Science.gov

Sample records for calcium carbonate crystallization

  1. Alginate hydrogel-mediated crystallization of calcium carbonate

    NASA Astrophysics Data System (ADS)

    Ma, Yufei; Feng, Qingling

    2011-05-01

    We documented a specific method for combining calcium ions and alginate molecules slowly and continuously in the mineralization system for the purpose of understanding the mediating function of alginate on the crystallization of calcium carbonate. The alginate was involved in the nucleation and the growth process of CaCO 3. The crystal size, morphology and roughness of crystal surface were significantly influenced by the type of the alginate, which could be accounted for by the length of the G blocks in alginate. A combination of Fourier transform infrared spectroscopy and thermogravimetric analysis showed that there were the chemical interactions between the alginate and the mineral phase. This strategic approach revealed the biologically controlled CaCO 3 mineralization within calcium alginate hydrogels via the selective nucleation and the confined crystallization of CaCO 3. The results presented here could contribute to the understanding of the mineralization process in hydrogel systems.

  2. Alginate hydrogel-mediated crystallization of calcium carbonate

    SciTech Connect

    Ma, Yufei; Feng, Qingling

    2011-05-15

    We documented a specific method for combining calcium ions and alginate molecules slowly and continuously in the mineralization system for the purpose of understanding the mediating function of alginate on the crystallization of calcium carbonate. The alginate was involved in the nucleation and the growth process of CaCO{sub 3}. The crystal size, morphology and roughness of crystal surface were significantly influenced by the type of the alginate, which could be accounted for by the length of the G blocks in alginate. A combination of Fourier transform infrared spectroscopy and thermogravimetric analysis showed that there were the chemical interactions between the alginate and the mineral phase. This strategic approach revealed the biologically controlled CaCO{sub 3} mineralization within calcium alginate hydrogels via the selective nucleation and the confined crystallization of CaCO{sub 3}. The results presented here could contribute to the understanding of the mineralization process in hydrogel systems. -- Graphical abstract: Schematic illustration of the growth of calcite aggregates with different morphologies obtained from (a) Low G alginate gels and (b) High G alginate gels. Display Omitted highlights: > We use a specific method for combining calcium ions and alginate molecules slowly and continuously in the mineralization system to understand the mediating function of alginate on the crystallization of CaCO{sub 3} crystals. > The crystal size, morphology and crystal surface roughness are influenced by the length of G blocks in alginate. There are chemical interactions between the alginate and the mineral phase. > We propose a potential mechanism of CaCO{sub 3} crystallization within High G and Low G calcium alginate hydrogel.

  3. Polymorph-selective crystallization of calcium carbonate inspired by biomineralization

    NASA Astrophysics Data System (ADS)

    Kim, Il Won

    This dissertation primarily examines bioinspired mineralization, focusing on the polymorph-selective crystallization of calcium carbonate. (1) The effect of epitaxy on the polymorphic control of calcium carbonate was studied with aragonite-type inorganic substrates. The critical epitaxial mismatch for aragonite growth, when conditions disfavor aragonite, seems to be less than 7.1%. Larger epitaxial strain appeared to prohibit aragonite formation even though the substrates had the same crystal structure. The epitaxy required for aragonite nucleation seems to be more precise than that often suggested for biological systems. (2) Polymers of different aqueous-solution properties were tested to observe the effect on the crystallization of calcium carbonate. Near exclusive formation of aragonite was attained through the inhibition of more stable calcite with poly(vinyl alcohol). The contributing characteristics of poly(vinyl alcohol) seemed to be its ability to hydrogen bond and its tendency to adsorb non-specifically onto solid surfaces. Similar inhibition activity is suggested for various biomacromolecules involved in biogenic aragonite formation of mollusks, with the biomacromolecules acting in the same way as poly(vinyl alcohol). (3) Polymer surfaces imprinted by aragonite-type crystals (strontium carbonate) were studied as substrates for the crystallization of calcium carbonate. Only calcite formed under vaterite-, aragonite-, and calcite-favorable conditions. This result seemed to arise from the nature of functional groups, rather than from the molecular structure of the imprint. Interaction between the functional groups and calcium carbonate is suggested to have enhanced the crystallization rate, resulting in the rapid formation of the thermodynamically stable calcite irrespective of the bulk crystallization conditions. (4) A catechol-based monomer was synthesized in the course of developing a dental adhesive, which mimics the functionalities of mussel adhesive proteins. The coupling behavior of the monomer to hydroxyapatite, a mineral component of dentin, was studied. (5) Multiple denaturation of fibrillar collagen was reexamined with a highly sensitive differential scanning calorimeter. Multiple states of collagen were recognized by the appearance of several denaturation peaks: oxidized tropocollagen, intact tropocollagen, immature fibrils, and mature fibrils. The immature fibrils were identified as an intermediate state of collagen assembly, since it disappeared with time at constant temperature.

  4. Egg-white-mediated crystallization of calcium carbonate

    NASA Astrophysics Data System (ADS)

    Zheng, Liang; Hu, Yanli; Ma, Yongjun; Zhou, Yong; Nie, Fude; Liu, Xun; Pei, Chonghua

    2012-12-01

    In this paper, shape-controlled crystallization and self-assembly of CaCO3 hierarchical architectures has been successfully synthesized via the gas diffusion method in egg white solution. Stepwise growth and assembly of CaCO3 nanoparticles has been observed from transition of an amorphous CaCO3 to the crystallization and stabilization of platelet-like nanoparticles and eventually, the wool sphere-like CaCO3 hierarchical architectures assembling of nanoparticles. The proteins binding on nanoparticle surfaces proved to regulate the growth of nanoparticles and subsequent assembly into hierarchical superstructures via electrostatic and dipole interactions. The samples were characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and nano mechanical Tester. The measured average elastic modulus and the hardness of calcium carbonate hybrid materials were 5.32 GPa and 0.1886 GPa by the nano-indenter test, respectively.

  5. Influence of calcium carbonate and carbon nanotubes on the crystallization kinetics of polypropylene at high supercooling

    NASA Astrophysics Data System (ADS)

    Schawe, Jürgen E. K.

    2016-03-01

    Polymer fillers have been classified as active or inactive regarding their nucleation performance. Whereas an active filler significantly accelerates the crystallization process, an inactive filler has a significantly reduced influence on the crystallization kinetics. The majority of the studies of the filler influence on the crystallization process are performed at relatively low supercooling or at low cooling rates. In this paper, we use the Fast Scanning DSC to study the crystallization process of differently filled polypropylene (PP) in the temperature range between 120 °C and 0 °C. The inactive filler calcium carbonate reduces the crystallization rate of the α-phase at low supercooling (above 80 °C). Between 45 °C and 80 °C, calcium carbonate significantly accelerates the α-phase crystallization of PP. The mesophase crystallization is not affected by this filler. As an example of active filler, carbon nanotubes are used. Even with small filler content the α-phase crystallization of PP is significantly accelerated. Also in this case the mesophase crystallization is not significantly affected.

  6. Crystal growth of calcium carbonate in silk fibroin/sodium alginate hydrogel

    NASA Astrophysics Data System (ADS)

    Ming, Jinfa; Zuo, Baoqi

    2014-01-01

    As known, silk fibroin-like protein plays a pivotal role during the formation of calcium carbonate (CaCO3) crystals in the nacre sheets. Here, we have prepared silk fibroin/sodium alginate nanofiber hydrogels to serve as templates for calcium carbonate mineralization. In this experiment, we report an interesting finding of calcium carbonate crystal growth in the silk fibroin/sodium alginate nanofiber hydrogels by the vapor diffusion method. The experimental results indicate calcium carbonate crystals obtained from nanofiber hydrogels with different proportions of silk fibroin/sodium alginate are mixture of calcite and vaterite with unusual morphologies. Time-dependent growth study was carried out to investigate the crystallization process. It is believed that nanofiber hydrogels play an important role in the process of crystallization. This study would help in understanding the function of organic polymers in natural mineralization, and provide a novel pathway in the design and synthesis of new materials related unique morphology and structure.

  7. Effect of silk sericin on morphology and structure of calcium carbonate crystal

    NASA Astrophysics Data System (ADS)

    Zhao, Rui-Bo; Han, Hua-Feng; Ding, Shao; Li, Ze-Hao; Kong, Xiang-Dong

    2013-06-01

    In this paper, silk sericin was employed to regulate the mineralization of calcium carbonate (CaCO3). CaCO3 composite particles were prepared by the precipitation reaction of sodium carbonate with calcium chloride solution in the presence of silk sericin. The as-prepared samples were collected at different reaction time to study the crystallization process of CaCO3 by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). The results showed that silk sericin significantly affected the morphology and crystallographic polymorph of CaCO3. With increasing the reaction time, the crystal phase of CaCO3 transferred from calcite dominated to vaterite dominated mixtures, while the morphology of CaCO3 changed from disk-like calcite crystal to spherical vaterite crystal. These studies showed the potential of silk sericin used as a template molecule to control the growth of inorganic crystal.

  8. The inhibition of calcium carbonate crystal growth by the cysteine-rich Mdm2 peptide.

    PubMed

    Dalas, E; Chalias, A; Gatos, D; Barlos, K

    2006-08-15

    The crystal growth of calcite, the most stable calcium carbonate polymorph, in the presence of the cysteine-rich Mdm2 peptide (containing 48 amino acids in the ring finger configuration), has been investigated by the constant composition technique. Crystallization took place exclusively on well-characterized calcite crystals in solutions supersaturated only with respect to this calcium carbonate salt. The kinetic results indicated a surface diffusion spiral growth mechanism. The presence of the Mdm2 peptide inhibited the crystal growth of calcite by 22-58% in the concentration range tested, through adsorption onto the active growth sites of the calcite crystal surface. The kinetic results favored a Langmuir-type adsorption model, and the value of the calculated affinity constant was k(aff)=147x10(4) dm(3)mol(-1), a(ads)=0.29. PMID:16678843

  9. Calcium carbonate crystallization controlled by functional groups: A mini-review

    NASA Astrophysics Data System (ADS)

    Deng, Hua; Shen, Xing-Can; Wang, Xiu-Mei; Du, Chang

    2013-03-01

    Various functional groups have been suggested to play essential roles on biomineralization of calcium carbonate (CaCO3) in natural system. 2D and 3D models of regularly arranged functional groups have been established to investigate their effect on CaCO3 crystallization. This mini-review summarizes the recent progress and the future development is prospected.

  10. Dehydration and crystallization of amorphous calcium carbonate in solution and in air

    PubMed Central

    Ihli, Johannes; Wong, Wai Ching; Noel, Elizabeth H.; Kim, Yi-Yeoun; Kulak, Alexander N.; Christenson, Hugo K.; Duer, Melinda J.; Meldrum, Fiona C.

    2014-01-01

    The mechanisms by which amorphous intermediates transform into crystalline materials are poorly understood. Currently, attracting enormous interest is the crystallization of amorphous calcium carbonate, a key intermediary in synthetic, biological and environmental systems. Here we attempt to unify many contrasting and apparently contradictory studies by investigating this process in detail. We show that amorphous calcium carbonate can dehydrate before crystallizing, both in solution and in air, while thermal analyses and solid-state nuclear magnetic resonance measurements reveal that its water is present in distinct environments. Loss of the final water fraction—comprising less than 15% of the total—then triggers crystallization. The high activation energy of this step suggests that it occurs by partial dissolution/recrystallization, mediated by surface water, and the majority of the particle then crystallizes by a solid-state transformation. Such mechanisms are likely to be widespread in solid-state reactions and their characterization will facilitate greater control over these processes. PMID:24469266

  11. Results of the TTF-TCNQ and the calcium carbonate crystallization on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Nielsen, Kjeld Flemming; Lind, M. David

    1992-01-01

    Experiment A0139A on the Long Duration Exposure Facility (LDEF) carried four large containers into orbit five years with crystal growth solutions for lead sulfide, calcium carbonate, and TTF-TCNQ. Although temperature data was lost, the experimental program had been working since the valves in all containers had been opened. All four experiments produced crystals of varying quality. The calcium carbonate crystals had the best appearance. The TTF-TCNQ crystals were packed together near the valve openings of the container. When taken apart, the single crystals showed some unusual morphological properties. X ray investigations as well as conductivity measurements on long duration space grown TTF-TCNQ crystals will be presented. Comparisons will be made with our previous space solution growth experiments. The TTF-TCNQ crystals are no longer of the highest interest, so this activity has been terminated in favor of calcium carbonate and calcium phosphate crystallizations.

  12. Calcium carbonate crystallization on xiphoid of the cuttlefish

    NASA Astrophysics Data System (ADS)

    Manoli, F.; Dalas, E.

    2000-08-01

    A mollusc shell, the xiphoid from cuttlefish was found to be a substrate favouring the deposition of aragonite crystals from stable supersaturated solutions at pH 8.50 and 25C. The crystallization was studied at constant solution composition, thus making it possible for a relatively large amount of the overgrowths to be formed and to be identified exclusively as aragonite crystals. The apparent order found from kinetics data was n=4.10.4, thus suggesting a polynuclear mechanism. A surface energy of 243 mJ m -2 was calculated for the growing phase and a four-ion cluster forming the critical nucleus, according to the classical nucleation theory.

  13. Transformation of amorphous calcium carbonate to rod-like single crystal calcite via "copying" collagen template.

    PubMed

    Xue, Zhonghui; Hu, Binbin; Dai, Shuxi; Du, Zuliang

    2015-10-01

    Collagen Langmuir films were prepared by spreading the solution of collagen over deionized water, CaCl2 solution and Ca(HCO3)2 solution. Resultant collagen Langmuir monolayers were then compressed to a lateral pressure of 10 mN/m and held there for different duration, allowing the crystallization of CaCO3. The effect of crystallization time on the phase composition and microstructure of CaCO3 was investigated. It was found that amorphous calcium carbonate (ACC) was obtained at a crystallization time of 6 h. The amorphous CaCO3 was transformed to rod-like single crystal calcite crystals at an extended crystallization time of 12 h and 24 h, via "copying" the symmetry and dimensionalities of collagen fibers. Resultant calcite crystallites were well oriented along the longitudinal axis of collagen fibers. The ordered surface structure of collagen fibers and electrostatic interactions played key roles in tuning the oriented nucleation and growth of the calcite crystallites. The mineralized collagen possessing both desired mechanical properties of collagen fiber and good biocompatibility of calcium carbonate may be assembled into an ideal biomaterial for bone implants. PMID:26117783

  14. Enzyme-accelerated and structure-guided crystallization of calcium carbonate: role of the carbonic anhydrase in the homologous system.

    PubMed

    Müller, Werner E G; Schlossmacher, Ute; Schröder, Heinz C; Lieberwirth, Ingo; Glasser, Gunnar; Korzhev, Michael; Neufurth, Meik; Wang, Xiaohong

    2014-01-01

    The calcareous spicules from sponges, e.g. from Sycon raphanus, are composed of almost pure calcium carbonate. In order to elucidate the formation of those structural skeletal elements, the function of the enzyme carbonic anhydrase (CA), isolated from this species, during the in vitro calcium carbonate-based spicule formation, was investigated. It is shown that the recombinant sponge CA substantially accelerates calcium carbonate formation in the in vitro diffusion assay. A stoichiometric calculation revealed that the turnover rate of the sponge CA during the calcification process amounts to 25 CO2s(-1) × molecule CA(-1). During this enzymatically driven process, initially pat-like particles are formed that are subsequently transformed to rhomboid/rhombohedroid crystals with a dimension of ~50 μm. The CA-catalyzed particles are smaller than those which are formed in the absence of the enzyme. The Martens hardness of the particles formed is ~4 GPa, a value which had been determined for other biogenic calcites. This conclusion is corroborated by energy-dispersive X-ray spectroscopy, which revealed that the particles synthesized are composed predominantly of the elements calcium, oxygen and carbon. Surprising was the finding, obtained by light and scanning electron microscopy, that the newly formed calcitic crystals associate with the calcareous spicules from S. raphanus in a highly ordered manner; the calcitic crystals almost perfectly arrange in an array orientation along the two opposing planes of the spicules, leaving the other two plane arrays uncovered. It is concluded that the CA is a key enzyme controlling the calcium carbonate biomineralization process, which directs the newly formed particles to existing calcareous spicular structures. It is expected that with the given tools new bioinspired materials can be fabricated. PMID:23978410

  15. Calcium Carbonate Storage in Amorphous Form and Its Template-Induced Crystallization

    SciTech Connect

    Han, T Y; Aizenberg, J

    2007-08-31

    Calcium carbonate crystallization in organisms often occurs through the transformation from the amorphous precursor. It is believed that the amorphous phase could be temporarily stabilized and stored, until its templated transition to the crystalline form is induced. Here we develop a bio-inspired crystallization strategy that is based on the above mechanism. Amorphous calcium carbonate (ACC) spherulitic particles are formed and stabilized on a self-assembled monolayer (SAM) of hydroxy-terminated alkanethiols on Au surface. The ACC is stored as a reservoir for ions and is induced to crystallize on command by introducing a secondary surface that is functionalized with carboxylic acid-terminated SAM. This secondary surface acts as a template for oriented and patterned nucleation. Various oriented crystalline arrays and micropatterned films are formed. We also show that the ACC phase can be doped with foreign ions (e.g. Mg) and organic molecules (e.g. dyes) and that these dopants later function as growth modifiers of calcite crystals and become incorporated into the crystals during the transformation process of ACC to calcite. We believe that our strategy opens the way of using a stabilized amorphous phase as a versatile reservoir system that can be converted in a highly controlled fashion to a crystalline form upon contacting the nucleating template.

  16. Calcium carbonate crystallization in the presence of modified polysaccharides and linear polymeric additives

    NASA Astrophysics Data System (ADS)

    Matahwa, H.; Ramiah, V.; Sanderson, R. D.

    2008-10-01

    Crystallization of calcium carbonate was performed in the presence of grafted polysaccharides, polyacrylamide (PAM) and polyacrylic acid (PAA). The grafted polysaccharides gave crystal morphologies that were different from the unmodified polysaccharides but similar to the ones given by homopolymers of the grafted chains. PAM-grafted α-cellulose gave rectangular platelets that aggregated to form 'spherical' crystals on the surface of the fiber, whereas PAA grafted α-cellulose gave spherical crystals on the surface of the fiber. X-ray diffraction (XRD) spectroscopy showed that PAM-grafted α-cellulose, PAM as well as the control (no polymeric additive) gave calcite crystals at both 25 and 80 °C. However, the PAA-grafted α-cellulose and PAA homopolymer gave calcite and vaterite crystals at 25 °C with calcite and aragonite crystals along with traces of vaterite being formed at 80 °C. The fiber surface coverage by these crystals was more on the acrylic- and acrylamide-grafted cellulose than on the ungrafted α-cellulose. The evolution of CaCO 3 polymorphs as well as crystal morphology in PAA-grafted starch was similar to that of PAA-grafted α-cellulose at the two temperatures employed.

  17. Effect of Hydraulic Activity on Crystallization of Precipitated Calcium Carbonate (PCC) for Eco-Friendly Paper

    PubMed Central

    Kim, Jung-Ah; Han, Gi-Chun; Lim, Mihee; You, Kwang-Suk; Ryu, Miyoung; Ahn, Ji-Whan; Fujita, Toyohisa; Kim, Hwan

    2009-01-01

    Wt% of aragonite, a CaCO3 polymorph, increased with higher hydraulic activity (°C) of limestone in precipitated calcium carbonate (PCC) from the lime-soda process (Ca(OH)2-NaOH-Na2CO3). Only calcite, the most stable polymorph, was crystallized at hydraulic activity under 10 °C, whereas aragonite also started to crystallize over 10 °C. The crystallization of PCC is more dependent on the hydraulic activity of limestone than CaO content, a factor commonly used to classify limestone ores according to quality. The results could be effectively applied to the determination of polymorphs in synthetic PCC for eco-friendly paper manufacture. PMID:20087470

  18. Effect of hydraulic activity on crystallization of precipitated calcium carbonate (PCC) for eco-friendly paper.

    PubMed

    Kim, Jung-Ah; Han, Gi-Chun; Lim, Mihee; You, Kwang-Suk; Ryu, Miyoung; Ahn, Ji-Whan; Fujita, Toyohisa; Kim, Hwan

    2009-11-01

    Wt% of aragonite, a CaCO(3) polymorph, increased with higher hydraulic activity ( degrees C) of limestone in precipitated calcium carbonate (PCC) from the lime-soda process (Ca(OH)(2)-NaOH-Na(2)CO(3)). Only calcite, the most stable polymorph, was crystallized at hydraulic activity under 10 degrees C, whereas aragonite also started to crystallize over 10 degrees C. The crystallization of PCC is more dependent on the hydraulic activity of limestone than CaO content, a factor commonly used to classify limestone ores according to quality. The results could be effectively applied to the determination of polymorphs in synthetic PCC for eco-friendly paper manufacture. PMID:20087470

  19. Transformation and Crystallization Energetics of Synthetic and Biogenic Amorphous Calcium Carbonate

    SciTech Connect

    Radha, A. V.; Forbes, Tori Z.; Killian, Christopher E.; Gilbert, P.U.P.A; Navrotsky, Alexandra

    2010-01-01

    Amorphous calcium carbonate (ACC) is a metastable phase often observed during low temperature inorganic synthesis and biomineralization. ACC transforms with aging or heating into a less hydrated form, and with time crystallizes to calcite or aragonite. The energetics of transformation and crystallization of synthetic and biogenic (extracted from California purple sea urchin larval spicules, Strongylocentrotus purpuratus) ACC were studied using isothermal acid solution calorimetry and differential scanning calorimetry. Transformation and crystallization of ACC can follow an energetically downhill sequence: more metastable hydrated ACC → less metastable hydrated ACC→anhydrous ACC ~ biogenic anhydrous ACC→vaterite → aragonite → calcite. In a given reaction sequence, not all these phases need to occur. The transformations involve a series of ordering, dehydration, and crystallization processes, each lowering the enthalpy (and free energy) of the system, with crystallization of the dehydrated amorphous material lowering the enthalpy the most. ACC is much more metastable with respect to calcite than the crystalline polymorphs vaterite or aragonite. The anhydrous ACC is less metastable than the hydrated, implying that the structural reorganization during dehydration is exothermic and irreversible. Dehydrated synthetic and anhydrous biogenic ACC are similar in enthalpy. The transformation sequence observed in biomineralization could be mainly energetically driven; the first phase deposited is hydrated ACC, which then converts to anhydrous ACC, and finally crystallizes to calcite. The initial formation of ACC may be a first step in the precipitation of calcite under a wide variety of conditions, including geological CO₂ sequestration.

  20. The influence of polyaspartate additive on the growth and morphology of calcium carbonate crystals

    NASA Astrophysics Data System (ADS)

    Gower, Laurie Anne

    The addition of low levels of polyaspartate to a supersaturated calcium carbonate (CaCOsb3) solution leads to unusual morphologies in the inorganic phase. Spherulitic vaterite aggregates with helical protrusions, and distorted calcite crystals that contain spiral pits, have been produced. The helical particles are coated with an inorganic membrane that appears to be responsible for the helical twist. The polymer also causes deposition of thin CaCOsb3 tablets and films on the glass substrate. Two distinct types of films are deposited; the first is a mosaic of calcite crystals, and the second is spherulitic vaterite. In situ observations of the crystallization reaction have determined that the thin-film morphology is a result of the phase separation of a hydrated CaCOsb3/polymer liquid-precursor, whereby accumulation of isotropic droplets creates a coating on the substrate, and subsequent dehydration and crystallization yields birefringent CaCOsb3 films. During the amorphous to crystalline transition, incremental growth steps lead to "transition bars" and sectored calcite tablets. This in vitro system was originally modeled after certain aspects of CaCOsb3 biomineralization, in which the soluble proteins extracted from biominerals tend to have high levels of aspartic acid residues. Based on the similarities between features exhibited by the products of this system and those in biominerals, an argument has been presented to suggest that this polymer-induced liquid-precursor (PILP) process is involved in the morphogenesis of CaCOsb3 biominerals. These features include the following: thin CaCOsb3 tablets that grow laterally; tablets that express unstable crystallographic faces; non-faceted single crystals with curved surfaces; spatially-delineated single crystals; sectored calcite tablets; hollow-shell spheres; calcium carbonate cements; and magnesium-bearing calcites. This work has demonstrated that a means of morphological control can be accomplished through non-specific organic/inorganic interactions, whereby the polyelectrolyte transforms the solution crystallization to a solidification process. Not only are such findings of significance to the field of biomineralization, but a better understanding of the interactions between polymers and inorganic materials may be expected to lead to new strategies for crystal and particle engineering.

  1. Characterization of calcium carbonate/chitosan composites

    SciTech Connect

    Gonsalves, K.E.; Zhang, S.

    1995-12-31

    The crystal growth of calcium carbonate on a chitosan substrate was achieved using a supersaturated calcium carbonate solution, by using various additives, polyacrylic acid (PAA). Polyacrylic acid modified the chitosan-film surface and promoted the nucleation of calcium carbonate crystals.

  2. Incorporation of strontium into the calcium carbonate crystals of the endolymphatic sac in the tree frog (Hyla arborea japonica).

    PubMed

    Kawamata, S

    1987-06-01

    Tree frogs were loaded with strontium chloride (SrCl2). The incorporation of strontium metal into the calcium carbonate (CaCO3) crystals located both in the inner ear and in the endolymphatic sac was studied by x-ray microanalysis (XMA) and scanning electron microscopy (SEM). In the inner ear, strontium was not recognized except for traces in a few crystals. When observed by SEM, these crystals had a faceted body and two pointed ends with rather smooth surfaces. However, in the endolymphatic sac, which greatly expands into the spinal canal, strontium was clearly present at every surface of all crystals. Careful examinations by point and line XMA revealed that strontium x-ray counts were highest at the pointed ends and decreased sharply and then gradually toward the equator of the crystals. SEM observations revealed that the crystals in the endolymphatic sac always had rough and irregular surfaces regardless of their shapes and sizes. Calcium was always found in crystals of both organs. Except for calcium and strontium, other elements including sodium and heavier elements were negligible in XMA. These findings suggest that strontium is incorporated into the crystals only in the endolymphatic sac, and the rough-surfaced covering of these crystals reflects newly deposited strontium salt. It seems to indicate that these crystals grow predominantly by accretion. PMID:3619090

  3. Results of the TTF-TCNQ- and the calcium carbonate-crystallization on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Nielsen, Kjeld Flemming; Lind, M. David

    1991-01-01

    Experiment AO139A on the Long Duration Exposure Facility (LDEF) carried four large containers into orbit for five years with crystal growth solutions for lead sulfide, calcium carbonate, and tetra thiafulvalene- tetra cyanoquino methane (TTF-TCNQ). The LDEF was in excellent condition after the long orbital stay, and although the temperature data was lost, the experiment program had been working since the valves in all containers were opened. All four experiments produced crystals; however, they were of varying quality. The calcium carbonate crystals had the best appearance. The TTF-TCNQ crystals were packed together near the valve openings of the container. When taken apart, the single crystals showed some unusual morphological properties. X-ray investigations as well as conductivity measurements on the long duration space grown TTF-TCNQ crystals are presented, and pictures of the calcium carbonate are shown. Comparisons are made with previous space solution growth experiments on the European Spacelab Mission and the Apollo-Soyuz Test Project.

  4. Calcium carbonate crystallization in the α-chitin matrix of the shell of pink shrimp, Pandalus borealis, during frozen storage

    NASA Astrophysics Data System (ADS)

    Mikkelsen, A.; Engelsen, S. B.; Hansen, H. C. B.; Larsen, O.; Skibsted, L. H.

    1997-05-01

    Calcium carbonate precipitates in the shell of pink shrimp, Pandalus borealis, during frozen storage (investigated for temperatures above - 30°C), and as a result white spots appear in the shell. During continued frozen storage the white spots grow in size and eventually cover the entire, originally transparent, shell. Material isolated from shrimp shells was dried and subjected to infrared and Raman spectroscopy, X-ray diffraction, electron microscopy and EDX analyses. It was found that the white spots were composed of crystalline calcium carbonate in the two crystal forms of calcite and vaterite, and of amorphous α-chitin. It is proposed that α-chitin plays an important role in the crystallization process of white spots, as an integral part of the white spots. It is shown that the relative w/w-concentrations of α-chitin and calcium carbonate in white spots were constant (0.34 : 0.66), and it did not depend on chemical treatments comparable to those in use by the fishing industry for production of raw and frozen shrimps. However, the ratio of the polymorphic forms of calcium carbonate varied.

  5. Photoinduced crystallization of calcium carbonate from a homogeneous precursor solution in the presence of partially hydrolyzed poly(vinyl alcohol)

    NASA Astrophysics Data System (ADS)

    Nishio, Takashi; Naka, Kensuke

    2015-04-01

    Photoinduced crystallization of calcium carbonate (CaCO3) was demonstrated by the photodecarboxylation of ketoprofen (KP, 2-(3-benzoylphenyl)propionic acid) under alkaline conditions (pH 10). In this method, a homogeneous solution comprising KP, calcium chloride, ammonia, and partially hydrolyzed poly(vinyl alcohol) (PVAPS, degree of saponification: 86.5-89.0 mol %) was used as the precursor solution and was exposed to ultraviolet (UV) irradiation for different time periods. Thermogravimetric analysis of the obtained xerogels showed that increasing the UV irradiation time increased the amount of CaCO3 formed and the complete conversion of calcium ions to calcite was achieved after 50 min of UV irradiation. Furthermore, solid phase analyses suggested that nanometer-to-micron-sized calcite crystals were formed and dispersed in the obtained PVAPS matrix.

  6. Intrinsically Disordered and Pliable Starmaker-Like Protein from Medaka (Oryzias latipes) Controls the Formation of Calcium Carbonate Crystals

    PubMed Central

    R?ycka, Miros?awa; Wojtas, Magdalena; Jakb, Micha?; Stigloher, Christian; Grzeszkowiak, Miko?aj; Mazur, Maciej; O?yhar, Andrzej

    2014-01-01

    Fish otoliths, biominerals composed of calcium carbonate with a small amount of organic matrix, are involved in the functioning of the inner ear. Starmaker (Stm) from zebrafish (Danio rerio) was the first protein found to be capable of controlling the formation of otoliths. Recently, a gene was identified encoding the Starmaker-like (Stm-l) protein from medaka (Oryzias latipes), a putative homologue of Stm and human dentine sialophosphoprotein. Although there is no sequence similarity between Stm-l and Stm, Stm-l was suggested to be involved in the biomineralization of otoliths, as had been observed for Stm even before. The molecular properties and functioning of Stm-l as a putative regulatory protein in otolith formation have not been characterized yet. A comprehensive biochemical and biophysical analysis of recombinant Stm-l, along with in silico examinations, indicated that Stm-l exhibits properties of a coil-like intrinsically disordered protein. Stm-l possesses an elongated and pliable structure that is able to adopt a more ordered and rigid conformation under the influence of different factors. An in vitro assay of the biomineralization activity of Stm-l indicated that Stm-l affected the size, shape and number of calcium carbonate crystals. The functional significance of intrinsically disordered properties of Stm-l and the possible role of this protein in controlling the formation of calcium carbonate crystals is discussed. PMID:25490041

  7. Intrinsically disordered and pliable Starmaker-like protein from medaka (Oryzias latipes) controls the formation of calcium carbonate crystals.

    PubMed

    Różycka, Mirosława; Wojtas, Magdalena; Jakób, Michał; Stigloher, Christian; Grzeszkowiak, Mikołaj; Mazur, Maciej; Ożyhar, Andrzej

    2014-01-01

    Fish otoliths, biominerals composed of calcium carbonate with a small amount of organic matrix, are involved in the functioning of the inner ear. Starmaker (Stm) from zebrafish (Danio rerio) was the first protein found to be capable of controlling the formation of otoliths. Recently, a gene was identified encoding the Starmaker-like (Stm-l) protein from medaka (Oryzias latipes), a putative homologue of Stm and human dentine sialophosphoprotein. Although there is no sequence similarity between Stm-l and Stm, Stm-l was suggested to be involved in the biomineralization of otoliths, as had been observed for Stm even before. The molecular properties and functioning of Stm-l as a putative regulatory protein in otolith formation have not been characterized yet. A comprehensive biochemical and biophysical analysis of recombinant Stm-l, along with in silico examinations, indicated that Stm-l exhibits properties of a coil-like intrinsically disordered protein. Stm-l possesses an elongated and pliable structure that is able to adopt a more ordered and rigid conformation under the influence of different factors. An in vitro assay of the biomineralization activity of Stm-l indicated that Stm-l affected the size, shape and number of calcium carbonate crystals. The functional significance of intrinsically disordered properties of Stm-l and the possible role of this protein in controlling the formation of calcium carbonate crystals is discussed. PMID:25490041

  8. Influence of Sticky Rice and Anionic Polyacrylamide on the Crystallization of Calcium Carbonate in Chinese Organic Sanhetu

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Peng, Changsheng; Dai, Min; Gu, Qingbao; Song, Shaoxian

    2015-09-01

    The crystallization of calcium carbonate (CaCO3) in soil controlled by natural organic material was considered a very important reason to enhance the property of ancient Chinese organic Sanhetu (COS), but how the organic material affected the crystallization of CaCO3 in COS is still unclear. In this paper, a natural organic material (sticky rice, SR) and a synthetic organic material (anionic polyacrylamide, APAM) were selected as additives to investigate their effect on the crystallization of CaCO3. The experimental results showed that the morphology and size of CaCO3 crystals could be affected by the concentration of additives and reaction time, while only the size of CaCO3 crystals could be affected by the concentration of reactant. Although the morphology and size of CaCO3 crystals varied greatly with the variation of additive concentration, reactant concentration and reaction time, the polymorph of CaCO3 crystals were always calcite, according to SEM/EDX, XRD and FTIR analyses. This study may help us to better understand the mechanism of the influence of organic materials on CaCO3 crystallization and properties of COS.

  9. Control over the crystal phase, shape, size and aggregation of calcium carbonate via a L-aspartic acid inducing process.

    PubMed

    Tong, Hua; Ma, Wentao; Wang, Leilei; Wan, Peng; Hu, Jiming; Cao, Lianxin

    2004-08-01

    The acidic amino acid, such as aspartic acid (l-Asp), and glutamic acid are the primary active molecules of the glycoprotein on the organic/inorganic interface of biomineralized tissue. In this study, aspartic acid was used as the organic template in inducing the nucleation and growth of calcium carbonate. With the analysis of X-ray diffraction we investigated the relationship between the l-Asp concentration and the precipitation phase crystal structure of calcium carbonate. SEM and TEM were employed in the analysis of the morphological characteristic of the precipitation and the aggregation of the nanoscale porous phase. In order to get the direct evidence of the interaction between Ca2+ and l-Asp, the technique of QCM was used in the investigation of the coordinate interaction of Ca2+/l-Asp. As the results have shown, l-Asp alone is adequate to switch the transformation between calcite and vaterite, and neither soluble organic additions nor metal ions are needed. Meanwhile, the morphology, size and aggregative way of the deposition are also mediated with change of l-Asp concentration. To interpret the cause of the hierarchic structure range from nanoscale to micron-scale and the formation of the porous spheres of vaterite, an assumption of limited-fusion was proposed from the view of the small biomolecules polarity that can control over the growth of the crystals and the aggregation of the micro crystals. The conclusion also provide a new material synthesize strategy. PMID:15020169

  10. Calcium Carbonate Crystal Growth in Porous Media, in the presence of Water Miscible and Non-Miscible Organic Fluids

    NASA Astrophysics Data System (ADS)

    Jaho, Sofia; Sygouni, Varvara; Paraskeva, Christakis A.

    2015-04-01

    The deposition of sparingly soluble salts (scaling) within porous media is a major problem encountered in many industrial and environmental applications. In the oil industry scaling causes severe operational malfunctions and, therefore, increasing the total operating and maintenance cost [1]. The most common types of sparingly soluble salts located in oil fields include carbonate and sulfate salts of calcium, strondium and barium[1,2]. Multiple phase flow and tubing surface properties are some of the factors affecting scale formation [3]. The main purpose of the present work was the investigation of the precipitation mechanisms of calcium carbonate (CaCO3) through in situ mixing of two soluble salt solutions in a flow granular medium, in the presence of water miscible organic fluid (ethylene glycol) or non-miscible organic fluid (n-dodecane). All series of experiments were carried out in a two dimensional porous medium made of Plexiglas. For all solutions used in the experiments, the contact angles with the surface of the porous medium and the interfacial tensions were measured. During the experiments, the calcium carbonate crystal growth was continuously monitored and recorded through an optical microscope equipped with a digital programmed video camera. The snap-shots were taken within specific time intervals and their detailed procession gave information concerning the crystal growth rate and kinetics. The pH of the effluent was measured and fluids samples were collected for calcium analysis using Atomic Absorption Spectroscopy (AAS). In all experiments effluent calcium concentration decreased as a function of time, suggesting that CaCO3 precipitation took place inside the porous medium. Crystals of the precipitated salt were identified using Infrared Spectroscopy (IR) and the morphology of the crystals was examined using Scanning Electron Microscopy (SEM). The induction time for precipitation of CaCO3 crystals in the presence of n-dodecane was significantly reduced compared to the induction time where no oil phase was present. The interface of n-dodecane and supersaturated solutions seems to be very active and favored the formation of the CaCO3 crystalline enhancing the heterogeneous nucleation which generally demands a decreased energy barrier. Acknowledgments This research was partially funded by the European Union (European Social Fund-ESF) and Greek National Funds through the Operational Program "Education and Lifelong Learning" under the action Aristeia II (Code No4420). References 1. Merdhah A. B. and Yassin A. A., Scale formation in oil reservoir during water injection at high-salinity formation water, Journal of Applied Sciences, 7, 3198-3207 (2007). 2. Moghadasi J., Muller-Steinhagen H., Jamialahmadi M. and Sharif A., Model study on the kinetics of oil field formation damage due to salt precipitation from injection, Journal of Petroleum Science and Engineering, 43, 201-217 (2004). 3. Nancollas G. H. and Reddy M. M., The crystallization of calcium carbonate II. Calcite growth mechanism, Journal of Colloid and Interface Science, 37, 824-830 (1971).

  11. Linking crystal structure with temperature-sensitive vibrational modes in calcium carbonate minerals.

    PubMed

    Xu, Ben; Poduska, Kristin M

    2014-09-01

    We demonstrate a correlation between how an IR-active vibrational mode responds to temperature changes and how it responds to crystallinity differences. Infrared (IR) spectroscopy was used to track changes in carbonate-related vibrational modes in three different CaCO3 polymorphs (calcite, aragonite, and vaterite) and CaMg(CO3)2 (dolomite) during heating. Of the three characteristic IR-active carbonate modes, the in-plane bending mode (ν4) shows the most pronounced changes with heating in polymorphs that have planar carbonate arrangements (calcite, aragonite, and dolomite). In contrast, this mode is virtually unchanged in vaterite, which has a canted arrangement of carbonate units. We correlate these trends with recent studies that identified the ν4 mode as most susceptible to changes related to crystallinity differences in calcite and amorphous calcium carbonate. Thus, our results suggest that studies of packing arrangements could provide a generalizable approach to identify the most diagnostic vibrational modes for tracking either temperature-dependent or crystallinity-related effects in IR-active solids. PMID:25027312

  12. Hemocytes participate in calcium carbonate crystal formation, transportation and shell regeneration in the pearl oyster Pinctada fucata.

    PubMed

    Li, Shiguo; Liu, Yangjia; Liu, Chuang; Huang, Jingliang; Zheng, Guilan; Xie, Liping; Zhang, Rongqing

    2016-04-01

    In this study, light microscope, scanning and transmission electron microscope, hematoxylin-eosin and fluorescent staining, and mass spectrometry methods were employed to observe the calcium carbonate (CaCO3) crystal formation, hemocyte release and transportation, and hemocyte distribution at the shell regeneration area and to analyse the proteome of hemocytes in the pearl oyster, Pinctada fucata. The results indicated that intracellular CaCO3 crystals were observed in circulating hemocytes in P. fucata, implying that there was a suitable microenvironment for crystal formation in the hemocytes. This conclusion was further supported by the proteome analysis, in which various biomineralization-related proteins were detected. The crystal-bearing hemocytes, mainly granulocytes, may be released to extrapallial fluid (EPF) by the secretory cavities distributed on the outer surface of the mantle centre. These granulocytes in the EPF and between the regenerated shells were abundant and free. In the regenerated prismatic layer, the granulocytes were fused into each column and fragmented with the duration of shell maturation, suggesting the direct involvement of hemocytes in shell regeneration. Overall, this study provided evidence that hemocytes participated in CaCO3 crystal formation, transportation and shell regeneration in the pearl oyster. These results are helpful to further understand the exact mechanism of hemocyte-mediated biomineralization in shelled molluscs. PMID:26923245

  13. Bioprecipitation of Calcium Carbonate Crystals by Bacteria Isolated from Saline Environments Grown in Culture Media Amended with Seawater and Real Brine

    PubMed Central

    Silva-Castro, G. A.; Uad, I.; Gonzalez-Martinez, A.; Rivadeneyra, A.; Gonzalez-Lopez, J.; Rivadeneyra, M. A.

    2015-01-01

    The precipitation of calcium carbonate and calcium sulphate by isolated bacteria from seawater and real brine obtained in a desalination plant growth in culture media containing seawater and brine as mineral sources has been studied. However, only bioprecipitation was detected when the bacteria were grown in media with added organic matter. Biomineralization process started rapidly, crystal formation taking place in the beginning a few days after inoculation of media; roughly 90% of total cultivated bacteria showed. Six major colonies with carbonate precipitation capacity dominated bacterial community structure cultivated in heterotrophic platable bacteria medium. Taxonomic identification of these six strains through partial 16S rRNA gene sequences showed their affiliation with Gram-positive Bacillus and Virgibacillus genera. These strains were able to form calcium carbonate minerals, which precipitated as calcite and aragonite crystals and showed bacterial fingerprints or bacteria calcification. Also, carbonic anhydrase activity was observed in three of these isolated bacteria. The results of this research suggest that microbiota isolated from sea water and brine is capable of precipitation of carbonate biominerals, which can occur in situ with mediation of organic matter concentrations. Moreover, calcium carbonate precipitation ability of this microbiota could be of importance in bioremediation of CO2 and calcium in certain environments. PMID:26273646

  14. 21 CFR 184.1191 - Calcium carbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... soda process”; (2) By precipitation of calcium carbonate from calcium hydroxide in the “Carbonation process”; or (3) By precipitation of calcium carbonate from calcium chloride in the “Calcium...

  15. 21 CFR 184.1191 - Calcium carbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... soda process”; (2) By precipitation of calcium carbonate from calcium hydroxide in the “Carbonation process”; or (3) By precipitation of calcium carbonate from calcium chloride in the “Calcium...

  16. Calcium carbonate with magnesium overdose

    MedlinePlus

    The combination of calcium carbonate and magnesium is commonly found in antacids. These medicines provide heartburn relief. Calcium carbonate with magnesium overdose occurs when someone takes more than the ...

  17. Crystal growth of calcium carbonate on the cellulose acetate/pyrrolidon blend films in the presence of L-aspartic acid

    NASA Astrophysics Data System (ADS)

    Zhang, Xiuzhen; Xie, Anjian; Huang, Fangzhi; Shen, Yuhua

    2014-03-01

    The morphogenesis and growth process of calcium carbonate on the cellulose acetate/polyvinyl pyrrolidone (CA/PVP) blend films in the presence of L-aspartic acid was carefully investigated. The results showed that the concentration of L-aspartic acid, the initial pH value of reaction solution and temperature turned out to be important factors for the control of morphologies and polymorphs of calcium carbonate. Complex morphologies of CaCO3 particles, such as cubes, rose-like spheres, twinborn-spheres, cone-like, bouquet-like, etc. could be obtained under the different experimental conditions. The dynamic process of formation of rose-like sphere crystals was analyzed by monitoring the continuous morphological and structural evolution and components of crystals in different crystal stages. This research may provide a promising method to prepare other inorganic materials with complex morphologies.

  18. Crystallization of calcium carbonate (CaCO3) in a flowing system: Influence of Cu2+ additives on induction time and crystalline phase transformation

    NASA Astrophysics Data System (ADS)

    Usmany, Y.; Putranto, W. A.; Bayuseno, A. P.; Muryanto, S.

    2016-04-01

    Scaling of calcium carbonate (CaCO3) is commonly found in piping systems in oil, gas, desalination and other chemical processes. The scale may create technical problems, leading to the reduction of heat transfer, increase of energy consumption and unscheduled equipment shutdown. This paper presents crystallization scaling experiments and evaluation of the effect of Cu2+ additives on the induction time and calcium carbonate transformation. The crystals precursors were prepared using equimolar of CaCl2 and Na2CO3 resulted in concentrations of 3000 ppm Ca2+ in the solution. The Cu2+ in amounts of 0, 1 and 10 ppm was separately added in the solution. The flow rates (20, 35, and 60 mL/min) and elevated temperatures (27, 35 and 45°C) were selected in the study. The induction time for crystallization of CaCO3 was observed by measuring the solution conductivity over time, while the phase transformation of calcium carbonate was examined by XRD method and SEM/EDX. It was found that the conductivity remained steady for a certain period reflecting to the induction time of crystal formation, and then decreased sharply afterwards,. The induction time was increased from 34 and 48 minutes in the presence of Cu additives (1 and 10 ppm), depending on the flow rates and temperature observed. In all the experiments, the Cu2+ addition leads to the reduction of mass of crystals. Apparently, the presence of Cu2+ could inhibit the CaCO3 crystallization. In the absence of Cu2+ and at elevated temperature, the crystals obtained were a mixture of vaterite and calcite. In the presence of Cu2+ and at elevated temperature, the crystals formed were aragonite and calcite. Here, the presence of Cu2+ additives might have controlled the crystal transformation of CaCO3.

  19. SM50 repeat-polypeptides self-assemble into discrete matrix subunits and promote appositional calcium carbonate crystal growth during sea urchin tooth biomineralization.

    PubMed

    Mao, Yelin; Satchell, Paul G; Luan, Xianghong; Diekwisch, Thomas G H

    2016-01-01

    The two major proteins involved in vertebrate enamel formation and echinoderm sea urchin tooth biomineralization, amelogenin and SM50, are both characterized by elongated polyproline repeat domains in the center of the macromolecule. To determine the role of polyproline repeat polypeptides in basal deuterostome biomineralization, we have mapped the localization of SM50 as it relates to crystal growth, conducted self-assembly studies of SM50 repeat polypeptides, and examined their effect on calcium carbonate and apatite crystal growth. Electron micrographs of the growth zone of Strongylocentrotus purpuratus sea urchin teeth documented a series of successive events from intravesicular mineral nucleation to mineral deposition at the interface between tooth surface and odontoblast syncytium. Using immunohistochemistry, SM50 was detected within the cytoplasm of cells associated with the developing tooth mineral, at the mineral secreting front, and adjacent to initial mineral deposits, but not in muscles and ligaments. Polypeptides derived from the SM50 polyproline alternating hexa- and hepta-peptide repeat region (SM50P6P7) formed highly discrete, donut-shaped self-assembly patterns. In calcium carbonate crystal growth studies, SM50P6P7 repeat peptides triggered the growth of expansive networks of fused calcium carbonate crystals while in apatite growth studies, SM50P6P7 peptides facilitated the growth of needle-shaped and parallel arranged crystals resembling those found in developing vertebrate enamel. In comparison, SM50P6P7 surpassed the PXX24 polypeptide repeat region derived from the vertebrate enamel protein amelogenin in its ability to promote crystal nucleation and appositional crystal growth. Together, these studies establish the SM50P6P7 polyproline repeat region as a potent regulator in the protein-guided appositional crystal growth that occurs during continuous tooth mineralization and eruption. In addition, our studies highlight the role of species-specific polyproline repeat motifs in the formation of discrete self-assembled matrices and the resulting control of mineral growth. PMID:26194158

  20. Calcium carbonate crystallizations on hypogean mural paintings: a pilot study of monitoring and diagnostics in Roman catacombs

    NASA Astrophysics Data System (ADS)

    Tapete, D.; Fratini, F.; Mazzei, B.; Camaiti, M.; Cantisani, E.; Riminesi, C.; Manganelli Del Fà, R.; Cuzman, O.; Tiano, P.

    2012-04-01

    One of the deterioration processes affecting mural paintings and rock surfaces within manmade hypogea consists in the formation of calcium carbonate crystallizations, which can create thick coverage and incrustations, even in some cases speleothems. These chemical reactions necessarily require the availability of calcium sources, which can be also of anthropogenic origin (e.g., lime-based mortars). Microclimate parameters also represent environmental forcing factors, on which the morphology and the degree of crystallinity of the precipitated carbonates depend. Understanding past/recent dynamics of carbonate precipitation implies a deep knowledge of the relationships between the exposed surfaces and the microclimate conditions, the impacts of external factors (e.g., groundwater infiltration and percolation from the overlying soil) and how they change over time. This is particularly fundamental for the preservation of hypogean sites which have not comparison with other typologies of environment due to their uniqueness, such as the ancient catacombs carved underneath the suburbs of Rome (Italy), since the 2nd century AD. In this paper we present the multidisciplinary methodological approach designed for the instrumental monitoring of the microphysical environment of the Catacombs of Saints Mark, Marcellian and Damasus, in the framework of the co-operation between the Institute for the Conservation and Valorization of Cultural Heritage and Pontifical Commission for Sacred Archaeology, Vatican, on the project HYPOGEA. Temperature inside the catacomb and on the surfaces, air relative humidity and CO2 concentration are the main of the parameters continuously measured by means of data loggers installed within the cubicles. Contemporarily, standardized methods of photographic documentation and digital micro-photogrammetry are used for change detection analysis of the painted surfaces and ancient plasters, as well as of the test areas purposely realized by applying fresh lime mortars simulating the former surfaces. Parallel laboratory investigations (e.g., diamond anvil cell FT-IR spectroscopy, X-ray diffraction, thin section observations under polarized light microscope, conventional microbiological investigations) are complementarily employed to characterize the calcite crystallizations, in terms of compositional, textural and mineralogical properties. Hence, it is expected to find a correlation between the microclimate conditions and the degree of crystallinity and morphology of the incrustations developed on the surfaces of the fresh samples. A specific study of the stratigraphic sequence of the calcite crystallizations already formed on the ancient surfaces is also included, to perform a back-analysis of the microclimate variations inside the cubicles through centuries of use and abandonment. In this regard, the precise knowledge of the conservation history of the monitored cubicles is adopted as a temporal guide to hypothesize the time frames, to which the observed strata are presumably to be referred. The main outcome of this pilot study is the establishment of a methodological approach suitable for the monitoring of crystallization phenomena inside catacombs, to be potentially exported to similar contexts. The findings of the research will also constitute the scientific base for the design of the most appropriate measures of environmental conditioning, also in the perspective to open the catacombs to visitors.

  1. Impregnating Coal With Calcium Carbonate

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Voecks, Gerald E.; Gavalas, George R.

    1991-01-01

    Relatively inexpensive process proposed for impregnating coal with calcium carbonate to increase rates of gasification and combustion of coal and to reduce emission of sulfur by trapping sulfur in calcium sulfide. Process involves aqueous-phase reactions between carbon dioxide (contained within pore network of coal) and calcium acetate. Coal impregnated with CO2 by exposing it to CO2 at high pressure.

  2. Control of calcium carbonate crystallization by using anionic polymethylsiloxanes as templates

    SciTech Connect

    Neira-Carrillo, Andronico; Vasquez-Quitral, Patricio; Paz Diaz, Maria; Soledad Fernandez, Maria; Luis Arias, Jose; Yazdani-Pedram, Mehrdad

    2012-10-15

    Sulfonated (SO{sub 3}H-PMS) and carboxylated (CO{sub 2}H-PMS) polymethylsiloxanes were synthesized and their effects as anionic template modifier on the CaCO{sub 3} crystal morphologies were evaluated. In vitro crystallization assays of CaCO{sub 3} were performed at room temperature by using gas diffusion method at different concentration, pH and time. SEM images of CaCO{sub 3} showed well-defined short calcite piles (ca. 5 {mu}m) and elongated calcite (ca. 20 {mu}m) when SO{sub 3}H-PMS was used. When CO{sub 2}H-PMS was used, the morphology of CaCO{sub 3} crystals was single-truncated at pH 7-9 and aggregated-modified calcite at pH 10-11. However, at pH 12 the least stable donut-shaped vaterite crystals were formed. EDS and XRD confirmed the presence of Si from anionic PMS templates on the CaCO{sub 3} surfaces and its polymorphism, respectively. Results showed that the selective morphologies of CaCO{sub 3} reflect the electrostatic interaction of anionic groups of functionalized PMS with Ca{sup 2+} adsorbed on CaCO{sub 3} crystals. Rounded and truncated-modified fluorescent CaCO{sub 3} was also produced by the inclusion of functionalized PMS into the lattice of CaCO{sub 3} matrix. We demonstrated that the anionic PMS offer a good modifier for polymer-controlled crystallization and a convenient approach for understanding the biomineralization field. - Graphical abstract: Optical photographs of rounded and truncated-modified fluorescent CaCO{sub 3} produced by the inclusion of sulfonated (SO{sub 3}H-PMS) polymethylsiloxanes into the lattice of CaCO{sub 3} matrix. Insert represents the simulation of modified and fluorescent CaCO{sub 3} crystals using Software JCrystal, (2008). Highlights: Black-Right-Pointing-Pointer We prepared two anionic polymethylsiloxanes (PMS) as templates. Black-Right-Pointing-Pointer Their modifier capacity on the CaCO{sub 3} crystal morphologies was demonstrated. Black-Right-Pointing-Pointer At pH 12, the least stable donut-shaped vaterite, was formed. Black-Right-Pointing-Pointer EDS confirmed the presence of Si from anionic PMS templates on the CaCO{sub 3} surfaces. Black-Right-Pointing-Pointer Fluorescent CaCO{sub 3} was produced by the inclusion of PMS into the CaCO{sub 3} matrix.

  3. DISSOLUTION AND CRYSTALLIZATION OF CALCIUM SULFITE PLATELETS

    EPA Science Inventory

    The paper discusses the dissolution and crystallization of calcium sulfite platelets. The rates of calcium sulfite dissolution and crystallization are important in slurry scrubbing processes for flue gas desulfurization. The rates affect the scrubber solution composition, SO2 abs...

  4. Engineering calcium oxalate crystal formation in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many plants accumulate crystals of calcium oxalate. Just how these crystals form remains unknown. To gain insight into the mechanisms regulating calcium oxalate crystal formation, a crystal engineering approach was initiated utilizing the non-crystal accumulating plant, Arabidopsis. The success of t...

  5. The molecular characteristics of a human pancreatic acidic phosphoprotein that inhibits calcium carbonate crystal growth.

    PubMed Central

    De Caro, A; Multigner, L; Lafont, H; Lombardo, D; Sarles, H

    1984-01-01

    A CaCO3-crystal-growth inhibitor was isolated from human pancreatic stones by using EDTA demineralization, followed by DEAE-Trisacryl chromatography. The isolated inhibitor was found to be a phosphoglycoprotein with Mr 14017 and having an unusual chemical composition. It is characterized by a high (42%) acidic amino acid content, but lacks methionine and gamma-carboxyglutamic acid. The protein contains 2.65 mol of P/mol of protein, as phosphoserine (2 mol) and phosphothreonine (0.5 mol). Isoelectric focusing of the protein yields one major band corresponding to an isoelectric point of 4.2. Immunochemical quantification of the crystal-growth inhibitor in pure pancreatic juice reveals that it constitutes 14% of the normal exocrine secretion. Our findings demonstrate that this is a novel secretory protein, which has no enzymic activity and which maintains pancreatic juice in a supersaturated state with respect to CaCO3. Images Fig. 3. Fig. 4. PMID:6487269

  6. Phase transitions in biogenic amorphous calcium carbonate

    NASA Astrophysics Data System (ADS)

    Gong, Yutao

    Geological calcium carbonate exists in both crystalline phases and amorphous phases. Compared with crystalline calcium carbonate, such as calcite, aragonite and vaterite, the amorphous calcium carbonate (ACC) is unstable. Unlike geological calcium carbonate crystals, crystalline sea urchin spicules (99.9 wt % calcium carbonate and 0.1 wt % proteins) do not present facets. To explain this property, crystal formation via amorphous precursors was proposed in theory. And previous research reported experimental evidence of ACC on the surface of forming sea urchin spicules. By using X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron emission microscopy (PEEM), we studied cross-sections of fresh sea urchin spicules at different stages (36h, 48h and 72h after fertilization) and observed the transition sequence of three mineral phases: hydrated ACC → dehydrated ACC → biogenic calcite. In addition, we unexpectedly found hydrated ACC nanoparticles that are surrounded by biogenic calcite. This observation indicates the dehydration from hydrated ACC to dehydrated ACC is inhibited, resulting in stabilization of hydrated ACC nanoparticles. We thought that the dehydration was inhibited by protein matrix components occluded within the biomineral, and we designed an in vitro assay to test the hypothesis. By utilizing XANES-PEEM, we found that SM50, the most abundant occluded matrix protein in sea urchin spicules, has the function to stabilize hydrated ACC in vitro.

  7. Far infrared (THz) absorption spectra for the quantitative differentiation of calcium carbonate crystal structures: Exemplified in mixtures and in paper coatings

    NASA Astrophysics Data System (ADS)

    Bawuah, Prince; Kiss, Márton Zsolt; Silfsten, Pertti; Tåg, Carl-Mikael; Gane, Patrick A. C.; Peiponen, Kai-Erik

    2014-05-01

    In this paper, far-infrared (FIR) spectroscopic techniques have been employed to detect different calcium carbonate crystal concentrations in powder mixtures. We have compared absorption spectral features of both pure and mixtures of natural ground calcium carbonate (GCC) and synthetic precipitated calcium carbonate (PCC). It is evident that the absorbance data differentiate clearly and unequivocally between calcite and aragonite in the spectral range of 2-18 THz. Also, from the absorbance measurement of two sets of mixtures, we have revealed a linear relationship between the ratio of some selected absorbance peaks of the mixtures and concentration of a particular pigment within the mixture. This innovative technique could be a novel, practicable technique for quality control or for analyzing coating and/or filler pigments and extenders in the paper making and printing industries. Finally, we have proven in the case of paper that, surface roughness and print color play no role as far as the locations and magnitudes of the absorbance spectral features are concerned.

  8. CALCIUM CHANNELS INVOLVED IN CALCIUM OXALATE CRYSTAL FORMATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pistia stratiotes L. produces calcium (Ca) oxalate crystals in specialized cells called crystal idioblasts. Druse crystal idioblasts are produced in the adaxial mesophyll and raphide idioblasts are produced in the abaxial aerenchyma of this aquatic plant. Leaves formed on plants grown on 0 Ca medi...

  9. Phase transitions in biogenic amorphous calcium carbonate

    PubMed Central

    Gong, Yutao U. T.; Killian, Christopher E.; Olson, Ian C.; Appathurai, Narayana P.; Amasino, Audra L.; Martin, Michael C.; Holt, Liam J.; Wilt, Fred H.; Gilbert, P. U. P. A.

    2012-01-01

    Crystalline biominerals do not resemble faceted crystals. Current explanations for this property involve formation via amorphous phases. Using X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron emission microscopy (PEEM), here we examine forming spicules in embryos of Strongylocentrotus purpuratus sea urchins, and observe a sequence of three mineral phases: hydrated amorphous calcium carbonate (ACC·H2O) → dehydrated amorphous calcium carbonate (ACC) → calcite. Unexpectedly, we find ACC·H2O-rich nanoparticles that persist after the surrounding mineral has dehydrated and crystallized. Protein matrix components occluded within the mineral must inhibit ACC·H2O dehydration. We devised an in vitro, also using XANES-PEEM, assay to identify spicule proteins that may play a role in stabilizing various mineral phases, and found that the most abundant occluded matrix protein in the sea urchin spicules, SM50, stabilizes ACC·H2O in vitro. PMID:22492931

  10. Calcium oxalate crystals in eucalypt ectomycorrhizae: morphochemical characterization.

    PubMed

    Pylro, Victor Satler; de Freitas, André Luiz Moreira; Otoni, Wagner Campos; da Silva, Ivo Ribeiro; Borges, Arnaldo Chaer; Costa, Maurício Dutra

    2013-01-01

    Ectomycorrhizal fungi are ubiquitous in forest ecosystems, benefitting plants principally by increasing the uptake of water and nutrients such as calcium from the soil. Previous work has demonstrated accumulation of crystallites in eucalypt ectomycorrhizas, but detailed morphological and chemical characterization of these crystals has not been performed. In this work, cross sections of acetic acid-treated and cleared ectomycorrhizal fragments were visualized by polarized light microscopy to evaluate the location of crystals within cortical root cells. Ectomycorrhizal sections were also observed by scanning electron microscopy (SEM) coupled with energy dispersive x-ray (EDS) microprobe analysis. The predominant forms of crystals were crystal sand (granules) and concretions. Calcium, carbon and oxygen were detected by EDS as constituent elements and similar elemental profiles were observed between both crystal morphologies. All analyzed crystalline structures were characterized as calcium oxalate crystals. This is the first report of the stoichiometry and morphology of crystals occurring in eucalypt ectomycorrhizas in tropical soils. The data corroborates the role of ectomycorrhizae in the uptake and accumulation of calcium in the form of calcium oxalate crystals in hybrid eucalypt plants. PMID:23844062

  11. Calcium Oxalate Crystals in Eucalypt Ectomycorrhizae: Morphochemical Characterization

    PubMed Central

    Pylro, Victor Satler; de Freitas, Andr Luiz Moreira; Otoni, Wagner Campos; da Silva, Ivo Ribeiro; Borges, Arnaldo Chaer; Costa, Maurcio Dutra

    2013-01-01

    Ectomycorrhizal fungi are ubiquitous in forest ecosystems, benefitting plants principally by increasing the uptake of water and nutrients such as calcium from the soil. Previous work has demonstrated accumulation of crystallites in eucalypt ectomycorrhizas, but detailed morphological and chemical characterization of these crystals has not been performed. In this work, cross sections of acetic acid-treated and cleared ectomycorrhizal fragments were visualized by polarized light microscopy to evaluate the location of crystals within cortical root cells. Ectomycorrhizal sections were also observed by scanning electron microscopy (SEM) coupled with energy dispersive x-ray (EDS) microprobe analysis. The predominant forms of crystals were crystal sand (granules) and concretions. Calcium, carbon and oxygen were detected by EDS as constituent elements and similar elemental profiles were observed between both crystal morphologies. All analyzed crystalline structures were characterized as calcium oxalate crystals. This is the first report of the stoichiometry and morphology of crystals occurring in eucalypt ectomycorrhizas in tropical soils. The data corroborates the role of ectomycorrhizae in the uptake and accumulation of calcium in the form of calcium oxalate crystals in hybrid eucalypt plants. PMID:23844062

  12. Engineering calcium oxalate crystal formation in Arabidopsis.

    PubMed

    Nakata, Paul A

    2012-07-01

    Many plants accumulate crystals of calcium oxalate. Just how these crystals form remains unknown. To gain insight into the mechanisms regulating calcium oxalate crystal formation, a crystal engineering approach was initiated utilizing the non-crystal-accumulating plant, Arabidopsis. The success of this approach hinged on the ability to transform Arabidopsis genetically into a calcium oxalate crystal-accumulating plant. To accomplish this transformation, two oxalic acid biosynthetic genes, obcA and obcB, from the oxalate-secreting phytopathogen, Burkholderia glumae were inserted into the Arabidopsis genome. The co-expression of these two bacterial genes in Arabidopsis conferred the ability not only to produce a measurable amount of oxalate but also to form crystals of calcium oxalate. Biochemical and cellular studies of crystal accumulation in Arabidopsis revealed features that are similar to those observed in the cells of crystal-forming plants. Thus, it appears that at least some of the basic components that comprise the calcium oxalate crystal formation machinery are conserved even in non-crystal-accumulating plants. PMID:22576773

  13. Polymorphs calcium carbonate on temperature reaction

    SciTech Connect

    Chong, Kai-Yin; Chia, Chin-Hua; Zakaria, Sarani

    2014-09-03

    Calcium carbonate (CaCO{sub 3}) has three different crystal polymorphs, which are calcite, aragonite and vaterite. In this study, effect of reaction temperature on polymorphs and crystallite structure of CaCO{sub 3} was investigated. X-ray powder diffraction (XRD), fourier transform infrared (FTIR), and variable pressure scanning electron microscope (VPSEM) were used to characterize the obtained CaCO{sub 3} particles. The obtained results showed that CaCO{sub 3} with different crystal and particle structures can be formed by controlling the temperature during the synthesis process.

  14. Gravimetric Determination of Calcium as Calcium Carbonate Hydrate.

    ERIC Educational Resources Information Center

    Henrickson, Charles H.; Robinson, Paul R.

    1979-01-01

    The gravimetric determination of calcium as calcium carbonate is described. This experiment is suitable for undergraduate quantitative analysis laboratories. It is less expensive than determination of chloride as silver chloride. (BB)

  15. 21 CFR 184.1191 - Calcium carbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... three common methods of manufacture: (1) As a byproduct in the “Lime soda process”; (2) By precipitation of calcium carbonate from calcium hydroxide in the “Carbonation process”; or (3) By precipitation...

  16. Phosphate-water interplay tunes amorphous calcium carbonate metastability: spontaneous phase separation and crystallization vs stabilization viewed by solid state NMR.

    PubMed

    Kababya, Shifi; Gal, Assaf; Kahil, Keren; Weiner, Steve; Addadi, Lia; Schmidt, Asher

    2015-01-21

    Organisms tune the metastability of amorphous calcium carbonates (ACC), often by incorporation of additives such as phosphate ions and water molecules, to serve diverse functions, such as modulating the availability of calcium reserves or constructing complex skeletal scaffolds. Although the effect of additive distribution on ACC was noted for several biogenic and synthetic systems, the molecular mechanisms by which additives govern ACC stability are not well understood. By precipitating ACC in the presence of different PO4(3-) concentrations and regulating the initial water content, we identify conditions yielding either kinetically locked or spontaneously transforming coprecipitates. Solid state NMR, supported by FTIR, XRD, and electron microscopy, define the interactions of phosphate and water within the initial amorphous matrix, showing that initially the coprecipitates are homogeneous molecular dispersions of structural water and phosphate in ACC, and a small fraction of P-rich phases. Monitoring the transformations of the homogeneous phase shows that PO4(3-) and waters are extracted first, and they phase separate, leading to solid-solid transformation of ACC to calcite; small part of ACC forms vaterite that subsequently converts to calcite. The simultaneous water-PO4(3-) extraction is the key for the subsequent water-mediated accumulation and crystallization of hydroxyapatite (HAp) and carbonated hydroxyapatite. The thermodynamic driving force for the transformations is calcite crystallization, yet it is gated by specific combinations of water-phosphate levels in the initial amorphous coprecipitates. The molecular details of the spontaneously transforming ACC and of the stabilized ACC modulated by phosphate and water at ambient conditions, provide insight into biogenic and biomimetic pathways. PMID:25523637

  17. 21 CFR 582.5191 - Calcium carbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium carbonate. 582.5191 Section 582.5191 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use....

  18. 21 CFR 582.5191 - Calcium carbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium carbonate. 582.5191 Section 582.5191 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use....

  19. 21 CFR 582.5191 - Calcium carbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium carbonate. 582.5191 Section 582.5191 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use....

  20. 21 CFR 582.1191 - Calcium carbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium carbonate. 582.1191 Section 582.1191 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use....

  1. 21 CFR 582.1191 - Calcium carbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium carbonate. 582.1191 Section 582.1191 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use....

  2. 21 CFR 582.1191 - Calcium carbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium carbonate. 582.1191 Section 582.1191 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use....

  3. 21 CFR 73.1070 - Calcium carbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Calcium carbonate. 73.1070 Section 73.1070 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1070 Calcium carbonate. (a) Identity. (1) The color additive calcium carbonate is a fine, white, synthetically prepared powder consisting essentially...

  4. 21 CFR 73.1070 - Calcium carbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Calcium carbonate. 73.1070 Section 73.1070 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1070 Calcium carbonate. (a) Identity. (1) The color additive calcium carbonate is a fine, white, synthetically prepared powder consisting essentially...

  5. 21 CFR 73.1070 - Calcium carbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Calcium carbonate. 73.1070 Section 73.1070 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1070 Calcium carbonate. (a) Identity. (1) The color additive calcium carbonate is a fine, white, synthetically prepared powder consisting essentially...

  6. 21 CFR 582.1191 - Calcium carbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium carbonate. 582.1191 Section 582.1191 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use....

  7. 21 CFR 582.5191 - Calcium carbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium carbonate. 582.5191 Section 582.5191 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use....

  8. 21 CFR 73.1070 - Calcium carbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Calcium carbonate. 73.1070 Section 73.1070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1070 Calcium carbonate. (a) Identity. (1) The color additive calcium carbonate is a fine,...

  9. 21 CFR 73.1070 - Calcium carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Calcium carbonate. 73.1070 Section 73.1070 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1070 Calcium carbonate. (a) Identity. (1) The color additive calcium carbonate is a fine, white, synthetically prepared powder consisting essentially...

  10. 21 CFR 582.1191 - Calcium carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium carbonate. 582.1191 Section 582.1191 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use....

  11. 21 CFR 582.5191 - Calcium carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium carbonate. 582.5191 Section 582.5191 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use....

  12. Seeded Growth Route to Noble Calcium Carbonate Nanocrystal

    PubMed Central

    Islam, Aminul; Teo, Siow Hwa; Rahman, M. Aminur; Taufiq-Yap, Yun Hin

    2015-01-01

    A solution-phase route has been considered as the most promising route to synthesize noble nanostructures. A majority of their synthesis approaches of calcium carbonate (CaCO3) are based on either using fungi or the CO2 bubbling methods. Here, we approached the preparation of nano-precipitated calcium carbonate single crystal from salmacis sphaeroides in the presence of zwitterionic or cationic biosurfactants without external source of CO2. The calcium carbonate crystals were rhombohedron structure and regularly shaped with side dimension ranging from 33–41 nm. The high degree of morphological control of CaCO3 nanocrystals suggested that surfactants are capable of strongly interacting with the CaCO3 surface and control the nucleation and growth direction of calcium carbonate nanocrystals. Finally, the mechanism of formation of nanocrystals in light of proposed routes was also discussed. PMID:26700479

  13. Calcium phosphate scaffold from biogenic calcium carbonate by fast ambient condition reactions

    NASA Astrophysics Data System (ADS)

    Dutta, Abhishek; Fermani, Simona; Arjun Tekalur, Srinivasan; Vanderberg, Abigail; Falini, Giuseppe

    2011-12-01

    Calcium phosphate biogenic materials are biocompatible and promote bioactivity and osteoconductivity, which implies their natural affinity and tendency to bond directly to bones subsequently replacing the host bone after implantation owing to its biodegradability. Calcium hydrogen phosphate dihydrate, CaHPO 4·2H 2O, is known to be a nucleation precursor, in aqueous solutions, for apatitic calcium phosphates and, hence, a potential starting material for bone substitutes. Numerous approaches, via hydrothermal and ambient synthetic routes, have been used to produce calcium phosphate from biogenic calcium carbonate, taking advantage of the peculiar architecture and composition of the latter. In this article, the lamellar region of the cuttlefish bone ( Sepia officinalis) was used as a framework for the organized deposition of calcium phosphate crystals, at ambient conditions via a fast procedure involving an amorphous calcium carbonate intermediate, and ending with a conversion to calcium phosphate and a fixation procedure, thereby resulting in direct conversion of biogenic calcium carbonate into calcium phosphates at ambient conditions from the scale of months to hours.

  14. Calcium carbonate and calcium sulfate in Martian meteorite EETA79001

    NASA Technical Reports Server (NTRS)

    Gooding, J. L.; Wentworth, S. J.

    1987-01-01

    Chips of glassy Lithology C of EETA79001 were studied by scanning electron microscopy and energy dispersive X-ray spectroscopy to determine the mineralogy and petrogenesis of the glass that was shown by others to contain trapped Mars-like gases. Calcium carbonite was identified as massive to acicular crystals for which Ca, C, and O were the major elements. Calcium sulfate was identified as prismatic-acicular crystals with Ca and S as the major elements.

  15. Structural Characteristics of Synthetic Amorphous Calcium Carbonate

    SciTech Connect

    Michel, F. Marc; MacDonald, Jason; Feng, Jian; Phillips, Brian L.; Ehm, Lars; Tarabrella, Cathy; Parise, John B.; Reeder, Richard J.

    2008-08-06

    Amorphous calcium carbonate (ACC) is an important phase involved in calcification by a wide variety of invertebrate organisms and is of technological interest in the development of functional materials. Despite widespread scientific interest in this phase a full characterization of structure is lacking. This is mainly due to its metastability and difficulties in evaluating structure using conventional structure determination methods. Here we present new findings from the application of two techniques, pair distribution function analysis and nuclear magnetic resonance spectroscopy, which provide new insight to structural aspects of synthetic ACC. Several important results have emerged from this study of ACC formed in vitro using two common preparation methods: (1) ACC exhibits no structural coherence over distances > 15 {angstrom} and is truly amorphous; (2) most of the hydrogen in ACC is present as structural H{sub 2}O, about half of which undergoes restricted motion on the millisecond time scale near room temperature; (3) the short- and intermediate-range structure of ACC shows no distinct match to any known structure in the calcium carbonate system; and (4) most of the carbonate in ACC is monodentate making it distinctly different from monohydrocalcite. Although the structure of synthetic ACC is still not fully understood, the results presented provide an important baseline for future experiments evaluating biogenic ACC and samples containing certain additives that may play a role in stabilization of ACC, crystallization kinetics, and final polymorph selection.

  16. Characterization of Medicago truncatula reduced calcium oxalate crystal mutant alleles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium oxalate crystal formation is common in plants. Formation of these crystals has been shown to function in plant defense, calcium regulation, and aluminum tolerance. Although calcium oxalate is common and plays important roles in plant development, our understanding of how these crystals form ...

  17. CALCIUM SULFITE CRYSTAL SIZING STUDIES

    EPA Science Inventory

    The report describes a reliable experimental method that can be used routinely to determine the crystal size distribution function, a measure that is required for a mathematical representation of the nucleation and growth processes involved in the settling, dewatering, and dispos...

  18. Crystallization of calcium sulfate on polymeric surfaces.

    PubMed

    Lin, Nancy H; Shih, Wen-Yi; Lyster, Eric; Cohen, Yoram

    2011-04-15

    Surface crystallization of calcium sulfate dihydrate (gypsum) on a series of polymeric surfaces was studied using a quartz microbalance system. Polyelectrolyte multilayer films (positively and negatively charged surfaces) were formed on the quartz crystal microbalance (QCM) sensors utilizing a layer-by-layer spin-assembly method. The kinetics of gypsum surface crystallization was quantified in terms of the evolution of gypsum mineral scale on the different surfaces. For comparison mineral scaling was also evaluated on silica and polyamide surfaces. For surfaces of the same charge polarity (+/-), the mass density of gypsum scale was lower (PSScrystal growth kinetics. Although aerial scale coverage correlated with the crystal mass density, the crystal number density did not correlate with the extent of surface scaling. Surface crystal size, morphology and crystal number density varied significantly at similar roughness levels, suggesting that surface chemical functionality may also affect surface crystallization. The present results suggest that there is merit in exploring methods for mitigation of mineral scaling on polymeric surfaces via alteration of surface both surface topography and chemistry. In this regards, an expanded systematic study is needed in order to quantitatively clarify the interplay between the above two factors in controlling surface crystallization. PMID:21316694

  19. Influence of calcium oxalate crystal accumulation on the calcium content of seeds from Medicago truncatula

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crystals of calcium oxalate often form in cells adjacent to the vascular bundles in the tissues along the xylem stream. This spatial crystal pattern suggests a role for calcium oxalate formation in regulating calcium transport and partitioning to edible organs such as seeds. To investigate this pote...

  20. Growth of nanofibrous barium carbonate on calcium carbonate seeds

    NASA Astrophysics Data System (ADS)

    Homeijer, Sara J.; Olszta, Matthew J.; Barrett, Richard A.; Gower, Laurie B.

    2008-05-01

    Fibrous barium carbonate (BaCO 3/witherite) crystals 50-100 nm in diameter and several microns in length were grown on calcium carbonate (CaCO 3) seeds at temperatures as low as 4 °C. The BaCO 3 fibers were deposited onto calcite rhombs or CaCO 3 films using the polymer-induced liquid-precursor (PILP) process, which was induced with the sodium salt of polyacrylic acid (PAA). The structure and morphology of the resultant fibers were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), and polarized light microscopy (PLM). Fibers were successfully grown on calcite seeds of various morphologies, with a range of barium concentrations, and PAA molecular weight and concentration. Two categories of fibers were grown: straight and twisted. Both types of fibers displayed single-crystalline SAED diffraction patterns, but after examining high-resolution TEM lattice images, it was revealed that the fibers were in fact made up of nanocrystalline domains. We postulate that these nanocrystalline domains are well aligned due to a singular nucleation event (i.e., each fiber propagates from a single nucleation event on the seed crystal) with the nanocrystalline domains resulting from stresses caused by dehydration during crystallization of the highly hydrated precursor phase. These BaCO 3 fibers grown on calcite substrates further illustrate the robustness and non-specificity of the PILP process.

  1. Ab Initio Studies of Calcium Carbonate Hydration.

    PubMed

    Lopez-Berganza, Josue A; Diao, Yijue; Pamidighantam, Sudhakar; Espinosa-Marzal, Rosa M

    2015-11-25

    Ab initio simulations of large hydrated calcium carbonate clusters are challenging due to the existence of multiple local energy minima. Extensive conformational searches around hydrated calcium carbonate clusters (CaCO3·nH2O for n = 1-18) were performed to find low-energy hydration structures using an efficient combination of Monte Carlo searches, density-functional tight binding (DFTB+) method, and density-functional theory (DFT) at the B3LYP level, or Møller-Plesset perturbation theory at the MP2 level. This multilevel optimization yields several low-energy structures for hydrated calcium carbonate. Structural and energetics analysis of the hydration of these clusters revealed a first hydration shell composed of 12 water molecules. Bond-length and charge densities were also determined for different cluster sizes. The solvation of calcium carbonate in bulk water was investigated by placing the explicitly solvated CaCO3·nH2O clusters in a polarizable continuum model (PCM). The findings of this study provide new insights into the energetics and structure of hydrated calcium carbonate and contribute to the understanding of mechanisms where calcium carbonate formation or dissolution is of relevance. PMID:26505205

  2. Calcium carbonate nucleation in an alkaline lake surface water, Pyramid Lake, Nevada, USA

    USGS Publications Warehouse

    Reddy, Michael M.; Hoch, Anthony

    2012-01-01

    Calcium concentration and calcite supersaturation (Ω) needed for calcium carbonate nucleation and crystal growth in Pyramid Lake (PL) surface water were determined during August of 1997, 2000, and 2001. PL surface water has Ω values of 10-16. Notwithstanding high Ω, calcium carbonate growth did not occur on aragonite single crystals suspended PL surface water for several months. However, calcium solution addition to PL surface-water samples caused reproducible calcium carbonate mineral nucleation and crystal growth. Mean PL surface-water calcium concentration at nucleation was 2.33 mM (n = 10), a value about nine times higher than the ambient PL surface-water calcium concentration (0.26 mM); mean Ω at nucleation (109 with a standard deviation of 8) is about eight times the PL surface-water Ω. Calcium concentration and Ω regulated the calcium carbonate formation in PL nucleation experiments and surface water. Unfiltered samples nucleated at lower Ω than filtered samples. Calcium concentration and Ω at nucleation for experiments in the presence of added particles were within one standard deviation of the mean for all samples. Calcium carbonate formation rates followed a simple rate expression of the form, rate (mM/min) = A (Ω) + B. The best fit rate equation "Rate (Δ mM/Δ min) = -0.0026 Ω + 0.0175 (r = 0.904, n = 10)" was statistically significant at greater than the 0.01 confidence level and gives, after rearrangement, Ω at zero rate of 6.7. Nucleation in PL surface water and morphology of calcium carbonate particles formed in PL nucleation experiments and in PL surface-water samples suggest crystal growth inhibition by multiple substances present in PL surface water mediates PL calcium carbonate formation, but there is insufficient information to determine the chemical nature of all inhibitors.

  3. Calcium Carbonate Nucleation in an Alkaline Lake Surface Water, Pyramid Lake, Nevada, USA

    USGS Publications Warehouse

    Reddy, M.M.; Hoch, A.

    2012-01-01

    Calcium concentration and calcite supersaturation (??) needed for calcium carbonate nucleation and crystal growth in Pyramid Lake (PL) surface water were determined during August of 1997, 2000, and 2001. PL surface water has ?? values of 10-16. Notwithstanding high ??, calcium carbonate growth did not occur on aragonite single crystals suspended PL surface water for several months. However, calcium solution addition to PL surface-water samples caused reproducible calcium carbonate mineral nucleation and crystal growth. Mean PL surface-water calcium concentration at nucleation was 2.33 mM (n = 10), a value about nine times higher than the ambient PL surface-water calcium concentration (0.26 mM); mean ?? at nucleation (109 with a standard deviation of 8) is about eight times the PL surface-water ??. Calcium concentration and ?? regulated the calcium carbonate formation in PL nucleation experiments and surface water. Unfiltered samples nucleated at lower ?? than filtered samples. Calcium concentration and ?? at nucleation for experiments in the presence of added particles were within one standard deviation of the mean for all samples. Calcium carbonate formation rates followed a simple rate expression of the form, rate (mM/min) = A (??) + B. The best fit rate equation "Rate (?? mM/?? min) = -0.0026 ?? + 0.0175 (r = 0.904, n = 10)" was statistically significant at greater than the 0.01 confidence level and gives, after rearrangement, ?? at zero rate of 6.7. Nucleation in PL surface water and morphology of calcium carbonate particles formed in PL nucleation experiments and in PL surface-water samples suggest crystal growth inhibition by multiple substances present in PL surface water mediates PL calcium carbonate formation, but there is insufficient information to determine the chemical nature of all inhibitors. ?? 2011 U.S. Government.

  4. Nucleation of calcium carbonate on bacterial nanoglobules

    NASA Astrophysics Data System (ADS)

    Aloisi, G.; Gloter, A.; Krüger, M.; Wallmann, K.; Guyot, F.; Zuddas, P.

    2006-12-01

    Nucleation of calcium carbonate on microbial cell material may have been the dominant mode of microbial carbonate formation during most of Earth's history. Current knowledge predicts that nucleation takes place on the cell surface or on extracellular polymeric substances. However, the initial nucleation steps have not been described in detail and the process remains elusive. Here we describe the bacterial nucleation of calcium carbonate at the nanometer scale. In our precipitation experiment with sulfate reducing bacteria (SRB), the bulk of calcium carbonate precipitates on hundreds of individual globules 60 200 nm in diameter. Globules originate from the SRB cell surface but calcify significantly only when released to the culture medium. Similar globules have been observed, albeit at a much larger scale, in other bacterial precipitation experiments and in many natural microbial carbonates, suggesting that the process we describe could be an important step in microbial calcification.

  5. Precipitation of calcium carbonate from a calcium acetate and ammonium carbamate batch system

    NASA Astrophysics Data System (ADS)

    Prah, J.; Maček, J.; Dražič, G.

    2011-06-01

    In this paper, we report a novel approach for preparing precipitated calcium carbonate using solutions of ammonium carbamate and calcium acetate as the sources of calcium and carbon dioxide, respectively. Two different concentrations of the starting solutions at three different temperatures (15, 25 and 50 °C) were used for the reaction. The influence of temperature and concentration on the polymorphism and the resulting morphology of calcium carbonate are discussed. The most important parameter for controlling a particular crystal structure and precipitate morphology were the concentrations of the initial solutions. When initial solutions with lower concentrations were used, the crystal form of the precipitate changed with time. Regardless the different polymorphism at different temperatures, after one day only the calcite form was detected in all samples, regardless of at which temperature the samples were prepared. At higher concentrations, pure vaterite or a mixture of vaterite and calcite were present at the beginning of the experiment. After one day, pure vaterite was found in the samples that were prepared at 15 and 25 °C. If calcium carbonate precipitated at 50 °C, the XRD results showed a mixture of calcite and vaterite regardless of the time at which the sample was taken. The morphology of calcium carbonate particles prepared at various conditions changed from calcite cubes to spherical particles of vaterite and aragonite needles. When a low starting concentration was used, the morphology at the initial stage was strongly affected by the temperature at which the experiments were conducted. However, after one day only, cubes were present in all cases at low initial concentrations. In contrast, at high concentrations spherical particles precipitated at all three temperatures at the beginning of the reaction. Spherical particles were made up from smaller particles. Over time, the size of the particles was diminishing due to their disintegration into primary particles; after one day, particles of 30-50 nm were obtained. The lower the temperature was during the experiment, the faster the larger particles fell apart. To our knowledge, this behavior has thus far not yet been reported. Moreover, for the first time ammonium carbamate and calcium acetate are used together to prepare calcium carbonate.

  6. Role of magnesium in the growth of calcium oxalate monohydrate and calcium oxalate dihydrate crystals.

    PubMed

    Oka, T; Yoshioka, T; Koide, T; Takaha, M; Sonoda, T

    1987-01-01

    Since about 85% of synthesized calcium oxalate dihydrate (COD) crystals proved not to have changed into calcium oxalate monohydrate (COM) crystals at 30 min of incubation time at 37 degrees C when our evaluation method of the COD-to-COM ratio was being used, we made a comparative study of the inhibitory effects of magnesium, one of the well-known inhibitors of calcium oxalate stone formation, on the growth of seeded COM and COD crystals. The results demonstrated that magnesium in identical concentrations might have stronger inhibitory effects on the growth of COM crystals than on that of COD crystals and suggested that these different effects of magnesium on the growth of COM and COD crystals might arise not only from the difference between the specific surface areas of COM and COD crystals, but also from that between the direct inhibitory effects of magnesium on these two types of calcium oxalate crystal growth. PMID:3617248

  7. [Chondrocalcinosis. Clinical impact of intra-articular calcium phosphate crystals].

    PubMed

    Fuerst, M

    2014-06-01

    Calcium pyrophosphate dihydrate (CPPD) crystals are known to cause acute attacks of pseudogout in joints but crystal deposition has also been reported to be associated with osteoarthritis (OA). Aside from CPPD crystals, basic calcium phosphates (BCPs), consisting of carbonate-substituted hydroxyapatite (HA), tricalcium phosphate and octacalcium phosphate, have been found in synovial fluid, synovium and cartilage of patients with OA. Although CPPD crystals have been found to be associated with OA and are an important factor in joint disease, this has also recently been associated with a genetic defect. However, according to the most recent findings, the association of BCP crystals, such as apatite with OA is much stronger, as their presence significantly correlates with the severity of cartilage degeneration. Identification of BCP crystals in OA joints remains problematic due to a lack of simple and reliable methods of detection. The clinical and pathological relevance of cartilage mineralization in patients with OA is not completely understood. It is well established that mineralization of articular cartilage is often found close to hypertrophic chondrocytes. A significant correlation between the expression of type X collagen, a marker for chondrocyte hypertrophy and cartilage mineralization was observed. In the process of endochondral ossification, the link between hypertrophy and matrix mineralization is particularly well described. Hypertrophic chondrocytes in OA cartilage and at the growth line share certain features, not only hypertrophy but also a capability to mineralize the matrix. Recent data indicate that chondrocyte hypertrophy is a key factor in articular cartilage mineralization strongly linked to OA and does not characterize a specific subset of OA patients, which has important consequences for therapeutic strategies for OA. PMID:24924727

  8. CALCIUM OXALATE CRYSTAL MORPHOLOGY MUTANTS FROM MEDICAGO TRUNCATULA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants accumulate crystals of calcium oxalate in a variety of shapes and sizes. Each plant forms a crystal or set of crystals with a specific morphology. The mechanism(s) through which a plant defines the morphology of its crystals remains unknown. To gain insight into the mechanisms regulating c...

  9. Calcination of calcium carbonate and blend therefor

    DOEpatents

    Mallow, William A.; Dziuk, Jr., Jerome J.

    1989-01-01

    A method for calcination of a calcium carbonate material comprising heating the calcium carbonate material to a temperature and for a time sufficient to calcine the material to the degree desired while in the presence of a catalyst; said catalyst comprising at least one fused salt having the formula MCO.sub.3.CaCO.sub.3.CaO.H.sub.2 O.sub.x, wherein M is an alkali metal and x is 0 to 1 and formed by fusing MCO.sub.3 and CaCO.sub.3 in a molar ratio of about 1:2 to 2:1, and a blend adapted to be heated to CaO comprising a calcium carbonate material and at least one such fused salt.

  10. Diagnosis and clinical manifestations of calcium pyrophosphate and basic calcium phosphate crystal deposition diseases.

    PubMed

    Ea, Hang-Korng; Lioté, Frédéric

    2014-05-01

    Basic calcium phosphate and pyrophosphate calcium crystals are the 2 main calcium-containing crystals that can deposit in all skeletal tissues. These calcium crystals give rise to numerous manifestations, including acute inflammatory attacks that can mimic alarming and threatening differential diagnoses, osteoarthritis-like lesions, destructive arthropathies, and calcific tendinitis. Awareness of uncommon localizations and manifestations such as intraspinal deposition (eg, crowned dens syndrome, tendinitis of longus colli muscle, massive cervical myelopathy compression) prevents inappropriate procedures and cares. Coupling plain radiography, ultrasonography, computed tomography, and synovial fluid analysis allow accurate diagnosis by directly or indirectly identifying the GRAAL of microcrystal-related symptoms. PMID:24703344

  11. Calcium Carbonate Precipitation by Ureolytic Subsurface Bacteria

    SciTech Connect

    Fujita, Y.; Colwell, Frederick Scott; Smith, Robert William; Ferris, F. G.; Lawson, R. L.

    2000-10-01

    Coprecipitation in carbonate minerals offers a means of slowing the transport of divalent radionuclides and contaminant metals (e.g.,90Sr2+, UO2+, Co2+) in the subsurface. It may be possible to accelerate this process by stimulating the native microbial community to generate chemical conditions favoring carbonate precipitation. In a preliminary evaluation of this approach, we investigated the ability of ureolytic subsurface bacteria to produce alkaline conditions conducive to calcium carbonate precipitation. Groundwater samples from the Eastern Snake River Plain (ESRP) aquifer in Idaho were screened for urea-hydrolyzing microorganisms; three isolates were selected for further evaluation. Analysis of 16S rRNA gene sequences indicated that two of the ESRP isolates were of the genus Pseudomonas , and the other was a Variovorax sp. The specific urease activities of the ESRP isolates appeared to be similar to each other but less than that of Bacillus pasteurii , a known urease-positive organism. However, calcium carbonate was rapidly precipitated in all cultures that were supplied with urea and calcium, and X-ray diffraction analyses indicated that calcite was always the predominant carbonate polymorph produced. The correspondence between measured calcium concentrations and equilibrium predictions suggested that the rate of calcite precipitation was directly linked to the rate of urea hydrolysis. These results are promising with respect to the potential utility of this approach for in situ remediation and indicate that further evaluation of this approach under conditions more closely simulating environmental conditions is warranted.

  12. Strain-Specific Ureolytic Microbial Calcium Carbonate Precipitation

    PubMed Central

    Hammes, Frederik; Boon, Nico; de Villiers, Johan; Verstraete, Willy; Siciliano, Steven Douglas

    2003-01-01

    During a study of ureolytic microbial calcium carbonate (CaCO3) precipitation by bacterial isolates collected from different environmental samples, morphological differences were observed in the large CaCO3 crystal aggregates precipitated within bacterial colonies grown on agar. Based on these differences, 12 isolates were selected for further study. We hypothesized that the striking differences in crystal morphology were the result of different microbial species or, alternatively, differences in the functional attributes of the isolates selected. Sequencing of 16S rRNA genes showed that all of the isolates were phylogenetically closely related to the Bacillus sphaericus group. Urease gene diversity among the isolates was examined by using a novel application of PCR-denaturing gradient gel electrophoresis (DGGE). This approach revealed significant differences between the isolates. Moreover, for several isolates, multiple bands appeared on the DGGE gels, suggesting the apparent presence of different urease genes in these isolates. The substrate affinities (Km) and maximum hydrolysis rates (Vmax) of crude enzyme extracts differed considerably for the different strains. For certain isolates, the urease activity increased up to 10-fold in the presence of 30 mM calcium, and apparently this contributed to the characteristic crystal formation by these isolates. We show that strain-specific calcification occurred during ureolytic microbial carbonate precipitation. The specificity was mainly due to differences in urease expression and the response to calcium. PMID:12902285

  13. 21 CFR 184.1191 - Calcium carbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium carbonate. 184.1191 Section 184.1191 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS...

  14. 21 CFR 184.1191 - Calcium carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium carbonate. 184.1191 Section 184.1191 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS...

  15. Effects of functional groups and soluble matrices in fish otolith on calcium carbonate mineralization.

    PubMed

    Ren, Dongni; Li, Zhuo; Gao, Yonghua; Feng, Qingling

    2010-10-01

    Calcium carbonate mineralization is significantly influenced by organic matrices in vivo. The effect mainly relies on functional groups in proteins. In order to study the influence of functional groups on calcium carbonate mineralization, -OH, -NH2 and -COOH groups were grafted onto single crystal silicon chips, and such modified chips were used as substrates in in vitro mineralization experiments. An x-ray photoelectron spectroscopy (XPS) test was conducted to examine the grafting efficiency, and the three groups were successfully grafted. Calcium carbonate mineralization on a modified silicon substrate was examined by a scanning electron microscope (SEM) and x-ray diffraction (XRD), and the results showed that the effects of -OH, -NH2 and -COOH groups were quite different. Furthermore, a water-soluble protein matrix (WSM) and an acid-soluble protein matrix (ASM) extracted from fish otolith were adsorbed onto the -COOH-modified silicon substrate, and the effects of the protein matrices on calcium carbonate mineralization were studied. The results showed that both WSM and ASM of lapillus could mediate aragonite crystallization, but the size and morphology of the formed crystals were different. The WSM and ASM of asteriscus adsorbed on the silicon substrate had little effect on calcium carbonate mineralization; almost all the crystals were calcite, while both asteriscus WSM and ASM in solution could mediate vaterite crystals, and the morphologies of vaterite crystal aggregates were different. PMID:20844320

  16. Epitaxial Relationships between Calcium Carbonate and Inorganic Substrates

    PubMed Central

    Yang, Taewook; Jho, Jae Young; Kim, Il Won

    2014-01-01

    The polymorph-selective crystallization of calcium carbonate has been studied in terms of epitaxial relationship between the inorganic substrates and the aragonite/calcite polymorphs with implication in bioinspired mineralization. EpiCalc software was employed to assess the previously published experimental results on two different groups of inorganic substrates: aragonitic carbonate crystals (SrCO3, PbCO3, and BaCO3) and a hexagonal crystal family (α-Al2O3, α-SiO2, and LiNbO3). The maximum size of the overlayer (aragonite or calcite) was calculated for each substrate based on a threshold value of the dimensionless potential to estimate the relative nucleation preference of the polymorphs of calcium carbonate. The results were in good agreement with previous experimental observations, although stereochemical effects between the overlayer and substrate should be separately considered when existed. In assessing the polymorph-selective nucleation, the current method appeared to provide a better tool than the oversimplified mismatch parameters without invoking time-consuming molecular simulation\\. PMID:25226539

  17. The expanded amelogenin polyproline region preferentially binds to apatite versus carbonate and promotes apatite crystal elongation

    PubMed Central

    Gopinathan, Gokul; Jin, Tianquan; Liu, Min; Li, Steve; Atsawasuwan, Phimon; Galang, Maria-Therese; Allen, Michael; Luan, Xianghong; Diekwisch, Thomas G. H.

    2014-01-01

    The transition from invertebrate calcium carbonate-based calcite and aragonite exo- and endoskeletons to the calcium phosphate-based vertebrate backbones and jaws composed of microscopic hydroxyapatite crystals is one of the great revolutions in the evolution of terrestrial organisms. To identify potential factors that might have played a role in such a transition, three key domains of the vertebrate tooth enamel protein amelogenin were probed for calcium mineral/protein interactions and their ability to promote calcium phosphate and calcium carbonate crystal growth. Under calcium phosphate crystal growth conditions, only the carboxy-terminus augmented polyproline repeat peptide, but not the N-terminal peptide nor the polyproline repeat peptide alone, promoted the formation of thin and parallel crystallites resembling those of bone and initial enamel. In contrast, under calcium carbonate crystal growth conditions, all three amelogenin-derived polypeptides caused calcium carbonate to form fused crystalline conglomerates. When examined for long-term crystal growth, polyproline repeat peptides of increasing length promoted the growth of shorter calcium carbonate crystals with broader basis, contrary to the positive correlation between polyproline repeat element length and apatite mineralization published earlier. To determine whether the positive correlation between polyproline repeat element length and apatite crystal growth versus the inverse correlation between polyproline repeat length and calcium carbonate crystal growth were related to the binding affinity of the polyproline domain to either apatite or carbonate, a parallel series of calcium carbonate and calcium phosphate/apatite protein binding studies was conducted. These studies demonstrated a remarkable binding affinity between the augmented amelogenin polyproline repeat region and calcium phosphates, and almost no binding to calcium carbonates. In contrast, the amelogenin N-terminus bound to both carbonate and apatite, but preferentially to calcium carbonate. Together, these studies highlight the specific binding affinity of the augmented amelogenin polyproline repeat region to calcium phosphates versus calcium carbonate, and its unique role in the growth of thin apatite crystals as they occur in vertebrate biominerals. Our data suggest that the rise of apatite-based biominerals in vertebrates might have been facilitated by a rapid evolution of specialized polyproline repeat proteins flanked by a charged domain, resulting in apatite crystals with reduced width, increased length, and tailored biomechanical properties. PMID:25426079

  18. Lysozyme mediated calcium carbonate mineralization.

    PubMed

    Wang, Xiaoqiang; Sun, Hailing; Xia, Yongqing; Chen, Cuixia; Xu, Hai; Shan, Honghong; Lu, Jian R

    2009-04-01

    Lysozyme, a major component of egg white proteins, has been speculated to participate in the calcification of avian eggshells. However, its detailed role during the eggshell formation is not well understood. In this work, the influence of lysozyme on the precipitation of CaCO(3) has been investigated using a combined study of FTIR, XRD, and SEM. The precipitation was produced from (NH(4))(2)CO(3) vapor diffusion into CaCl(2) aqueous solution using a specially built chamber. In the absence of lysozyme, hexagonal platelets of vaterite and their spherical aggregates dominated the precipitates during the first 3-12 h crystallization period studied, with the (001) crystal face well expressed in the hexagonal direction. In contrast, calcite was favored to precipitate in the presence of lysozyme during the same period and the effect was found to be proportional to lysozyme concentration. Furthermore, the (110) face of calcite was expressed in addition to the common (104) face, and the morphological modification was also lysozyme concentration dependent. We attributed these phenomena to the selective adsorption of ammonium ions and lysozyme onto different crystal faces. Our findings have clearly revealed the concentration and face dependent role of lysozyme in CaCO(3) precipitation. This, together with the abundance of lysozyme in the uterine fluid, implies its direct contribution to the hierarchical structures of calcite during the initial stage of eggshell formation. PMID:19167007

  19. Studies on calcium oxalate monohydrate crystallization: influence of inhibitors.

    PubMed

    Grases, F; Kroupa, M; Costa-Bauzá, A

    1994-01-01

    A simple model to study calcium oxalate monohydrate (COM) crystallization on different substrates is presented and the action of different potential inhibitors is evaluated and discussed. COM heterogeneous nucleation was assayed on solid surfaces as calcium phosphate, mixtures of mucin with calcium phosphate, and wax. In the presence of a non-protected non-renewed solid surface in contact with normal urine, COM crystal formation could be detected at short intervals (3 h). The most active heterogeneous nucleation capacity corresponded to calcium phosphate. In the presence of 10% mucin, owing to the renewal of the surface layer no COM crystal were detected on the pellet's surface. The study of citrate and pentosan polysulphate (a semisynthetic polysaccharide) on COM heterogeneous nucleation demonstrated some important inhibitory effects when concentration increased and time decreased. Maximum effects were selectively manifested on calcium phosphate surfaces. Only phytic acid at adequate concentration exhibited a total inhibitory capacity of COM formation, even during longer intervals (15 h). PMID:7521089

  20. Calcium oxalate crystal growth in human urinary stones

    SciTech Connect

    Kim, K.M.; Johnson, F.B.

    1981-01-01

    Calcium oxalate stones are very common and increasing. Crystal growth is no less important than the crystal nucleation in the pathogenesis of stone formation. The crystal growth was studied in human calcium oxalate stones by a combined electron microscopy and x-ray diffraction. The main mode of weddellite growth was interpenetration twinning of tetrahedral bipyramids. Bipyramids may form as initial crystal seeds, develop from anhedral crystals (crystals which lack flat symmetric faces) of spherular or mulberry shape, develop on the surface of preformed bipyramids by spiral dislocation mechanisms, or develop on whewellite crystal by heterogeneous nucleation and epitaxy. Heterogeneous nucleations of whewellite on weddellite, and calcium apatite on whewellite were also observed. Whewellite grew mainly by parallel twinning. Interpenetration twinning was exceptional. Transformation of anhedral to euhedral (completely bounded by flat faces that are set ar fixed angles to one another) whewellite occurred by parallel fissurations followed by brick wall like stacking of the crystals, while euhedral transformation of weddellite occurred by protrusion of bipyramids frm anhedral crystal surface. Occasionally, an evidence of crystal dissolution was noted. Although an aggregation of crystals is believed to play a pivotal role in stone nidus formation, growth in size of the formed crystals, and twinning and epitactic crystal intergrowth apparently play a significant role in the obstructive urinary stone formation.

  1. Crystallization of calcium phosphate in polyacrylamide hydrogels containing phosphate ions

    NASA Astrophysics Data System (ADS)

    Yokoi, Taishi; Kawashita, Masakazu; Kikuta, Koichi; Ohtsuki, Chikara

    2010-08-01

    Calcium phosphate crystals were formed in polyacrylamide (PAAm) hydrogels containing phosphate ions by diffusion of calcium ions from calcium nitrate (Ca(NO 3) 2) solutions covering the gels. Changes in crystalline phases and crystal morphology of calcium phosphate, and in ion concentrations of the Ca(NO 3) 2 solutions were investigated as a function of reaction time. Single or two coexisting crystalline phases of calcium phosphate, hydroxyapatite (HAp), HAp/dicalcium phosphate dihydrate (DCPD) or octacalcium phosphate (OCP)/DCPD were formed in the gels. HAp crystals are formed near the surface of the gels. The dense HAp layer and HAp/DCPD layer prevented diffusion of calcium ions from the Ca(NO 3) 2 solution, thus formation of calcium phosphate in the gel phase was inhibited. Formation of DCPD was observed to follow the formation of OCP or HAp. The size of the OCP crystals gradually increased with reaction time, while changes in size of HAp crystals were not observed. The reaction time required for DCPD formation depended on the degree of supersaturation with respect to DCPD in the systems. DCPD formed within 1 day under high supersaturation conditions, whereas it formed at 10 days in low supersaturation conditions.

  2. Nanostructured calcium carbonate particles as fluorophore carriers

    NASA Astrophysics Data System (ADS)

    Vantsyan, M. A.; Kochetkov, A. A.; Marchenko, I. V.; Kiryukhin, Yu. I.; Nabatov, B. V.; Artemov, V. V.; Bukreeva, T. V.

    2015-11-01

    The immobilization of dyes (rhodamine 6G, photosens, and photoditazine) into porous spherical calcium carbonate microparticles (vaterite modification) has been performed, and the desorption of dyes in water and sodium chloride solution of physiological concentration has been investigated. Dyes were immobilized in two ways: (i) by the adsorption of fluorophore onto previously prepared calcium carbonate particles and (ii) by adding a material to the reaction mixture when forming particles. It is found that the highest degree of particle loading (12.4 wt %) is obtained when using the second way for photoditazine. Desorption of dyes occurs mainly because of the recrystallization of particles; however, the carrier can retain photodynamic preparations for a long time.

  3. In vitro Evaluation of Terminalia arjuna on Calcium Phosphate and Calcium Oxalate Crystallization.

    PubMed

    Chaudhary, A; Singla, S K; Tandon, C

    2010-05-01

    Urinary stones are one of the oldest and the most common afflictions in humans. This disease has tormented humans since the earliest records of civilization. Ten percent of men and 3 % of women have a stone during their adult lives. Calcium containing stones are the most common comprising about 75 % of all urinary calculi, which may be in the form of pure calcium oxalate (50 %) or calcium phosphate (5 %) or a mixture of both (45 %). A number of plants have been mentioned in the Indian ayurvedic system, which plays a vital role in the inhibition of kidney stones. In the present study, the inhibitory potency of crude extracts or fractions of successive solvent extractions of Terminalia arjuna bark was evaluated on various stages of formation of calcium phosphate and on the growth of calcium oxalate monohydrate crystals in vitro. Results obtained indicated that Terminalia arjuna bark has the potential to inhibit the formation of both calcium phosphate and calcium oxalate crystals in vitro. Butanol fraction of Terminalia arjuna extract was the most effective in inhibiting formation of calcium phosphate and calcium oxalate crystals in vitro. PMID:21188043

  4. In vitro Evaluation of Terminalia arjuna on Calcium Phosphate and Calcium Oxalate Crystallization

    PubMed Central

    Chaudhary, A.; Singla, S. K.; Tandon, C.

    2010-01-01

    Urinary stones are one of the oldest and the most common afflictions in humans. This disease has tormented humans since the earliest records of civilization. Ten percent of men and 3 % of women have a stone during their adult lives. Calcium containing stones are the most common comprising about 75 % of all urinary calculi, which may be in the form of pure calcium oxalate (50 %) or calcium phosphate (5 %) or a mixture of both (45 %). A number of plants have been mentioned in the Indian ayurvedic system, which plays a vital role in the inhibition of kidney stones. In the present study, the inhibitory potency of crude extracts or fractions of successive solvent extractions of Terminalia arjuna bark was evaluated on various stages of formation of calcium phosphate and on the growth of calcium oxalate monohydrate crystals in vitro. Results obtained indicated that Terminalia arjuna bark has the potential to inhibit the formation of both calcium phosphate and calcium oxalate crystals in vitro. Butanol fraction of Terminalia arjuna extract was the most effective in inhibiting formation of calcium phosphate and calcium oxalate crystals in vitro. PMID:21188043

  5. The roles of water and polyelectrolytes in the phase transformation of amorphous calcium carbonate

    NASA Astrophysics Data System (ADS)

    Xu, Xu-Rong; Cai, An-Hua; Liu, Rui; Pan, Hai-Hua; Tang, Rui-Kang; Cho, Kilwon

    2008-08-01

    Amorphous calcium carbonate (ACC) is a metastable phase of calcium carbonates and it is a precursor during the biomineralization of calcium carbonate in nature. Different ACC in the absence and presence of the additives of poly(sodium 4-styrene sulfonate) and poly(acrylic acid) were prepared and their transformation processes under controls of water were investigated. It was found that ACC powders generally contained about 15% water. Two different transformations via thermal and solution pathways were studied in the present work. We found that water was released from the ACC samples when the temperature was above 100 °C and the calcium carbonate began to crystallize at around 270-400 °C, which resulted the calcite crystals. The involvement of the polymer additives could inhibit this crystallization process and the crystallization temperature shifted to the higher values. During the solution transformation, the evolution steps of the ACC in different water-ethanol solution were monitored by FT-IR. In this case, water could accelerate the transformation and crystallization of ACC. An increasing of the water amount in the mixed solvents always led to the promotion of the transformation kinetics. Interestingly, the other metastable crystal phases of calcium carbonates, vaterite and aragonite, were readily to be induced during the solution transformation of ACC when the low water amounts were applied. However, water could still make them turned into the stable calcite phase with the experimental time prolonged. Since the additives influenced the transformation of ACC and inhibited the transformation of metastable crystal phase, they could be used to stabilize different phases of calcium carbonates in the solutions. The current experimental results confirmed that the controls of water amount and additives played important roles in the transformation of ACC.

  6. Dark matter search with calcium fluoride crystals

    NASA Astrophysics Data System (ADS)

    Bacci, C.; Belli, P.; Bernabei, R.; Dai, C. J.; Di Nicolantonio, W.; Ding, L. K.; Gaillard-Lecanu, E.; Gerbier, G.; Giraud-Héraud, Y.; Kuang, H. H.; Incicchitti, A.; Mallet, J.; Mosca, L.; Prosperi, D.; Tao, C.; Chambon, B.; Chazal, V.; De Jésus, M.; Drain, D.; Messous, Y.; Pastor, C.; BPRS Collaboration

    1994-05-01

    A first result on dark matter direct search with calcium fluoride scintillators is presented. The low and high energy spectra are discussed together with the measurements of the fluorine and calcium recoil scintillation efficiencies. Exclusion plots for axial vector coupled WIMPs are derived and compared with previous measurements with NaI and Ge detectors.

  7. Modulation of calcium oxalate monohydrate crystallization kinetics in vitro.

    PubMed

    Kok, D J; Papapoulos, S E; Blomen, L J; Bijvoet, O L

    1988-09-01

    The effects of several low and high molecular weight (mol wt) compounds on the kinetics of calcium oxalate crystallization were examined using a seeded crystal growth method in which the solubility, the growth and the agglomeration of calcium oxalate crystals were measured as three separate and system-independent parameters. Citrate, magnesium, phosphate, pyrophosphate, chondroitinsulphate, pentosanpolysulphate and heparin were tested in a wide range of concentrations. The solubility of calcium oxalate crystals was increased only by citrate and magnesium. The crystal growth was inhibited by all compounds tested, but those with the high mol wt had the greatest effect at low concentrations. In contrast, inhibition of crystal agglomeration was achieved only by the low mol wt compounds; citrate was found to be the most potent inhibitor at concentrations likely to be present in normal urine. The high mol wt substances, despite their potent crystal growth inhibitory activity, had no effect on agglomeration. The results show that growth and agglomeration of calcium oxalate crystals are separate processes which are differently modulated by various compounds. They further provide a possible explanation for the pathogenetic role of citrate in hypocitraturic renal stone disease. PMID:2459439

  8. CHARACTERIZATION OF ARTICULAR CALCIUM-CONTAINING CRYSTALS BY SYNCHROTRON FTIR

    PubMed Central

    Rosenthal, Ann K.; Mattson, Eric; Gohr, Claudia M.; Hirschmugl, Carol J.

    2008-01-01

    Objective Sixty percent of synovial fluids from patients with severe osteoarthritis contain calcium pyrophosphate dihydrate (CPPD) or basic calcium phosphate (BCP) crystals. These bioactive crystals can be particularly difficult to accurately identify in complex biologic systems, such as in vitro models of crystal formation. We sought to determine if synchrotron FTIR (sFTIR) could be used to identify and characterize calcium-containing crystals in mineralization models. Methods CPPD and BCP crystals from porcine models of crystal formation were examined with an FTIR Microscope attached to a synchrotron light source. As a comparison, crystals from human synovial fluids were also examined. The sFTIR spectra generated were compared with known spectra of multiple forms of BCP and CPPD crystals, as well as spectra generated by synthetic CPPD and BCP crystals and cartilage proteoglycans, alone and in mixtures. Results sFTIR readily identified CPPD and BCP crystals in porcine models as well as in fresh synovial fluids. Brushite was also present in human and porcine samples, and whitlockite was seen in some porcine samples. Mixtures of minerals were commonly found in a single crystal aggregate in both human and porcine samples. In spectra from many CPPD crystals, the peak at the 1134 cm?1 found on the standard spectrum for CPPD was diminished. Addition of spectra from cartilage proteoglycans to those of synthetic CPPD crystals dampened the peak at this frequency region, much as this peak was diminished in biologically-derived CPPD crystals. Conclusion sFTIR analysis allows for accurate identification of CPPD and BCP crystals generated in vitro and will a useful research tool to study articular crystals. PMID:18472285

  9. Bridgman growth of large-aperture yttrium calcium oxyborate crystal

    SciTech Connect

    Wu, Anhua; Jiang, Linwen; Qian, Guoxing; Zheng, Yanqing; Xu, Jun; Shi, Erwei

    2012-09-15

    Highlights: ► YCOB is a novel non-linear optical crystal possessing good thermal, mechanical and nonlinear optical properties. ► Large size crystal growth is key technology question for YCOB crystal. ► YCOB crystals 3 in. in diameter were grown with modified vertical Bridgman method. ► It is a more effective growth method to obtain large size and high quality YCOB crystal. -- Abstract: Large-aperture yttrium calcium oxyborate YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB) crystals with 3 in. in diameter were grown with modified vertical Bridgman method, and the large crystal plate (63 mm × 68 mm × 20 mm) was harvested for high-average power frequency conversion system. The crack, facet growth and spiral growth can be effectively controlled in the as-grown crystal, and Bridgman method displays more effective in obtain large size and high quality YCOB crystal plate than Czochralski technique.

  10. Two competitive nucleation mechanisms of calcium carbonate biomineralization in response to surface functionality in low calcium ion concentration solution

    PubMed Central

    Deng, Hua; Wang, Shuo; Wang, Xiumei; Du, Chang; Shen, Xingcan; Wang, Yingjun; Cui, Fuzhai

    2015-01-01

    Four self-assembled monolayer surfaces terminated with –COOH, –OH, –NH2 and –CH3 functional groups are used to direct the biomineralization processes of calcium carbonate (CaCO3) in low Ca2+ concentration, and the mechanism of nucleation and initial crystallization within 12 h was further explored. On −COOH surface, nucleation occurs mainly via ion aggregation mechanism while prenucleation ions clusters may be also involved. On −OH and −NH2 surfaces, however, nucleation forms via calcium carbonate clusters, which aggregate in solution and then are adsorbed onto surfaces following with nucleation of amorphous calcium carbonate (ACC). Furthermore, strongly negative-charged −COOH surface facilitates the direct formation of calcites, and the −OH and −NH2 surfaces determine the formation of vaterites with preferred crystalline orientations. Neither ACC nor crystalline CaCO3 is observed on −CH3 surface. Our findings present a valuable model to understand the CaCO3 biomineralization pathway in natural system where functional groups composition plays a determining role during calcium carbonate crystallization. PMID:26814639

  11. Aluminum Citrate Prevents Renal Injury from Calcium Oxalate Crystal Deposition

    PubMed Central

    Besenhofer, Lauren M.; Cain, Marie C.; Dunning, Cody

    2012-01-01

    Calcium oxalate monohydrate crystals are responsible for the kidney injury associated with exposure to ethylene glycol or severe hyperoxaluria. Current treatment strategies target the formation of calcium oxalate but not its interaction with kidney tissue. Because aluminum citrate blocks calcium oxalate binding and toxicity in human kidney cells, it may provide a different therapeutic approach to calcium oxalate-induced injury. Here, we tested the effects of aluminum citrate and sodium citrate in a Wistar rat model of acute high-dose ethylene glycol exposure. Aluminum citrate, but not sodium citrate, attenuated increases in urea nitrogen, creatinine, and the ratio of kidney to body weight in ethylene glycol–treated rats. Compared with ethylene glycol alone, the addition of aluminum citrate significantly increased the urinary excretion of both crystalline calcium and crystalline oxalate and decreased the deposition of crystals in renal tissue. In vitro, aluminum citrate interacted directly with oxalate crystals to inhibit their uptake by proximal tubule cells. These results suggest that treating with aluminum citrate attenuates renal injury in rats with severe ethylene glycol toxicity, apparently by inhibiting calcium oxalate’s interaction with, and retention by, the kidney epithelium. PMID:23138489

  12. Preparation of high bulk density anhydrous sodium carbonate crystals

    SciTech Connect

    Poncha, R.P.; Sorg, R.E.

    1988-04-19

    A process for preparing pure anhydrous sodium carbonate crystal from impure purge liquor obtained from calcined trona via the monohydrate process and containing silica, organic material and sulfate impurities, is described comprising the steps of (1) treating the purge liquor with magnesium oxide and by the addition of an effective amount and up to about 2 percent sodium bicarbonate; (2) separating the insoluble reaction product from the mother liquor; (3) adding soluble calcium and magnesium salts to the separated mother liquor; (4) evaporating the treated resulting solution from step (3) to yield sodium carbonate monohydrate crystals; (5) separating the formed crystals from the mother liquor; and (6) heating the crystals thus derived to a temperature of at least about 140/sup 0/C. to convert the crystals to a dense sodium carbonate product.

  13. Calcium and calcium isotope changes during carbon cycle perturbations at the end-Permian

    NASA Astrophysics Data System (ADS)

    Komar, N.; Zeebe, R. E.

    2016-01-01

    Negative carbon and calcium isotope excursions, as well as climate shifts, took place during the most severe mass extinction event in Earth's history, the end-Permian (˜252 Ma). Investigating the connection between carbon and calcium cycles during transient carbon cycle perturbation events, such as the end-Permian, may help resolve the intricacies between the coupled calcium-carbon cycles, as well as provide a tool for constraining the causes of mass extinction. Here we identify the deficiencies of a simplified calcium model employed in several previous studies, and we demonstrate the importance of a fully coupled carbon cycle model when investigating the dynamics of carbon and calcium cycling. Simulations with a modified version of the Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir model, which includes a fully coupled carbon-calcium cycle, indicate that increased weathering rates and ocean acidification (potentially caused by Siberian Trap volcanism) are not capable of producing trends observed in the record, as previously claimed. Our model results suggest that combined effects of carbon input via Siberian Trap volcanism (12,000 Pg C), the cessation of biological carbon export, and variable calcium isotope fractionation (due to a change in the seawater carbonate ion concentration) represents a more plausible scenario. This scenario successfully reconciles δ13C and δ44Ca trends observed in the sediment record, as well as the proposed warming of >6°C.

  14. Exploring calcium oxalate crystallization: a constant composition approach.

    PubMed

    Kolbach-Mandel, Ann M; Kleinman, Jack G; Wesson, Jeffrey A

    2015-10-01

    Crystal growth rates have been extensively studied in calcium oxalate monohydrate (COM) crystallization, because COM crystals are the principal component in most kidney stones. Constant composition methods are useful for studying growth rates, but fail to differentiate concurrent nucleation and aggregation events. A constant composition method coupled with particle size determinations that addresses this deficiency was previously published for a calcium phosphate system, and this method was extended to COM crystallization in this report. A seeded constant composition experiment was combined with particle size determination and a separate near-equilibrium aggregation experiment to separate effects of growth rate, nucleation, and aggregation in COM crystal formation and to test the effects of various inhibitors relevant to stone formation. With no inhibitors present, apparent COM growth rates were heavily influenced by secondary nucleation at low seed crystal additions, but growth-related aggregation increased at higher seed crystal densities. Among small molecule inhibitors, citrate demonstrated growth rate inhibition but enhanced growth-related aggregation, while magnesium did not affect COM crystallization. Polyanions (polyaspartate, polyglutamate, or osteopontin) showed strong growth rate inhibition, but large differences in nucleation and aggregation were observed. Polycations (polyarginine) did not affect COM crystal growth or aggregation. Mixtures of polyanions and polycations produced a complicated set of growth rate, nucleation, and aggregation behaviors. These experiments demonstrated the power of combining particle size determinations with constant composition experiments to fully characterize COM crystallization and to obtain detailed knowledge of inhibitor properties that will be critical to understanding kidney stone formation. PMID:26016572

  15. Bivalves build their shells from amorphous calcium carbonate

    NASA Astrophysics Data System (ADS)

    Jacob, D. E.; Wirth, R.; Soldati, A. L.; Wehrmeister, U.

    2012-04-01

    One of the most common shell structures in the bivalve class is the prism and nacre structure. It is widely distributed amongst both freshwater and marine species and gives cultured pearls their sought-after lustre. In freshwater bivalves, both shell structures (prism and nacre) consist of aragonite. Formation of the shell form an amorphous precursor phase is a wide-spread strategy in biomineralization and presents a number of advantages for the organisms in the handling of the CaCO3 material. While there is already evidence that larval shells of some mollusk species use amorphous calcium carbonate (ACC) as a transient precursor phase for aragonite, the use of this strategy by adult animals was only speculated upon. We present results from in-situ geochemistry, Raman spectroscopy and focused-ion beam assisted TEM on three species from two different bivalve families that show that remnants of ACC can be found in shells from adult species. We show that the amorphous phase is not randomly distributed, but is systematically found in a narrow zone at the interface between periostracum and prism layer. This zone is the area where spherulitic CaCO3- structures protrude from the inner periostracum to form the initial prisms. These observations are in accordance with our earlier results on equivalent structures in freshwater cultured pearls (Jacob et al., 2008) and show that the original building material for the prisms is amorphous calcium carbonate, secreted in vesicles at the inner periostracum layer. Quantitative temperature calibrations for paleoclimate applications using bivalve shells are based on the Mg-Ca exchange between inorganic aragonite (or calcite) and water. These calibrations, thus, do not take into account the biomineral crystallization path via an amorphous calcium carbonate precursor and are therefore likely to introduce a bias (a so-called vital effect) which currently is not accounted for. Jacob et al. (2008) Geochim. Cosmochim. Acta 72, 5401-5415

  16. Biomineralization-based conversion of carbon dioxide to calcium carbonate using recombinant carbonic anhydrase.

    PubMed

    Kim, Im Gyu; Jo, Byung Hoon; Kang, Dong Gyun; Kim, Chang Sup; Choi, Yoo Seong; Cha, Hyung Joon

    2012-06-01

    Recently, as a mimic of the natural biomineralization process, the use of carbonic anhydrase (CA), which is an enzyme catalyzing fast reversible hydration of carbon dioxide to bicarbonate, has been suggested for biological conversion of CO(2) to valuable chemicals. While purified bovine CA (BCA) has been used in previous studies, its practical utilization in CO(2) conversion has been limited due to the expense of BCA preparation. In the present work, we investigated conversion of CO(2) into calcium carbonate as a target carbonate mineral by using a more economical, recombinant CA. To our knowledge, this is the first report of the usage of recombinant CA for biological CO(2) conversion. Recombinant ?-type CA originating in Neisseria gonorrhoeae (NCA) was highly expressed as a soluble form in Escherichia coli. We found that purified recombinant NCA which showed comparable CO(2) hydration activity to commercial BCA significantly promoted formation of solid CaCO(3) through the acceleration of CO(2) hydration rate, which is naturally slow. In addition, the rate of calcite crystal formation was also accelerated using recombinant NCA. Moreover, non-purified crude recombinant NCA also showed relatively significant ability. Therefore, recombinant CA could be an effective, economical biocatalyst in practical CO(2) conversion system. PMID:22397838

  17. Calcium pyrophosphate crystal deposition in model systems.

    PubMed

    Mandel, N; Mandel, G

    1988-08-01

    The chemistry and molecular bonding characteristics of the CaPPi family of compounds are very complex. The unique molecular flexibility of the PPi anion and the potential variability of Ca coordination geometries have allowed for a broad spectrum of CaPPi type structures. The structure of t-CPPD has the smallest P-OB-P angle of the known CaPPi structures, both Ca atoms are 7 coordinate which is the maximum allowable contacts for Ca atoms, and the two water molecules of crystallization not only serve to fill molecular space, but they are also involved in direct contact to the PPi anions and the Ca atoms. The structure of t-CPPD appears to be very stable and the structural characteristics support the observation that the crystals are sparingly soluble in an aqueous environment. Unfortunately, the structure of m-CPPD is not known and comparisons cannot be made. The solution model studies have resulted in the observation that t-CPPD and m-CPPD crystals can be grown in an aqueous environment at conditions far less harsh than those required for the standard synthetic procedure. However, the synthetic procedure, in contrast to the solution models, yields the prismatic crystal growth morphology of t-CPPD and the rod morphology of m-CPPD observed in vivo. The solution models showed that increasing Mg or Pi retarded crystal formation. At physiologic levels of Mg and Pi, a-CaPPi formed, but neither t-CPPD nor m-CPPD would form. In all solution studies, the final Ca and PPi were not determined and therefore a correlation could not be made between the ionic concentrations and crystal type formed. The gel models using silica, polyacrylamide, and biologic grade gelatin all highlighted that the time of incubation of Ca and PPi ions was a critical parameter in determining the type of crystal formed. The biologic grade gelatin model studies that we conducted indicated that the formation of the two in vivo crystals was mediated by the formation of intermediate crystalline materials and the subsequent dissolution of those species. This formation/dissolution/reformation mechanism allows for a very localized ionic concentrating process to occur. In our model system, we measured the final Ca and PPi levels at all points of crystallization and could map the ionic concentration gradients and compare them to the crystal type formed with respect to the time of incubation. However, the crystal growth morphologies for t-CPPD and m-CPPD still did not match the morphologies observed in vivo.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2845492

  18. In vitro synthesis and stabilization of amorphous calcium carbonate (ACC) nanoparticles within liposomes

    SciTech Connect

    Tester, Chantel C.; Brock, Ryan E.; Wu, Ching-Hsuan; Krejci, Minna R.; Weigand, Steven; Joester, Derk

    2012-02-07

    We show that amorphous calcium carbonate (ACC) can be synthesized in phospholipid bilayer vesicles (liposomes). Liposome-encapsulated ACC nanoparticles are stable against aggregation, do not crystallize for at least 20 h, and are ideally suited to investigate the influence of lipid chemistry, particle size, and soluble additives on ACC in situ.

  19. Purifications of calcium carbonate and molybdenum oxide powders for neutrinoless double beta decay experiment, AMoRE

    SciTech Connect

    Park, HyangKyu

    2015-08-17

    The AMoRE (Advanced Mo based Rare process Experiment) collaboration is going to use calcium molybdate crystals to search for neutrinoless double beta decay of {sup 100}Mo isotope. In order to make the crystal, we use calcium carbonate and molybdenum oxide powders as raw materials. Therefore it is highly necessary to reduce potential sources for radioactive backgrounds such as U and Th in the powders. In this talk, we will present our studies for purification of calcium carbonate and molybdenum oxide powders.

  20. Oral calcium carbonate affects calcium but not phosphorus balance in stage 3–4 chronic kidney disease

    PubMed Central

    Hill, Kathleen M.; Martin, Berdine R.; Wastney, Meryl; McCabe, George P.; Moe, Sharon M.; Weaver, Connie M.; Peacock, Munro

    2014-01-01

    Chronic kidney disease (CKD) patients are given calcium carbonate to bind dietary phosphorus and reduce phosphorus retention, and to prevent negative calcium balance. Data are limited on calcium and phosphorus balance in CKD to support this. The aim of this study was to determine calcium and phosphorus balance and calcium kinetics with and without calcium carbonate in CKD patients. Eight stage 3/4 CKD patients, eGFR 36 mL/min, participated in two 3-week balances in a randomized placebo-controlled cross-over study of calcium carbonate (1500 mg/d calcium). Calcium and phosphorus balance were determined on a controlled diet. Oral and intravenous 45calcium with blood sampling and urine and fecal collections were used for calcium kinetics. Fasting blood and urine were collected at baseline and end of each week of each balance period for biochemical analyses. Results showed that patients were in neutral calcium and phosphorus balance while on placebo. Calcium carbonate produced positive calcium balance, did not affect phosphorus balance, and produced only a modest reduction in urine phosphorus excretion compared with placebo. Calcium kinetics demonstrated positive net bone balance but less than overall calcium balance suggesting tissue deposition. Fasting biochemistries of calcium and phosphate homeostasis were unaffected by calcium carbonate. If they can be extrapolated to effects of chronic therapy, these data caution against the use of calcium carbonate as a phosphate binder. PMID:23254903

  1. Increased calcium absorption from synthetic stable amorphous calcium carbonate: Double-blind randomized crossover clinical trial in post-menopausal women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium supplementation is a widely recognized strategy for achieving adequate calcium intake. We designed this blinded, randomized, crossover interventional trial to compare the bioavailability of a new stable synthetic amorphous calcium carbonate (ACC) with that of crystalline calcium carbonate (C...

  2. SECONDARY HYPERPARATHYROIDISM AFTER BARIATRIC SURGERY: TREATMENT IS WITH CALCIUM CARBONATE OR CALCIUM CITRATE?

    PubMed Central

    BARETTA, Giorgio Alfredo Pedroso; CAMBI, Maria Paula Carlini; RODRIGUES, Arieli Luz; MENDES, Silvana Aparecida

    2015-01-01

    Background : Bariatric surgery, especially Roux-en-Y gastric bypass, can cause serious nutritional complications arising from poor absorption of essential nutrients. Secondary hyperparathyroidism is one such complications that leads to increased parathyroid hormone levels due to a decrease in calcium and vitamin D, which may compromise bone health. Aim : To compare calcium carbonate and calcium citrate in the treatment of secondary hyperparathyroidism. Method : Patients were selected on the basis of their abnormal biochemical test and treatment was randomly done with citrate or calcium carbonate. Results : After 60 days of supplementation, biochemical tests were repeated, showing improvement in both groups. Conclusion : Supplementation with calcium (citrate or carbonate) and vitamin D is recommended after surgery for prevention of secondary hyperparathyroidism. PMID:26537273

  3. Fortification of all-purpose wheat-flour tortillas with calcium lactate, calcium carbonate, or calcium citrate is acceptable.

    PubMed

    Romanchik-Cerpovicz, Joelle E; McKemie, Rebecca J

    2007-03-01

    Fortification helps provide adequate nutrients for individuals not meeting daily needs. Foods may be fortified with calcium to assist individuals with lactose intolerance and others preferring not to consume traditional forms of dairy. This study examined the quality of all-purpose wheat-flour tortillas fortified with calcium lactate, calcium carbonate, or calcium citrate. These tortillas were compared to similarly prepared nonfortified flour tortillas (control) and commercial nonfortified flour tortillas. Calcium-fortified tortillas contained 114 mg elemental calcium per standard serving (48 g tortilla), an 8.6-fold increase compared to nonfortified tortillas. Moisture contents and rollabilities of all tortillas were similar. Consumers (N=87) evaluated each tortilla in duplicate using a hedonic scale and reported liking the appearance, texture, flavor, aftertaste, and overall acceptability of all tortillas. However, the appearance of control tortillas was preferred over commercial tortillas (P<0.01), whereas the aftertaste of commercial tortillas or those fortified with calcium carbonate was preferred over the control (P<0.05). Despite these differences, consumers were equally willing to purchase both fortified and nonfortified tortillas, suggesting that appearance and aftertaste may not influence willingness to purchase. Overall, this study shows that fortification of flour tortillas with various forms of calcium is a feasible alternative calcium source. PMID:17324671

  4. Urea hydrolysis and calcium carbonate reaction fronts

    NASA Astrophysics Data System (ADS)

    Fox, D. T.; Redden, G. D.; Henriksen, J.; Fujita, Y.; Guo, L.; Huang, H.

    2010-12-01

    The mobility of toxic or radioactive metal contaminants in subsurface environments can be reduced by the formation of mineral precipitates that form co-precipitates with the contaminants or that isolate them from the mobile fluid phase. An engineering challenge is to control the spatial distribution of precipitation reactions with respect to: 1) the location of a contaminant, and 2) where reactants are introduced into the subsurface. One strategy being explored for immobilizing contaminants, such as Sr-90, involves stimulating mineral precipitation by forming carbonate ions and hydroxide via the in situ, microbially mediated hydrolysis of urea. A series of column experiments have been conducted to explore how the construction or design of such an in situ reactant production strategy can affect the temporal and spatial distribution of calcium carbonate precipitation, and how the distribution is coupled to changes in permeability. The columns were constructed with silica gel as the porous media. An interval midway through the column contained an adsorbed urease enzyme in order to simulate a biologically active zone. A series of influent solutions were injected to characterize hydraulic properties of the column (e.g., bromide tracer), profiles of chemical conditions and reaction products as the enzyme catalyzes urea hydrolysis (e.g., pH, ammonia, urea), and changes that occur due to CaCO3 precipitation with the introduction of a calcium+urea solutions. In one experiment, hydraulic conductivity was reduced as precipitate accumulated in a layer within the column that had a higher fraction of fine grained silica gel. Subsequent reduction of permeability and flow (for a constant head condition) resulted in displacement of the hydrolysis and precipitation reaction profiles upstream. In another experiment, which lacked the physical heterogeneity (fine grained layer), the precipitation reaction did not result in loss of permeability or flow velocity and the reaction profile, characterized by the pH profile and hydrolysis reaction species, was extended downstream of the enzyme zone. Downstream extension of the reaction profile was due partially to the partial mobility of the enzyme in the column. The experiments are helping to illustrate the complexity of transient reaction fronts as well as the needs and challenges for advanced modeling approaches. A modeling platform developed at the Idaho National Laboratory, which is capable of simulating tightly coupled physical-chemical processes (the Reactive Transport simulator), is being applied to pre-experimental simulations and post-experimental interpretation of results.

  5. Behaviour of calcium carbonate in sea water

    USGS Publications Warehouse

    Cloud, P.E., Jr.

    1962-01-01

    Anomalies in the behaviour of calcium carbonate in natural solutions diminish when considered in context. Best values found by traditional oceanographie methods for the apparent solubility product constant K'CaCO3 in sea water at atmospheric pressure are consistent mineralogically-at 36 parts per thousand salinity and T-25??C, K'aragonlte is estimated as 1.12 ?? 10-6 and K'calcite as 0.61 ?? 10-6. At 30??C the corresponding values are 0.98 ?? 10-6 for aragonite and 0.53 ?? 10-6 for calcite. Because the K' computations do not compensate for ionic activity, however, they cannot give thermodynamically satisfactory results. It is of interest, therefore, that approximate methods and information now available permit the estimation from the same basic data of an activity product constant KCaCO3 close to that found in solutions to which Debye-Hu??ckel theory applies. Such methods indicate approximate Karagonite 7.8 ?? 10-9 for surface sea water at 29??C; Kcalcite would be proportionately lower. Field data and experimental results indicate that the mineralogy of precipitated CaCO3 depends primarily on degree of supersaturation, thus also on kinetic or biologic factors that facilitate or inhibit a high degree of supersaturation. The shallow, generally hypersaline bank waters west of Andros Island yield aragonitic sediments with O18 O16 ratios that imply precipitation mainly during the warmer months, when the combination of a high rate of evaporation, increasing salinity (and ionic strength), maximal temperatures and photosynthetic removal of CO2 result in high apparent supersaturation. The usual precipitate from solutions of low ionic strength is calcite, except where the aragonite level of supersaturation is reached as a result of diffusion phenomena (e.g. dripstones), gradual and marked evaporation, or biologic intervention. Published data also suggest the possibility of distinct chemical milieus for crystallographic variations in skeletal calcium carbonate. It appears that in nature aragonite precipitates from solutions that are supersaturated with respect to both calcite and aragonite and calcite between saturation levels for the two species. Such a relation is consistent with Ostwald's rule of successive reactions. Aragonitc of marine origin persists in contact with supersaturated interstitial solutions at ordinary temperature and pressure. Conversion to calcite follows transfer to solutions undersaturated with respect to aragonite or upon exposure to the moist atmosphere. ?? 1962.

  6. Evidence for calcium carbonate at the Mars Phoenix landing site.

    PubMed

    Boynton, W V; Ming, D W; Kounaves, S P; Young, S M M; Arvidson, R E; Hecht, M H; Hoffman, J; Niles, P B; Hamara, D K; Quinn, R C; Smith, P H; Sutter, B; Catling, D C; Morris, R V

    2009-07-01

    Carbonates are generally products of aqueous processes and may hold important clues about the history of liquid water on the surface of Mars. Calcium carbonate (approximately 3 to 5 weight percent) has been identified in the soils around the Phoenix landing site by scanning calorimetry showing an endothermic transition beginning around 725 degrees C accompanied by evolution of carbon dioxide and by the ability of the soil to buffer pH against acid addition. Based on empirical kinetics, the amount of calcium carbonate is most consistent with formation in the past by the interaction of atmospheric carbon dioxide with liquid water films on particle surfaces. PMID:19574384

  7. Morphologies and elemental compositions of calcium crystals in phyllodes and branchlets of Acacia robeorum (Leguminosae: Mimosoideae)

    PubMed Central

    He, Honghua; Bleby, Timothy M.; Veneklaas, Erik J.; Lambers, Hans; Kuo, John

    2012-01-01

    Background and Aims Formation of calcium oxalate crystals is common in the plant kingdom, but biogenic formation of calcium sulfate crystals in plants is rare. We investigated the morphologies and elemental compositions of crystals found in phyllodes and branchlets of Acacia robeorum, a desert shrub of north-western Australia. Methods Morphologies of crystals in phyllodes and branchlets of A. robeorum were studied using scanning electron microscopy (SEM), and elemental compositions of the crystals were identified by energy-dispersive X-ray spectroscopy. Distributional patterns of the crystals were studied using optical microscopy together with SEM. Key Results According to the elemental compositions, the crystals were classified into three groups: (1) calcium oxalate; (2) calcium sulfate, which is a possible mixture of calcium sulfate and calcium oxalate with calcium sulfate being the major component; and (3) calcium sulfate · magnesium oxalate, presumably mixtures of calcium sulfate, calcium oxalate, magnesium oxalate and silica. The crystals were of various morphologies, including prisms, raphides, styloids, druses, crystal sand, spheres and clusters. Both calcium oxalate and calcium sulfate crystals were observed in almost all tissues, including mesophyll, parenchyma, sclerenchyma (fibre cells), pith, pith ray and cortex; calcium sulfate · magnesium oxalate crystals were only found in mesophyll and parenchyma cells in phyllodes. Conclusions The formation of most crystals was biologically induced, as confirmed by studying the crystals formed in the phyllodes from seedlings grown in a glasshouse. The crystals may have functions in removing excess calcium, magnesium and sulfur, protecting the plants against herbivory, and detoxifying aluminium and heavy metals. PMID:22294477

  8. Musculoskeletal Ultrasound Diagnosis in Calcium Pyrophosphate Dihydrate Crystal Deposition Disease

    PubMed Central

    MUȘETESCU, ANCA EMANUELA; CIUREA, PAULINA; ROȘU, ANCA

    2014-01-01

    Calcium pyrophosphate dihydrate (CPPD) crystal deposition disease is extremely versatile. We present the case of a 52 years old patient referred for inflammatory pain of the left knee and ankle of recent onset with intense inflammatory syndrome that mimics rheumatoid arthritis. Musculoskeletal ultrasound was able to detect effusion, hyperechoic crystals within the cartilage and fibrocartilage, inside tendons, suggestive for CPPD disease and to guide fluid aspiration as well as in sustaining a rapid diagnosis corroborating images suggestive for CPPD disease to biological data – hypercalcemia and hyperparathyroidism in finding the predisposing condition, the parathyroid adenoma. PMID:26788360

  9. Musculoskeletal Ultrasound Diagnosis in Calcium Pyrophosphate Dihydrate Crystal Deposition Disease.

    PubMed

    Mu?etescu, Anca Emanuela; Ciurea, Paulina; Ro?u, Anca

    2014-01-01

    Calcium pyrophosphate dihydrate (CPPD) crystal deposition disease is extremely versatile. We present the case of a 52 years old patient referred for inflammatory pain of the left knee and ankle of recent onset with intense inflammatory syndrome that mimics rheumatoid arthritis. Musculoskeletal ultrasound was able to detect effusion, hyperechoic crystals within the cartilage and fibrocartilage, inside tendons, suggestive for CPPD disease and to guide fluid aspiration as well as in sustaining a rapid diagnosis corroborating images suggestive for CPPD disease to biological data - hypercalcemia and hyperparathyroidism in finding the predisposing condition, the parathyroid adenoma. PMID:26788360

  10. RECOVERY OF CALCIUM CARBONATE AND SULFUR FROM FGD SCRUBBER WASTE

    EPA Science Inventory

    The report gives results of a demonstration of key process steps in the proprietary Kel-S process for recovering calcium carbonate and sulfur from lime/limestone flue gas desulfurization (FGD) scrubber waste. The steps are: reduction of the waste to calcium sulfide (using coal as...

  11. Disordered amorphous calcium carbonate from direct precipitation

    DOE PAGESBeta

    Farhadi Khouzani, Masoud; Chevrier, Daniel M.; Güttlein, Patricia; Hauser, Karin; Zhang, Peng; Hedin, Niklas; Gebauer, Denis

    2015-06-01

    Amorphous calcium carbonate (ACC) is known to play a prominent role in biomineralization. Different studies on the structure of biogenic ACCs have illustrated that they can have distinct short-range orders. However, the origin of so-called proto-structures in synthetic and additive-free ACCs is not well understood. In the current work, ACC has been synthesised in iso-propanolic media by direct precipitation from ionic precursors, and analysed utilising a range of different techniques. The data suggest that this additive-free type of ACC does not resemble clear proto-structural motifs relating to any crystalline polymorph. This can be explained by the undefined pH value inmore » iso-propanolic media, and the virtually instantaneous precipitation. Altogether, this work suggests that aqueous systems and pathways involving pre-nucleation clusters are required for the generation of clear proto-structural features in ACC. Experiments on the ACC-to-crystalline transformation in solution with and without ethanol highlight that polymorph selection is under kinetic control, while the presence of ethanol can control dissolution re-crystallisation pathways.« less

  12. Disordered amorphous calcium carbonate from direct precipitation

    SciTech Connect

    Farhadi Khouzani, Masoud; Chevrier, Daniel M.; Güttlein, Patricia; Hauser, Karin; Zhang, Peng; Hedin, Niklas; Gebauer, Denis

    2015-06-01

    Amorphous calcium carbonate (ACC) is known to play a prominent role in biomineralization. Different studies on the structure of biogenic ACCs have illustrated that they can have distinct short-range orders. However, the origin of so-called proto-structures in synthetic and additive-free ACCs is not well understood. In the current work, ACC has been synthesised in iso-propanolic media by direct precipitation from ionic precursors, and analysed utilising a range of different techniques. The data suggest that this additive-free type of ACC does not resemble clear proto-structural motifs relating to any crystalline polymorph. This can be explained by the undefined pH value in iso-propanolic media, and the virtually instantaneous precipitation. Altogether, this work suggests that aqueous systems and pathways involving pre-nucleation clusters are required for the generation of clear proto-structural features in ACC. Experiments on the ACC-to-crystalline transformation in solution with and without ethanol highlight that polymorph selection is under kinetic control, while the presence of ethanol can control dissolution re-crystallisation pathways.

  13. Plant calcium oxalate crystal formation, function, and its impact on human health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crystals of calcium oxalate have been observed among members from most taxonomic groups of photosynthetic organisms ranging from the smallest algae to the largest trees. The biological roles for calcium oxalate crystal formation in plant growth and development include high capacity calcium regulatio...

  14. Thermal breakdown of calcium carbonate and constraints on its use as a biomarker

    NASA Astrophysics Data System (ADS)

    Thompson, Stephen P.; Parker, Julia E.; Tang, Chiu C.

    2014-02-01

    Observed differences in the thermal behaviour of calcium carbonates of biogenic and abiogenic origin (phase transformation and breakdown temperatures) are widely cited as potential biomarkers for whether life once existed on Mars. Although seemingly compelling, there has been no systematic investigation into the physical mechanism behind these apparent differences and therefore no direct proof that they are uniquely diagnostic of a biogenic versus abiogenic formation. In this paper we present a laboratory investigation into the thermal behaviour of two high purity calcium carbonates, one of which was produced in the presence of an amino acid as a biomimetic carbonate. In situ synchrotron X-ray powder diffraction measurements show the aragonite-to-calcite phase transition and calcite-to-oxide breakdown temperatures are significantly lower in the biomimetic carbonate. The observed thermal differences closely match reported differences between biogenic and geological abiogenic carbonates. The biomimetic carbonate exhibits a modified crystal morphology, with a highly strained internal crystal lattice, similar to biogenic carbonate structures. Since biogenic carbonates are formed in the presence of organic macromolecules such as amino acids, the induced microstrain appears to be the defining common factor as it adds an additional energy term to the carbonate lattice energy, which lowers the activation energy required for structural transformation or decomposition. Although produced via biomimetic means, the carbonate investigated here is nevertheless abiogenic in origin and we propose that given suitable localised conditions such as pooled water and a supply of organic molecules, naturally occurring biomimetic carbonates could have similarly formed on the martian surface and could therefore exhibit the same thermal characteristics as biogenic carbonate. Thus as a limiting case - without other supporting observations - the thermal behaviour of martian calcium carbonate might only be a marker for a pre-biotic organic chemistry having once been present rather than living organisms.

  15. Synthesis of calcium antimonate nano-crystals by the 18th dynasty Egyptian glassmakers

    NASA Astrophysics Data System (ADS)

    Lahlil, S.; Biron, I.; Cotte, M.; Susini, J.; Menguy, N.

    2010-01-01

    During the 18th Egyptian dynasty (1570-1292 B.C.), opaque white, blue and turquoise glasses were opacified by calcium antimonate crystals dispersed in a vitreous matrix. The technological processes as well as the antimony sources used to manufacture these crystals remain unknown. Our results shed a new light on glassmaking history: contrary to what was thought, we demonstrate that Egyptian glassmakers did not use in situ crystallization but first synthesized calcium antimonate opacifiers, which do not exist in nature, and then added them to a glass. Furthermore, using transmission electron microscopy (TEM) for the first time in the study of Egyptian opaque glasses, we show that these opacifiers were nano-crystals. Prior to this research, such a process for glassmaking has not been suggested for any kind of ancient opaque glass production. Studying various preparation methods for calcium antimonate, we propose that Egyptian craftsmen could have produced Ca2Sb2O7 by using mixtures of Sb2O3 or Sb2O5 with calcium carbonates (atomic ratio Sb/Ca=1) heat treated between 1000 and 1100°C. We developed an original strategy focused on the investigation of the crystals and the vitreous matrices using an appropriate suite of high-sensitivity and high-resolution micro- and nano-analytical techniques (scanning electron microscopy (SEM), X-ray diffraction (XRD), TEM). Synchrotron-based micro X-ray absorption near edge spectroscopy (μ-XANES) proved to be very well suited to the selective measure of the antimony oxidation state in the vitreous matrix. This work is the starting point for a complete reassessment not only of ancient Egyptian glass studies but more generally of high-temperature technologies used throughout antiquity.

  16. Calcium Carbonate Formation by Genetically Engineered Inorganic Binding Peptides

    NASA Astrophysics Data System (ADS)

    Gresswell, Carolyn Gayle

    Understanding how organisms are capable of forming (synthesize, crystallize, and organize) solid minerals into complex architectures has been a fundamental question of biomimetic materials chemistry and biomineralization for decades. This study utilizes short peptides selected using a cell surface display library for the specific polymorphs of calcium carbonate, i.e., aragonite and calcite, to identify two sets of sequences which can then be used to examine their effects in the formation, crystal structure, morphology of the CaCO3 minerals. A procedure of counter selection, along with fluorescence microscopy (FM) characterization, was adapted to insure that the sequences on the cells were specific to their respective substrate, i.e., aragonite or calcite. From the resulting two sets of sequences selected, five distinct strong binders were identified with a variety of biochemical characteristics and synthesized for further study. Protein derived peptides, using the known sequences of the proteins that are associated with calcite or aragonite, were also designed using a bioinformatics-based similarity analysis of the two sets of binders. In particular, an aragonite binding protein segment, AP7, a protein found in nacre, was chosen for this design and the resulting effects of the designed peptides and the AP7 were examined. Specifically, the binding affinities of the selected and the protein derived peptides off the cells were then tested using FM; these studies resulted in different binding characteristics of the synthesized and cellular bound peptides. Two of the peptides that displayed strong binding on the cells bound to neither of the CaCO 3 substrates and both the high and low similarity protein-derived peptides bound to both polymorphs. However, two of the peptides were found to only bind to their respective polymorph showing; these results are significant in that with this study it is demonstrated that the designed peptides based on experimental library-based selection and sequence identification, can be designed to have recognition capability to a given crystal structure, specifically, in this case, of calcium carbonate. Calcite mineralization with the peptides produced vaterite when several of the peptides were used in the synthesis process, many having unique morphologies studied using scanning electron microscopy (SEM). The amount of vaterite crystal percentage in these biomineralized mixtures was calculated and it was found to be closely related to peptide concentration for the aragonite-binding peptides. In the aragonite mineralization experiments, a separate solid phase, namely, calcium nitrate hydrate, was produced for one of the peptides along with the other polymorphs of calcite carbonate (ie., aragonite, calcite and vaterite) in the solution in the form of a flat film. These biomineralization results are examined in the light of the effects of peptide sequences and their related solid-binding characteristics

  17. Calcium carbonate scaling kinetics determined from radiotracer experiments with calcium-47

    SciTech Connect

    Turner, C.W.; Smith, D.W.

    1998-02-01

    The deposition of calcium carbonate is one of the principal modes of fouling of the heat-transfer surface of a fresh-water-cooled heat exchanger. The deposition rate of calcium carbonate on a heat-transfer surface has been measured using a calcium-47 radiotracer and compared to the measured rate of thermal fouling. The crystalline phase of calcium carbonate that precipitates depends on the degree of supersaturation at the heat-transfer surface, with aragonite precipitating at higher supersaturations and calcite precipitating at lower supersaturations. Whereas the mass deposition rates were constant with time, the thermal fouling rates decreased throughout the course of each experiment as a result of densification of the deposit. It is proposed that the densification was driven by the temperature gradient across the deposit together with the retrograde solubility of calcium carbonate. The temperature dependence of the deposition rate yielded an activation energy of 79 {+-} 4 kJ/mol for the precipitation of calcium carbonate on a heat-transfer surface.

  18. Mesoscale crystallization of calcium phosphate nanostructures in protein (casein) micelles

    NASA Astrophysics Data System (ADS)

    Thachepan, Surachai; Li, Mei; Mann, Stephen

    2010-11-01

    Aqueous micelles of the multi-protein calcium phosphate complex, casein, were treated at 60 °C and pH 7 over several months. Although partial dissociation of the micelles into 12 nm sized amorphous calcium phosphate (ACP)/protein nanoparticles occurred within a period of 14 days, crystallization of the ACP nanoclusters into bundles of hydroxyapatite (HAP) nanofilaments was not observed until after 12 weeks. The HAP nanofilaments were formed specifically within the partially disrupted protein micelles suggesting a micelle-mediated pathway of mesoscale crystallization. Similar experiments using ACP-containing synthetic micelles prepared from β-casein protein alone indicated that co-aligned bundles of HAP nanofilaments were produced within the protein micelle interior after 24 hours at temperatures as low as 35 °C. The presence of Mg2+ ions in the casein micelles, as well as a possible synergistic effect associated with the multi-protein nature of the native aggregates, could account for the marked inhibition in mesoscale crystallization observed in the casein micelles compared with the single-component β-casein constructs.Aqueous micelles of the multi-protein calcium phosphate complex, casein, were treated at 60 °C and pH 7 over several months. Although partial dissociation of the micelles into 12 nm sized amorphous calcium phosphate (ACP)/protein nanoparticles occurred within a period of 14 days, crystallization of the ACP nanoclusters into bundles of hydroxyapatite (HAP) nanofilaments was not observed until after 12 weeks. The HAP nanofilaments were formed specifically within the partially disrupted protein micelles suggesting a micelle-mediated pathway of mesoscale crystallization. Similar experiments using ACP-containing synthetic micelles prepared from β-casein protein alone indicated that co-aligned bundles of HAP nanofilaments were produced within the protein micelle interior after 24 hours at temperatures as low as 35 °C. The presence of Mg2+ ions in the casein micelles, as well as a possible synergistic effect associated with the multi-protein nature of the native aggregates, could account for the marked inhibition in mesoscale crystallization observed in the casein micelles compared with the single-component β-casein constructs. Electronic supplementary information (ESI) available: Particle size histograms, TEM, EDX and electron diffraction data. See DOI: 10.1039/c0nr00158a

  19. Crystallization Kinetics of Calcium-magnesium Aluminosilicate (CMAS) Glass

    NASA Technical Reports Server (NTRS)

    Wiesner, Valerie L.; Bansal, Narottam P.

    2015-01-01

    The crystallization kinetics of a calcium-magnesium aluminosilicate (CMAS) glass with composition relevant for aerospace applications, like air-breathing engines, were evaluated using differential thermal analysis (DTA) in powder and bulk forms. Activation energy and frequency factor values for crystallization of the glass were evaluated. X-ray diffraction (XRD) was used to investigate the onset of crystallization and the phases that developed after heat treating bulk glass at temperatures ranging from 690 to 960 deg for various times. Samples annealed at temperatures below 900 deg remained amorphous, while specimens heat treated at and above 900 deg exhibited crystallinity originating at the surface. The crystalline phases were identified as wollastonite (CaSiO3) and aluminum diopside (Ca(Mg,Al) (Si,Al)2O6). Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were employed to examine the microstructure and chemical compositions of crystalline phases formed after heat treatment.

  20. [Gout and and calcium pyrophosphate crystal arthropathies: pathophysiology].

    PubMed

    Coiffier, Guillaume; Albert, Jean-David

    2015-05-01

    Microcrystalline arthropathies are consecutive to microcrystals formation and deposition within the joint. The formation of monosodium urate crystals depends on many physico-chemical factors: the concentration of uric acid, the temperature and pH. Beyond 60 mg/L (360 µmol/L), uric acid crystallizes in tissues. Chronic hyperuricemia is a necessary condition for the occurrence of gouty arthropathy. The mechanisms of hyperuricemia and inflammatory access and their therapeutic implications are described. Chondrocalcinosis is a radiographic entity characterized by deposits of calcium pyrophosphate crystals (CPP) within the fibrocartilage or hyalin cartilage. CPP arthropathies symptomatology is polymorphic and likely resemble in primary osteoarthritis, pseudo-gout acute attacks, or chronic mono-, oligo- or polyarthritis. Its pathophysiology remains uncompletely understood, although there is growing knowledge on the place of some actors involved in the pathogenesis of chondrocalcinosis, described in the article. PMID:26165104

  1. Amorphous Calcium Carbonate Precipitation by Cellular Biomineralization in Mantle Cell Cultures of Pinctada fucata

    PubMed Central

    Xiang, Liang; Kong, Wei; Su, Jingtan; Liang, Jian; Zhang, Guiyou; Xie, Liping; Zhang, Rongqing

    2014-01-01

    The growth of molluscan shell crystals is generally thought to be initiated from the extrapallial fluid by matrix proteins, however, the cellular mechanisms of shell formation pathway remain unknown. Here, we first report amorphous calcium carbonate (ACC) precipitation by cellular biomineralization in primary mantle cell cultures of Pinctada fucata. Through real-time PCR and western blot analyses, we demonstrate that mantle cells retain the ability to synthesize and secrete ACCBP, Pif80 and nacrein in vitro. In addition, the cells also maintained high levels of alkaline phosphatase and carbonic anhydrase activity, enzymes responsible for shell formation. On the basis of polarized light microscopy and scanning electron microscopy, we observed intracellular crystals production by mantle cells in vitro. Fourier transform infrared spectroscopy and X-ray diffraction analyses revealed the crystals to be ACC, and de novo biomineralization was confirmed by following the incorporation of Sr into calcium carbonate. Our results demonstrate the ability of mantle cells to perform fundamental biomineralization processes via amorphous calcium carbonate, and these cells may be directly involved in pearl oyster shell formation. PMID:25405357

  2. Influence of maleic acid copolymers on calcium orthophosphates crystallization at low temperature

    NASA Astrophysics Data System (ADS)

    Pelin, Irina M.; Popescu, Irina; Suflet, Dana M.; Aflori, Magdalena; Bulacovschi, Victor

    2013-08-01

    The goal of this study was to investigate the maleic acid copolymers role on calcium orthophosphates crystallization at low temperature. In this respect, two maleic acid copolymers with different structures [poly(sodium maleate-co-vinyl acetate) and poly(sodium maleate-co-methyl methacrylate)] were used. The syntheses of the calcium orthophosphates in the absence and in the presence of the copolymers were performed through the wet chemical method using calcium nitrate, ammonium dihydrogen phosphate and ammonium hydroxide as reactants. The syntheses were monitored in situ by potentiometric and conductometric measurements. To ensure the transformation of less thermodynamically stable calcium orthophosphates into more stable forms, the samples were aged 30 days in mother solutions, at room temperature. The presence of the copolymers in the final products was evidenced by FTIR spectroscopy and thermogravimetric analysis. Scanning and transmission electron microscopy and laser light scattering measurements gave information about the composites morphology and the size of the formed structures. X-ray diffraction evidenced that, as a function of comonomer structure and of copolymer concentration, the products could contain hydroxyapatite with low crystallinity, calcium-deficient or carbonated hydroxyapatite. At high concentration of poly(sodium maleate-co-methyl methacrylate) the transformation of brushite into apatitic structures was inhibited.

  3. Nanoporous Structure and Medium-Range Order in Synthetic Amorphous Calcium Carbonate

    SciTech Connect

    Goodwin, Andrew L.; Michel, F. Marc; Phillips, Brian L.; Keen, David A.; Dove, Martin T.; Reeder, Richard J.

    2010-12-03

    We adopt a reverse Monte Carlo refinement approach, using experimental X-ray total scattering data, to develop a structure model for synthetic, hydrated amorphous calcium carbonate (ACC). The ACC is revealed to consist of a porous calcium-rich framework that supports interconnected channels containing water and carbonate molecules. The existence of a previously unrecognized nanometer-scale channel network suggests mechanisms of how additives can be accommodated within the structure and provide temporary stabilization, as well as influence the crystallization process. Moreover, while lacking long-range order, the calcium-rich framework in the ACC contains similar Ca packing density to that present in calcite, aragonite, and vaterite, yielding clues of how the amorphous material converts into the different crystalline forms. Our results provide a new starting point for advancing our understanding of biomineralization as well as the development of biomimetic approaches to next-generation materials synthesis.

  4. Reverse engineering the kidney: modelling calcium oxalate monohydrate crystallization in the nephron.

    PubMed

    Borissova, A; Goltz, G E; Kavanagh, J P; Wilkins, T A

    2010-07-01

    Crystallization of calcium oxalate monohydrate in a section of a single kidney nephron (distal convoluted tubule) is simulated using a model adapted from industrial crystallization. The nephron fluid dynamics is represented as a crystallizer/separator series with changing volume to allow for water removal along the tubule. The model integrates crystallization kinetics and crystal size distribution and allows the prediction of the calcium oxalate concentration profile and the nucleation and growth rates. The critical supersaturation ratio for the nucleation of calcium oxalate crystals has been estimated as 2 and the mean crystal size as 1 mum. The crystal growth order, determined as 2.2, indicates a surface integration mechanism of crystal growth and crystal growth dispersion. The model allows the exploration of the effect of varying the input calcium oxalate concentration and the rate of water extraction, simulating real life stressors for stone formation such as dietary loading and dehydration. PMID:20424925

  5. Calcium Acetate or Calcium Carbonate for Hyperphosphatemia of Hemodialysis Patients: A Meta-Analysis

    PubMed Central

    Zhang, Han; Yang, Bo; Mao, Zhiguo

    2015-01-01

    Background High levels of serum phosphorus both at baseline and during follow-up are associated with increased mortality in dialysis patients, and administration of phosphate binders was independently associated with improved survival among hemodialysis population. Calcium-based phosphate binders are the most commonly used phosphate binders in developing countries for their relatively low costs. Objectives To compare the efficacy and safety between calcium carbonate and calcium acetate in the treatment of hyperphosphatemia in hemodialysis patients. Methods PubMed, EMBASE, Cochrane Library, Google scholar and Chinese databases (Wanfang, Weipu, National Knowledge Infrastructure of China) were searched for relevant studies published before March 2014. Reference lists of nephrology textbooks and review articles were checked. A meta-analysis of randomized controlled trials (RCTs) and quasi-RCTs that assessed the effects and adverse events of calcium acetate and calcium carbonate in adult patients with MHD was performed using Review Manager 5.0. Results A total of ten studies (625 participants) were included in this meta-analysis. There was insufficient data in all-cause mortality and cardiovascular events for meta-analysis. Compared with calcium carbonate group, the serum phosphorus was significantly lower in calcium acetate group after4 weeks’ administration (MD -0.15 mmol/L, 95% CI -0.28 to -0.01) and after 8 weeks’ administration (MD -0.25 mmol/L, 95% CI -0.40 to -0.11). There was no difference in serum calcium levels or the incidence of hypercalcemia between two groups at 4 weeks and 8 weeks. No statistical difference was found in parathyroid hormone (PTH) levels or serum calcium by phosphorus (Ca x P) product. There was significantly higher risk of intolerance with calcium acetate treatment (RR 3.46, 95% CI 1.48 to 8.26). Conclusions For hyperphosphatemia treatment, calcium acetate showed better efficacy and with a higher incidence of intolerance compared with calcium carbonate. There are insufficient data to establish the comparative superiority of the two calcium-based phosphate binders on all-cause mortality and cardiovascular end-points in hemodialysis patients. PMID:25799184

  6. Precipitation of calcium carbonate in aqueous solutions in presence of ethylene glycol and dodecane.

    NASA Astrophysics Data System (ADS)

    Natsi, Panagiota D.; Rokidi, Stamatia; Koutsoukos, Petros G.

    2015-04-01

    The formation of calcium carbonate (CaCO3) in aqueous supersaturated solutions has been intensively studied over the past decades, because of its significance for a number of processes of industrial and environmental interest. In the oil and gas production industry the deposition of calcium carbonate affects adversely the productivity of the wells. Calcium carbonate scale deposits formation causes serious problems in water desalination, CO2 sequestration in subsoil wells, in geothermal systems and in heat exchangers because of the low thermal coefficient of the salt. Amelioration of the operational conditions is possible only when the mechanisms underlying nucleation and crystal growth of calcium carbonate in the aqueous fluids is clarified. Given the fact that in oil production processes water miscible and immiscible hydrocarbons are present the changes of the dielectric constant of the fluid phase has serious impact in the kinetics of calcium carbonate precipitation, which remains largely unknown. The problem becomes even more complicated if polymorphism exhibited by calcium carbonate is also taken into consideration. In the present work, the stability of aqueous solutions supersaturated with respect to all calcium carbonate polymorphs and the subsequent kinetics of calcium carbonate precipitation were measured. The measurements included aqueous solutions and solutions in the presence of water miscible (ethylene glycol, MEG) and water immiscible organics (n-dodecane). All measurements were done at conditions of sustained supersaturation using the glass/ Ag/AgCl combination electrode as a probe of the precipitation and pH as the master variable for the addition of titrant solutions with appropriate concentration needed to maintenance the solution supersaturation. Initially, the metastable zone width was determined from measurements of the effect of the solution supersaturation on the induction time preceding the onset of precipitation at free-drift conditions. The rates of crystal growth were measured as a function of the solution supersaturation using the highly accurate and reproducible methodology of constant supersaturation. The dependence of the rates of crystal growth on supersaturation suggested surface diffusion controlled mechanism. At constant supersaturation it was possible to extend the time period for the growth of the initially forming polymorph, in a way that sufficient amount is precipitated for characterization with X-ray diffraction (XRD). Moreover, scanning electron microscopy (SEM) was used for the characterization of the morphology of the precipitated solid. In all cases and depending on the solution supersaturation vaterite formed first from solutions of high supersaturation while at low supersaturations calcite formed exclusively. The presence of dodecane reduced the stability of the supersaturated solutions with the crystals forming at the oil-water interface. The presence of ethylene glycol (concentrations between 10-80%) also affected the stability and the kinetics of calcium carbonate precipitation. The morphology of the formed crystals showed habit modifications: Spherical formations consisting of aggregated nanocrystals and calcite crystals with profound pits on the faces were the characteristic feature in the presence of dodecane. ACKNOWLEDGMENT This research was partially funded by the European Union (European Social Fund-ESF) and Greek National Funds through the Operational program Education and Lifelong Learning under the action Aristeia II( Code No 4420).

  7. Crystallization of carbonate hydroxyapatite in the presence of strontium ranelate

    NASA Astrophysics Data System (ADS)

    Izmailov, R. R.; Golovanova, O. A.

    2015-11-01

    The influence of strontium ranelate on the crystallization of carbonate hydroxyapatite from a prototype of synovial fluid of humans has been investigated. The synthesis products are studied by IR Fourier spectroscopy, X-ray diffraction, and differential thermal analysis. The amount of strontium in the samples is determined by atomic emission analysis. The sizes of crystallites in the synthesized phases are calculated from the Selyakov-Scherrer formula; the lattice parameters are also determined. The phases obtained are found to be species of calcium-deficient strontium-containing carbonate hydroxyapatite of mixed A and B types. Schemes of chemical reactions occurring during heat treatment are proposed.

  8. Biomineralization of calcium carbonates and their engineered applications: a review

    PubMed Central

    Dhami, Navdeep K.; Reddy, M. Sudhakara; Mukherjee, Abhijit

    2013-01-01

    Microbially induced calcium carbonate precipitation (MICCP) is a naturally occurring biological process in which microbes produce inorganic materials as part of their basic metabolic activities. This technology has been widely explored and promising with potential in various technical applications. In the present review, the detailed mechanism of production of calcium carbonate biominerals by ureolytic bacteria has been discussed along with role of bacteria and the sectors where these biominerals are being used. The applications of bacterially produced carbonate biominerals for improving the durability of buildings, remediation of environment (water and soil), sequestration of atmospheric CO2 filler material in rubbers and plastics etc. are discussed. The study also sheds light on benefits of bacterial biominerals over traditional agents and also the issues that lie in the path of successful commercialization of the technology of microbially induced calcium carbonate precipitation from lab to field scale. PMID:24194735

  9. Crystal structure of calcium dodecin (Rv0379), from Mycobacterium tuberculosis with a unique calcium-binding site

    SciTech Connect

    Arockiasamy, Arulandu; Aggarwal, Anup; Savva, Christos G.; Holzenburg, Andreas; Sacchettini, James C.

    2011-09-28

    In eukaryotes, calcium-binding proteins play a pivotal role in diverse cellular processes, and recent findings suggest similar roles for bacterial proteins at different stages in their life cycle. Here, we report the crystal structure of calcium dodecin, Rv0379, from Mycobacterium tuberculosis with a dodecameric oligomeric assembly and a unique calcium-binding motif. Structure and sequence analysis were used to identify orthologs of Rv0379 with different ligand-binding specificity

  10. Calcium Pyrophosphate Dihydrate Crystal Deposition Disease of the Sternoclavicular Joint

    PubMed Central

    Borowski, Andreas; Heikaus, Sebastian; Kurt, Muhammed

    2014-01-01

    Deposition of calcium pyrophosphate dihydrate (CPPD) crystals in the articular structures affects predominantly temporomandibular, knee, hip, spine, and wrist joints, and is a rare condition, often mimicking malignancy. Sternoclavicular joint is extremely rarely involved. We present a patient with swelling of the right upper extremity, in whom on computed tomography a mass posterior to the sternoclavicular joint causing compression of the brachiocephalic vein was detected. A modified resection arthroplasty was performed, and the histopathological findings revealed massive deposits of CPPD in the articular cartilage. To our knowledge, there is only one similar case published in the literature. PMID:26693128

  11. Calcium - niobium - gallium and calcium - lithium - niobium - gallium garnet crystals as active media for diode-pumped lasers

    SciTech Connect

    Voronko, Yu K; Es'kov, N A; Podstavkin, A S; Ryabochkina, P A; Sobol, A A; Ushakov, S N

    2001-06-30

    The energy and spectral parameters of calcium - niobium - gallium and calcium - lithium - niobium - gallium garnet crystals pumped by a 2 - W laser diode are studied. The stable parameters of laser radiation are demonstrated upon small variations in the temperature of the pump laser diode. (lasers, active media)

  12. Drug loading into porous calcium carbonate microparticles by solvent evaporation.

    PubMed

    Preisig, Daniel; Haid, David; Varum, Felipe J O; Bravo, Roberto; Alles, Rainer; Huwyler, Jörg; Puchkov, Maxim

    2014-08-01

    Drug loading into porous carriers may improve drug release of poorly water-soluble drugs. However, the widely used impregnation method based on adsorption lacks reproducibility and efficiency for certain compounds. The aim of this study was to evaluate a drug-loading method based on solvent evaporation and crystallization, and to investigate the underlying drug-loading mechanisms. Functionalized calcium carbonate (FCC) microparticles and four drugs with different solubility and permeability properties were selected as model substances to investigate drug loading. Ibuprofen, nifedipine, losartan potassium, and metronidazole benzoate were dissolved in acetone or methanol. After dispersion of FCC, the solvent was removed under reduced pressure. For each model drug, a series of drug loads were produced ranging from 25% to 50% (w/w) in steps of 5% (w/w). Loading efficiency was qualitatively analyzed by scanning electron microscopy (SEM) using the presence of agglomerates and drug crystals as indicators of poor loading efficiency. The particles were further characterized by mercury porosimetry, specific surface area measurements, differential scanning calorimetry, and USP2 dissolution. Drug concentration was determined by HPLC. FCC-drug mixtures containing equivalent drug fractions but without specific loading strategy served as reference samples. SEM analysis revealed high efficiency of pore filling up to a drug load of 40% (w/w). Above this, agglomerates and separate crystals were significantly increased, indicating that the maximum capacity of drug loading was reached. Intraparticle porosity and specific surface area were decreased after drug loading because of pore filling and crystallization on the pore surface. HPLC quantification of drugs taken up by FCC showed only minor drug loss. Dissolution rate of FCC loaded with metronidazole benzoate and nifedipine was faster than the corresponding FCC-drug mixtures, mainly due to surface enlargement, because only small fractions of amorphous drug (12.5%, w/w, and 8.9%, w/w, respectively) were found by thermal analysis. Combination of qualitative SEM analysis and HPLC quantification was sufficient to proof the feasibility of the solvent-evaporation method for the loading of various drugs into FCC. Mechanistic investigation revealed that a high specific surface area of the carrier is required to facilitate heterogeneous nucleation, and large pore sizes (up to 1 μm) are beneficial to reduce crystallization pressures and allow drug deposition within the pores. The solvent-evaporation method allows precise drug loading and appears to be suitable for scale-up. PMID:24568926

  13. Automatic photometric titrations of calcium and magnesium in carbonate rocks

    USGS Publications Warehouse

    Shapiro, L.; Brannock, W.W.

    1955-01-01

    Rapid nonsubjective methods have been developed for the determination of calcium and magnesium in carbonate rocks. From a single solution of the sample, calcium is titrated directly, and magnesium is titrated after a rapid removal of R2O3 and precipitation of calcium as the tungstate. A concentrated and a dilute solution of disodium ethylenediamine tetraacetate are used as titrants. The concentrated solution is added almost to the end point, then the weak solution is added in an automatic titrator to determine the end point precisely.

  14. DNA-mediated morphosynthesis of calcium carbonate particles.

    PubMed

    Cheng, Bei; Cai, Weiquan; Yu, Jiaguo

    2010-12-01

    Calcium carbonate microspheres with different surface structures were successfully prepared by the reaction of sodium carbonate with calcium chloride in the presence of deoxyribonucleic acid (DNA) at room temperature. The as-prepared products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis and differential scanning calorimetry (TGA-DSC) and fourier-transform infrared spectrometry (FTIR). The effects of concentration of DNA on the morphologies of the prepared CaCO(3) were investigated and discussed. The results show that the surface morphology or texture of CaCO(3) microspheres can easily be adjusted by varying the concentration of DNA. A critical implication was that DNA molecules could mediate the nucleation and growth of the inorganic phase and probably induce biomineralization in the biological system. This research may provide new insight into the control of morphologies of calcium carbonate and the biomimetic synthesis of novel inorganic materials. PMID:20828707

  15. Ion chromatography detection of fluoride in calcium carbonate.

    PubMed

    Lefler, Jamie E; Ivey, Michelle M

    2011-09-01

    Fluoride in aquatic systems is increasing due to anthropogenic pollution, but little is known about how this fluoride affects organisms that live in and around aquatic habitats. Fluoride can bioaccumulate in structures comprised of calcium carbonate, such as shells and skeletons of both freshwater and saltwater species as diverse as snails, corals, and coccolithophorid algae. In this article, ion chromatography (IC) techniques are developed to detect and quantify fluoride in a matrix of calcium carbonate. Solid samples are dissolved in hydrochloric acid, pretreated to remove the majority of the chloride ions, and then analyzed using IC. With these methods, the 3σ limit of detection is 0.2 mg of fluoride/kg of calcium carbonate. PMID:21859530

  16. Influence of Substrate Mineralogy on Bacterial Mineralization of Calcium Carbonate: Implications for Stone Conservation

    PubMed Central

    Jroundi, Fadwa; Schiro, Mara; Ruiz-Agudo, Encarnación; González-Muñoz, María Teresa

    2012-01-01

    The influence of mineral substrate composition and structure on bacterial calcium carbonate productivity and polymorph selection was studied. Bacterial calcium carbonate precipitation occurred on calcitic (Iceland spar single crystals, marble, and porous limestone) and silicate (glass coverslips, porous sintered glass, and quartz sandstone) substrates following culturing in liquid medium (M-3P) inoculated with different types of bacteria (Myxococcus xanthus, Brevundimonas diminuta, and a carbonatogenic bacterial community isolated from porous calcarenite stone in a historical building) and direct application of sterile M-3P medium to limestone and sandstone with their own bacterial communities. Field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD), and 2-dimensional XRD (2D-XRD) analyses revealed that abundant highly oriented calcite crystals formed homoepitaxially on the calcitic substrates, irrespective of the bacterial type. Conversely, scattered spheroidal vaterite entombing bacterial cells formed on the silicate substrates. These results show that carbonate phase selection is not strain specific and that under equal culture conditions, the substrate type is the overruling factor for calcium carbonate polymorph selection. Furthermore, carbonate productivity is strongly dependent on the mineralogy of the substrate. Calcitic substrates offer a higher affinity for bacterial attachment than silicate substrates, thereby fostering bacterial growth and metabolic activity, resulting in higher production of calcium carbonate cement. Bacterial calcite grows coherently over the calcitic substrate and is therefore more chemically and mechanically stable than metastable vaterite, which formed incoherently on the silicate substrates. The implications of these results for technological applications of bacterial carbonatogenesis, including building stone conservation, are discussed. PMID:22447589

  17. Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: implications for stone conservation.

    PubMed

    Rodriguez-Navarro, Carlos; Jroundi, Fadwa; Schiro, Mara; Ruiz-Agudo, Encarnación; González-Muñoz, María Teresa

    2012-06-01

    The influence of mineral substrate composition and structure on bacterial calcium carbonate productivity and polymorph selection was studied. Bacterial calcium carbonate precipitation occurred on calcitic (Iceland spar single crystals, marble, and porous limestone) and silicate (glass coverslips, porous sintered glass, and quartz sandstone) substrates following culturing in liquid medium (M-3P) inoculated with different types of bacteria (Myxococcus xanthus, Brevundimonas diminuta, and a carbonatogenic bacterial community isolated from porous calcarenite stone in a historical building) and direct application of sterile M-3P medium to limestone and sandstone with their own bacterial communities. Field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD), and 2-dimensional XRD (2D-XRD) analyses revealed that abundant highly oriented calcite crystals formed homoepitaxially on the calcitic substrates, irrespective of the bacterial type. Conversely, scattered spheroidal vaterite entombing bacterial cells formed on the silicate substrates. These results show that carbonate phase selection is not strain specific and that under equal culture conditions, the substrate type is the overruling factor for calcium carbonate polymorph selection. Furthermore, carbonate productivity is strongly dependent on the mineralogy of the substrate. Calcitic substrates offer a higher affinity for bacterial attachment than silicate substrates, thereby fostering bacterial growth and metabolic activity, resulting in higher production of calcium carbonate cement. Bacterial calcite grows coherently over the calcitic substrate and is therefore more chemically and mechanically stable than metastable vaterite, which formed incoherently on the silicate substrates. The implications of these results for technological applications of bacterial carbonatogenesis, including building stone conservation, are discussed. PMID:22447589

  18. Biomineralization of calcium phosphate crystals on chitin nanofiber hydrogel for bone regeneration material.

    PubMed

    Kawata, Mari; Azuma, Kazuo; Izawa, Hironori; Morimoto, Minoru; Saimoto, Hiroyuki; Ifuku, Shinsuke

    2016-01-20

    We previously reported a chitin nanofiber hydrogel from squid pen β-chitin by a simple NaOH treatment. In the present study, a calcium phosphate/chitin nanofiber hydrogel was prepared for bone tissue engineering. Calcium phosphate was mineralized on the hydrogel by incubation in a solution of diammonium hydrogen phosphate solution followed by calcium nitrate tetrahydrate. X-ray diffractometry and Fourier transform infrared spectroscopy showed the formation of calcium phosphate crystals. The morphology of the calcium phosphate crystals changed depending on the calcification time. After mineralization, the mechanical properties of the hydrogel improved due to the reinforcement effect of calcium phosphate crystal. In an animal experiment, calcium phosphate/chitin nanofiber hydrogel accelerated mineralization in subcutaneous tissues. Morphological osteoblasts were observed. PMID:26572435

  19. Ablation mechanisms of calcium carbonate under visible and infrared laser irradiation

    NASA Astrophysics Data System (ADS)

    Park, Hee K.; Haglund, Richard F., Jr.

    1997-05-01

    Calcium carbonate (CaCO3) and its structural relatives, the phosphates and hydroxyapatites, are natural crystals which are similar to the minerals found in such hard tissues as teeth and bone. We have recently demonstrated that laser- induced material removal in calcium carbonate occurs with high efficiency when irradiating with a free-electron laser at the fundamental asymmetric stretch mode of the carbonate group near 7 micrometers ; related studies show that the same thing is true in the isoelectronic sodium nitrate, and we expect it to operate in the phosphates as well when irradiated near the resonant 9 micrometers band. The mechanism of material removal appears to be the ejection of CO followed by a calcination reaction which produces CaO. Among the features which make CaCO3 such an interesting model material is that it also has a characteristic, temperature-dependent thermoluminescence - thus making it possible, by the study of the light emitted by the crystal prior to and after ablation, to estimate the temperature reached by the crystal in the early stages of laser ablation. Wavelength-dependent photoluminescence, photoacoustic and plume-spectroscopic studies show that efficient evaporative 'hole drilling' occurs at the infrared wavelengths corresponding to carbonate or nitrate vibration modes. However, where electronic or vibrational defects are excited by visible or infrared lasers, respectively, the mechanisms of material removal are photomechanical fracture in the former case and exfoliation or subsurface explosive vaporization in the latter.

  20. CALCIUM OXALATE CRYSTAL FORMATION IS NOT ESSENTIAL FOR GROWTH OF MEDICAGO TRUNCATULA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants invest a considerable amount of resources and energy into the formation of calcium oxalate crystals. A number of roles for crystal formation in plant growth and development have been assigned based on the prevalence of crystals, their spatial distribution, and the variety of crystal shapes. ...

  1. Impact of calcium on struvite crystal size, shape and purity

    NASA Astrophysics Data System (ADS)

    Le Corre, Kristell S.; Valsami-Jones, Eugenia; Hobbs, Phil; Parsons, Simon A.

    2005-10-01

    Struvite precipitation occurs spontaneously in wastewater treatment plants under conditions that are influenced by many factors including concentration of Mg 2+, NH 4+, and PO 43- ions, pH, temperature, and mixing energy. These parameters are often difficult to control and as a result struvite generates problems of scale deposits in areas such as pipes and recirculation pumps. At the same time, struvite is considered as a potentially marketable product as an alternative fertiliser. For those two reasons, it has become important to study the principles of struvite precipitation, and to assess the parameters controlling struvite crystallisation. In the present work, the influence of Ca 2+ ions on the precipitation of struvite was investigated in aqueous solutions containing Mg 2+, NH 4+, and PO 43- ions in a molar ratio 1:2:2 at room temperature and constant pH. Different laboratory experiments have been used to assess the effects of Ca 2+ ions on size, shape, and purity of the crystals formed. Tools used include particle size analysis, X-ray diffraction (XRD), and scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDS). The experimental results showed that the presence of calcium in the media can affect significantly struvite crystal growth and the characteristics of the crystal produced.

  2. Effect of dietary calcium and magnesium on experimental renal tubular deposition of calcium oxalate crystal induced by ethylene glycol administration and its prevention with phytin and citrate.

    PubMed

    Ebisuno, S; Morimoto, S; Yoshida, T; Fukatani, T; Yasukawa, S; Ohkawa, T

    1987-01-01

    Oral administration of ethylene glycol to rats, and the resultant intratubular depositions of microcrystals of calcium oxalate were studied investigating the influences of dietary calcium or magnesium and assessing the protective efficacies against the crystallizations by treatment with phytin and sodium citrate. With increase of calcium intake and consequent increase of urinary calcium excretion there was a marked increase in the amount of tubular deposit of calcium oxalate crystal and in the calcium content of renal tissue. Although magnesium deficiency accelerated renal tubular calcium oxalate deposition, the protection against the crystal formation was not observed with excessive dietary magnesium. When rats were fed a high-calcium diet supplemented with phytin, a significant inhibition of the intratubular crystallization was observed. It appeared obvious that a hypocalciuric action of phytin was attributed to the effect of the prevention. There was vigorous protection of crystal formation by treatment with sodium citrate, which correlated with the level of citrate concentration in the drinking water. PMID:3433579

  3. Habit modification of calcium carbonate in the presence of malic acid

    NASA Astrophysics Data System (ADS)

    Mao, Zhaofeng; Huang, Jianhua

    2007-02-01

    The ability of malic acid to control calcium carbonate morphology has been investigated by aging calcium chloride solution in the presence of urea in a 90 °C bath. Malic acid favors the formation of calcite. A transition from single block to aggregate with special morphology occurs upon increasing malic acid concentration. The morphological development of CaCO 3 crystal obviously depends on the starting pH. CaCO 3 crystal grows from spindle seed to dumbbell in the pH regime from 7 to 11; while it evolves from spindle seed, through peanut, to sphere at pH=11.5. Both dumbbell and sphere consist of rods that are elongated along c-axis and capped with three smooth, well-defined rhombic {1 0 4} faces. A tentative growth mechanism is proposed based on the fractal model suggested by R. Kniep and S. Busch [Angew. Chem. Int. Ed. Engl. 35 (1996) 2624].

  4. Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration?

    NASA Technical Reports Server (NTRS)

    Sumner, D. Y.; Grotzinger, J. P.

    1996-01-01

    Archean carbonates commonly contain decimetre- to metre-thick beds consisting entirely of fibrous calcite and neomorphosed fibrous aragonite that precipitated in situ on the sea floor. The fact that such thick accumulations of precipitated carbonate are rare in younger marine carbonates suggests an important change in the modes of calcium carbonate precipitation through time. Kinetics of carbonate precipitation depend on the concentration of inhibitors to precipitation that reduce crystallization rates and crystal nuclei formation, leading to kinetic maintenance of supersaturated solutions. Inhibitors also affect carbonate textures by limiting micrite precipitation and promoting growth of older carbonate crystals on the sea floor. Fe2+, a strong calcite-precipitation inhibitor, is thought to have been present at relatively high concentrations in Archean seawater because oxygen concentrations were low. The rise in oxygen concentration at 2.2-1.9 Ga led to the removal of Fe2+ from seawater and resulted in a shift from Archean facies, which commonly include precipitated beds, to Proterozoic facies, which contain more micritic sediment and only rare precipitated beds.

  5. Formation of hollow bone-like morphology of calcium carbonate on surfactant/polymer templates

    NASA Astrophysics Data System (ADS)

    Mantilaka, M. M. M. G. P. G.; Pitawala, H. M. T. G. A.; Rajapakse, R. M. G.; Karunaratne, D. G. G. P.; Upul Wijayantha, K. G.

    2014-04-01

    Novel hollow, bone-like structures of Precipitated Calcium Carbonate (PCC) are fabricated, for the first time, starting from naturally occurring dolomite. The hollow, bone-like structures are prepared by precipitating calcium carbonate on self-assembled poly(acrylic acid)/cetyltrimethylammonium chloride (PAA/CTAC) template. Fourier Transform Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and Field Emission Scanning Electron Microscopic (FE-SEM) studies reveal that the bone-like structure is composed of Amorphous Calcium Carbonate (ACC) nanoparticles in the center and calcite nanoparticles at the edges. Bone-like PCC particles are in particle length of 2-3 μm and particle width of 1 μm. The internal hollow structures of bone-like particles are observed from TEM images. As identified by FE-SEM images, the bone-like structure has been formed through the crystal growth of initially formed ACC nanoparticles. The ACC particles are stabilized in the center while the calcite crystals have been grown from the ACC toward the edges of the structure to form a bone-like morphology. We also propose a possible mechanism for the formation of hollow bone-like PCC in this study. The fabricated hollow, bone-like PCC has potential applications in the preparation of release systems such as drugs, cosmetics and pigments.

  6. Influence of some polysaccharides on the production of calcium carbonate filler particles

    NASA Astrophysics Data System (ADS)

    Kontrec, Jasminka; Kralj, Damir; Brečević, Ljerka; Falini, Giuseppe

    2008-10-01

    The influence of different water-soluble polysaccharides, dextrans (cationic, anionic and non-ionic) and soluble starch, on the precipitation of calcium carbonate, has been investigated in the model system in which calcium hydroxide and carbonic acid were reactants. In the absence of additives, the formation of metastable phases, vaterite and amorphous calcium carbonate is observed at the early stage of the process, and as a consequence of the solution-mediated transformation process calcite appears in the system as the only solid phase in equilibrium. In the presence of starch, vaterite is found in the final precipitate, with the content increasing with the increase of starch concentration, probably as a consequence of calcite nucleation and crystal growth inhibition. Non-ionic dextran causes the inhibition of vaterite nucleation, which results in the formation of calcite as a predominant solid phase throughout the precipitation process. The crystal size of the so-formed calcite reduces by increasing the relative molecular mass ( Mr) of neutral dextran. The presence of charged dextrans, either cationic or anionic, causes inhibition of the overall precipitation process: in the case of anionic dextran the inhibition seems to be the consequence of its reaction with Ca 2+ ions (supersaturation decrease), while cationic dextran most probably adsorbs electrostatically onto the negatively charged surfaces of calcite and vaterite.

  7. Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process

    NASA Astrophysics Data System (ADS)

    Gower, Laurie B.; Odom, Damian J.

    2000-03-01

    A polypeptide additive has been used to transform the solution crystallization of calcium carbonate to a solidification process of a liquid-phase mineral precursor. In situ observations reveal that polyaspartate induces liquid-liquid phase separation of droplets of a mineral precursor. The droplets deposit on the substrate and coalesce to form a coating, which then solidifies into calcitic tablets and films. Transition bars form during the amorphous to crystalline transition, leading to sectorization of calcite tablets, and the defect textures and crystal morphologies are atypical of solution grown crystals. The formation of nonequilibrium crystal morphologies using an acidic polypeptide may have implications in the field of biomineralization, and the environmentally friendly aspects of this polymer-induced liquid-precursor (PILP) process may offer new techniques for aqueous-based processing of ceramic films, coatings, and particulates.

  8. CALCIUM CARBONATE DISSOLUTION RATE IN LIMESTONE CONTACTORS

    EPA Science Inventory

    The rate of carbonate mineral dissolution from limestone was studied using a rotating disk apparatus and samples of limestone of varied composition. The purpose of this study was to determine the effect of limestone composition on the kinetics of carbonate mineral dissolution. Th...

  9. CALCIUM CARBONATE DISSOLUTION RATE IN LIMESTONE CONTRACTORS

    EPA Science Inventory

    The rate of carbonate mineral dissolution from limestone was studied using a rotating disk apparatus and samples of limestone of varied composition. he purpose of this study was to determine the effect of limestone composition on the kinetics of carbonate mineral dissolution. he ...

  10. ATP-stabilized amorphous calcium carbonate nanospheres and their application in protein adsorption.

    PubMed

    Qi, Chao; Zhu, Ying-Jie; Lu, Bing-Qiang; Zhao, Xin-Yu; Zhao, Jing; Chen, Feng; Wu, Jin

    2014-05-28

    Calcium carbonate is a common substance found in rocks worldwide, and is the main biomineral formed in shells of marine organisms and snails, pearls and eggshells. Amorphous calcium carbonate (ACC) is the least stable polymorph of calcium carbonate, which is so unstable under normal conditions that it is difficult to be prepared in vitro because it rapidly crystallizes to form one of the more stable polymorphs in aqueous solution. Herein, we report the successful synthesis of highly stable ACC nanospheres in vitro using adenosine 5'-triphosphate disodium salt (ATP) as a stabilizer. The effect of ATP on the stability of ACC nanospheres is investigated. Our experiments show that ATP plays an unique role in the stabilization of ACC nanospheres in aqueous solution. Moreover, the as-prepared ACC nanospheres are highly stable in phosphate buffered saline for a relatively long period of time (12 days) even under relatively high concentrations of calcium and phosphate ions. The cytotoxicity tests show that the as-prepared highly stable ACC nanospheres have excellent biocompatibility. The highly stable ACC nanospheres have high protein adsorption capacity, implying that they are promising for applications in biomedical fields such as drug delivery and protein adsorption. PMID:24578276

  11. A critical analysis of calcium carbonate mesocrystals

    PubMed Central

    Kim, Yi-Yeoun; Schenk, Anna S.; Ihli, Johannes; Kulak, Alex N.; Hetherington, Nicola B. J.; Tang, Chiu C.; Schmahl, Wolfgang W.; Griesshaber, Erika; Hyett, Geoffrey; Meldrum, Fiona C.

    2014-01-01

    The term mesocrystal has been widely used to describe crystals that form by oriented assembly, and that exhibit nanoparticle substructures. Using calcite crystals co-precipitated with polymers as a suitable test case, this article looks critically at the concept of mesocrystals. Here we demonstrate that the data commonly used to assign mesocrystal structure may be frequently misinterpreted, and that these calcite/polymer crystals do not have nanoparticle substructures. Although morphologies suggest the presence of nanoparticles, these are only present on the crystal surface. High surface areas are only recorded for crystals freshly removed from solution and are again attributed to a thin shell of nanoparticles on a solid calcite core. Line broadening in powder X-ray diffraction spectra is due to lattice strain only, precluding the existence of a nanoparticle sub-structure. Finally, study of the formation mechanism provides no evidence for crystalline precursor particles. A re-evaluation of existing literature on some mesocrystals may therefore be required. PMID:25014563

  12. Amorphous Calcium Carbonate Based-Microparticles for Peptide Pulmonary Delivery.

    PubMed

    Tewes, Frederic; Gobbo, Oliviero L; Ehrhardt, Carsten; Healy, Anne Marie

    2016-01-20

    Amorphous calcium carbonate (ACC) is known to interact with proteins, for example, in biogenic ACC, to form stable amorphous phases. The control of amorphous/crystalline and inorganic/organic ratios in inhalable calcium carbonate microparticles may enable particle properties to be adapted to suit the requirements of dry powders for pulmonary delivery by oral inhalation. For example, an amorphous phase can immobilize and stabilize polypeptides in their native structure and amorphous and crystalline phases have different mechanical properties. Therefore, inhalable composite microparticles made of inorganic (i.e., calcium carbonate and calcium formate) and organic (i.e., hyaluronan (HA)) amorphous and crystalline phases were investigated for peptide and protein pulmonary aerosol delivery. The crystalline/amorphous ratio and polymorphic form of the inorganic component was altered by changing the microparticle drying rate and by changing the ammonium carbonate and HA initial concentration. The bioactivity of the model peptide, salmon calcitonin (sCT), coprocessed with alpha-1-antitrypsin (AAT), a model protein with peptidase inhibitor activity, was maintained during processing and the microparticles had excellent aerodynamic properties, making them suitable for pulmonary aerosol delivery. The bioavailability of sCT after aerosol delivery as sCT and AAT-loaded composite microparticles to rats was 4-times higher than that of sCT solution. PMID:26692360

  13. Effect of indigenous plant extracts on calcium oxalate crystallization having a role in urolithiasis.

    PubMed

    Yasir, Fauzia; Waqar, Muhammad A

    2011-10-01

    Crystallization process has a major role in urolithiasis. In the present study, effect of two indigenous plants extracts namely Boerhavia diffusa and Bryophyllum pinnatum extract was determined on the crystallization of calcium oxalate crystals. Effect on the number, size and type of calcium oxalate crystals was observed. Results showed significant activity of both extracts against calcium oxalate crystallization at different concentrations (P < 0.05). Size of the crystals gradually reduced with the increasing concentration of both extracts. The number of calcium oxalate monohydrate crystals which are injurious to epithelial cells gradually reduced and at the highest concentration of extracts (100 mg/ml) completely disappeared (P < 0.05). These results confirm that B. diffusa and B. pinnatum extracts have antiurolithic activity and have the ability to reduce crystal size as well as to promote the formation of calcium oxalate dihydrate (COD) crystals rather than monohydrate (COM) crystals. Control of crystal size and formation of COD rather than COM crystals, in combination with the diuretic action of extracts is an important way to control urolithiasis. PMID:21643743

  14. 40 CFR 415.300 - Applicability; description of the calcium carbonate production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... calcium carbonate production subcategory. 415.300 Section 415.300 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Carbonate Production Subcategory § 415.300 Applicability; description of the calcium carbonate production subcategory. The provisions of this subpart are applicable to...

  15. 40 CFR 415.300 - Applicability; description of the calcium carbonate production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... calcium carbonate production subcategory. 415.300 Section 415.300 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Carbonate Production Subcategory § 415.300 Applicability; description of the calcium carbonate production subcategory. The provisions of this subpart are applicable to...

  16. 40 CFR 415.300 - Applicability; description of the calcium carbonate production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... calcium carbonate production subcategory. 415.300 Section 415.300 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Carbonate Production Subcategory § 415.300 Applicability; description of the calcium carbonate production subcategory. The provisions of this subpart are applicable to...

  17. 40 CFR 415.300 - Applicability; description of the calcium carbonate production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... calcium carbonate production subcategory. 415.300 Section 415.300 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Carbonate Production Subcategory § 415.300 Applicability; description of the calcium carbonate production subcategory. The provisions of this subpart are applicable to...

  18. 40 CFR 415.300 - Applicability; description of the calcium carbonate production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... calcium carbonate production subcategory. 415.300 Section 415.300 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Carbonate Production Subcategory § 415.300 Applicability; description of the calcium carbonate production subcategory. The provisions of this subpart are applicable to...

  19. Calcium oxalate crystals in the aragonite-producing green alga penicillus and related genera.

    PubMed

    Friedmann, E I; Roth, W C; Turner, J B; McEwen, R S

    1972-09-01

    Calcium oxalate crystals occur in the marine green algae Penicillus, Rhipocephalus, and Udotea, known as producers of sedimentary aragonite needles. In contrast to the externally deposited aragonite crystals which are generally < 15 micrometers long, the oxalate crystals are larger (up to 150 micrometers) and are located in the vacuolar system of the plant. No calcium oxalate was found in the related but noncalcifying genera Avrainvillea and Cladocephalus. PMID:17780990

  20. Catalysis of petroleum coke gasification by calcium hydroxide and carbonate

    SciTech Connect

    Ohtsuka, Yasuo; Yamauchi, Atsuko; Zhuang, Qianlin

    1996-12-31

    Catalysis of petroleum coke gasification in pure CO{sub 2} by Ca(OH){sub 2} or CaCO{sub 3} has been investigated with a thermobalance. The reactivity of the original coke is very low. Ca(OH){sub 2} kneaded with the carbon in water enhances the reactivity drastically, and thus realizes complete gasification at 900{degrees}C within 25 min. CaCO{sub 3} shows almost the same catalytic activity as Ca(OH){sub 2} except for the initial stage of gasification. The X-ray diffraction measurements and X-ray photoelectron spectroscopy of partly gasified samples reveal that the calcium promotes remarkably the formation of non-crystalline carbon, in other words, surface oxygen complexes, during gasification. The temperature programmed desorption shows that there are strong interactions between calcium and carbon, which contributes to the creation of reactive sites.

  1. CALCULATING THE PH OF CALCIUM CARBONATE SATURATION

    EPA Science Inventory

    Two new expressions for the pH of saturation (pH subs) were derived. One is a simplified equation developed from an aqueous carbonate equilibrium system in which correction for ionic strength was considered. The other is a more accurate quadratic formula that involves computerize...

  2. A Chemical Template for Synthesis of Molecular Sheets of Calcium Carbonate

    PubMed Central

    Rianasari, Ina; Benyettou, Farah; Sharma, Sudhir Kumar; Blanton, Thomas; Kirmizialtin, Serdal; Jagannathan, Ramesh

    2016-01-01

    Inspired by the discovery of graphene and its unique properties, we focused our research to develop a scheme to create nacre like lamellar structures of molecular sheets of CaCO3 interleaved with an organic material, namely carbon. We developed a facile, chemical template technique, using a formulation of poly(acrylic) acid (PAA) and calcium acetate to create lamellar stacks of single crystal sheets of CaCO3, with a nominal thickness of 17 Å, the same as a unit-cell dimension for calcite (c–axis = 17.062 Å), interleaved with amorphous carbon with a nominal thickness of 8 Å. The strong binding affinity between carboxylate anions and calcium cations in the formulation was used as a molecular template to guide CaCO3 crystallization. Computational modeling of the FTIR spectra showed good agreement with experimental data and confirmed that calcium ions are bridged between polymer chains, resulting in a net-like polymer structure. The process readily lends itself to explore the feasibility of creating molecular sheets of other important inorganic materials and potentially find applications in many fields such as super capacitors and “low k di-electric” systems. PMID:27145699

  3. A Chemical Template for Synthesis of Molecular Sheets of Calcium Carbonate.

    PubMed

    Rianasari, Ina; Benyettou, Farah; Sharma, Sudhir Kumar; Blanton, Thomas; Kirmizialtin, Serdal; Jagannathan, Ramesh

    2016-01-01

    Inspired by the discovery of graphene and its unique properties, we focused our research to develop a scheme to create nacre like lamellar structures of molecular sheets of CaCO3 interleaved with an organic material, namely carbon. We developed a facile, chemical template technique, using a formulation of poly(acrylic) acid (PAA) and calcium acetate to create lamellar stacks of single crystal sheets of CaCO3, with a nominal thickness of 17 Å, the same as a unit-cell dimension for calcite (c-axis = 17.062 Å), interleaved with amorphous carbon with a nominal thickness of 8 Å. The strong binding affinity between carboxylate anions and calcium cations in the formulation was used as a molecular template to guide CaCO3 crystallization. Computational modeling of the FTIR spectra showed good agreement with experimental data and confirmed that calcium ions are bridged between polymer chains, resulting in a net-like polymer structure. The process readily lends itself to explore the feasibility of creating molecular sheets of other important inorganic materials and potentially find applications in many fields such as super capacitors and "low k di-electric" systems. PMID:27145699

  4. Formations of calcium carbonate minerals by bacteria and its multiple applications.

    PubMed

    Anbu, Periasamy; Kang, Chang-Ho; Shin, Yu-Jin; So, Jae-Seong

    2016-01-01

    Biomineralization is a naturally occurring process in living organisms. In this review, we discuss microbially induced calcium carbonate precipitation (MICP) in detail. In the MICP process, urease plays a major role in urea hydrolysis by a wide variety of microorganisms capable of producing high levels of urease. We also elaborate on the different polymorphs and the role of calcium in the formation of calcite crystal structures using various calcium sources. Additionally, the environmental factors affecting the production of urease and carbonate precipitation are discussed. This MICP is a promising, eco-friendly alternative approach to conventional and current remediation technologies to solve environmental problems in multidisciplinary fields. Multiple applications of MICP such as removal of heavy metals and radionuclides, improve the quality of construction materials and sequestration of atmospheric CO2 are discussed. In addition, we discuss other applications such as removal of calcium ions, PCBs and use of filler in rubber and plastics and fluorescent particles in stationary ink and stationary markers. MICP technology has become an efficient aspect of multidisciplinary fields. This report not only highlights the major strengths of MICP, but also discusses the limitations to application of this technology on a commercial scale. PMID:27026942

  5. Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule

    PubMed Central

    Politi, Yael; Metzler, Rebecca A.; Abrecht, Mike; Gilbert, Benjamin; Wilt, Fred H.; Sagi, Irit; Addadi, Lia; Weiner, Steve; Gilbert, P. U. P. A.

    2008-01-01

    Sea urchin larval spicules transform amorphous calcium carbonate (ACC) into calcite single crystals. The mechanism of transformation is enigmatic: the transforming spicule displays both amorphous and crystalline properties, with no defined crystallization front. Here, we use X-ray photoelectron emission spectromicroscopy with probing size of 40–200 nm. We resolve 3 distinct mineral phases: An initial short-lived, presumably hydrated ACC phase, followed by an intermediate transient form of ACC, and finally the biogenic crystalline calcite phase. The amorphous and crystalline phases are juxtaposed, often appearing in adjacent sites at a scale of tens of nanometers. We propose that the amorphous-crystal transformation propagates in a tortuous path through preexisting 40- to 100-nm amorphous units, via a secondary nucleation mechanism. PMID:18987314

  6. Divalent europium doped and un-doped calcium iodide scintillators: Scintillator characterization and single crystal growth

    NASA Astrophysics Data System (ADS)

    Boatner, L. A.; Ramey, J. O.; Kolopus, J. A.; Neal, John S.

    2015-06-01

    The alkaline-earth scintillator, CaI2:Eu2+, was initially discovered around 1964 by Hofstadter, Odell, and Schmidt. Serious practical problems quickly arose, however, that were associated with the growth of large monolithic single crystals of this material due to its lamellar, mica-like structure. As a result of its theoretically higher light yield, CaI2:Eu2+ has the potential to exceed the excellent scintillation performance of SrI2:Eu2+. In fact, theoretical predictions for the light yield of CaI2:Eu2+ scintillators suggested that an energy resolution approaching 2% at 662 keV could be achievable. As in the case of the early SrI2:Eu2+ scintillator, the performance of CaI2:Eu2+ scintillators has traditionally suffered due, at least in part, to outdated materials synthesis, component stoichiometry/purity, and single-crystal-growth techniques. Based on our recent work on SrI2:Eu2+ scintillators in single-crystal form, we have developed new techniques that are applied here to CaI2:Eu2+ and pure CaI2 with the goal of growing large un-cracked crystals and, potentially, realizing the theoretically predicted performance of the CaI2:Eu2+ form of this material. Calcium iodide does not adhere to modern glassy carbon Bridgman crucibles-so there should be no differential thermal-contraction-induced crystal/crucible stresses on cooling that would result in crystal cracking of the lamellar structure of CaI2. Here we apply glassy carbon crucible Bridgman growth, high-purity growth-charge compounds, our molten salt processing/filtration technique, and extended vacuum-melt-pumping methods to the growth of both CaI2:Eu2+ and un-doped CaI2. Large scintillating single crystals were obtained, and detailed characterization studies of the scintillation properties of CaI2:Eu2+ and pure CaI2 single crystals are presented that include studies of the effects of plastic deformation of the crystals on the scintillator performance.

  7. Divalent Europium Doped and Un-doped Calcium Iodide Scintillators: Scintillator Characterization and Single Crystal Growth

    DOE PAGESBeta

    Boatner, Lynn A; Ramey, Joanne Oxendine; Kolopus, James A; Neal, John S

    2015-01-01

    The alkaline-earth scintillator, CaI2:Eu2+, was initially discovered around 1964 by Hofstadter, Odell, and Schmidt. Serious practical problems quickly arose, however, that were associated with the growth of large monolithic single crystals of this material due to its lamellar, mica-like structure. As a result of its theoretically higher light yield, CaI2:Eu2+ has the potential to exceed the excellent scintillation performance of SrI2:Eu2+. In fact, theoretical predictions for the light yield of CaI2:Eu2+ scintillators suggested that an energy resolution approaching 2% at 662 keV could be achievable. As in the case of the early SrI2:Eu2+ scintillator, the performance of CaI2:Eu2+ scintillators hasmore » traditionally suffered due, at least in part, to outdated materials synthesis, component stoichiometry/purity, and single-crystal-growth techniques. Based on our recent work on SrI2:Eu2+ scintillators in single-crystal form, we have developed new techniques that are applied here to CaI2:Eu2+ and pure CaI2 with the goal of growing large un-cracked crystals and, potentially, realizing the theoretically predicted performance of the CaI2:Eu2+ form of this material. Calcium iodide does not adhere to modern glassy carbon Bridgman crucibles - so there should be no differential thermal-contraction-induced crystal/crucible stresses on cooling that would result in crystal cracking of the lamellar structure of CaI2. Here we apply glassy carbon crucible Bridgman growth, high-purity growth-charge compounds, our molten salt processing/filtration technique, and extended vacuum-melt-pumping methods to the growth of both CaI2:Eu2+ and un-doped CaI2. Large scintillating single crystals were obtained, and detailed characterization studies of the scintillation properties of CaI2:Eu2+ and pure CaI2 single crystals are presented that include studies of the effects of plastic deformation of the crystals on the scintillator performance.« less

  8. Divalent Europium Doped and Un-doped Calcium Iodide Scintillators: Scintillator Characterization and Single Crystal Growth

    SciTech Connect

    Boatner, Lynn A; Ramey, Joanne Oxendine; Kolopus, James A; Neal, John S

    2015-01-01

    The alkaline-earth scintillator, CaI2:Eu2+, was initially discovered around 1964 by Hofstadter, Odell, and Schmidt. Serious practical problems quickly arose, however, that were associated with the growth of large monolithic single crystals of this material due to its lamellar, mica-like structure. As a result of its theoretically higher light yield, CaI2:Eu2+ has the potential to exceed the excellent scintillation performance of SrI2:Eu2+. In fact, theoretical predictions for the light yield of CaI2:Eu2+ scintillators suggested that an energy resolution approaching 2% at 662 keV could be achievable. As in the case of the early SrI2:Eu2+ scintillator, the performance of CaI2:Eu2+ scintillators has traditionally suffered due, at least in part, to outdated materials synthesis, component stoichiometry/purity, and single-crystal-growth techniques. Based on our recent work on SrI2:Eu2+ scintillators in single-crystal form, we have developed new techniques that are applied here to CaI2:Eu2+ and pure CaI2 with the goal of growing large un-cracked crystals and, potentially, realizing the theoretically predicted performance of the CaI2:Eu2+ form of this material. Calcium iodide does not adhere to modern glassy carbon Bridgman crucibles - so there should be no differential thermal-contraction-induced crystal/crucible stresses on cooling that would result in crystal cracking of the lamellar structure of CaI2. Here we apply glassy carbon crucible Bridgman growth, high-purity growth-charge compounds, our molten salt processing/filtration technique, and extended vacuum-melt-pumping methods to the growth of both CaI2:Eu2+ and un-doped CaI2. Large scintillating single crystals were obtained, and detailed characterization studies of the scintillation properties of CaI2:Eu2+ and pure CaI2 single crystals are presented that include studies of the effects of plastic deformation of the crystals on the scintillator performance.

  9. Textural properties of synthetic nano-calcite produced by hydrothermal carbonation of calcium hydroxide

    NASA Astrophysics Data System (ADS)

    Montes-Hernandez, G.; Fernández-Martínez, A.; Charlet, L.; Tisserand, D.; Renard, F.

    2008-05-01

    The hydrothermal carbonation of calcium hydroxide (Ca(OH) 2) at high pressure of CO 2 (initial P=55 bar) and moderate to high temperature (30 and 90 °C) was used to synthesize fine particles of calcite. This method allows a high carbonation efficiency (about 95% of Ca(OH) 2-CaCO 3 conversion), a significant production rate (48 kg/m 3 h) and high purity of product (about 96%). However, the various initial physicochemical conditions have a strong influence on the crystal size and surface area of the synthesized calcite crystals. The present study is focused on the estimation of the textural properties of synthesized calcite (morphology, specific surface area, average particle size, particle size distribution and particle size evolution with reaction time), using Rietveld refinements of X-ray diffraction (XRD) spectra, Brunauer-Emmett-Teller (BET) measurements, and scanning electron microscope (SEM) and transmission electron microscope (TEM) observations. This study demonstrate that the pressure, the temperature and the dissolved quantity of CO 2 have a significant effect on the average particle size, specific surface area, initial rate of precipitation, and on the morphology of calcium carbonate crystals. In contrast, these PT x conditions used herein have an insignificant effect on the carbonation efficiency of Ca(OH) 2. Finally, the results presented here demonstrate that nano-calcite crystals with high specific surface area ( SBET=6-10 m 2/g) can be produced, with a high potential for industrial applications such as adsorbents and/or filler in papermaking industry.

  10. Calcium carbonate scale control, effect of material and inhibitors.

    PubMed

    Macadam, J; Parsons, S A

    2004-01-01

    This paper focuses on developing a reproducible method for reducing calcium carbonate scale formation on heated surfaces where scaling can cause serious problems. It is known that calcium carbonate precipitation is sensitive to impurity ions, such as iron and zinc, even at trace concentration levels. In this paper two sets of experiments are reported. The first experiments were undertaken to investigate the effect of zinc, copper and iron dosing on CaCO3 nucleation and precipitation. Results from the experiments showed that the most effective inhibitor of CaCO3 precipitation was zinc and the effect was linked to dose levels and temperature. Copper and iron had little effect on precipitation in the dose range investigated. The second trial was undertaken to translate the precipitation data to scale formation. These tests were undertaken at 70 degrees C. 5 mg x L(-1) zinc dose reduced the scale formation by 35%. The effect of iron on calcium carbonate scaling rate was not significant. The physical nature of the material on which the scale is formed also influences the scaling. The scaling experiment was also used to investigate the effect of different surface material (stainless steel, copper and aluminium) on CaCO3 scale formation. Copper surface scaled the most. PMID:14982176

  11. Synthesis of nano precipitated calcium carbonate by using a carbonation process through a closed loop reactor

    NASA Astrophysics Data System (ADS)

    Thriveni, Thenepalli; Ahn, Ji Whan; Ramakrishna, Chilakala; Ahn, Young Jun; Han, Choon

    2016-01-01

    Nano calcium carbonate particles have a wide range of industrial applications due to their beneficial properties such as high porosity and high surface area to volume ratio and due to their strengthening the mechanical properties of plastics and paper. Consequently, significant research has been done to deliver a new approach for the synthesis of precipitated nano calcium carbonate by using a carbonation process through a closed loop reactor. Both the experimental and the instrumental parameters, i.e. the CO2 flow rate, the concentration of the starting materials (Ca(OH)2 and CaO), the pH, the orifice diameter, etc., were investigated. The carbonation efficiency was increased due to the diffusion process involved in the loop reactor. The particle size was affected by the CO2 flow rate, reaction time, and orifice diameter. Finally, precipitated nano calcite calcium carbonate (50 to 100 nm) was synthesized by optimizing all the experimental and the instrumental parameters. The synthesized precipitated nano calcium carbonate was characterized by using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. This study has proved that the carbonation efficiency can be enhanced for a short time by using a loop reactor and that the carbonation process was more energy efficient and cost effective than other conventional methods.

  12. Carbon monoxide inhibits capacitative calcium entry in human platelets.

    PubMed

    Gende, Oscar A

    2004-01-01

    The cytosolic calcium concentration in human platelets is elevated by several agonists via receptor-operated mechanisms involving both Ca(2+) release from intracellular stores and Ca(2+) entry. In order to get a mechanistic insight in the effect of carbon monoxide (CO)-containing solutions, this work examines the changes in [Ca(2+)](i) induced by 100 microM adenosine 5'diphosphate (ADP), 0.1 IU/ ml thrombin, 0.5 microM thapsigargin or 0.5 microM ionomycin in human platelets. In a saline solution bubbled with CO, the increase of [Ca(2+)](i) produced by thrombin was 72+/-4% of the response evoked in the control solution (CO-free) and the response elicited by ADP was 64+/-8% of the control. When a mixture of 5% CO/95% N(2) was used, the responses were 70+/-7% of control for thrombin and 79+/-6% of control for ADP. The mobilization of stored calcium produced by thrombin in a calcium-free solution and the increase of [Ca(2+)](i) produced by subsequent introduction of 1 mM extracellular calcium were both reduced in the presence of CO (82+/-6% and 78+/-5% of control, respectively). Similar reductions in the presence of CO were found when platelets were stimulated by ADP (62+/-8% and 60+/-8% for mobilization in calcium-free media and calcium entry, respectively). Although the change in [Ca(2+)](i) induced by ionomycin in the presence of extracellular calcium was almost the same in the absence or presence of CO (97+/-5% of control), the entry induced by depletion of reservoirs with the ionophore undergoes a significant reduction in a solution bubbled with CO (84+/-5% of control). In agreement with the concept that CO has a direct inhibitory effect on capacitative calcium entry, a reduction to 47+/-6% of control was obtained when sarco/endoplasmic reticulum ATPase was blocked by thapsigargin. Diverse mechanisms could be responsible for the effect of CO on calcium entry. On the one hand, a decrease in the calcium release from intracellular stores or an increase in the rate of its back-sequestration could occur, being the reduction of capacitative calcium entry an indirect consequence of a diminished emptying of reservoirs. On the other hand, CO could have a direct inhibitory effect on the pathway that produces the calcium entry. The decrease in the Ca(2+) signal in the presence of CO evoked by receptor-independent emptying of reservoirs indicates that a direct effect of CO on capacitative calcium entry participates in the antiaggregatory properties of CO. The proposal that CO inhibits directly store-operated calcium influx widens the potential mechanisms by which heme oxygenase regulates cell functions. PMID:15306153

  13. Arthritis associated with calcium oxalate crystals in an anephric patient treated with peritoneal dialysis

    SciTech Connect

    Rosenthal, A.; Ryan, L.M.; McCarty, D.J.

    1988-09-02

    The authors report a case of calcium oxalate arthropathy in a woman undergoing intermittent peritoneal dialysis who was not receiving pharmacologic doses of ascorbic acid. She developed acute arthritis, with calcium oxalate crystals in Heberden's and Bouchard's nodes, a phenomenon previously described in gout. Intermittent peritoneal dialysis may be less efficient than hemodialysis in clearing oxalate, and physicians should now consider calcium oxalate-associated arthritis in patients undergoing peritoneal dialysis who are not receiving large doses of ascorbic acid.

  14. Effect of some organic solvent-water mixtures composition on precipitated calcium carbonate in carbonation process

    NASA Astrophysics Data System (ADS)

    Konopacka-Łyskawa, Donata; Kościelska, Barbara; Karczewski, Jakub

    2015-05-01

    Precipitated calcium carbonate particles were obtained during carbonation of calcium hydroxide slurry with carbon dioxide. Aqueous solutions of isopropyl alcohol, n-butanol and glycerol were used as solvents. Concentration of organic additives in the reactive mixture was from 0% to 20% (vol). Precipitation process were performed in a stirred tank reactor equipped with gas distributor. Multimodal courses of particles size distribution were determined for produced CaCO3 particles. Calcium carbonate as calcite was precipitated in all experiments. The mean Sauter diameter of CaCO3 particles decreased when the concentration of all used organic additives increased. The amount of small particle fraction in the product increased with the increasing concentration of organic solvents. Similar physical properties of used liquid phase resulted in the similar characteristics of obtained particles.

  15. ADVANCES IN OUR UNDERSTANDING OF CALCIUM OXALATE CRYSTAL FORMATION AND FUNCTION IN PLANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium oxalate crystal formation in plants appears to play a central role in a variety of important functions, including tissue calcium regulation, protection from herbivory, and metal detoxification. Evidence is mounting to support ascorbic acid as the primary precursor to oxalate biosynthesis. ...

  16. ISOLATED MEDICAGO TRUNCATULA MUTANTS WITH INCREASED CALCIUM OXALATE CRYSTAL ACCUMULATION HAVE DECREASED ASCORBIC ACID LEVELS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mechanisms controlling oxalate biosynthesis and calcium oxalate formation in plants remains largely unknown. As an initial step toward gaining insight into these regulatory mechanisms we initiated a mutant screen to identify plants that over-accumulate crystals of calcium oxalate. Four new mut...

  17. Randomized crossover study comparing the phosphate-binding efficacy of calcium ketoglutarate versus calcium carbonate in patients on chronic hemodialysis.

    PubMed

    Bro, S; Rasmussen, R A; Handberg, J; Olgaard, K; Feldt-Rasmussen, B

    1998-02-01

    The objective of the study was to evaluate the phosphate-binding efficacy, side effects, and cost of therapy of calcium ketoglutarate granulate as compared with calcium carbonate tablets in patients on chronic hemodialysis. The study design used was a randomized, crossover open trial, and the main outcome measurements were plasma ionized calcium levels, plasma phosphate levels, plasma intact parathyroid hormone (PTH) levels, requirements for supplemental aluminum-aminoacetate therapy, patient tolerance, and cost of therapy. Nineteen patients on chronic hemodialysis were treated with a dialysate calcium concentration of 1.25 mmol/L and a fixed alfacalcidol dose for at least 2 months. All had previously tolerated therapy with calcium carbonate. Of the 19 patients included, 10 completed both treatment arms. After 12 weeks of therapy, the mean (+/-SEM) plasma ionized calcium level was significantly lower in the ketoglutarate arm compared with the calcium carbonate arm (4.8+/-0.1 mg/dL v 5.2+/-0.1 mg/dL; P = 0.004), whereas the mean plasma phosphate (4.5+/-0.3 mg/dL v 5.1+/-0.1 mg/dL) and PTH levels (266+/-125 pg/mL v 301+/-148 pg/mL) did not differ significantly between the two treatment arms. Supplemental aluminum-aminoacetate was not required during calcium ketoglutarate treatment, while two patients needed this supplement when treated with calcium carbonate. Five of 17 (29%) patients were withdrawn from calcium ketoglutarate therapy within 1 to 2 weeks due to intolerance (anorexia, vomiting, diarrhea, general uneasiness), whereas the remaining 12 patients did not experience any side effects at all. The five patients with calcium ketoglutarate intolerance all had pre-existing gastrointestinal symptoms; four of them had received treatment with cimetidine or omeprazol before inclusion into the study. Calculations based on median doses after 12 weeks showed that the cost of the therapy in Denmark was 10 times higher for calcium ketoglutarate compared with calcium carbonate (US$6.00/d v US$0.65/d). Calcium ketoglutarate may be an effective and safe alternative to treatment with aluminum-containing phosphate binders in patients on hemodialysis who are intolerant of calcium carbonate or acetate because of hypercalcemia. However, care must be exercised when dealing with patients with pre-existing gastrointestinal discomfort. Due to the high cost of the therapy, calcium ketoglutarate should be used only for selected patients. PMID:9469496

  18. Plants defective in calcium oxalate crystal formation have more bioavailable calcium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioavailable calcium affects bone formation and calcification. Here we investigate how a single gene mutation altering calcium partitioning in the forage crop Medicago truncatula affects calcium bioavailability. Previously, the cod5 Medicago mutant was identified which contains wild-type amounts o...

  19. Calcium Carbonate Precipitation by Bacillus and Sporosarcina Strains Isolated from Concrete and Analysis of the Bacterial Community of Concrete.

    PubMed

    Kim, Hyun Jung; Eom, Hyo Jung; Park, Chulwoo; Jung, Jaejoon; Shin, Bora; Kim, Wook; Chung, Namhyun; Choi, In-Geol; Park, Woojun

    2016-03-28

    Microbially induced calcium carbonate precipitation (CCP) is a long-standing but re-emerging environmental engineering process for production of self-healing concrete, bioremediation, and long-term storage of CO2. CCP-capable bacteria, two Bacillus strains (JH3 and JH7) and one Sporosarcina strain (HYO08), were isolated from two samples of concrete and characterized phylogenetically. Calcium carbonate crystals precipitated by the three strains were morphologically distinct according to field emission scanning electron microscopy. Energy dispersive X-ray spectrometry mapping confirmed biomineralization via extracellular calcium carbonate production. The three strains differed in their physiological characteristics: growth at alkali pH and high NaCl concentrations, and urease activity. Sporosarcina sp. HYO08 and Bacillus sp. JH7 were more alkali- and halotolerant, respectively. Analysis of the community from the same concrete samples using barcoded pyrosequencing revealed that the relative abundance of Bacillus and Sporosarcina species was low, which indicated low culturability of other dominant bacteria. This study suggests that calcium carbonate crystals with different properties can be produced by various CCP-capable strains, and other novel isolates await discovery. PMID:26699752

  20. Synthesis of calcium carbonate using extract components of croaker gill as morphology and polymorph adjust control agent.

    PubMed

    Chen, Hao; Qing, Chengsong; Zheng, Jiaoling; Liu, Yuxi; Wu, Gang

    2016-06-01

    Biomimetic synthesis of calcium carbonate with various polymorphs, sizes and morphologies by using organic substrates has become an interesting topic for the last years. Calcium carbonate has been synthesized by the reaction of Na2CO3 and CaCl2 in the presence of extract components of croaker gill. The products were characterized by powder X-ray diffraction (PXRD) and Fourier transform infrared (FT-IR) spectrum, and particle morphologies were observed by scanning electron microscope (SEM). The results show that at lower concentration yellow croaker gill extract has no effect on calcium carbonate crystal polymorph. Calcite was obtained only. But the morphologies of calcite particle change with the increase of the concentration. The corners of the particle change from angular to curved. However, with the further increase of the concentration of yellow croaker gill extract, the calcium carbonate obtained is a mixture of calcite and vaterite. The vaterite component in the mixture rises with increasing concentration of extract solution, indicating that the proteins from the yellow croaker gill during growth play a crucial role in stabilizing and directing the crystal growth. PMID:27040242

  1. Magnesium and calcium in carbonate bedrock and groundwaters, Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Crowther, J.

    Groundwaters draining Kuala Lumpur Limestone, Kinta Limestone and limestones of the Setul Formation were monitored over a 1 yr period. The closeness of the mean Mg:Ca + Mg ratios of the groundwaters (12.8%) and bedrock (13.3%) indicates calcium and magnesium dissolution to be broadly congruent. Ratios < 2.5and> 35% are much less common in groundwaters than in bedrock because of: (i) heterogeneity in bedrock mineralogy within groundwater catchments; (ii) differential solubilities of calcium and magnesium in calcites, high magnesium calcites and dolomites; and (iii) preferential precipitation of calcium in secondary carbonate deposits. In groundwaters with variable discharges, Mg:Ca + Mg correlates negatively with discharge, as calcium deposition per unit volume of water diminishes at higher flows. Use of groundwater survey data to locate areas of dolomitization and make specific inferences about the mineralogy of limestone formations is discussed, and estimates of net chemical denudation rates (range, 56.6-70.9m 3/km 2/yr) are presented.

  2. Fractional absorption of active absorbable algal calcium (AAACa) and calcium carbonate measured by a dual stable-isotope method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the use of stable isotopes, this study aimed to compare the bioavailability of active absorbable algal calcium (AAACa), obtained from oyster shell powder heated to a high temperature, with an additional heated seaweed component (Heated Algal Ingredient, HAI), with that of calcium carbonate. In ...

  3. A comparative study of calcium absorption following a single serving administration of calcium carbonate powder versus calcium citrate tablets in healthy premenopausal women

    PubMed Central

    Wang, Haiyuan; Bua, Peter; Capodice, Jillian

    2014-01-01

    Background Calcium is an essential mineral often taken as a daily, long-term nutritional supplement. Data suggests that once-daily dosing is important with regard to long-term compliance of both drugs and nutritional supplements. Objective This study was undertaken to compare the bioavailability of a single serving of two calcium supplements in healthy, premenopausal women. Design A two-period, crossover bioavailability study of a single serving of calcium citrate tablets (two tablets=500 mg calcium) versus a single serving of calcium carbonate powder (one packet of powder=1,000 mg calcium) was performed in healthy women aged between 25 and 45. All subjects were on a calcium-restricted diet 7 days prior to testing and fasted for 12 h before being evaluated at 0, 1, 2, and 4 h after oral administration of the test agents. Blood measurements for total and ionized calcium and parathyroid hormone were performed and adverse events were monitored. Results Twenty-three women were evaluable with a mean age of 33.2±8.71. Results showed that administration of a single serving of a calcium carbonate powder resulted in greater absorption in total and ionized calcium versus a single serving of calcium citrate tablets at 4 h (4.25±0.21 vs. 4.16±0.16, p=0.001). There were minimal side effects and no reported serious adverse events. Conclusions This study shows that a single serving of a calcium carbonate powder is more bioavailable than a single serving of calcium citrate tablets. This may be beneficial for long-term compliance. PMID:24772062

  4. Precipitation of calcium carbonate and calcium phosphate under diffusion controlled mixing

    SciTech Connect

    Tsigabu Gebrehiwet; James R. Henriksen; Luanjing Guo; Don T. Fox; Hai Huang; Lee Tu; Yoshiko Fujita; Robert W. Smith; George Redden

    2014-07-01

    Multi-component mineral precipitation in porous, subsurface environments is challenging to simulate or engineer when in situ reactant mixing is controlled by diffusion. In contrast to well-mixed systems, the conditions that favor mineral precipitation in porous media are distributed along chemical gradients, which evolve spatially due to concurrent mineral precipitation and modification of solute transport in the media. The resulting physical and chemical characteristics of a mixing/precipitation zone are a consequence of coupling between transport and chemical processes, and the distinctive properties of individual chemical systems. We examined the spatial distribution of precipitates formed in “double diffusion” columns for two chemical systems, calcium carbonate and calcium phosphate. Polyacrylamide hydrogel was used as a low permeability, high porosity medium to maximize diffusive mixing and minimize pressure- and density-driven flow between reactant solutions. In the calcium phosphate system, multiple, visually dense and narrow bands of precipitates were observed that were reminiscent of previously reported Liesegang patterns. In the calcium carbonate system, wider precipitation zones characterized by more sparse distributions of precipitates and a more open channel structure were observed. In both cases, formation of precipitates inhibited, but did not necessarily eliminate, continued transport and mixing of the reactants. A reactive transport model with fully implicit coupling between diffusion, chemical speciation and precipitation kinetics, but where explicit details of nucleation processes were neglected, was able to qualitatively simulate properties of the precipitation zones. The results help to illustrate how changes in the physical properties of a precipitation zone depend on coupling between diffusion-controlled reactant mixing and chemistry-specific details of precipitation kinetics.

  5. Synthesis of some calcium phosphate crystals using the useful biomass for immobilization of microorganisms

    NASA Astrophysics Data System (ADS)

    Kohiruimaki, T.

    2011-10-01

    Three sources of biomass generated by primary industry were used as the raw material for the synthesis of calcium phosphate crystals. Phosphoric acid was extracted from burned rice chaff using a 30% nitric acid solution, while scallop shells and gypsum of plasterboard were used as calcium sources. The calcium phosphate crystals were synthesized by a method involving homogeneous precipitation, and the relationship between the composition and shape of the crystals and the pH at the time of the precipitation was investigated. Monetite crystals in a petal form with a diameter ranging from 0.1 to 2 μm were precipitated at pH 2.0, while granular apatite crystals with a mean diameter of 1 μm were precipitated at pH 6.0. We also investigated the ability of the synthesized calcium phosphate crystals to immobilize lactic acid bacteria for practical use in industrial bioreactor. It was determined that monetite crystals with a diameter of 2 μm had the highest ability to fix lactic acid bacteria. The population of lactic acid bacteria was estimated to exceed 1,300 bacteria per crystal surface of 50 μm2 suggesting that these crystals may be of practical use in industrial fermenters.

  6. Multi-Functions of Carbonated Calcium Deficient Hydroxyapatite (CDHA)

    NASA Astrophysics Data System (ADS)

    Zhou, Huan

    Natural bone is a complex composite mainly constituted of inorganic minerals and organic collagen molecules. Calcium phosphate (CaP) based materials have been proposed as the predominant bone substitute for bone tissue engineering applications due to their chemical similarity to bone mineral. Amorphous carbonated calcium deficient hydroxyapatite (CDHA) is an important compound among CaP materials because of the amorphous crystallite structure. The presence of extra ions in its lattice structure not only influences cell attachment and proliferation of osteoblasts, but also helps in bone metabolism. Biomimetic coating approach is the most widely used approach to produce CDHA coatings to implant. It is a process using simulated body fluid (SBF) to deposit bone-like CDHA coating to various material surfaces. The CDHA formation mechanism, SBF compositions and reacting conditions of biomimetic coating have already been sufficiently studied and compared in the past 20 years. It is an attempt in this thesis to explore new applications of SBF in biomedical research, focusing on different biomaterial applications: 1) based on the low temperature reaction condition of SBF, bisphosphonate incorporated CDHA coatings were deposited onto Ti6Al4V surface for the treatment of osteoporosis; 2) amorphous calcium phosphate nanospheres with extra elements in the lattice structure were prepared by a novel microwave assisted approach, providing a new potential of CaP materials production; 3) CDHA particles formed in SBF can be used as great fillers with biopolymers for preparing biocomposites for biomedical applications; 4) based on the high activity of CDHA amorphous structure and the stabilization ability of ethanol, yttrium and europium doped calcium phosphates were prepared using CDHA as a sacrificing template. In the end, future work based on these observations in the thesis is addressed, including areas of drug delivery, biocomposite fabrication and preparation of functionalized calcium phosphate materials.

  7. Characterization of bacteria isolated from palaeoproterozoic metasediments for sequestration of carbon dioxide and formation of calcium carbonate.

    PubMed

    Srivastava, Shaili; Bharti, Randhir K; Thakur, Indu Shekhar

    2015-01-01

    Bacterial community of palaeoproterozoic metasediments was enriched in the chemostat in the presence of different concentrations of NaHCO3. Six bacterial isolates were isolated from the chemostat on nutrient agar plates on the basis of distinct morphology. Denaturing gradient gel electrophoresis (DGGE) proved the presence of six operational taxonomic units (OTUs) at 50 and 100 mM NaHCO3. The OTU was reduced to three and one at enrichment concentration of 150 and 200 mM NaHCO3 respectively. These six isolates were tested for sequestration of carbon dioxide by (14)C metabolic labeling of NaH(14)CO3. Among the six isolates, one of the bacterium showed better potency to fix radiolabeled NaH(14)CO3. The isolate (ISTD04) was identified as Serratia sp. by 16S ribosomal RNA (16S rRNA) sequence analysis and was found to be same as the DGGE OTU sequence at 200-mM NaHCO3 concentration. The bacterium was tested for product formation in form of calcite crystals in presence of 5 % CO2. Scanning electron microscopy (SEM) of product formed by the bacterium revealed defined faceted rhombohedral structure which resembled calcite and vaterite phases of the crystal. Formation of calcium carbonate crystals was further confirmed by Fourier transform infrared (FTIR) spectroscopy as carbonate group showing strong vibration at 1,456 cm(-1). Major calcite phase diffraction peaks were determined by X-ray diffraction (XRD) analysis, and energy-dispersive X-ray (EDX) analysis showed the presence of CaO (72 %) and carbon (18 %). Bacterium use bicarbonate as carbon source for their growth as well as by-product formation in form of calcite shows carbon circulation and storage. PMID:25163561

  8. Increased calcium absorption from synthetic stable amorphous calcium carbonate: double-blind randomized crossover clinical trial in postmenopausal women.

    PubMed

    Vaisman, Nachum; Shaltiel, Galit; Daniely, Michal; Meiron, Oren E; Shechter, Assaf; Abrams, Steven A; Niv, Eva; Shapira, Yami; Sagi, Amir

    2014-10-01

    Calcium supplementation is a widely recognized strategy for achieving adequate calcium intake. We designed this blinded, randomized, crossover interventional trial to compare the bioavailability of a new stable synthetic amorphous calcium carbonate (ACC) with that of crystalline calcium carbonate (CCC) using the dual stable isotope technique. The study was conducted in the Unit of Clinical Nutrition, Tel Aviv Sourasky Medical Center, Israel. The study population included 15 early postmenopausal women aged 54.9 ± 2.8 (mean ± SD) years with no history of major medical illness or metabolic bone disorder, excess calcium intake, or vitamin D deficiency. Standardized breakfast was followed by randomly provided CCC or ACC capsules containing 192 mg elemental calcium labeled with 44Ca at intervals of at least 3 weeks. After swallowing the capsules, intravenous CaCl2 labeled with 42Ca on was administered on each occasion. Fractional calcium absorption (FCA) of ACC and CCC was calculated from the 24-hour urine collection following calcium administration. The results indicated that FCA of ACC was doubled (± 0.96 SD) on average compared to that of CCC (p < 0.02). The higher absorption of the synthetic stable ACC may serve as a more efficacious way of calcium supplementation. PMID:24753014

  9. CALCIUM OXALATE CRYSTALS IN LEAVES OF GLYCINE SPECIES AND RELATED TAXA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium oxalate (CaOx) crystals occur in about three-fourths of all the flowering plants. The location and structure of the crystals have been used in some systematic studies. The Genus Glycine includes the cultivated soybean, the wild annual soybean, and about 22 wild perennial species. Our obje...

  10. Leaf calcium oxalate crystal structure and its role in defense against a chewing insect in Medicago truncatula

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crystals of calcium oxalate are common in plants and widely distributed among many plant families. These hard and largely insoluble crystals take on many shapes and sizes depending on the tissue and species. In Medicago truncatula, calcium oxalate crystals are abundant in leaves and accumulate in sh...

  11. Calcium isotope evidence for suppression of carbonate dissolution in carbonate-bearing organic-rich sediments

    NASA Astrophysics Data System (ADS)

    Turchyn, Alexandra V.; DePaolo, Donald J.

    2011-11-01

    Pore fluid calcium isotope, calcium concentration and strontium concentration data are used to measure the rates of diagenetic dissolution and precipitation of calcite in deep-sea sediments containing abundant clay and organic material. This type of study of deep-sea sediment diagenesis provides unique information about the ultra-slow chemical reactions that occur in natural marine sediments that affect global geochemical cycles and the preservation of paleo-environmental information in carbonate fossils. For this study, calcium isotope ratios (δ 44/40Ca) of pore fluid calcium from Ocean Drilling Program (ODP) Sites 984 (North Atlantic) and 1082 (off the coast of West Africa) were measured to augment available pore fluid measurements of calcium and strontium concentration. Both study sites have high sedimentation rates and support quantitative sulfate reduction, methanogenesis and anaerobic methane oxidation. The pattern of change of δ 44/40Ca of pore fluid calcium versus depth at Sites 984 and 1082 differs markedly from that of previously studied deep-sea Sites like 590B and 807, which are composed of nearly pure carbonate sediment. In the 984 and 1082 pore fluids, δ 44/40Ca remains elevated near seawater values deep in the sediments, rather than shifting rapidly toward the δ 44/40Ca of carbonate solids. This observation indicates that the rate of calcite dissolution is far lower than at previously studied carbonate-rich sites. The data are fit using a numerical model, as well as more approximate analytical models, to estimate the rates of carbonate dissolution and precipitation and the relationship of these rates to the abundance of clay and organic material. Our models give mutually consistent results and indicate that calcite dissolution rates at Sites 984 and 1082 are roughly two orders of magnitude lower than at previously studied carbonate-rich sites, and the rate correlates with the abundance of clay. Our calculated rates are conservative for these sites (the actual rates could be significantly slower) because other processes that impact the calcium isotope composition of sedimentary pore fluid have not been included. The results provide direct geochemical evidence for the anecdotal observation that the best-preserved carbonate fossils are often found in clay or organic-rich sedimentary horizons. The results also suggest that the presence of clay minerals has a strong passivating effect on the surfaces of biogenic carbonate minerals, slowing dissolution dramatically even in relation to the already-slow rates typical of carbonate-rich sediments.

  12. Effects of temperature during the irradiation of calcium carbonate.

    PubMed

    Negrón-Mendoza, Alicia; Camargo-Raya, Claudia; Gómez-Vidales, Virginia; Uribe, Roberto M; Ramos-Bernal, Sergio

    2016-05-01

    Calcium carbonate received gamma irradiation at different doses (0-309kGy) and temperature regimes (77-298K) to study the effects of irradiation temperature. The changes were followed by EPR spectroscopy. We observed the formation of a composite EPR spectrum, even at low radiation doses and temperature. There was a strong effect on the evaluation of the radicals formed as a function of irradiation temperature, probably due to the diffusion in the frozen powder and the recombination of some radicals at room temperature. PMID:26901240

  13. Spectral features of biogenic calcium carbonates and implications for astrobiology

    NASA Astrophysics Data System (ADS)

    Berg, B. L.; Ronholm, J.; Applin, D. M.; Mann, P.; Izawa, M.; Cloutis, E. A.; Whyte, L. G.

    2014-09-01

    The ability to discriminate biogenic from abiogenic calcium carbonate (CaCO3) would be useful in the search for extant or extinct life, since CaCO3 can be produced by both biotic and abiotic processes on Earth. Bioprecipitated CaCO3 material was produced during the growth of heterotrophic microbial isolates on medium enriched with calcium acetate or calcium citrate. These biologically produced CaCO3, along with natural and synthetic non-biologically produced CaCO3 samples, were analysed by reflectance spectroscopy (0.35-2.5 μm), Raman spectroscopy (532 and 785 nm), and laser-induced fluorescence spectroscopy (365 and 405 nm excitation). Optimal instruments for the discrimination of biogenic from abiogenic CaCO3 were determined to be reflectance spectroscopy, and laser-induced fluorescence spectroscopy. Multiple absorption features in the visible light region occurred in reflectance spectra for most biogenic CaCO3 samples, which are likely due to organic pigments. Multiple fluorescence peaks occurred in emission spectra (405 nm excitation) of biogenic CaCO3 samples, which also are best attributed to the presence of organic compounds; however, further analyses must be performed in order to better determine the cause of these features to establish criteria for confirming the origin of a given CaCO3 sample. Raman spectroscopy was not useful for discrimination since any potential Raman peaks in spectra of biogenic carbonates collected by both the 532 and 785 nm lasers were overwhelmed by fluorescence. However, this also suggests that biogenic carbonates may be identified by the presence of this organic-associated fluorescence. No reliable spectroscopic differences in terms of parameters such as positions or widths of carbonate-associated absorption bands were found between the biogenic and abiogenic carbonate samples. These results indicate that the presence or absence of organic matter intimately associated with carbonate minerals is the only potentially useful spectral discriminator for the techniques that were examined, and that multiple spectroscopic techniques are capable of detecting the presence of associated organic materials. However, the presence or absence of intimately associated organic matter is not, in itself, an indicator of biogenicity.

  14. Carbonation as a binding mechanism for coal/calcium hydroxide pellets

    SciTech Connect

    Rapp, D.M.

    1991-01-01

    Current coal mining and processing procedures produce a significant quanity of fine coal that is difficult to handle and transport. The objective of this work is to determine if these fines can be economically pelletized with calcium hydroxide, a sulfur capturing sorbent, to produce a clean-burning fuel for fluidized-bed combustors or stoker boilers. To harden these pellets, carbonation, which is the reaction of calcium hydroxide with carbon dioxide to produce a cementitious matrix of calcium carbonate, is being investigated. Previous research indicated that carbonation significantly improved compressive strength, impact and attrition resistance and weatherproofed'' pellets formed with sufficient calcium hydroxide (5 to 10% for minus 28 mesh coal fines).

  15. Co-crystallization of cholesterol and calcium phosphate as related to atherosclerosis

    NASA Astrophysics Data System (ADS)

    Hirsch, Danielle; Azoury, Reuven; Sarig, Sara

    1990-09-01

    Calcification of atherosclerotic plaques occurs very frequently and aggravates the disease. In biological systems, epitaxial relationships between crystal structures may be important in nucleating the deposit of a solid phase. The biologically preferred calcium phosphate species, apatite, and cholesterol crystal have structurally compatible crystallographic faces which allow epitaxial growth of one crystal upon another. The present study describes a new approach to explore, in vitro, the crystallization processes of calcium phosphate (CaP) with cholesterol (CS) and cholestanol (CN) which are related to atherosclerosis. Aqueous solutions containing calcium and phosphate ions or CaP crystals as hydroxyapatite were added into saturated ethanolic solutions of CS or CS and 10% CN. After precipitation, crystals were collected and analyzed by nuclear magnetic resonance (NMR), infra-red (IR), X-ray, scanning electron microscope (SEM-LINK), differential scanning calorimeter (DSC) and atomic absorption. The principal result is the well-formed crystals precipitation when an aqueous solution and CaP seed crystals were added to saturated solutions of CS and 10% CN. Cholesterol-cholestanol dihydrate (CC2W) crystals precipitated in the presence of CaP seeds were compared to the CC2W crystals obtained without the mineral compound. The results of this comparison indicate a special link between crystals of CaP and CC2W, and support the epitaxial relationship between the two kinds of crystals. The potential of CC2W crystals to be precipitated by CaP seed crystals prove likewise the possible significant role of the cholestanol metabolite in the process of cholesterol crystallization and calcification in the arteries.

  16. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    SciTech Connect

    V.J. Fabry, Ph.D.

    2002-12-15

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  17. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    SciTech Connect

    V.J. Fabry, Ph.D.

    2003-07-15

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  18. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    SciTech Connect

    V.J. Fabry, Ph.D.

    2001-09-10

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  19. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    SciTech Connect

    V.J. Fabry

    2001-07-01

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids single-celled, marine algae that are the major global producers of calcium carbonate to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  20. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    SciTech Connect

    V.J. Fabry

    2004-04-26

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids single-celled, marine algae that are the major global producers of calcium carbonate to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  1. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    SciTech Connect

    V.J. Fabry, Ph.D.

    2002-07-09

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  2. Calcium Carbonate Production by Coccolithophorid Algae in Long Term, Carbon Dioxide Sequestration

    SciTech Connect

    V. J. Fabry

    2006-06-30

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  3. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    SciTech Connect

    V.J. Fabry, Ph.D.

    2003-04-15

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  4. CALCIUM CARBONATE PRODUCTION BY COCCOLITHAPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    SciTech Connect

    V. J.Fabry

    2004-01-30

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  5. Calcium Carbonate Production by Coccolithophorid Alge in Long Term Carbon Dioxide Sequestration

    SciTech Connect

    V. J. Fabry

    2006-09-30

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  6. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    SciTech Connect

    V.J. Fabry

    2004-10-30

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds or bioreactors to abate CO{sub 2} emissions from power plants.

  7. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    SciTech Connect

    V.J. Fabry, Ph.D.

    2001-12-15

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  8. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    SciTech Connect

    V. J. Fabry

    2005-01-24

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids ? single-celled, marine algae that are the major global producers of calcium carbonate ? to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  9. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    SciTech Connect

    V.J. Fabry, Ph.D.

    2002-09-30

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  10. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    SciTech Connect

    V.J. Fabry, Ph.D.

    2002-04-05

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  11. Calcium Carbonate Produced by Coccolithophorid Algae in Long Term, Carbon Dioxide Sequestration

    SciTech Connect

    V.J. Fabry

    2007-06-30

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO2 through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids - single-celled, marine algae that are the major global producers of calcium carbonate - to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  12. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM CARBON DIOXIDE SEQUESTRATION

    SciTech Connect

    V. J. Fabry

    2003-10-30

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds or bioreactors to abate CO{sub 2} emissions from power plants.

  13. Calcium Carbonate Production by Coccolithophorid Algae in Long Term, Carbon Dioxide Sequestration

    SciTech Connect

    V.J. Fabry

    2005-04-29

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  14. Calcium carbonate concretions formed by the decomposition of organic matter.

    PubMed

    Berner, R A

    1968-01-12

    Bacterial decomposition of butterfish and smelts in small sealed jars containing seawater and other solutions, for periods ranging from 65 to 205 days, results in a large increase in concentrations of dissolved bicarbonate, carbonate, and ammonia (plus volatile amines). Accompanying this is a rise in pH and the precipitation of Ca(++) ion from solution. The Ca(++) is not precipitated as CaCO(3) but instead as a mixture of calcium fatty acid salts or soaps with from 14 to 18 carbon atoms. This can be explained by the thermodynamic instability of CaCO(3) relative to Ca soaps in the presence of excess free fatty acid. It is suggested that some ancient CaCO(3) concretions, especially those enclosing fossils of soft-bodied organisms, may have formed rapidly after death in the form of natural Ca soap (adipocere) which was later converted to CaCO(3). PMID:5634908

  15. Carbon nanopipettes characterize calcium release pathways in breast cancer cells

    NASA Astrophysics Data System (ADS)

    Schrlau, Michael G.; Brailoiu, Eugen; Patel, Sandip; Gogotsi, Yury; Dun, Nae J.; Bau, Haim H.

    2008-08-01

    Carbon-based nanoprobes are attractive for minimally invasive cell interrogation but their application in cell physiology has thus far been limited. We have developed carbon nanopipettes (CNPs) with nanoscopic tips and used them to inject calcium-mobilizing messengers into cells without compromising cell viability. We identify pathways sensitive to cyclic adenosine diphosphate ribose (cADPr) and nicotinic acid adenine dinucleotide phosphate (NAADP) in breast carcinoma cells. Our findings demonstrate the superior utility of CNPs for intracellular delivery of impermeant molecules and, more generally, for cell physiology studies. The CNPs do not appear to cause any lasting damage to cells. Their advantages over commonly used glass pipettes include smaller size, breakage and clogging resistance, and potential for multifunctionality such as in concurrent injection and electrical measurements.

  16. Effects of nano calcium carbonate and nano calcium citrate on toxicity in ICR mice and on bone mineral density in an ovariectomized mice model

    NASA Astrophysics Data System (ADS)

    Huang, Sherry; Chen, Jin Ching; Hsu, Chin Wei; Chang, Walter H.

    2009-09-01

    Taking calcium supplements can reduce the risk of developing osteoporosis, but they are not readily absorbed in the gastrointestinal tract. Nanotechnology is expected to resolve this problem. In the present study, we examined whether the bioavailability of calcium carbonate and calcium citrate can be improved by reducing the particle size. The morphology of nano calcium carbonate and nano calcium citrate was characterized by dynamic laser-light scattering (DLS), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The measurements obtained from DLS, FE-SEM and TEM were comparable. Acute and sub-chronic toxicity tests were performed to establish the safety of these products after oral administration. The no-observed-adverse-effect levels of nano calcium carbonate and nano calcium citrate were 1.3 and 2.3 g kg-1 body weight, respectively. The results of our in vivo studies indicate that administering nano calcium carbonate and nano calcium citrate can enhance the serum calcium concentration and maintain the whole-body bone mineral density in ovariectomized mice. These data suggest that nano calcium carbonate and nano calcium citrate are more bioavailable than micro calcium carbonate and micro calcium citrate, respectively.

  17. Molecular mechanism of crystallization impacting calcium phosphate cements

    SciTech Connect

    Giocondi, J L; El-Dasher, B S; Nancollas, G H; Orme, C A

    2009-05-31

    In summary, SPM data has shown that (1) Mg inhibits growth on all steps but relatively high Mg/Ca ratios are needed. Extracting the mechanism of interaction requires more modeling of the kinetic data, but step morphology is consistent with incorporation. (2) Citrate has several effects depending on the citrate/Ca ratio. At the lowest concentrations, citrate increases the step free energy without altering the step kinetics; at higher concentrations, the polar step is slowed. (3) Oxalate also slows the polar step but additionally stabilizes a new facet, with a [100]{sub Cc} step. (4) Etidronate has the greatest kinetic impact of the molecules studied. At 7{micro}M concentrations, the polar step slows by 60% and a new polar step appears. However, at the same time the [10-1]{sub Cc} increases by 67%. It should be noted that all of these molecules complex calcium and can effect kinetics by altering the solution supersaturation or the Ca to HPO{sub 4}{sup 2-} ratio. For the SPM data shown, this effect was corrected for to distinguish the effect of the molecule at the crystal surface from the effect of the molecule on the solution speciation. The goal of this paper is to draw connections between fundamental studies of atomic step motion and potential strategies for materials processing. It is not our intent to promote the utility of SPM for investigating processes in cement dynamics. The conditions are spectacularly different in many ways. The data shown in this paper are fairly close to equilibrium (S=1.6) whereas the nucleation of cements is initiated at supersaturation ratios in the thousands to millions. Of course, after the initial nucleation phase, the growth will occur at more modest supersaturations and as the cement evolves towards equilibrium certainly some of the growth will occur in regimes such as shown here. In addition to the difference in supersaturation, cements tend to have lower additive to calcium ratios. As an example, the additive to Ca ratio is {approx}10{sup -3} to 10{sup -4} for a pyrophosphate based cement (Grover et al., 2006). Where the in situ SPM approach provides unique insights is in providing details of where and how molecules inhibit or accelerate kinetics. This has the potential to aid in designing molecules to target specific steps and to guide synergistic combinations of additives. For example, it is unlikely that bulk techniques could deduce the simultaneous acceleration and inhibition effects of etidronate; or that citrate reduced growth rate by altering step density rather than step speed. In addition, SPM data translates to tractable questions for modelers. The questions changes from 'How does etidronate inhibit brushite growth?' to 'Why does etidronate bind strongly to the [101]{sub Cc} step while it doesn't to the [10-1]{sub Cc} step?' This is still a challenging question but it is far better defined. Given that step chemistries are generally different, it seems reasonable to expect that the greatest inhibition will be achieved not with one, but with several synergistically chosen additives. For example, the most effective growth inhibitors for brushite would target the two fast steps, namely the non-polar, [10-1]{sub Cc} and the polar, [101]{sub Cc} steps. Several molecules have been shown to slow the polar step, with etidronate as the most dramatic example. By contrast, only Mg was observed to slow the [10-1]{sub Cc} step. Thus, a combination of high concentrations of Mg to target the [10-1]{sub Cc} step with low concentrations of etidronate to target the polar steps, should be a more effective combination than either alone. However Mg is not a particularly good inhibitor in the sense that high concentrations are needed, and it is not specific. More ideally, an inhibitor would be designed to interact specifically with the [10-1] step, which would allow the two steps to be independently modified. Again, this provides an opportunity for tighter coupling with theoretical modeling. The question changes from 'What types of molecules will inhibit brushite growth' to 'What type of molecule will interact with the [10-1]{sub Cc} step?' Similarly, to increase resorption rate, it would be most efficacious to target the slow moving [-100] step, perhaps by targeting the hydroxyl group which seem to stabilize this step compared to its otherwise similar mirror, [100]. In short, there are a number of opportunities where molecular scale imaging can provide new information that has the prospect to aid in optimizing calcium phosphate cements.

  18. Uptake of chloride and carbonate ions by calcium monosulfoaluminate hydrate

    SciTech Connect

    Mesbah, Adel; Cau-dit-Coumes, Celine; Frizon, Fabien

    2012-08-15

    Decommissioning of old nuclear reactors may produce waste streams containing chlorides and carbonates, including radioactive {sup 36}Cl{sup -} and {sup 14}CO{sub 3}{sup 2-}. Their insolubilization by calcium monosulfoaluminate hydrate was investigated. Carbonates were readily depleted from the solution, giving at thermodynamic equilibrium monocarboaluminate, monocarboaluminate + calcite, or calcite only, depending on the initial ratio between the anion and calcium monosulfoaluminate hydrate. Chloride ions reacted more slowly and were precipitated as Kuzel's salt, Kuzel's and Friedel's salts, or Friedel's salt only. Rietveld refinement of X-Ray powder diffraction patterns was successfully used to quantify the phase distributions, which were compared to thermodynamic calculations. Moreover, analysing the lattice parameters of Kuzel's salt as a function of its chloride content showed the occurrence of a restricted solid solution towards the sulfate side with general formula 3CaO{center_dot}Al{sub 2}O{sub 3}{center_dot}xCaCl{sub 2}{center_dot}(1 - x)CaSO{sub 4}{center_dot}(12 - 2x){center_dot}H{sub 2}O (0.36 {<=} x {<=} 0.50).

  19. Constitutive modeling of calcium carbonate supersaturated seawater mixtures

    NASA Astrophysics Data System (ADS)

    Reis, Martina; Sousa, Maria De Fátima; Bertran, Celso; Bassi, Adalberto

    2014-11-01

    Calcium carbonate supersaturated seawater mixtures have attracted attention of many researchers since the deposition of CaCO3(s) from such solutions can lead to scaling problems in oil fields. However, despite their evident practical importance in petroleum engineering, the hydro and thermodynamic behaviors of these mixtures have not been well-understood yet. In this work, a constitutive model based on the foundations of the constitutive theory of continuum mechanics, and the Müller-Liu entropy principle is proposed. The calcium carbonate supersaturated seawater mixture is regarded as a reactive viscous fluid with heat and electrical conductions. The obtained results indicate that the thermodynamic behavior of CaCO3 supersaturated seawater mixtures is closely related to the individual dynamics of each constituent of the mixture, particularly to the linear momentum, and mass exchanges. Furthermore, the results show that, unlike classical continuum mixtures, the extra entropy flux is not null, and higher-order gradients of deformation contribute to the residual entropy production of the class of mixtures under study. The results of this work may be relevant for the prevention of the mineral scale formation in oil fields. The first author acknowledges the São Paulo Research Foundation (Grant 2013/ 20872-2) for its funding.

  20. Effect of calcium carbonate saturation of seawater on coral calcification

    USGS Publications Warehouse

    Gattuso, J.-P.; Frankignoulle, M.; Bourge, I.; Romaine, S.; Buddemeier, R.W.

    1998-01-01

    The carbonate chemistry of seawater is usually not considered to be an important factor influencing calcium-carbonate-precipitation by corals because surface seawater is supersaturated with respect to aragonite. Recent reports, however, suggest that it could play a major role in the evolution and biogeography of recent corals. We investigated the calcification rates of five colonies of the zooxanthellate coral Stylophora pistillata in synthetic seawater using the alkalinity anomaly technique. Changes in aragonite saturation from 98% to 585% were obtained by manipulating the calcium concentration. The results show a nonlinear increase in calcification rate as a function of aragonite saturation level. Calcification increases nearly 3-fold when aragonite saturation increases from 98% to 390%, i.e., close to the typical present saturation state of tropical seawater. There is no further increase of calcification at saturation values above this threshold. Preliminary data suggest that another coral species, Acropora sp., displays a similar behaviour. These experimental results suggest: (l) that the rate of calcification does not change significantly within the range of saturation levels corresponding to the last glacial-interglacial cycle, and (2) that it may decrease significantly in the future as a result of the decrease in the saturation level due to anthropogenic release of CO2 into the atmosphere. Experimental studies that control environmental conditions and seawater composition provide unique opportunities to unravel the response of corals to global environmental changes.

  1. Calcium carbonate solubility: a reappraisal of scale formation and inhibition.

    PubMed

    Gal, J Y; Bollinger, J C; Tolosa, H; Gache, N

    1996-09-01

    Considerable disparity exists in the published thermodynamic data for selected species in the Ca(2+) /CO(2)/H(2)O system near 25 degrees C and 1 atm pressure. Some authors doubt the significance of CaCO(3)(0)aq) complexes although there is experimental evidence of their occurrence. Evaluation of all the published experimental and estimated data for aqueous calcium carbonate species confirms that the consistent set of constants given by Plummer and Busenberg in 1982 is the best available, and suggests a formation constant log beta = 3.22 for CaCO(3)(0)(aq). This value was confirmed by additional experimental data and calculations using a specially developed computer program. The solubility s and solubility product K(s) are critically evaluated for each solid polymorph (amorphous CaCO(3), ikaite, vaterite, aragonite and calcite) using a hydrated ion pair model and we give coherent explanations for the calcium carbonate precipitation/dissolution process and the existence of supersaturated waters. The practical cases of scale formation and its inhibition by phosphonate-type compounds are discussed and explained with the same model, taking into account the CaCO(3)(0)(aq) species. PMID:18966629

  2. Removal of carbon dioxide by reactive crystallization in a scrubber—kinetics of barium carbonate crystals

    NASA Astrophysics Data System (ADS)

    Chen, Pao-Chi; Kou, K. L.; Tai, H. K.; Jin, S. L.; Lye, C. L.; Lin, C. Y.

    2002-04-01

    A bubble column scrubber was utilized to remove simulated CO 2 waste gas under a constant pH value. Using barium chloride solution as an absorbent reacting with CO 2-gas in the scrubber under an alkaline solution condition, precipitates of barium carbonate were formed during the operation. Measured crystal size distributions at a given time were used to calculate the growth rate of barium carbonate crystals, which is proportional to a 1.49 order of relative supersaturation. This demonstrates that both mass transfer and surface integration are important to the crystal growth of barium carbonate. The classical nucleation theory can be used to describe the nucleation rate of barium carbonate. In addition, the agglomeration kernel is proportional to a 2.86 order of relative supersaturation.

  3. Calcium distribution in globoid crystals of cucurbita cotyledon protein bodies.

    PubMed

    Lott, J N; Spitzer, E; Vollmer, C M

    1979-05-01

    Energy-dispersive x-ray analysis was used to investigate the location of globoid crystals with relatively high Ca levels within cotyledons of Cucurbita maxima, Cucurbita mixta, and Cucurbita andreana. The small globoid crystals in both upper and lower epidermal cells commonly contained Ca. Ca was present in globoid crystals of all provascular regions with the exception of the very small provascular regions of C. maxima. In C. maxima and C. mixta cotyledons, some cases were observed where Ca was found in the globoid crystals of the first layer of mesophyll cells surrounding the provascular region, but in general Ca was absent from globoid crystals of palisade and spongy mesophyll cells. In C. andreana, globoid crystals of palisade and spongy mesophyll cells commonly contained at least some Ca. Cell position and cell type are factors affecting the Ca content of globoid crystals in protein bodies. PMID:16660825

  4. Citrate, not phosphate, can dissolve calcium oxalate monohydrate crystals and detach these crystals from renal tubular cells.

    PubMed

    Chutipongtanate, Somchai; Chaiyarit, Sakdithep; Thongboonkerd, Visith

    2012-08-15

    Dissolution therapy of calcium oxalate monohydrate (COM) kidney stone disease has not yet been implemented due to a lack of well characterized COM dissolution agents. The present study therefore aimed to identify potential COM crystal dissolution compounds. COM crystals were treated with deionized water (negative control), 5 mM EDTA (positive control), 5 mM sodium citrate, or 5mM sodium phosphate. COM crystal dissolution activities of these compounds were evaluated by phase-contrast and video-assisted microscopic examinations, semi-quantitative analysis of crystal size, number and total mass, and spectrophotometric oxalate-dissolution assay. In addition, effects of these compounds on detachment of COM crystals, which adhered tightly onto renal tubular cell surface, were also investigated. The results showed that citrate, not phosphate, had a significant dissolution effect on COM crystals as demonstrated by significant reduction of crystal size (approximately 37% decrease), crystal number (approximately 53% decrease) and total crystal mass (approximately 72% decrease) compared to blank and negative controls. Spectrophotometric oxalate-dissolution assay successfully confirmed the COM crystal dissolution property of citrate. Moreover, citrate could detach up to 85% of the adherent COM crystals from renal tubular cell surface. These data indicate that citrate is better than phosphate for dissolution and detachment of COM crystals. PMID:22713548

  5. Carbonic acid: molecule, crystal and aqueous solution.

    PubMed

    Reddy, Sandeep K; Balasubramanian, Sundaram

    2014-01-18

    Carbonic acid (CA) is a crucial species in the equilibrium between carbon dioxide, water and many minerals. Yet many of its properties have either not been studied at all, or have been misunderstood. Its short lifetime in the presence of moisture has been a major stumbling block in efforts to studying it. Over the last two decades, there has been a sustained, albeit slow progress in the detection, synthesis and investigations of CA in its various phases - as a molecule in gas phase, in its crystalline state, as an adsorbate on mineral surfaces and in aqueous solutions. For instance, ultrafast time resolved spectroscopic experiments as well as molecular dynamics based free energy calculations using Kohn-Sham density functional theory have shown the pKa of CA to be around 3.5 which makes its acidity comparable to that of formic acid. The composition of its gas phase in terms of its conformer and oligomer population have also been examined. Thin films of crystalline carbonic acid polymorphs have been synthesized and characterized using infrared and Raman spectra. Given the difficulties associated in the conduct of experiments to investigate CA, computational modelling has played a significant role. Using a multi-tiered modelling approach, we have been able to examine several model crystal structures possessing distinctive hydrogen bonding motifs. Their vibrational spectra were compared against those obtained from experiments. A model crystal consisting of hydrogen bonded molecules in a chain-like fashion fits the experimental vibrational spectra of β-carbonic acid better than one in which the motif is two-dimensional (sheet-like). Under dry conditions, we predict such a crystal to be stable below 359 K at 1 atm. In this feature article, we provide a summary of our work on carbonic acid as well as review contributions from others. PMID:24282825

  6. Methotrexate: should it still be considered for chronic calcium pyrophosphate crystal disease?

    PubMed

    Pascual, Eliseo; Andrés, Mariano; Sivera, Francisca

    2015-01-01

    Chronic calcium pyrophosphate crystal arthritis is a clinical consequence of the formation and deposition of these crystals in joints and can result in persistent arthritis. Curative treatment would require the removal of crystals from joints and tissues, but to date all agents tested have proven ineffective. Management of the inflammatory manifestations of chronic calcium pyrophosphate disease includes glucocorticoids, non-steroidal anti-inflammatory drugs, or colchicine, and responses are usually satisfactory. However, in some patients, the response to these agents is poor or they are contraindicated. Methotrexate had been reported as a promising option in small case series; however, in a recent issue of Arthritis Research & Therapy, a clinical trial failed to confirm the anticipated benefits. Here, we discuss some issues that might have influenced the results of the study, before deciding to abandon methotrexate as a therapeutic option for patients with chronic calcium pyrophosphate arthritis. PMID:25885915

  7. Calcium oxalate monohydrate crystals internalized into renal tubular cells are degraded and dissolved by endolysosomes.

    PubMed

    Chaiyarit, Sakdithep; Singhto, Nilubon; Thongboonkerd, Visith

    2016-02-25

    Interaction between calcium oxalate crystals and renal tubular cells has been recognized as one of the key mechanisms for kidney stone formation. While crystal adhesion and internalization have been extensively investigated, subsequent phenomena (i.e. crystal degradation and dissolution) remained poorly understood. To explore these mechanisms, we used fluorescein isothiocyanate (FITC)-labelled calcium oxalate monohydrate (COM) crystals (1000 μg/ml of crystals/culture medium) to confirm crystal internalization into MDCK (Type II) renal tubular cells after exposure to the crystals for 1 h and to trace the internalized crystals. Crystal size, intracellular and extracellular fluorescence levels were measured using a spectrofluorometer for up to 48 h after crystal internalization. Moreover, markers for early endosome (Rab5), late endosome (Rab7) and lysosome (LAMP-2) were examined by laser-scanning confocal microscopy. Fluorescence imaging and flow cytometry confirmed that FITC-labelled COM crystals were internalized into MDCK cells (14.83 ± 0.85%). The data also revealed a reduction of crystal size in a time-dependent manner. In concordance, intracellular and extracellular fluorescence levels were decreased and increased, respectively, indicating crystal degradation/dissolution inside the cells and the degraded products were eliminated extracellularly. Moreover, Rab5 and Rab7 were both up-regulated and were also associated with the up-regulated LAMP-2 to form large endolysosomes in the COM-treated cells at 16-h after crystal internalization. We demonstrate herein, for the first time, that COM crystals could be degraded/dissolved by endolysosomes inside renal tubular cells. These findings will be helpful to better understand the crystal fate and protective mechanism against kidney stone formation. PMID:26748311

  8. Chemical controls on the magnesium content of amorphous calcium carbonate

    NASA Astrophysics Data System (ADS)

    Blue, C. R.; Dove, P. M.

    2015-01-01

    Amorphous calcium carbonate (ACC) is a metastable phase that forms in diverse biogeochemical settings. This material can incorporate significant amounts of magnesium and other elements, but the conditions that regulate composition are not established. Using a mixed flow reactor method, we synthesize Mg-free ACC (control) and amorphous magnesium calcium carbonate (ACMC) under controlled chemical conditions to determine the relationship between composition and inorganic solution chemistry. Input solutions contained a constant initial Mg/Ca ratio of 5/1 with variable total carbonate concentration, pH, and supersaturation. Within the reactor, input solution chemistry evolves in proportion to the extent of precipitation whereby the initial Mg/Ca ratio increases to values as high as 14 at steady state conditions. By this approach, we produce reproducible quantities of ACMC with 24 to >70 mol% Mg to give compositions of Mg(0.24-0.72)Ca(0.76-0.28)CO3·1.42-1.63H2O. The primary control on ACMC composition is the steady state solution composition that develops in the reactor during precipitation. Analysis of the data shows the Mg content of ACMC is regulated by the interplay of three factors at steady state conditions: (1) Mg/Ca ratio; (2) total carbonate concentration; and (3) solution pH. Using the Henderson-Kracek model to estimate the partition coefficients for the Mg content of ACMC, we find KD is approximately constant at 0.047 ± 0.003 when steady state pH is less than 9.5, but values of KD triple as steady state pH increases from 9.5 to 10.3. Our KD values are lower than previous estimates that are based upon initial solution composition. In contrast, our estimates of KD are determined from the solution chemistry at steady state conditions and for pH conditions that are less extreme than previous experimental studies. We suggest the approach of using steady state composition to estimate KD gives a more accurate representation of relationships between ACMC composition and local conditions. The findings demonstrate local pH and total carbonate concentration can be regulated at the time of formation to produce Mg amorphous carbonates of a designated composition.

  9. Why Does Calcium Carbonate Precipitate in the Ocean Crust?

    NASA Astrophysics Data System (ADS)

    Coggon, R. M.; Teagle, D. A.; Harris, M.; John, C. M.; Smith-Duque, C. E.; Alt, J.

    2012-12-01

    Calcium carbonate (CaCO3) precipitation in extant ocean crust may provide lessons for industrial carbon dioxide (CO2) sequestration to mitigate against future climate change. The formation and alteration of the ocean crust during mid-ocean ridge spreading plays an integral role in the geological carbon (C) cycle. Magma-degassing during mid-ocean ridge volcanism releases large volumes of CO2 to the oceans and atmosphere, whereas the precipitation of CaCO3 minerals in rocks and veins during hydrothermal alteration of the ocean crust is a major mechanism of natural CO2 sequestration. However, the physical and chemical conditions that control the nature, extent and rate of calcium carbonate precipitation in the ocean crust are not well known, and the magnitudes of the carbon fluxes associated with the formation and alteration of the ocean crust remain poorly quantified. Mesozoic ocean crust contains significantly more hydrothermal CaCO3 than young ocean crust, but the past ocean conditions responsible for this enhanced C-uptake by the ocean crust are yet to be determined. The thermal, hydrogeologic, and chemical characteristics of active, low temperature seawater-basalt interaction have been investigated by a series of integrated studies in young ocean crust (<3.6 Ma) on the eastern flank of the Juan de Fuca ridge (JdFR). This has included sampling by scientific ocean drilling of CaCO3 veins, their parent fluids, and the basalts that host the veins. This area provides a unique opportunity to investigate the conditions of in situ hydrothermal CaCO3 precipitation on short geologic timescales. Fluid and vein analyses provide boundary conditions for geochemical modeling using 'Phreeqc' to determine why basement fluids are saturated with respect to CaCO3. We evaluate the controlling effects of key parameters including fluid dissolved inorganic carbon (DIC), Mg and Ca concentrations, alkalinity, temperature, and pH on CaCO3 precipitation. Our results provide insights into how differing past conditions (e.g. ocean temperature and pCO2) affected the ocean crustal C-reservoir, and enable better quantification of the magnitude of this reservoir and how it has varied over geological time. This information is directly applicable to the development of industrial scale CO2 sequestration using methods that mimic but accelerate natural CO2-drawdown processes.

  10. Crystal growth of calcite from calcium bicarbonate solutions at constant PCO2 and 25°C: a test of a calcite dissolution model

    USGS Publications Warehouse

    Reddy, Michael M.; Plummer, L. Neil; Busenberg, E.

    1981-01-01

    A highly reproducible seeded growth technique was used to study calcite crystallization from calcium bicarbonate solutions at 25°C and fixed carbon dioxide partial pressures between 0.03 and 0.3 atm. The results are not consistent with empirical crystallization models that have successfully described calcite growth at low PCO2 (< 10−3 atm). Good agreement was found between observed crystallization rates and those calculated from the calcite dissolution rate law and mechanism proposed by Plummer et al. (1978).

  11. Image-based Modeling of Biofilm-induced Calcium Carbonate Precipitation

    NASA Astrophysics Data System (ADS)

    Connolly, J. M.; Rothman, A.; Jackson, B.; Klapper, I.; Cunningham, A. B.; Gerlach, R.

    2013-12-01

    Pore scale biological processes in the subsurface environment are important to understand in relation to many engineering applications including environmental contaminant remediation, geologic carbon sequestration, and petroleum production. Specifically, biofilm induced calcium carbonate precipitation has been identified as an attractive option to reduce permeability in a lasting way in the subsurface. This technology may be able to replace typical cement-based grouting in some circumstances; however, pore-scale processes must be better understood for it to be applied in a controlled manor. The work presented will focus on efforts to observe biofilm growth and ureolysis-induced mineral precipitation in micro-fabricated flow cells combined with finite element modelling as a tool to predict local chemical gradients of interest (see figure). We have been able to observe this phenomenon over time using a novel model organism that is able to hydrolyse urea and express a fluorescent protein allowing for non-invasive observation over time with confocal microscopy. The results of this study show the likely existence of a wide range of local saturation indices even in a small (1 cm length scale) experimental system. Interestingly, the locations of high predicted index do not correspond to the locations of higher precipitation density, highlighting the need for further understanding. Figure 1 - A micro-fabricated flow cell containing biofilm-induced calcium carbonate precipitation. (A) Experimental results: Active biofilm is in green and dark circles are calcium carbonate crystals. Note the channeling behavior in the top of the image, leaving a large hydraulically inactive area in the biofilm mass. (B) Finite element model: The prediction of relative saturation of calcium carbonate (as calcite). Fluid enters the system at a low saturation state (blue) but areas of high supersaturation (red) are predicted within the hydraulically inactive area in the biofilm. If only effluent saturation was measured, precipitation may not even be predicted but we see local, pore-scale behavior dictating system behavior in this case. The flow cell is 1 cm in length and the porous media elements are 100 μm.

  12. Habit modification of calcium carbonate in the presence of malic acid

    SciTech Connect

    Mao Zhaofeng; Huang Jianhua

    2007-02-15

    The ability of malic acid to control calcium carbonate morphology has been investigated by aging calcium chloride solution in the presence of urea in a 90 deg. C bath. Malic acid favors the formation of calcite. A transition from single block to aggregate with special morphology occurs upon increasing malic acid concentration. The morphological development of CaCO{sub 3} crystal obviously depends on the starting pH. CaCO{sub 3} crystal grows from spindle seed to dumbbell in the pH regime from 7 to 11; while it evolves from spindle seed, through peanut, to sphere at pH=11.5. Both dumbbell and sphere consist of rods that are elongated along c-axis and capped with three smooth, well-defined rhombic {l_brace}1 0 4{r_brace} faces. A tentative growth mechanism is proposed based on the fractal model suggested by R. Kniep and S. Busch [Angew. Chem. Int. Ed. Engl. 35 (1996) 2624]. - Graphical abstract: Dumbbell-like CaCO{sub 3} particles obtained in the presence of malic acid.

  13. THE INFLUENCE OF CALCIUM CARBONATE GRAIN COATINGS ON CONTAMINANT REACTIVITY IN VADOSE ZONE SEDIMENTS

    EPA Science Inventory

    Fundamental research is proposed to investigate the role of calcium carbonate grain coatings on the vadose zone chemical reactivity of key Hanford contaminants (i.e., 60Co2+, 90Sr2+, CrO42-, and 99TcO4-). Calcium carbonate is widely distributed through the Hanford vadose zone as...

  14. Calcium absorbability from milk products, an imitation milk, and calcium carbonate

    SciTech Connect

    Recker, R.R.; Bammi, A.; Barger-Lux, M.J.; Heaney, R.P.

    1988-01-01

    Whole milk, chocolate milk, yogurt, imitation milk (prepared from dairy and nondairy products), cheese, and calcium carbonate were labeled with /sup 45/Ca and administered as a series of test meals to 10 healthy postmenopausal women. Carrier Ca content of the test meals was held constant at 250 mg and subjects fasted before each meal. The absorbability of Ca from the six sources was compared by measuring fractional absorption by the double isotope method. The mean absorption values for all six sources were tightly clustered between 21 and 26% and none was significantly different from the others using one-way analysis of variance. We conclude that none of the sources was significantly superior or inferior to the others.

  15. Prevalence of sternoclavicular joint calcium pyrophosphate dihydrate crystal deposition on computed tomography.

    PubMed

    Shirazian, Hoda; Chang, Eric Y; Wolfson, Tanya; Gamst, Anthony C; Chung, Christine B; Resnick, Donald L

    2014-01-01

    We sought to determine the prevalence of sternoclavicular (SC) joint calcium pyrophosphate dihydrate (CPPD) crystal deposition and its association with age, osteoarthritis, and atlantoaxial CPPD crystal deposition. In 209 consecutive patients, computed tomographic examinations of the cervical spine were retrospectively reviewed. Overall prevalence of CPPD crystal deposition in the SC joint was 17.2% (36/209), which increased with age (P<.0001). There was also a significant association between SC CPPD and osteoarthritis (P=.024) as well as atlantoaxial joint CPPD crystal deposition (P=.006). PMID:24642252

  16. Ureaplasma urealyticum-induced crystallization of magnesium ammonium phosphate and calcium phosphates in synthetic urine.

    PubMed

    Grenabo, L; Brorson, J E; Hedelin, H; Pettersson, S

    1984-10-01

    Crystallization of struvite and calcium phosphates was studied in vitro as encrustations on glass rods immersed in synthetic urine, to evaluate the crystallization capacity of Ureaplasma urealyticum and compare it with that of known urease and non-urease-producing bacteria. Inoculation of the synthetic urine with Ureaplasma urealyticum resulted in alkalinization of the synthetic urine and crystallization of struvite and brushite. Inoculation with Proteus mirabilis caused a faster and more pronounced alkalinization as well as crystallization of struvite and apatite. The alkalinization and crystallization caused by Ureaplasma urealyticum and Proteus mirabilis was completely prevented by acetohydroxamic acid, a potent urease inhibitor, linking the crystallization to the urease activity of the microorganisms. When the synthetic urine was inoculated with urease-negative Escherichia coli no alkalinization and no crystallization were seen. PMID:6381769

  17. Water Transport Monitoring in Calcium Carbonate Stones by Photoacoustic Spectroscopy

    NASA Astrophysics Data System (ADS)

    May-Crespo, J.; Martínez-Torres, P.; Alvarado-Gil, J. J.; Quintana, P.; Ordóñez-Miranda, J.

    2010-05-01

    Calcium carbonate is the most abundant inorganic material, and it was used to build the ancient Mayan monuments in the peninsula of Yucatán, México. One of the most important challenges that these structures have to confront is related to water and its transport inside the stone that induces serious deterioration. In this study, the photoacoustic (PA) technique is used to monitor the water permeability of two kinds of solid and compacted powdered stones. The analysis of water permeability in stones is performed using a modified Rosencwaig PA cell. When the stones are in contact with the water reservoir, the PA signal amplitude is observed to decay gradually due to the progressive wetting of the sample. Based on this type of experiment, the water diffusion coefficients as well as the time evolution of the thermal effusivity are obtained.

  18. Calcium Oxalate Crystals: An Integral Component of the Sclerotinia sclerotiorum/Brassica carinata Pathosystem

    PubMed Central

    Uloth, Margaret B.; Clode, Peta L.; You, Ming Pei; Barbetti, Martin J.

    2015-01-01

    Oxalic acid is an important virulence factor for disease caused by the fungal necrotrophic pathogen Sclerotinia sclerotiorum, yet calcium oxalate (CaOx) crystals have not been widely reported. B. carinata stems were infected with S. sclerotiorum and observed using light microscopy. Six hours post inoculation (hpi), CaOx crystals were evident on 46% of stem sections and by 72 hpi on 100%, demonstrating that the secretion of oxalic acid by S. sclerotiorum commences before hyphal penetration. This is the first time CaOx crystals have been reported on B. carinata infected with S. sclerotiorum. The shape of crystals varied as infection progressed. Long tetragonal rods were dominant 12 hpi (68% of crystal-containing samples), but by 72 hpi, 50% of stems displayed bipyramidal crystals, and only 23% had long rods. Scanning electron microscopy from 24 hpi revealed CaOx crystals in all samples, ranging from tiny irregular crystals (< 0.5 μm) to large (up to 40 μm) highly organized arrangements. Crystal morphology encompassed various forms, including tetragonal prisms, oval plates, crystal sand, and druses. Large conglomerates of CaOx crystals were observed in the hyphal mass 72 hpi and these are proposed as a strategy of the fungus to hold and detoxify Ca2+ions. The range of crystal morphologies suggests that S. sclerotiorum growth and infection controls the form taken by CaOx crystals. PMID:25816022

  19. Formate Oxidation-Driven Calcium Carbonate Precipitation by Methylocystis parvus OBBP

    PubMed Central

    Ganendra, Giovanni; De Muynck, Willem; Ho, Adrian; Arvaniti, Eleni Charalampous; Hosseinkhani, Baharak; Ramos, Jose Angel; Rahier, Hubert

    2014-01-01

    Microbially induced carbonate precipitation (MICP) applied in the construction industry poses several disadvantages such as ammonia release to the air and nitric acid production. An alternative MICP from calcium formate by Methylocystis parvus OBBP is presented here to overcome these disadvantages. To induce calcium carbonate precipitation, M. parvus was incubated at different calcium formate concentrations and starting culture densities. Up to 91.4% ± 1.6% of the initial calcium was precipitated in the methane-amended cultures compared to 35.1% ± 11.9% when methane was not added. Because the bacteria could only utilize methane for growth, higher culture densities and subsequently calcium removals were exhibited in the cultures when methane was added. A higher calcium carbonate precipitate yield was obtained when higher culture densities were used but not necessarily when more calcium formate was added. This was mainly due to salt inhibition of the bacterial activity at a high calcium formate concentration. A maximum 0.67 ± 0.03 g of CaCO3 g of Ca(CHOOH)2−1 calcium carbonate precipitate yield was obtained when a culture of 109 cells ml−1 and 5 g of calcium formate liter−1 were used. Compared to the current strategy employing biogenic urea degradation as the basis for MICP, our approach presents significant improvements in the environmental sustainability of the application in the construction industry. PMID:24837386

  20. Biomimetic growth of calcium oxalate crystals: synchrotron X-ray studies

    NASA Astrophysics Data System (ADS)

    Uysal, Ahmet; Stripe, Benjamin; Dutta, Pulak

    2010-03-01

    Oriented crystals of calcium oxalate monohydrate (COM) form one of the major constituents of kidney stones in humans, and these crystals are also found in many plants. It is widely accepted that an organic matrix of lipids and proteins is involved in the crystallization of COM, though their role is not well-understood [1]. Langmuir monolayers of lipids on supersaturated aqueous solutions can be used to mimic the lipid-crystal interface during mineralization. We have studied nucleation and growth of COM crystals under heneicosanoic acid monolayers at the air-water interface. We used synchrotron x-rays in the grazing incidence geometry to determine the structure of the organic monolayer and the orientation of COM crystals in-situ during crystallization. We see that the (-101) faces of COM crystals are parallel to the organic matrix. There is a commensurate relationship between the heneicosanoic acid monolayer and the (-101) crystal face that may be responsible from the oriented growth. Evolution of the monolayer structure with time will be described. [1]S. R. Khan, Calcium Oxalate in Biological Systems, CRC Press, Boca Raton, 1995

  1. An Unusual Association: Iliopsoas Bursitis Related to Calcium Pyrophosphate Crystal Arthritis

    PubMed Central

    Di Carlo, Marco; Draghessi, Antonella; Carotti, Marina; Salaffi, Fausto

    2015-01-01

    A 71-year-old man with osteoarthritis and chondrocalcinosis came to our observation developing a swelling in the groin region after a recent left colectomy for adenocarcinoma. The imaging techniques revealed the presence of an iliopsoas bursitis in connection with the hip. The synovial fluid analysis detected the presence of calcium pyrophosphate (CPP) crystals and allowed the final and unusual diagnosis of iliopsoas bursitis related to acute CPP crystal hip arthritis. PMID:26550514

  2. An Unusual Association: Iliopsoas Bursitis Related to Calcium Pyrophosphate Crystal Arthritis.

    PubMed

    Di Carlo, Marco; Draghessi, Antonella; Carotti, Marina; Salaffi, Fausto

    2015-01-01

    A 71-year-old man with osteoarthritis and chondrocalcinosis came to our observation developing a swelling in the groin region after a recent left colectomy for adenocarcinoma. The imaging techniques revealed the presence of an iliopsoas bursitis in connection with the hip. The synovial fluid analysis detected the presence of calcium pyrophosphate (CPP) crystals and allowed the final and unusual diagnosis of iliopsoas bursitis related to acute CPP crystal hip arthritis. PMID:26550514

  3. Crystallization behaviour of hydroxide cobalt carbonates by aging: Environmental implications.

    NASA Astrophysics Data System (ADS)

    González-López, Jorge; Fernández-González, Angeles; Jimenez, Amalia

    2014-05-01

    Cobalt is a naturally occurring element widely distributed in water, sediments and air that is essential for living species, since it is a component of B12 vitamin and it is also a strategic and critical element used in a number of commercial, industrial and military applications. However, relatively high accumulations of cobalt in environment can be toxic for human and animal health. Cobalt usually occurs as Co2+ and Co3+ in aqueous solutions, where Co2+ is the most soluble and hence its mobility in water is higher. The study of the precipitation of cobalt carbonates is of great interest due to the abundance of carbonate minerals in contact with surface water and groundwater which can be polluted with Co2+. Previous works have demonstrated that the formation of Co-bearing calcium carbonates and Co-rich low crystallinity phases takes place at ambient conditions. With the aim of investigating the crystallization behavior of Co- bearing carbonates at ambient temperature, macroscopic batch-type experiments have been carried out by mixing aqueous solutions of CoCl2 (0.05M) and Na2CO3 (0.05M) during increasing reaction times (5 minutes and 1, 5, 24, 48, 96, 168, 720 and 1440 hours). The main goals of this work were (i) to analyse the physicochemical evolution of the system and (ii) to study the evolution of the crystallinity of the solid phases during aging. After a given reaction period, pH, alkalinity and dissolved Co2+ in the aqueous solutions were analysed. The evolution of the morphology and chemical composition of the solids with aging time was examined by SEM and TEM. The precipitates were also analyzed by X-ray powder diffraction (XRD) and the crystallinity degree was followed by the intensity and the full width at high medium (FWHM) of the main peaks. The results show that a low crystallinity phase was obtained at the very beginning of aging. This phase evolves progressively to form hydroxide carbonate cobalt (Co2CO3(OH)2) which crystallize with the spatial group P21/a (monoclinic system) after about 4 days. At the same time, the most important fall of cobalt content takes place, but pH and alkalinity values do not show significant changes. The evolution of the aqueous solutions is closely related to the increases of crystallinity degree. TEM study confirms the evolution of the shape of crystals, which exhibit platelet morphology at the end of aging time.

  4. Co-precipitation of dissolved organic matter by calcium carbonate in Pyramid Lake, Nevada

    USGS Publications Warehouse

    Leenheer, Jerry A.; Reddy, Michael M.

    2008-01-01

    Our previous research has demonstrated that dissolved organic matter (DOM) influences calcium carbonate mineral formation in surface and ground water. To better understand DOM mediation of carbonate precipitation and DOM co-precipitation and/or incorporation with carbonate minerals, we characterized the content and speciation of DOM in carbonate minerals and in the lake water of Pyramid Lake, Nevada, USA. A 400-gram block of precipitated calcium carbonate from the Pyramid Lake shore was dissolved in 8 liters of 10% acetic acid. Particulate matter not dissolved by acetic acid was removed by centrifugation. DOM from the carbonate rock was fractionated into nine portions using evaporation, dialysis, resin adsorption, and selective precipitations to remove acetic acid and inorganic constituents. The calcium carbonate rock contained 0.23% DOM by weight. This DOM was enriched in polycarboxylic proteinaceous acids and hydroxy-acids in comparison with the present lake water. DOM in lake water was composed of aliphatic, alicyclic polycarboxylic acids. These compound classes were found in previous studies to inhibit calcium carbonate precipitation. DOM fractions from the carbonate rock were 14C-age dated at about 3,100 to 3,500 years before present. The mechanism of DOM co-precipitation and/or physical incorporation in the calcium carbonate is believed to be due to formation of insoluble calcium complexes with polycarboxylic proteinaceous acids and hydroxy-acids that have moderately large stability constants at the alkaline pH of the lake. DOM co-precipitation with calcium carbonate and incorporation in precipitated carbonate minerals removes proteinaceous DOM, but nearly equivalent concentrations of neutral and acidic forms of organic nitrogen in DOM remain in solution. Calcium carbonate precipitation during lime softening pretreatment of drinking water may have practical applications for removal of proteinaceous disinfection by-product precursors.

  5. Characterization of the terbium-doped calcium fluoride single crystal

    NASA Astrophysics Data System (ADS)

    Zheleznov, Dmitry S.; Starobor, Aleksey V.; Palashov, Oleg V.

    2015-08-01

    Optical, thermo-optical and magneto-optical characteristics of the terbium-doped (10 at.%) calcium fluoride sample were investigated. It was made the analysis, confirmed the possibility of development of a Faraday isolator and a cryogenic Faraday isolator based on the studied medium, which will provide more than 30 dB isolation ratio of laser radiation in the "eye-safe" wavelength range (1530-1620 nm) at the 5 and 20 kW power, respectively.

  6. Urine glycoprotein crystal growth inhibitors. Evidence for a molecular abnormality in calcium oxalate nephrolithiasis.

    PubMed Central

    Nakagawa, Y; Abram, V; Parks, J H; Lau, H S; Kawooya, J K; Coe, F L

    1985-01-01

    One reason that some people are prone to calcium oxalate nephrolithiasis is that they produce urine that is subnormal in its ability to inhibit the growth of calcium oxalate crystals. We have identified in human urine a glycoprotein (GCI) that inhibits calcium oxalate crystal growth strongly, and at low concentrations (10(-7) M); in this study, we have isolated GCI molecules from the urine of normal people and patients with calcium oxalate stones. GCI from stone formers is abnormal in three ways: it contains no detectable gamma-carboxyglutamic acid (Gla), whereas normal GCI contains 2-3 residues of Gla per mole; about half of the GCI in urine of patients inhibits crystal growth 4-20 times less than normal GCI as judged by its performance in a kinetic growth assay, in vitro; at the air-water interface, patient GCI has a film collapse pressure approximately half of normal. GCI molecules from the urine of patients with calcium oxalate nephrolithiasis are intrinsically abnormal, and these abnormalities could play a role in the genesis of stones. PMID:4056037

  7. Design of a continuous process setup for precipitated calcium carbonate production from steel converter slag.

    PubMed

    Mattila, Hannu-Petteri; Zevenhoven, Ron

    2014-03-01

    A mineral carbonation process "slag2PCC" for carbon capture, utilization, and storage is discussed. Ca is extracted from steel slag by an ammonium salt solvent and carbonated with gaseous CO2 after the separation of the residual slag. The solvent is reused after regeneration. The effects of slag properties such as the content of free lime, fractions of Ca, Si, Fe, and V, particle size, and slag storage on the Ca extraction efficiency are studied. Small particles with a high free-lime content and minor fractions of Si and V are the most suitable. To limit the amount of impurities in the process, the slag-to-liquid ratio should remain below a certain value, which depends on the slag composition. Also, the design of a continuous test setup (total volume ∼75 L) is described, which enables quick process variations needed to adapt the system to the varying slag quality. Different precipitated calcium carbonate crystals (calcite and vaterite) are generated in different parts of the setup. PMID:24578147

  8. Design of a continuous process setup for precipitated calcium carbonate production from steel converter slag.

    TOXLINE Toxicology Bibliographic Information

    Mattila HP; Zevenhoven R

    2014-03-01

    A mineral carbonation process "slag2PCC" for carbon capture, utilization, and storage is discussed. Ca is extracted from steel slag by an ammonium salt solvent and carbonated with gaseous CO2 after the separation of the residual slag. The solvent is reused after regeneration. The effects of slag properties such as the content of free lime, fractions of Ca, Si, Fe, and V, particle size, and slag storage on the Ca extraction efficiency are studied. Small particles with a high free-lime content and minor fractions of Si and V are the most suitable. To limit the amount of impurities in the process, the slag-to-liquid ratio should remain below a certain value, which depends on the slag composition. Also, the design of a continuous test setup (total volume ∼75 L) is described, which enables quick process variations needed to adapt the system to the varying slag quality. Different precipitated calcium carbonate crystals (calcite and vaterite) are generated in different parts of the setup.

  9. Controlled synthesis of crystalline calcium carbonate aggregates with unusual morphologies involving the phase transformation from amorphous calcium carbonate

    SciTech Connect

    Tang Hua; Yu Jiaguo Zhao Xiufeng

    2009-04-02

    Peanut-shaped CaCO{sub 3} aggregates, featured of two dandelion-like heads built up from rod-like subunits, have been synthesized via a facile precipitation reaction between Na{sub 2}CO{sub 3} and CaCl{sub 2} at ambient temperature in the presence of magnesium ions and ethanol solvent. The as-prepared products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and inductively coupled plasma atomic emission spectrometry (ICP-AES). The results show that a high magnesium concentration and ethanol solvent are necessary for the formation of the unusual peanut-like aggregates. In addition, a multistep phase transformation process from amorphous calcium carbonate (ACC) to a mixture of ACC and calcite and ultimately to calcite and aragonite was observed in the formation process of the unusual structures. A possible mechanism for the formation of the unusual peanut-shape aggregates has been proposed and discussed.

  10. Conversion of calcium sulphide to calcium carbonate during the process of recovery of elemental sulphur from gypsum waste.

    PubMed

    de Beer, M; Maree, J P; Liebenberg, L; Doucet, F J

    2014-11-01

    The production of elemental sulphur and calcium carbonate (CaCO3) from gypsum waste can be achieved by thermally reducing the waste into calcium sulphide (CaS), which is then subjected to a direct aqueous carbonation step for the generation of hydrogen sulphide (H2S) and CaCO3. H2S can subsequently be converted to elemental sulphur via the commercially available chemical catalytic Claus process. This study investigated the carbonation of CaS by examining both the solution chemistry of the process and the properties of the formed carbonated product. CaS was successfully converted into CaCO3; however, the reaction yielded low-grade carbonate products (i.e. <90 mass% as CaCO3) which comprised a mixture of two CaCO3 polymorphs (calcite and vaterite), as well as trace minerals originating from the starting material. These products could replace the Sappi Enstra CaCO3 (69 mass% CaCO3), a by-product from the paper industry which is used in many full-scale AMD neutralisation plants but is becoming insufficient. The insight gained is now also being used to develop and optimize an indirect aqueous CaS carbonation process for the production of high-grade CaCO3 (i.e. >99 mass% as CaCO3) or precipitated calcium carbonate (PCC). PMID:25128917

  11. Physical characteristics of Medicago truncatula calcium oxalate crystals determine their effectiveness in insect defense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant structural traits can act as defense against herbivorous insects, causing them to avoid feeding on a given plant or tissue. Mineral crystals of calcium oxalate in leaves of Medicago truncatula Gaertn. have previously been shown to be effective deterrents of lepidopteran insect feeding. They ar...

  12. Characterization of calcium crystals in Abelia using x-ray diffraction and electron microscopes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Localization, chemical composition, and morphology of calcium crystals in leaves and stems of Abelia mosanensis and A. ×grandiflora were analyzed with a variable pressure scanning electron microscope (VP-SEM) equipped with an X-ray diffraction system, low temperature SEM (LT-SEM) and a transmission ...

  13. Effect of cationic and anionic surfactants on the application of calcium carbonate nanoparticles in paper coating.

    PubMed

    Barhoum, Ahmed; Rahier, Hubert; Abou-Zaied, Ragab Esmail; Rehan, Mohamed; Dufour, Thierry; Hill, Gavin; Dufresne, Alain

    2014-02-26

    Modification of calcium carbonate particles with surfactant significantly improves the properties of the calcium carbonate coating on paper. In this study, unmodified and CTAB (hexadecyltetramethylammonium bromide)- and oleate-modified calcium carbonate nanoparticles were prepared using the wet carbonation technique for paper coating. CTAB (cationic surfactant) and sodium oleate (anionic surfactant) were used to modify the size, morphology, and surface properties of the precipitated nanoparticles. The obtained particles were characterized using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, zeta potential measurements, thermal gravimetric analysis (TGA), and transmission electron microscopy (TEM). Coating colors were formulated from the prepared unmodified and modified calcium carbonates and examined by creating a thin coating layer on reference paper. The effect of calcium carbonate particle size and surface modification on paper properties, such as coating thickness, coating weight, surface roughness, air permeability, brightness, whiteness, opacity, and hydrophobicity, were investigated and compared with commercial ground (GCC) calcium carbonate-coated papers. The results show that the obtained calcium carbonate nanoparticles are in the calcite phase. The morphology of the prepared calcium carbonate nanoparticles is rhombohedral, and the average particle diameter is less than 100 nm. Compared to commercial GCC, the use of unmodified and CTAB- and oleate-modified calcium carbonate nanoparticles in paper coating improves the properties of paper. The highest measured paper properties were observed for paper coated with oleate-modifed nanoparticles, where an increase in smoothness (decrease in paper roughness) (+23%), brightness (+1.3%), whiteness (+2.8%), and opacity (+2.3%) and a decrease in air permeability (-26%) was obtained with 25% less coat weight. The water contact angle at a drop age time of 10 min was about 112° for the paper coated with oleate-modified nanoparticles and 42° for paper coated with CTAB-modified nanoparticles compared to 104° for GCC-coated paper. PMID:24456100

  14. Extraction of radiostrontium coprecipitated with calcium carbonate in soil

    SciTech Connect

    Spalding, B.P.

    1985-01-01

    The fraction of soil ZSr coprecipitated with calcium carbonate (CaCO3) was determined by extraction into 0.1M hydrochloric acid (HCl)-0.5M potassium chloride (KCl) after an initial extraction with either 1M ammonium acetate (NH4OAc) or 1M KCl to remove soluble salts and exchangeable cations. This procedure was tested on soil samples supplemented with 85 g CaCO3/kg containing coprecipitated YVSr. A significant amount of both YVSr and Ca remained undissolved in this extractant but were subsequently removed by extraction with 8M HNO3. The extraction procedure was also applied to a group of 16 ZSr-contaminated soil and stream bed sediment samples. The amount of Cs + Mg extracted by 0.1M HCl-0.5M KCl, following KCl extraction, was well correlated with but slightly lower than the amounts expected for a complete dissolution of the CaCO3. Pre-extraction with NH4OAc, rather than KCl, dissolved significantly more CaCO3, resulting in a lower estimate of the soil CaCO3. Several soil samples, taken from a radioactive waste burial trench that had received sodium carbonate (Na2CO3) treatment injections, revealed that up to 98% of the total ZSr was observed in a CaCO3 phase. Untreated soils typically exhibited 80 to 95% of their ZSr in a cation exchangeable form, i.e., extractable by either NH4OAc or KCl.

  15. Stabilization and transformation of amorphous calcium carbonate: structural and kinetic studies

    NASA Astrophysics Data System (ADS)

    Schmidt, Millicent Promise

    Amorphous calcium carbonate (ACC) is a common transient precursor in the formation of more stable crystalline calcium carbonate minerals, most notably calcite, vaterite, and aragonite. Formation of ACC from calcium carbonate rich aqueous solution rather than direct crystallization of crystalline polymorphs by organisms provides several advantages: control of morphology, grain size, orientation, hardness, and other bulk properties as well as reduction of energy costs during growth cycles. Despite decades of study, stabilization and transformation mechanisms of synthetic and biogenic ACC remain unclear. In particular, the roles of H2O and inorganic phosphate in ACC structure and transformation, and the variables affecting transformation kinetics and polymorph selection are understudied. In this research, we addressed structure and kinetic behavior of ACC through four complementary investigations: two studies focus on synthetic ACC stabilization and two focus on synthetic and biogenic ACC transformation behavior in solution at ambient temperatures. We explored ACC stabilization via compositional and thermal analyses, X-ray scattering, X-ray absorption spectroscopy, and nuclear magnetic resonance spectroscopy. Transformation experiments used a novel method of in situ structural analysis that provided quantitative kinetic and structural data and allowed us to visualize the ACC transformation pathway. Results revealed the complexity of H2O structure in ACC samples synthesized from three methods, indicating that the distinct hydrous populations produced define ACC behavior. Transformation kinetics and polymorph selection were strongly affected by the hydration state and type of synthetic ACC reacted. In situ transformation experiments also showed differences in kinetic behavior due to reaction medium. The structural role of hydrous components was again evident in in situ transformation experiments for ACC from a biogenic lobster gastrolith (LG) reacted with water. LG exhibited distinctly different behavior than synthetic ACC samples; LG transformation rates were significantly slower and a larger ACC fraction remained at comparable time points. Inorganic phosphate stabilizes ACC, increasing its resistance to crystallization. This research is underpinned by the relationship between microscopic structural features and macroscopic properties and behavior. Manipulation of molecular-scale variables for controlling macroscopic properties allows important applications in materials science and engineering, and a greater understanding of biominerals may guide our design of functional materials.

  16. Coupled dissolution-precipitation as a mechanism for amorphous-to-crystalline calcium carbonate phase transition

    NASA Astrophysics Data System (ADS)

    Rodriguez-Navarro, Carlos Manuel; Kudłacz, Krzysztof; Ruiz-Agudo, Encarnacion

    2014-05-01

    Growing evidence shows that several calcium carbonate biominerals form via an amorphous precursor phase. Such a biomineralization strategy could also be applicable for the biomimetic synthesis of novel functional materials. A crucial step in this process is the transformation of amorphous calcium carbonate (ACC) into calcite. However, controversy exists as to what is the actual mechanism of this transformation: Is it a solid-solid (solid state) or a dissolution/precipitation mechanism? Determining the transition mechanism is critical for example in interpreting the formation of oriented crystalline structures in biominerals (e.g., echinoderm spicles). We studied calcium carbonate precipitation and phase transitions according to the overall reaction Ca(OH)2 + CO2 = CaCO3+ H2O. Mineral phase transformations during this reaction were studied using transmission electron microscopy (TEM). Our TEM analysis showed that two different types of ACC are sequentially formed during this reaction. Type I ACC shows no well-defined short-range order, while Type II ACC shows a short-range order corresponding to calcite. Following e-beam irradiation, Type I ACC particles transform into randomly oriented CaO nanocrystals, while irradiation of Type II ACC leads to the formation of pseudomorphs made up of perfectly oriented aggregates of calcite nanocrystals. Moreover, calcite crystals formed in solution or in air (85 % relative humidity) after Type II ACC are also pseudomorphs made up of porous aggregates of preferentially oriented calcite nanocrystals. Our results give experimental evidence showing that the ACC to calcite transformation under relevant biomineralization conditions (low T and P), also applicable in the biomimetic synthesis of calcite, is a pseudomorphic dissolution-precipitation process. This mechanism involves the tightly interface-coupled dissolution of the precursor amorphous phase (with the crystalline phase protostructure) and concomitant deposition of the crystalline product (calcite) on the remaining (not fully dissolved) precursor phase via epitaxial crystallization. The solubility and molar volume differences between parent and product phase explain the generation of porosity, which enables the progress of the reaction leading to a calcite pseudomorph.

  17. Effect of L (+) ascorbic acid and monosodium glutamate concentration on the morphology of calcium carbonate

    NASA Astrophysics Data System (ADS)

    Saraya, Mohamed El-shahte Ismaiel

    2015-11-01

    In this study, monosodium glutamate and ascorbic acid were used as crystal and growth modifiers to control the crystallization of CaCO3. Calcium carbonate prepared by reacting a mixed solution of Na2CO3 with CaCl2 at ambient temperature, (25 °C), constant Ca++CO3-- molar ratio and pH with stirring. The polymorph and morphology of the crystals were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The results indicate that rhombohedral calcite was only formed in water without organic additives, and both calcite and spherical vaterite with various morphologies were produced in the presence of monosodium glutamate. The content of vaterite increased as the monosodium glutamate increased. In addition, spherical vaterite was obtained in the presence of different concentrations of ascorbic acid. The spherical vaterite posses an aggregate shape composed of nano-particles, ranging from 30 to 50 nm as demonstrated by the SEM and TEM analyses. Therefore, the ascorbic stabilizes vaterite and result in nano-particles compared to monosodium glutamate.

  18. Co-effects of amines molecules and chitosan films on in vitro calcium carbonate mineralization.

    PubMed

    Cui, Jifei; Kennedy, John F; Nie, Jun; Ma, Guiping

    2015-11-20

    Amines monomers, N,N-dimethylaminoethyl methacrylate (DMAEMA), N,N-dimethylethanolamine (DMEA), 2-dimethylaminoethylamine (DMEDA) and N-methiyldiethanolamine (MDEA) were used to induce the formation of calcium carbonate (CaCO3) crystals on chitosan films, by using (NH4)2CO3 diffusion method at ambient temperature. The obtained CaCO3 particles were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and Energy dispersive spectroscopy (EDS). The influence of reaction variables, such as the additive concentration and their types were also investigated on the products. The morphologies of CaCO3 crystals, inter-grown in cube-shape, were controlled by DMAEMA and DMEA. It was observed that the morphologies of CaCO3 changed from the cube grown arms to massive calcite with a hole on the face by increasing the concentrations of DMEDA and MDEA. While the precipitation grew on chitosan film without any organic additive, only single cube-shaped crystals were obtained. By these results the possible mechanisms can be proposed that electronic movement of the groups on the monomer effected ions configuration and molecules absorbed on the exposed surface, resulted the change of the surface energy, which caused the change in the morphology of CaCO3. PMID:26344256

  19. Effect of carbonate and phosphate ratios on the transformation of calcium orthophosphates

    SciTech Connect

    Eliassi, Mohammad Daoud; Zhao, Wei; Tan, Wen Feng

    2014-07-01

    Graphical abstract: Complexes among phosphate, carbonate and calcium have been prepared via a facile hydrothermal route. The synthesized product at the low (0.15) and the high (1.8) molar ratio of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2−} is calcium phosphate hydrate and hydroxylapatite (HAp), respectively. Molar ratios of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2−} are effective on the reduction of carbonate activity during the crystallization of HAp. - Highlights: • Formation of different complexes from CO{sub 3}{sup 2−}, PO{sub 4}{sup 3−} and Ca{sup 2+} solutions at 60 °C. • Molar ratios of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2} cause changes in phase and size of synthesized products. • Addition of PO{sub 4}{sup 3} inhibited the activity of CO{sub 3}{sup 2−} during bound with Ca{sup 2+}. • The phase transformation was completed, when CO{sub 3}{sup 2−} peaks disappeared in FTIR. • PO{sub 4}{sup 3−}, CO{sub 3}{sup 2−} and Ca{sup 2+} distributed heterogeneously on the surface of precipitation. - Abstract: Complexes among phosphate, carbonate and calcium have been synthesized by a designed hydrothermal method. Effects of carbonate and phosphate ratios on the transformation of calcium-orthophosphates were investigated. With X-ray diffraction measurement the synthesized product at the low (0.15) and the high (1.8) molar ratio of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2−} is calcium phosphate hydrate at pH 9.0, and hydroxylapatite (HAp) at pH 8.0, respectively. Fourier transform infrared spectroscopy of product at the high ratio (1.8) of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2−} shows that the CO{sub 3}{sup 2−} peaks disappear, and the strong peaks at 1412 and 1460 cm{sup −1} are assigned to the vibrations of PO{sub 4}{sup 3−} in HAp. {sup 31}P nuclear magnetic resonance spectra of products at the low (0.15–0.6) to the high (1.2–1.8) ratios of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2−} are obtained at 2.9 and 2.7 ppm, respectively. Molar ratios of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2−} are effective on the reduction of carbonate activity during the formation and infiltration events of calcium-phosphate surface precipitates, and are subsequently enclosed during HAp formation.

  20. Effects of Mg/Ca ratio and temperature on the mineralogy of calcium carbonate precipitates and their paleooceanographic implications

    SciTech Connect

    Tsoi, M.Y.; Belli, S.

    1996-10-01

    Because of the importance of the global carbon cycle throughout the life of the Earth, scientists have tried to use components of it to find out past conditions of the Earth`s atmosphere, oceans, and climate. However, lack of knowledge about past conditions makes it difficult to paint a complete picture of the chemistry of ancient oceans and atmospheres. One approach is to use the mineralogy of ancient sedimentary carbonates to examine the problem from the standpoint that certain conditions dictate the formation of particular crystal structures. Thus, we need to more completely understand the conditions which influence the precipitation of carbonate minerals. We examine the effects of both seawater Mg/Ca ratio and temperature on the mineralogy of calcium carbonate precipitated from seawater. This will refine our knowledge of paleo-ocean chemistry.

  1. Crystal chemistry and structure refinement of five hydrated calcium borates

    USGS Publications Warehouse

    Clark, J.R.; Appleman, D.E.; Christ, C.L.

    1964-01-01

    The crystal structures of the five known members of the series Ca2B6O11??xH2O (x = 1, 5, 5, 7, 9, and 13) have been refined by full-matrix least-squares techniques, yielding bond distances and angles with standard errors of less than 0??01 A?? and 0??5??, respectively. The results illustrate the crystal chemical principles that govern the structures of hydrated borate compounds. The importance of hydrogen bonding in the ferroelectric transition of colemanite is confirmed by more accurate proton assignments. ?? 1964.

  2. Syndepositional dissolution of calcium carbonate in neritic carbonate environments: geological recognition, processes, potential significance

    NASA Astrophysics Data System (ADS)

    Sanders, Diethard

    2003-04-01

    Within carbonate sediments below tropical-subtropical oceanic surface waters, syndepositional "chemical" dissolution of CaCO 3 driven by organic matter oxidation can modify substantially the textural, compositional and early diagenetic characteristics of the resulting rock. Main actuogeological evidence for "chemical" dissolution includes pore-water chemistry of carbonate sediments, and corrosion of bioclasts. Geological evidence includes taphonomic bias towards bioclasts of primary low-magnesium calcite, ghosts of aragonitic or high-magnesium calcitic bioclasts or fossils, lateral variations in early lithification, corroded early cements, pores overprinted by dissolution, and aragonite relicts in microspar. To date, evidence for syndepositional dissolution has been identified, with gaps in documentation, in Silurian to Cretaceous limestones. During organic matter oxidation in the sediment, aerobic respiration, sulfate reduction and oxidation of reaction by-products (e.g. H 2S) may result in local undersaturation for CaCO 3. Depending on the degree of openness of the diagenetic system, microbial sulfate reduction and, in open systems, reactions involving reaction by-products may in one case lead to precipitation, in another to dissolution of calcium carbonate. Both organic matter oxidation and fluctuations in pore water carbonate saturation are amplified by bioturbation. In burrowed carbonate sediments, carbonate dissolution is coupled to sulfate reduction and oxidation of hydrogen sulfide [Geochim. Cosmochim. Acta 63 (1999) 2529]. Part of the dissolved CaCO 3 is recycled to the sea, but the amount of dissolution recycling is difficult to estimate. Below the bioturbated layer, perhaps much of the dissolved calcium carbonate reprecipitates. In Phanerozoic neritic carbonate environments, syndepositional dissolution proceeded at least largely independent from aragonite seas or calcite seas, and appears mainly controlled by site-related factors. Over Phanerozoic time, both bioerosion and factors favourable for "chemical" dissolution within the sediment increased.

  3. Solubility, inhibition of crystallization and microscopic analysis of calcium oxalate crystals in the presence of fractions from Humulus lupulus L.

    NASA Astrophysics Data System (ADS)

    Frąckowiak, Anna; Koźlecki, Tomasz; Skibiński, PrzemysŁaw; GaweŁ, WiesŁaw; Zaczyńska, Ewa; Czarny, Anna; Piekarska, Katarzyna; Gancarz, Roman

    2010-11-01

    Procedures for obtaining noncytotoxic and nonmutagenic extracts from Humulus lupulus L. of high potency for inhibition and dissolving of model (calcium oxalate crystals) and real kidney stones, obtained from patients after surgery, are presented. Multistep extraction procedures were performed in order to obtain the preparations with the highest calcium complexing properties. The composition of obtained active fractions was analyzed by GC/MS and NMR methods. The influence of preparations on inhibition of formation and dissolution of model and real kidney stones were evaluated based on conductrometric titration, flame photometry and microscopic analysis. The "fraction soluble in methanol" obtained from water-alkaline extracts contains sugar alcohols and organic acids, and is effective in dissolving the kidney stones. The "fraction insoluble in methanol" contains only sugar derivatives and it changes the morphology of the crystals, making them "jelly-like". Both fractions are potentially effective in kidney stone therapy.

  4. Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites.

    PubMed

    Dhami, Navdeep Kaur; Reddy, M Sudhakara; Mukherjee, Abhijit

    2013-05-01

    Microbially induced calcium carbonate precipitation (MICCP) is a naturally occurring biological process that has various applications in remediation and restoration of a range of building materials. In the present investigation, five ureolytic bacterial isolates capable of inducing calcium carbonate precipitation were isolated from calcareous soils on the basis of production of urease, carbonic anhydrase, extrapolymeric substances, and biofilm. Bacterial isolates were identified as Bacillus megaterium, B. cereus, B. thuringiensis, B. subtilis, and Lysinibacillus fusiformis based on 16S rRNA analysis. The calcium carbonate polymorphs produced by various bacterial isolates were analyzed by scanning electron microscopy, confocal laser scanning microscopy, X ray diffraction, and Fourier transmission infra red spectroscopy. A strainspecific precipitation of calcium carbonate forms was observed from different bacterial isolates. Based on the type of polymorph precipitated, the technology of MICCP can be applied for remediation of various building materials. PMID:23648862

  5. Calcium carbonate corrosivity in an Alaskan inland sea

    NASA Astrophysics Data System (ADS)

    Evans, W.; Mathis, J. T.; Cross, J. N.

    2013-12-01

    Ocean acidification is the hydrogen ion increase caused by the oceanic uptake of anthropogenic CO2, and is a focal point in marine biogeochemistry, in part, because this chemical reaction reduces calcium carbonate (CaCO3) saturation states (Ω) to levels that are corrosive (i.e. Ω ≤ 1) to shell-forming marine organisms. However, other processes can drive CaCO3 corrosivity; specifically, the addition of tidewater glacier melt. To highlight this process, we present carbonate system data collected in May (spring) and September (autumn) starting 2009 through 2012 from Prince William Sound (PWS), a semi-enclosed inland sea located on the south-central coast of Alaska that is ringed with fjords containing tidewater glaciers. Initial sampling in PWS covered limited stations in the western sound, and Ω levels corrosive to aragonite, a form of CaCO3, were observed in association with glacial melt during autumn. Beginning in September 2011, expanded sampling spanned the western and central sound, and included two fjords proximal to tidewater glaciers: Icy Bay and Columbia Bay. The observed conditions in these fjords affected CaCO3 corrosivity in the upper water column (< 50 m) in PWS in two ways: (1) as spring-time formation sites of mode water with near-corrosive Ω levels seen below the mixed layer depth across the sound, and (2) as point sources for surface plumes of glacial melt with corrosive Ω levels (Ω for aragonite and calcite down to 0.60 and 1.02, respectively) and carbon dioxide partial pressures (pCO2) well below atmospheric levels. The cumulative effect of glacial melt is likely responsible for the seasonal widespread reduction of Ω in PWS; however, glacial melt-driven CaCO3 corrosivity is poorly reflected by pCO2 or pHT, indicating that any one of those carbonate parameters alone would inadequately track corrosive conditions in PWS. The unique conditions of the carbonate system in the surface glacial melt plumes enhances atmospheric CO2 uptake, which, if not offset by mixing or primary productivity, would exacerbate CaCO3 corrosivity in a positive feedback via ocean acidification. These effects from glacial melt make PWS highly sensitive to climate change and susceptible to amplified CaCO3 corrosivity.

  6. Carbonate Accumulation and Dissolution Events and the Seawater Calcium Isotope Record

    NASA Astrophysics Data System (ADS)

    Griffith, E. M.; Paytan, A.

    2008-12-01

    Calcium carbonate sedimentation in the ocean represents the largest calcium and carbon sink in the combined atmosphere, biosphere, and ocean system, thus connecting the global carbon and calcium cycles. Determining fluctuations in calcium carbonate sedimentation over climate transitions provides important information on how the coupled calcium-carbon biogeochemical system behaves and reveals feedbacks between processes that control it. The calcium isotope records of two periods of extreme change in the global calcite compensation depth (CCD) and climate over the Cenozoic, the Eocene-Oligocene Transition (EOT) and the Paleocene-Eocene Thermal Maximum (PETM), will be examined at high resolution using marine (pelagic) barite. Large fluctuations in the CCD may be reflected in seawater Ca concentrations and Ca isotopic composition resulting from short term imbalances in marine Ca sources and sinks. A simple isotopic mass balance model is constructed to compare predicted and observed isotopic fluctuations. The permanent deepening of the CCD during the EOT which coincided with a transition from a 'greenhouse' to an 'icehouse' world is not accompanied by a long-term increase in seawater Ca concentration. Instead, our results suggest that the seawater Ca concentration might have decreased at this time due to an increase in calcium carbonate sedimentation associated with the deepening of the CCD. Preliminary results from the PETM will also be presented. These results present the first high resolution Ca isotope measurements over the EOT and PETM.

  7. Biofilm-induced calcium carbonate precipitation: application in the subsurface

    NASA Astrophysics Data System (ADS)

    Phillips, A. J.; Eldring, J.; Lauchnor, E.; Hiebert, R.; Gerlach, R.; Mitchell, A. C.; Esposito, R.; Cunningham, A. B.; Spangler, L.

    2012-12-01

    We have investigated mitigation strategies for sealing high permeability regions, like fractures, in the subsurface. This technology has the potential to, for example, improve the long-term security of geologically-stored carbon dioxide (CO2) by sealing fractures in cap rocks or to mitigate leakage pathways to prevent contamination of overlying aquifers from hydraulic fracturing fluids. Sealing technologies using low-viscosity fluids are advantageous since they potentially reduce the necessary injection pressures and increase the radius of influence around injection wells. In this technology, aqueous solutions and suspensions are used to promote microbially-induced mineral precipitation which can be applied in subsurface environments. To this end, a strategy was developed to twice seal a hydraulically fractured, 74 cm (2.4') diameter Boyles Sandstone core, collected in North-Central Alabama, with biofilm-induced calcium carbonate (CaCO3) precipitates under ambient pressures. Sporosarcina pasteurii biofilms were established and calcium and urea containing reagents were injected to promote saturation conditions favorable for CaCO3 precipitation followed by growth reagents to resuscitate the biofilm's ureolytic activity. Then, in order to evaluate this process at relevant deep subsurface pressures, a novel high pressure test vessel was developed to house the 74 cm diameter core under pressures as high as 96 bar (1,400 psi). After determining that no impact to the fracture permeability occurred due to increasing overburden pressure, the fractured core was sealed under subsurface relevant pressures relating to 457 meters (1,500 feet) below ground surface (44 bar (650 psi) overburden pressure). After fracture sealing under both ambient and subsurface relevant pressure conditions, the sandstone core withstood three times higher well bore pressure than during the initial fracturing event, which occurred prior to biofilm-induced CaCO3 mineralization. These studies suggest biofilm-induced CaCO3 precipitation technologies may potentially seal and strengthen high permeability regions or fractures (either natural or induced) in the subsurface. Novel high pressure test vessel to investigate biogeochemical processes under relevant subsurface scales and pressures.

  8. Powder XRD and dielectric studies of gel grown calcium pyrophosphate crystals

    NASA Astrophysics Data System (ADS)

    Parekh, Bharat; Parikh, Ketan; Joshi, Mihir

    2013-06-01

    Formation of calcium pyrophosphate dihydrate (CPPD) crystals in soft tissues such as cartilage, meniscus and synovial tissue leads to CPPD deposition diseases. The appearance of these crystals in the synovial fluid can give rise to an acute arthritic attack with pain and inflammation of the joints, a condition called pseudo-gout. The growth of CPP crystals has been carried out, in the present study, using the single diffusion gel growth technique, which can broadly mimic in vitro the condition in soft tissues. The crystals were characterized by different techniques. The FTIR study revealed the presence of various functional groups. Powder XRD study was also carried out to verify the crystal structure. The dielectric study was carried out at room temperature by applying field of different frequency from 500 Hz to 1 MHz. The dielectric constant, dielectric loss and a.c. resistivity decreased as frequency increased, whereas the a.c. conductivity increased as frequency increased.

  9. Effects of phosphate pollutants on the growth of the oyster Crassostrea virginica in the Pamlico River estuary and on calcium carbonate crystallization in vitro. Part 2. Extension. Period of project: September 1, 1984-February 28, 1985

    SciTech Connect

    Wilbur, K.M.

    1986-01-01

    Four phosphates at various concentrations were studied for effect on shell growth of the clam Rangia cuneata over 24 h and 36 h using /sup 45/Ca. Four phosphates, present in polluted waters, have been examined for their effects at various concentrations on crystallization rate of CaCO/sub 3/ in vitro. Growth of the clam in the Pamlico River, North Carolina, were followed during fall, winter, and spring along with records of phosphate, temperature, salinity, chlorophyll and dissolved oxygen of the native water. 2 figs., 2 tabs.

  10. Preparation, crystal growth and luminescence in calcium sulphide

    NASA Astrophysics Data System (ADS)

    Brightwell, J. W.; Ray, B.; Buckley, C. N.

    1982-09-01

    The preparation of microcrystalline CaS of high purity, as determined from X-ray fluorescence and atomic absorption spectrophotometry, is reported. Systematic doping of CaS with between 2.0×10 -5 and 1.5×10 -3 mole parts of Mn has been carried out. Single crystal CaS, taking an octahedral habit with side dimensions up to 1 mm, has been prepared by chemical vapour transport using iodine at a concentration of 1 μg mm -3 for growth over a temperature differential 1200 to 800°C. A model supported by thermodynamic data is advanced for crystal growth of CaS with HI rather than I 2 being postulated as the principal transporting agent. Fluorescent emission spectra have indicated substantial emission in the blue-green for undoped single crystal CaS and for microcrystalline CaS with low Mn levels, whilst for 7.5×10 -4 and 1.5×10 -3 mole parts of Mn significant orange emission at 575 nm

  11. Growth Rate of Calcite Steps as a Function of Aqueous Calcium-to-Carbonate Ratio: Independent Attachment and Detachment of Calcium and Carbonate Ions

    SciTech Connect

    Stack, Andrew G; Grantham, Ms. Meg

    2010-01-01

    Growth rates of monolayer-height steps on the {1014} calcite surface have been measured as a function of the aqueous calcium-to-carbonate ratio. The maximum growth rates of the two common crystallographic orientations were found to deviate from the ideal stoichiometric ratio of 1:1, and dissolution features were observed under supersaturated solutions containing high calcium-to-carbonate ratios. To explain these phenomena, a theory is applied that treats the rates of attachment and detachment of aqueous calcium and carbonate ions separately. The resultant attachment rate constants are 1-3 orders of magnitude smaller than the water exchange rate of the constituent aqueous ions, suggesting that ligand-exchange processes may directly drive attachment. The broader implication is that the saturation state alone is not adequate to fully describe the rates of the multiple, independent reactions that occur on mineral surfaces under these conditions.

  12. The flame photometric determination of calcium in phosphate, carbonate, and silicate rocks

    USGS Publications Warehouse

    Kramer, H.

    1957-01-01

    A flame photometric method of determining calcium in phosphate, carbonate, and silicate locks has been developed Aluminum and phosphate interference was overcome by the addition of a large excess of magnesium. The method is rapid and suitable for routine analysis Results obtained are within ?? 2% of the calcium oxide content. ?? 1957.

  13. Calcium carbonate corrosivity in an Alaskan inland sea

    NASA Astrophysics Data System (ADS)

    Evans, W.; Mathis, J. T.; Cross, J. N.

    2014-01-01

    Ocean acidification is the hydrogen ion increase caused by the oceanic uptake of anthropogenic CO2, and is a focal point in marine biogeochemistry, in part, because this chemical reaction reduces calcium carbonate (CaCO3) saturation states (Ω) to levels that are corrosive (i.e., Ω ≤ 1) to shell-forming marine organisms. However, other processes can drive CaCO3 corrosivity; specifically, the addition of tidewater glacial melt. Carbonate system data collected in May and September from 2009 through 2012 in Prince William Sound (PWS), a semienclosed inland sea located on the south-central coast of Alaska and ringed with fjords containing tidewater glaciers, reveal the unique impact of glacial melt on CaCO3 corrosivity. Initial limited sampling was expanded in September 2011 to span large portions of the western and central sound, and included two fjords proximal to tidewater glaciers: Icy Bay and Columbia Bay. The observed conditions in these fjords affected CaCO3 corrosivity in the upper water column (< 50 m) in PWS in two ways: (1) as spring-time formation sites of mode water with near-corrosive Ω levels seen below the mixed layer over a portion of the sound, and (2) as point sources for surface plumes of glacial melt with corrosive Ω levels (Ω for aragonite and calcite down to 0.60 and 1.02, respectively) and carbon dioxide partial pressures (pCO2) well below atmospheric levels. CaCO3 corrosivity in glacial melt plumes is poorly reflected by pCO2 or pHT, indicating that either one of these carbonate parameters alone would fail to track Ω in PWS. The unique Ω and pCO2 conditions in the glacial melt plumes enhances atmospheric CO2 uptake, which, if not offset by mixing or primary productivity, would rapidly exacerbate CaCO3 corrosivity in a positive feedback. The cumulative effects of glacial melt and air-sea gas exchange are likely responsible for the seasonal reduction of Ω in PWS, making PWS highly sensitive to increasing atmospheric CO2 and amplified CaCO3 corrosivity.

  14. Characterization of calcium carbonate sorbent particle in furnace environment.

    PubMed

    Lee, Kang Soo; Jung, Jae Hee; Keel, Sang In; Yun, Jin Han; Min, Tai Jin; Kim, Sang Soo

    2012-07-01

    The oxy-fuel combustion system is a promising technology to control CO₂ and NO(x) emissions. Furthermore, sulfation reaction mechanism under CO₂-rich atmospheric condition in a furnace may lead to in-furnace desulfurization. In the present study, we evaluated characteristics of calcium carbonate (CaCO₃) sorbent particles under different atmospheric conditions. To examine the physical/chemical characteristics of CaCO₃, which is used as a sorbent particle for in-furnace desulfurization in the oxy-fuel combustion system, they were injected into high temperature drop tube furnace (DTF). Experiments were conducted at varying temperatures, residence times, and atmospheric conditions in a reactor. To evaluate the aerosolizing characteristics of the CaCO₃ sorbent particle, changes in the size distribution and total particle concentration between the DTF inlet and outlet were measured. Structural changes (e.g., porosity, grain size, and morphology) of the calcined sorbent particles were estimated by BET/BJH, XRD, and SEM analyses. It was shown that sorbent particles rapidly calcined and sintered in the air atmosphere, whereas calcination was delayed in the CO₂ atmosphere due to the higher CO₂ partial pressure. Instead, the sintering effect was dominant in the CO₂ atmosphere early in the reaction. Based on the SEM images, it was shown that the reactions of sorbent particles could be explained as a grain-subgrain structure model in both the air and CO₂ atmospheres. PMID:22578525

  15. Carbon monoxide effects on calcium levels in vascular smooth muscle

    SciTech Connect

    Lin, H.; McGrath, J.J.

    1988-01-01

    Previously the authors showed that carbon monoxide (CO) relaxes vascular smooth muscle in the working heart and thoracic aorta preparation perfused with hemoglobin-free, Krebs-Henseleit (KH) solution. The CO-induced relaxation was not caused by hypoxia, nor was it mediated by adrenergic influences, adenosine, or prostaglandins. In these studies the effect of CO on calcium (Ca/sup + +/) concentrations in vascular smooth muscle was determined using /sup 45/Ca as a tracer. Isolated rat thoracic aorta segments were incubated with /sup 45/Ca and gassed with O/sub 2/, N/sub 2/, or CO for 60 min. Verapamil was used to verify the effectiveness of the test system. Ca/sup + +/ concentrations were 488 /+ -/ 35 and 515 /+ -/ 26 mM/g tissue (X /+ -/ SE) in aortic rings gassed with O/sub 2/ and N/sub 2/, respectively. CO reduced Ca/sup + +/ concentrations significantly (P<0.01) by 29% to 369 /+ -/ 18 mM/g tissue. Verapamil treatment reduced Ca/sup + +/ concentrations by 40% to 314 /+ -/ 23 mM/g tissue. These results suggest that CO relaxes vascular smooth muscle and dilates blood vessels by decreasing Ca/sup + +/ concentrations in vascular smooth muscle.

  16. Controlled degradation pattern of hydroxyapatite/calcium carbonate composite microspheres.

    PubMed

    Yang, Ning; Zhong, Qiwei; Zhou, Ying; Kundu, Subhas C; Yao, Juming; Cai, Yurong

    2016-06-01

    Hydroxyapatite (HAP) is widely used in clinic due to its good biocompatibility and osteoconductivity except for its slow degradation speed. In the present study, spherical calcium carbonate (CaCO3 ) is fabricated in the presence of silk protein sericin, which is transmuted into HAP microsphere in phosphate solution with the assistance of microwave irradiation. The effect of reaction conditions on the conversion of CaCO3 is investigated including reaction time, chemical composition of phosphate solution, and microwave power to get a series of HAP/CaCO3 composites. The degradation property of the composites is evaluated in vitro. Results show the degradation speed of the composite with higher HAP content is slower. The degradation rate of the composite could be changed effectively by modulating the proportion of HAP and CaCO3 . This work provides a feasible method for the preparation of spherical HAP/CaCO3 composite with controllable degradability. The composite thus obtained may be an ideal material for bone tissue engineering application. Microsc. Res. Tech. 79:518-524, 2016. © 2016 Wiley Periodicals, Inc. PMID:27037606

  17. Energies of the adsorption of functional groups to calcium carbonate polymorphs: the importance of -OH and -COOH groups.

    PubMed

    Okhrimenko, D V; Nissenbaum, J; Andersson, M P; Olsson, M H M; Stipp, S L S

    2013-09-01

    The adsorption behavior of calcium carbonate is an important factor in many processes in nature, industry, and biological systems. We determined and compared the adsorption energies for a series of small molecules of different sizes and polarities (i.e., water, several alcohols, and acetic acid) on three synthetic CaCO3 polymorphs (calcite, aragonite, and vaterite). We measured isosteric heats of adsorption from vapor adsorption isotherms for 273 < T < 293 K, and we used XRD and SEM to confirm that samples did not change phase during the experiments. Density functional calculations and molecular dynamics simulations complemented the experimental results and aided interpretation. Alcohols with molecular mass greater than that of methanol bind more strongly to the calcium carbonate polymorphs than water and acetic acid. The adsorption energies for the alcohols are typical of chemisorption and indicate alcohol displacement of water from calcium carbonate surfaces. This explains why organisms favor biomolecules that contain alcohol functional groups (-OH) to control which polymorph they use, the crystal face and orientation, and the particle shape and size in biomineralization processes. This new insight is also very useful in understanding organic molecule adsorption mechanisms in soils, sediments, and rocks, which is important for predicting the behavior of mineral-fluid interactions when the challenge is to remediate contaminated groundwater aquifers or to produce oil and gas from reservoirs. PMID:23919655

  18. SURVEY OF NUMBER AND ARRANGEMENT OF CALCIUM OXALATE CRYSTALS IN LEAVES OF ANNUAL AND PERENNIAL SOYBEAN AND ALLIED TAXA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean is only one of many flowering plants that contain calcium oxalate crystals in its plant organs, especially in the leaves. Even though the functional significance of the crystals is still not understood, the sometimes massive amount, location and structure of crystals have been used in syste...

  19. Anhydrous Amorphous Calcium Oxalate Nanoparticles from Ionic Liquids: Stable Crystallization Intermediates in the Formation of Whewellite.

    PubMed

    Gehl, Aaron; Dietzsch, Michael; Mondeshki, Mihail; Bach, Sven; Häger, Tobias; Panthöfer, Martin; Barton, Bastian; Kolb, Ute; Tremel, Wolfgang

    2015-12-01

    The mechanisms by which amorphous intermediates transform into crystalline materials are not well understood. To test the viability and the limits of the classical crystallization, new model systems for crystallization are needed. With a view to elucidating the formation of an amorphous precursor and its subsequent crystallization, the crystallization of calcium oxalate, a biomineral widely occurring in plants, is investigated. Amorphous calcium oxalate (ACO) precipitated from an aqueous solution is described as a hydrated metastable phase, as often observed during low-temperature inorganic synthesis and biomineralization. In the presence of water, ACO rapidly transforms into hydrated whewellite (monohydrate, CaC2 O4 ⋅H2 O, COM). The problem of fast crystallization kinetics is circumvented by synthesizing anhydrous ACO from a pure ionic liquid (IL-ACO) for the first time. IL-ACO is stable in the absence of water at ambient temperature. It is obtained as well-defined, non-agglomerated particles with diameters of 15-20 nm. When exposed to water, it crystallizes to give (hydrated) COM through a dissolution/recrystallization mechanism. PMID:26549793

  20. Synthesis of calcium carbonate nanocrystals and their potential application as vessels for drug delivery

    NASA Astrophysics Data System (ADS)

    Vergaro, Viviana; Carata, Elisabetta; Panzarini, Elisa; Baldassare, Francesca; Dini, Luciana; Ciccarella, Giuseppe

    2015-06-01

    Pure and stable calcium carbonate (CaCO3) nanocrystals were synthesized by spray drying method. We exploited the opportunity to use them as vessels for drug delivery studying the biocompatibility and the internalization in HeLa cells.

  1. Specific Adsorption of Osteopontin and Synthetic Polypeptides to Calcium Oxalate Monohydrate Crystals

    PubMed Central

    Taller, Adam; Grohe, Bernd; Rogers, Kem A.; Goldberg, Harvey A.; Hunter, Graeme K.

    2007-01-01

    Protein-crystal interactions are known to be important in biomineralization. To study the physicochemical basis of such interactions, we have developed a technique that combines confocal microscopy of crystals with fluorescence imaging of proteins. In this study, osteopontin (OPN), a protein abundant in urine, was labeled with the fluorescent dye AlexaFluor-488 and added to crystals of calcium oxalate monohydrate (COM), the major constituent of kidney stones. In five to seven optical sections along the z axis, scanning confocal microscopy was used to visualize COM crystals and fluorescence imaging to map OPN adsorbed to the crystals. To quantify the relative adsorption to different crystal faces, fluorescence intensity was measured around the perimeter of the crystal in several sections. Using this method, it was shown that OPN adsorbs with high specificity to the edges between {100} and {121} faces of COM and much less so to {100}, {121}, or {010} faces. By contrast, poly-L-aspartic acid adsorbs preferentially to {121} faces, whereas poly-L-glutamic acid adsorbs to all faces approximately equally. Growth of COM in the presence of rat bone OPN results in dumbbell-shaped crystals. We hypothesize that the edge-specific adsorption of OPN may be responsible for the dumbbell morphology of COM crystals found in human urine. PMID:17496021

  2. Intracrystalline Proteins Promote Dissolution of Urinary Calcium Oxalate Crystals in Cultured Renal Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Grover, Phulwinder K.; Thurgood, Lauren A.; Fleming, David E.; van Bronswijk, Wilhelm; Ryall, Rosemary L.

    2007-04-01

    We have proposed that internalized calcium oxalate (CaOx) crystals containing intracrystalline proteins would be vulnerable to intracellular dissolution. The aims of this study were (1) to measure non-uniform strain and crystallite size in CaOx monohydrate (COM) crystals containing increasing amounts of intracrystalline crystal matrix extract (CME) and (2) to compare the rates of crystal dissolution in Madin-Darby canine kidney (MDCKII) cells. CME was isolated by demineralization of COM crystals generated from human urine. Cold and 14C-oxalate-labelled COM crystals were precipitated from ultrafiltered urine containing CME at final concentrations of 0-5mg/L. Non-uniform strain and crystallite size were determined using synchrotron X-ray diffraction with Rietveld whole-pattern peak fitting and profile analysis, and the protein content of the crystals was analyzed using SDS-PAGE and Western blotting for prothrombin fragment 1. Radiolabeled crystals were added to MDCKII cells and dissolution was expressed as radioactive label released into the medium relative to that in the crystals at zero time. Non-uniform strain increased and crystallite size decreased proportionally with rising CME concentration, reaching saturation between approximately 1 and 5 mg/L, and demonstrating unequivocally the inclusion of increasing quantities of proteins in the crystals. This was confirmed by SDS-PAGE and Western blotting. Crystal dissolution also followed saturation kinetics. These findings were confirmed by field emission scanning electron microscopy (FESEM), which showed that the degree of crystal degradation increased relative to CME concentration. We conclude that intracrystalline proteins enhance intracellular dissolution of CaOx crystals and thus may provide a natural defense against stone pathogenesis.

  3. Calcium carbonate nucleation driven by ion binding in a biomimetic matrix revealed by in situ electron microscopy

    NASA Astrophysics Data System (ADS)

    Smeets, Paul J. M.; Cho, Kang Rae; Kempen, Ralph G. E.; Sommerdijk, Nico A. J. M.; de Yoreo, James J.

    2015-04-01

    The characteristic shapes, structures and properties of biominerals arise from their interplay with a macromolecular matrix. The developing mineral interacts with acidic macromolecules, which are either dissolved in the crystallization medium or associated with insoluble matrix polymers, that affect growth habits and phase selection or completely inhibit precipitation in solution. Yet little is known about the role of matrix-immobilized acidic macromolecules in directing mineralization. Here, by using in situ liquid-phase electron microscopy to visualize the nucleation and growth of CaCO3 in a matrix of polystyrene sulphonate (PSS), we show that the binding of calcium ions to form Ca-PSS globules is a key step in the formation of metastable amorphous calcium carbonate (ACC), an important precursor phase in many biomineralization systems. Our findings demonstrate that ion binding can play a significant role in directing nucleation, independently of any control over the free-energy barrier to nucleation.

  4. Liquid crystal polyester-carbon fiber composites

    NASA Technical Reports Server (NTRS)

    Chung, T. S.

    1984-01-01

    Liquid crystal polymers (LCP) have been developed as a thermoplastic matrix for high performance composites. A successful melt impregnation method has been developed which results in the production of continuous carbon fiber (CF) reinforced LCP prepreg tape. Subsequent layup and molding of prepreg into laminates has yielded composites of good quality. Tensile and flexural properties of LCP/CF composites are comparable to those of epoxy/CF composites. The LCP/CF composites have better impact resistance than the latter, although epoxy/CF composites possess superior compression and shear strength. The LCP/CF composites have good property retention until 200 F (67 % of room temperature value). Above 200 F, mechanical properties decrease significantly. Experimental results indicate that the poor compression and shear strength may be due to the poor interfacial adhesion between the matrix and carbon fiber as adequate toughness of the LCP matrix. Low mechanical property retention at high temperatures may be attributable to the low beta-transition temperature (around 80 C) of the LCP matrix material.

  5. Influence of eggshell matrix proteins on the precipitation of calcium carbonate (CaCO 3)

    NASA Astrophysics Data System (ADS)

    Hernández-Hernández, A.; Vidal, M. L.; Gómez-Morales, J.; Rodríguez-Navarro, A. B.; Labas, V.; Gautron, J.; Nys, Y.; García Ruiz, J. M.

    2008-04-01

    To understand the role of eggshell organic matrix on the biomineralization process, we have tested the influence of different purified fractions of the eggshell organic matrix on calcium carbonate (CaCO 3) precipitation. Purification was carried out after successive anion-exchange chromatography, hydrophobic interaction chromatography and gel filtration chromatography of two different prepurified eggshell extracts (A) and (B); the purified fractions (named g, h, n and r) and ( c', g', i', k') respectively were diluted to 50 μg/ml before being tested in vitro and analysed by the sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) procedure and mass spectrometry. The precipitation experiments were carried out by the method of vapour diffusion on crystallization mushrooms. Each purified fraction showed a different effect on CaCO 3 precipitation. Some of them exhibited a strong inhibitory effect on nucleation, thus suppressing the precipitation of CaCO 3 almost totally while the others did not produce any notable effect. However, all fractions favoured the precipitation of calcite over the other CaCO 3 polymorphs. Additionally, all fractions modified in a different manner the size and morphology of the precipitated calcite crystals.

  6. GFP Facilitates Native Purification of Recombinant Perlucin Derivatives and Delays the Precipitation of Calcium Carbonate

    PubMed Central

    Weber, Eva; Guth, Christina; Weiss, Ingrid M.

    2012-01-01

    Insolubility is one of the possible functions of proteins involved in biomineralization, which often limits their native purification. This becomes a major problem especially when recombinant expression systems are required to obtain larger amounts. For example, the mollusc shell provides a rich source of unconventional proteins, which can interfere in manifold ways with different mineral phases and interfaces. Therefore, the relevance of such proteins for biotechnological processes is still in its infancy. Here we report a simple and reproducible purification procedure for a GFP-tagged lectin involved in biomineralization, originally isolated from mother-of-pearl in abalone shells. An optimization of E. coli host cell culture conditions was the key to obtain reasonable yields and high degrees of purity by using simple one-step affinity chromatography. We identified a dual functional role for the GFP domain when it became part of a mineralizing system in vitro. First, the GFP domain improved the solubility of an otherwise insoluble protein, in this case recombinant perlucin derivatives. Second, GFP inhibited calcium carbonate precipitation in a concentration dependent manner. This was demonstrated here using a simple bulk assay over a time period of 400 seconds. At concentrations of 2 µg/ml and higher, the inhibitory effect was observed predominantly for HCO3− as the first ionic interaction partner, but not necessarily for Ca2+. The interference of GFP-tagged perlucin derivatives with the precipitation of calcium carbonate generated different types of GFP-fluorescent composite calcite crystals. GFP-tagging offers therefore a genetically tunable tool to gently modify mechanical and optical properties of synthetic biocomposite minerals. PMID:23056388

  7. A simple method for quantitating the propensity for calcium oxalate crystallization in urine

    NASA Technical Reports Server (NTRS)

    Wabner, C. L.; Pak, C. Y.

    1991-01-01

    To assess the propensity for spontaneous crystallization of calcium oxalate in urine, the permissible increment in oxalate is calculated. The previous method required visual observation of crystallization with the addition of oxalate, this warranted the need for a large volume of urine and a sacrifice in accuracy in defining differences between small incremental changes of added oxalate. Therefore, this method has been miniaturized and spontaneous crystallization is detected from the depletion of radioactive oxalate. The new "micro" method demonstrated a marked decrease (p < 0.001) in the permissible increment in oxalate in urine of stone formers versus normal subjects. Moreover, crystallization inhibitors added to urine, in vitro (heparin or diphosphonate) or in vivo (potassium citrate administration), substantially increased the permissible increment in oxalate. Thus, the "micro" method has proven reliable and accurate in discriminating stone forming from control urine and in distinguishing changes of inhibitory activity.

  8. Inhibition of calcium oxalate monohydrate crystallization by the combination of citrate and osteopontin

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Zhang, Wei; Qiu, S. Roger; Zachowicz, William J.; Guan, Xiangying; Tang, Ruikang; Hoyer, John R.; De Yoreo, James J.; Nancollas, George H.

    2006-05-01

    The design of effective crystallization inhibitors of calcium oxalate monohydrate (COM), the primary constituent of kidney stones, is a significant goal. Inhibitory molecules identified in urine include a small organic anion, citrate, and osteopontin (OPN), an aspartic acid-rich protein. The results of molecular-scale analyses combining force microscopy with molecular modeling raised the possibility that inhibition of COM crystallization might be increased by the additive effects of citrate and OPN because they act on different crystal faces. Constant composition (CC) kinetics studies of COM crystal growth now confirm that additive effects are, indeed, achieved in vitro when both citrate and OPN are present. These results suggest that a strategy employing combinations of inhibitors may provide a useful therapeutic approach to urinary stone disease.

  9. The effect of alginates, fucans and phenolic substances from the brown seaweed Padina gymnospora in calcium carbonate mineralization in vitro

    NASA Astrophysics Data System (ADS)

    Salgado, L. T.; Amado Filho, G. M.; Fernandez, M. S.; Arias, J. L.; Farina, M.

    2011-04-01

    The mineralization of calcium carbonate (CaCO 3) in the brown seaweed Padina gymnospora is a biologically induced process and is restricted to the cell wall surface. It has been suggested that the CaCO 3 crystallization that occurs over the thallus cell wall surface is induced by changes in the surface pH caused by a local efflux of OH -, Ca ++ and HCO3- ions. However, no studies on the roles of the P. gymnospora cell wall components in this mineralization process had been performed. Therefore, we evaluated the influence of a subset of P. gymnospora cell wall molecules on CaCO 3 crystallization in vitro. The molecules tested were the anionic polysaccharides alginates and fucans (with potential nucleation activity) and phenolic substances (secondary metabolites with amphipathic property). The crystallization assays were performed using polystyrene microbridges as the crystallization apparatus. Crystals formed in the microbridges were analyzed using scanning electron microscopy. Interestingly, the results confirmed that the phenolic substances have the specific capability of changing the morphology of calcite crystals grown in vitro by inducing an elongated morphology in the direction of the c-axis. This morphology is similar to that induced by molecules that attach to { h k 0}-crystal planes. It was also shown that the alginates and the fucans do not specifically modulate the morphology of the growing crystals. In fact, these crystals exhibited a rounded shape due to the slower growth rates of several new crystal planes that appeared in the place of the original corners and edges.

  10. Crystal structure of monoclinic calcium pyrophosphate dihydrate (m-CPPD) involved in inflammatory reactions and osteoarthritis.

    PubMed

    Gras, Pierre; Rey, Christian; André, Gilles; Charvillat, Cédric; Sarda, Stéphanie; Combes, Christèle

    2016-02-01

    Pure monoclinic calcium pyrophosphate dihydrate (m-CPPD) has been synthesized and characterized by synchrotron powder X-ray diffraction and neutron diffraction. Rietveld refinement of complementary diffraction data has, for the first time, allowed the crystal structure of m-CPPD to be solved. The monoclinic system P21/n was confirmed and unit-cell parameters determined: a = 12.60842 (4), b = 9.24278 (4), c = 6.74885 (2) Å and β = 104.9916 (3)°. Neutron diffraction data especially have allowed the precise determination of the position of H atoms in the structure. The relationship between the m-CPPD crystal structure and that of the triclinic calcium pyrophosphate dihydrate (t-CPPD) phase as well as other pyrophosphate phases involving other divalent cations are discussed by considering the inflammatory potential of these phases and/or their involvement in different diseases. These original structural data represent a key step in the understanding of the mechanisms of crystal formation involved in different types of arthritis and to improve early detection of calcium pyrophosphate (CPP) phases in vivo. PMID:26830800

  11. The effect of anionic polyelectrolytes on the crystallization of calcium oxalate hydrates

    NASA Astrophysics Data System (ADS)

    Manne, Joseph S.; Biala, Naresh; Smith, Arthur D.; Gryte, Carl C.

    1990-03-01

    Calcium oxalate was precipitated from supersaturated calcium oxalate solutions in the presence of different water soluble polymers: poly(acrylic acid), poly(methacrylic acid), poly(styrene sulfonate-alt-maleic anhydride), poly(maleic anhydride), and poly(vinyl sulfonate). The supersaturated solutions were made with initial calcium and oxalate concentrations of 4×10 -3M and 1.5×10 -3M respectively. In the presence of anionic polyelectrolytes there was a change in the hydrate from of calcium oxalate which precipitated. With low concentrations of polyelectrolyte (up to 1 ppm) only the monohydrate was formed, at intermediate concentration (1-50 ppm) trihydrate was the predominant product, and at high concentrations (above 50 ppm) the dihydrate form was the dominant product. Nonpolyelectrolytes had no effect on the crystallization and thus only calcium oxalate monohydrate was formed. This effect was found to occur with all polyelectrolytes used regardless of molecular weight or charge. The change from one hydrate from to another occured at a lower polymer concentration with the low molecular weight polymers.

  12. Pore-size-dependent calcium carbonate precipitation controlled by surface chemistry.

    PubMed

    Stack, Andrew G; Fernandez-Martinez, Alejandro; Allard, Lawrence F; Bañuelos, José L; Rother, Gernot; Anovitz, Lawrence M; Cole, David R; Waychunas, Glenn A

    2014-06-01

    Induced mineral precipitation is potentially important for the remediation of contaminants, such as during mineral trapping during carbon or toxic metal sequestration. The prediction of precipitation reactions is complicated by the porous nature of rocks and soils and their interaction with the precipitate, introducing transport and confinement effects. Here X-ray scattering measurements, modeling, and electron microscopies were used to measure the kinetics of calcium carbonate precipitation in a porous amorphous silica (CPG) that contained two discrete distributions of pore sizes: nanopores and macropores. To examine the role of the favorability of interaction between the substrate and precipitate, some of the CPG was functionalized with a self-assembled monolayer (SAM) similar to those known to enhance nucleation densities on planar substrates. Precipitation was found to occur exclusively in macropores in the native CPG, while simultaneous precipitation in nanopores and macropores was observed in the functionalized CPG. The rate of precipitation in the nanopores estimated from the model of the X-ray scattering matched that measured on calcite single crystals. These results suggest that the pore-size distribution in which a precipitation reaction preferentially occurs depends on the favorability of interaction between substrate and precipitate, something not considered in most studies of precipitation in porous media. PMID:24815551

  13. Sulfur Cycling Mediates Calcium Carbonate Geochemistry in Modern Marine Stromatolites

    NASA Technical Reports Server (NTRS)

    Visscher, P. T.; Hoeft, S. E.; Bebout, B. M.; Reid, R. P.

    2004-01-01

    Modem marine stromatolites forming in Highborne Cay, Exumas (Bahamas), contain microbial mats dominated by Schizothrix. Although saturating concentrations of Ca2+ and CO32- exist, microbes mediate CaCO3 precipitation. Cyanobacterial photosynthesis in these stromatolites aids calcium carbonate precipitation by removal of HS+ through CO2 use. Photorespiration and exopolymer production predominantly by oxygenic phototrophs fuel heterotrophic activity: aerobic respiration (approximately 60 umol/sq cm.h) and sulfate reduction (SR; 1.2 umol SO42-/sq cm.h) are the dominant C- consuming processes. Aerobic microbial respiration and the combination of SR and H2S oxidation both facilitate CaCO3 dissolution through H+ production. Aerobic respiration consumes much more C on an hourly basis, but duel fluctuating O2 and H2 depth profiles indicate that overall, SR consumes only slightly less (0.2-0.5) of the primary production. Moreover, due to low O2 concentrations when SR rates are peaking, reoxidation of the H2S formed is incomplete: both thiosulfate and polythionates are formed. The process of complete H2S oxidation yields H+. However, due to a low O2 concentration late in the day and relatively high O2 concentrations early in the following morning, a two-stage oxidation takes place: first, polythionates are formed from H2S, creating alkalinity which coincides with CaCO3 precipitation; secondly, oxidation of polythionates to sulfate yields acidity, resulting in dissolution, etc. Vertical profiles confirmed that the pH peaked late in the afternoon (greater than 8.8) and had the lowest values (less than 7.4) early in the morning. Thus, the effect of this S-cycling through alkalinity production, followed by acidification during H2S oxidation, results in a six times stronger fluctuation in acidity than photosynthesis plus aerobic respiration accomplish. This implies that anaerobic processes play a pivotal role in stromatolite formation.

  14. Protein-calcium carbonate coprecipitation: a tool for protein encapsulation.

    PubMed

    Petrov, Alexander I; Volodkin, Dmitry V; Sukhorukov, Gleb B

    2005-01-01

    A new approach of encapsulation of proteins in polyelectrolyte microcapsules has been developed using porous calcium carbonate microparticles as microsupports for layer-by-layer (LbL) polyelectrolyte assembling. Two different ways were used to prepare protein-loaded CaCO3 microparticles: (i) physical adsorption--adsorption of proteins from the solutions onto preformed CaCO3 microparticles, and (ii) coprecipitation--protein capture by CaCO3 microparticles in the process of growth from the mixture of aqueous solutions of CaCl2 and Na2CO3. The latter was found to be about five times more effective than the former (approximately 100 vs approximately 20 mug of captured protein per 1 mg of CaCO3). The procedure is rather mild; the revealed enzymatic activity of alpha-chymotrypsin captured initially by CaCO3 particles during their growth and then recovered after particle dissolution in EDTA was found to be about 85% compared to the native enzyme. Core decomposition and removal after assembly of the required number of polyelectrolyte layers resulted in release of protein into the interior of polyelectrolyte microcapsules (PAH/PSS)5 thus excluding the encapsulated material from direct contact with the surrounding. The advantage of the suggested approach is the possibility to control easily the concentration of protein inside the microcapsules and to minimize the protein immobilization within the capsule walls. Moreover, it is rather universal and may be used for encapsulation of a wide range of macromolecular compounds and bioactive species. PMID:15932274

  15. Encapsulated calcium carbonate suspensions: A drug delivery vehicle sensitive to ultrasound disruption

    PubMed Central

    Lanting, Brent; Barfett, Joe

    2006-01-01

    A calcium carbonate suspension, encapsulated within particles of calcium alginate hydrogel, is proposed as a drug delivery device susceptible to ultrasound disruption. Spheres approximately 1mm in diameter were prepared by the coaxial airflow method from mixtures of 1% sodium alginate (m/v) and each of 50%, 75% and 100% calcium carbonate (m/v) in distilled water. This product was subjected to cycles of 85 Watt ultrasound in 1 second on/off bursts via a lab sonication system until fully disintegrated, a process requiring between 8 and 20 minutes depending upon initial calcium carbonate concentrations. The spheres subjected to vortex did not demonstrate any signs of mechanical degeneration after 30 minutes. Before use as a model implant, further work is required to develop a method of drying the particles to make them impermeable to drug diffusion before the time of their disruption with ultrasound. PMID:18523616

  16. Bioinspired synthesis of fluorescent calcium carbonate/carbon dot hybrid composites.

    PubMed

    Guo, Shanshan; Yang, Miao; Chen, Min; Zhang, Juan; Liu, Kang; Ye, Ling; Gu, Wei

    2015-05-01

    Herein, we report a novel method to synthesise fluorescent calcium carbonate/carbon dots (CaCO3/CDs) by simply mixing CaCl2 and Na2CO3 solutions in the presence of CDs. There are two roles of CDs in this easy and cost-effective biomimetic strategy, that is as the template to direct the formation and assembly of calcite nanocrystals into hierarchical spheres with diameters in the range of 200-300 nm and simultaneously as the phosphor to enable the CaCO3 to emit blue fluorescence under UV (365 nm) irradiation with a quantum yield of 56.2%. The CaCO3/CD hybrid composites possessing unique fluorescence properties are potentially useful in various applications. PMID:25845422

  17. Powder X-ray diffraction can differentiate between enantiomeric variants of calcium lactate pentahydrate crystal in cheese.

    PubMed

    Tansman, G F; Kindstedt, P S; Hughes, J M

    2014-12-01

    Powder X-ray diffraction has been used for decades to identify crystals of calcium lactate pentahydrate in Cheddar cheese. According to this method, diffraction patterns are generated from a powdered sample of the crystals and compared with reference cards within a database that contains the diffraction patterns of known crystals. During a preliminary study of crystals harvested from various Cheddar cheese samples, we observed 2 slightly different but distinct diffraction patterns that suggested that calcium lactate pentahydrate may be present in 2 different crystalline forms. We hypothesized that the 2 diffraction patterns corresponded to 2 enantiomeric forms of calcium lactate pentahydrate (L- and DL-) that are believed to occur in Cheddar cheese, based on previous studies involving enzymatic analyses of the lactate enantiomers in crystals obtained from Cheddar cheeses. However, the powder X-ray diffraction database currently contains only one reference diffraction card under the title “calcium lactate pentahydrate.” To resolve this apparent gap in the powder X-ray diffraction database, we generated diffraction patterns from reagent-grade calcium l-lactate pentahydrate and laboratory-synthesized calcium dl-lactate pentahydrate. From the resulting diffraction patterns we determined that the existing reference diffraction card corresponds to calcium dl-lactate pentahydrate and that the other form of calcium lactate pentahydrate observed in cheese crystals corresponds to calcium l-lactate pentahydrate. Therefore, this report presents detailed data from the 2 diffraction patterns, which may be used to prepare 2 reference diffraction cards that differentiate calcium l-lactate pentahydrate from calcium dl-lactate pentahydrate. Furthermore, we collected crystals from the exteriors and interiors of Cheddar cheeses to demonstrate the ability of powder X-ray diffraction to differentiate between the 2 forms of calcium lactate pentahydrate crystals in Cheddar cheeses. Powder X-ray diffraction results were validated using enzymatic assays for lactate enantiomers. These results demonstrated that powder X-ray diffraction can be used as a diagnostic tool to quickly identify different forms of calcium lactate pentahydrate that may occur in Cheddar cheese. PMID:25459903

  18. Effect of calcium carbonate combined with calcitonin on hypercalcemia in hemodialysis patients.

    PubMed

    Wei, Yong; Kong, Xiang Lei; Li, Wen Bin; Wang, Zun Song

    2014-12-01

    This short-term study assessed the efficacy and safety of calcium carbonate combined with calcitonin in the treatment of hypercalcemia in hemodialysis patients. Patients (n=64) on hemodialysis for chronic kidney disease for more than 6 months were included based on total serum calcium more than 10.5 mg/dL. All patients were randomized (1:1) to receive calcium carbonate combined with calcitonin (Group I) or lanthanum carbonate (Group II) for 12 weeks. Blood levels of calcium, phosphorus and intact parathyroid hormone (iPTH) were measured every month, bone mass density (BMD) and coronary artery calcium scores (CACS) were measured at 3 months. During the study period, serum calcium decreased from 10.72 ± 0.39 to 10.09 ± 0.28 mg/dL (P < 0.05), serum phosphorus decreased from 6.79 ± 1.05 to 5.46 ± 1.18 mg/dL (P < 0.05), and serum iPTH levels in the Group I and Group II were not significantly different from the baseline. There were no significant differences in CACS in either group. There were no significant differences in the BMD values between Group I and baseline. In Group II, the BMD values at the lumbar spine and femoral neck were significantly lower than those before the trial and significantly lower than the corresponding values of Group I (P<0.05). Calcium carbonate combined with calcitonin and lanthanum carbonate were equally effective in the suppression of hypercalcemia in hemodialysis patients. There were no serious treatment-related adverse events in treatment with calcium carbonate combined with calcitonin. PMID:24674384

  19. Crystal structure of complex natural aluminum magnesium calcium iron oxide

    SciTech Connect

    Rastsvetaeva, R. K. Aksenov, S. M.; Verin, I. A.

    2010-07-15

    The structure of a new natural oxide found near the Tashelga River (Eastern Siberia) was studied by X-ray diffraction. The pseudo-orthorhombic unit cell parameters are a = 5.6973(1) A, b = 17.1823(4) A, c = 23.5718(5) A, {beta} = 90{sup o}, sp. gr. Pc. The structure was refined to R = 0.0516 based on 4773 reflections with vertical bar F vertical bar > 7{sigma}(F) taking into account the twin plane perpendicular to the z axis (the twin components are 0.47 and 0.53). The crystal-chemical formula (Z = 4) is Ca{sub 2}Mg{sub 2}{sup IV}Fe{sub 2}{sup (2+)IV}[Al{sub 14}{sup VI}O{sub 31}(OH)][Al{sub 2}{sup IV}O][Al{sup IV}]AL{sup IV}(OH)], where the Roman numerals designate the coordination of the atoms. The structure of the mineral is based on wide ribbons of edge-sharing Al octahedra (an integral part of the spinel layer). The ribbons run along the shortest x axis and are inclined to the y and z axes. The adjacent ribbons are shifted with respect to each other along the y axis, resulting in the formation of step-like layers in which the two-ribbon thickness alternates with the three-ribbon thickness. Additional Al octahedra and Mg and Fe{sup 2+} tetrahedra are located between the ribbons. The layers are linked together to form a three-dimensional framework by Al tetrahedra, Ca polyhedra, and hydrogen bonds with the participation of OH groups.

  20. Fractionation behavior of chromium isotopes during coprecipitation with calcium carbonate: Implications for their use as paleoclimatic proxy

    NASA Astrophysics Data System (ADS)

    Rodler, A.; Sánchez-Pastor, N.; Fernández-Díaz, L.; Frei, R.

    2015-09-01

    Interest in chromium (Cr) isotope incorporation into carbonates arises from the observation that Cr isotopic composition of carbonates could be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track paleoenvironmental changes, for example related to the rise of oxygen during the Archaean and Protoerozoic, needs careful assessment of the signal robustness and necessitates a thorough understanding of the Cr cycle in Earth system processes. We conducted experiments testing the incorporation of chromate into the calcite lattice to investigate isotopic changes facilitated by the coprecipitation process. Our experiments indicate enrichment in Cr concentration in the precipitates compared to the solutions, consistent with previous reports of Cr enrichment in chemical sediments compared to ambient seawater. The fractionation of Cr isotopes during calcium carbonate coprecipitation was assumed to be small, based on previously published data of modern seawater and modern non-skeletal marine carbonates. However, results from this study for rapidly precipitated calcium carbonate in the presence of chromate show a tendency for preferential incorporation of heavy Cr isotopes in the precipitates resulting in increasing relative isotope difference between precipitate and initial solution (Δ53Cr[p-is]) from +0.06‰ to +0.18‰, with increasing initial Cr concentration of the solution. Sample precipitation in the presence of chromate also showed the presence of vaterite. Calcium carbonate crystals were also precipitated in a double diffusion silica hydrogel over a longer period of time resulting in samples consisting of micrometric-millimetric calcite crystals, which were again significantly enriched in heavy Cr isotopes compared to the initial solutions. They average, irrespective of the initial Cr concentration, a relative isotope difference (Δ53Cr[p-is]) of +0.29 ± 0.08‰ (2σ), whereas silica hydrogel samples show a preferential retention of light Cr isotopes. These results imply that in previous studies the δ53Cr seawater signals inferred from carbonates may be too positive or, at lower Cr concentrations typical for seawater, marginal to no Cr isotope fractionation can be expected; this might have implications for the use of Cr isotopic signals recorded in ancient marine carbonates in relation to ambient seawater and pave the way for future work to enable a reliable application of the Cr isotope proxy.

  1. Revisiting spatial distribution and biochemical composition of calcium-containing crystals in human osteoarthritic articular cartilage

    PubMed Central

    2013-01-01

    Introduction Calcium-containing (CaC) crystals, including basic calcium phosphate (BCP) and calcium pyrophosphate dihydrate (CPP), are associated with destructive forms of osteoarthritis (OA). We assessed their distribution and biochemical and morphologic features in human knee OA cartilage. Methods We prospectively included 20 patients who underwent total knee replacement (TKR) for primary OA. CaC crystal characterization and identification involved Fourier-transform infra-red spectrometry and scanning electron microscopy of 8 to 10 cartilage zones of each knee, including medial and lateral femoral condyles and tibial plateaux and the intercondyle zone. Differential expression of genes involved in the mineralization process between cartilage with and without calcification was assessed in samples from 8 different patients by RT-PCR. Immunohistochemistry and histology studies were performed in 6 different patients. Results Mean (SEM) age and body mass index of patients at the time of TKR was 74.6 (1.7) years and 28.1 (1.6) kg/m², respectively. Preoperative X-rays showed joint calcifications (chondrocalcinosis) in 4 cases only. The medial femoro-tibial compartment was the most severely affected in all cases, and mean (SEM) Kellgren-Lawrence score was 3.8 (0.1). All 20 OA cartilages showed CaC crystals. The mineral content represented 7.7% (8.1%) of the cartilage weight. All patients showed BCP crystals, which were associated with CPP crystals for 8 joints. CaC crystals were present in all knee joint compartments and in a mean of 4.6 (1.7) of the 8 studied areas. Crystal content was similar between superficial and deep layers and between medial and femoral compartments. BCP samples showed spherical structures, typical of biological apatite, and CPP samples showed rod-shaped or cubic structures. The expression of several genes involved in mineralization, including human homolog of progressive ankylosis, plasma-cell-membrane glycoprotein 1 and tissue-nonspecific alkaline phosphatase, was upregulated in OA chondrocytes isolated from CaC crystal-containing cartilages. Conclusions CaC crystal deposition is a widespread phenomenon in human OA articular cartilage involving the entire knee cartilage including macroscopically normal and less weight-bearing zones. Cartilage calcification is associated with altered expression of genes involved in the mineralisation process. PMID:24004678

  2. Oxygen spectroscopy and polarization-dependent imaging contrast (PIC)-mapping of calcium carbonate minerals and biominerals.

    PubMed

    DeVol, Ross T; Metzler, Rebecca A; Kabalah-Amitai, Lee; Pokroy, Boaz; Politi, Yael; Gal, Assaf; Addadi, Lia; Weiner, Steve; Fernandez-Martinez, Alejandro; Demichelis, Raffaella; Gale, Julian D; Ihli, Johannes; Meldrum, Fiona C; Blonsky, Adam Z; Killian, Christopher E; Salling, C B; Young, Anthony T; Marcus, Matthew A; Scholl, Andreas; Doran, Andrew; Jenkins, Catherine; Bechtel, Hans A; Gilbert, Pupa U P A

    2014-07-17

    X-ray absorption near-edge structure (XANES) spectroscopy and spectromicroscopy have been extensively used to characterize biominerals. Using either Ca or C spectra, unique information has been obtained regarding amorphous biominerals and nanocrystal orientations. Building on these results, we demonstrate that recording XANES spectra of calcium carbonate at the oxygen K-edge enables polarization-dependent imaging contrast (PIC) mapping with unprecedented contrast, signal-to-noise ratio, and magnification. O and Ca spectra are presented for six calcium carbonate minerals: aragonite, calcite, vaterite, monohydrocalcite, and both hydrated and anhydrous amorphous calcium carbonate. The crystalline minerals reveal excellent agreement of the extent and direction of polarization dependences in simulated and experimental XANES spectra due to X-ray linear dichroism. This effect is particularly strong for aragonite, calcite, and vaterite. In natural biominerals, oxygen PIC-mapping generated high-magnification maps of unprecedented clarity from nacre and prismatic structures and their interface in Mytilus californianus shells. These maps revealed blocky aragonite crystals at the nacre-prismatic boundary and the narrowest calcite needle-prisms. In the tunic spicules of Herdmania momus, O PIC-mapping revealed the size and arrangement of some of the largest vaterite single crystals known. O spectroscopy therefore enables the simultaneous measurement of chemical and orientational information in CaCO3 biominerals and is thus a powerful means for analyzing these and other complex materials. As described here, PIC-mapping and spectroscopy at the O K-edge are methods for gathering valuable data that can be carried out using spectromicroscopy beamlines at most synchrotrons without the expense of additional equipment. PMID:24821199

  3. Calcium

    MedlinePlus

    ... and drink lactose-reduced or lactose-free milk. Vegans (vegetarians who eat no animal products) and ovo- ... osteoporosis and bone fractures. Symptoms of serious calcium deficiency include numbness and tingling in the fingers, convulsions, ...

  4. Calcium

    MedlinePlus

    ... such as milk, cheese, and yogurt Leafy, green vegetables Fish with soft bones that you eat, such as canned sardines and salmon Calcium-enriched foods such as breakfast cereals, fruit juices, soy and rice drinks, and tofu. Check ...

  5. In vitro inhibition of calcium oxalate crystallization and crystal adherence to renal tubular epithelial cells by Terminalia arjuna.

    PubMed

    Mittal, A; Tandon, S; Singla, S K; Tandon, C

    2016-04-01

    Urolithiasis is a multifactorial disease and remains a public health problem around the world. Of all types of renal stones, calcium oxalate (CaOx) is the most common composition formed in the urinary system of the patients with urolithiasis. The present study is aimed at evaluating the antiurolithiatic properties of the Tris-Cl extract (TE) of Terminalia arjuna (T. arjuna). The antilithiatic activity of TE of T. arjuna was investigated on nucleation, aggregation, and growth of the CaOx crystals, as well as its protective potency was tested on oxalate-induced cell injury of NRK-52E renal epithelial cells. Also, in vitro antioxidant activity of TE T. arjuna bark was also determined. The TE of T. arjuna exhibited a concentration-dependent inhibition of nucleation and growth of CaOx crystals. Inhibition of aggregation of CaOx crystals remains constant. When NRK-52E cells were injured by exposure to oxalate for 48 h, the TE prevented the cells from injury and CaOx crystal adherence resulting in increased cell viability in a dose-dependent manner. The TE also scavenged the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals with an IC50 at 51.72 µg/mL. The results indicated that T. arjuna is a potential candidate for phytotherapy against urolithiasis as it attains the ability to inhibit CaOx crystallization and scavenge DPPH free radicals in vitro along with a cytoprotective role. PMID:26424092

  6. Effects of polymer concentration on the morphology of calcium phosphate crystals formed in polyacrylamide hydrogels

    NASA Astrophysics Data System (ADS)

    Yokoi, Taishi; Kawashita, Masakazu; Ohtsuki, Chikara

    2013-11-01

    Growing crystals in hydrogels is an attractive method to form inorganic solids with designed morphology under ambient conditions. Precipitation of the inorganic solids in a hydrogel matrix can be regarded as mimicking the process of biomineralization. In the construction of biominerals, an organic template composed of insoluble macromolecules is used to control the crystal growth of the inorganic compounds. The morphological control in biomineralization can be applied to artificial reaction systems. In this study, the morphology of calcium phosphate crystals formed in polymeric hydrogels of various polymer concentrations was investigated. Spherical octacalcium phosphate (OCP) precipitated in the polyacrylamide (PAAm) hydrogels. Fibrous crystals gradually covered the surface of the spherical crystals as the polymer concentration of the gel increased. The morphology of the OCP crystals changed from sea urchin shapes to wool-ball shapes with increasing PAAm concentration. The morphological change is generated by the template effect of the polymer wall, which is made up of stacked PAAm sheets, surrounding the spherical OCP crystals.

  7. Tunable fabrication of two-dimensional arrays of polymer nanobowls for biomimic growth of amorphous calcium carbonate.

    PubMed

    Ding, Tao; Song, Kai; Yang, Guoqiang; Tung, Chen-Ho

    2012-09-26

    Two-dimensional arrays of polymer nanobowls can be fabricated by an oxygen plasma etching technique. The 2D colloidal crystals made of SiO(2) @PMMA particles are fabricated by a convective self-assembly method. The oxygen plasma treatment is applied to the colloidal crystals to selectively etch the PMMA shells. Because the oxygen plasma etching proceeds in a layer-by-layer manner from top to bottom, the top parts of the PMMA shells are etched first, and the silica cores are exposed to the atmosphere, which can be removed with HF, leaving the bowl-shaped PMMA shells to form 2D arrays of polymer nanobowls. The size and packing density of the nanobowl arrays can be tuned with tightly controlled etching time. The polymer nanobowl arrays can also serve as a template to direct the growth of calcium carbonate within the interstice of the nanobowls. PMID:22753380

  8. Effects of calcium carbonate and hydroxyapatite on zinc and iron retention in postmenopausal women

    SciTech Connect

    Dawson-Hughes, B.; Seligson, F.H.; Hughes, V.A.

    1986-07-01

    We measured the effect of calcium carbonate and hydroxyapatite on whole-body retention of zinc-65 in 11 and iron-59 in 13 healthy, postmenopausal women. In a single-blind, controlled, crossover study, each subject, on three occasions, ingested a standard test meal supplemented with iron-59 or zinc-65 and capsules containing placebo or 500 mg elemental calcium as calcium carbonate or hydroxyapatite. Whole-body countings were performed prior to, 30 min after, and 2 wk after each meal. Mean (SEM) zinc retention was 18.1 +/- 1.0% with placebo (control) and did not vary significantly with calcium carbonate (110.0 +/- 8.6% of control) or hydroxyapatite (106.0 +/- 7.9% of control). Iron retention, 6.3 +/- 2.0% with placebo, was significantly reduced with both calcium carbonate (43.3 +/- 8.8% of control, p = 0.002) and hydroxyapatite (45.9 +/- 10.0% of control, p = 0.003). Iron absorption may be significantly reduced when calcium supplements are taken with meals.

  9. Isolation and metagenomic characterization of bacteria associated with calcium carbonate and struvite precipitation in a pure moving bed biofilm reactor-membrane bioreactor.

    PubMed

    Gonzalez-Martinez, A; Leyva-Díaz, J C; Rodriguez-Sanchez, A; Muñoz-Palazon, B; Rivadeneyra, A; Poyatos, J M; Rivadeneyra, M A; Martinez-Toledo, M V

    2015-01-01

    A bench-scale pure moving bed bioreactor-membrane bioreactor (MBBR-MBR) used for the treatment of urban wastewater was analyzed for the identification of bacterial strains with the potential capacity for calcium carbonate and struvite biomineral formation. Isolation of mineral-forming strains on calcium carbonate and struvite media revealed six major colonies with a carbonate or struvite precipitation capacity in the biofouling on the membrane surface and showed that heterotrophic bacteria with the ability to precipitate calcium carbonate and struvite constituted ~7.5% of the total platable bacteria. These belonged to the genera Lysinibacillus, Trichococcus, Comamomas and Bacillus. Pyrosequencing analysis of the microbial communities in the suspended cells and membrane biofouling showed a high degree of similarity in all the samples collected with respect to bacterial assemblage. The study of operational taxonomic units (OTUs) identified through pyrosequencing suggested that ~21% of the total bacterial community identified in the biofouling could potentially form calcium carbonate or struvite crystals in the pure MBBR-MBR system used for the treatment of urban wastewater. PMID:26000766

  10. Basic calcium phosphate crystal-induced Egr-1 expression stimulates mitogenesis in human fibroblasts

    SciTech Connect

    Zeng, Xiao R.; Sun Yubo; Wenger, Leonor; Cheung, Herman S. . E-mail: hcheung@med.miami.edu

    2005-05-13

    Previously, we have reported that basic calcium phosphate (BCP) crystals stimulate mitogenesis and synthesis of matrix metalloproteinases in cultured human foreskin and synovial fibroblasts. However, the detailed mechanisms involved are still unclear. In the present study, using RT-PCR and Egr-1 promoter analysis we showed that BCP crystals could stimulate early growth response gene Egr-1 transcription through a PKC{alpha}-dependent p44/p42 MAPK pathway. Using a retrovirus gene expression system (Clontech) to overexpress Egr-1 in human fibroblast BJ-1 cells resulted in promotion of mitogenesis measured either by MTT cell proliferation analysis or by direct cell counting. The results demonstrate that Egr-1 may play a key role in mediating BCP crystal-induced synovial fibroblast mitogenesis.

  11. Therapeutic effect of Xue Niao An on glyoxylate-induced calcium oxalate crystal deposition based on urinary metabonomics approach

    PubMed Central

    Peng, Zhongjiang; Chen, Wei; Gao, Songyan; Su, Li; Li, Na; Wang, Li; Lou, Ziyang; Dong, Xin; Guo, Zhiyong

    2014-01-01

    The anti-nephrolithiasis effect of Xue Niao An (XNA) capsules is explored by analyzing urine metabolic profiles in mouse models, with ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). An animal model of calcium oxalate crystal renal deposition was established in mice by intra-abdominal injection of glyoxylate. Then, treatment with XNA by intra-gastric administration was performed. At the end of the study, calcium deposition in kidney was measured by Von Kossa staining under light microscopy, and the Von Kossa staining changes showed that XNA significantly alleviated the calcium oxalate crystal deposition. Meanwhile, urine samples for fifteen metabolites, including amino acids and fatty acids, with significant differences were detected in the calcium oxalate group, while XNA treatment attenuated metabolic imbalances. Our study indicated that the metabonomic strategy provided comprehensive insight on the metabolic response to XNA treatment of rodent renal calcium oxalate deposition. PMID:25411524

  12. pH control in biological systems using calcium carbonate.

    PubMed

    Salek, S S; van Turnhout, A G; Kleerebezem, R; van Loosdrecht, M C M

    2015-05-01

    Due to its abundance, calcium carbonate (CaCO3) has high potentials as a source of alkalinity for biotechnological applications. The application of CaCO3 in biological systems as neutralizing agent is, however, limited due to potential difficulties in controlling the pH. The objective of the present study was to determine the dominant processes that control the pH in an acid-forming microbial process in the presence of CaCO3. To achieve that, a mathematical model was made with a minimum set of kinetically controlled and equilibrium reactions that was able to reproduce the experimental data of a batch fermentation experiment using finely powdered CaCO3. In the model, thermodynamic equilibrium was assumed for all speciation, complexation and precipitation reactions whereas, rate limited reactions were included for the biological fatty acid production, the mass transfer of CO2 from the liquid phase to the gas phase and the convective transport of CO2 out of the gas phase. The estimated pH-pattern strongly resembled the measured pH, suggesting that the chosen set of kinetically controlled and equilibrium reactions were establishing the experimental pH. A detailed analysis of the reaction system with the aid of the model revealed that the pH establishment was most sensitive to four factors: the mass transfer rate of CO2 to the gas phase, the biological acid production rate, the partial pressure of CO2 and the Ca(+2) concentration in the solution. Individual influences of these factors on the pH were investigated by extrapolating the model to a continuously stirred-tank reactor (CSTR) case. This case study indicates how the pH of a commonly used continuous biotechnological process could be manipulated and adjusted by altering these four factors. Achieving a better insight of the processes controlling the pH of a biological system using CaCO3 as its neutralizing agent can result in broader applications of CaCO3 in biotechnological industries. PMID:25425281

  13. Multi proxy approach for the formation of calcium carbonates in alkaline man-made environments

    NASA Astrophysics Data System (ADS)

    Rinder, T.; Dietzel, M.; Leis, A.

    2009-04-01

    The formation of calcium carbonates, e.g. in drainage systems of tunnels, may be induced by degassing of CO2-rich groundwater which enters the building. However, the dissolution of portlandite (Ca(OH)2) from cements or the shotcrete of the tunnel wall bears an additional and immense potential for the formation of carbonates from alkaline solutions. Variations in trace element incorporation and distribution of the stable isotopes of carbon and oxygen in the precipitated calcium carbonates may represent powerful tools to identify individual mechanisms for carbonate formation. As portlandite dissolves, highly alkaline solutions are obtained. In this case, precipitation of calcium carbonate can be related to the absorption of CO2 from the atmosphere. Isotopic analyses of the calcite show that fixation of CO2 from the Earth's atmosphere leads to significantly lighter ^13Ccalcite values (down to -25 o/oo, VPDB) as expected for the fixation of groundwater carbonate (typical ^13Ccalcite values between -10 and -16o/oo, VPDB). The evolution of Sr/Ca ratios in the alkaline drainage solutions and in the corresponding calcium carbonate precipitation provides insight into the dissolution process at the concrete with respect to the amount of primarily dissolved portlandite from the cement. Moreover, an inverse relationship between Mg/Ca and Sr/Ca ratios is observed due to the liberation of aqueous strontium by the dissolution of portlandite and the formation of brucite (Mg(OH)2) at alkaline conditions. Less incorporation of magnesium in the calcite structure is a strong indicator for carbonate precipitation from highly alkaline environments. Applications of such multi proxy approaches are discussed with case studies. Main tasks are the reconstruction of the environmental conditions during primary CaCO3 formation and monitoring of ongoing precipitation of calcium carbonates and cement-water interaction in alkaline man-made environments.

  14. Carbonation as a binding mechanism for coal/calcium hydroxide pellets. Technical report, September 1, 1991--November 30, 1991

    SciTech Connect

    Rapp, D.M.

    1991-12-31

    Current coal mining and processing procedures produce a significant quanity of fine coal that is difficult to handle and transport. The objective of this work is to determine if these fines can be economically pelletized with calcium hydroxide, a sulfur capturing sorbent, to produce a clean-burning fuel for fluidized-bed combustors or stoker boilers. To harden these pellets, carbonation, which is the reaction of calcium hydroxide with carbon dioxide to produce a cementitious matrix of calcium carbonate, is being investigated. Previous research indicated that carbonation significantly improved compressive strength, impact and attrition resistance and ``weatherproofed`` pellets formed with sufficient calcium hydroxide (5 to 10% for minus 28 mesh coal fines).

  15. Role of ovalbumin in the stabilization of metastable vaterite in calcium carbonate biomineralization.

    PubMed

    Wang, Xiaoqiang; Kong, Rui; Pan, Xiaoxiao; Xu, Hai; Xia, Daohong; Shan, Honghong; Lu, Jian R

    2009-07-01

    The role of proteins in biomineralization has been examined in this work by studying the effect of ovalbumin on the stabilization of metastable CaCO(3) phases. In the absence of ovalbumin, the mixing of Na(2)CO(3) with CaCl(2) in an aqueous solution led to the formation of metastable phases that swiftly transformed into stable calcite crystals within 4 h under the experimental conditions. However, ovalbumin was found to favor the formation and stabilization of spherical vaterites, and the effect was concentration dependent. In the presence of 2 g/L ovalbumin, for example, vaterite microspheres with diameters ranging from 0.9 to 3.0 mum, composed of much smaller nanosized particles, were produced and stabilized even after 24 h following the initial mixing. In addition, the influence of ovalbumin on the CaCO(3) mineralization process from the very beginning was carefully examined. Both amorphous calcium carbonate (ACC) and vaterite were favored with ovalbumin present, but the ACC phase formed predominantly at the initial stage of mixing followed by the vaterite formation. Vaterite could then be embedded further in the mineralization process and become stabilized many hours afterward. The stabilizing effect of ovalbumin could arise from the strong binding between carboxylate groups of ovalbumin and the calcium ions on the CaCO(3) surface, preventing the metastable CaCO(3) from transformation via dissolution-recrystallization processes. The strong ovalbumin adsorption on vaterite microspheres was revealed from transmission electron microscopy imaging and thermogravimetric analysis, thereby providing useful evidence to support the proposed stabilizing mechanism. PMID:19496561

  16. Effect of acid rain on calcium carbonate saturation in the Albemarle sound of North Carolina

    SciTech Connect

    Rudolph, K.A.; Burgess, S.K.; Willey, J.D.; Kieber, R.J.

    1996-10-01

    The effects of acidic rainwater additions on calcium carbonate solubility and alkalinity in the poorly buffered, biologically active and commercially important waters of the Albemarle Sound, NC are reported. Samples collected monthly at four sites were analyzed for salinity, pK total alkalinity, and calcium concentrations. Five percent and 10% dilutions of sulfuric acid at pH 4, mimicking acid rain additions, were added and total alkalinity and calcium concentrations again determined. The addition of acid decreased the alkalinity in the Albemarle samples by as much as 15%, although the magnitude of the impact depended both on site and season. The effects of acid additions on dissolved calcium concentrations were more variable,. and also displayed a site and season dependency. Calcium concentrations, alkalinity, and pH values were also determined during controlled laboratory experiments, where 25 mg/L Callinectes sapidus shells were added to Albemarle Sound water. All three analytes increased significantly upon acid additions relative to controls.

  17. Recovery of calcium carbonate from steelmaking slag and utilization for acid mine drainage pre-treatment.

    PubMed

    Mulopo, J; Mashego, M; Zvimba, J N

    2012-01-01

    The conversion of steelmaking slag (a waste product of the steelmaking process) to calcium carbonate (CaCO(3)) was tested using hydrochloric acid, ammonium hydroxide and carbon dioxide via a pH-swing process. Batch reactors were used to assess the technical feasibility of calcium carbonate recovery and its use for pre-treatment of acid mine drainage (AMD) from coal mines. The effects of key process parameters, such as the amount of acid (HCl/calcium molar ratio), the pH and the CO(2) flow rate were considered. It was observed that calcium extraction from steelmaking slag significantly increased with an increase in the amount of hydrochloric acid. The CO(2) flow rate also had a positive effect on the carbonation reaction rate but did not affect the morphology of the calcium carbonate produced for values less than 2 L/min. The CaCO(3) recovered from the bench scale batch reactor demonstrated effective neutralization ability during AMD pre-treatment compared with the commercial laboratory grade CaCO(3). PMID:22643421

  18. A facile magnesium-containing calcium carbonate biomaterial as potential bone graft.

    PubMed

    He, Fupo; Zhang, Jing; Tian, Xiumei; Wu, Shanghua; Chen, Xiaoming

    2015-12-01

    The calcium carbonate is the main composition of coral which has been widely used as bone graft in clinic. Herein, we readily prepared novel magnesium-containing calcium carbonate biomaterials (MCCs) under the low-temperature conditions based on the dissolution-recrystallization reaction between unstable amorphous calcium carbonate (ACC) and metastable vaterite-type calcium carbonate with water involved. The content of magnesium in MCCs was tailored by adjusting the proportion of ACC starting material that was prepared using magnesium as stabilizer. The phase composition of MCCs with various amounts of magnesium was composed of one, two or three kinds of calcium carbonates (calcite, aragonite, and/or magnesian calcite). The different MCCs differed in topography. The in vitro degradation of MCCs accelerated with increasing amount of introduced magnesium. The MCCs with a certain amount of magnesium not only acquired higher compressive strength, but also promoted in vitro cell proliferation and osteogenic differentiation. Taken together, the facile MCCs shed light on their potential as bone graft. PMID:26539810

  19. Aqueous extract of Costus arabicus inhibits calcium oxalate crystal growth and adhesion to renal epithelial cells.

    PubMed

    de Cógáin, Mitra R; Linnes, Michael P; Lee, Hyo Jung; Krambeck, Amy E; de Mendonça Uchôa, Julio Cezar; Kim, Sung-Hoon; Lieske, John C

    2015-04-01

    Costus arabicus L. (C. arabicus) is a plant used in Brazilian folk medicine to treat urolithiasis; however, its mechanism of action is unclear. The interaction between calcium oxalate (CaOx) crystals and the renal epithelium is important in calculogenesis, and compounds that modulate this process represent candidate therapeutic agents for stone prevention. Therefore, we assessed the inhibitory activity of C. arabicus on CaOx crystallization and the interaction of CaOx crystals with the renal epithelium. A seeded CaOx monohydrate (COM) crystallization system was used to study the effect of C. arabicus on crystal growth. Madin Darby canine kidney (MDCK) cells were used to study [(14)C] COM crystal adhesion in the presence and absence of an aqueous extract of C. arabicus. Cytotoxicity was assessed using a tetrazolium (MTS) cell proliferation assay. Aqueous extracts of C. arabicus decreased crystal growth in a concentration-dependent fashion. Precoating crystals with C. arabicus extract prevented their adhesion to MDCK cells, while pretreating cells did not show any effect. The extract was non-cytotoxic in concentrations of at least 1 mg/ml, which is likely above concentrations achievable in the urine following oral ingestion and excretion. No inhibitory activity was found in hexane, methyl chloride, n-butanol and ethyl acetate fractions of an ethanol extract of the herb. An aqueous extract of C. arabicus may disrupt calculogenesis by interacting with CaOx crystal surfaces. Activity was present in the aqueous extract; therefore, this agent may be bioavailable when administered orally. Fractionation results suggest that the active agent might be a polar polysaccharide. Further identification and characterization along these lines may be warranted. PMID:25652357

  20. MEDICAGO TRUNCATULA MUTANTS DEMONSTRATE THE ROLE OF PLANT CALCIUM OXALATE CRYSTALS AS AN EFFECTIVE DEFENSE AGAINST CHEWING INSECTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium oxalate is the most abundant insoluble mineral found in plants and its crystals have been reported in over 200 plant families. In the barrel medic, Medicago truncatula Gaertn., these crystals accumulate predominantly in a sheath surrounding secondary veins of leaves. Mutants of M. truncatul...

  1. CALCIUM HYDROXIDE AND CALCIUM CARBONATE PARTICLE SIZE EFFECTS ON REACTIVITY WITH SULFUR DIOXIDE

    EPA Science Inventory

    The paper reports results of measurements of the effect of in situ calcium-based sorbent particle size upon reactivity with 3000 ppm SO2 in an 1100 c drop-tube furnace, using on-line collection of the reacted sorbent with a particle cascade impactor. Significant agglomeration occ...

  2. Calcium Carbonate Formation by Synechococcus sp. Strain PCC 8806 and Synechococcus sp. Strain PCC 8807

    SciTech Connect

    Lee, Brady D.; William A. Apel; Michelle R. Walton

    2006-12-01

    Precipitation of CaCO3 catalyzed by the growth and physiology of cyanobacteria in the Genus Synechococcus represents a potential mechanism for sequestration of CO2 produced during the burning of coal for power generation. Microcosm experiments were performed in which Synechococcus sp. strain PCC 8806 and Synechococcus sp. strain PCC 8807 were tested for their ability to calcify when exposed to a fixed calcium concentration of 3.4 mM and bicarbonate concentrations of 0.5, 1.25 and 2.5 mM. Disappearance of soluble calcium was used as an indicator of CaCO3 formation; results from metabolically active microcosms were compared to controls with no cells or no carbonate added. Synechococcus sp. strain PCC 8806 removed calcium continuously over the duration of the experiment with approximately 18.6 mg of calcium in the solid phase. Calcium removal occurred over a two-day time period when Synechococcus sp. strain PCC 8807 was tested and only 8.9 mg of calcium was removed in the solid phase. The ability of the cyanobacteria to create an alkaline growth environment appeared to be the primary factor responsible for CaCO3 precipitation in these experiments. Removal of inorganic carbon by fixation into biomass was insignificant compared to the mass of inorganic carbon removed by incorporation into the growing CaCO3 solid.

  3. Synthesis of porous carbon balls from spherical colloidal crystal templates.

    PubMed

    Kim, Youngchan; Cho, Chang-Yeol; Kang, Ji-Hwan; Cho, Young-Sang; Moon, Jun Hyuk

    2012-07-17

    Spherical inverse opal (IO) porous carbon was produced utilizing silica colloidal crystal spheres as templates. The spherical colloidal crystals were obtained through the self-assembly of monodisperse particles inside an emulsion droplet with confined geometry. The templates were inverted using a carbon precursor, phenol-formaldehyde (PF) resol. We demonstrated a two-step synthesis involving the subsequent infiltration of the PF resol precursor into the spherical colloidal crystal template and a one-step synthesis using a silica colloidal solution containing dissolved PF resol. In the former case, the sizes of the IO carbon balls were controlled by the size of the colloidal crystal templates, and diameters of a few micrometers up to 50 ?m were obtained. The average diameter of the macropores created by the silica particles was 230 nm. Moreover, meso-/macroporous IO carbon balls were created using block-copolymer templates in the PF resol. In the one-step synthesis, the concentration of PF resol in the colloidal solution controlled the diameter of the IO carbon balls. IO balls smaller than 3 ?m were obtained from the direct addition of 5% PF resol. The one-step synthesis produced rather irregular porous structures reflecting the less ordered crystallization processes inside the spherical colloidal crystals. Nitrogen adsorption and cyclic voltammetry measurements were conducted to measure the specific area and electroactive surface area of the IO carbon balls. The specific area of the mesopores-incorporated IO carbon balls was 1.3 times higher than that of bare IO carbon balls. Accordingly, the meso-/macroporous porous carbon balls exhibited higher electrocatalytic properties than the macroporous carbon balls. PMID:22769243

  4. Ionic strength and ion ratio effects on the single crystal growth of calcium oxalate monohydrate

    SciTech Connect

    DeLong, J.D.; Briedis, D.M.

    1987-01-01

    Single crystal growth rates of calcium oxalate monohydrate, CaC/sub 2/O/sub 4/ . H/sub 2/O, were measured as a function of ionic strength and of calcium to oxalate free ion ratio. The photomicroscopic technique was used which allowed measurement of the growth rates of individual faces of single crystals. The amounts of reagents required to maintain a constant relative supersaturation of 3.7 for all experiments were determined using an iterative computer algorithm which allowed the use of various background electrolytes, ionic strength, and free ion ratios. For a range of ionic strengths of I = .0024 to 0.5 for each of the background electrolytes KCl, LiCl, and KClO/sub 4/, and a free ion ratio (Ca/sup 2+/)/(C/sub 2/O/sub 4//sup 2-/) = 1, facial growth rate showed a steady increase with ionic strength towards an asymptotic maximum. The curves of growth rate, R, versus ionic strength followed approximately the form R = k I/sup n/ with 0 < n < 1, suggesting a mechanism of growth enhancement with increasing ionic strength by compression of the electrical double layer at the crystal/solution interface. For a range of free ion ratios (Ca/sup 2+/)/(C/sub 2/O/sub 4//sup 2-/) = 0.01 to 100 and an ionic strength of I = 0.15 M, the observed growth rate showed a maximum at equimolar free ion conditions, with decreasing growth rates observed at lower and higher ion ratios. This growth rate maximum was not apparent under conditions with no added background electrolyte. These results indicate that relative supersaturation as usually used for crystal growth may not be the complete or appropriate driving force for describing electrolyte crystal growth.

  5. A novel approach to the evaluation of calcium carbonate scale inhibitors

    SciTech Connect

    Kamrath, M.A.; Davis, R.V.; Johnson, D.A.

    1994-12-31

    Problems in cooling water systems are typically confined to three main areas: the deposition of mineral scale, the corrosion of metallic parts, and the growth of microbiological organisms. Chemical treatment of the recirculating water has proven the simplest and most cost effective way of maintaining control over these phenomena. The use of recently developed experimental methods, as well as traditional techniques, in the discovery of new calcium carbonate scale inhibitors are discussed. Atomic force microscopy and computer aided molecular design are presented as emerging technologies which can provide important contributions to the understanding of the mechanism of calcium carbonate inhibition and the investigation of new inhibitor chemistries. Calcium carbonate solubility stress experiments, constant composition techniques and process simulation, traditional scale inhibitor development methods, are also discussed. Results of representative experiments are also presented and discussed.

  6. Synthesis of novel amorphous calcium carbonate by sono atomization for reactive mixing.

    PubMed

    Kojima, Yoshiyuki; Kanai, Makoto; Nishimiya, Nobuyuki

    2012-03-01

    Droplets of several micrometers in size can be formed in aqueous solution by atomization under ultrasonic irradiation at 2 MHz. This phenomenon, known as atomization, is capable of forming fine droplets for use as a reaction field. This synthetic method is called SARM (sono atomization for reactive mixing). This paper reports on the synthesis of a novel amorphous calcium carbonate formed by SARM. The amorphous calcium carbonate, obtained at a solution concentration of 0.8 mol/dm(3), had a specific surface area of 65 m(2)/g and a composition of CaCO(3)•0.5H(2)O as determined using thermogravimetric/differential thermal analysis (TG-DTA). Because the ACC had a lower hydrate composition than conventional amorphous calcium carbonate (ACC), the ACC synthesized in this paper was very stable at room temperature. PMID:21788149

  7. Immobilization of Pseudomonas sp. DG17 onto sodium alginate–attapulgite–calcium carbonate

    PubMed Central

    Wang, Hong Qi; Hua, Fei; Zhao, Yi Cun; Li, Yi; Wang, Xuan

    2014-01-01

    A strain of Pseudomonas sp. DG17, capable of degrading crude oil, was immobilized in sodium alginate–attapulgite–calcium carbonate for biodegradation of crude oil contaminated soil. In this work, proportion of independent variables, the laboratory immobilization parameters, the micromorphology and internal structure of the immobilized granule, as well as the crude oil biodegradation by sodium alginate–attapulgite–calcium carbonate immobilized cells and sodium alginate–attapulgite immobilized cells were studied to build the optimal immobilization carrier and granule-forming method. The results showed that the optimal concentrations of sodium alginate–attapulgite–calcium carbonate and calcium chloride were 2.5%–3.5%, 0.5%–1%, 3%–7% and 2%–4%, respectively. Meanwhile, the optimal bath temperature, embedding cell amount, reaction time and multiplication time were 50–60 °C, 2%, 18 h and 48 h, respectively. Moreover, biodegradation was enhanced by immobilized cells with a total petroleum hydrocarbon removal ranging from 33.56% ± 3.84% to 56.82% ± 3.26% after 20 days. The SEM results indicated that adding calcium carbonate was helpful to form internal honeycomb-like pores in the immobilized granules. PMID:26019567

  8. The influence of electron discharge and magnetic field on calcium carbonate (CaCO3) precipitation

    NASA Astrophysics Data System (ADS)

    Putro, Triswantoro; Endarko

    2016-04-01

    The influences of electron discharge and magnetic field on calcium carbonate (CaCO3) precipitation in water have been successfully investigated. The study used three pairs of magnetic field 0.1 T whilst the electron discharge was generated from television flyback transformer type BW00607 and stainless steel SUS 304 as an electrode. The water sample with an initial condition of 230 mg/L placed in the reactor with flow rate 375 mL/minutes, result showed that the electron discharge can be reduced contain of calcium carbonate the water sample around 17.39% within 2 hours. Meanwhile for the same long period of treatment and flow rate, around 56.69% from initial condition of 520 mg/L of calcium carbonate in the water sample can be achieved by three pairs of magnetic field 0.1 T. When the combination of three pairs of magnetic field 0.1 T and the electron discharge used for treatment, the result showed that the combination of electron discharge and magnetic field methods can be used to precipitate calcium carbonate in the water sample 300 mg/L around 76.66% for 2 hours of treatment. The study then investigated the influence of the polar position of the magnetic field on calcium carbonate precipitation. Two positions of magnetic field were tested namely the system with alternated polar magnetics and the system without inversion of the polar magnetics. The influence of the polar position showed that the percentage reduction in levels of calcium carbonate in the water sample (360 mg/L) is significant different. Result showed that the system without inversion of the polar magnetics is generally lower than the system with alternated polar magnetics, with reduction level at 30.55 and 57.69%, respectively.

  9. How can calcium pyrophosphate crystals induce inflammation in hypophosphatasia or chronic inflammatory joint diseases?

    PubMed

    Beck, C; Morbach, H; Richl, P; Stenzel, M; Girschick, H J

    2009-01-01

    Hypophosphatasia (HP) is a rare inborn error of bone and mineral metabolism characterized by a defect in the tissue non-specific alkaline phosphatase (TNSALP) gene. Calcium pyrophosphate dihydrate (CPPD) crystals are known to accumulate as substrates of TNSALP in tissues and joints of patients with HP. In CPPD-induced arthritis these crystals are known to induce an inflammatory response. HP patients do suffer from pain in their lower extremities. However, it is not clear whether CPPD crystals contribute to these musculoskeletal complaints in HP. As long as there is no curative treatment of HP, symptomatic treatment in order to improve clinical features, especially with regard to pain and physical activity, is of major interest to the patients. Knowledge of the mechanisms underlying crystal-induced cell activation, however, is limited. Here we describe recent advances in elucidating the signal transduction pathways activated by CPPD crystals as endogenous "danger signals". Recent investigations provided evidence that Toll/interleukin-1 receptor (TIR) domain containing receptors including Toll-like receptors (TLRs) and interleukin-1 receptor (IL-1R), as well as the triggering receptor expressed on myeloid cells 1 (TREM-1) and the NACHT-leucin rich repeat and pyrin-domain-containing protein (NALP3) containing inflammasome are essentially involved in acute CPPD crystal-induced inflammation. These receptors are considered in part as components of the innate immune system. Further studies are needed to improve our understanding of the pathophysiological mechanisms leading to inflammation and tissue destruction associated with deposition of microcrystals. They might support the development of new therapeutic strategies for crystal-induced inflammation. Eventually, patients with HP might as well profit from such strategies addressing these metabolic disorders secondary to the gene defect. PMID:18821074

  10. Water is the key to nonclassical nucleation of amorphous calcium carbonate.

    PubMed

    Raiteri, Paolo; Gale, Julian D

    2010-12-15

    Calcium carbonate is a ubiquitous mineral that represents one of the most significant biominerals, a major contributor to carbon sequestration through geological deposits, and a technological hindrance as a result of scale formation. Amorphous calcium carbonate is intimately involved in the nucleation and growth of this material, yet much remains undiscovered regarding the atomic detail. Through dynamical simulation we demonstrate that nucleation of amorphous calcium carbonate follows a nonclassical pathway. This arises from the addition of ion pairs to clusters exhibiting a consistently exothermic free energy that persists with increasing particle size. Furthermore, the disruption of the surrounding water of solvation by the atomically rough surface reduces the barrier to growth to the order of ambient thermal energy, thereby allowing the amorphous phase to grow faster than crystalline polymorphs. Amorphous calcium carbonate nanoparticles are also found to exploit size-dependent water content to render itself more stable than the favored bulk phase, calcite, below a critical diameter of close to 4 nm. PMID:21090620

  11. The Influence of Calcium Carbonate Grain Coatings on Contaminant Reactivity in Vadose Zone Sediments

    SciTech Connect

    Zachara, John M.; Chambers, Scott; Brown Jr., Gordon E.; Eggleston, Carrick M.

    2001-06-01

    Calcium carbonate (CaCO3) is widely distributed through the Hanford vadose zone as a minor phase. As a result of current and past geochemical processes, CaCO3 exists as grain coatings, intergrain fill, and distinct caliche layers in select locations. Calcium carbonate may also precipitate when high-level wastes react with naturally Ca- and Mg-saturated Hanford sediments. Calcium carbonate is a very reactive mineral phase. Sorption reactions on its surface may slow the migration of certain contaminants (Co, Sr), but its surface coatings on other mineral phases may diminish contaminant retardation (for example, Cr) by blocking surface reaction sites of the substrate. This project explores the behavior of calcium carbonate grain coatings, including how they form and dissolve, their reactivity toward key Hanford contaminants, their impact (as surface coatings) on the reactivity of other mineral substrates, and on their in-ground composition and minor element enrichment. The importance of CaCO3 as a contaminant sorbent will be defined in all of its different manifestations in Hanford sediments: dispersed minor lithic fragments, pedogenic carbonate coatings on gravel and stringers in silt, and nodules in clay and paleosols. Mass action models will be developed that allow understanding and prediction of the geochemical effects of CaCO3 on contaminant retardation in Hanford sediments.

  12. Modulation of calcium oxalate monohydrate crystallization by citrate through selective binding to atomic steps

    SciTech Connect

    Qiu, S R; Wierzbicki, A; Salter, E A; Zepeda, S; Orme, C A; Hoyer, J R; Nancollas, G H; Cody, A M; De Yoreo, J J

    2004-10-19

    The majority of human kidney stones are composed primarily of calcium oxalate monohydrate (COM) crystals. Thus, determining the molecular mechanisms by which urinary constituents modulate calcium oxalate crystallization is crucial for understanding and controlling urolithiassis in humans. A comprehensive molecular-scale view of COM shape modification by citrate, a common urinary constituent, obtained through a combination of in situ atomic force microscopy (AFM) and molecular modeling is now presented. We show that citrate strongly influences the growth morphology and kinetics on the (-101) face but has much lower effect on the (010) face. Moreover, binding energy calculations show that the strength of the citrate-COM interaction is much greater at steps than on terraces and is highly step-specific. The maximum binding energy, -166.5 kJ {center_dot} mol{sup -1}, occurs for the [101] step on the (-101) face. In contrast, the value is only -56.9 kJ {center_dot} mol-1 for the [012] step on the (010) face. The binding energies on the (-101) and (010) terraces are also much smaller, -65.4 and -48.9 kJ {center_dot} mol{sup -1} respectively. All other binding energies lie between these extremes. This high selectivity leads to preferential binding of citrate to the acute [101] atomic steps on the (-101) face. The strong citrate-step interactions on this face leads to pinning of all steps, but the anisotropy in interaction strength results in anisotropic reductions in step kinetics. These anisotropic changes in step kinetics are, in turn, responsible for changes in the shape of macroscopic COM crystals. Thus, the molecular scale growth morphology and the bulk crystal habit in the presence of citrate are similar, and the predictions of molecular simulations are fully consistent with the experimental observations.

  13. Catechin prevents the calcium oxalate monohydrate induced renal calcium crystallization in NRK-52E cells and the ethylene glycol induced renal stone formation in rat

    PubMed Central

    2013-01-01

    Background Reactive oxygen species play important roles in renal calcium crystallization. In this study, we examined the effects of catechin, which have been shown to have antioxidant properties on the renal calcium crystallization. Methods In the vitro experiment, the changes of the mitochondrial membrane potential, expression of superoxide dismutase (SOD), 4-hydroxynonenal (4-HNE), cytochrome c, and cleaved caspase 3 were measured to show the effects of catechin treatment on the NRK-52E cells induced by calcium oxalate monohydrate (COM). In the vivo study, Sprague–Dawley rats were administered 1% ethylene glycol (EG) to generate a rat kidney stone model and then treated with catechin (2.5 and 10 mg/kg/day) for 14 days. The urine and serum variables were dected on 7 and 14 days after EG administration. The expression of cytochrome c, cleaved caspase 3, SOD, osteopontin (OPN), malondialdehyde (MDA), 8-hydroxy-2′-deoxyguanosine (8-OHdG) in kidney were measured. Furthermore, the mitochondrial microstructure in the kidney was also examined by transmission electron microscopy. Results Catechin treatment could prevent the changes in mitochondrial membrane potential and expression of SOD, 4-HNE, cytochrome c, and cleaved caspase 3 in NRK-52E cells induced by the COM. For the in vivo experiments, the EG administration induced renal calcium crystallization was also prevented by the catechin. The expression of SOD, OPN, MDA, OPN and 8-OHdG, were increased after EG administration and this increase was diminished by catechin. Moreover, catechin also prevented EG induced mitochondrial collapse in rat. Conclusions Catechin has preventive effects on renal calcium crystallization both in vivo and in vitro, and provide a potential therapeutic treatment for this disease. PMID:24044655

  14. Microwave hydrothermal transformation of amorphous calcium carbonate nanospheres and application in protein adsorption.

    PubMed

    Qi, Chao; Zhu, Ying-Jie; Chen, Feng

    2014-03-26

    Calcium carbonate and calcium phosphate are the main components of biominerals. Among all of the forms of biominerals, amorphous calcium carbonate (ACC) and amorphous calcium phosphate (ACP) are the most important forms because they play a pivotal role in the process of biomineralization and are the precursors to the crystalline polymorphs. In this work, we first synthesized ACC in vitro using adenosine 5'-triphosphate disodium salt (ATP) as the stabilizer and investigated the transformation of the ACC under microwave hydrothermal conditions, and ACC/ACP composite nanospheres and carbonated hydroxyapatite (CHA) nanospheres were successfully prepared. In this novel strategy, ATP has two main functions: it serves as the stabilizer for ACC and the phosphorus source for ACP and CHA. Most importantly, the morphology and the size of the ACC precursor can be well-preserved after microwave heating, so it provides a new method for the preparation of calcium phosphate nanostructured materials using phosphorus-containing biomolecule-stabilized ACC as the precursor. Furthermore, the as-prepared ACC/ACP composite nanospheres have excellent biocompatibility and high protein adsorption capacity, indicating that they are promising for applications in biomedical fields such as drug delivery and protein adsorption. PMID:24568728

  15. The determination of calcium in phosphate, carbonate, and silicate rocks by flame photometer

    USGS Publications Warehouse

    Kramer, Henry

    1956-01-01

    A method has been developed for the determination of calcium in phosphate, carbonate, and silicate rocks using the Beckman flame photometer, with photomultiplier attachement. The sample is dissolved in hydrofluoric, nitric, and perchloric acids, the hydrofluoric and nitric acids are expelled, a radiation buffer consisting of aluminum, magnesium, iron, sodium, potassium, phosphoric acid, and nitric acid is added, and the solution is atomized in an oxy-hydrogen flame with an instrument setting of 554 mµ. Measurements are made by comparison against calcium standards, prepared in the same manner, in the 0 to 50 ppm range. The suppression of calcium emission by aluminum and phosphate was overcome by the addition of a large excess of magnesium. This addition almost completely restores the standard curve obtained from a solution of calcium nitrate. Interference was noted when the iron concentration in the aspirated solution (including the iron from the buffer) exceeded 100 ppm iron. Other common rock-forming elements did not interfere. The results obtained by this procedure are within ± 2 percent of the calcium oxide values obtained by other methods in the range 1 to 95 percent calcium oxide. In the 0 to 1 percent calcium oxide range the method compares favorably with standard methods.

  16. Chemical analysis and molecular models for calcium-oxygen-carbon interactions in black carbon found in fertile Amazonian anthrosoils.

    PubMed

    Archanjo, Braulio S; Araujo, Joyce R; Silva, Alexander M; Capaz, Rodrigo B; Falcão, Newton P S; Jorio, Ado; Achete, Carlos A

    2014-07-01

    Carbon particles containing mineral matter promote soil fertility, helping it to overcome the rather unfavorable climate conditions of the humid tropics. Intriguing examples are the Amazonian Dark Earths, anthropogenic soils also known as "Terra Preta de Índio'' (TPI), in which chemical recalcitrance and stable carbon with millenary mean residence times have been observed. Recently, the presence of calcium and oxygen within TPI-carbon nanoparticles at the nano- and mesoscale ranges has been demonstrated. In this work, we combine density functional theory calculations, scanning transmission electron microscopy, energy dispersive X-ray spectroscopy, Fourier transformed infrared spectroscopy, and high resolution X-ray photoelectron spectroscopy of TPI-carbons to elucidate the chemical arrangements of calcium-oxygen-carbon groups at the molecular level in TPI. The molecular models are based on graphene oxide nanostructures in which calcium cations are strongly adsorbed at the oxide sites. The application of material science techniques to the field of soil science facilitates a new level of understanding, providing insights into the structure and functionality of recalcitrant carbon in soil and its implications for food production and climate change. PMID:24892495

  17. CO.sub.2 Pretreatment prevents calcium carbonate formation

    DOEpatents

    Neavel, Richard C.; Brunson, Roy J.; Chaback, Joseph J.

    1980-01-01

    Scale formation during the liquefaction of lower ranking coals and similar carbonaceous materials is significantly reduced and/or prevented by pretreatment with carbon dioxide. The carbon dioxide pretreatment is believed to convert the scale-forming components to the corresponding carbonate prior to liquefaction. The pretreatment is accomplished at a total pressure within the range from about 14 to about 68 atmospheres and a carbon dioxide partial pressure within the range from about 14 to about 34 atmospheres. Temperature during pretreatment will generally be within the range from about 100.degree. to about 200.degree. C.

  18. Shear-mediated crystallization from amorphous calcium phosphate to bone apatite.

    PubMed

    Niu, Xufeng; Wang, Liyang; Tian, Feng; Wang, Lizhen; Li, Ping; Feng, Qingling; Fan, Yubo

    2016-02-01

    The contribution of fluid shear stress (FSS) on the conversion of amorphous calcium phosphate (ACP) to bone apatite is investigated. The ACP precursors are prepared by using a wet-chemistry method and further exposed to the constant FSS environment with values of 0.5, 1.0, 1.5, and 2.0Pa. At the designated time points, the apatites are characterized by transmission electron microscopy, X-ray diffraction, and inductively coupled plasma-mass spectroscopy. The results show that, the low FSS (≤1.0Pa) has positive effects on the transition of ACP, characterized by the accelerated crystallization velocity and the well-organized calcium-deficient hydroxyapatite (CDHA) structure, whereas the high FSS (>1.0Pa) has negative effects on this conversion process, characterized by the poor CDHA crystal morphologies and the destroyed structures. The bioactivity evaluations further reveal that, compared with the FSS-free group, the CDHA prepared under 1.0Pa FSS for 9h presents the more biocompatible features with pre-osteoblast cells. These results are helpful for understanding the mechanism of apatite deposition in natural bone tissue. PMID:26454356

  19. A Rare Case of Tumoral Calcium Pyrophosphate Dihydrate Crystal Deposition Disease of the Wrist Joint

    PubMed Central

    Nakamura, Osamu; Kaji, Yoshio; Yamagami, Yoshiki; Yamaguchi, Kounosuke; Nishimura, Hideki; Fukuoka, Natsuko; Yamamoto, Tetsuji

    2015-01-01

    Introduction. Tumoral calcium pyrophosphate dihydrate (CPPD) crystal deposition disease (CPPDCD), also known as tophaceous calcium pyrophosphate deposition disease (CPDD), is a tumorlike lesion, and it should be distinguished from usual CPDD that causes severe joint inflammation and arthralgia. A case of tumoral CPPDCD of the wrist joint that required differentiation from synovial osteochondromatosis is described. Case Presentation. The patient was a 78-year-old woman with a 5-year history of nodular lesions at the right wrist that had gradually increased in size. An excisional biopsy and a histological examination of the excised nodular lesions by hematoxylin and eosin (H&E) staining were performed, demonstrating numerous polarizable, rhabdoid, and rectangular crystals, surrounded by fibroblasts, macrophages, and foreign body-type giant cells, consistent with tumoral CPPDCD. Conclusion. Tumoral CPPDCD, especially at the wrist joint, is rare, and, to the best of our knowledge, only 2 articles have been published. This case seems to need further follow-up for recurrence, because tumoral CPPDCD may recur after complete or incomplete surgical excision. PMID:26783477

  20. Factors affecting ex-situ aqueous mineral carbonation using calcium and magnesium silicate minerals

    SciTech Connect

    Gerdemann, Stephen J.; Dahlin, David C.; O'Connor, William K.; Penner, Larry R.; Rush, G.E.

    2004-01-01

    Carbonation of magnesium- and calcium-silicate minerals to form their respective carbonates is one method to sequester carbon dioxide. Process development studies have identified reactor design as a key component affecting both the capital and operating costs of ex-situ mineral sequestration. Results from mineral carbonation studies conducted in a batch autoclave were utilized to design and construct a unique continuous pipe reactor with 100% recycle (flow-loop reactor). Results from the flow-loop reactor are consistent with batch autoclave tests, and are being used to derive engineering data necessary to design a bench-scale continuous pipeline reactor.

  1. Thermal-Diffusivity Dependence on Temperature of Gadolinium Calcium Oxoborate Single Crystals

    NASA Astrophysics Data System (ADS)

    Trefon-Radziejewska, D.; Bodzenta, J.; Łukasiewicz, T.

    2013-05-01

    Thermal diffusivities of pure and doped gadolinium calcium oxoborate (GdCOB) single crystals were measured as a function of the temperature along optical indicatrix axes X, Y, and Z. Three GdCOB samples were investigated, chemically pure single crystal, the one doped with 4 at% of Nd and the next one doped with 7 at% of Yb. Measurements were carried out for temperature range 40 °C to 300 °C. Determination of the thermal diffusivity based on an analysis of thermal wave propagation in the sample. For a detection of temperature disturbance propagating in the sample the mirage effect was used. Obtained results show that the thermal diffusivity decreases with the increase of sample temperature for all investigated crystals. The GdCOB single crystals reveal a strong anisotropy. The thermal diffusivity along Y direction has the highest value while values obtained in X and Z axes are much lower. Dopants cause decrease in the thermal diffusivity for all investigated directions.

  2. Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1β secretion

    PubMed Central

    Mulay, Shrikant R.; Kulkarni, Onkar P.; Rupanagudi, Khader V.; Migliorini, Adriana; Darisipudi, Murthy N.; Vilaysane, Akosua; Muruve, Daniel; Shi, Yan; Munro, Fay; Liapis, Helen; Anders, Hans-Joachim

    2012-01-01

    Nephrocalcinosis, acute calcium oxalate (CaOx) nephropathy, and renal stone disease can lead to inflammation and subsequent renal failure, but the underlying pathological mechanisms remain elusive. Other crystallopathies, such as gout, atherosclerosis, and asbestosis, trigger inflammation and tissue remodeling by inducing IL-1β secretion, leading us to hypothesize that CaOx crystals may induce inflammation in a similar manner. In mice, intrarenal CaOx deposition induced tubular damage, cytokine expression, neutrophil recruitment, and renal failure. We found that CaOx crystals activated murine renal DCs to secrete IL-1β through a pathway that included NLRP3, ASC, and caspase-1. Despite a similar amount of crystal deposits, intrarenal inflammation, tubular damage, and renal dysfunction were abrogated in mice deficient in MyD88; NLRP3, ASC, and caspase-1; IL-1R; or IL-18. Nephropathy was attenuated by DC depletion, ATP depletion, or therapeutic IL-1 antagonism. These data demonstrated that CaOx crystals trigger IL-1β–dependent innate immunity via the NLRP3/ASC/caspase-1 axis in intrarenal mononuclear phagocytes and directly damage tubular cells, leading to the release of the NLRP3 agonist ATP. Furthermore, these results suggest that IL-1β blockade may prevent renal damage in nephrocalcinosis. PMID:23221343

  3. Phosphorylation of osteopontin peptides mediates adsorption to and incorporation into calcium oxalate crystals.

    PubMed

    O'Young, Jason; Chirico, Sara; Al Tarhuni, Nehal; Grohe, Bernd; Karttunen, Mikko; Goldberg, Harvey A; Hunter, Graeme K

    2009-01-01

    Phosphorylated peptides of osteopontin (OPN) have been shown to inhibit the growth of the {100} face of calcium oxalate monohydrate (COM). The inhibitory potency has been shown to be dependent on the phosphate content of the peptide. The purpose of this study is to better understand the means by which phosphate groups promote crystal growth inhibition by OPN peptides. Peptides of rat bone OPN 220-235 peptides have been synthesized with zero (P0), 1 (P1) or 3 (P3) phosphate modifications. COM crystals were grown in the presence of 0.1-10 microg of P0, P1 or P3. P0 incorporation into COM crystals was evident at 10 microg/ml of peptide, whereas the phosphorylated peptides P1 and P3 were incorporated at all tested concentrations. At 5 microg/ml of P3, COM crystals exhibited a 'dumbbell' morphology. To study the peptide-mineral interaction, surface frequency plots were constructed from molecular dynamics simulations of OPN peptide adsorption. Carboxylate and phosphate groups were found to adsorb in specific orientations to the COM {100} surface. In conclusion, it appears that the phosphate groups on OPN peptides are capable of interacting with the COM {100} surface. This interaction appears to increase the adsorption energy of the peptide to the surface, thus enhancing its inhibitory potency. PMID:18728346

  4. Induction of apoptosis with cisplatin enhances calcium oxalate crystal adherence to inner medullary collecting duct cells.

    PubMed

    Kleinman, Jack G; Sorokina, Elena A; Wesson, Jeffrey A

    2010-04-01

    Attachment of stone crystals to tubular epithelium may initiate kidney stone formation. We previously reported that apical nucleolin related protein (NRP) expression during mitosis enhance attachment of Ca oxalate monohydrate crystals (COM). Some forms of injury may also increase affinity for crystals. We examined changes in subcellular localization of NRP during the course of cisplatin-induced apoptosis in cultured inner medullary collecting duct cells. Caspase-3 activation and chromatin condensation followed by nuclear fragmentation occurred after 20 h exposure to cisplatin, indicating the development of apoptosis. Cells were fixed without permeabilization and stained for surface NRP. Cells with condensed chromatin showed little or no cytoplasmic or apical NRP. Those at an early stage of nuclear fragmentation had cytoplasmic but not apical NRP and cells with advanced nuclear fragmentation were positively stained for apical NRP. Membrane proteins isolated by apical biotinylation and precipitated with avidin were analyzed by Western blot. Apical NRP was markedly increased after cisplatin compared to control, while expression of the apical marker, GP-135, and other putative attachment protein were unchanged. Hyaluronic acid was decreased. Cultures with apoptotic cells demonstrated increased adherence of COM that was inhibited by the polyanion (poly)aspartic acid. We conclude that pre-existing apoptotic injury may promote calcium oxalate crystals attachment to renal tubular epithelium via apical NRP expression. PMID:20077109

  5. Crystallization of calcium oxalate monohydrate at dipalmitoylphosphatidylcholine monolayers in the presence of chondroitin sulfate A

    NASA Astrophysics Data System (ADS)

    Ouyang, Jian-Ming; Deng, Sui-Ping; Zhong, Jiu-Ping; Tieke, Bernd; Yu, Shu-Hong

    2004-10-01

    The growth and aggregation of calcium oxalate monohydrate (COM) crystals beneath dipalmitoylphosphatidylcholine (DPPC) monolayers in the presence of chondroitin sulfate A (C4S) was systematically examined under different surface pressure. The results indicated that the addition of C4S can inhibit the crystal growth and prevent the aggregation of COM crystals. Under a DPPC monolayer, well-defined three-dimensional hexagonal prisms and three-dimensional rhombus prisms with sharply angled tips were obtained. The DPPC monolayer at a surface pressure of 10 mN/m can match the Ca2+ distance of the (1 bar 0 1) face of COM better than at 20 mN/m. The addition of C4S could cooperatively modulate the interaction strength between the monolayer (or itself) with the specific morphology determining faces such as (1 bar 0 1) and (0 2 0), and thus results in remarkable stabilization of the (1 bar 0 1) faces. The dramatic changes in morphological details were due to the strong electrostatic interactions between the Ca2+-rich (1 bar 0 1) crystal faces of COM and the polyanionic polysaccharide C4S together with the negatively charged sites of the zwitterionic DPPC monolayers. The increase of the concentration of C4S can further enhance the stabilization of the (1 bar 0 1) face.

  6. Crystallization and preliminary X-ray characterization of the genetically encoded fluorescent calcium indicator protein GCaMP2

    SciTech Connect

    Rodríguez Guilbe, María M.; Alfaro Malavé, Elisa C.; Akerboom, Jasper; Marvin, Jonathan S.; Looger, Loren L.; Schreiter, Eric R.

    2008-07-01

    The genetically encoded fluorescent calcium-indicator protein GCaMP2 was crystallized in the calcium-saturated form. X-ray diffraction data were collected to 2.0 Å resolution and the structure was solved by molecular replacement. Fluorescent proteins and their engineered variants have played an important role in the study of biology. The genetically encoded calcium-indicator protein GCaMP2 comprises a circularly permuted fluorescent protein coupled to the calcium-binding protein calmodulin and a calmodulin target peptide, M13, derived from the intracellular calmodulin target myosin light-chain kinase and has been used to image calcium transients in vivo. To aid rational efforts to engineer improved variants of GCaMP2, this protein was crystallized in the calcium-saturated form. X-ray diffraction data were collected to 2.0 Å resolution. The crystals belong to space group C2, with unit-cell parameters a = 126.1, b = 47.1, c = 68.8 Å, β = 100.5° and one GCaMP2 molecule in the asymmetric unit. The structure was phased by molecular replacement and refinement is currently under way.

  7. Phase stabilities and mechanical properties of two new carbon crystals

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Zhang, W.; Chen, L.

    2009-09-01

    Density functional calculations are used to systematically evaluate phase stabilities and mechanical properties of two recently proposed carbon crystals (K4 and M-carbon), along with graphite, cubic diamond and hexagonal diamond. It is found that the K4 carbon, which can be referred to as a twin of the cubic diamond crystal, is mechanically unstable, implying that it cannot be formed. Remarkably, our calculations not only substantiate the M-carbon phase is a highly incompressible and potentially superhard material but also show that it exhibits mechanical stability. Moreover, a surprisingly small activation barrier (about 0.018 eV/atom) for the transformation of M-carbon to graphite explains some paradoxical experimental observations.

  8. Calcium carbonate precipitation by strain Bacillus licheniformis AK01, newly isolated from loamy soil: a promising alternative for sealing cement-based materials.

    PubMed

    Vahabi, Ali; Ramezanianpour, Ali Akbar; Sharafi, Hakimeh; Zahiri, Hossein Shahbani; Vali, Hojatollah; Noghabi, Kambiz Akbari

    2015-01-01

    The relevant experiments were designed to determine the ability of indigenous bacterial strains isolated from limestone caves, mineral springs, and loamy soils to induce calcium carbonate precipitation. Among all isolates examined in this study, an efficient carbonate-precipitating soil bacterium was selected from among the isolates and identified by 16S rRNA gene sequences as Bacillus licheniformis AK01. The ureolytic isolate was able to grow well on alkaline carbonate-precipitation medium and precipitate calcium carbonate more than 1 g L(-1). Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analyses, and scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX) examinations were performed in order to confirm the presence of calcium carbonate in the precipitate and to determine which polymorphs were present. The selected isolate was determined to be an appropriate candidate for application in a surface treatment of cement-based material to improve the properties of the mortar. Biodeposition of a layer of calcite on the surface of cement specimens resulted in filling in pore spaces. This could be an alternative method to improve the durability of the mortar. The kind of bacterial culture and medium composition had a profound impact on the resultant CaCO(3) crystal morphology. PMID:25590872

  9. Calcium oxalate nephrolithiasis: effect of renal crystal deposition on the cellular composition of the renal interstitium.

    PubMed

    de Water, R; Noordermeer, C; van der Kwast, T H; Nizze, H; Boevé, E R; Kok, D J; Schröder, F H

    1999-04-01

    Urinary calcium oxalate (CaOx) crystals and crystal agglomerates are normally harmlessly excreted, but in nephrolithiasis they are retained by tubular epithelial cells and shifted into the renal interstitium. This crystalline material induces an inflammatory response consisting of an increase in the number of interstitial cells and an expansion of the extracellular matrix. The newly arrived cells either derive from the blood or the connective tissue or they are formed by local proliferation. Identification of the cells that surround the interstitial crystals is a first step in investigating the question of whether the interstitial cells could remove the crystalline material. Therefore, we performed an immunohistochemical study on the kidneys of rats made hyperoxaluric by ethylene glycol (EG) and ammonium chloride (AC). Attention was paid to expression of the leukocyte common antigen (LCA), which identifies all types of leukocytes, the ED1 antigen, which is specific for monocytes and macrophages, and the major histocompatibility class II antigen (MHC II), which is present on dendritic cells, B lymphocytes, and activated macrophages. The results obtained were compared with those seen in two human kidney specimens with acute and chronic oxalosis. In both rat and humans, macrophages and multinucleated giant cells are the major cells that encapsulate the interstitial crystals. This similarity in response underlines the relevance of the rat nephrolithiasis model. The rat experiments showed, furthermore, that the number of interstitial crystals and the amount of biochemically measured kidney-associated oxalate both decrease with time, if the nephrolithiatic agents EG and AC are omitted from the drinking water. Further studies must clarify whether macrophages and multinucleated giant cells are able to remove the interstitial crystals and how these cells are recruited at the inflammatory site. PMID:10196021

  10. CT Imaging for Evaluation of Calcium Crystal Deposition in the Knee: Initial Experience from The Multicenter Osteoarthritis (MOST) Study

    PubMed Central

    Misra, Devyani; Guermazi, Ali; Sieren, Jered P.; Lynch, John; Torner, James; Neogi, Tuhina; Felson, David T.

    2014-01-01

    Objective Role of intra-articular calcium crystals in osteoarthritis (OA) is unclear. Imaging modalities used to date for its evaluation have limitations in their ability to fully characterize intra-articular crystal deposition. Since Computed Tomography (CT) imaging provides excellent visualization of bones and calcified tissue, in this pilot project we evaluated the utility of CT scan in describing intra-articular calcium crystal deposition in the knees. Method We included 12 subjects with and 4 subjects without radiographic chondrocalcinosis in the most recent visit from the Multicenter Osteoarthritis (MOST) study, which is a longitudinal cohort of community-dwelling older adults with or at risk for knee OA. All subjects underwent CT scans of bilateral knees. Each knee was divided into 25 subregions and each subregion was read for presence of calcium crystals by a musculoskeletal radiologist. To assess reliability, readings were repeated 4 weeks later. Results CT images permitted visualization of 25 subregions with calcification within and around the tibio-femoral and patello-femoral joints in all 24 knees with radiographic chondrocalcinosis. Intra-articular calcification was seen universally including meniscal cartilage (most common site involved in 21/24 knees), hyaline cartilage, cruciate ligaments, medial collateral ligament and joint capsule. Readings showed good agreement for specific tissues involved with calcium deposition (kappa: 0.70, 95% CI 0.62–0.80). Conclusion We found CT scan to be a useful and reliable tool for describing calcium crystal deposition in the knee and therefore potentially for studying role of calcium crystals in OA. We also confirmed that “chondrocalcinosis” is a misnomer because calcification is present ubiquitously. PMID:25451303

  11. Evidence for Calcium Carbonate at the Phoenix Landing Site

    NASA Technical Reports Server (NTRS)

    Boynton, W. V.; Ming, D. W.; Sutter, B.; Arvidson, R. E.; Hoffman, J.; Niles, P. B.; Smith, P.

    2009-01-01

    The Phoenix mission has recently finished its study of the north polar environment of Mars with the aim to help understand both the current climate and to put constraints on past climate. An important part of understanding the past climate is the study of secondary minerals, those formed by reaction with volatile compounds such as H2O and CO2. This work describes observations made by the Thermal and Evolved-Gas Analyzer (TEGA) on the Phoenix Lander related to carbonate minerals. Carbonates are generally considered to be products of aqueous processes. A wet and warmer climate during the early history of Mars coupled with a much denser CO2 atmosphere are ideal conditions for the aqueous alteration of basaltic materials and the subsequent formation of carbonates. Carbonates (Mg- and Ca-rich) are predicted to be thermodynamically stable minerals in the present martian environment, however, there have been only a few indications of carbonates on the surface by a host of orbiting and landed missions to Mars. Carbonates (Mg-rich) have been suggested to be a component (2-5 wt %) of the martian global dust based upon orbital thermal emission spectroscopy. The identifications, based on the presence of a 1480 cm-1 absorption feature, are consistent with Mgcarbonates. A similar feature is observed in brighter, undisturbed soils by Mini-TES on the Gusev plains. Recently, Mg-rich carbonates have been identified in the Nili Fossae region by the CRISM instrument onboard the Mars Reconnaissance Orbiter. Carbonates have also been confirmed as aqueous alteration phases in martian meteorites so it is puzzling why there have not been more discoveries of carbonates by landers, rovers, and orbiters. Carbonates may hold important clues about the history of liquid water and aqueous processes on the surface of Mars.

  12. Exploring Carbon Nanomaterial Diversity for Nucleation of Protein Crystals

    PubMed Central

    Govada, Lata; Leese, Hannah S.; Saridakis, Emmanuel; Kassen, Sean; Chain, Benny; Khurshid, Sahir; Menzel, Robert; Hu, Sheng; Shaffer, Milo S. P.; Chayen, Naomi E.

    2016-01-01

    Controlling crystal nucleation is a crucial step in obtaining high quality protein crystals for structure determination by X-ray crystallography. Carbon nanomaterials (CNMs) including carbon nanotubes, graphene oxide, and carbon black provide a range of surface topographies, porosities and length scales; functionalisation with two different approaches, gas phase radical grafting and liquid phase reductive grafting, provide routes to a range of oligomer functionalised products. These grafted materials, combined with a range of controls, were used in a large-scale assessment of the effectiveness for protein crystal nucleation of 20 different carbon nanomaterials on five proteins. This study has allowed a direct comparison of the key characteristics of carbon-based nucleants: appropriate surface chemistry, porosity and/or roughness are required. The most effective solid system tested in this study, carbon black nanoparticles functionalised with poly(ethylene glycol) methyl ether of mean molecular weight 5000, provides a novel highly effective nucleant, that was able to induce crystal nucleation of four out of the five proteins tested at metastable conditions. PMID:26843366

  13. Exploring Carbon Nanomaterial Diversity for Nucleation of Protein Crystals.

    PubMed

    Govada, Lata; Leese, Hannah S; Saridakis, Emmanuel; Kassen, Sean; Chain, Benny; Khurshid, Sahir; Menzel, Robert; Hu, Sheng; Shaffer, Milo S P; Chayen, Naomi E

    2016-01-01

    Controlling crystal nucleation is a crucial step in obtaining high quality protein crystals for structure determination by X-ray crystallography. Carbon nanomaterials (CNMs) including carbon nanotubes, graphene oxide, and carbon black provide a range of surface topographies, porosities and length scales; functionalisation with two different approaches, gas phase radical grafting and liquid phase reductive grafting, provide routes to a range of oligomer functionalised products. These grafted materials, combined with a range of controls, were used in a large-scale assessment of the effectiveness for protein crystal nucleation of 20 different carbon nanomaterials on five proteins. This study has allowed a direct comparison of the key characteristics of carbon-based nucleants: appropriate surface chemistry, porosity and/or roughness are required. The most effective solid system tested in this study, carbon black nanoparticles functionalised with poly(ethylene glycol) methyl ether of mean molecular weight 5000, provides a novel highly effective nucleant, that was able to induce crystal nucleation of four out of the five proteins tested at metastable conditions. PMID:26843366

  14. Exploring Carbon Nanomaterial Diversity for Nucleation of Protein Crystals

    NASA Astrophysics Data System (ADS)

    Govada, Lata; Leese, Hannah S.; Saridakis, Emmanuel; Kassen, Sean; Chain, Benny; Khurshid, Sahir; Menzel, Robert; Hu, Sheng; Shaffer, Milo S. P.; Chayen, Naomi E.

    2016-02-01

    Controlling crystal nucleation is a crucial step in obtaining high quality protein crystals for structure determination by X-ray crystallography. Carbon nanomaterials (CNMs) including carbon nanotubes, graphene oxide, and carbon black provide a range of surface topographies, porosities and length scales; functionalisation with two different approaches, gas phase radical grafting and liquid phase reductive grafting, provide routes to a range of oligomer functionalised products. These grafted materials, combined with a range of controls, were used in a large-scale assessment of the effectiveness for protein crystal nucleation of 20 different carbon nanomaterials on five proteins. This study has allowed a direct comparison of the key characteristics of carbon-based nucleants: appropriate surface chemistry, porosity and/or roughness are required. The most effective solid system tested in this study, carbon black nanoparticles functionalised with poly(ethylene glycol) methyl ether of mean molecular weight 5000, provides a novel highly effective nucleant, that was able to induce crystal nucleation of four out of the five proteins tested at metastable conditions.

  15. Fabrication of porous low crystalline calcite block by carbonation of calcium hydroxide compact.

    PubMed

    Matsuya, Shigeki; Lin, Xin; Udoh, Koh-ichi; Nakagawa, Masaharu; Shimogoryo, Ryoji; Terada, Yoshihiro; Ishikawa, Kunio

    2007-07-01

    Calcium carbonate (CaCO(3)) has been widely used as a bone substitute material because of its excellent tissue response and good resorbability. In this experimental study, we propose a new method obtaining porous CaCO(3) monolith for an artificial bone substitute. In the method, calcium hydroxide compacts were exposed to carbon dioxide saturated with water vapor at room temperature. Carbonation completed within 3 days and calcite was the only product. The mechanical strength of CaCO(3) monolith increased with carbonation period and molding pressure. Development of mechanical strength proceeded through two steps; the first rapid increase by bonding with calcite layer formed at the surface of calcium hydroxide particles and the latter increase by the full conversion of calcium hydroxide to calcite. The latter process was thought to be controlled by the diffusion of CO(2) through micropores in the surface calcite layer. Porosity of calcite blocks thus prepared had 36.8-48.1% depending on molding pressure between 1 MPa and 5 MPa. We concluded that the present method may be useful for the preparation of bone substitutes or the preparation of source material for bone substitutes since this method succeeded in fabricating a low-crystalline, and thus a highly reactive, porous calcite block. PMID:17277982

  16. Coexistence of three calcium carbonate polymorphs in the shell of the Antarctic clam Laternula elliptica

    NASA Astrophysics Data System (ADS)

    Nehrke, Gernot; Poigner, Harald; Wilhelms-Dick, Dorothee; Brey, Thomas; Abele, Doris

    2012-05-01

    We analyzed shell cuts of five individuals of the Antarctic bivalve Laternula elliptica from three locations along the Antarctic Peninsula by means of Confocal Raman Microscopy (CRM) as well as Electron Microprobe (EMP). The shell of L. elliptica has been previously described as being composed of aragonite exclusively. Now, CRM mapping reveals that three polymorphs of calcium carbonate - aragonite, calcite, and vaterite - are present in the chondrophore region of the examined individuals. Annual shell growth layers continue through aragonite and vaterite, suggesting simultaneous mineralization of both polymorphs. Spatially congruent EMP scans showed that the calcium carbonate polymorph affects the distribution of magnesium and strontium within the chondrophore. This is, to our knowledge, the first report of the coexistence of these three calcium carbonate polymorphs within the mineralized structures of a marine calcifying organism. Particularly the presence of vaterite is unexpected, but shows striking similarities to some fish otoliths. The strong effect of the calcium carbonate polymorph on trace element incorporation restrict the suitability of magnesium and strontium based proxies for the chondrophore area of L. elliptica.

  17. EXPERIMENTAL DETERMINATION OF THE CALCIUM CARBONATE SATURATION STATES OF WATER SYSTEMS (TECHNICAL NOTE)

    EPA Science Inventory

    Emphasis is given to the fact that saturation indexes only indicate the tendency of a water to dissolve or precipitate calcium carbonate (CaCo3). The rate at which a given water attains equilibrium cannot be derived from the saturation index value.

  18. ANNUAL REPORT. THE INFLUENCE OF CALCIUM CARBONATE GRAIN COATINGS ON CONTAMINANT REACTIVITY IN VADOSE ZONE SEDIMENTS

    EPA Science Inventory

    The primary objective of this project is to investigate the role of calcium carbonate grain coatings on adsorption and heterogeneous reduction reactions of key chemical and radioactive contaminants in sediments on the Hanford Site. Research will ascertain whether these coatings p...

  19. A solvothermal method for synthesizing monolayer protected amorphous calcium carbonate clusters.

    PubMed

    Sun, Shengtong; Gebauer, Denis; Cölfen, Helmut

    2016-05-19

    A solvothermal method was developed for synthesizing organic monolayer protected amorphous calcium carbonate clusters using 10,12-pentacosadiynoic acid as ligand, ethanol as solvent and NaHCO3 decomposition as CO2 source, which can be extended to synthesize other monolayer protected mineral clusters. PMID:27161807

  20. Density functional theory for carbon dioxide crystal

    SciTech Connect

    Chang, Yiwen; Mi, Jianguo Zhong, Chongli

    2014-05-28

    We present a density functional approach to describe the solid−liquid phase transition, interfacial and crystal structure, and properties of polyatomic CO{sub 2}. Unlike previous phase field crystal model or density functional theory, which are derived from the second order direct correlation function, the present density functional approach is based on the fundamental measure theory for hard-sphere repulsion in solid. More importantly, the contributions of enthalpic interactions due to the dispersive attractions and of entropic interactions arising from the molecular architecture are integrated in the density functional model. Using the theoretical model, the predicted liquid and solid densities of CO{sub 2} at equilibrium triple point are in good agreement with the experimental values. Based on the structure of crystal-liquid interfaces in different planes, the corresponding interfacial tensions are predicted. Their respective accuracies need to be tested.

  1. Carbon dioxide transport in molten calcium carbonate occurs through an oxo-Grotthuss mechanism via a pyrocarbonate anion

    NASA Astrophysics Data System (ADS)

    Corradini, Dario; Coudert, François-Xavier; Vuilleumier, Rodolphe

    2016-05-01

    The reactivity, speciation and solvation structure of CO2 in carbonate melts are relevant for both the fate of carbon in deep geological formations and for its electroreduction to CO (to be used as fuel) when solvated in a molten carbonate electrolyte. In particular, the high solubility of CO2 in carbonate melts has been tentatively attributed to the formation of the pyrocarbonate anion, C2O52–. Here we study, by first-principles molecular dynamics simulations, the behaviour of CO2 in molten calcium carbonate. We find that pyrocarbonate forms spontaneously and the identity of the CO2 molecule is quickly lost through O2– exchange. The transport of CO2 in this molten carbonate thus occurs in a fashion similar to the Grotthuss mechanism in water, and is three times faster than molecular diffusion. This shows that Grotthuss-like transport is more general than previously thought.

  2. Carbon dioxide transport in molten calcium carbonate occurs through an oxo-Grotthuss mechanism via a pyrocarbonate anion.

    PubMed

    Corradini, Dario; Coudert, François-Xavier; Vuilleumier, Rodolphe

    2016-05-01

    The reactivity, speciation and solvation structure of CO2 in carbonate melts are relevant for both the fate of carbon in deep geological formations and for its electroreduction to CO (to be used as fuel) when solvated in a molten carbonate electrolyte. In particular, the high solubility of CO2 in carbonate melts has been tentatively attributed to the formation of the pyrocarbonate anion, C2O5(2-). Here we study, by first-principles molecular dynamics simulations, the behaviour of CO2 in molten calcium carbonate. We find that pyrocarbonate forms spontaneously and the identity of the CO2 molecule is quickly lost through O(2-) exchange. The transport of CO2 in this molten carbonate thus occurs in a fashion similar to the Grotthuss mechanism in water, and is three times faster than molecular diffusion. This shows that Grotthuss-like transport is more general than previously thought. PMID:27102679

  3. Optical Study of Liquid Crystal Doped with Multiwalled Carbon Nanotube

    NASA Astrophysics Data System (ADS)

    Gharde, Rita A.; Thakare, Sangeeta Y.

    2014-11-01

    Liquid crystalline materials have been useful for display devices i.e watches, calculators, automobile dashboards, televisions, multi media projectors etc. as well as in electro tunable lasers, optical fibers and lenses. Carbon nanotube is chosen as the main experimental factor in this study as it has been observed that Carbon Nano Tube influence the existing properties of liquid crystal host and with the doping of CNT can enhance1 the properties of LC. The combination of carbon nanotube (CNT) and liquid crystal (LC) materials show considerable interest in the scientific community due to unique physical properties of CNT in liquid crystal. Dispersion of CNTs in LCs can provide us a cheap, simple, versatile and effective means of controlling nanotube orientation on macroscopic scale with no restrictions on nanotube type. LCs have the long range orientational order rendering them to be anisotropic phases. If CNTs can be well dispersed in LC matrix, they will align with their long axes along the LC director to minimize distortions of the LC director field and the free energy. In this paper, we doped liquid crystal (Cholesteryl Nonanoate) by a small amount of multiwall carbon nanotube 0.05% and 0.1% wt. We found that by adding carbon nanotube to liquid crystals the melting point of the mixture is decreased but TNI is increased. It has been also observed that with incereas in concentration of carbon nanotube into liquid crystal shows conciderable effect on LC. The prepared samples were characterized using various techniques to study structural, thermal and optical properties i.e PMS, FPSS, UV-Vis spectroscopy, FT-IR measurements, and DTA.

  4. High Sodium-Induced Oxidative Stress and Poor Anticrystallization Defense Aggravate Calcium Oxalate Crystal Formation in Rat Hyperoxaluric Kidneys.

    PubMed

    Huang, Ho-Shiang; Ma, Ming-Chieh

    2015-01-01

    Enhanced sodium excretion is associated with intrarenal oxidative stress. The present study evaluated whether oxidative stress caused by high sodium (HS) may be involved in calcium oxalate crystal formation. Male rats were fed a sodium-depleted diet. Normal-sodium and HS diets were achieved by providing drinking water containing 0.3% and 3% NaCl, respectively. Rats were fed a sodium-depleted diet with 5% hydroxyl-L-proline (HP) for 7 and 42 days to induce hyperoxaluria and/or calcium oxalate deposition. Compared to normal sodium, HS slightly increased calcium excretion despite diuresis; however, the result did not reach statistical significance. HS did not affect the hyperoxaluria, hypocalciuria or supersaturation caused by HP; however, it increased calcium oxalate crystal deposition soon after 7 days of co-treatment. Massive calcium oxalate formation and calcium crystal excretion in HS+HP rats were seen after 42 days of treatment. HP-mediated hypocitraturia was further exacerbated by HS. Moreover, HS aggravated HP-induced renal injury and tubular damage via increased apoptosis and oxidative stress. Increased urinary malondialdehyde excretion, in situ superoxide production, NAD(P)H oxidase and xanthine oxidase expression and activity, and decreased antioxidant enzyme expression or activity in the HS+HP kidney indicated exaggerated oxidative stress. Interestingly, this redox imbalance was associated with reduced renal osteopontin and Tamm-Horsfall protein expression (via increased excretion) and sodium-dependent dicarboxylate cotransporter NaDC-1 upregulation. Collectively, our results demonstrate that a HS diet induces massive crystal formation in the hyperoxaluric kidney; this is not due to increased urinary calcium excretion but is related to oxidative injury and loss of anticrystallization defense. PMID:26241473

  5. High Sodium-Induced Oxidative Stress and Poor Anticrystallization Defense Aggravate Calcium Oxalate Crystal Formation in Rat Hyperoxaluric Kidneys

    PubMed Central

    Huang, Ho-Shiang; Ma, Ming-Chieh

    2015-01-01

    Enhanced sodium excretion is associated with intrarenal oxidative stress. The present study evaluated whether oxidative stress caused by high sodium (HS) may be involved in calcium oxalate crystal formation. Male rats were fed a sodium-depleted diet. Normal-sodium and HS diets were achieved by providing drinking water containing 0.3% and 3% NaCl, respectively. Rats were fed a sodium-depleted diet with 5% hydroxyl-L-proline (HP) for 7 and 42 days to induce hyperoxaluria and/or calcium oxalate deposition. Compared to normal sodium, HS slightly increased calcium excretion despite diuresis; however, the result did not reach statistical significance. HS did not affect the hyperoxaluria, hypocalciuria or supersaturation caused by HP; however, it increased calcium oxalate crystal deposition soon after 7 days of co-treatment. Massive calcium oxalate formation and calcium crystal excretion in HS+HP rats were seen after 42 days of treatment. HP-mediated hypocitraturia was further exacerbated by HS. Moreover, HS aggravated HP-induced renal injury and tubular damage via increased apoptosis and oxidative stress. Increased urinary malondialdehyde excretion, in situ superoxide production, NAD(P)H oxidase and xanthine oxidase expression and activity, and decreased antioxidant enzyme expression or activity in the HS+HP kidney indicated exaggerated oxidative stress. Interestingly, this redox imbalance was associated with reduced renal osteopontin and Tamm-Horsfall protein expression (via increased excretion) and sodium-dependent dicarboxylate cotransporter NaDC-1 upregulation. Collectively, our results demonstrate that a HS diet induces massive crystal formation in the hyperoxaluric kidney; this is not due to increased urinary calcium excretion but is related to oxidative injury and loss of anticrystallization defense. PMID:26241473

  6. Knee effusion: ultrasound as a useful tool for the detection of calcium pyrophosphate crystals.

    PubMed

    Ruta, Santiago; Catay, Erika; Marin, Josefina; Rosa, Javier; García-Monaco, Ricardo; Soriano, Enrique R

    2016-04-01

    The objective of this study was to evaluate the sensitivity and specificity of ultrasound (US) and conventional radiography (CR) for the detection of calcium pyrophosphate (CPP) crystals in patients with knee effusion. Consecutive patients ≥50 years old with knee effusion were included. All patients underwent arthrocentesis with aspiration of synovial fluid (SF) and subsequent analysis of CPP crystals using plain light and polarizing light microscopy. US and CR of the involved knee were performed immediately after arthrocentesis. CR results were read by an experienced rheumatologist, searching for chondrocalcinosis. US examinations were carried out by an experienced rheumatologist blinded to all clinical and imaging data. The following US abnormal findings were considered indicative of CPP crystals deposition (CPPD): (1) hyperechoic bands within the femoral hyaline cartilage layer, and (2) hyperechoic sparkling spots in meniscal fibrocartilage. A total of 75 knees were evaluated in the same number of patients. Analysis of SF revealed CPP crystals in 15 out of 75 (20 %) knees: all (10) patients with previous diagnosis of CPPD, 3 patients with previous diagnosis of primary knee osteoarthritis (OA) and 2 patients without previous definitive diagnosis of a rheumatic condition. Using SF analysis as reference method, sensitivity and specificity for US findings was 60 and 96.7 %, respectively, while CR showed a sensitivity of 40 % and a specificity of 83.3 %. US results showed high specificity with acceptable sensitivity to detect CPP crystals in patients with knee effusion. Compared with CR, US results had better specificity and sensitivity. US may be used in daily rheumatologic practice when CPPD is suspected. PMID:26490039

  7. Growth and Magnetic Properties of BISMUTH(2) STRONTIUM(2) Calcium COPPER(2) OXYGEN(8) Single Crystals

    NASA Astrophysics Data System (ADS)

    Lombardo, Louis W.

    A growth method for Bi_2Sr _2CaCu_2O_8 crystals is described in which near stoichiometric melts are cooled in a strong thermal gradient using compatible crucible materials. The resulting crystals have a fixed composition except for the strontium to calcium ratio which is determined by the peritectic composition. Crystals grown in this way have been used to study the irreversibility line (IL), the peak effect and proton irradiation effects. The IL for pristine crystals is composed of two different regimes. The low field regime occurs for fields below 1 kOe and is well described by a power law in the reduced temperature. Both the exponent and the prefactor are found to vary with the transition temperature. The high field regime occurs for fields greater than 2 Teslas and is approximately linear in temperature. The peak effect, where in the critical current increases with applied field, has been observed to occur at temperatures as low as 4.5 K. These measurements are used to argue that the peak effect is not due to a Bean-Livingston type surface barrier. Proton irradiation is found to have a dramatic effect on the transition, the IL and the critical currents. Modifications to the low field transition indicate that changes in the magnetic properties are due to the nonionizing energy loss of the incident protons. Modifications to the high field IL indicate that optimal pinning occurs at a defect density of ~1 defect per coherence volume. Proton induced changes in both the IL and the critical currents indicate that pristine Bi-2212 crystals contain ~10^{12} defects/cm^2 in the double Cu-O layer.

  8. Effect of Fluoride on the Morphology of Calcium Phosphate Crystals Grown on Acid-Etched Human Enamel

    PubMed Central

    Fan, Y.; Sun, Z.; Moradian-Oldak, J.

    2009-01-01

    The aim of this study was to examine the effect of fluoride ion concentration on the morphology of calcium phosphate crystals grown on acid-etched enamel as a model for tooth enamel erosion. Samples were immersed in calcification solution for 16 h and changes in crystal morphology were monitored by field emission scanning electron microscopy. Without fluoride, plate-like octacalcium phosphate crystals (20 nm thick, 2–10 μm wide) were formed. With 1–10 mg/l fluoride, arrays of denser needle-like nanocrystals (20–30 nm wide, >500 nm in length) were formed. We conclude that there is a minimal fluoride concentration (1 mg/l) that dramatically affects the morphology of calcium phosphate crystals grown on etched enamel in vitro. PMID:19321991

  9. All three Ca[superscript 2+]-binding loops of photoproteins bind calcium ions: The crystal structures of calcium-loaded apo-aequorin and apo-obelin

    SciTech Connect

    Deng, Lu; Vysotski, Eugene S.; Markova, Svetlana V.; Liu, Zhi-Jie; Lee, John; Rose, John; Wang, Bi-Cheng

    2010-07-13

    The crystal structures of calcium-loaded apoaequorin and apo-obelin have been determined at resolutions 1.7 {angstrom} and 2.2 {angstrom}, respectively. A calcium ion is observed in each of the three EF-hand loops that have the canonical calcium-binding sequence, and each is coordinated in the characteristic pentagonal bipyramidal configuration. The calcium-loaded apo-proteins retain the same compact scaffold and overall fold as the unreacted photoproteins containing the bound substrate, 2-hydroperoxycoelenterazine, and also the same as the Ca{sup 2+}-discharged obelin bound with the product, coelenteramide. Nevertheless, there are easily discerned shifts in both helix and loop regions, and the shifts are not the same between the two proteins. It is suggested that these subtle shifts are the basis of the ability of these photoproteins to sense Ca{sup 2+} concentration transients and to produce their bioluminescence response on the millisecond timescale. A mechanism of intrastructural transmission of the calcium signal is proposed.

  10. Isotopic tracer evidence for the amorphous calcium carbonate to calcite transformation by dissolution-reprecipitation

    NASA Astrophysics Data System (ADS)

    Giuffre, Anthony J.; Gagnon, Alexander C.; De Yoreo, James J.; Dove, Patricia M.

    2015-09-01

    Observations that some biogenic and sedimentary calcites grow from amorphous calcium carbonate (ACC) raise the question of how this mineralization process influences composition. However, the detailed pathway and geochemical consequences of the ACC to calcite transformation are not well constrained. This experimental study investigated the formation of calcite from ACC by using magnesium and calcium stable isotope labeling to directly probe the transformation pathway and controls on composition. Four processes were considered: dissolution-reprecipitation, solid state transformation, and combinations of these end-members. To distinguish between these scenarios, ACC was synthesized from natural isotope abundance solutions and subsequently transferred to spiked solutions that were enriched in 43Ca and 25Mg for the transformation to calcite. Isotope measurements by NanoSIMS determined the 43Ca/40Ca, and 25Mg/24Mg ratios of the resulting calcite crystals. Analysis of the data shows the transformation is best explained by a dissolution-reprecipitation process. We find that when a small amount of ACC is transferred, the isotopic signals in the resulting calcite are largely replaced by the composition of the surrounding spiked solution. When larger amounts of ACC are transferred, calcite compositions reflect a mixture between the ACC and initial solution end-member. Comparisons of the measurements to the predictions of a simple mixing model indicate that calcite compositions (1) are sensitive to relative amounts of ACC and the surrounding solution reservoir and (2) are primarily governed by the conditions at the time of ACC transformation rather than the initial ACC formation. Shifts in calcite composition over the duration of the transformation period reflect the progressive evolution of the local solution conditions. This dependence indicates the extent to which there is water available would change the end point composition on the mixing line. While these findings have significant geochemical implications, the question remains whether this transformation pathway is generally followed when biomineralization involves ACC or is particular to these inorganic experiments. Insights from this study nonetheless suggest that some types of compositional variability, such as 'vital effects', may be explained in-part by a co-evolution of reservoir and products over the duration of the transformation.

  11. Calcium oxalate crystallization index (COCI): an alternative method for distinguishing nephrolithiasis patients from healthy individuals.

    PubMed

    Yang, Bowei; Dissayabutra, Thasinas; Ungjaroenwathana, Wattanachai; Tosukhowong, Piyaratana; Srisa-Art, Monpichar; Supaprom, Thavorn; Insin, Numpon; Boonla, Chanchai

    2014-01-01

    Urinary supersaturation triggers lithogenic crystal formation. We developed an alternative test, designated calcium oxalate crystallization index (COCI), to distinguish nephrolithiasis patients from healthy individuals based on their urinary crystallization capability. The effect of urine volume, oxalate, phosphate, citrate, potassium, and sodium on COCI values was investigated. COCI values were determined in 24-hr urine obtained from nephrolithiasis patients (n=72) and matched healthy controls (n=71). Increases in urine oxalate and phosphate and decreases in urine volume and citrate resulted in significantly increased COCI values. The urinary COCI in nephrolithiasis patients was significantly higher than that in healthy individuals. Two healthy subjects who had elevated COCI values were found to have asymptomatic kidney calculi. The receiver operating characteristic analysis showed an area under the curve of the urinary COCI test of 0.9499 (95%CI: 0.9131-0.9868) for distinguishing between nephrolithiasis and healthy subjects. At the cutoff of 165 mg oxalate equivalence/day, the urinary COCI test provided sensitivity, specificity, and accuracy amounts of 83.33%, 97.18%, and 90.21%, respectively. Urinary COCI values were primarily dependent on urine volume, oxalate, and phosphate. The test provided high sensitivity and specificity for clinically discriminating nephrolithiasis patients from healthy controls. It might be used to detect individuals with asymptomatic kidney calculi. PMID:25117095

  12. Calciphytoliths (calcium oxalate crystals) analysis for the identification of decayed tea plants (Camellia sinensis L.)

    PubMed Central

    Zhang, Jianping; Lu, Houyuan; Huang, Linpei

    2014-01-01

    The history of tea is poorly known, mainly due to the questionable identification of decayed tea plants in archaeological samples. This paper attempts to test the utility of calciphytoliths (calcium oxalate crystals) for the identification of tea in archaeological samples. It provides the first survey of the macropatterns of calciphytoliths in several species of Theaceae and common non-Theaceae plants. Crystals were extracted from 45 samples of tea, Theaceae and common non-Theaceae plants, and detected microscopically between crossed polarizers. In tea plants, druse and trichome base are the most distinctive crystals. Druses have the smallest diameter (11.65 ± 3.64 μm), and trichome bases have four distinctive straight and regular cracks, similar to a regular extinction cross. The results provide morphological criteria for distinguishing tea from other plants, specifically the presence of identifiable druses together with calcified trichome bases. The implications are significant for understanding the history of tea and plant exploitation, especially for plants for which the preservation of macrofossils is poor. PMID:25342006

  13. Climatically driven loss of calcium in steppe soil as a sink for atmospheric carbon

    USGS Publications Warehouse

    Lapenis, A.G.; Lawrence, G.B.; Bailey, S.W.; Aparin, B.F.; Shiklomanov, A.I.; Speranskaya, N.A.; Torn, M.S.; Calef, M.

    2008-01-01

    During the last several thousand years the semi-arid, cold climate of the Russian steppe formed highly fertile soils rich in organic carbon and calcium (classified as Chernozems in the Russian system). Analysis of archived soil samples collected in Kemannaya Steppe Preserve in 1920, 1947, 1970, and fresh samples collected in 1998 indicated that the native steppe Chernozems, however, lost 17-28 kg m-2 of calcium in the form of carbonates in 1970-1998. Here we demonstrate that the loss of calcium was caused by fundamental shift in the steppe hydrologic balance. Previously unleached soils where precipitation was less than potential evapotranspiration are now being leached due to increased precipitation and, possibly, due to decreased actual evapotranspiration. Because this region receives low levels of acidic deposition, the dissolution of carbonates involves the consumption of atmospheric CO2. Our estimates indicate that this climatically driven terrestrial sink of atmospheric CO2 is ???2.1-7.4 g C m-2 a-1. In addition to the net sink of atmospheric carbon, leaching of pedogenic carbonates significantly amplified seasonal amplitude of CO2 exchange between atmosphere and steppe soil. Copyright 2008 by the American Geophysical Union.

  14. Nanoscale analysis of the morphology and surface stability of calcium carbonate polymorphs

    NASA Astrophysics Data System (ADS)

    Sekkal, W.; Zaoui, A.

    2013-04-01

    Under earth surface conditions, in ocean and natural water, calcium carbonate is ubiquitous, forming anhydrous and hydrous minerals. These hydrous phases are of considerable interest for their role as precursors to stable carbonate minerals. Atomistic simulation techniques have been employed here to perform a comprehensive and quantitative study of the structural and energetic stability of dry and hydrous surfaces of calcium carbonate polymorphs using two recently developed forcefields. Results show that the dry forms are prone to ductility; while hydrous phases are found to be brittle. The (001) surface of monohydrocalcite appears to be the most stable (0.99 J/m2) whereas for the ikaite phase, the (001) surface is the most stable. The corresponding value is 0.2 J/m2, i.e. even lower than the surface energy of the Beautiful computed morphology pictures are obtained with Xiao's model and are very similar to the observed SEM images.

  15. Nanoscale analysis of the morphology and surface stability of calcium carbonate polymorphs

    PubMed Central

    Sekkal, W.; Zaoui, A.

    2013-01-01

    Under earth surface conditions, in ocean and natural water, calcium carbonate is ubiquitous, forming anhydrous and hydrous minerals. These hydrous phases are of considerable interest for their role as precursors to stable carbonate minerals. Atomistic simulation techniques have been employed here to perform a comprehensive and quantitative study of the structural and energetic stability of dry and hydrous surfaces of calcium carbonate polymorphs using two recently developed forcefields. Results show that the dry forms are prone to ductility; while hydrous phases are found to be brittle. The (001) surface of monohydrocalcite appears to be the most stable (0.99 J/m2) whereas for the ikaite phase, the (001) surface is the most stable. The corresponding value is 0.2 J/m2, i.e. even lower than the surface energy of the Beautiful computed morphology pictures are obtained with Xiao's model and are very similar to the observed SEM images. PMID:23545842

  16. An Assessment of Engineered Calcium Oxalate Crystal Formation on Plant Growth and Development as a Step toward Evaluating Its Use to Enhance Plant Defense

    PubMed Central

    Nakata, Paul A.

    2015-01-01

    The establishment of new approaches to control chewing insects has been sought not only for direct use in reducing crop loss but also in managing resistance to the pesticides already in use. Engineered formation of calcium oxalate crystals is a potential strategy that could be developed to fulfill both these needs. As a step toward this development, this study investigates the effects of transforming a non-calcium oxalate crystal accumulating plant, Arabidopsis thaliana, into a crystal accumulating plant. Calcium oxalate crystal accumulating A. thaliana lines were generated by ectopic expression of a single bacterial gene encoding an oxalic acid biosynthetic enzyme. Biochemical and cellular studies suggested that the engineered A. thaliana lines formed crystals of calcium oxalate in a manner similar to naturally occurring crystal accumulating plants. The amount of calcium oxalate accumulated in leaves also reached levels similar to those measured in the leaves of Medicago truncatula in which the crystals are known to play a defensive role. Visual inspection of the different engineered lines, however, suggested a phenotypic consequence on plant growth and development with higher calcium oxalate concentrations. The restoration of a near wild-type plant phenotype through an enzymatic reduction of tissue oxalate supported this observation. Overall, this study is a first to provide initial insight into the potential consequences of engineering calcium oxalate crystal formation in non-crystal accumulating plants. PMID:26517544

  17. Synthesis of sodium caseinate-calcium carbonate microspheres and their mineralization to bone-like apatite

    NASA Astrophysics Data System (ADS)

    Xu, Zhewu; Liang, Guobin; Jin, Lin; Wang, Zhenling; Xing, Chao; Jiange, Qing; Zhang, Zhiguang

    2014-06-01

    Phosphoproteins can induce and stabilize calcium carbonate (CaCO3) vaterite, which has desirable features for high reactivity. The purpose of this study was to synthesize bioactive CaCO3 microspheres for bone regeneration. Sodium caseinate (NaCas)-containing CaCO3 microspheres, with the crystal phase of vaterite, were synthesized by fast precipitation in an aqueous solution of CaCl2, Na2CO3, and 2 mg/mL of NaCas. The uniform microspheres exhibited rougher surfaces and lower negative charges than CaCO3 particles without NaCas addition. Fourier-transform infrared spectroscopy (FT-IR) of the microspheres showed characteristic peaks or bands corresponding to phosphate and hydroxyl groups. Thermogravimetric analysis (TGA) curves exhibited approximately 5% weight loss below 600 °C due to the decomposition of NaCas. Scanning electron microscope (SEM) images showed lath-like hydroxyapatite (HAp) on the surface after soaking in simulated body fluid (SBF) at 37 °C for 5 and 10 days. Energy dispersive X-ray spectrometry (EDS) revealed that the agglomerates were composed of Ca, C, O, P, Na, and Mg elements, and the Ca/P ratios ranged from 1.53 to 1.56. X-ray diffraction (XRD) patterns exhibited peaks characteristic of hydroxyapatite. The results of this study demonstrated that the addition of NaCas induced the formation of vaterite microspheres which possesses an enhanced apatite formation after soaking in SBF at 37 °C for 5 and 10 days. These NaCas-CaCO3 microspheres may be a potential biomaterial for bone regeneration.

  18. A calcium oxide sorbent process for bulk separation of carbon dioxide

    SciTech Connect

    Harrison, D.P.

    1990-09-01

    This research effort is designed to investigate the technical feasibility of a high-temperature, high-pressure process for the bulk separation of CO{sub 2} from coal-derived gases. The two-year contract was awarded in September 1989. This report describes the research effort and results obtained during the first year of the effort. The overall project consists of 6 tasks, four of which were active during year 01. Tasks 1 and 2 were completed during the year while activity in Tasks 3 and 6 will carry over into year 02. Tasks 4 and 5 will be initiated during year 02. Three primary objectives were met in Task 1. A literature search on the calcination-carbonation reactions of CO{sub 2} with calcium-based sorbents was completed. A high temperature, high pressure (HTHP) electrobalance reactor suitable for studying the calcination and carbonation reactions was constructed. This reactor system is now fully operable and we are routinely collecting kinetics data at temperatures in the range of 550-900{degree}C and pressures of 1 to 15 atm. Samples of nine candidate calcium-based sorbents were acquired and tested. These samples were subjected to reaction screening tests as part of Task 2. As a result of these screening tests, chemically pure calcium carbonate, chemically pure calcium acetate, and the commercial dolomite were selected for more detailed kinetic testing. In Task 3, the HTHP electrobalance reactor is being used to study the calcination-carbonation behavior of the three base sorbents as a function of calcination temperature, carbonation temperature, carbonation pressure, and CO{sub 2} concentration.

  19. The Properties and Characteristics of Concretes Containing Calcium Carbonate (CaCO3) and Synthetic Lightweight Aggregate

    NASA Astrophysics Data System (ADS)

    Ramos, Matthew J.

    The purpose of this study was to investigate the efficacy of precipitated calcium carbonate as a means for enhancing the mechanical and environmental favorability of concretes containing synthetic lightweight aggregates (SLA), which are comprised of recycled mixed plastic and fly ash. Compressive strength tests show that 2% calcium carbonate additions are able to mitigate strength decreases induced by SLA as well as decrease concrete density when compared to NWA concretes. SLA concretes containing 5% calcium carbonate do not show the same trend. Instead, strength decreases and density increases are observed. Furthermore, increases in aluminum trisulphate (AFt) phase mineralization are observed through scanning electron microscopy. Results suggest that calcium carbonate additions increase early hydration and stabilize AFt minerals thaumasite and ettringite throughout hydration. It is proposed that increased AFt phase mineralization causes reductions in concrete density. However, a limit to this relationship was observed as additions of greater than 2% calcium carbonate exceed the potential for increased hydration, causing a threshold effect that resulted in calcium carbonate acting as filler, which increases density. Improved mechanical properties and the ability to stabilize waste plastics, fly ash, and CO2 emissions make the use of 2% calcium carbonate in conjunction with SLA a favorable alternative to ordinary concretes.

  20. Crystal structure analysis reveals Pseudomonas PilY1 as an essential calcium-dependent regulator of bacterial surface motility

    SciTech Connect

    Orans, Jillian; Johnson, Michael D.L.; Coggan, Kimberly A.; Sperlazza, Justin R.; Heiniger, Ryan W.; Wolfgang, Matthew C.; Redinbo, Matthew R.

    2010-09-21

    Several bacterial pathogens require the 'twitching' motility produced by filamentous type IV pili (T4P) to establish and maintain human infections. Two cytoplasmic ATPases function as an oscillatory motor that powers twitching motility via cycles of pilus extension and retraction. The regulation of this motor, however, has remained a mystery. We present the 2.1 {angstrom} resolution crystal structure of the Pseudomonas aeruginosa pilus-biogenesis factor PilY1, and identify a single site on this protein required for bacterial translocation. The structure reveals a modified {beta}-propeller fold and a distinct EF-hand-like calcium-binding site conserved in pathogens with retractile T4P. We show that preventing calcium binding by PilY1 using either an exogenous calcium chelator or mutation of a single residue disrupts Pseudomonas twitching motility by eliminating surface pili. In contrast, placing a lysine in this site to mimic the charge of a bound calcium interferes with motility in the opposite manner - by producing an abundance of nonfunctional surface pili. Our data indicate that calcium binding and release by the unique loop identified in the PilY1 crystal structure controls the opposing forces of pilus extension and retraction. Thus, PilY1 is an essential, calcium-dependent regulator of bacterial twitching motility.

  1. Crystal structure analysis reveals Pseudomonas PilY1 as an essential calcium-dependent regulator of bacterial surface motility.

    PubMed

    Orans, Jillian; Johnson, Michael D L; Coggan, Kimberly A; Sperlazza, Justin R; Heiniger, Ryan W; Wolfgang, Matthew C; Redinbo, Matthew R

    2010-01-19

    Several bacterial pathogens require the "twitching" motility produced by filamentous type IV pili (T4P) to establish and maintain human infections. Two cytoplasmic ATPases function as an oscillatory motor that powers twitching motility via cycles of pilus extension and retraction. The regulation of this motor, however, has remained a mystery. We present the 2.1 A resolution crystal structure of the Pseudomonas aeruginosa pilus-biogenesis factor PilY1, and identify a single site on this protein required for bacterial translocation. The structure reveals a modified beta-propeller fold and a distinct EF-hand-like calcium-binding site conserved in pathogens with retractile T4P. We show that preventing calcium binding by PilY1 using either an exogenous calcium chelator or mutation of a single residue disrupts Pseudomonas twitching motility by eliminating surface pili. In contrast, placing a lysine in this site to mimic the charge of a bound calcium interferes with motility in the opposite manner--by producing an abundance of nonfunctional surface pili. Our data indicate that calcium binding and release by the unique loop identified in the PilY1 crystal structure controls the opposing forces of pilus extension and retraction. Thus, PilY1 is an essential, calcium-dependent regulator of bacterial twitching motility. PMID:20080557

  2. Crystal structure analysis reveals Pseudomonas PilY1 as an essential calcium-dependent regulator of bacterial surface motility

    PubMed Central

    Orans, Jillian; Johnson, Michael D. L.; Coggan, Kimberly A.; Sperlazza, Justin R.; Heiniger, Ryan W.; Wolfgang, Matthew C.; Redinbo, Matthew R.

    2010-01-01

    Several bacterial pathogens require the “twitching” motility produced by filamentous type IV pili (T4P) to establish and maintain human infections. Two cytoplasmic ATPases function as an oscillatory motor that powers twitching motility via cycles of pilus extension and retraction. The regulation of this motor, however, has remained a mystery. We present the 2.1 Å resolution crystal structure of the Pseudomonas aeruginosa pilus-biogenesis factor PilY1, and identify a single site on this protein required for bacterial translocation. The structure reveals a modified β-propeller fold and a distinct EF-hand-like calcium-binding site conserved in pathogens with retractile T4P. We show that preventing calcium binding by PilY1 using either an exogenous calcium chelator or mutation of a single residue disrupts Pseudomonas twitching motility by eliminating surface pili. In contrast, placing a lysine in this site to mimic the charge of a bound calcium interferes with motility in the opposite manner—by producing an abundance of nonfunctional surface pili. Our data indicate that calcium binding and release by the unique loop identified in the PilY1 crystal structure controls the opposing forces of pilus extension and retraction. Thus, PilY1 is an essential, calcium-dependent regulator of bacterial twitching motility. PMID:20080557

  3. Investigating the Role of Carbonate Ion Concentration on the Magnesium Content of Amorphous Calcium Carbonate

    NASA Astrophysics Data System (ADS)

    Blue, C.; Dove, P. M.; Han, N.

    2011-12-01

    The fields of biomineralization and carbonate geochemistry are undergoing a paradigm shift with the realization that the formation of calcite with diverse compositions and textures can be understood within the framework of multiple pathways to mineralization. Many organisms do not form their skeletons via the classical step-growth process, but instead mineralization occurs through a mesocrystal pathway that begins with the formation of amorphous calcium carbonate (ACC), which subsequently transforms to calcite. Little is known about factors that regulate this type of calcification because the last 50 years of research have focused almost entirely on step-growth processes. In particular, new findings indicate that the chemical signatures and properties of calcites that form via an amorphous pathway are significantly different. Variable temperature has been shown to influence the amount of magnesium that is incorporated into ACC, but the effect of alkalinity has not been constrained. Here, a flow-through method was developed to produce ACC within a geochemically relevant pH range and with a constant supersaturation, and to determine the effect of carbonate ion concentration on magnesium uptake. The experimental approach uses a high precision syringe pump to prepare ACC under specified and constant chemical conditions. This study used two syringes that contained: 1) 100 ml of MgCl2?6H2O and CaCl2?2H2O such that the Mg/Ca ratio is fixed at 5:1 (modern seawater), and 2) 100 ml of 60mM - 400mM NaHCO3. The initial sodium bicarbonate solutions were buffered to a pH of 9.75 using NaOH, and upon mixing with the 5:1 Mg/Ca solution the resulting pH range was 9.2 - 9.7. All experiments were performed at temperatures between 21.5 and 23 degrees Celsius. Solution and solids were collected on 0.20 micron filter paper with a vacuum pump running continuously. Experiments were typically conducted for an hour and a half and all samples were rinsed with distilled deionized water before collection. The final ACC samples were characterized using a combination of SEM, Raman Spectroscopy, and ICP-OES. Preliminary results indicate that the Mg content of ACC increases with the carbonate ion concentration of the input solution. This shift in composition corresponds with measurements of a smaller average particle size. Future work will determine if the ACC that forms at these different carbonate concentrations subsequently influences the composition and structure of the final crystalline products. Findings from this work may lead to better predictions of how biological calcification processes will respond to the shifts in carbonate chemistry that accompany ocean acidification.

  4. Comparative study on in vivo response of porous calcium carbonate composite ceramic and biphasic calcium phosphate ceramic.

    PubMed

    He, Fupo; Ren, Weiwei; Tian, Xiumei; Liu, Wei; Wu, Shanghua; Chen, Xiaoming

    2016-07-01

    In a previous study, robust calcium carbonate composite ceramics (CC/PG) were prepared by using phosphate-based glass (PG) as an additive, which showed good cell response. In the present study the in vivo response of porous CC/PG was compared to that of porous biphasic calcium phosphate ceramics (BCP), using a rabbit femoral critical-size grafting model. The materials degradation and bone formation processes were evaluated by general observation, X-ray radiography, micro-computed tomography, and histological examination. The results demonstrated excellent biocompatibility and osteoconductivity, and progressive degradation of CC/PG and BCP. Although the in vitro degradation rate of CC/PG was distinctly faster than that of BCP, at 4week post-implantation, the bone generation and material degradation of CC/PG were less than those of BCP. Nevertheless, at postoperative week 8, the increment of bone formation and material degradation of CC/PG was pronouncedly larger than that of BCP. These results show that CC/PG is a potential resorbable bone graft aside from the traditional synthetic ones. PMID:27127035

  5. The mineral phase in the cuticles of two species of Crustacea consists of magnesium calcite, amorphous calcium carbonate, and amorphous calcium phosphate.

    PubMed

    Becker, Alexander; Ziegler, Andreas; Epple, Matthias

    2005-05-21

    The cuticules (shells) of the woodlice Porcellio scaber and Armadillidium vulgare were analysed with respect to their content of inorganic material. It was found that the cuticles consist of crystalline magnesium calcite, amorphous calcium carbonate (ACC), and amorphous calcium phosphate (ACP), besides small amounts of water and an organic matrix. It is concluded that the cuticle, which constitutes a mineralized protective organ, is chemically adapted to the biological requirements by this combination of different materials. PMID:15877152

  6. Tamarind (Tamarindus indica) fruit shell carbon: A calcium-rich promising adsorbent for fluoride removal from groundwater.

    PubMed

    Sivasankar, V; Rajkumar, S; Murugesh, S; Darchen, A

    2012-07-30

    Tamarindus indica fruit shells (TIFSs) are naturally calcium rich compounds. They were impregnated with ammonium carbonate and then carbonized, leading to ammonium carbonate activated ACA-TIFS carbon. The resulting materials and carbon arising from virgin fruit shells V-TIFS were characterized and assayed as adsorbent for the removal of fluoride anions from groundwater. The fluoride scavenging ability of TIFS carbons was due to naturally dispersed calcium compounds. X-ray diffraction (XRD) showed that TIFS carbon contained a mixture of calcium oxalate and calcium carbonate. Batch studies on the fluoride removal efficiency of TIFS carbons with respect to contact time, pH, initial fluoride concentration, and co-ion interference were conducted. Applicability of various kinetic models (viz., pseudo-first-order, pseudo-second-order, intra-particle diffusion and Elovich) and sorption isotherms were tested for batch techniques. The fluoride removal capacity of TIFS carbons was found to be 91% and 83% at a pH of 7.05 for V-TIFS and ACA-TIFS carbons, respectively. The practical applicability of TIFS carbons using groundwater samples was approved. The fluoride removal was greater in groundwater without hydrogen carbonate ions than those containing these ions. The characterizations of fluoride unloaded and loaded TIFS carbons were done by SEM and XRD studies. PMID:22626627

  7. Posterior C1-C2 calcium pyrophosphate dihydrate crystal deposition disease.

    PubMed

    Ng, Isaac Bing-Yi; Arkun, Knarik; Riesenburger, Ron I

    2016-01-01

    Calcium pyrophosphate dihydrate (CPPD) crystal deposition disease rarely occurs in the posterior aspect of the craniocervical junction (CCJ). To the best of our knowledge, there have been only 2 previously reported cases of patients with posterior CPPD lesions in this region that have led to cervical myelopathy. We report the case of a 70-year-old man presenting with neck pain and cervical myelopathy with multilevel stenosis from C1-C6. The stenosis was worst at C1-C2, secondary to compression by a CPPD lesion posterior to the spinal cord. The patient underwent a C2-C6 laminectomy and fusion with resection of the CPPD lesion. In this report, we discuss the patient and present a novel theory to explain the preponderance of CPPD lesions in the CCJ occurring anteriorly and not posteriorly to the spinal cord. PMID:26976840

  8. Calcium sulfate crystallization along citrus root channels in a Florida soil exhibiting acid sulfate properties

    SciTech Connect

    Syslo, S.K.; Myhre, D.L.; Harris, W.G.

    1988-02-01

    The authors observed euhedral crystals in Manatee soil in a citrus grove in St. Lucie County, Florida. The material was identified as gypsum (CaSO/sub 4/ /times/ 2H/sub 2/O) using x-ray diffraction and infrared spectra. Photomicrography and scanning electron microscopy revealed that gypsum accumulated both in old root channels and within citrus root tissue of the Btg horizon. The subsurface horizons had elevated sulfate levels, a low initial pH, a drop (0.5 unit) in pH upon air-drying. Electrical conductivity paralleled the concentration of water-soluble sulfate. High levels of calcium and sulfate occurred for horizons above the water table. This accumulation is attributed to groundwater bearing these ions and subsequently discharging them to the overlying soil. Dead citrus roots appear to act as wicks to aid water transfer from lower to higher horizons. The roots and their empty channels provide spaces in which the gypsum can precipitate if the concentrations of calcium and sulfate in the evaporating groundwater exceed the solubility product of gypsum.

  9. CALCIUM OXALATE CRYSTAL MACROPATTERN IN LEAVES OF SPECIES FROM GROUPS GLYCINE AND SHUTERIA (GLYCININAE; PHASEOLEAE; PAPILIONOIDEAE; FABACEAE)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium oxalate crystals associated with leaf veins and mesophyll was determined for taxa in two groups Glycine and Shuteria of subtribe Glycininae. Trichomes and veins were identified as additional characters. The annual and wild perennial Glycine species have the most reduced characters by gener...

  10. Physical characteristics of calcium oxalate crystals as determinants in structural defense against chewing insects in Medicago truncatula

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In addition to the numerous chemical defenses that plants employ to fend off insect herbivores, simple structural components can also play important roles in effective protection. Our investigations have shown that plant crystals of calcium oxalate can function in insect defense. The isolation of ca...

  11. Medicago truncatula-derived calcium oxalate crystals have a negative impact on chewing insect performance via their physical properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant structural traits often act as defenses against herbivorous insects, causing them to avoid feeding on a given plant or tissue. Mineral crystals of calcium oxalate in Medicago truncatula Gaertn. (Fabaceae) leaves have previously been shown to be effective deterrents of lepidopteran insect feedi...

  12. The crystal structure of calcium- and integrin-binding protein 1: insights into redox regulated functions.

    PubMed

    Blamey, Chad J; Ceccarelli, Christopher; Naik, Ulhas P; Bahnson, Brian J

    2005-05-01

    Calcium- and integrin-binding protein 1 (CIB1) is involved in the process of platelet aggregation by binding the cytoplasmic tail of the alpha(IIb) subunit of the platelet-specific integrin alpha(Iib)beta(3). Although poorly understood, it is widely believed that CIB1 acts as a global signaling regulator because it is expressed in many tissues that do not express integrin alpha(Iib)beta(3). We report the structure of human CIB1 to a resolution of 2.3 A, crystallized as a dimer. The dimer interface includes an extensive hydrophobic patch in a crystal form with 80% solvent content. Although the dimer form of CIB1 may not be physiologically relevant, this intersub-unit surface is likely to be linked to alpha(IIb) binding and to the binding of other signaling partner proteins. The C-terminal domain of CIB1 is structurally similar to other EF-hand proteins such as calmodulin and calcineurin B. Despite structural homology to the C-terminal domain, the N-terminal domain of CIB1 lacks calcium-binding sites. The structure of CIB1 revealed a complex with a molecule of glutathione in the reduced state bond to the N-terminal domain of one of the two subunits poised to interact with the free thiol of C35. Glutathione bound in this fashion suggests CIB1 may be redox regulated. Next to the bound GSH, the orientation of residues C35, H31, and S48 is suggestive of a cysteine-type protein phosphatase active site. The potential enzymatic activity of CIB1 is discussed and suggests a mechanism by which it regulates a wide variety of proteins in cells in addition to platelets. PMID:15840829

  13. EFFECTS OF SODIUM AND CALCIUM IN LIGNITE ON THE PERFORMANCE OF ACTIVATED CARBON PRODUCTS

    SciTech Connect

    Edwin S. Olson; Kurt E. Eylands; Daniel J. Stepan

    2001-12-01

    Powdered activated carbon (PAC) has traditionally been used by the water treatment industry for the removal of compounds contributing to taste and odor problems. PAC also has the potential to remove naturally occurring organic matter (NOM) from raw waters prior to disinfection, thus controlling the formation of regulated disinfection by-products (DBPs). Many small water systems are currently using PAC for taste and odor control and have the potential to use PAC for controlling DBPs. The Energy & Environmental Research Center has been working on the development of a PAC product to remove NOM from surface water supplies to prevent the formation of carcinogenic DBPs during chlorination. During previous studies, the sodium and calcium content of the lignites showed a significant effect on the sorption capacity of the activated carbon product. As much as a 130% increase in the humic acid sorption capacity of a PAC produced from a high-sodium-content lignite was observed. During this study, activated carbons were prepared from three coals representing high-sodium, low-sodium--low-calcium, and high-calcium compositions in two steps, an initial char formation followed by mild activation with steam to avoid excessive burnout. This set of carbons was characterized with respect to physical and chemical properties. The BET (Brunauer-Emmett-Teller) nitrogen adsorption isotherms gave relatively low surface areas (ranging from 245 to 370 m{sup 2}/g). The lowest-BET area was obtained for the high-sodium carbon, which can be attributed to enlargement of micropores as a result of sodium-catalyzed gasification reaction of the carbon structure. This hypothesis is consistent with the scanning electron microscopy microprobe analyses, which show that in both the coal and the activated carbon from this coal, the sodium is distributed over both the carbon structure and the mineral particles. Thus it is initially associated with carboxylate groups on the coal and then as sodium oxide or other active form in close proximity to the carbon and is, therefore, readily available for catalysis of gasification. Humate adsorption isotherms for the high-sodium carbon gave superior results as defined by very high intercepts in modified Freundlich plots. Thus the high-sodium carbon will be considerably more effective in reducing the humate concentration for a given carbon dosage. Analysis of adsorption isotherms indicated the results were consistent with the hypothesis that only the larger pores are effective for binding the large humate molecules, and that the larger pores developed during activation of the high-sodium char give the appropriate macropore structure for humate binding. Toluene adsorption isotherms indicated that the high-calcium carbon and the low-calcium, low-sodium carbon were superior to the high-sodium carbon for small molecules in aqueous solution, but not as effective as a Calgon F-400 commercial activated carbon. This is consistent with the low-BET surface areas observed for the lignite-derived carbons, and thus there are a lower number of sites for binding the smaller toluene molecule in these carbons.

  14. Large fractionation of calcium isotopes during cave-analogue calcium carbonate growth

    NASA Astrophysics Data System (ADS)

    Reynard, L. M.; Day, C. C.; Henderson, G. M.

    2011-07-01

    We have measured δ44/42Ca of laboratory-precipitated calcite grown in an experimental setup that closely replicates stalagmite formation. Calcium solutions were dripped onto two different substrates in tightly-controlled conditions and calcite precipitated due to rapid CO 2 degassing. With seeded glass slides as the substrate, we observe a Ca isotope ratio in the calcite which is ˜0.5‰ per amu lower than that in the growth solution. This fractionation is generally almost twice that observed in previously published calcite growth experiments and indicates a large kinetic effect on Ca isotopes in the stalagmite growth environment. The precipitate forming near the spot where the drip lands shows slightly greater solution-to-precipitate fractionation than calcite further from the drip reflecting a decrease in this kinetic fractionation as precipitation continues. We interpret these results in the context of the model of Fantle and DePaolo (2007) which involves surface entrapment of light Ca isotopes to decrease calcite δ44/42Ca, and depletion of Ca from the solution in the direct vicinity of the growing calcite to increase calcite δ44/42Ca. In the stalagmite setting, the second of these effects is minimized so that calcite Ca isotope ratios are unusually light. This interpretation suggests that stalagmite Ca isotope ratios should decrease with the saturation state of the drip water (i.e. with the growth rate of calcite). Ca isotopes might therefore allow reconstruction of surface entrapment of trace metals and isotopes more generally and might, for instance, allow an assessment of the appropriate relationship between oxygen isotope fractionation and temperature for periods of past growth in stalagmites.

  15. Fractional absorption of active absorbable algal calcium (AAACa) and calcium carbonate measured by a dual stable-isotope method.

    PubMed

    Uenishi, Kazuhiro; Fujita, Takuo; Ishida, Hiromi; Fujii, Yoshio; Ohue, Mutsumi; Kaji, Hiroshi; Hirai, Midori; Kakumoto, Mikio; Abrams, Steven A

    2010-07-01

    With the use of stable isotopes, this study aimed to compare the bioavailability of active absorbable algal calcium (AAACa), obtained from oyster shell powder heated to a high temperature, with an additional heated seaweed component (Heated Algal Ingredient, HAI), with that of calcium carbonate. In 10 postmenopausal women volunteers aged 59 to 77 years (mean ± S.D., 67 ± 5.3), the fractional calcium absorption of AAACa and CaCO(3) was measured by a dual stable isotope method. (44)Ca-enriched CaCO(3) and AAACa were administered in all subjects one month apart. After a fixed-menu breakfast and pre-test urine collection (Urine 0), (42)Ca-enriched CaCl(2) was intravenously injected, followed by oral administration of (44)Ca-enriched CaCO(3) without carrier 15 minutes later, and complete urine collection for the next 24 hours (Urine 24). The fractional calcium absorption was calculated as the ratio of Augmentation of (44)Ca from Urine 0 to Urine 24/ augmentation of (42)Ca from Urine 0 to Urine 24. Differences and changes of (44)Ca and (42)Ca were corrected by comparing each with (43)Ca. Fractional absorption of AAACa (mean ± S.D., 23.1 ± 6.4), was distinctly and significantly higher than that of CaCO(3 )(14.7 ± 6.4; p = 0.0060 by paired t-test). The mean fractional absorption was approximately 1.57-times higher for AAACa than for CaCO(3). The serum 25(OH) vitamin D level was low (mean ± S.D., 14.2 ± 4.95 ng/ml), as is common in this age group in Japan. Among the parameters of the bone and mineral metabolism measured, none displayed a significant correlation with the fractional absorption of CaCO(3) and AAACa. Higher fractional absorption of AAACa compared with CaCO(3) supports previous reports on the more beneficial effect of AAACa than CaCO(3) for osteoporosis. PMID:22254052

  16. Growth of neodymium lanthanum calcium borate (NdLCB) single crystals by the Czochralski method and its characterisation

    NASA Astrophysics Data System (ADS)

    Senthilkumar, M.; Kalidasan, M.; Sugan, S.; Dhanasekaran, R.

    2013-01-01

    The synthesis of neodymium lanthanum calcium borate (NdLCB) was carried out using solid state reaction method. The NdLCB single crystals were grown by the Czochralski method using platinum wire as a seed. The single phase of NdLCB is confirmed by powder X-ray diffraction analysis. EDAX analysis is carried out to find the presence of constituent elements of NdLCB. Single crystal X-ray diffraction analysis was performed to find the lattice parameters and crystal system. Nd concentration in the crystal is determined using ICP-OES measurements. Optical studies such as UV-vis-NIR and photoluminescence were carried out for the NdLCB crystal and the results are analysed. SEM and etching analysis were carried out to analyse the surface morphology and the growth pattern of the as grown NdLCB crystals respectively.

  17. Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation

    SciTech Connect

    Wu, Y.; Ajo-Franklin, J.B.; Spycher, N.; Hubbard, S.S.; Zhang, G.; Williams, K.H.; Taylor, J.; Fujita, Y.; Smith, R.

    2011-07-15

    Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH{sub 4}{sup +} production during urea hydrolysis were incorporated in the model and captured critical changes in the major metal species. The electrical phase increases were potentially due to ion exchange processes that modified charge structure at mineral/water interfaces. Our study revealed the potential of geophysical monitoring for geochemical changes during urea hydrolysis and the advantages of combining multiple approaches to understand complex biogeochemical processes in the subsurface.

  18. Geophysical Monitoring and Reactive Transport Modeling of Ureolytically-Driven Calcium Carbonate Precipitation

    SciTech Connect

    Yuxin Wu; Jonathan B. Ajo-Franklin; Nicolas Spycher; Susan S. Hubbard; Guoxiang Zhang; Kenneth H. Williams; Joanna Taylor; Yoshiko Fujita; Robert Smith

    2011-09-01

    Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH4+ production during urea hydrolysis were incorporated in the model and captured critical changes in the major metal species. The electrical phase increases were potentially due to ion exchange processes that modified charge structure at mineral/water interfaces. Our study revealed the potential of geophysical monitoring for geochemical changes during urea hydrolysis and the advantages of combining multiple approaches to understand complex biogeochemical processes in the subsurface.

  19. Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation

    PubMed Central

    2011-01-01

    Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH4+ production during urea hydrolysis were incorporated in the model and captured critical changes in the major metal species. The electrical phase increases were potentially due to ion exchange processes that modified charge structure at mineral/water interfaces. Our study revealed the potential of geophysical monitoring for geochemical changes during urea hydrolysis and the advantages of combining multiple approaches to understand complex biogeochemical processes in the subsurface. PMID:21943229

  20. A geospatial assessment of the relationship between reef flat community calcium carbonate production and wave energy

    NASA Astrophysics Data System (ADS)

    Hamylton, S. M.; Pescud, A.; Leon, J. X.; Callaghan, D. P.

    2013-12-01

    The ability of benthic communities inhabiting coral reefs to produce calcium carbonate underpins the development of reef platforms and associated sedimentary landforms, as well as the fixation of inorganic carbon and buffering of diurnal pH fluctuations in ocean surface waters. Quantification of the relationship between reef flat community calcium carbonate production and wave energy provides an empirical basis for understanding and managing this functionally important process. This study employs geospatial techniques across the reef platform at Lizard Island, Great Barrier Reef, to (1) map the distribution and estimate the total magnitude of reef community carbonate production and (2) empirically ascertain the influence of wave energy on community carbonate production. A World-View-2 satellite image and a field data set of 364 ground referencing points are employed, along with data on physical reef characteristics (e.g. bathymetry, rugosity) to map and validate the spatial distribution of the four major community carbonate producers (live coral, carbonate sand, green calcareous macroalgae and encrusting calcified algae) across the reef platform. Carbonate production is estimated for the complete reef platform from the composition of these community components. A synoptic model of wave energy is developed using the Simulating WAves Nearshore (SWAN) two-dimensional model for the entire reef platform. The relationship between locally derived measures of carbonate production and wave energy is evaluated at both the global scale and local scale along spatial gradients of wave energy traversing the reef platform. A wave energy threshold is identified, below which carbonate production levels appear to increase with wave energy and above which mechanical forcing reduces community production. This implies an optimal set of hydrodynamic conditions characterized by wave energy levels of approximately 300 J m-2, providing an empirical basis for management of potential changes in community carbonate production associated with climate change-driven increases in wave energy.

  1. Construction of two ureolytic model organisms for the study of microbially induced calcium carbonate precipitation.

    PubMed

    Connolly, James; Kaufman, Megan; Rothman, Adam; Gupta, Rashmi; Redden, George; Schuster, Martin; Colwell, Frederick; Gerlach, Robin

    2013-09-01

    Two bacterial strains, Pseudomonas aeruginosa MJK1 and Escherichia coli MJK2, were constructed that both express green fluorescent protein (GFP) and carry out ureolysis. These two novel model organisms are useful for studying bacterial carbonate mineral precipitation processes and specifically ureolysis-driven microbially induced calcium carbonate precipitation (MICP). The strains were constructed by adding plasmid-borne urease genes (ureABC, ureD and ureFG) to the strains P. aeruginosa AH298 and E. coli AF504gfp, both of which already carried unstable GFP derivatives. The ureolytic activities of the two new strains were compared to the common, non-GFP expressing, model organism Sporosarcina pasteurii in planktonic culture under standard laboratory growth conditions. It was found that the engineered strains exhibited a lower ureolysis rate per cell but were able to grow faster and to a higher population density under the conditions of this study. Both engineered strains were successfully grown as biofilms in capillary flow cell reactors and ureolysis-induced calcium carbonate mineral precipitation was observed microscopically. The undisturbed spatiotemporal distribution of biomass and calcium carbonate minerals were successfully resolved in 3D using confocal laser scanning microscopy. Observations of this nature were not possible previously because no obligate urease producer that expresses GFP had been available. Future observations using these organisms will allow researchers to further improve engineered application of MICP as well as study natural mineralization processes in model systems. PMID:23835134

  2. Carbonation as a binding mechanism for coal/calcium hydroxide pellets. [Quarterly] technical report, March 1, 1993--May 31, 1993

    SciTech Connect

    Lytle, J.; Hackley, K.; Dagamac, M.; Berger, R.; Schanche, G.

    1993-09-01

    This research is an investigation of calcium hydroxide, a sulfur-capturing sorbent, as a binder for coal fines. The reaction of carbon dioxide with calcium hydroxide, referred to as carbonation, is being studied as a method of improving pellet quality. Carbonation forms a cementitious matrix of calcium carbonate. The effect of particle size and compaction pressure on pellet strength was studied using a laboratory hydraulic press. Particle distributions with mean sizes of 200, 90 and 40 microns were tested. The results indicate that pellet strength increased with decreasing particle size and increasing compaction pressure when calcium hydroxide was used as a binder. Pellets containing 10 wt% calcium hydroxide increased in strength by approximately 40% when air dried for one day. This increase in strength is attributed to carbonation of the calcium hydroxide via atmospheric carbon dioxide. Corn starch, an adhesive binder, was tested at the finest particle size. Pellet strength did not increase as a function of increasing compaction pressure. At the finest particle size and highest compaction pressure (18,750 psi), dried pellets formed with 2 wt% corn starch were equivalent in strength to pellets containing 5 wt% calcium hydroxide.

  3. Carbonic Anhydrase-8 Regulates Inflammatory Pain by Inhibiting the ITPR1-Cytosolic Free Calcium Pathway

    PubMed Central

    Zhuang, Gerald Z.; Keeler, Benjamin; Grant, Jeff; Bianchi, Laura; Fu, Eugene S.; Zhang, Yan Ping; Erasso, Diana M.; Cui, Jian-Guo; Wiltshire, Tim; Li, Qiongzhen; Hao, Shuanglin; Sarantopoulos, Konstantinos D.; Candiotti, Keith; Wishnek, Sarah M.; Smith, Shad B.; Maixner, William; Diatchenko, Luda; Martin, Eden R.; Levitt, Roy C.

    2015-01-01

    Calcium dysregulation is causally linked with various forms of neuropathology including seizure disorders, multiple sclerosis, Huntington’s disease, Alzheimer’s, spinal cerebellar ataxia (SCA) and chronic pain. Carbonic anhydrase-8 (Car8) is an allosteric inhibitor of inositol trisphosphate receptor-1 (ITPR1), which regulates intracellular calcium release fundamental to critical cellular functions including neuronal excitability, neurite outgrowth, neurotransmitter release, mitochondrial energy production and cell fate. In this report we test the hypothesis that Car8 regulation of ITPR1 and cytoplasmic free calcium release is critical to nociception and pain behaviors. We show Car8 null mutant mice (MT) exhibit mechanical allodynia and thermal hyperalgesia. Dorsal root ganglia (DRG) from MT also demonstrate increased steady-state ITPR1 phosphorylation (pITPR1) and cytoplasmic free calcium release. Overexpression of Car8 wildtype protein in MT nociceptors complements Car8 deficiency, down regulates pITPR1 and abolishes thermal and mechanical hypersensitivity. We also show that Car8 nociceptor overexpression alleviates chronic inflammatory pain. Finally, inflammation results in downregulation of DRG Car8 that is associated with increased pITPR1 expression relative to ITPR1, suggesting a possible mechanism of acute hypersensitivity. Our findings indicate Car8 regulates the ITPR1-cytosolic free calcium pathway that is critical to nociception, inflammatory pain and possibly other neuropathological states. Car8 and ITPR1 represent new therapeutic targets for chronic pain. PMID:25734498

  4. Ethylene glycol induces calcium oxalate crystal deposition in Malpighian tubules: a Drosophila model for nephrolithiasis/urolithiasis.

    PubMed

    Chen, Yung-Hsiang; Liu, Hsin-Ping; Chen, Huey-Yi; Tsai, Fuu-Jen; Chang, Chiao-Hui; Lee, Yuan-Ju; Lin, Wei-Yong; Chen, Wen-Chi

    2011-08-01

    Several animal species are used to study calcium oxalate urolithiasis; however, an ideal model has yet to be identified. We used Drosophila as a model organism and fed the flies lithogenic agents such as ethylene glycol, hydroxyl-L-proline, and sodium oxalate. At different times, the Malpighian tubules, the kidney equivalent of insects, were dissected and a polarized light microscope used to highlight the birefringent crystals. Scanning electron microscopy and energy-dispersive X-ray spectroscopy confirmed that the crystal composition was predominately calcium oxalate. Furthermore, administration of potassium citrate successfully reduced the quantity of and modulated the integrity of the ethylene glycol-induced crystals. Thus, the Drosophila model of bio-mineralization produces crystals in the urinary system through many lithogenic agents, permits observation of crystal formation, and is amenable to genetic manipulation. This model may mimic the etiology and clinical manifestations of calcium oxalate stone formation and aid in identification of the genetic basis of this disease. PMID:21451462

  5. Chemistry of calcium carbonate-rich shallow water sediments in the Bahamas

    SciTech Connect

    Morse, J.W.; Zullig, J.J.; Bernstein, L.D.; Millero, F.J.; Milne, P.; Mucci, A.; Choppin, G.R.

    1985-02-01

    The geochemistry of calcium carbonate-rich sediments from a variety of environments throughout the Bahamas was investigated with particular emphasis on the factors that control the pore water chemistry. Most sediments are supersaturated with respect to aragonite, the most abundant carbonate component. Experimental studies indicate that the observed in situ calcium carbonate ion activity products can often be produced as reversible metastable equilibria between the sediments and seawater. This is interpreted as being the result of interactions between the solutions and the minor high Mg-calcite component present in these sediments. Although the overlying waters are more supersaturated than the pore waters, carbonate dissolution, not precipitation, dominates in these sediments as a result of organic matter oxidation and the resulting increase in P/sub CO/sub 2//. The carbonate sediments of the Bahamas are remarkable for their purity, with the exception of special environments such as mangrove swamps and tidal flats with algal mats. Organic matter and heavy metal content is extremely low. Only minor sulfate reduction is occurring in most sediments. Phosphate is undetectable in all pore waters, probably as a result of adsorption on carbonate mineral surfaces. Other dissolved pore water components such as ammonia and DOC are much lower than typically found in shallow water fine-grained terrigeneous sediments.

  6. Extraction of iron and calcium from low rank coal by supercritical carbon dioxide with entrainers

    SciTech Connect

    Iwai, Y.; Okamoto, N.; Ohta, S.; Arai, Y.; Sakanishi, K.

    2007-03-15

    Iron and calcium were extracted from low rank coal with supercritical carbon dioxide and methanol, ethanol, acetic acid, acetyl acetone, ethanol and acetic acid, or acetyl acetone and water entrainers at 313.2 K and 15.0 MPa. The low rank coal used in this study was Berau coal from Indonesia. The addition of methanol, ethanol, or acetic acid entrainers in supercritical carbon dioxide showed very limited effect on enhancement of the recovery rates of Fe. The recovery rates of Fe from dried coal by supercritical carbon dioxide with acetyl acetone were low however, the addition of acetyl acetone with water in supercritical carbon dioxide remarkably enhanced the recovery rates of Fe. Water seems to play an important role in extracting Fe from coal with supercritical carbon dioxide and acetyl acetone. On the other hand, the extraction rates of Ca with supercritical carbon dioxide and water, methanol, ethanol, and acetyl acetone entrainers were very low. The addition of acetic acid with or without water in supercritical carbon dioxide slightly enhanced the recovery rates of Ca. The addition of acetic acid with ethanol in supercritical carbon dioxide remarkably enhanced the recovery rates of Ca. The effect of carbon dioxide flow rate and coal particle size on the recovery rates of Fe were examined. The recovery rate of Fe increased with increasing carbon dioxide flow rate and with decreasing particle size of the low rank coal.

  7. High-throughput platform for design and screening of peptides as inhibitors of calcium oxalate monohydrate crystallization

    NASA Astrophysics Data System (ADS)

    Farmanesh, Sahar; Chung, Jihae; Chandra, Divya; Sosa, Ricardo D.; Karande, Pankaj; Rimer, Jeffrey D.

    2013-06-01

    Crystal growth modifiers present a versatile tool for controlling crystal shape and size. Our work described here focuses on the design and screening of short peptides as inhibitors of calcium oxalate monohydrate (COM) crystals using high-throughput approaches. We designed a small library of 13 peptides containing Ala and Asp amino acids arranged in varying sequences that mimic ubiquitous motifs in natural calcium-binding proteins. Peptides were screened using a quick assay to measure their efficacy for inhibiting COM crystallization. Our results show that subtle variations in the placement of Ala and Asp residues in the peptide sequence can have a profound effect on their inhibition potential. We were able to discover peptide sequences that inhibit COM crystallization more effectively than some of the well-known COM inhibitors, such as citrate. Our results also demonstrate that peptides can be engineered to bind to specific faces of COM crystals. Peptide sequences identified in this work are promising candidates for further development as therapies for biomineral-related diseases, such as kidney stone disease. Collectively, our work establishes new paradigms for the design, synthesis, and screening of peptides for controlling crystal habit with the potential to impact a variety of fields, including drug discovery, advanced materials, catalysis and separations.

  8. Development of antimicrobial water filtration hybrid material from bio source calcium carbonate and silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Apalangya, Vitus; Rangari, Vijaya; Tiimob, Boniface; Jeelani, Shaik; Samuel, Temesgen

    2014-03-01

    Biobased calcium carbonate and silver hybrid nanoparticles were synthesized using a simple mechanochemical milling technique. The XRD spectrum showed that the hybrid materials is composed of crystalline calcite and silver nanoparticles. The TEM results indicated that the silver nanoparticles are discrete, uncapped and well stabilized in the surface of the eggshell derived calcium carbonate particles. The silver nanoparticles are spherical in shape and 5-20 nm in size. The SEM studies indicated that the eggshells are in micron size with the silver nanoparticle embedded in their surface. The hybrid eggshell/silver nanocomposite exhibited superior inhibition of E. coli growth using the Kirby-Bauer discs diffusion assay and comparing the zone of inhibition around the filter paper disc impregnated with the hybrid particles against pristine silver nanoparticles.

  9. A transparent hybrid of nanocrystalline cellulose and amorphous calcium carbonate nanoparticles

    NASA Astrophysics Data System (ADS)

    Gebauer, Denis; Oliynyk, Vitaliy; Salajkova, Michaela; Sort, Jordi; Zhou, Qi; Bergström, Lennart; Salazar-Alvarez, German

    2011-09-01

    Nanocellulose hybrids are promising candidates for biodegradable multifunctional materials. Hybrids of nanocrystalline cellulose (NCC) and amorphous calcium carbonate (ACC) nanoparticles were obtained through a facile chemical approach over a wide range of compositions. Controlling the interactions between NCC and ACC results in hard, transparent structures with tunable composition, homogeneity and anisotropy.Nanocellulose hybrids are promising candidates for biodegradable multifunctional materials. Hybrids of nanocrystalline cellulose (NCC) and amorphous calcium carbonate (ACC) nanoparticles were obtained through a facile chemical approach over a wide range of compositions. Controlling the interactions between NCC and ACC results in hard, transparent structures with tunable composition, homogeneity and anisotropy. Electronic supplementary information (ESI) available: Additional experimental procedures and results. See DOI: 10.1039/c1nr10681c

  10. Carbonation acceleration of calcium hydroxide nanoparticles: induced by yeast fermentation

    NASA Astrophysics Data System (ADS)

    Lopez-Arce, Paula; Zornoza-Indart, Ainara

    2015-09-01

    Carbonation of Ca(OH)2 nanoparticles and consolidation of limestone are accelerated by high humidity and a yeast fermentation system that supplies a saturated atmosphere on CO2, H2O vapor and ethanol during 28 days. Nanoparticles were analyzed by X-ray diffraction and differential thermal analyses with thermogravimetry. Spectrophotometry, scanning electron microscopy analyses, and hydric and mechanical tests were also performed in stones specimens. Samples exposed to the yeast environment achieve 100 % relative CaCO3 yield, whereas at high humidity but without the yeast and under laboratory environment, relative yields of 95 % CaCO3 and 15 % CaCO3 are, respectively, reached, with white crusts and glazing left on the stone surfaces when the nanoparticles are applied at a concentration of 25 g/l. The largest increase in the drilling resistance and surface hardness values with slight increase in the capillarity absorption and desorption coefficients and with lesser stone color changes are produced at a concentration of 5 g/l, in the yeast system environment. This especially happens in stone specimens initially with bimodal pore size distributions, more amounts of pores with diameters between 0.1 and 1 µm, higher open porosity values and faster capillary coefficients. An inexpensive and reliable method based on water and yeast-sugar solution is presented to speed up carbonation of Ca(OH)2 nanoparticles used as a consolidating product to improve the mechanical properties of decayed limestone from archaeological and architectural heritage.

  11. Pressure-Induced Polyamorphism and Formation of 'Aragonitic' Amorphous Calcium Carbonate

    SciTech Connect

    Fernandez-Martinez, Alejandro; Kalkan, Bora; Clark, Simon M.; Waychunas, Glenn A.

    2013-09-23

    Amorphous calcium carbonate (ACC) undergoes a reversible amorphous–amorphous phase transition at 10 GPa, adopting an aragonite-like local order. This result suggests a mechanism by which Mg2+—a cation with smaller ionic radius than Ca2+—modifies the local order of ACC to an aragonite-like order by helping to decrease the molar volume of the amorphous phase.

  12. Imaging calcium carbonate distribution in human sweat pore in vivo using nonlinear microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Xueqin; Gasecka, Alicja; Formanek, Florian; Galey, Jean-Baptiste; Rigneault, Hervé

    2015-03-01

    Nonlinear microscopies, including two-photon excited autofluorescence (TPEF) and coherent anti-Stokes Raman scattering (CARS), were used to study individual human sweat pore morphology and topically applied antiperspirant salt penetration inside sweat pore, in vivo on human palms. Sweat pore inner morphology in vivo was imaged up to the depth of 100 μm by TPEF microscopy. The 3D penetration and distribution of "in situ calcium carbonate" (isCC), an antiperspirant salt model, was investigated using CARS microscopy.

  13. Hybrid cellular-inorganic core-shell microparticles: encapsulation of individual living cells in calcium carbonate microshells.

    PubMed

    Fakhrullin, Rawil F; Minullina, Renata T

    2009-06-16

    We report the fabrication of hybrid cellular-inorganic core-shell microparticles obtained by encapsulation of individual living yeast cells Saccharomyces cerevisiae in calcium carbonate microshells and demonstrate the viability of the encapsulated cells. Our method is based on the direct precipitation of calcium carbonate on the cell walls of yeast cells. Resulting hybrid microparticles consist of single yeast cells coated with semipermeable inorganic microshells, which resemble the original ellipsoid shapes of yeast cells, exhibit negative zeta-potential, and have micrometer-thick calcium carbonate walls. The combination of the functional properties of living cells and calcium carbonate microshells promises a wide area of applications of these hybrid core-shell microparticles in the development of novel materials. PMID:19505153

  14. Rapid hydrothermal flow synthesis and characterisation of carbonate- and silicate-substituted calcium phosphates

    PubMed Central

    Knowles, Jonathan C; Rehman, Ihtesham; Darr, Jawwad A

    2013-01-01

    A range of crystalline and nano-sized carbonate- and silicate-substituted hydroxyapatite has been successfully produced by using continuous hydrothermal flow synthesis technology. Ion-substituted calcium phosphates are better candidates for bone replacement applications (due to improved bioactivity) as compared to phase-pure hydroxyapatite. Urea was used as a carbonate source for synthesising phase pure carbonated hydroxyapatite (CO3-HA) with ≈5 wt% substituted carbonate content (sample 7.5CO3-HA) and it was found that a further increase in urea concentration in solution resulted in biphasic mixtures of carbonate-substituted hydroxyapatite and calcium carbonate. Transmission electron microscopy images revealed that the particle size of hydroxyapatite decreased with increasing urea concentration. Energy-dispersive X-ray spectroscopy result revealed a calcium deficient apatite with Ca:P molar ratio of 1.45 (±0.04) in sample 7.5CO3-HA. For silicate-substituted hydroxyapatite (SiO4-HA) silicon acetate was used as a silicate ion source. It was observed that a substitution threshold of ∼1.1 wt% exists for synthesis of SiO4-HA in the continuous hydrothermal flow synthesis system, which could be due to the decreasing yields with progressive increase in silicon acetate concentration. All the as-precipitated powders (without any additional heat treatments) were analysed using techniques including Transmission electron microscopy, X-ray powder diffraction, Differential scanning calorimetry, Thermogravimetric analysis, Raman spectroscopy and Fourier transform infrared spectroscopy. PMID:22983020

  15. Tribological and Antioxidation Synergistic Effect Study of Sulfonate-Modified Nano Calcium Carbonate

    PubMed Central

    Zhongyi, He; Liping, Xiong; Sheng, Han; Aixi, Chen; Jianwei, Qiu; Xisheng, Fu

    2013-01-01

    A middle base number sulphonate-modified nano calcium carbonate (SMC) with an average size of 35 nm was synthesized, and its tribological and antioxidation synergistic behaviors with ashless antioxidant N-phenyl-α-naphthylamine (T531) in hydrogenated oil (5Cst) were evaluated. The results demonstrate that adding this synethesized additive even at a low amount (<2.0 wt.%) can evidently improve its load-carrying capacity by 1.5 times and enhance its antiwear performance; in addition, the friction-reducing effect of additive in the high load was better than that in low load. The SMC have a good synergistic antioxidation effect with T531, which verifies the nano calcium carbonate compound was a kind of multifunctional and high-performance additive. The chemical composition of the rubbing surface which formed on the boundary film was analyzed by using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results indicating that the excellent antiwear and load-carrying performance could be attributed to the forming of boundary lubrication film which composed of calcium carbonate, oxides, ferrites, sulphide and FeSO4, and so on. Its ability to increase oxidation free energy of base oil is the main reason for increasing its antioxidant collaboration property with ashless antioxidant T531. PMID:23658705

  16. Fracture Sealing with Microbially-Induced Calcium Carbonate Precipitation: A Field Study.

    PubMed

    Phillips, Adrienne J; Cunningham, Alfred B; Gerlach, Robin; Hiebert, Randy; Hwang, Chiachi; Lomans, Bartholomeus P; Westrich, Joseph; Mantilla, Cesar; Kirksey, Jim; Esposito, Richard; Spangler, Lee

    2016-04-01

    A primary environmental risk from unconventional oil and gas development or carbon sequestration is subsurface fluid leakage in the near wellbore environment. A potential solution to remediate leakage pathways is to promote microbially induced calcium carbonate precipitation (MICP) to plug fractures and reduce permeability in porous materials. The advantage of microbially induced calcium carbonate precipitation (MICP) over cement-based sealants is that the solutions used to promote MICP are aqueous. MICP solutions have low viscosities compared to cement, facilitating fluid transport into the formation. In this study, MICP was promoted in a fractured sandstone layer within the Fayette Sandstone Formation 340.8 m below ground surface using conventional oil field subsurface fluid delivery technologies (packer and bailer). After 24 urea/calcium solution and 6 microbial (Sporosarcina pasteurii) suspension injections, the injectivity was decreased (flow rate decreased from 1.9 to 0.47 L/min) and a reduction in the in-well pressure falloff (>30% before and 7% after treatment) was observed. In addition, during refracturing an increase in the fracture extension pressure was measured as compared to before MICP treatment. This study suggests MICP is a promising tool for sealing subsurface fractures in the near wellbore environment. PMID:26911511

  17. A new practical index for calcium carbonate scale prediction in cooling tower systems

    SciTech Connect

    Puckorius, P.R. ); Brooke, J.M. )

    1991-04-01

    Some calcium carbonate scaling indexes are shown to be ineffective an inaccurate in concentrated cooling tower water at pH levels above 7.5. In addition, there is a misunderstanding by many water treatment vendors on the use of the indexes. This has resulted in confusion by both end-users and vendors. More importantly, these indexes are shown to be inaccurate and ineffective for calcium carbonate scale prediction. This paper reviews many of the available indexes, the basis for their calculations, how they compare, and which are effective in cooling water systems. The development of a new index was started over 10 years ago and has been verified in operating systems. Since most cooling water treatment programs now operate at a pH level above 7.5 and as high as 9+, the index provides a more accurate and practical estimation of calcium carbonate scaling tendencies. Case histories are provided to show a comparison with other indexes, such as the Ryznar and Langelier indexes.

  18. Hierarchical biomineralization of calcium carbonate regulated by silk microspheres.

    PubMed

    Zhang, Xiuli; Fan, Zhihai; Lu, Qiang; Huang, Yongli; Kaplan, David L; Zhu, Hesun

    2013-06-01

    As an analog of the main protein contained in nacre regenerated Bombyx mori silk fibroin has a significant influence on the morphology and polymorphic nature of CaCO3 in the biomineralization process. A number of studies have implied that the self-assembling aggregate structure of silk fibroin is a key factor in controlling CaCO3 aggregation. Further insight into this role is necessary with a particular need to prepare silk fibroin aggregates with homogeneous structures to serve as templates for the mineralization process. Here we have prepared homogeneous silk microspheres to serve as templates for CaCO3 mineralization in order to provide an experimental insight into silk-regulated crystallization processes. CaCO3 particles with different nano- and microstructures, and their polymorphs, were successfully formed by controlling the mineralization process. The key function of silk aggregation in controlling the morphology and polymorphic nature of CaCO3 particles was confirmed. A regulating effect of silk on the spatial features was also observed. A two-step process for silk fibroin-regulated biomineralization was found, with different levels of heterogeneous nucleation and aggregation. A full understanding of silk fibroin-regulated biomineralization mechanisms would help in understanding the function of organic polymers in natural biomineralization, and provide a way forward in the design and synthesis of new materials in which organic-inorganic interfaces are the keys to function, biological interfaces and many related material features. PMID:23518477

  19. Adhesion of calcium oxalate crystals to Madin-Darby canine kidney cells and some effects of glycosaminoglycans or cell injuries.

    PubMed

    Ebisuno, S; Kohjimoto, Y; Tamura, M; Ohkawa, T

    1995-01-01

    The present investigation studied the quantitative adhesion of calcium oxalate monohydrate (COM) crystals to the surface of Madin-Darby canine kidney cells, which exhibit many characteristics of renal cortical collecting tubule cells. COM crystals adhered to the cell surface, and the attachment showed a time and concentration dependency with plateau. The results suggested that the attachment of microcrystals to the cortical tubular cell might be one of the earliest processes in the formation of kidney stones. Pretreatment with glycosaminoglycans significantly reduced the adherent crystals. Injuries to the Madin-Darby cells induced by 0.1 M HCl and gentamicin resulted in significant decreases of COM crystal adhesion to the cell surface. It was suggested that urinary glycosaminoglycans might play some critical role in preventing crystal adhesion to these cellular membranes and that cell injuries might not be essential for the attachment of microcrystals to the tubular cells. PMID:8521899

  20. Detection of calcium phosphate crystals in the joint fluid of patients with osteoarthritis analytical approaches and challenges

    PubMed Central

    Yavorskyy, Alexander; Hernandez-Santana, Aaron; McCarthy, Geraldine

    2008-01-01

    Clinically, osteoarthritis (OA) is characterised by joint pain, stiffness after immobility, limitation of movement and, in many cases, the presence of basic calcium phosphate (BCP) crystals in the joint fluid. The detection of BCP crystals in the synovial fluid of patients with OA is fraught with challenges due to the submicroscopic size of BCP, the complex nature of the matrix in which they are found and the fact that other crystals can co-exist with them in cases of mixed pathology. Routine analysis of joint crystals still relies almost exclusively on the use of optical microscopy, which has limited applicability for BCP crystal identification due to limited resolution and the inherent subjectivity of the technique. The purpose of this Critical Review is to present an overview of some of the main analytical tools employed in the detection of BCP to date and the potential of emerging technologies such as atomic force microscopy (AFM) and Raman microspectroscopy for this purpose. PMID:18299743

  1. Structuralization of Ca(2+)-Based Metal-Organic Frameworks Prepared via Coordination Replication of Calcium Carbonate.

    PubMed

    Sumida, Kenji; Hu, Ming; Furukawa, Shuhei; Kitagawa, Susumu

    2016-04-01

    The emergence of metal-organic frameworks (MOFs) as potential candidates to supplant existing adsorbent types in real-world applications has led to an explosive growth in the number of compounds available to researchers, as well as in the diversity of the metal salts and organic linkers from which they are derived. In this context, the use of carbonate-based precursors as metal sources is of interest due to their abundance in mineral deposits and their reaction chemistry with acids, resulting in just water and carbon dioxide as side products. Here, we have explored the use of calcium carbonate as a metal source and demonstrate its versatility as a precursor to several known frameworks, as well as a new flexible compound based on the 2,5-dihydroxybenzoquinone (H2dhbq) linker, Ca(dhbq)(H2O)2. Furthermore, inspired by the ubiquity and unique structures of biomineralized forms of calcium carbonate, we also present examples of the preparation of superstructures of Ca-based MOFs via the coordination replication technique. In all, the results confirm the suitability of carbonate-based metal sources for the preparation of MOFs and further expand upon the growing scope of coordination replication as a convenient strategy for the preparation of structuralized materials. PMID:27002690

  2. Rheological properties of calcium carbonate self-setting injectable paste.

    PubMed

    Combes, C; Tadier, S; Galliard, H; Girod-Fullana, S; Charvillat, C; Rey, C; Auzly-Velty, R; El Kissi, N

    2010-03-01

    With the development of minimally invasive surgical techniques, there is growing interest in the research and development of injectable biomaterials with controlled rheological properties. In this context, the rheological properties and injectability characteristics of an original CaCO(3) self-setting paste have been investigated. Two complementary rheometrical procedures have been established using a controlled stress rheometer to follow the structure build-up at rest or during gentle mixing and/or handling on the one hand, and the likely shear-induced breakdown of this structure at 25 or 35 degrees Celsius on the other. The data obtained clearly show the influence of temperature on the development of a cement microstructure during setting, in all cases leading to a microporous cement made of an entangled network of aragonite-CaCO(3) needle-like crystals. Linear viscoelastic measurements arriving from an oscillatory shear at low deformation showed a progressive increase in the viscous modulus (G'') during paste setting, which is enhanced by an increase in temperature. In addition, steady shear measurements revealed the shear-thinning behaviour of this self-setting paste over an extended period after paste preparation and its ability to re-build through progressive paste setting at rest. The shear-thinning behaviour of this self-setting system was confirmed using the injectability system and a procedure we designed. The force needed to extrude a homogeneous and continuous column of paste decreases strongly upon injection and reaches a weight level to apply on the syringe piston around 2.5 kg, revealing the ease of injection of this CaCO(3) self-setting paste. PMID:19716448

  3. Crystal structures of carbonates up to Mbar pressures determined by single crystal synchrotron radiation diffraction

    NASA Astrophysics Data System (ADS)

    Merlini, M.

    2013-12-01

    The recent improvements at synchrotron beamlines, currently allow single crystal diffraction experiments at extreme pressures and temperatures [1,2] on very small single crystal domains. We successfully applied such technique to determine the crystal structure adopted by carbonates at mantle pressures. The knowledge of carbon-bearing phases is in fact fundamental for any quantitative modelling of global carbon cycle. The major technical difficulty arises after first order transitions or decomposition reactions, since original crystal (apx. 10x10x5 μm3) is transformed in much smaller crystalline domains often with random orientation. The use of 3D reciprocal space visualization software and the improved resolution of new generation flat panel detectors, however, allow both identification and integration of each single crystal domain, with suitable accuracy for ab-initio structure solution, performed with direct and charge-flipping methods and successive structure refinements. The results obtained on carbonates, indicate two major crystal-chemistry trends established at high pressures. The CO32- units, planar and parallel in ambient pressure calcite and dolomite structures, becomes non parallel in calcite- and dolomite-II and III phases, allowing more flexibility in the structures with possibility to accommodate strain arising from different cation sizes (Ca and Mg in particular). Dolomite-III is therefore also observed to be thermodynamically stable at lower mantle pressures and temperatures, differently from dolomite, which undergoes decomposition into pure end-members in upper mantle. At higher pressure, towards Mbar (lowermost mantle and D'' region) in agreement with theoretical calculations [3,4] and other experimental results [5], carbon coordination transform into 4-fold CO4 units, with different polymerisation in the structure depending on carbonate composition. The second important crystal chemistry feature detected is related to Fe2+ in Fe-bearing magnesite, which spontaneously oxidises at HP/HT, forming Fe3+ carbonates, Fe3+ oxides and reduced carbon (diamonds). Single crystal diffraction approach allowed full structure determination of these phases, yielding to the discovery of few unpredicted structures, such as Mg2Fe2C4O13 and Fe13O19, which can be well reproduced in different experiments. Mg2Fe2C4O13 carbonate present truncated chain C4O13 groups, and Fe13O19 oxide, whose stoichiometry is intermediate between magnetite and hematite, is a one-layer structure, with features encountered in superconducting materials. The results fully support the ideas of unexpected complexities in the mineralogy of the lowermost mantle, and single crystal technique, once properly optimized in ad-hoc synchrotron beamlines, is fundamental for extracting accurate structural information, otherwise rarely accessible with other experimental techniques. References: [1] Merlini M., Hanfland M. (2013). Single crystal diffraction at Mbar conditions by synchrotron radiation. High Pressure Research, in press. [2] Dubrovinsky et al., (2010). High Pressure Research, 30, 620-633. [3] Arapan et al. (1997). Phys. Rev. Lett., 98, 268501. [4] Oganov et al. (2008) EPSL, 273, 38-47. [5] Boulard et al. (2011) PNAS, 108, 5184-5187.

  4. Biological Origin of Micro-laminated Calcium Carbonate Deposits on Antarctic Rock Surfaces

    NASA Astrophysics Data System (ADS)

    Farmer, M.; Stone, J. O.

    2001-12-01

    We have observed and sampled patchy encrustations of calcium carbonate on rock surfaces in East and West Antarctica. Individual disk-like deposits are up to 1 cm across and a few mm thick, but in places coalesce to form more extensive, colloform coatings. We have observed these deposits on substrates of granite, sandstone, and schist. Their distribution appears similar to that of Antarctic lichens and endolithic algae, extending up to ca. 1000m elevation, but has no consistent relationship to snow drifts, solar radiation, or prevailing winds. The morphology and position of the deposits are distinct from sub-glacial carbonate precipitates. In Marie Byrd Land, the encrustations occur on the surfaces exposed by deglaciation within the past 5000 yrs, and the sample from East Antarctica contains live C-14 (M. Mabin, pers. comm.), suggesting a possible biological origin Electron microprobe and SEM examination of cross-sectioned specimens reveals micron-scale layering of predominantly calcium carbonate, but with a number of bright laminae in SEM images, believed to be calcium fluoride. Sections closely resemble desert varnish in micro-morphology, though not in mineralogy. Isotopic analysis of an organic carbon extract (as opposed to C from the CaCO3 itself) gave a delta C-13 PDB value of -23.3 per mil, similar to values expected in carbon of biological origin. However, we have no proof yet that the carbon analyzed was produced by organisms within the encrustation, rather than being entrapped during an inorganic precipitation process. To investigate the possible biological origin of this material, we attempted to sequence the 16S segment of rRNA in the organic extract, but have not yet completed successful PCR replication. We are continuing attempts to isolate and analyze the pertinent genetic material. The micro-morphology, strongly negative delta C-13 and presence of live C-14 suggest a biological process for precipitation of these calcium carbonate deposits. We hope to be able to test this in future by comparing extracted genetic material with that from known psychrophilic bacteria. If this Antarctic material proves to be biological in origin, it may yield insights into the adaptation of organisms to conditions of extreme cold, aridity and UV exposure on Earth, or elsewhere in the Solar System.

  5. Green backlighting for TV liquid crystal display using carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Delepierre, Gabriel; Mahfouz, Rami; Cadete Santos Aires, Francisco J.; Dijon, Jean

    2010-08-01

    A methodology to evaluate the emission characteristics of carbon nanotube layers in the context of liquid crystal display backlighting has been elaborated. Carbon nanotube layers with emission characteristics compatible with backlighting have been demonstrated for growth temperature as low as 400 °C, thanks to the use of plasma pretreatment before growth. This very low growth temperature allows to use soda lime glass for the backlight unit and thus to expect very low cost and very low power consumption devices with this technology.

  6. Unidirectional growth of non-linear optical triglycine calcium dibromide single crystal by a Sankaranaryanan-Ramasamy method

    NASA Astrophysics Data System (ADS)

    Babu Rao, G.; Rajesh, P.; Ramasamy, P.

    2016-04-01

    Single crystals oriented along prerequisite direction are very important in terms of reducing loss of material and cost during nonlinear optical device fabrication. A transparent uniaxial triglycine calcium dibromide single crystal having dimension of 10 mm diameter and 126 mm length was grown by a Sankaranarayanan-Ramasamy (SR) method with a growth rate of 2 mm per day. From the optical transmittance study it is observed that the crystal grown by the SR method has 10% higher transmittance compared to a conventional method grown crystals. High intense luminescence at 368 nm for the SR method grown crystal is observed from the photoluminescence study. The etch pit density of the conventional and SR method grown crystal is found as 4.5×103 cm-2 and 3.5×103 cm-2 respectively. The average laser damage threshold obtained on the conventional method grown crystal was 3.74 Gw/cm2 whereas a high damage threshold of 4.78 Gw/cm2 was obtained for the SR grown crystal. The crystal grown by the SR method shows high mechanical strength and good laser damage stability with low dislocation density which make it suitable for the SHG device fabrication.

  7. Effect of lanthanum carbonate and calcium acetate in the treatment of hyperphosphatemia in patients of chronic kidney disease

    PubMed Central

    Scaria, P. Thomas; Gangadhar, Reneega; Pisharody, Ramdas

    2009-01-01

    Objectives: The tolerability and efficacy of lanthanum carbonate has not been studied in the Indian population. This study was, therefore, undertaken to compare the efficacy and tolerability of lanthanum carbonate with calcium acetate in patients with stage 4 chronic kidney disease. Design: A randomized open label two group cross-over study. Materials and Methods: Following Institutional Ethics Committee approval and valid consent, patients with stage 4 chronic kidney disease were randomized to receive either lanthanum carbonate 500mg thrice daily or calcium acetate 667 mg thrice daily for 4 weeks. After a 4-week washout period, the patients were crossed over for another 4 weeks. Serum phosphorous, serum calcium, serum alkaline phosphatase, and serum creatinine were estimated at fixed intervals. Results: Twenty-six patients were enrolled in the study. The mean serum phosphorous concentrations showed a declining trend with lanthanum carbonate (from pre-drug levels of 7.88 1.52 mg/dL-7.14 1.51 mg/dL) and calcium acetate (from pre-drug levels of 7.54 1.39 mg/dL-6.51 1.38 mg/dL). A statistically significant difference was seen when comparing the change in serum calcium produced by these drugs (P < 0.05). Serum calcium levels increased with calcium acetate (from pre-drug levels of 7.01 1.07-7.46 0.74 mg dL), while it decreased with lanthanum carbonate (from pre-drug levels 7.43 0.77-7.14 0.72 mg/dL). The incidence of adverse effects was greater with lanthanum carbonate. Conclusion: Lanthanum carbonate and calcium acetate are equally effective phosphate binders with trends obvious in the first 4 weeks of therapy. The decrease in serum calcium levels with lanthanum carbonate when compared to the increase in serum calcium levels due to calcium acetate is statistically significant. The drawback of lanthanum carbonate is its high cost and relatively higher incidence of adverse events during treatment. PMID:20523871

  8. Nanostructures of Indium Gallium Nitride Crystals Grown on Carbon Nanotubes

    PubMed Central

    Park, Ji-Yeon; Man Song, Keun; Min, Yo-Sep; Choi, Chel-Jong; Seok Kim, Yoon; Lee, Sung-Nam

    2015-01-01

    Nanostructure (NS) InGaN crystals were grown on carbon nanotubes (CNTs) using metalorganic chemical vapor deposition. The NS-InGaN crystals, grown on a ~5-μm-long CNT/Si template, were estimated to be ~100–270 nm in size. Transmission electron microscope examinations revealed that single-crystalline InGaN NSs were formed with different crystal facets. The observed green (~500 nm) cathodoluminescence (CL) emission was consistent with the surface image of the NS-InGaN crystallites, indicating excellent optical properties of the InGaN NSs on CNTs. Moreover, the CL spectrum of InGaN NSs showed a broad emission band from 490 to 600 nm. Based on these results, we believe that InGaN NSs grown on CNTs could aid in overcoming the green gap in LED technologies. PMID:26568414

  9. Nanostructures of Indium Gallium Nitride Crystals Grown on Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Park, Ji-Yeon; Man Song, Keun; Min, Yo-Sep; Choi, Chel-Jong; Seok Kim, Yoon; Lee, Sung-Nam

    2015-11-01

    Nanostructure (NS) InGaN crystals were grown on carbon nanotubes (CNTs) using metalorganic chemical vapor deposition. The NS-InGaN crystals, grown on a ~5-μm-long CNT/Si template, were estimated to be ~100-270 nm in size. Transmission electron microscope examinations revealed that single-crystalline InGaN NSs were formed with different crystal facets. The observed green (~500 nm) cathodoluminescence (CL) emission was consistent with the surface image of the NS-InGaN crystallites, indicating excellent optical properties of the InGaN NSs on CNTs. Moreover, the CL spectrum of InGaN NSs showed a broad emission band from 490 to 600 nm. Based on these results, we believe that InGaN NSs grown on CNTs could aid in overcoming the green gap in LED technologies.

  10. Nanostructures of Indium Gallium Nitride Crystals Grown on Carbon Nanotubes.

    PubMed

    Park, Ji-Yeon; Man Song, Keun; Min, Yo-Sep; Choi, Chel-Jong; Seok Kim, Yoon; Lee, Sung-Nam

    2015-01-01

    Nanostructure (NS) InGaN crystals were grown on carbon nanotubes (CNTs) using metalorganic chemical vapor deposition. The NS-InGaN crystals, grown on a ~5-μm-long CNT/Si template, were estimated to be ~100-270 nm in size. Transmission electron microscope examinations revealed that single-crystalline InGaN NSs were formed with different crystal facets. The observed green (~500 nm) cathodoluminescence (CL) emission was consistent with the surface image of the NS-InGaN crystallites, indicating excellent optical properties of the InGaN NSs on CNTs. Moreover, the CL spectrum of InGaN NSs showed a broad emission band from 490 to 600 nm. Based on these results, we believe that InGaN NSs grown on CNTs could aid in overcoming the green gap in LED technologies. PMID:26568414

  11. Carbonation as a binding mechanism for coal/calcium hydroxide pellets. Technical report, December 1, 1992--February 28, 1993

    SciTech Connect

    Rapp, D.; Lytle, J.; Hackley, K.; Dagamac, M.; Berger, R.; Schanche, G.

    1993-05-01

    Pelletization of fine coal with calcium hydroxide, a sulfur capturing sorbent, represents a method to produce a fuel which will burn in compliance with the recently passed Clean Air Act Amendments (CAAA`s). To harden the pellets, the reaction of carbon dioxide with calcium hydroxide, referred to as carbonation, is being studied. Carbonation forms a bonding matrix of calcium carbonate. This is a two-year research program. This report covers the second quarter of the second year. Research is indicating that 5 to 10 wt% calcium hydroxide pellets can be produced via a roller-and-die pellet mill and air cured to achieve sufficient quality for handling and transportation. This quarter, 1/2 inch-diameter pellets containing 10% calcium hydroxide were demonstrated to gradually react with atmospheric carbon dioxide (3 days) while air drying to achieve compressive strengths equivalent to those attained for fully dried pellets which had been carbonated for one-hour with 100% commercial grade carbon dioxide. It was also demonstrated that an organic, adhesive binder, corn starch, can be very effective at producing strong pellets but drying is required before appreciable pellet strength is attained. For pellets containing 2 wt% corn starch, it was determined that less than 50% of the ultimate strength was achieved as the pellets were dried from 20 wt% to 5 wt% moisture. Strength improved considerably as the pellet moisture content was reduced below 5 wt%.

  12. Tuning the dissolution kinetics of wollastonite via chelating agents for CO2 sequestration with integrated synthesis of precipitated calcium carbonates.

    PubMed

    Zhao, Huangjing; Park, Youngjune; Lee, Dong Hyun; Park, Ah-Hyung Alissa

    2013-09-28

    Carbon mineralization has recently received much attention as one of the most promising options for CO2 sequestration. The engineered weathering of silicate minerals as a means of permanent carbon storage has unique advantages such as the abundance of naturally occurring calcium and magnesium-bearing minerals and the formation of environmentally-benign and geologically stable solids via a thermodynamically favored carbonation reaction. However, several challenges need to be overcome to successfully deploy carbon mineralization on a large scale. In particular, the acceleration of the rate-limiting mineral dissolution step along with process optimization is essential to ensure the economic feasibility of the proposed carbon storage technology. In this study, the effect of various types of chelating agents on the dissolution rate of calcium-bearing silicate mineral, wollastonite, was explored to accelerate its weathering rate. It was found that chelating agents such as acetic acid and gluconic acid significantly improved the dissolution kinetics of wollastonite even at a much diluted concentration of 0.006 M by complexing with calcium in the mineral matrix. Calcium extracted from wollastonite was then reacted with a carbonate solution to form precipitated calcium carbonate (PCC), while tuning the particle size and the morphological structure of PCC to mimic commercially available PCC-based filler materials. PMID:23925694

  13. Climate warming shifts carbon allocation from stemwood to roots in calcium-depleted spruce forests

    NASA Astrophysics Data System (ADS)

    Lapenis, Andrei; Lawrence, Gregory; Buyantuev, Alexander

    2015-04-01

    Increased greening of northern forests, measured by the Normalized Difference Vegetation Index (NDVI), has been presented as evidence that a warmer climate has increased both net primary productivity (NPP) and the carbon sink in boreal forests. However, higher production and greener canopies may accompany changes in carbon allocation that favor foliage or fine roots over less decomposable woody biomass. Furthermore, tree core data throughout mid- and northern latitudes have revealed a divergence problem (DP), a weakening in tree ring responses to warming over the past half century that is receiving increasing attention, but remains poorly understood. Often, the same sites exhibit trend inconsistency phenomenon (TIP), namely positive, or no trends in growing season NDVI where negative trends in tree ring indexes are observed. Here we studied growth of two Norway spruce (Picea abies) stands in western Russia that exhibited both the DP and TIP but were subject to soil acidification and calcium depletion of differing timing and severity. Our results link the decline in radial growth starting in 1980 to a shift in carbon allocation from wood to roots driven by a combination of two factors: (a) soil acidification that depleted calcium and impaired root function and (b) earlier onset of the growing season that further taxed the root system. The latter change in phenology appears to act as a trigger at both sites to push trees into nutrient limitation as the demand for Ca increased with the longer growing season, thereby causing the shift in carbon allocation.

  14. Processes determining the marine alkalinity and calcium carbonate saturation state distributions

    NASA Astrophysics Data System (ADS)

    Carter, B. R.; Toggweiler, J. R.; Key, R. M.; Sarmiento, J. L.

    2014-12-01

    We introduce a composite tracer for the marine system, Alk*, that has a global distribution primarily determined by CaCO3 precipitation and dissolution. Alk* is also affected by riverine alkalinity from dissolved terrestrial carbonate minerals. We estimate that the Arctic receives approximately twice the riverine alkalinity per unit area as the Atlantic, and 8 times that of the other oceans. Riverine inputs broadly elevate Alk* in the Arctic surface and particularly near river mouths. Strong net carbonate precipitation results in low Alk* in subtropical gyres, especially in the Indian and Atlantic oceans. Upwelling of dissolved CaCO3-rich deep water elevates North Pacific and Southern Ocean Alk*. We use the Alk* distribution to estimate the variability of the calcite saturation state resulting from CaCO3 cycling and other processes. We show that regional differences in surface calcite saturation state are due primarily to the effect of temperature differences on CO2 solubility and, to a lesser extent, differences in freshwater content and air-sea disequilibria. The variations in net calcium carbonate cycling revealed by Alk* play a comparatively minor role in determining the calcium carbonate saturation state.

  15. Climate warming shifts carbon allocation from stemwood to roots in calcium-depleted spruce forests

    USGS Publications Warehouse

    Lapenis, Andrei Gennady; Lawrence, Gregory B.; Heim, Alexander; Zheng, Chengyang; Shortle, Walter

    2013-01-01

    Increased greening of northern forests, measured by the Normalized Difference Vegetation Index (NDVI), has been presented as evidence that a warmer climate has increased both net primary productivity (NPP) and the carbon sink in boreal forests. However, higher production and greener canopies may accompany changes in carbon allocation that favor foliage or fine roots over less decomposable woody biomass. Furthermore, tree core data throughout mid- and northern latitudes have revealed a divergence problem (DP), a weakening in tree ring responses to warming over the past half century that is receiving increasing attention, but remains poorly understood. Often, the same sites exhibit trend inconsistency phenomenon (TIP), namely positive, or no trends in growing season NDVI where negative trends in tree ring indexes are observed. Here we studied growth of two Norway spruce (Picea abies) stands in western Russia that exhibited both the DP and TIP but were subject to soil acidification and calcium depletion of differing timing and severity. Our results link the decline in radial growth starting in 1980 to a shift in carbon allocation from wood to roots driven by a combination of two factors: (a) soil acidification that depleted calcium and impaired root function and (b) earlier onset of the growing season that further taxed the root system. The latter change in phenology appears to act as a trigger at both sites to push trees into nutrient limitation as the demand for Ca increased with the longer growing season, thereby causing the shift in carbon allocation.

  16. Characterization of calcium oxalate crystal-induced changes in the secretome of U937 human monocytes.

    PubMed

    Sintiprungrat, Kitisak; Singhto, Nilubon; Thongboonkerd, Visith

    2016-02-23

    In kidney stone disease, migratory monocytes have been found to mediate progressive renal inflammation through the secretion of numerous inflammatory mediators. However, whether calcium oxalate monohydrate (COM), which is the major crystalline compound of kidney stones, has any effects on proteins secreted from monocytes remained largely unknown. The present study aimed to characterize changes in the secretome of U937 human monocytes induced by COM crystals. The viability of cells in serum/protein-free medium was serially evaluated and the data revealed that an exposure time of 16 h was optimal for this study, whereas prolonged incubation for 24 h resulted in declined cell viability. Using this optimal time-point, the secreted proteins recovered from serum/protein-free culture supernatants of controlled and COM-treated cells were resolved in 2-DE and stained with Deep Purple fluorescent dye. Quantitative intensity analysis revealed statistically significant changes in levels of 18 secreted proteins (14 increased and 4 decreased) from COM-treated cells. These significantly altered secreted proteins were then identified by Q-TOF MS and/or MS/MS analyses. Among these, the increased levels of secreted heat shock protein 90 (HSP90), HSP70 and β-actin were confirmed by Western blot analysis. The increased level of extracellular HSP90 was confirmed on the COM-treated cell surface by the immunofluorescence study, whereas the increased secretion of IFN-α was validated by ELISA. Global protein network analysis, literature search and bioinformatics revealed that these significantly altered secreted proteins were involved mainly in immune response and cell survival. Therefore, changes in the secretome of monocytes induced by COM crystals may be related, at least in part, to progressive renal inflammation found in kidney stone disease. PMID:26762788

  17. The crystallization of tough thermoplastic resins in the presence of carbon fibers

    NASA Technical Reports Server (NTRS)

    Theil, M. H.

    1986-01-01

    The crystallization kinetics of the thermoplastic resins poly(phenylene sulfide) (PPS) and poly(aryl-ether-ether-ketone) (PEEK) in the presence and in the abscence of carbon fibers was studied. How carbon fiber surfaces in composites affect the crystallization of tough thermoplastic polymers that may serve as matrix resins were determined. The crystallization kinetics of such substances can provide useful information about the crystallization mechanisms and, thus, indicate if the presence of carbon fibers cause any changes in such mechanisms.

  18. Rapid, high-temperature, field test method for evaluation of geothermal calcium carbonate scale inhibitors

    SciTech Connect

    Asperger, R.G.

    1986-09-01

    A new test method is described that allows the rapid field testing of calcium carbonate scale inhibitors at 500/sup 0/F (260/sup 0/C). The method evolved from use of a full-flow test loop on a well with a mass flow rate of about 1 x 10/sup 6/ lbm/hr (126 kg/s). It is a simple, effective way to evaluate the effectiveness of inhibitors under field conditions. Five commercial formulations were chosen for field evaluation on the basis of nonflowing, laboratory screening tests at 500/sup 0/F (260/sup 0/C). Four of these formulations from different suppliers controlled calcium carbonate scale deposition as measured by the test method. Two of these could dislodge recently deposited scale that had not age-hardened. Performance-profile diagrams, which were measured for these four effective inhibitors, show the concentration interrelationship between brine calcium and inhibitor concentrations at which the formulations will and will not stop scale formation in the test apparatus. With these diagrams, one formulation was chosen for testing on the full-flow brine line. The composition was tested for 6 weeks and showed a dramatic decrease in the scaling occurring at the flow-control valve. This scaling was about to force a shutdown of a major, long-term flow test being done for reservoir economic evaluations. The inhibitor stopped the scaling, and the test was performed without interruption.

  19. Stabilization of amorphous calcium carbonate by phosphate rich organic matrix proteins and by single phosphoamino acids.

    PubMed

    Bentov, Shmuel; Weil, Simy; Glazer, Lilah; Sagi, Amir; Berman, Amir

    2010-08-01

    Stable amorphous calcium carbonate (ACC) is a unique material produced naturally exclusively as a biomineral. It was demonstrated that proteins extracted from biogenic stable ACC induce and stabilize synthetic ACC in vitro. Polyphosphate molecules were similarly shown to induce amorphous calcium carbonate formation in vitro. Accordingly, we tested the hypothesis that biogenic ACC induction and stabilization is mediated by the phosphorylated residues of phosphoproteins. We show that extracellular organic matrix extracted from gastroliths of the red claw crayfish Cherax quadricarinatus induce stable ACC formation in vitro. The proteinaceous fraction of this organic matrix is highly phosphorylated and is incorporated into the ACC mineral phase during precipitation. We have identified the major phosphoproteins of the organic matrix and showed that they have high calcium binding capacity. Based on the above, in vitro precipitation experiments with single phosphoamino acids were performed, indicating that phosphoserine or phosphothreonine alone can induce the formation of highly stable ACC. The results indicate that phosphoproteins may play a major role in the control of ACC formation and stabilization and that their phosphoamino acid moieties are key components in this process. PMID:20416381

  20. Crystal Structures of the GCaMP Calcium Sensor Reveal the Mechanism of Fluorescence Signal Change and Aid Rational Design

    SciTech Connect

    Akerboom, Jasper; Velez Rivera, Jonathan D.; Rodriguez Guilbe, María M.; Alfaro Malavé, Elisa C.; Hernandez, Hector H.; Tian, Lin; Hires, S. Andrew; Marvin, Jonathan S.; Looger, Loren L.; Schreiter, Eric R.

    2009-03-16

    The genetically encoded calcium indicator GCaMP2 shows promise for neural network activity imaging, but is currently limited by low signal-to-noise ratio. We describe x-ray crystal structures as well as solution biophysical and spectroscopic characterization of GCaMP2 in the calcium-free dark state, and in two calcium-bound bright states: a monomeric form that dominates at intracellular concentrations observed during imaging experiments and an unexpected domain-swapped dimer with decreased fluorescence. This series of structures provides insight into the mechanism of Ca{sup 2+}-induced fluorescence change. Upon calcium binding, the calmodulin (CaM) domain wraps around the M13 peptide, creating a new domain interface between CaM and the circularly permuted enhanced green fluorescent protein domain. Residues from CaM alter the chemical environment of the circularly permuted enhanced green fluorescent protein chromophore and, together with flexible inter-domain linkers, block solvent access to the chromophore. Guided by the crystal structures, we engineered a series of GCaMP2 point mutants to probe the mechanism of GCaMP2 function and characterized one mutant with significantly improved signal-to-noise. The mutation is located at a domain interface and its effect on sensor function could not have been predicted in the absence of structural data.

  1. Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design.

    PubMed

    Akerboom, Jasper; Rivera, Jonathan D Vélez; Guilbe, María M Rodríguez; Malavé, Elisa C Alfaro; Hernandez, Hector H; Tian, Lin; Hires, S Andrew; Marvin, Jonathan S; Looger, Loren L; Schreiter, Eric R

    2009-03-01

    The genetically encoded calcium indicator GCaMP2 shows promise for neural network activity imaging, but is currently limited by low signal-to-noise ratio. We describe x-ray crystal structures as well as solution biophysical and spectroscopic characterization of GCaMP2 in the calcium-free dark state, and in two calcium-bound bright states: a monomeric form that dominates at intracellular concentrations observed during imaging experiments and an unexpected domain-swapped dimer with decreased fluorescence. This series of structures provides insight into the mechanism of Ca2+-induced fluorescence change. Upon calcium binding, the calmodulin (CaM) domain wraps around the M13 peptide, creating a new domain interface between CaM and the circularly permuted enhanced green fluorescent protein domain. Residues from CaM alter the chemical environment of the circularly permuted enhanced green fluorescent protein chromophore and, together with flexible inter-domain linkers, block solvent access to the chromophore. Guided by the crystal structures, we engineered a series of GCaMP2 point mutants to probe the mechanism of GCaMP2 function and characterized one mutant with significantly improved signal-to-noise. The mutation is located at a domain interface and its effect on sensor function could not have been predicted in the absence of structural data. PMID:19098007

  2. Planar waveguides in neodymium-doped calcium niobium gallium garnet crystals produced by proton implantation

    NASA Astrophysics Data System (ADS)

    Chun-Xiao, Liu; Meng, Chen; Li-Li, Fu; Rui-Lin, Zheng; Hai-Tao, Guo; Zhi-Guang, Zhou; Wei-Nan, Li; She-Bao, Lin; Wei, Wei

    2016-04-01

    In this work, the fabrication and optical properties of a planar waveguide in a neodymium-doped calcium niobium gallium garnet (Nd:CNGG) crystal are reported. The waveguide is produced by proton (H+) implantation at 480 keV and a fluence of 1.0×1017 ions/cm2. The prism-coupling measurement is performed to obtain the dark mode of the waveguide at a wavelength of 632.8 nm. The reflectivity calculation method (RCM) is used to reconstruct the refractive index profile. The finite-difference beam propagation method (FD-BPM) is employed to calculate the guided mode profile of the waveguide. The stopping and range of ions in matter 2010 (SRIM 2010) code is used to simulate the damage profile induced by the ion implantation. The experimental and theoretical results indicate that the waveguide can confine the light propagation. Project supported by the National Natural Science Foundation of China (Grant Nos. 11405041, 61405240, 61077070, 61177086, 51002181, and 61177084), the Scientific Research Starting Foundation for New Teachers of Nanjing University of Posts and Telecommunications (NUPTSF) (Grant No. NY214159), and the Research Center of Optical Communications Engineering & Technology, Jiangsu Province, China (Grant No. ZSF0401).

  3. Mechanochemical dissociation of calcium carbonate: laboratory data and relation to natural emissions of CO 2

    NASA Astrophysics Data System (ADS)

    Martinelli, Giovanni; Plescia, Paolo

    2004-05-01

    This paper investigates the possible role of mechanochemical CO 2 production due to stimulation from the action of friction on calcite. This experimentation has two objectives: firstly, to obtain information on the effect of the mechanical disassociation of carbon dioxide from the carbonates and, secondly, to simulate the conditions that may arise during a tectonic action. The action of disassociation has been observed on pure calcium carbonate from analyses ground at different times in a ring-roller mill. The ring-roller mill is a grinding system that mainly works through friction and, to a lesser extent, by non-hydrostatic compression. It has been observed that the grinding action determines an abundant release of carbon dioxide, with a non-linear trend that emulates the trend in the decrease in crystallinity. This indicates a close connection between crystallinity and the dissociation of carbonate. The Authors hypothesize a carbon dioxide release mechanism linked to the factures induced by the friction and the increase in the structural disorder induced in the lattice by the plastic sliding. This mechanism could play an important role in the natural release of CO 2, along with the other carbon dioxide sources that are already known of.

  4. Synthesis of calcium carbonate in a pure ethanol and aqueous ethanol solution as the solvent

    NASA Astrophysics Data System (ADS)

    Seo, Kang-Seok; Han, Choon; Wee, Jung-Ho; Park, Jin-Koo; Ahn, Ji-Whan

    2005-04-01

    The possibility of formation of precipitated calcium carbonate (PCC) in pure ethanol, not as small additives, but as the main solvent, was investigated by precipitating a variety of PCC via a carbonation reaction. During the carbonation in a slaked lime-pure ethanol suspension, three morphology types of CaCO 3 were also precipitated, including calcite, which was the only type of PCC precipitated in the pure water system, and aragonite and vaterite, which were also precipitated without leaving Ca(OH) 2 as the reactants. Their particle size was half of those from pure water. In a pure ethanol system, calcite was first precipitated from the carbonation in bulk solution as in the pure water system, while the aragonite and vaterite might be synthesized via other local carbonation routes occurring in the surface of the Ca(OH) 2 grain following the bulk carbonation in the solution. In this local carbonation, there was little variation of electrical conductivity and pH. In the aqueous solution of less than 40 mol% ethanol, the PCC is all calcite; therefore, water has dominant effect as the solvent. On the other hand, in the solution of more than 60 mol% ethanol, the solvent acts as the pure ethanol and calcite, aragonite and vaterite can be precipitated.

  5. Osteopontin knockdown in the kidneys of hyperoxaluric rats leads to reduction in renal calcium oxalate crystal deposition.

    PubMed

    Tsuji, Hidenori; Shimizu, Nobutaka; Nozawa, Masahiro; Umekawa, Tohru; Yoshimura, Kazuhiro; De Velasco, Marco A; Uemura, Hirotsugu; Khan, Saeed R

    2014-06-01

    Osteopontin (OPN) expression is increased in kidneys of rats with ethylene glycol (EG) induced hyperoxaluria and calcium oxalate (CaOx) nephrolithiasis. The aim of this study is to clarify the effect of OPN knockdown by in vivo transfection of OPN siRNA on deposition of CaOx crystals in the kidneys. Hyperoxaluria was induced in 6-week-old male Sprague-Dawley rats by administering 1.5% EG in drinking water for 2 weeks. Four groups of six rats each were studied: Group A, untreated animals (tap water); Group B, administering 1.5% EG; Group C, 1.5% EG with in vivo transfection of OPN siRNA; Group D, 1.5% EG with in vivo transfection of negative control siRNA. OPN siRNA transfections were performed on day 1 and 8 by renal sub-capsular injection. Rats were killed at day 15 and kidneys were removed. Extent of crystal deposition was determined by measuring renal calcium concentrations and counting renal crystal deposits. OPN siRNA transfection resulted in significant reduction in expression of OPN mRNA as well as protein in group C compared to group B. Reduction in OPN expression was associated with significant decrease in crystal deposition in group C compared to group B. Specific suppression of OPN mRNA expression in kidneys of hyperoxaluric rats leads to a decrease in OPN production and simultaneously inhibits renal crystal deposition. PMID:24619192

  6. Coordination of biologically important alpha-amino acids to calcium(II) at high pH: insights from crystal structures of calcium alpha-aminocarboxylates.

    PubMed

    Fox, Stefan; Büsching, Insa; Barklage, Walter; Strasdeit, Henry

    2007-02-01

    A series of calcium alpha-aminocarboxylates was prepared by refluxing aqueous solutions/suspensions of calcium hydroxide and the respective alpha-amino acid. The colorless, crystalline hydrates Ca(gly)2.H2O (1), Ca(ala)2.3H2O (2), Ca(val)2.H2O (3), Ca(leu)2.3H2O (4), Ca(met)2.nH2O (5, n approximately 2), and Ca(pro)2.H2O (6) have been isolated in yields between 29 and 67% (gly- = glycinate, ala- = rac-alaninate, val- = rac-valinate, leu- = rac-leucinate, met- = rac-methioninate, pro- = rac-prolinate). The compounds 1-6 are readily soluble in water. The 0.10 M solutions have ca. pH 10-11 which is consistent with a noticeable degree of dissociation. The 13C NMR spectra of 1-6 in D2O were measured, and their comparison with those of the corresponding tetramethylammonium alpha-aminocarboxylates point to carboxylate coordination in solution, but no indication of nitrogen coordination was found. Infrared spectra of 1-6 gave similar results for the solid state. Complete single-crystal X-ray structure analyses of 1-4 and preliminary ones of 5 and 6, however, revealed that all aminocarboxylate ligands are N,O-chelating. Crystals of 2 consist of mononuclear complexes, while the other five compounds form three different types of one-dimensional coordination polymers. Structural diversity is also observed with the binding modes of the aminocarboxylate ligands and the calcium environment. Besides terminal aminocarboxylate coordination, there are three different types of aminocarboxylate bridges. The calcium ions are seven- or eight-coordinate in N2O5 and N2O6 coordination environments, respectively; one or three water molecules are part of the first ligand sphere of each metal ion. The crystal structures support conjectures about the existence of the yet undetected solution species [Cax(aa)2x(H2O)n] (aa- = alpha-aminocarboxylate). For example, x = 1 is realized in crystalline [Ca(ala)2(H2O)3] (2), and in 4 [Ca2(leu)4(H2O)4] complexes (x = 2) are linked to infinite chains by bridging aqua ligands. PMID:17257025

  7. Isotactic polypropylene carbon nanotube composites -- crystallization and ordering behavior

    NASA Astrophysics Data System (ADS)

    Georgiev, Georgi; Judith, Robert; Gombos, Erin; McIntyre, Michael; Schoen, Scott; Cebe, Peggy; Mattera, Michael

    2010-03-01

    The field of Polymer Nanocomposites (PNCs) is growing steadily in recent years. We use carbon nanotubes (CNTs) to affect the crystallization behavior of the polymers. Isotactic Polypropylene (iPP) is very widely used and is a good model system to understand the physics of other similar polymers. iPP/CNT PNCs form α, β, and γ crystallographic phases under a variety of crystallization conditions: non-isothermal and isothermal melt crystallization, shear, stress, fiber extrusion, etc. The crystal growth is altered from spherulitic to α-fibrillar upon the nucleation effect of CNTs. We are studying the effect of different temperature treatment schemes and different isothermal crystallization conditions. We found also that the smectic ordering in iPP is improved by the introduction of CNTs. We use Differential Scanning Calorimetry, Wide Angle X-ray scattering, Microscopic Transmission Ellipsometry and Avrami analysis. Research supported by: Assumption College Faculty Development Grant, funding for students' stipends, instrumentation and supplies, the NSF Polymers Program of the DMR, grant (DMR-0602473) and NASA grant (NAG8-1167).

  8. Characterisation of Calcium Phosphate Crystals on Calcified Human Aortic Vascular Smooth Muscle Cells and Potential Role of Magnesium

    PubMed Central

    Louvet, Loïc; Bazin, Dominique; Büchel, Janine; Steppan, Sonja; Passlick-Deetjen, Jutta; Massy, Ziad A.

    2015-01-01

    Background Cardiovascular disease including vascular calcification (VC) remains the leading cause of death in patients suffering from chronic kidney disease (CKD). The process of VC seems likely to be a tightly regulated process where vascular smooth muscle cells are playing a key role rather than just a mere passive precipitation of calcium phosphate. Characterisation of the chemical and crystalline structure of VC was mainly led in patients or animal models with CKD. Likewise, Mg2+ was found to be protective in living cells although a potential role for Mg2+ could not be excluded on crystal formation and precipitation. In this study, the crystal formation and the role of Mg2+ were investigated in an in vitro model of primary human aortic vascular smooth muscle cells (HAVSMC) with physical techniques. Methodology/Principal Findings In HAVSMC incubated with increased Ca x Pi medium, only calcium phosphate apatite crystals (CPA) were detected by Micro-Fourier Transform InfraRed spectroscopy (µFTIR) and Field Effect Scanning Electron Microscope (FE — SEM) and Energy Dispersive X-ray spectrometry (EDX) at the cell layer level. Supplementation with Mg2+ did not alter the crystal composition or structure. The crystal deposition was preferentially positioned near or directly on cells as pictured by FE — SEM observations and EDX measurements. Large µFTIR maps revealed spots of CPA crystals that were associated to the cellular layout. This qualitative analysis suggests a potential beneficial effect of Mg2+ at 5 mM in noticeably reducing the number and intensities of CPA µFTIR spots. Conclusions/Significance For the first time in a model of HAVSMC, induced calcification led to the formation of the sole CPA crystals. Our data seems to exclude a physicochemical role of Mg2+ in altering the CPA crystal growth, composition or structure. Furthermore, Mg2+ beneficial role in attenuating VC should be linked to an active cellular role. PMID:25607936

  9. Establishment of a novel colorimetric assay for high-throughput analysis of calcium oxalate crystal growth modulation.

    PubMed

    Chutipongtanate, Somchai; Thongboonkerd, Visith

    2010-06-01

    Crystal growth is one of the most important mechanisms of calcium oxalate (CaOx) kidney stone formation. However, identification and characterization of CaOx crystal growth modulators were under-investigated in the past, probably due to the lack of an assay that could measure modulatory activities of a large number of candidates simultaneously. We therefore developed such a high-throughput assay based on colorimetric measurements of free calcium ions using Arsenazo III in a 96-well microplate, and a microplate reader (lambda620 nm). CaOx monohydrate (COM) was crystallized in the absence (blank control) or presence of 5 mM sodium citrate (Na(3)Citrate) (positive control) or 5 mM sodium chloride (NaCl) (negative control). The results showed that Na(3)Citrate, but not NaCl, could significantly inhibit COM crystal growth. The reliability of this novel assay was validated by quantitative analysis of COM crystal size. Degree of the inhibitory activity of Na(3)Citrate obtained from our novel assay was comparable to that obtained from the reference method (34.5 +/- 4.3 vs. 40.0 +/- 1.6%Inhibition, respectively; p was not significant). The high-throughput capability of the novel assay was demonstrated by simultaneous measurement of 33 samples (a triplicated set of 11 different concentrations of Na(3)Citrate) with linear correlation between Na(3)Citrate concentrations and COM crystal growth inhibitory activities (r = 0.893; p < 0.0001). In summary, we have successfully established a novel assay for high-throughput analysis of CaOx crystal growth modulatory activities of compounds that will be very useful for a large-scale analysis of CaOx crystal growth modulators. PMID:20498879

  10. Surface Modification and Planar Defects of Calcium Carbonates by Magnetic Water Treatment

    PubMed Central

    2010-01-01

    Powdery calcium carbonates, predominantly calcite and aragonite, with planar defects and cation–anion mixed surfaces as deposited on low-carbon steel by magnetic water treatment (MWT) were characterized by X-ray diffraction, electron microscopy, and vibration spectroscopy. Calcite were found to form faceted nanoparticles having 3x () commensurate superstructure and with well-developed {} and {} surfaces to exhibit preferred orientations. Aragonite occurred as laths having 3x () commensurate superstructure and with well-developed () surface extending along [100] direction up to micrometers in length. The (hkil)-specific coalescence of calcite and rapid lath growth of aragonite under the combined effects of Lorentz force and a precondensation event account for a beneficial larger particulate/colony size for the removal of the carbonate scale from the steel substrate. The coexisting magnetite particles have well-developed {011} surfaces regardless of MWT. PMID:21170405

  11. Production of calcium oxalate crystals by the basidiomycete Moniliophthora perniciosa, the causal agent of witches' broom disease of Cacao.

    PubMed

    Rio, Maria Carolina S do; de Oliveira, Bruno V; de Tomazella, Daniela P T; Silva, José A Fracassi da; Pereira, Gonçalo A G

    2008-04-01

    Oxalic acid has been shown as a virulence factor for some phytopathogenic fungi, removing calcium from pectin and favoring plant cell wall degradation. Recently, it was published that calcium oxalate accumulates in infected cacao tissues during the progression of Witches' Broom disease (WBD). In the present work we report that the hemibiotrophic basidiomycete Moniliophthora perniciosa, the causal agent of WBD, produces calcium oxalate crystals. These crystals were initially observed by polarized light microscopy of hyphae growing on a glass slide, apparently being secreted from the cells. The analysis was refined by Scanning electron microscopy and the compositon of the crystals was confirmed by energy-dispersive x-ray spectrometry. The production of oxalate by M. perniciosa was reinforced by the identification of a putative gene coding for oxaloacetate acetylhydrolase, which catalyzes the hydrolysis of oxaloacetate to oxalate and acetate. This gene was shown to be expressed in the biotrophic-like mycelia, which in planta occupy the intercellular middle-lamella space, a region filled with pectin. Taken together, our results suggest that oxalate production by M. perniciosa may play a role in the WBD pathogenesis mechanism. PMID:18172716

  12. Oligomeric proanthocyanidins protect against HK-2 cell injury induced by oxalate and calcium oxalate monohydrate crystals.

    PubMed

    Wang, Shuo; Du, Peng; Zhang, Ning; Liu, Jia; Tang, Xingxing; Zhao, Qiang; Yang, Yong

    2016-06-01

    The purpose of the study was to test whether the antioxidants oligomeric proanthocyanidins (OPCs) could provide protection against oxalate and calcium oxalate monohydrate crystals (COM) toxicity in HK-2 cells. Four groups were chosen for the study: negative control group, positive control group (COM + oxalate), OPCs group (OPCs + COM + oxalate), Vit E group (Vit E + COM + oxalate). HK-2 cells were exposed for 4, 8, 12 and 24 h. The activity of HK-2 cell was assessed by MTT. Cellular injury was assessed by activity of Na(+)/K(+) ATP enzyme. Peroxidation level was assessed by malondialdehyde (MDA) content in medium and activity of superoxide dismutase (SOD). Morphological changes of HK-2 cell after exposed for 4 and 12 h in each group were observed under Transmission electron microscope (TEM). The effects of OPCs and VitE on oxalate- and COM-exposed cells were tested. After exposed to oxalate and COM crystals, activity of cells, Na(+)/K(+) ATP enzyme and SOD enzyme showed a significant reduction, and MDA content in medium was significantly increased. OPCs group: the addition of OPCs significantly increased activity of cell, SOD and Na(+)/K(+) ATP enzyme while MDA content was significantly decreased compared with the positive control group. VitE group: compared with the positive control group, activity of HK-2 cell, Na(+)/K(+) ATP enzyme was not significantly changed while SOD activity was restored, and MDA content was significantly decreased after the addition of Vit E. Morphological structure of HK-2 cell was extremely changed as observed under TEM after exposure to high level of COM crystals and oxalate. After the addition of OPCs or Vit E, amounts of cells with vacuoles formed in cytoplasms, karyotheca dissolved and nucleolus disappeared were less than in positive control group. The morphological structure changing in OPCs group was slighter than that in Vit E group. OPCs and vitamin E administration may prevent oxalate- and COM-mediated peroxidative injury, restoring intracellular antioxidant enzyme activity. The protection rendered by OPCs was greater than that of vitamin E. PMID:26446157

  13. Solubilization of calcium phosphate as a consequence of carbon translocation by Rhizoctonia solani.

    PubMed

    Jacobs, Helen; Boswell, Graeme P; Ritz, Karl; Davidson, Fordyce A; Gadd, Geoffrey M

    2002-04-01

    A model system based on arrays of three concentric rings of discrete agar droplets is described which allowed study of fungal growth in vitro in nutritionally-heterogeneous conditions. Droplets containing different combinations of glucose and calcium phosphate were used to study the consequences of spatially separating these components in relation to metal phosphate solubilization by Rhizoctonia solani. A pH indicator, bromocresol purple, was added to the agar to visualise the localised production of acidity by the fungus. In the presence of the fungus, solubilization of calcium phosphate on homogeneous agar plates only occurred when glucose was present in the underlying medium. However, solubilization occurred in droplets containing calcium phosphate, but no glucose, when glucose was present in other droplets within the tessellation and where fungal hyphae spanned the droplets. This demonstrates that substrate was transported via mycelia from glucose-containing domains, with the functional consequence of metal phosphate solubilization. In another design, where the inner ring of droplets contained glucose and the outer ring contained only calcium phosphate, acidification of all droplets in the outer ring was observed when the inner droplets contained glucose. However, solubilization of calcium phosphate only occurred when the concentration of glucose in the inner droplets was greater than 2% (w/v). This indicated that a threshold concentration of carbon source may be required before such mechanisms of solubilization are invoked. There was also evidence for reverse translocation of substrate from newly colonised glucose-containing droplets in the outer ring to the centr