann, K.-H.; Marino, G.; Mortyn, P. G.

    2014-04-01

    Although ocean acidification is expected to impact (bio) calcification by decreasing the seawater carbonate ion concentration, [CO32-], there is evidence of nonuniform response of marine calcifying plankton to low seawater [CO32-]. This raises questions about the role of environmental factors other than acidification and about the complex physiological responses behind calcification. Here we investigate the synergistic effect of multiple environmental parameters, including seawater temperature, nutrient (nitrate and phosphate) availability, and carbonate chemistry on the coccolith calcite mass of the cosmopolitan coccolithophore Emiliania huxleyi, the most abundant species in the world ocean. We use a suite of surface (late Holocene) sediment samples from the South Atlantic and southwestern Indian Ocean taken from depths lying above the modern lysocline (with the exception of eight samples that are located at or below the lysocline). The coccolith calcite mass in our results presents a latitudinal distribution pattern that mimics the main oceanographic features, thereby pointing to the potential importance of seawater nutrient availability (phosphate and nitrate) and carbonate chemistry (pH and pCO2) in determining coccolith mass by affecting primary calcification and/or the geographic distribution of E. huxleyi morphotypes. Our study highlights the importance of evaluating the combined effect of several environmental stressors on calcifying organisms to project their physiological response(s) in a high-CO2 world and improve interpretation of paleorecords.

  17. Environmental controls on the Emiliania huxleyi calcite mass

    NASA Astrophysics Data System (ADS)

    Horigome, M. T.; Ziveri, P.; Grelaud, M.; Baumann, K.-H.; Marino, G.; Mortyn, P. G.

    2013-06-01

    Although ocean acidification is expected to impact (bio)calcification by decreasing the seawater carbonate ion concentration, [CO32-], there exists evidence of non-uniform response of marine calcifying plankton to low seawater [CO32-]. This raises questions on the role of environmental factors other than acidification and on the complex physiological responses behind calcification. Here we investigate the synergistic effect of multiple environmental parameters, including temperature, nutrient (nitrate and phosphate) availability, and seawater carbonate chemistry on the coccolith calcite mass of the cosmopolitan coccolithophore Emiliania huxleyi, the most abundant species in the world ocean. We use a suite of surface (late Holocene) sediment samples from the South Atlantic and southwestern Indian Ocean taken from depths lying well above the modern lysocline. The coccolith calcite mass in our results presents a latitudinal distribution pattern that mimics the main oceanographic features, thereby pointing to the potential importance of phosphorus and temperature in determining coccolith mass by affecting primary calcification and possibly driving the E. huxleyi morphotype distribution. This evidence does not necessarily argue against the potentially important role of the rapidly changing seawater carbonate chemistry in the future, when unabated fossil fuel burning will likely perturb ocean chemistry beyond a critical point. Rather our study highlights the importance of evaluating the combined effect of several environmental stressors on calcifying organisms to project their physiological response(s) in a high CO2 world and improve interpretation of paleorecords.

  18. The coordination and distribution of B in foraminiferal calcite

    NASA Astrophysics Data System (ADS)

    Branson, Oscar; Kaczmarek, Karina; Redfern, Simon A. T.; Misra, Sambuddha; Langer, Gerald; Tyliszczak, Tolek; Bijma, Jelle; Elderfield, Henry

    2015-04-01

    The isotopic ratio and concentration of B in foraminiferal calcite appear to reflect the pH and bicarbonate concentration of seawater. The use of B as a chemical proxy tracer has the potential to transform our understanding of the global carbon cycle, and ocean acidification processes. However, discrepancies between the theory underpinning the B proxies, and mineralogical observations of B coordination in biomineral carbonates call the basis of these proxies into question. Here, we use synchrotron X-ray spectromicroscopy to show that B is hosted solely as trigonal BO3 in the calcite test of Amphistegina lessonii, and that B concentration exhibits banding at the micron length scale. In contrast to previous results, our observation of trigonal B agrees with the predictions of the theoretical mechanism behind B palaeoproxies. These data strengthen the use of B for producing palaeo-pH records. The observation of systematic B heterogeneity, however, highlights the complexity of foraminiferal biomineralisation, implying that B incorporation is modulated by biological or crystal growth processes.

  19. Crystallographic orientation inhomogeneity and crystal splitting in biogenic calcite

    PubMed Central

    Checa, Antonio G.; Bonarski, Jan T.; Willinger, Marc G.; Faryna, Marek; Berent, Katarzyna; Kania, Bogusz; González-Segura, Alicia; Pina, Carlos M.; Pospiech, Jan; Morawiec, Adam

    2013-01-01

    The calcitic prismatic units forming the outer shell of the bivalve Pinctada margaritifera have been analysed using scanning electron microscopy–electron back-scatter diffraction, transmission electron microscopy and atomic force microscopy. In the initial stages of growth, the individual prismatic units are single crystals. Their crystalline orientation is not consistent but rather changes gradually during growth. The gradients in crystallographic orientation occur mainly in a direction parallel to the long axis of the prism, i.e. perpendicular to the shell surface and do not show preferential tilting along any of the calcite lattice axes. At a certain growth stage, gradients begin to spread and diverge, implying that the prismatic units split into several crystalline domains. In this way, a branched crystal, in which the ends of the branches are independent crystalline domains, is formed. At the nanometre scale, the material is composed of slightly misoriented domains, which are separated by planes approximately perpendicular to the c-axis. Orientational gradients and splitting processes are described in biocrystals for the first time and are undoubtedly related to the high content of intracrystalline organic molecules, although the way in which these act to induce the observed crystalline patterns is a matter of future research. PMID:23804442

  20. Acceleration of calcite kinetics by abalone nacre proteins

    SciTech Connect

    Fu, G; Qiu, S R; Orme, C A; Morse, D E; De Yoreo, J J

    2005-06-09

    The fascinating shapes and hierarchical designs of biomineralized structures have long been an inspiration to materials scientists because of the potential they suggest for biomolecular control over synthesis of crystalline materials. One prevailing view is that mineral-associated macromolecules are responsible for initiating and stabilizing non-equilibrium crystal polymorphs and morphologies through interactions between anionic moieties and cations in solution or at mineral surfaces. Indeed, numerous studies have demonstrated that bio-organic additives can dramatically alter crystal shapes and growth-rates in vitro. However, previous molecular-scale studies revealing mechanisms of growth modification focused on small molecules such as amino acids or peptides and always observed growth inhibition. In contrast, studies using full proteins were non-quantitative and underlying sources of growth modification were ill-defined. Here we investigate interactions between proteins isolated from abalone shell nacre and growing surfaces of calcite. We find that these proteins significantly accelerate the molecular-scale kinetics and, though much larger than atomic steps, alter growth morphology through step-specific interactions that lower their free energies. We propose that these proteins act as surfactants to promote ion attachment at calcite surfaces.

  1. Brine induced low-Magnesium calcite formation at cold seeps

    NASA Astrophysics Data System (ADS)

    Feng, Dong; Roberts, Harry; Joye, Samantha; Heydari, Ezat

    2013-04-01

    Low-Mg calcite (LMC; < 5 mol% Mg), commonly observed during time intervals of "calcite seas," since the beginning of the Paleozoic Era, is a good indicator of low Mg/Ca ratio (< 2) in seawater. Calcite seas were coincident with times of active seawater-basalt interactions along mid-ocean ridges at high temperatures, which extract Mg from seawater and release Ca to it. In the modern aragonite sea, most carbonate minerals precipitate at the seafloor, including deposits from cold seep environments are primarily either aragonite or high-Mg calcite (HMC). Here, we report the finding of non-skeletal LMC from cold seeps in Alaminos Canyon block 601 (AC 601), 2200 m below the sea surface on northern Gulf of Mexico (GOM) continental slope. Low-Mg calcite usually represents the only carbonate mineral in the studied samples. Dominant allochems in these seep carbonates are peloids, grain aggregates, pelagic forams, and fragments of mollusks and echinoids. The limestone is heavily cemented. The observed cements include micrite, microspar, mosaic, bladed, fan, and needle cements. The dissolution of grains and cements was observed. Not only originally aragonitic mollusks shells, but also carbonate cement have been dissolved. The aerobic oxidation of reduced chemical species such as methane and H2S is responsible for an increase in pCO2 and a decrease of pH, leading to local carbonate dissolution. The occurrence of oxic conditions is confirmed by the presence of negative Ce anomalies of the carbonates. Further, we report on analyses showing that the ambient porewater Mg/Ca ratio actually governs the carbonate mineralogy. The occurrence of LMC may be attributed to the brine fluids, which is relatively Mg-depleted (Mg/Ca mole ratio is below 0.7) compared to pore fluid of the subsurface sediments from the reference site (Mg/Ca mole ratio is above 4.1) that usually produce HMC. The 87Sr/86Sr values of LMC (mean = 0.708001, sd = 0.000034, n=2) are significantly lower than that of the seawater (0.709175). Strong deviation of the Sr isotope ratios of LMC from seawater is interpreted as the modification of the strontium from less radiogenic sources like older marine sediments and/or the locally abundant Jurassic salt. Therefore, we speculate that the seep fluids at the studied site most likely have a deep origin and may also have been influenced by dissolved halite during their ascent through conduits along the margins of salt bodies. The understanding of the processes that control the LMC precipitation in the GOM will also contribute to an improved understanding of the presence or absence of LMC in other oceans margin settings today, and in geological deposits as well.

  2. Crystal growth of calcite from calcium bicarbonate solutions at constant PCO2 and 25°C: a test of a calcite dissolution model

    USGS Publications Warehouse

    Reddy, Michael M.; Plummer, L. Neil; Busenberg, E.

    1981-01-01

    A highly reproducible seeded growth technique was used to study calcite crystallization from calcium bicarbonate solutions at 25°C and fixed carbon dioxide partial pressures between 0.03 and 0.3 atm. The results are not consistent with empirical crystallization models that have successfully described calcite growth at low PCO2 (< 10−3 atm). Good agreement was found between observed crystallization rates and those calculated from the calcite dissolution rate law and mechanism proposed by Plummer et al. (1978).

  3. Loch fleet: liming to restore a brown trout fishery.

    PubMed

    Howells, G; Dalziel, T R; Turnpenny, A W

    1992-01-01

    This project has been successful in meeting its objectives in terms of demonstrating that catchment liming techniques can restore acidified waters to conditions suitable for fish populations for relatively long periods. This improvement in conditions has extended to the inlet stream, which provides vital fish spawning and nursery areas, which are difficult to treat effectively be other means in remote locations. The project has also provided an assessment of the effectiveness of differing rates and modes of lime application, which suggest that only quite restricted parts of a catchment require treatment. This not only maximizes the cost-effectiveness of the treatments, but also helps to minimize any side-effects on, for example, moorland vegetation. The biological monitoring programme at Loch Fleet has also provided an assessment of the overall ecological consequences of adding limestone to naturally acidic and calcium-deficient ecosystems. PMID:15091939

  4. LOW VELOCITY SHPERE IMPACT OF SODA LIME SILICATE GLASS

    SciTech Connect

    Morrissey, Timothy G; Fox, Ethan E; Wereszczak, Andrew A; Vuono, Daniel J

    2012-01-01

    This report summarizes TARDEC-sponsored work at Oak Ridge National Laboratory (ORNL) during the FY11 involving low velocity ( 30 m/s or 65 mph) ball impact testing of Starphire soda lime silicate glass. The intent was to better understand low velocity impact response in the Starphire for sphere densities that bracketed that of rock. Five sphere materials were used: borosilicate glass, soda-lime silicate glass, steel, silicon nitride, and alumina. A gas gun was fabricated to produce controlled velocity delivery of the spheres against Starphire tile targets. Minimum impact velocities to initiate fracture in the Starphire were measured and interpreted in context to the kinetic energy of impact and the elastic property mismatch between the any of the five sphere-Starphire-target combinations.

  5. Hazardous waste incineration in industrial processes: cement and lime kilns

    SciTech Connect

    Mournighan, R.E.; Peters, J.A.; Branscome, M.R.; Freeman, H.

    1985-07-01

    With more liquid wastes due to be banned from land disposal facilities, expanding hazardous waste incineration capacity becomes increasingly important. At the same time, industrial plants are increasingly seeking to find new sources of lower cost fuel, specifically from the disposal of hazardous wastes with heating value. The Hazardous Waste Engineering Research Laboratory (HWERL) is currently evaluating the disposal of hazardous wastes in a wide range of industrial processes. The effort includes sampling stack emissions at cement, lime and aggregate plants, asphalt plants and blast furnaces, which use waste as a supplemental fuel. This research program is an essential part of EPA's determination of the overall environmental impact of various disposal options available to industry. This paper summarizes the results of the HWERL program of monitoring emissions from cement and lime kilns burning hazardous wastes as fuel.

  6. Hydration water in dynamics of a hydrated beta-lactoglobulin

    NASA Astrophysics Data System (ADS)

    Yoshida, K.; Yamaguchi, T.; Bellissent-Funel, M.-C.; Longeville, S.

    2007-02-01

    Incoherent spin-echo signals of a hydrated β-lactoglobulin protein were investigated, at 275 and 293 K. The intermediate scattering functions I(Q,t) were divided in two contributions from surface water and protein, respectively. On one hand, the dynamics of the surface water follows a KWW stretched exponential function (the exponent is ~0.5), on the other hand, that of the protein follows a single exponential. The present results are consistent with our previous results of hydrated C-phycocyanin combining elastic and quasielastic neutron scattering and by molecular dynamics simulation.

  7. Energy reduction in beet sugar processing by cossette liming

    SciTech Connect

    Randall, J.M.; Camirand, W.M.; Neumann, H.J.

    1981-01-01

    Under appropriate conditions of temperature and fresh Ca(OH)/sub 2/ application, demethylation occurs in the pectin in the cell walls of sugar beet cossettes, allowing Ca/sup 2 +/ to precipitate the pectin as calcium pectate. The calcium pectate will not degrade and pass into solution during subsequent hot extraction of sugar from the cossettes. This retention of pectin in the pulp was shown by 10 to 20% increases in solids weight in the pulp for a number of processing conditions. The toughened pulp produced by retention of calcium pectate allowed easier mechanical dewatering of the pulp which could save considerably on the heat normally required to dry the pulp for cattle feed. Beyond data reported in this paper, there are qualitative indications that the sugar juice extracted from limed cossettes is purer than standard juice, for pectin and colloidal materials remain in the pulp. Thus, much less purification of the juice with lime would be necessary than is required in standard beet-sugar processing, and the current 2% CaO used for purification may be cut almost in half. This represents another energy saving, for production of CaO at the factory is a major consumer of energy. These, along with other possible energy savings resulting from cossette liming (such as less water used for extraction, cold extraction, ion exchange of the purer juice), could produce an overall saving up to 20% of the energy currently used in beet-sugar processing. Some of these possibilities will be further investigated.

  8. Flavor chemistry of lemon-lime carbonated beverages.

    PubMed

    Hausch, Bethany J; Lorjaroenphon, Yaowapa; Cadwallader, Keith R

    2015-01-14

    The most potent aroma-active components of Sprite (SP), Sierra Mist (SM), and 7UP (7UP) were identified. Aroma extracts were prepared by liquid–liquid continuous extraction/solvent-assisted flavor evaporation (LLCE/SAFE). Twenty-eight compounds were detected by gas chromatography–olfactometry (GC-O) with linalool (floral, lavender), octanal (pungent orange), and 2,3-dehydro-1,8-cineole (minty) determined to be predominant aroma compounds based on their high flavor dilution (FD) factors by aroma extract dilution analysis (AEDA). The data indicate that lemon-lime flavor is composed of a small number of compounds (22 at the most in SM), and only a subset of these may be important because many compounds were detected only at low FD factors. Predominant aroma compounds (23) were quantified using static headspace solid phase microextraction (SPME) combined with stable isotope dilution assays (SIDA). In contrast to FD factors, the calculated odor-activity values (OAVs) indicate that octanal and limonene make the greatest contribution to the overall aroma of lemon-lime carbonated beverages, followed by nonanal, decanal, linalool, 1,8-cineole, and geranyl acetate. The results demonstrate that lemon-lime carbonated beverages share many of the same compounds but the relative abundance of these compounds varies by brand. PMID:25494537

  9. Well log evaluation of natural gas hydrates

    SciTech Connect

    Collett, T.S.

    1992-10-01

    Gas hydrates are crystalline substances composed of water and gas, in which a solid-water-lattice accommodates gas molecules in a cage-like structure. Gas hydrates are globally widespread in permafrost regions and beneath the sea in sediment of outer continental margins. While methane, propane, and other gases can be included in the clathrate structure, methane hydrates appear to be the most common in nature. The amount of methane sequestered in gas hydrates is probably enormous, but estimates are speculative and range over three orders of magnitude from about 100,000 to 270,000,000 trillion cubic feet. The amount of gas in the hydrate reservoirs of the world greedy exceeds the volume of known conventional gas reserves. Gas hydrates also represent a significant drilling and production hazard. A fundamental question linking gas hydrate resource and hazard issues is: What is the volume of gas hydrates and included gas within a given gas hydrate occurrence Most published gas hydrate resource estimates have, of necessity, been made by broad extrapolation of only general knowledge of local geologic conditions. Gas volumes that may be attributed to gas hydrates are dependent on a number of reservoir parameters, including the areal extent ofthe gas-hydrate occurrence, reservoir thickness, hydrate number, reservoir porosity, and the degree of gas-hydrate saturation. Two of the most difficult reservoir parameters to determine are porosity and degreeof gas hydrate saturation. Well logs often serve as a source of porosity and hydrocarbon saturation data; however, well-log calculations within gas-hydrate-bearing intervals are subject to error. The primary reason for this difficulty is the lack of quantitative laboratory and field studies. The primary purpose of this paper is to review the response of well logs to the presence of gas hydrates.

  10. Well log evaluation of natural gas hydrates

    SciTech Connect

    Collett, T.S.

    1992-10-01

    Gas hydrates are crystalline substances composed of water and gas, in which a solid-water-lattice accommodates gas molecules in a cage-like structure. Gas hydrates are globally widespread in permafrost regions and beneath the sea in sediment of outer continental margins. While methane, propane, and other gases can be included in the clathrate structure, methane hydrates appear to be the most common in nature. The amount of methane sequestered in gas hydrates is probably enormous, but estimates are speculative and range over three orders of magnitude from about 100,000 to 270,000,000 trillion cubic feet. The amount of gas in the hydrate reservoirs of the world greedy exceeds the volume of known conventional gas reserves. Gas hydrates also represent a significant drilling and production hazard. A fundamental question linking gas hydrate resource and hazard issues is: What is the volume of gas hydrates and included gas within a given gas hydrate occurrence? Most published gas hydrate resource estimates have, of necessity, been made by broad extrapolation of only general knowledge of local geologic conditions. Gas volumes that may be attributed to gas hydrates are dependent on a number of reservoir parameters, including the areal extent ofthe gas-hydrate occurrence, reservoir thickness, hydrate number, reservoir porosity, and the degree of gas-hydrate saturation. Two of the most difficult reservoir parameters to determine are porosity and degreeof gas hydrate saturation. Well logs often serve as a source of porosity and hydrocarbon saturation data; however, well-log calculations within gas-hydrate-bearing intervals are subject to error. The primary reason for this difficulty is the lack of quantitative laboratory and field studies. The primary purpose of this paper is to review the response of well logs to the presence of gas hydrates.

  11. Gas hydrates in the oceans

    SciTech Connect

    Panayev, V.A.

    1987-05-01

    On the whole, the formation of gas hydrates in the ocean sediments is determined by a large number of factors: the change in temperature and pressure with depth in the oceans, the magnitude of the heat flow, geothermal gradient, and thermal-conductivity of the sediments, the composition of the sediments and gas, the mineralization of the sea water, etc. The combined effect of these factors, controlling the complexity of the hydrate-forming processes on the ocean floor, has essentially not yet been studied, and this in large measure limits the possibility of estimating the oil and gas potentials in the deeper parts of the oceans of the world. The article is valuable particularly for its tabular compilation of proven and suspected occurrences of submarine gas hydrates, as of the mid-1985 date of completion. 16 references.

  12. Predicting Calcite (CaCO3) Requirements of Sphagnum Peat Moss from pH Titration Curves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Liming materials are required to neutralize acidity in peat moss to make it a suitable substrate for growing container crops. A series of time-consuming incubations of peat:lime mixtures are typically used to determine the liming rate to achieve a desired pH. Our objective was to evaluate the util...

  13. Kinetics and Mechanisms of Calcite Reactions with Saline Waters

    SciTech Connect

    Gorman, Brian P

    2015-09-02

    Project Description: The general objective of the proposed research is to determine the kinetics and mechanisms of calcite reactions with saline waters over a wide range of saline water composition, pCO2, and modest ranges in T and P. This will be accomplished by studying both reaction rates and solubility from changes in solution chemistry, and making nanoscale observations of calcite precipitate surface morphology and composition at the micro-to-nano-scale to provide an understanding of controlling reaction mechanisms and pathways. The specific objectives necessary to reach the general objective are: a) determination of how pCO2, Ca2+, ionic strength and “foreign” ions influence reaction rates; and b) investigate the influence of these parameters on apparent kinetic solubility from dissolution and precipitation reactions. This information will clearly be central to the construction of reliable reaction-transport models to predict reservoir and formation response to increased CO2 in saline waters. This program was initially collaborative with John Morse at Texas A&M, however his passing shortly after the beginning of this program resulted in abbreviated research time and effort. Summary of Results: Early studies using electron microscopy and spectroscopy indicated that carbonate precipitation from natural seawater (NSW) conditions onto aragonite substrates was mediated by a surface amorphous calcium carbonate layer. It was hypothesized that this ACC layer (observed after < 5days reaction time) was responsible for the abnormal reaction kinetics and also served as a metastable seed layer for growth of epitaxial aragonite. Further studies of the ACC formation mechanism indicated a strong dependence on the Mg concentration in solution. Subsequent studies at shorter times (10 hrs) on calcite substrates and in a wide range of supersaturation conditions did not indicate any ACC layer. Instead, an epitaxial layer by layer growth mechanism was confirmed by grazing incidence X-ray diffraction, µ-Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and electron diffraction. Extended time studies out to 45 days confirmed the epitaxial relationship of the overgrowth layer with the substrate. Under NSW conditions, overgrowths were found to have ~0.4 to 0.8 nm / hr growth rates and accommodating 4 at% Mg, resulting in a highly strained overgrowth layer. Following the initial layer by layer growth mechanism, the growth changes to Stranski-Krastanov type after a critical thickness of approximately 100 nm.

  14. Retrofit costs for lime/limestone FGD and lime spray drying at coal-fired utility boilers

    SciTech Connect

    Emmel, T.E.; Jones, J.W.

    1990-01-01

    The paper gives results of a research program the objective of which was to significantly improve engineering cost estimates currently being used to evaluate the economic effects of applying SO2 controls to existing coal-fired utility boilers. The costs of retrofitting conventional lime/limestone wet flue gas desulfurization (L/LS FGD) and lime spray drying (LSD) FGD at 100-200 coal-fired power plants are being estimated under this program. The retrofit capital cost estimating procedures used for L/LS FGD and LSD FGD make two cost adjustments to current procedures used to estimate FGD costs: cost adders (for items not normally included in FGD system costs; e.g., demolition and relocation of existing facilities) and cost multipliers (to adjust capital costs for site access, congestion, and underground obstructions).

  15. Interactions of arsenic with calcite surfaces revealed by in-situ nanoscale imaging

    NASA Astrophysics Data System (ADS)

    Renard, Francois; Putnis, Christine; Montes-Hernandez, German; Ruiz-Agudo, Encarnacion; Hövelmann, Jörn; Sarret, Géraldine

    2015-04-01

    Arsenic dissolved in water represents a key environmental and health challenge because several million people are under the threat of contamination. In calcareous environments calcite may play an important role in arsenic solubility and transfer in water. Arsenic-calcite interactions remain controversial, especially for As(III) which was proposed to be either incorporated as such, or as As(V) after oxidation. Here, we provide the first time-lapse in-situ study of calcite dissolution and growth in the presence of solutions with various amounts of As(III) or As(V). This was performed at room temperature and pH range 6-9 using a flow through cell connected to an atomic force microscope (AFM), to study the evolution of the (10-14) calcite cleavage surface morphology. Reaction products were then characterized by Raman spectroscopy. In parallel, co-precipitation experiments with either As(III) or As(V) were performed in batch reactors, and the speciation of arsenic in the resulting solids was studied by X-ray absorption spectroscopy (XAS). For As(V), AFM results showed that it interacts strongly with the calcite surface, and XAS results showed that As(V) was mostly incorporated in the calcite structure. For As(III), AFM results showed much less impact on calcite growth and dissolution and less incorporation was observed. This was confirmed by XAS results that indicate that As(III) was partly oxidized into As(V) before being incorporated into calcite and the resulting calcite contained 36% As(III) and 64% As(V). All these experimental results confirm that As(V) has a much stronger interaction with calcite than As(III) and that calcite may represent an important reservoir for arsenic in various geological environments.

  16. Gas Hydrate and Pore Pressure

    NASA Astrophysics Data System (ADS)

    Tinivella, Umberta; Giustiniani, Michela

    2014-05-01

    Many efforts have been devoted to quantify excess pore pressures related to gas hydrate dissociation in marine sediments below the BSR using several approaches. Dissociation of gas hydrates in proximity of the BSR, in response to a change in the physical environment (i.e., temperature and/or pressure regime), can liberate excess gas incrising the local pore fluid pressure in the sediment, so decreasing the effective normal stress. So, gas hydrate dissociation may lead to excess pore pressure resulting in sediment deformation or failure, such as submarine landslides, sediment slumping, pockmarks and mud volcanoes, soft-sediment deformation and giant hummocks. Moreover, excess pore pressure may be the result of gas hydrate dissociation due to continuous sedimentation, tectonic uplift, sea level fall, heating or inhibitor injection. In order to detect the presence of the overpressure below the BSR, we propose two approachs. The fist approach models the BSR depth versus pore pressure; in fact, if the free gas below the BSR is in overpressure condition, the base of the gas hydrate stability is deeper with respect to the hydrostatic case. This effect causes a discrepancy between seismic and theoretical BSR depths. The second approach models the velocities versus gas hydrate and free gas concentrations and pore pressure, considering the approximation of the Biot theory in case of low frequency, i.e. seismic frequency. Knowing the P and S seismic velocity from seismic data analysis, it is possibile to jointly estimate the gas hydrate and free gas concentrations and the pore pressure regime. Alternatively, if the S-wave velocity is not availbale (due to lack of OBS/OBC data), an AVO analysis can be performed in order to extract information about Poisson ratio. Our modeling suggests that the areas characterized by shallow waters (i.e., areas in which human infrastructures, such as pipelines, are present) are significantly affected by the presence of overpressure condition. Moreover, the knoweledge of seismic velocities can be considered an powerful tool to detect the overpressure in case that the pore pressure is equal to the hydrostatic pressure plus the 50% of the difference between the lithostatic and the hydrostatic pressure. In conclusions, an accurate analysis of the BSR nature and the pore pressure are required to improve the reliability of the gas-phase estimation for different target, such as gas hydrate and free gas exploitations and environmental studies.

  17. Photoelectron spectroscopy of hydrated electrons

    NASA Astrophysics Data System (ADS)

    Shreve, Alexander T.; Yen, Terry A.; Neumark, Daniel M.

    2010-06-01

    We report a systematic study of the photoelectron spectroscopy of hydrated electrons in liquid water jets using multiple precursors and photodetachment wavelengths. Hydrated electrons were generated in and detached from liquid microjets using two photons from a single nanosecond laser pulse at 266 or 213 nm. Solutions of 50 to 250 mM potassium hexacyanoferrate(II) or potassium iodide were used to provide precursor anions. All of our experimental conditions yield similar results, giving a mean vertical binding energy of 3.6 ± 0.1 eV at a temperature of ˜280 K, a slightly higher value than in recent reports.

  18. Natural Gas Hydrates Update 1998-2000

    EIA Publications

    2001-01-01

    Significant events have transpired on the natural gas hydrate research and development front since "Future Supply Potential of Natural Gas Hydrates" appeared in Natural Gas 1998 Issues and Trends and in the Potential Gas Committee's 1998 biennial report.

  19. Preparation of macroporous lime from natural lime by swelling method with acetic acid for high-temperature desulfurization

    SciTech Connect

    Sasaoka, Eiji; Sada, Norimasa; Uddin, M.A.

    1998-10-01

    To develop a highly active calcium oxide high-temperature desulfurization sorbent, a method of preparation of macroporous calcium oxides from lime was studied. This method is composed of two steps: swelling of the lime and calcination of the swelled sample. Swelling occurred when lime was exposed to the vapor of acetic acid. The swelling resulted from calcium acetate formation in the sample. The swelling rate was at a maximum in the presence of acetic acid and depressed by the presence of water vapor. The swelled sample was converted to macroporous calcium oxide by heating to 850 C. The reactivity of the macroporous calcium oxide for the removal of SO{sub 2} or H{sub 2}S in the presence of H{sub 2}O vapor was higher than that of the calcined raw limestone. In particular, its SO{sub 2} removal capacity and the oxidative character of CaS to CaSO{sub 4} and Cao were greatly improved by this swelling method. These characteristics were also compared with those of a sample prepared from limestone by this swelling method.

  20. Advanced mineral calciner for regeneration of lime. Topical technical report, May 1992-August 1993

    SciTech Connect

    Namazian, M.; Kelly, J.T.; Woodworth, R.

    1994-10-01

    Pulp and paper market growth and process changes require low cost incremental capacity lime regeneration units. Existing rotary kiln lime regeneration technology is costly to install and operate, especially at the lower capacity needed for the pulp and paper growth market. If this capacity need is not met by a cost effective and environmentally clean system, an 8 BCF potential gas market could move off-shore. The Advanced Mineral Calciner (AMC) is an environmentally clean, low capital and low operating cost lime regeneration system that is well suited to meeting this projected market. To quantify the benefits of the AMC, in small-scale a 100 lb/hr test system was built and operated. The product lime was subjected to standard industry tests to evaluate the extent of reaction and level of reactivity. The results showed that the lime produced by AMC has low unreacted core and good reactivity, compared to lime produced by rotary kilns.

  1. Methods to determine hydration states of minerals and cement hydrates

    SciTech Connect

    Baquerizo, Luis G.; Matschei, Thomas; Scrivener, Karen L.; Saeidpour, Mahsa; Thorell, Alva; Wadsö, Lars

    2014-11-15

    This paper describes a novel approach to the quantitative investigation of the impact of varying relative humidity (RH) and temperature on the structure and thermodynamic properties of salts and crystalline cement hydrates in different hydration states (i.e. varying molar water contents). The multi-method approach developed here is capable of deriving physico-chemical boundary conditions and the thermodynamic properties of hydrated phases, many of which are currently missing from or insufficiently reported in the literature. As an example the approach was applied to monosulfoaluminate, a phase typically found in hydrated cement pastes. New data on the dehydration and rehydration of monosulfoaluminate are presented. Some of the methods used were validated with the system Na{sub 2}SO{sub 4}–H{sub 2}O and new data related to the absorption of water by anhydrous sodium sulfate are presented. The methodology and data reported here should permit better modeling of the volume stability of cementitious systems exposed to various different climatic conditions.

  2. Shock-induced effects in calcite from Cactus Crater

    NASA Technical Reports Server (NTRS)

    Vizgirda, J.; Ahrens, T. J.; Tsay, F.-D.

    1980-01-01

    The paper discusses shock metamorphism of calcite from coralline limestone samples retrieved from a borehole drilled into rocks beneath Cactus Crater, a nuclear explosion crater at Eniwetok Atoll. The metamorphism was detected and quantified using electron spin resonance (ESR); the ESR spectra of Mn(+) present as a trace constituent in the coral samples, show a consistent decrease in hyperfine peak splitting with decreasing depth of sample. It is suggested that the decrease in hyperfine peak splitting reflects a decrease in crystal field splitting, and therefore, small increases on cation-anion distances produced by mechanical energy input during the shock process. Two alternative crater models suggested by the ESR results are a depiction of a steady decay of the shock wave, and a delineation of a breccia lens with a breccia-bedrock interface at 20 plus or minus 5 m.

  3. Calcite and dolomite in intrusive carbonatites. I. Textural variations

    NASA Astrophysics Data System (ADS)

    Chakhmouradian, Anton R.; Reguir, Ekaterina P.; Zaitsev, Anatoly N.

    2016-04-01

    Carbonatites are nominally igneous rocks, whose evolution commonly involves also a variety of postmagmatic processes, including exsolution, subsolidus re-equilibration of igneous mineral assemblages with fluids of different provenance, hydrothermal crystallization, recrystallization and tectonic mobilization. Petrogenetic interpretation of carbonatites and assessment of their mineral potential are impossible without understanding the textural and compositional effects of both magmatic and postmagmatic processes on the principal constituents of these rocks. In the present work, we describe the major (micro)textural characteristics of carbonatitic calcite and dolomite in the context of magma evolution, fluid-rock interaction, or deformation, and provide information on the compositional variation of these minerals and its relation to specific evolutionary processes.

  4. Calcite orientations and composition ranges within teeth across Echinoidea

    PubMed Central

    Stock, Stuart R.; Ignatiev, Konstantin; Lee, Peter L.; Almer, Jonathan D.

    2016-01-01

    Sea urchin’s teeth from four families of order Echinoida and from orders Temnopleuroida, Arbacioida and Cidaroida were studied with synchrotron x-ray diffraction. The high and very high Mg calcite phases of the teeth, i.e. the first and second stage mineral constituents, respectively, have the same crystallographic orientations. The co-orientation of first and second stage mineral, which the authors attribute to epitaxy, extends across the phylogenic width of the extant regular sea urchins and demonstrates that this is a primitive character of this group. The range of compositions Δx for the two phases of Ca1−xMgxCO3 is about 0.20 or greater and is consistent with a common biomineralization process. PMID:25158180

  5. Understanding control of calcitic biomineralization-proteomics to the rescue.

    PubMed

    Hincke, Maxwell T

    2013-12-01

    The avian eggshell is one of the fastest calcifying processes known and represents a unique model for studying biomineralization. Eggshell strength is a crucial economic trait for table egg production, and ensures that a safe egg reaches the consumer kitchen. However, a common toolkit for eggshell mineralization has not yet been defined. In this issue, label-free MS-based protein quantification technology has been used by Sun et al. (Proteomics 2013, 13, 3523-3536) to detect differences in protein abundance between eggshell matrix from strong and weak eggs and between the corresponding uterine fluids bathing strong and weak eggs. Proteins associated with the formation of strong eggshells are identified, which are now candidates for further investigations to define the regulatory relationship between specific eggshell matrix proteins and calcite crystal texture. PMID:24307661

  6. On the origin of fiber calcite crystals in moonmilk deposits

    NASA Astrophysics Data System (ADS)

    Cañaveras, Juan Carlos; Cuezva, Soledad; Sanchez-Moral, Sergio; Lario, Javier; Laiz, Leonila; Gonzalez, Juan Miguel; Saiz-Jimenez, Cesareo

    2006-01-01

    In this study, we show that moonmilk subaerial speleothems in Altamira Cave (Spain) consist of a network of fiber calcite crystals and active microbial structures. In Altamira moonmilks, the study of the typology and distribution of fiber crystals, extracellular polymeric substances, and microorganisms allowed us to define the initial stages of fiber crystal formation in recent samples as well as the variations in the microstructural arrangement in more evolved stages. Thus, we have been able to show the existence of a relationship among the different types of fiber crystals and their origins. This allowed us to outline a model that illustrates the different stages of formation of the moonmilk, developed on different substrata, concluding that microbes influence physicochemical precipitation, resulting in a variety of fiber crystal morphologies and sizes.

  7. Kinetic model of impurity poisoning during growth of calcite

    SciTech Connect

    DeYoreo, J; Wasylenki, L; Dove, P; Wilson, D; Han, N

    2004-05-18

    The central role of the organic component in biologically controlled mineralization is widely recognized. These proteins are characterized by a high proportion of acidic amino acid residues, especially aspartate, Asp. At the same time, biomineralization takes place in the presence of a number of naturally-occurring, inorganic impurities, particularly Mg and Sr. In an attempt to decipher the controls on calcite growth imposed by both classes of modifiers, we have used in situ AFM to investigate the dependence of growth morphology and step kinetics on calcite in the presence of Sr{sup 2+}, as well as a wide suite of Aspartic acid-bearing polypeptides. In each case, we observe a distinct and step-specific modification. Most importantly, we find that the step speed exhibits a characteristic dependence on impurity concentration not predicted by existing crystal growth models. While all of the impurities clearly induce appearance of a 'dead zone,' neither the width of that dead zone nor the dependence of step speed on activity or impurity content can be explained by invoking the Gibbs-Thomson effect, which is the basis for the Cabrera-Vermilyea model of impurity poisoning. Common kink-blocking models also fail to explain the observed dependencies. Here we propose a kinetic model of inhibition based on a 'cooperative' effect of impurity adsorption at adjacent kink sites. The model is in qualitative agreement with the experimental results in that it predicts a non-linear dependence of dead zone width on impurity concentration, as well as a sharp drop in step speed above a certain impurity content. However, a detailed model of impurity adsorption kinetics that give quantitative agreement with the data has yet to be developed.

  8. Precipitation of calcite induced by Synechocystis sp. PCC6803.

    PubMed

    Han, Zuozhen; Yan, Huaxiao; Zhou, Shixue; Zhao, Hui; Zhang, Yan; Zhang, Ningning; Yao, Chuankai; Zhao, Lin; Han, Chunyan

    2013-10-01

    Calcite with laminate structure was successfully prepared by culturing Synechocystis sp. PCC6803 with different concentrations of calcium chloride (CaCl₂) in BG11 media. S. PCC6803 was examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), laser confocal scanning microscope (LCSM) and energy dispersive spectroscopy (EDS). The effects of Ca²⁺ concentrations and pH values on calcification were investigated and the micro morphs of the CaCO₃ crystals were observed by means of SEM. These results showed that CaCO₃ crystals could be more easily formed with increasing the concentration of CaCl₂ in S. PCC6803 culture solution. S. PCC6803 could largely bind calcium ions, most of which were present in extracellular polymeric substances and on the cell wall. Inside the cells there were a lot of circular areas rich in calcium ions without the crystallization of calcium. Some cells produced a thicker gelatinous sheath outside of the translucent organic thin layer. And the cells inside also produced major changes that the original chloroplasts were almost transformed into starch grains whose sizes were from 0.5 to 1 μm with relatively uniform in sizes. At the same time the cell sizes significantly reduced to only about 8-9 μm almost changing to half of its original diameters. The calcite crystals with a highly preferred orientation induced by S. PCC6803 were observed with X-ray diffraction (XRD). A critical implication was that S. PCC6803 could induce bio-calcification and then mediate the further growth of CaCO₃ crystals in the biological system. PMID:23543209

  9. Isotopic composition of a calcite-cemented layer in the Lower Jurassic Bridport Sands, southern England: Implications for formation of laterally extensive calcite-cemented layers

    SciTech Connect

    Bjoerkum, P.A. ); Walderhaug, O. )

    1993-07-01

    [delta][sup 18]O[sub PDB] and [delta][sup 13]C[sub PDB] values have been measured on 107 calcite cement samples from a laterally extensive (> 3 km) and continuous calcite-cemented layer 0.5 m thick in the coastal exposures of the Lower Jurassic shallow-marine Bridport Sands in Dorset, southern England. The samples were taken from a two-dimensional grid with 10-cm horizontal and vertical spacing between samples and along individual vertical lines across the calcite-cemented layer, [delta][sup 18]O[sub PDB] values vary between [minus]4.8% and [minus]9.2% and decrease radially outwards from points with lateral spacings on the order of 0.5-1 m in the middle of the calcite-cemented layer. The [delta][sup 18]O[sub PDB] values therefore indicate that the calcite-cemented layer was formed by merging of concretions. All [delta][sup 13]C[sub PDB] values measured are in the narrow range [minus]2.2% to [minus]0.5%, which suggests that the dominant source of calcite cement in the layer was biogenic carbonate.

  10. Short-term responses of wetland vegetation after liming of an Adirondack watershed

    SciTech Connect

    Mackun, I.R.; Leopold, D.J.; Raynal, D.J. )

    1994-08-01

    Watershed liming has been suggested as a long-term mitigation strategy for lake acidity, particularly in areas subject to high levels of acidic deposition. However, virtually no information has been available on the impacts of liming on wetland vegetation. In 1989, 1100 Mg of limestone (83.5% CaCO[sub 3]) were aerially applied to 48% (100 ha) of the Woods Lake watershed in the west-central Adirondack region of New York as part of the first comprehensive watershed liming study in North America. We inventoried wetland vegetation in 1.0-m[sup 2] plots before liming and during the subsequent 2 yr. Within this period liming influenced the cover, frequency, or importance values of only 6 of 64 wetland taxa. The cover of Sphagnum spp. and of the cespitose sedge Carex interior decreased in control relative to limed plots, and cover of the rhizomatous sedge Cladium mariscoides increased nearly threefold in limed areas. These two sedges, which are relatively tall, are characteristic of more calcareous habitats. Cover of the grass Muhlenbergia uniflora, cover and importance were adversely affected or inhibited by lime. It is unclear whether liming directly inhibited the growth of these three small-statured species, or whether the adverse effects of lime were mediated through shifts in competitive interactions with other species. The limited responses that we observed to liming, along with changes that occurred in control plots over the study period, may indicate that in the short term watershed liming was no more of a perturbation than the environmental factors responsible for natural annual variation in wetland communities.

  11. Influence of etidronic acid and tartaric acid on the growth of different calcite morphologies

    NASA Astrophysics Data System (ADS)

    Ukrainczyk, Marko; Stelling, Jan; Vu?ak, Marijan; Neumann, Thomas

    2013-04-01

    The influence of organic additives on the crystal growth of different calcite morphologies in two crystallization processes operating under steady state and batch mode is described. The crystal growth kinetics and overgrown morphological observations of rhombohedral, scalenohedral and prismatic calcite seed crystals in the systems containing etidronic acid (HEDP) and tartaric acid (TA) were investigated. The crystallization systems were of low supersaturations (SI<1.1) and of moderate pH (8.0). Kinetic parameters of the crystal growth in the presence of selected additives, such as reduction of the growth rates, rate constant and reduced critical supersaturation were calculated and correlated with additive concentration and different calcite seeds. The results indicate strong interactions of HEDP molecules and weak but specific interactions of TA for calcite surfaces. Interactions occur at the step edges which finally results in the expression of near-{hk0} faces and highly polar faces, consisting of solely Ca layer on the surface, stabilised by TA and HEDP molecules, respectively. The affinity of both additives is significantly higher for scalenohedral and prismatic calcite in contrast to rhombohedral calcite seeds. The effect of calcite seed morphology was attributed to different surface energetics of the predominant crystal faces of the studied calcite seeds.

  12. Carbon and oxygen isotopes in apatite CO/sub 2/ and co-existing calcite

    SciTech Connect

    Kolodny, Y.; Kaplan, I. R.

    1981-04-01

    Carbon and oxygen isotopes were analyzed in carbonate apatite CO/sub 2/ and in co-existing calcite. Both C and O in apatite CO/sub 2/ are enriched in the respective light isotopes relative to calcite. These results confirm the proposition that carbonate is part of the apatite structure.

  13. Biotic Control of Skeletal Growth by Scleractinian Corals in Aragonite–Calcite Seas

    PubMed Central

    Higuchi, Tomihiko; Fujimura, Hiroyuki; Yuyama, Ikuko; Harii, Saki; Agostini, Sylvain; Oomori, Tamotsu

    2014-01-01

    Modern scleractinian coral skeletons are commonly composed of aragonite, the orthorhombic form of CaCO3. Under certain conditions, modern corals produce calcite as a secondary precipitate to fill pore space. However, coral construction of primary skeletons from calcite has yet to be demonstrated. We report a calcitic primary skeleton produced by the modern scleractinian coral Acropora tenuis. When uncalcified juveniles were incubated from the larval stage in seawater with low mMg/Ca levels, the juveniles constructed calcitic crystals in parts of the primary skeleton such as the septa; the deposits were observable under Raman microscopy. Using scanning electron microscopy, we observed different crystal morphologies of aragonite and calcite in a single juvenile skeleton. Quantitative analysis using X-ray diffraction showed that the majority of the skeleton was composed of aragonite even though we had exposed the juveniles to manipulated seawater before their initial crystal nucleation and growth processes. Our results indicate that the modern scleractinian coral Acropora mainly produces aragonite skeletons in both aragonite and calcite seas, but also has the ability to use calcite for part of its skeletal growth when incubated in calcite seas. PMID:24609012

  14. Formation of hydrates during deepwater drilling operations

    SciTech Connect

    Barker, J.W.; Gomez, R.K.

    1989-03-01

    Two deepwater wells in widely separated geographical areas have experienced natural gas hydrate information during drilling operations. In both cases, hydrates, ice-like mixtures of natural gas and water, plugged subsea equipment, causing difficulties in subsequent operations. The potential for hydrate formation merits consideration during planning and conducting of deepwater drilling operations.

  15. 75 FR 9886 - Methane Hydrate Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Methane... meeting. SUMMARY: This notice announces a meeting of the Methane Hydrate Advisory Committee. Federal... Methane Hydrate Advisory Committee is to provide advice on potential applications of methane hydrate...

  16. 77 FR 40032 - Methane Hydrate Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-06

    ... Methane Hydrate Advisory Committee AGENCY: Office of Fossil Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Methane Hydrate Advisory Committee.... SUPPLEMENTARY INFORMATION: Purpose of the Committee: The purpose of the Methane Hydrate Advisory Committee is...

  17. Long-term field-scale experiment on using lime filters in an agricultural catchment.

    PubMed

    Kirkkala, Teija; Ventel, Anne-Mari; Tarvainen, Marjo

    2012-01-01

    The River Ylneenjoki catchment in southwest Finland is an area with a high agricultural nutrient load. We report here on the nutrient removal performance of three on-site lime-sand filters (F1, F2, and F3), established within or on the edge of the buffer zones. The filters contain burnt lime (CaO) or spent lime [CaO, Ca(OH), and CaCO]. Easily soluble lime results in a high pH level (>11) and leads to an efficient precipitation of soluble phosphorus (P) from the runoff. Water samples were taken from the inflow and outflow of each site in different hydrological situations. The length of the monitoring period was 4 yr for F1, 6 yr for F2, and 1.5 yr for F3. F1 and F2 significantly reduced the suspended solids (SS), total P (PTOT), and dissolved reactive P (DRP) in the treated water. The proportional reduction (%) varied but was usually clearly positive. Filter F3 was divided into two equal parts, one containing burnt lime and the other spent lime. Both filter parts removed PTOT and SS efficiently from the water; the burnt-lime part also removed DRP. The mixed-lime part removed DRP for a year, but then the efficiency decreased. The effect of filters on nitrogen compounds varied. We conclude that sand filters incorporating lime can be used together with buffer zones to reduce both P and SS load to watercourses. PMID:22370403

  18. Effect of molding pressure on fabrication of low-crystalline calcite block.

    PubMed

    Lin, Xin; Matsuya, Shigeki; Nakagawa, Masaharu; Terada, Yoshihiro; Ishikawa, Kunio

    2008-02-01

    We have reported that low-crystalline porous calcite block, which is useful as a bone substitute or a source material to prepare apatite-type bone fillers could be fabricated by exposing calcium hydroxide compact to carbon dioxide gas saturated with water vapor. In the present study, we investigated the effect of molding pressure on the transformation of calcium hydroxide into calcite and the mechanical strength of the carbonated compact. Transformation into calcite was almost completed within 72 h, however, a small amount of Ca(OH)(2) still remained unreacted at higher molding pressure because of incomplete penetration of CO(2) gas into the interparticle space due to dense packing of Ca(OH)(2) particles. On the other hand, high molding pressure resulted in an increase in diametral tensile strength (DTS) of the calcite compact formed. Critical porosity of the calcite block was calculated as approximately 68%. PMID:17607521

  19. Diagenetic calcite from the Chazyan Group (Vermont): an example of aragonite alteration in a greenhouse ocean

    NASA Astrophysics Data System (ADS)

    Tobin, Kenneth J.; Walker, Kenneth R.

    1998-11-01

    Marine diagenetic calcite with both a calcitic (low-to-intermediate Mg) and aragonitic origin was examined from the middle Ordovician buildups of the Chazyan Group in Vermont. All marine phases have elevated Sr (up to 1800 ppm) compared with that observed from marine precipitates in other middle Ordovician units. Stromatoporoids (labechiids), which were originally aragonitic, have higher Sr values than phases with an original calcite mineralogy (trilobites, marine cement). Additional evidence supporting precursor mineralogy interpretations includes elevated Mg values (up to 3.6 mole% MgCO 3) and the presence of microdolomite in interpreted calcitic phases. Originally aragonitic precipitates have lower Mg values and most significantly lack microdolomite. This study demonstrates the presence of elevated Sr values in marine precipitates that formed during a period when calcite, not aragonite, was the dominant physiochemically precipitated calcium carbonate mineralogy that formed from sea water. Elevated Sr is attributable to at least a partially open system diagenetic stabilization of biogenic aragonite.

  20. Influence of calcite on uranium(VI) reactive transport in the groundwater–river mixing zone

    SciTech Connect

    Ma, Rui; Liu, Chongxuan; Greskowiak, Janek; Prommer, Henning; Zachara, John M.; Zheng, Chunmiao

    2014-01-23

    Calcite is an important mineral that can affect uranyl reactive transport in subsurface sediments. This study investigated the distribution of calcite and its influence on uranyl adsorption and reactive transport in the groundwater-river mixing zone at US Hanford 300A, Washington State. Simulations using a 2D reactive transport model under field-relevant hydrogeochemical conditions revealed a complex distribution of calcite concentration as a result of dynamic groundwater-river interactions. The calcite concentration distribution in turn affected the spatial and temporal changes in aqueous carbonate, calcium, and pH, which subsequently influenced U(VI) mobility and discharge rates into the river. The results implied that calcite distribution and its concentration dynamics is an important consideration for field characterization, monitoring, and reactive transport prediction.

  1. Low limit of Mn 2+-activated cathodoluminescence of calcite: state of the art

    NASA Astrophysics Data System (ADS)

    Habermann, Dirk; Neuser, Rolf D.; Richter, Detlev K.

    1998-02-01

    In the literature, the lower limit for Mn 2+-activated cathodoluminescence (CL) of calcite is variously reputed to over a very wide range of values above 10 ppm Mn. Our spectroscopic investigations of the CL response in natural calcite reveal that below 10 ppm manganese content Mn 2+-activation is also present. Using the Quantitative High Resolution Spectral analysis of CL (QHRS-CL) an activation by Mn 2+ in the range of 700 ppb is proved, which cannot be determined visually. So, if not quenched, the minimum Mn 2+ content for Mn 2+-activation is one atom in the irradiated calcite crystal lattice volume. As the intrinsic (background blue) luminescence is used to determine non-altered biogenic calcite, the limit of Mn 2+-activation plays an important role in the interpretation of diagenetic processes. Our results of spectroscopic analyses require a revision of current opinions about the diagenesis of calcite as revealed by CL investigation.

  2. Attraction between hydrated hydrophilic surfaces

    NASA Astrophysics Data System (ADS)

    Kanduč, Matej; Schneck, Emanuel; Netz, Roland R.

    2014-08-01

    According to common knowledge, hydrophilic surfaces repel via hydration forces while hydrophobic surfaces attract, but mounting experimental evidence suggests that also hydrophilic surfaces can attract. Using all-atom molecular dynamics simulations at prescribed water chemical potential we study the crossover from hydration repulsion to hydrophobic attraction for planar polar surfaces of varying stiffness and hydrogen-bonding capability. Rescaling the partial charges of the polar surface groups, we cover the complete spectrum from very hydrophobic surfaces (characterized by contact angles θ ≃ 135°) to hydrophilic surfaces exhibiting complete wetting (θ = 0°). Indeed, for a finite range θadh < θ < 90°, we find a regime where hydrophilic surfaces attract at sub-nanometer separation and stably adhere without intervening water. The adhesive contact angle θadh depends on surface type and lies in the range 65° < θadh < 80°, in good agreement with experiments. Analysis of the total number of hydrogen bonds (HBs) formed by water and surface groups rationalizes this crossover between hydration repulsion and hydrophilic attraction in terms of a subtle balance: Highly polar surfaces repel because of strongly bound hydration water, less polar hydrophilic surfaces attract because water-water HBs are preferred over surface-water HBs. Such solvent reorganization forces presumably underlie also other important phenomena, such as selective ion adsorption to interfaces as well as ion pair formation.

  3. Hydration rind dates rhyolite flows.

    PubMed

    Friedman, I

    1968-02-23

    Hydration of obsidian has been used to date rhyolite flows, containing obsidian or porphyritic glass, at Glass Mountain (Medicine Lake Highlands) and Mono Lake, California. The method is simple and rapid and can be used to date flows that erupted between 200 and approximately 200,000 years ago. PMID:17768978

  4. Hydration rind dates rhyolite flows

    USGS Publications Warehouse

    Friedman, I.

    1968-01-01

    Hydration of obsidian has been used to date rhyolite flows, containing obsidian or porphyritic glass, at Glass Mountain (Medicine Lake Highlands) and Mono Lake, California. The method is simple and rapid and can be used to date flows that erupted between 200 and approximately 200,000 years ago.

  5. Diel cycles in calcite production and dissolution in a eutrophic basin

    SciTech Connect

    Cicerone, D.S.; Stewart, A.J.; Roh, Y.

    1999-10-01

    Calcite production is understood largely as a longer-term phenomenon (e.g., seasonal whitings) that can occur in hardwater lakes, and is significant ecologically because it can slow the rate of eutrophication by reducing, through adsorption, the availability of nutrients to primary producers. In this study the authors show that rapid changes in concentration of dissolved CO{sub 2} by photosynthesis and respiration within a eutrophic basin generated strong day-to-night cycles in calcite production and dissolution. Diel cycles in calcite production and dissolution were large enough that they could drive secondary diel cycles in the availability of metals that strongly sorb to the surfaces of calcite particles. They explored the possibility of the secondary diel cycling of metals by intensive 7-d in situ monitoring of water-quality conditions in a shallow, eutrophic spill-control basin near an industrial facility in eastern Tennessee; inspecting data from a 7-year record of water-quality parameters for this basin; analyzing physicochemical characteristics and mineralogic composition of sediments in the basin; and conducting laboratory experiments to characterize the interaction of calcite with Cd, under solid-liquid nonequilibrium conditions. The authors found that the basin accumulated and stored calcite. In situ monitoring showed that calcite was produced during daylight, and tended to dissolve again at night; the calcite production and dissolution processes seemed to be modulated by dissolved-phase CO{sub 2} dynamics, in concert with large diel fluctuations in pCa, pH, and Po{sub 2}. Laboratory experiments showed a rapid interaction ({lt}6 h) of Cd with calcite, in response to dissolved CO{sub 2} changes. Thus, concentrations of dissolved Cd can vary over daily cycles, mediated by diel changes in calcite production and dissolution. Thermodynamic considerations suggest that other metals, such as Zn, Sr, Ni, and Ba, may demonstrate this behavior as well.

  6. Interactions of arsenic with calcite surfaces revealed by in situ nanoscale imaging

    NASA Astrophysics Data System (ADS)

    Renard, François; Putnis, Christine V.; Montes-Hernandez, German; Ruiz-Agudo, Encarnacion; Hovelmann, Jörn; Sarret, Géraldine

    2015-06-01

    Arsenic dissolved in water represents a key environmental and health challenge because several million people are under the threat of contamination. In calcareous environments calcite may play an important role in arsenic solubility and transfer in water. Arsenic-calcite interactions remain controversial, especially for As(III) which was proposed to be either incorporated as such, or as As(V) after oxidation. Here, we provide the first time-lapse in situ study of the evolution of the (10-14) calcite cleavage surface morphology during dissolution and growth in the presence of solutions with various amounts of As(III) or As(V) at room temperature and pH range 6-11 using a flow-through cell connected to an atomic force microscope (AFM). Reaction products were then characterized by Raman spectroscopy. In parallel, co-precipitation experiments with either As(III) or As(V) were performed in batch reactors, and the speciation of arsenic in the resulting solids was studied by X-ray absorption spectroscopy (XAS). For As(V), AFM results showed that it interacts strongly with the calcite surface, and XAS results showed that As(V) was mostly incorporated in the calcite structure. For As(III), AFM results showed much less impact on calcite growth and dissolution and less incorporation was observed. This was confirmed by XAS results that indicate that As(III) was partly oxidized into As(V) before being incorporated into calcite and the resulting calcite contained 36% As(III) and 64% As(V). All these experimental results confirm that As(V) has a much stronger interaction with calcite than As(III) and that calcite may represent an important reservoir for arsenic in various geological environments.

  7. Transformation of Mg-bearing amorphous calcium carbonate to Mg-calcite - In situ monitoring

    NASA Astrophysics Data System (ADS)

    Purgstaller, Bettina; Mavromatis, Vasileios; Immenhauser, Adrian; Dietzel, Martin

    2016-02-01

    The formation of Mg-bearing calcite via an amorphous precursor is a poorly understood process that is of relevance for biogenic and abiogenic carbonate precipitation. In order to gain an improved insight on the controls of Mg incorporation in calcite formed via an Mg-rich amorphous calcium carbonate (Mg-ACC) precursor, the precipitation of Mg-ACC and its transformation to Mg-calcite was monitored by in situ Raman spectroscopy. The experiments were performed at 25.0 ± 0.03 °C and pH 8.3 ± 0.1 and revealed two distinct pathways of Mg-calcite formation: (i) At initial aqueous Mg/Ca molar ratios ⩽ 1:6, Mg-calcite formation occurs via direct precipitation from solution. (ii) Conversely, at higher initial Mg/Ca molar ratios, Mg-calcite forms via an intermediate Mg-rich ACC phase. In the latter case, the final product is a calcite with up to 20 mol% Mg. This Mg content is significant higher than that of the Mg-rich ACC precursor phase. Thus, a strong net uptake of Mg ions from the solution into the crystalline precipitate throughout and also subsequent to ACC transformation is postulated. Moreover, the temporal evolution of the geochemical composition of the reactive solution and the Mg-ACC has no significant effect on the obtained "solubility product" of Mg-ACC. The enrichment of Mg in calcite throughout and subsequent to Mg-ACC transformation is likely affected by the high aqueous Mg/Ca ratio and carbonate alkalinity concentrations in the reactive solution. The experimental results have a bearing on the formation mechanism of Mg-rich calcites in marine early diagenetic environments, where high carbonate alkalinity concentrations are the rule rather than the exception, and on the insufficiently investigated inorganic component of biomineralisation pathways in many calcite secreting organisms.

  8. Thermal properties of methane gas hydrates

    USGS Publications Warehouse

    Waite, William F.

    2007-01-01

    Gas hydrates are crystalline solids in which molecules of a “guest” species occupy and stabilize cages formed by water molecules. Similar to ice in appearance (fig. 1), gas hydrates are stable at high pressures and temperatures above freezing (0°C). Methane is the most common naturally occurring hydrate guest species. Methane hydrates, also called simply “gas hydrates,” are extremely concentrated stores of methane and are found in shallow permafrost and continental margin sediments worldwide. Brought to sea-level conditions, methane hydrate breaks down and releases up to 160 times its own volume in methane gas. The methane stored in gas hydrates is of interest and concern to policy makers as a potential alternative energy resource and as a potent greenhouse gas that could be released from sediments to the atmosphere and ocean during global warming. In continental margin settings, methane release from gas hydrates also is a potential geohazard and could cause submarine landslides that endanger offshore infrastructure. Gas hydrate stability is sensitive to temperature changes. To understand methane release from gas hydrate, the U.S. Geological Survey (USGS) conducted a laboratory investigation of pure methane hydrate thermal properties at conditions relevant to accumulations of naturally occurring methane hydrate. Prior to this work, thermal properties for gas hydrates generally were measured on analog systems such as ice and non-methane hydrates or at temperatures below freezing; these conditions limit direct comparisons to methane hydrates in marine and permafrost sediment. Three thermal properties, defined succinctly by Briaud and Chaouch (1997), are estimated from the experiments described here: - Thermal conductivity, λ: if λ is high, heat travels easily through the material. - Thermal diffusivity, κ: if κ is high, it takes little time for the temperature to rise in the material. - Specific heat, cp: if cp is high, it takes a great deal of heat to raise the temperature of the material.

  9. Mesoscale texture of cement hydrates

    PubMed Central

    Ioannidou, Katerina; Krakowiak, Konrad J.; Bauchy, Mathieu; Hoover, Christian G.; Masoero, Enrico; Yip, Sidney; Ulm, Franz-Josef; Levitz, Pierre; Pellenq, Roland J.-M.; Del Gado, Emanuela

    2016-01-01

    Strength and other mechanical properties of cement and concrete rely upon the formation of calcium–silicate–hydrates (C–S–H) during cement hydration. Controlling structure and properties of the C–S–H phase is a challenge, due to the complexity of this hydration product and of the mechanisms that drive its precipitation from the ionic solution upon dissolution of cement grains in water. Departing from traditional models mostly focused on length scales above the micrometer, recent research addressed the molecular structure of C–S–H. However, small-angle neutron scattering, electron-microscopy imaging, and nanoindentation experiments suggest that its mesoscale organization, extending over hundreds of nanometers, may be more important. Here we unveil the C–S–H mesoscale texture, a crucial step to connect the fundamental scales to the macroscale of engineering properties. We use simulations that combine information of the nanoscale building units of C–S–H and their effective interactions, obtained from atomistic simulations and experiments, into a statistical physics framework for aggregating nanoparticles. We compute small-angle scattering intensities, pore size distributions, specific surface area, local densities, indentation modulus, and hardness of the material, providing quantitative understanding of different experimental investigations. Our results provide insight into how the heterogeneities developed during the early stages of hydration persist in the structure of C–S–H and impact the mechanical performance of the hardened cement paste. Unraveling such links in cement hydrates can be groundbreaking and controlling them can be the key to smarter mix designs of cementitious materials. PMID:26858450

  10. Mesoscale texture of cement hydrates.

    PubMed

    Ioannidou, Katerina; Krakowiak, Konrad J; Bauchy, Mathieu; Hoover, Christian G; Masoero, Enrico; Yip, Sidney; Ulm, Franz-Josef; Levitz, Pierre; Pellenq, Roland J-M; Del Gado, Emanuela

    2016-02-23

    Strength and other mechanical properties of cement and concrete rely upon the formation of calcium-silicate-hydrates (C-S-H) during cement hydration. Controlling structure and properties of the C-S-H phase is a challenge, due to the complexity of this hydration product and of the mechanisms that drive its precipitation from the ionic solution upon dissolution of cement grains in water. Departing from traditional models mostly focused on length scales above the micrometer, recent research addressed the molecular structure of C-S-H. However, small-angle neutron scattering, electron-microscopy imaging, and nanoindentation experiments suggest that its mesoscale organization, extending over hundreds of nanometers, may be more important. Here we unveil the C-S-H mesoscale texture, a crucial step to connect the fundamental scales to the macroscale of engineering properties. We use simulations that combine information of the nanoscale building units of C-S-H and their effective interactions, obtained from atomistic simulations and experiments, into a statistical physics framework for aggregating nanoparticles. We compute small-angle scattering intensities, pore size distributions, specific surface area, local densities, indentation modulus, and hardness of the material, providing quantitative understanding of different experimental investigations. Our results provide insight into how the heterogeneities developed during the early stages of hydration persist in the structure of C-S-H and impact the mechanical performance of the hardened cement paste. Unraveling such links in cement hydrates can be groundbreaking and controlling them can be the key to smarter mix designs of cementitious materials. PMID:26858450

  11. Physical activity, hydration and health.

    PubMed

    Marcos, Ascensión; Manonelles, Pedro; Palacios, Nieves; Wärnberg, Julia; Casajús, José A; Pérez, Margarita; Aznar, Susana; Benito, Pedro J; Martínez-Gomez, David; Ortega, Francisco B; Ortega, Eduardo; Urrialde, Rafael

    2014-01-01

    Since the beginning of mankind, man has sought ways to promote and preserve health as well as to prevent disease. Hydration, physical activity and exercise are key factors for enhancing human health. However, either a little dose of them or an excess can be harmful for health maintenance at any age. Water is an essential nutrient for human body and a major key to survival has been to prevent dehydration. However, there is still a general controversy regarding the necessary amount to drink water or other beverages to properly get an adequate level of hydration. In addition, up to now the tools used to measure hydration are controversial. To this end, there are several important groups of variables to take into account such as water balance, hydration biomarkers and total body water. A combination of methods will be the most preferred tool to find out any risk or situation of dehydration at any age range. On the other hand, physical activity and exercise are being demonstrated to promote health, avoiding or reducing health problems, vascular and inflammatory disea ses and helping weight management. Therefore, physical activity is also being used as a pill within a therapy to promote health and reduce risk diseases, but as in the case of drugs, dose, intensity, frequency, duration and precautions have to be evaluated and taken into account in order to get the maximum effectiveness and success of a treatment. On the other hand, sedentariness is the opposite concept to physical activity that has been recently recognized as an important factor of lifestyle involved in the obesogenic environment and consequently in the risk of the non-communicable diseases. In view of the literature consulted and taking into account the expertise of the authors, in this review a Decalogue of global recommendations is included to achieve an adequate hydration and physical activity status to avoid overweight/obesity consequences. PMID:24972459

  12. Hydration of the DNA bases is local.

    PubMed Central

    Schneider, B; Berman, H M

    1995-01-01

    Ordered hydration sites were determined for the nucleotide bases in B-type conformations using the crystal structure data on 14 B-DNA decamer structures. A method of density representation was extended so that positions, occupancies, and distributions of the hydration sites were predicted around a B-DNA double helix by a method analogous to crystallographic refinement. The predicted hydration sites correctly reproduce the main features of hydration around the B-DNA dodecamer. In contrast to the previous observations, the newly available crystal data show the same extent of hydration of guanine and adenine, and of cytosine and thymine. Images FIGURE 5 PMID:8599672

  13. Paleotemperature Estimation by Tandem δ18O Measurement of Biogenic Carbonate and Gypsum Hydration Water

    NASA Astrophysics Data System (ADS)

    Hodell, D. A.; Turchyn, A. V.; Escobar, J.; Curtis, J. H.; Brenner, M.; Gilli, A.; Anselmetti, F.; Ariztegui, D.; Bush, M.; Perez, L.; Schwalb, A.

    2010-12-01

    One of the fundamental problems in oxygen isotope paleothermometry is the carbonate mineral-water temperature equation is often under constrained. The δ18O of calcite or aragonite can be measured on fossil shell material but a unique temperature solution is not possible without knowing the δ18Owater from which the carbonate precipitated. Gypsum (CaSO4*2H2O) is a hydrated mineral that contains 20.9% water by weight. The isotopic composition of the water from which the gypsum was precipitated can be calculated from the δ18O and δD of gypsum hydration water provided: (i) the fractionation factors between mother water and crystal water are known; and (ii) no further exchange has occurred between environmental and crystal water after deposition. Here we propose that tandem δ18O measurements of both carbonate and gypsum hydration water in the same samples offers a power tool for determining past temperature. We demonstrate the method using co-occurring gypsum and biogenic carbonate from sediment cores from Lake Peten Itza, Guatemala (17oN, 90oW). Oxygen and hydrogen isotopic results of interstitial and gypsum hydration water from glacial-aged deposits in Lake Peten Itza suggest the gypsum hydration water has not exchanged with sediment pore water. The δ18O and δD of lake water, calculated from gypsum hydration water and known fractionation factors, fall on a projection of the evaporative line (slope of ~5) defined using modern lakes in the region. Fifteen paired measurements of ostracods and gypsum hydration water in the same samples gave a mean temperature of ~16oC (range 13 to 19 oC) for the Late Glacial (18 to 10 ka), which is 9oC cooler than mean annual temperature in the region today (~25oC). The low glacial temperatures likely reflect winter climate that sets hypolimnetic temperature in warm, monomictic lakes. Our preliminary results support previous findings of much greater glacial tropical cooling during winter on land in Central America than indicated by marine proxies in the nearby Caribbean Sea. Accuracy of the method could be improved by verifying the oxygen and hydrogen isotope fractionation factors between mother water and gypsum hydration water determined in the 1960s and by culturing experiments of the ostracod species (Limnocythere opesta) used in this study to determine the offset from oxygen isotope equilibrium.

  14. [The Analysis of Traditional Lime Mortars from Zhejiang Province, China].

    PubMed

    Liu, Xiao-bin; Cui, Biao; Zhang, Bing-jian

    2016-01-01

    The components of ancient mortars have always been an important research field in historic building conservation. It has been well known that using traditional mortars in conservation projects have many advantages, such as compatibility and stability. So, developing new binding materials based on traditional mortar has become an international study hotspot. With China's economic development, the protection of ancient buildings also began to put on the agenda, but the understanding on Chinese traditional mortar is limited, and rare literatures are reported. In the present work, the authors investigate seven ancient city wall sites in Zhejiang Province in situ, and subsequently laboratory analysis were carried out on collected mortar samples. The characterizations of mortar samples were made by multi-density gauge, XRD, FTIR, TG-DSC and wet chemical analysis. The experimental results showed that: the main component of masonry mortars is calcium carbonate, the content between 75% - 90%, and they should be made from relatively pure lime mortar. The raw materials of mortar samples were mainly calcareous quick lime, and sample from Taizhou city also contained magnesium quick lime. There are four city walls were built by sticky-rice mortars. It suggests that the technology of adding the sticky rice soup into mortar was universal in the Ming Dynasties. These mortars have lower density between 1.2 and 1.9 g x cm(-3); this outcome should be the result of long-term natural erosion. We have also analyzed other chemical and physical characteristics of these masonry mortars. The results can afford the basic data for the future repairmen programs, development of new protective materials, and comparative study of mortars. PMID:27228774

  15. Well log evaluation of gas hydrate saturations

    USGS Publications Warehouse

    Collett, T.S.

    1998-01-01

    The amount of gas sequestered in gas hydrates is probably enormous, but estimates are highly speculative due to the lack of previous quantitative studies. Gas volumes that may be attributed to a gas hydrate accumulation within a given geologic setting are dependent on a number of reservoir parameters; one of which, gas-hydrate saturation, can be assessed with data obtained from downhole well logging devices. The primary objective of this study was to develop quantitative well-log evaluation techniques which will permit the calculation of gas-hydrate saturations in gas-hydrate-bearing sedimentary units. The "standard" and "quick look" Archie relations (resistivity log data) yielded accurate gas-hydrate and free-gas saturations within all of the gas hydrate accumulations assessed in the field verification phase of the study. Compressional wave acoustic log data have been used along with the Timur, modified Wood, and the Lee weighted average acoustic equations to calculate accurate gas-hydrate saturations in all of the gas hydrate accumulations assessed in this study. The well log derived gas-hydrate saturations calculated in the field verification phase of this study, which range from as low as 2% to as high as 97%, confirm that gas hydrates represent a potentially important source of natural gas.

  16. Handbook of gas hydrate properties and occurrence

    SciTech Connect

    Kuustraa, V.A.; Hammershaimb, E.C.

    1983-12-01

    This handbook provides data on the resource potential of naturally occurring hydrates, the properties that are needed to evaluate their recovery, and their production potential. The first two chapters give data on the naturally occurring hydrate potential by reviewing published resource estimates and the known and inferred occurrences. The third and fourth chapters review the physical and thermodynamic properties of hydrates, respectively. The thermodynamic properties of hydrates that are discussed include dissociation energies and a simplified method to calculate them; phase diagrams for simple and multi-component gases; the thermal conductivity; and the kinetics of hydrate dissociation. The final chapter evaluates the net energy balance of recovering hydrates and shows that a substantial positive energy balance can theoretically be achieved. The Appendices of the Handbook summarize physical and thermodynamic properties of gases, liquids and solids that can be used in designing and evaluating recovery processes of hydrates. 158 references, 67 figures, 47 tables.

  17. Improvement of tropical soils with waste ash and lime

    SciTech Connect

    Nicholson, P.G.; Ding, M.

    1997-12-31

    The special environment in Hawaii produces some tropical soils which often have poor engineering properties including high swelling potential, high plasticity, low strength, etc. On the island of Oahu, municipal solid waste (MSW) is incinerated to reduce the total volume for landfill conservation while generating electricity to supplement the islands energy needs. Productive use of these wastes, together with locally available lime and/or cement, are being considered as possible admixtures to stabilize those undesirable soils. Utilization of this waste ash could have significant environmental benefits and result in considerable cost savings, while providing a low cost stabilizer for geotechnical applications.

  18. Improvement in hardness of soda-lime-silica glass

    SciTech Connect

    Chakraborty, Riya; De, Moumita; Roy, Sudakshina; Dey, Arjun; Biswas, Sampad K.; Middya, Tapas Ranjan; Mukhopadhyay, Anoop K.

    2012-06-05

    Hardness is a key design parameter for structural application of brittle solids like glass. Here we report for the first time the significant improvement of about 10% in Vicker's hardness of a soda-lime-silica glass with loading rate in the range of 0.1-10 N.s{sup -1}. Corroborative dark field optical and scanning electron microscopy provided clue to this improvement through evidence of variations in spatial density of shear deformation band formation as a function of loading rate.

  19. Lime and fly ash stabilization of wastewater treatment sludge

    SciTech Connect

    Burns, H.; Gremminger, L.

    1994-01-11

    This invention provides a process meeting the EPA's PFRP standard for WWTS treatment thereby producing a readily usable end-product in either soil-like form or semi-impermeable low load bearing, mass form. The process includes mixing WWTS with lime and fly ash, to cause a temperature increase to above 70 C for at least 30 minutes and to cause the pH to exceed 12 for at least 2 hours. The end-product may be compacted to produce an semi-impermeable, durable mass or the soil-like product may be used as landfill cover material. 3 figs.

  20. Capital costs of lime treatment at the Augusta wastewater treatment plant

    SciTech Connect

    Halverson, N.V.

    1988-08-17

    The capital costs were estimated for the addition of lime treatment facilities to the Augusta sewage treatment plant as a means of reducing the phosphorus loading of L Lake and consequently reducing the algae populations in the lake. Primary lime treatments and tertiary lime treatments were considered. The capital cost of a primary lime treatment addition would be lower than for a tertiary treatment addition. Depending on whether the existing primary settling tank can be utilized for lime treatment or a new clarifier must be built, a primary lime treatment addition would currently cost between $500,000 and $3 million to construct at the Augusta sewage treatment plant. Primary lime treatment coupled with the existing activated sludge biological treatment system would remove approximately 80% of the phosphorus from the sewage entering the sewage treatment plant, resulting in an effluent concentration of about 2 mg/l. To reduce effluent phosphorus concentration to 1 mg/l or less, additional coagulation and effluent filtration facilities would be necessary. One disadvantage of primary lime treatment, however, would be the two-fold or three-fold increase in sludge to be disposed. Tertiary lime treatment usually results in lower effluent phosphorus levels than primary lime treatment, but the capital cost is significantly higher. Costs for tertiary lime treatment for the Augusta sewage treatment plant would range from $5 million to $14 million. The higher estimate would include an additional settling stage and filtration of the effluent, features which would improve the efficiency of phosphorus removal and reduce the effluent phosphorus concentration. 12 refs.

  1. Thermal conductivity of hydrate-bearing sediments

    USGS Publications Warehouse

    Cortes, D.D.; Martin, A.I.; Yun, T.S.; Francisca, F.M.; Santamarina, J.C.; Ruppel, C.

    2009-01-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate-saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate-bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces. Copyright 2009 by the American Geophysical Union.

  2. Direct nanoscale observations of the coupled dissolution of calcite and dolomite and the precipitation of gypsum.

    PubMed

    Offeddu, Francesco Giancarlo; Cama, Jordi; Soler, Josep Maria; Putnis, Christine V

    2014-01-01

    In-situ atomic force microscopy (AFM) experiments were performed to study the overall process of dissolution of common carbonate minerals (calcite and dolomite) and precipitation of gypsum in Na2SO4 and CaSO4 solutions with pH values ranging from 2 to 6 at room temperature (23 ± 1 °C). The dissolution of the carbonate minerals took place at the (104) cleavage surfaces in sulfate-rich solutions undersaturated with respect to gypsum, by the formation of characteristic rhombohedral-shaped etch pits. Rounding of the etch pit corners was observed as solutions approached close-to-equilibrium conditions with respect to calcite. The calculated dissolution rates of calcite at pH 4.8 and 5.6 agreed with the values reported in the literature. When using solutions previously equilibrated with respect to gypsum, gypsum precipitation coupled with calcite dissolution showed short gypsum nucleation induction times. The gypsum precipitate quickly coated the calcite surface, forming arrow-like forms parallel to the crystallographic orientations of the calcite etch pits. Gypsum precipitation coupled with dolomite dissolution was slower than that of calcite, indicating the dissolution rate to be the rate-controlling step. The resulting gypsum coating partially covered the surface during the experimental duration of a few hours. PMID:25161860

  3. Controls of carbonate mineralogy and solid-solution of Mg in calcite: evidence from spelean systems

    SciTech Connect

    Gonzalez, L.A.; Lohmann, K.C.

    1985-01-01

    Precipitation of carbonate minerals in spelean systems occurs under a wide range of fluid chemistry, Mg-Ca ratios, alkalinities, pH and temperatures; thus, spelean systems provide ideal settings to determine factors controlling the mineralogy of precipitated carbonates and solid-solution of Mg in calcite. Cave waters and actively-precipitating carbonate speleothems were collected from Carlsbad Caverns National Park, New Mexico and the Mammoth-Flint Cave System, Kentucky. Carbonate mineralogy of precipitated phases was determined by x-ray diffraction, and major and minor element composition of waters and accompanying minerals were determined by Atomic Absorption Spectrophotometry. Results demonstrate that at a constant CO3 concentration the precipitation threshold for calcite to aragonite is controlled dominantly by the Mg/Ca ratio of the ambient fluid. Aragonite precipitation is favored by high Mg/Ca ratios. Conversely, with increasing CO3 concentration at constant fluid Mg/Ca ratios, calcite is preferentially precipitated. Solid-solution of Mg in calcite is positively correlated with both increased Mg/Ca ratios and CO3 concentrations. These data suggest that Mg contents of calcite can not be defined solely in terms of a homogeneous distribution coefficient. Rather, Mg concentrations can be also be affected by the CO3 concentration and degree of calcite saturation, suggesting that the rate of crystal growth also plays and important role in Mg solid-solution in calcites.

  4. Influence of surface conductivity on the apparent zeta potential of calcite.

    PubMed

    Li, Shuai; Leroy, Philippe; Heberling, Frank; Devau, Nicolas; Jougnot, Damien; Chiaberge, Christophe

    2016-04-15

    Zeta potential is a physicochemical parameter of particular importance in describing the surface electrical properties of charged porous media. However, the zeta potential of calcite is still poorly known because of the difficulty to interpret streaming potential experiments. The Helmholtz-Smoluchowski (HS) equation is widely used to estimate the apparent zeta potential from these experiments. However, this equation neglects the influence of surface conductivity on streaming potential. We present streaming potential and electrical conductivity measurements on a calcite powder in contact with an aqueous NaCl electrolyte. Our streaming potential model corrects the apparent zeta potential of calcite by accounting for the influence of surface conductivity and flow regime. We show that the HS equation seriously underestimates the zeta potential of calcite, particularly when the electrolyte is diluted (ionic strength⩽0.01M) because of calcite surface conductivity. The basic Stern model successfully predicted the corrected zeta potential by assuming that the zeta potential is located at the outer Helmholtz plane, i.e. without considering a stagnant diffuse layer at the calcite-water interface. The surface conductivity of calcite crystals was inferred from electrical conductivity measurements and computed using our basic Stern model. Surface conductivity was also successfully predicted by our surface complexation model. PMID:26852350

  5. Direct nanoscale observations of the coupled dissolution of calcite and dolomite and the precipitation of gypsum

    PubMed Central

    Cama, Jordi; Soler, Josep Maria; Putnis, Christine V

    2014-01-01

    Summary In-situ atomic force microscopy (AFM) experiments were performed to study the overall process of dissolution of common carbonate minerals (calcite and dolomite) and precipitation of gypsum in Na2SO4 and CaSO4 solutions with pH values ranging from 2 to 6 at room temperature (23 ± 1 °C). The dissolution of the carbonate minerals took place at the (104) cleavage surfaces in sulfate-rich solutions undersaturated with respect to gypsum, by the formation of characteristic rhombohedral-shaped etch pits. Rounding of the etch pit corners was observed as solutions approached close-to-equilibrium conditions with respect to calcite. The calculated dissolution rates of calcite at pH 4.8 and 5.6 agreed with the values reported in the literature. When using solutions previously equilibrated with respect to gypsum, gypsum precipitation coupled with calcite dissolution showed short gypsum nucleation induction times. The gypsum precipitate quickly coated the calcite surface, forming arrow-like forms parallel to the crystallographic orientations of the calcite etch pits. Gypsum precipitation coupled with dolomite dissolution was slower than that of calcite, indicating the dissolution rate to be the rate-controlling step. The resulting gypsum coating partially covered the surface during the experimental duration of a few hours. PMID:25161860

  6. Experimental study on the reuse of spent rapidly hydrated sorbent for circulating fluidized bed flue gas desulfurization.

    PubMed

    Li, Yuan; Zheng, Kai; You, Changfu

    2011-11-01

    Rapidly hydrated sorbent, prepared by rapidly hydrating adhesive carrier particles and lime, is a highly effective sorbent for moderate temperature circulating fluidized bed flue gas desulfurization (CFB-FGD) process. The residence time of fine calcium-containing particles in CFB reactors increases by adhering on the surface of larger adhesive carrier particles, which contributes to higher sorbent calcium conversion ratio. The circulation ash of CFB boilers (α-adhesive carrier particles) and the spent sorbent (β and γ-adhesive carrier particles) were used as adhesive carrier particles for producing the rapidly hydrated sorbent. Particle physical characteristic analysis, abrasion characteristics in fluidized bed and desulfurization characteristics in TGA and CFB-FGD systems were investigated for various types of rapidly hydrated sorbent (α, β, and γ-sorbent). The adhesion ability of γ-sorbent was 50.1% higher than that of α-sorbent. The abrasion ratio of β and γ-sorbent was 16.7% lower than that of α-sorbent. The desulfurization abilities of the three sorbent in TGA were almost same. The desulfurization efficiency in the CFB-FGD system was up to 95% at the bed temperature of 750 °C for the β-sorbent. PMID:21928832

  7. Effect of Second-phase Particles on Static Adjustment of Calcite Grain Boundaries in Carbonate Mylonites

    NASA Astrophysics Data System (ADS)

    Ree, J.; Lee, S.; Jung, H.

    2010-12-01

    Static adjustment of grain boundaries during the waning stage of deformation with sustained heat (e.g. at the end of an orogeny) has not been studied much, although it is important for the interpretation of microstructural status during the main stage of deformation. We report here that static adjustment of calcite grain boundaries is dependent on second-phase particles in carbonate mylonites from the Geounri Shear Zone in the Taebaeksan Basin of South Korea. The carbonate mylonites consist of relic (porphyroclastic) calcites (120-400 ?m) and dynamically recrystallized calcites (30-35 ?m) with second-phase particles (15-20 ?m) of quartz and phyllosilicates. Both calcite grains contain mechanical twins and the twins are wider (10-20 ?m thick) in the relic calcites than in the dynamically recrystallized ones (1-3 ?m thick). In the layers of carbonate mylonite with less than 3% of second phases, grain boundaries of calcites are straight with triple junctions. In contrast, calcite grain boundaries are lobate to wavy in the layers with more than 3% of second phases, suggesting dynamic grain boundary migration. Calcite grains in both layers show a strong lattice preferred orientation indicating dominant slip system of basal with minor one of rhomb . We interpret that the foam texture of calcite in the mylonite layers with less than 3% of second phases was produced during the waning stage of the main deformation with a sustained heat since both syntectonic and posttectonic chloritoid porphyroblasts occur in adjacent phyllonite layers in the shear zone. 3% volume fraction of second-phase particles might be a critical value above which deformation microstructures of the main phase were frozen without static adjustment in our carbonate mylonites.

  8. Low-magnesium uranium-calcite with high degree of crystallinity and gigantic luminescence emission.

    PubMed

    Valle-Fuentes, Francisco-Jose; Garcia-Guinea, Javier; Cremades, Ana; Correcher, Virgilio; Sanchez-Moral, Sergio; Gonzalez-Martin, Rafael; Sanchez-Muñoz, Luis; Lopez-Arce, Paula

    2007-01-01

    Cabrera (Madrid) low-Mg calcites exhibit: (i) an unusual twofold elevation in X-ray diffraction pattern intensity; (ii) a 60-fold elevation of luminescence emission, compared to six common natural calcites selected for comparison purposes; (iii) a natural relatively high radiation level of circa 200 nSvh(-1) not detected in 1300 other calcites from the Natural History Museum of Madrid. Calcites were analysed by the X-ray diffraction powder method (XRD), cathodo-luminescence spectroscopy in scanning electron microscopy (CL-SEM), thermoluminescence (TL), differential thermal analysis (DTA), X-ray fluorescence spectrometry (XRF) and particle size distribution (PSD). The Cabrera calcite study shows: (i) helicoidally distributed steps along the (0001) orientation; (ii) protuberance defects onto the (0001) surface, observed by SEM; (iii) XRF chemical contents of 0.03% MgO, 0.013% of Y(2)O(3), and 0.022% of U(3)O(8), with accessory amounts of rare earth elements (REE); (iv) DTA dissociation temperature of 879 degrees C; (v) TL maxima peaks at 233 and 297 degrees C whose areas are 60 times compared to other calcites; (vi) spectra CL-SEM bands at 2.0 and 3.4 eV in the classic structure of Mn(2+) activators; (vii) a twofold XRD pattern explained given that sample is a low-Mg calcite. The huge TL and CL emissions of the Cabrera calcite sample must be linked with the uranyl group presence. This intense XRD pattern in low-Mg calcites could bring into being analytical errors. PMID:17011199

  9. Barley seedling growth in soils amended with fly ash or agricultural lime followed by acidification

    SciTech Connect

    Renken, R.R.; McCallister, D.L.; Tarkalson, D.D.; Hergert, G.W.; Marx, D.B.

    2006-05-15

    Calcium-rich coal combustion fly ash can be used as an amendment to neutralize soil acidity because of its oxides and carbonate content, but its aluminum content could inhibit plant growth if soil pH values fall below optimal agronomic levels. This study measured root and shoot growth of an acid-sensitive barley (Hordeum vulgare L. 'Kearney') grown in the greenhouse on three naturally acid soils. The soils were either untreated or amended with various liming materials (dry fly ash, wet fly ash, and agricultural lime) at application rates of 0, .5, 1, and 1.5 times the recommended lime requirement, then treated with dilute acid solutions to simulate management-induced acidification. Plant growth indexes were measured at 30 days after planting. Root mass per plant and root length per plant were greater for the limed treatments than in the acidified check. Root growth in the limed treatments did not differ from root growth in the original nonacidified soils. Top mass per plant in all limed soils was either larger than or not different from that in the original nonacidified soils. Based on top mass per plant, no liming material or application rate was clearly superior. Both fly ash and agricultural lime reduced the impact of subsequent acidification on young barley plants. Detrimental effects of aluminum release on plant growth were not observed. Calcium-rich fly ash at agronomic rates is an acceptable acid-neutralizing material with no apparent negative effects.

  10. Effects of Liming on Forage Availability and Nutrient Content in a Forest Impacted by Acid Rain

    PubMed Central

    Pabian, Sarah E.; Ermer, Nathan M.; Tzilkowski, Walter M.; Brittingham, Margaret C.

    2012-01-01

    Acidic deposition and subsequent forest soil acidification and nutrient depletion can affect negatively the growth, health and nutrient content of vegetation, potentially limiting the availability and nutrient content of forage for white-tailed deer (Odocoileus virginianus) and other forest herbivores. Liming is a mitigation technique that can be used to restore forest health in acidified areas, but little is known about how it affects the growth or nutrient content of deer forage. We examined the effects of dolomitic limestone application on the growth and chemical composition of understory plants in an acidified forest in central Pennsylvania, with a focus on vegetative groups included as white-tailed deer forage. We used a Before-After-Control-Impact study design with observations 1 year before liming and up to 5 years post-liming on 2 treated and 2 untreated 100-ha sites. Before liming, forage availability and several nutrients were below levels considered optimal for white-tailed deer, and many vegetative characteristics were related to soil chemistry. We observed a positive effect of liming on forb biomass, with a 2.7 fold increase on limed sites, but no biomass response in other vegetation groups. We observed positive effects of liming on calcium and magnesium content and negative effects on aluminum and manganese content of several plant groups. Responses to liming by forbs and plant nutrients show promise for improving vegetation health and forage quality and quantity for deer. PMID:22761890

  11. EVALUATION OF SOLIDS DEWATERING FOR A PILOT-SCALE THIOSORBIC LIME SO2 SCRUBBER

    EPA Science Inventory

    The paper gives results of an evaluation of solids dewatering for a pilot-scale thiosorbic lime SO2 scrubber. Pilot plant data showed that the dissolved magnesium in thiosorbic lime caused deterioration of solids dewatering properties. The slurry settling rate increased when the ...

  12. Substrate pH and butterfly bush response to dolomitic lime or steel slag amendment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Steel slag is a fertilizer amendment with a high concentration of calcium oxide, and thus capable of raising substrate pH similar to dolomitic lime. Steel slag, however, contains higher concentrations of some nutrients, such as iron, manganese, and silicon, compared to dolomitic lime. The objectiv...

  13. Liming of River Audna, Southern Norway: a large-scale experiment of benthic invertebrate recovery.

    PubMed

    Raddum, Gunnar G; Fjellheim, Arne

    2003-04-01

    This study describes the recovery of sensitive invertebrates after liming of the anadromous part of River Audna in 1985. The river lost its salmon population during 1960-1970. The aim of the liming was to produce a water quality with pH > 6.0 and ANC > 20 microg L(-1) and to reduce the content of labile aluminum. Highly sensitive invertebrates like the mayfly Baetis rhodani were not found in the river before liming. Two years after liming, several sensitive invertebrate species showed a positive response. B. rhodani was then recorded at 2 sites in the lower part of the river. In the following 5 years several species of sensitive invertebrates recolonized the whole limed reach of the river and became numerous. Ten years after liming the snail Lymnaea peregra was recorded in the river. The dispersa of this species was also very fast and after 5 years it was found at all investigated sites in the limed main river covering a reach of 40 km. Reduced sulfur deposition in the area also resulted in water-quality improvements in th unlimed stretches of River Audna. Comparisons between limed and unlimed localities indicated that the water quality and the critical limits of sensitive species are the ma factors determining the fauna composition in River Audna independent of the reason for the change in water quality. PMID:12839201

  14. SUMMARY REPORT: SULFUR OXIDES CONTROL TECHNOLOGY SERIES: FGD LIME/LIMESTONE PROCESSES

    EPA Science Inventory

    This summary report describes the use of lime or limestone as an option for the treatment of sulfur oxides at fossil fuel steam and electric generating facilities. n this treatment, an aqueous slurry of slaked lime or wet ground limestone absorbs sulfur oxide from flue gas. bsorb...

  15. Effects of liming on forage availability and nutrient content in a forest impacted by acid rain.

    PubMed

    Pabian, Sarah E; Ermer, Nathan M; Tzilkowski, Walter M; Brittingham, Margaret C

    2012-01-01

    Acidic deposition and subsequent forest soil acidification and nutrient depletion can affect negatively the growth, health and nutrient content of vegetation, potentially limiting the availability and nutrient content of forage for white-tailed deer (Odocoileus virginianus) and other forest herbivores. Liming is a mitigation technique that can be used to restore forest health in acidified areas, but little is known about how it affects the growth or nutrient content of deer forage. We examined the effects of dolomitic limestone application on the growth and chemical composition of understory plants in an acidified forest in central Pennsylvania, with a focus on vegetative groups included as white-tailed deer forage. We used a Before-After-Control-Impact study design with observations 1 year before liming and up to 5 years post-liming on 2 treated and 2 untreated 100-ha sites. Before liming, forage availability and several nutrients were below levels considered optimal for white-tailed deer, and many vegetative characteristics were related to soil chemistry. We observed a positive effect of liming on forb biomass, with a 2.7 fold increase on limed sites, but no biomass response in other vegetation groups. We observed positive effects of liming on calcium and magnesium content and negative effects on aluminum and manganese content of several plant groups. Responses to liming by forbs and plant nutrients show promise for improving vegetation health and forage quality and quantity for deer. PMID:22761890

  16. Alkaline flocculation of Phaeodactylum tricornutum induced by brucite and calcite

    DOE PAGESBeta

    Vandamme, Dries; Pohl, Philip I.; Beuckels, Annelies; Foubert, Imogen; Brady, Patrick Vane; Muylaert, Koenraad; Hewson, John C.

    2015-08-20

    Alkaline flocculation holds great potential as a low-cost harvesting method for marine microalgae biomass production. Alkaline flocculation is induced by an increase in pH and is related to precipitation of calcium and magnesium salts. In this study, we used the diatom Phaeodactylum tricornutum as model organism to study alkaline flocculation of marine microalgae cultured in seawater medium. Flocculation started when pH was increased to 10 and flocculation efficiency reached 90% when pH was 10.5, which was consistent with precipitation modeling for brucite or Mg(OH)2. Compared to freshwater species, more magnesium is needed to achieve flocculation (>7.5 mM). Zeta potential measurementsmore » suggest that brucite precipitation caused flocculation by charge neutralization. When calcium concentration was 12.5 mM, flocculation was also observed at a pH of 10. Furthermore, zeta potential remained negative up to pH 11.5, suggesting that precipitated calcite caused flocculation by a sweeping coagulation mechanism.« less

  17. The influence of impurities on the growth rate of calcite

    NASA Astrophysics Data System (ADS)

    Meyer, H. J.

    1984-05-01

    The effects of 34 different additives on the growth rate of calcite were investigated. An initial growth rate of about one crystal monolayer (3 × 10 -8 cm) per minute was adjusted at a constant supersaturation which was maintained by a control circuit. Then the impurity was added step by step and the reduction of the growth rate was measured. The impurity concentration necessary to reduce the initial growth rate by a certain percentage increased in the order Fe 2+, ATP, P 3O 5-10, P 2O 4-7, (PO 3) 6-6, Zn 2+, ADP, Ce 3+, Pb 2+, carbamyl phosphate, Fe 3+, PO 3-4, Co 2+, Mn 2+, Be 2+, β-glycerophosphate, Ni 2+, Cd 2+, "Tris", phenylphosphate, chondroitine sulphate, Ba 2+, citrate, AMP, Sr 2+, tricarballylate, taurine, SO 2-4, Mg 2+ by 4 orders of magnitude. The most effective additives halved the initial growth rate in concentrations of 2 × 10 -8 mol/1. For Fe 2+ the halving concentration was nearly proportional to the initial rate. The mechanism of inhibition by adsorption of the impurities at growth sites (kinks) is discussed.

  18. Stress remagnetization in pyrrhotite-calcite synthetic aggregates

    NASA Astrophysics Data System (ADS)

    Robion, Philippe; Borradaile, Graham J.

    2001-01-01

    Stress-induced remagnetization has been applied to multidomain pyrrhotite-calcite synthetic aggregates in a triaxial rig. Experimental deformation used 150MPa confining pressure, a constant strain rate of 10-5 s-1 and applied differential stresses of up to 70MPa. New components of magnetization, parallel to the direction of the pressure vessel field, were added to the pre-deformational magnetization. The intensity of remagnetization (M'-M0) increases with the intensity of the applied differential stress and affects the coercivity fraction below 15mT. Bulk shortening is less than 8 per cent, thus grain rotation cannot explain selective remagnetization of the low-coercivity fraction. Remagnetization is thus attributed to deformational viscous remanent magnetization (DVRM). It is observed that high-coercivity (>15mT) grains do not remagnetize. There is, however, slight progressive rotation of pre-deformational magnetization with increasing strain up to 8 per cent of bulk shortening. The lack of piezoremanent magnetization in the high-coercivity range may be due to defects introduced in pyrrhotite during sample preparation. Experiments using synthetic pyrrhotite, expected to show low dislocation densities, would be necessary to test this effect.

  19. Microbiologically Induced Calcite Precipitation Mediated by Sporosarcina pasteurii.

    PubMed

    Bhaduri, Swayamdipta; Debnath, Nandini; Mitra, Sushanta; Liu, Yang; Kumar, Aloke

    2016-01-01

    The particular bacterium under investigation here (S. pasteurii) is unique in its ability, under the right conditions, to induce the hydrolysis of urea (ureolysis) in naturally occurring environments through secretion of an enzyme urease. This process of ureolysis, through a chain of chemical reactions, leads to the formation of calcium carbonate precipitates. This is known as Microbiologically Induced Calcite Precipitation (MICP). The proper culture protocols for MICP are detailed here. Finally, visualization experiments under different modes of microscopy were performed to understand various aspects of the precipitation process. Techniques like optical microscopy, Scanning Electron Microscopy (SEM) and X-Ray Photo-electron Spectroscopy (XPS) were employed to chemically characterize the end-product. Further, the ability of these precipitates to clog pores inside a natural porous medium was demonstrated through a qualitative experiment where sponge bars were used to mimic a pore-network with a range of length scales. A sponge bar dipped in the culture medium containing the bacterial cells hardens due to the clogging of its pores resulting from the continuous process of chemical precipitation. This hardened sponge bar exhibits superior strength when compared to a control sponge bar which becomes compressed and squeezed under the action of an applied external load, while the hardened bar is able to support the same weight with little deformation. PMID:27167458

  20. Alkaline flocculation of Phaeodactylum tricornutum induced by brucite and calcite.

    PubMed

    Vandamme, Dries; Pohl, Philip I; Beuckels, Annelies; Foubert, Imogen; Brady, Patrick V; Hewson, John C; Muylaert, Koenraad

    2015-11-01

    Alkaline flocculation holds great potential as a low-cost harvesting method for marine microalgae biomass production. Alkaline flocculation is induced by an increase in pH and is related to precipitation of calcium and magnesium salts. In this study, we used the diatom Phaeodactylum tricornutum as model organism to study alkaline flocculation of marine microalgae cultured in seawater medium. Flocculation started when pH was increased to 10 and flocculation efficiency reached 90% when pH was 10.5, which was consistent with precipitation modeling for brucite or Mg(OH)2. Compared to freshwater species, more magnesium is needed to achieve flocculation (>7.5mM). Zeta potential measurements suggest that brucite precipitation caused flocculation by charge neutralization. When calcium concentration was 12.5mM, flocculation was also observed at a pH of 10. Zeta potential remained negative up to pH 11.5, suggesting that precipitated calcite caused flocculation by a sweeping coagulation mechanism. PMID:26310384

  1. Dynamics of hydrated starch saccharides

    NASA Astrophysics Data System (ADS)

    Di Bari, M.; Deriu, A.; Albanese, G.; Cavatorta, F.

    2003-08-01

    We report here elastic neutron scattering data on glucose and on two of its polymeric forms: amylose and amylopectin. We have covered the hydration range from the dry state to about 0.6 g water/g dry saccharide. The data indicate, in all the analysed systems, the presence of a dynamic glass-like transition similar to that observed in hydrated proteins. The fact that this feature is observed also in a relatively small molecule like glucose confirms the hypothesis already put forward by other authors, that this transition in biomolecular species is essentially triggered and driven by the interaction of the macromolecule with the network of fluctuating H-bond of the solvent.

  2. Sonication improves kasturi lime (Citrus microcarpa) juice quality.

    PubMed

    Bhat, Rajeev; Kamaruddin, Nor Shuaidda Bt Che; Min-Tze, Liong; Karim, A A

    2011-11-01

    Freshly squeezed kasturi lime fruit juice was sonicated (for 0, 30 and 60min at 20°C, 25kHz frequency) to evaluate its impact on selected physico-chemical and antioxidant properties, such as pH, °Brix, titratable acidity, Hunter color values (L(∗), a(∗), b(∗)), ascorbic acid, DPPH radical scavenging activity, total phenolics, antioxidant capacity, flavonoids and flavonols. Additionally, the effect of sonication treatments on the microbial load (TPC, yeast and mold) were also evaluated. Sonication of juice samples for 60min showed enhancement in most of the bioactive compounds compared to samples treated for 30min and control samples (untreated). Significant reductions in the microbial load corresponding to sonication time were also recorded. Results of the present study indicate that sonication may be employed as a suitable technique for kasturi lime juice processing, where antioxidant and other bioactive compound retention or enhancement is desired, along with the achievement of safety and quality standards. PMID:21550834

  3. Computerized Shawnee lime/limestone scrubbing model users manual

    SciTech Connect

    Anders, W.L.; Torstrick, R.L.

    1981-03-01

    The manual gives a general description of a computerized model for estimating design and cost of lime or limestone scrubber systems for flue gas desulfurization (FGD). It supplements PB80-123037 by extending the number of scrubber options which can be evaluated. It includes spray tower and venturi/spray-tower absorbers, forced oxidation systems, systems with absorber loop additives (MgO or adipic acid), revised design and economic premises, and other changes reflecting process improvements and variations. It describes all inputs and outputs, along with detailed procedures for using the model and all its options. The model is based on prototype scrubber data from the EPA/Shawnee test facility and should be useful to utility companies, as well as to architectural and engineering contractors who are involved in selecting and designing FGD facilities. As key features, the model provides estimates of capital investment and operating revenue requirements. It also provides a material balance, equipment list, and a breakdown of costs by processing areas. The primary uses of the model are to project comparative economics of lime and limestone FGD processes and to evaluate system alternatives prior to the development of a detailed design.

  4. Arbuscular Mycorrhizal Fungal Communities in the Roots of Maize Lines Contrasting for Al Tolerance Grown in Limed and Non-Limed Brazilian Oxisoil.

    PubMed

    Gomes, Eliane A; Oliveira, Christiane A; Lana, Ubiraci G P; Noda, Roberto W; Marriel, Ivanildo E; de Souza, Francisco A

    2015-07-01

    Aluminum (Al) toxicity is one of the greatest limitations to agriculture in acid soils, particularly in tropical regions. Arbuscular mycorrhizal fungi (AMF) can supply plants with nutrients and give protection against Al toxicity. The aim of this work was to evaluate the effects of soil liming (i.e., reducing Al saturation) on the AMF community composition and structure in the roots of maize lines contrasting for Al tolerance. To this end, we constructed four 18S rDNA cloning libraries from L3 (Al tolerant) and L22 (Al sensitive) maize lines grown in limed and non-limed soils. A total of 790 clones were sequenced, 69% belonging to the Glomeromycota phylum. The remaining sequences were from Ascomycota, which were more prominent in the limed soil, mainly in the L3 line. The most abundant AM fungal clones were related to the family Glomeraceae represented by the genera uncultured Glomus followed by Rhizophagus and Funneliformis. However, the most abundant operational taxonomic units with 27% of the Glomeromycota clones was affiliated to genus Racocetra. This genus was present in all the four libraries, but it was predominant in the non-limed soils, suggesting that Racocetra is tolerant to Al toxicity. Similarly, Acaulospora and Rhizophagus were also present mostly in both lines in non-limed soils. The community richness of AMF in the non-limed soils was higher than the limed soil for both lines. The results suggest that the soil Al saturation was the parameter that mostly influences the AMF species composition in the soils in this study. PMID:25674805

  5. Measuring Carbon and Oxygen Isotope Uptake into Inorganic Calcite using Crystal Growth Experiments

    NASA Astrophysics Data System (ADS)

    Baker, E. B.; Watkins, J. M.

    2014-12-01

    Carbon and oxygen isotopes measured on natural calcite crystals provide a record of paleo-environment conditions. Despite the importance of measuring stable isotopes in calcite for paleo-environment reconstructions, there is neither a general theory nor an experimental data set that fully separates the effects of pH, temperature, and precipitation rate on isotope discrimination during calcite growth. Many stable isotope studies of calcite have focused on either carbon or oxygen isotope compositions individually, but few have measured both carbon and oxygen isotope uptake in the same set of crystals. We are precipitating inorganic calcite across a range in temperature, pH, and precipitation rate to guide the development of a general theory for combined carbon and oxygen isotope uptake into calcite crystals grown on laboratory timescales. In our experiments, dissolved inorganic carbon (DIC) is added to an aqueous solution (15 mM CaCl2 + 5 mM NH4Cl) by CO2 bubbling. Once a critical supersaturation is reached, calcite crystals nucleate spontaneously and grow on the beaker walls. A key aspect of this experimental approach is that the δ13C of DIC is relatively constant throughout the crystal growth period, because there is a continuous supply of DIC from the CO2-bearing bubbles. Carbonic anhydrase, an enzyme promoting rapid equilibration of isotopes between DIC and water, was added to ensure that the solution remained isotopically equilibrated during calcite growth. We have conducted experiments at T = 25°C and pH = 8.3 - 9.0. We observe that the fractionation of oxygen isotopes between calcite and water decreases with increasing pH, consistent with available data from experiments in which the enzyme carbonic anhydrase was used. Our results for carbon isotopes extend the available data set, which previously ranged from pH 6.62 to 7.75, to higher pH. At pH 8.3, we observe that calcite is isotopically heavier than DIC with respect to carbon isotopes by about 0.25‰. At pH 9.0, calcite is isotopically indistinguishable from, or perhaps slightly lighter than, DIC. We will present data from additional high-pH experiments and discuss the results in the context of recently developed ion-by-ion growth models for calcite.

  6. Activators of photoluminescence in calcite: evidence from high-resolution, laser-excited luminescence spectroscopy

    USGS Publications Warehouse

    Pedone, V.A.; Cercone, K.R.; Burruss, R.C.

    1990-01-01

    Laser-excited luminescence spectroscopy of a red-algal, biogenic calcite and a synthetic Mn-calcite can make the distinction between organic and trace-element activators of photoluminescence. Organic-activated photoluminescence in biogenic calcite is characterized by significant peak shifts and increasing intensity with shorter-wavelength excitation and by significant decreases in intensity after heating to ??? 400??C. In contrast, Mn-activated photoluminescence shows no peak shift, greatest intensity under green excitation and limited changes after heating. Examination of samples with a high-sensitivity spectrometer using several wavelengths of exciting light is necessary for identification of photoluminescence activators. ?? 1990.

  7. Gas hydrate cool storage system

    DOEpatents

    Ternes, Mark P.; Kedl, Robert J.

    1985-01-01

    This invention is a process for formation of a gas hydrate to be used as a cool storage medium using a refrigerant in water. Mixing of the immiscible refrigerant and water is effected by addition of a surfactant and agitation. The difficult problem of subcooling during the process is overcome by using the surfactant and agitation and performance of the process significantly improves and approaches ideal.

  8. Santaclaraite, a new calcium-manganese silicate hydrate from California.

    USGS Publications Warehouse

    Erd, Richard C.; Ohashi, Y.

    1984-01-01

    Santaclaraite, ideally CaMn4(Si5O14(OH))(OH).H2O, occurs as pink and tan veins and masses in Franciscan chert in the Diablo Range, Santa Clara and Stanislaus counties, California. It is associated with four unidentified Mn silicates, Mn-howieite, quartz, braunite, calcite, rhodochrosite, kutnahorite, baryte, harmotome, chalcopyrite and native copper. Santaclaraite is triclinic, space group B1, a 15.633(1), b 7.603(1) , c 12.003(1) A, alpha 109.71(1)o, beta 88.61(1)o, gamma 99.95(1) o, V 1322.0(3) A3; Z = 4. The strongest lines of the X-ray pattern are 7.04(100), 3.003(84), 3.152(80), 7.69(63), 3.847(57) A. Crystals are lamellar to prismatic (flattened on (100)), with good cleavage on (100) and (010); H. 61/2 Dcalc. 3.398 g/cm3, Dmeas. 3.31 (+ or -0.01); optically biaxial negative, alpha 1.681, beta 1.696, gamma 1.708 (all + or - 0.002), 2Valpha 83 (+ or -1)o. Although chemically a hydrated rhodonite, santaclaraite dehydrates to Mn-bustamite at approx 550oC (in air) . Santaclaraite is a five-tetrahedral-repeat single-chain silicate and has structural affinities with rhodonite, nambulite, marsturite, babingtonite and inesite.-J.A.Z.

  9. Control of carbonate alkalinity on Mg incorporation in calcite: Insights on the occurrence of high Mg calcites in diagenetic environments

    NASA Astrophysics Data System (ADS)

    Purgstaller, Bettina; Mavromatis, Vasileios; Dietzel, Martin

    2015-04-01

    High Mg calcites (HMC), with up to 25 mol % of Mg, are common features in early diagenetic environments and are frequently associated with bio-induced anaerobic oxidation of methane (AOM). Such archives hold valuable information about the biogeochemical processes occurring in sedimentary environments in the geological past. Despite the frequency AOM-induced HMC observed in marine diagenetic settings and their potential role in dolomitization, only a minor number of experimental studies has been devoted on deciphering their formation conditions. Thus, in order to improve our understanding on the formation mechanism of HMC induced by elevated carbonate ion concentrations, we precipitated HMC by computer controlled titration of a (Mg,Ca)Cl2 solution at different Mg/Ca ratios into a NaHCO3 solution under precisely defined physicochemical conditions (T = 25.00 ±0.03°C; pH = 8.3 ±0.1). The formation of carbonates was monitored at a high temporal resolution using in situ Raman spectroscopy as well as by continuous sampling and analyzing of precipitates and reactive solutions. We identified two distinct mechanisms of HMC formation. In solutions with molar Mg/Ca ratios ≤ 1/8 calcium carbonate was precipitated as crystalline phases directly from homogeneous solution. In contrast, higher Mg/Ca ratios induced the formation of Mg-rich ACC (up to 10 mol % of Mg), which was subsequently transformed to HMC with up 20 mol % of Mg. Our experimental results highlight that the finally formed HMC has a higher Mg content than the ACC precursor phase. Considering experimental data for Mg containing ACC transformation to crystalline calcium carbonate from literature, the continuous enrichment of Mg in the precipitate throughout transformation of amorphous to crystalline CaCO3 most likely occurs due to the high carbonate alkalinity (DIC about 0.1 M) of our reactive solutions. The Mg incorporation into calcite lattice seems to be favored by intensive supply of carbonate ions as observed in AOM originated HMC in early diagenetic sediments.

  10. Multiple stage multiple filter hydrate store

    DOEpatents

    Bjorkman, H.K. Jr.

    1983-05-31

    An improved hydrate store for a metal halogen battery system is disclosed which employs a multiple stage, multiple filter means for separating the halogen hydrate from the liquid used in forming the hydrate. The filter means is constructed in the form of three separate sections which combine to substantially cover the interior surface of the store container. Exit conduit means is provided in association with the filter means for transmitting liquid passing through the filter means to a hydrate former subsystem. The hydrate former subsystem combines the halogen gas generated during the charging of the battery system with the liquid to form the hydrate in association with the store. Relief valve means is interposed in the exit conduit means for controlling the operation of the separate sections of the filter means, such that the liquid flow through the exit conduit means from each of the separate sections is controlled in a predetermined sequence. The three separate sections of the filter means operate in three discrete stages to provide a substantially uniform liquid flow to the hydrate former subsystem during the charging of the battery system. The separation of the liquid from the hydrate causes an increase in the density of the hydrate by concentrating the hydrate along the filter means. 7 figs.

  11. Well log evaluation of gas hydrate saturations

    USGS Publications Warehouse

    Collett, Timothy S.

    1998-01-01

    The amount of gas sequestered in gas hydrates is probably enormous, but estimates are highly speculative due to the lack of previous quantitative studies. Gas volumes that may be attributed to a gas hydrate accumulation within a given geologic setting are dependent on a number of reservoir parameters; one of which, gas-hydrate saturation, can be assessed with data obtained from downhole well logging devices. The primary objective of this study was to develop quantitative well-log evaluation techniques which will permit the calculation of gas-hydrate saturations in gas-hydrate-bearing sedimentary units. The `standard' and `quick look' Archie relations (resistivity log data) yielded accurate gas-hydrate and free-gas saturations within all of the gas hydrate accumulations assessed in the field verification phase of the study. Compressional wave acoustic log data have been used along with the Timur, modified Wood, and the Lee weighted average acoustic equations to calculate accurate gas-hydrate saturations in this study. The well log derived gas-hydrate saturations calculated in the field verification phase of this study, which range from as low as 2% to as high as 97%, confirm that gas hydrates represent a potentially important source of natural gas.

  12. Micelle Structure and Hydrophobic Hydration.

    PubMed

    Long, Joshua A; Rankin, Blake M; Ben-Amotz, Dor

    2015-08-26

    Despite the ubiquity and utility of micelles self-assembled from aqueous surfactants, longstanding questions remain regarding their surface structure and interior hydration. Here we combine Raman spectroscopy with multivariate curve resolution (Raman-MCR) to probe the hydrophobic hydration of surfactants with various aliphatic chain lengths, and either anionic (carboxylate) or cationic (trimethylammonium) head groups, both below and above the critical micelle concentration. Our results reveal significant penetration of water into micelle interiors, well beyond the first few carbons adjacent to the headgroup. Moreover, the vibrational C-D frequency shifts of solubilized deuterated n-hexane confirm that it resides in a dry, oil-like environment (while the localization of solubilized benzene is sensitive to headgroup charge). Our findings imply that the hydrophobic core of a micelle is surrounded by a highly corrugated surface containing hydrated non-polar cavities whose depth increases with increasing surfactant chain length, thus bearing a greater resemblance to soluble proteins than previously recognized. PMID:26222042

  13. Gas hydrates: Technology status report

    SciTech Connect

    Not Available

    1987-01-01

    In 1983, the US Department of Energy (DOE) assumed the responsibility for expanding the knowledge base and for developing methods to recover gas from hydrates. These are ice-like mixtures of gas and water where gas molecules are trapped within a framework of water molecules. This research is part of the Unconventional Gas Recovery (UGR) program, a multidisciplinary effort that focuses on developing the technology to produce natural gas from resources that have been classified as unconventional because of their unique geologies and production mechanisms. Current work on gas hydrates emphasizes geological studies; characterization of the resource; and generic research, including modeling of reservoir conditions, production concepts, and predictive strategies for stimulated wells. Complementing this work is research on in situ detection of hydrates and field tests to verify extraction methods. Thus, current research will provide a comprehensive technology base from which estimates of reserve potential can be made, and from which industry can develop recovery strategies. 7 refs., 3 figs., 6 tabs.

  14. Pre-desilication and digestion of gibbsitic bauxite with lime in sodium aluminate liquor

    NASA Astrophysics Data System (ADS)

    Pan, Xiao-lin; Yu, Hai-yan; Dong, Kai-wei; Tu, Gan-feng; Bi, Shi-wen

    2012-11-01

    The effect of lime on the pre-desilication and digestion of gibbsitic bauxite in synthetic sodium aluminate liquor at different temperatures was investigated. The bauxite is comprised of gibbsite, aluminogoethite, hematite, kaolin, quartz, and minor boehmite. Lime increases the desilication efficiency of the bauxite during the pre-desilication process by promoting the conversion of sodalite and cancrinite to hydrogarnet. Desilication reactions during the digestion process promoted by lime result in the loss of Al2O3 entering the red mud, but the amount of aluminogoethite-to-hematite conversion promoted by lime leads to the increase of aluminogoethitic Al2O3 entering the digested liquor. The alumina digestion rate at 245°C is higher than that at 145°C due to the more pronounced conversion of aluminogoethite to hematite. The soda consumption during the digestion process decreases due to lime addition, especially at higher temperatures.

  15. Hydration mechanism of a cementitious material prepared with Si-Mn slag

    NASA Astrophysics Data System (ADS)

    Zhang, Xu-Fang; Ni, Wen; Wu, Jun-Yu; Zhu, Li-Ping

    2011-04-01

    A cementitious material was prepared by mixing 80wt% Si-Mn slag powder, 10wt% lime, and 10wt% anhydrite. The compressive strength of mortar samples reaches 51.48 MPa after 28 d curing. The analyses of X-ray diffraction (XRD) and scanning electron microscopy (SEM) show that much ettringite is formed in the sample cured for 3 d, and C-S-H gel increases rapidly during subsequent curing. Nuclear magnetic resonance (NMR) analysis of 29Si and 27Al and infrared spectroscopy (IR) analysis show that aluminum decomposition from tetrahedral network of the slag glass and its subsequent migration and re-combination play an important role in the process of hydration and strength development of the samples.

  16. Study of Formation Mechanisms of Gas Hydrate

    NASA Astrophysics Data System (ADS)

    Yang, Jia-Sheng; Wu, Cheng-Yueh; Hsieh, Bieng-Zih

    2015-04-01

    Gas hydrates, which had been found in subsurface geological environments of deep-sea sediments and permafrost regions, are solid crystalline compounds of gas molecules and water. The estimated energy resources of hydrates are at least twice of that of the conventional fossil fuel in the world. Gas hydrates have a great opportunity to become a dominating future energy. In the past years, many laboratory experiments had been conducted to study chemical and thermodynamic characteristics of gas hydrates in order to investigate the formation and dissociation mechanisms of hydrates. However, it is difficult to observe the formation and dissociation of hydrates in a porous media from a physical experiment directly. The purpose of this study was to model the dynamic formation mechanisms of gas hydrate in porous media by reservoir simulation. Two models were designed for this study: 1) a closed-system static model with separated gas and water zones; this model was a hydrate equilibrium model to investigate the behavior of the formation of hydrates near the initial gas-water contact; and 2) an open-system dynamic model with a continuous bottom-up gas flow; this model simulated the behavior of gas migration and studied the formation of hydrates from flowed gas and static formation water in porous media. A phase behavior module was developed in this study for reservoir simulator to model the pressure-volume-temperature (PVT) behavior of hydrates. The thermodynamic equilibriums and chemical reactions were coupled with the phase behavior module to have functions modelling the formation and dissociation of hydrates from/to water and gas. The simulation models used in this study were validated from the code-comparison project proposed by the NETL. According to the modelling results of the closed-system static model, we found that predominated location for the formation of hydrates was below the gas-water contact (or at the top of water zone). The maximum hydrate saturation observed was located just below the gas-water contact. The open-system dynamic model showed that the hydrates were basically uniformly distributed in a homogeneous porous media at a constant gas migration rate. However, if the gas migration rate was extremely low, the hydrates will tend to concentrate at the bottom of water zone (i.e. at the first contact of the water and the flowed gas) and finally blocked the vertical flow of gas. The models we designed can be scaled up to a field scale, and the research findings from this study can be contributed to the dispersion analysis of an in-situ hydrate reservoir.

  17. The influence of temperature and seawater composition on calcite crystal growth mechanisms and kinetics: Implications for Mg incorporation in calcite lattice

    NASA Astrophysics Data System (ADS)

    Lopez, Olivier; Zuddas, Pierpaolo; Faivre, Damien

    2009-01-01

    The composition of carbonate minerals formed in past and present oceans is assumed to be significantly controlled by temperature and seawater composition. To determine if and how temperature is kinetically responsible for the amount of Mg incorporated in calcite, we quantified the influence of temperature and specific dissolved components on the complex mechanism of calcite precipitation in seawater. A kinetic study was carried out in artificial seawater and NaCl-CaCl 2 solutions, each having a total ionic strength of 0.7 M. The constant addition technique was used to maintain [Ca 2+] at 10.5 mmol kg -1 while [ CO32-] was varied to isolate the role of this variable on the precipitation rate of calcite. Our results show that the overall reaction of calcite precipitation in both seawater and NaCl-CaCl 2 solutions is dominated by the following reaction: Ca+CO32-↔k,kCaCO where k f and k b are the forward and backward reaction rate constants, respectively, while the net precipitation rate R, can be described at any temperature by R=kana-k or in its logarithmic form Log(R+k)=LogK+nLog[CO32-] where ni are the partial reaction orders with respect to the participating ions, a the ion activity, γ the activity coefficients, and K=k(a)(γ) is a constant at a given temperature. We find that, irrespective of the presence of Mg, SO 4, and other specific seawater components known calcite reaction rate inhibitors, the partial reaction order with respect to carbonate ion concentration changes from 2 to 5 while the rate constant K f, increases by 3-4 orders of magnitude when temperature varies from 5 to 70 °C. The observed variations of the kinetic mechanism resulting from the temperature changes are correlated with the variable amount of Mg incorporated in the formed calcites. Moreover, at a given temperature, the increase in the saturation state enhances the rate of calcite precipitation without influencing the reaction mechanism and without changing the amount of Mg incorporated in the growing lattice. Thus, the results of this experimental study are consistent with present-day abiotic marine carbonates where low-Mg calcite cements are mainly associated with cool water while high-Mg carbonates are dominantly found in warm-water environments. This suggests that the apparent inverse relationship between the global average paleo-temperature and the Mg/Ca ratio in past formed marine carbonate may correspond to major changes in seawater saturation state or (Mg/Ca) ratios that in turn should reflect significant changes in the relative seawater geochemical cycles of these cations.

  18. Fundamentals and applications of gas hydrates.

    PubMed

    Koh, Carolyn A; Sloan, E Dendy; Sum, Amadeu K; Wu, David T

    2011-01-01

    Fundamental understanding of gas hydrate formation and decomposition processes is critical in many energy and environmental areas and has special importance in flow assurance for the oil and gas industry. These areas represent the core of gas hydrate applications, which, albeit widely studied, are still developing as growing fields of research. Discovering the molecular pathways and chemical and physical concepts underlying gas hydrate formation potentially can lead us beyond flowline blockage prevention strategies toward advancing new technological solutions for fuel storage and transportation, safely producing a new energy resource from natural deposits of gas hydrates in oceanic and arctic sediments, and potentially facilitating effective desalination of seawater. The state of the art in gas hydrate research is leading us to new understanding of formation and dissociation phenomena that focuses on measurement and modeling of time-dependent properties of gas hydrates on the basis of their well-established thermodynamic properties. PMID:22432618

  19. Development of Alaskan gas hydrate resources

    SciTech Connect

    Kamath, V.A.; Sharma, G.D.; Patil, S.L.

    1991-06-01

    The research undertaken in this project pertains to study of various techniques for production of natural gas from Alaskan gas hydrates such as, depressurization, injection of hot water, steam, brine, methanol and ethylene glycol solutions through experimental investigation of decomposition characteristics of hydrate cores. An experimental study has been conducted to measure the effective gas permeability changes as hydrates form in the sandpack and the results have been used to determine the reduction in the effective gas permeability of the sandpack as a function of hydrate saturation. A user friendly, interactive, menu-driven, numerical difference simulator has been developed to model the dissociation of natural gas hydrates in porous media with variable thermal properties. A numerical, finite element simulator has been developed to model the dissociation of hydrates during hot water injection process.

  20. Kinetic and Thermodynamic Study of Calcite Marble Samples from Lesser Himalayas

    NASA Astrophysics Data System (ADS)

    Fahad, M.; Iqbal, Y.

    2014-02-01

    A kinetic and thermodynamic study of selected calcite marble samples from Lesser Himalayas has been performed using thermogravimetric and differential thermal analyses at heating rates of and . The minero-petrography of calcite grains, phase analysis, chemical analysis, and minor impurities determination were carried out using thin-section polarized light microscopy, X-ray diffraction, X-ray fluorescence, and electron microprobe analysis, respectively. The calcite content of the investigated marble samples varied from 97.50 mass% to 98.70 mass%. The activation energy, , for the decomposition process increased from to and from to for heating rates of and , respectively, with decreasing calcite content. The activation energy values obtained in the present study were in good agreement with previous studies.

  1. Enhancing mechanical properties of calcite by Mg substitutions: An ab initio study

    NASA Astrophysics Data System (ADS)

    Elstnerova, Pavlina; Friak, Martin; Hickel, Tilmann; Fabritius, Helge Otto; Lymperakis, Liverios; Petrov, Michal; Raabe, Dierk; Neugebauer, Joerg; Nikolov, Svetoslav; Zigler, Andreas; Hild, Sabine

    2011-03-01

    Arthropoda representing a majority of all known animal species are protected by an exoskeleton formed by their cuticle. The cuticle represents a hierarchically structured multifunctional bio-composite based on chitin and proteins. Some groups like Crustacea reinforce the load-bearing parts of their cuticle with calcite. As the calcite sometimes contains Mg it was speculated that Mg may have a stiffening impact on the mechanical properties of the cuticle. We present a theoretical parameter-free quantum-mechanical study of thermodynamic, structural and elastic properties of Mg-substituted calcite. Our results show that substituting Ca by Mg causes an almost linear decrease in the crystal volume with Mg concentration and of substituted crystals. As a consequence the calcite crystals become stiffer giving rise e.g. to substantially increased bulk moduli.

  2. High School Forum: "Invitations to Enquiry": The Calcite/Acid Reaction.

    ERIC Educational Resources Information Center

    Herron, J. Dudley, Ed.; Driscoll, D. R.

    1979-01-01

    Describes a high school chemistry experiment which involves the reaction between calcite and hydrochloric and sulfuric acids. This reaction can be carried out as a projected demonstration and on an individual basis. (HM)

  3. Probing the dynamics of template-directed calcite crystallization with in situ FTIR

    SciTech Connect

    Ahn, D.J.; Berman, A.; Charych, D.

    1996-07-25

    Organic template-directed mineralization of calcite crystals has been probed in situ by external reflection-absorption FTIR spectroscopy in an effort to understand the dynamics of the organic-inorganic interface during crystal growth. The main focus is to elucidate structural changes that may occur in the organic template as crystal growth progresses. The nucleation face types of calcite were visually identified according to known crystal morphologies and by the corresponding carbonate stretching and deformation vibrational bands. Structural reorganization occurring in the organic template could be observed by intensity variations and frequency shifts in the methylene stretching bands of octadecanoic acid, octadecyl sulfate, and acidic polydiacetylenic lipid film. These organic templates nucleated calcite at the (010), (001), and (012) planes, respectively. The surfactant thin films uniquely adapt themselves in order to optimize the geometrical and stereochemical fit to the growing calcite crystals. 56 refs., 5 figs.

  4. Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production.

    PubMed

    Achal, V; Mukherjee, A; Basu, P C; Reddy, M Sudhakara

    2009-07-01

    Phenotypic mutants of Sporosarcina pasteurii (previously known as Bacillus pasteurii) (MTCC 1761) were developed by UV irradiation to test their ability to enhance urease activity and calcite production. Among the mutants, Bp M-3 was found to be more efficient compared to other mutants and wild-type strain. It produced the highest urease activity and calcite production compared to other isolates. The production of extracellular polymeric substances and biofilm was also higher in this mutant than other isolates. Microbial sand plugging results showed the highest calcite precipitation by Bp M-3 mutant. Scanning electron micrography, energy-dispersive X-ray and X-ray diffraction analyses evidenced the direct involvement of bacteria in CaCO3 precipitation. This study suggests that calcite production by the mutant through biomineralization processes is highly effective and may provide a useful strategy as a sealing agent for filling the gaps or cracks and fissures in any construction structures. PMID:19408027

  5. Simulation of calcite dissolution and porosity changes in saltwater mixing zones in coastal aquifers

    USGS Publications Warehouse

    Sanford, W.E.; Konikow, L.F.

    1989-01-01

    Thermodynamic models of aqueous solutions have indicated that the mixing of seawater and calcite-saturated fresh groundwater can produce a water that is undersaturated with respect to calcite. Mixing of such waters in coastal carbonate aquifers could lead to significant amounts of limestone dissolution. The potential for such dissolution in coastal saltwater mixing zones is analyzed by coupling the results from a reaction simulation model (PHREEQE) with a variable density groundwater flow and solute transport model. Idealized cross sections of coastal carbonate aquifers are simulated to estimate the potential for calcite dissolution under a variety of hydrologic and geochemical conditions. Results show that limestone dissolution in mixing zones is strongly dependent on groundwater flux and nearly independent of the dissolution kinetics of calcite. -from Authors

  6. Phase transformation of Mg-calcite to aragonite in active-forming hot spring travertines

    NASA Astrophysics Data System (ADS)

    Greer, Heather F.; Zhou, Wuzong; Guo, Li

    2015-08-01

    A travertine specimen collected from the western part of Yunnan Province of China was subjected to microstructural analysis by powder X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy and energy dispersive X-ray spectroscopy. A new formation mechanism was proposed whereby polycrystalline rhombohedral particles of magnesium-containing calcite underwent a phase transformation into sheaf-like clusters of aragonite microrods. It is proposed that a high concentration of magnesium ions and embedded biological matter poisoned the growth of calcite and therefore instigated the phase transformation of the core of the rhombohedral calcite particles to an aragonite phase with a higher crystallinity. The single crystalline aragonite microrods with a higher density than the Mg-calcite nanocrystallites grew at the expense of the latter to generate sheaf-like clusters. This newly discovered formation mechanism is expected to enhance previous knowledge on this geologically important phase transformation from a morphology point of view.

  7. The Influence of Exotic Calcite on the Mechanical Behavior of Quartz Bearing Fault Gouge

    NASA Astrophysics Data System (ADS)

    Carpenter, B. M.; Di Stefano, G.; Collettini, C.

    2014-12-01

    The interseismic recovery of frictional strength is a fundamental part of the seismic cycle. This restrengthening, and related phenomena, plays a key role in determining the stability and mode of tectonic faulting. Recent experimental data has shown that gouge mineralogy has a strong influence on the rate of frictional healing, with calcite-dominated gouges showing the highest rates. Combining these data with widespread observations of calcite as cement or veins in non-carbonate hosted faults, indicates that the presence of calcite within a fault gouge could play an important role in shallow- and mid-crustal earthquakes. We report on laboratory experiments designed to explore the mechanical behavior of quartz/calcite mixtures as a means to better understand the evolution of fault behavior in faults where carbonate materials are present. We sheared mixtures of powdered Carrara marble (>98% CaCO3) and disaggregated Ottawa sand (99.8% SiO2) at constant normal stress of 5 MPa under saturated conditions at room temperature. We performed slide-hold-slide tests, 1-3,000 seconds, and velocity stepping tests, 0.1-1000 μm/s, to measure the amount of frictional healing and velocity dependence of friction respectively. Small subsets of experiments were conducted at different boundary conditions. Preliminary results show that the presence of calcite in quartz-based fault gouge has a hardening effect, both in overall frictional strength, where the strength of our mixtures increases with increasing calcite content, and in single experiments, where mixtures with low percentages of calcite show a consistent strain-hardening trend. We also observe that the rates of frictional healing and creep relaxation increase with increasing calcite content. Finally, our results show that the addition of as little as 2.5% calcite within a fault gouge results in a 30% increase in the rate of frictional healing, with further increases in calcite content resulting in larger increases in the rate of healing. Combined with our previous work, our results show that the presence of calcite in fault gouge can lead to accelerated frictional healing and velocity-weakening frictional behavior, favoring seismicity at shallow crustal conditions where faults are thought to fail mostly by aseismic creep.

  8. The Influence of Calcite on The Mechanical Behavior of Quartz-Bearing Gouge

    NASA Astrophysics Data System (ADS)

    Carpenter, Brett; Di Stefano, Giuseppe; Collettini, Cristiano

    2015-04-01

    Mechanical heterogeneities along faults can result in diverse and complex fault slip. These heterogeneities can vary spatially and temporally and may result from changes in fault structure or frictional properties. The accumulation of calcite in non-carbonate faults, via cementation or entrainment, is likely to alter the frictional properties of that fault gouge. Furthermore, widespread observations of calcite as cement, veins, or cataclasites in non-carbonate hosted faults indicates that calcite is readily available and could play an important role during fault reactivation at shallow- and mid-crustal earthquakes. We report on laboratory experiments designed to explore the mechanical behavior of quartz/calcite mixtures as a means to better understand the evolution in behavior of quartz-bearing gouge in the presence of exotic calcite. We sheared mixtures of powdered Carrara marble (>98% CaCO3) and disaggregated Ottawa sand (99.8% SiO2) at constant normal stresses of 5 and 50 MPa under saturated conditions at room temperature. We performed slide-hold-slide tests, 1-3,000 seconds, and velocity stepping tests, 0.1-1000 µm/s, to measure the amount of frictional healing and velocity dependence of friction respectively. At low normal stress, the addition of calcite to quartz-based synthetic fault gouge results in increases in the steady-state frictional strength, and rates of frictional healing and creep relaxation of the gouge. In particular, with the addition of as little as 2.5 wt% calcite, the frictional healing rate increases by 30%. Microstructural observations indicate that shear is accommodated by distributed deformation throughout the gouge layer and that calcite undergoes significantly more comminution compared to quartz. Large quartz grains frequently show minor rounding of angular edges with fine-grained calcite often penetrating fractures. The in-situ addition of calcite to fault gouge, by either the circulation of fluids or the involvement of carbonate rocks in faulting, could lead to significant and progressive changes in fault behavior, i.e. the fault could be frictionally stronger, heal/seal faster, and be more frictionally unstable. At shallow crustal conditions, increased temperature and the concentration of fine-grained calcite along shear surfaces would result in the amplification of the observed behaviors.

  9. Promoting and maintaining healthy hydration in patients.

    PubMed

    Ruxton, C

    Fluid is essential for life and health. Nurses have an important role in helping patients maintain optimal levels of hydration, particularly in hospital or residential settings where access to fluid is less likely to be under the patient's control. This article describes the benefits of healthy hydration, outlines guidelines on fluid requirements for different patient groups and discusses which beverages should be promoted. Myths about caffeine consumption and hydration will also be addressed using new clinical evidence. PMID:22594190

  10. Unravelling the enigmatic origin of calcitic nanofibres in soils and caves: purely physicochemical or biogenic processes?

    NASA Astrophysics Data System (ADS)

    Bindschedler, S.; Cailleau, G.; Braissant, O.; Millière, L.; Job, D.; Verrecchia, E. P.

    2014-05-01

    Calcitic nanofibres are ubiquitous habits of secondary calcium carbonate (CaCO3) accumulations observed in calcareous vadose environments. Despite their widespread occurrence, the origin of these nanofeatures remains enigmatic. Three possible mechanisms fuel the debate: (i) purely physicochemical processes, (ii) mineralization of rod-shaped bacteria, and (iii) crystal precipitation on organic templates. Nanofibres can be either mineral (calcitic) or organic in nature. They are very often observed in association with needle fibre calcite (NFC), another typical secondary CaCO3 habit in terrestrial environments. This association has contributed to some confusion between both habits, however they are truly two distinct calcitic features and their recurrent association is likely to be an important fact to help understanding the origin of nanofibres. In this paper the different hypotheses that currently exist to explain the origin of calcitic nanofibres are critically reviewed. In addition to this, a new hypothesis for the origin of nanofibres is proposed based on the fact that current knowledge attributes a fungal origin to NFC. As this feature and nanofibres are recurrently observed together, a possible fungal origin for nanofibres which are associated with NFC is investigated. Sequential enzymatic digestion of the fungal cell wall of selected fungal species demonstrates that the fungal cell wall can be a source of organic nanofibres. The obtained organic nanofibres show a striking morphological resemblance when compared to their natural counterparts, emphasizing a fungal origin for part of the organic nanofibres observed in association with NFC. It is further hypothesized that these organic nanofibres may act as templates for calcite nucleation in a biologically influenced mineralization process, generating calcitic nanofibres. This highlights the possible involvement of fungi in CaCO3 biomineralization processes, a role still poorly documented. Moreover, on a global scale, the organomineralization of organic nanofibres into calcitic nanofibres might be an overlooked process deserving more attention to specify its impact on the biogeochemical cycles of both Ca and C.

  11. Unravelling the enigmatic origin of calcitic nanofibres in soils and caves: purely physicochemical or biogenic processes?

    NASA Astrophysics Data System (ADS)

    Bindschedler, S.; Cailleau, G.; Braissant, O.; Millière, L.; Job, D.; Verrecchia, E. P.

    2014-01-01

    Calcitic nanofibres are ubiquitous habits of secondary calcium carbonate (CaCO3) accumulations observed in calcareous vadose environments. Despite their widespread occurrence, the origin of these nanofeatures remains enigmatic. Three possible mechanisms fuel the debate: (i) purely physicochemical processes, (ii) mineralization of rod-shaped bacteria, and (iii) crystal precipitation on organic templates. Nanofibres can be either mineral (calcitic) or organic in nature. They are very often observed in association with Needle Fibre Calcite (NFC), another typical secondary CaCO3 habit in terrestrial environments. This association has contributed to some confusion between both habits, however they are truly two distinct calcitic features and their recurrent association is likely to be an important fact to help understanding the origin of nanofibres. In this manuscript the different hypotheses that currently exist to explain the origin of calcitic nanofibres are critically reviewed. In addition to this, a new hypothesis for the origin of nanofibres is proposed based on the fact that current knowledge attributes a fungal origin to NFC. As this feature and nanofibres are recurrently observed together, a possible fungal origin for nanofibres which are associated with NFC is investigated. Sequential enzymatic digestion of the fungal cell wall of selected fungal species demonstrates that the fungal cell wall can be a source of organic nanofibres. The obtained organic nanofibres show a striking morphological resemblance when compared to their natural counterparts, emphasizing a fungal origin for part of the organic nanofibres observed in association with NFC. It is further hypothesized that these organic nanofibres may act as templates for calcite nucleation in a biologically-influenced mineralization process, generating calcitic nanofibres. This highlights the possible involvement of Fungi in CaCO3 biomineralization processes, a role still poorly documented at present-day. Moreover, on a global scale, the organomineralization of organic nanofibres into calcitic nanofibres might have a great, however overlooked, impact on the biogeochemical cycles of both Ca and C.

  12. The calcite → aragonite transformation in low-Mg marble: Equilibrium relations, transformations mechanisms, and rates

    USGS Publications Warehouse

    Hacker, Bradley R.; Rubie, David C.; Kirby, Stephen H.; Bohlen, Steven R.

    2005-01-01

    Experimental transformation of a rather pure natural calcite marble to aragonite marble did not proceed via the expected straightforward polymorphic replacement. Instead, the small amount of Mg in the starting material (0.36 wt %) was excluded from the growing aragonite and diffused preferentially into the remaining calcite grains, producing Mg-rich calcite rods that persisted as relicts. Nucleation of aragonite occurred exclusively on grain boundaries, with aragonite [001] oriented subparallel to calcite [0001]. The aragonite crystals preferentially consumed the calcite crystal on which they nucleated, and the reaction fronts developed preferentially along the {010} and {110} planes of aragonite. Each aragonite neoblast that grew was nearly free of Mg (typically <0.1 wt %). The excess Mg was taken up by the calcite grains in between, stabilizing them and causing a few volume percent rodlike relicts of Mg-enriched calcite (up to 10 wt % MgO) to be left behind by the advancing reaction front. The aragonite growth rates are approximately linear and range from ∼3 × 10−11 m s−1 at 600°C to ∼9 × 10−9 m s−1 at 850°C, with an apparent activation enthalpy of 166 ± 91 kJ mol−1. This reaction mechanism and the resultant texture are akin to cellular precipitation reactions in metals. Similar transformation textures have been reported from high-Mg marbles in Japan and China that disproportionated to low-Mg calcite and dolomite.

  13. Origin of sulfate in barite and calcite cements in the Jebel Madar salt dome (Oman)

    NASA Astrophysics Data System (ADS)

    Vandeginste, V.; John, C. M.; Gilhooly, W. P.

    2012-12-01

    Jebel Madar is a 500-m high mountain rising in the desert at the Oman Foothills. The Jebel consists of Triassic to Cretaceous carbonate host rocks forming the carapace of a salt dome. Halokinesis caused major fracturing and faulting at Jebel Madar, and the resulting structures acted as the main pathways for fluids that generated diagenetic cements composed of both barite and calcite. The spatial distribution of calcite and barite occurrences shows that calcite is formed in large abundance along the three main faults, whereas barite is more concentrated along faults further away from the three main ones. The stable carbon and oxygen isotope composition of calcite and fluid inclusion data from both calcite and barite show a distinct evolution of the fluid with a highly saline component towards more mixing with meteoric water. This is in agreement with clumped isotopes data on calcite cements indicating an evolution towards lower temperatures, consistent with doming of the Jebel and greater input of lower-temperature descending meteoric fluids. Here, we present sulphur and oxygen isotopic data on barite that suggest a link between the barite formation and the Precambrian salt underlying Jebel Madar. The average δ34S measured in barite is 33‰ CDT (1σ = 5‰; n = 33), which falls at the lower end of the δ34S range reported for the Ara Group anhydrite. The average δ18O in the same barite samples is 23‰ VSMOW (1σ = 2‰; n = 33). Data from the barite will be compared with sulphur isotopes from the carbonate-associate sulfate in the calcite cements. The overall goal of our research is to gain a better insight in the formation process of barite and calcite in Jebel Madar and its link with salt tectonics. We would like to acknowledge the financial support of QCCSRC (funded jointly by Qatar Petroleum, Shell and the Qatar Science & Technology Park) and the GSA Laubach fund for this study.

  14. The potential for phosphorus pollution remediation by calcite precipitation in UK freshwaters

    NASA Astrophysics Data System (ADS)

    Neal, Colin

    This paper examines the potential for calcium carbonate to reduce phosphate pollution in freshwaters by co-precipitation, a process known as a "self cleansing mechanism". Calcium carbonate saturation levels and phosphate concentrations (SRP - soluble reactive phosphate) across the major eastern UK river basins are examined to test for solubility controls. The study shows that calcite saturation varies for each catchment as a function of flow and biological activity rather than by direct regulation by SRP. Indeed, there is no evidence, for any of the rivers studied, that calcite solubility controls hold. However, for groundwater and groundwater-fed springs in the Chalk of the Thames basin, calcite saturation is observed with associated low SRP levels. A self-cleansing mechanism may well be operative within the Chalk due to two factors. Firstly, there is a high potential for nucleation on the calcite micro-crystals in the aquifer. Secondly, there are within aquifer reactions that remove the calcite nucleating inhibitors (SRP and dissolved organic carbon, DOC) to levels lower than those occurring within the rivers do. These inhibitors enter the catchment at very high concentrations in association with agricultural pollution (fertilizer application and animal slurry) and household contamination (e.g. sewage sources from septic tanks). Under low flow conditions, when the saturation index for calcite is at its highest, so too is the concentration of the nucleation inhibitor SRP. Companion work shows that calcite precipitation can occur at the water-sediment interface of the river and this may involve SRP removal. The data, as a whole, define an apparent bound for calcite solubility control where in the presence of nucleating centres, SRP must be less than 4 mM-P l-1 and DOC must be less than 150 mM-C l-1: a condition that does not seem to pertain within most UK rivers.

  15. Catalytic Biomineralization of Fluorescent Calcite by the Thermophilic Bacterium Geobacillus thermoglucosidasius▿

    PubMed Central

    Yoshida, Naoto; Higashimura, Eiji; Saeki, Yuichi

    2010-01-01

    The thermophilic Geobacillus bacterium catalyzed the formation of 100-μm hexagonal crystals at 60°C in a hydrogel containing sodium acetate, calcium chloride, and magnesium sulfate. Under fluorescence microscopy, crystals fluoresced upon excitation at 365 ± 5, 480 ± 20, or 545 ± 15 nm. X-ray diffraction indicated that the crystals were magnesium-calcite in calcite-type calcium carbonate. PMID:20851984

  16. Calcite genesis in the Upper Freeport coal bed as indicated by stable isotope geochemistry

    SciTech Connect

    Dulong, F.T.; Spiker, E.C.; Cecil, C.B.; Stanton, R.W.

    1985-01-01

    The grinding and sizing in float-sink testing of the Upper Freeport coal bed physically separates calcite of different origins. The different origins are distinguished by different isotopic compositions. The isotopic compositions of calcite indicates at least two, possibly three, stages of calcite formation in the Upper Freeport coal bed. Calcite samples obtained from cleat, and isolated from 8x100 mesh-1.8 specific gravity sink fraction and -100 mesh size fraction, are enriched in /sup 13/C. The dispersion in /sup 18/O values for all three sample types, as measured by the standard deviation, is 2.7 per mil relative to SMOW, which may indicate similar temperature of formation. In contrast, calcite from the 1.275 specific gravity float fraction is depleted in /sup 13/C (mean = -4.6 per mil), indicative of CO/sub 2/ generated from the oxidation of organic matter. The standard deviation of /sup 18/O values for these samples is 9.2 per mil, probably indicating variation in the temperature of formation. Limestone samples associated with the Upper Freeport coal bed are slightly depleted in /sup 13/C (mean = -3.1 per mil). Genesis of calcite in the coal apparently resulted from biotic, as well as, thermogenic processes. A second stage of calcite formation, resulting from fermentation and methanogenesis is in cleat, and in the 8x100 mesh-1.8 specific gravity sink and -100 mesh size fractions. Part of the calcite in the 1.275 specific gravity float fraction may have formed from thermally generated CO/sub 2/ released during coalification.

  17. Experimental study of the aragonite to calcite transition in aqueous solution

    NASA Astrophysics Data System (ADS)

    Perdikouri, Christina; Kasioptas, Argyrios; Geisler, Thorsten; Schmidt, Burkhard C.; Putnis, Andrew

    2011-10-01

    The experimental replacement of aragonite by calcite was studied under hydrothermal conditions at temperatures between 160 and 200 C using single inorganic aragonite crystals as a starting material. The initial saturation state and the total [Ca 2+]:[CO 32-] ratio of the experimental solutions was found to have a determining effect on the amount and abundance of calcite overgrowths as well as the extent of replacement observed within the crystals. The replacement process was accompanied by progressive formation of cracks and pores within the calcite, which led to extended fracturing of the initial aragonite. The overall shape and morphology of the parent aragonite crystal were preserved. The replaced regions were identified with scanning electron microscopy and Raman spectroscopy. Experiments using carbonate solutions prepared with water enriched in 18O (97%) were also performed in order to trace the course of this replacement process. The incorporation of the heavier oxygen isotope in the carbonate molecule within the calcite replacements was monitored with Raman spectroscopy. The heterogeneous distribution of 18O in the reaction products required a separate study of the kinetics of isotopic equilibration within the fluid to obtain a better understanding of the 18O distribution in the calcite replacement. An activation energy of 109 kJ/mol was calculated for the exchange of oxygen isotopes between [C 16O 32-] aq and [H 218O] and the time for oxygen isotope exchange in the fluid at 200 C was estimated at 0.9 s. Given the exchange rate, analyses of the run products imply that the oxygen isotope composition in the calcite product is partly inherited from the oxygen isotope composition of the aragonite parent during the replacement process and is dependent on access of the fluid to the reaction interface rather than equilibration time. The aragonite to calcite fluid-mediated transformation is described by a coupled dissolution-reprecipitation mechanism, where aragonite dissolution is coupled to the precipitation of calcite at an inwardly moving reaction interface.

  18. Effects of Chitosan on the Morphology and Alignment of Calcite Crystals Nucleating Under Langmuir Monolayers

    SciTech Connect

    Kim, K.; Uysal, A; Kewalramani, S; Stripe, B; Dutta, P

    2009-01-01

    The growth of calcium carbonate crystals under Langmuir monolayers was investigated in the presence of chitosan, a soluble derivative of chitin added to the subphase to better simulate the polyelectrolyte-containing in vivo environment. Chitosan causes distinct concentration-dependent changes in the orientation, shape and morphology of the calcite crystals nucleating under acid and sulfate monolayers. Our results suggest that polyelectrolytes may play essential roles in controlling the growth of biogenic calcite crystals.

  19. Effects of chitosan on the alignment, morphology and shape of calcite crystals nucleating under Langmuir monolayers

    SciTech Connect

    Kim, Kyungil; Uysal, Ahmet; Kewalramani, Sumit; Stripe, Benjamin; Dutta, Pulak

    2009-04-22

    The growth of calcium carbonate crystals under Langmuir monolayers was investigated in the presence of chitosan, a soluble derivative of chitin added to the subphase to better simulate the polyelectrolyte-containing in vivo environment. Chitosan causes distinct concentration-dependent changes in the orientation, shape and morphology of the calcite crystals nucleating under acid and sulfate monolayers. Our results suggest that polyelectrolytes may play essential roles in controlling the growth of biogenic calcite crystals.

  20. The promotion effect of coexisting hygroscopic composition on the reaction between oxalic acid and calcite during humidifying process

    NASA Astrophysics Data System (ADS)

    Ma, Q.; He, H.

    2012-12-01

    Internally mixed oxalic acid with mineral dust has been frequently detected in field measurements (Sullivan and Prather, 2007; Wang et al., 2012; Yang et al., 2009). Meanwhile, Furukawa and Takahashi (Furukawa and Takahashi, 2011) found that most of the oxalic acid in mineral mixture is present as metal oxalate complexes in the aerosols, however, the formation mechanism of these complexes is not well known. It was reported that cloud process of H2C2O4/CaCO3 mixture could lead to the formation of calcium oxalate (Gierlus et al., 2012). Recently, we used Raman spectroscopy to investigate the hygroscopic behavior of H2C2O4/CaCO3 mixture below saturation condition as well as the effect of coexisting hygroscopic compositions, e.g. Ca(NO3)2, NaCl, NH4NO3, and (NH4)2SO4. It was found that there was no interaction between H2C2O4 and calcite without third component during humidifying process under ambient condition. In contrast, the presence of coexisting Ca(NO)3, NaCl, or NH4NO3 could promote the reaction between H2C2O4 and calcite by providing an aqueous circumstance after deliquescence, resulting in the formation of calcium oxalate hydrates. Moreover, substitution of strong acid (HNO3) by medium acid (H2C2O4) occurred when water vapor was absorbed in Ca(NO3)2/H2C2O4 mixture (Ma and He, 2012). As for (NH4)2SO4, there existed a competition effect between (NH4)2SO4 and H2C2O4 for the reaction with CaCO3. CaCO3 was preferentially reacted with (NH4)2SO4 to form gypsum in the solution, while the residual NH4+ and C2O42- ions were bonded to (NH4)2C2O4 after efflorescence. These results implies a potential formation pathway of metal oxalate complexes in the atmosphere and also suggests that synergistic effect between different constituents in humidifying process of mixed particles should be considered in future hygroscopic behavior studies.

  1. Kinetic and thermodynamic factors controlling the distribution of SO32- and Na+ in calcites and selected aragonites

    USGS Publications Warehouse

    Busenberg, E.; Niel, Plummer L.

    1985-01-01

    Significant amounts of SO42-, Na+, and OH- are incorporated in marine biogenic calcites. Biogenic high Mg-calcites average about 1 mole percent SO42-. Aragonites and most biogenic low Mg-calcites contain significant amounts of Na+, but very low concentrations of SO42-. The SO42- content of non-biogenic calcites and aragonites investigated was below 100 ppm. The presence of Na+ and SO42- increases the unit cell size of calcites. The solid-solutions show a solubility minimum at about 0.5 mole percent SO42- beyond which the solubility rapidly increases. The solubility product of calcites containing 3 mole percent SO42- is the same as that of aragonite. Na+ appears to have very little effect on the solubility product of calcites. The amounts of Na+ and SO42- incorporated in calcites vary as a function of the rate of crystal growth. The variation of the distribution coefficient (D) of SO42- in calcite at 25.0??C and 0.50 molal NaCl is described by the equation D = k0 + k1R where k0 and k1 are constants equal to 6.16 ?? 10-6 and 3.941 ?? 10-6, respectively, and R is the rate of crystal growth of calcite in mg??min-1??g-1 of seed. The data on Na+ are consistent with the hypothesis that a significant amount of Na+ occupies interstitial positions in the calcite structure. The distribution of Na+ follows a Freundlich isotherm and not the Berthelot-Nernst distribution law. The numerical value of the Na+ distribution coefficient in calcite is probably dependent on the number of defects in the calcite structure. The Na+ contents of calcites are not very accurate indicators of environmental salinities. ?? 1985.

  2. Physical Properties of Gas Hydrates: A Review

    DOE PAGESBeta

    Gabitto, Jorge F.; Tsouris, Costas

    2010-01-01

    Memore » thane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 10 16   m 3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.« less

  3. Desalination utilizing clathrate hydrates (LDRD final report).

    SciTech Connect

    Simmons, Blake Alexander; Bradshaw, Robert W.; Dedrick, Daniel E.; Cygan, Randall Timothy; Greathouse, Jeffery A.; Majzoub, Eric H.

    2008-01-01

    Advances are reported in several aspects of clathrate hydrate desalination fundamentals necessary to develop an economical means to produce municipal quantities of potable water from seawater or brackish feedstock. These aspects include the following, (1) advances in defining the most promising systems design based on new types of hydrate guest molecules, (2) selection of optimal multi-phase reactors and separation arrangements, and, (3) applicability of an inert heat exchange fluid to moderate hydrate growth, control the morphology of the solid hydrate material formed, and facilitate separation of hydrate solids from concentrated brine. The rate of R141b hydrate formation was determined and found to depend only on the degree of supercooling. The rate of R141b hydrate formation in the presence of a heat exchange fluid depended on the degree of supercooling according to the same rate equation as pure R141b with secondary dependence on salinity. Experiments demonstrated that a perfluorocarbon heat exchange fluid assisted separation of R141b hydrates from brine. Preliminary experiments using the guest species, difluoromethane, showed that hydrate formation rates were substantial at temperatures up to at least 12 C and demonstrated partial separation of water from brine. We present a detailed molecular picture of the structure and dynamics of R141b guest molecules within water cages, obtained from ab initio calculations, molecular dynamics simulations, and Raman spectroscopy. Density functional theory calculations were used to provide an energetic and molecular orbital description of R141b stability in both large and small cages in a structure II hydrate. Additionally, the hydrate of an isomer, 1,2-dichloro-1-fluoroethane, does not form at ambient conditions because of extensive overlap of electron density between guest and host. Classical molecular dynamics simulations and laboratory trials support the results for the isomer hydrate. Molecular dynamics simulations show that R141b hydrate is stable at temperatures up to 265K, while the isomer hydrate is only stable up to 150K. Despite hydrogen bonding between guest and host, R141b molecules rotated freely within the water cage. The Raman spectrum of R141b in both the pure and hydrate phases was also compared with vibrational analysis from both computational methods. In particular, the frequency of the C-Cl stretch mode (585 cm{sup -1}) undergoes a shift to higher frequency in the hydrate phase. Raman spectra also indicate that this peak undergoes splitting and intensity variation as the temperature is decreased from 4 C to -4 C.

  4. NMR characterization of hydrocarbon adsorption on calcite surfaces: A first principles study

    NASA Astrophysics Data System (ADS)

    Bevilaqua, Rochele C. A.; Rigo, Vagner A.; Veríssimo-Alves, Marcos; Miranda, Caetano R.

    2014-11-01

    The electronic and coordination environment of minerals surfaces, as calcite, are very difficult to characterize experimentally. This is mainly due to the fact that there are relatively few spectroscopic techniques able to detect Ca2+. Since calcite is a major constituent of sedimentary rocks in oil reservoir, a more detailed characterization of the interaction between hydrocarbon molecules and mineral surfaces is highly desirable. Here we perform a first principles study on the adsorption of hydrocarbon molecules on calcite surface (CaCO3 ( {10bar 14} )). The simulations were based on Density Functional Theory with Solid State Nuclear Magnetic Resonance (SS-NMR) calculations. The Gauge-Including Projector Augmented Wave method was used to compute mainly SS-NMR parameters for 43Ca, 13C, and 17O in calcite surface. It was possible to assign the peaks in the theoretical NMR spectra for all structures studied. Besides showing different chemical shifts for atoms located on different environments (bulk and surface) for calcite, the results also display changes on the chemical shift, mainly for Ca sites, when the hydrocarbon molecules are present. Even though the interaction of the benzene molecule with the calcite surface is weak, there is a clearly distinguishable displacement of the signal of the Ca sites over which the hydrocarbon molecule is located. A similar effect is also observed for hexane adsorption. Through NMR spectroscopy, we show that aromatic and alkane hydrocarbon molecules adsorbed on carbonate surfaces can be differentiated.

  5. Multiple origins for zoned cathodoluminescent and noncathodoluminescent calcite cements in Pennsylvanian limestones

    SciTech Connect

    Goldstein, R.H.; Anderson, J.E.; Phares, R.A. )

    1991-03-01

    Noncathodoluminescent calcite containing brightly to moderately luminescent zones is a common early cement in limestones. Three such cements in Upper Pennsylvanian limestones from different areas were studied. All three units are overlain up-section by Permian evaporites and consist of carbonate-siliciclastic 'cyclothems' in which individual cycles were subject to subaerial exposure. With such similar settings, one might predict that petrographically similar calcite cements would have similar origins. In the Holder Formation (New Mexico), the zoned calcite predates compaction, and cross-cutting relationships with cycle-capping paleosols show that zoned cements precipitated during 15 events of subaerial exposure. Therefore, cements precipitated from freshwater during early and repeated subaerial exposure. For the Lansing-Kansas City groups in northwestern Kansas, the zoned calcite cements commonly are among the first precipitated but may postdate some compaction. All-liquid fluid inclusions indicated precipitation below about 50C, from brines of approximately 23 weight %. NaCl equivalent. The brines may have refluxed downward during deposition of Permian evaporites. A limestone of the Lansing-Kansas City groups of west-central Kansas contains early zoned calcite cement that predates compaction. The cement contains all-liquid fluid inclusions indicating precipitation below about 50C. The presence of nonluminescent calcite containing bright subzones is not indicative of a single diagenetic environment. Petrographically similar cements from similar settings may originate in markedly different diagenetic environments.

  6. NMR characterization of hydrocarbon adsorption on calcite surfaces: A first principles study

    SciTech Connect

    Bevilaqua, Rochele C. A.; Miranda, Caetano R.; Rigo, Vagner A.; Veríssimo-Alves, Marcos

    2014-11-28

    The electronic and coordination environment of minerals surfaces, as calcite, are very difficult to characterize experimentally. This is mainly due to the fact that there are relatively few spectroscopic techniques able to detect Ca{sup 2+}. Since calcite is a major constituent of sedimentary rocks in oil reservoir, a more detailed characterization of the interaction between hydrocarbon molecules and mineral surfaces is highly desirable. Here we perform a first principles study on the adsorption of hydrocarbon molecules on calcite surface (CaCO{sub 3} (101{sup ¯}4)). The simulations were based on Density Functional Theory with Solid State Nuclear Magnetic Resonance (SS-NMR) calculations. The Gauge-Including Projector Augmented Wave method was used to compute mainly SS-NMR parameters for {sup 43}Ca, {sup 13}C, and {sup 17}O in calcite surface. It was possible to assign the peaks in the theoretical NMR spectra for all structures studied. Besides showing different chemical shifts for atoms located on different environments (bulk and surface) for calcite, the results also display changes on the chemical shift, mainly for Ca sites, when the hydrocarbon molecules are present. Even though the interaction of the benzene molecule with the calcite surface is weak, there is a clearly distinguishable displacement of the signal of the Ca sites over which the hydrocarbon molecule is located. A similar effect is also observed for hexane adsorption. Through NMR spectroscopy, we show that aromatic and alkane hydrocarbon molecules adsorbed on carbonate surfaces can be differentiated.

  7. Fabrication of porous low crystalline calcite block by carbonation of calcium hydroxide compact.

    PubMed

    Matsuya, Shigeki; Lin, Xin; Udoh, Koh-ichi; Nakagawa, Masaharu; Shimogoryo, Ryoji; Terada, Yoshihiro; Ishikawa, Kunio

    2007-07-01

    Calcium carbonate (CaCO(3)) has been widely used as a bone substitute material because of its excellent tissue response and good resorbability. In this experimental study, we propose a new method obtaining porous CaCO(3) monolith for an artificial bone substitute. In the method, calcium hydroxide compacts were exposed to carbon dioxide saturated with water vapor at room temperature. Carbonation completed within 3 days and calcite was the only product. The mechanical strength of CaCO(3) monolith increased with carbonation period and molding pressure. Development of mechanical strength proceeded through two steps; the first rapid increase by bonding with calcite layer formed at the surface of calcium hydroxide particles and the latter increase by the full conversion of calcium hydroxide to calcite. The latter process was thought to be controlled by the diffusion of CO(2) through micropores in the surface calcite layer. Porosity of calcite blocks thus prepared had 36.8-48.1% depending on molding pressure between 1 MPa and 5 MPa. We concluded that the present method may be useful for the preparation of bone substitutes or the preparation of source material for bone substitutes since this method succeeded in fabricating a low-crystalline, and thus a highly reactive, porous calcite block. PMID:17277982

  8. Estimation of past seepage volumes from calcite distribution in the Topopah Spring Tuff, Yucca Mountain, Nevada.

    PubMed

    Marshall, Brian D; Neymark, Leonid A; Peterman, Zell E

    2003-01-01

    Low-temperature calcite and opal record the past seepage of water into open fractures and lithophysal cavities in the unsaturated zone at Yucca Mountain, Nevada, site of a proposed high-level radioactive waste repository. Systematic measurements of calcite and opal coatings in the Exploratory Studies Facility (ESF) tunnel at the proposed repository horizon are used to estimate the volume of calcite at each site of calcite and/or opal deposition. By estimating the volume of water required to precipitate the measured volumes of calcite in the unsaturated zone, seepage rates of 0.005 to 5 liters/year (l/year) are calculated at the median and 95th percentile of the measured volumes, respectively. These seepage rates are at the low end of the range of seepage rates from recent performance assessment (PA) calculations, confirming the conservative nature of the performance assessment. However, the distribution of the calcite and opal coatings indicate that a much larger fraction of the potential waste packages would be contacted by this seepage than is calculated in the performance assessment. PMID:12714293

  9. Estimation of past seepage volumes from calcite distribution in the Topopah Spring Tuff, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Marshall, B.D.; Neymark, L.A.; Peterman, Z.E.

    2003-01-01

    Low-temperature calcite and opal record the past seepage of water into open fractures and lithophysal cavities in the unsaturated zone at Yucca Mountain, Nevada, site of a proposed high-level radioactive waste repository. Systematic measurements of calcite and opal coatings in the Exploratory Studies Facility (ESF) tunnel at the proposed repository horizon are used to estimate the volume of calcite at each site of calcite and/or opal deposition. By estimating the volume of water required to precipitate the measured volumes of calcite in the unsaturated zone, seepage rates of 0.005 to 5 liters/year (l/year) are calculated at the median and 95th percentile of the measured volumes, respectively. These seepage rates are at the low end of the range of seepage rates from recent performance assessment (PA) calculations, confirming the conservative nature of the performance assessment. However, the distribution of the calcite and opal coatings indicate that a much larger fraction of the potential waste packages would be contacted by this seepage than is calculated in the performance assessment.

  10. Mixing-induced calcite precipitation and dissolution kinetics in micromodel experiments.

    SciTech Connect

    Valocchi, Albert J.; Dewers, Thomas A.; Dehoff, Karl; Yoon, Hongkyu; Werth, Charles J.

    2010-12-01

    Dissolved CO2 from geological CO2 sequestration may react with dissolved minerals in fractured rocks or confined aquifers and cause mineral precipitation. The overall rate of reaction can be limited by diffusive or dispersive mixing, and mineral precipitation can block pores and further hinder these processes. Mixing-induced calcite precipitation experiments were performed by injecting solutions containing CaCl2 and Na2CO3 through two separate inlets of a micromodel (1-cm x 2-cm x 40-microns); transverse dispersion caused the two solutions to mix along the center of the micromodel, resulting in calcite precipitation. The amount of calcite precipitation initially increased to a maximum and then decreased to a steady state value. Fluorescent microscopy and imaging techniques were used to visualize calcite precipitation, and the corresponding effects on the flow field. Experimental micromodel results were evaluated with pore-scale simulations using a 2-D Lattice-Boltzmann code for water flow and a finite volume code for reactive transport. The reactive transport model included the impact of pH upon carbonate speciation and calcite dissolution. We found that proper estimation of the effective diffusion coefficient and the reaction surface area is necessary to adequately simulate precipitation and dissolution rates. The effective diffusion coefficient was decreased in grid cells where calcite precipitated, and keeping track of reactive surface over time played a significant role in predicting reaction patterns. Our results may improve understanding of the fundamental physicochemical processes during CO2 sequestration in geologic formations.

  11. Microstructural control of calcite via incorporation of intracrystalline organic molecules in shells

    NASA Astrophysics Data System (ADS)

    Okumura, Taiga; Suzuki, Michio; Nagasawa, Hiromichi; Kogure, Toshihiro

    2013-10-01

    It is widely accepted that organic substances regulate or influence the structure of biominerals, but its direct evidences are not plenty. Here we show that the crystallographic microstructures in biotic calcites arise from incorporated intracrystalline organic molecules (IOMs), through a comparison between biotic calcites in shells and synthetic ones with the IOMs extracted from the shells. Although the prismatic layers of a pearl oyster (Pinctada fucata) and a pen shell (Atrina pectinata) morphologically resemble each other, the crystallographic features of constituent calcites are considerably different; in Pinctada, the IOMs are distributed inhomogeneously to form small-angle grain boundaries and associated crystal defects, whereas in Atrina, the IOMs are distributed almost homogeneously and defects are rare in the calcite crystals. We conducted in vitro calcite syntheses in the presence of the IOMs in EDTA-soluble extracts from the prisms. The IOMs in the extracts from Pinctada and Atrina were incorporated into synthetic calcites in a different manner, exhibiting defect-rich/free features as observed in the natural shells. With regard to amino acid compositions of the IOMs, the extract from Atrina has a higher proportion of acidic amino acids than that from Pinctada, implying that acidic proteins do not correlate directly to their affinity for calcium carbonate crystals.

  12. NMR characterization of hydrocarbon adsorption on calcite surfaces: a first principles study.

    PubMed

    Bevilaqua, Rochele C A; Rigo, Vagner A; Veríssimo-Alves, Marcos; Miranda, Caetano R

    2014-11-28

    The electronic and coordination environment of minerals surfaces, as calcite, are very difficult to characterize experimentally. This is mainly due to the fact that there are relatively few spectroscopic techniques able to detect Ca(2+). Since calcite is a major constituent of sedimentary rocks in oil reservoir, a more detailed characterization of the interaction between hydrocarbon molecules and mineral surfaces is highly desirable. Here we perform a first principles study on the adsorption of hydrocarbon molecules on calcite surface (CaCO3 (101¯4)). The simulations were based on Density Functional Theory with Solid State Nuclear Magnetic Resonance (SS-NMR) calculations. The Gauge-Including Projector Augmented Wave method was used to compute mainly SS-NMR parameters for (43)Ca, (13)C, and (17)O in calcite surface. It was possible to assign the peaks in the theoretical NMR spectra for all structures studied. Besides showing different chemical shifts for atoms located on different environments (bulk and surface) for calcite, the results also display changes on the chemical shift, mainly for Ca sites, when the hydrocarbon molecules are present. Even though the interaction of the benzene molecule with the calcite surface is weak, there is a clearly distinguishable displacement of the signal of the Ca sites over which the hydrocarbon molecule is located. A similar effect is also observed for hexane adsorption. Through NMR spectroscopy, we show that aromatic and alkane hydrocarbon molecules adsorbed on carbonate surfaces can be differentiated. PMID:25429955

  13. Estimation of past seepage volumes from calcite distribution in the Topopah Spring Tuff, Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Marshall, Brian D.; Neymark, Leonid A.; Peterman, Zell E.

    2003-05-01

    Low-temperature calcite and opal record the past seepage of water into open fractures and lithophysal cavities in the unsaturated zone at Yucca Mountain, Nevada, site of a proposed high-level radioactive waste repository. Systematic measurements of calcite and opal coatings in the Exploratory Studies Facility (ESF) tunnel at the proposed repository horizon are used to estimate the volume of calcite at each site of calcite and/or opal deposition. By estimating the volume of water required to precipitate the measured volumes of calcite in the unsaturated zone, seepage rates of 0.005 to 5 liters/year (l/year) are calculated at the median and 95th percentile of the measured volumes, respectively. These seepage rates are at the low end of the range of seepage rates from recent performance assessment (PA) calculations, confirming the conservative nature of the performance assessment. However, the distribution of the calcite and opal coatings indicate that a much larger fraction of the potential waste packages would be contacted by this seepage than is calculated in the performance assessment.

  14. Observations related to tetrahydrofuran and methane hydrates for laboratory studies of hydrate-bearing sediments

    NASA Astrophysics Data System (ADS)

    Lee, J. Y.; Yun, T. S.; Santamarina, J. C.; Ruppel, C.

    2007-06-01

    The interaction among water molecules, guest gas molecules, salts, and mineral particles determines the nucleation and growth behavior of gas hydrates in natural sediments. Hydrate of tetrahydrofuran (THF) has long been used for laboratory studies of gas hydrate-bearing sediments to provide close control on hydrate concentrations and to overcome the long formation history of methane hydrate from aqueous phase methane in sediments. Yet differences in the polarizability of THF (polar molecule) compared to methane (nonpolar molecule) raise questions about the suitability of THF as a proxy for methane in the study of hydrate-bearing sediments. From existing data and simple macroscale experiments, we show that despite its polar nature, THF's large molecular size results in low permittivity, prevents it from dissolving precipitated salts, and hinders the solvation of ions on dry mineral surfaces. In addition, the interfacial tension between water and THF hydrate is similar to that between water and methane hydrate. The processes that researchers choose for forming hydrate in sediments in laboratory settings (e.g., from gas, liquid, or ice) and the pore-scale distribution of the hydrate that is produced by each of these processes likely have a more pronounced effect on the measured macroscale properties of hydrate-bearing sediments than do differences between THF and methane hydrates themselves.

  15. Waters of Hydration of Cupric Hydrates: A Comparison between Heating and Absorbance Methods

    ERIC Educational Resources Information Center

    Barlag, Rebecca; Nyasulu, Frazier

    2011-01-01

    The empirical formulas of four cupric hydrates are determined by measuring the absorbance in aqueous solution. The Beer-Lambert Law is verified by constructing a calibration curve of absorbance versus known Cu[superscript 2+](aq) concentration. A solution of the unknown hydrate is prepared by using 0.2-0.3 g of hydrate, and water is added such

  16. Waters of Hydration of Cupric Hydrates: A Comparison between Heating and Absorbance Methods

    ERIC Educational Resources Information Center

    Barlag, Rebecca; Nyasulu, Frazier

    2011-01-01

    The empirical formulas of four cupric hydrates are determined by measuring the absorbance in aqueous solution. The Beer-Lambert Law is verified by constructing a calibration curve of absorbance versus known Cu[superscript 2+](aq) concentration. A solution of the unknown hydrate is prepared by using 0.2-0.3 g of hydrate, and water is added such…

  17. Observations related to tetrahydrofuran and methane hydrates for laboratory studies of hydrate-bearing sediments

    USGS Publications Warehouse

    Lee, J.Y.; Yun, T.S.; Santamarina, J.C.; Ruppel, C.

    2007-01-01

    The interaction among water molecules, guest gas molecules, salts, and mineral particles determines the nucleation and growth behavior of gas hydrates in natural sediments. Hydrate of tetrahydrofuran (THF) has long been used for laboratory studies of gas hydrate-bearing sediments to provide close control on hydrate concentrations and to overcome the long formation history of methane hydrate from aqueous phase methane in sediments. Yet differences in the polarizability of THF (polar molecule) compared to methane (nonpolar molecule) raise questions about the suitability of THF as a proxy for methane in the study of hydrate-bearing sediments. From existing data and simple macroscale experiments, we show that despite its polar nature, THF's large molecular size results in low permittivity, prevents it from dissolving precipitated salts, and hinders the solvation of ions on dry mineral surfaces. In addition, the interfacial tension between water and THF hydrate is similar to that between water and methane hydrate. The processes that researchers choose for forming hydrate in sediments in laboratory settings (e.g., from gas, liquid, or ice) and the pore-scale distribution of the hydrate that is produced by each of these processes likely have a more pronounced effect on the measured macroscale properties of hydrate-bearing sediments than do differences between THF and methane hydrates themselves.

  18. National uranium resource evaluation, Lime Hills Quadrangle, Alaska

    SciTech Connect

    Hinderman, T.K.

    1982-04-01

    The Lime Hills Quadrangle in south-central Alaska was evaluated to identify geologic environments favorable for the occurrence of uranium. The study used data from aerial radiometric surveys, geochemical sampling, published geologic maps, and ground geologic examinations. A small drainage at the head of the Post River in the northeastern part of the quadrangle was found to be favorable for the occurrence of fluvial placer uranium deposits. Samples of black sand from the area contained up to 0.7% U/sub 3/O/sub 8/. Quaternary gravels elsewhere in the quadrangle may also have placer potential; at the present time they are unevaluated. Anomalous concentrations of uranium, up to 540 ppM U/sub 3/O/sub 8/, occur in stream sediments collected from drainages of the south end of the Tired Pup batholith. The region is considered favorable for the occurrence of supergene uranium mineralization, probably of the authigenic type.

  19. Liming as an advanced treatment for sludge sanitisation: helminth eggs elimination--Ascaris eggs as model.

    PubMed

    Capizzi-Banas, S; Deloge, M; Remy, M; Schwartzbrod, J

    2004-01-01

    The presence of helminth eggs (Ascaris eggs) in sewage sludge may constitute a sanitary risk when used as agricultural fertiliser. Sanitisation of sewage sludge can be achieved by treatment with quick lime, a process that destroys sludge pathogens in two ways: pH increase and temperature rise. Among the pathogens of epidemiological relevance, Ascaris eggs are the most resistant to liming, and, hence, may serve as indicators of hygienic quality of biosolids. This research aims at defining, between 50 degrees C and 60 degrees C, the time required in the case of limed sludge to obtain a product with a negligible level of viable Ascaris eggs. To achieve this objective, investigations on inactivation kinetics of Ascaris eggs were conducted in the following products: contaminated milk of lime; naturally contaminated sludge treated with slaked lime and heat; naturally contaminated sludge treated with quick lime; and sludge treated at full scale with quick lime. For the inactivation kinetics where a negligible level of Ascaris eggs was reached, the inactivation threshold was determined. Depending on the experimental situation, the inactivation threshold period was found to fluctuate between 5 and 75 min at 55 degrees C and between 1 and 8 min at 60 degrees C. PMID:15276741

  20. [Wet FGD process on rotating-stream-tray tower with magnesium-enhanced lime].

    PubMed

    Sun, W; Wu, Z; Tan, T

    2001-05-01

    Wet flue gas desulfurization(FGD) process with magnesium-enhanced lime slurry was conducted on a rotating-stream-tray tower. Changes of SO2 removal efficiency and slurry pH with time were experimentally determined. Effects of magnesium sulfate concentration were investigated and the lime utilization was calculated according to experimental data. In comparison with lime FGD process, adding magnesium sulfate could effectively enhance SO2 removal efficiency; when the adequate magnesium sulfate concentration was 0.2 mol/L, the removal efficiency was more than 60% with two rotating-stream-trays, while the removal efficiency of lime process was only 45%. To achieve higher SO2 removal efficiency, the slurry pH should be controlled between 6.0 and 7.5. Magnesium sulfate could also promote lime dissolution, slow down descent of slurry pH and increase lime utilization; when magnesium sulfate concentration was 0.2 mol/L, lime utilization could be increased by more than 5 percentage point under adequate conditions. PMID:11507892

  1. Stabilization of Oklahoma expensive soils using lime and class C fly ash

    SciTech Connect

    Buhler, R.L.; Cerato, A.B.

    2007-01-15

    This study uses lime and class C fly ash, an industrial byproduct of electric power production produced from burning lignite and subbituminous coal, to study the plasticity reduction in highly expensive natural clays from Idabel, Oklahoma. This study is important, especially in Oklahoma, because most of the native soils are expansive and cause seasonal damage to roadways and structures. The addition of lime or fly ash helps to arrest the shrinkage and swelling behavior of soil. Four soil samples with the same AASHTO classification were used in this study to show shrinkage variability within a soil group with the addition of lime and class C fly ash. The plasticity reduction in this study was quantified using the linear shrinkage test. It was found that soils classified within the same AASHTO group had varying shrinkage characteristics. It was also found that both lime and fly ash reduced the lienar shrinkage, however, the addition of lime reduced the linear shrinkage to a greater degree than the same percentage of class C fly ash. Even though it takes much less lime than fly ash to reduce the plasticity of a highly expansive soil, it may be less expensive to utilize fly ash, which is a waste product of electric power production. Lime also has a lower unit weight than fly ash so weight percentage results may be misleading.

  2. A new look at liming as an approach to accelerate recovery from acidic deposition effects

    USGS Publications Warehouse

    Lawrence, Gregory B.; Burns, Douglas A.; Murray, Karen

    2016-01-01

    Acidic deposition caused by fossil fuel combustion has degraded aquatic and terrestrial ecosystems in North America for over four decades. The only management option other than emissions reductions for combating the effects of acidic deposition has been the application of lime to neutralize acidity after it has been deposited on the landscape. For this reason, liming has been a part of acid rain science from the beginning. However, continued declines in acidic deposition have led to partial recovery of surface water chemistry, and the start of soil recovery. Liming is therefore no longer needed to prevent further damage, so the question becomes whether liming would be useful for accelerating recovery of systems where improvement has lagged. As more is learned about recovering ecosystems, it has become clear that recovery rates vary with watershed characteristics and among ecosystem components. Lakes appear to show the strongest recovery, but recovery in streams is sluggish and recovery of soils appears to be in the early stages. The method in which lime is applied is therefore critical in achieving the goal of accelerated recovery. Application of lime to a watershed provides the advantage of increasing Ca availability and reducing or preventing mobilization of toxic Al, an outcome that is beneficial to both terrestrial and aquatic ecosystems. However, the goal should not be complete neutralization of soil acidity, which is naturally produced. Liming of naturally acidic areas such as wetlands should also be avoided to prevent damage to indigenous species that rely on an acidic environment.

  3. Low Velocity Sphere Impact of a Soda Lime Silicate Glass

    SciTech Connect

    Wereszczak, Andrew A; Fox, Ethan E; Morrissey, Timothy G; Vuono, Daniel J

    2011-10-01

    This report summarizes TARDEC-sponsored work at Oak Ridge National Laboratory (ORNL) during the FY11 involving low velocity (< 30 m/s or < 65 mph) ball impact testing of Starphire soda lime silicate glass. The intent was to better understand low velocity impact response in the Starphire for sphere densities that bracketed that of rock. Five sphere materials were used: borosilicate glass, soda-lime silicate glass, steel, silicon nitride, and alumina. A gas gun was fabricated to produce controlled velocity delivery of the spheres against Starphire tile targets. Minimum impact velocities to initiate fracture in the Starphire were measured and interpreted in context to the kinetic energy of impact and the elastic property mismatch between the any of the five sphere-Starphire-target combinations. The primary observations from this low velocity (< 30 m/s or < 65 mph) testing were: (1) Frictional effects contribute to fracture initiation. (2) Spheres with a lower elastic modulus require less force to initiate fracture in the Starphire than spheres with a higher elastic modulus. (3) Contact-induced fracture did not initiate in the Starphire SLS for impact kinetic energies < 150 mJ. Fracture sometimes initiated or kinetic energies between {approx} 150-1100 mJ; however, it tended to occur when lower elastic modulus spheres were impacting it. Contact-induced fracture would always occur for impact energies > 1100 mJ. (4) The force necessary to initiate contact-induced fracture is higher under dynamic or impact conditions than it is under quasi-static indentation conditions. (5) Among the five used sphere materials, silicon nitride was the closest match to 'rock' in terms of both density and (probably) elastic modulus.

  4. Landfill methane oxidation response to vegetation, fertilization, and liming

    SciTech Connect

    Hilger, H.A.; Wollum, A.G.; Barlaz, M.A.

    2000-02-01

    Landfills are the fourth largest global source and the largest US source (USDOE, 1997) of anthropogenic CH{sub 4} emissions. Since gram-for-gram, CH{sub 4} has 21 times the 100-yr global-warming potential of CO{sub 2} (USEPA, 1990). CH{sub 4} release into the atmosphere has important implications for global climate change. This study was conducted to evaluate the effects of vegetation, N fertilizers, and lime addition on landfill CH{sub 4} oxidation. Columns filled with compacted sandy loam and sparged with synthetic landfill gas were used to simulate a landfill cover. Grass-topped and bare-soil columns reduced inlet CH{sub 4} by 47 and 37%, respectively, at peak uptake; but the rate for both treatments was about 18% at steady state. Nitrate and NH{sub 4} amendments induced a more rapid onset of CH{sub 4} oxidation relative to KCl controls. However, at steady state, NH{sub 4} inhibited CH{sub 4} oxidation in bare columns but not in grassed columns. Nitrate addition produced no inhibitory effects. Lime addition to the soil consistently enhanced CH{sub 4} oxidation. In all treatments, CH{sub 4} consumption increased to a peak value, then declined to a lower steady-state value; and all gassed columns developed a pH gradient. Neither nutrient depletion nor protozoan grazing could explain the decline from peak oxidation levels. Ammonium applied to grassed cover soil can cause transient reductions in CH{sub 4} uptake, but there is no evidence that the inhibition persists. The ability of vegetation to mitigate NH{sub 4} inhibition indicates that results from bare-soil tests may not always generalize to vegetated landfill caps.

  5. A coupled THMC model of a heating and hydration laboratory experiment in unsaturated compacted FEBEX bentonite

    SciTech Connect

    Zheng, L.; Samper, J.; Montenegro, L.; Fernandez, A.M.

    2010-05-01

    Unsaturated compacted bentonite is foreseen by several countries as a backfill and sealing material in high-level radioactive waste repositories. The strong interplays between thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes during the hydration stage of a repository call for fully coupled THMC models. Validation of such THMC models is prevented by the lack of comprehensive THMC experiments and the difficulties of experimental methods to measure accurately the chemical composition of bentonite porewater. We present here a non-isothermal multiphase flow and multicomponent reactive solute transport model for a deformable medium of a heating and hydration experiment performed on a sample of compacted FEBEX bentonite. Besides standard solute transport and geochemical processes, the model accounts for solute cross diffusion and thermal and chemical osmosis. Bentonite swelling is solved with a state-surface approach. The THM model is calibrated with transient temperature, water content and porosity data measured at the end of the experiment. The reactive transport model is calibrated with porewater chemical data derived from aqueous extract data. Model results confirm that thermal osmosis is relevant for the hydration of FEBEX bentonite while chemical osmosis can be safely neglected. Dilution and evaporation are the main processes controlling the concentration of conservative species. Dissolved cations are mostly affected by calcite dissolution-precipitation and cation exchange reactions. Dissolved sulphate is controlled by gypsum/anhydrite dissolution-precipitation. pH is mostly buffered by protonation/deprotonation via surface complexation. Computed concentrations agree well with inferred aqueous extract data at all sections except near the hydration boundary where cation data are affected by a sampling artifact. The fit of Cl{sup -} data is excellent except for the data near the heater. The largest deviations of the model from inferred aqueous extract data occur for dissolved SO{sub 4}{sup 2-} which is underpredicted by the model. There are uncertainties on the amount of gypsum available for dissolution and its dissolution mechanism (kinetics or local equilibrium).

  6. Genetic variation assessment of acid lime accessions collected from south of Iran using SSR and ISSR molecular markers.

    PubMed

    Sharafi, Ata Allah; Abkenar, Asad Asadi; Sharafi, Ali; Masaeli, Mohammad

    2016-01-01

    Iran has a long history of acid lime cultivation and propagation. In this study, genetic variation in 28 acid lime accessions from five regions of south of Iran, and their relatedness with other 19 citrus cultivars were analyzed using Simple Sequence Repeat (SSR) and Inter-Simple Sequence Repeat (ISSR) molecular markers. Nine primers for SSR and nine ISSR primers were used for allele scoring. In total, 49 SSR and 131 ISSR polymorphic alleles were detected. Cluster analysis of SSR and ISSR data showed that most of the acid lime accessions (19 genotypes) have hybrid origin and genetically distance with nucellar of Mexican lime (9 genotypes). As nucellar of Mexican lime are susceptible to phytoplasma, these acid lime genotypes can be used to evaluate their tolerance against biotic constricts like lime "witches' broom disease". PMID:27186022

  7. The role of disseminated calcite in the chemical weathering of granitoid rocks

    USGS Publications Warehouse

    White, A.F.; Bullen, T.D.; Vivit, D.V.; Schulz, M.S.; Clow, D.W.

    1999-01-01

    Accessory calcite, present at concentrations between 300 and 3000 mg kg-1, occurs in fresh granitoid rocks sampled from the Merced watershed in Yosemite National Park, CA, USA; Loch Vale in Rocky Mountain National Park CO USA; the Panola watershed, GA USA; and the Rio Icacos, Puerto Rico. Calcite occurs as fillings in microfractures, as disseminated grains within the silicate matrix, and as replacement of calcic cores in plagioclase. Flow-through column experiments, using de-ionized water saturated with 0.05 atm. CO2, produced effluents from the fresh granitoid rocks that were dominated by Ca and bicarbonate and thermodynamically saturated with calcite. During reactions up to 1.7 yr, calcite dissolution progressively decreased and was superceded by steady state dissolution of silicates, principally biotite. Mass balance calculations indicate that most calcite had been removed during this time and accounted for 57-98% of the total Ca released from these rocks. Experimental effluents from surfically weathered granitoids from the same watersheds were consistently dominated by silicate dissolution. The lack of excess Ca and alkalinity indicated that calcite had been previously removed by natural weathering. The extent of Ca enrichment in watershed discharge fluxes corresponds to the amounts of calcite exposed in granitoid rocks. High Ca/Na ratios relative to plagioclase stoichiometries indicate excess Ca in the Yosemite, Loch Vale, and other alpine watersheds in the Sierra Nevada and Rocky Mountains of the western United States. This Ca enrichment correlates with strong preferential weathering of calcite relative to plagioclase in exfoliated granitoids in glaciated terrains. In contrast, Ca/Na flux ratios are comparable to or less than the Ca/Na ratios for plagioclase in the subtropical Panola and tropical Rio Icacos watersheds, in which deeply weathered regoliths exhibit concurrent losses of calcite and much larger masses of plagioclase during transport-limited weathering. These results indicate that the weathering of accessory calcite may strongly influence Ca and alkalinity fluxes from silicate rocks during and following periods of glaciation and tectonism but is much less important for older stable geomorphic surfaces.

  8. Strain localization and the onset of dynamic weakening in calcite fault gouge

    NASA Astrophysics Data System (ADS)

    Smith, S. A. F.; Nielsen, S.; Di Toro, G.

    2015-03-01

    To determine the role of strain localization during dynamic weakening of calcite gouge at seismic slip rates, single-slide and slide-hold-slide experiments were conducted on 2-3-mm thick layers of calcite gouge at normal stresses up to 26 MPa and slip rates up to 1 m s-1. Microstructures were analyzed from short displacement (< 35 cm) experiments stopped prior to and during the transition to dynamic weakening. In fresh calcite gouge layers, dynamic weakening occurs after a prolonged strengthening phase that becomes shorter with increasing normal stress and decreasing layer thickness. Strain is initially distributed across the full thickness of the gouge layer, but within a few millimeters displacement the strain becomes localized to a boundary-parallel, high-strain shear band c. 20 μm wide. During the strengthening phase, which lasts between 3 and 30 cm under the investigated conditions, the shear band broadens to become c. 100 μm wide at peak stress. The transition to dynamic weakening in calcite gouges is associated with the nucleation of micro-slip surfaces dispersed throughout the c. 100 μm wide shear band. Each slip surface is surrounded by aggregates of extremely fine grained and tightly packed calcite, interpreted to result from grain welding driven by local frictional heating in the shear band. By the end of dynamic weakening strain is localized to a single 2- 3-μm wide principal slip surface, flanked by layers of recrystallized gouge. Calcite gouge layers re-sheared following a hold period weaken nearly instantaneously, much like solid cylinders of calcite marble deformed under the same experimental conditions. This is due to reactivation of the recrystallized and cohesive principal slip surface that formed during the first slide, reducing the effective gouge layer thickness to a few microns. Our results suggest that formation of a high-strain shear band is a critical precursor to dynamic weakening in calcite gouges. Microstructures are most compatible with dynamic weakening resulting from a thermally triggered mechanism such as flash heating that requires both a high degree of strain localization and a minimum slip velocity to activate. The delayed onset of dynamic weakening in fresh calcite gouge layers, particularly at low normal stresses, may inhibit large coseismic slip at shallow crustal levels in calcite-bearing fault zones.

  9. Deep lime incorporation methods for neutralization of acidic minesoils. Final report, October 1987-May 1992

    SciTech Connect

    Dollhopf, D.J.

    1992-05-01

    There is concern that acidic minesoils limed to only the 30 cm depth may not provide sufficient root zone for either optimum plant growth or long-term plant establishment. It was shown that agricultural discs, chisel plows (subsoilers) and moldboard plows can incorporate lime efficiency to the 10 to 25 cm minesoil depth. One very large tandem disc having 91 cm diameter blades successfully neutralized acidic minesoil to the 30 cm depth. Tractors mounted rototillers commonly used in agricultural production can efficiently incorporate lime to the 25 cm minesoil depth.

  10. Probing the record of seawater carbonate chemistry in coccolithophore calcite

    NASA Astrophysics Data System (ADS)

    Candelier, Yael; Minoletti, Fabrice; Hermoso, Michael

    2013-04-01

    Previous works on the biogeochemistry of the ubiquist coccolithophore Calcidiscus leptoporus quantified an oxygen isotope fractionation of about -2.2 ‰ with respect to equilibrium. New cultures experiments and core top study of this taxon enable the calibration of the temperature dependance recorded in δ18O of this coccolith providing a new tool to decipher surfaces water temperatures through the Cenozoic. These findings, concordant in the two approaches show a reduced range of vital effect (-1.1 ‰ ). Other cultured and isolated species (Gephyrocapsa oceanica, Emiliania huxleyi and C.pelagicus) show similar patterns that raise the question of a possible overestimation of isotopic disequilibria in coccolith calcite. A promising research topic in palaeoceanography consists of exploiting interspecific isotopic fractionation because species respond differently to ambient changes in carbonate system chemistry. While E.huxleyi or G.oceanica are isotopically sensitive to changes in dissolved inorganic carbon speciation or concentration, others such as C.leptoporus remains almost unaffected. This may indicate that in addition to traditional δ18O temperature proxy, coccolith interspecific isotopic offsets can provide an innovative means to constrain the carbonate chemistry of the mixed-layer. We investigated this hypothesis with a study case of the last Pleistocene deglaciation that appears to be a good candidate by his abrupt changes in temperatures, oxygen isotope composition of seawater and atmospheric pCO2. While numerous studies have investigated climate changes at high latitudes, we present here the first coccoliths-based isotopic record of mixed-layer temperature at the border of North Atlantic Subtropical Gyre (southwards of the polar front). From Site DSDP 607 we successfully isolated fractions of coccolithophore species C.leptoporus, G.oceanica, E. huxleyi and C.pelagicus over the last 17 kyr. Oxygen isotope variations from these fractions exhibit a shift of about -1.9 ‰ between the Younger Dryas and the Early Holocene SSTs that can be translated into a warming of about 7-8 °C. This result closely matches with previously reported temperatures derived from foraminiferal and alkenone records and confirms that coccoliths can be used as a complementary or alternative substrate to foraminiferal shells for isotopic analyses and paleoclimate reconstructions. Differential oxygen and carbon isotopic offsets between Calcidiscus spp. and small Noelaerhabdacea coccoliths are almost constant and present an overall agreement with culture predictions. Although further results are needed this may imply that an increase of about 80 ppm pCO2 as recorded in Antarctica ice sheet over this time period is not sufficient to effect variations in calcification and intensity of fractionation in these two common species.

  11. Calcite Fluid Inclusion, Paragenetic, and Oxygen Isotopic Records of Thermal Event(s) at Yucca Mountain, Nevada

    SciTech Connect

    B. Peterman; R. Moscati

    2000-08-10

    Yucca Mountain, Nevada, is under consideration as a potential high-level radioactive waste repository situated above the water table in 12.7 Ma tuffs. A wealth of textural and geochemical evidence from low-temperature deposits of calcite and silica, indicates that their genesis is related to unsaturated zone (UZ) percolation and that the level of the potential repository has never been saturated. Nonetheless, some scientists contend that thermal waters have periodically risen to the surface depositing calcite and opal in the tuffs and at the surface. This hypothesis received some support in 1996 when two-phase fluid inclusions (FIs) with homogenization temperatures (Th) between 35 and 75 C were reported from UZ calcite. Calcite deposition likely followed closely on the cooling of the tuffs and continues into the present. The paragenetic sequence of calcite and silica in the UZ is early stage calcite followed by chalcedony and quartz, then calcite with local opal during middle and late stages. Four types of FIs are found in calcite assemblages: (1) all-liquid (L); (2) all-vapor (V); (3) 2-phase with large and variable V:L ratios; and (4) a few 2-phase with small and consistent V:L ratios. Late calcite contains no FI assemblages indicating elevated depositional temperatures. In early calcite, the Th of type 4 FIs ranges from {approx} 40 to {approx} 85 C. Such temperatures (sub-boiling) and the assemblage of FIs are consistent with deposition in the UZ. Some delta 18O values < 10 permil in early calcite support such temperatures. Type 4 FIs, however, seem to be restricted to the early calcite stage, during which either cooling of the tuffs or regional volcanism were possible heat sources. Nonetheless, at present there is no compelling evidence of upwelling water as a source for the calcite/opal deposits.

  12. Ages and Origins of Calcite and Opal in the Exploratory Studies Facility Tunnel, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Paces, James B.; Neymark, Leonid A.; Marshall, Brian D.; Whelan, Joseph F.; Peterman, Zell E.

    2001-01-01

    Deposits of calcite and opal are present as coatings on open fractures and lithophysal cavities in unsaturated-zone tuffs at Yucca Mountain, Nevada, site of a potential high-level radioactive waste repository. Outermost layers of calcite and opal have radiocarbon ages of 16,000 to 44,000 years before present and thorium-230/uranium ages of 28,000 to more than 500,000 years before present. These ages are young relative to the 13-million-year age of the host rocks. Multiple subsamples from the same outer layer typically show a range of ages with youngest ages from the thinnest subsamples. Initial uranium-234/uranium-238 activity ratios between 1 and 9.5 show a distinct negative correlation with thorium-230/uranium age and are greater than 4 for all but one sample younger than 100,000 years before present. These data, along with micrometer-scale layering and distinctive crystal morphologies, are interpreted to indicate that deposits formed very slowly from water films migrating through open cavities. Exchanges of carbon dioxide and water vapor probably took place between downward-migrating liquids and upward-migrating gases at low rates, resulting in oversaturation of mineral constituents at crystal extremities and more or less continuous deposition of very thin layers. Therefore, subsamples represent mixtures of older and younger layers on a scale finer than sampling techniques can resolve. Slow, long-term rates of deposition (less than about 5 millimeters of mineral per million years) are inferred from subsamples of outermost calcite and opal. These growth rates are similar to those calculated assuming that total coating thicknesses of 10 to 40 millimeters accumulated over 12 million years. Calcite has a wide range of delta carbon-13 values from about -8.2 to 8.5 per mil and delta oxygen-18 values from about 10 to 21 per mil. Systematic microsampling across individual mineral coatings indicates basal (older) calcite tends to have the largest delta carbon-13 values and smallest delta oxygen-18 values compared to calcite from intermediate and outer positions. Basal calcite has relatively small strontium-87/strontium-86 ratios, between 0.7105 and 0.7120, that are similar to the initial isotopic compositions of the strontium-rich tuff units, whereas outer calcite has more radiogenic strontium-87/strontium-86 ratios between 0.7115 and 0.7127. Isotopic compositions of strontium, oxygen, and carbon in the outer (youngest) unsaturated-zone calcite are coincident with those measured in Yucca Mountain calcrete, which formed by pedogenic processes. The physical and isotopic data from calcite and opal indicate that they formed from solutions of meteoric origin percolating through a limited network of connected fracture pathways in the unsaturated zone rather than by inundation from ascending ground water originating in the saturated zone. Mineral assemblages, textures, and distributions within the unsaturated zone are distinctly different from those deposited below the water table at Yucca Mountain. The calcite and opal typically are present only on footwall surfaces of a small fraction of fractures and only on floors of a small fraction of lithophysal cavities. The similarities in the carbon, oxygen, and strontium isotopic compositions between fracture calcite and soil-zone calcite, as well as the gradation of textures from detritus-rich micrite in the soil to detritus-free spar 10 to 30 meters below the surface, also support a genetic link between the two depositional environments. Older deposits contain oxygen isotope compositions that indicate elevated temperatures of mineral formation during the early stages of deposition; however, in the youngest deposits these values are consistent with deposition under geothermal gradients similar to modern conditions. Correlations between mineral ages and varying Pleistocene climate conditions are not apparent from the current data. Cumulative evidence from calcite and opal deposits indicate

  13. Gas Hydrates Research Project in Japan

    Scientists from AIST, JOGMEC, Georgia Tech, and the USGS prepare to analyze pressure cores as part of a multi-year gas hydrates research project in Japan. This photo shows the pressure core storage chambers, which contain hydrate-bearing sediment samples obtained from the Nankai Trough offshore Japa...

  14. Gas hydrates in the ocean environment

    USGS Publications Warehouse

    Dillon, William P.

    2002-01-01

    A GAS HYDRATE, also known as a gas clathrate, is a gas-bearing, icelike material. It occurs in abundance in marine sediments and stores immense amounts of methane, with major implications for future energy resources and global climate change. Furthermore, gas hydrate controls some of the physical properties of sedimentary deposits and thereby influences seafloor stability.

  15. 76 FR 59667 - Methane Hydrate Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Methane... Meeting. SUMMARY: This notice announces a meeting of the Methane Hydrate Advisory Committee. Federal... of the Committee: The purpose of the Methane Hydrate Advisory Committee is to provide advice...

  16. 78 FR 37536 - Methane Hydrate Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Methane... meeting. SUMMARY: This notice announces a meeting of the Methane Hydrate Advisory Committee. The Federal... of the Methane Hydrate Advisory Committee is to provide advice on potential applications of...

  17. The role of citrate and phthalate during Co(II) coprecipitation with calcite

    NASA Astrophysics Data System (ADS)

    Lee, Young J.; Reeder, Richard J.

    2006-05-01

    The influence of citrate and phthalate on Co coprecipitation with calcite was investigated using a combination of batch experiments, Fourier-transform infra-red (FT-IR) spectroscopy, and thermogravimetric analysis (TGA) over a wide range of precipitation rates. Steady-state growth conditions (at constant [Ca], [Co], DIC, and pH) were generally achieved within 3-5 h, after which Co(II) partitioning into calcite was evaluated. Only minor differences are observed in the partition coefficient ( Kd) trends with and without citrate and phthalate as a function of calcite precipitation rate except at very low rates. Slight inhibition of calcite growth is observed in the presence of citrate or phthalate, which can be attributed to adsorption at surface sites. TGA curves for samples coprecipitated with citrate show a significant mass loss between 375 and 550 °C, whereas the weight-loss curves for the Co-phthalate coprecipitates are indistinguishable from those of the organic-free Co coprecipitates. This indicates that citrate is incorporated into calcite during calcite crystallization, whereas phthalate is excluded. FT-IR spectra for the sample with citrate show a broad absorption in the range 3700-3100 cm -1, which is attributable to water molecules coordinated to citrate coprecipitated with calcite. The preferential incorporation of citrate over phthalate likely reflects differences in both aqueous speciation and conformation of the carboxylate groups. This new finding may provide new insight to the factors that control the behavior of macromolecules and their incorporation into the structure of calcium carbonate during biomineralization.

  18. Thermal and Evolved Gas Behavior of Calcite Under Mars Phoenix TEGA Operating Conditions

    NASA Technical Reports Server (NTRS)

    Ming, D.W.; Niles, P.B.; Morris, R.V.; Boynton, W.V.; Golden, D.C.; Lauer, H.V.; Sutter, B.

    2009-01-01

    The Mars Phoenix Scout Mission with its diverse instrument suite successfully examined several soils on the Northern plains of Mars. The Thermal and Evolved Gas Analyzer (TEGA) was employed to detect organic and inorganic materials by coupling a differential scanning calorimeter (DSC) with a magnetic-sector mass spectrometer (MS). Martian soil was heated up to 1000 C in the DSC ovens and evolved gases from mineral decomposition products were examined with the MS. TEGA s DSC has the capability to detect endothermic and exothermic reactions during heating that are characteristic of minerals present in the Martian soil. Initial TEGA results indicated the presence of endothermic peaks with onset temperatures that ranged from 675 C to 750 C with corresponding CO2 release. This result suggests the presence of calcite (CaCO3. CaO + CO2). Organic combustion to CO2 is not likely since this mostly occurs at temperatures below 550 C. Fe-carbonate and Mg-carbonate are not likely because their decomposition temperatures are less than 600 C. TEGA enthalpy determinations suggest that calcite, may occur in the Martian soil in concentrations of approx.1 to 5 wt. %. The detection of calcite could be questioned based on previous results that suggest Mars soils are mostly acidic. However, the Phoenix landing site soil pH was measured at pH 8.3 0.5, which is typical of terrestrial soils where pH is controlled by calcite solubility. The range of onset temperatures and calcite concentration as calculated by TEGA is poorly con-strained in part because of limited thermal data of cal-cite at reduced pressures. TEGA operates at <30 mbar while most calcite literature thermal data was obtained at 1000 mbar or higher pressures.

  19. Geochemistry of post-uplift calcite in the Permian Basin of Texas and New Mexico

    SciTech Connect

    Wiggins, W.D.; Harris, P.M. ); Burruss, R.C. )

    1993-06-01

    Integration whole-oil gas chromatography of produced oil and oil inclusions, formation-water chemistry, and stable isotopes has identified environment-diagnostic differences in calcite cements between oil field and outcrop environments in the Permian Basin of Texas and New Mexico. Calcite-[delta][sup 13]C and fluid-inclusion composition are the most diagnostic of pore-fluid evolution and can help interpret rock-fluid reactions. Late-stage calcite cement in the northwestern part of the basin formed in a meteoric aquifer that was emplaced by Neogene-age uplift and tilting of the Guadalupe Mountains. Where the confined aquifer intersects the Henderson oil field, the water, which is less saline than sea water, has 900-1,400 ppm bicarbonate alkalinity because of oil oxidation and contains 750 ppm H[sub 2]S as a result of anhydrite calcitization and sulfate reduction. The oil field has been severly damaged by biodegradation. Modeling of [delta][sup 13]C in pore-filling calcite from the field (mean [delta][sup 13]C = [minus]17% PDB) suggests oxidation of oil provided nearly 100% of the carbon in the cement. Comparison of gas chromatograms of produced oil and oil liberated from fluid inclusions in calcite shows that inclusion oil is older and more severely biodegraded (paraffin-free) than produced oil. This implies that oil in the reservoir was remobilized soon after Neogene-age meteoric invasion and carbonate cementation. The Algerita Escarpment in the Guadalupe Mountains is the site of active meteoric water recharge and growth of phreatic calcite cement. The phreatic cement contains single-phase, aqueous fluid inclusions. The cement is depleted in [sup 13]C to an extent that is diagnostic of a 1:1 mixture of soil-CO[sub 2] from decay of C[sub 4]-type plants (desert grasses) and carbon derived from dolomite matrix by ground-water dissolution. 64 refs., 12 figs., 3 tabs.

  20. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect

    Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the revolutionary and new Arctic Drilling Platform in search of gas hydrate and free gas accumulations at depths of approximately 1200 to 2500 ft MD. A secondary objective was the gas-charged sands of the uppermost Campanian interval at approximately 3000 ft. Summary results of geophysical analysis of the well are presented in this report.

  1. Natural gas hydrates in the Alaskan Arctic

    SciTech Connect

    Godbole, S.P.; Kamath, V.A.; Ehlig-Economides, C.

    1988-03-01

    The occurrence of in-situ natural gas hydrates in the arctic North Slope of Alaska is governed by several thermodynamic and geologic parameters, such as mean annual surface temperature, geothermal gradients above and below the base of the permafrost, pore-fluid salinity, permafrost base depth and temperature, subsurface pressure, and composition. Accurate knowledge of these parameters is necessary to determine the depths and thicknesses of zones of potential hydrate occurences. The role of the parameters is discussed in this paper. To determine the hydrate-stability zone, a nomogram has been developed and has been used for several Alaskan wells. For further delineation of gas hydrates, the neutron-transit-time crossplots have served as a valuable tool. To quantify gas hydrate deposits in terms of thickness, porosity, and saturation; use of neutron- and sonic-porosity-correction factors and Pickett crossplots is recommended.

  2. Compound Natural Gas Hydrate: A Natural System for Separation of Hydrate-Forming Gases

    NASA Astrophysics Data System (ADS)

    Max, M. D.; Osegovic, J. P.

    2007-12-01

    Natural processes that separate materials from a mixture may exert a major influence on the development of the atmospheres and surfaces of planets, moons, and other planetary bodies. Natural distillation and gravity separation, amongst others, are well known means of differentiating materials through liquid-gas partitioning. One of the least known attributes of clathrate (gas) hydrates is their potential effect on the evolution of planetary system oceans and atmospheres. Gas hydrates separate gases from mixtures of gases by concentrating preferred hydrate-forming materials (HFM) guests within the water-molecule cage structure of crystalline hydrate. Different HFMs have very different fields of stability. When multiple hydrate formers are present, a preference series based on their selective uptake exists. Compound hydrate, which is formed from two or more species of HFM, extract preferred HFM from a mixture in very different proportions to their relative percentages of the original mixture. These compound hydrates can have different formation and dissociation conditions depending on the evolution of the environment. That is, the phase boundary of the compound hydrate that is required for dissociation lies along a lower pressure - higher temperature course. Compound hydrates respond to variations in temperature, pressure, and HFM composition. On Earth, the primary naturally occurring hydrate of interest to global climate modeling is methane hydrate. Oceanic hydrate on Earth is the largest store of carbon in the biosphere that is immediately reactive to environmental change, and is capable of releasing large amounts of methane into the atmosphere over a short geological time span. Hydrate formation is essentially metastable and is very sensitive to environmental change and to gas flux. Where natural variations in temperature and pressure varies so that hydrate will form and dissociate in some cyclical manner, such as in oceans where sea level is capable of rising and falling, and which warms and cools, and in atmospheres in which temperature swings take place, the compound hydrate system can both sequester and release HFM selectively. When there is strong gas flux hydrate will tend to form; when gas flux falls below a certain level, hydrate may either dissolve or dissociate. On other bodies in the solar system, such as on Titan, ethane, propane, nitrogen, noble gases, and other HFMs may be selectively withdrawn from gas and liquid phases and sequestered within hydrate, or selectively released when climate swings occur, which can cause positive or negative feedback to atmospheric composition and greenhouse intensity. Where carbon-based biosphere conditions exist, the hydrate system will interact with it in the same manner as it does on Earth.

  3. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the project reports.

  4. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-06-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

  5. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-07-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

  6. Overview on Hydrate Coring, Handling and Analysis

    SciTech Connect

    Jon Burger; Deepak Gupta; Patrick Jacobs; John Shillinglaw

    2003-06-30

    Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Worldwide, gas hydrate is estimated to hold about 1016 kg of organic carbon in the form of methane (Kvenvolden et al., 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In June 2002, Westport Technology Center was requested by the Department of Energy (DOE) to prepare a ''Best Practices Manual on Gas Hydrate Coring, Handling and Analysis'' under Award No. DE-FC26-02NT41327. The scope of the task was specifically targeted for coring sediments with hydrates in Alaska, the Gulf of Mexico (GOM) and from the present Ocean Drilling Program (ODP) drillship. The specific subjects under this scope were defined in 3 stages as follows: Stage 1: Collect information on coring sediments with hydrates, core handling, core preservation, sample transportation, analysis of the core, and long term preservation. Stage 2: Provide copies of the first draft to a list of experts and stakeholders designated by DOE. Stage 3: Produce a second draft of the manual with benefit of input from external review for delivery. The manual provides an overview of existing information available in the published literature and reports on coring, analysis, preservation and transport of gas hydrates for laboratory analysis as of June 2003. The manual was delivered as draft version 3 to the DOE Project Manager for distribution in July 2003. This Final Report is provided for records purposes.

  7. ANALYSIS AND SIMULATION OF RECYCLE SO2-LIME SLURRY IN TCA (TURBULENT CONTACT ABSORBER) SCRUBBER SYSTEM

    EPA Science Inventory

    The report gives results of an analysis of flue gas desulfurization by a turbulent contact absorber (TCA) employing lime slurry, including the development of performance equations for the scrubber-hold tank recycle system. Performance characteristics investigated include pressure...

  8. Separation of hemicellulose-derived saccharides from wood hydrolysate by lime and ion exchange resin.

    PubMed

    Wang, Xiaojun; Zhuang, Jingshun; Fu, Yingjuan; Tian, Guoyu; Wang, Zhaojiang; Qin, Menghua

    2016-04-01

    A combined process of lime treatment and mixed bed ion exchange was proposed to separate hemicellulose-derived saccharides (HDS) from prehydrolysis liquor (PHL) of lignocellulose as value added products. The optimization of lime treatment achieved up to 44.2% removal of non-saccharide organic compounds (NSOC), mainly colloidal substances, with negligible HDS degradation at 0.5% lime level and subsequent neutralization by phosphoric acid. The residual NSOC and calcium ions in lime-treated PHL were eliminated by mixed bed ion exchange. The breakthrough curves of HDS and NSOC showed selective retention toward NSOC, leading to 75% HDS recovery with 95% purity at 17 bed volumes of exchange capacity. In addition, macroporous resin showed higher exchange capacity than gel resin as indicated by the triple processing volume. The remarkable selectivity of the combined process suggested the feasibility for HDS separation from PHL. PMID:26859331

  9. Lime kiln dust as a potential raw material in portland cement manufacturing

    USGS Publications Warehouse

    Miller, M. Michael; Callaghan, Robert M.

    2004-01-01

    In the United States, the manufacture of portland cement involves burning in a rotary kiln a finely ground proportional mix of raw materials. The raw material mix provides the required chemical combination of calcium, silicon, aluminum, iron, and small amounts of other ingredients. The majority of calcium is supplied in the form of calcium carbonate usually from limestone. Other sources including waste materials or byproducts from other industries can be used to supply calcium (or lime, CaO), provided they have sufficiently high CaO content, have low magnesia content (less than 5 percent), and are competitive with limestone in terms of cost and adequacy of supply. In the United States, the lime industry produces large amounts of lime kiln dust (LKD), which is collected by dust control systems. This LKD may be a supplemental source of calcium for cement plants, if the lime and cement plants are located near enough to each other to make the arrangement economical.

  10. Long-term sustainability of metal immobilization by soil amendments: cyclonic ashes versus lime addition.

    PubMed

    Ruttens, A; Adriaensen, K; Meers, E; De Vocht, A; Geebelen, W; Carleer, R; Mench, M; Vangronsveld, J

    2010-05-01

    A soil column leaching experiment was used to gain insight into the long-term metal immobilization capacity of cyclonic ashes (CAH) compared to lime (LIME). Twenty six years of rainfall were simulated. Initially, all amended soils were brought to an equal soil pH. This was done to obtain optimal conditions for the detection of metal immobilization mechanisms different from just a pH effect. During the simulation period, soil pH in all treatments decreased in parallel. However, the evolution of metal mobility and phytoavailability showed a clearly distinct pattern. The strong reduction in metal immobilizing efficiency observed in the lime treatment at the end of the simulation period was much less pronounced, or even absent, in the CAH treatments. Moreover, metal accumulation in plants grown on the CAH amended soil was significantly lower compared to the untreated and the lime treated soil. CAH + SS treatment delivered the strongest reductions in metal mobility and bioavailability. PMID:20080327

  11. Chemical Characterization of Lime-Based Binders in Historic Buildings of Latvia

    NASA Astrophysics Data System (ADS)

    Kirilovica, I.; Gulbe, L.; Vitina, I.; Igaune-Blumberga, S.

    2015-11-01

    The aim of this research is to investigate the chemical composition of stone materials of several local historic buildings with a purpose of elaboration of restoration strategy, including the choice of restoration materials. Most of the examined mortars are lime- based hydraulic mortars, characteristic of the architecture of 19th/20th century. Pure aerial lime binders show reduced compatibility with historic materials, that is why lime binders with pozzolan additive (cement) are an appropriate choice for restoration. In order to examine the changes of hydraulicity (i.e. the property of binders to harden when exposed to water) of perspective restoration binders, a series of blended lime-cement mixtures were synthesized with growing content of cement (up to 10% by weight). A significant relationship between cement content and hydraulic properties has been shown.

  12. The puzzling presence of calcite in skeletons of modern solitary corals from the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Goffredo, Stefano; Caroselli, Erik; Mezzo, Francesco; Laiolo, Leonardo; Vergni, Patrizia; Pasquini, Luca; Levy, Oren; Zaccanti, Francesco; Tribollet, Aline; Dubinsky, Zvy; Falini, Giuseppe

    2012-05-01

    The skeleton of scleractinian corals is commonly believed to be composed entirely of aragonite due to the current Mg/Ca molar ratio of seawater, which thermodynamically favours the deposition of this polymorph of calcium carbonate (CaCO3). However, some studies have shown that other forms of CaCO3 such as calcite can be present in significant amount (1-20%) inside tropical coral skeletons, significantly impacting paleo-reconstructions of SST or other environmental parameters based on geochemical proxies. This study aims at investigating for the first time, (1) the skeletal composition of two Mediterranean solitary corals, the azooxanthellate Leptopsammia pruvoti and the zooxanthellate Balanophyllia europaea, across their life cycle, (2) the distribution of the different CaCO3 forms inside skeletons, and (3) their implications in paleoclimatology. The origin of the different forms of CaCO3 observed inside studied coral skeletons and their relationships with the species' habitat and ecological strategies are also discussed. CaCO3 composition of L. pruvoti and B. europaea was investigated at six sites located along the Italian coasts. Skeleton composition was studied by means of X-ray powder diffraction and Fourier transform infrared spectroscopy. A significant amount of calcite (1-23%) was found in more than 90% of the studied coral skeletons, in addition to aragonite. This calcite was preferentially located in the basal and intermediate areas than at the oral pole of coral skeletons. Calcite was also mainly located in the epitheca that covered the exposed parts of the coral in its aboral region. Interestingly in B. europaea, the calcite content was negatively correlated with skeleton size (age). The presence of calcite in scleractinian corals may result from different mechanisms: (1) corals may biologically precipitate calcite crystals at their early stages in order to insure their settlement on the substrate of fixation, especially in surgy environments; (2) calcite presence may result from skeletons of other calcifying organisms such as crustose coralline algae; and/or (3) calcite may result from the infilling of galleries of boring microorganisms which are known to colonize coral skeletons. We suggest that more than one of the above mentioned processes are involved.

  13. The Influence of Kinetic Growth Factors on the Clumped Isotope Composition of Calcite

    NASA Astrophysics Data System (ADS)

    Hunt, J. D.; Watkins, J. M.; Tripati, A.; Ryerson, F. J.; DePaolo, D. J.

    2014-12-01

    Clumped isotope paleothermometry is based on the association of 13C and 18O within carbonate minerals. Although the influence of temperature on equilibrium 13C-18O bond ordering has been studied, recent oxygen isotope studies of inorganic calcite demonstrate that calcite grown in laboratory experiments and in many natural settings does not form in equilibrium with water. It is therefore likely that the carbon and clumped isotope composition of these calcite crystals are not representative of true thermodynamic equilibrium. To isolate kinetic clumped isotope effects that arise at the mineral-solution interface, clumped isotopic equilibrium of DIC species must be maintained. This can be accomplished by dissolving the enzyme carbonic anhydrase (CA) into the solution, thereby reducing the time required for isotopic equilibration of DIC species by approximately two orders of magnitude between pH 7.7 and 9.3. We conduct calcite growth experiments aimed specifically at measuring the pH-dependence of kinetic clumped isotope effects during non-equilibrium precipitation of calcite. We precipitated calcite from aqueous solution at a constant pH and controlled supersaturation over the pH range 7.7-9.3 in the presence of CA. For each experiment, a gas mixture of N2 and CO2 is bubbled through a beaker of solution without seed crystals. As CO2 from the gas dissolves into solution, calcite crystals grow on the beaker walls. The pH of the solution is maintained by use of an autotitrator with NaOH as the titrant. We control the temperature, pH, the pCO2 of the gas inflow, and the gas inflow rate, and monitor the total alkalinity, the pCO2 of the gas outflow, and the amount of NaOH added. A constant crystal growth rate of ~1.6 mmol/m2/hr is maintained over all experiments. Results from these experiments are compared to predictions from a recently-developed isotopic ion-by-ion growth model of calcite. The model describes the rate, temperature and pH dependence of oxygen isotope uptake into calcite under non-equilibrium conditions. Adaptation of the model for clumped isotope uptake under non-equilibrium conditions requires knowledge of the clumped isotopic compositions of DIC species and any mass-dependent kinetic fractionation that arises during ion transport to or from the mineral surface.

  14. Sorption and catalytic oxidation of Fe(II) at the surface of calcite

    NASA Astrophysics Data System (ADS)

    Mettler, Suzanne; Wolthers, Mariëtte; Charlet, Laurent; Gunten, Urs von

    2009-04-01

    The effect of sorption and coprecipitation of Fe(II) with calcite on the kinetics of Fe(II) oxidation was investigated. The interaction of Fe(II) with calcite was studied experimentally in the absence and presence of oxygen. The sorption of Fe(II) on calcite occurred in two distinguishable steps: (a) a rapid adsorption step (seconds-minutes) was followed by (b) a slower incorporation (hours-weeks). The incorporated Fe(II) could not be remobilized by a strong complexing agent (phenanthroline or ferrozine) but the dissolution of the outmost calcite layers with carbonic acid allowed its recovery. Based on results of the latter dissolution experiments, a stoichiometry of 0.4 mol% Fe:Ca and a mixed carbonate layer thickness of 25 nm (after 168 h equilibration) were estimated. Fe(II) sorption on calcite could be successfully described by a surface adsorption and precipitation model (Comans & Middelburg, GCA51 (1987), 2587) and surface complexation modeling (Van Cappellen et al., GCA57 (1993), 3505; Pokrovsky et al., Langmuir16 (2000), 2677). The surface complex model required the consideration of two adsorbed Fe(II) surface species, >CO 3Fe + and >CO 3FeCO 3H 0. For the formation of the latter species, a stability constant is being suggested. The oxidation kinetics of Fe(II) in the presence of calcite depended on the equilibration time of aqueous Fe(II) with the mineral prior to the introduction of oxygen. If pre-equilibrated for >15 h, the oxidation kinetics was comparable to a calcite-free system ( t1/2 = 145 ± 15 min). Conversely, if Fe(II) was added to an aerated calcite suspension, the rate of oxidation was higher than in the absence of calcite ( t1/2 = 41 ± 1 min and t1/2 = 100 ± 15 min, respectively). This catalysis was due to the greater reactivity of the adsorbed Fe(II) species, >CO 3FeCO 3H 0, for which the species specific rate constant was estimated.

  15. Isotopic tracer evidence for the amorphous calcium carbonate to calcite transformation by dissolution-reprecipitation

    NASA Astrophysics Data System (ADS)

    Giuffre, Anthony J.; Gagnon, Alexander C.; De Yoreo, James J.; Dove, Patricia M.

    2015-09-01

    Observations that some biogenic and sedimentary calcites grow from amorphous calcium carbonate (ACC) raise the question of how this mineralization process influences composition. However, the detailed pathway and geochemical consequences of the ACC to calcite transformation are not well constrained. This experimental study investigated the formation of calcite from ACC by using magnesium and calcium stable isotope labeling to directly probe the transformation pathway and controls on composition. Four processes were considered: dissolution-reprecipitation, solid state transformation, and combinations of these end-members. To distinguish between these scenarios, ACC was synthesized from natural isotope abundance solutions and subsequently transferred to spiked solutions that were enriched in 43Ca and 25Mg for the transformation to calcite. Isotope measurements by NanoSIMS determined the 43Ca/40Ca, and 25Mg/24Mg ratios of the resulting calcite crystals. Analysis of the data shows the transformation is best explained by a dissolution-reprecipitation process. We find that when a small amount of ACC is transferred, the isotopic signals in the resulting calcite are largely replaced by the composition of the surrounding spiked solution. When larger amounts of ACC are transferred, calcite compositions reflect a mixture between the ACC and initial solution end-member. Comparisons of the measurements to the predictions of a simple mixing model indicate that calcite compositions (1) are sensitive to relative amounts of ACC and the surrounding solution reservoir and (2) are primarily governed by the conditions at the time of ACC transformation rather than the initial ACC formation. Shifts in calcite composition over the duration of the transformation period reflect the progressive evolution of the local solution conditions. This dependence indicates the extent to which there is water available would change the end point composition on the mixing line. While these findings have significant geochemical implications, the question remains whether this transformation pathway is generally followed when biomineralization involves ACC or is particular to these inorganic experiments. Insights from this study nonetheless suggest that some types of compositional variability, such as 'vital effects', may be explained in-part by a co-evolution of reservoir and products over the duration of the transformation.

  16. Microbial dissolution of calcite at T = 28 °C and ambient pCO 2

    NASA Astrophysics Data System (ADS)

    Jacobson, Andrew D.; Wu, Lingling

    2009-04-01

    This study used batch reactors to quantify the mechanisms and rates of calcite dissolution in the presence and absence of a single heterotrophic bacterial species ( Burkholderia fungorum). Experiments were conducted at T = 28°C and ambient pCO 2 over time periods spanning either 21 or 35 days. Bacteria were supplied with minimal growth media containing either glucose or lactate as a C source, NH 4+ as an N source, and H 2PO 4- as a P source. Combining stoichiometric equations for microbial growth with an equilibrium mass-balance model of the H 2O-CO 2-CaCO 3 system demonstrates that B. fungorum affected calcite dissolution by modifying pH and alkalinity during utilization of ionic N and C species. Uptake of NH 4+ decreased pH and alkalinity, whereas utilization of lactate, a negatively charged organic anion, increased pH and alkalinity. Calcite in biotic glucose-bearing reactors dissolved by simultaneous reaction with H 2CO 3 generated by dissolution of atmospheric CO 2 (H 2CO 3 + CaCO 3 → Ca 2+ + 2HCO 3-) and H + released during NH 4+ uptake (H + + CaCO 3 → Ca 2+ + HCO 3-). Reaction with H 2CO 3 and H + supplied ˜45% and 55% of the total Ca 2+ and ˜60% and 40% of the total HCO 3-, respectively. The net rate of microbial calcite dissolution in the presence of glucose and NH 4+ was ˜2-fold higher than that observed for abiotic control experiments where calcite dissolved only by reaction with H 2CO 3. In lactate bearing reactors, most H + generated by NH