Science.gov

Sample records for calcium carbonate crystallization

  1. Alginate hydrogel-mediated crystallization of calcium carbonate

    SciTech Connect

    Ma, Yufei; Feng, Qingling

    2011-05-15

    We documented a specific method for combining calcium ions and alginate molecules slowly and continuously in the mineralization system for the purpose of understanding the mediating function of alginate on the crystallization of calcium carbonate. The alginate was involved in the nucleation and the growth process of CaCO{sub 3}. The crystal size, morphology and roughness of crystal surface were significantly influenced by the type of the alginate, which could be accounted for by the length of the G blocks in alginate. A combination of Fourier transform infrared spectroscopy and thermogravimetric analysis showed that there were the chemical interactions between the alginate and the mineral phase. This strategic approach revealed the biologically controlled CaCO{sub 3} mineralization within calcium alginate hydrogels via the selective nucleation and the confined crystallization of CaCO{sub 3}. The results presented here could contribute to the understanding of the mineralization process in hydrogel systems. -- Graphical abstract: Schematic illustration of the growth of calcite aggregates with different morphologies obtained from (a) Low G alginate gels and (b) High G alginate gels. Display Omitted highlights: > We use a specific method for combining calcium ions and alginate molecules slowly and continuously in the mineralization system to understand the mediating function of alginate on the crystallization of CaCO{sub 3} crystals. > The crystal size, morphology and crystal surface roughness are influenced by the length of G blocks in alginate. There are chemical interactions between the alginate and the mineral phase. > We propose a potential mechanism of CaCO{sub 3} crystallization within High G and Low G calcium alginate hydrogel.

  2. The influence of xanthan on the crystallization of calcium carbonate

    NASA Astrophysics Data System (ADS)

    Yang, Xiaodeng; Xu, Guiying

    2011-01-01

    Calcium carbonate (CaCO 3) was crystallized in xanthan (XC) aqueous solutions. The CaCO 3 particles were characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and thermogravimetry analysis (TGA) methods. The concentrations of XC, Ca 2+ and CO 32- ions and the ratios [Ca 2+]/[CO 32-] and [Mg 2+]/[Ca 2+] show evident influence on the aggregation and growth of CaCO 3 particles. The presence of Mg 2+ ions influences not only the morphology, but also the polymorph of CaCO 3.

  3. Egg-white-mediated crystallization of calcium carbonate

    NASA Astrophysics Data System (ADS)

    Zheng, Liang; Hu, Yanli; Ma, Yongjun; Zhou, Yong; Nie, Fude; Liu, Xun; Pei, Chonghua

    2012-12-01

    In this paper, shape-controlled crystallization and self-assembly of CaCO3 hierarchical architectures has been successfully synthesized via the gas diffusion method in egg white solution. Stepwise growth and assembly of CaCO3 nanoparticles has been observed from transition of an amorphous CaCO3 to the crystallization and stabilization of platelet-like nanoparticles and eventually, the wool sphere-like CaCO3 hierarchical architectures assembling of nanoparticles. The proteins binding on nanoparticle surfaces proved to regulate the growth of nanoparticles and subsequent assembly into hierarchical superstructures via electrostatic and dipole interactions. The samples were characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and nano mechanical Tester. The measured average elastic modulus and the hardness of calcium carbonate hybrid materials were 5.32 GPa and 0.1886 GPa by the nano-indenter test, respectively.

  4. Calcium Carbonate

    MedlinePlus

    Calcium carbonate is a dietary supplement used when the amount of calcium taken in the diet is not ... for healthy bones, muscles, nervous system, and heart. Calcium carbonate also is used as an antacid to relieve ...

  5. Influence of calcium carbonate and carbon nanotubes on the crystallization kinetics of polypropylene at high supercooling

    NASA Astrophysics Data System (ADS)

    Schawe, Jürgen E. K.

    2016-03-01

    Polymer fillers have been classified as active or inactive regarding their nucleation performance. Whereas an active filler significantly accelerates the crystallization process, an inactive filler has a significantly reduced influence on the crystallization kinetics. The majority of the studies of the filler influence on the crystallization process are performed at relatively low supercooling or at low cooling rates. In this paper, we use the Fast Scanning DSC to study the crystallization process of differently filled polypropylene (PP) in the temperature range between 120 °C and 0 °C. The inactive filler calcium carbonate reduces the crystallization rate of the α-phase at low supercooling (above 80 °C). Between 45 °C and 80 °C, calcium carbonate significantly accelerates the α-phase crystallization of PP. The mesophase crystallization is not affected by this filler. As an example of active filler, carbon nanotubes are used. Even with small filler content the α-phase crystallization of PP is significantly accelerated. Also in this case the mesophase crystallization is not significantly affected.

  6. Crystal growth of calcium carbonate in silk fibroin/sodium alginate hydrogel

    NASA Astrophysics Data System (ADS)

    Ming, Jinfa; Zuo, Baoqi

    2014-01-01

    As known, silk fibroin-like protein plays a pivotal role during the formation of calcium carbonate (CaCO3) crystals in the nacre sheets. Here, we have prepared silk fibroin/sodium alginate nanofiber hydrogels to serve as templates for calcium carbonate mineralization. In this experiment, we report an interesting finding of calcium carbonate crystal growth in the silk fibroin/sodium alginate nanofiber hydrogels by the vapor diffusion method. The experimental results indicate calcium carbonate crystals obtained from nanofiber hydrogels with different proportions of silk fibroin/sodium alginate are mixture of calcite and vaterite with unusual morphologies. Time-dependent growth study was carried out to investigate the crystallization process. It is believed that nanofiber hydrogels play an important role in the process of crystallization. This study would help in understanding the function of organic polymers in natural mineralization, and provide a novel pathway in the design and synthesis of new materials related unique morphology and structure.

  7. The effect of pigeon yolk sac fluid on the growth behavior of calcium carbonate crystals.

    PubMed

    Song, Juan; Cheng, Haixia; Shen, Xinyu; Tong, Hua

    2015-03-01

    Previous experiments have proved that thermodynamically unstable calcium carbonate vaterite can exist for long periods in the yolk sac of a pigeon embryo. The aim of this article was to demonstrate the effect of in vitro mineralization of yolk sac fluid on calcium carbonate by direct precipitation. Experiments were conducted using pigeon yolk sac fluid and using lecithin extracted from pigeon yolk sac fluid as a control to investigate the regulating effects of the organic components in the embryo on the formation of the calcium carbonate precipitate. Multiple characterization methods were employed to study the various morphological patterns, sizes, crystal growth, and crystal phase transformations of the calcium carbonate precipitates as regulated by the yolk sac fluid extracted at different stages of incubation. The experimental results demonstrate that as the incubation proceeds towards the later stages, the composition and environmental features of the yolk sac fluid become more favorable for the formation of relatively unstable calcium carbonate phases with high energies of the vaterite state. The experiments conducted with extracted lecithin as the template for crystal growth yielded similar results. A large amount of organic molecules with polar functional groups carried by the yolk sac fluid have strong effects and can both initially induce the crystallization and regulate the aggregation of calcium carbonate. Furthermore, this regulation process is found to be closely related to the lecithin contained in yolk sac fluid. These observations confirm the changes in yolk sac fluid composition during incubation have significant effects on the production of vaterite, which implicates the calcium transport during embryo growth. PMID:25681477

  8. Effect of silk sericin on morphology and structure of calcium carbonate crystal

    NASA Astrophysics Data System (ADS)

    Zhao, Rui-Bo; Han, Hua-Feng; Ding, Shao; Li, Ze-Hao; Kong, Xiang-Dong

    2013-06-01

    In this paper, silk sericin was employed to regulate the mineralization of calcium carbonate (CaCO3). CaCO3 composite particles were prepared by the precipitation reaction of sodium carbonate with calcium chloride solution in the presence of silk sericin. The as-prepared samples were collected at different reaction time to study the crystallization process of CaCO3 by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). The results showed that silk sericin significantly affected the morphology and crystallographic polymorph of CaCO3. With increasing the reaction time, the crystal phase of CaCO3 transferred from calcite dominated to vaterite dominated mixtures, while the morphology of CaCO3 changed from disk-like calcite crystal to spherical vaterite crystal. These studies showed the potential of silk sericin used as a template molecule to control the growth of inorganic crystal.

  9. Calcium carbonate crystal growth beneath Langmuir monolayers of acidic β-hairpin peptides.

    PubMed

    Gong, Haofei; Yang, Yi; Pluntke, Manuela; Marti, Othmar; Majer, Zsuzsa; Sewald, Norbert; Volkmer, Dirk

    2014-11-28

    Four amphiphilic peptides with designed hairpin structure were synthesized and their monolayers were employed as model systems to study biologically inspired calcium carbonate crystallization. Langmuir monolayers of hairpin peptides were investigated by surface pressure area isotherms, surface potential isotherms, Brewster angle microscopy (BAM), atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectroscopy. A β-hairpin conformation was found for all peptides at the air-water interface although their packing arrangements seem to be different. Crystallization of calcium carbonate under these peptide monolayers was investigated at different surface pressures and growth times both by in situ optical microscopy, BAM and ex situ investigations such as scanning electron microscopy (SEM) and transmission electron microscopy (TEM). An amorphous calcium carbonate precursor was found at the initial crystallization stage. The crystallization process occurred in three stages. It starts from the nucleation of amorphous particles being a kinetically controlled process. Crystal nuclei subsequently aggregate to large particles and vaterite crystals start to form inside the amorphous layer, with the monolayer fluidity exerting an important role. The third process includes the re-crystallization of vaterite to calcite, which is thermodynamically controlled by monolayer structural factors including the monolayer flexibility and packing arrangement of the polar headgroups. Thus, the kinetic factors, monolayer fluidity and flexibility as well as structure factors govern the crystal morphology and polymorph distribution simultaneously and synergistically. PMID:25292256

  10. Calcium Carbonate.

    PubMed

    Al Omari, M M H; Rashid, I S; Qinna, N A; Jaber, A M; Badwan, A A

    2016-01-01

    Calcium carbonate is a chemical compound with the formula CaCO3 formed by three main elements: carbon, oxygen, and calcium. It is a common substance found in rocks in all parts of the world (most notably as limestone), and is the main component of shells of marine organisms, snails, coal balls, pearls, and eggshells. CaCO3 exists in different polymorphs, each with specific stability that depends on a diversity of variables. PMID:26940168

  11. Dehydration and crystallization of amorphous calcium carbonate in solution and in air

    PubMed Central

    Ihli, Johannes; Wong, Wai Ching; Noel, Elizabeth H.; Kim, Yi-Yeoun; Kulak, Alexander N.; Christenson, Hugo K.; Duer, Melinda J.; Meldrum, Fiona C.

    2014-01-01

    The mechanisms by which amorphous intermediates transform into crystalline materials are poorly understood. Currently, attracting enormous interest is the crystallization of amorphous calcium carbonate, a key intermediary in synthetic, biological and environmental systems. Here we attempt to unify many contrasting and apparently contradictory studies by investigating this process in detail. We show that amorphous calcium carbonate can dehydrate before crystallizing, both in solution and in air, while thermal analyses and solid-state nuclear magnetic resonance measurements reveal that its water is present in distinct environments. Loss of the final water fraction—comprising less than 15% of the total—then triggers crystallization. The high activation energy of this step suggests that it occurs by partial dissolution/recrystallization, mediated by surface water, and the majority of the particle then crystallizes by a solid-state transformation. Such mechanisms are likely to be widespread in solid-state reactions and their characterization will facilitate greater control over these processes. PMID:24469266

  12. Results of the TTF-TCNQ and the calcium carbonate crystallization on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Nielsen, Kjeld Flemming; Lind, M. David

    1992-01-01

    Experiment A0139A on the Long Duration Exposure Facility (LDEF) carried four large containers into orbit five years with crystal growth solutions for lead sulfide, calcium carbonate, and TTF-TCNQ. Although temperature data was lost, the experimental program had been working since the valves in all containers had been opened. All four experiments produced crystals of varying quality. The calcium carbonate crystals had the best appearance. The TTF-TCNQ crystals were packed together near the valve openings of the container. When taken apart, the single crystals showed some unusual morphological properties. X ray investigations as well as conductivity measurements on long duration space grown TTF-TCNQ crystals will be presented. Comparisons will be made with our previous space solution growth experiments. The TTF-TCNQ crystals are no longer of the highest interest, so this activity has been terminated in favor of calcium carbonate and calcium phosphate crystallizations.

  13. Transformation of amorphous calcium carbonate to rod-like single crystal calcite via "copying" collagen template.

    PubMed

    Xue, Zhonghui; Hu, Binbin; Dai, Shuxi; Du, Zuliang

    2015-10-01

    Collagen Langmuir films were prepared by spreading the solution of collagen over deionized water, CaCl2 solution and Ca(HCO3)2 solution. Resultant collagen Langmuir monolayers were then compressed to a lateral pressure of 10 mN/m and held there for different duration, allowing the crystallization of CaCO3. The effect of crystallization time on the phase composition and microstructure of CaCO3 was investigated. It was found that amorphous calcium carbonate (ACC) was obtained at a crystallization time of 6 h. The amorphous CaCO3 was transformed to rod-like single crystal calcite crystals at an extended crystallization time of 12 h and 24 h, via "copying" the symmetry and dimensionalities of collagen fibers. Resultant calcite crystallites were well oriented along the longitudinal axis of collagen fibers. The ordered surface structure of collagen fibers and electrostatic interactions played key roles in tuning the oriented nucleation and growth of the calcite crystallites. The mineralized collagen possessing both desired mechanical properties of collagen fiber and good biocompatibility of calcium carbonate may be assembled into an ideal biomaterial for bone implants. PMID:26117783

  14. Calcium Carbonate Storage in Amorphous Form and Its Template-Induced Crystallization

    SciTech Connect

    Han, T Y; Aizenberg, J

    2007-08-31

    Calcium carbonate crystallization in organisms often occurs through the transformation from the amorphous precursor. It is believed that the amorphous phase could be temporarily stabilized and stored, until its templated transition to the crystalline form is induced. Here we develop a bio-inspired crystallization strategy that is based on the above mechanism. Amorphous calcium carbonate (ACC) spherulitic particles are formed and stabilized on a self-assembled monolayer (SAM) of hydroxy-terminated alkanethiols on Au surface. The ACC is stored as a reservoir for ions and is induced to crystallize on command by introducing a secondary surface that is functionalized with carboxylic acid-terminated SAM. This secondary surface acts as a template for oriented and patterned nucleation. Various oriented crystalline arrays and micropatterned films are formed. We also show that the ACC phase can be doped with foreign ions (e.g. Mg) and organic molecules (e.g. dyes) and that these dopants later function as growth modifiers of calcite crystals and become incorporated into the crystals during the transformation process of ACC to calcite. We believe that our strategy opens the way of using a stabilized amorphous phase as a versatile reservoir system that can be converted in a highly controlled fashion to a crystalline form upon contacting the nucleating template.

  15. Enzyme-accelerated and structure-guided crystallization of calcium carbonate: role of the carbonic anhydrase in the homologous system.

    PubMed

    Müller, Werner E G; Schlossmacher, Ute; Schröder, Heinz C; Lieberwirth, Ingo; Glasser, Gunnar; Korzhev, Michael; Neufurth, Meik; Wang, Xiaohong

    2014-01-01

    The calcareous spicules from sponges, e.g. from Sycon raphanus, are composed of almost pure calcium carbonate. In order to elucidate the formation of those structural skeletal elements, the function of the enzyme carbonic anhydrase (CA), isolated from this species, during the in vitro calcium carbonate-based spicule formation, was investigated. It is shown that the recombinant sponge CA substantially accelerates calcium carbonate formation in the in vitro diffusion assay. A stoichiometric calculation revealed that the turnover rate of the sponge CA during the calcification process amounts to 25 CO2s(-1) × molecule CA(-1). During this enzymatically driven process, initially pat-like particles are formed that are subsequently transformed to rhomboid/rhombohedroid crystals with a dimension of ~50 μm. The CA-catalyzed particles are smaller than those which are formed in the absence of the enzyme. The Martens hardness of the particles formed is ~4 GPa, a value which had been determined for other biogenic calcites. This conclusion is corroborated by energy-dispersive X-ray spectroscopy, which revealed that the particles synthesized are composed predominantly of the elements calcium, oxygen and carbon. Surprising was the finding, obtained by light and scanning electron microscopy, that the newly formed calcitic crystals associate with the calcareous spicules from S. raphanus in a highly ordered manner; the calcitic crystals almost perfectly arrange in an array orientation along the two opposing planes of the spicules, leaving the other two plane arrays uncovered. It is concluded that the CA is a key enzyme controlling the calcium carbonate biomineralization process, which directs the newly formed particles to existing calcareous spicular structures. It is expected that with the given tools new bioinspired materials can be fabricated. PMID:23978410

  16. Calcium carbonate overdose

    MedlinePlus

    Tums overdose; Calcium overdose ... Calcium carbonate can be dangerous in large amounts. ... Some products that contain calcium carbonate are certain: ... and mineral supplements Other products may also contain calcium ...

  17. Effect of Hydraulic Activity on Crystallization of Precipitated Calcium Carbonate (PCC) for Eco-Friendly Paper

    PubMed Central

    Kim, Jung-Ah; Han, Gi-Chun; Lim, Mihee; You, Kwang-Suk; Ryu, Miyoung; Ahn, Ji-Whan; Fujita, Toyohisa; Kim, Hwan

    2009-01-01

    Wt% of aragonite, a CaCO3 polymorph, increased with higher hydraulic activity (°C) of limestone in precipitated calcium carbonate (PCC) from the lime-soda process (Ca(OH)2-NaOH-Na2CO3). Only calcite, the most stable polymorph, was crystallized at hydraulic activity under 10 °C, whereas aragonite also started to crystallize over 10 °C. The crystallization of PCC is more dependent on the hydraulic activity of limestone than CaO content, a factor commonly used to classify limestone ores according to quality. The results could be effectively applied to the determination of polymorphs in synthetic PCC for eco-friendly paper manufacture. PMID:20087470

  18. Transformation and Crystallization Energetics of Synthetic and Biogenic Amorphous Calcium Carbonate

    SciTech Connect

    Radha, A. V.; Forbes, Tori Z.; Killian, Christopher E.; Gilbert, P.U.P.A; Navrotsky, Alexandra

    2010-01-01

    Amorphous calcium carbonate (ACC) is a metastable phase often observed during low temperature inorganic synthesis and biomineralization. ACC transforms with aging or heating into a less hydrated form, and with time crystallizes to calcite or aragonite. The energetics of transformation and crystallization of synthetic and biogenic (extracted from California purple sea urchin larval spicules, Strongylocentrotus purpuratus) ACC were studied using isothermal acid solution calorimetry and differential scanning calorimetry. Transformation and crystallization of ACC can follow an energetically downhill sequence: more metastable hydrated ACC → less metastable hydrated ACC→anhydrous ACC ~ biogenic anhydrous ACC→vaterite → aragonite → calcite. In a given reaction sequence, not all these phases need to occur. The transformations involve a series of ordering, dehydration, and crystallization processes, each lowering the enthalpy (and free energy) of the system, with crystallization of the dehydrated amorphous material lowering the enthalpy the most. ACC is much more metastable with respect to calcite than the crystalline polymorphs vaterite or aragonite. The anhydrous ACC is less metastable than the hydrated, implying that the structural reorganization during dehydration is exothermic and irreversible. Dehydrated synthetic and anhydrous biogenic ACC are similar in enthalpy. The transformation sequence observed in biomineralization could be mainly energetically driven; the first phase deposited is hydrated ACC, which then converts to anhydrous ACC, and finally crystallizes to calcite. The initial formation of ACC may be a first step in the precipitation of calcite under a wide variety of conditions, including geological CO₂ sequestration.

  19. Crystallization and assembling behavior of calcium carbonate controlled by Ca-organic fibers

    NASA Astrophysics Data System (ADS)

    Chen, Anliang; Ma, Peiyan; Fu, Zhengyi; Wu, Yan; Kong, Wei

    2013-08-01

    Calcium carbonate (CaCO3) crystals with different phases were obtained on the basis of one-dimensional Ca-deoxycholate fibers (Ca-DC fibers) under ambient conditions. Ca-DC fibers were prepared by the combination of Ca2+ ions and sodium deoxycholate (SDC) before the addition of sodium bicarbonate. Vaterite dominated mixtures could be easily obtained in the presence of Ca-DC fibers in the aqueous system at 10 °C. As the temperature was increased to 30 and 120 °C, pure vaterite and aragonite with novel morphologies were obtained, respectively. The framework formed by one-dimensional Ca-DC fibers was demonstrated to be the key role in mediating the crystallization and assembling behaviors of calcium carbonate. In this study, Ca-DC fibers, prepared as a novel insoluble organic polymorph controller, could even play an important role in the industrial production of CaCO3 with different polymorphs in future and other similar Ca-organic fibers are believed to have same functions as well.

  20. The influence of polyaspartate additive on the growth and morphology of calcium carbonate crystals

    NASA Astrophysics Data System (ADS)

    Gower, Laurie Anne

    The addition of low levels of polyaspartate to a supersaturated calcium carbonate (CaCOsb3) solution leads to unusual morphologies in the inorganic phase. Spherulitic vaterite aggregates with helical protrusions, and distorted calcite crystals that contain spiral pits, have been produced. The helical particles are coated with an inorganic membrane that appears to be responsible for the helical twist. The polymer also causes deposition of thin CaCOsb3 tablets and films on the glass substrate. Two distinct types of films are deposited; the first is a mosaic of calcite crystals, and the second is spherulitic vaterite. In situ observations of the crystallization reaction have determined that the thin-film morphology is a result of the phase separation of a hydrated CaCOsb3/polymer liquid-precursor, whereby accumulation of isotropic droplets creates a coating on the substrate, and subsequent dehydration and crystallization yields birefringent CaCOsb3 films. During the amorphous to crystalline transition, incremental growth steps lead to "transition bars" and sectored calcite tablets. This in vitro system was originally modeled after certain aspects of CaCOsb3 biomineralization, in which the soluble proteins extracted from biominerals tend to have high levels of aspartic acid residues. Based on the similarities between features exhibited by the products of this system and those in biominerals, an argument has been presented to suggest that this polymer-induced liquid-precursor (PILP) process is involved in the morphogenesis of CaCOsb3 biominerals. These features include the following: thin CaCOsb3 tablets that grow laterally; tablets that express unstable crystallographic faces; non-faceted single crystals with curved surfaces; spatially-delineated single crystals; sectored calcite tablets; hollow-shell spheres; calcium carbonate cements; and magnesium-bearing calcites. This work has demonstrated that a means of morphological control can be accomplished through non

  1. Characterization of calcium carbonate/chitosan composites

    SciTech Connect

    Gonsalves, K.E.; Zhang, S.

    1995-12-31

    The crystal growth of calcium carbonate on a chitosan substrate was achieved using a supersaturated calcium carbonate solution, by using various additives, polyacrylic acid (PAA). Polyacrylic acid modified the chitosan-film surface and promoted the nucleation of calcium carbonate crystals.

  2. Influence of acid-soluble proteins from bivalve Siliqua radiata ligaments on calcium carbonate crystal growth

    NASA Astrophysics Data System (ADS)

    Huang, Zeng-Qiong; Zhang, Gang-Sheng

    2016-08-01

    In vitro biomimetic synthesis of calcium carbonate (CaCO3) in the presence of shell proteins is a heavily researched topic in biomineralization. However, little is known regarding the function of bivalve ligament proteins in the growth of CaCO3 crystals. In this study, using fibrous protein K58 from Siliqua radiata ligaments or coverslips as substrates, we report the results of our study of CaCO3 precipitation in the presence or absence of acid-soluble proteins (ASP) from inner ligament layers. ASP can disturb the controlling function of K58 or a coverslip on the crystalline phase, resulting in the formation of aragonite, calcite, and vaterite. In addition, we identified the following four primary components from ASP by mass spectroscopy: alkaline phosphatase (ALP), ABC transporter, keratin type II cytoskeletal 1 (KRT 1), and phosphate ABC transporter, phosphate-binding protein (PstS). Further analysis revealed that the first three proteins and especially ALP, which is important in bone mineralisation, could affect the polymorphism and morphology of CaCO3 crystals by trapping calcium ions in their domains. Our results indicate that ALP may play an important role in the formation of aragonite in S. radiata ligaments. This paper may facilitate our understanding of the biomineralization process.

  3. Peptide induced crystallization of calcium carbonate on wrinkle patterned substrate: implications for chitin formation in molluscs.

    PubMed

    Ghatak, Anindita Sengupta; Koch, Marcus; Guth, Christina; Weiss, Ingrid M

    2013-01-01

    We here present the nucleation and growth of calcium carbonate under the influence of synthetic peptides on topographically patterned poly(dimethylsiloxane) (PDMS) substrates, which have a controlled density of defects between the wrinkles. Experiments with two lysine-rich peptides derived from the extracellular conserved domain E22 of the mollusc chitin synthase Ar-CS1, AKKKKKAS (AS8) and EEKKKKKES (ES9) on these substrates showed their influence on the calcium carbonate morphology. A transition from polycrystalline composites to single crystalline phases was achieved with the peptide AS8 by changing the pH of the buffer solution. We analyzed three different pH values as previous experiments showed that E22 interacts with aragonite biominerals more strongly at pH 7.75 than at pH 9.0. At any given pH, crystals appeared in characteristic morphologies only on wrinkled substrates, and did not occur on the flat, wrinkle-free PDMS substrate. These results suggest that these wrinkled substrates could be useful for controlling the morphologies of other mineral/peptide and mineral/protein composites. In nature, these templates are formed enzymatically by glycosyltransferases containing pH-sensitive epitopes, similar to the peptides investigated here. Our in vitro test systems may be useful to gain understanding of the formation of distinct 3D morphologies in mollusc shells in response to local pH shifts during the mineralization of organic templates. PMID:23736692

  4. Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate

    PubMed Central

    Radha, A. V.; Forbes, Tori Z.; Killian, Christopher E.; Gilbert, P. U. P. A.; Navrotsky, Alexandra

    2010-01-01

    Amorphous calcium carbonate (ACC) is a metastable phase often observed during low temperature inorganic synthesis and biomineralization. ACC transforms with aging or heating into a less hydrated form, and with time crystallizes to calcite or aragonite. The energetics of transformation and crystallization of synthetic and biogenic (extracted from California purple sea urchin larval spicules, Strongylocentrotus purpuratus) ACC were studied using isothermal acid solution calorimetry and differential scanning calorimetry. Transformation and crystallization of ACC can follow an energetically downhill sequence: more metastable hydrated ACC → less metastable hydrated ACC⇒anhydrous ACC ∼ biogenic anhydrous ACC⇒vaterite → aragonite → calcite. In a given reaction sequence, not all these phases need to occur. The transformations involve a series of ordering, dehydration, and crystallization processes, each lowering the enthalpy (and free energy) of the system, with crystallization of the dehydrated amorphous material lowering the enthalpy the most. ACC is much more metastable with respect to calcite than the crystalline polymorphs vaterite or aragonite. The anhydrous ACC is less metastable than the hydrated, implying that the structural reorganization during dehydration is exothermic and irreversible. Dehydrated synthetic and anhydrous biogenic ACC are similar in enthalpy. The transformation sequence observed in biomineralization could be mainly energetically driven; the first phase deposited is hydrated ACC, which then converts to anhydrous ACC, and finally crystallizes to calcite. The initial formation of ACC may be a first step in the precipitation of calcite under a wide variety of conditions, including geological CO2 sequestration. PMID:20810918

  5. Results of the TTF-TCNQ- and the calcium carbonate-crystallization on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Nielsen, Kjeld Flemming; Lind, M. David

    1991-01-01

    Experiment AO139A on the Long Duration Exposure Facility (LDEF) carried four large containers into orbit for five years with crystal growth solutions for lead sulfide, calcium carbonate, and tetra thiafulvalene- tetra cyanoquino methane (TTF-TCNQ). The LDEF was in excellent condition after the long orbital stay, and although the temperature data was lost, the experiment program had been working since the valves in all containers were opened. All four experiments produced crystals; however, they were of varying quality. The calcium carbonate crystals had the best appearance. The TTF-TCNQ crystals were packed together near the valve openings of the container. When taken apart, the single crystals showed some unusual morphological properties. X-ray investigations as well as conductivity measurements on the long duration space grown TTF-TCNQ crystals are presented, and pictures of the calcium carbonate are shown. Comparisons are made with previous space solution growth experiments on the European Spacelab Mission and the Apollo-Soyuz Test Project.

  6. Photoinduced crystallization of calcium carbonate from a homogeneous precursor solution in the presence of partially hydrolyzed poly(vinyl alcohol)

    NASA Astrophysics Data System (ADS)

    Nishio, Takashi; Naka, Kensuke

    2015-04-01

    Photoinduced crystallization of calcium carbonate (CaCO3) was demonstrated by the photodecarboxylation of ketoprofen (KP, 2-(3-benzoylphenyl)propionic acid) under alkaline conditions (pH 10). In this method, a homogeneous solution comprising KP, calcium chloride, ammonia, and partially hydrolyzed poly(vinyl alcohol) (PVAPS, degree of saponification: 86.5-89.0 mol %) was used as the precursor solution and was exposed to ultraviolet (UV) irradiation for different time periods. Thermogravimetric analysis of the obtained xerogels showed that increasing the UV irradiation time increased the amount of CaCO3 formed and the complete conversion of calcium ions to calcite was achieved after 50 min of UV irradiation. Furthermore, solid phase analyses suggested that nanometer-to-micron-sized calcite crystals were formed and dispersed in the obtained PVAPS matrix.

  7. Divisive effect of alcohol-water mixed solvents on growth morphology of calcium carbonate crystals.

    PubMed

    Zhang, Li; Yue, Lin-Hai; Wang, Fei; Wang, Qi

    2008-08-28

    Controlling the process of crystal growth is of importance to the biomineralization and materials science. In this work, some novel morphology of calcium carbonate (CaCO3) was precipitated in an ethanol-water binary solvent (EWBS) with a CaCl2/Na2CO3 reaction system. For the solutions of CaCl2/Na2CO3 in EWBS, the alcoholization and hydration of Ca2+ and CO3(2-) were discussed from the radial distribution functions by molecular dynamics simulations, and the number density profiles of water molecules around and approximately 15 A away from CO3(2-) were employed to reveal the distribution of water molecules. It is found that EWBS has a divisive effect on Ca2+ and CO3(2-), and the local inhomogeneity of EWBS would be enhanced by adding some Na2CO3 into it. This inhomogeneity results in an aqueous two-phase system as x E goes up to 0.7. In addition, the novel morphology of CaCO3 under different molar ratios of Ca2+/CO3(2-) and in different mixed solvents were confirmed by XRD and SEM, and the relationships between the morphology of CaCO 3 and the structural properties of mixed solvents were further explored. PMID:18681476

  8. Optical planar waveguide in sodium-doped calcium barium niobate crystals by carbon ion implantation

    NASA Astrophysics Data System (ADS)

    Zhao, Jin-Hua; Qin, Xi-Feng; Wang, Feng-Xiang; Fu, Gang; Wang, Hui-Lin; Wang, Xue-Lin

    2013-07-01

    There is great interest in niobate crystals which belong to the tetragonal tungsten bronze (TTB) families owing to their intriguing properties. As one representative of such crystals, CBN (calcium barium niobate) has attracted rapidly growing attention. Because it has a higher Curie temperature than SBN (strontium barium niobate), possesses outstanding ferroelectric and it possesses optical properties. In addition, doped with sodium, CBN will show a higher Curie temperature than pure CBN. We report on the fabrication and characterization of optical planar waveguide in x-cut sodium-doped calcium barium niobate crystal by using C ion implantation. The guided-mode properties at the wavelength of 633 and 1539 nm are investigated through prism-coupling measurements, respectively. By applying direct end-face coupling arrangement, the near-field optical intensity distribution of waveguide modes is measured at 633 nm. For comparison, the modal profile of the same guided mode is also numerically calculated by the finite difference beam-propagation method via computer software BeamPROP. The transmission spectra of the waveguide before and after ion implantation treatments were investigated also. Our experiment results reveal that the waveguide could propagate light with transverse magnetic polarized direction only and it is assumed that the polarization selectivity of CBN crystal may responsible for this phenomenon.

  9. Influence of Sticky Rice and Anionic Polyacrylamide on the Crystallization of Calcium Carbonate in Chinese Organic Sanhetu

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Peng, Changsheng; Dai, Min; Gu, Qingbao; Song, Shaoxian

    2015-09-01

    The crystallization of calcium carbonate (CaCO3) in soil controlled by natural organic material was considered a very important reason to enhance the property of ancient Chinese organic Sanhetu (COS), but how the organic material affected the crystallization of CaCO3 in COS is still unclear. In this paper, a natural organic material (sticky rice, SR) and a synthetic organic material (anionic polyacrylamide, APAM) were selected as additives to investigate their effect on the crystallization of CaCO3. The experimental results showed that the morphology and size of CaCO3 crystals could be affected by the concentration of additives and reaction time, while only the size of CaCO3 crystals could be affected by the concentration of reactant. Although the morphology and size of CaCO3 crystals varied greatly with the variation of additive concentration, reactant concentration and reaction time, the polymorph of CaCO3 crystals were always calcite, according to SEM/EDX, XRD and FTIR analyses. This study may help us to better understand the mechanism of the influence of organic materials on CaCO3 crystallization and properties of COS.

  10. Vapor diffusion method: Dependence of polymorphs and morphologies of calcium carbonate crystals on the depth of an aqueous solution

    NASA Astrophysics Data System (ADS)

    Liu, Qing; Wang, Hai-Shui; Zeng, Qiang

    2016-09-01

    The polymorph control of calcium carbonate by the vapor diffusion method is still a challenging issue because the resultant crystal polymorphs and morphologies highly depend on the experimental setup. In this communication, we demonstrated that the concentration gradients accompanied by the vapor diffusion method (ammonia concentration, pH and the ratio of CO32- to Ca2+ are changed with the solution depth and with time) are probably the main reasons to significantly affect the formation of crystal polymorphs. Raman, SEM and XRD data showed that calcite and vaterite crystals were preferred to nucleate and grow in the upper or the lower areas of aqueous solution respectively. The above results can be explained by the gradient effect.

  11. Perlwapin, an abalone nacre protein with three four-disulfide core (whey acidic protein) domains, inhibits the growth of calcium carbonate crystals.

    PubMed

    Treccani, Laura; Mann, Karlheinz; Heinemann, Fabian; Fritz, Monika

    2006-10-01

    We have isolated a new protein from the nacreous layer of the shell of the sea snail Haliotis laevigata (abalone). Amino acid sequence analysis showed the protein to consist of 134 amino acids and to contain three sequence repeats of approximately 40 amino acids which were very similar to the well-known whey acidic protein domains of other proteins. The new protein was therefore named perlwapin. In addition to the major sequence, we identified several minor variants. Atomic force microscopy was used to explore the interaction of perlwapin with calcite crystals. Monomolecular layers of calcite crystals dissolve very slowly in deionized water and recrystallize in supersaturated calcium carbonate solution. When perlwapin was dissolved in the supersaturated calcium carbonate solution, growth of the crystal was inhibited immediately. Perlwapin molecules bound tightly to distinct step edges, preventing the crystal layers from growing. Using lower concentrations of perlwapin in a saturated calcium carbonate solution, we could distinguish native, active perlwapin molecules from denaturated ones. These observations showed that perlwapin can act as a growth inhibitor for calcium carbonate crystals in saturated calcium carbonate solution. The function of perlwapin in nacre growth may be to inhibit the growth of certain crystallographic planes in the mineral phase of the polymer/mineral composite nacre. PMID:16861275

  12. Perlwapin, an Abalone Nacre Protein with Three Four-Disulfide Core (Whey Acidic Protein) Domains, Inhibits the Growth of Calcium Carbonate Crystals

    PubMed Central

    Treccani, Laura; Mann, Karlheinz; Heinemann, Fabian; Fritz, Monika

    2006-01-01

    We have isolated a new protein from the nacreous layer of the shell of the sea snail Haliotis laevigata (abalone). Amino acid sequence analysis showed the protein to consist of 134 amino acids and to contain three sequence repeats of ∼40 amino acids which were very similar to the well-known whey acidic protein domains of other proteins. The new protein was therefore named perlwapin. In addition to the major sequence, we identified several minor variants. Atomic force microscopy was used to explore the interaction of perlwapin with calcite crystals. Monomolecular layers of calcite crystals dissolve very slowly in deionized water and recrystallize in supersaturated calcium carbonate solution. When perlwapin was dissolved in the supersaturated calcium carbonate solution, growth of the crystal was inhibited immediately. Perlwapin molecules bound tightly to distinct step edges, preventing the crystal layers from growing. Using lower concentrations of perlwapin in a saturated calcium carbonate solution, we could distinguish native, active perlwapin molecules from denaturated ones. These observations showed that perlwapin can act as a growth inhibitor for calcium carbonate crystals in saturated calcium carbonate solution. The function of perlwapin in nacre growth may be to inhibit the growth of certain crystallographic planes in the mineral phase of the polymer/mineral composite nacre. PMID:16861275

  13. Calcium Carbonate Crystal Growth in Porous Media, in the presence of Water Miscible and Non-Miscible Organic Fluids

    NASA Astrophysics Data System (ADS)

    Jaho, Sofia; Sygouni, Varvara; Paraskeva, Christakis A.

    2015-04-01

    The deposition of sparingly soluble salts (scaling) within porous media is a major problem encountered in many industrial and environmental applications. In the oil industry scaling causes severe operational malfunctions and, therefore, increasing the total operating and maintenance cost [1]. The most common types of sparingly soluble salts located in oil fields include carbonate and sulfate salts of calcium, strondium and barium[1,2]. Multiple phase flow and tubing surface properties are some of the factors affecting scale formation [3]. The main purpose of the present work was the investigation of the precipitation mechanisms of calcium carbonate (CaCO3) through in situ mixing of two soluble salt solutions in a flow granular medium, in the presence of water miscible organic fluid (ethylene glycol) or non-miscible organic fluid (n-dodecane). All series of experiments were carried out in a two dimensional porous medium made of Plexiglas. For all solutions used in the experiments, the contact angles with the surface of the porous medium and the interfacial tensions were measured. During the experiments, the calcium carbonate crystal growth was continuously monitored and recorded through an optical microscope equipped with a digital programmed video camera. The snap-shots were taken within specific time intervals and their detailed procession gave information concerning the crystal growth rate and kinetics. The pH of the effluent was measured and fluids samples were collected for calcium analysis using Atomic Absorption Spectroscopy (AAS). In all experiments effluent calcium concentration decreased as a function of time, suggesting that CaCO3 precipitation took place inside the porous medium. Crystals of the precipitated salt were identified using Infrared Spectroscopy (IR) and the morphology of the crystals was examined using Scanning Electron Microscopy (SEM). The induction time for precipitation of CaCO3 crystals in the presence of n-dodecane was significantly

  14. Hemocytes participate in calcium carbonate crystal formation, transportation and shell regeneration in the pearl oyster Pinctada fucata.

    PubMed

    Li, Shiguo; Liu, Yangjia; Liu, Chuang; Huang, Jingliang; Zheng, Guilan; Xie, Liping; Zhang, Rongqing

    2016-04-01

    In this study, light microscope, scanning and transmission electron microscope, hematoxylin-eosin and fluorescent staining, and mass spectrometry methods were employed to observe the calcium carbonate (CaCO3) crystal formation, hemocyte release and transportation, and hemocyte distribution at the shell regeneration area and to analyse the proteome of hemocytes in the pearl oyster, Pinctada fucata. The results indicated that intracellular CaCO3 crystals were observed in circulating hemocytes in P. fucata, implying that there was a suitable microenvironment for crystal formation in the hemocytes. This conclusion was further supported by the proteome analysis, in which various biomineralization-related proteins were detected. The crystal-bearing hemocytes, mainly granulocytes, may be released to extrapallial fluid (EPF) by the secretory cavities distributed on the outer surface of the mantle centre. These granulocytes in the EPF and between the regenerated shells were abundant and free. In the regenerated prismatic layer, the granulocytes were fused into each column and fragmented with the duration of shell maturation, suggesting the direct involvement of hemocytes in shell regeneration. Overall, this study provided evidence that hemocytes participated in CaCO3 crystal formation, transportation and shell regeneration in the pearl oyster. These results are helpful to further understand the exact mechanism of hemocyte-mediated biomineralization in shelled molluscs. PMID:26923245

  15. Bioprecipitation of Calcium Carbonate Crystals by Bacteria Isolated from Saline Environments Grown in Culture Media Amended with Seawater and Real Brine.

    PubMed

    Silva-Castro, G A; Uad, I; Gonzalez-Martinez, A; Rivadeneyra, A; Gonzalez-Lopez, J; Rivadeneyra, M A

    2015-01-01

    The precipitation of calcium carbonate and calcium sulphate by isolated bacteria from seawater and real brine obtained in a desalination plant growth in culture media containing seawater and brine as mineral sources has been studied. However, only bioprecipitation was detected when the bacteria were grown in media with added organic matter. Biomineralization process started rapidly, crystal formation taking place in the beginning a few days after inoculation of media; roughly 90% of total cultivated bacteria showed. Six major colonies with carbonate precipitation capacity dominated bacterial community structure cultivated in heterotrophic platable bacteria medium. Taxonomic identification of these six strains through partial 16S rRNA gene sequences showed their affiliation with Gram-positive Bacillus and Virgibacillus genera. These strains were able to form calcium carbonate minerals, which precipitated as calcite and aragonite crystals and showed bacterial fingerprints or bacteria calcification. Also, carbonic anhydrase activity was observed in three of these isolated bacteria. The results of this research suggest that microbiota isolated from sea water and brine is capable of precipitation of carbonate biominerals, which can occur in situ with mediation of organic matter concentrations. Moreover, calcium carbonate precipitation ability of this microbiota could be of importance in bioremediation of CO2 and calcium in certain environments. PMID:26273646

  16. Bioprecipitation of Calcium Carbonate Crystals by Bacteria Isolated from Saline Environments Grown in Culture Media Amended with Seawater and Real Brine

    PubMed Central

    Silva-Castro, G. A.; Uad, I.; Gonzalez-Martinez, A.; Rivadeneyra, A.; Gonzalez-Lopez, J.; Rivadeneyra, M. A.

    2015-01-01

    The precipitation of calcium carbonate and calcium sulphate by isolated bacteria from seawater and real brine obtained in a desalination plant growth in culture media containing seawater and brine as mineral sources has been studied. However, only bioprecipitation was detected when the bacteria were grown in media with added organic matter. Biomineralization process started rapidly, crystal formation taking place in the beginning a few days after inoculation of media; roughly 90% of total cultivated bacteria showed. Six major colonies with carbonate precipitation capacity dominated bacterial community structure cultivated in heterotrophic platable bacteria medium. Taxonomic identification of these six strains through partial 16S rRNA gene sequences showed their affiliation with Gram-positive Bacillus and Virgibacillus genera. These strains were able to form calcium carbonate minerals, which precipitated as calcite and aragonite crystals and showed bacterial fingerprints or bacteria calcification. Also, carbonic anhydrase activity was observed in three of these isolated bacteria. The results of this research suggest that microbiota isolated from sea water and brine is capable of precipitation of carbonate biominerals, which can occur in situ with mediation of organic matter concentrations. Moreover, calcium carbonate precipitation ability of this microbiota could be of importance in bioremediation of CO2 and calcium in certain environments. PMID:26273646

  17. High pressure Raman and single crystal X-ray diffraction of the alkali/calcium carbonate, shortite

    NASA Astrophysics Data System (ADS)

    Williams, Q. C.; Vennari, C.; O'Bannon, E. F., III

    2015-12-01

    Raman and synchrotron-based single crystal x-ray diffraction data have been collected on shortite (Na2Ca2(CO3)3) up to 10 GPa at 300 K. Shortite is of geological importance due to its presence in the ground-mass of kimberlites, and the alkaline-/carbon-rich character of kimberlitic eruptions. This investigation focuses on shortite's high pressure behavior and is relevant to the behavior of alkali-carbonate systems within Earth's upper mantle. X-ray data demonstrate that shortite's symmetry remains stable at high pressures—retaining orthorhombic C crystal system (Amm2) up to 10 GPa; diffraction data show a 12% volume decrease from room pressure, and a bulk modulus of 71.0(3) GPa. These also demonstrate that the c-axis is twice as compressible as the a- and b-axes. This anisotropic compression is likely due to the orientation of the relatively stiff carbonate groups, a third of which are oriented close to the plane of the a- and b-axes, c axis compression primarily involves the compaction of the 9-fold coordinate sodium and calcium polyhedral. The two distinct carbonate sites within the unit cell give rise to two Raman symmetric stretching modes of the symmetric stretch; the carbonate group stretching vibration which is close to in plane with the a- and b-axes shifts at 3.75 cm-1/GPa as opposed to the carbonate groups which is closer to in plane with the b- and c-axes which shift at 4.25 cm-1/GPa. This furthers evidence for anisotropic compression observed using x-ray diffraction--as the carbonate in plane with the a- and b-axes is compressed, the strength of oxygen bonds along the c-axis with the cations increases, thus decreasing the pressure shift of the mode. The out of plane bending vibration shifts at -0.48 cm-1/GPa, indicating an enhanced interaction of the oxygens with the cations. The multiple in plane bending modes all shift positively, as do at the low frequency lattice modes, indicating that major changes in bonding do not occur up to 10 GPa. The data

  18. Calcium carbonate with magnesium overdose

    MedlinePlus

    The combination of calcium carbonate and magnesium is commonly found in antacids. These medicines provide heartburn relief. Calcium carbonate with magnesium overdose occurs when someone takes more than the ...

  19. Crystallization of calcium carbonate (CaCO3) in a flowing system: Influence of Cu2+ additives on induction time and crystalline phase transformation

    NASA Astrophysics Data System (ADS)

    Usmany, Y.; Putranto, W. A.; Bayuseno, A. P.; Muryanto, S.

    2016-04-01

    Scaling of calcium carbonate (CaCO3) is commonly found in piping systems in oil, gas, desalination and other chemical processes. The scale may create technical problems, leading to the reduction of heat transfer, increase of energy consumption and unscheduled equipment shutdown. This paper presents crystallization scaling experiments and evaluation of the effect of Cu2+ additives on the induction time and calcium carbonate transformation. The crystals precursors were prepared using equimolar of CaCl2 and Na2CO3 resulted in concentrations of 3000 ppm Ca2+ in the solution. The Cu2+ in amounts of 0, 1 and 10 ppm was separately added in the solution. The flow rates (20, 35, and 60 mL/min) and elevated temperatures (27, 35 and 45°C) were selected in the study. The induction time for crystallization of CaCO3 was observed by measuring the solution conductivity over time, while the phase transformation of calcium carbonate was examined by XRD method and SEM/EDX. It was found that the conductivity remained steady for a certain period reflecting to the induction time of crystal formation, and then decreased sharply afterwards,. The induction time was increased from 34 and 48 minutes in the presence of Cu additives (1 and 10 ppm), depending on the flow rates and temperature observed. In all the experiments, the Cu2+ addition leads to the reduction of mass of crystals. Apparently, the presence of Cu2+ could inhibit the CaCO3 crystallization. In the absence of Cu2+ and at elevated temperature, the crystals obtained were a mixture of vaterite and calcite. In the presence of Cu2+ and at elevated temperature, the crystals formed were aragonite and calcite. Here, the presence of Cu2+ additives might have controlled the crystal transformation of CaCO3.

  20. SM50 repeat-polypeptides self-assemble into discrete matrix subunits and promote appositional calcium carbonate crystal growth during sea urchin tooth biomineralization.

    PubMed

    Mao, Yelin; Satchell, Paul G; Luan, Xianghong; Diekwisch, Thomas G H

    2016-01-01

    The two major proteins involved in vertebrate enamel formation and echinoderm sea urchin tooth biomineralization, amelogenin and SM50, are both characterized by elongated polyproline repeat domains in the center of the macromolecule. To determine the role of polyproline repeat polypeptides in basal deuterostome biomineralization, we have mapped the localization of SM50 as it relates to crystal growth, conducted self-assembly studies of SM50 repeat polypeptides, and examined their effect on calcium carbonate and apatite crystal growth. Electron micrographs of the growth zone of Strongylocentrotus purpuratus sea urchin teeth documented a series of successive events from intravesicular mineral nucleation to mineral deposition at the interface between tooth surface and odontoblast syncytium. Using immunohistochemistry, SM50 was detected within the cytoplasm of cells associated with the developing tooth mineral, at the mineral secreting front, and adjacent to initial mineral deposits, but not in muscles and ligaments. Polypeptides derived from the SM50 polyproline alternating hexa- and hepta-peptide repeat region (SM50P6P7) formed highly discrete, donut-shaped self-assembly patterns. In calcium carbonate crystal growth studies, SM50P6P7 repeat peptides triggered the growth of expansive networks of fused calcium carbonate crystals while in apatite growth studies, SM50P6P7 peptides facilitated the growth of needle-shaped and parallel arranged crystals resembling those found in developing vertebrate enamel. In comparison, SM50P6P7 surpassed the PXX24 polypeptide repeat region derived from the vertebrate enamel protein amelogenin in its ability to promote crystal nucleation and appositional crystal growth. Together, these studies establish the SM50P6P7 polyproline repeat region as a potent regulator in the protein-guided appositional crystal growth that occurs during continuous tooth mineralization and eruption. In addition, our studies highlight the role of species

  1. Calcium carbonate crystallizations on hypogean mural paintings: a pilot study of monitoring and diagnostics in Roman catacombs

    NASA Astrophysics Data System (ADS)

    Tapete, D.; Fratini, F.; Mazzei, B.; Camaiti, M.; Cantisani, E.; Riminesi, C.; Manganelli Del Fà, R.; Cuzman, O.; Tiano, P.

    2012-04-01

    One of the deterioration processes affecting mural paintings and rock surfaces within manmade hypogea consists in the formation of calcium carbonate crystallizations, which can create thick coverage and incrustations, even in some cases speleothems. These chemical reactions necessarily require the availability of calcium sources, which can be also of anthropogenic origin (e.g., lime-based mortars). Microclimate parameters also represent environmental forcing factors, on which the morphology and the degree of crystallinity of the precipitated carbonates depend. Understanding past/recent dynamics of carbonate precipitation implies a deep knowledge of the relationships between the exposed surfaces and the microclimate conditions, the impacts of external factors (e.g., groundwater infiltration and percolation from the overlying soil) and how they change over time. This is particularly fundamental for the preservation of hypogean sites which have not comparison with other typologies of environment due to their uniqueness, such as the ancient catacombs carved underneath the suburbs of Rome (Italy), since the 2nd century AD. In this paper we present the multidisciplinary methodological approach designed for the instrumental monitoring of the microphysical environment of the Catacombs of Saints Mark, Marcellian and Damasus, in the framework of the co-operation between the Institute for the Conservation and Valorization of Cultural Heritage and Pontifical Commission for Sacred Archaeology, Vatican, on the project HYPOGEA. Temperature inside the catacomb and on the surfaces, air relative humidity and CO2 concentration are the main of the parameters continuously measured by means of data loggers installed within the cubicles. Contemporarily, standardized methods of photographic documentation and digital micro-photogrammetry are used for change detection analysis of the painted surfaces and ancient plasters, as well as of the test areas purposely realized by applying fresh

  2. Crystallization behavior and kinetics of calcium carbonate in highly alkaline and supersaturated system

    NASA Astrophysics Data System (ADS)

    Zhu, Ganyu; Li, Huiquan; Li, Shaopeng; Hou, Xinjuan; Xu, Dehua; Lin, Rongyi; Tang, Qing

    2015-10-01

    In causticization process of Na2CO3-Ca(OH)2, which is a liquid-solid system with high alkalinity and supersaturation, agglomeration and morphology instability of CaCO3 crystal have greatly limited its application. To deeply investigate the internal relations between crystallization process and condition control in this system, crystallization kinetics was conducted in a continuously operated crystallizer. The kinetic equations of growth rate, nucleation rate and agglomeration kernel were correlated in terms of power law kinetic expressions based on the agglomeration population balance equation. Magma density and mean residence time exert a considerable effect on crystal growth, nucleation, and agglomeration. Crystal growth and nucleation are surface-integration-limited and size-limited, respectively. Agglomeration increases with increasing mean residence time, but the increase in magma density break down the agglomerates by frequent and energetic collisions. Through the study, crystallization behavior of CaCO3 in causticization system was revealed, and the particle size and morphology were efficiently predicted and controlled. These results can provide a basis for understanding the design of the reactor.

  3. Impregnating Coal With Calcium Carbonate

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Voecks, Gerald E.; Gavalas, George R.

    1991-01-01

    Relatively inexpensive process proposed for impregnating coal with calcium carbonate to increase rates of gasification and combustion of coal and to reduce emission of sulfur by trapping sulfur in calcium sulfide. Process involves aqueous-phase reactions between carbon dioxide (contained within pore network of coal) and calcium acetate. Coal impregnated with CO2 by exposing it to CO2 at high pressure.

  4. Role of CaCO3° Neutral Pair in Calcium Carbonate Crystallization

    PubMed Central

    2016-01-01

    The molecular structure of the units that get incorporated into the nuclei of the crystalline phase and sustain their growth is a fundamental issue in the pathway from a supersaturated solution to the formation of crystals. Using a fluorescent dye we have recorded the variation of the pH value in time along a gel where CaCl2 and NaHCO3 counter-diffuse to crystallize CaCO3. The same pH–space–time distribution maps were also computationally obtained using a chemical speciation code (phreeqc). Using data arising from this model we investigated the space-time evolution of the activity of the single species (ions and ion pairs) involved in the crystallization process. Our combined results suggest that, whatever the pathway from solution to crystals, the neutral pair CaCO3° is a key species in the CaCO3 precipitation system. PMID:27512345

  5. Control of calcium carbonate crystallization by using anionic polymethylsiloxanes as templates

    NASA Astrophysics Data System (ADS)

    Neira-Carrillo, Andrónico; Vásquez-Quitral, Patricio; Paz Díaz, María; Soledad Fernández, María; Luis Arias, José; Yazdani-Pedram, Mehrdad

    2012-10-01

    Sulfonated (SO3H-PMS) and carboxylated (CO2H-PMS) polymethylsiloxanes were synthesized and their effects as anionic template modifier on the CaCO3 crystal morphologies were evaluated. In vitro crystallization assays of CaCO3 were performed at room temperature by using gas diffusion method at different concentration, pH and time. SEM images of CaCO3 showed well-defined short calcite piles (ca. 5 μm) and elongated calcite (ca. 20 μm) when SO3H-PMS was used. When CO2H-PMS was used, the morphology of CaCO3 crystals was single-truncated at pH 7-9 and aggregated-modified calcite at pH 10-11. However, at pH 12 the least stable donut-shaped vaterite crystals were formed. EDS and XRD confirmed the presence of Si from anionic PMS templates on the CaCO3 surfaces and its polymorphism, respectively. Results showed that the selective morphologies of CaCO3 reflect the electrostatic interaction of anionic groups of functionalized PMS with Ca2+ adsorbed on CaCO3 crystals. Rounded and truncated-modified fluorescent CaCO3 was also produced by the inclusion of functionalized PMS into the lattice of CaCO3 matrix. We demonstrated that the anionic PMS offer a good modifier for polymer-controlled crystallization and a convenient approach for understanding the biomineralization field.

  6. DISSOLUTION AND CRYSTALLIZATION OF CALCIUM SULFITE PLATELETS

    EPA Science Inventory

    The paper discusses the dissolution and crystallization of calcium sulfite platelets. The rates of calcium sulfite dissolution and crystallization are important in slurry scrubbing processes for flue gas desulfurization. The rates affect the scrubber solution composition, SO2 abs...

  7. Control of calcium carbonate crystallization by using anionic polymethylsiloxanes as templates

    SciTech Connect

    Neira-Carrillo, Andronico; Vasquez-Quitral, Patricio; Paz Diaz, Maria; Soledad Fernandez, Maria; Luis Arias, Jose; Yazdani-Pedram, Mehrdad

    2012-10-15

    Sulfonated (SO{sub 3}H-PMS) and carboxylated (CO{sub 2}H-PMS) polymethylsiloxanes were synthesized and their effects as anionic template modifier on the CaCO{sub 3} crystal morphologies were evaluated. In vitro crystallization assays of CaCO{sub 3} were performed at room temperature by using gas diffusion method at different concentration, pH and time. SEM images of CaCO{sub 3} showed well-defined short calcite piles (ca. 5 {mu}m) and elongated calcite (ca. 20 {mu}m) when SO{sub 3}H-PMS was used. When CO{sub 2}H-PMS was used, the morphology of CaCO{sub 3} crystals was single-truncated at pH 7-9 and aggregated-modified calcite at pH 10-11. However, at pH 12 the least stable donut-shaped vaterite crystals were formed. EDS and XRD confirmed the presence of Si from anionic PMS templates on the CaCO{sub 3} surfaces and its polymorphism, respectively. Results showed that the selective morphologies of CaCO{sub 3} reflect the electrostatic interaction of anionic groups of functionalized PMS with Ca{sup 2+} adsorbed on CaCO{sub 3} crystals. Rounded and truncated-modified fluorescent CaCO{sub 3} was also produced by the inclusion of functionalized PMS into the lattice of CaCO{sub 3} matrix. We demonstrated that the anionic PMS offer a good modifier for polymer-controlled crystallization and a convenient approach for understanding the biomineralization field. - Graphical abstract: Optical photographs of rounded and truncated-modified fluorescent CaCO{sub 3} produced by the inclusion of sulfonated (SO{sub 3}H-PMS) polymethylsiloxanes into the lattice of CaCO{sub 3} matrix. Insert represents the simulation of modified and fluorescent CaCO{sub 3} crystals using Software JCrystal, (2008). Highlights: Black-Right-Pointing-Pointer We prepared two anionic polymethylsiloxanes (PMS) as templates. Black-Right-Pointing-Pointer Their modifier capacity on the CaCO{sub 3} crystal morphologies was demonstrated. Black-Right-Pointing-Pointer At pH 12, the least stable donut-shaped vaterite

  8. Engineering calcium oxalate crystal formation in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many plants accumulate crystals of calcium oxalate. Just how these crystals form remains unknown. To gain insight into the mechanisms regulating calcium oxalate crystal formation, a crystal engineering approach was initiated utilizing the non-crystal accumulating plant, Arabidopsis. The success of t...

  9. Identification of calcium oxalate crystals using alizarin red S stain.

    PubMed

    Proia, A D; Brinn, N T

    1985-02-01

    Calcium oxalate crystals stain with alizarin red S at a pH of 7.0 but not at a pH of 4.2. In contrast, calcium phosphate and calcium carbonate stain at a pH of both 7.0 and 4.2. This difference allows presumptive identification of calcium oxalate deposits. The identity of calcium oxalate can then be confirmed by its insolubility in 2M acetic acid, since both calcium carbonate and calcium phosphate are soluble. We have applied this procedure for several years and have found it to be a rapid, reliable, and technically simple procedure for distinguishing calcium oxalate from other calcium deposits. PMID:2579619

  10. The molecular characteristics of a human pancreatic acidic phosphoprotein that inhibits calcium carbonate crystal growth.

    PubMed Central

    De Caro, A; Multigner, L; Lafont, H; Lombardo, D; Sarles, H

    1984-01-01

    A CaCO3-crystal-growth inhibitor was isolated from human pancreatic stones by using EDTA demineralization, followed by DEAE-Trisacryl chromatography. The isolated inhibitor was found to be a phosphoglycoprotein with Mr 14017 and having an unusual chemical composition. It is characterized by a high (42%) acidic amino acid content, but lacks methionine and gamma-carboxyglutamic acid. The protein contains 2.65 mol of P/mol of protein, as phosphoserine (2 mol) and phosphothreonine (0.5 mol). Isoelectric focusing of the protein yields one major band corresponding to an isoelectric point of 4.2. Immunochemical quantification of the crystal-growth inhibitor in pure pancreatic juice reveals that it constitutes 14% of the normal exocrine secretion. Our findings demonstrate that this is a novel secretory protein, which has no enzymic activity and which maintains pancreatic juice in a supersaturated state with respect to CaCO3. Images Fig. 3. Fig. 4. PMID:6487269

  11. Calcium carbonate polyamorphism and its role in biomineralization: how many amorphous calcium carbonates are there?

    PubMed

    Cartwright, Julyan H E; Checa, Antonio G; Gale, Julian D; Gebauer, Denis; Sainz-Díaz, C Ignacio

    2012-11-26

    Although the polymorphism of calcium carbonate is well known, and its polymorphs--calcite, aragonite, and vaterite--have been highly studied in the context of biomineralization, polyamorphism is a much more recently discovered phenomenon, and the existence of more than one amorphous phase of calcium carbonate in biominerals has only very recently been understood. Here we summarize what is known about polyamorphism in calcium carbonate as well as what is understood about the role of amorphous calcium carbonate in biominerals. We show that consideration of the amorphous forms of calcium carbonate within the physical notion of polyamorphism leads to new insights when it comes to the mechanisms by which polymorphic structures can evolve in the first place. This not only has implications for our understanding of biomineralization, but also of the means by which crystallization may be controlled in medical, pharmaceutical, and industrial contexts. PMID:23124964

  12. Calcium carbonate microparticle growth controlled by a conjugate drug-copolymer and crystallization time.

    PubMed

    Doroftei, Florica; Damaceanu, Mariana Dana; Simionescu, Bogdan C; Mihai, Marcela

    2014-04-01

    The influence of crystallization reaction time on CaCO3 microparticle growth from supersaturate aqueous solutions, in the presence of a conjugate drug-copolymer, has been investigated. The polymer conjugate, P(NVP-MA-Ox), is based on poly(N-vinylpyrrolidone-co-maleic anhydride) as the support and 2-amino-5-(4-methoxyphenyl)-1,3,4-oxadiazole as the drug. The microparticles are characterized by optical, scanning and transmission electron microscopy, dynamic light scattering, X-ray diffraction, flow particle image analysis and particle charge density. X-ray diffraction (XRD) investigations showed that calcite polymorph content increased with an increase in crystallization time, even if the electrostatic interactions between Ca(2+) and polyanionic sites of P(NVP-MA-Ox) structure conduct to an increased vaterite phase stability. The strong particle size increase after 6 h of ageing can be ascribed to partially vaterite recrystallization and adsorption of nano-scaled calcite crystallite nuclei at microparticles surfaces. The pH stability of the particles was shown by zeta potential changes and their adsorption capacity as a function of their composition, and characteristics were tested using methylene blue. The sorption capacity of composite materials was strongly influenced by the ratio between polymorphs in the composites, and increased with the increase of calcite content and ageing time. PMID:24675592

  13. Phase transitions in biogenic amorphous calcium carbonate

    NASA Astrophysics Data System (ADS)

    Gong, Yutao

    Geological calcium carbonate exists in both crystalline phases and amorphous phases. Compared with crystalline calcium carbonate, such as calcite, aragonite and vaterite, the amorphous calcium carbonate (ACC) is unstable. Unlike geological calcium carbonate crystals, crystalline sea urchin spicules (99.9 wt % calcium carbonate and 0.1 wt % proteins) do not present facets. To explain this property, crystal formation via amorphous precursors was proposed in theory. And previous research reported experimental evidence of ACC on the surface of forming sea urchin spicules. By using X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron emission microscopy (PEEM), we studied cross-sections of fresh sea urchin spicules at different stages (36h, 48h and 72h after fertilization) and observed the transition sequence of three mineral phases: hydrated ACC → dehydrated ACC → biogenic calcite. In addition, we unexpectedly found hydrated ACC nanoparticles that are surrounded by biogenic calcite. This observation indicates the dehydration from hydrated ACC to dehydrated ACC is inhibited, resulting in stabilization of hydrated ACC nanoparticles. We thought that the dehydration was inhibited by protein matrix components occluded within the biomineral, and we designed an in vitro assay to test the hypothesis. By utilizing XANES-PEEM, we found that SM50, the most abundant occluded matrix protein in sea urchin spicules, has the function to stabilize hydrated ACC in vitro.

  14. Apatite Formation from Amorphous Calcium Phosphate and Mixed Amorphous Calcium Phosphate/Amorphous Calcium Carbonate.

    PubMed

    Ibsen, Casper J S; Chernyshov, Dmitry; Birkedal, Henrik

    2016-08-22

    Crystallization from amorphous phases is an emerging pathway for making advanced materials. Biology has made use of amorphous precursor phases for eons and used them to produce structures with remarkable properties. Herein, we show how the design of the amorphous phase greatly influences the nanocrystals formed therefrom. We investigate the transformation of mixed amorphous calcium phosphate/amorphous calcium carbonate phases into bone-like nanocrystalline apatite using in situ synchrotron X-ray diffraction and IR spectroscopy. The speciation of phosphate was controlled by pH to favor HPO4 (2-) . In a carbonate free system, the reaction produces anisotropic apatite crystallites with large aspect ratios. The first formed crystallites are highly calcium deficient and hydrogen phosphate rich, consistent with thin octacalcium phosphate (OCP)-like needles. During growth, the crystallites become increasingly stoichiometric, which indicates that the crystallites grow through addition of near-stoichiometric apatite to the OCP-like initial crystals through a process that involves either crystallite fusion/aggregation or Ostwald ripening. The mixed amorphous phases were found to be more stable against phase transformations, hence, the crystallization was inhibited. The resulting crystallites were smaller and less anisotropic. This is rationalized by the idea that a local phosphate-depletion zone formed around the growing crystal until it was surrounded by amorphous calcium carbonate, which stopped the crystallization. PMID:27460160

  15. Calcium oxalate crystals in eucalypt ectomycorrhizae: morphochemical characterization.

    PubMed

    Pylro, Victor Satler; de Freitas, André Luiz Moreira; Otoni, Wagner Campos; da Silva, Ivo Ribeiro; Borges, Arnaldo Chaer; Costa, Maurício Dutra

    2013-01-01

    Ectomycorrhizal fungi are ubiquitous in forest ecosystems, benefitting plants principally by increasing the uptake of water and nutrients such as calcium from the soil. Previous work has demonstrated accumulation of crystallites in eucalypt ectomycorrhizas, but detailed morphological and chemical characterization of these crystals has not been performed. In this work, cross sections of acetic acid-treated and cleared ectomycorrhizal fragments were visualized by polarized light microscopy to evaluate the location of crystals within cortical root cells. Ectomycorrhizal sections were also observed by scanning electron microscopy (SEM) coupled with energy dispersive x-ray (EDS) microprobe analysis. The predominant forms of crystals were crystal sand (granules) and concretions. Calcium, carbon and oxygen were detected by EDS as constituent elements and similar elemental profiles were observed between both crystal morphologies. All analyzed crystalline structures were characterized as calcium oxalate crystals. This is the first report of the stoichiometry and morphology of crystals occurring in eucalypt ectomycorrhizas in tropical soils. The data corroborates the role of ectomycorrhizae in the uptake and accumulation of calcium in the form of calcium oxalate crystals in hybrid eucalypt plants. PMID:23844062

  16. Calcium Oxalate Crystals in Eucalypt Ectomycorrhizae: Morphochemical Characterization

    PubMed Central

    Pylro, Victor Satler; de Freitas, André Luiz Moreira; Otoni, Wagner Campos; da Silva, Ivo Ribeiro; Borges, Arnaldo Chaer; Costa, Maurício Dutra

    2013-01-01

    Ectomycorrhizal fungi are ubiquitous in forest ecosystems, benefitting plants principally by increasing the uptake of water and nutrients such as calcium from the soil. Previous work has demonstrated accumulation of crystallites in eucalypt ectomycorrhizas, but detailed morphological and chemical characterization of these crystals has not been performed. In this work, cross sections of acetic acid-treated and cleared ectomycorrhizal fragments were visualized by polarized light microscopy to evaluate the location of crystals within cortical root cells. Ectomycorrhizal sections were also observed by scanning electron microscopy (SEM) coupled with energy dispersive x-ray (EDS) microprobe analysis. The predominant forms of crystals were crystal sand (granules) and concretions. Calcium, carbon and oxygen were detected by EDS as constituent elements and similar elemental profiles were observed between both crystal morphologies. All analyzed crystalline structures were characterized as calcium oxalate crystals. This is the first report of the stoichiometry and morphology of crystals occurring in eucalypt ectomycorrhizas in tropical soils. The data corroborates the role of ectomycorrhizae in the uptake and accumulation of calcium in the form of calcium oxalate crystals in hybrid eucalypt plants. PMID:23844062

  17. Polymorphs calcium carbonate on temperature reaction

    SciTech Connect

    Chong, Kai-Yin; Chia, Chin-Hua; Zakaria, Sarani

    2014-09-03

    Calcium carbonate (CaCO{sub 3}) has three different crystal polymorphs, which are calcite, aragonite and vaterite. In this study, effect of reaction temperature on polymorphs and crystallite structure of CaCO{sub 3} was investigated. X-ray powder diffraction (XRD), fourier transform infrared (FTIR), and variable pressure scanning electron microscope (VPSEM) were used to characterize the obtained CaCO{sub 3} particles. The obtained results showed that CaCO{sub 3} with different crystal and particle structures can be formed by controlling the temperature during the synthesis process.

  18. Gravimetric Determination of Calcium as Calcium Carbonate Hydrate.

    ERIC Educational Resources Information Center

    Henrickson, Charles H.; Robinson, Paul R.

    1979-01-01

    The gravimetric determination of calcium as calcium carbonate is described. This experiment is suitable for undergraduate quantitative analysis laboratories. It is less expensive than determination of chloride as silver chloride. (BB)

  19. Phosphate-water interplay tunes amorphous calcium carbonate metastability: spontaneous phase separation and crystallization vs stabilization viewed by solid state NMR.

    PubMed

    Kababya, Shifi; Gal, Assaf; Kahil, Keren; Weiner, Steve; Addadi, Lia; Schmidt, Asher

    2015-01-21

    Organisms tune the metastability of amorphous calcium carbonates (ACC), often by incorporation of additives such as phosphate ions and water molecules, to serve diverse functions, such as modulating the availability of calcium reserves or constructing complex skeletal scaffolds. Although the effect of additive distribution on ACC was noted for several biogenic and synthetic systems, the molecular mechanisms by which additives govern ACC stability are not well understood. By precipitating ACC in the presence of different PO4(3-) concentrations and regulating the initial water content, we identify conditions yielding either kinetically locked or spontaneously transforming coprecipitates. Solid state NMR, supported by FTIR, XRD, and electron microscopy, define the interactions of phosphate and water within the initial amorphous matrix, showing that initially the coprecipitates are homogeneous molecular dispersions of structural water and phosphate in ACC, and a small fraction of P-rich phases. Monitoring the transformations of the homogeneous phase shows that PO4(3-) and waters are extracted first, and they phase separate, leading to solid-solid transformation of ACC to calcite; small part of ACC forms vaterite that subsequently converts to calcite. The simultaneous water-PO4(3-) extraction is the key for the subsequent water-mediated accumulation and crystallization of hydroxyapatite (HAp) and carbonated hydroxyapatite. The thermodynamic driving force for the transformations is calcite crystallization, yet it is gated by specific combinations of water-phosphate levels in the initial amorphous coprecipitates. The molecular details of the spontaneously transforming ACC and of the stabilized ACC modulated by phosphate and water at ambient conditions, provide insight into biogenic and biomimetic pathways. PMID:25523637

  20. 21 CFR 184.1191 - Calcium carbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... three common methods of manufacture: (1) As a byproduct in the “Lime soda process”; (2) By precipitation of calcium carbonate from calcium hydroxide in the “Carbonation process”; or (3) By precipitation...

  1. Crystal growth and agglomeration of calcium sulfite hemihydrate crystals

    SciTech Connect

    Tai, C.Y.; Chen, P.C.

    1995-04-01

    Flue gas desulfurization (FGD) processes are most commonly utilized to remove sulfur dioxide from stack gases of coal- or oil-fired plants. In the simple slurry technology, SO{sub 2} is absorbed by a slurry of lime/limestone to form calcium sulfite crystals of acicular habit and its strong agglomeration, requiring large clarifiers and filters to dewater the sludge to make an acceptable landfill. Crystal growth and agglomeration of calcium sulfite hemihydrate crystals from solution were studied by reacting Ca(OH){sub 2} with NaHSO{sub 3} in a pH-stat semibatch crystallizer. Single platelet crystals and agglomerates of platelet crystals were produced in the pH range from 5.80 to 6.80. The crystallization mechanism changed from primary nucleation to crystal growth in the progressive precipitation. Using the titration curves, the growth rate was calculated from the titration rate at the final stage of operation. The crystal growth rates of calcium sulfate hemihydrate crystals were found to obey the parabolic rate law in the low supersaturation range. Another point to be noted is that the precipitates of calcium sulfite hemihydrate in agitated suspensions have a tendency to form agglomerates. It was found that the degree of agglomeration is a weak function of relative supersaturation and magma density, while the pH value is a key factor that affects the degree of agglomeration. Addition of EDTA also has an effect on the agglomeration of calcium sulfite hemihydrates.

  2. 21 CFR 73.1070 - Calcium carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Calcium carbonate. 73.1070 Section 73.1070 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1070 Calcium carbonate. (a) Identity. (1) The color additive calcium carbonate is a fine, white, synthetically prepared powder consisting essentially...

  3. 21 CFR 582.1191 - Calcium carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium carbonate. 582.1191 Section 582.1191 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use....

  4. 21 CFR 73.1070 - Calcium carbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Calcium carbonate. 73.1070 Section 73.1070 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1070 Calcium carbonate. (a) Identity. (1) The color additive calcium carbonate is a fine, white, synthetically prepared powder consisting essentially...

  5. 21 CFR 582.1191 - Calcium carbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium carbonate. 582.1191 Section 582.1191 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use....

  6. 21 CFR 73.1070 - Calcium carbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Calcium carbonate. 73.1070 Section 73.1070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1070 Calcium carbonate. (a) Identity. (1) The color additive calcium carbonate is a fine,...

  7. Seeded Growth Route to Noble Calcium Carbonate Nanocrystal.

    PubMed

    Islam, Aminul; Teo, Siow Hwa; Rahman, M Aminur; Taufiq-Yap, Yun Hin

    2015-01-01

    A solution-phase route has been considered as the most promising route to synthesize noble nanostructures. A majority of their synthesis approaches of calcium carbonate (CaCO3) are based on either using fungi or the CO2 bubbling methods. Here, we approached the preparation of nano-precipitated calcium carbonate single crystal from salmacis sphaeroides in the presence of zwitterionic or cationic biosurfactants without external source of CO2. The calcium carbonate crystals were rhombohedron structure and regularly shaped with side dimension ranging from 33-41 nm. The high degree of morphological control of CaCO3 nanocrystals suggested that surfactants are capable of strongly interacting with the CaCO3 surface and control the nucleation and growth direction of calcium carbonate nanocrystals. Finally, the mechanism of formation of nanocrystals in light of proposed routes was also discussed. PMID:26700479

  8. Seeded Growth Route to Noble Calcium Carbonate Nanocrystal

    PubMed Central

    Islam, Aminul; Teo, Siow Hwa; Rahman, M. Aminur; Taufiq-Yap, Yun Hin

    2015-01-01

    A solution-phase route has been considered as the most promising route to synthesize noble nanostructures. A majority of their synthesis approaches of calcium carbonate (CaCO3) are based on either using fungi or the CO2 bubbling methods. Here, we approached the preparation of nano-precipitated calcium carbonate single crystal from salmacis sphaeroides in the presence of zwitterionic or cationic biosurfactants without external source of CO2. The calcium carbonate crystals were rhombohedron structure and regularly shaped with side dimension ranging from 33–41 nm. The high degree of morphological control of CaCO3 nanocrystals suggested that surfactants are capable of strongly interacting with the CaCO3 surface and control the nucleation and growth direction of calcium carbonate nanocrystals. Finally, the mechanism of formation of nanocrystals in light of proposed routes was also discussed. PMID:26700479

  9. Crystal growth of calcium oxalate monohydrate

    NASA Astrophysics Data System (ADS)

    Singh, R. P.; Gaur, S. S.; Sheehan, M. E.; Nancollas, G. H.

    1988-02-01

    The kinetics of crystal growth of calcium oxalate monohydrate has been investigated up to very large extents of growth over a range of supersaturations maintained using the Constant Composition technique. It is suggested that the initial rapid growth of aged seed crystals resulting in marked lattice perfection, reduces the density of growth sites on the crystal surfaces. A method for the preparation of perfected crystallites of calcium oxalate monohydrate through pregrowth of aged crystals has been developed. At large extents of growth with respect to initial seed crystals ( > 200% for aged crystals and 30-60% for pregrown crystals), the rates of crystallization at constant supersaturation undergo marked increases accompanying the formulation of secondary nuclei. These nucleation thresholds depend both upon supersaturation and upon the initial specific surface area of the crystallites and may be important factors in the formation of calcium oxalate stones in vivo. Experiments in whole urine suggest that the kinetics of growth, secondary nucleation, aggregation and cementation of particles may be important factors in kidney stone formation.

  10. Calcium carbonate and calcium sulfate in Martian meteorite EETA79001

    NASA Technical Reports Server (NTRS)

    Gooding, J. L.; Wentworth, S. J.

    1987-01-01

    Chips of glassy Lithology C of EETA79001 were studied by scanning electron microscopy and energy dispersive X-ray spectroscopy to determine the mineralogy and petrogenesis of the glass that was shown by others to contain trapped Mars-like gases. Calcium carbonite was identified as massive to acicular crystals for which Ca, C, and O were the major elements. Calcium sulfate was identified as prismatic-acicular crystals with Ca and S as the major elements.

  11. Gypsum crystals formed on decomposing calcium citrate

    NASA Astrophysics Data System (ADS)

    Söhnel, O.; Křivánková, I.; Krčmář, S.; Jurčová, M.

    1991-06-01

    Particle size and the specific surface area of gypsum crystals formed on decomposing an aqueous suspension of solid calcium citrate tetrahydrate by diluted 50% sulphuric acid at 25, 40, 60, 80 and 100°C was studied. The size of the gypsum crystals increases with increasing temperature of decomposition. At a constant temperature within the range of 25 to 100°C the median of gypsum crystal size distribution (PSD) increases for approximately 4 h after commencing decomposition and then reaches a virtually constant value. The specific surface area of gypsum crystals decreases after commencement of the reaction for approximately 6 h before reaching a constant value. Gypsum crystal growth by solute deposition from the liquid is responsible for PSD changes for approximately one hour at the commencement of reaction. Then the growth of larger crystals at the expense of smaller crystals, i.e. ripening, is apparently responsible for further changes in the PSD.

  12. Spinning up the polymorphs of calcium carbonate

    PubMed Central

    Boulos, Ramiz A.; Zhang, Fei; Tjandra, Edwin S.; Martin, Adam D.; Spagnoli, Dino; Raston, Colin L.

    2014-01-01

    Controlling the growth of the polymorphs of calcium carbonate is important in understanding the changing environmental conditions in the oceans. Aragonite is the main polymorph in the inner shells of marine organisms, and can be readily converted to calcite, which is the most stable polymorph of calcium carbonate. Both of these polymorphs are significantly more stable than vaterite, which is the other naturally occurring polymorph of calcium carbonate, and this is reflected in its limited distribution in nature. We have investigated the effect of high shear forces on the phase behaviour of calcium carbonate using a vortex fluidic device (VFD), with experimental parameters varied to explore calcium carbonate mineralisation. Variation of tilt angle, rotation speed and temperature allow for control over the size, shape and phase of the resulting calcium carbonate. PMID:24448077

  13. Binding of calcium and carbonate to polyacrylates.

    PubMed

    Tribello, Gareth A; Liew, CheeChin; Parrinello, Michele

    2009-05-21

    Polyacrylate molecules can be used to slow the growth of calcium carbonate. However, little is known about the mechanism by which the molecules impede the growth rate. A recent computational study (Bulo et al. Macromolecules 2007, 40, 3437) used metadynamics to investigate the binding of calcium to polyacrylate chains and has thrown some light on the coiling and precipitation of these polymers. We extend these simulations to examine the binding of calcium and carbonate to polyacrylate chains. We show that calcium complexed with both carbonate and polyacrylate is a very stable species. The free energies of calcium-carbonate-polyacrylate complexes, with different polymer configurations, are calculated, and differences in the free energy of the binding of carbonate are shown to be due to differences in the amount of steric hindrance about the calcium, which prevents the approach of the carbonate ion. PMID:19400592

  14. Structural Characteristics of Synthetic Amorphous Calcium Carbonate

    SciTech Connect

    Michel, F. Marc; MacDonald, Jason; Feng, Jian; Phillips, Brian L.; Ehm, Lars; Tarabrella, Cathy; Parise, John B.; Reeder, Richard J.

    2008-08-06

    Amorphous calcium carbonate (ACC) is an important phase involved in calcification by a wide variety of invertebrate organisms and is of technological interest in the development of functional materials. Despite widespread scientific interest in this phase a full characterization of structure is lacking. This is mainly due to its metastability and difficulties in evaluating structure using conventional structure determination methods. Here we present new findings from the application of two techniques, pair distribution function analysis and nuclear magnetic resonance spectroscopy, which provide new insight to structural aspects of synthetic ACC. Several important results have emerged from this study of ACC formed in vitro using two common preparation methods: (1) ACC exhibits no structural coherence over distances > 15 {angstrom} and is truly amorphous; (2) most of the hydrogen in ACC is present as structural H{sub 2}O, about half of which undergoes restricted motion on the millisecond time scale near room temperature; (3) the short- and intermediate-range structure of ACC shows no distinct match to any known structure in the calcium carbonate system; and (4) most of the carbonate in ACC is monodentate making it distinctly different from monohydrocalcite. Although the structure of synthetic ACC is still not fully understood, the results presented provide an important baseline for future experiments evaluating biogenic ACC and samples containing certain additives that may play a role in stabilization of ACC, crystallization kinetics, and final polymorph selection.

  15. Characterization of Medicago truncatula reduced calcium oxalate crystal mutant alleles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium oxalate crystal formation is common in plants. Formation of these crystals has been shown to function in plant defense, calcium regulation, and aluminum tolerance. Although calcium oxalate is common and plays important roles in plant development, our understanding of how these crystals form ...

  16. CALCIUM SULFITE CRYSTAL SIZING STUDIES

    EPA Science Inventory

    The report describes a reliable experimental method that can be used routinely to determine the crystal size distribution function, a measure that is required for a mathematical representation of the nucleation and growth processes involved in the settling, dewatering, and dispos...

  17. 21 CFR 582.5191 - Calcium carbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium carbonate. 582.5191 Section 582.5191 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5191 Calcium carbonate....

  18. 21 CFR 73.1070 - Calcium carbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Calcium carbonate. 73.1070 Section 73.1070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF... mixtures for coloring drugs. (b) Specifications. Calcium carbonate shall meet the specifications...

  19. 21 CFR 73.1070 - Calcium carbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Calcium carbonate. 73.1070 Section 73.1070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF... mixtures for coloring drugs. (b) Specifications. Calcium carbonate shall meet the specifications...

  20. Calcium carbonate polymorph control using droplet-based microfluidics.

    PubMed

    Yashina, Alexandra; Meldrum, Fiona; Demello, Andrew

    2012-06-01

    Calcium carbonate (CaCO(3)) is one of the most abundant minerals and of high importance in many areas of science including global CO(2) exchange, industrial water treatment energy storage, and the formation of shells and skeletons. Industrially, calcium carbonate is also used in the production of cement, glasses, paints, plastics, rubbers, ceramics, and steel, as well as being a key material in oil refining and iron ore purification. CaCO(3) displays a complex polymorphic behaviour which, despite numerous experiments, remains poorly characterised. In this paper, we report the use of a segmented-flow microfluidic reactor for the controlled precipitation of calcium carbonate and compare the resulting crystal properties with those obtained using both continuous flow microfluidic reactors and conventional bulk methods. Through combination of equal volumes of equimolar aqueous solutions of calcium chloride and sodium carbonate on the picoliter scale, it was possible to achieve excellent definition of both crystal size and size distribution. Furthermore, highly reproducible control over crystal polymorph could be realised, such that pure calcite, pure vaterite, or a mixture of calcite and vaterite could be precipitated depending on the reaction conditions and droplet-volumes employed. In contrast, the crystals precipitated in the continuous flow and bulk systems comprised of a mixture of calcite and vaterite and exhibited a broad distribution of sizes for all reaction conditions investigated. PMID:22655005

  1. Molecular mechanisms of crystallization impacting calcium phosphate cements

    PubMed Central

    Giocondi, Jennifer L.; El-Dasher, Bassem S.; Nancollas, George H.; Orme, Christine A.

    2010-01-01

    The biomineral calcium hydrogen phosphate dihydrate (CaHPO4·2H2O), known as brushite, is a malleable material that both grows and dissolves faster than most other calcium minerals, including other calcium phosphate phases, calcium carbonates and calcium oxalates. Within the body, this ready formation and dissolution can play a role in certain diseases, such as kidney stone and plaque formation. However, these same properties, along with brushite’s excellent biocompatibility, can be used to great benefit in making resorbable biomedical cements. To optimize cements, additives are commonly used to control crystallization kinetics and phase transformation. This paper describes the use of in situ scanning probe microscopy to investigate the role of several solution parameters and additives in brushite atomic step motion. Surprisingly, this work demonstrates that the activation barrier for phosphate (rather than calcium) incorporation limits growth kinetics and that additives such as magnesium, citrate and bisphosphonates each influence step motion in distinctly different ways. Our findings provide details of how, and where, molecules inhibit or accelerate kinetics. These insights have the potential to aid in designing molecules to target specific steps and to guide synergistic combinations of additives. PMID:20308110

  2. Influence of calcium oxalate crystal accumulation on the calcium content of seeds from Medicago truncatula

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crystals of calcium oxalate often form in cells adjacent to the vascular bundles in the tissues along the xylem stream. This spatial crystal pattern suggests a role for calcium oxalate formation in regulating calcium transport and partitioning to edible organs such as seeds. To investigate this pote...

  3. Calcium and Oxygen Isotopic Composition of Calcium Carbonates

    NASA Astrophysics Data System (ADS)

    Niedermayr, Andrea; Eisenhauer, Anton; Böhm, Florian; Kisakürek, Basak; Balzer, Isabelle; Immenhauser, Adrian; Jürgen Köhler, Stephan; Dietzel, Martin

    2016-04-01

    Different isotopic systems are influenced in multiple ways corresponding to the crystal structure, dehydration, deprotonation, adsorption, desorption, isotope exchange and diffusion processes. In this study we investigated the structural and kinetic effects on fractionation of stable Ca- and O-isotopes during CaCO3 precipitation. Calcite, aragonite and vaterite were precipitated using the CO2 diffusion technique[1]at a constant pH of 8.3, but various temperatures (6, 10, 25 and 40° C) and precipitation rates R (101.5 to 105 μmol h‑1 m‑2). The calcium isotopic fractionation between solution and vaterite is lower (Δ44/40Ca= -0.10 to -0.55 ‰) compared to calcite (-0.69 to -2.04 ‰) and aragonite (-0.91 to -1.55 ‰). In contrast the fractionation of oxygen isotopes is highest for vaterite (32.1 ‰), followed by aragonite (29.2 ‰) and calcite (27.6 ‰) at 25° C and equilibrium. The enrichment of 18O vs. 16O in all polymorphs decreases with increasing precipitation rate by around -0.7 ‰ per log(R). The calcium isotopic fractionation between calcite/ vaterite and aqueous Ca2+ increases with increasing precipitation rate by ˜0.45 ‰ per log(R) and ˜0.1 ‰ per log(R) at 25° C and 40° C, respectively. In contrast the fractionation of Ca-isotopes between aragonite and aqueous Ca2+ decreases with increasing precipitation rates. The large enrichment of 18O vs. 16O isotopes in carbonates is related to the strong bond of oxygen to the small and highly charged C4+-ion. In contrast equilibrium isotopic fractionation between solution and calcite or vaterite is nearly zero as the Ca-O bond length is similar for calcite, vaterite and the hydrated Ca. Aragonite incorporates preferentially the lighter 40Ca isotope as it has very large Ca-O bonds in comparison to the hydrated Ca. At the crystal surface the lighter 40Ca isotopes are preferentially incorporated as dehydration and diffusion of lighter isotopes are faster. Consequently, the surface becomes enriched in

  4. Influence of calcium oxalate crystal accumulation on the calcium content of seeds from Medicago truncatula.

    PubMed

    Nakata, Paul A

    2012-04-01

    Crystals of calcium oxalate often form in cells adjacent to the vascular bundles in the tissues along the xylem stream. This spatial crystal pattern suggests a role for calcium oxalate formation in regulating calcium transport and partitioning to edible organs such as seeds. To investigate this potential role, microscopic and biochemical comparisons were conducted on the different tissues of Medicago truncatula wild-type and the calcium oxalate defective (cod) 5 which lacks the ability to accumulate prismatic crystals in the cells adjacent to the vascular bundles. Calcium measurements showed that cod5 seeds had more calcium and cod5 pods contained less calcium than the corresponding wild-type tissues. Roots, stems, and leaves from cod5 and wild-type had similar calcium content. Although cod5 was devoid of prismatic crystals, cod5 pods were observed to form druse crystals of calcium oxalate not found in wild-type pods. Taken together these findings suggest a functional role for calcium oxalate formation in regulating calcium transport to the seeds. Regulating calcium uptake at the roots also appeared to be another point of control in determining seed calcium content. Overall, regulating the long distance transport and partitioning of calcium to the seeds appears to be a complex process with multiple points of control. PMID:22325887

  5. Incorporation of Chromate into Calcium Carbonate Structure during Coprecipitation

    SciTech Connect

    Hua, Bin; Deng, Baolin; Thornton, Edward C.; Yang, J.; Amonette, James E.

    2006-09-08

    To assess treatment technologies and establish regulatory framework for chromate-contaminated site remediation, it is imperative to know the exact chromium speciation in soil matrices. In an earlier study, Thornton and Amonette (1999) reported that some chromate in the bulk particles was not accessible to gaseous reductants or solution-phase extractants, based on XANES studies. We hypothesized that part of this non-extractable chromate may reside in the structure of minerals such as calcium carbonate. To test this hypothesis, a number of calcium carbonate precipitates were prepared in the presence of various concentrations of chromate during the precipitation, which could coprecipitate chromate, or by adding chromate after the precipitation was completed. Hydrochloric acid was used to dissolve calcium carbonate and therefore extract the coprecipitated and surface attached chromate. The results showed that the coprecipitated chromate was non-extractable by hot alkaline solution or phosphate buffer, but could be solubilized by HCl in proportional to the amount of calcium carbonate dissolved. The X-ray diffraction experiments revealed that the coprecipitation of chromate with calcium carbonate had an influence on its crystal structure: the higher the chromate concentration, the greater the ratio of vaterite to calcite.

  6. Ab Initio Studies of Calcium Carbonate Hydration.

    PubMed

    Lopez-Berganza, Josue A; Diao, Yijue; Pamidighantam, Sudhakar; Espinosa-Marzal, Rosa M

    2015-11-25

    Ab initio simulations of large hydrated calcium carbonate clusters are challenging due to the existence of multiple local energy minima. Extensive conformational searches around hydrated calcium carbonate clusters (CaCO3·nH2O for n = 1-18) were performed to find low-energy hydration structures using an efficient combination of Monte Carlo searches, density-functional tight binding (DFTB+) method, and density-functional theory (DFT) at the B3LYP level, or Møller-Plesset perturbation theory at the MP2 level. This multilevel optimization yields several low-energy structures for hydrated calcium carbonate. Structural and energetics analysis of the hydration of these clusters revealed a first hydration shell composed of 12 water molecules. Bond-length and charge densities were also determined for different cluster sizes. The solvation of calcium carbonate in bulk water was investigated by placing the explicitly solvated CaCO3·nH2O clusters in a polarizable continuum model (PCM). The findings of this study provide new insights into the energetics and structure of hydrated calcium carbonate and contribute to the understanding of mechanisms where calcium carbonate formation or dissolution is of relevance. PMID:26505205

  7. Calcium carbonate nucleation in an alkaline lake surface water, Pyramid Lake, Nevada, USA

    USGS Publications Warehouse

    Reddy, Michael M.; Hoch, Anthony

    2012-01-01

    Calcium concentration and calcite supersaturation (Ω) needed for calcium carbonate nucleation and crystal growth in Pyramid Lake (PL) surface water were determined during August of 1997, 2000, and 2001. PL surface water has Ω values of 10-16. Notwithstanding high Ω, calcium carbonate growth did not occur on aragonite single crystals suspended PL surface water for several months. However, calcium solution addition to PL surface-water samples caused reproducible calcium carbonate mineral nucleation and crystal growth. Mean PL surface-water calcium concentration at nucleation was 2.33 mM (n = 10), a value about nine times higher than the ambient PL surface-water calcium concentration (0.26 mM); mean Ω at nucleation (109 with a standard deviation of 8) is about eight times the PL surface-water Ω. Calcium concentration and Ω regulated the calcium carbonate formation in PL nucleation experiments and surface water. Unfiltered samples nucleated at lower Ω than filtered samples. Calcium concentration and Ω at nucleation for experiments in the presence of added particles were within one standard deviation of the mean for all samples. Calcium carbonate formation rates followed a simple rate expression of the form, rate (mM/min) = A (Ω) + B. The best fit rate equation "Rate (Δ mM/Δ min) = -0.0026 Ω + 0.0175 (r = 0.904, n = 10)" was statistically significant at greater than the 0.01 confidence level and gives, after rearrangement, Ω at zero rate of 6.7. Nucleation in PL surface water and morphology of calcium carbonate particles formed in PL nucleation experiments and in PL surface-water samples suggest crystal growth inhibition by multiple substances present in PL surface water mediates PL calcium carbonate formation, but there is insufficient information to determine the chemical nature of all inhibitors.

  8. Calcium Carbonate Nucleation in an Alkaline Lake Surface Water, Pyramid Lake, Nevada, USA

    USGS Publications Warehouse

    Reddy, M.M.; Hoch, A.

    2012-01-01

    Calcium concentration and calcite supersaturation (??) needed for calcium carbonate nucleation and crystal growth in Pyramid Lake (PL) surface water were determined during August of 1997, 2000, and 2001. PL surface water has ?? values of 10-16. Notwithstanding high ??, calcium carbonate growth did not occur on aragonite single crystals suspended PL surface water for several months. However, calcium solution addition to PL surface-water samples caused reproducible calcium carbonate mineral nucleation and crystal growth. Mean PL surface-water calcium concentration at nucleation was 2.33 mM (n = 10), a value about nine times higher than the ambient PL surface-water calcium concentration (0.26 mM); mean ?? at nucleation (109 with a standard deviation of 8) is about eight times the PL surface-water ??. Calcium concentration and ?? regulated the calcium carbonate formation in PL nucleation experiments and surface water. Unfiltered samples nucleated at lower ?? than filtered samples. Calcium concentration and ?? at nucleation for experiments in the presence of added particles were within one standard deviation of the mean for all samples. Calcium carbonate formation rates followed a simple rate expression of the form, rate (mM/min) = A (??) + B. The best fit rate equation "Rate (?? mM/?? min) = -0.0026 ?? + 0.0175 (r = 0.904, n = 10)" was statistically significant at greater than the 0.01 confidence level and gives, after rearrangement, ?? at zero rate of 6.7. Nucleation in PL surface water and morphology of calcium carbonate particles formed in PL nucleation experiments and in PL surface-water samples suggest crystal growth inhibition by multiple substances present in PL surface water mediates PL calcium carbonate formation, but there is insufficient information to determine the chemical nature of all inhibitors. ?? 2011 U.S. Government.

  9. Nacre-like calcium carbonate controlled by ionic liquid/graphene oxide composite template.

    PubMed

    Yao, Chengli; Xie, Anjian; Shen, Yuhua; Zhu, Jinmiao; Li, Hongying

    2015-06-01

    Nacre-like calcium carbonate nanostructures have been mediated by an ionic liquid (IL)-graphene oxide (GO) composite template. The resultant crystals were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, and X-ray powder diffractometry (XRD). The results showed that either 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4) or graphene oxide can act as a soft template for calcium carbonate formation with unusual morphologies. Based on the time-dependent morphology changes of calcium carbonate particles, it is concluded that nacre-like calcium carbonate nanostructures can be formed gradually utilizing [BMIM]BF4/GO composite template. During the process of calcium carbonate formation, [BMIM]BF4 acted not only as solvents but also as morphology templates for the fabrication of calcium carbonate materials with nacre-like morphology. Based on the observations, the possible mechanisms were also discussed. PMID:25842135

  10. Precipitation of calcium carbonate from a calcium acetate and ammonium carbamate batch system

    NASA Astrophysics Data System (ADS)

    Prah, J.; Maček, J.; Dražič, G.

    2011-06-01

    In this paper, we report a novel approach for preparing precipitated calcium carbonate using solutions of ammonium carbamate and calcium acetate as the sources of calcium and carbon dioxide, respectively. Two different concentrations of the starting solutions at three different temperatures (15, 25 and 50 °C) were used for the reaction. The influence of temperature and concentration on the polymorphism and the resulting morphology of calcium carbonate are discussed. The most important parameter for controlling a particular crystal structure and precipitate morphology were the concentrations of the initial solutions. When initial solutions with lower concentrations were used, the crystal form of the precipitate changed with time. Regardless the different polymorphism at different temperatures, after one day only the calcite form was detected in all samples, regardless of at which temperature the samples were prepared. At higher concentrations, pure vaterite or a mixture of vaterite and calcite were present at the beginning of the experiment. After one day, pure vaterite was found in the samples that were prepared at 15 and 25 °C. If calcium carbonate precipitated at 50 °C, the XRD results showed a mixture of calcite and vaterite regardless of the time at which the sample was taken. The morphology of calcium carbonate particles prepared at various conditions changed from calcite cubes to spherical particles of vaterite and aragonite needles. When a low starting concentration was used, the morphology at the initial stage was strongly affected by the temperature at which the experiments were conducted. However, after one day only, cubes were present in all cases at low initial concentrations. In contrast, at high concentrations spherical particles precipitated at all three temperatures at the beginning of the reaction. Spherical particles were made up from smaller particles. Over time, the size of the particles was diminishing due to their disintegration into

  11. Effects of DPPC/Cholesterol liposomes on the properties of freshly precipitated calcium carbonate.

    PubMed

    Szcześ, A

    2013-01-01

    DPPC/Cholesterol liposomes of average diameter below 100nm were used as a matrix for calcium carbonate precipitation. Adsorption of calcium ions on the vesicles was determined via zeta potential measurement. It was found that with increasing calcium ions concentration the electrokinetic potential of the vesicles varied toward more positive values. The changes became smaller with the cholesterol content increase. Accumulation of calcium ions close to the vesicles membranes lead to attraction of CO(3)(2-) ions and enhances nucleation and growth of small calcium carbonate crystals that aggregates within lipid vesicles forming porous balls aggregates. However, dipalmitoylphosphatidylcholine (DPPC) does not change the CaCO(3) crystal forms and calcite is the only form obtained during precipitation. Moreover, the influence of the phospholipid on the calcium carbonate precipitation is enhanced by the induction of cholesterol to the lipid membranes. PMID:22796770

  12. Calcination of calcium carbonate and blend therefor

    SciTech Connect

    Mallow, W.A.; Dziuk, J.J. Jr.

    1989-05-09

    This patent describes a method for the accelerated calcination of a calcium carbonate material. It comprises: heating the calcium carbonate material to a temperature and for a time sufficient to calcine the material to the degree desired while in the presence of a fused salt catalyst consisting of particles having a size above or below that of the calcium carbonate material; the catalyst comprising at least one fused salt having the formula M{sub 2}CO{sub 3}. CaCO{sub 3}-CaO-H{sub 2}O{sub {ital x}}, wherein M is an alkali metal selected from sodium or potassium and x is 0 to 1 and the salt is formed by fusing M{sub 2}CO{sub 3} and CaCO{sub 3} in a molar ratio of about 1:2 to 2:1 when the alkali metal is sodium and about 1:1 to 2:1 when the alkali metal is potassium. This patent also describes a blend adapted to be heated to form CaO. It comprises: a calcium carbonate material and a catalyst consisting of particles having a size above or below that of the calcium carbonate material; the catalyst comprising at least one fused salt having the formula M{sub 2}CO{sub 3}-CaCO{sub 3}CaO-H{sub 2}O{sub {ital x}}.

  13. Diagnosis and clinical manifestations of calcium pyrophosphate and basic calcium phosphate crystal deposition diseases.

    PubMed

    Ea, Hang-Korng; Lioté, Frédéric

    2014-05-01

    Basic calcium phosphate and pyrophosphate calcium crystals are the 2 main calcium-containing crystals that can deposit in all skeletal tissues. These calcium crystals give rise to numerous manifestations, including acute inflammatory attacks that can mimic alarming and threatening differential diagnoses, osteoarthritis-like lesions, destructive arthropathies, and calcific tendinitis. Awareness of uncommon localizations and manifestations such as intraspinal deposition (eg, crowned dens syndrome, tendinitis of longus colli muscle, massive cervical myelopathy compression) prevents inappropriate procedures and cares. Coupling plain radiography, ultrasonography, computed tomography, and synovial fluid analysis allow accurate diagnosis by directly or indirectly identifying the GRAAL of microcrystal-related symptoms. PMID:24703344

  14. Calcination of calcium carbonate and blend therefor

    SciTech Connect

    Mallow, William A.; Dziuk, Jr., Jerome J.

    1989-01-01

    A method for calcination of a calcium carbonate material comprising heating the calcium carbonate material to a temperature and for a time sufficient to calcine the material to the degree desired while in the presence of a catalyst; said catalyst comprising at least one fused salt having the formula MCO.sub.3.CaCO.sub.3.CaO.H.sub.2 O.sub.x, wherein M is an alkali metal and x is 0 to 1 and formed by fusing MCO.sub.3 and CaCO.sub.3 in a molar ratio of about 1:2 to 2:1, and a blend adapted to be heated to CaO comprising a calcium carbonate material and at least one such fused salt.

  15. Strain-Specific Ureolytic Microbial Calcium Carbonate Precipitation

    PubMed Central

    Hammes, Frederik; Boon, Nico; de Villiers, Johan; Verstraete, Willy; Siciliano, Steven Douglas

    2003-01-01

    During a study of ureolytic microbial calcium carbonate (CaCO3) precipitation by bacterial isolates collected from different environmental samples, morphological differences were observed in the large CaCO3 crystal aggregates precipitated within bacterial colonies grown on agar. Based on these differences, 12 isolates were selected for further study. We hypothesized that the striking differences in crystal morphology were the result of different microbial species or, alternatively, differences in the functional attributes of the isolates selected. Sequencing of 16S rRNA genes showed that all of the isolates were phylogenetically closely related to the Bacillus sphaericus group. Urease gene diversity among the isolates was examined by using a novel application of PCR-denaturing gradient gel electrophoresis (DGGE). This approach revealed significant differences between the isolates. Moreover, for several isolates, multiple bands appeared on the DGGE gels, suggesting the apparent presence of different urease genes in these isolates. The substrate affinities (Km) and maximum hydrolysis rates (Vmax) of crude enzyme extracts differed considerably for the different strains. For certain isolates, the urease activity increased up to 10-fold in the presence of 30 mM calcium, and apparently this contributed to the characteristic crystal formation by these isolates. We show that strain-specific calcification occurred during ureolytic microbial carbonate precipitation. The specificity was mainly due to differences in urease expression and the response to calcium. PMID:12902285

  16. Calcium

    MedlinePlus

    ... of calcium dietary supplements are carbonate and citrate. Calcium carbonate is inexpensive, but is absorbed best when taken ... antacid products, such as Tums® and Rolaids®, contain calcium carbonate. Each pill or chew provides 200–400 mg ...

  17. 21 CFR 582.5191 - Calcium carbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium carbonate. 582.5191 Section 582.5191 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  18. 21 CFR 582.5191 - Calcium carbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium carbonate. 582.5191 Section 582.5191 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  19. 21 CFR 582.5191 - Calcium carbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium carbonate. 582.5191 Section 582.5191 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  20. 21 CFR 582.5191 - Calcium carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium carbonate. 582.5191 Section 582.5191 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  1. Effects of functional groups and soluble matrices in fish otolith on calcium carbonate mineralization.

    PubMed

    Ren, Dongni; Li, Zhuo; Gao, Yonghua; Feng, Qingling

    2010-10-01

    Calcium carbonate mineralization is significantly influenced by organic matrices in vivo. The effect mainly relies on functional groups in proteins. In order to study the influence of functional groups on calcium carbonate mineralization, -OH, -NH2 and -COOH groups were grafted onto single crystal silicon chips, and such modified chips were used as substrates in in vitro mineralization experiments. An x-ray photoelectron spectroscopy (XPS) test was conducted to examine the grafting efficiency, and the three groups were successfully grafted. Calcium carbonate mineralization on a modified silicon substrate was examined by a scanning electron microscope (SEM) and x-ray diffraction (XRD), and the results showed that the effects of -OH, -NH2 and -COOH groups were quite different. Furthermore, a water-soluble protein matrix (WSM) and an acid-soluble protein matrix (ASM) extracted from fish otolith were adsorbed onto the -COOH-modified silicon substrate, and the effects of the protein matrices on calcium carbonate mineralization were studied. The results showed that both WSM and ASM of lapillus could mediate aragonite crystallization, but the size and morphology of the formed crystals were different. The WSM and ASM of asteriscus adsorbed on the silicon substrate had little effect on calcium carbonate mineralization; almost all the crystals were calcite, while both asteriscus WSM and ASM in solution could mediate vaterite crystals, and the morphologies of vaterite crystal aggregates were different. PMID:20844320

  2. The expanded amelogenin polyproline region preferentially binds to apatite versus carbonate and promotes apatite crystal elongation

    PubMed Central

    Gopinathan, Gokul; Jin, Tianquan; Liu, Min; Li, Steve; Atsawasuwan, Phimon; Galang, Maria-Therese; Allen, Michael; Luan, Xianghong; Diekwisch, Thomas G. H.

    2014-01-01

    The transition from invertebrate calcium carbonate-based calcite and aragonite exo- and endoskeletons to the calcium phosphate-based vertebrate backbones and jaws composed of microscopic hydroxyapatite crystals is one of the great revolutions in the evolution of terrestrial organisms. To identify potential factors that might have played a role in such a transition, three key domains of the vertebrate tooth enamel protein amelogenin were probed for calcium mineral/protein interactions and their ability to promote calcium phosphate and calcium carbonate crystal growth. Under calcium phosphate crystal growth conditions, only the carboxy-terminus augmented polyproline repeat peptide, but not the N-terminal peptide nor the polyproline repeat peptide alone, promoted the formation of thin and parallel crystallites resembling those of bone and initial enamel. In contrast, under calcium carbonate crystal growth conditions, all three amelogenin-derived polypeptides caused calcium carbonate to form fused crystalline conglomerates. When examined for long-term crystal growth, polyproline repeat peptides of increasing length promoted the growth of shorter calcium carbonate crystals with broader basis, contrary to the positive correlation between polyproline repeat element length and apatite mineralization published earlier. To determine whether the positive correlation between polyproline repeat element length and apatite crystal growth versus the inverse correlation between polyproline repeat length and calcium carbonate crystal growth were related to the binding affinity of the polyproline domain to either apatite or carbonate, a parallel series of calcium carbonate and calcium phosphate/apatite protein binding studies was conducted. These studies demonstrated a remarkable binding affinity between the augmented amelogenin polyproline repeat region and calcium phosphates, and almost no binding to calcium carbonates. In contrast, the amelogenin N-terminus bound to both carbonate

  3. Influence of the surfactant nature on the calcium carbonate synthesis in water-in-oil emulsion

    NASA Astrophysics Data System (ADS)

    Szcześ, Aleksandra

    2009-02-01

    Calcium carbonate has been precipitated from water-in-oil emulsions consisting of n-hexane/nonionic surfactant (Brij 30) and its mixture with cationic (DTAB) or anionic surfactant (SDS) to which calcium chloride and sodium carbonate were added. It was found that the surfactant kind and its amount can regulate the size, form and morphology of the precipitated particles. In case of nonionic surfactant the water/surfactant ratio is the most important parameter that allows to obtain small and regular calcium carbonate crystals. Addition of the DTAB results in different morphology of particles having the same crystal form, whereas addition of SDS changes the kind of emulsion from water-in-oil to oil-in-water. Moreover, light transmittance and backscattering light measurements have been used as a method to study the kinetics of calcium carbonate precipitation in emulsion systems.

  4. Calcium oxalate crystal growth in human urinary stones

    SciTech Connect

    Kim, K.M.; Johnson, F.B.

    1981-01-01

    Calcium oxalate stones are very common and increasing. Crystal growth is no less important than the crystal nucleation in the pathogenesis of stone formation. The crystal growth was studied in human calcium oxalate stones by a combined electron microscopy and x-ray diffraction. The main mode of weddellite growth was interpenetration twinning of tetrahedral bipyramids. Bipyramids may form as initial crystal seeds, develop from anhedral crystals (crystals which lack flat symmetric faces) of spherular or mulberry shape, develop on the surface of preformed bipyramids by spiral dislocation mechanisms, or develop on whewellite crystal by heterogeneous nucleation and epitaxy. Heterogeneous nucleations of whewellite on weddellite, and calcium apatite on whewellite were also observed. Whewellite grew mainly by parallel twinning. Interpenetration twinning was exceptional. Transformation of anhedral to euhedral (completely bounded by flat faces that are set ar fixed angles to one another) whewellite occurred by parallel fissurations followed by brick wall like stacking of the crystals, while euhedral transformation of weddellite occurred by protrusion of bipyramids frm anhedral crystal surface. Occasionally, an evidence of crystal dissolution was noted. Although an aggregation of crystals is believed to play a pivotal role in stone nidus formation, growth in size of the formed crystals, and twinning and epitactic crystal intergrowth apparently play a significant role in the obstructive urinary stone formation.

  5. Lysozyme mediated calcium carbonate mineralization.

    PubMed

    Wang, Xiaoqiang; Sun, Hailing; Xia, Yongqing; Chen, Cuixia; Xu, Hai; Shan, Honghong; Lu, Jian R

    2009-04-01

    Lysozyme, a major component of egg white proteins, has been speculated to participate in the calcification of avian eggshells. However, its detailed role during the eggshell formation is not well understood. In this work, the influence of lysozyme on the precipitation of CaCO(3) has been investigated using a combined study of FTIR, XRD, and SEM. The precipitation was produced from (NH(4))(2)CO(3) vapor diffusion into CaCl(2) aqueous solution using a specially built chamber. In the absence of lysozyme, hexagonal platelets of vaterite and their spherical aggregates dominated the precipitates during the first 3-12 h crystallization period studied, with the (001) crystal face well expressed in the hexagonal direction. In contrast, calcite was favored to precipitate in the presence of lysozyme during the same period and the effect was found to be proportional to lysozyme concentration. Furthermore, the (110) face of calcite was expressed in addition to the common (104) face, and the morphological modification was also lysozyme concentration dependent. We attributed these phenomena to the selective adsorption of ammonium ions and lysozyme onto different crystal faces. Our findings have clearly revealed the concentration and face dependent role of lysozyme in CaCO(3) precipitation. This, together with the abundance of lysozyme in the uterine fluid, implies its direct contribution to the hierarchical structures of calcite during the initial stage of eggshell formation. PMID:19167007

  6. Alarm Photosynthesis: Calcium Oxalate Crystals as an Internal CO2 Source in Plants.

    PubMed

    Tooulakou, Georgia; Giannopoulos, Andreas; Nikolopoulos, Dimosthenis; Bresta, Panagiota; Dotsika, Elissavet; Orkoula, Malvina G; Kontoyannis, Christos G; Fasseas, Costas; Liakopoulos, Georgios; Klapa, Maria I; Karabourniotis, George

    2016-08-01

    Calcium oxalate crystals are widespread among animals and plants. In land plants, crystals often reach high amounts, up to 80% of dry biomass. They are formed within specific cells, and their accumulation constitutes a normal activity rather than a pathological symptom, as occurs in animals. Despite their ubiquity, our knowledge on the formation and the possible role(s) of these crystals remains limited. We show that the mesophyll crystals of pigweed (Amaranthus hybridus) exhibit diurnal volume changes with a gradual decrease during daytime and a total recovery during the night. Moreover, stable carbon isotope composition indicated that crystals are of nonatmospheric origin. Stomatal closure (under drought conditions or exogenous application of abscisic acid) was accompanied by crystal decomposition and by increased activity of oxalate oxidase that converts oxalate into CO2 Similar results were also observed under drought stress in Dianthus chinensis, Pelargonium peltatum, and Portulacaria afra Moreover, in A. hybridus, despite closed stomata, the leaf metabolic profiles combined with chlorophyll fluorescence measurements indicated active photosynthetic metabolism. In combination, calcium oxalate crystals in leaves can act as a biochemical reservoir that collects nonatmospheric carbon, mainly during the night. During the day, crystal degradation provides subsidiary carbon for photosynthetic assimilation, especially under drought conditions. This new photosynthetic path, with the suggested name "alarm photosynthesis," seems to provide a number of adaptive advantages, such as water economy, limitation of carbon losses to the atmosphere, and a lower risk of photoinhibition, roles that justify its vast presence in plants. PMID:27261065

  7. Two competitive nucleation mechanisms of calcium carbonate biomineralization in response to surface functionality in low calcium ion concentration solution

    PubMed Central

    Deng, Hua; Wang, Shuo; Wang, Xiumei; Du, Chang; Shen, Xingcan; Wang, Yingjun; Cui, Fuzhai

    2015-01-01

    Four self-assembled monolayer surfaces terminated with –COOH, –OH, –NH2 and –CH3 functional groups are used to direct the biomineralization processes of calcium carbonate (CaCO3) in low Ca2+ concentration, and the mechanism of nucleation and initial crystallization within 12 h was further explored. On −COOH surface, nucleation occurs mainly via ion aggregation mechanism while prenucleation ions clusters may be also involved. On −OH and −NH2 surfaces, however, nucleation forms via calcium carbonate clusters, which aggregate in solution and then are adsorbed onto surfaces following with nucleation of amorphous calcium carbonate (ACC). Furthermore, strongly negative-charged −COOH surface facilitates the direct formation of calcites, and the −OH and −NH2 surfaces determine the formation of vaterites with preferred crystalline orientations. Neither ACC nor crystalline CaCO3 is observed on −CH3 surface. Our findings present a valuable model to understand the CaCO3 biomineralization pathway in natural system where functional groups composition plays a determining role during calcium carbonate crystallization. PMID:26814639

  8. Two competitive nucleation mechanisms of calcium carbonate biomineralization in response to surface functionality in low calcium ion concentration solution.

    PubMed

    Deng, Hua; Wang, Shuo; Wang, Xiumei; Du, Chang; Shen, Xingcan; Wang, Yingjun; Cui, Fuzhai

    2015-09-01

    Four self-assembled monolayer surfaces terminated with -COOH, -OH, -NH2 and -CH3 functional groups are used to direct the biomineralization processes of calcium carbonate (CaCO3) in low Ca(2+) concentration, and the mechanism of nucleation and initial crystallization within 12 h was further explored. On -COOH surface, nucleation occurs mainly via ion aggregation mechanism while prenucleation ions clusters may be also involved. On -OH and -NH2 surfaces, however, nucleation forms via calcium carbonate clusters, which aggregate in solution and then are adsorbed onto surfaces following with nucleation of amorphous calcium carbonate (ACC). Furthermore, strongly negative-charged -COOH surface facilitates the direct formation of calcites, and the -OH and -NH2 surfaces determine the formation of vaterites with preferred crystalline orientations. Neither ACC nor crystalline CaCO3 is observed on -CH3 surface. Our findings present a valuable model to understand the CaCO3 biomineralization pathway in natural system where functional groups composition plays a determining role during calcium carbonate crystallization. PMID:26814639

  9. Aluminum citrate prevents renal injury from calcium oxalate crystal deposition.

    PubMed

    Besenhofer, Lauren M; Cain, Marie C; Dunning, Cody; McMartin, Kenneth E

    2012-12-01

    Calcium oxalate monohydrate crystals are responsible for the kidney injury associated with exposure to ethylene glycol or severe hyperoxaluria. Current treatment strategies target the formation of calcium oxalate but not its interaction with kidney tissue. Because aluminum citrate blocks calcium oxalate binding and toxicity in human kidney cells, it may provide a different therapeutic approach to calcium oxalate-induced injury. Here, we tested the effects of aluminum citrate and sodium citrate in a Wistar rat model of acute high-dose ethylene glycol exposure. Aluminum citrate, but not sodium citrate, attenuated increases in urea nitrogen, creatinine, and the ratio of kidney to body weight in ethylene glycol-treated rats. Compared with ethylene glycol alone, the addition of aluminum citrate significantly increased the urinary excretion of both crystalline calcium and crystalline oxalate and decreased the deposition of crystals in renal tissue. In vitro, aluminum citrate interacted directly with oxalate crystals to inhibit their uptake by proximal tubule cells. These results suggest that treating with aluminum citrate attenuates renal injury in rats with severe ethylene glycol toxicity, apparently by inhibiting calcium oxalate's interaction with, and retention by, the kidney epithelium. PMID:23138489

  10. Aluminum Citrate Prevents Renal Injury from Calcium Oxalate Crystal Deposition

    PubMed Central

    Besenhofer, Lauren M.; Cain, Marie C.; Dunning, Cody

    2012-01-01

    Calcium oxalate monohydrate crystals are responsible for the kidney injury associated with exposure to ethylene glycol or severe hyperoxaluria. Current treatment strategies target the formation of calcium oxalate but not its interaction with kidney tissue. Because aluminum citrate blocks calcium oxalate binding and toxicity in human kidney cells, it may provide a different therapeutic approach to calcium oxalate-induced injury. Here, we tested the effects of aluminum citrate and sodium citrate in a Wistar rat model of acute high-dose ethylene glycol exposure. Aluminum citrate, but not sodium citrate, attenuated increases in urea nitrogen, creatinine, and the ratio of kidney to body weight in ethylene glycol–treated rats. Compared with ethylene glycol alone, the addition of aluminum citrate significantly increased the urinary excretion of both crystalline calcium and crystalline oxalate and decreased the deposition of crystals in renal tissue. In vitro, aluminum citrate interacted directly with oxalate crystals to inhibit their uptake by proximal tubule cells. These results suggest that treating with aluminum citrate attenuates renal injury in rats with severe ethylene glycol toxicity, apparently by inhibiting calcium oxalate’s interaction with, and retention by, the kidney epithelium. PMID:23138489

  11. Calcium carbonate mineralization mediated by in vitro cultured mantle cells from Pinctada fucata.

    PubMed

    Kong, Wei; Li, Shiguo; Xiang, Liang; Xie, Liping; Zhang, Rongqing

    2015-08-01

    Formation of the molluscan shell is believed to be an extracellular event mediated by matrix proteins. We report calcium carbonate mineralization mediated by Pinctada fucata mantle cells. Crystals only appeared when mantle cells were present in the crystallization solution. These crystals were piled up in highly ordered units and showed the typical characteristics of biomineralization products. A thin organic framework was observed after dissolving the crystals in EDTA. Some crystals had etched surfaces with a much smoother appearance than other parts. Mantle cells were observed to be attached to some of these smooth surfaces. These results suggest that mantle cells may be directly involved in the nucleation and remodeling process of calcium carbonate mineralization. Our result demonstrate the practicability of studying the mantle cell mechanism of biomineralization and contribute to the overall understanding of the shell formation process. PMID:26079887

  12. Calcium and calcium isotope changes during carbon cycle perturbations at the end-Permian

    NASA Astrophysics Data System (ADS)

    Komar, N.; Zeebe, R. E.

    2016-01-01

    Negative carbon and calcium isotope excursions, as well as climate shifts, took place during the most severe mass extinction event in Earth's history, the end-Permian (˜252 Ma). Investigating the connection between carbon and calcium cycles during transient carbon cycle perturbation events, such as the end-Permian, may help resolve the intricacies between the coupled calcium-carbon cycles, as well as provide a tool for constraining the causes of mass extinction. Here we identify the deficiencies of a simplified calcium model employed in several previous studies, and we demonstrate the importance of a fully coupled carbon cycle model when investigating the dynamics of carbon and calcium cycling. Simulations with a modified version of the Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir model, which includes a fully coupled carbon-calcium cycle, indicate that increased weathering rates and ocean acidification (potentially caused by Siberian Trap volcanism) are not capable of producing trends observed in the record, as previously claimed. Our model results suggest that combined effects of carbon input via Siberian Trap volcanism (12,000 Pg C), the cessation of biological carbon export, and variable calcium isotope fractionation (due to a change in the seawater carbonate ion concentration) represents a more plausible scenario. This scenario successfully reconciles δ13C and δ44Ca trends observed in the sediment record, as well as the proposed warming of >6°C.

  13. Calcium and calcium isotope changes during carbon cycle perturbations at the end-Permian

    NASA Astrophysics Data System (ADS)

    Komar, Nemanja; Zeebe, Richard

    2016-04-01

    Negative carbon and calcium isotope excursions, as well as climate shifts, took place during the most severe mass extinction event in Earth's history, the end-Permian (˜252 Ma). Investigating the connection between carbon and calcium cycles during transient carbon cycle perturbation events, such as the end-Permian, may help resolve the intricacies between the coupled calcium-carbon cycles, as well as provide a tool for constraining the causes of mass extinction. Here, we identify the deficiencies of a simplified calcium model employed in several previous studies and we demonstrate the importance of a fully coupled carbon-cycle model when investigating the dynamics of carbon and calcium cycling. Simulations with a modified version of the LOSCAR model, which includes a fully coupled carbon-calcium cycle, indicate that increased weathering rates and ocean acidification (potentially caused by Siberian Trap volcanism) are not capable of producing trends observed in the record, as previously claimed. Our model results suggest that combined effects of carbon input via Siberian Trap volcanism (12,000 Pg C), the cessation of biological carbon export, and variable calcium isotope fractionation (due to a change in the seawater carbonate ion concentration) represents a more plausible scenario. This scenario successfully reconciles δ13C and δ44Ca trends observed in the sediment record, as well as the proposed warming of >6oC.

  14. Bivalves build their shells from amorphous calcium carbonate

    NASA Astrophysics Data System (ADS)

    Jacob, D. E.; Wirth, R.; Soldati, A. L.; Wehrmeister, U.

    2012-04-01

    One of the most common shell structures in the bivalve class is the prism and nacre structure. It is widely distributed amongst both freshwater and marine species and gives cultured pearls their sought-after lustre. In freshwater bivalves, both shell structures (prism and nacre) consist of aragonite. Formation of the shell form an amorphous precursor phase is a wide-spread strategy in biomineralization and presents a number of advantages for the organisms in the handling of the CaCO3 material. While there is already evidence that larval shells of some mollusk species use amorphous calcium carbonate (ACC) as a transient precursor phase for aragonite, the use of this strategy by adult animals was only speculated upon. We present results from in-situ geochemistry, Raman spectroscopy and focused-ion beam assisted TEM on three species from two different bivalve families that show that remnants of ACC can be found in shells from adult species. We show that the amorphous phase is not randomly distributed, but is systematically found in a narrow zone at the interface between periostracum and prism layer. This zone is the area where spherulitic CaCO3- structures protrude from the inner periostracum to form the initial prisms. These observations are in accordance with our earlier results on equivalent structures in freshwater cultured pearls (Jacob et al., 2008) and show that the original building material for the prisms is amorphous calcium carbonate, secreted in vesicles at the inner periostracum layer. Quantitative temperature calibrations for paleoclimate applications using bivalve shells are based on the Mg-Ca exchange between inorganic aragonite (or calcite) and water. These calibrations, thus, do not take into account the biomineral crystallization path via an amorphous calcium carbonate precursor and are therefore likely to introduce a bias (a so-called vital effect) which currently is not accounted for. Jacob et al. (2008) Geochim. Cosmochim. Acta 72, 5401-5415

  15. In vitro synthesis and stabilization of amorphous calcium carbonate (ACC) nanoparticles within liposomes

    SciTech Connect

    Tester, Chantel C.; Brock, Ryan E.; Wu, Ching-Hsuan; Krejci, Minna R.; Weigand, Steven; Joester, Derk

    2012-02-07

    We show that amorphous calcium carbonate (ACC) can be synthesized in phospholipid bilayer vesicles (liposomes). Liposome-encapsulated ACC nanoparticles are stable against aggregation, do not crystallize for at least 20 h, and are ideally suited to investigate the influence of lipid chemistry, particle size, and soluble additives on ACC in situ.

  16. Effects of human urine on aggregation of calcium oxalate crystals.

    PubMed

    Springmann, K E; Drach, G W; Gottung, B; Randolph, A D

    1986-01-01

    The importance of aggregation in calcium oxalate urolithiasis, although not fully understood, has long been postulated. Previous investigators of calcium oxalate crystal aggregation have applied static crystallization rather than continuous flow techniques to their studies. We describe the use of a Couette agglomerator in series with our previously reported continuous flow mixed suspension-mixed product removal crystallization system. We compared synthetic urine controls with 5 per cent volume-in-volume human urine additions from normal persons or patients with calcium oxalate stones. There was no significant difference in nucleation, linear crystal growth rate or total crystal mass between normal persons and those with stones. Control nucleation rate was significantly higher than in either human urine addition group. Comparison of aggregator particle size distributions revealed significant differences in aggregation among the control, normal and stone groups. We concluded that urine inhibitors to aggregation are somewhat deficient in patients with stones, resulting in the generation of larger particle masses or eventually stones. PMID:3941471

  17. Purifications of calcium carbonate and molybdenum oxide powders for neutrinoless double beta decay experiment, AMoRE

    SciTech Connect

    Park, HyangKyu

    2015-08-17

    The AMoRE (Advanced Mo based Rare process Experiment) collaboration is going to use calcium molybdate crystals to search for neutrinoless double beta decay of {sup 100}Mo isotope. In order to make the crystal, we use calcium carbonate and molybdenum oxide powders as raw materials. Therefore it is highly necessary to reduce potential sources for radioactive backgrounds such as U and Th in the powders. In this talk, we will present our studies for purification of calcium carbonate and molybdenum oxide powders.

  18. Ubiquitylation Functions in the Calcium Carbonate Biomineralization in the Extracellular Matrix

    PubMed Central

    Fang, Dong; Pan, Cong; Lin, Huijuan; Lin, Ya; Xu, Guangrui; Zhang, Guiyou; Wang, Hongzhong; Xie, Liping; Zhang, Rongqing

    2012-01-01

    Mollusks shell formation is mediated by matrix proteins and many of these proteins have been identified and characterized. However, the mechanisms of protein control remain unknown. Here, we report the ubiquitylation of matrix proteins in the prismatic layer of the pearl oyster, Pinctada fucata. The presence of ubiquitylated proteins in the prismatic layer of the shell was detected with a combination of western blot and immunogold assays. The coupled ubiquitins were separated and identified by Edman degradation and liquid chromatography/mass spectrometry (LC/MS). Antibody injection in vivo resulted in large amounts of calcium carbonate randomly accumulating on the surface of the nacreous layer. These ubiquitylated proteins could bind to specific faces of calcite and aragonite, which are the two main mineral components of the shell. In the in vitro calcium carbonate crystallization assay, they could reduce the rate of calcium carbonate precipitation and induce the calcite formation. Furthermore, when the attached ubiquitins were removed, the functions of the EDTA-soluble matrix of the prismatic layer were changed. Their potency to inhibit precipitation of calcium carbonate was decreased and their influence on the morphology of calcium carbonate crystals was changed. Taken together, ubiquitylation is involved in shell formation. Although the ubiquitylation is supposed to be involved in every aspect of biophysical processes, our work connected the biomineralization-related proteins and the ubiquitylation mechanism in the extracellular matrix for the first time. This would promote our understanding of the shell biomineralization and the ubiquitylation processes. PMID:22558208

  19. Crucibleless crystal growth and Radioluminescence study of calcium tungstate single crystal fiber

    NASA Astrophysics Data System (ADS)

    Silva, M. S.; Jesus, L. M.; Barbosa, L. B.; Ardila, D. R.; Andreeta, J. P.; Silva, R. S.

    2014-11-01

    In this article, single phase and high optical quality scheelite calcium tungstate single crystal fibers were grown by using the crucibleless laser heated pedestal growth technique. The as-synthesized calcium tungstate powders used for shaping seed and feed rods were investigated by X-ray diffraction technique. As-grown crystals were studied by Raman spectroscopy and Radioluminescence measurements. The results indicate that in both two cases, calcined powder and single crystal fiber, only the expected scheelite CaWO4 phase was observed. It was verified large homogeneity in the crystal composition, without the presence of secondary phases. The Radioluminescence spectra of the as-grown single crystal fibers are in agreement with that present in Literature for bulk single crystals, presented a single emission band centered at 420 nm when irradiated with β-rays.

  20. Increased calcium absorption from synthetic stable amorphous calcium carbonate: Double-blind randomized crossover clinical trial in post-menopausal women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium supplementation is a widely recognized strategy for achieving adequate calcium intake. We designed this blinded, randomized, crossover interventional trial to compare the bioavailability of a new stable synthetic amorphous calcium carbonate (ACC) with that of crystalline calcium carbonate (C...

  1. SECONDARY HYPERPARATHYROIDISM AFTER BARIATRIC SURGERY: TREATMENT IS WITH CALCIUM CARBONATE OR CALCIUM CITRATE?

    PubMed Central

    BARETTA, Giorgio Alfredo Pedroso; CAMBI, Maria Paula Carlini; RODRIGUES, Arieli Luz; MENDES, Silvana Aparecida

    2015-01-01

    Background : Bariatric surgery, especially Roux-en-Y gastric bypass, can cause serious nutritional complications arising from poor absorption of essential nutrients. Secondary hyperparathyroidism is one such complications that leads to increased parathyroid hormone levels due to a decrease in calcium and vitamin D, which may compromise bone health. Aim : To compare calcium carbonate and calcium citrate in the treatment of secondary hyperparathyroidism. Method : Patients were selected on the basis of their abnormal biochemical test and treatment was randomly done with citrate or calcium carbonate. Results : After 60 days of supplementation, biochemical tests were repeated, showing improvement in both groups. Conclusion : Supplementation with calcium (citrate or carbonate) and vitamin D is recommended after surgery for prevention of secondary hyperparathyroidism. PMID:26537273

  2. Fortification of all-purpose wheat-flour tortillas with calcium lactate, calcium carbonate, or calcium citrate is acceptable.

    PubMed

    Romanchik-Cerpovicz, Joelle E; McKemie, Rebecca J

    2007-03-01

    Fortification helps provide adequate nutrients for individuals not meeting daily needs. Foods may be fortified with calcium to assist individuals with lactose intolerance and others preferring not to consume traditional forms of dairy. This study examined the quality of all-purpose wheat-flour tortillas fortified with calcium lactate, calcium carbonate, or calcium citrate. These tortillas were compared to similarly prepared nonfortified flour tortillas (control) and commercial nonfortified flour tortillas. Calcium-fortified tortillas contained 114 mg elemental calcium per standard serving (48 g tortilla), an 8.6-fold increase compared to nonfortified tortillas. Moisture contents and rollabilities of all tortillas were similar. Consumers (N=87) evaluated each tortilla in duplicate using a hedonic scale and reported liking the appearance, texture, flavor, aftertaste, and overall acceptability of all tortillas. However, the appearance of control tortillas was preferred over commercial tortillas (P<0.01), whereas the aftertaste of commercial tortillas or those fortified with calcium carbonate was preferred over the control (P<0.05). Despite these differences, consumers were equally willing to purchase both fortified and nonfortified tortillas, suggesting that appearance and aftertaste may not influence willingness to purchase. Overall, this study shows that fortification of flour tortillas with various forms of calcium is a feasible alternative calcium source. PMID:17324671

  3. Morphologies and elemental compositions of calcium crystals in phyllodes and branchlets of Acacia robeorum (Leguminosae: Mimosoideae)

    PubMed Central

    He, Honghua; Bleby, Timothy M.; Veneklaas, Erik J.; Lambers, Hans; Kuo, John

    2012-01-01

    Background and Aims Formation of calcium oxalate crystals is common in the plant kingdom, but biogenic formation of calcium sulfate crystals in plants is rare. We investigated the morphologies and elemental compositions of crystals found in phyllodes and branchlets of Acacia robeorum, a desert shrub of north-western Australia. Methods Morphologies of crystals in phyllodes and branchlets of A. robeorum were studied using scanning electron microscopy (SEM), and elemental compositions of the crystals were identified by energy-dispersive X-ray spectroscopy. Distributional patterns of the crystals were studied using optical microscopy together with SEM. Key Results According to the elemental compositions, the crystals were classified into three groups: (1) calcium oxalate; (2) calcium sulfate, which is a possible mixture of calcium sulfate and calcium oxalate with calcium sulfate being the major component; and (3) calcium sulfate · magnesium oxalate, presumably mixtures of calcium sulfate, calcium oxalate, magnesium oxalate and silica. The crystals were of various morphologies, including prisms, raphides, styloids, druses, crystal sand, spheres and clusters. Both calcium oxalate and calcium sulfate crystals were observed in almost all tissues, including mesophyll, parenchyma, sclerenchyma (fibre cells), pith, pith ray and cortex; calcium sulfate · magnesium oxalate crystals were only found in mesophyll and parenchyma cells in phyllodes. Conclusions The formation of most crystals was biologically induced, as confirmed by studying the crystals formed in the phyllodes from seedlings grown in a glasshouse. The crystals may have functions in removing excess calcium, magnesium and sulfur, protecting the plants against herbivory, and detoxifying aluminium and heavy metals. PMID:22294477

  4. Calcium carbonate does not affect imatinib pharmacokinetics in healthy volunteers

    PubMed Central

    Tawbi, Hussein; Christner, Susan M.; Lin, Yan; Johnson, Matthew; Mowrey, Emily T.; Cherrin, Craig; Chu, Edward; Lee, James J.; Puhalla, Shannon; Stoller, Ronald; Appleman, Leonard R.; Miller, Brian M.; Beumer, Jan H.

    2013-01-01

    Purpose Imatinib mesylate (Gleevec®/Glivec®), has revolutionized the treatment of chronic myeloid leukemias (CML) and gastrointestinal stromal tumors (GIST), and there is evidence for an exposure response relationship. Calcium carbonate is increasingly used as a calcium supplement and in the setting of gastric upset associated with imatinib therapy. Calcium carbonate could conceivably elevate gastric pH and complex imatinib, thereby influencing imatinib absorption and exposure. We aimed to evaluate whether use of calcium carbonate has a significant effect on imatinib pharmacokinetics. Methods Eleven healthy subjects were enrolled in a 2-period, open-label, single-institution, randomized cross-over, fixed-schedule study. In one period, each subject received 400 mg of imatinib p.o.. In the other period, 4000 mg calcium carbonate (Tums Ultra®) was administered p.o. 15 min before 400 mg of imatinib. Plasma concentrations of imatinib and its active N-desmethyl metabolite CGP74588 were assayed by LC-MS; data were analyzed non-compartmentally, and compared after log transformation. Results Calcium carbonate administration did not significantly affect the imatinib area under the plasma concentration versus time curve (AUC) (41.2 μg/mL•h alone versus 40.8 μg/mL•h with calcium carbonate, P=0.99), maximum plasma concentration (Cmax) (2.35 μg/mL alone versus 2.39 μg/mL with calcium carbonate, P=0.89). Conclusions Our results indicate that the use of calcium carbonate does not significantly affect imatinib pharmacokinetics. PMID:24170263

  5. Behaviour of calcium carbonate in sea water

    USGS Publications Warehouse

    Cloud, P.E., Jr.

    1962-01-01

    Anomalies in the behaviour of calcium carbonate in natural solutions diminish when considered in context. Best values found by traditional oceanographie methods for the apparent solubility product constant K'CaCO3 in sea water at atmospheric pressure are consistent mineralogically-at 36 parts per thousand salinity and T-25??C, K'aragonlte is estimated as 1.12 ?? 10-6 and K'calcite as 0.61 ?? 10-6. At 30??C the corresponding values are 0.98 ?? 10-6 for aragonite and 0.53 ?? 10-6 for calcite. Because the K' computations do not compensate for ionic activity, however, they cannot give thermodynamically satisfactory results. It is of interest, therefore, that approximate methods and information now available permit the estimation from the same basic data of an activity product constant KCaCO3 close to that found in solutions to which Debye-Hu??ckel theory applies. Such methods indicate approximate Karagonite 7.8 ?? 10-9 for surface sea water at 29??C; Kcalcite would be proportionately lower. Field data and experimental results indicate that the mineralogy of precipitated CaCO3 depends primarily on degree of supersaturation, thus also on kinetic or biologic factors that facilitate or inhibit a high degree of supersaturation. The shallow, generally hypersaline bank waters west of Andros Island yield aragonitic sediments with O18 O16 ratios that imply precipitation mainly during the warmer months, when the combination of a high rate of evaporation, increasing salinity (and ionic strength), maximal temperatures and photosynthetic removal of CO2 result in high apparent supersaturation. The usual precipitate from solutions of low ionic strength is calcite, except where the aragonite level of supersaturation is reached as a result of diffusion phenomena (e.g. dripstones), gradual and marked evaporation, or biologic intervention. Published data also suggest the possibility of distinct chemical milieus for crystallographic variations in skeletal calcium carbonate. It appears

  6. RECOVERY OF CALCIUM CARBONATE AND SULFUR FROM FGD SCRUBBER WASTE

    EPA Science Inventory

    The report gives results of a demonstration of key process steps in the proprietary Kel-S process for recovering calcium carbonate and sulfur from lime/limestone flue gas desulfurization (FGD) scrubber waste. The steps are: reduction of the waste to calcium sulfide (using coal as...

  7. Plant calcium oxalate crystal formation, function, and its impact on human health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crystals of calcium oxalate have been observed among members from most taxonomic groups of photosynthetic organisms ranging from the smallest algae to the largest trees. The biological roles for calcium oxalate crystal formation in plant growth and development include high capacity calcium regulatio...

  8. Disordered amorphous calcium carbonate from direct precipitation

    DOE PAGESBeta

    Farhadi Khouzani, Masoud; Chevrier, Daniel M.; Güttlein, Patricia; Hauser, Karin; Zhang, Peng; Hedin, Niklas; Gebauer, Denis

    2015-06-01

    Amorphous calcium carbonate (ACC) is known to play a prominent role in biomineralization. Different studies on the structure of biogenic ACCs have illustrated that they can have distinct short-range orders. However, the origin of so-called proto-structures in synthetic and additive-free ACCs is not well understood. In the current work, ACC has been synthesised in iso-propanolic media by direct precipitation from ionic precursors, and analysed utilising a range of different techniques. The data suggest that this additive-free type of ACC does not resemble clear proto-structural motifs relating to any crystalline polymorph. This can be explained by the undefined pH value inmore » iso-propanolic media, and the virtually instantaneous precipitation. Altogether, this work suggests that aqueous systems and pathways involving pre-nucleation clusters are required for the generation of clear proto-structural features in ACC. Experiments on the ACC-to-crystalline transformation in solution with and without ethanol highlight that polymorph selection is under kinetic control, while the presence of ethanol can control dissolution re-crystallisation pathways.« less

  9. Disordered amorphous calcium carbonate from direct precipitation

    SciTech Connect

    Farhadi Khouzani, Masoud; Chevrier, Daniel M.; Güttlein, Patricia; Hauser, Karin; Zhang, Peng; Hedin, Niklas; Gebauer, Denis

    2015-06-01

    Amorphous calcium carbonate (ACC) is known to play a prominent role in biomineralization. Different studies on the structure of biogenic ACCs have illustrated that they can have distinct short-range orders. However, the origin of so-called proto-structures in synthetic and additive-free ACCs is not well understood. In the current work, ACC has been synthesised in iso-propanolic media by direct precipitation from ionic precursors, and analysed utilising a range of different techniques. The data suggest that this additive-free type of ACC does not resemble clear proto-structural motifs relating to any crystalline polymorph. This can be explained by the undefined pH value in iso-propanolic media, and the virtually instantaneous precipitation. Altogether, this work suggests that aqueous systems and pathways involving pre-nucleation clusters are required for the generation of clear proto-structural features in ACC. Experiments on the ACC-to-crystalline transformation in solution with and without ethanol highlight that polymorph selection is under kinetic control, while the presence of ethanol can control dissolution re-crystallisation pathways.

  10. Synthesis of calcium antimonate nano-crystals by the 18th dynasty Egyptian glassmakers

    NASA Astrophysics Data System (ADS)

    Lahlil, S.; Biron, I.; Cotte, M.; Susini, J.; Menguy, N.

    2010-01-01

    During the 18th Egyptian dynasty (1570-1292 B.C.), opaque white, blue and turquoise glasses were opacified by calcium antimonate crystals dispersed in a vitreous matrix. The technological processes as well as the antimony sources used to manufacture these crystals remain unknown. Our results shed a new light on glassmaking history: contrary to what was thought, we demonstrate that Egyptian glassmakers did not use in situ crystallization but first synthesized calcium antimonate opacifiers, which do not exist in nature, and then added them to a glass. Furthermore, using transmission electron microscopy (TEM) for the first time in the study of Egyptian opaque glasses, we show that these opacifiers were nano-crystals. Prior to this research, such a process for glassmaking has not been suggested for any kind of ancient opaque glass production. Studying various preparation methods for calcium antimonate, we propose that Egyptian craftsmen could have produced Ca2Sb2O7 by using mixtures of Sb2O3 or Sb2O5 with calcium carbonates (atomic ratio Sb/Ca=1) heat treated between 1000 and 1100°C. We developed an original strategy focused on the investigation of the crystals and the vitreous matrices using an appropriate suite of high-sensitivity and high-resolution micro- and nano-analytical techniques (scanning electron microscopy (SEM), X-ray diffraction (XRD), TEM). Synchrotron-based micro X-ray absorption near edge spectroscopy (μ-XANES) proved to be very well suited to the selective measure of the antimony oxidation state in the vitreous matrix. This work is the starting point for a complete reassessment not only of ancient Egyptian glass studies but more generally of high-temperature technologies used throughout antiquity.

  11. Mesoscale crystallization of calcium phosphate nanostructures in protein (casein) micelles

    NASA Astrophysics Data System (ADS)

    Thachepan, Surachai; Li, Mei; Mann, Stephen

    2010-11-01

    Aqueous micelles of the multi-protein calcium phosphate complex, casein, were treated at 60 °C and pH 7 over several months. Although partial dissociation of the micelles into 12 nm sized amorphous calcium phosphate (ACP)/protein nanoparticles occurred within a period of 14 days, crystallization of the ACP nanoclusters into bundles of hydroxyapatite (HAP) nanofilaments was not observed until after 12 weeks. The HAP nanofilaments were formed specifically within the partially disrupted protein micelles suggesting a micelle-mediated pathway of mesoscale crystallization. Similar experiments using ACP-containing synthetic micelles prepared from β-casein protein alone indicated that co-aligned bundles of HAP nanofilaments were produced within the protein micelle interior after 24 hours at temperatures as low as 35 °C. The presence of Mg2+ ions in the casein micelles, as well as a possible synergistic effect associated with the multi-protein nature of the native aggregates, could account for the marked inhibition in mesoscale crystallization observed in the casein micelles compared with the single-component β-casein constructs.Aqueous micelles of the multi-protein calcium phosphate complex, casein, were treated at 60 °C and pH 7 over several months. Although partial dissociation of the micelles into 12 nm sized amorphous calcium phosphate (ACP)/protein nanoparticles occurred within a period of 14 days, crystallization of the ACP nanoclusters into bundles of hydroxyapatite (HAP) nanofilaments was not observed until after 12 weeks. The HAP nanofilaments were formed specifically within the partially disrupted protein micelles suggesting a micelle-mediated pathway of mesoscale crystallization. Similar experiments using ACP-containing synthetic micelles prepared from β-casein protein alone indicated that co-aligned bundles of HAP nanofilaments were produced within the protein micelle interior after 24 hours at temperatures as low as 35 °C. The presence of Mg2+ ions in

  12. Thermal breakdown of calcium carbonate and constraints on its use as a biomarker

    NASA Astrophysics Data System (ADS)

    Thompson, Stephen P.; Parker, Julia E.; Tang, Chiu C.

    2014-02-01

    Observed differences in the thermal behaviour of calcium carbonates of biogenic and abiogenic origin (phase transformation and breakdown temperatures) are widely cited as potential biomarkers for whether life once existed on Mars. Although seemingly compelling, there has been no systematic investigation into the physical mechanism behind these apparent differences and therefore no direct proof that they are uniquely diagnostic of a biogenic versus abiogenic formation. In this paper we present a laboratory investigation into the thermal behaviour of two high purity calcium carbonates, one of which was produced in the presence of an amino acid as a biomimetic carbonate. In situ synchrotron X-ray powder diffraction measurements show the aragonite-to-calcite phase transition and calcite-to-oxide breakdown temperatures are significantly lower in the biomimetic carbonate. The observed thermal differences closely match reported differences between biogenic and geological abiogenic carbonates. The biomimetic carbonate exhibits a modified crystal morphology, with a highly strained internal crystal lattice, similar to biogenic carbonate structures. Since biogenic carbonates are formed in the presence of organic macromolecules such as amino acids, the induced microstrain appears to be the defining common factor as it adds an additional energy term to the carbonate lattice energy, which lowers the activation energy required for structural transformation or decomposition. Although produced via biomimetic means, the carbonate investigated here is nevertheless abiogenic in origin and we propose that given suitable localised conditions such as pooled water and a supply of organic molecules, naturally occurring biomimetic carbonates could have similarly formed on the martian surface and could therefore exhibit the same thermal characteristics as biogenic carbonate. Thus as a limiting case - without other supporting observations - the thermal behaviour of martian calcium carbonate

  13. Carbon-enriched calcium carbide and its potential use

    SciTech Connect

    Ivakhnyuk, G.K.; Samonin, V.V.; Fedorov, N.F.; Vladimirov, V.A.; Stepanova, L.V.; Kas'yanova, O.M.

    1987-10-10

    The authors comparatively assess the feasibility of a variety of carbonaceous materials--lean coal, specialty coke, coal coke, semicoke, and coke residue from shale production--as raw materials for the production and carburization of calcium carbide and subsequently assess the value of the calcium carbide produced as a raw material in the production of graphite. They determine that calcium carbide enriched by their process is characterized by a high carbon content having the graphite structure and that the use of carburized calcium carbide allows for a significant increase in the output of graphite during low-temperature reaction of the carbide with magnesium chloride.

  14. Crystallization Kinetics of Calcium-magnesium Aluminosilicate (CMAS) Glass

    NASA Technical Reports Server (NTRS)

    Wiesner, Valerie L.; Bansal, Narottam P.

    2015-01-01

    The crystallization kinetics of a calcium-magnesium aluminosilicate (CMAS) glass with composition relevant for aerospace applications, like air-breathing engines, were evaluated using differential thermal analysis (DTA) in powder and bulk forms. Activation energy and frequency factor values for crystallization of the glass were evaluated. X-ray diffraction (XRD) was used to investigate the onset of crystallization and the phases that developed after heat treating bulk glass at temperatures ranging from 690 to 960 deg for various times. Samples annealed at temperatures below 900 deg remained amorphous, while specimens heat treated at and above 900 deg exhibited crystallinity originating at the surface. The crystalline phases were identified as wollastonite (CaSiO3) and aluminum diopside (Ca(Mg,Al) (Si,Al)2O6). Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were employed to examine the microstructure and chemical compositions of crystalline phases formed after heat treatment.

  15. Calcium Carbonate Formation by Genetically Engineered Inorganic Binding Peptides

    NASA Astrophysics Data System (ADS)

    Gresswell, Carolyn Gayle

    Understanding how organisms are capable of forming (synthesize, crystallize, and organize) solid minerals into complex architectures has been a fundamental question of biomimetic materials chemistry and biomineralization for decades. This study utilizes short peptides selected using a cell surface display library for the specific polymorphs of calcium carbonate, i.e., aragonite and calcite, to identify two sets of sequences which can then be used to examine their effects in the formation, crystal structure, morphology of the CaCO3 minerals. A procedure of counter selection, along with fluorescence microscopy (FM) characterization, was adapted to insure that the sequences on the cells were specific to their respective substrate, i.e., aragonite or calcite. From the resulting two sets of sequences selected, five distinct strong binders were identified with a variety of biochemical characteristics and synthesized for further study. Protein derived peptides, using the known sequences of the proteins that are associated with calcite or aragonite, were also designed using a bioinformatics-based similarity analysis of the two sets of binders. In particular, an aragonite binding protein segment, AP7, a protein found in nacre, was chosen for this design and the resulting effects of the designed peptides and the AP7 were examined. Specifically, the binding affinities of the selected and the protein derived peptides off the cells were then tested using FM; these studies resulted in different binding characteristics of the synthesized and cellular bound peptides. Two of the peptides that displayed strong binding on the cells bound to neither of the CaCO 3 substrates and both the high and low similarity protein-derived peptides bound to both polymorphs. However, two of the peptides were found to only bind to their respective polymorph showing; these results are significant in that with this study it is demonstrated that the designed peptides based on experimental library

  16. Calcium carbonate scaling kinetics determined from radiotracer experiments with calcium-47

    SciTech Connect

    Turner, C.W.; Smith, D.W.

    1998-02-01

    The deposition of calcium carbonate is one of the principal modes of fouling of the heat-transfer surface of a fresh-water-cooled heat exchanger. The deposition rate of calcium carbonate on a heat-transfer surface has been measured using a calcium-47 radiotracer and compared to the measured rate of thermal fouling. The crystalline phase of calcium carbonate that precipitates depends on the degree of supersaturation at the heat-transfer surface, with aragonite precipitating at higher supersaturations and calcite precipitating at lower supersaturations. Whereas the mass deposition rates were constant with time, the thermal fouling rates decreased throughout the course of each experiment as a result of densification of the deposit. It is proposed that the densification was driven by the temperature gradient across the deposit together with the retrograde solubility of calcium carbonate. The temperature dependence of the deposition rate yielded an activation energy of 79 {+-} 4 kJ/mol for the precipitation of calcium carbonate on a heat-transfer surface.

  17. Amorphous calcium carbonate controls avian eggshell mineralization: A new paradigm for understanding rapid eggshell calcification.

    PubMed

    Rodríguez-Navarro, Alejandro B; Marie, Pauline; Nys, Yves; Hincke, Maxwell T; Gautron, Joel

    2015-06-01

    Avian eggshell mineralization is the fastest biogenic calcification process known in nature. How this is achieved while producing a highly crystalline material composed of large calcite columnar single crystals remains largely unknown. Here we report that eggshell mineral originates from the accumulation of flat disk-shaped amorphous calcium carbonate (ACC) particles on specific organic sites on the eggshell membrane, which are rich in proteins and sulfated proteoglycans. These structures known as mammillary cores promote the nucleation and stabilization of a amorphous calcium carbonate with calcitic short range order which predetermine the calcite composition of the mature eggshell. The amorphous nature of the precursor phase was confirmed by the diffuse scattering of X-rays and electrons. The nascent calcitic short-range order of this transient mineral phase was revealed by infrared spectroscopy and HRTEM. The ACC mineral deposited around the mammillary core sites progressively transforms directly into calcite crystals without the occurrence of any intermediate phase. Ionic speciation data suggest that the uterine fluid is equilibrated with amorphous calcium carbonate, throughout the duration of eggshell mineralization process, supporting that this mineral phase is constantly forming at the shell mineralization front. On the other hand, the transient amorphous calcium carbonate mineral deposits, as well as the calcite crystals into which they are converted, form by the ordered aggregation of nanoparticles that support the rapid mineralization of the eggshell. The results of this study alter our current understanding of avian eggshell calcification and provide new insights into the genesis and formation of calcium carbonate biominerals in vertebrates. PMID:25934395

  18. Vertical Bridgman growth of calcium lithium niobium gallium garnet crystals

    NASA Astrophysics Data System (ADS)

    Xu, Xuewu; Chong, Tow-Chong; Zhang, Guangyu; Li, Minghua; Soo, Lay Hiok; Xu, Wei; Freeman, Bill

    2003-03-01

    The growth of calcium lithium niobium gallium garnet (CLNGG) crystal has been carried out using platinum crucibles in a vertical Bridgman (VB) furnace with three resistance-heating zones. Transparent CLNGG crystals grown from the congruent melts with and without weight loss compensation are different in color and are 25 mm in diameter and about 70 mm in length. The phase identification of the sintered raw materials, grown crystals and white compound formed on the side surface of the grown crystal has been done using the powder X-ray diffraction method. The formation of the white compound is related to the {1 0 0} facet growth near the side surface. The naturally selected growth direction of the CLNGG crystal grown without a seed is near <1 1 1> , which is in good agreement with the morphological importance analysis according to the BFDH law. The VB-grown CLNGG also shows a cleavable feature parallel to {1 1 0} face and no absorption peaks in the wavelength range of 1100-1600 nm. The linear thermal-expansion coefficient of the CLNGG crystal along <1 1 1> direction is also reported and compared with that of CNGG, GGG and platinum crucible.

  19. Influence of maleic acid copolymers on calcium orthophosphates crystallization at low temperature

    NASA Astrophysics Data System (ADS)

    Pelin, Irina M.; Popescu, Irina; Suflet, Dana M.; Aflori, Magdalena; Bulacovschi, Victor

    2013-08-01

    The goal of this study was to investigate the maleic acid copolymers role on calcium orthophosphates crystallization at low temperature. In this respect, two maleic acid copolymers with different structures [poly(sodium maleate-co-vinyl acetate) and poly(sodium maleate-co-methyl methacrylate)] were used. The syntheses of the calcium orthophosphates in the absence and in the presence of the copolymers were performed through the wet chemical method using calcium nitrate, ammonium dihydrogen phosphate and ammonium hydroxide as reactants. The syntheses were monitored in situ by potentiometric and conductometric measurements. To ensure the transformation of less thermodynamically stable calcium orthophosphates into more stable forms, the samples were aged 30 days in mother solutions, at room temperature. The presence of the copolymers in the final products was evidenced by FTIR spectroscopy and thermogravimetric analysis. Scanning and transmission electron microscopy and laser light scattering measurements gave information about the composites morphology and the size of the formed structures. X-ray diffraction evidenced that, as a function of comonomer structure and of copolymer concentration, the products could contain hydroxyapatite with low crystallinity, calcium-deficient or carbonated hydroxyapatite. At high concentration of poly(sodium maleate-co-methyl methacrylate) the transformation of brushite into apatitic structures was inhibited.

  20. Amorphous Calcium Carbonate Precipitation by Cellular Biomineralization in Mantle Cell Cultures of Pinctada fucata

    PubMed Central

    Xiang, Liang; Kong, Wei; Su, Jingtan; Liang, Jian; Zhang, Guiyou; Xie, Liping; Zhang, Rongqing

    2014-01-01

    The growth of molluscan shell crystals is generally thought to be initiated from the extrapallial fluid by matrix proteins, however, the cellular mechanisms of shell formation pathway remain unknown. Here, we first report amorphous calcium carbonate (ACC) precipitation by cellular biomineralization in primary mantle cell cultures of Pinctada fucata. Through real-time PCR and western blot analyses, we demonstrate that mantle cells retain the ability to synthesize and secrete ACCBP, Pif80 and nacrein in vitro. In addition, the cells also maintained high levels of alkaline phosphatase and carbonic anhydrase activity, enzymes responsible for shell formation. On the basis of polarized light microscopy and scanning electron microscopy, we observed intracellular crystals production by mantle cells in vitro. Fourier transform infrared spectroscopy and X-ray diffraction analyses revealed the crystals to be ACC, and de novo biomineralization was confirmed by following the incorporation of Sr into calcium carbonate. Our results demonstrate the ability of mantle cells to perform fundamental biomineralization processes via amorphous calcium carbonate, and these cells may be directly involved in pearl oyster shell formation. PMID:25405357

  1. Pathogenic Role of Basic Calcium Phosphate Crystals in Destructive Arthropathies

    PubMed Central

    Ea, Hang-Korng; Chobaz, Véronique; Nguyen, Christelle; Nasi, Sonia; van Lent, Peter; Daudon, Michel; Dessombz, Arnaud; Bazin, Dominique; McCarthy, Geraldine; Jolles-Haeberli, Brigitte; Ives, Annette; Van Linthoudt, Daniel; So, Alexander; Lioté, Frédéric; Busso, Nathalie

    2013-01-01

    Background basic calcium phosphate (BCP) crystals are commonly found in osteoarthritis (OA) and are associated with cartilage destruction. BCP crystals induce in vitro catabolic responses with the production of metalloproteases and inflammatory cytokines such as interleukin-1 (IL-1). In vivo, IL-1 production induced by BCP crystals is both dependant and independent of NLRP3 inflammasome. We aimed to clarify 1/ the role of BCP crystals in cartilage destruction and 2/ the role of IL-1 and NLRP3 inflammasome in cartilage degradation related to BCP crystals. Methodology/ Principal Findings synovial membranes isolated from OA knees were analysed by alizarin Red and FTIR. Pyrogen free BCP crystals were injected into right knees of WT, NLRP3 -/-, ASC -/-, IL-1α -/- and IL-1β-/- mice and PBS was injected into left knees. To assess the role of IL-1, WT mice were treated by intra-peritoneal injections of anakinra, the IL-1Ra recombinant protein, or PBS. Articular destruction was studied at d4, d17 and d30 assessing synovial inflammation, proteoglycan loss and chondrocyte apoptosis. BCP crystals were frequently found in OA synovial membranes including low grade OA. BCP crystals injected into murine knee joints provoked synovial inflammation characterized by synovial macrophage infiltration that persisted at day 30, cartilage degradation as evidenced by loss of proteoglycan staining by Safranin-O and concomitant expression of VDIPEN epitopes, and increased chondrocyte apoptosis. BCP crystal-induced synovitis was totally independent of IL-1α and IL-1β signalling and no alterations of inflammation were observed in mice deficient for components of the NLRP3-inflammasome, IL-1α or IL-1β. Similarly, treatment with anakinra did not prevent BCP crystal effects. In vitro, BCP crystals elicited enhanced transcription of matrix degrading and pro-inflammatory genes in macrophages. Conclusions/ Significance intra-articular BCP crystals can elicit synovial inflammation and cartilage

  2. Nanoporous Structure and Medium-Range Order in Synthetic Amorphous Calcium Carbonate

    SciTech Connect

    Goodwin, Andrew L.; Michel, F. Marc; Phillips, Brian L.; Keen, David A.; Dove, Martin T.; Reeder, Richard J.

    2010-12-03

    We adopt a reverse Monte Carlo refinement approach, using experimental X-ray total scattering data, to develop a structure model for synthetic, hydrated amorphous calcium carbonate (ACC). The ACC is revealed to consist of a porous calcium-rich framework that supports interconnected channels containing water and carbonate molecules. The existence of a previously unrecognized nanometer-scale channel network suggests mechanisms of how additives can be accommodated within the structure and provide temporary stabilization, as well as influence the crystallization process. Moreover, while lacking long-range order, the calcium-rich framework in the ACC contains similar Ca packing density to that present in calcite, aragonite, and vaterite, yielding clues of how the amorphous material converts into the different crystalline forms. Our results provide a new starting point for advancing our understanding of biomineralization as well as the development of biomimetic approaches to next-generation materials synthesis.

  3. Crystal structure of calcium dodecin (Rv0379), from Mycobacterium tuberculosis with a unique calcium-binding site

    SciTech Connect

    Arockiasamy, Arulandu; Aggarwal, Anup; Savva, Christos G.; Holzenburg, Andreas; Sacchettini, James C.

    2011-09-28

    In eukaryotes, calcium-binding proteins play a pivotal role in diverse cellular processes, and recent findings suggest similar roles for bacterial proteins at different stages in their life cycle. Here, we report the crystal structure of calcium dodecin, Rv0379, from Mycobacterium tuberculosis with a dodecameric oligomeric assembly and a unique calcium-binding motif. Structure and sequence analysis were used to identify orthologs of Rv0379 with different ligand-binding specificity

  4. PHz current switching in calcium fluoride single crystal

    NASA Astrophysics Data System (ADS)

    Kwon, Ojoon; Kim, D.

    2016-05-01

    We demonstrate that a current can be induced and switched in a sub-femtosecond time-scale in an insulating calcium fluoride single crystal by an intense optical field. This measurement indicates that a sizable current can be generated and also controlled by an optical field in a dielectric medium, implying the capability of rapid current switching at a rate of optical frequency, PHz (1015 Hz), which is a couple of orders of magnitude higher than that of contemporary electronic signal processing. This demonstration may serve to facilitate the development of ultrafast devices in PHz frequency.

  5. Precipitation of calcium carbonate in aqueous solutions in presence of ethylene glycol and dodecane.

    NASA Astrophysics Data System (ADS)

    Natsi, Panagiota D.; Rokidi, Stamatia; Koutsoukos, Petros G.

    2015-04-01

    The formation of calcium carbonate (CaCO3) in aqueous supersaturated solutions has been intensively studied over the past decades, because of its significance for a number of processes of industrial and environmental interest. In the oil and gas production industry the deposition of calcium carbonate affects adversely the productivity of the wells. Calcium carbonate scale deposits formation causes serious problems in water desalination, CO2 sequestration in subsoil wells, in geothermal systems and in heat exchangers because of the low thermal coefficient of the salt. Amelioration of the operational conditions is possible only when the mechanisms underlying nucleation and crystal growth of calcium carbonate in the aqueous fluids is clarified. Given the fact that in oil production processes water miscible and immiscible hydrocarbons are present the changes of the dielectric constant of the fluid phase has serious impact in the kinetics of calcium carbonate precipitation, which remains largely unknown. The problem becomes even more complicated if polymorphism exhibited by calcium carbonate is also taken into consideration. In the present work, the stability of aqueous solutions supersaturated with respect to all calcium carbonate polymorphs and the subsequent kinetics of calcium carbonate precipitation were measured. The measurements included aqueous solutions and solutions in the presence of water miscible (ethylene glycol, MEG) and water immiscible organics (n-dodecane). All measurements were done at conditions of sustained supersaturation using the glass/ Ag/AgCl combination electrode as a probe of the precipitation and pH as the master variable for the addition of titrant solutions with appropriate concentration needed to maintenance the solution supersaturation. Initially, the metastable zone width was determined from measurements of the effect of the solution supersaturation on the induction time preceding the onset of precipitation at free-drift conditions. The

  6. Dissolution kinetics of calcium carbonate in equatorial Pacific sediments

    SciTech Connect

    Berelson, W.M.; Hammond, D.E.; McManus, J.; Kilgore, T.E. )

    1994-06-01

    Calcium carbonate dissolution exerts a major influence on the carbonate chemistry of seawater and is an important factor in regulating atmospheric CO2 concentration. The authors use a numerical model, based on an estimate of k determined from benthic chamber flux measurements, the distribution of CO3 2-in the water column and percent of CaCO3 in the sediments, to derive the total alkalinity flux from Pacific Ocean sediments. The significance of this budget is discussed as are the following questions: what is the rate of calcium carbonate dissolution on the deep sea floor what controls carbonate dissolution, organic carbon rain rates, or bottom water carbonate ion concentration what is the equations that relates carbonate dissolution to degree of undersaturation and what is the associate rate constant 43 refs., 10 figs., 4 tabs.

  7. Biomineralization of calcium carbonates and their engineered applications: a review

    PubMed Central

    Dhami, Navdeep K.; Reddy, M. Sudhakara; Mukherjee, Abhijit

    2013-01-01

    Microbially induced calcium carbonate precipitation (MICCP) is a naturally occurring biological process in which microbes produce inorganic materials as part of their basic metabolic activities. This technology has been widely explored and promising with potential in various technical applications. In the present review, the detailed mechanism of production of calcium carbonate biominerals by ureolytic bacteria has been discussed along with role of bacteria and the sectors where these biominerals are being used. The applications of bacterially produced carbonate biominerals for improving the durability of buildings, remediation of environment (water and soil), sequestration of atmospheric CO2 filler material in rubbers and plastics etc. are discussed. The study also sheds light on benefits of bacterial biominerals over traditional agents and also the issues that lie in the path of successful commercialization of the technology of microbially induced calcium carbonate precipitation from lab to field scale. PMID:24194735

  8. Drug loading into porous calcium carbonate microparticles by solvent evaporation.

    PubMed

    Preisig, Daniel; Haid, David; Varum, Felipe J O; Bravo, Roberto; Alles, Rainer; Huwyler, Jörg; Puchkov, Maxim

    2014-08-01

    Drug loading into porous carriers may improve drug release of poorly water-soluble drugs. However, the widely used impregnation method based on adsorption lacks reproducibility and efficiency for certain compounds. The aim of this study was to evaluate a drug-loading method based on solvent evaporation and crystallization, and to investigate the underlying drug-loading mechanisms. Functionalized calcium carbonate (FCC) microparticles and four drugs with different solubility and permeability properties were selected as model substances to investigate drug loading. Ibuprofen, nifedipine, losartan potassium, and metronidazole benzoate were dissolved in acetone or methanol. After dispersion of FCC, the solvent was removed under reduced pressure. For each model drug, a series of drug loads were produced ranging from 25% to 50% (w/w) in steps of 5% (w/w). Loading efficiency was qualitatively analyzed by scanning electron microscopy (SEM) using the presence of agglomerates and drug crystals as indicators of poor loading efficiency. The particles were further characterized by mercury porosimetry, specific surface area measurements, differential scanning calorimetry, and USP2 dissolution. Drug concentration was determined by HPLC. FCC-drug mixtures containing equivalent drug fractions but without specific loading strategy served as reference samples. SEM analysis revealed high efficiency of pore filling up to a drug load of 40% (w/w). Above this, agglomerates and separate crystals were significantly increased, indicating that the maximum capacity of drug loading was reached. Intraparticle porosity and specific surface area were decreased after drug loading because of pore filling and crystallization on the pore surface. HPLC quantification of drugs taken up by FCC showed only minor drug loss. Dissolution rate of FCC loaded with metronidazole benzoate and nifedipine was faster than the corresponding FCC-drug mixtures, mainly due to surface enlargement, because only small

  9. Automatic photometric titrations of calcium and magnesium in carbonate rocks

    USGS Publications Warehouse

    Shapiro, L.; Brannock, W.W.

    1955-01-01

    Rapid nonsubjective methods have been developed for the determination of calcium and magnesium in carbonate rocks. From a single solution of the sample, calcium is titrated directly, and magnesium is titrated after a rapid removal of R2O3 and precipitation of calcium as the tungstate. A concentrated and a dilute solution of disodium ethylenediamine tetraacetate are used as titrants. The concentrated solution is added almost to the end point, then the weak solution is added in an automatic titrator to determine the end point precisely.

  10. Ion chromatography detection of fluoride in calcium carbonate.

    PubMed

    Lefler, Jamie E; Ivey, Michelle M

    2011-09-01

    Fluoride in aquatic systems is increasing due to anthropogenic pollution, but little is known about how this fluoride affects organisms that live in and around aquatic habitats. Fluoride can bioaccumulate in structures comprised of calcium carbonate, such as shells and skeletons of both freshwater and saltwater species as diverse as snails, corals, and coccolithophorid algae. In this article, ion chromatography (IC) techniques are developed to detect and quantify fluoride in a matrix of calcium carbonate. Solid samples are dissolved in hydrochloric acid, pretreated to remove the majority of the chloride ions, and then analyzed using IC. With these methods, the 3σ limit of detection is 0.2 mg of fluoride/kg of calcium carbonate. PMID:21859530

  11. Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: implications for stone conservation.

    PubMed

    Rodriguez-Navarro, Carlos; Jroundi, Fadwa; Schiro, Mara; Ruiz-Agudo, Encarnación; González-Muñoz, María Teresa

    2012-06-01

    The influence of mineral substrate composition and structure on bacterial calcium carbonate productivity and polymorph selection was studied. Bacterial calcium carbonate precipitation occurred on calcitic (Iceland spar single crystals, marble, and porous limestone) and silicate (glass coverslips, porous sintered glass, and quartz sandstone) substrates following culturing in liquid medium (M-3P) inoculated with different types of bacteria (Myxococcus xanthus, Brevundimonas diminuta, and a carbonatogenic bacterial community isolated from porous calcarenite stone in a historical building) and direct application of sterile M-3P medium to limestone and sandstone with their own bacterial communities. Field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD), and 2-dimensional XRD (2D-XRD) analyses revealed that abundant highly oriented calcite crystals formed homoepitaxially on the calcitic substrates, irrespective of the bacterial type. Conversely, scattered spheroidal vaterite entombing bacterial cells formed on the silicate substrates. These results show that carbonate phase selection is not strain specific and that under equal culture conditions, the substrate type is the overruling factor for calcium carbonate polymorph selection. Furthermore, carbonate productivity is strongly dependent on the mineralogy of the substrate. Calcitic substrates offer a higher affinity for bacterial attachment than silicate substrates, thereby fostering bacterial growth and metabolic activity, resulting in higher production of calcium carbonate cement. Bacterial calcite grows coherently over the calcitic substrate and is therefore more chemically and mechanically stable than metastable vaterite, which formed incoherently on the silicate substrates. The implications of these results for technological applications of bacterial carbonatogenesis, including building stone conservation, are discussed. PMID:22447589

  12. Influence of Substrate Mineralogy on Bacterial Mineralization of Calcium Carbonate: Implications for Stone Conservation

    PubMed Central

    Jroundi, Fadwa; Schiro, Mara; Ruiz-Agudo, Encarnación; González-Muñoz, María Teresa

    2012-01-01

    The influence of mineral substrate composition and structure on bacterial calcium carbonate productivity and polymorph selection was studied. Bacterial calcium carbonate precipitation occurred on calcitic (Iceland spar single crystals, marble, and porous limestone) and silicate (glass coverslips, porous sintered glass, and quartz sandstone) substrates following culturing in liquid medium (M-3P) inoculated with different types of bacteria (Myxococcus xanthus, Brevundimonas diminuta, and a carbonatogenic bacterial community isolated from porous calcarenite stone in a historical building) and direct application of sterile M-3P medium to limestone and sandstone with their own bacterial communities. Field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD), and 2-dimensional XRD (2D-XRD) analyses revealed that abundant highly oriented calcite crystals formed homoepitaxially on the calcitic substrates, irrespective of the bacterial type. Conversely, scattered spheroidal vaterite entombing bacterial cells formed on the silicate substrates. These results show that carbonate phase selection is not strain specific and that under equal culture conditions, the substrate type is the overruling factor for calcium carbonate polymorph selection. Furthermore, carbonate productivity is strongly dependent on the mineralogy of the substrate. Calcitic substrates offer a higher affinity for bacterial attachment than silicate substrates, thereby fostering bacterial growth and metabolic activity, resulting in higher production of calcium carbonate cement. Bacterial calcite grows coherently over the calcitic substrate and is therefore more chemically and mechanically stable than metastable vaterite, which formed incoherently on the silicate substrates. The implications of these results for technological applications of bacterial carbonatogenesis, including building stone conservation, are discussed. PMID:22447589

  13. Biomineralization of calcium phosphate crystals on chitin nanofiber hydrogel for bone regeneration material.

    PubMed

    Kawata, Mari; Azuma, Kazuo; Izawa, Hironori; Morimoto, Minoru; Saimoto, Hiroyuki; Ifuku, Shinsuke

    2016-01-20

    We previously reported a chitin nanofiber hydrogel from squid pen β-chitin by a simple NaOH treatment. In the present study, a calcium phosphate/chitin nanofiber hydrogel was prepared for bone tissue engineering. Calcium phosphate was mineralized on the hydrogel by incubation in a solution of diammonium hydrogen phosphate solution followed by calcium nitrate tetrahydrate. X-ray diffractometry and Fourier transform infrared spectroscopy showed the formation of calcium phosphate crystals. The morphology of the calcium phosphate crystals changed depending on the calcification time. After mineralization, the mechanical properties of the hydrogel improved due to the reinforcement effect of calcium phosphate crystal. In an animal experiment, calcium phosphate/chitin nanofiber hydrogel accelerated mineralization in subcutaneous tissues. Morphological osteoblasts were observed. PMID:26572435

  14. The influence of aliphatic amines, diamines, and amino acids on the polymorph of calcium carbonate precipitated by the introduction of carbon dioxide gas into calcium hydroxide aqueous suspensions

    NASA Astrophysics Data System (ADS)

    Chuajiw, Wittaya; Takatori, Kazumasa; Igarashi, Teruki; Hara, Hiroki; Fukushima, Yoshiaki

    2014-01-01

    The influence of aliphatic organic additives including amines, diamines and amino acids, on the polymorph of calcium carbonate (CaCO3) precipitated from a calcium hydroxide (Ca(OH)2) suspensions and carbon dioxide gas (CO2) was studied by X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The amorphous calcium carbonate, vaterite, aragonite and calcite were observed for the precipitated samples with organic additives. While the precipitation without organic additive, only the stable phase; calcite was obtained. The observed crystal phases were related with the alkyl chain length in the aliphatic part of additives. These results suggested that hydrophobic interactions due to the van der Waals force between organic additives and surface of inorganic precipitates could not be ignored. We concluded that covering or adsorbing of these organic additives on the precipitates surfaces retarded the successive dissolution/recrystallisation process in the aqueous systems. The results revealed that not only the polar interaction from the hydrophilic functional groups, as the former reports proposed, but also the van der Waals interactions from the hydrophobic alkyl groups played the important role in the phase transformation of CaCO3.

  15. In vitro effect of wheat bran (Triticum aestivum) extract on calcium oxalate urolithiasis crystallization.

    PubMed

    Sekkoum, Khaled; Cheriti, Abdelkrim; Taleb, Safia

    2011-10-01

    Urolithiasis can lead to the loss of renal function in some cases. In this study, we tested the inhibiting effect of wheat bran (Triticum aestivum L) extract on calcium oxalate crystallization in a turbidimetric model, by FTIR spectroscopy, and polarized microscopy. The results show that this plant extract has a major inhibitory effect on calcium oxalate crystallization. PMID:22164778

  16. CALCIUM OXALATE CRYSTAL FORMATION IS NOT ESSENTIAL FOR GROWTH OF MEDICAGO TRUNCATULA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants invest a considerable amount of resources and energy into the formation of calcium oxalate crystals. A number of roles for crystal formation in plant growth and development have been assigned based on the prevalence of crystals, their spatial distribution, and the variety of crystal shapes. ...

  17. Effect of dietary calcium and magnesium on experimental renal tubular deposition of calcium oxalate crystal induced by ethylene glycol administration and its prevention with phytin and citrate.

    PubMed

    Ebisuno, S; Morimoto, S; Yoshida, T; Fukatani, T; Yasukawa, S; Ohkawa, T

    1987-01-01

    Oral administration of ethylene glycol to rats, and the resultant intratubular depositions of microcrystals of calcium oxalate were studied investigating the influences of dietary calcium or magnesium and assessing the protective efficacies against the crystallizations by treatment with phytin and sodium citrate. With increase of calcium intake and consequent increase of urinary calcium excretion there was a marked increase in the amount of tubular deposit of calcium oxalate crystal and in the calcium content of renal tissue. Although magnesium deficiency accelerated renal tubular calcium oxalate deposition, the protection against the crystal formation was not observed with excessive dietary magnesium. When rats were fed a high-calcium diet supplemented with phytin, a significant inhibition of the intratubular crystallization was observed. It appeared obvious that a hypocalciuric action of phytin was attributed to the effect of the prevention. There was vigorous protection of crystal formation by treatment with sodium citrate, which correlated with the level of citrate concentration in the drinking water. PMID:3433579

  18. Calcium supplements

    MedlinePlus

    ... TYPES OF CALCIUM SUPPLEMENTS Forms of calcium include: Calcium carbonate: Over-the-counter (OTC) antacid products, such as Tums and Rolaids, contain calcium carbonate. These sources of calcium do not cost much. ...

  19. Distribution of calcium carbonate in desert soils: A model

    SciTech Connect

    Mayer, L.; McFadden, L.D.; Harden, J.W.

    1988-04-01

    A model that describes the distribution of calcium carbonate in desert soils as a function of dust flux, time, climate, and other soil-forming factors shows which factors most strongly influence the accumulation of carbonate and can be used to evaluate carbonate-based soil age estimates or paleoclimatic reconstructions. Models for late Holocene soils have produced carbonate distributions that are very similar to those of well-dated soils in New Mexico and southern California. These results suggest that (1) present climate is a fair representation of late Holocene climate, (2) carbonate dust flux can be approximated by its Holocene rate, and (3) changes in climate and/or dust flux at the end of the Pleistocene effected profound and complex changes in soil carbonate distributions. Both higher carbonate dust flux and greater effective precipitation are required during the latest Pleistocene-early Holocene to explain carbonate distributions in latest Pleistocene soils. 21 refs., 4 figs., 1 tab.

  20. Crystal structure of the epithelial calcium channel TRPV6.

    PubMed

    Saotome, Kei; Singh, Appu K; Yelshanskaya, Maria V; Sobolevsky, Alexander I

    2016-06-23

    Precise regulation of calcium homeostasis is essential for many physiological functions. The Ca(2+)-selective transient receptor potential (TRP) channels TRPV5 and TRPV6 play vital roles in calcium homeostasis as Ca(2+) uptake channels in epithelial tissues. Detailed structural bases for their assembly and Ca(2+) permeation remain obscure. Here we report the crystal structure of rat TRPV6 at 3.25 Å resolution. The overall architecture of TRPV6 reveals shared and unique features compared with other TRP channels. Intracellular domains engage in extensive interactions to form an intracellular 'skirt' involved in allosteric modulation. In the K(+) channel-like transmembrane domain, Ca(2+) selectivity is determined by direct coordination of Ca(2+) by a ring of aspartate side chains in the selectivity filter. On the basis of crystallographically identified cation-binding sites at the pore axis and extracellular vestibule, we propose a Ca(2+) permeation mechanism. Our results provide a structural foundation for understanding the regulation of epithelial Ca(2+) uptake and its role in pathophysiology. PMID:27296226

  1. Structural changes in a protein fragment from abalone shell during the precipitation of calcium carbonate.

    PubMed

    Adamiano, Alessio; Bonacchi, Sara; Calonghi, Natalia; Fabbri, Daniele; Falini, Giuseppe; Fermani, Simona; Genovese, Damiano; Kralj, Damir; Montalti, Marco; Njegić Džakula, Branka; Prodi, Luca; Sartor, Giorgio

    2012-11-01

    Mineralized tissues grow through biologically controlled processes in which specific macromolecules are involved. Some of these molecules, which are present in very low concentrations and are difficult to localize and characterize, become entrapped inside the mineralized tissue. Herein, a protein fragment, GP, which was obtained by the alkaline digestion of the green sheet of the abalone shell, is used as a probe to study the changes in molecular structure that occur during the precipitation of calcium carbonate. This important goal was achieved by exploiting a fluorescent tag in GP. The experimental results that were obtained by using spectroscopic-, chromatographic-, and microscopic techniques indicate that GP controls the precipitation kinetics and morphology of calcium carbonate crystals, and that it only undergoes structural reorganization when entrapped inside calcium carbonate crystals. To the best of our knowledge, this report represents one of the first studies on the conformational changes of a protein fragment that is involved in biomineralization processes on moving from the solution phase into the mineral phase. PMID:22996327

  2. Influence of some polysaccharides on the production of calcium carbonate filler particles

    NASA Astrophysics Data System (ADS)

    Kontrec, Jasminka; Kralj, Damir; Brečević, Ljerka; Falini, Giuseppe

    2008-10-01

    The influence of different water-soluble polysaccharides, dextrans (cationic, anionic and non-ionic) and soluble starch, on the precipitation of calcium carbonate, has been investigated in the model system in which calcium hydroxide and carbonic acid were reactants. In the absence of additives, the formation of metastable phases, vaterite and amorphous calcium carbonate is observed at the early stage of the process, and as a consequence of the solution-mediated transformation process calcite appears in the system as the only solid phase in equilibrium. In the presence of starch, vaterite is found in the final precipitate, with the content increasing with the increase of starch concentration, probably as a consequence of calcite nucleation and crystal growth inhibition. Non-ionic dextran causes the inhibition of vaterite nucleation, which results in the formation of calcite as a predominant solid phase throughout the precipitation process. The crystal size of the so-formed calcite reduces by increasing the relative molecular mass ( Mr) of neutral dextran. The presence of charged dextrans, either cationic or anionic, causes inhibition of the overall precipitation process: in the case of anionic dextran the inhibition seems to be the consequence of its reaction with Ca 2+ ions (supersaturation decrease), while cationic dextran most probably adsorbs electrostatically onto the negatively charged surfaces of calcite and vaterite.

  3. Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process

    NASA Astrophysics Data System (ADS)

    Gower, Laurie B.; Odom, Damian J.

    2000-03-01

    A polypeptide additive has been used to transform the solution crystallization of calcium carbonate to a solidification process of a liquid-phase mineral precursor. In situ observations reveal that polyaspartate induces liquid-liquid phase separation of droplets of a mineral precursor. The droplets deposit on the substrate and coalesce to form a coating, which then solidifies into calcitic tablets and films. Transition bars form during the amorphous to crystalline transition, leading to sectorization of calcite tablets, and the defect textures and crystal morphologies are atypical of solution grown crystals. The formation of nonequilibrium crystal morphologies using an acidic polypeptide may have implications in the field of biomineralization, and the environmentally friendly aspects of this polymer-induced liquid-precursor (PILP) process may offer new techniques for aqueous-based processing of ceramic films, coatings, and particulates.

  4. Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration?

    NASA Technical Reports Server (NTRS)

    Sumner, D. Y.; Grotzinger, J. P.

    1996-01-01

    Archean carbonates commonly contain decimetre- to metre-thick beds consisting entirely of fibrous calcite and neomorphosed fibrous aragonite that precipitated in situ on the sea floor. The fact that such thick accumulations of precipitated carbonate are rare in younger marine carbonates suggests an important change in the modes of calcium carbonate precipitation through time. Kinetics of carbonate precipitation depend on the concentration of inhibitors to precipitation that reduce crystallization rates and crystal nuclei formation, leading to kinetic maintenance of supersaturated solutions. Inhibitors also affect carbonate textures by limiting micrite precipitation and promoting growth of older carbonate crystals on the sea floor. Fe2+, a strong calcite-precipitation inhibitor, is thought to have been present at relatively high concentrations in Archean seawater because oxygen concentrations were low. The rise in oxygen concentration at 2.2-1.9 Ga led to the removal of Fe2+ from seawater and resulted in a shift from Archean facies, which commonly include precipitated beds, to Proterozoic facies, which contain more micritic sediment and only rare precipitated beds.

  5. Does aridity influence the morphology, distribution and accumulation of calcium oxalate crystals in Acacia (Leguminosae: Mimosoideae)?

    PubMed

    Brown, Sharon L; Warwick, Nigel W M; Prychid, Christina J

    2013-12-01

    Calcium oxalate (CaOx) crystals are a common natural feature of many plant families, including the Leguminosae. The functional role of crystals and the mechanisms that underlie their deposition remain largely unresolved. In several species, the seasonal deposition of crystals has been observed. To gain insight into the effects of rainfall on crystal formation, the morphology, distribution and accumulation of calcium oxalate crystals in phyllodes of the leguminous Acacia sect. Juliflorae (Benth.) C. Moore & Betche from four climate zones along an aridity gradient, was investigated. The shapes of crystals, which include rare Rosanoffian morphologies, were constant between species from different climate zones, implying that morphology was not affected by rainfall. The distribution and accumulation of CaOx crystals, however, did appear to be climate-related. Distribution was primarily governed by vein density, an architectural trait which has evolved in higher plants in response to increasing aridity. Furthermore, crystals were more abundant in acacias from low rainfall areas, and in phyllodes containing high concentrations of calcium, suggesting that both aridity and soil calcium levels play important roles in the precipitation of CaOx. As crystal formation appears to be calcium-induced, we propose that CaOx crystals in Acacia most likely function in bulk calcium regulation. PMID:24157700

  6. Effect of indigenous plant extracts on calcium oxalate crystallization having a role in urolithiasis.

    PubMed

    Yasir, Fauzia; Waqar, Muhammad A

    2011-10-01

    Crystallization process has a major role in urolithiasis. In the present study, effect of two indigenous plants extracts namely Boerhavia diffusa and Bryophyllum pinnatum extract was determined on the crystallization of calcium oxalate crystals. Effect on the number, size and type of calcium oxalate crystals was observed. Results showed significant activity of both extracts against calcium oxalate crystallization at different concentrations (P < 0.05). Size of the crystals gradually reduced with the increasing concentration of both extracts. The number of calcium oxalate monohydrate crystals which are injurious to epithelial cells gradually reduced and at the highest concentration of extracts (100 mg/ml) completely disappeared (P < 0.05). These results confirm that B. diffusa and B. pinnatum extracts have antiurolithic activity and have the ability to reduce crystal size as well as to promote the formation of calcium oxalate dihydrate (COD) crystals rather than monohydrate (COM) crystals. Control of crystal size and formation of COD rather than COM crystals, in combination with the diuretic action of extracts is an important way to control urolithiasis. PMID:21643743

  7. CALCIUM CARBONATE DISSOLUTION RATE IN LIMESTONE CONTRACTORS

    EPA Science Inventory

    The rate of carbonate mineral dissolution from limestone was studied using a rotating disk apparatus and samples of limestone of varied composition. he purpose of this study was to determine the effect of limestone composition on the kinetics of carbonate mineral dissolution. he ...

  8. CALCIUM CARBONATE DISSOLUTION RATE IN LIMESTONE CONTACTORS

    EPA Science Inventory

    The rate of carbonate mineral dissolution from limestone was studied using a rotating disk apparatus and samples of limestone of varied composition. The purpose of this study was to determine the effect of limestone composition on the kinetics of carbonate mineral dissolution. Th...

  9. ATP-stabilized amorphous calcium carbonate nanospheres and their application in protein adsorption.

    PubMed

    Qi, Chao; Zhu, Ying-Jie; Lu, Bing-Qiang; Zhao, Xin-Yu; Zhao, Jing; Chen, Feng; Wu, Jin

    2014-05-28

    Calcium carbonate is a common substance found in rocks worldwide, and is the main biomineral formed in shells of marine organisms and snails, pearls and eggshells. Amorphous calcium carbonate (ACC) is the least stable polymorph of calcium carbonate, which is so unstable under normal conditions that it is difficult to be prepared in vitro because it rapidly crystallizes to form one of the more stable polymorphs in aqueous solution. Herein, we report the successful synthesis of highly stable ACC nanospheres in vitro using adenosine 5'-triphosphate disodium salt (ATP) as a stabilizer. The effect of ATP on the stability of ACC nanospheres is investigated. Our experiments show that ATP plays an unique role in the stabilization of ACC nanospheres in aqueous solution. Moreover, the as-prepared ACC nanospheres are highly stable in phosphate buffered saline for a relatively long period of time (12 days) even under relatively high concentrations of calcium and phosphate ions. The cytotoxicity tests show that the as-prepared highly stable ACC nanospheres have excellent biocompatibility. The highly stable ACC nanospheres have high protein adsorption capacity, implying that they are promising for applications in biomedical fields such as drug delivery and protein adsorption. PMID:24578276

  10. A critical analysis of calcium carbonate mesocrystals

    PubMed Central

    Kim, Yi-Yeoun; Schenk, Anna S.; Ihli, Johannes; Kulak, Alex N.; Hetherington, Nicola B. J.; Tang, Chiu C.; Schmahl, Wolfgang W.; Griesshaber, Erika; Hyett, Geoffrey; Meldrum, Fiona C.

    2014-01-01

    The term mesocrystal has been widely used to describe crystals that form by oriented assembly, and that exhibit nanoparticle substructures. Using calcite crystals co-precipitated with polymers as a suitable test case, this article looks critically at the concept of mesocrystals. Here we demonstrate that the data commonly used to assign mesocrystal structure may be frequently misinterpreted, and that these calcite/polymer crystals do not have nanoparticle substructures. Although morphologies suggest the presence of nanoparticles, these are only present on the crystal surface. High surface areas are only recorded for crystals freshly removed from solution and are again attributed to a thin shell of nanoparticles on a solid calcite core. Line broadening in powder X-ray diffraction spectra is due to lattice strain only, precluding the existence of a nanoparticle sub-structure. Finally, study of the formation mechanism provides no evidence for crystalline precursor particles. A re-evaluation of existing literature on some mesocrystals may therefore be required. PMID:25014563

  11. A critical analysis of calcium carbonate mesocrystals.

    PubMed

    Kim, Yi-Yeoun; Schenk, Anna S; Ihli, Johannes; Kulak, Alex N; Hetherington, Nicola B J; Tang, Chiu C; Schmahl, Wolfgang W; Griesshaber, Erika; Hyett, Geoffrey; Meldrum, Fiona C

    2014-01-01

    The term mesocrystal has been widely used to describe crystals that form by oriented assembly, and that exhibit nanoparticle substructures. Using calcite crystals co-precipitated with polymers as a suitable test case, this article looks critically at the concept of mesocrystals. Here we demonstrate that the data commonly used to assign mesocrystal structure may be frequently misinterpreted, and that these calcite/polymer crystals do not have nanoparticle substructures. Although morphologies suggest the presence of nanoparticles, these are only present on the crystal surface. High surface areas are only recorded for crystals freshly removed from solution and are again attributed to a thin shell of nanoparticles on a solid calcite core. Line broadening in powder X-ray diffraction spectra is due to lattice strain only, precluding the existence of a nanoparticle sub-structure. Finally, study of the formation mechanism provides no evidence for crystalline precursor particles. A re-evaluation of existing literature on some mesocrystals may therefore be required. PMID:25014563

  12. Amorphous Calcium Carbonate Based-Microparticles for Peptide Pulmonary Delivery.

    PubMed

    Tewes, Frederic; Gobbo, Oliviero L; Ehrhardt, Carsten; Healy, Anne Marie

    2016-01-20

    Amorphous calcium carbonate (ACC) is known to interact with proteins, for example, in biogenic ACC, to form stable amorphous phases. The control of amorphous/crystalline and inorganic/organic ratios in inhalable calcium carbonate microparticles may enable particle properties to be adapted to suit the requirements of dry powders for pulmonary delivery by oral inhalation. For example, an amorphous phase can immobilize and stabilize polypeptides in their native structure and amorphous and crystalline phases have different mechanical properties. Therefore, inhalable composite microparticles made of inorganic (i.e., calcium carbonate and calcium formate) and organic (i.e., hyaluronan (HA)) amorphous and crystalline phases were investigated for peptide and protein pulmonary aerosol delivery. The crystalline/amorphous ratio and polymorphic form of the inorganic component was altered by changing the microparticle drying rate and by changing the ammonium carbonate and HA initial concentration. The bioactivity of the model peptide, salmon calcitonin (sCT), coprocessed with alpha-1-antitrypsin (AAT), a model protein with peptidase inhibitor activity, was maintained during processing and the microparticles had excellent aerodynamic properties, making them suitable for pulmonary aerosol delivery. The bioavailability of sCT after aerosol delivery as sCT and AAT-loaded composite microparticles to rats was 4-times higher than that of sCT solution. PMID:26692360

  13. Preparation of pure calcium carbonate by mineral carbonation using industrial byproduct FGD gypsum

    NASA Astrophysics Data System (ADS)

    Song, K.; Kim, W.; Bang, J. H.; Park, S.; Jeon, C. W.

    2015-12-01

    Mineral carbonation is one of the geological approaches for the sequestration of anthropogenic CO2 gas. Its concept is based on the natural weathering processes in which silicate minerals containing divalent cations such as Ca or Mg are carbonated to CaCO3 or MgCO3 in the reaction with CO2gas. Raw materials for the mineral carbonation have been extended to various industrial solid wastes such as steel slag, ashes, or FGD (flue gas desulfurization) gypsum which are rich in divalent cations. These materials have economic advantages when they are produced in CO2 emission sites. Flue gas desulfurization (FGD) gypsum is such a byproduct obtained in at coal-fired power plants. Recently, we carried out a research on the direct mineral carbonation of FGD gypsum for CO2sequestration. It showed high carbonation reactivity under ambient conditions and the process can be described as follows: CaSO4·2H2O + CO2(g) + 2NH4OH(aq) → CaCO3(s) + (NH4)2SO4(aq) (1) At the early stage of the process, calcium carbonate (CaCO3) exists as a dissolved ion pair during the induction period. High-purity CaCO3 could be precipitated from dissolved calcium carbonate solution extracted during the induction period. The effect of experimental parameters on pure CaCO3 was evaluated: CO2 flow rate (1-3 L/min), ammonia content (4-12%), and solid-to-liquid (S/L) ratio (5-300 g/L). FE-SEM (field-emission scanning electron microscopy) and XRD (X-ray diffraction) study revealed that the precipitated CaCO3 was round-shaped vaterite crystals. The induction time was inversely proportional to the CO2 flow rate and the yield for pure CaCO3 increased with the ammonia content. The formation efficiency for pure CaCO3 decreased with S/L (solid/liquid) ratio. It was 90% (mol/mol) when the S/L ratio was 5 g/L. However, S/L ratio didn't affect the maximum solubility limit of dissolved CaCO3.

  14. A rare case of Mirizzi syndrome due to pure calcium carbonate stones (Limy Bile).

    PubMed

    Gilani, Nooman; Hanif, Muhammad Farooq; Karasek, Veronika

    2016-06-01

    We report the first case of Mirizzi syndrome in a patient who presented with biliary obstruction caused by pure calcium carbonate stones. A 61 years old male with history of portal vein thrombosis presented with rash, nausea and jaundice. An ultrasound of biliary tree showed gallstones with dilatation of hepatic duct and intrahepatic biliary tree. There was suspicion of a stone in proximal CBD. CT scan showed an opaque gallbladder with dense radio-opaque material in its lumen. An ERCP was then performed revealing external common hepatic duct obstruction at the neck of the gallbladder. A plastic biliary stent was placed across the obstruction, followed by a cholecystectomy. Resected gallbladder specimen revealed thick whitish paste like material, and formed stones filling the gallbladder lumen. Laboratory testing showed this material to be composed of 100% calcium carbonate crystals. PMID:27339582

  15. Birefringence simulation of annealed ingot of calcium fluoride single crystal

    NASA Astrophysics Data System (ADS)

    Ogino, H.; Miyazaki, N.; Mabuchi, T.; Nawata, T.

    2008-01-01

    We developed a method for simulating birefringence of an annealed ingot of calcium fluoride single crystal caused by the residual stress after annealing process. The method comprises the heat conduction analysis that provides the temperature distribution during the ingot annealing, the elastic thermal stress analysis using the assumption of the stress-free temperature that provides the residual stress after annealing, and the birefringence analysis of an annealed ingot induced by the residual stress. The finite element method was applied to the heat conduction analysis and the elastic thermal stress analysis. In these analyses, the temperature dependence of material properties and the crystal anisotropy were taken into account. In the birefringence analysis, the photoelastic effect gives the change of refractive indices, from which the optical path difference in the annealed ingot is calculated by the Jones calculus. The relation between the Jones calculus and the approximate method using the stress components averaged along the optical path is discussed theoretically. It is found that the result of the approximate method agrees very well with that of the Jones calculus in birefringence analysis. The distribution pattern of the optical path difference in the annealed ingot obtained from the present birefringence calculation methods agrees reasonably well with that of the experiment. The calculated values also agree reasonably well with those of the experiment, when a stress-free temperature is adequately selected.

  16. 40 CFR 415.300 - Applicability; description of the calcium carbonate production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... calcium carbonate production subcategory. 415.300 Section 415.300 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Carbonate Production Subcategory § 415.300 Applicability; description of the calcium carbonate production subcategory. The provisions of this subpart are applicable to...

  17. [In vitro effect of Hordeum vulgare on the crystallization of calcium oxalate monohydrate (whewellite)].

    PubMed

    Djaroud, Samira; Harrache, Djamila; Amar, Amina

    2012-01-01

    The recommended conservative treatment of hyperoxaluria is mainly based on hyperhydration and ingestion of inhibitors of crystallization. In accordance with this context, the aim of this study was to determine the in vitro effect of Hordeum vulgare on calcium oxalate crystallization oxalo-dependent. The crystallization of calcium oxalate monohydrate in supersaturated aqueous solution at 37 °C, was followed in a model turbidimetric continuous in a closed system. The proposed model is very good reproducibility (CV < 10%), crystallization was monitored continuously in the presence of Hordeum vulgare at different concentrations (0.0625 to 1 g/L). The comparison of turbidimetric parameters, that characterize the growth stage of monohydrated oxalate calcium crystals and observation of the crystals obtained at the end of crystallization into scanning electron microscopy, have been able to demonstrate the inducing effect of Hordeum vulgare to 0.0625 g/L and a slight inhibitory effect at the others concentrations. PMID:23207820

  18. Bilateral Olecranon Bursitis – A Rare Clinical presentation of Calcium Pyrophosphate Crystal Deposition Disease

    PubMed Central

    Patel, Jignesh; Girishkumar; Mruthyunjaya; Rupakumar, C. S

    2014-01-01

    Introduction: Calcium pyrophosphate crystal deposition disease (CPPD) is the most common form of crystal arthropathy second only to gout. Common clinical presentation is an acute monoarticular arthritis commonly occurring in knee joints. We presented a case of bilateral olecranon bursitis in a calcium pyrophosphate crystal deposition disease. Case Report: A 42-year-old female patient is presented with golf ball sized painless swellings in the posterior aspect of her elbows. Elbow joints were clinically normal except for restriction of terminal flexion. X-ray showed mild erosion at the tip of olecranon. Excision biopsy of the swelling showed positive birefringent calcium pyrophosphate dehydrate crystals on the inner wall of the specimen on polarized light microscopy. Conclusion: Bilateral olecranon bursitis may be part of the extraarticular manifestations of calcium pyrophosphate dihydrate crystal deposition disease with good prognosis following in toto bursa excision. PMID:27298934

  19. Structural study and crystal chemistry of the first stage calcium graphite intercalation compound

    SciTech Connect

    Emery, Nicolas; Herold, Claire . E-mail: Claire.Herold@lcsm.uhp-nancy.fr; Lagrange, Philippe

    2005-09-15

    A novel and efficient synthesis method concerning the preparation of the first stage calcium graphite intercalation compound is provided. It makes use of a reaction between liquid metallic alloy and pyrolytic graphite. From now on it is especially easy to obtain bulk CaC{sub 6} samples. Thanks to such samples, it was possible to study in detail the crystal structure of this binary intercalation compound. It has been entirely specified, so that we know that CaC{sub 6} crystal is rhombohedral and belongs to the R3-bar m space group with the following parameters: a=517pm and {alpha}=49.55 deg. The elemental unit cell contains one calcium atom and six carbon atoms. In this paper, we show also how the various MC{sub 6} structures evolve according to the size of the intercalated element and to the bond nature that appears in the final compound. CaC{sub 6} is unique, since all the other MC{sub 6} compounds exhibit a hexagonal symmetry.

  20. The nucleation and growth of calcium phosphate crystals at protein and phosphatidylserine liposome surfaces.

    PubMed

    Nancollas, G H; Tsortos, A; Zieba, A

    1996-01-01

    The kinetics of calcium phosphate crystal growth at the surfaces of proteins and phospholipids has been investigated using free drift and constant composition methods in supersaturated calcium phosphate solutions (relative supersaturations: with respect to hydroxyapatite, HAP, sigma HAP = 15.0, and with respect to octacalcium phosphate, OCP, sigma OCP = 1.9). Fibrinogen and collagen molecules adsorbed at hydrophobic surfaces as well as uncross-linked collagen fibrils induce ion binding and subsequent nucleation of calcium phosphate. The formation of OCP on phosphatidylserine vesicles introduced to highly supersaturated calcium phosphate solutions probably involves the interaction of the calcium ions with the ionized carboxylic groups of the phospholipid. PMID:9813627

  1. CALCULATING THE PH OF CALCIUM CARBONATE SATURATION

    EPA Science Inventory

    Two new expressions for the pH of saturation (pH subs) were derived. One is a simplified equation developed from an aqueous carbonate equilibrium system in which correction for ionic strength was considered. The other is a more accurate quadratic formula that involves computerize...

  2. A Chemical Template for Synthesis of Molecular Sheets of Calcium Carbonate

    PubMed Central

    Rianasari, Ina; Benyettou, Farah; Sharma, Sudhir Kumar; Blanton, Thomas; Kirmizialtin, Serdal; Jagannathan, Ramesh

    2016-01-01

    Inspired by the discovery of graphene and its unique properties, we focused our research to develop a scheme to create nacre like lamellar structures of molecular sheets of CaCO3 interleaved with an organic material, namely carbon. We developed a facile, chemical template technique, using a formulation of poly(acrylic) acid (PAA) and calcium acetate to create lamellar stacks of single crystal sheets of CaCO3, with a nominal thickness of 17 Å, the same as a unit-cell dimension for calcite (c–axis = 17.062 Å), interleaved with amorphous carbon with a nominal thickness of 8 Å. The strong binding affinity between carboxylate anions and calcium cations in the formulation was used as a molecular template to guide CaCO3 crystallization. Computational modeling of the FTIR spectra showed good agreement with experimental data and confirmed that calcium ions are bridged between polymer chains, resulting in a net-like polymer structure. The process readily lends itself to explore the feasibility of creating molecular sheets of other important inorganic materials and potentially find applications in many fields such as super capacitors and “low k di-electric” systems. PMID:27145699

  3. A Chemical Template for Synthesis of Molecular Sheets of Calcium Carbonate.

    PubMed

    Rianasari, Ina; Benyettou, Farah; Sharma, Sudhir Kumar; Blanton, Thomas; Kirmizialtin, Serdal; Jagannathan, Ramesh

    2016-01-01

    Inspired by the discovery of graphene and its unique properties, we focused our research to develop a scheme to create nacre like lamellar structures of molecular sheets of CaCO3 interleaved with an organic material, namely carbon. We developed a facile, chemical template technique, using a formulation of poly(acrylic) acid (PAA) and calcium acetate to create lamellar stacks of single crystal sheets of CaCO3, with a nominal thickness of 17 Å, the same as a unit-cell dimension for calcite (c-axis = 17.062 Å), interleaved with amorphous carbon with a nominal thickness of 8 Å. The strong binding affinity between carboxylate anions and calcium cations in the formulation was used as a molecular template to guide CaCO3 crystallization. Computational modeling of the FTIR spectra showed good agreement with experimental data and confirmed that calcium ions are bridged between polymer chains, resulting in a net-like polymer structure. The process readily lends itself to explore the feasibility of creating molecular sheets of other important inorganic materials and potentially find applications in many fields such as super capacitors and "low k di-electric" systems. PMID:27145699

  4. A Chemical Template for Synthesis of Molecular Sheets of Calcium Carbonate

    NASA Astrophysics Data System (ADS)

    Rianasari, Ina; Benyettou, Farah; Sharma, Sudhir Kumar; Blanton, Thomas; Kirmizialtin, Serdal; Jagannathan, Ramesh

    2016-05-01

    Inspired by the discovery of graphene and its unique properties, we focused our research to develop a scheme to create nacre like lamellar structures of molecular sheets of CaCO3 interleaved with an organic material, namely carbon. We developed a facile, chemical template technique, using a formulation of poly(acrylic) acid (PAA) and calcium acetate to create lamellar stacks of single crystal sheets of CaCO3, with a nominal thickness of 17 Å, the same as a unit-cell dimension for calcite (c–axis = 17.062 Å), interleaved with amorphous carbon with a nominal thickness of 8 Å. The strong binding affinity between carboxylate anions and calcium cations in the formulation was used as a molecular template to guide CaCO3 crystallization. Computational modeling of the FTIR spectra showed good agreement with experimental data and confirmed that calcium ions are bridged between polymer chains, resulting in a net-like polymer structure. The process readily lends itself to explore the feasibility of creating molecular sheets of other important inorganic materials and potentially find applications in many fields such as super capacitors and “low k di-electric” systems.

  5. Mineralization of Calcium Carbonate on Multifunctional Peptide Assembly Acting as Mineral Source Supplier and Template.

    PubMed

    Murai, Kazuki; Kinoshita, Takatoshi; Nagata, Kenji; Higuchi, Masahiro

    2016-09-13

    Crystal phase and morphology of biominerals may be precisely regulated by controlled nucleation and selective crystal growth through biomineralization on organic templates such as a protein. We herein propose new control factors of selective crystal growth by the biomineralization process. In this study, a designed β-sheet Ac-VHVEVS-CONH2 peptide was used as a multifunctional template that acted as mineral source supplier and having crystal phase control ability of calcium carbonate (CaCO3) during a self-supplied mineralization. The peptides formed three-dimensional nanofiber networks composed of assembled bilayer β-sheets. The assembly hydrolyzed urea molecules to one carbonate anion and two ammonium cations owing to a charge relay effect between His and Ser residues under mild conditions. CaCO3 was selectively mineralized on the peptide assembly using the generated carbonate anions on the template. Morphology of the obtained CaCO3 was fiber-like structure, similar to that of the peptide template. The mineralized CaCO3 on the peptide template had aragonite phase. This implies that CaCO3 nuclei, generated using the carbonate anions produced by the hydrolysis of urea on the surface of the peptide assembly, preferentially grew into aragonite phase, the growth axis of which aligned parallel to the direction of the β-sheet fiber axis. PMID:27552287

  6. Divalent europium doped and un-doped calcium iodide scintillators: Scintillator characterization and single crystal growth

    DOE PAGESBeta

    Boatner, L. A.; Ramey, J. O.; Kolopus, J. A.; Neal, John S.

    2015-02-21

    Initially, the alkaline-earth scintillator, CaI2:Eu2+, was discovered around 1964 by Hofstadter, Odell, and Schmidt. Serious practical problems quickly arose, however, that were associated with the growth of large monolithic single crystals of this material due to its lamellar, mica-like structure. As a result of its theoretically higher light yield, CaI2:Eu2+ has the potential to exceed the excellent scintillation performance of SrI2:Eu2+. In fact, theoretical predictions for the light yield of CaI2:Eu2+ scintillators suggested that an energy resolution approaching 2% at 662 keV could be achievable. Like the early SrI2:Eu2+ scintillator, the performance of CaI2:Eu2+ scintillators has traditionally suffered due, atmore » least in part, to outdated materials synthesis, component stoichiometry/purity, and single-crystal-growth techniques. Based on our recent work on SrI2:Eu2+ scintillators in single-crystal form, we have developed new techniques that are applied here to CaI2:Eu2+ and pure CaI2 with the goal of growing large un-cracked crystals and, potentially, realizing the theoretically predicted performance of the CaI2:Eu2+ form of this material. Calcium iodide does not adhere to modern glassy carbon Bridgman crucibles - so there should be no differential thermal-contraction-induced crystal/crucible stresses on cooling that would result in crystal cracking of the lamellar structure of CaI2. Here we apply glassy carbon crucible Bridgman growth, high-purity growth-charge compounds, our molten salt processing/filtration technique, and extended vacuum-melt-pumping methods to the growth of both CaI2:Eu2+ and un-doped CaI2. Moreover, large scintillating single crystals were obtained, and detailed characterization studies of the scintillation properties of CaI2:Eu2+ and pure CaI2 single crystals are presented that include studies of the effects of plastic deformation of the crystals on the scintillator performance.« less

  7. Divalent europium doped and un-doped calcium iodide scintillators: Scintillator characterization and single crystal growth

    SciTech Connect

    Boatner, L. A.; Ramey, J. O.; Kolopus, J. A.; Neal, John S.

    2015-02-21

    Initially, the alkaline-earth scintillator, CaI2:Eu2+, was discovered around 1964 by Hofstadter, Odell, and Schmidt. Serious practical problems quickly arose, however, that were associated with the growth of large monolithic single crystals of this material due to its lamellar, mica-like structure. As a result of its theoretically higher light yield, CaI2:Eu2+ has the potential to exceed the excellent scintillation performance of SrI2:Eu2+. In fact, theoretical predictions for the light yield of CaI2:Eu2+ scintillators suggested that an energy resolution approaching 2% at 662 keV could be achievable. Like the early SrI2:Eu2+ scintillator, the performance of CaI2:Eu2+ scintillators has traditionally suffered due, at least in part, to outdated materials synthesis, component stoichiometry/purity, and single-crystal-growth techniques. Based on our recent work on SrI2:Eu2+ scintillators in single-crystal form, we have developed new techniques that are applied here to CaI2:Eu2+ and pure CaI2 with the goal of growing large un-cracked crystals and, potentially, realizing the theoretically predicted performance of the CaI2:Eu2+ form of this material. Calcium iodide does not adhere to modern glassy carbon Bridgman crucibles - so there should be no differential thermal-contraction-induced crystal/crucible stresses on cooling that would result in crystal cracking of the lamellar structure of CaI2. Here we apply glassy carbon crucible Bridgman growth, high-purity growth-charge compounds, our molten salt processing/filtration technique, and extended vacuum-melt-pumping methods to the growth of both CaI2:Eu2+ and un-doped CaI2. Moreover, large scintillating single crystals were obtained, and detailed characterization studies of the

  8. Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule

    PubMed Central

    Politi, Yael; Metzler, Rebecca A.; Abrecht, Mike; Gilbert, Benjamin; Wilt, Fred H.; Sagi, Irit; Addadi, Lia; Weiner, Steve; Gilbert, P. U. P. A.

    2008-01-01

    Sea urchin larval spicules transform amorphous calcium carbonate (ACC) into calcite single crystals. The mechanism of transformation is enigmatic: the transforming spicule displays both amorphous and crystalline properties, with no defined crystallization front. Here, we use X-ray photoelectron emission spectromicroscopy with probing size of 40–200 nm. We resolve 3 distinct mineral phases: An initial short-lived, presumably hydrated ACC phase, followed by an intermediate transient form of ACC, and finally the biogenic crystalline calcite phase. The amorphous and crystalline phases are juxtaposed, often appearing in adjacent sites at a scale of tens of nanometers. We propose that the amorphous-crystal transformation propagates in a tortuous path through preexisting 40- to 100-nm amorphous units, via a secondary nucleation mechanism. PMID:18987314

  9. Zinc recovery from spent ZnO catalyst by carbon in the presence of calcium carbonate

    NASA Astrophysics Data System (ADS)

    Hsu, Hua-Ching; Lin, Chun-I.; Chen, Hsi-Kuei

    2004-02-01

    Zinc recovery from the spent zinc oxide catalyst by carbon in the presence of calcium carbonate was studied using an X-ray diffractometer (XRD), an atomic absorption spectrometer (AAS), and a scanning electron microscope (SEM). The spent zinc oxide catalyst was determined to be composed of 87.5 wt pct zinc oxide and 3.1 wt pct zinc sulfide. The results of X-ray diffractometry revealed that calcium carbonate decomposed to calcium oxide and carbon dioxide; zinc oxide and zinc sulfide were reduced to zinc vapor and carbon monoxide evolving from solid sample; and sulfur content was scavenged as calcium sulfide remained in the solid. Steps involved in this reaction system were summarized to explain the overall reaction. The experimental results of atomic absorption spectrometry showed that the initial rate of zinc recovery and final zinc recovery can be increased by increasing either the sample height, the reaction temperature or the initial bulk density. Furthermore, they were found to increase with decrease in either the argon flow rate, the molar ratio of Zntotal/C, the molar ratio of Zntotal/CaCO3, the grain size of the spent catalyst, the agglomerate size of carbon, or the agglomerate size of calcium carbonate. Empirical expressions of the initial rate of zinc recovery and final zinc recovery have been determined.

  10. Textural properties of synthetic nano-calcite produced by hydrothermal carbonation of calcium hydroxide

    NASA Astrophysics Data System (ADS)

    Montes-Hernandez, G.; Fernández-Martínez, A.; Charlet, L.; Tisserand, D.; Renard, F.

    2008-05-01

    The hydrothermal carbonation of calcium hydroxide (Ca(OH) 2) at high pressure of CO 2 (initial P=55 bar) and moderate to high temperature (30 and 90 °C) was used to synthesize fine particles of calcite. This method allows a high carbonation efficiency (about 95% of Ca(OH) 2-CaCO 3 conversion), a significant production rate (48 kg/m 3 h) and high purity of product (about 96%). However, the various initial physicochemical conditions have a strong influence on the crystal size and surface area of the synthesized calcite crystals. The present study is focused on the estimation of the textural properties of synthesized calcite (morphology, specific surface area, average particle size, particle size distribution and particle size evolution with reaction time), using Rietveld refinements of X-ray diffraction (XRD) spectra, Brunauer-Emmett-Teller (BET) measurements, and scanning electron microscope (SEM) and transmission electron microscope (TEM) observations. This study demonstrate that the pressure, the temperature and the dissolved quantity of CO 2 have a significant effect on the average particle size, specific surface area, initial rate of precipitation, and on the morphology of calcium carbonate crystals. In contrast, these PT x conditions used herein have an insignificant effect on the carbonation efficiency of Ca(OH) 2. Finally, the results presented here demonstrate that nano-calcite crystals with high specific surface area ( SBET=6-10 m 2/g) can be produced, with a high potential for industrial applications such as adsorbents and/or filler in papermaking industry.

  11. Arthritis associated with calcium oxalate crystals in an anephric patient treated with peritoneal dialysis

    SciTech Connect

    Rosenthal, A.; Ryan, L.M.; McCarty, D.J.

    1988-09-02

    The authors report a case of calcium oxalate arthropathy in a woman undergoing intermittent peritoneal dialysis who was not receiving pharmacologic doses of ascorbic acid. She developed acute arthritis, with calcium oxalate crystals in Heberden's and Bouchard's nodes, a phenomenon previously described in gout. Intermittent peritoneal dialysis may be less efficient than hemodialysis in clearing oxalate, and physicians should now consider calcium oxalate-associated arthritis in patients undergoing peritoneal dialysis who are not receiving large doses of ascorbic acid.

  12. Compaction of functionalized calcium carbonate, a porous and crystalline microparticulate material with a lamellar surface.

    PubMed

    Stirnimann, Tanja; Atria, Susanna; Schoelkopf, Joachim; Gane, Patrick A C; Alles, Rainer; Huwyler, Jörg; Puchkov, Maxim

    2014-05-15

    In the present study, we aimed to characterize the compressibility and compactibility of the novel pharmaceutical excipient, functionalized calcium carbonate (FCC). We studied three FCC modifications and compared the values for compressibility and compactibility with mannitol, microcrystalline cellulose (MCC), and ground calcium carbonate (CC 330) as well as mixtures of paracetamol and MCC or FCC at drug loads of 0%, 25%, 50%, 75%, and 100% (w/w). We used Heckel analysis, modified Heckel analysis, and Leuenberger analysis to characterize the compaction and compression behavior of the mixtures. Compaction analysis of FCC showed this material to markedly differ from ground calcium carbonate, exhibiting properties, i.e. plastic deformability, similar to those of MCC. This effect was attributed to the highly lamellar structure of FCC particles whose thickness is of the order of a single crystal unit cell. According to Leuenberger parameters, we concluded that FCC-based tablet formulations had mechanical properties equal or superior to those formulated with MCC. FCC tablets with high tensile strength were obtained already at low compressive pressures. Owing to these favorable properties (i.e. marked tensile strength and porosity), FCC promises to be suitable for the preparation of solid dosage forms. PMID:24631309

  13. ISOLATED MEDICAGO TRUNCATULA MUTANTS WITH INCREASED CALCIUM OXALATE CRYSTAL ACCUMULATION HAVE DECREASED ASCORBIC ACID LEVELS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mechanisms controlling oxalate biosynthesis and calcium oxalate formation in plants remains largely unknown. As an initial step toward gaining insight into these regulatory mechanisms we initiated a mutant screen to identify plants that over-accumulate crystals of calcium oxalate. Four new mut...

  14. ADVANCES IN OUR UNDERSTANDING OF CALCIUM OXALATE CRYSTAL FORMATION AND FUNCTION IN PLANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium oxalate crystal formation in plants appears to play a central role in a variety of important functions, including tissue calcium regulation, protection from herbivory, and metal detoxification. Evidence is mounting to support ascorbic acid as the primary precursor to oxalate biosynthesis. ...

  15. Plants defective in calcium oxalate crystal formation have more bioavailable calcium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioavailable calcium affects bone formation and calcification. Here we investigate how a single gene mutation altering calcium partitioning in the forage crop Medicago truncatula affects calcium bioavailability. Previously, the cod5 Medicago mutant was identified which contains wild-type amounts o...

  16. Calcium carbonate scale control, effect of material and inhibitors.

    PubMed

    Macadam, J; Parsons, S A

    2004-01-01

    This paper focuses on developing a reproducible method for reducing calcium carbonate scale formation on heated surfaces where scaling can cause serious problems. It is known that calcium carbonate precipitation is sensitive to impurity ions, such as iron and zinc, even at trace concentration levels. In this paper two sets of experiments are reported. The first experiments were undertaken to investigate the effect of zinc, copper and iron dosing on CaCO3 nucleation and precipitation. Results from the experiments showed that the most effective inhibitor of CaCO3 precipitation was zinc and the effect was linked to dose levels and temperature. Copper and iron had little effect on precipitation in the dose range investigated. The second trial was undertaken to translate the precipitation data to scale formation. These tests were undertaken at 70 degrees C. 5 mg x L(-1) zinc dose reduced the scale formation by 35%. The effect of iron on calcium carbonate scaling rate was not significant. The physical nature of the material on which the scale is formed also influences the scaling. The scaling experiment was also used to investigate the effect of different surface material (stainless steel, copper and aluminium) on CaCO3 scale formation. Copper surface scaled the most. PMID:14982176

  17. Synthesis of nano precipitated calcium carbonate by using a carbonation process through a closed loop reactor

    NASA Astrophysics Data System (ADS)

    Thriveni, Thenepalli; Ahn, Ji Whan; Ramakrishna, Chilakala; Ahn, Young Jun; Han, Choon

    2016-01-01

    Nano calcium carbonate particles have a wide range of industrial applications due to their beneficial properties such as high porosity and high surface area to volume ratio and due to their strengthening the mechanical properties of plastics and paper. Consequently, significant research has been done to deliver a new approach for the synthesis of precipitated nano calcium carbonate by using a carbonation process through a closed loop reactor. Both the experimental and the instrumental parameters, i.e. the CO2 flow rate, the concentration of the starting materials (Ca(OH)2 and CaO), the pH, the orifice diameter, etc., were investigated. The carbonation efficiency was increased due to the diffusion process involved in the loop reactor. The particle size was affected by the CO2 flow rate, reaction time, and orifice diameter. Finally, precipitated nano calcite calcium carbonate (50 to 100 nm) was synthesized by optimizing all the experimental and the instrumental parameters. The synthesized precipitated nano calcium carbonate was characterized by using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. This study has proved that the carbonation efficiency can be enhanced for a short time by using a loop reactor and that the carbonation process was more energy efficient and cost effective than other conventional methods.

  18. Randomized crossover study comparing the phosphate-binding efficacy of calcium ketoglutarate versus calcium carbonate in patients on chronic hemodialysis.

    PubMed

    Bro, S; Rasmussen, R A; Handberg, J; Olgaard, K; Feldt-Rasmussen, B

    1998-02-01

    The objective of the study was to evaluate the phosphate-binding efficacy, side effects, and cost of therapy of calcium ketoglutarate granulate as compared with calcium carbonate tablets in patients on chronic hemodialysis. The study design used was a randomized, crossover open trial, and the main outcome measurements were plasma ionized calcium levels, plasma phosphate levels, plasma intact parathyroid hormone (PTH) levels, requirements for supplemental aluminum-aminoacetate therapy, patient tolerance, and cost of therapy. Nineteen patients on chronic hemodialysis were treated with a dialysate calcium concentration of 1.25 mmol/L and a fixed alfacalcidol dose for at least 2 months. All had previously tolerated therapy with calcium carbonate. Of the 19 patients included, 10 completed both treatment arms. After 12 weeks of therapy, the mean (+/-SEM) plasma ionized calcium level was significantly lower in the ketoglutarate arm compared with the calcium carbonate arm (4.8+/-0.1 mg/dL v 5.2+/-0.1 mg/dL; P = 0.004), whereas the mean plasma phosphate (4.5+/-0.3 mg/dL v 5.1+/-0.1 mg/dL) and PTH levels (266+/-125 pg/mL v 301+/-148 pg/mL) did not differ significantly between the two treatment arms. Supplemental aluminum-aminoacetate was not required during calcium ketoglutarate treatment, while two patients needed this supplement when treated with calcium carbonate. Five of 17 (29%) patients were withdrawn from calcium ketoglutarate therapy within 1 to 2 weeks due to intolerance (anorexia, vomiting, diarrhea, general uneasiness), whereas the remaining 12 patients did not experience any side effects at all. The five patients with calcium ketoglutarate intolerance all had pre-existing gastrointestinal symptoms; four of them had received treatment with cimetidine or omeprazol before inclusion into the study. Calculations based on median doses after 12 weeks showed that the cost of the therapy in Denmark was 10 times higher for calcium ketoglutarate compared with calcium

  19. Effect of some organic solvent-water mixtures composition on precipitated calcium carbonate in carbonation process

    NASA Astrophysics Data System (ADS)

    Konopacka-Łyskawa, Donata; Kościelska, Barbara; Karczewski, Jakub

    2015-05-01

    Precipitated calcium carbonate particles were obtained during carbonation of calcium hydroxide slurry with carbon dioxide. Aqueous solutions of isopropyl alcohol, n-butanol and glycerol were used as solvents. Concentration of organic additives in the reactive mixture was from 0% to 20% (vol). Precipitation process were performed in a stirred tank reactor equipped with gas distributor. Multimodal courses of particles size distribution were determined for produced CaCO3 particles. Calcium carbonate as calcite was precipitated in all experiments. The mean Sauter diameter of CaCO3 particles decreased when the concentration of all used organic additives increased. The amount of small particle fraction in the product increased with the increasing concentration of organic solvents. Similar physical properties of used liquid phase resulted in the similar characteristics of obtained particles.

  20. Cogrinding significance for calcium carbonate-calcium phosphate mixed cement. II. Effect on cement properties.

    PubMed

    Tadier, Solène; Bolay, Nadine Le; Fullana, Sophie Girod; Cazalbou, Sophie; Charvillat, Cédric; Labarrère, Michel; Boitel, Daniel; Rey, Christian; Combes, Christèle

    2011-11-01

    In the present study, we aim to evaluate the contribution of the cogrinding process in controlling calcium carbonate-dicalcium phosphate dihydrate cement properties. We set a method designed to evaluate phase separation, usually occurring during paste extrusion, which is quantitative, reliable, and discriminating and points out the determining role of cogrinding to limit filter-pressing. We show that solid-phase cogrinding leads to synergistic positive effects on cement injectability, mechanical properties, and radio-opacity. It allows maintaining a low (<0.4 kg) and constant load during the extrusion of paste, and the paste's composition remains constant and close to that of the initial paste. Analogous behavior was observed when adding a third component into the solid phase, especially SrCO(3) as a contrasting agent. Moreover, the cement's mechanical properties can be enhanced by lowering the L/S ratio because of the lower plastic limit. Finally, unloaded or Sr-loaded cements show uniform and increased optical density because of the enhanced homogeneity of dry component distribution. Interestingly, this study reveals that cogrinding improves and controls essential cement properties and involves processing parameters that could be easily scaled up. This constitutes a decisive advantage for the development of calcium carbonate-calcium phosphate mixed cements and, more generally, of injectable multicomponent bone cements that meet a surgeon's requirements. PMID:21953727

  1. Calcium Carbonate Precipitation by Bacillus and Sporosarcina Strains Isolated from Concrete and Analysis of the Bacterial Community of Concrete.

    PubMed

    Kim, Hyun Jung; Eom, Hyo Jung; Park, Chulwoo; Jung, Jaejoon; Shin, Bora; Kim, Wook; Chung, Namhyun; Choi, In-Geol; Park, Woojun

    2016-03-01

    Microbially induced calcium carbonate precipitation (CCP) is a long-standing but re-emerging environmental engineering process for production of self-healing concrete, bioremediation, and long-term storage of CO2. CCP-capable bacteria, two Bacillus strains (JH3 and JH7) and one Sporosarcina strain (HYO08), were isolated from two samples of concrete and characterized phylogenetically. Calcium carbonate crystals precipitated by the three strains were morphologically distinct according to field emission scanning electron microscopy. Energy dispersive X-ray spectrometry mapping confirmed biomineralization via extracellular calcium carbonate production. The three strains differed in their physiological characteristics: growth at alkali pH and high NaCl concentrations, and urease activity. Sporosarcina sp. HYO08 and Bacillus sp. JH7 were more alkali- and halotolerant, respectively. Analysis of the community from the same concrete samples using barcoded pyrosequencing revealed that the relative abundance of Bacillus and Sporosarcina species was low, which indicated low culturability of other dominant bacteria. This study suggests that calcium carbonate crystals with different properties can be produced by various CCP-capable strains, and other novel isolates await discovery. PMID:26699752

  2. Synthesis of calcium carbonate using extract components of croaker gill as morphology and polymorph adjust control agent.

    PubMed

    Chen, Hao; Qing, Chengsong; Zheng, Jiaoling; Liu, Yuxi; Wu, Gang

    2016-06-01

    Biomimetic synthesis of calcium carbonate with various polymorphs, sizes and morphologies by using organic substrates has become an interesting topic for the last years. Calcium carbonate has been synthesized by the reaction of Na2CO3 and CaCl2 in the presence of extract components of croaker gill. The products were characterized by powder X-ray diffraction (PXRD) and Fourier transform infrared (FT-IR) spectrum, and particle morphologies were observed by scanning electron microscope (SEM). The results show that at lower concentration yellow croaker gill extract has no effect on calcium carbonate crystal polymorph. Calcite was obtained only. But the morphologies of calcite particle change with the increase of the concentration. The corners of the particle change from angular to curved. However, with the further increase of the concentration of yellow croaker gill extract, the calcium carbonate obtained is a mixture of calcite and vaterite. The vaterite component in the mixture rises with increasing concentration of extract solution, indicating that the proteins from the yellow croaker gill during growth play a crucial role in stabilizing and directing the crystal growth. PMID:27040242

  3. Synthesis of some calcium phosphate crystals using the useful biomass for immobilization of microorganisms

    NASA Astrophysics Data System (ADS)

    Kohiruimaki, T.

    2011-10-01

    Three sources of biomass generated by primary industry were used as the raw material for the synthesis of calcium phosphate crystals. Phosphoric acid was extracted from burned rice chaff using a 30% nitric acid solution, while scallop shells and gypsum of plasterboard were used as calcium sources. The calcium phosphate crystals were synthesized by a method involving homogeneous precipitation, and the relationship between the composition and shape of the crystals and the pH at the time of the precipitation was investigated. Monetite crystals in a petal form with a diameter ranging from 0.1 to 2 μm were precipitated at pH 2.0, while granular apatite crystals with a mean diameter of 1 μm were precipitated at pH 6.0. We also investigated the ability of the synthesized calcium phosphate crystals to immobilize lactic acid bacteria for practical use in industrial bioreactor. It was determined that monetite crystals with a diameter of 2 μm had the highest ability to fix lactic acid bacteria. The population of lactic acid bacteria was estimated to exceed 1,300 bacteria per crystal surface of 50 μm2 suggesting that these crystals may be of practical use in industrial fermenters.

  4. Reinjury risk of nano-calcium oxalate monohydrate and calcium oxalate dihydrate crystals on injured renal epithelial cells: aggravation of crystal adhesion and aggregation

    PubMed Central

    Gan, Qiong-Zhi; Sun, Xin-Yuan; Bhadja, Poonam; Yao, Xiu-Qiong; Ouyang, Jian-Ming

    2016-01-01

    Background Renal epithelial cell injury facilitates crystal adhesion to cell surface and serves as a key step in renal stone formation. However, the effects of cell injury on the adhesion of nano-calcium oxalate crystals and the nano-crystal-induced reinjury risk of injured cells remain unclear. Methods African green monkey renal epithelial (Vero) cells were injured with H2O2 to establish a cell injury model. Cell viability, superoxide dismutase (SOD) activity, malonaldehyde (MDA) content, propidium iodide staining, hematoxylin–eosin staining, reactive oxygen species production, and mitochondrial membrane potential (Δψm) were determined to examine cell injury during adhesion. Changes in the surface structure of H2O2-injured cells were assessed through atomic force microscopy. The altered expression of hyaluronan during adhesion was examined through laser scanning confocal microscopy. The adhesion of nano-calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) crystals to Vero cells was observed through scanning electron microscopy. Nano-COM and COD binding was quantitatively determined through inductively coupled plasma emission spectrometry. Results The expression of hyaluronan on the cell surface was increased during wound healing because of Vero cell injury. The structure and function of the cell membrane were also altered by cell injury; thus, nano-crystal adhesion occurred. The ability of nano-COM to adhere to the injured Vero cells was higher than that of nano-COD crystals. The cell viability, SOD activity, and Δψm decreased when nano-crystals attached to the cell surface. By contrast, the MDA content, reactive oxygen species production, and cell death rate increased. Conclusion Cell injury contributes to crystal adhesion to Vero cell surface. The attached nano-COM and COD crystals can aggravate Vero cell injury. As a consequence, crystal adhesion and aggregation are enhanced. These findings provide further insights into kidney stone

  5. Fractional absorption of active absorbable algal calcium (AAACa) and calcium carbonate measured by a dual stable-isotope method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the use of stable isotopes, this study aimed to compare the bioavailability of active absorbable algal calcium (AAACa), obtained from oyster shell powder heated to a high temperature, with an additional heated seaweed component (Heated Algal Ingredient, HAI), with that of calcium carbonate. In ...

  6. A comparative study of calcium absorption following a single serving administration of calcium carbonate powder versus calcium citrate tablets in healthy premenopausal women

    PubMed Central

    Wang, Haiyuan; Bua, Peter; Capodice, Jillian

    2014-01-01

    Background Calcium is an essential mineral often taken as a daily, long-term nutritional supplement. Data suggests that once-daily dosing is important with regard to long-term compliance of both drugs and nutritional supplements. Objective This study was undertaken to compare the bioavailability of a single serving of two calcium supplements in healthy, premenopausal women. Design A two-period, crossover bioavailability study of a single serving of calcium citrate tablets (two tablets=500 mg calcium) versus a single serving of calcium carbonate powder (one packet of powder=1,000 mg calcium) was performed in healthy women aged between 25 and 45. All subjects were on a calcium-restricted diet 7 days prior to testing and fasted for 12 h before being evaluated at 0, 1, 2, and 4 h after oral administration of the test agents. Blood measurements for total and ionized calcium and parathyroid hormone were performed and adverse events were monitored. Results Twenty-three women were evaluable with a mean age of 33.2±8.71. Results showed that administration of a single serving of a calcium carbonate powder resulted in greater absorption in total and ionized calcium versus a single serving of calcium citrate tablets at 4 h (4.25±0.21 vs. 4.16±0.16, p=0.001). There were minimal side effects and no reported serious adverse events. Conclusions This study shows that a single serving of a calcium carbonate powder is more bioavailable than a single serving of calcium citrate tablets. This may be beneficial for long-term compliance. PMID:24772062

  7. Heterogeneous nucleation of calcium oxalate crystals in the presence of membrane vesicles

    NASA Astrophysics Data System (ADS)

    Khan, Saeed R.; Whalen, Patrick O.; Glenton, Patricia A.

    1993-12-01

    Membrane-assisted crystallization of calcium oxalate was studied in vitro, using constant composition methodology. Rat renal tubular brush border membrane vesicles were incubated in supersaturated solution of calcium oxalate. Calcium and oxalate depletion started much earlier in the presence of the vesicles than in their absence; within 8, 32, or 258 min of the incubation of vesicles in calcium oxalate solutions of relative supersaturation of 12, 10 or 6 respectively. Thin plate-like crystals with jagged edges formed in association with the membrane vesicles. Since crystal nucleation in the presence of membrane vesicles started within 8 min at a relative supersaturation as low as 12, it will start significantly earlier in the urine of stone formers which is known to have higher relative supersaturation with respect to calcium oxalate. These results demonstrate that cellular membranes can efficiently induce nucleation of calcium oxalate crystals from a metastable solution in an vitro system. Similar membrane induced heterogeneous nucleation of calcium oxalate in vivo within the renal tubules is a distinct possibility.

  8. Precipitation of calcium carbonate and calcium phosphate under diffusion controlled mixing

    SciTech Connect

    Tsigabu Gebrehiwet; James R. Henriksen; Luanjing Guo; Don T. Fox; Hai Huang; Lee Tu; Yoshiko Fujita; Robert W. Smith; George Redden

    2014-07-01

    Multi-component mineral precipitation in porous, subsurface environments is challenging to simulate or engineer when in situ reactant mixing is controlled by diffusion. In contrast to well-mixed systems, the conditions that favor mineral precipitation in porous media are distributed along chemical gradients, which evolve spatially due to concurrent mineral precipitation and modification of solute transport in the media. The resulting physical and chemical characteristics of a mixing/precipitation zone are a consequence of coupling between transport and chemical processes, and the distinctive properties of individual chemical systems. We examined the spatial distribution of precipitates formed in “double diffusion” columns for two chemical systems, calcium carbonate and calcium phosphate. Polyacrylamide hydrogel was used as a low permeability, high porosity medium to maximize diffusive mixing and minimize pressure- and density-driven flow between reactant solutions. In the calcium phosphate system, multiple, visually dense and narrow bands of precipitates were observed that were reminiscent of previously reported Liesegang patterns. In the calcium carbonate system, wider precipitation zones characterized by more sparse distributions of precipitates and a more open channel structure were observed. In both cases, formation of precipitates inhibited, but did not necessarily eliminate, continued transport and mixing of the reactants. A reactive transport model with fully implicit coupling between diffusion, chemical speciation and precipitation kinetics, but where explicit details of nucleation processes were neglected, was able to qualitatively simulate properties of the precipitation zones. The results help to illustrate how changes in the physical properties of a precipitation zone depend on coupling between diffusion-controlled reactant mixing and chemistry-specific details of precipitation kinetics.

  9. Application of pulsed spark discharge for calcium carbonate precipitation in hard water.

    PubMed

    Yang, Yong; Kim, Hyoungsup; Starikovskiy, Andrey; Fridman, Alexander; Cho, Young I

    2010-06-01

    The effect of underwater pulsed spark discharge on the precipitation of dissolved calcium ions was investigated in the present study. Water samples with different calcium hardness were prepared by continuous evaporation of tap water using a laboratory cooling tower. It was shown that the concentration of calcium ions dropped by 20-26% after 10-min plasma treatment, comparing with no drop for untreated cases. A laser particle counting method demonstrated that the total number of solid particles suspended in water increased by over 100% after the plasma treatment. The morphology and the crystal form of the particles were identified by both scanning electron microscopy and X-ray diffraction. Calcite with rhombohedron morphology was observed for plasma treated cases, comparing with the round structure observed for no-treatment cases. It was hypothesized that the main mechanisms for the plasma-assisted calcium carbonate precipitation might include electrolysis, local heating in the vicinity of plasma channel and a high electric field at the tip of plasma streamers, inducing structural changes in the electric double layer of hydrated ions. PMID:20494397

  10. Effect of calcium on adsorption capacity of powdered activated carbon.

    PubMed

    Li, Gang; Shang, Junteng; Wang, Ying; Li, Yansheng; Gao, Hong

    2013-12-01

    We investigated the effect of calcium ion on the adsorption of humic acid (HA) (as a target pollutant) by powered activated carbon. The HA adsorption isotherms at different pH and kinetics of two different solutions including HA alone and HA doped Ca(2+), were performed. It was showed that the adsorption capacity of powdered activated carbon (PAC) for HA was markedly enhanced when Ca(2+) was doped into HA. Also, HA and Ca(2+) taken as nitrate were tested on the uptake of each other respectively and it was showed that the adsorbed amounts of both of them were significantly promoted when HA and calcium co-existed. Furthermore, the adsorbed amount of HA slightly decreased with the increasing of Ca(2+) concentration, whereas the amount of calcium increased with the increasing of HA concentration, but all above the amounts without addition. Finally, the change of pH before and after adsorption process is studied. In the two different solutions including HA alone and HA doped Ca(2+), pH had a small rise, but the extent of pH of later solution was bigger. PMID:25078809

  11. Calcium carbonate mineralization: X-ray microdiffraction probing of the interface of an evaporating drop on a superhydrophobic surface.

    PubMed

    Accardo, Angelo; Burghammer, Manfred; Di Cola, Emanuela; Reynolds, Michael; Di Fabrizio, Enzo; Riekel, Christian

    2011-07-01

    The liquid/air interface of calcium bicarbonate solution drops was probed by synchrotron radiation microbeam scattering. The drops were deposited on a nanopatterned superhydrophobic poly(methyl methacrylate) surface and raster-scanned during evaporation by small-angle and wide-angle X-ray scattering. The appearance of about 200-nm-size calcite crystallites at the interface could be spatially resolved at the onset of crystallization. Diffuse scattering from the interface is attributed to a dense nanoscale amorphous calcium carbonate phase. Calcite was found to be the major phase in the solid residue with vaterite as minor phase. PMID:21663321

  12. Leaf calcium oxalate crystal structure and its role in defense against a chewing insect in Medicago truncatula

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crystals of calcium oxalate are common in plants and widely distributed among many plant families. These hard and largely insoluble crystals take on many shapes and sizes depending on the tissue and species. In Medicago truncatula, calcium oxalate crystals are abundant in leaves and accumulate in sh...

  13. Multi-Functions of Carbonated Calcium Deficient Hydroxyapatite (CDHA)

    NASA Astrophysics Data System (ADS)

    Zhou, Huan

    Natural bone is a complex composite mainly constituted of inorganic minerals and organic collagen molecules. Calcium phosphate (CaP) based materials have been proposed as the predominant bone substitute for bone tissue engineering applications due to their chemical similarity to bone mineral. Amorphous carbonated calcium deficient hydroxyapatite (CDHA) is an important compound among CaP materials because of the amorphous crystallite structure. The presence of extra ions in its lattice structure not only influences cell attachment and proliferation of osteoblasts, but also helps in bone metabolism. Biomimetic coating approach is the most widely used approach to produce CDHA coatings to implant. It is a process using simulated body fluid (SBF) to deposit bone-like CDHA coating to various material surfaces. The CDHA formation mechanism, SBF compositions and reacting conditions of biomimetic coating have already been sufficiently studied and compared in the past 20 years. It is an attempt in this thesis to explore new applications of SBF in biomedical research, focusing on different biomaterial applications: 1) based on the low temperature reaction condition of SBF, bisphosphonate incorporated CDHA coatings were deposited onto Ti6Al4V surface for the treatment of osteoporosis; 2) amorphous calcium phosphate nanospheres with extra elements in the lattice structure were prepared by a novel microwave assisted approach, providing a new potential of CaP materials production; 3) CDHA particles formed in SBF can be used as great fillers with biopolymers for preparing biocomposites for biomedical applications; 4) based on the high activity of CDHA amorphous structure and the stabilization ability of ethanol, yttrium and europium doped calcium phosphates were prepared using CDHA as a sacrificing template. In the end, future work based on these observations in the thesis is addressed, including areas of drug delivery, biocomposite fabrication and preparation of functionalized

  14. Transglutaminase-induced crosslinking of gelatin-calcium carbonate composite films.

    PubMed

    Wang, Yuemeng; Liu, Anjun; Ye, Ran; Wang, Wenhang; Li, Xin

    2015-01-01

    The effects of transglutaminase (TGase) on the rheological profiles and interactions of gelatin-calcium carbonate solutions were studied. In addition, mechanical properties, water vapour permeability and microstructures of gelatin-calcium carbonate films were also investigated and compared. Fluorescence data suggested that the interaction of TGase and gelation-calcium carbonate belonged to a static quenching mechanism, and merely one binding site between TGase and gelatin-calcium carbonate was identified. Moreover, differential scanning calorimetry (DSC), the mechanical properties and the water vapour permeability studies revealed that TGase favoured the strong intramolecular polymerisation of the peptides in gelatin. The microstructures of the surfaces and cross sections in gelatin-calcium carbonate films were shown by scanning electron microscope (SEM) micrographs. The results of the fourier transform infrared spectroscopy (FTIR) indicated that TGase caused conformational changes in the proteins films. Therefore, TGase successfully facilitated the formation of gelatin-calcium carbonate composite films. PMID:25053075

  15. From "loose" to "dense" crystalline phases of calcium carbonate through "repulsive" interactions: an experimental charge-density study.

    PubMed

    Nelyubina, Yulia V; Lyssenko, Konstantin A

    2012-10-01

    Anion-anion interactions in an eggshell: experimental electron density analysis for two polymorphs of calcium carbonate revealed why the less stable form, aragonite, has higher density than the most stable form, calcite. Although believed to be exclusively repulsive, the interactions between anions cause them to bind more tightly in a crystal and thus make the aragonite phase denser than its calcite counterpart. PMID:22915456

  16. Co-crystallization of cholesterol and calcium phosphate as related to atherosclerosis

    NASA Astrophysics Data System (ADS)

    Hirsch, Danielle; Azoury, Reuven; Sarig, Sara

    1990-09-01

    Calcification of atherosclerotic plaques occurs very frequently and aggravates the disease. In biological systems, epitaxial relationships between crystal structures may be important in nucleating the deposit of a solid phase. The biologically preferred calcium phosphate species, apatite, and cholesterol crystal have structurally compatible crystallographic faces which allow epitaxial growth of one crystal upon another. The present study describes a new approach to explore, in vitro, the crystallization processes of calcium phosphate (CaP) with cholesterol (CS) and cholestanol (CN) which are related to atherosclerosis. Aqueous solutions containing calcium and phosphate ions or CaP crystals as hydroxyapatite were added into saturated ethanolic solutions of CS or CS and 10% CN. After precipitation, crystals were collected and analyzed by nuclear magnetic resonance (NMR), infra-red (IR), X-ray, scanning electron microscope (SEM-LINK), differential scanning calorimeter (DSC) and atomic absorption. The principal result is the well-formed crystals precipitation when an aqueous solution and CaP seed crystals were added to saturated solutions of CS and 10% CN. Cholesterol-cholestanol dihydrate (CC2W) crystals precipitated in the presence of CaP seeds were compared to the CC2W crystals obtained without the mineral compound. The results of this comparison indicate a special link between crystals of CaP and CC2W, and support the epitaxial relationship between the two kinds of crystals. The potential of CC2W crystals to be precipitated by CaP seed crystals prove likewise the possible significant role of the cholestanol metabolite in the process of cholesterol crystallization and calcification in the arteries.

  17. Calcium carbonate production, coral reef growth, and sea level change.

    PubMed

    Smith, S V; Kinsey, D W

    1976-11-26

    Shallow, seaward portions of modern coral reefs produce about 4 kilograms of calcium carbonate per square meter per year, and protected areas produce about 0.8 kilogram per square meter per year. The difference is probably largely a function of water motion. The more rapid rate, equivalent to a maximum vertical accretion of 3 to 5 millimeters per year, places an upper limit on the potential of modern coral reef communities to create a significant vertical structure on a rising sea. PMID:17748553

  18. Effects of temperature during the irradiation of calcium carbonate.

    PubMed

    Negrón-Mendoza, Alicia; Camargo-Raya, Claudia; Gómez-Vidales, Virginia; Uribe, Roberto M; Ramos-Bernal, Sergio

    2016-05-01

    Calcium carbonate received gamma irradiation at different doses (0-309kGy) and temperature regimes (77-298K) to study the effects of irradiation temperature. The changes were followed by EPR spectroscopy. We observed the formation of a composite EPR spectrum, even at low radiation doses and temperature. There was a strong effect on the evaluation of the radicals formed as a function of irradiation temperature, probably due to the diffusion in the frozen powder and the recombination of some radicals at room temperature. PMID:26901240

  19. Calcium isotope evidence for suppression of carbonate dissolution in carbonate-bearing organic-rich sediments

    NASA Astrophysics Data System (ADS)

    Turchyn, Alexandra V.; DePaolo, Donald J.

    2011-11-01

    Pore fluid calcium isotope, calcium concentration and strontium concentration data are used to measure the rates of diagenetic dissolution and precipitation of calcite in deep-sea sediments containing abundant clay and organic material. This type of study of deep-sea sediment diagenesis provides unique information about the ultra-slow chemical reactions that occur in natural marine sediments that affect global geochemical cycles and the preservation of paleo-environmental information in carbonate fossils. For this study, calcium isotope ratios (δ 44/40Ca) of pore fluid calcium from Ocean Drilling Program (ODP) Sites 984 (North Atlantic) and 1082 (off the coast of West Africa) were measured to augment available pore fluid measurements of calcium and strontium concentration. Both study sites have high sedimentation rates and support quantitative sulfate reduction, methanogenesis and anaerobic methane oxidation. The pattern of change of δ 44/40Ca of pore fluid calcium versus depth at Sites 984 and 1082 differs markedly from that of previously studied deep-sea Sites like 590B and 807, which are composed of nearly pure carbonate sediment. In the 984 and 1082 pore fluids, δ 44/40Ca remains elevated near seawater values deep in the sediments, rather than shifting rapidly toward the δ 44/40Ca of carbonate solids. This observation indicates that the rate of calcite dissolution is far lower than at previously studied carbonate-rich sites. The data are fit using a numerical model, as well as more approximate analytical models, to estimate the rates of carbonate dissolution and precipitation and the relationship of these rates to the abundance of clay and organic material. Our models give mutually consistent results and indicate that calcite dissolution rates at Sites 984 and 1082 are roughly two orders of magnitude lower than at previously studied carbonate-rich sites, and the rate correlates with the abundance of clay. Our calculated rates are conservative for these

  20. Spectral features of biogenic calcium carbonates and implications for astrobiology

    NASA Astrophysics Data System (ADS)

    Berg, B. L.; Ronholm, J.; Applin, D. M.; Mann, P.; Izawa, M.; Cloutis, E. A.; Whyte, L. G.

    2014-09-01

    The ability to discriminate biogenic from abiogenic calcium carbonate (CaCO3) would be useful in the search for extant or extinct life, since CaCO3 can be produced by both biotic and abiotic processes on Earth. Bioprecipitated CaCO3 material was produced during the growth of heterotrophic microbial isolates on medium enriched with calcium acetate or calcium citrate. These biologically produced CaCO3, along with natural and synthetic non-biologically produced CaCO3 samples, were analysed by reflectance spectroscopy (0.35-2.5 μm), Raman spectroscopy (532 and 785 nm), and laser-induced fluorescence spectroscopy (365 and 405 nm excitation). Optimal instruments for the discrimination of biogenic from abiogenic CaCO3 were determined to be reflectance spectroscopy, and laser-induced fluorescence spectroscopy. Multiple absorption features in the visible light region occurred in reflectance spectra for most biogenic CaCO3 samples, which are likely due to organic pigments. Multiple fluorescence peaks occurred in emission spectra (405 nm excitation) of biogenic CaCO3 samples, which also are best attributed to the presence of organic compounds; however, further analyses must be performed in order to better determine the cause of these features to establish criteria for confirming the origin of a given CaCO3 sample. Raman spectroscopy was not useful for discrimination since any potential Raman peaks in spectra of biogenic carbonates collected by both the 532 and 785 nm lasers were overwhelmed by fluorescence. However, this also suggests that biogenic carbonates may be identified by the presence of this organic-associated fluorescence. No reliable spectroscopic differences in terms of parameters such as positions or widths of carbonate-associated absorption bands were found between the biogenic and abiogenic carbonate samples. These results indicate that the presence or absence of organic matter intimately associated with carbonate minerals is the only potentially useful

  1. Molecular mechanism of crystallization impacting calcium phosphate cements

    SciTech Connect

    Giocondi, J L; El-Dasher, B S; Nancollas, G H; Orme, C A

    2009-05-31

    In summary, SPM data has shown that (1) Mg inhibits growth on all steps but relatively high Mg/Ca ratios are needed. Extracting the mechanism of interaction requires more modeling of the kinetic data, but step morphology is consistent with incorporation. (2) Citrate has several effects depending on the citrate/Ca ratio. At the lowest concentrations, citrate increases the step free energy without altering the step kinetics; at higher concentrations, the polar step is slowed. (3) Oxalate also slows the polar step but additionally stabilizes a new facet, with a [100]{sub Cc} step. (4) Etidronate has the greatest kinetic impact of the molecules studied. At 7{micro}M concentrations, the polar step slows by 60% and a new polar step appears. However, at the same time the [10-1]{sub Cc} increases by 67%. It should be noted that all of these molecules complex calcium and can effect kinetics by altering the solution supersaturation or the Ca to HPO{sub 4}{sup 2-} ratio. For the SPM data shown, this effect was corrected for to distinguish the effect of the molecule at the crystal surface from the effect of the molecule on the solution speciation. The goal of this paper is to draw connections between fundamental studies of atomic step motion and potential strategies for materials processing. It is not our intent to promote the utility of SPM for investigating processes in cement dynamics. The conditions are spectacularly different in many ways. The data shown in this paper are fairly close to equilibrium (S=1.6) whereas the nucleation of cements is initiated at supersaturation ratios in the thousands to millions. Of course, after the initial nucleation phase, the growth will occur at more modest supersaturations and as the cement evolves towards equilibrium certainly some of the growth will occur in regimes such as shown here. In addition to the difference in supersaturation, cements tend to have lower additive to calcium ratios. As an example, the additive to Ca ratio is

  2. The influence of kinetics on the oxygen isotope composition of calcium carbonate

    NASA Astrophysics Data System (ADS)

    Watkins, James M.; Nielsen, Laura C.; Ryerson, Frederick J.; DePaolo, Donald J.

    2013-08-01

    Paleotemperature reconstructions rely on knowledge of the equilibrium separation of oxygen isotopes between aqueous solution and calcium carbonate. Although oxygen isotope separation is expected on theoretical grounds, the temperature-dependence remains uncertain because other factors, such as slow exchange of isotopes between dissolved CO2-species and water, can obscure the temperature signal. This is problematic for crystal growth experiments on laboratory timescales and for interpreting the oxygen isotope composition of crystals formed in natural settings. We present results from experiments in which inorganic calcite is precipitated in the presence of 0.25 μM dissolved bovine carbonic anhydrase (CA). The presence of dissolved CA accelerates oxygen isotope equilibration between the dissolved carbon species CO2, H2CO3, HCO3-, CO32- and water, thereby eliminating this source of isotopic disequilibrium during calcite growth. The experimental results allow us to isolate, for the first time, kinetic oxygen isotope effects occurring at the calcite-water interface. We present a framework of ion-by-ion growth of calcite that reconciles our new measurements with measurements of natural cave calcites that are the best candidate for having precipitated under near-equilibrium conditions. Our findings suggest that isotopic equilibrium between calcite and water is unlikely to have been established in laboratory experiments or in many natural settings. The use of CA in carbonate precipitation experiments offers new opportunities to refine oxygen isotope-based geothermometers and to interrogate environmental variables other than temperature that influence calcite growth rates.

  3. Analysis of barium hydroxide and calcium hydroxide slurry carbonation reactors

    SciTech Connect

    Patch, K.D.; Hart, R.P.; Schumacher, W.A.

    1980-05-01

    The removal of CO/sub 2/ from air was investigated by using a continuous-agitated-slurry carbonation reactor containing either barium hydroxide (Ba(OH)/sub 2/) or calcium hydroxide (Ca(OH)/sub 2/). Such a process would be applied to scrub /sup 14/CO/sub 2/ from stack gases at nuclear-fuel reprocessing plants. Decontamination factors were characterized for reactor conditions which could alter hydrodynamic behavior. An attempt was made to characterize reactor performance with models assuming both plug flow and various degrees of backmixing in the gas phase. The Ba(OH)/sub 2/ slurry enabled increased conversion, but apparently the process was controlled under some conditions by phenomena differing from those observed for carbonation by Ca(OH)/sub 2/. Overall reaction mechanisms are postulated.

  4. Calcium distribution in globoid crystals of cucurbita cotyledon protein bodies.

    PubMed

    Lott, J N; Spitzer, E; Vollmer, C M

    1979-05-01

    Energy-dispersive x-ray analysis was used to investigate the location of globoid crystals with relatively high Ca levels within cotyledons of Cucurbita maxima, Cucurbita mixta, and Cucurbita andreana. The small globoid crystals in both upper and lower epidermal cells commonly contained Ca. Ca was present in globoid crystals of all provascular regions with the exception of the very small provascular regions of C. maxima. In C. maxima and C. mixta cotyledons, some cases were observed where Ca was found in the globoid crystals of the first layer of mesophyll cells surrounding the provascular region, but in general Ca was absent from globoid crystals of palisade and spongy mesophyll cells. In C. andreana, globoid crystals of palisade and spongy mesophyll cells commonly contained at least some Ca. Cell position and cell type are factors affecting the Ca content of globoid crystals in protein bodies. PMID:16660825

  5. A mineralogical characterization of biogenic calcium carbonates precipitated by heterotrophic bacteria isolated from cryophilic polar regions.

    PubMed

    Ronholm, J; Schumann, D; Sapers, H M; Izawa, M; Applin, D; Berg, B; Mann, P; Vali, H; Flemming, R L; Cloutis, E A; Whyte, L G

    2014-11-01

    Precipitation of calcium carbonate (CaCO3(s) ) can be driven by microbial activity. Here, a systematic approach is used to identify the morphological and mineralogical characteristics of CaCO3(s) precipitated during the heterotrophic growth of micro-organisms isolated from polar environments. Focus was placed on establishing mineralogical features that are common in bioliths formed during heterotrophic activity, while in parallel identifying features that are specific to bioliths precipitated by certain microbial phylotypes. Twenty microbial isolates that precipitated macroscopic CaCO3(s) when grown on B4 media supplemented with calcium acetate or calcium citrate were identified. A multimethod approach, including scanning electron microscopy, high-resolution transmission electron microscopy, and micro-X-ray diffraction (μ-XRD), was used to characterize CaCO3(s) precipitates. Scanning and transmission electron microscopy showed that complete CaCO3(s) crystal encrustation of Arthrobacter sp. cells was common, while encrustation of Rhodococcus sp. cells did not occur. Several euhedral and anhedral mineral formations including disphenoid-like epitaxial plates, rhomboid-like aggregates with epitaxial rhombs, and spherulite aggregates were observed. While phylotype could not be linked to specific mineral formations, isolates tended to precipitate either euhedral or anhedral minerals, but not both. Three anhydrous CaCO3(s) polymorphs (calcite, aragonite, and vaterite) were identified by μ-XRD, and calcite and aragonite were also identified based on TEM lattice-fringe d value measurements. The presence of certain polymorphs was not indicative of biogenic origin, although several mineralogical features such as crystal-encrusted bacterial cells, or casts of bacterial cells embedded in mesocrystals are an indication of biogenic origin. In addition, some features such as the formation of vaterite and bacterial entombment appear to be linked to certain phylotypes. Identifying

  6. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    SciTech Connect

    V.J. Fabry, Ph.D.

    2001-12-15

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  7. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    SciTech Connect

    V.J. Fabry

    2001-07-01

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids single-celled, marine algae that are the major global producers of calcium carbonate to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  8. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    SciTech Connect

    V.J. Fabry, Ph.D.

    2002-12-15

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  9. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    SciTech Connect

    V.J. Fabry, Ph.D.

    2002-07-09

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  10. CALCIUM CARBONATE PRODUCTION BY COCCOLITHAPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    SciTech Connect

    V. J.Fabry

    2004-01-30

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  11. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    SciTech Connect

    V.J. Fabry, Ph.D.

    2001-09-10

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  12. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    SciTech Connect

    V.J. Fabry, Ph.D.

    2003-04-15

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  13. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    SciTech Connect

    V.J. Fabry, Ph.D.

    2003-07-15

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  14. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    SciTech Connect

    V.J. Fabry, Ph.D.

    2002-09-30

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  15. Calcium Carbonate Produced by Coccolithophorid Algae in Long Term, Carbon Dioxide Sequestration

    SciTech Connect

    V.J. Fabry

    2007-06-30

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO2 through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids - single-celled, marine algae that are the major global producers of calcium carbonate - to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  16. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM CARBON DIOXIDE SEQUESTRATION

    SciTech Connect

    V. J. Fabry

    2003-10-30

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds or bioreactors to abate CO{sub 2} emissions from power plants.

  17. Calcium Carbonate Production by Coccolithophorid Alge in Long Term Carbon Dioxide Sequestration

    SciTech Connect

    V. J. Fabry

    2006-09-30

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  18. Calcium Carbonate Production by Coccolithophorid Algae in Long Term, Carbon Dioxide Sequestration

    SciTech Connect

    V. J. Fabry

    2006-06-30

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  19. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    SciTech Connect

    V. J. Fabry

    2005-01-24

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids ? single-celled, marine algae that are the major global producers of calcium carbonate ? to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  20. Calcium Carbonate Production by Coccolithophorid Algae in Long Term, Carbon Dioxide Sequestration

    SciTech Connect

    V.J. Fabry

    2005-04-29

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  1. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    SciTech Connect

    V.J. Fabry

    2004-04-26

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids single-celled, marine algae that are the major global producers of calcium carbonate to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  2. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    SciTech Connect

    V.J. Fabry

    2004-10-30

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds or bioreactors to abate CO{sub 2} emissions from power plants.

  3. Growth and characterization of a novel nonlinear optical borate crystal - Yttrium calcium borate (YCB)

    NASA Astrophysics Data System (ADS)

    Arun Kumar, R.; Arivanandhan, M.; Dhanasekaran, R.; Hayakawa, Y.

    2013-06-01

    A new nonlinear optical single crystal yttrium calcium borate Y2CaB10O19 (YCB) was grown for the first time from its melt. The starting materials were prepared by the solid-state reaction method. The melting point of the synthesized material was identified to be 967 °C. YCB crystal exhibits monoclinic crystal structure with the space group C2. The crystalline perfection of the grown YCB crystal was found to be good. From the UV-VIS-NIR studies, the lower cutoff wavelength of the crystal occurs below 200 nm. The functional groups of the grown crystal were assigned using the FTIR data. The second harmonic generation (SHG) of the YCB crystal was observed using a Nd:YAG laser with a fundamental wavelength of 1064 nm. The laser damage threshold value of the YCB crystal was found to be very high - 10.5 GW/cm2.

  4. Growth and characterization of a novel nonlinear optical borate crystal--yttrium calcium borate (YCB).

    PubMed

    Arun Kumar, R; Arivanandhan, M; Dhanasekaran, R; Hayakawa, Y

    2013-06-01

    A new nonlinear optical single crystal yttrium calcium borate Y2CaB10O19 (YCB) was grown for the first time from its melt. The starting materials were prepared by the solid-state reaction method. The melting point of the synthesized material was identified to be 967 °C. YCB crystal exhibits monoclinic crystal structure with the space group C2. The crystalline perfection of the grown YCB crystal was found to be good. From the UV-VIS-NIR studies, the lower cutoff wavelength of the crystal occurs below 200 nm. The functional groups of the grown crystal were assigned using the FTIR data. The second harmonic generation (SHG) of the YCB crystal was observed using a Nd:YAG laser with a fundamental wavelength of 1064 nm. The laser damage threshold value of the YCB crystal was found to be very high - 10.5 GW/cm(2). PMID:23583874

  5. Dissolution and crystallization of calcium sulfite platelets. Report for Sep 84-Aug 86

    SciTech Connect

    Gleason, C.L.; Rochelle, G.T.

    1987-01-01

    This paper discusses the dissolution and crystallization of calcium sulfite platelets. The rates of calcium sulfite dissolution and crystallization are important in slurry scrubbing processes for flue-gas desulfurization. The rates affect the scrubber solution composition, SO{sub 2} absorption, sulfite oxidation, and limestone utilization. The dissolution and crystallization rates of platelet shaped calcium sulfite crystals were measured in the pH stat apparatus. The solution pH was varied from 3.0 to 6.0. The effects of sulfate content in the solids and solution were also investigated. The measured rates for the platelets were compared to the rates previously determined for agglomerates. It was determined that there are subtle differences between platelet and agglomerated calcium sulfite. The platelet sample with low solid sulfate content dissolved and crystallized slower than the sample with a high solid sulfate content and the agglomerated samples. The inhibiting effect of dissolved sulfate was also greater for the low solid sulfate sample. The sample with a high solid sulfate content dissolved and crystallized at approximately the same rate as the agglomerates.

  6. Constitutive modeling of calcium carbonate supersaturated seawater mixtures

    NASA Astrophysics Data System (ADS)

    Reis, Martina; Sousa, Maria De Fátima; Bertran, Celso; Bassi, Adalberto

    2014-11-01

    Calcium carbonate supersaturated seawater mixtures have attracted attention of many researchers since the deposition of CaCO3(s) from such solutions can lead to scaling problems in oil fields. However, despite their evident practical importance in petroleum engineering, the hydro and thermodynamic behaviors of these mixtures have not been well-understood yet. In this work, a constitutive model based on the foundations of the constitutive theory of continuum mechanics, and the Müller-Liu entropy principle is proposed. The calcium carbonate supersaturated seawater mixture is regarded as a reactive viscous fluid with heat and electrical conductions. The obtained results indicate that the thermodynamic behavior of CaCO3 supersaturated seawater mixtures is closely related to the individual dynamics of each constituent of the mixture, particularly to the linear momentum, and mass exchanges. Furthermore, the results show that, unlike classical continuum mixtures, the extra entropy flux is not null, and higher-order gradients of deformation contribute to the residual entropy production of the class of mixtures under study. The results of this work may be relevant for the prevention of the mineral scale formation in oil fields. The first author acknowledges the São Paulo Research Foundation (Grant 2013/ 20872-2) for its funding.

  7. Effect of calcium carbonate saturation of seawater on coral calcification

    USGS Publications Warehouse

    Gattuso, J.-P.; Frankignoulle, M.; Bourge, I.; Romaine, S.; Buddemeier, R.W.

    1998-01-01

    The carbonate chemistry of seawater is usually not considered to be an important factor influencing calcium-carbonate-precipitation by corals because surface seawater is supersaturated with respect to aragonite. Recent reports, however, suggest that it could play a major role in the evolution and biogeography of recent corals. We investigated the calcification rates of five colonies of the zooxanthellate coral Stylophora pistillata in synthetic seawater using the alkalinity anomaly technique. Changes in aragonite saturation from 98% to 585% were obtained by manipulating the calcium concentration. The results show a nonlinear increase in calcification rate as a function of aragonite saturation level. Calcification increases nearly 3-fold when aragonite saturation increases from 98% to 390%, i.e., close to the typical present saturation state of tropical seawater. There is no further increase of calcification at saturation values above this threshold. Preliminary data suggest that another coral species, Acropora sp., displays a similar behaviour. These experimental results suggest: (l) that the rate of calcification does not change significantly within the range of saturation levels corresponding to the last glacial-interglacial cycle, and (2) that it may decrease significantly in the future as a result of the decrease in the saturation level due to anthropogenic release of CO2 into the atmosphere. Experimental studies that control environmental conditions and seawater composition provide unique opportunities to unravel the response of corals to global environmental changes.

  8. Uptake of chloride and carbonate ions by calcium monosulfoaluminate hydrate

    SciTech Connect

    Mesbah, Adel; Cau-dit-Coumes, Celine; Frizon, Fabien

    2012-08-15

    Decommissioning of old nuclear reactors may produce waste streams containing chlorides and carbonates, including radioactive {sup 36}Cl{sup -} and {sup 14}CO{sub 3}{sup 2-}. Their insolubilization by calcium monosulfoaluminate hydrate was investigated. Carbonates were readily depleted from the solution, giving at thermodynamic equilibrium monocarboaluminate, monocarboaluminate + calcite, or calcite only, depending on the initial ratio between the anion and calcium monosulfoaluminate hydrate. Chloride ions reacted more slowly and were precipitated as Kuzel's salt, Kuzel's and Friedel's salts, or Friedel's salt only. Rietveld refinement of X-Ray powder diffraction patterns was successfully used to quantify the phase distributions, which were compared to thermodynamic calculations. Moreover, analysing the lattice parameters of Kuzel's salt as a function of its chloride content showed the occurrence of a restricted solid solution towards the sulfate side with general formula 3CaO{center_dot}Al{sub 2}O{sub 3}{center_dot}xCaCl{sub 2}{center_dot}(1 - x)CaSO{sub 4}{center_dot}(12 - 2x){center_dot}H{sub 2}O (0.36 {<=} x {<=} 0.50).

  9. Calcium oxalate monohydrate crystals internalized into renal tubular cells are degraded and dissolved by endolysosomes.

    PubMed

    Chaiyarit, Sakdithep; Singhto, Nilubon; Thongboonkerd, Visith

    2016-02-25

    Interaction between calcium oxalate crystals and renal tubular cells has been recognized as one of the key mechanisms for kidney stone formation. While crystal adhesion and internalization have been extensively investigated, subsequent phenomena (i.e. crystal degradation and dissolution) remained poorly understood. To explore these mechanisms, we used fluorescein isothiocyanate (FITC)-labelled calcium oxalate monohydrate (COM) crystals (1000 μg/ml of crystals/culture medium) to confirm crystal internalization into MDCK (Type II) renal tubular cells after exposure to the crystals for 1 h and to trace the internalized crystals. Crystal size, intracellular and extracellular fluorescence levels were measured using a spectrofluorometer for up to 48 h after crystal internalization. Moreover, markers for early endosome (Rab5), late endosome (Rab7) and lysosome (LAMP-2) were examined by laser-scanning confocal microscopy. Fluorescence imaging and flow cytometry confirmed that FITC-labelled COM crystals were internalized into MDCK cells (14.83 ± 0.85%). The data also revealed a reduction of crystal size in a time-dependent manner. In concordance, intracellular and extracellular fluorescence levels were decreased and increased, respectively, indicating crystal degradation/dissolution inside the cells and the degraded products were eliminated extracellularly. Moreover, Rab5 and Rab7 were both up-regulated and were also associated with the up-regulated LAMP-2 to form large endolysosomes in the COM-treated cells at 16-h after crystal internalization. We demonstrate herein, for the first time, that COM crystals could be degraded/dissolved by endolysosomes inside renal tubular cells. These findings will be helpful to better understand the crystal fate and protective mechanism against kidney stone formation. PMID:26748311

  10. Crystal growth of calcite from calcium bicarbonate solutions at constant PCO2 and 25°C: a test of a calcite dissolution model

    USGS Publications Warehouse

    Reddy, Michael M.; Plummer, L. Neil; Busenberg, E.

    1981-01-01

    A highly reproducible seeded growth technique was used to study calcite crystallization from calcium bicarbonate solutions at 25°C and fixed carbon dioxide partial pressures between 0.03 and 0.3 atm. The results are not consistent with empirical crystallization models that have successfully described calcite growth at low PCO2 (< 10−3 atm). Good agreement was found between observed crystallization rates and those calculated from the calcite dissolution rate law and mechanism proposed by Plummer et al. (1978).