Science.gov

Sample records for calcium oxalate crystallization

  1. Engineering calcium oxalate crystal formation in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many plants accumulate crystals of calcium oxalate. Just how these crystals form remains unknown. To gain insight into the mechanisms regulating calcium oxalate crystal formation, a crystal engineering approach was initiated utilizing the non-crystal accumulating plant, Arabidopsis. The success of t...

  2. Crystal growth of calcium oxalate monohydrate

    NASA Astrophysics Data System (ADS)

    Singh, R. P.; Gaur, S. S.; Sheehan, M. E.; Nancollas, G. H.

    1988-02-01

    The kinetics of crystal growth of calcium oxalate monohydrate has been investigated up to very large extents of growth over a range of supersaturations maintained using the Constant Composition technique. It is suggested that the initial rapid growth of aged seed crystals resulting in marked lattice perfection, reduces the density of growth sites on the crystal surfaces. A method for the preparation of perfected crystallites of calcium oxalate monohydrate through pregrowth of aged crystals has been developed. At large extents of growth with respect to initial seed crystals ( > 200% for aged crystals and 30-60% for pregrown crystals), the rates of crystallization at constant supersaturation undergo marked increases accompanying the formulation of secondary nuclei. These nucleation thresholds depend both upon supersaturation and upon the initial specific surface area of the crystallites and may be important factors in the formation of calcium oxalate stones in vivo. Experiments in whole urine suggest that the kinetics of growth, secondary nucleation, aggregation and cementation of particles may be important factors in kidney stone formation.

  3. Characterization of Medicago truncatula reduced calcium oxalate crystal mutant alleles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium oxalate crystal formation is common in plants. Formation of these crystals has been shown to function in plant defense, calcium regulation, and aluminum tolerance. Although calcium oxalate is common and plays important roles in plant development, our understanding of how these crystals form ...

  4. Identification of calcium oxalate crystals using alizarin red S stain.

    PubMed

    Proia, A D; Brinn, N T

    1985-02-01

    Calcium oxalate crystals stain with alizarin red S at a pH of 7.0 but not at a pH of 4.2. In contrast, calcium phosphate and calcium carbonate stain at a pH of both 7.0 and 4.2. This difference allows presumptive identification of calcium oxalate deposits. The identity of calcium oxalate can then be confirmed by its insolubility in 2M acetic acid, since both calcium carbonate and calcium phosphate are soluble. We have applied this procedure for several years and have found it to be a rapid, reliable, and technically simple procedure for distinguishing calcium oxalate from other calcium deposits. PMID:2579619

  5. Aluminum citrate prevents renal injury from calcium oxalate crystal deposition.

    PubMed

    Besenhofer, Lauren M; Cain, Marie C; Dunning, Cody; McMartin, Kenneth E

    2012-12-01

    Calcium oxalate monohydrate crystals are responsible for the kidney injury associated with exposure to ethylene glycol or severe hyperoxaluria. Current treatment strategies target the formation of calcium oxalate but not its interaction with kidney tissue. Because aluminum citrate blocks calcium oxalate binding and toxicity in human kidney cells, it may provide a different therapeutic approach to calcium oxalate-induced injury. Here, we tested the effects of aluminum citrate and sodium citrate in a Wistar rat model of acute high-dose ethylene glycol exposure. Aluminum citrate, but not sodium citrate, attenuated increases in urea nitrogen, creatinine, and the ratio of kidney to body weight in ethylene glycol-treated rats. Compared with ethylene glycol alone, the addition of aluminum citrate significantly increased the urinary excretion of both crystalline calcium and crystalline oxalate and decreased the deposition of crystals in renal tissue. In vitro, aluminum citrate interacted directly with oxalate crystals to inhibit their uptake by proximal tubule cells. These results suggest that treating with aluminum citrate attenuates renal injury in rats with severe ethylene glycol toxicity, apparently by inhibiting calcium oxalate's interaction with, and retention by, the kidney epithelium. PMID:23138489

  6. Aluminum Citrate Prevents Renal Injury from Calcium Oxalate Crystal Deposition

    PubMed Central

    Besenhofer, Lauren M.; Cain, Marie C.; Dunning, Cody

    2012-01-01

    Calcium oxalate monohydrate crystals are responsible for the kidney injury associated with exposure to ethylene glycol or severe hyperoxaluria. Current treatment strategies target the formation of calcium oxalate but not its interaction with kidney tissue. Because aluminum citrate blocks calcium oxalate binding and toxicity in human kidney cells, it may provide a different therapeutic approach to calcium oxalate-induced injury. Here, we tested the effects of aluminum citrate and sodium citrate in a Wistar rat model of acute high-dose ethylene glycol exposure. Aluminum citrate, but not sodium citrate, attenuated increases in urea nitrogen, creatinine, and the ratio of kidney to body weight in ethylene glycol–treated rats. Compared with ethylene glycol alone, the addition of aluminum citrate significantly increased the urinary excretion of both crystalline calcium and crystalline oxalate and decreased the deposition of crystals in renal tissue. In vitro, aluminum citrate interacted directly with oxalate crystals to inhibit their uptake by proximal tubule cells. These results suggest that treating with aluminum citrate attenuates renal injury in rats with severe ethylene glycol toxicity, apparently by inhibiting calcium oxalate’s interaction with, and retention by, the kidney epithelium. PMID:23138489

  7. Influence of calcium oxalate crystal accumulation on the calcium content of seeds from Medicago truncatula

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crystals of calcium oxalate often form in cells adjacent to the vascular bundles in the tissues along the xylem stream. This spatial crystal pattern suggests a role for calcium oxalate formation in regulating calcium transport and partitioning to edible organs such as seeds. To investigate this pote...

  8. Calcium oxalate crystal growth in human urinary stones

    SciTech Connect

    Kim, K.M.; Johnson, F.B.

    1981-01-01

    Calcium oxalate stones are very common and increasing. Crystal growth is no less important than the crystal nucleation in the pathogenesis of stone formation. The crystal growth was studied in human calcium oxalate stones by a combined electron microscopy and x-ray diffraction. The main mode of weddellite growth was interpenetration twinning of tetrahedral bipyramids. Bipyramids may form as initial crystal seeds, develop from anhedral crystals (crystals which lack flat symmetric faces) of spherular or mulberry shape, develop on the surface of preformed bipyramids by spiral dislocation mechanisms, or develop on whewellite crystal by heterogeneous nucleation and epitaxy. Heterogeneous nucleations of whewellite on weddellite, and calcium apatite on whewellite were also observed. Whewellite grew mainly by parallel twinning. Interpenetration twinning was exceptional. Transformation of anhedral to euhedral (completely bounded by flat faces that are set ar fixed angles to one another) whewellite occurred by parallel fissurations followed by brick wall like stacking of the crystals, while euhedral transformation of weddellite occurred by protrusion of bipyramids frm anhedral crystal surface. Occasionally, an evidence of crystal dissolution was noted. Although an aggregation of crystals is believed to play a pivotal role in stone nidus formation, growth in size of the formed crystals, and twinning and epitactic crystal intergrowth apparently play a significant role in the obstructive urinary stone formation.

  9. Calcium Oxalate Crystals in Eucalypt Ectomycorrhizae: Morphochemical Characterization

    PubMed Central

    Pylro, Victor Satler; de Freitas, André Luiz Moreira; Otoni, Wagner Campos; da Silva, Ivo Ribeiro; Borges, Arnaldo Chaer; Costa, Maurício Dutra

    2013-01-01

    Ectomycorrhizal fungi are ubiquitous in forest ecosystems, benefitting plants principally by increasing the uptake of water and nutrients such as calcium from the soil. Previous work has demonstrated accumulation of crystallites in eucalypt ectomycorrhizas, but detailed morphological and chemical characterization of these crystals has not been performed. In this work, cross sections of acetic acid-treated and cleared ectomycorrhizal fragments were visualized by polarized light microscopy to evaluate the location of crystals within cortical root cells. Ectomycorrhizal sections were also observed by scanning electron microscopy (SEM) coupled with energy dispersive x-ray (EDS) microprobe analysis. The predominant forms of crystals were crystal sand (granules) and concretions. Calcium, carbon and oxygen were detected by EDS as constituent elements and similar elemental profiles were observed between both crystal morphologies. All analyzed crystalline structures were characterized as calcium oxalate crystals. This is the first report of the stoichiometry and morphology of crystals occurring in eucalypt ectomycorrhizas in tropical soils. The data corroborates the role of ectomycorrhizae in the uptake and accumulation of calcium in the form of calcium oxalate crystals in hybrid eucalypt plants. PMID:23844062

  10. Calcium oxalate crystals in eucalypt ectomycorrhizae: morphochemical characterization.

    PubMed

    Pylro, Victor Satler; de Freitas, André Luiz Moreira; Otoni, Wagner Campos; da Silva, Ivo Ribeiro; Borges, Arnaldo Chaer; Costa, Maurício Dutra

    2013-01-01

    Ectomycorrhizal fungi are ubiquitous in forest ecosystems, benefitting plants principally by increasing the uptake of water and nutrients such as calcium from the soil. Previous work has demonstrated accumulation of crystallites in eucalypt ectomycorrhizas, but detailed morphological and chemical characterization of these crystals has not been performed. In this work, cross sections of acetic acid-treated and cleared ectomycorrhizal fragments were visualized by polarized light microscopy to evaluate the location of crystals within cortical root cells. Ectomycorrhizal sections were also observed by scanning electron microscopy (SEM) coupled with energy dispersive x-ray (EDS) microprobe analysis. The predominant forms of crystals were crystal sand (granules) and concretions. Calcium, carbon and oxygen were detected by EDS as constituent elements and similar elemental profiles were observed between both crystal morphologies. All analyzed crystalline structures were characterized as calcium oxalate crystals. This is the first report of the stoichiometry and morphology of crystals occurring in eucalypt ectomycorrhizas in tropical soils. The data corroborates the role of ectomycorrhizae in the uptake and accumulation of calcium in the form of calcium oxalate crystals in hybrid eucalypt plants. PMID:23844062

  11. Influence of calcium oxalate crystal accumulation on the calcium content of seeds from Medicago truncatula.

    PubMed

    Nakata, Paul A

    2012-04-01

    Crystals of calcium oxalate often form in cells adjacent to the vascular bundles in the tissues along the xylem stream. This spatial crystal pattern suggests a role for calcium oxalate formation in regulating calcium transport and partitioning to edible organs such as seeds. To investigate this potential role, microscopic and biochemical comparisons were conducted on the different tissues of Medicago truncatula wild-type and the calcium oxalate defective (cod) 5 which lacks the ability to accumulate prismatic crystals in the cells adjacent to the vascular bundles. Calcium measurements showed that cod5 seeds had more calcium and cod5 pods contained less calcium than the corresponding wild-type tissues. Roots, stems, and leaves from cod5 and wild-type had similar calcium content. Although cod5 was devoid of prismatic crystals, cod5 pods were observed to form druse crystals of calcium oxalate not found in wild-type pods. Taken together these findings suggest a functional role for calcium oxalate formation in regulating calcium transport to the seeds. Regulating calcium uptake at the roots also appeared to be another point of control in determining seed calcium content. Overall, regulating the long distance transport and partitioning of calcium to the seeds appears to be a complex process with multiple points of control. PMID:22325887

  12. Effects of human urine on aggregation of calcium oxalate crystals.

    PubMed

    Springmann, K E; Drach, G W; Gottung, B; Randolph, A D

    1986-01-01

    The importance of aggregation in calcium oxalate urolithiasis, although not fully understood, has long been postulated. Previous investigators of calcium oxalate crystal aggregation have applied static crystallization rather than continuous flow techniques to their studies. We describe the use of a Couette agglomerator in series with our previously reported continuous flow mixed suspension-mixed product removal crystallization system. We compared synthetic urine controls with 5 per cent volume-in-volume human urine additions from normal persons or patients with calcium oxalate stones. There was no significant difference in nucleation, linear crystal growth rate or total crystal mass between normal persons and those with stones. Control nucleation rate was significantly higher than in either human urine addition group. Comparison of aggregator particle size distributions revealed significant differences in aggregation among the control, normal and stone groups. We concluded that urine inhibitors to aggregation are somewhat deficient in patients with stones, resulting in the generation of larger particle masses or eventually stones. PMID:3941471

  13. Arthritis associated with calcium oxalate crystals in an anephric patient treated with peritoneal dialysis

    SciTech Connect

    Rosenthal, A.; Ryan, L.M.; McCarty, D.J.

    1988-09-02

    The authors report a case of calcium oxalate arthropathy in a woman undergoing intermittent peritoneal dialysis who was not receiving pharmacologic doses of ascorbic acid. She developed acute arthritis, with calcium oxalate crystals in Heberden's and Bouchard's nodes, a phenomenon previously described in gout. Intermittent peritoneal dialysis may be less efficient than hemodialysis in clearing oxalate, and physicians should now consider calcium oxalate-associated arthritis in patients undergoing peritoneal dialysis who are not receiving large doses of ascorbic acid.

  14. Plant calcium oxalate crystal formation, function, and its impact on human health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crystals of calcium oxalate have been observed among members from most taxonomic groups of photosynthetic organisms ranging from the smallest algae to the largest trees. The biological roles for calcium oxalate crystal formation in plant growth and development include high capacity calcium regulatio...

  15. ISOLATED MEDICAGO TRUNCATULA MUTANTS WITH INCREASED CALCIUM OXALATE CRYSTAL ACCUMULATION HAVE DECREASED ASCORBIC ACID LEVELS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mechanisms controlling oxalate biosynthesis and calcium oxalate formation in plants remains largely unknown. As an initial step toward gaining insight into these regulatory mechanisms we initiated a mutant screen to identify plants that over-accumulate crystals of calcium oxalate. Four new mut...

  16. Oligomeric proanthocyanidins protect against HK-2 cell injury induced by oxalate and calcium oxalate monohydrate crystals.

    PubMed

    Wang, Shuo; Du, Peng; Zhang, Ning; Liu, Jia; Tang, Xingxing; Zhao, Qiang; Yang, Yong

    2016-06-01

    The purpose of the study was to test whether the antioxidants oligomeric proanthocyanidins (OPCs) could provide protection against oxalate and calcium oxalate monohydrate crystals (COM) toxicity in HK-2 cells. Four groups were chosen for the study: negative control group, positive control group (COM + oxalate), OPCs group (OPCs + COM + oxalate), Vit E group (Vit E + COM + oxalate). HK-2 cells were exposed for 4, 8, 12 and 24 h. The activity of HK-2 cell was assessed by MTT. Cellular injury was assessed by activity of Na(+)/K(+) ATP enzyme. Peroxidation level was assessed by malondialdehyde (MDA) content in medium and activity of superoxide dismutase (SOD). Morphological changes of HK-2 cell after exposed for 4 and 12 h in each group were observed under Transmission electron microscope (TEM). The effects of OPCs and VitE on oxalate- and COM-exposed cells were tested. After exposed to oxalate and COM crystals, activity of cells, Na(+)/K(+) ATP enzyme and SOD enzyme showed a significant reduction, and MDA content in medium was significantly increased. OPCs group: the addition of OPCs significantly increased activity of cell, SOD and Na(+)/K(+) ATP enzyme while MDA content was significantly decreased compared with the positive control group. VitE group: compared with the positive control group, activity of HK-2 cell, Na(+)/K(+) ATP enzyme was not significantly changed while SOD activity was restored, and MDA content was significantly decreased after the addition of Vit E. Morphological structure of HK-2 cell was extremely changed as observed under TEM after exposure to high level of COM crystals and oxalate. After the addition of OPCs or Vit E, amounts of cells with vacuoles formed in cytoplasms, karyotheca dissolved and nucleolus disappeared were less than in positive control group. The morphological structure changing in OPCs group was slighter than that in Vit E group. OPCs and vitamin E administration may prevent oxalate- and COM-mediated peroxidative

  17. In vitro effect of wheat bran (Triticum aestivum) extract on calcium oxalate urolithiasis crystallization.

    PubMed

    Sekkoum, Khaled; Cheriti, Abdelkrim; Taleb, Safia

    2011-10-01

    Urolithiasis can lead to the loss of renal function in some cases. In this study, we tested the inhibiting effect of wheat bran (Triticum aestivum L) extract on calcium oxalate crystallization in a turbidimetric model, by FTIR spectroscopy, and polarized microscopy. The results show that this plant extract has a major inhibitory effect on calcium oxalate crystallization. PMID:22164778

  18. ADVANCES IN OUR UNDERSTANDING OF CALCIUM OXALATE CRYSTAL FORMATION AND FUNCTION IN PLANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium oxalate crystal formation in plants appears to play a central role in a variety of important functions, including tissue calcium regulation, protection from herbivory, and metal detoxification. Evidence is mounting to support ascorbic acid as the primary precursor to oxalate biosynthesis. ...

  19. A simple method for quantitating the propensity for calcium oxalate crystallization in urine

    NASA Technical Reports Server (NTRS)

    Wabner, C. L.; Pak, C. Y.

    1991-01-01

    To assess the propensity for spontaneous crystallization of calcium oxalate in urine, the permissible increment in oxalate is calculated. The previous method required visual observation of crystallization with the addition of oxalate, this warranted the need for a large volume of urine and a sacrifice in accuracy in defining differences between small incremental changes of added oxalate. Therefore, this method has been miniaturized and spontaneous crystallization is detected from the depletion of radioactive oxalate. The new "micro" method demonstrated a marked decrease (p < 0.001) in the permissible increment in oxalate in urine of stone formers versus normal subjects. Moreover, crystallization inhibitors added to urine, in vitro (heparin or diphosphonate) or in vivo (potassium citrate administration), substantially increased the permissible increment in oxalate. Thus, the "micro" method has proven reliable and accurate in discriminating stone forming from control urine and in distinguishing changes of inhibitory activity.

  20. Heterogeneous nucleation of calcium oxalate crystals in the presence of membrane vesicles

    NASA Astrophysics Data System (ADS)

    Khan, Saeed R.; Whalen, Patrick O.; Glenton, Patricia A.

    1993-12-01

    Membrane-assisted crystallization of calcium oxalate was studied in vitro, using constant composition methodology. Rat renal tubular brush border membrane vesicles were incubated in supersaturated solution of calcium oxalate. Calcium and oxalate depletion started much earlier in the presence of the vesicles than in their absence; within 8, 32, or 258 min of the incubation of vesicles in calcium oxalate solutions of relative supersaturation of 12, 10 or 6 respectively. Thin plate-like crystals with jagged edges formed in association with the membrane vesicles. Since crystal nucleation in the presence of membrane vesicles started within 8 min at a relative supersaturation as low as 12, it will start significantly earlier in the urine of stone formers which is known to have higher relative supersaturation with respect to calcium oxalate. These results demonstrate that cellular membranes can efficiently induce nucleation of calcium oxalate crystals from a metastable solution in an vitro system. Similar membrane induced heterogeneous nucleation of calcium oxalate in vivo within the renal tubules is a distinct possibility.

  1. Effect of indigenous plant extracts on calcium oxalate crystallization having a role in urolithiasis.

    PubMed

    Yasir, Fauzia; Waqar, Muhammad A

    2011-10-01

    Crystallization process has a major role in urolithiasis. In the present study, effect of two indigenous plants extracts namely Boerhavia diffusa and Bryophyllum pinnatum extract was determined on the crystallization of calcium oxalate crystals. Effect on the number, size and type of calcium oxalate crystals was observed. Results showed significant activity of both extracts against calcium oxalate crystallization at different concentrations (P < 0.05). Size of the crystals gradually reduced with the increasing concentration of both extracts. The number of calcium oxalate monohydrate crystals which are injurious to epithelial cells gradually reduced and at the highest concentration of extracts (100 mg/ml) completely disappeared (P < 0.05). These results confirm that B. diffusa and B. pinnatum extracts have antiurolithic activity and have the ability to reduce crystal size as well as to promote the formation of calcium oxalate dihydrate (COD) crystals rather than monohydrate (COM) crystals. Control of crystal size and formation of COD rather than COM crystals, in combination with the diuretic action of extracts is an important way to control urolithiasis. PMID:21643743

  2. CALCIUM OXALATE CRYSTAL FORMATION IS NOT ESSENTIAL FOR GROWTH OF MEDICAGO TRUNCATULA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants invest a considerable amount of resources and energy into the formation of calcium oxalate crystals. A number of roles for crystal formation in plant growth and development have been assigned based on the prevalence of crystals, their spatial distribution, and the variety of crystal shapes. ...

  3. [In vitro effect of Hordeum vulgare on the crystallization of calcium oxalate monohydrate (whewellite)].

    PubMed

    Djaroud, Samira; Harrache, Djamila; Amar, Amina

    2012-01-01

    The recommended conservative treatment of hyperoxaluria is mainly based on hyperhydration and ingestion of inhibitors of crystallization. In accordance with this context, the aim of this study was to determine the in vitro effect of Hordeum vulgare on calcium oxalate crystallization oxalo-dependent. The crystallization of calcium oxalate monohydrate in supersaturated aqueous solution at 37 °C, was followed in a model turbidimetric continuous in a closed system. The proposed model is very good reproducibility (CV < 10%), crystallization was monitored continuously in the presence of Hordeum vulgare at different concentrations (0.0625 to 1 g/L). The comparison of turbidimetric parameters, that characterize the growth stage of monohydrated oxalate calcium crystals and observation of the crystals obtained at the end of crystallization into scanning electron microscopy, have been able to demonstrate the inducing effect of Hordeum vulgare to 0.0625 g/L and a slight inhibitory effect at the others concentrations. PMID:23207820

  4. Inhibition of crystallization of calcium oxalate by the extraction of Tamarix gallica L.

    PubMed

    Bensatal, Ahmed; Ouahrani, M R

    2008-12-01

    The main objective is to study the inhibitor effect of acid fraction of the extract of Tamarix gallica L on the crystallization of calcium oxalate. The extract of Tamarix gallica L is very rich by acid compounds that are used as an inhibitor of nephrolithiasis (calcium oxalate). Our study of the calcium oxalate crystallization is based on the model of turbidimetry by means of a spectrophotometer. The calcium oxalate formation is induced by the addition of oxalate solutions of sodium and of calcium chloride. The addition of inhibitor with various concentrations enabled us to give information on the percentage of inhibition. The comparison between the turbidimetric slopes with and without inhibitor gives the effectiveness of inhibitor for the acid fraction. By comparing the photographs of with and without inhibitor, we concluded that the extract of Tamarix gallica L acts at the stage of growth. The acid fraction of the extract of Tamarix gallica L gives an activity remarkable in the formation of urinary lithiasis (calcium oxalate); this effectiveness is due to the presence of functions of acid. PMID:19002446

  5. Leaf calcium oxalate crystal structure and its role in defense against a chewing insect in Medicago truncatula

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crystals of calcium oxalate are common in plants and widely distributed among many plant families. These hard and largely insoluble crystals take on many shapes and sizes depending on the tissue and species. In Medicago truncatula, calcium oxalate crystals are abundant in leaves and accumulate in sh...

  6. FKBP-12 exhibits an inhibitory activity on calcium oxalate crystal growth in vitro.

    PubMed

    Han, In Sook; Nakagawa, Yasushi; Park, Jong Wook; Suh, Min Ho; Suh, Sung Il; Shin, Song Woo; Ahn, Su Yul; Choe, Byung Kil

    2002-02-01

    Urolithiasis and calcium oxalate crystal deposition diseases are still significant medical problems. In the course of nephrocalcin cDNA cloning, we have identified FKBP-12 as an inhibitory molecule of calcium oxalate crystal growth. lambdagt 11 cDNA libraries were constructed from renal carcinoma tissues and screened for nephrocalcin cDNA clones using anti-nephrocalcin antibody as a probe. Clones expressing recombinant proteins, which appeared to be antigenically cross-reactive to nephrocalcin, were isolated and their DNA sequences and inhibitory activities on the calcium oxalate crystal growth were determined. One of the clone lambda gt 11 #31-1 had a partial fragment (80 bp) of FKBP-12 cDNA as an insert. Therefore, a full-length FKBP-12 cDNA was PCR-cloned from the lambda gt 11 renal carcinoma cDNA library and was subcloned into an expression vector. The resultant recombinant FKBP-12 exhibited an inhibitory activity on the calcium oxalate crystal growth (Kd=10(-7) M). Physiological effect of the extracellular FKBP-12 was investigated in terms of macrophage activation and proinflammatory cytokine gene induction. Extracellular FKBP-12 failed to activate macrophages even at high concentrations. FKBP-12 seems an anti-stone molecule for the oxalate crystal deposition disease and recurrent stone diseases. PMID:11850587

  7. Reinjury risk of nano-calcium oxalate monohydrate and calcium oxalate dihydrate crystals on injured renal epithelial cells: aggravation of crystal adhesion and aggregation

    PubMed Central

    Gan, Qiong-Zhi; Sun, Xin-Yuan; Bhadja, Poonam; Yao, Xiu-Qiong; Ouyang, Jian-Ming

    2016-01-01

    Background Renal epithelial cell injury facilitates crystal adhesion to cell surface and serves as a key step in renal stone formation. However, the effects of cell injury on the adhesion of nano-calcium oxalate crystals and the nano-crystal-induced reinjury risk of injured cells remain unclear. Methods African green monkey renal epithelial (Vero) cells were injured with H2O2 to establish a cell injury model. Cell viability, superoxide dismutase (SOD) activity, malonaldehyde (MDA) content, propidium iodide staining, hematoxylin–eosin staining, reactive oxygen species production, and mitochondrial membrane potential (Δψm) were determined to examine cell injury during adhesion. Changes in the surface structure of H2O2-injured cells were assessed through atomic force microscopy. The altered expression of hyaluronan during adhesion was examined through laser scanning confocal microscopy. The adhesion of nano-calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) crystals to Vero cells was observed through scanning electron microscopy. Nano-COM and COD binding was quantitatively determined through inductively coupled plasma emission spectrometry. Results The expression of hyaluronan on the cell surface was increased during wound healing because of Vero cell injury. The structure and function of the cell membrane were also altered by cell injury; thus, nano-crystal adhesion occurred. The ability of nano-COM to adhere to the injured Vero cells was higher than that of nano-COD crystals. The cell viability, SOD activity, and Δψm decreased when nano-crystals attached to the cell surface. By contrast, the MDA content, reactive oxygen species production, and cell death rate increased. Conclusion Cell injury contributes to crystal adhesion to Vero cell surface. The attached nano-COM and COD crystals can aggravate Vero cell injury. As a consequence, crystal adhesion and aggregation are enhanced. These findings provide further insights into kidney stone

  8. Peptides of Matrix Gla Protein Inhibit Nucleation and Growth of Hydroxyapatite and Calcium Oxalate Monohydrate Crystals

    PubMed Central

    Goiko, Maria; Dierolf, Joshua; Gleberzon, Jared S.; Liao, Yinyin; Grohe, Bernd; Goldberg, Harvey A.; de Bruyn, John R.; Hunter, Graeme K.

    2013-01-01

    Matrix Gla protein (MGP) is a phosphorylated and γ-carboxylated protein that has been shown to prevent the deposition of hydroxyapatite crystals in the walls of blood vessels. MGP is also expressed in kidney and may inhibit the formation of kidney stones, which mainly consist of another crystalline phase, calcium oxalate monohydrate. To determine the mechanism by which MGP prevents soft-tissue calcification, we have synthesized peptides corresponding to the phosphorylated and γ-carboxylated sequences of human MGP in both post-translationally modified and non-modified forms. The effects of these peptides on hydroxyapatite formation and calcium oxalate crystallization were quantified using dynamic light scattering and scanning electron microscopy, respectively. Peptides YGlapS (MGP1-14: YγEpSHEpSMEpSYELNP), YEpS (YEpSHEpSMEpSYELNP), YGlaS (YγESHESMESYELNP) and SK-Gla (MGP43-56: SKPVHγELNRγEACDD) inhibited formation of hydroxyapatite in order of potency YGlapS > YEpS > YGlaS > SK-Gla. The effects of YGlapS, YEpS and YGlaS on hydroxyapatite formation were on both crystal nucleation and growth; the effect of SK-Gla was on nucleation. YGlapS and YEpS significantly inhibited the growth of calcium oxalate monohydrate crystals, while simultaneously promoting the formation of calcium oxalate dihydrate. The effects of these phosphopeptides on calcium oxalate monohydrate formation were on growth of crystals rather than nucleation. We have shown that the use of dynamic light scattering allows inhibitors of hydroxyapatite nucleation and growth to be distinguished. We have also demonstrated for the first time that MGP peptides inhibit the formation of calcium oxalate monohydrate. Based on the latter finding, we propose that MGP function not only to prevent blood-vessel calcification but also to inhibit stone formation in kidney. PMID:24265810

  9. Does aridity influence the morphology, distribution and accumulation of calcium oxalate crystals in Acacia (Leguminosae: Mimosoideae)?

    PubMed

    Brown, Sharon L; Warwick, Nigel W M; Prychid, Christina J

    2013-12-01

    Calcium oxalate (CaOx) crystals are a common natural feature of many plant families, including the Leguminosae. The functional role of crystals and the mechanisms that underlie their deposition remain largely unresolved. In several species, the seasonal deposition of crystals has been observed. To gain insight into the effects of rainfall on crystal formation, the morphology, distribution and accumulation of calcium oxalate crystals in phyllodes of the leguminous Acacia sect. Juliflorae (Benth.) C. Moore & Betche from four climate zones along an aridity gradient, was investigated. The shapes of crystals, which include rare Rosanoffian morphologies, were constant between species from different climate zones, implying that morphology was not affected by rainfall. The distribution and accumulation of CaOx crystals, however, did appear to be climate-related. Distribution was primarily governed by vein density, an architectural trait which has evolved in higher plants in response to increasing aridity. Furthermore, crystals were more abundant in acacias from low rainfall areas, and in phyllodes containing high concentrations of calcium, suggesting that both aridity and soil calcium levels play important roles in the precipitation of CaOx. As crystal formation appears to be calcium-induced, we propose that CaOx crystals in Acacia most likely function in bulk calcium regulation. PMID:24157700

  10. Physical characteristics of Medicago truncatula calcium oxalate crystals determine their effectiveness in insect defense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant structural traits can act as defense against herbivorous insects, causing them to avoid feeding on a given plant or tissue. Mineral crystals of calcium oxalate in leaves of Medicago truncatula Gaertn. have previously been shown to be effective deterrents of lepidopteran insect feeding. They ar...

  11. Alarm Photosynthesis: Calcium Oxalate Crystals as an Internal CO2 Source in Plants.

    PubMed

    Tooulakou, Georgia; Giannopoulos, Andreas; Nikolopoulos, Dimosthenis; Bresta, Panagiota; Dotsika, Elissavet; Orkoula, Malvina G; Kontoyannis, Christos G; Fasseas, Costas; Liakopoulos, Georgios; Klapa, Maria I; Karabourniotis, George

    2016-08-01

    Calcium oxalate crystals are widespread among animals and plants. In land plants, crystals often reach high amounts, up to 80% of dry biomass. They are formed within specific cells, and their accumulation constitutes a normal activity rather than a pathological symptom, as occurs in animals. Despite their ubiquity, our knowledge on the formation and the possible role(s) of these crystals remains limited. We show that the mesophyll crystals of pigweed (Amaranthus hybridus) exhibit diurnal volume changes with a gradual decrease during daytime and a total recovery during the night. Moreover, stable carbon isotope composition indicated that crystals are of nonatmospheric origin. Stomatal closure (under drought conditions or exogenous application of abscisic acid) was accompanied by crystal decomposition and by increased activity of oxalate oxidase that converts oxalate into CO2 Similar results were also observed under drought stress in Dianthus chinensis, Pelargonium peltatum, and Portulacaria afra Moreover, in A. hybridus, despite closed stomata, the leaf metabolic profiles combined with chlorophyll fluorescence measurements indicated active photosynthetic metabolism. In combination, calcium oxalate crystals in leaves can act as a biochemical reservoir that collects nonatmospheric carbon, mainly during the night. During the day, crystal degradation provides subsidiary carbon for photosynthetic assimilation, especially under drought conditions. This new photosynthetic path, with the suggested name "alarm photosynthesis," seems to provide a number of adaptive advantages, such as water economy, limitation of carbon losses to the atmosphere, and a lower risk of photoinhibition, roles that justify its vast presence in plants. PMID:27261065

  12. Calcium Oxalate Crystals: An Integral Component of the Sclerotinia sclerotiorum/Brassica carinata Pathosystem

    PubMed Central

    Uloth, Margaret B.; Clode, Peta L.; You, Ming Pei; Barbetti, Martin J.

    2015-01-01

    Oxalic acid is an important virulence factor for disease caused by the fungal necrotrophic pathogen Sclerotinia sclerotiorum, yet calcium oxalate (CaOx) crystals have not been widely reported. B. carinata stems were infected with S. sclerotiorum and observed using light microscopy. Six hours post inoculation (hpi), CaOx crystals were evident on 46% of stem sections and by 72 hpi on 100%, demonstrating that the secretion of oxalic acid by S. sclerotiorum commences before hyphal penetration. This is the first time CaOx crystals have been reported on B. carinata infected with S. sclerotiorum. The shape of crystals varied as infection progressed. Long tetragonal rods were dominant 12 hpi (68% of crystal-containing samples), but by 72 hpi, 50% of stems displayed bipyramidal crystals, and only 23% had long rods. Scanning electron microscopy from 24 hpi revealed CaOx crystals in all samples, ranging from tiny irregular crystals (< 0.5 μm) to large (up to 40 μm) highly organized arrangements. Crystal morphology encompassed various forms, including tetragonal prisms, oval plates, crystal sand, and druses. Large conglomerates of CaOx crystals were observed in the hyphal mass 72 hpi and these are proposed as a strategy of the fungus to hold and detoxify Ca2+ions. The range of crystal morphologies suggests that S. sclerotiorum growth and infection controls the form taken by CaOx crystals. PMID:25816022

  13. Calcium oxalate crystals: an integral component of the Sclerotinia sclerotiorum/Brassica carinata pathosystem.

    PubMed

    Uloth, Margaret B; Clode, Peta L; You, Ming Pei; Barbetti, Martin J

    2015-01-01

    Oxalic acid is an important virulence factor for disease caused by the fungal necrotrophic pathogen Sclerotinia sclerotiorum, yet calcium oxalate (CaOx) crystals have not been widely reported. B. carinata stems were infected with S. sclerotiorum and observed using light microscopy. Six hours post inoculation (hpi), CaOx crystals were evident on 46% of stem sections and by 72 hpi on 100%, demonstrating that the secretion of oxalic acid by S. sclerotiorum commences before hyphal penetration. This is the first time CaOx crystals have been reported on B. carinata infected with S. sclerotiorum. The shape of crystals varied as infection progressed. Long tetragonal rods were dominant 12 hpi (68% of crystal-containing samples), but by 72 hpi, 50% of stems displayed bipyramidal crystals, and only 23% had long rods. Scanning electron microscopy from 24 hpi revealed CaOx crystals in all samples, ranging from tiny irregular crystals (< 0.5 μm) to large (up to 40 μm) highly organized arrangements. Crystal morphology encompassed various forms, including tetragonal prisms, oval plates, crystal sand, and druses. Large conglomerates of CaOx crystals were observed in the hyphal mass 72 hpi and these are proposed as a strategy of the fungus to hold and detoxify Ca2+ions. The range of crystal morphologies suggests that S. sclerotiorum growth and infection controls the form taken by CaOx crystals. PMID:25816022

  14. Isolation of a crystal matrix protein associated with calcium oxalate precipitation in vacuoles of specialized cells.

    PubMed

    Li, Xingxiang; Zhang, Dianzhong; Lynch-Holm, Valerie J; Okita, Thomas W; Franceschi, Vincent R

    2003-10-01

    The formation of calcium (Ca) oxalate crystals is considered to be a high-capacity mechanism for regulating Ca in many plants. Ca oxalate precipitation is not a stochastic process, suggesting the involvement of specific biochemical and cellular mechanisms. Microautoradiography of water lettuce (Pistia stratiotes) tissue exposed to 3H-glutamate showed incorporation into developing crystals, indicating potential acidic proteins associated with the crystals. Dissolution of crystals leaves behind a crystal-shaped matrix "ghost" that is capable of precipitation of Ca oxalate in the original crystal morphology. To assess whether this matrix has a protein component, purified crystals were isolated and analyzed for internal protein. Polyacrylamide gel electrophoresis revealed the presence of one major polypeptide of about 55 kD and two minor species of 60 and 63 kD. Amino acid analysis indicates the matrix protein is relatively high in acidic amino acids, a feature consistent with its solubility in formic acid but not at neutral pH. 45Ca-binding assays demonstrated the matrix protein has a strong affinity for Ca. Immunocytochemical localization using antibody raised to the isolated protein showed that the matrix protein is specific to crystal-forming cells. Within the vacuole, the surface and internal structures of two morphologically distinct Ca oxalate crystals, raphide and druse, were labeled by the antimatrix protein serum, as were the surfaces of isolated crystals. These results demonstrate that a specific Ca-binding protein exists as an integral component of Ca oxalate crystals, which holds important implications with respect to regulation of crystal formation. PMID:14555781

  15. Calcium oxalate toxicity in renal epithelial cells: the mediation of crystal size on cell death mode

    PubMed Central

    Sun, X-Y; Gan, Q-Z; Ouyang, J-M

    2015-01-01

    The cytotoxicity of calcium oxalate (CaOx) in renal epithelial cells has been studied extensively, but the cell death mode induced by CaOx with different physical properties, such as crystal size and crystal phase, has not been studied in detail. In this study, we comparatively investigated the differences of cell death mode induced by nano-sized (50 nm) and micron-sized (10 μm) calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) to explore the cell death mechanism. The effect of the exposure of nano-/micron-sized COM and COD crystals toward the African green monkey renal epithelial (Vero) cells were investigated by detecting cell cytoskeleton changes, lysosomal integrity, mitochondrial membrane potential (Δψm), apoptosis and/or necrosis, osteopontin (OPN) expression, and malondialdehyde (MDA) release. Nano-/micron-sized COM and COD crystals could cause apoptosis and necrosis simultaneously. Nano-sized crystals primarily caused apoptotic cell death, leading to cell shrinkage, phosphatidylserine ectropion, and nuclear shrinkage, whereas micron-sized crystals primarily caused necrotic cell death, leading to cell swelling and cell membrane and lysosome rupture. Nano-sized COM and COD crystals induced much greater cell death (sum of apoptosis and necrosis) than micron-sized crystals, and COM crystals showed higher cytotoxicity than the same-sized COD crystals. Both apoptosis and necrosis could lead to mitochondria depolarization and elevate the expression of OPN and the generation of lipid peroxidation product MDA. The amount of expressed OPN and generated MDA was positively related to cell injury degree. The physicochemical properties of crystals could affect the cell death mode. The results of this study may provide a basis for future studies on cell death mechanisms. PMID:27551481

  16. Effect of dietary calcium and magnesium on experimental renal tubular deposition of calcium oxalate crystal induced by ethylene glycol administration and its prevention with phytin and citrate.

    PubMed

    Ebisuno, S; Morimoto, S; Yoshida, T; Fukatani, T; Yasukawa, S; Ohkawa, T

    1987-01-01

    Oral administration of ethylene glycol to rats, and the resultant intratubular depositions of microcrystals of calcium oxalate were studied investigating the influences of dietary calcium or magnesium and assessing the protective efficacies against the crystallizations by treatment with phytin and sodium citrate. With increase of calcium intake and consequent increase of urinary calcium excretion there was a marked increase in the amount of tubular deposit of calcium oxalate crystal and in the calcium content of renal tissue. Although magnesium deficiency accelerated renal tubular calcium oxalate deposition, the protection against the crystal formation was not observed with excessive dietary magnesium. When rats were fed a high-calcium diet supplemented with phytin, a significant inhibition of the intratubular crystallization was observed. It appeared obvious that a hypocalciuric action of phytin was attributed to the effect of the prevention. There was vigorous protection of crystal formation by treatment with sodium citrate, which correlated with the level of citrate concentration in the drinking water. PMID:3433579

  17. Biomimetic growth of calcium oxalate crystals: synchrotron X-ray studies

    NASA Astrophysics Data System (ADS)

    Uysal, Ahmet; Stripe, Benjamin; Dutta, Pulak

    2010-03-01

    Oriented crystals of calcium oxalate monohydrate (COM) form one of the major constituents of kidney stones in humans, and these crystals are also found in many plants. It is widely accepted that an organic matrix of lipids and proteins is involved in the crystallization of COM, though their role is not well-understood [1]. Langmuir monolayers of lipids on supersaturated aqueous solutions can be used to mimic the lipid-crystal interface during mineralization. We have studied nucleation and growth of COM crystals under heneicosanoic acid monolayers at the air-water interface. We used synchrotron x-rays in the grazing incidence geometry to determine the structure of the organic monolayer and the orientation of COM crystals in-situ during crystallization. We see that the (-101) faces of COM crystals are parallel to the organic matrix. There is a commensurate relationship between the heneicosanoic acid monolayer and the (-101) crystal face that may be responsible from the oriented growth. Evolution of the monolayer structure with time will be described. [1]S. R. Khan, Calcium Oxalate in Biological Systems, CRC Press, Boca Raton, 1995

  18. Therapeutic effect of Xue Niao An on glyoxylate-induced calcium oxalate crystal deposition based on urinary metabonomics approach

    PubMed Central

    Peng, Zhongjiang; Chen, Wei; Gao, Songyan; Su, Li; Li, Na; Wang, Li; Lou, Ziyang; Dong, Xin; Guo, Zhiyong

    2014-01-01

    The anti-nephrolithiasis effect of Xue Niao An (XNA) capsules is explored by analyzing urine metabolic profiles in mouse models, with ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). An animal model of calcium oxalate crystal renal deposition was established in mice by intra-abdominal injection of glyoxylate. Then, treatment with XNA by intra-gastric administration was performed. At the end of the study, calcium deposition in kidney was measured by Von Kossa staining under light microscopy, and the Von Kossa staining changes showed that XNA significantly alleviated the calcium oxalate crystal deposition. Meanwhile, urine samples for fifteen metabolites, including amino acids and fatty acids, with significant differences were detected in the calcium oxalate group, while XNA treatment attenuated metabolic imbalances. Our study indicated that the metabonomic strategy provided comprehensive insight on the metabolic response to XNA treatment of rodent renal calcium oxalate deposition. PMID:25411524

  19. New and unusual forms of calcium oxalate raphide crystals in the plant kingdom.

    PubMed

    Raman, Vijayasankar; Horner, Harry T; Khan, Ikhlas A

    2014-11-01

    Calcium oxalate crystals in higher plants occur in five major forms namely raphides, styloids, prisms, druses and crystal sand. The form, shape and occurrence of calcium oxalate crystals in plants are species- and tissue-specific, hence the presence or absence of a particular type of crystal can be used as a taxonomic character. So far, four different types of needle-like raphide crystals have been reported in plants. The present work describes two new and unusual forms of raphide crystals from the tubers of Dioscorea polystachya--six-sided needles with pointed ends (Type V) and four-sided needles with beveled ends (Type VI). Both of these new types of needles are distinct from the other four types by each having a surrounding membrane that envelopes a bundle of 10-20 closely packed thin crystalline sheets. The previously known four types of needles have solid or homogenous crystalline material, surrounded by a membrane or lamellate sheath called a crystal chamber. Only the Type VI crystals have beveled ends and the needles of the other five types have pointed ends. PMID:25139563

  20. Synthesis of calcium oxalate crystals in culture medium irradiated with non-equilibrium atmospheric-pressure plasma

    NASA Astrophysics Data System (ADS)

    Kurake, Naoyuki; Tanaka, Hiromasa; Ishikawa, Kenji; Nakamura, Kae; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Mizuno, Masaaki; Yamanishi, Yoko; Hori, Masaru

    2016-09-01

    Octahedral particulates several tens of microns in size were synthesized in a culture medium irradiated through contact with a plume of non-equilibrium atmospheric-pressure plasma (NEAPP). The particulates were identified in the crystalline phase as calcium oxalate dihydrate (COD). The original medium contained constituents such as NaCl, d-glucose, CaCl2, and NaHCO3 but not oxalate or oxalic acid. The oxalate was clearly synthesized and crystallized in the medium as thermodynamically unstable COD crystals after the NEAPP irradiation.

  1. Calcium oxalate monohydrate crystals internalized into renal tubular cells are degraded and dissolved by endolysosomes.

    PubMed

    Chaiyarit, Sakdithep; Singhto, Nilubon; Thongboonkerd, Visith

    2016-02-25

    Interaction between calcium oxalate crystals and renal tubular cells has been recognized as one of the key mechanisms for kidney stone formation. While crystal adhesion and internalization have been extensively investigated, subsequent phenomena (i.e. crystal degradation and dissolution) remained poorly understood. To explore these mechanisms, we used fluorescein isothiocyanate (FITC)-labelled calcium oxalate monohydrate (COM) crystals (1000 μg/ml of crystals/culture medium) to confirm crystal internalization into MDCK (Type II) renal tubular cells after exposure to the crystals for 1 h and to trace the internalized crystals. Crystal size, intracellular and extracellular fluorescence levels were measured using a spectrofluorometer for up to 48 h after crystal internalization. Moreover, markers for early endosome (Rab5), late endosome (Rab7) and lysosome (LAMP-2) were examined by laser-scanning confocal microscopy. Fluorescence imaging and flow cytometry confirmed that FITC-labelled COM crystals were internalized into MDCK cells (14.83 ± 0.85%). The data also revealed a reduction of crystal size in a time-dependent manner. In concordance, intracellular and extracellular fluorescence levels were decreased and increased, respectively, indicating crystal degradation/dissolution inside the cells and the degraded products were eliminated extracellularly. Moreover, Rab5 and Rab7 were both up-regulated and were also associated with the up-regulated LAMP-2 to form large endolysosomes in the COM-treated cells at 16-h after crystal internalization. We demonstrate herein, for the first time, that COM crystals could be degraded/dissolved by endolysosomes inside renal tubular cells. These findings will be helpful to better understand the crystal fate and protective mechanism against kidney stone formation. PMID:26748311

  2. Renal intratubular crystals and hyaluronan staining occur in stone formers with bypass surgery but not with idiopathic calcium oxalate stones.

    PubMed

    Evan, Andrew P; Coe, Fredric L; Gillen, Daniel; Lingeman, James E; Bledsoe, Sharon; Worcester, Elaine M

    2008-03-01

    Whether idiopathic calcium oxalate (CaOx) stone formers form inner medullary collecting duct (IMCD) crystal deposits bears on pathogenetic mechanisms of stone formation. In prior work, using light and transmission electron microscopy, we have found no IMCD crystal deposits. Here, we searched serial sections of papillary biopsies from a prior study of 15 idiopathic calcium oxalate stone formers, 4 intestinal bypass patients with CaOx stones, and 4 non-stone-forming subjects, and biopsies from an additional hitherto unreported 15 idiopathic calcium oxalate stone formers and 1 bypass patient using polarized light oil immersion optics, for deposits overlooked in our original study. We found no IMCD deposits in any of 1,500 serial sections from the 30 idiopathic calcium oxalate stone formers, nor in 87 additional sections from a frozen idiopathic calcium oxalate stone former biopsy sample processed without exposure to aqueous solutions. Among 4 of the 5 bypass patients but in none of the 30 idiopathic calcium oxalate stone formers or 4 normal stone formers, we found tiny birefringent thin crystalline overlays on scattered IMCD cell membranes. We also found IMCD lumen deposits in two bypass patients that contained mixed birefringent and nonbirefringent crystals, presumably CaOx and apatite. In the bypass patients, we observed focal apical IMCD cell hyaluronan staining, which was absent in idiopathic calcium oxalate stone formers. The absence of any IMCD deposits in 1,500 serial sections of biopsies from 30 idiopathic calcium oxalate stone formers allows us to place the upper limit on the probability of their occurrence at approximately 0.002 and place the lower limit of their size at the resolution of the optics (<0.2 mu). The tiny deposits in bypass patients may be the initial crystal lesion. PMID:18286613

  3. SURVEY OF NUMBER AND ARRANGEMENT OF CALCIUM OXALATE CRYSTALS IN LEAVES OF ANNUAL AND PERENNIAL SOYBEAN AND ALLIED TAXA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean is only one of many flowering plants that contain calcium oxalate crystals in its plant organs, especially in the leaves. Even though the functional significance of the crystals is still not understood, the sometimes massive amount, location and structure of crystals have been used in syste...

  4. Intracrystalline Proteins Promote Dissolution of Urinary Calcium Oxalate Crystals in Cultured Renal Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Grover, Phulwinder K.; Thurgood, Lauren A.; Fleming, David E.; van Bronswijk, Wilhelm; Ryall, Rosemary L.

    2007-04-01

    We have proposed that internalized calcium oxalate (CaOx) crystals containing intracrystalline proteins would be vulnerable to intracellular dissolution. The aims of this study were (1) to measure non-uniform strain and crystallite size in CaOx monohydrate (COM) crystals containing increasing amounts of intracrystalline crystal matrix extract (CME) and (2) to compare the rates of crystal dissolution in Madin-Darby canine kidney (MDCKII) cells. CME was isolated by demineralization of COM crystals generated from human urine. Cold and 14C-oxalate-labelled COM crystals were precipitated from ultrafiltered urine containing CME at final concentrations of 0-5mg/L. Non-uniform strain and crystallite size were determined using synchrotron X-ray diffraction with Rietveld whole-pattern peak fitting and profile analysis, and the protein content of the crystals was analyzed using SDS-PAGE and Western blotting for prothrombin fragment 1. Radiolabeled crystals were added to MDCKII cells and dissolution was expressed as radioactive label released into the medium relative to that in the crystals at zero time. Non-uniform strain increased and crystallite size decreased proportionally with rising CME concentration, reaching saturation between approximately 1 and 5 mg/L, and demonstrating unequivocally the inclusion of increasing quantities of proteins in the crystals. This was confirmed by SDS-PAGE and Western blotting. Crystal dissolution also followed saturation kinetics. These findings were confirmed by field emission scanning electron microscopy (FESEM), which showed that the degree of crystal degradation increased relative to CME concentration. We conclude that intracrystalline proteins enhance intracellular dissolution of CaOx crystals and thus may provide a natural defense against stone pathogenesis.

  5. Medicago truncatula Mutants Demonstrate the Role of Plant Calcium Oxalate Crystals as an Effective Defense against Chewing Insects1

    PubMed Central

    Korth, Kenneth L.; Doege, Sarah J.; Park, Sang-Hyuck; Goggin, Fiona L.; Wang, Qin; Gomez, S. Karen; Liu, Guangjie; Jia, Lingling; Nakata, Paul A.

    2006-01-01

    Calcium oxalate is the most abundant insoluble mineral found in plants and its crystals have been reported in more than 200 plant families. In the barrel medic Medicago truncatula Gaertn., these crystals accumulate predominantly in a sheath surrounding secondary veins of leaves. Mutants of M. truncatula with decreased levels of calcium oxalate crystals were used to assess the defensive role of this mineral against insects. Caterpillar larvae of the beet armyworm Spodoptera exigua Hübner show a clear feeding preference for tissue from calcium oxalate-defective (cod) mutant lines cod5 and cod6 in choice test comparisons with wild-type M. truncatula. Compared to their performance on mutant lines, larvae feeding on wild-type plants with abundant calcium oxalate crystals suffer significantly reduced growth and increased mortality. Induction of wound-responsive genes appears to be normal in cod5 and cod6, indicating that these lines are not deficient in induced insect defenses. Electron micrographs of insect mouthparts indicate that the prismatic crystals in M. truncatula leaves act as physical abrasives during feeding. Food utilization measurements show that, after consumption, calcium oxalate also interferes with the conversion of plant material into insect biomass during digestion. In contrast to their detrimental effects on a chewing insect, calcium oxalate crystals do not negatively affect the performance of the pea aphid Acyrthosiphon pisum Harris, a sap-feeding insect with piercing-sucking mouthparts. The results confirm a long-held hypothesis for the defensive function of these crystals and point to the potential value of genes controlling crystal formation and localization in crop plants. PMID:16514014

  6. Factors affecting crystallization, dispersion, and aggregation of calcium oxalate monohydrate in various urinary environments

    NASA Astrophysics Data System (ADS)

    Christmas, Kimberly Gail

    The mechanisms for the formation of kidney stones are not well understood. One possible mechanism is the formation of aggregates in the nephron tubules of the kidneys. However, altering the urinary environment may be a method to help prevent the recurrence of the formation of kidney stones. The primary inorganic constituent found in kidney stones of North American patients is calcium oxalate monohydrate (COM). In this research, studies on the effect of mixing rate on COM precipitation showed that rapid mixing compared to slow mixing produced smaller particle sizes and a narrower particle size distribution due to the more uniform supersaturation level. The findings are consistent with the general contention that mixing directly influences nucleation rate while mixing rate has relatively little influence over rate of growth in precipitation processes. Screening and central composite experimental designs are used to determine the effect of various factors on the aggregation and dispersion characteristics of previously grown calcium oxalate monohydrate (COM) crystals in artificial urinary environments of controlled variables. The variables examined are pH, calcium, oxalate, pyrophosphate, citrate, and protein concentrations in ultrapure water and artificial urine. Optical density measurements, zeta potential analysis, particle size analyzer, optical microscopy, AFM force measurements, protein adsorption, and ions and small molecule adsorption have been used to assess the state of aggregation and dispersion of the COM crystals and to elucidate the mechanisms involved in such a complex system. The data indicate that our model protein, mucin, acts as a dispersant. This is attributed to steric hindrance resulting from the adsorbed mucoprotein. Oxalate, however, promotes aggregation. Interesting interactions between protein and oxalate along with protein and citrate are observed. Such interactions (synergistic or antagonistic) are found to depend on the concentrations of

  7. An Assessment of Engineered Calcium Oxalate Crystal Formation on Plant Growth and Development as a Step toward Evaluating Its Use to Enhance Plant Defense.

    PubMed

    Nakata, Paul A

    2015-01-01

    The establishment of new approaches to control chewing insects has been sought not only for direct use in reducing crop loss but also in managing resistance to the pesticides already in use. Engineered formation of calcium oxalate crystals is a potential strategy that could be developed to fulfill both these needs. As a step toward this development, this study investigates the effects of transforming a non-calcium oxalate crystal accumulating plant, Arabidopsis thaliana, into a crystal accumulating plant. Calcium oxalate crystal accumulating A. thaliana lines were generated by ectopic expression of a single bacterial gene encoding an oxalic acid biosynthetic enzyme. Biochemical and cellular studies suggested that the engineered A. thaliana lines formed crystals of calcium oxalate in a manner similar to naturally occurring crystal accumulating plants. The amount of calcium oxalate accumulated in leaves also reached levels similar to those measured in the leaves of Medicago truncatula in which the crystals are known to play a defensive role. Visual inspection of the different engineered lines, however, suggested a phenotypic consequence on plant growth and development with higher calcium oxalate concentrations. The restoration of a near wild-type plant phenotype through an enzymatic reduction of tissue oxalate supported this observation. Overall, this study is a first to provide initial insight into the potential consequences of engineering calcium oxalate crystal formation in non-crystal accumulating plants. PMID:26517544

  8. An Assessment of Engineered Calcium Oxalate Crystal Formation on Plant Growth and Development as a Step toward Evaluating Its Use to Enhance Plant Defense

    PubMed Central

    Nakata, Paul A.

    2015-01-01

    The establishment of new approaches to control chewing insects has been sought not only for direct use in reducing crop loss but also in managing resistance to the pesticides already in use. Engineered formation of calcium oxalate crystals is a potential strategy that could be developed to fulfill both these needs. As a step toward this development, this study investigates the effects of transforming a non-calcium oxalate crystal accumulating plant, Arabidopsis thaliana, into a crystal accumulating plant. Calcium oxalate crystal accumulating A. thaliana lines were generated by ectopic expression of a single bacterial gene encoding an oxalic acid biosynthetic enzyme. Biochemical and cellular studies suggested that the engineered A. thaliana lines formed crystals of calcium oxalate in a manner similar to naturally occurring crystal accumulating plants. The amount of calcium oxalate accumulated in leaves also reached levels similar to those measured in the leaves of Medicago truncatula in which the crystals are known to play a defensive role. Visual inspection of the different engineered lines, however, suggested a phenotypic consequence on plant growth and development with higher calcium oxalate concentrations. The restoration of a near wild-type plant phenotype through an enzymatic reduction of tissue oxalate supported this observation. Overall, this study is a first to provide initial insight into the potential consequences of engineering calcium oxalate crystal formation in non-crystal accumulating plants. PMID:26517544

  9. MEDICAGO TRUNCATULA MUTANTS DEMONSTRATE THE ROLE OF PLANT CALCIUM OXALATE CRYSTALS AS AN EFFECTIVE DEFENSE AGAINST CHEWING INSECTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium oxalate is the most abundant insoluble mineral found in plants and its crystals have been reported in over 200 plant families. In the barrel medic, Medicago truncatula Gaertn., these crystals accumulate predominantly in a sheath surrounding secondary veins of leaves. Mutants of M. truncatul...

  10. An Oxalyl-CoA Dependent Pathway of Oxalate Catabolism Plays a Role in Regulating Calcium Oxalate Crystal Accumulation and Defending against Oxalate-Secreting Phytopathogens in Medicago truncatula

    PubMed Central

    Foster, Justin; Luo, Bin; Nakata, Paul A.

    2016-01-01

    Considering the widespread occurrence of oxalate in nature and its broad impact on a host of organisms, it is surprising that so little is known about the turnover of this important acid. In plants, oxalate oxidase is the most well studied enzyme capable of degrading oxalate, but not all plants possess this activity. Recently, an Acyl Activating Enzyme 3 (AAE3), encoding an oxalyl-CoA synthetase, was identified in Arabidopsis. AAE3 has been proposed to catalyze the first step in an alternative pathway of oxalate degradation. Whether this enzyme and proposed pathway is important to other plants is unknown. Here, we identify the Medicago truncatula AAE3 (MtAAE3) and show that it encodes an oxalyl-CoA synthetase activity exhibiting high activity against oxalate with a Km = 81 ± 9 μM and Vmax = 19 ± 0.9 μmoles min-1mg protein-1. GFP-MtAAE3 localization suggested that this enzyme functions within the cytosol of the cell. Mtaae3 knock-down line showed a reduction in its ability to degrade oxalate into CO2. This reduction in the capacity to degrade oxalate resulted in the accumulation of druse crystals of calcium oxalate in the Mtaae3 knock-down line and an increased susceptibility to oxalate-secreting phytopathogens such as Sclerotinia sclerotiorum. Taken together, these results suggest that AAE3 dependent turnover of oxalate is important to different plants and functions in the regulation of tissue calcium oxalate crystal accumulation and in defense against oxalate-secreting phytopathogens. PMID:26900946

  11. In vitro inhibition of calcium oxalate crystallization and crystal adherence to renal tubular epithelial cells by Terminalia arjuna.

    PubMed

    Mittal, A; Tandon, S; Singla, S K; Tandon, C

    2016-04-01

    Urolithiasis is a multifactorial disease and remains a public health problem around the world. Of all types of renal stones, calcium oxalate (CaOx) is the most common composition formed in the urinary system of the patients with urolithiasis. The present study is aimed at evaluating the antiurolithiatic properties of the Tris-Cl extract (TE) of Terminalia arjuna (T. arjuna). The antilithiatic activity of TE of T. arjuna was investigated on nucleation, aggregation, and growth of the CaOx crystals, as well as its protective potency was tested on oxalate-induced cell injury of NRK-52E renal epithelial cells. Also, in vitro antioxidant activity of TE T. arjuna bark was also determined. The TE of T. arjuna exhibited a concentration-dependent inhibition of nucleation and growth of CaOx crystals. Inhibition of aggregation of CaOx crystals remains constant. When NRK-52E cells were injured by exposure to oxalate for 48 h, the TE prevented the cells from injury and CaOx crystal adherence resulting in increased cell viability in a dose-dependent manner. The TE also scavenged the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals with an IC50 at 51.72 µg/mL. The results indicated that T. arjuna is a potential candidate for phytotherapy against urolithiasis as it attains the ability to inhibit CaOx crystallization and scavenge DPPH free radicals in vitro along with a cytoprotective role. PMID:26424092

  12. Modulation of calcium oxalate monohydrate crystallization by citrate through selective binding to atomic steps

    SciTech Connect

    Qiu, S R; Wierzbicki, A; Salter, E A; Zepeda, S; Orme, C A; Hoyer, J R; Nancollas, G H; Cody, A M; De Yoreo, J J

    2004-10-19

    The majority of human kidney stones are composed primarily of calcium oxalate monohydrate (COM) crystals. Thus, determining the molecular mechanisms by which urinary constituents modulate calcium oxalate crystallization is crucial for understanding and controlling urolithiassis in humans. A comprehensive molecular-scale view of COM shape modification by citrate, a common urinary constituent, obtained through a combination of in situ atomic force microscopy (AFM) and molecular modeling is now presented. We show that citrate strongly influences the growth morphology and kinetics on the (-101) face but has much lower effect on the (010) face. Moreover, binding energy calculations show that the strength of the citrate-COM interaction is much greater at steps than on terraces and is highly step-specific. The maximum binding energy, -166.5 kJ {center_dot} mol{sup -1}, occurs for the [101] step on the (-101) face. In contrast, the value is only -56.9 kJ {center_dot} mol-1 for the [012] step on the (010) face. The binding energies on the (-101) and (010) terraces are also much smaller, -65.4 and -48.9 kJ {center_dot} mol{sup -1} respectively. All other binding energies lie between these extremes. This high selectivity leads to preferential binding of citrate to the acute [101] atomic steps on the (-101) face. The strong citrate-step interactions on this face leads to pinning of all steps, but the anisotropy in interaction strength results in anisotropic reductions in step kinetics. These anisotropic changes in step kinetics are, in turn, responsible for changes in the shape of macroscopic COM crystals. Thus, the molecular scale growth morphology and the bulk crystal habit in the presence of citrate are similar, and the predictions of molecular simulations are fully consistent with the experimental observations.

  13. Calcium oxalate nephrolithiasis: effect of renal crystal deposition on the cellular composition of the renal interstitium.

    PubMed

    de Water, R; Noordermeer, C; van der Kwast, T H; Nizze, H; Boevé, E R; Kok, D J; Schröder, F H

    1999-04-01

    Urinary calcium oxalate (CaOx) crystals and crystal agglomerates are normally harmlessly excreted, but in nephrolithiasis they are retained by tubular epithelial cells and shifted into the renal interstitium. This crystalline material induces an inflammatory response consisting of an increase in the number of interstitial cells and an expansion of the extracellular matrix. The newly arrived cells either derive from the blood or the connective tissue or they are formed by local proliferation. Identification of the cells that surround the interstitial crystals is a first step in investigating the question of whether the interstitial cells could remove the crystalline material. Therefore, we performed an immunohistochemical study on the kidneys of rats made hyperoxaluric by ethylene glycol (EG) and ammonium chloride (AC). Attention was paid to expression of the leukocyte common antigen (LCA), which identifies all types of leukocytes, the ED1 antigen, which is specific for monocytes and macrophages, and the major histocompatibility class II antigen (MHC II), which is present on dendritic cells, B lymphocytes, and activated macrophages. The results obtained were compared with those seen in two human kidney specimens with acute and chronic oxalosis. In both rat and humans, macrophages and multinucleated giant cells are the major cells that encapsulate the interstitial crystals. This similarity in response underlines the relevance of the rat nephrolithiasis model. The rat experiments showed, furthermore, that the number of interstitial crystals and the amount of biochemically measured kidney-associated oxalate both decrease with time, if the nephrolithiatic agents EG and AC are omitted from the drinking water. Further studies must clarify whether macrophages and multinucleated giant cells are able to remove the interstitial crystals and how these cells are recruited at the inflammatory site. PMID:10196021

  14. Physical characteristics of calcium oxalate crystals as determinants in structural defense against chewing insects in Medicago truncatula

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In addition to the numerous chemical defenses that plants employ to fend off insect herbivores, simple structural components can also play important roles in effective protection. Our investigations have shown that plant crystals of calcium oxalate can function in insect defense. The isolation of ca...

  15. Medicago truncatula-derived calcium oxalate crystals have a negative impact on chewing insect performance via their physical properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant structural traits often act as defenses against herbivorous insects, causing them to avoid feeding on a given plant or tissue. Mineral crystals of calcium oxalate in Medicago truncatula Gaertn. (Fabaceae) leaves have previously been shown to be effective deterrents of lepidopteran insect feedi...

  16. Aqueous extract of Costus arabicus inhibits calcium oxalate crystal growth and adhesion to renal epithelial cells.

    PubMed

    de Cógáin, Mitra R; Linnes, Michael P; Lee, Hyo Jung; Krambeck, Amy E; de Mendonça Uchôa, Julio Cezar; Kim, Sung-Hoon; Lieske, John C

    2015-04-01

    Costus arabicus L. (C. arabicus) is a plant used in Brazilian folk medicine to treat urolithiasis; however, its mechanism of action is unclear. The interaction between calcium oxalate (CaOx) crystals and the renal epithelium is important in calculogenesis, and compounds that modulate this process represent candidate therapeutic agents for stone prevention. Therefore, we assessed the inhibitory activity of C. arabicus on CaOx crystallization and the interaction of CaOx crystals with the renal epithelium. A seeded CaOx monohydrate (COM) crystallization system was used to study the effect of C. arabicus on crystal growth. Madin Darby canine kidney (MDCK) cells were used to study [(14)C] COM crystal adhesion in the presence and absence of an aqueous extract of C. arabicus. Cytotoxicity was assessed using a tetrazolium (MTS) cell proliferation assay. Aqueous extracts of C. arabicus decreased crystal growth in a concentration-dependent fashion. Precoating crystals with C. arabicus extract prevented their adhesion to MDCK cells, while pretreating cells did not show any effect. The extract was non-cytotoxic in concentrations of at least 1 mg/ml, which is likely above concentrations achievable in the urine following oral ingestion and excretion. No inhibitory activity was found in hexane, methyl chloride, n-butanol and ethyl acetate fractions of an ethanol extract of the herb. An aqueous extract of C. arabicus may disrupt calculogenesis by interacting with CaOx crystal surfaces. Activity was present in the aqueous extract; therefore, this agent may be bioavailable when administered orally. Fractionation results suggest that the active agent might be a polar polysaccharide. Further identification and characterization along these lines may be warranted. PMID:25652357

  17. Solubility, inhibition of crystallization and microscopic analysis of calcium oxalate crystals in the presence of fractions from Humulus lupulus L.

    NASA Astrophysics Data System (ADS)

    Frąckowiak, Anna; Koźlecki, Tomasz; Skibiński, PrzemysŁaw; GaweŁ, WiesŁaw; Zaczyńska, Ewa; Czarny, Anna; Piekarska, Katarzyna; Gancarz, Roman

    2010-11-01

    Procedures for obtaining noncytotoxic and nonmutagenic extracts from Humulus lupulus L. of high potency for inhibition and dissolving of model (calcium oxalate crystals) and real kidney stones, obtained from patients after surgery, are presented. Multistep extraction procedures were performed in order to obtain the preparations with the highest calcium complexing properties. The composition of obtained active fractions was analyzed by GC/MS and NMR methods. The influence of preparations on inhibition of formation and dissolution of model and real kidney stones were evaluated based on conductrometric titration, flame photometry and microscopic analysis. The "fraction soluble in methanol" obtained from water-alkaline extracts contains sugar alcohols and organic acids, and is effective in dissolving the kidney stones. The "fraction insoluble in methanol" contains only sugar derivatives and it changes the morphology of the crystals, making them "jelly-like". Both fractions are potentially effective in kidney stone therapy.

  18. High Sodium-Induced Oxidative Stress and Poor Anticrystallization Defense Aggravate Calcium Oxalate Crystal Formation in Rat Hyperoxaluric Kidneys.

    PubMed

    Huang, Ho-Shiang; Ma, Ming-Chieh

    2015-01-01

    Enhanced sodium excretion is associated with intrarenal oxidative stress. The present study evaluated whether oxidative stress caused by high sodium (HS) may be involved in calcium oxalate crystal formation. Male rats were fed a sodium-depleted diet. Normal-sodium and HS diets were achieved by providing drinking water containing 0.3% and 3% NaCl, respectively. Rats were fed a sodium-depleted diet with 5% hydroxyl-L-proline (HP) for 7 and 42 days to induce hyperoxaluria and/or calcium oxalate deposition. Compared to normal sodium, HS slightly increased calcium excretion despite diuresis; however, the result did not reach statistical significance. HS did not affect the hyperoxaluria, hypocalciuria or supersaturation caused by HP; however, it increased calcium oxalate crystal deposition soon after 7 days of co-treatment. Massive calcium oxalate formation and calcium crystal excretion in HS+HP rats were seen after 42 days of treatment. HP-mediated hypocitraturia was further exacerbated by HS. Moreover, HS aggravated HP-induced renal injury and tubular damage via increased apoptosis and oxidative stress. Increased urinary malondialdehyde excretion, in situ superoxide production, NAD(P)H oxidase and xanthine oxidase expression and activity, and decreased antioxidant enzyme expression or activity in the HS+HP kidney indicated exaggerated oxidative stress. Interestingly, this redox imbalance was associated with reduced renal osteopontin and Tamm-Horsfall protein expression (via increased excretion) and sodium-dependent dicarboxylate cotransporter NaDC-1 upregulation. Collectively, our results demonstrate that a HS diet induces massive crystal formation in the hyperoxaluric kidney; this is not due to increased urinary calcium excretion but is related to oxidative injury and loss of anticrystallization defense. PMID:26241473

  19. Calciphytoliths (calcium oxalate crystals) analysis for the identification of decayed tea plants (Camellia sinensis L.)

    PubMed Central

    Zhang, Jianping; Lu, Houyuan; Huang, Linpei

    2014-01-01

    The history of tea is poorly known, mainly due to the questionable identification of decayed tea plants in archaeological samples. This paper attempts to test the utility of calciphytoliths (calcium oxalate crystals) for the identification of tea in archaeological samples. It provides the first survey of the macropatterns of calciphytoliths in several species of Theaceae and common non-Theaceae plants. Crystals were extracted from 45 samples of tea, Theaceae and common non-Theaceae plants, and detected microscopically between crossed polarizers. In tea plants, druse and trichome base are the most distinctive crystals. Druses have the smallest diameter (11.65 ± 3.64 μm), and trichome bases have four distinctive straight and regular cracks, similar to a regular extinction cross. The results provide morphological criteria for distinguishing tea from other plants, specifically the presence of identifiable druses together with calcified trichome bases. The implications are significant for understanding the history of tea and plant exploitation, especially for plants for which the preservation of macrofossils is poor. PMID:25342006

  20. Calciphytoliths (calcium oxalate crystals) analysis for the identification of decayed tea plants (Camellia sinensis L.).

    PubMed

    Zhang, Jianping; Lu, Houyuan; Huang, Linpei

    2014-01-01

    The history of tea is poorly known, mainly due to the questionable identification of decayed tea plants in archaeological samples. This paper attempts to test the utility of calciphytoliths (calcium oxalate crystals) for the identification of tea in archaeological samples. It provides the first survey of the macropatterns of calciphytoliths in several species of Theaceae and common non-Theaceae plants. Crystals were extracted from 45 samples of tea, Theaceae and common non-Theaceae plants, and detected microscopically between crossed polarizers. In tea plants, druse and trichome base are the most distinctive crystals. Druses have the smallest diameter (11.65 ± 3.64 μm), and trichome bases have four distinctive straight and regular cracks, similar to a regular extinction cross. The results provide morphological criteria for distinguishing tea from other plants, specifically the presence of identifiable druses together with calcified trichome bases. The implications are significant for understanding the history of tea and plant exploitation, especially for plants for which the preservation of macrofossils is poor. PMID:25342006

  1. The Interaction between Enterobacteriaceae and Calcium Oxalate Deposits

    PubMed Central

    Barr-Beare, Evan; Saxena, Vijay; Hilt, Evann E.; Thomas-White, Krystal; Schober, Megan; Li, Birong; Becknell, Brian; Hains, David S.; Wolfe, Alan J.; Schwaderer, Andrew L.

    2015-01-01

    Background The role of calcium oxalate crystals and deposits in UTI pathogenesis has not been established. The objectives of this study were to identify bacteria present in pediatric urolithiasis and, using in vitro and in vivo models, to determine the relevance of calcium oxalate deposits during experimental pyelonephritis. Methods Pediatric kidney stones and urine were collected and both cultured and sequenced for bacteria. Bacterial adhesion to calcium oxalate was compared. Murine kidney calcium oxalate deposits were induced by intraperitoneal glyoxalate injection and kidneys were transurethrally inoculated with uropathogenic Escherichia coli to induce pyelonephritis Results E. coli of the family Enterobacteriaceae was identified in patients by calcium oxalate stone culture. Additionally Enterobacteriaceae DNA was sequenced from multiple calcium oxalate kidney stones. E. coli selectively aggregated on and around calcium oxalate monohydrate crystals. Mice inoculated with glyoxalate and uropathogenic E. coli had higher bacterial burdens, increased kidney calcium oxalate deposits and an increased kidney innate immune response compared to mice with only calcium oxalate deposits or only pyelonephritis. Conclusions In a murine model, the presence of calcium oxalate deposits increases pyelonephritis risk, likely due to preferential aggregation of bacteria on and around calcium oxalate crystals. When both calcium oxalate deposits and uropathogenic bacteria were present, calcium oxalate deposit number increased along with renal gene transcription of inner stone core matrix proteins increased. Therefore renal calcium oxalate deposits may be a modifiable risk factor for infections of the kidney and urinary tract. Furthermore, bacteria may be present in calcium oxalate deposits and potentially contribute to calcium oxalate renal disease. PMID:26448465

  2. Update on Oxalate Crystal Disease

    PubMed Central

    Lorenz, Elizabeth C.; Michet, Claude J.; Milliner, Dawn S.; Lieske, John C.

    2013-01-01

    Oxalate arthropathy is a rare cause of arthritis characterized by deposition of calcium oxalate crystals within synovial fluid. This condition typically occurs in patients with underlying primary or secondary hyperoxaluria. Primary hyperoxaluria constitutes a group of genetic disorders resulting in endogenous overproduction of oxalate, whereas secondary hyperoxaluria results from gastrointestinal disorders associated with fat malabsorption and increased absorption of dietary oxalate. In both conditions oxalate crystals can deposit in the kidney leading to renal failure. Since oxalate is primarily renally eliminated, it accumulates throughout the body in renal failure, a state termed oxalosis. Affected organs can include bones, joints, heart, eyes and skin. Since patients can present with renal failure and oxalosis before the underlying diagnosis of hyperoxaluria has been made, it is important to consider hyperoxaluria in patients who present with unexplained soft tissue crystal deposition. The best treatment of oxalosis is prevention. If patients present with advanced disease, treatment of oxalate arthritis consists of symptom management and control of the underlying disease process. PMID:23666469

  3. Plants defective in calcium oxalate crystal formation have more bioavailable calcium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioavailable calcium affects bone formation and calcification. Here we investigate how a single gene mutation altering calcium partitioning in the forage crop Medicago truncatula affects calcium bioavailability. Previously, the cod5 Medicago mutant was identified which contains wild-type amounts o...

  4. Calcium Oxalate Accumulation in Malpighian Tubules of Silkworm (Bombyx mori)

    NASA Astrophysics Data System (ADS)

    Wyman, Aaron J.; Webb, Mary Alice

    2007-04-01

    Silkworm provides an ideal model system for study of calcium oxalate crystallization in kidney-like organs, called Malpighian tubules. During their growth and development, silkworm larvae accumulate massive amounts of calcium oxalate crystals in their Malpighian tubules with no apparent harm to the organism. This manuscript reports studies of crystal structure in the tubules along with analyses identifying molecular constituents of tubule exudate.

  5. Medical therapy, calcium oxalate urolithiasis

    NASA Technical Reports Server (NTRS)

    Ruml, L. A.; Pearle, M. S.; Pak, C. Y.

    1997-01-01

    The development of diagnostic protocols that identify specific risk factors for calcium oxalate nephrolithiasis has led to the formulation of directed medical regimens that are aimed at correcting the underlying metabolic disturbances. Initiation of these treatment programs has reduced markedly the rate of stone formation in the majority of patients who form stones. This article discusses the rationale that underlies the choice of medical therapy for the various pathophysiologic causes of calcium oxalate nephrolithiasis and the appropriate use of available medications.

  6. Genetic evidence for differences in the pathways of druse and prismatic calcium oxalate crystal formation in Medicago truncatula

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current evidence supports a single pathway utilizing ascorbic acid as the precursor in oxalate biosynthesis. In this study, we address the possibility that more than one pathway of oxalate biosynthesis and calcium oxalate formation occurs in Medicago truncatula. Like wildtype, developing leaves of...

  7. Genetic evidence for differences in the pathways of druse and prismatic calcium oxalate crystal formation in Medicago truncatula

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current evidence supports a single pathway of oxalate biosynthesis utilising ascorbic acid as the precursor. In this study, we begin to address the possibility that more than one pathway of oxalate biosynthesis and calcium oxalate formation occurs in Medicago truncatula Gaertn. (cv. Jemalong genotyp...

  8. Herbal preparations affect the kinetic factors of calcium oxalate crystallization in synthetic urine: implications for kidney stone therapy.

    PubMed

    Rodgers, Allen L; Webber, Dawn; Ramsout, Ronica; Gohel, Mayur Danny I

    2014-06-01

    Herbal remedies are increasingly being considered as suitable long-term treatments for renal dysfunction. The objective of the present study was to investigate the effect of some herbal extracts, all previously identified in published studies as influencing kidney stone formation, on the crystallization characteristics of calcium oxalate (CaOx) in synthetic urine (SU). Five herbal extracts were selected for the study: Folium pyrrosiae, Desmodium styracifolium, Phyllanthus niruri, Orthosiphon stamineus and Cystone(®). Concentrated stock solutions of each herbal extract were prepared and were tested at their recommended dosages in in vitro crystallization studies in SU. CaOx crystallization experiments were performed in which the metastable limit (MSL), average particle size, and nucleation and growth rates were determined. The CaOx MSL of SU was unaltered by the five herbal extracts. Three of the herbs (Desmodium styracifolium, Orthosiphon stamineus and Cystone(®)) significantly reduced the average particle size of precipitated crystals relative to undosed SU. All of the extracts increased the rate of nucleation and decreased the rate of growth significantly in SU. Cystone(®) showed the greatest effect on the measured risk factors. It is concluded that all of the herbs have the potential to serve as inhibitors of calcium oxalate stone formation and warrant investigation in clinical trials. PMID:24648109

  9. Herbal extracts of Tribulus terrestris and Bergenia ligulata inhibit growth of calcium oxalate monohydrate crystals in vitro

    NASA Astrophysics Data System (ADS)

    Joshi, V. S.; Parekh, B. B.; Joshi, M. J.; Vaidya, A. B.

    2005-02-01

    A large number of people in this world are suffering from urinary stone problem. Calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) containing stones (calculi) are commonly found. In the present study, COM crystals were grown by a double diffusion gel growth technique using U-tubes. The gel was prepared from hydrated sodium metasilicate solution. The gel framework acts like a three-dimensional crucible in which the crystal nuclei are delicately held in the position of their formation, and nutrients are supplied for the growth. This technique can be utilized as a simplified screening static model to study the growth, inhibition and dissolution of urinary stones in vitro. The action of putative litholytic medicinal plants, Tribulus terrestris Linn. ( T.t) and Bergenia ligulata Linn. ( B.l.), has been studied in the growth of COM crystals. Tribulus terrestris and Bergenia ligulata are commonly used as herbal medicines for urinary calculi in India. To verify the inhibitive effect, aqueous extracts of Tribulus terrestris and Bergenia ligulata were added along with the supernatant solutions. The growth was measured and compared, with and without the aqueous extracts. Inhibition of COM crystal growth was observed in the herbal extracts. Maximum inhibition was observed in Bergenia ligulata followed by Tribulus terrestris. The results are discussed.

  10. High-throughput platform for design and screening of peptides as inhibitors of calcium oxalate monohydrate crystallization

    NASA Astrophysics Data System (ADS)

    Farmanesh, Sahar; Chung, Jihae; Chandra, Divya; Sosa, Ricardo D.; Karande, Pankaj; Rimer, Jeffrey D.

    2013-06-01

    Crystal growth modifiers present a versatile tool for controlling crystal shape and size. Our work described here focuses on the design and screening of short peptides as inhibitors of calcium oxalate monohydrate (COM) crystals using high-throughput approaches. We designed a small library of 13 peptides containing Ala and Asp amino acids arranged in varying sequences that mimic ubiquitous motifs in natural calcium-binding proteins. Peptides were screened using a quick assay to measure their efficacy for inhibiting COM crystallization. Our results show that subtle variations in the placement of Ala and Asp residues in the peptide sequence can have a profound effect on their inhibition potential. We were able to discover peptide sequences that inhibit COM crystallization more effectively than some of the well-known COM inhibitors, such as citrate. Our results also demonstrate that peptides can be engineered to bind to specific faces of COM crystals. Peptide sequences identified in this work are promising candidates for further development as therapies for biomineral-related diseases, such as kidney stone disease. Collectively, our work establishes new paradigms for the design, synthesis, and screening of peptides for controlling crystal habit with the potential to impact a variety of fields, including drug discovery, advanced materials, catalysis and separations.

  11. Osteopontin knockdown in the kidneys of hyperoxaluric rats leads to reduction in renal calcium oxalate crystal deposition.

    PubMed

    Tsuji, Hidenori; Shimizu, Nobutaka; Nozawa, Masahiro; Umekawa, Tohru; Yoshimura, Kazuhiro; De Velasco, Marco A; Uemura, Hirotsugu; Khan, Saeed R

    2014-06-01

    Osteopontin (OPN) expression is increased in kidneys of rats with ethylene glycol (EG) induced hyperoxaluria and calcium oxalate (CaOx) nephrolithiasis. The aim of this study is to clarify the effect of OPN knockdown by in vivo transfection of OPN siRNA on deposition of CaOx crystals in the kidneys. Hyperoxaluria was induced in 6-week-old male Sprague-Dawley rats by administering 1.5% EG in drinking water for 2 weeks. Four groups of six rats each were studied: Group A, untreated animals (tap water); Group B, administering 1.5% EG; Group C, 1.5% EG with in vivo transfection of OPN siRNA; Group D, 1.5% EG with in vivo transfection of negative control siRNA. OPN siRNA transfections were performed on day 1 and 8 by renal sub-capsular injection. Rats were killed at day 15 and kidneys were removed. Extent of crystal deposition was determined by measuring renal calcium concentrations and counting renal crystal deposits. OPN siRNA transfection resulted in significant reduction in expression of OPN mRNA as well as protein in group C compared to group B. Reduction in OPN expression was associated with significant decrease in crystal deposition in group C compared to group B. Specific suppression of OPN mRNA expression in kidneys of hyperoxaluric rats leads to a decrease in OPN production and simultaneously inhibits renal crystal deposition. PMID:24619192

  12. Osteopontin knockdown in the kidneys of hyperoxaluric rats leads to reduction in renal calcium oxalate crystal deposition

    PubMed Central

    Shimizu, Nobutaka; Nozawa, Masahiro; Umekawa, Tohru; Yoshimura, Kazuhiro; De Velasco, Marco A.; Uemura, Hirotsugu; Khan, Saeed R.

    2016-01-01

    Osteopontin (OPN) expression is increased in kidneys of rats with ethylene glycol (EG) induced hyperoxaluria and calcium oxalate (CaOx) nephrolithiasis. The aim of this study is to clarify the effect of OPN knockdown by in vivo transfection of OPN siRNA on deposition of CaOx crystals in the kidneys. Hyperoxaluria was induced in 6-week-old male Sprague–Dawley rats by administering 1.5 % EG in drinking water for 2 weeks. Four groups of six rats each were studied: Group A, untreated animals (tap water); Group B, administering 1.5 % EG; Group C, 1.5 % EG with in vivo transfection of OPN siRNA; Group D, 1.5 % EG with in vivo transfection of negative control siRNA. OPN siRNA transfections were performed on day 1 and 8 by renal sub-capsular injection. Rats were killed at day 15 and kidneys were removed. Extent of crystal deposition was determined by measuring renal calcium concentrations and counting renal crystal deposits. OPN siRNA transfection resulted in significant reduction in expression of OPN mRNA as well as protein in group C compared to group B. Reduction in OPN expression was associated with significant decrease in crystal deposition in group C compared to group B. Specific suppression of OPN mRNA expression in kidneys of hyperoxaluric rats leads to a decrease in OPN production and simultaneously inhibits renal crystal deposition. PMID:24619192

  13. A study on calcium oxalate crystals in Tinantia anomala (Commelinaceae) with special reference to ultrastructural changes during anther development.

    PubMed

    Gębura, Joanna; Winiarczyk, Krystyna

    2016-07-01

    Calcium oxalate (CaOx) crystals in higher plants occur in five forms: raphides, styloids, prisms, druses, and crystal sand. CaOx crystals are formed in almost all tissues in intravacuolar crystal chambers. However, the mechanism of crystallization and the role of CaOx crystals have not been clearly explained. The aim of this study was to explore the occurrence and location of CaOx crystals in organs of Tinantia anomala (Torr.) C.B. Clarke (Commelinaceae) with special attention to ultrastructural changes in the quantity of tapetal raphides during microsporogenesis. We observed various parts of the plant, that is, stems, leaves, sepals, petals, anthers, staminal trichomes and stigmatic papillae and identified CaOx crystals in all parts except staminal trichomes and stigmatic papillae in Tinantia anomala. Three morphological forms: styloids, raphides and prisms were found in different amounts in different parts of the plant. Furthermore, in this species, we identified tapetal raphides in anthers. The number of tapetal raphides changed during microsporogenesis. At the beginning of meiosis, the biosynthesis of raphides proceeded intensively in the provacuoles. These organelles were formed from the endoplasmic reticulum system. In the tetrad stage, we observed vacuoles with needle-shaped raphides (type I) always localised in the centre of the organelle. When the amoeboid tapetum was degenerating, vacuoles also began to fade. We observed a small number of raphides in the stage of mature pollen grains. PMID:26961770

  14. EGCG decreases binding of calcium oxalate monohydrate crystals onto renal tubular cells via decreased surface expression of alpha-enolase.

    PubMed

    Kanlaya, Rattiyaporn; Singhto, Nilubon; Thongboonkerd, Visith

    2016-06-01

    Crystal retention on tubular cell surface inside renal tubules is considered as the earliest and crucial step for kidney stone formation. Therapeutics targeting this step would cease the development of kidney stone. This study thus aimed to investigate the potential role of epigallocatechin-3-gallate (EGCG), a major antioxidant found in green tea leaves, in the reduction of calcium oxalate monohydrate (COM) crystal binding onto renal tubular cells. Pretreatment of the cells with EGCG for up to 6 h significantly diminished crystal-binding capability in a dose-dependent manner. Indirect immunofluorescence assay without and with cell permeabilization followed by laser-scanning confocal microscopy revealed that EGCG significantly reduced surface expression of alpha-enolase, whereas its intracellular level was increased. Western blot analysis confirmed such contradictory changes in membrane and cytosolic fractions of EGCG-treated cells, whereas the total level in whole cell lysate remained unchanged. Moreover, overexpression of surface alpha-enolase and enhancement of cell-crystal adhesion induced by 10 mM sodium oxalate were completely abolished by EGCG. Taken together, these data indicate that EGCG decreases binding of COM crystals onto renal tubular cells by decreasing the surface expression of alpha-enolase via re-localization or inhibition of alpha-enolase shuttling from the cytoplasm to the plasma membrane. These findings may also explain the effects of EGCG in reducing COM crystal deposition in previous animal models of kidney stone disease. Thus, EGCG may be useful for the prevention of new or recurrent stone formation. PMID:26898643

  15. An assessment of engineered calcium oxalate crystal formation on plant growth and development as a step toward evaluating its use to enhance plant defense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The establishment of new approaches to control chewing insects has been sought not only for direct use in reducing crop loss but also in managing resistance to the pesticides already in use. Engineered formation of calcium oxalate crystals is a potential strategy that could be developed to fulfill ...

  16. Experimental nephrolithiasis in rats: the effect of ethylene glycol and vitamin D3 on the induction of renal calcium oxalate crystals.

    PubMed

    de Water, R; Boevé, E R; van Miert, P P; Deng, G; Cao, L C; Stijnen, T; de Bruijn, W C; Schröder, F H

    1996-01-01

    Using ethylene glycol (EG) and vitamin D3 as crystal-inducing diet (CID) in rats, we investigated the effect of the dosage of EG on the generation of chronic calcium oxalate (CaOx) nephrolithiasis. We collected weekly 24 hour urines and measured herein the amount of oxalate, calcium, glycosaminoglycans (GAG's), creatinine, protein, alkaline phosphatase (AP), gamma-glutamyl transpeptidase (gamma-GT), and N-acetyl-beta-glucosaminidase (NAG). The potential of these urines to inhibit crystal growth and agglomeration was also evaluated. After four weeks, the kidneys were screened by histology and radiography for the presence of CaOx crystals and the amount of kidney-associated oxalate was biochemically measured. Using 0.5 vol.% EG, only a part of the rats showed CaOx deposition in the renal cortex and/or medulla, without obvious differences between Wistar and Sprague-Dawley (SD) rats. If a dietary EG concentration of 0.75, 1.0, or 1.5 vol.% was used, the amount of kidney-associated oxalate was proportionally higher and CaOx crystal formation was consistently found in all rats. Most crystals were encountered in the cortex, whereas in the medulla and the papillary region, crystals were only occasionally detected. From these data, we conclude that in the chronic rat model, based on EG and vitamin D3, a consistent deposition of CaOx crystals is obtained using a EG concentration of at least 0.75%. PMID:9813634

  17. Oxalic acid decreases calcium absorption in rats

    SciTech Connect

    Weaver, C.M.; Martin, B.R.; Ebner, J.S.; Krueger, C.A.

    1987-11-01

    Calcium absorption from salts and foods intrinsically labeled with /sup 45/Ca was determined in the rat model. Calcium bioavailability was nearly 10 times greater for low oxalate kale, CaCO/sub 3/ and CaCl/sub 2/ than from CaC/sub 2/O/sub 4/ (calcium oxalate) and spinach (high in oxalates). Extrinsic and intrinsic labeling techniques gave a similar assessment of calcium bioavailability from kale but not from spinach.

  18. Effect of dietary oxalate and calcium on urinary oxalate and risk of formation of calcium oxalate kidney stones.

    PubMed

    Massey, L K; Roman-Smith, H; Sutton, R A

    1993-08-01

    Dietary restriction of oxalate intake has been used as therapy to reduce the risk of recurrence of calcium oxalate kidney stones. Although urinary oxalate is derived predominantly from endogenous synthesis, it may also be affected by dietary intake of oxalate and calcium. The risk of increasing urinary oxalate excretion by excessive consumption of dietary oxalate is greatest in individuals with a high rate of oxalate absorption, both with and without overt intestinal disease. Although oxalate-rich foods enhanced excretion of urinary oxalate in normal volunteers, the increase was not proportional to the oxalate content of the food. Only eight foods--spinach, rhubarb, beets, nuts, chocolate, tea, wheat bran, and strawberries--caused a significant increase in urinary oxalate excretion. Restriction of dietary calcium enhances oxalate absorption and excretion, whereas an increase in calcium intake may reduce urinary oxalate excretion by binding more oxalate in the gut. This review of the literature indicates that initial dietary therapy for stone-forming individuals can be limited to the restriction of foods definitely shown to increase urinary oxalate. The effects of oxalate-restricted diets on urinary oxalate should be evaluated by means of laboratory analyses of urine composition. Subsequent long-term therapy can be recommended if beneficial results are obtained from oxalate restriction at an appropriate calcium intake. PMID:8335871

  19. Contribution of calcium oxalate to soil-exchangeable calcium

    USGS Publications Warehouse

    Dauer, Jenny M.; Perakis, Steven S.

    2013-01-01

    Acid deposition and repeated biomass harvest have decreased soil calcium (Ca) availability in many temperate forests worldwide, yet existing methods for assessing available soil Ca do not fully characterize soil Ca forms. To account for discrepancies in ecosystem Ca budgets, it has been hypothesized that the highly insoluble biomineral Ca oxalate might represent an additional soil Ca pool that is not detected in standard measures of soil-exchangeable Ca. We asked whether several standard method extractants for soil-exchangeable Ca could also access Ca held in Ca oxalate crystals using spike recovery tests in both pure solutions and soil extractions. In solutions of the extractants ammonium chloride, ammonium acetate, and barium chloride, we observed 2% to 104% dissolution of Ca oxalate crystals, with dissolution increasing with both solution molarity and ionic potential of cation extractant. In spike recovery tests using a low-Ca soil, we estimate that 1 M ammonium acetate extraction dissolved sufficient Ca oxalate to contribute an additional 52% to standard measurements of soil-exchangeable Ca. However, in a high-Ca soil, the amount of Ca oxalate spike that would dissolve in 1 M ammonium acetate extraction was difficult to detect against the large pool of exchangeable Ca. We conclude that Ca oxalate can contribute substantially to standard estimates of soil-exchangeable Ca in acid forest soils with low soil-exchangeable Ca. Consequently, measures of exchangeable Ca are unlikely to fully resolve discrepancies in ecosystem Ca mass balance unless the contribution of Ca oxalate to exchangeable Ca is also assessed.

  20. Calcium oxalate crystals increased enolase-1 secretion from renal tubular cells that subsequently enhanced crystal and monocyte invasion through renal interstitium.

    PubMed

    Chiangjong, Wararat; Thongboonkerd, Visith

    2016-01-01

    Calcium oxalate monohydrate (COM) crystals cause kidney stone disease by still unclear mechanisms. The present study aimed to characterize changes in secretion of proteins from basolateral compartment of renal tubular epithelial cells after exposure to COM crystals and then correlated them with the stone pathogenesis. Polarized MDCK cells were cultivated in serum-free medium with or without 100 μg/ml COM crystals for 20 h. Secreted proteins collected from the lower chamber (basolateral compartment) were then resolved in 2-D gels and visualized by Deep Purple stain (n = 5 gels/group). Spot matching and intensity analysis revealed six protein spots with significantly altered levels in COM-treated samples. These proteins were then identified by tandem mass spectrometry (Q-TOF MS/MS), including enolase-1, phosphoglycerate mutase-1, actinin, 14-3-3 protein epsilon, alpha-tubulin 2, and ubiquitin-activating enzyme E1. The increased enolase-1 level was confirmed by Western blot analysis. Functional analysis revealed that enolase-1 dramatically induced COM crystal invasion through ECM migrating chamber in a dose-dependent manner. Moreover, enolase-1 bound onto U937 monocytic cell surface markedly enhanced cell migration through the ECM migrating chamber. In summary, our data indicated that the increased secretory enolase-1 induced by COM crystals played an important role in crystal invasion and inflammatory process in renal interstitium. PMID:27045290

  1. Calcium oxalate crystals increased enolase-1 secretion from renal tubular cells that subsequently enhanced crystal and monocyte invasion through renal interstitium

    PubMed Central

    Chiangjong, Wararat; Thongboonkerd, Visith

    2016-01-01

    Calcium oxalate monohydrate (COM) crystals cause kidney stone disease by still unclear mechanisms. The present study aimed to characterize changes in secretion of proteins from basolateral compartment of renal tubular epithelial cells after exposure to COM crystals and then correlated them with the stone pathogenesis. Polarized MDCK cells were cultivated in serum-free medium with or without 100 μg/ml COM crystals for 20 h. Secreted proteins collected from the lower chamber (basolateral compartment) were then resolved in 2-D gels and visualized by Deep Purple stain (n = 5 gels/group). Spot matching and intensity analysis revealed six protein spots with significantly altered levels in COM-treated samples. These proteins were then identified by tandem mass spectrometry (Q-TOF MS/MS), including enolase-1, phosphoglycerate mutase-1, actinin, 14-3-3 protein epsilon, alpha-tubulin 2, and ubiquitin-activating enzyme E1. The increased enolase-1 level was confirmed by Western blot analysis. Functional analysis revealed that enolase-1 dramatically induced COM crystal invasion through ECM migrating chamber in a dose-dependent manner. Moreover, enolase-1 bound onto U937 monocytic cell surface markedly enhanced cell migration through the ECM migrating chamber. In summary, our data indicated that the increased secretory enolase-1 induced by COM crystals played an important role in crystal invasion and inflammatory process in renal interstitium. PMID:27045290

  2. Evidence that serum calcium oxalate supersaturation is a consequence of oxalate retention in patients with chronic renal failure.

    PubMed Central

    Worcester, E M; Nakagawa, Y; Bushinsky, D A; Coe, F L

    1986-01-01

    Serum oxalate rises in uremia because of decreased renal clearance, and crystals of calcium oxalate occur in the tissues of uremic patients. Crystal formation suggests that either uremic serum is supersaturated with calcium oxalate, or local oxalate production or accumulation causes regional supersaturation. To test the first alternative, we ultrafiltered uremic serum and measured supersaturation with two different methods previously used to study supersaturation in urine. First, the relative saturation ratio (RSR), the ratio of the dissolved calcium oxalate complex to the thermodynamic calcium oxalate solubility product, was estimated for 11 uremic (before and after dialysis) and 4 normal serum samples using a computer program. Mean ultrafiltrate oxalate predialysis was 89 +/- 8 microM/liter (+/- SEM), 31 +/- 4 postdialysis, and 10 +/- 3 in normals. Mean RSR was 1.7 +/- 0.1 (predialysis), 0.7 +/- 0.1 (postdialysis), and 0.2 +/- 0.1 (normal), where values greater than 1 denote supersaturation, less than 1, undersaturation. Second, the concentration product ratio (CPR), the ratio of the measured calcium oxalate concentration product before to that after incubation of the sample with calcium oxalate monohydrate crystal, was measured in seven uremic and seven normal serum ultrafiltrates. Mean oxalate was 91 +/- 11 (uremic) and 8 +/- 3 (normal). Mean CPR was 1.4 +/- 0.2 (uremic) and 0.2 +/- 0.1 (normal). Predialysis, 17 of 18 uremic ultrafiltrates were supersaturated with respect to calcium oxalate. The degree of supersaturation was correlated with ultrafiltrate oxalate (RSR, r = 0.99, r = 29, P less than 0.001; CPR, r = 0.75, n = 11, P less than 0.001). A value of ultrafiltrate oxalate of 50 microM/liter separated undersaturated from supersaturated samples and occurred at a creatinine of approximately 9.0 mg/dl. PMID:3711339

  3. Micro-mechanical model of calcium oxalate monohydrate aggregation in supersaturated solutions: Effect of crystal form and seed concentration

    NASA Astrophysics Data System (ADS)

    Pitt, K.; Mitchell, G. P.; Ray, A.; Heywood, B. R.; Hounslow, M. J.

    2012-12-01

    In this paper we report crystal growth and aggregation behaviour for calcium oxalate monohydrate (COM) in a stirred tank for two differing seed types - rounded and well defined - at various seed loadings. Initially we used our previously developed model [1] to study the growth and aggregation. In this model a dimensionless strength, termed the Mumtaz number, has been formulated, which accounts for the effects of stirring, supersaturation and particle size on the aggregation rate of COM. Subtle differences in growth and aggregation rates were observed between the two populations of crystals; the model was unable to describe this behaviour. These differences were attributed to their different surface characteristics. Growth and aggregation kinetic parameters were also seen to be highly dependent on seed loading. This is attributed to poisoning by an unknown trace impurity, the effect of which is dependent on seed loading. This has led to the development of a new model to account for both surface characteristics and the presence of a trace impurity that adsorbs onto the surface of crystals pinning growth steps. At low seeds loadings, surface coverage by the impurity is higher and so growth rates are reduced. These results are very well described by an extension of the approach of Weaver et al. [2]. We use Liew et al.'s [1] model to represent aggregation by a collision efficiency that depends on a modified Mumtaz number. This model requires the determination of a simple group of parameters that we term the 'aggregation tendency'. The relationship between aggregation tendency and growth rate constant suggests that aggregation is in fact controlled by the growth rate of some high-energy facets not expressed macroscopically. The fact that aggregation tendency increases with surface coverage of impurity further suggests that the presence of impurity gives rise to longer or more numerous linear features along which initial contact between crystals takes place. The combined

  4. Calcium oxalate in the sputum may aid in the diagnosis of pulmonary aspergillosis: A report of two cases

    PubMed Central

    Maeno, Tsutomu; Sasaki, Masakazu; Shibue, Yasushi; Mimura, Kazuyuki; Oka, Hideaki

    2015-01-01

    We present two cases of pulmonary aspergillosis in which calcium oxalate crystals in the sputum proved to be a useful diagnostic clue. In case 1, Aspergillus hyphae was not identified; however, calcium oxalate crystals were present, and chronic necrotizing pulmonary aspergillosis was diagnosed. In case 2, calcium oxalate was detected and Aspergillus fumigatus was identified later. Thus, the presence of calcium oxalate in the sputum may be an important indicator for an A. fumigatus infection. PMID:25834787

  5. INFLUENCE OF THE CALCIUM OXALATE DEFECTIVE 4 (COD4) MUTATION ON THE GROWTH, OXALATE CONTENT, AND CALCIUM CONTENT OF MEDICAGO TRUNCATULA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium oxalate crystal formation has been well documented in plants. The pathway(s) and regulatory mechanism(s) of crystal formation and function, however, remain largely unknown. As a step toward expanding our understanding of crystal formation and function, we characterize the oxalate over-accu...

  6. Calcium Oxalate Crystals as an Indicator of Plant Stress in Conifers at two elevations on Mount Moosilauke, NH

    NASA Astrophysics Data System (ADS)

    Allen, M. N.; Rock, B. N.; Hale, S. R.; Graham, K. J.

    2007-12-01

    The research presented was conducted as part of Watershed Watch, a two-week hands-on summer program for undeclared entry-level undergraduates, designed to recruit and retain students in Science, Technology, Engineering, and Mathematics (STEM) disciplines. The research was conducted on needles of red spruce (Picea rubens) and balsam fir (Abies balsamea) at the University of New Hampshire. The presence of calcium oxalate crystals (CaOx) in the cell walls of spruce mesophyll cells has been reported as an indicator of environmental stress. To assess this, first and third year needles of both species were collected from Mt. Moosilauke (Woodstock, NH) at two elevations (790m and 960m). Needles were analyzed using reflectance spectroscopy and scanning electron microscopy (SEM). Estimates of chlorophyll and water were made using the Red Edge Inflection Point and the Moisture Stress Index. These were compared to SEM images of needle sections to visually correlate the amount of CaOx with the reflectance indices. Balsam fir from 790m have a higher occurrence of CaOx in their first and third year needles than from the 960m site, while spectroscopy results indicated less stress (i.e., higher chlorophyll and more water) at the lower site. This does not support a correlation between CaOx and stress factors in balsam fir. In red spruce, those needles with fewest CaOx had higher estimates of chlorophyll and water, supporting the correlation. Based on these results, more research is needed to fully understand the relationship between CaOx and plant stress in different species of conifers.

  7. Characterization of calcium oxalate defective (cod) 3 mutant from Medicago truncatula

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many plants invest a considerable amount of resources and energy into the formation of calcium oxalate crystals. Assigned roles for plant crystal formation include functions in defense, calcium regulation, and aluminum tolerance. From a human health standpoint, oxalate present in edible plant tiss...

  8. Surface heat shock protein 90 serves as a potential receptor for calcium oxalate crystal on apical membrane of renal tubular epithelial cells.

    PubMed

    Fong-Ngern, Kedsarin; Sueksakit, Kanyarat; Thongboonkerd, Visith

    2016-07-01

    Adhesion of calcium oxalate monohydrate (COM) crystals on renal tubular epithelial cells is a crucial step in kidney stone formation. Finding potential crystal receptors on the apical membrane of the cells may lead to a novel approach to prevent kidney stone disease. Our previous study identified a large number of crystal-binding proteins on the apical membrane of MDCK cells. However, their functional role as potential crystal receptors had not been validated. The present study aimed to address the potential role of heat shock protein 90 (HSP90) as a COM crystal receptor. The apical membrane was isolated from polarized MDCK cells by the peeling method and recovered proteins were incubated with COM crystals. Western blot analysis confirmed the presence of HSP90 in the apical membrane and the crystal-bound fraction. Immunofluorescence staining without permeabilization and laser-scanning confocal microscopy confirmed the surface HSP90 expression on the apical membrane of the intact cells. Crystal adhesion assay showed that blocking surface HSP90 by specific anti-HSP90 antibody and knockdown of HSP90 by small interfering RNA (siRNA) dramatically reduced crystal binding on the apical surface of MDCK cells (by approximately 1/2 and 2/3, respectively). Additionally, crystal internalization assay revealed the presence of HSP90 on the membrane of endocytic vesicle containing the internalized COM crystal. Moreover, pretreatment of MDCK cells with anti-HSP90 antibody significantly reduced crystal internalization (by approximately 1/3). Taken together, our data indicate that HSP90 serves as a potential receptor for COM crystals on the apical membrane of renal tubular epithelial cells and is involved in endocytosis/internalization of the crystals into the cells. PMID:27115409

  9. Analysis of Altered MicroRNA Expression Profiles in Proximal Renal Tubular Cells in Response to Calcium Oxalate Monohydrate Crystal Adhesion: Implications for Kidney Stone Disease

    PubMed Central

    Wang, Bohan; Wu, Bolin; Liu, Jun; Yao, Weimin; Xia, Ding; Li, Lu; Chen, Zhiqiang; Ye, Zhangqun; Yu, Xiao

    2014-01-01

    Background Calcium oxalate monohydrate (COM) is the major crystalline component in kidney stones and its adhesion to renal tubular cells leads to tubular injury. However, COM-induced toxic effects in renal tubular cells remain ambiguous. MicroRNAs (miRNAs) play an important role in gene regulation at the posttranscriptional levels. Objective The present study aimed to assess the potential changes in microRNAs of proximal renal tubular cells in response to the adhesion of calcium oxalate monohydrate (COM) crystals. Methodology Lactate dehydrogenase (LDH) activity and DAPI staining were used to measure the toxic effects of HK-2 cells exposed to COM crystals. MicroRNA microarray and mRNA microarray were applied to evaluate the expression of HK-2 cells exposed to COM crystals. Quantitative real-time PCR (qRT-PCR) technology was used to validate the microarray results. Target prediction, Gene Ontology (GO) analysis and pathway analysis were applied to predict the potential roles of microRNAs in biological processes. Principal Findings Our study showed that COM crystals significantly altered the global expression profile of miRNAs in vitro. After 24 h treatment with a dose (1 mmol/L), 25 miRNAs were differentially expressed with a more than 1.5-fold change, of these miRNAs, 16 were up-regulated and 9 were down-regulated. A majority of these differentially expressed miRNAs were associated with cell death, mitochondrion and metabolic process. Target prediction and GO analysis suggested that these differentially expressed miRNAs potentially targeted many genes which were related to apoptosis, regulation of metabolic process, intracellular signaling cascade, insulin signaling pathway and type 2 diabetes. Conclusion Our study provides new insights into the role of miRNAs in the pathogenesis associated with nephrolithiasis. PMID:24983625

  10. Characterization of Calcium Oxalates Generated as Biominerals in Cacti1

    PubMed Central

    Monje, Paula V.; Baran, Enrique J.

    2002-01-01

    The chemical composition and morphology of solid material isolated from various Cactaceae species have been analyzed. All of the tested specimens deposited high-purity calcium oxalate crystals in their succulent modified stems. These deposits occurred most frequently as round-shaped druses that sometimes coexist with abundant crystal sand in the tissue. The biominerals were identified either as CaC2O4.2H2O (weddellite) or as CaC2O4.H2O (whewellite). Seven different species from the Opuntioideae subfamily showed the presence of whewellite, and an equal number of species from the Cereoideae subfamily showed the deposition of weddellite. The chemical nature of these deposits was assessed by infrared spectroscopy. The crystal morphology of the crystals was visualized by both conventional light and scanning electron microscopy. Weddellite druses were made up of tetragonal crystallites, whereas those from whewellite were most often recognized by their acute points and general star-like shape. These studies clearly demonstrated that members from the main traditional subfamilies of the Cactaceae family could synthesize different chemical forms of calcium oxalate, suggesting a definite but different genetic control. The direct relationship established between a given Cactaceae species and a definite calcium oxalate biomineral seems to be a useful tool for plant identification and chemotaxonomy. PMID:11842173

  11. Effects of magnesium deficiency on intratubular calcium oxalate formation and crystalluria in hyperoxaluric rats.

    PubMed

    Rushton, H G; Spector, M

    1982-03-01

    Previous studies have shown that magnesium deficiency accelerates renal tubular calcium oxalate monohydrate deposition in rats on chronic hyperoxaluric, lithogenic protocols. The present study was conducted to investigate the effect of magnesium deficiency on intratubular calcium oxalate formation in rats from the 1st day of administration of a hyperoxaluric agent. The objectives were to delineate early ultrastructural features of the formation, mechanisms of retention, and development of renal tubular crystal deposits and to characterize the crystalluria in rats on the hyperoxaluric/hypomagnesuric protocol. Intratubular calcium oxalate monohydrate deposits were found in magnesium deficient rats after only 24 hours of ad libitum administration of 1 per cent ethylene glycol drinking water. Animals on regular food diet did not display renal tubular deposition after 11 days of ethylene glycol administration. Strand- and sheet-like organic material emanating from the luminal wall of the tubules was adherent to the crystals, thereby serving to immobilize them within the tubule. Calcium oxalate monohydrate crystals predominated in the urines of hyperoxaluric/hypomagnesuric animals with intratubular deposits while dihydrate crystals were the primary constituent of urines from rats administered ethylene glycol alone (no intratubular deposition). The results support the supposition that under certain conditions magnesium deficiency is a significant risk factor for intrarenal calcium oxalate deposition and stone formation. Furthermore the identification of calcium oxalate monohydrate crystalluria may be an important indicator of the propensity toward intranephronic calcium oxalate formation and urolithiasis. PMID:7062446

  12. An oxalyl-CoA dependent pathway of oxalate catabolism plays a role in regulating calcium oxalate crystal accumulation and defending against oxalate-secreting phytopathogens in Medicago truncatula

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Considering the widespread occurrence of oxalate in nature and its broad impact on a host of organisms, it is surprising that so little is known about the turnover of this important acid. In plants, oxalate oxidase is the most well studied enzyme capable of degrading oxalate, but not all plants pos...

  13. Modulation of Calcium Oxalate Dihydrate Growth by Selective Crystal-face Binding of Phosphorylated Osteopontin and Polyaspartate Peptide Showing Occlusion by Sectoral (Compositional) Zoning*

    PubMed Central

    Chien, Yung-Ching; Masica, David L.; Gray, Jeffrey J.; Nguyen, Sarah; Vali, Hojatollah; McKee, Marc D.

    2009-01-01

    Calcium oxalate dihydrate (COD) mineral and the urinary protein osteopontin/uropontin (OPN) are commonly found in kidney stones. To investigate the effects of OPN on COD growth, COD crystals were grown with phosphorylated OPN or a polyaspartic acid-rich peptide of OPN (DDLDDDDD, poly-Asp86–93). Crystals grown with OPN showed increased dimensions of the {110} prismatic faces attributable to selective inhibition at this crystallographic face. At high concentrations of OPN, elongated crystals with dominant {110} faces were produced, often with intergrown, interpenetrating twin crystals. Poly-Asp86–93 dose-dependently elongated crystal morphology along the {110} faces in a manner similar to OPN. In crystal growth studies using fluorescently tagged poly-Asp86–93 followed by imaging of crystal interiors using confocal microscopy, sectoral (compositional) zoning in COD was observed resulting from selective binding and incorporation (occlusion) of peptide exclusively into {110} crystal sectors. Computational modeling of poly-Asp86–93 adsorption to COD {110} and {101} surfaces also suggests increased stabilization of the COD {110} surface and negligible change to the natively stable {101} surface. Ultrastructural, colloidal-gold immunolocalization of OPN by transmission electron microscopy in human stones confirmed an intracrystalline distribution of OPN. In summary, OPN and its poly-Asp86–93 sequence similarly affect COD mineral growth; the {110} crystallographic faces become enhanced and dominant attributable to {110} face inhibition by the protein/peptide, and peptides can incorporate into the mineral phase. We, thus, conclude that the poly-Asp86–93 domain is central to the OPN ability to interact with the {110} faces of COD, where it binds to inhibit crystal growth with subsequent intracrystalline incorporation (occlusion). PMID:19581305

  14. Medicago truncatula mutants with an increase in mesophyll calcium oxalate accumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants invest a considerable amount of resources and energy into the formation of calcium oxalate crystals. A number of roles for crystal formation in plant growth and development have been assigned based on the prevalence of crystals, their spatial distribution, and the variety of crystal shapes. ...

  15. Ozone-Induced Responses in Croton floribundus Spreng. (Euphorbiaceae): Metabolic Cross-Talk between Volatile Organic Compounds and Calcium Oxalate Crystal Formation

    PubMed Central

    Cardoso-Gustavson, Poliana; Bolsoni, Vanessa Palermo; de Oliveira, Debora Pinheiro; Guaratini, Maria Tereza Gromboni; Aidar, Marcos Pereira Marinho; Marabesi, Mauro Alexandre; Alves, Edenise Segala; de Souza, Silvia Ribeiro

    2014-01-01

    Here, we proposed that volatile organic compounds (VOC), specifically methyl salicylate (MeSA), mediate the formation of calcium oxalate crystals (COC) in the defence against ozone (O3) oxidative damage. We performed experiments using Croton floribundus, a pioneer tree species that is tolerant to O3 and widely distributed in the Brazilian forest. This species constitutively produces COC. We exposed plants to a controlled fumigation experiment and assessed biochemical, physiological, and morphological parameters. O3 induced a significant increase in the concentrations of constitutive oxygenated compounds, MeSA and terpenoids as well as in COC number. Our analysis supported the hypothesis that ozone-induced VOC (mainly MeSA) regulate ROS formation in a way that promotes the opening of calcium channels and the subsequent formation of COC in a fast and stable manner to stop the consequences of the reactive oxygen species in the tissue, indeed immobilising the excess calcium (caused by acute exposition to O3) that can be dangerous to the plant. To test this hypothesis, we performed an independent experiment spraying MeSA over C. floribundus plants and observed an increase in the number of COC, indicating that this compound has a potential to directly induce their formation. Thus, the tolerance of C. floribundus to O3 oxidative stress could be a consequence of a higher capacity for the production of VOC and COC rather than the modulation of antioxidant balance. We also present some insights into constitutive morphological features that may be related to the tolerance that this species exhibits to O3. PMID:25165889

  16. Ozone-induced responses in Croton floribundus Spreng. (Euphorbiaceae): metabolic cross-talk between volatile organic compounds and calcium oxalate crystal formation.

    PubMed

    Cardoso-Gustavson, Poliana; Bolsoni, Vanessa Palermo; de Oliveira, Debora Pinheiro; Guaratini, Maria Tereza Gromboni; Aidar, Marcos Pereira Marinho; Marabesi, Mauro Alexandre; Alves, Edenise Segala; de Souza, Silvia Ribeiro

    2014-01-01

    Here, we proposed that volatile organic compounds (VOC), specifically methyl salicylate (MeSA), mediate the formation of calcium oxalate crystals (COC) in the defence against ozone (O3) oxidative damage. We performed experiments using Croton floribundus, a pioneer tree species that is tolerant to O3 and widely distributed in the Brazilian forest. This species constitutively produces COC. We exposed plants to a controlled fumigation experiment and assessed biochemical, physiological, and morphological parameters. O3 induced a significant increase in the concentrations of constitutive oxygenated compounds, MeSA and terpenoids as well as in COC number. Our analysis supported the hypothesis that ozone-induced VOC (mainly MeSA) regulate ROS formation in a way that promotes the opening of calcium channels and the subsequent formation of COC in a fast and stable manner to stop the consequences of the reactive oxygen species in the tissue, indeed immobilising the excess calcium (caused by acute exposition to O3) that can be dangerous to the plant. To test this hypothesis, we performed an independent experiment spraying MeSA over C. floribundus plants and observed an increase in the number of COC, indicating that this compound has a potential to directly induce their formation. Thus, the tolerance of C. floribundus to O3 oxidative stress could be a consequence of a higher capacity for the production of VOC and COC rather than the modulation of antioxidant balance. We also present some insights into constitutive morphological features that may be related to the tolerance that this species exhibits to O3. PMID:25165889

  17. Raman spectroscopy study of calcium oxalate extracted from cacti stems.

    PubMed

    Frausto-Reyes, Claudio; Loza-Cornejo, Sofia; Terrazas, Teresa; Terrazas, Tania; Miranda-Beltrán, María de la Luz; Aparicio-Fernández, Xóchitl; López-Macías, Brenda M; Morales-Martínez, Sandra E; Ortiz-Morales, Martín

    2014-01-01

    To find markers that distinguish the different Cactaceae species, by using near infrared Raman spectroscopy and scanning electron microscopy, we studied the occurrence, in the stem, of solid deposits in five Cactaceae species (Coryphantha clavata, Ferocactus latispinus, Opuntia ficus-indica, O. robusta, and O. strepthacantha) collected from their natural habitats from a region of México. The deposits in the tissues usually occurred as spheroidal aggregates, druses, or prismatic crystals. From the Raman spectra, the crystals were identified either as calcium oxalate monohydrate (CaC2O4·H2O) or calcium oxalate dihydrate (CaC2O4·2H2O). Opuntia species (subfamily Opuntioideae) showed the presence of CaC2O4·H2O, and the deposition of CaC2O4·2H2O was present in C. clavata and F. latispinus (subfamily Cactoideae, Cacteae tribe). As a punctual technique, Raman spectroscopy seems to be a useful tool to identify crystal composition. In addition to allowing the analysis of crystal morphology, this spectroscopic technique can be used to identify Cactaceae species and their chemotaxonomy. PMID:25280368

  18. Characterization of calcium oxalate defective (cod) 6 mutant from Medicago truncatula

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many plants invest a considerable amount of resources and energy into the formation of calcium oxalate crystals. A number of roles for crystal formation in plant growth and development have been assigned based on their prevalence, spatial distribution, and variety of crystal shapes. These assigned...

  19. Genetically modified Medicago truncatula lacking calcium oxalate has increased calcium bioavailability and partially rescues vitamin D receptor knockout mice phenotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    How the distribution and sequestered form of plant macro/micro-nutrients influence their bioavailability, and ultimately impact human health, is poorly understood. The legume Medicago truncatula has a portion of its tissue calcium sequestered in the form of the calcium oxalate crystal, which reduces...

  20. Reactive oxygen species, inflammation and calcium oxalate nephrolithiasis.

    PubMed

    Khan, Saeed R

    2014-09-01

    Calcium oxalate (CaOx) kidney stones are formed attached to Randall's plaques (RPs) or Randall's plugs. Mechanisms involved in the formation and growth are poorly understood. It is our hypothesis that stone formation is a form of pathological biomineralization or ectopic calcification. Pathological calcification and plaque formation in the body is triggered by reactive oxygen species (ROS) and the development of oxidative stress (OS). This review explores clinical and experimental data in support of ROS involvement in the formation of CaOx kidney stones. Under normal conditions the production of ROS is tightly controlled, increasing when and where needed. Results of clinical and experimental studies show that renal epithelial exposure to high oxalate and crystals of CaOx/calcium phosphate (CaP) generates excess ROS, causing injury and inflammation. Major markers of OS and inflammation are detectable in urine of stone patients as well as rats with experimentally induced CaOx nephrolithiasis. Antioxidant treatments reduce crystal and oxalate induced injury in tissue culture and animal models. Significantly lower serum levels of antioxidants, alpha-carotene, beta-carotene and beta-cryptoxanthine have been found in individuals with a history of kidney stones. A diet rich in antioxidants has been shown to reduce stone episodes. ROS regulate crystal formation, growth and retention through the timely production of crystallization modulators. In the presence of abnormal calcium, citrate, oxalate, and/or phosphate, however, there is an overproduction of ROS and a decrease in the antioxidant capacity resulting in OS, renal injury and inflammation. Cellular degradation products in the urine promote crystallization in the tubular lumen at a faster rate thus blocking the tubule and plugging the tubular openings at the papillary tips forming Randall's plugs. Renal epithelial cells lining the loops of Henle/collecting ducts may become osteogenic, producing membrane vesicles at

  1. Reactive oxygen species, inflammation and calcium oxalate nephrolithiasis

    PubMed Central

    2014-01-01

    Calcium oxalate (CaOx) kidney stones are formed attached to Randall’s plaques (RPs) or Randall’s plugs. Mechanisms involved in the formation and growth are poorly understood. It is our hypothesis that stone formation is a form of pathological biomineralization or ectopic calcification. Pathological calcification and plaque formation in the body is triggered by reactive oxygen species (ROS) and the development of oxidative stress (OS). This review explores clinical and experimental data in support of ROS involvement in the formation of CaOx kidney stones. Under normal conditions the production of ROS is tightly controlled, increasing when and where needed. Results of clinical and experimental studies show that renal epithelial exposure to high oxalate and crystals of CaOx/calcium phosphate (CaP) generates excess ROS, causing injury and inflammation. Major markers of OS and inflammation are detectable in urine of stone patients as well as rats with experimentally induced CaOx nephrolithiasis. Antioxidant treatments reduce crystal and oxalate induced injury in tissue culture and animal models. Significantly lower serum levels of antioxidants, alpha-carotene, beta-carotene and beta-cryptoxanthine have been found in individuals with a history of kidney stones. A diet rich in antioxidants has been shown to reduce stone episodes. ROS regulate crystal formation, growth and retention through the timely production of crystallization modulators. In the presence of abnormal calcium, citrate, oxalate, and/or phosphate, however, there is an overproduction of ROS and a decrease in the antioxidant capacity resulting in OS, renal injury and inflammation. Cellular degradation products in the urine promote crystallization in the tubular lumen at a faster rate thus blocking the tubule and plugging the tubular openings at the papillary tips forming Randall’s plugs. Renal epithelial cells lining the loops of Henle/collecting ducts may become osteogenic, producing membrane vesicles

  2. Heterogeneous nucleation of calcium oxalate on native oxide surfaces

    SciTech Connect

    Song, L.; Pattillo, M.J.; Graff, G.L.; Campbell, A.A.; Bunker, B.C.

    1994-12-31

    The aqueous deposition of calcium oxalate onto colloidal oxides has been studied as a model system for understanding heterogeneous nucleation processes of importance in biomimetic synthesis of ceramic thin films. Calcium oxalate nucleation has been monitored by measuring induction times for nucleation using Constant Composition techniques and by measuring nucleation densities on extended oxide surfaces using an atomic force microscope. Results show that the dependence of calcium oxalate nucleation on solution supersaturation fits the functional form predicted by classical nucleation theories. Anionic surfaces appear to promote nucleation better than cationic surfaces, lowering the effective energy barrier to heterogeneous nucleation.

  3. Calcium Oxalate Stones Are Frequently Found Attached to Randall's Plaque

    NASA Astrophysics Data System (ADS)

    Matlaga, Brian R.; Williams, James C.; Evan, Andrew P.; Lingeman, James E.

    2007-04-01

    The exact mechanisms of the crystallization processes that occur during the formation of calcium oxalate calculi are controversial. Over six decades ago, Alexander Randall reported on a series of cadaveric renal units in which he observed calcium salt deposits on the tips of the renal papilla. Randall hypothesized that these deposits, eponymously termed Randall's plaque, would be the ideal site for stone formation, and indeed in a number of specimens he noted small stones attached to the papillae. With the recent advent of digital endoscopic imaging and micro computerized tomography (CT) technology, it is now possible to inspect the renal papilla of living, human stone formers and to study the attached stone with greater scrutiny.

  4. Calcium Oxalate Stones Are Frequently Found Attached to Randall's Plaque

    SciTech Connect

    Matlaga, Brian R.

    2007-04-05

    The exact mechanisms of the crystallization processes that occur during the formation of calcium oxalate calculi are controversial. Over six decades ago, Alexander Randall reported on a series of cadaveric renal units in which he observed calcium salt deposits on the tips of the renal papilla. Randall hypothesized that these deposits, eponymously termed Randall's plaque, would be the ideal site for stone formation, and indeed in a number of specimens he noted small stones attached to the papillae. With the recent advent of digital endoscopic imaging and micro computerized tomography (CT) technology, it is now possible to inspect the renal papilla of living, human stone formers and to study the attached stone with greater scrutiny.

  5. Spectroscopic study of the inhibition of calcium oxalate calculi by Larrea tridentata

    NASA Astrophysics Data System (ADS)

    Pinales, Luis Alonso

    The causes of urolithiasis include such influences as diet, metabolic disorders, and genetic factors which have been documented as sources that aggravate urinary calculi depositions and aggregations, and, implicitly, as causes of urolithiasis. This study endeavors to detail the scientific mechanisms involved in calcium oxalate calculi formation, and, more importantly, their inhibition under growth conditions imposed by the traditional medicinal approach using the herbal extract, Larrea tridentata. The calculi were synthesized without and with Larrea tridentata infusion by employing the single diffusion gel technique. A visible decrease in calcium oxalate crystal growth with increasing amounts of Larrea tridentata herbal infusion was observed in photomicrographs, as well as a color change from white-transparent for pure crystals to light orange-brown for crystals with inhibitor. Analysis of the samples, which includes Raman, infrared absorption, scanning electron microscopy (SEM), and X-ray powder diffraction (XRD) techniques, demonstrate an overall transition in morphology of the crystals from monohydrate without herbal extract to dihydrate with inhibitor. Furthermore, the resulting data from Raman and infrared absorption support the possibilities of the influences, in this complex process, of NDGA and its derivative compounds from Larrea tridentata, and of the bonding of the magnesium of the inhibitor with the oxalate ion on the surface of the calculi crystals. This assumption corroborates well with the micrographs obtained under higher magnification, which show that the separated small crystallites consist of darker brownish cores, which we attribute to the dominance of growth inhibition by NDGA, surrounded by light transparent thin shells, which possibly correspond to passivation of the crystals by magnesium oxalate. The SEM results reveal the transformation from the dominant monoclinic structure of the calcium oxalate crystals grown alone to the tetragonal

  6. Calcium oxalate content affects the nutritional availability of calcium from Medicago truncatula leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is known that oxalate, present in edible plants, can bind calcium in a crystalline form that reduces the availability of the bound calcium for nutritional absorption by humans. It is unknown, however, the degree to which the calcium oxalate content of a plant can be genetically altered and how mu...

  7. Nanoscale observations of the effect of citrate on calcium oxalate precipitation on calcite surfaces.

    NASA Astrophysics Data System (ADS)

    Burgos-Cara, Alejandro; Ruiz-Agudo, Encarnacion; Putnis, Christine V.

    2016-04-01

    Calcium oxalate (CaC2O4ṡxH2O) minerals are naturally occurring minerals found in fossils, plants, kidney stones and is a by-product in some processes such as paper, food and beverage production [1,2]. In particular, calcium oxalate monohydrate phase (COM) also known as whewellite (CaC2O4ṡH2O), is the most frequently reported mineral phase found in urinary and kidney stones together with phosphates. Organic additives are well known to play a key role in the formation of minerals in both biotic and abiotic systems, either facilitating their precipitation or hindering it. In this regard, recent studies have provided direct evidence demonstrating that citrate species could enhance dissolution of COM and inhibit their precipitation. [3,4] The present work aims at evauate the influence of pH, citrate and oxalic acid concentrations in calcium oxalate precipitation on calcite surfaces (Island Spar, Chihuahua, Mexico) through in-situ nanoscale observation using in situ atomic force microscopy (AFM, Multimode, Bruker) in flow-through experiments. Changes in calcium oxalate morphologies and precipitated phases were observed, as well as the inhibitory effect of citrate on calcium oxalate precipitation, which also lead to stabilization an the amorphous calcium oxalate phase. [1] K.D. Demadis, M. Öner, Inhibitory effects of "green"additives on the crystal growth of sparingly soluble salts, in: J.T. Pearlman (Ed.), Green Chemistry Research Trends, Nova Science Publishers Inc., New York, 2009, pp. 265-287. [2] M. Masár, M. Zuborová, D. Kaniansky, B. Stanislawski, Determination of oxalate in beer by zone electrophoresis on a chip with conductivity detection, J. Sep. Sci. 26 (2003) 647-652. [3] Chutipongtanate S, Chaiyarit S, Thongboonkerd V. Citrate, not phosphate, can dissolve calcium oxalate monohydrate crystals and detach these crystals from renal tubular cells. Eur J Pharmacol 2012;689:219-25. [4] Weaver ML, Qiu SR, Hoyer JR, Casey WH, Nancollas GH, De Yoreo JJ

  8. Ultrastructural and biochemical studies on formation of calcium oxalate in plants

    SciTech Connect

    Abdelmottaleb, A.M.

    1989-01-01

    Plant calcium oxalate crystals occur within cells called crystal idioblasts. Important aspects of this calcification phenomenon have not been characterized. This dissertation examines some of the aspects of this ubiquitous type of calcification including (1) characterization of ultrastructural features of developing crystal idioblasts, (2) determination of the relationship of specialized ultrastructural features of the idioblasts to transport of compounds and mechanisms of crystal deposition, and (3) the biochemical relationship between ascorbic acid metabolism and production of oxalic acid used for crystal formation. Structural and cytochemical studies revealed that crystal idioblasts have dense cytoplasm, modified plastids, enlarged nuclei, extensive endoplasmic reticulum, numerous dictyosomes and vesicles, and a bundle of raphide crystals in their vacuoles. A mechanism for Ca transport and crystal precipitation is proposed, based on these results. There is a strong and dynamic relationship between Ca concentration and oxalic acid produced for crystal formation, where increasing Ca level in the growth medium lead to increased total and insoluble oxalate in the plant. Calmodulin antagonists reduced oxalic acid production.

  9. Structural and chemical insect defenses in calcium oxalate defective mutants of Medicago truncatula

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant structures can act as defense against herbivorous insects, causing them to avoid feeding on a given plant or tissue. Mineral crystals of calcium oxalate in leaves of Medicago truncatula Gaertn. are effective deterrents of lepidopteran feeding, and they inhibit conversion of leaves into insect ...

  10. Differentiation of Calcium Oxalate Monohydrate and Calcium Oxalate Dihydrate Stones Using Quantitative Morphological Information from Micro-Computerized and Clinical Computerized Tomography

    PubMed Central

    Duan, Xinhui; Qu, Mingliang; Wang, Jia; Trevathan, James; Vrtiska, Terri; Williams, James C.; Krambeck, Amy; Lieske, John; McCollough, Cynthia

    2014-01-01

    Purpose We differentiated calcium oxalate monohydrate and calcium oxalate dihydrate kidney stones using micro and clinical computerized tomography images. Materials and Methods A total of 22 calcium oxalate monohydrate and 15 calcium oxalate dihydrate human kidney stones were scanned using a commercial micro-computerized tomography scanner with a pixel size of 7 to 23 μm. Under an institutional review board approved protocol, image data on 10 calcium oxalate monohydrate and 9 calcium oxalate dihydrate stones greater than 5 mm were retrieved from a total of 80 patients who underwent clinical dual energy computerized tomography for clinical indications and had stones available for infrared spectroscopic compositional analysis. Micro and clinical computerized tomography images were processed using in-house software, which quantified stone surface morphology with curvature based calculations. A shape index was generated as a quantitative shape metric to differentiate calcium oxalate monohydrate from calcium oxalate dihydrate stones. Statistical tests were used to test the performance of the shape index. Results On micro-computerized tomography images the shape index of calcium oxalate monohydrate and calcium oxalate dihydrate stones significantly differed (ROC curve AUC 0.92, p <0.0001). At the optimal cutoff sensitivity was 0.93 and specificity was 0.91. On clinical computerized tomography images a significant morphological difference was also detected (p = 0.007). AUC, sensitivity and specificity were 0.90, 1 and 0.73, respectively. Conclusions On micro and clinical computerized tomography images a morphological difference was detectable in calcium oxalate monohydrate and calcium oxalate dihydrate stones larger than 5 mm. The shape index is a highly promising method that can distinguish calcium oxalate monohydrate and calcium oxalate dihydrate stones with reasonable accuracy. PMID:23142201

  11. Calcium oxalate contribution to calcium cycling in forests of contrasting nutrient status

    USGS Publications Warehouse

    Dauer, Jenny M.; Perakis, Steven S.

    2014-01-01

    Calcium oxalate (Ca oxalate) is an insoluble biomineral that forms in plants and fungi, and occurs in soils across many types of ecosystems. Assessing how Ca oxalate may shape ecosystem Ca cycling requires information on the distribution of Ca oxalate among plant biomass, detritus, and mineral soil, and how it varies with ecosystem Ca status. We compared two Douglas-fir forests of contrasting ecosystem Ca availability, and found that Ca oxalate was partitioned similarly among plant biomass, detritus and mineral soil major ecosystem compartments at both sites, and total pools of Ca oxalate were greater in the high-Ca forest. However, the proportional importance of Ca oxalate was greater in the low-Ca than high-Ca forest (18% versus 4% of actively cycling ecosystem Ca, respectively). And calcium oxalate in mineral soil, which is of particular interest as a potential long-term Ca reservoir, was a larger portion of total available Ca (exchangeable Ca plus Ca oxalate Ca) in the low-Ca site than the high-Ca site (9% versus 1% of available soil Ca, respectively). Calcium oxalate was the dominant form of Ca returned from plants to soil as leaf litterfall at the high-Ca site, yet calcium oxalate disappeared rapidly from decomposing litter (0.28 yr−1 or faster) at both sites. We conclude that accumulation of Ca oxalate in forest ecosystems appears most closely related to overall Ca supply for live biomass pools, and that the accumulation of Ca oxalate in forest floor and mineral soil is limited by rapid microbial degradation of putatively unavailable Ca oxalate.

  12. Microelectrophoretic study of calcium oxalate monohydrate in macromolecular solutions

    NASA Technical Reports Server (NTRS)

    Curreri, P. A.; Onoda, G. Y., Jr.; Finlayson, B.

    1987-01-01

    Electrophoretic mobilities were measured for calcium oxalate monohydrate (COM) in solutions containing macromolecules. Two mucopolysaccharides (sodium heparin and chondroitin sulfate) and two proteins (positively charged lysozyme and negatively charged bovine serum albumin) were studied as adsorbates. The effects of pH, calcium oxalate surface charge (varied by calcium or oxalate ion activity), and citrate concentration were investigated. All four macromolecules showed evidence for adsorption. The macromolecule concentrations needed for reversing the surface charge indicated that the mucopolysaccharides have greater affinity for the COM surface than the proteins. Citrate ions at high concentrations appear to compete effectively with the negative protein for surface sites but show no evidence for competing with the positively charged protein.

  13. The influence of scale inhibitors on calcium oxalate

    SciTech Connect

    Gill, J.S.

    1999-11-01

    Precipitation of calcium oxalate is a common occurrence in mammalian urinary tract deposits and in various industrial processes such as paper making, brewery fermentation, sugar evaporation, and tannin concentration. Between pH 3.5 to 4.5 the driving force for calcium oxalate precipitation increases almost by three fold. It is a complicated process to predict both the nature of a deposit and at which stage of a multi-effect evaporator a particular mineral will deposit, as this depends on temperature, pH, total solids, and kinetics of mineralization. It is quite a challenge to inhibit calcium oxalate precipitation in the pH range of 4--6. Al{sup 3+} ions provide excellent threshold inhibition in this pH range and can be used to augment traditional inhibitors such as polyphosphates and polycarboxylates.

  14. Calcium oxalates grown in human urine under different batch conditions

    NASA Astrophysics Data System (ADS)

    Walton, R. C.; Kavanagh, J. P.; Heywood, B. R.; Rao, P. N.

    2005-11-01

    Calcium oxalate (CaOx) crystallisation in solution is often studied as it is the major crystalline phase in kidney stones, and as such contributes to a large proportion of pathological mineralisation. A variety of different methods are used to produce CaOx in urine, particularly with the goal of investigating mineral/organic interactions. Interpretation of growth phenomena in these studies often neglects the methodological differences, which are not always trivial. CaOx was grown simultaneously from a single pool of urine using six different protocols comparable to those found in the literature. The variations between the CaOx populations generated was great, with CaOx trihydrate detected as the most common hydromorph in two of the methods used, even though it is usually discounted in stone research. Crystal morphologies, density, particle size and surface area varied in all the methods tested, and a common technique used to remove organic matter from the crystal surface resulted in total phase transformation in one of the crystal populations. In conclusion, inter-assay comparisons of CaOx product are likely to be meaningless unless strict protocols are adhered to. Results indicate that certain crystalline properties considered relevant to stone formation may actually be a symptom of the experimental conditions.

  15. Antilithiatic Activity of phlorotannin rich extract of Sarghassum Wightii on Calcium Oxalate Urolithiais – In Vitro and In Vivo Evaluation

    PubMed Central

    Sujatha, D.; Singh, Kiranpal; Vohra, Mursalin; Kumar, K. Vijay; Sunitha, S.

    2015-01-01

    ABSTRACT Purpose: Urolithiasis is a common urological disorder responsible for serious human affliction and cost to the society with a high recurrence rate. The aim of the present study was to systematically evaluate the phlorotannin rich extract of Sargassum wightii using suitable in vitro and in vivo models to provide scientific evidence for its antilithiatic activity. Materials and Methods: To explore the effect of Sargassum wightii on calcium oxalate crystallization, in vitro assays like crystal nucleation, aggregation and crystal growth were performed. Calcium oxalate urolithiasis was induced in male Sprague dawley rats using a combination of gentamicin and calculi producing diet (5% ammonium oxalate and rat pellet feed). The biochemical parameters like calcium, oxalate, magnesium, phosphate, sodium and potassium were evaluated in urine, serum and kidney homogenates. Histopathological studies were also done to confirm the biochemical findings. Results: The yield of Sargassum wightii extract was found to be 74.5 gm/kg and confirmed by quantitative analysis. In vitro experiments with Sargassum wightii showed concentration dependent inhibition of calcium oxalate nucleation, aggregation and growth supported by SEM analysis. In the in vivo model, Sargassum wightii reduced both calcium and oxalate supersaturation in urine, serum and deposition in the kidney. The biochemical results were supported by histopathological studies. Conclusion: The findings of the present study suggest that Sargassum wightii has the ability to prevent nucleation, aggregation and growth of calcium oxalate crystals. Sargassum wightii has better preventive effect on calcium oxalate stone formation indicating its strong potential to develop as a therapeutic option to prevent recurrence of urolithiasis. PMID:26200544

  16. Characterization of calcium oxalate biominerals in Pereskia species (Cactaceae).

    PubMed

    Monje, Paula V; Baran, Enrique J

    2009-01-01

    Calcium oxalate druses were isolated from the stems and leaves of six Pereskioideae family members and investigated by infrared spectroscopy, showing that in all samples the biomineral was present in the form of whewellite, CaC2O4 x H2O. As Pereskia is thought to represent the "ancestral" condition of the leafless stem-succulent cacti, these results suggest that the biomineralization of calcium oxalate in Cactaceae represents a primitive characteristic of the group and also support a close genetic relationship between Pereskia and Opuntia. PMID:20158142

  17. Influence of nutrition on feline calcium oxalate urolithiasis with emphasis on endogenous oxalate synthesis.

    PubMed

    Dijcker, J C; Plantinga, E A; van Baal, J; Hendriks, W H

    2011-06-01

    The prevalence of calcium oxalate (CaOx) uroliths detected in cats with lower urinary tract disease has shown a sharp increase over the last decades with a concomitant reciprocal decrease in the occurrence of struvite (magnesium ammonium phosphate) uroliths. CaOx stone-preventative diets are available nowadays, but seem to be marginally effective, as CaOx urolith recurrence occurs in patients fed these diets. In order to improve the preventative measures against CaOx urolithiasis, it is important to understand its aetiopathogenesis. The main research focus in CaOx formation in cats has been on the role of Ca, whereas little research effort has been directed towards the role and origin of urinary oxalates. As in man, the exogenous origin of urinary oxalates in cats is thought to be of minor importance, although the precise contribution of dietary oxalates remains unclear. The generally accepted dietary risk factors for CaOx urolithiasis in cats are discussed and a model for the biosynthetic pathways of oxalate in feline liver is provided. Alanine:glyoxylate aminotransferase 1 (AGT1) in endogenous oxalate metabolism is a liver-specific enzyme targeted in the mitochondria in cats, and allows for efficient conversion of glyoxylate to glycine when fed a carnivorous diet. The low peroxisomal activity of AGT1 in cat liver is compatible with the view that felids utilised a low-carbohydrate diet throughout evolution. Future research should focus on understanding de novo biosynthesis of oxalate in cats and their adaptation(s) in oxalate metabolism, and on dietary oxalate intake and absorption by cats. PMID:21338551

  18. Antilithic effects of extracts from Urtica dentata hand on calcium oxalate urinary stones in rats.

    PubMed

    Xiang, Ming; Zhang, Shasha; Lu, Jingli; Li, Lulu; Hou, Wenrui; Xie, Mingxing; Zeng, Ying

    2011-10-01

    This study examined the potential antilithic effects of a traditional Chinese medicine Urtica dentata Hand (UDH) in experimental rats and screened the optimal extract of UDH as a possible therapeutic agent for kidney stones. The rat model of urinary calcium oxalate stones was induced by intragastric (i.g.) administration of 2 mL of 1.25% ethylene glycol (EG) and 1% ammonium chloride (AC) for 28 days and was confirmed by Color Doppler ultrasound imaging. The rats in different experimental groups were then intragastrically given petroleum ether extract (PEE), N-butanol extract (NBE), aqueous extract (AqE) of UDH, Jieshitong (positive control drug), and saline, respectively. Treatment with NBE significantly reduced the elevated levels of urinary calcium, uric acid, phosphate, as well as increased urinary output. Accordingly, the increased calcium, oxalate levels and the number of calcium oxalate crystals deposits were remarkably reverted in the renal tissue of NBE-treated rats. In addition, NBE also prevented the impairment of renal function to decrease the contents of blood urea nitrogen (BUN) and creatinine. Taken together, these data suggest that NBE of UDH has a beneficial effect on calcium oxalate urinary stones in rats by flushing the stones out and protecting renal function. PMID:22038359

  19. Aluminum citrate inhibits cytotoxicity and aggregation of oxalate crystals.

    PubMed

    Guo, Chungang; McMartin, Kenneth E

    2007-02-12

    Calcium oxalate monohydrate (COM), which represents a major component of kidney stones, is an end metabolite of ethylene glycol. COM accumulation has been linked with acute renal toxicity in ethylene glycol poisoning. COM injures the kidney either by directly producing cytotoxicity to the kidney cells or by aggregating in the kidney lumen leading to the blockage of urine flow. The present studies were designed to examine whether aluminum citrate could reduce the toxicity of COM. Toxicity was determined in human proximal tubule cells by leakage of lactate dehydrogenase or uptake of ethidium homodimer and in erythrocytes by degree of hemolysis. Aluminum citrate significantly inhibited the leakage of lactate dehydrogenase from human proximal tubule cells and protected against cell death from COM. The inhibitory effect of aluminum citrate was greater than that of other citrate or aluminum salts such as sodium citrate, aluminum chloride, calcium citrate, ammonium citrate or potassium citrate. Aluminum citrate significantly inhibited the aggregation of COM crystals in vitro and decreased red cell membrane damage from COM. Aluminum citrate appeared to directly interact with COM, but not with the cell membrane. As such, aluminum citrate reduced the cytotoxicity by a physico-chemical interaction with the COM surface, and not by dissolving the COM crystals. These studies suggest that aluminum citrate may protect against tissue damage that occurs with high levels of oxalate accumulation, especially in ethylene glycol poisoning and possibly in hyperoxaluric states. PMID:17161516

  20. [Oxalobacter formigenes--characteristics and role in development of calcium oxalate urolithiasis].

    PubMed

    Torzewska, Agnieszka

    2013-01-01

    Microorganisms are one of the important factors for urinary calculi formation. While urease-positive bacteria and nanobacteria contribute to stone formation, Oxalobacter formigenes rods play a protective role against the development of urolithiasis. Proteus mirabilis alkaline environment of the urinary tract and cause crystallization mainly of struvite (magnesium ammonium phosphate). However, nanobacteria, due to the possibility of apatite deposition on the surface of their cells, have long been considered as an etiological factor of urinary calculi consisting of calcium phosphates. O. formigenes is an anaerobe using oxalate as the main source of carbon and energy and occurs as natural gastrointestinal microflora of humans and animals. These bacteria control the amount of oxalate excretion degrading oxalates and regulating their transport by intestinal epithelium. Lower colonization of the human colon by O. formigenes can cause increased oxalate excretion and lead to the development of oxalate urolithiasis. Due to the positive influence of O. formigenes, there is ongoing research into the use of this microorganism as a probiotic in the prophylaxis or treatment of hyperoxaluria, both secondary and primary. The results of these studies are very promising, but they still require continuation. Future studies focus on the exact characteristics of O. formigenes including their metabolism and the development of methods for applying as a therapeutic agent the bacteria or their enzymes degrading the oxalate. PMID:24379255

  1. Elemental Content of Calcium Oxalate Stones from a Canine Model of Urinary Stone Disease

    PubMed Central

    Killilea, David W.; Westropp, Jodi L.; Shiraki, Ryoji; Mellema, Matthew; Larsen, Jennifer; Kahn, Arnold J.; Kapahi, Pankaj; Chi, Thomas; Stoller, Marshall L.

    2015-01-01

    One of the most common types of urinary stones formed in humans and some other mammals is composed of calcium oxalate in ordered hydrated crystals. Many studies have reported a range of metals other than calcium in human stones, but few have looked at stones from animal models such as the dog. Therefore, we determined the elemental profile of canine calcium oxalate urinary stones and compared it to reported values from human stones. The content of 19 elements spanning 7-orders of magnitude was quantified in calcium oxalate stones from 53 dogs. The elemental profile of the canine stones was highly overlapping with human stones, indicating similar inorganic composition. Correlation and cluster analysis was then performed on the elemental profile from canine stones to evaluate associations between the elements and test for potential subgrouping based on elemental content. No correlations were observed with the most abundant metal calcium. However, magnesium and sulfur content correlated with the mineral hydration form, while phosphorous and zinc content correlated with the neuter status of the dog. Inter-elemental correlation analysis indicated strong associations between barium, phosphorous, and zinc content. Additionally, cluster analysis revealed subgroups within the stones that were also based primarily on barium, phosphorous, and zinc. These data support the use of the dog as a model to study the effects of trace metal homeostasis in urinary stone disease. PMID:26066810

  2. Epidemiology, Pathogenesis and diagnosis of calcium oxalate urolithiasis.

    PubMed

    Vahlensieck, E W; Bach, D; Hesse, A; Strenge, A

    1982-01-01

    In the German Federal Republic, the incidence of urolithiasis is 0.54% and the prevalence is 4%. Calcium oxalate stones are to be expected in over 60% of the cases. Pathogenetic factors are discussed. It is demonstrated that the overconsumption of chocolate, rhubarb and spinach brings about risk situations for stone formation, while asparagus and tomatoes present no risk. The increased animal protein and alcohol intake may be the most important reasons for the accumulations of calcium oxalate stones. Beside the minimum investigation programme it is demonstrated by examples that recurrent stone formers need an extended investigation to find out more about the pathogenesis, in order to determine an effective treatment or to prevent recurrences. PMID:7182367

  3. Morphologies and elemental compositions of calcium crystals in phyllodes and branchlets of Acacia robeorum (Leguminosae: Mimosoideae)

    PubMed Central

    He, Honghua; Bleby, Timothy M.; Veneklaas, Erik J.; Lambers, Hans; Kuo, John

    2012-01-01

    Background and Aims Formation of calcium oxalate crystals is common in the plant kingdom, but biogenic formation of calcium sulfate crystals in plants is rare. We investigated the morphologies and elemental compositions of crystals found in phyllodes and branchlets of Acacia robeorum, a desert shrub of north-western Australia. Methods Morphologies of crystals in phyllodes and branchlets of A. robeorum were studied using scanning electron microscopy (SEM), and elemental compositions of the crystals were identified by energy-dispersive X-ray spectroscopy. Distributional patterns of the crystals were studied using optical microscopy together with SEM. Key Results According to the elemental compositions, the crystals were classified into three groups: (1) calcium oxalate; (2) calcium sulfate, which is a possible mixture of calcium sulfate and calcium oxalate with calcium sulfate being the major component; and (3) calcium sulfate · magnesium oxalate, presumably mixtures of calcium sulfate, calcium oxalate, magnesium oxalate and silica. The crystals were of various morphologies, including prisms, raphides, styloids, druses, crystal sand, spheres and clusters. Both calcium oxalate and calcium sulfate crystals were observed in almost all tissues, including mesophyll, parenchyma, sclerenchyma (fibre cells), pith, pith ray and cortex; calcium sulfate · magnesium oxalate crystals were only found in mesophyll and parenchyma cells in phyllodes. Conclusions The formation of most crystals was biologically induced, as confirmed by studying the crystals formed in the phyllodes from seedlings grown in a glasshouse. The crystals may have functions in removing excess calcium, magnesium and sulfur, protecting the plants against herbivory, and detoxifying aluminium and heavy metals. PMID:22294477

  4. The electrokinetic behavior of calcium oxalate monohydrate in macromolecular solutions

    NASA Technical Reports Server (NTRS)

    Curreri, P. A.; Onoda, G. Y., Jr.; Finlayson, B.

    1988-01-01

    Electrophoretic mobilities were measured for calcium oxalate monohydrate (COM) in solutions containing macromolecules. Two mucopolysaccharides (sodium heparin and chrondroitin sulfate) and two proteins (positively charged lysozyme and negatively charged bovine serum albumin) were studied as adsorbates. The effects of pH, calcium oxalate surface charge (varied by calcium or oxalate ion activity), and citrate concentration were investigated. All four macromolecules showed evidence for chemical adsorption. The macromolecule concentrations needed for reversing the surface charge indicated that the mucopopolysacchrides have greater affinity for the COM surface than the proteins. The amount of proteins that can chemically adsorb appears to be limited to approximately one monomolecular layer. When the surface charge is high, an insufficient number of proteins can chemically adsorb to neutralize or reverse the surface charge. The remaining surface charge is balanced by proteins held near the surface by longer range electrostatic forces only. Citrate ions at high concentrations appear to compete effectively with the negative protein for surface sites but show no evidence for competing with the positively charged protein.

  5. [Either calcium carbonate or sevelamer decreases urinary oxalate excretion in chronic renal failure patients].

    PubMed

    Caravaca, F; Ruiz, A B; Escola, J M; Hernández Gallego, R; Cerezo, I; Fernández, N; Barroso, S; Martín, M V

    2007-01-01

    The rate of oxalate absorbed from intestine is highly influenced by calcium intake in healthy subjects. It is unknown whether commonly used phosphate binders modify intestinal absorption and renal excretion of oxalate in chronic kidney disease (CKD) patients. This study aims to determine if calcium carbonate or sevelamer influences on urinary oxalate excretion. Twenty patients with CKD (stage 4 and 5 pre-dialysis) were included. Two treatment (1500 mg of calcium carbonate or 2400 mg of sevelamer), two-period (21 days each), crossover study with balanced assignment of the order of administration, and two washout periods were the main characteristics of this study design. Laboratory analyses in each phase included: serum creatinine, calcium, phosphorus, bicarbonate, total cholesterol, and 24 h urinary excretion of oxalate, creatinine, and urea. Creatinine clearance, protein catabolic rate (PNNA), total urinary oxalate excretion, and urinary oxalate / creatinine ratio were determined. Seventeen patients completed both treatment sequences. Total urinary oxalate excretion and urinary oxalate / creatinine ratios decreased significantly with respect to washout periods either after sevelamer or calcium carbonate treatment. The decrease in urinary oxalate excretion was greater after calcium carbonate (41.2+/-17.4%) than after sevelamer treatment (30.4+/-23.8%). There were not significant changes in renal function or PNNA values throughout the study periods. In conclusion, either calcium carbonate or sevelamer significantly reduces urinary oxalate excretion in CKD patients. Further studies will be needed to ascertain whether the type of phosphate binder influences on the accumulation of oxalate in CKD patients. PMID:17944584

  6. The oxalic acid: 2-chloroacetamide crystallization: A new revelation

    NASA Astrophysics Data System (ADS)

    Chitra, R.; Choudhury, R. R.; Capet, Frederic; Roussel, Pascal

    2013-02-01

    The OH of COOH can acts as both donor and acceptor of hydrogen bond. OH of COOH as an acceptor was primarily observed in Oxalic acid Amide complexes. In order to further understand the packing in these complexes, oxalic acid was complexed with 2-tricholoroacetamide. This crystallization resulted in the formation of ammonium tetraoxalate dehydrate. A result similar to what was observed in complexation of oxalic acid with amide containing amino acids (asparagine and glutamine). Interestingly in all these cases, the amide bond is broken, to form the ammonium ion when trying to complex with oxalic acid.

  7. Flow-driven pattern formation in the calcium-oxalate system.

    PubMed

    Bohner, Bíborka; Endrődi, Balázs; Horváth, Dezső; Tóth, Ágota

    2016-04-28

    The precipitation reaction of calcium oxalate is studied experimentally in the presence of spatial gradients by controlled flow of calcium into oxalate solution. The density difference between the reactants leads to strong convection in the form of a gravity current that drives the spatiotemporal pattern formation. The phase diagram of the system is constructed, the evolving precipitate patterns are analyzed and quantitatively characterized by their diameters and the average height of the gravity flow. The compact structures of calcium oxalate monohydrate produced at low flow rates are replaced by the thermodynamically unstable calcium oxalate dihydrate favored in the presence of a strong gravity current. PMID:27131554

  8. Flow-driven pattern formation in the calcium-oxalate system

    NASA Astrophysics Data System (ADS)

    Bohner, Bíborka; Endrődi, Balázs; Horváth, Dezső; Tóth, Ágota

    2016-04-01

    The precipitation reaction of calcium oxalate is studied experimentally in the presence of spatial gradients by controlled flow of calcium into oxalate solution. The density difference between the reactants leads to strong convection in the form of a gravity current that drives the spatiotemporal pattern formation. The phase diagram of the system is constructed, the evolving precipitate patterns are analyzed and quantitatively characterized by their diameters and the average height of the gravity flow. The compact structures of calcium oxalate monohydrate produced at low flow rates are replaced by the thermodynamically unstable calcium oxalate dihydrate favored in the presence of a strong gravity current.

  9. Sulfate and thiosulfate inhibit oxalate transport via a dPrestin (Slc26a6)-dependent mechanism in an insect model of calcium oxalate nephrolithiasis.

    PubMed

    Landry, Greg M; Hirata, Taku; Anderson, Jacob B; Cabrero, Pablo; Gallo, Christopher J R; Dow, Julian A T; Romero, Michael F

    2016-01-15

    Nephrolithiasis is one of the most common urinary tract disorders, with the majority of kidney stones composed of calcium oxalate (CaOx). Given its prevalence (US occurrence 10%), it is still poorly understood, lacking progress in identifying new therapies because of its complex etiology. Drosophila melanogaster (fruitfly) is a recently developed model of CaOx nephrolithiasis. Effects of sulfate and thiosulfate on crystal formation were investigated using the Drosophila model, as well as electrophysiological effects on both Drosophila (Slc26a5/6; dPrestin) and mouse (mSlc26a6) oxalate transporters utilizing the Xenopus laevis oocyte heterologous expression system. Results indicate that both transport thiosulfate with a much higher affinity than sulfate Additionally, both compounds were effective at decreasing CaOx crystallization when added to the diet. However, these results were not observed when compounds were applied to Malpighian tubules ex vivo. Neither compound affected CaOx crystallization in dPrestin knockdown animals, indicating a role for principal cell-specific dPrestin in luminal oxalate transport. Furthermore, thiosulfate has a higher affinity for dPrestin and mSlc26a6 compared with oxalate These data indicate that thiosulfate's ability to act as a competitive inhibitor of oxalate via dPrestin, can explain the decrease in CaOx crystallization seen in the presence of thiosulfate, but not sulfate. Overall, our findings predict that thiosulfate or oxalate-mimics may be effective as therapeutic competitive inhibitors of CaOx crystallization. PMID:26538444

  10. Studying inhibition of calcium oxalate stone formation: an in vitro approach for screening hydrogen sulfide and its metabolites

    PubMed Central

    Vaitheeswari, S.; Sriram, R.; Brindha, P.; Kurian, Gino A.

    2015-01-01

    ABSTRACT Purpose: Calcium oxalate urolithiasis is one of the most common urinary tract diseases and is of high prevalence. The present study proposes to evaluate the antilithiatic property of hydrogen sulfide and its metabolites like thiosulfate & sulfate in an in vitro model. Materials and Methods: The antilithiatic activity of sodium hydrogen sulfide (NaSH), sodium thiosulfate (Na2S2O3) and sodium sulfate (Na2SO4) on the kinetics of calcium oxalate crystal formation was investigated both in physiological buffer and in urine from normal and recurrent stone forming volunteers. The stones were characterized by optical and spectroscopic techniques. Results: The stones were characterized to be monoclinic, prismatic and bipyramidal habit which is of calcium monohydrate and dihydrate nature. The FTIR displayed fingerprint corresponding to calcium oxalate in the control while in NaSH treated, S=O vibrations were visible in the spectrum. The order of percentage inhibition was NaSH>Na2S2O3>Na2SO4. Conclusion: Our study indicates that sodium hydrogen sulfide and its metabolite thiosulfate are inhibitors of calcium oxalate stone agglomeration which makes them unstable both in physiological buffer and in urine. This effect is attributed to pH changes and complexing of calcium by S2O3 2-and SO4 2- moiety produced by the test compounds. PMID:26200543

  11. A GENETIC MUTATION THAT REDUCES CALCIUM OXALATE CONTENT INCREASES CALCIUM AVAILABILITY IN MEDICAGO TRUNCATULA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxalate is considered an antinutrient that renders calcium unavailable for nutritional absorption by humans. Efforts have been made to generate and identify edible plants with decreased levels of this antinutrient. The extent to which a food can be nutritionally improved through genetic alterations ...

  12. A GENETIC MUTATION THAT REDUCES CALCIUM OXALATE CONTENT INCREASES CALCIUM AVAILABILITY IN MEDICAGO TRUNCATULA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxalate is considered an antinutrient that renders calcium unavailable for nutritional absorption by humans. Efforts have been made to generate and identify edible plants with decreased levels of this antinutrient. The extent to which a food can be nutritionally improved through genetic alteration...

  13. Oxalate co-precipitation synthesis of calcium zirconate and calcium titanate powders.

    SciTech Connect

    Hernandez-Sanchez, Bernadette A.; Tuttle, Bruce Andrew

    2009-06-01

    Fine powders of calcium zirconate (CaZrO{sub 3}, CZ) and calcium titanate (CaTiO{sub 3}, CT) were synthesized using a nonaqueous oxalate co-precipitation route from Ca(NO{sub 3}){sub 2}{center_dot}4 H{sub 2}O and group(IV) n-butoxides (Ti(OBu{sup n}){sub 4} or Zr(OBu{sup n}){sub 4}). Several reaction conditions and batch sizes (2-35 g) were explored to determine their influence on final particle size, morphology, and phase. Characterization of the as-prepared oxalate precursors, oven dried oxalate precursors (60-90 C), and calcined powders (635-900 C) were analyzed with TGA/DTA, XRD, TEM, and SEM. Densification and sintering studies on pressed CZ pellets at 1375 and 1400 C were also performed. Through the developed oxalate co-precipitation route, densification temperatures for CZ were lowered by 125 C from the 1500 C firing temperature required for conventional mixed oxide powders. Low field electrical tests of the CZ pellets indicated excellent dielectric properties with dielectric constants of {approx}30 and a dissipation factor of 0.0004 were measured at 1 kHz.

  14. Pseudomorphs of barite and biogenic ZnS after phyto-crystals of calcium oxalate (whewellite) in the peat layer of a poor fen.

    PubMed

    Smieja-Król, Beata; Janeczek, Janusz; Wiedermann, Jerzy

    2014-01-01

    Pseudomorphs of barite (BaSO4) and Cd-rich ZnS after whewellite (CaC2O4·H2O) occur within remnants of Scots pine bark tissues in the peat layer of a poor fen located near a zinc smelter in south Poland. A two-step formation of the pseudomorphs is postulated based on SEM observations: (1) complete dissolution of whewellite, possibly caused by oxalotrophic bacteria, and (2) subsequent bacterially induced precipitation of barite and spheroidal aggregates of ZnS together with galena (PbS) in voids left by the dissolved whewellite crystals. Local increase in pH due to microbial degradation of whewellite, elevated concentrations of Zn(II) and Ba(II) in pore water due to the decomposition of atmospheric particles of sphalerite and barite in the acidic (pH 3.5-3.8) environment, oxidation of S species during drying and rewetting of the peat layer, and subsequent partial reduction of sulfate anions by sulfur-reducing bacteria were all factors likely involved in the crystallization of ZnS and barite in the microenvironment of the post-whewellite voids. PMID:24604275

  15. Prophylactic effects of quercetin and hyperoside in a calcium oxalate stone forming rat model.

    PubMed

    Zhu, Wei; Xu, Yun-fei; Feng, Yuan; Peng, Bo; Che, Jian-ping; Liu, Min; Zheng, Jun-hua

    2014-12-01

    Quercetin and hyperoside (QH) are the two main constituents of the total flavone glycosides of Flos Abelmoschus manihot, which has been prescribed for treating chronic kidney disease for decades. This study aimed to investigate the effect of QH on calcium oxalate (CaOx) formation in ethylene glycol (EG)-fed rats. Rats were divided into three groups: an untreated stone-forming group, a QH-treated stone-forming group (20 mg/kg/day) and a potassium citrate-treated stone-forming group (potassium citrate was a worldwide-recognized calculi-prophylactic medicine). Ethylene glycol (0.5 %) was administered to the rats during the last week, and vitamin D3 was force-fed to induce hyperoxaluria and kidney calcium oxalate crystal deposition. 24 h urine samples were collected before and after inducing crystal deposits. Rats were killed and both kidneys were harvested after 3 weeks. Bisected kidneys were examined under a polarized light microscope for semi-quantification of the crystal-formation. The renal tissue superoxide dismutase and catalase levels were measured by Western blot. QH and potassium citrate have the ability to alkalinize urine. The number of crystal deposits decreased significantly in the QH-treated stone-forming group as compared to the other groups. Superoxide dismutase and catalase levels also increased significantly in the QH-treated stone-forming group, as compared with the untreated stone-forming group. QH administration has an inhibitory effect on the deposition of CaOx crystal in EG-fed rats and may be effective for preventing stone-forming disease. PMID:25085199

  16. Crystal growth methods dedicated to low solubility actinide oxalates

    NASA Astrophysics Data System (ADS)

    Tamain, C.; Arab-Chapelet, B.; Rivenet, M.; Grandjean, S.; Abraham, F.

    2016-04-01

    Two novel crystal growth syntheses dedicated to low solubility actinide-oxalate systems and adapted to glove box handling are described. These methods based on the use of precursors of either actinide metal or oxalic acid have been optimized on lanthanide systems (analogue of actinides(III)) and then assessed on real actinide systems. They allow the synthesis of several actinide oxalate single crystals, Am2(C2O4)3(H2O)3·xH2O, Th(C2O4)2·6H2O, M2+x[PuIV2-xPuIIIx(C2O4)5]·nH2O and M1-x[PuIII1-xPuIVx(C2O4)2·H2O]·nH2O. It is the first time that these well-known compounds are formed by crystal growth methods, thus enabling direct structural studies on transuranic element systems and acquisition of basic data beyond deductions from isomorphic (or not) lanthanide compounds. Characterizations by X-ray diffraction, UV-visible solid spectroscopy, demonstrate the potentialities of these two crystal growth methods to obtain oxalate compounds.

  17. A Case of Randall's Plugs Associated to Calcium Oxalate Dihydrate Calculi.

    PubMed

    Grases, Felix; Söhnel, Otakar; Costa-Bauza, Antonia; Servera, Antonio; Benejam, Juan

    2016-07-01

    A case of a patient who developed multiple calcium oxalate dihydrate calculi, some of them connected to intratubular calcifications (Randall's plugs), is presented. Randall's plugs were isolated and studied. The mechanism of Randall's plug development is also suggested. PMID:27335788

  18. Calcium oxalate nephrolithiasis and expression of matrix GLA protein in the kidneys

    PubMed Central

    Khan, Aslam; Wang, Wei; Khan, Saeed R.

    2013-01-01

    Objectives Polymorphism of the gene for matrix GLA protein (MGP), a calcification inhibitor, is associated with nephrolithiasis. However, experimental investigations of MGP role in stone pathogenesis are limited. We determined the effect of renal epithelial exposure to oxalate (Ox), calcium oxalate (CaOx) monohydrate (COM) or hydroxyapatite (HA) crystal on the expression of MGP. Methods MDCK cells in culture were exposed to 0.3, 0.5 or 1 mM Ox and 33, 66 or 133–150 μg/cm2 of COM/HA for 3–72 h. MGP expression and production were determined by Western blotting and densitometric analysis. Enzyme-linked immunosorbent assay was performed to determine MGP release into the medium. Hyperoxaluria was induced in male Sprague–Dawley rats by feeding hydroxyl-L-proline. Immunohistochemistry was performed to detect renal MGP expression. Results Exposure to Ox and crystals led to time- and concentration-dependent increase in expression of MGP in MDCK cells. Cellular response was quicker to crystal exposure than to the Ox, expression being significantly higher after 3-h exposure to COM or HA crystals and more than 6 h of exposure to Ox. MGP expression was increased in kidneys of hyperoxaluric rats particularly in renal peritubular vessels. Conclusion We demonstrate increased expression of MGP in renal tubular epithelial cells exposed to Ox or CaOx crystals as well as the HA crystals. The most significant finding of this study is the increased staining seen in renal peritubular vessels of the hyperoxaluric rats, indicating involvement of renal endothelial cells in the synthesis of MGP. PMID:23475213

  19. Effect of calcium oxalate on the photocatalytic degradation of Orange II on ZnO surface

    NASA Astrophysics Data System (ADS)

    Bassaid, S.; Ziane, B.; Badaoui, M.; Chaib, M.; Robert, D.

    2013-06-01

    The photocatalytic degradation of aqueous solution of Orange II, has been investigated in the presence of ZnO catalyst with calcium oxalate as sacrificial agent. This study demonstrated that the performance of ZnO photocatalyst can be improved by addition of calcium oxalate. Results show that adsorption is an important parameter controlling the degradation phenomena. Indeed, the added oxalate causes a drop in the pH medium, what causes a better adsorption of Orange II on the ZnO surface. The effect of calcium oxalate is to increase the concentration of superoxides (O{2/·-}) and hydroperoxides (HO2·) radicals, which are key intermediaries in the mechanism of photodegradation because of their powerful force of oxidation.

  20. Calcium oxalate in lichen biodeterioration studied using FT-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Edwards, H. G. M.; Russell, N. C.; Seaward, M. R. D.

    1997-01-01

    The biodeterioration of diverse natural and man-made substrata by Caloplaca aurantia, Lecanora muralis and Acarospora oxytoma has been studied using FT-Raman spectroscopy with 1064 nm laser excitation. Each of the three lichen species produce relatively large amounts of calcium oxalate in encrustations at the thallus—substratum interface during the biodeterioration process; the Raman spectroscopic technique is capable of identifying non-destructively the monohydrate, with ν(CO) stretching bands at 1463 and 1496 cm -1 and the dihydrate, with a ν(CO) stretching band at about 1475 cm(su-1). In this work, the presence of calcium oxalate monohydrate and dihydrate in the lichen encrustations is identified for these high-oxalate producing biodeteriorative lichen systems. The results indicate that the lichens adopt different methods for the production and removal of the hydrated calcium oxalates in the encrustations.

  1. Potassium citrate decreases urine calcium excretion in patients with hypocitraturic calcium oxalate nephrolithiasis.

    PubMed

    Song, Yan; Hernandez, Natalia; Shoag, Jonathan; Goldfarb, David S; Eisner, Brian H

    2016-04-01

    Two previous studies (<10 patients each) have demonstrated that alkali therapy may reduce urine calcium excretion in patients with calcium oxalate nephrolithiasis. The hypothesized mechanisms are (1) a decrease in bone turnover due to systemic alkalinization by the medications; (2) binding of calcium by citrate in the gastrointestinal tract; (3) direct effects on TRPV5 activity in the distal tubule. We performed a retrospective review of patients on potassium citrate therapy to evaluate the effects of this medication on urinary calcium excretion. A retrospective review was performed of a metabolic stone database at a tertiary care academic hospital. Patients were identified with a history of calcium oxalate nephrolithiasis and hypocitraturia who were on potassium citrate therapy for a minimum of 3 months. 24-h urine composition was assessed prior to the initiation of potassium citrate therapy and after 3 months of therapy. Patients received 30-60 mEq potassium citrate by mouth daily. Inclusion criterion was a change in urine potassium of 20 mEq/day or greater, which suggests compliance with potassium citrate therapy. Paired t test was used to compare therapeutic effect. Twenty-two patients were evaluated. Mean age was 58.8 years (SD 14.0), mean BMI was 29.6 kg/m(2) (SD 5.9), and gender prevalence was 36.4% female:63.6% male. Mean pre-treatment 24-h urine values were as follows: citrate 280.0 mg/day, potassium 58.7 mEq/day, calcium 216.0 mg/day, pH 5.87. Potassium citrate therapy was associated with statistically significant changes in each of these parameters-citrate increased to 548.4 mg/day (p < 0.0001), potassium increased to 94.1 mEq/day (p < 0.0001), calcium decreased to 156.5 mg/day (p = 0.04), pH increased to 6.47 (p = 0.001). Urine sodium excretion was not different pre- and post-therapy (175 mEq/day pre-therapy versus 201 mEq/day post-therapy, p = NS). Urinary calcium excretion decreased by a mean of 60 mg/day on potassium citrate therapy-a nearly 30

  2. Inhibition of calcium oxalate crystallisation in vitro by an extract of Bergenia ciliata

    PubMed Central

    Saha, Sarmistha; Verma, Ramtej J.

    2013-01-01

    Objective To evaluate the effectiveness of an extract obtained from the rhizomes of Bergenia ciliata (Saxifragaceae) on the inhibition of calcium oxalate (CaOx) crystallisation in vitro. Materials and methods A hydro-alcoholic extract (30:70, v/v) of rhizomes of B. ciliata was prepared at different concentrations (1–10 mg/mL). The crystallisation of CaOx monohydrate (COM) was induced in a synthetic urine system. The nucleation and aggregation of COM crystals were measured using spectrophotometric methods. The rates of nucleation and aggregation were evaluated by comparing the slope of the turbidity of a control system with that of one exposed to the extract. The results were compared with a parallel study conducted with a marketed poly-herbal combination, Cystone, under identical concentrations. Crystals generated in the urine were also analysed by light microscopy. Statistical differences and percentage inhibitions were calculated and assessed. Results The extract of B. ciliata was significantly more effective in inhibiting the nucleation and aggregation of COM crystals in a dose-dependent manner than was Cystone. Moreover, the extract induced more CaOx dihydrate crystals, with a significant reduction in the number and size of COM crystals. Conclusion An extract of the traditional herb B. ciliata has an excellent inhibitory activity on crystalluria and therefore might be beneficial in dissolving urinary stones. However, further study in animal models of urolithiasis is needed to evaluate its potential anti-urolithiatic activity. PMID:26558080

  3. Prediction of calcium oxalate monohydrate stone composition during ureteroscopy

    NASA Astrophysics Data System (ADS)

    Hamidizedah, Reza; Melnyk, Megan; Teichman, Joel M. H.

    2012-02-01

    Introduction: Prior research shows that Ho:YAG lithotripsy produces tiny dust fragments at low pulse energy (0.2J). However, calcium oxalate monohydrate (COM) stones may not fragment at this low pulse energy setting. Stone composition is rarely known until after surgery and historically, attempts to predict stone composition on the basis of endoscopic stone appearance were unsuccessful. Current endoscopic technology permits visual details that previously were not evident. As COM appears black under ambient light, we attempt to predict COM stone composition at the time of ureteroscopy based on its endoscopic appearance. Methods: Consecutive subjects undergoing ureteroscopy for stone disease were studied. Any portion of the stone that appeared black under endoscopic vision was considered clinical evidence of COM. Predicted stone composition was correlated with post-operative calculus analysis. Results: 46 consecutive ureteroscopic stone cases were analyzed prospectively. 25 of 28 subjects (89%) with black stones had stones later proven to be COM by composition analysis, versus one of 18 patients (6%) with non-black stones that were COM (p<0.0001). A black endoscopic stone appearance had a positive predictive value for COM of 89% and a non-black endoscopic stone appearance had a negative predictive value for COM of 94% (sensitivity 96%, specificity 83%). Conclusions: COM may reasonably be predicted intra-operatively by its black endoscopic appearance. The clinical utility would be to use higher laser pulse energy settings than for non-COM compositions. This data raises the possibility that more sophisticated optical characterization of endoscopic stone appearance may prove to be a useful tool to predict stone composition.

  4. The variability and dietary dependence of urinary oxalate excretion in recurrent calcium stone formers.

    PubMed

    Brown, J M; Stratmann, G; Cowley, D M; Mottram, B M; Chalmers, A H

    1987-07-01

    Twenty-two recurrent calcium stone formers had 24-h urinary oxalate excretions on their home diets which were significantly greater than those of 30 normal subjects (0.48 +/- 0.23 mmol/d; mean +/- SD compared with 0.31 +/- 0.11; P less than 0.01). The stone formers also demonstrated marked day to day variability in oxalate excretion indicating that a single normal urinary oxalate measurement did not exclude significant hyperoxaluria at other times. On a hospital diet containing 1000 mg calcium per day, urinary oxalate excretion fell significantly from 0.48 +/- 0.23 mmol/d to 0.32 +/- 0.12; P less than 0.01. As the urinary calcium excretion in and out of hospital was similar, it seems unlikely that low calcium intake at home was responsible for the hyperoxaluria. All patients had recurrent symptomatic stone disease and had been advised to avoid foods rich in oxalate. Whilst poor compliance is a possible explanation for the variability in oxalate excretion, we believe it is more likely that there is an inadvertent intake of oxalogenic precursors in their diet. As normal subjects do not demonstrate hyperoxaluria on similar home diets, stone formers may have a metabolic defect in the handling of these precursors. PMID:3662388

  5. Developing precipitation modes for preventing the calcium-oxalate contamination of sugar beet pectins.

    PubMed

    Guo, Xiaoming; Meng, Hecheng; Zhu, Siming; Tang, Qiang; Pan, Runquan; Yu, Shujuan

    2015-09-01

    Effects of precipitation modes on the co-precipitation of insoluble oxalates particles during the purification of sugar beet pectins (SBP) from the extract were investigated. It was observed that soluble oxalate ions formed insoluble oxalate salts with calcium and precipitated with pectins during ethanol precipitation as pH of the medium increased and the solvent changed from water to ethanol-water mixture. Comparison among the employed precipitation methods revealed that both the dialysis-ethanol-precipitation and metal precipitation effectively prevented the calcium-oxalate contamination of SBP. Emulsifying properties of DEPP, EPP and MPP were also studied. It was observed that DEPP performed better than the remainder with respect to emulsifying ability. Based on these results, we concluded that the dialysis-ethanolic-precipitation can be a suitable method for improving the purity as well as emulsifying properties of the resulting pectins. PMID:25842309

  6. Effect of water-soluble oxalates in Amaranthus spp. leaves on the absorption of milk calcium.

    PubMed

    Pingle, U; Ramasastri, B V

    1978-11-01

    1. Amaranthus spp. leaves contain high amounts of oxalates which affect the calcium absorption. This study was done to determine whether removal of the water-soluble oxalates from the leaves by cooking would reduce this deleterious effect. 2. Experimental work done with two types of basal diets on six adult male subjects has shown that the milk Ca absorption was low when leaves cooked without draining away the water were included in the diet. However when the soluble oxalates were removed by throwing away the water after cooking the leaves, the absorption of milk Ca was unaffected. PMID:568935

  7. Influence of hydrochlorothiazide on urinary calcium oxalate relative supersaturation in healthy young adult female domestic shorthaired cats.

    PubMed

    Hezel, Alisha; Bartges, Joseph W; Kirk, Claudia A; Cox, Sherry; Geyer, Nicole; Moyers, Tammy; Hayes, Jimmy

    2007-01-01

    Hydrochlorothiazide (1 mg/kg PO q12h) or placebo was administered to healthy cats for 2 weeks in a masked, placebo-controlled, crossover-design study, and 24-hour urine samples were collected. When cats received hydrochlorothiazide, 24-hour urine volume, ammonia, chloride, creatinine, magnesium, oxalic acid, phosphate, potassium, and sodium were significantly higher than when cats received placebo. Hydrochlorothiazide was associated with significantly lower urinary saturation for calcium oxalate, but no difference was found in 24-hour urine calcium and citrate, urinary saturation for struvite, or blood ionized calcium. Hydrochlorothiazide decreased urinary saturation for calcium oxalate and could be useful in managing cats with calcium oxalate uroliths. Results of this study, however, should not be extrapolated to cats that form calcium oxalate uroliths. PMID:18183543

  8. Solubility and dissolution kinetics of calcium oxalate renal calculi in solutions containing L-arginine: In-vitro experiments

    NASA Astrophysics Data System (ADS)

    Atanassova, S.

    2010-06-01

    The kinetics of dissolution of calcium oxalate (CaOX) calculi in physiological solutions containing L-arginine at different concentrations were studied using the change in the Archimedean weight of samples immersed in the solution. It was faound that arginine, which is a normal constituent of human urine, acts at increased concentrations as a dissolving agent with respect to CaOX calculi. The possible effect of L-arginine as a natural regulator of CaOX supersaturation and crystalization in human urine is also disscused.

  9. OXALATE DEPOSITION ON ASBESTOS BODIES

    EPA Science Inventory

    The clinical and histopathologic findings in three patients with a deposition of calcium oxalate crystals on ferruginous bodies after occupational exposure to asbestos are provided. In addition, we test the hypothesis that this oxalate can be generated through a nonenzymatic o...

  10. Comparison of the x-ray attenuation properties of breast calcifications, aluminium, hydroxyapatite and calcium oxalate

    NASA Astrophysics Data System (ADS)

    Warren, L. M.; Mackenzie, A.; Dance, D. R.; Young, K. C.

    2013-04-01

    Aluminium is often used as a substitute material for calcifications in phantom measurements in mammography. Additionally, calcium oxalate, hydroxyapatite and aluminium are used in simulation studies. This assumes that these materials have similar attenuation properties to calcification, and this assumption is examined in this work. Sliced mastectomy samples containing calcification were imaged at ×5 magnification using a digital specimen cabinet. Images of the individual calcifications were extracted, and the diameter and contrast of each calculated. The thicknesses of aluminium required to achieve the same contrast as each calcification when imaged under the same conditions were calculated using measurements of the contrast of aluminium foils. As hydroxyapatite and calcium oxalate are also used to simulate calcifications, the equivalent aluminium thicknesses of these materials were also calculated using tabulated attenuation coefficients. On average the equivalent aluminium thickness was 0.85 times the calcification diameter. For calcium oxalate and hydroxyapatite, the equivalent aluminium thicknesses were 1.01 and 2.19 times the thickness of these materials respectively. Aluminium and calcium oxalate are suitable substitute materials for calcifications. Hydroxyapatite is much more attenuating than the calcifications and aluminium. Using solid hydroxyapatite as a substitute for calcification of the same size would lead to excessive contrast in the mammographic image.

  11. Comparison of the x-ray attenuation properties of breast calcifications, aluminium, hydroxyapatite and calcium oxalate.

    PubMed

    Warren, L M; Mackenzie, A; Dance, D R; Young, K C

    2013-04-01

    Aluminium is often used as a substitute material for calcifications in phantom measurements in mammography. Additionally, calcium oxalate, hydroxyapatite and aluminium are used in simulation studies. This assumes that these materials have similar attenuation properties to calcification, and this assumption is examined in this work. Sliced mastectomy samples containing calcification were imaged at ×5 magnification using a digital specimen cabinet. Images of the individual calcifications were extracted, and the diameter and contrast of each calculated. The thicknesses of aluminium required to achieve the same contrast as each calcification when imaged under the same conditions were calculated using measurements of the contrast of aluminium foils. As hydroxyapatite and calcium oxalate are also used to simulate calcifications, the equivalent aluminium thicknesses of these materials were also calculated using tabulated attenuation coefficients. On average the equivalent aluminium thickness was 0.85 times the calcification diameter. For calcium oxalate and hydroxyapatite, the equivalent aluminium thicknesses were 1.01 and 2.19 times the thickness of these materials respectively. Aluminium and calcium oxalate are suitable substitute materials for calcifications. Hydroxyapatite is much more attenuating than the calcifications and aluminium. Using solid hydroxyapatite as a substitute for calcification of the same size would lead to excessive contrast in the mammographic image. PMID:23470559

  12. Therapy of calcium oxalate urolithiasis in a rhesus macaque (Macaca mulatta).

    PubMed

    Conze, Theresa; Wehrend, Axel; Exner, Cornelia; Kaminiarz, André

    2016-08-01

    A rhesus macaque (Macaca mulatta) was presented for anuria. Examination revealed calcium oxalate concrements in the bladder. A cystotomy was performed, and a therapy with alfuzosin was conducted. Over 1 year after the treatment, the rhesus macaque had not shown any more signs of stranguria. This is the first case reporting the successful treatment of urolithiasis in a rhesus macaque. PMID:27283130

  13. Crystal structure of bis­(allyl­ammonium) oxalate

    PubMed Central

    Dziuk, Błażej; Zarychta, Bartosz; Ejsmont, Krzysztof

    2014-01-01

    The title salt, 2C3H8N+·C2O4 2−, crystallized with six independent allyl­ammonium cations and three independent oxalate dianions in the asymmetric unit. One of the oxalate dianions is nearly planar [dihedral angle between CO2 planes = 1.91 (19)°], while the other two are twisted with angles of 11.3 (3) and 26.09 (13)°. One cation has a synperiplanar (cis) conformation with an N—C—C—C torsion angle of 0.9 (3)°, whereas the five remaining cations are characterized by gauche arrangements, with the N—C—C—C torsion angles ranging from 115.9 (12) to 128.8 (3)°. One of the allyl­ammonium cations is positionally disordered (fixed occupancy ratio = 0.45:0.55). In the crystal, the cations and anions are connected by a number of strong N—H⋯O and N—H⋯(O,O) hydrogen bonds, forming layers parallel to (001), with the vinyl groups protruding into the space between the layers. PMID:25553015

  14. The construction of an oxalate-degrading intestinal stem cell population in mice: a potential new treatment option for patients with calcium oxalate calculus.

    PubMed

    Chen, Zhiqiang; Liu, Guanlin; Ye, Zhangqun; Kong, Debo; Yao, Lingfang; Guo, Hui; Yang, Weimin; Yu, Xiao

    2012-04-01

    About 80% of all urological stones are calcium oxalate, mainly caused by idiopathic hyperoxaluria (IH). The increased absorption of oxalate from the intestine is the major factor underlying IH. The continuous self-renewal of the intestinal epithelium is due to the vigorous proliferation and differentiation of intestinal stem cells. If the intestinal stem cell population can acquire the ability to metabolize calcium oxalate by means of oxc and frc transgenes, this will prove a promising new therapy option for IH. In our research, the oxalate-degrading genes of Oxalobacter formigenes (Oxf)-the frc gene and oxc gene-were cloned and transfected into a cultured mouse-derived intestinal SC population to give the latter an oxalate-degrading function. Oxf was isolated and cultivated and the oxalate-degrading genes-frc and oxc-were cloned. The dicistronic eukaryotic expression vector pIRES-oxc-frc was constructed and transferred into the mouse stem cell population. After selection with G418, the expression of the genes was identified. The oxalate-degrading function of transfected cells was determined by transfection into the intestinal stem cell population of the mouse. The change in oxalate concentration was determined with an ion chromatograph. The recombinant plasmid containing oxc and frc genes was transfected into the stem cell population of the mouse and the expression of the genes found normal. The cell population had acquired an oxalate-degrading function. The oxc and frc genes could be transfected into the intestinal stem cell population of the mouse and the cells acquired an oxalate-degrading function. PMID:21892601

  15. Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii.

    PubMed Central

    Cunningham, J E; Kuiack, C

    1992-01-01

    An isolate of Penicillium bilaii previously reported to solubilize mineral phosphates and enhance plant uptake of phosphate was studied. Using agar media with calcium phosphate and the pH indicator alizarin red S, the influence of the medium composition on phosphate solubility and medium acidification was recorded. The major acidic metabolites produced by P. bilaii in a sucrose nitrate liquid medium were found to be oxalic acid and citric acid. Citric acid production was promoted under nitrogen-limited conditions, while oxalic acid production was promoted under carbon-limited conditions. Citric acid was produced in both growth and stationary phases, but oxalic acid production occurred only in stationary phase. When submerged cultures which normally produce acid were induced to sporulate, the culture medium shifted toward alkaline rather than acid reaction with growth. PMID:1622211

  16. Developing strategies to improve the nutritional quality and production of plant foods through manipulation of calcium oxalate formation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The production of oxalate commonly occurs in numerous organisms. Oxalate negatively affects human health by acting as an antinutrient affecting calcium bioavailability and/or contributing to the pathological condition of urinary stone formation where it is a primary component. In some microbes, ox...

  17. Aspartame ingestion increases urinary calcium, but not oxalate excretion, in healthy subjects.

    PubMed

    Nguyen, U N; Dumoulin, G; Henriet, M T; Regnard, J

    1998-01-01

    Aspartame is the artificial sweetener most extensively used as a substitute for glucose or sucrose in the food industry, particularly in soft drinks. As glucose ingestion increases calciuria and oxaluria, the two main determinants of urinary calcium-oxalate saturation, we considered it worthwhile to determine whether aspartame ingestion also affects calcium-oxalate metabolism. Our study compares the effects of the ingestion of similarly sweet doses of aspartame (250 mg) and glucose (75 g) on calcium and oxalate metabolisms of seven healthy subjects. Urinary calcium excretion increased after the intake of both aspartame (+86%; P < 0.01) and glucose (+124%; P < 0.01). This may be due to the rise in calcemia observed after both aspartame (+2.2%; P < 0.05) and glucose ingestion (+1.8%; P < 0.05). The increased calcemia may be linked to the decrease in phosphatemia that occurred after both aspartame (P < 0.01) and glucose (P < 0.01) load. Aspartame did not alter glycemia or insulinemia, whereas glucose intake caused striking increases in both glycemia (+59%; P < 0.001) and insulinemia (+869%; P < 0.01). Although insulin was considered the main calciuria-induced factor after glucose load, it is unlikely that this mechanism played a role with aspartame. Urinary oxalate excretion did not change after aspartame, whereas it increased (+27%; P < 0.05) after glucose load. Thus, as aspartame induced a similar increase in calciuria as did glucose but, conversely, no change in oxaluria, substituting glucose by aspartame in soft drinks may appear to be of some potential benefit. PMID:9435435

  18. DISSOLUTION AND CRYSTALLIZATION OF CALCIUM SULFITE PLATELETS

    EPA Science Inventory

    The paper discusses the dissolution and crystallization of calcium sulfite platelets. The rates of calcium sulfite dissolution and crystallization are important in slurry scrubbing processes for flue gas desulfurization. The rates affect the scrubber solution composition, SO2 abs...

  19. Oxalate secretion by ectomycorrhizal Paxillus involutus is mineral-specific and controls calcium weathering from minerals

    NASA Astrophysics Data System (ADS)

    Schmalenberger, A.; Duran, A. L.; Bray, A. W.; Bridge, J.; Bonneville, S.; Benning, L. G.; Romero-Gonzalez, M. E.; Leake, J. R.; Banwart, S. A.

    2015-07-01

    Trees and their associated rhizosphere organisms play a major role in mineral weathering driving calcium fluxes from the continents to the oceans that ultimately control long-term atmospheric CO2 and climate through the geochemical carbon cycle. Photosynthate allocation to tree roots and their mycorrhizal fungi is hypothesized to fuel the active secretion of protons and organic chelators that enhance calcium dissolution at fungal-mineral interfaces. This was tested using 14CO2 supplied to shoots of Pinus sylvestris ectomycorrhizal with the widespread fungus Paxillus involutus in monoxenic microcosms, revealing preferential allocation by the fungus of plant photoassimilate to weather grains of limestone and silicates each with a combined calcium and magnesium content of over 10 wt.%. Hyphae had acidic surfaces and linear accumulation of weathered calcium with secreted oxalate, increasing significantly in sequence: quartz, granite < basalt, olivine, limestone < gabbro. These findings confirmed the role of mineral-specific oxalate exudation in ectomycorrhizal weathering to dissolve calcium bearing minerals, thus contributing to the geochemical carbon cycle.

  20. Oxalate secretion by ectomycorrhizal Paxillus involutus is mineral-specific and controls calcium weathering from minerals

    PubMed Central

    Schmalenberger, A.; Duran, A. L.; Bray, A. W.; Bridge, J.; Bonneville, S.; Benning, L. G.; Romero-Gonzalez, M. E.; Leake, J. R.; Banwart, S. A.

    2015-01-01

    Trees and their associated rhizosphere organisms play a major role in mineral weathering driving calcium fluxes from the continents to the oceans that ultimately control long-term atmospheric CO2 and climate through the geochemical carbon cycle. Photosynthate allocation to tree roots and their mycorrhizal fungi is hypothesized to fuel the active secretion of protons and organic chelators that enhance calcium dissolution at fungal-mineral interfaces. This was tested using 14CO2 supplied to shoots of Pinus sylvestris ectomycorrhizal with the widespread fungus Paxillus involutus in monoxenic microcosms, revealing preferential allocation by the fungus of plant photoassimilate to weather grains of limestone and silicates each with a combined calcium and magnesium content of over 10 wt.%. Hyphae had acidic surfaces and linear accumulation of weathered calcium with secreted oxalate, increasing significantly in sequence: quartz, granite < basalt, olivine, limestone < gabbro. These findings confirmed the role of mineral-specific oxalate exudation in ectomycorrhizal weathering to dissolve calcium bearing minerals, thus contributing to the geochemical carbon cycle. PMID:26197714

  1. Oxalate secretion by ectomycorrhizal Paxillus involutus is mineral-specific and controls calcium weathering from minerals.

    PubMed

    Schmalenberger, A; Duran, A L; Bray, A W; Bridge, J; Bonneville, S; Benning, L G; Romero-Gonzalez, M E; Leake, J R; Banwart, S A

    2015-01-01

    Trees and their associated rhizosphere organisms play a major role in mineral weathering driving calcium fluxes from the continents to the oceans that ultimately control long-term atmospheric CO2 and climate through the geochemical carbon cycle. Photosynthate allocation to tree roots and their mycorrhizal fungi is hypothesized to fuel the active secretion of protons and organic chelators that enhance calcium dissolution at fungal-mineral interfaces. This was tested using (14)CO2 supplied to shoots of Pinus sylvestris ectomycorrhizal with the widespread fungus Paxillus involutus in monoxenic microcosms, revealing preferential allocation by the fungus of plant photoassimilate to weather grains of limestone and silicates each with a combined calcium and magnesium content of over 10 wt.%. Hyphae had acidic surfaces and linear accumulation of weathered calcium with secreted oxalate, increasing significantly in sequence: quartz, granite < basalt, olivine, limestone < gabbro. These findings confirmed the role of mineral-specific oxalate exudation in ectomycorrhizal weathering to dissolve calcium bearing minerals, thus contributing to the geochemical carbon cycle. PMID:26197714

  2. Evaluation of Oxalate Concentration in the U.S. Spinach Germplasm Collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In addition to its high nutrient content, spinach (Spinacia oleracea L.) is also known to have greater amount of oxalic acid than most crops. Oxalic acid may form crystals with minerals to reduce the bioavailability and absorption of calcium and iron in diets, and calcium oxalate may deposit in the...

  3. Crystallization and immersion freezing ability of oxalic and succinic acid in multicomponent aqueous organic aerosol particles

    NASA Astrophysics Data System (ADS)

    Wagner, Robert; Höhler, Kristina; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin

    2015-04-01

    This study reports on heterogeneous ice nucleation efficiency of immersed oxalic and succinic acid crystals in the temperature range from 245 to 215 K, as investigated with expansion cooling experiments using suspended particles. In contrast to previous laboratory work with emulsified solution droplets where the precipitation of solid inclusions required a preceding freezing/evaporation cycle, we show that immersed solids readily form by homogeneous crystallization within aqueous solution droplets of multicomponent organic mixtures, which have noneutonic compositions with an excess of oxalic or succinic acid. Whereas succinic acid crystals did not act as heterogeneous ice nuclei, immersion freezing by oxalic acid dihydrate crystals led to a reduction of the ice saturation ratio at freezing onset by 0.066-0.072 compared to homogeneous freezing, which is by a factor of 2 higher than previously reported laboratory data. These observations emphasize the importance of oxalic acid in heterogeneous ice nucleation.

  4. Inhibition of Glycolate Oxidase With Dicer-substrate siRNA Reduces Calcium Oxalate Deposition in a Mouse Model of Primary Hyperoxaluria Type 1.

    PubMed

    Dutta, Chaitali; Avitahl-Curtis, Nicole; Pursell, Natalie; Larsson Cohen, Marita; Holmes, Benjamin; Diwanji, Rohan; Zhou, Wei; Apponi, Luciano; Koser, Martin; Ying, Bo; Chen, Dongyu; Shui, Xue; Saxena, Utsav; Cyr, Wendy A; Shah, Anee; Nazef, Naim; Wang, Weimin; Abrams, Marc; Dudek, Henryk; Salido, Eduardo; Brown, Bob D; Lai, Chengjung

    2016-04-01

    Primary hyperoxaluria type 1 (PH1) is an autosomal recessive, metabolic disorder caused by mutations of alanine-glyoxylate aminotransferase (AGT), a key hepatic enzyme in the detoxification of glyoxylate arising from multiple normal metabolic pathways to glycine. Accumulation of glyoxylate, a precursor of oxalate, leads to the overproduction of oxalate in the liver, which accumulates to high levels in kidneys and urine. Crystalization of calcium oxalate (CaOx) in the kidney ultimately results in renal failure. Currently, the only treatment effective in reduction of oxalate production in patients who do not respond to high-dose vitamin B6 therapy is a combined liver/kidney transplant. We explored an alternative approach to prevent glyoxylate production using Dicer-substrate small interfering RNAs (DsiRNAs) targeting hydroxyacid oxidase 1 (HAO1) mRNA which encodes glycolate oxidase (GO), to reduce the hepatic conversion of glycolate to glyoxylate. This approach efficiently reduces GO mRNA and protein in the livers of mice and nonhuman primates. Reduction of hepatic GO leads to normalization of urine oxalate levels and reduces CaOx deposition in a preclinical mouse model of PH1. Our results support the use of DsiRNA to reduce liver GO levels as a potential therapeutic approach to treat PH1. PMID:26758691

  5. Inhibition of Glycolate Oxidase With Dicer-substrate siRNA Reduces Calcium Oxalate Deposition in a Mouse Model of Primary Hyperoxaluria Type 1

    PubMed Central

    Dutta, Chaitali; Avitahl-Curtis, Nicole; Pursell, Natalie; Larsson Cohen, Marita; Holmes, Benjamin; Diwanji, Rohan; Zhou, Wei; Apponi, Luciano; Koser, Martin; Ying, Bo; Chen, Dongyu; Shui, Xue; Saxena, Utsav; Cyr, Wendy A; Shah, Anee; Nazef, Naim; Wang, Weimin; Abrams, Marc; Dudek, Henryk; Salido, Eduardo; Brown, Bob D; Lai, Chengjung

    2016-01-01

    Primary hyperoxaluria type 1 (PH1) is an autosomal recessive, metabolic disorder caused by mutations of alanine-glyoxylate aminotransferase (AGT), a key hepatic enzyme in the detoxification of glyoxylate arising from multiple normal metabolic pathways to glycine. Accumulation of glyoxylate, a precursor of oxalate, leads to the overproduction of oxalate in the liver, which accumulates to high levels in kidneys and urine. Crystalization of calcium oxalate (CaOx) in the kidney ultimately results in renal failure. Currently, the only treatment effective in reduction of oxalate production in patients who do not respond to high-dose vitamin B6 therapy is a combined liver/kidney transplant. We explored an alternative approach to prevent glyoxylate production using Dicer-substrate small interfering RNAs (DsiRNAs) targeting hydroxyacid oxidase 1 (HAO1) mRNA which encodes glycolate oxidase (GO), to reduce the hepatic conversion of glycolate to glyoxylate. This approach efficiently reduces GO mRNA and protein in the livers of mice and nonhuman primates. Reduction of hepatic GO leads to normalization of urine oxalate levels and reduces CaOx deposition in a preclinical mouse model of PH1. Our results support the use of DsiRNA to reduce liver GO levels as a potential therapeutic approach to treat PH1. PMID:26758691

  6. Contrasting calcium localization and speciation in leaves of Medicago trunculata mutant COD5 analyzed via synchrotron X-ray techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxalate-producing plants accumulate calcium oxalate crystals (CaOx(C)) in the range of 3-80%(w/w) of their dry weight, reducing calcium (Ca) bioavailability. The calcium oxalate deficient 5 (cod5) mutant of Medicago truncatula has been previously shown to contain similar Ca, but lower oxalate and Ca...

  7. Gomphrena claussenii, a novel metal-hypertolerant bioindicator species, sequesters cadmium, but not zinc, in vacuolar oxalate crystals.

    PubMed

    Villafort Carvalho, Mina T; Pongrac, Paula; Mumm, Roland; van Arkel, Jeroen; van Aelst, Adriaan; Jeromel, Luka; Vavpetič, Primož; Pelicon, Primož; Aarts, Mark G M

    2015-11-01

    Gomphrena claussenii is a recently described zinc (Zn)- and cadmium (Cd)-hypertolerant Amaranthaceae species displaying a metal bioindicator Zn/Cd accumulation response. We investigated the Zn and Cd distribution in stem and leaf tissues of G. claussenii at the cellular level, and determined metabolite profiles to investigate metabolite involvement in Zn and Cd sequestration. Gomphrena claussenii plants exposed to high Zn and Cd supply were analysed by scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) and micro-proton-induced X-ray emission (micro-PIXE). In addition, gas chromatography-time of flight-mass spectrometry (GC-TOF-MS) was used to determine metabolite profiles on high Zn and Cd exposure. Stem and leaf tissues of G. claussenii plants exposed to control and high Cd conditions showed the abundant presence of calcium oxalate (CaOx) crystals, but on high Zn exposure, their abundance was strongly reduced. Ca and Cd co-localized to the CaOx crystals in Cd-exposed plants. Citrate, malate and oxalate levels were all higher in shoot tissues of metal-exposed plants, with oxalate levels induced 2.6-fold on Zn exposure and 6.4-fold on Cd exposure. Sequestration of Cd in vacuolar CaOx crystals of G. claussenii is found to be a novel mechanism to deal with Cd accumulation and tolerance. PMID:26083742

  8. Mimicking the growth of a pathologic biomineral: shape development and structures of calcium oxalate dihydrate in the presence of polyacrylic acid.

    PubMed

    Thomas, Annu; Rosseeva, Elena; Hochrein, Oliver; Carrillo-Cabrera, Wilder; Simon, Paul; Duchstein, Patrick; Zahn, Dirk; Kniep, Rüdiger

    2012-03-26

    The morphogenesis of calcium oxalate hydrates in aqueous solutions was investigated by varying the pH, oxalate concentration, and the concentration of the sodium salt of polyacrylate (PAA). With increasing amounts of PAA in solution, the shape of tetragonal calcium oxalate dihydrate (COD) changes from bipyramidal through elongated bipyramidal prisms to dumbbells and finally reverts to rodlike tetragonal bipyramidal prisms. PAA is incorporated into the prismatic zones of the growing COD crystals, thereby reducing the growth rate of the {100} faces along the <100> direction. Dumbbells start to develop through "non-crystallographic" branching from the prism faces and the formation of "multiple head" crystals. Adsorption of PAA on the rough surfaces of the splitting individuals supports the selection of new subindividuals and leads to the formation of core-shell patterns. The various shapes and structures of the biomimetic COD/PAA crystals and aggregates are closely related to the well-known "pathologic" individuals observed in the urine of patients with urinary disease (including urinary stones). PMID:22354632

  9. Increased calcium bioavailability in mice fed genetically engineered plants lacking calcium oxalate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioavailable calcium affects bone formation and calcification. Here we investigate how a single gene mutation altering calcium partitioning in the model forage crop Medicago truncatula affects calcium bioavailability. Previously, the cod5 M. truncatula mutant was identified which contains identical ...

  10. Inhibition of calcium oxalate monohydrate growth by citrate and the effect of the background electrolyte

    NASA Astrophysics Data System (ADS)

    Weaver, Matthew L.; Qiu, S. Roger; Hoyer, John R.; Casey, William H.; Nancollas, George H.; De Yoreo, James J.

    2007-08-01

    Pathological mineralization is a common phenomenon in broad range of plants and animals. In humans, kidney stone formation is a well-known example that afflicts approximately 10% of the population. Of the various calcium salt phases that comprise human kidney stones, the primary component is calcium oxalate monohydrate (COM). Citrate, a naturally occurring molecule in the urinary system and a common therapeutic agent for treating stone disease, is a known inhibitor of COM. Understanding the physical mechanisms of citrate inhibition requires quantification of the effects of both background electrolytes and citrate on COM step kinetics. Here we report the results of an in situ AFM study of these effects, in which we measure the effect of the electrolytes LiCl, NaCl, KCl, RbCl, and CsCl, and the dependence of step speed on citrate concentration for a range of COM supersaturations. We find that varying the background electrolyte results in significant differences in the measured step speeds and in step morphology, with KCl clearly producing the smallest impact and NaCl the largest. The kinetic coefficient for the former is nearly three times larger than for the latter, while the steps change from smooth to highly serrated when KCl is changed to NaCl. The results on the dependence of step speed on citrate concentration show that citrate produces a dead zone whose width increases with citrate concentration as well as a continual reduction in kinetic coefficient with increasing citrate level. We relate these results to a molecular-scale view of inhibition that invokes a combination of kink blocking and step pinning. Furthermore, we demonstrate that the classic step-pinning model of Cabrera and Vermilyea (C-V model) does an excellent job of predicting the effect of citrate on COM step kinetics provided the model is reformulated to more realistically account for impurity adsorption, include an expression for the Gibbs-Thomson effect that is correct for all supersaturations

  11. Oxygen nano-bubble water reduces calcium oxalate deposits and tubular cell injury in ethylene glycol-treated rat kidney.

    PubMed

    Hirose, Yasuhiko; Yasui, Takahiro; Taguchi, Kazumi; Fujii, Yasuhiro; Niimi, Kazuhiro; Hamamoto, Shuzo; Okada, Atsushi; Kubota, Yasue; Kawai, Noriyasu; Itoh, Yasunori; Tozawa, Keiichi; Sasaki, Shoichi; Kohri, Kenjiro

    2013-08-01

    Renal tubular cell injury induced by oxalate plays an important role in kidney stone formation. Water containing oxygen nano-bubbles (nanometer-sized bubbles generated from oxygen micro-bubbles; ONB) has anti-inflammatory effects. Therefore, we investigated the inhibitory effects of ONB water on kidney stone formation in ethylene glycol (EG)-treated rats. We divided 60 rats, aged 4 weeks, into 5 groups: control, the water-fed group; 100 % ONB, the 100 % ONB water-fed group; EG, the EG treated water-fed group; EG + 50 % ONB and EG + 100 % ONB, water containing EG and 50 % or 100 % ONB, respectively. Renal calcium oxalate (CaOx) deposition, urinary excretion of N-acetyl-β-D-glucosaminidase (NAG), and renal expression of inflammation-related proteins, oxidative stress biomarkers, and the crystal-binding molecule hyaluronic acid were compared among the 5 groups. In the control and 100 % ONB groups, no renal CaOx deposits were detected. In the EG + 50 % ONB and EG + 100 % ONB groups, ONB water significantly decreased renal CaOx deposits, urinary NAG excretion, and renal monocyte chemoattractant protein-1, osteopontin, and hyaluronic acid expression and increased renal superoxide dismutase-1 expression compared with the EG group. ONB water substantially affected kidney stone formation in the rat kidney by reducing renal tubular cell injury. ONB water is a potential prophylactic agent for kidney stones. PMID:23754513

  12. The nucleation and growth of calcium oxalate monohydrate on self- assembled monolayers (SAMs)

    SciTech Connect

    Campbell, A.A.; Tarasevich, B.J.; Graff, G.L.; Fryxell, G.E.; Rieke, P.C.

    1992-05-01

    A physical chemical approach was used to study calcium oxalate monohydrate (COM) nucleation and growth on various organic interfaces. Self-assembling monolayers (SAMs), containing derivatized organic functional groups, were designed to mimic various amino acid residues present in both urine and stone matrix macromolecules. Derivatized surfaces include SAMs with terminal methyl, bromo, imidazole, and thiazolidine-carboxylic acid functional groups. Pronounced differences in COM deposition were observed for the various interfaces with the imidazole and thiazolidine surfaces having the greatest effect and the methyl and bromo groups having little or no nucleating potential.

  13. [EXPERIENCE OF USE OF BLEMAREN® IN THE TREATMENT OF PATIENTS IN URIC ACID AND CALCIUM OXALATE UROLITHIASIS].

    PubMed

    Konstantinova, O V; Yanenko, E K

    2015-01-01

    154 patients with urolithiasis were under outpatient observation for 2-8 years. Among them there were 76 women and 78 men aged 21-66 years, of which 46 patients with uric acid urolithiasis, and 88--with calcium oxalate urolithiasis. Treatment of patients was carried out systematically, depending on their condition. Indications for the application of Blemaren® included the presence of uric acid stones, uric acid and/or oxalate crystalluria. The duration of treatment was 6.1 months. The dosage of the drug varied from 6 to 18 g per day and was selected individually, depending on the purpose of the appointment of Blemaren®. Reduction of the urine pH to 6.2- 6.8-7.2 was the criterion for properly selected dose. To dissolve uric acid stones in the presence of hyperuricemia and/or hyperuricuria, Blemaren® was administered in combination with allopurinol at a dose of 0.1 g 3-4 times a day. Besides pharmacotherapy, treatment included diet therapy. It was found that the morning urine pH in urate urolithiasis is sustainable and has a range of 5.0-6.0, in 80.4% of cases--range of 5.0-5.5. In calcium oxalate urolithiasis this parameter is also stable and has a range of 5.0-6.7, in 82.9% of cases--range of 5.5-6.0. Optimal urine pH to eliminate uric acid and oxalate crystalluria in patients with uric acid and calcium oxalate urolithiasis is the interval of 6.2-6.4. It was shown that Blemaren® is a highly effective agent for treatment and prevention of uric acid and calcium oxalate crystalluria in calcium oxalate and uric acid urolithiasis. Further, its effectiveness in dissolving of uric acid stones in the absence of an infectious inflammatory process is 82.3%. PMID:26859932

  14. Influence of gamma-irradiation on the non-isothermal decomposition of calcium-gadolinium oxalate

    NASA Astrophysics Data System (ADS)

    Moharana, S. C.; Praharaj, J.; Bhatta, D.

    Thermal decomposition of co-precipitated unirradiated and irradiated Ca-Gd oxalate has been studied by adopting differential thermal analysis (DTA) and thermogravimetric (TG) techniques. The reaction occurs through two stages corresponding to the decomposition of gadolinium oxalate (Gd-Ox) followed by that of calcium oxalate (Ca-Ox). The kinetic parameters for both the stages are calculated by using solid state reaction models and Coats-Redfern's equation. The co-precipitation as well as irradiation alter the DTA peak temperatures and the kinetic parameters of Ca-Ox. The decomposition of Gd-Ox follows the two dimensional Contracting area (R-2) mechanism, while that of Ca-Ox follows the Avrami-Erofeev (A(2)) mechanism (n =2), which are also exhibited by the co-precipitated and irradiated samples. Co-precipitation decreases the energy of activation and the pre-exponential factor of the individual components but the reverse phenomenon takes place upon irradiation of the co-precipitate. The mechanisms underlying the phenomena are explored.

  15. Metamagnetism and weak ferromagnetism in nickel (II) oxalate crystals

    NASA Astrophysics Data System (ADS)

    Romero-Tela, E.; Mendoza, M. E.; Escudero, R.

    2012-05-01

    Microcrystals of orthorhombic nickel (II) oxalate dihydrate were synthesized through a precipitation reaction of aqueous solutions of nickel chloride and oxalic acid. Magnetic susceptibility exhibits a sharp peak at 3.3 K and a broad rounded maximum near 43 K. We associated the lower maximum with a metamagnetic transition that occurs when the magnetic field is about ≥ 3.5 T. The maximum at 43 K is typical of 1D antiferromagnets, whereas weak ferromagnetism behavior was observed in the range of 3.3-43 K.

  16. Metamagnetism and weak ferromagnetism in nickel (II) oxalate crystals.

    PubMed

    Romero-Tela, E; Mendoza, M E; Escudero, R

    2012-05-16

    Microcrystals of orthorhombic nickel (II) oxalate dihydrate were synthesized through a precipitation reaction of aqueous solutions of nickel chloride and oxalic acid. Magnetic susceptibility exhibits a sharp peak at 3.3 K and a broad rounded maximum near 43 K. We associated the lower maximum with a metamagnetic transition that occurs when the magnetic field is about ≥3.5 T. The maximum at 43 K is typical of 1D antiferromagnets, whereas weak ferromagnetism behavior was observed in the range of 3.3–43 K. PMID:22517212

  17. Raman spectroscopic analysis of the calcium oxalate producing extremotolerant lichen Circinaria gyrosa

    NASA Astrophysics Data System (ADS)

    Böttger, U.; Meessen, J.; Martinez-Frias, J.; Hübers, H.-W.; Rull, F.; Sánchez, F. J.; de la Torre, R.; de Vera, J.-P.

    2014-01-01

    In the context of astrobiological exposure and simulation experiments in the BIOMEX project, the lichen Circinaria gyrosa was investigated by Raman microspectroscopy. Owing to the symbiotic nature of lichens and their remarkable extremotolerance, C. gyrosa represents a valid model organism in recent and current astrobiological research. Biogenic compounds of C. gyrosa were studied that may serve as biomarkers in Raman assisted remote sensing missions, e.g. ExoMars. The surface as well as different internal layers of C. gyrosa have been characterized and data on the detectability and distribution of β-carotene, chitin and calcium oxalate monohydrate (whewellite) are presented in this study. Raman microspectroscopy was applied on natural samples and thin sections. Although calcium oxalates can also be formed by rare geological processes it may serve as a suitable biomarker for astrobiological investigations. In the model organism C. gyrosa, it forms extracellular crystalline deposits embedded in the intra-medullary space and its function is assumed to balance water uptake and gas exchange during the rare, moist to wet environmental periods that are physiologically favourable. This is a factor that was repeatedly demonstrated to be essential for extremotolerant lichens and other organisms. Depending on the decomposition processes of whewellite under extraterrestrial environmental conditions, it may not only serve as a biomarker of recent life, but also of past and fossilized organisms.

  18. Phase transformation of calcium oxalate dihydrate-monohydrate: Effects of relative humidity and new spectroscopic data

    NASA Astrophysics Data System (ADS)

    Conti, Claudia; Casati, Marco; Colombo, Chiara; Realini, Marco; Brambilla, Luigi; Zerbi, Giuseppe

    2014-07-01

    New data on vibrational properties of calcium oxalates and their controversial transformation mechanism are presented. We have focused on whewellite (CaC2O4·H2O) and weddellite [CaC2O4·(2 + x) H2O], the most common phases of calcium oxalate; these compounds occur in many organisms, in kidney stones and in particular kinds of films found on the surface of many works of art. Low temperature experiments carried out by Fourier transform infrared spectroscopy have highlighted both the high structural order in the crystalline state of whewellite and the disordered distribution of the zeolitic water molecules in weddellite. The synthesised nanocrystals of weddellite have been kept under different hygrometric conditions in order to study, by X-ray powder diffraction, the role of “external” water molecules on their stability. Moreover, in order to identify the different kinds of water molecules, a re-investigation, supported by quantum chemical calculations, of the observed vibrational spectra (IR and Raman) of whewellite has been conducted.

  19. Risk factors associated with calcium oxalate urolithiasis in dogs evaluated at general care veterinary hospitals in the United States.

    PubMed

    Okafor, Chika C; Lefebvre, Sandra L; Pearl, David L; Yang, Mingyin; Wang, Mansen; Blois, Shauna L; Lund, Elizabeth M; Dewey, Cate E

    2014-08-01

    Calcium oxalate urolithiasis results from the formation of aggregates of calcium salts in the urinary tract. Difficulties associated with effectively treating calcium oxalate urolithiasis and the proportional increase in the prevalence of calcium oxalate uroliths relative to other urolith types over the last 2 decades has increased the concern of clinicians about this disease. To determine factors associated with the development of calcium oxalate urolithiasis in dogs evaluated at general care veterinary hospitals in the United States, a retrospective case-control study was performed. A national electronic database of medical records of all dogs evaluated between October 1, 2007 and December 31, 2010 at 787 general care veterinary hospitals in the United States was reviewed. Dogs were selected as cases at the first-time diagnosis of a laboratory-confirmed urolith comprised of at least 70% calcium oxalate (n=452). Two sets of control dogs with no history of urolithiasis diagnosis were randomly selected after the medical records of all remaining dogs were reviewed: urinalysis examination was a requirement in the selection of one set (n=1808) but was not required in the other set (n=1808). Historical information extracted included urolith composition, dog's diet, age, sex, neuter status, breed size category, hospital location, date of diagnosis, and urinalysis results. Multivariable analysis showed that the odds of first-time diagnosis of calcium oxalate urolithiasis were significantly (P<0.05) greater for dogs<7 years, males (OR: 7.77, 95% CI: 4.93-12.26), neutered (OR: 2.58, 1.44-4.63), toy- vs. medium-sized breeds (OR: 3.15, 1.90-5.22), small- vs. medium-sized breeds (OR: 3.05, 1.83-5.08), large- vs. medium-sized breeds (OR: 0.05, 0.01-0.19), and those with a diagnosis of cystitis within the previous year (OR: 6.49, 4.14-10.16). Urinary factors significantly associated with first-time diagnosis of calcium oxalate urolithiasis were acidic vs. basic pH (OR: 1.94, 1

  20. Molecular mechanisms of crystallization impacting calcium phosphate cements

    PubMed Central

    Giocondi, Jennifer L.; El-Dasher, Bassem S.; Nancollas, George H.; Orme, Christine A.

    2010-01-01

    The biomineral calcium hydrogen phosphate dihydrate (CaHPO4·2H2O), known as brushite, is a malleable material that both grows and dissolves faster than most other calcium minerals, including other calcium phosphate phases, calcium carbonates and calcium oxalates. Within the body, this ready formation and dissolution can play a role in certain diseases, such as kidney stone and plaque formation. However, these same properties, along with brushite’s excellent biocompatibility, can be used to great benefit in making resorbable biomedical cements. To optimize cements, additives are commonly used to control crystallization kinetics and phase transformation. This paper describes the use of in situ scanning probe microscopy to investigate the role of several solution parameters and additives in brushite atomic step motion. Surprisingly, this work demonstrates that the activation barrier for phosphate (rather than calcium) incorporation limits growth kinetics and that additives such as magnesium, citrate and bisphosphonates each influence step motion in distinctly different ways. Our findings provide details of how, and where, molecules inhibit or accelerate kinetics. These insights have the potential to aid in designing molecules to target specific steps and to guide synergistic combinations of additives. PMID:20308110

  1. Synthesis, thermal and nonlinear optical characterization of L-arginine semi-oxalate single crystals

    NASA Astrophysics Data System (ADS)

    Vasudevan, P.; Gokulraj, S.; Sankar, S.

    2012-06-01

    Optically good quality L-arginine semi-oxalate, an organic nonlinear optical crystal, has been synthesized from aqueous solution by slow evaporation method. Single crystal X-ray diffraction (XRD) analysis reveals that the synthesized L-arginine semi-oxalate crystal possesses triclinic structure with unit cell dimensions as a=5.05Å, b=9.73Å, c=13.12Å, α=111.030, β=92.790 and γ=91.910. The Fourier transform infra-red (FTIR) spectroscopy was analyzed and the presence of functional groups of L-arginine semi-oxalate was confirmed. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) studies show that the material is thermally stable up to 1460C and the melting point is 1500C. Kurtz and Perry powder technique confirms that the second harmonic generation (SHG) efficiency is 0.32 times that of standard organic materials urea and KDP.

  2. Optimized growth and characterization of cadmium oxalate single crystals in silica gel

    NASA Astrophysics Data System (ADS)

    Ezhil Raj, A. Moses; Jayanthi, D. Deva; Jothy, V. Bena

    2008-05-01

    Single crystals of cadmium oxalate hydrate have been grown in silica gel in the presence of divalent Cd 2+ ions impregnated with oxalic acid at room temperature. Gel aging technique was adopted to reduce the nucleation density and hence larger and more perfect single crystals were harvested. Obtained crystals exhibit triclinic structure with unit cell dimensions a = 6.0059 Å, b = 6.66 Å, c = 8.49 Å, α = 105.71°, β = 98.99° and γ = 74.66°. IR spectrum indicates the presence of oxalate ligands and water of crystallization. Thermal behavior and stability of the grown cadmium oxalate crystals were investigated in the temperature range of 30-600 °C. A.C. electrical conductivity of Cd(C 2O 4)·3H 2O was measured for different frequencies and was found to lie between usual conductivities of semiconductor and insulator. The activation energy required to move permanent intrinsic defects in the crystal lattice was found and was equal to 0.15 eV.

  3. Synthesis and characterization of nonlinear optical L-arginine semi-oxalate single crystal

    NASA Astrophysics Data System (ADS)

    Vasudevan, P.; Gokul Raj, S.; Sankar, S.

    2013-04-01

    L-arginine semi-oxalate single crystals have been synthesized by slow evaporation method at room temperature. Single crystal and powder X-ray diffraction analyses has been made to confirm the triclinic structure with non-centrosymmetric space group P1. The presence of functional groups of L-arginine semi-oxalate crystals was identified and confirmed by using the Fourier transform infrared spectroscopy. Molecular structure of the grown crystal was analyzed by 1H NMR and 13C NMR studies. Optical absorption studies carried out in wavelength range from 250 nm to 1200 nm have revealed that the material is completely transparent for the entire wavelength range studied. Thermal characterization using thermogravimetric analysis and differential scanning calorimetry studies show that the crystal is thermally stable up to 146 °C. The presence of second harmonic generation of the grown crystal was tested and its efficiency was determined by using Kurtz and Perry powder technique.

  4. Short term tolvaptan increases water intake and effectively decreases urinary calcium oxalate, calcium phosphate, and uric acid supersaturations

    PubMed Central

    Cheungpasitporn, Wisit; Erickson, Stephen B.; Rule, Andrew D.; Enders, Felicity; Lieske, John C.

    2016-01-01

    Purpose Many patients cannot effectively increase water intake and urine volume to prevent urinary stones. Tolvaptan, a V2 receptor antagonist, blocks water reabsorption in the collecting duct and should reduce urinary supersaturation (SS) of stone forming solutes, but this has never been proven. Materials and Methods We conducted a double blind, randomized, placebo-controlled, crossover study in 21 adult calcium urinary stone formers stratified as majority calcium oxalate(CaOx, n=10) or calcium phosphate(CaP, n=11). Patients received tolvaptan 45 mg/day or placebo for 1 week, followed by a washout week and crossover to tolvaptan or placebo for week 3. A 24h urines was collected at the end of weeks 1 and 3. Results Tolvaptan vs. placebo decreased urinary osmolality (204±96 vs 529±213 mOsm/kg, P<0.001) and increased urinary volume (4.8±2.9 vs 1.8±0.9 L, P<0.001). The majority of urinary solute excretion rates including sodium and calcium did not significantly change, although oxalate secretion slightly increased (23±8 to 15±8 mg/24h, P = 0.009). Urinary CaOx SS (−0.01±1.14 vs 0.95±0.87 DG, P<0.001), CaP SS (−1.66±1.17 vs −0.13±1.02 DG, P<0.001) and Uric Acid SS (−2.05±4.05 vs −5.24±3.12 DG, P=0.04) all dramatically decreased. Effects did not differ between CaOx and CaP groups (P>0.05 for all interactions). Conclusions Tolvaptan increases urine volume and decreases urinary SS in calcium stone formers. Further study is needed to determine if long term use of V2 receptor antagonists results in fewer stone events. PMID:26598423

  5. An acidic peptide sequence of nucleolin-related protein can mediate the attachment of calcium oxalate to renal tubule cells.

    PubMed

    Sorokina, Elena A; Wesson, Jeffrey A; Kleinman, Jack G

    2004-08-01

    Crystals that form in tubular fluid must be retained in the kidney to become stones. Nucleolin-related protein (NRP) is found on the surface of inner medullary collecting duct (IMCD) cells in culture (cIMCD) and selectively adsorbs to calcium oxalate (CaOx). We proposed that NRP mediates attachment to the renal tubular epithelium of Ca stone crystals through an electrostatic interaction with a highly acidic region (acidic fragment [AF]) similar to those of other proteins that have been reported to affect urinary crystal formation. The current studies demonstrate that nucleolin is expressed on both apical and basolateral cell surfaces of cIMCD, reaching a peak in the late stages of mitosis and gradually declining to undetectable levels with maturation of the polarized epithelium. Scraping areas of mature monolayers stimulated the cells surrounding the defects to migrate and proliferate so as to repair them, and these areas demonstrate surface NRP expression and enhanced attachment of CaOx monohydrate crystals. Surface expression of the NRP AF was produced by cloning the NRP AF into a display vector. Transfected cIMCD demonstrating copious surface expression of AF enhanced CaOx attachment 6.7-fold compared with control cIMCD, whereas cells transfected with a vector without the AF did not differ from control. AF was also cloned into a replication-deficient adenovirus and expressed in 293 cells, resulting in AF secretion into the nutrient medium. This medium inhibited CaOx attachment to cIMCD, compared with conditioned medium from cells infected with wild-type virus. These results demonstrate that surface-bound AF can mediate CaOx attachment and that secreted AF can inhibit attachment. These results support the notion that surface-associated NRP could mediate attachment of CaOx to the renal tubule epithelium, thereby causing retention of crystals that might eventually become kidney stones. PMID:15284292

  6. Nutrient intake and urine composition in calcium oxalate stone-forming dogs: comparison with healthy dogs and impact of dietary modification.

    PubMed

    Stevenson, Abigail E; Blackburn, Judith M; Markwell, Peter J; Robertson, William G

    2004-01-01

    Nutrient intake and urine composition were analyzed in calcium oxalate (CaOx)stone-forming and healthy control dogs to identify factors that contribute to CaOx urolithiasis. Stone-forming dogs had significantly lower intake of sodium, calcium, potassium, and phosphorus and significantly higher urinary calcium and oxalate concentrations, calcium excretion, and CaOx relative supersaturation (RSS). Feeding a diet used in the treatment of canine lower urinary tract disease for 1 month was associated with increased intake of moisture, sodium, and fat; reduced intake of potassium and calcium; and decreased urinary calcium and oxalate concentrations, calcium excretion, and CaOx RSS. No clinical signs of disease recurrence were observed in the stone-forming dogs when the diet was fed for an additional 11 months. The results suggest that hypercalciuria and hyperoxaluria contribute to the formation of CaOx uroliths in dogs and show that dietary modifications can alter this process. PMID:15578454

  7. Investigation of nucleation and crystal growth kinetics of nickel manganese oxalates

    NASA Astrophysics Data System (ADS)

    Aoun-Habbache, Montaha; Guillemet-Fritsch, Sophie; Lemaître, Jacques; Jones, Alan

    2005-06-01

    The nucleation and the crystal growth rates of mixed nickel manganese oxalates have been determined from the changes of the ionic concentration of the solution and the crystal size distribution during the precipitation process within a supersaturation range 0-0.1 M. Thermodynamic solubility calculations have been used to identify the different species contributing the precipitation reaction and for estimation of the thermodynamic constant. Experimental data show that the nucleation rate of mixed nickel manganese oxalate in this supersaturation range is consistent with a primary heterogeneous mechanism and was found to obey to an exponential law. The crystal growth rates indicate a surface-integration-controlled mechanism with a first-order law with respect to the supersaturation.

  8. Crystal growth and agglomeration of calcium sulfite hemihydrate crystals

    SciTech Connect

    Tai, C.Y.; Chen, P.C.

    1995-04-01

    Flue gas desulfurization (FGD) processes are most commonly utilized to remove sulfur dioxide from stack gases of coal- or oil-fired plants. In the simple slurry technology, SO{sub 2} is absorbed by a slurry of lime/limestone to form calcium sulfite crystals of acicular habit and its strong agglomeration, requiring large clarifiers and filters to dewater the sludge to make an acceptable landfill. Crystal growth and agglomeration of calcium sulfite hemihydrate crystals from solution were studied by reacting Ca(OH){sub 2} with NaHSO{sub 3} in a pH-stat semibatch crystallizer. Single platelet crystals and agglomerates of platelet crystals were produced in the pH range from 5.80 to 6.80. The crystallization mechanism changed from primary nucleation to crystal growth in the progressive precipitation. Using the titration curves, the growth rate was calculated from the titration rate at the final stage of operation. The crystal growth rates of calcium sulfate hemihydrate crystals were found to obey the parabolic rate law in the low supersaturation range. Another point to be noted is that the precipitates of calcium sulfite hemihydrate in agitated suspensions have a tendency to form agglomerates. It was found that the degree of agglomeration is a weak function of relative supersaturation and magma density, while the pH value is a key factor that affects the degree of agglomeration. Addition of EDTA also has an effect on the agglomeration of calcium sulfite hemihydrates.

  9. [Results of dietary evaluation during calcium oxalate and calcium phosphate lithiasis].

    PubMed

    Mahe, J L; Cledes, J; Bigot, J C; Bardou, L G; Morel, M A

    1993-01-01

    In order to better understand the role of diet in etiology of urolithiasis, 84 oxalo-phospho-calcic-lithiasic patients (52 men, 32 women) have been studied by a nutritional week-interview and by urinary and blood testing. Diet data were compared to an ideal standard. Total caloric intake was 2428 +/- 651 calories/d; this intake is high in 7% women and 40% men. 79% out of patients are fat. Protidic intake is 87 +/- 21 g/d higher than 1 g/kg/d in 84.5% of patients. Lipids are high in 38.9 +/- 7%, glucid are low in 45.3 +/- 7%. Calcium intake is 934 +/- 406 mg/d, sodium intake is 12.9 + 3 g/d. Water intake is 2305 +/- 759 ml/d. Different groups of patients are studied: a) 21 patients with mean age of 43 +/- 12 years have recurrent lithiasis (R). This group is compared to 48 patients with 37 +/- 44 years who have a single lithiasis. Half of (R) patients have hypercalciuria, hyperphosphaturia and hyperoxaluria. Diet study is no different between these two groups. b) Other groups are studied: 21 have hyperophosphaturia (HPU) without hypophosphoremia and they have hypercalciuria, hyperuraturia and high urinary urea; diet shows higher glucicid and potassium intake than group with normal phosphaturia; 23 have hypercalciuria (HCU) and high uraturia and phosphaturia: diet study shows no difference with a group with normal calciuria. 21 have hyperoxaluria (HOU): diet study of a normal oxaluric group shows higher lipid intake, lower glucidic and calcium intake; 22 have hyperuraturia (HAU) and higher urinary urea, sodium and potassium than normouraturia group: in this group potassium intake is higher.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8145888

  10. Investigations on the growth and characterization of L-citrulline oxalate monohydrate single crystal

    NASA Astrophysics Data System (ADS)

    Sreevalsa, V. G.; Jayalekshmi, S.

    2011-06-01

    New single crystals of L-citrulline oxalate (LCO) monohydrate are grown from aqueous solution by slow evaporation technique. Structure and morphology of the grown crystals are identified by single crystal XRD. The compound crystallizes in the orthorhombic structure with space group P2 12 12 1, having cell parameters, a=5.208(5) Å, b=9.829(5) Å and c=23.879(5) Å. Powder X-ray diffraction data is used for the assignment of the hkl values. The chemical composition of the synthesized crystals is verified by CHN analysis. Functional groups present in the sample are identified by Fourier transform infra red (FT-IR) and FT-Raman spectral analysis. The second harmonic signal generated by the crystal using pulsed Nd: YAG Laser is confirmed by the emission of green radiation, showing that the crystal is a potential candidate for nonlinear optical studies.

  11. Crystal structure of 2-methyl-1H-imidazol-3-ium hydrogen oxalate dihydrate.

    PubMed

    Diop, Mouhamadou Birame; Diop, Libasse; Plasseraud, Laurent; Cattey, Hélène

    2016-08-01

    Single crystals of the title mol-ecular salt, C4H7N2 (+)·HC2O4 (-)·2H2O, were isolated from the reaction of 2-methyl-1H-imidazole and oxalic acid in a 1:1 molar ratio in water. In the crystal, the cations and anions are positioned alternately along an infinite [010] ribbon and linked together through bifurcated N-H⋯(O,O) hydrogen bonds. The water mol-ecules of crystallization link the chains into (10-1) bilayers, with the methyl groups of the cations organized in an isotactic manner. PMID:27536393

  12. Crystal structure of 2-methyl-1H-imidazol-3-ium hydrogen oxalate dihydrate

    PubMed Central

    Diop, Mouhamadou Birame; Diop, Libasse; Plasseraud, Laurent; Cattey, Hélène

    2016-01-01

    Single crystals of the title mol­ecular salt, C4H7N2 +·HC2O4 −·2H2O, were isolated from the reaction of 2-methyl-1H-imidazole and oxalic acid in a 1:1 molar ratio in water. In the crystal, the cations and anions are positioned alternately along an infinite [010] ribbon and linked together through bifurcated N—H⋯(O,O) hydrogen bonds. The water mol­ecules of crystallization link the chains into (10-1) bilayers, with the methyl groups of the cations organized in an isotactic manner. PMID:27536393

  13. Single crystal growth and characterization of lanthanum-neodymium oxalate octahydrate

    NASA Astrophysics Data System (ADS)

    Want, Basharat

    2011-11-01

    Single crystals of mixed lanthanum-neodymium oxalates are grown by gel diffusion method using agar gel as a medium of growth. The crystals grow in the agar gel with hexagonal morphology having (001), (110) and (010) as habit faces. Single crystal X-ray diffraction results show that the crystals belong to monoclinic system with cell parameters; a=10.344(2) Å, b=9.643(6) Å, c=11.721(2) Å, β=118.7 (2)° , bearing the space group P2/c. Fourier transform infrared spectrum of the crystals indicates the presence of water and other functional groups associated with the oxalate ions. Thermogravimetric and differential thermal analysis support the presence of 8H 2O molecules attached to the lanthanum-neodymium crystal lattice. The thermal decomposition in the nitrogen atmosphere leads to the formation of mixed lanthanum-neodymium oxide as the final product. Energy dispersive analysis of X-rays along with elemental analysis suggests the stoichiometry of the gel grown crystals to be La 1.5Nd 0.5(C 2O 4) 3·8H 2O.

  14. The influence of oxalate-promoted growth of saponite and talc crystals

    USGS Publications Warehouse

    Schumann, Dirk; Hartman, Hyman; Eberl, Dennis D.; Sears, S. Kelly; Hesse, Reinhard; Vali, Hojatollah

    2013-01-01

    The intercalating growth of new silicate layers or metal hydroxide layers in the interlayer space of other clay minerals is known from various mixed-layer clay minerals such as illite-smectite (I-S), chlorite-vermiculite, and mica-vermiculite. In a recent study, the present authors proposed that smectite-group minerals can be synthesized from solution as new 2:1 silicate layers within the low-charge interlayers of rectorite. That study showed how oxalate catalyzes the crystallization of saponite from a silicate gel at low temperatures (60ºC) and ambient pressure. As an extension of this work the aim of the present study was to test the claim that new 2:1 silicate layers can be synthesized as new intercalating layers in the low-charge interlayers of rectorite and whether oxalate could promote such an intercalation synthesis. Two experiments were conducted at 60ºC and atmospheric pressure. First, disodium oxalate solution was added to a suspension of rectorite in order to investigate the effects that oxalate anions have on the structure of rectorite. In a second experiment, silicate gel of saponitic composition (calculated interlayer charge −0.33 eq/O10(OH)2) was mixed with a suspension of rectorite and incubated in disodium oxalate solution. The synthesis products were extracted after 3 months and analyzed by X-ray diffraction and high-resolution transmission electron microscopy (HRTEM). The treatment of ultrathin sections with octadecylammonium (nC = 18) cations revealed the presence of 2:1 layer silicates with different interlayer charges that grew from the silicate gel. The oxalate-promoted nucleation of saponite and talc crystallites on the rectorite led to the alteration and ultimately to the destruction of the rectorite structure. The change was documented in HRTEM lattice-fringe images. The crystallization of new 2:1 layer silicates also occurred within the expandable interlayers of rectorite but not as new 2:1 silicate layers parallel to the previous 2

  15. Hippuric Acid as a Significant Regulator of Supersaturation in Calcium Oxalate Lithiasis: The Physiological Evidence

    PubMed Central

    Atanassova, Stoyanka S.; Gutzow, Ivan S.

    2013-01-01

    At present, the clinical significance of existing physicochemical and biological evidence and especially the results we have obtained from our previous in vitro experiments have been analyzed, and we have come to the conclusion that hippuric acid (C6H5CONHCH2COOH) is a very active solvent of Calcium Oxalate (CaOX) in physiological solutions. Two types of experiments have been discussed: clinical laboratory analysis on the urine excretion of hippuric acid (HA) in patients with CaOX lithiasis and detailed measurements of the kinetics of the dissolution of CaOX calculi in artificial urine, containing various concentrations of HA. It turns out that the most probable value of the HA concentration in the control group is approximately ten times higher than the corresponding value in the group of the stone-formers. Our in vitro analytical measurements demonstrate even a possibility to dissolve CaOX stones in human urine, in which increased concentration of HA have been established. A conclusion can be that drowning out HA is a significant regulator of CaOX supersaturation and thus a regulation of CaOX stone formation in human urine. Discussions have arisen to use increased concentration of HA in urine both as a solubilizator of CaOX stones in the urinary tract and on the purpose of a prolonged metaphylactic treatment. PMID:24307993

  16. Oxalic Acid Has an Additional, Detoxifying Function in Sclerotinia sclerotiorum Pathogenesis

    PubMed Central

    Heller, Annerose; Witt-Geiges, Tanja

    2013-01-01

    The mechanism of the diseases caused by the necrotroph plant pathogen Sclerotinia sclerotiorum is not well understood. To investigate the role of oxalic acid during infection high resolution, light-, scanning-, transmission electron microscopy and various histochemical staining methods were used. Our inoculation method allowed us to follow degradation of host plant tissue around single hyphae and to observe the reaction of host cells in direct contact with single invading hyphae. After penetration the outer epidermal cell wall matrix appeared degraded around subcuticular hyphae (12-24 hpi). Calcium oxalate crystals were detected in advanced (36-48 hpi) and late (72 hpi) infection stages, but not in early stages. In early infection stages, surprisingly, no toxic effect of oxalic acid eventually secreted by S. sclerotiorum was observed. As oxalic acid is a common metabolite in plants, we propose that attacked host cells are able to metabolize oxalic acid in the early infection stage and translocate it to their vacuoles where it is stored as calcium oxalate. The effects, observed on healthy tissue upon external application of oxalic acid to non-infected, living tissue and cell wall degradation of dead host cells starting at the inner side of the walls support this idea. The results indicate that oxalic acid concentrations in the early stage of infection stay below the toxic level. In plant and fungi oxalic acid/calcium oxalate plays an important role in calcium regulation. Oxalic acid likely could quench calcium ions released during cell wall breakdown to protect growing hyphae from toxic calcium concentrations in the infection area. As calcium antimonate-precipitates were found in vesicles of young hyphae, we propose that calcium is translocated to the older parts of hyphae and detoxified by building non-toxic, stable oxalate crystals. We propose an infection model where oxalic acid plays a detoxifying role in late infection stages. PMID:23951305

  17. Growth and characterization of urea-oxalic acid crystals by solution growth technique

    NASA Astrophysics Data System (ADS)

    Chithambaram, V.; Jerome Das, S.; Krishnan, Sivakumar; Basheer Ahamed, M.; Arivudai Nambi, R.

    2013-11-01

    Single crystals of urea-oxalic acid (UOA) have been grown from aqueous solution by slow evaporation technique. Single crystal X-ray diffraction analysis confirmed that the grown crystals belong to monoclinic system having space group P21/C. The presence of functional groups was confirmed by using Fourier transform infrared (FTIR) spectroscopy. Optical absorption studies show very low absorption in entire visible region and the UV cut-off is found to be around 240 nm. Thermal analysis studies were carried out using TG/DTA analysis and the grown crystal is thermally stable up to 180 °C. Dielectric constant studies confirm the ferroelectric property of the materials and very low dielectric loss reveals very high purity of the crystal.

  18. Growth and characterization of new semiorganic nonlinear optical and piezoelectric lithium sulfate monohydrate oxalate single crystals

    SciTech Connect

    Yadav, Harsh; Sinha, Nidhi; Kumar, Binay

    2015-04-15

    Highlights: • A new semiorganic single crystal of LSO grown by slow evaporation technique. • Morphological studies of the LSO crystal deduced by BFDH law. • In the UV–vis spectrum wide transparent region and large band gap were found. • SHG is equal to KDP crystal and d{sub 33} was found to be equal to 6pC/N. • Grown crystal belongs to softer category. - Abstract: New semiorganic crystal of lithium sulfate monohydrate oxalate (LSO) for nonlinear application was synthesized by controlled slow evaporation method. The growth rate of various planes of the grown crystal was estimated by morphological study. Single crystal XRD analysis confirmed that the crystal belongs to triclinic lattice with space group P1. High transparency (∼95%) with large band gap (4.57 eV) was analyzed by UV–vis studies. FTIR and Raman spectroscopy were used to identify various functional groups present in the LSO crystal. SHG efficiency was found to be equal to the KDP crystal. Thermal stability (up to 117.54 °C) and melting point (242 °C) of the crystal were studied by TG-DTA. In dielectric measurements, the value of dielectric constant decreases with increase in frequency. Hardness studies confirmed soft nature of crystals. The piezoelectric coefficient was found to be 6pC/N along [0 0 1].

  19. Gypsum crystals formed on decomposing calcium citrate

    NASA Astrophysics Data System (ADS)

    Söhnel, O.; Křivánková, I.; Krčmář, S.; Jurčová, M.

    1991-06-01

    Particle size and the specific surface area of gypsum crystals formed on decomposing an aqueous suspension of solid calcium citrate tetrahydrate by diluted 50% sulphuric acid at 25, 40, 60, 80 and 100°C was studied. The size of the gypsum crystals increases with increasing temperature of decomposition. At a constant temperature within the range of 25 to 100°C the median of gypsum crystal size distribution (PSD) increases for approximately 4 h after commencing decomposition and then reaches a virtually constant value. The specific surface area of gypsum crystals decreases after commencement of the reaction for approximately 6 h before reaching a constant value. Gypsum crystal growth by solute deposition from the liquid is responsible for PSD changes for approximately one hour at the commencement of reaction. Then the growth of larger crystals at the expense of smaller crystals, i.e. ripening, is apparently responsible for further changes in the PSD.

  20. Urinary Calcium and Oxalate Excretion in Healthy Adult Cats Are Not Affected by Increasing Dietary Levels of Bone Meal in a Canned Diet

    PubMed Central

    Passlack, Nadine; Zentek, Jürgen

    2013-01-01

    This study aimed to investigate the impact of dietary calcium (Ca) and phosphorus (P), derived from bone meal, on the feline urine composition and the urinary pH, allowing a risk assessment for the formation of calcium oxalate (CaOx) uroliths in cats. Eight healthy adult cats received 3 canned diets, containing 12.2 (A), 18.5 (B) and 27.0 g Ca/kg dry matter (C) and 16.1 (A), 17.6 (B) and 21.1 g P/kg dry matter (C). Each diet was fed over 17 days. After a 7 dayś adaptation period, urine and faeces were collected over 2×4 days (with a two-day rest between), and blood samples were taken. Urinary and faecal minerals, urinary oxalate (Ox), the urinary pH and the concentrations of serum Ca, phosphate and parathyroid hormone (PTH) were analyzed. Moreover, the urine was microscopically examined for CaOx uroliths. The results demonstrated that increasing levels of dietary Ca led to decreased serum PTH and Ca and increased faecal Ca and P concentrations, but did not affect the urinary Ca or Ox concentrations or the urinary fasting pH. The urinary postprandial pH slightly increased when the diet C was compared to the diet B. No CaOx crystals were detected in the urine of the cats. In conclusion, urinary Ca excretion in cats seems to be widely independent of the dietary Ca levels when Ca is added as bone meal to a typical canned diet, implicating that raw materials with higher contents of bones are of subordinate importance as risk factors for the formation of urinary CaOx crystals. PMID:23940588

  1. Contribution of dietary oxalate to urinary oxalate excretion

    NASA Technical Reports Server (NTRS)

    Holmes, R. P.; Goodman, H. O.; Assimos, D. G.

    2001-01-01

    BACKGROUND: The amount of oxalate excreted in urine has a significant impact on calcium oxalate supersaturation and stone formation. Dietary oxalate is believed to make only a minor (10 to 20%) contribution to the amount of oxalate excreted in urine, but the validity of the experimental observations that support this conclusion can be questioned. An understanding of the actual contribution of dietary oxalate to urinary oxalate excretion is important, as it is potentially modifiable. METHODS: We varied the amount of dietary oxalate consumed by a group of adult individuals using formula diets and controlled, solid-food diets with a known oxalate content, determined by a recently developed analytical procedure. Controlled solid-food diets were consumed containing 10, 50, and 250 mg of oxalate/2500 kcal, as well as formula diets containing 0 and 180 mg oxalate/2500 kcal. Changes in the content of oxalate and other ions were assessed in 24-hour urine collections. RESULTS: Urinary oxalate excretion increased as dietary oxalate intake increased. With oxalate-containing diets, the mean contribution of dietary oxalate to urinary oxalate excretion ranged from 24.4 +/- 15.5% on the 10 mg/2500 kcal/day diet to 41.5 +/- 9.1% on the 250 mg/2500 kcal/day diet, much higher than previously estimated. When the calcium content of a diet containing 250 mg of oxalate was reduced from 1002 mg to 391 mg, urinary oxalate excretion increased by a mean of 28.2 +/- 4.8%, and the mean dietary contribution increased to 52.6 +/- 8.6%. CONCLUSIONS: These results suggest that dietary oxalate makes a much greater contribution to urinary oxalate excretion than previously recognized, that dietary calcium influences the bioavailability of ingested oxalate, and that the absorption of dietary oxalate may be an important factor in calcium oxalate stone formation.

  2. Crystal growth and first crystallographic characterization of mixed uranium(IV)-plutonium(III) oxalates.

    PubMed

    Tamain, Christelle; Arab Chapelet, Bénédicte; Rivenet, Murielle; Abraham, Francis; Caraballo, Richard; Grandjean, Stéphane

    2013-05-01

    The mixed-actinide uranium(IV)-plutonium(III) oxalate single crystals (NH4)0.5[Pu(III)0.5U(IV)0.5(C2O4)2·H2O]·nH2O (1) and (NH4)2.7Pu(III)0.7U(IV)1.3(C2O4)5·nH2O (2) have been prepared by the diffusion of different ions through membranes separating compartments of a triple cell. UV-vis, Raman, and thermal ionization mass spectrometry analyses demonstrate the presence of both uranium and plutonium metal cations with conservation of the initial oxidation state, U(IV) and Pu(III), and the formation of mixed-valence, mixed-actinide oxalate compounds. The structure of 1 and an average structure of 2 were determined by single-crystal X-ray diffraction and were solved by direct methods and Fourier difference techniques. Compounds 1 and 2 are the first mixed uranium(IV)-plutonium(III) compounds to be structurally characterized by single-crystal X-ray diffraction. The structure of 1, space group P4/n, a = 8.8558(3) Å, b = 7.8963(2) Å, Z = 2, consists of layers formed by four-membered rings of the two actinide metals occupying the same crystallographic site connected through oxalate ions. The actinide atoms are nine-coordinated by oxygen atoms from four bidentate oxalate ligands and one water molecule, which alternates up and down the layer. The single-charged cations and nonbonded water molecules are disordered in the same crystallographic site. For compound 2, an average structure has been determined in space group P6/mmm with a = 11.158(2) Å and c = 6.400(1) Å. The honeycomb-like framework [Pu(III)0.7U(IV)1.3(C2O4)5](2.7-) results from a three-dimensional arrangement of mixed (U0.65Pu0.35)O10 polyhedra connected by five bis-bidentate μ(2)-oxalate ions in a trigonal-bipyramidal configuration. PMID:23577593

  3. CALCIUM SULFITE CRYSTAL SIZING STUDIES

    EPA Science Inventory

    The report describes a reliable experimental method that can be used routinely to determine the crystal size distribution function, a measure that is required for a mathematical representation of the nucleation and growth processes involved in the settling, dewatering, and dispos...

  4. [Multiple calcium oxalate stone formation in a patient with glycogen storage disease type I (von Gierke's disease) and renal tubular acidosis type I: a case report].

    PubMed

    Kanematsu, A; Segawa, T; Kakehi, Y; Takeuchi, H

    1993-07-01

    A case of multiple urinary stones in a patient with glycogen storage disease type 1 (GSD-1) is reported. In spite of the presence of hyperuricemia, these stones did not consist of uric acid, but mainly of calcium oxalate. Laboratory studies revealed distal renal tubular acidosis and hypocitraturia, but no significant abnormality in calcium metabolism. We discussed the mechanism of calcium stone formation in our case, and its prophylactic treatment by oral administration of citrate compound. PMID:8362684

  5. Influence of prednisolone on urinary calcium oxalate and struvite relative supersaturation in healthy young adult female domestic shorthaired cats.

    PubMed

    Geyer, Nicole; Bartges, Joseph W; Kirk, Claudia A; Cox, Sherry; Hezel, Alisha; Moyers, Tammy; Hayes, Jimmy

    2007-01-01

    Prednisolone (10 mg PO q24h) or placebo was administered to healthy cats for 2 weeks in a masked, placebo-controlled, crossover-design study, and 24-hour urine samples were collected. When cats received prednisolone, 24-hour urine pH was lower and 24-hour urine excretion of creatinine, magnesium, phosphate, and potassium was higher than when cats received placebo. No significant difference was found in urinary relative supersaturation for calcium oxalate (CaOx) or struvite between treatment groups. Prednisolone administration did not induce diuresis, nor was it associated with increased calcium excretion or urinary saturation for CaOx in these healthy cats. Results of this study, however, should not be extrapolated to cats that form CaOx uroliths associated with idiopathic hypercalcemia. PMID:18183542

  6. The paradoxical role of urinary macromolecules in the aggregation of calcium oxalate: a further plea to increase diuresis in stone metaphylaxis.

    PubMed

    Baumann, J M; Affolter, B

    2016-08-01

    This study was designed to get information on aggregation (AGN) of urinary calcium oxalate crystals (CaOx) which seems to occur in stone formation despite a protecting coat of urinary macromolecules (UMs). CaOx crystallization was directly produced in urine, control and albumin solution by Ox titration and was spectrophotometrically followed. A rapid decrease of optical density indicating AGN was absent in 14 of 15 freshly voided urines of 5 healthy controls. However, in the presence of UM-coated hydroxyapatite all urines with relative high sodium concentration, being an indicator of concentrated urine, showed a pronounced AGN which was abolished when these urines were diluted. Albumin relatively found to be an inhibitor of AGN showed after temporary adsorption on Ca Phosphate (CaP) massive self-AGN and changed to a promoter of CaOx AGN. Self-AGN after adsorption on surfaces especially of CaP, being an important compound of Randall's plaques, can thus explain this paradoxical behavior of UMs. Aggregated UMs probably bridge zones of electrostatic repulsion between UM-coated crystals with identical electrical surface charge. These zones extend by urine dilution which decreases ionic strength. Diminution of urinary concentration by increasing diuresis seems, therefore, to be important in stone metaphylaxis. PMID:26920852

  7. Surface aggregation of urinary proteins and aspartic acid-rich peptides on the faces of calcium oxalate monohydrate investigated by in situ force microscopy

    SciTech Connect

    Weaver, M L; Qiu, S R; Hoyer, J R; Casey, W H; Nancollas, G H; De Yoreo, J J

    2008-05-28

    The growth of calcium oxalate monohydrate in the presence of Tamm-Horsfall protein (THP), osteopontin (OPN), and the 27-residue synthetic peptides (DDDS){sub 6}DDD and (DDDG){sub 6}DDD [where D = aspartic acid and X = S (serine) or G (glycine)] was investigated via in situ atomic force microscopy (AFM). The results show that these three growth modulators create extensive deposits on the crystal faces. Depending on the modulator and crystal face, these deposits can occur as discrete aggregates, filamentary structures, or uniform coatings. These proteinaceous films can lead to either the inhibition or increase of the step speeds (with respect to the impurity-free system) depending on a range of factors that include peptide or protein concentration, supersaturation and ionic strength. While THP and the linear peptides act, respectively, to exclusively increase and inhibit growth on the (-101) face, both exhibit dual functionality on the (010) face, inhibiting growth at low supersaturation or high modulator concentration and accelerating growth at high supersaturation or low modulator concentration. Based on analyses of growth morphologies and dependencies of step speeds on supersaturation and protein or peptide concentration, we argue for a picture of growth modulation that accounts for the observations in terms of the strength of binding to the surfaces and steps and the interplay of electrostatic and solvent-induced forces at crystal surface.

  8. Oral Reference Dose for ethylene glycol based on oxalate crystal-induced renal tubule degeneration as the critical effect

    SciTech Connect

    Snellings, William M.; Corley, Richard A.; McMartin, K. E.; Kirman, Christopher R.; Bobst, Sol M.

    2013-03-31

    Several risk assessments have been conducted for ethylene glycol (EG). These assessments identified the kidney as the primary target organ for chronic effects. None of these assessments have incorporated the robust database of species-specific toxicokinetic and toxicodynamic studies with EG and its metabolites in defining uncertainty factors used in reference value derivation. Pertinent in vitro and in vivo studies related to one of these metabolites, calcium oxalate, and its role in crystal-induced nephropathy are summarized, and the weight of evidence to establish the mode of action for renal toxicity is reviewed. Previous risk assessments were based on chronic rat studies using a strain of rat that was later determined to be less sensitive to the toxic effects of EG. A recently published 12-month rat study using the more sensitive strain (Wistar) was selected to determine the point of departure for a new risk assessment. This approach incorporated toxicokinetic and toxicodynamic data and used Benchmark Dose methods to calculate a Human Equivalent Dose. Uncertainty factors were chosen, depending on the quality of the studies available, the extent of the database, and scientific judgment. The Reference Dose for long-term repeat oral exposure to EG was determined to be 15 mg/kg bw/d.

  9. Metabolomics analysis for hydroxy-L-proline-induced calcium oxalate nephrolithiasis in rats based on ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry.

    PubMed

    Gao, Songyan; Yang, Rui; Peng, Zhongjiang; Lu, Hongtao; Li, Na; Ding, Jiarong; Cui, Xingang; Chen, Wei; Dong, Xin

    2016-01-01

    About 80% of kidney stones are composed of calcium oxalate (CaOx) with variable amounts of calcium phosphate, and hyperoxaluria is considered as an important factor of CaOx nephrolithiasis. However, the underlying metabolic mechanisms of CaOx nephrolithiasis remain undefined. In this study, we successfully developed a rat model with hydroxy-L-proline (HLP) -induced CaOx nephrolithiasis. Rats were continuously orally administrated with HLP for 28 days. Urine and blood samples were collected from the rats treated with or without HLP at four different time points. UPLC-Q-TOF/MS was applied to profile the abundances of metabolites. To obtain more comprehensive analysis of metabolic profiling spectrum, combination of RP-LC and HILIC were applied. We identify 42 significant differential metabolites in the urine, and 13 significant differential metabolites in the blood. Pathway analysis revealed that the pathways involved in amino acid metabolism, taurine metabolism, bile acid synthesis, energy metabolism, TCA cycle, purine metabolism, vitamin metabolism, nicotinic acid and nicotinamide metabolism have been modulated by HLP treatment. This study suggested that a number of metabolic pathways are dysfunctional in the HLP induced crystal kidney injury, and further studies on those pathways are warranted to better understand the metabolic mechanism of CaOx nephrolithiasis. PMID:27443631

  10. Metabolomics analysis for hydroxy-L-proline-induced calcium oxalate nephrolithiasis in rats based on ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry

    PubMed Central

    Gao, Songyan; Yang, Rui; Peng, Zhongjiang; Lu, Hongtao; Li, Na; Ding, Jiarong; Cui, Xingang; Chen, Wei; Dong, Xin

    2016-01-01

    About 80% of kidney stones are composed of calcium oxalate (CaOx) with variable amounts of calcium phosphate, and hyperoxaluria is considered as an important factor of CaOx nephrolithiasis. However, the underlying metabolic mechanisms of CaOx nephrolithiasis remain undefined. In this study, we successfully developed a rat model with hydroxy-L-proline (HLP) -induced CaOx nephrolithiasis. Rats were continuously orally administrated with HLP for 28 days. Urine and blood samples were collected from the rats treated with or without HLP at four different time points. UPLC–Q-TOF/MS was applied to profile the abundances of metabolites. To obtain more comprehensive analysis of metabolic profiling spectrum, combination of RP-LC and HILIC were applied. We identify 42 significant differential metabolites in the urine, and 13 significant differential metabolites in the blood. Pathway analysis revealed that the pathways involved in amino acid metabolism, taurine metabolism, bile acid synthesis, energy metabolism, TCA cycle, purine metabolism, vitamin metabolism, nicotinic acid and nicotinamide metabolism have been modulated by HLP treatment. This study suggested that a number of metabolic pathways are dysfunctional in the HLP induced crystal kidney injury, and further studies on those pathways are warranted to better understand the metabolic mechanism of CaOx nephrolithiasis. PMID:27443631

  11. Oxalate content of soybean seeds (Glycine max: Leguminosae), soyfoods, and other edible legumes.

    PubMed

    Massey, L K; Palmer, R G; Horner, H T

    2001-09-01

    Consumption of soybeans and food products made from them is increasing because of their desirable nutritional value. However, the oxalate content of seeds from 11 cultivars of soybean showed relatively high levels of total oxalate from 0.67 to 3.5 g/100 g of dry weight. Oxalate primarily was found as calcium oxalate crystals. Thirteen tested commercial soyfoods contained between 16 and 638 mg of total oxalate per serving. These values compare to those of three other legume foods, peanut butter, refried beans, and lentils, which contained 197, 193, and 100 mg of total oxalate per serving, respectively. After oxalate has been absorbed from the diet, it cannot be metabolized and is excreted by the kidney into urine, where it binds to calcium forming an insoluble salt that may precipitate to form kidney stones. The amounts of total oxalate in soybean seeds, soy foods, and other common legume foods exceed current recommendations for oxalate consumption by individuals who have a history of calcium oxalate kidney/urinary stones. This study serves as the basis to find soybean cultivars lower in oxalate, which will have lower risk for kidney stone formation after human consumption. PMID:11559120

  12. Serum Estradiol and Testosterone Levels in Kidney Stones Disease with and without Calcium Oxalate Components in Naturally Postmenopausal Women

    PubMed Central

    Ou, Lili; Duan, Xiaolu; Zeng, Guohua

    2013-01-01

    Objective Epidemiological data reveal that the overall risk for kidney stones disease is lower for women compared to age-matched men. However, the beneficial effect for the female sex is lost upon menopause, a time corresponding to the onset of fall in estrogen levels. The aim of this study was to describe the serum estradiol (E2) and testosterone (T) characteristics of naturally postmenopausal women with kidney stones. Methods 113 naturally postmenopausal women with newly diagnosed kidney stones (aged 57.4±4.98 years) and 84 age frequency matched stone-free controls (56.9±4.56 years) were validly recruited in the case-control study. The odds ratios (ORs) for the associations between sex hormones and kidney stones were estimated with logistic regression models, adjusting for demographic data and medical history. Patients were also stratified analyzed according to stone components (calcium oxalate stones [COS]; non-calcium oxalate stones [NCOS]). Results Serum E2 (21.1 vs. 31.1 pg/ml) was significantly lower in kidney stones patients compared to controls. Post-hoc analysis demonstrated that this effect was driven by COS patients (p<0.001). According to tertiles of the E2 levels, a significant higher frequency of COS was seen in the lowest E2 group (p <0.001). Multiple logistic regression analysis identified E2 level as a strong factor that was independently associated with the risk for COS (per 1 SD increase, OR=0.951, 95% confidence interval [CI] = 0.919-0.985; highest: lowest tertile, OR=0.214, 95%CI = 0.069-0.665). However, serum T levels did not significantly differ among the groups. Conclusions Naturally postmenopausal women with higher remaining estradiol levels appear less likely to suffer from kidney calcium oxalate stones. However, no correlation was found between serum T level and kidney stones. These findings support the hypothesis that higher postmenopausal endogenous estrogens may protect against kidney stones with ageing. PMID:24086550

  13. Evaluation of oxalate decarboxylase and oxalate oxidase for industrial applications.

    PubMed

    Cassland, Pierre; Sjöde, Anders; Winestrand, Sandra; Jönsson, Leif J; Nilvebrant, Nils-Olof

    2010-05-01

    Increased recirculation of process water has given rise to problems with formation of calcium oxalate incrusts (scaling) in the pulp and paper industry and in forest biorefineries. The potential in using oxalate decarboxylase from Aspergillus niger for oxalic acid removal in industrial bleaching plant filtrates containing oxalic acid was examined and compared with barley oxalate oxidase. Ten different filtrates from chemical pulping were selected for the evaluation. Oxalate decarboxylase degraded oxalic acid faster than oxalate oxidase in eight of the filtrates, while oxalate oxidase performed better in one filtrate. One of the filtrates inhibited both enzymes. The potential inhibitory effect of selected compounds on the enzymatic activity was tested. Oxalate decarboxylase was more sensitive than oxalate oxidase to hydrogen peroxide. Oxalate decarboxylase was not as sensitive to chlorate and chlorite as oxalate oxidase. Up to 4 mM chlorate ions, the highest concentration tested, had no inhibitory effect on oxalate decarboxylase. Analysis of the filtrates suggests that high concentrations of chlorate present in some of the filtrates were responsible for the higher sensitivity of oxalate oxidase in these filtrates. Oxalate decarboxylase was thus a better choice than oxalate oxidase for treatment of filtrates from chlorine dioxide bleaching. PMID:19763895

  14. Potential role of fluctuations in the composition of renal tubular fluid through the nephron in the initiation of Randall's plugs and calcium oxalate crystalluria in a computer model of renal function.

    PubMed

    Robertson, W G

    2015-01-01

    This article describes an updated computer model which attempts to simulate known renal reabsorption and secretion activity through the nephron (NEPHROSIM) and its possible relevance to the initiation of calcium-containing renal stones. The model shows that, under certain conditions of plasma composition, de novo nucleation of both calcium oxalate (CaOx) and calcium phosphate (CaP) can take place at the end of the descending limb of the Loop of Henle (DLH), particularly in untreated, recurrent idiopathic CaOx stone-formers (RSF). The model incorporates a number of hydrodynamic factors that may influence the subsequent growth of crystals nucleated at the end of the DLH as they progress down the renal tubules. These include the fact that (a) crystals of either CaOx or CaP nucleated at the end of the DLH and travelling close to the walls of the tubule travel at slower velocities than the fluid flowing at the central axis of the tubule, (b) the transit of CaOx crystals travelling close to the tubule walls may be delayed for up to at least 25 min, during which time the crystals may continue to grow if the relative supersaturation with respect to CaOx (RSS CaOx) is high enough and (c) such CaOx crystals may stop moving or even fall back in upward-draining collecting ducts (CD) owing to the Stokes gravitational effect. The model predicts, firstly, that for small, transient increases in plasma oxalate concentration, crystallisation only takes place in the CD and leads to the formation of small crystals which are comfortably passed in the urine and, secondly, that for slightly greater increases in the filtered load of oxalate, spontaneous and/or heterogeneous nucleation of CaOx may occur both at the end of the DLH and in the CD. This latter situation leads to the passage in the final urine of a mixture of large crystals of CaOx (arising from nucleation at the end of the DLH) and small crystals of CaOx (as a result of nucleation originating in the CD). As a result of the

  15. Experimental determination of multiple thermodynamic and kinetic risk factors for nephrolithiasis in the urine of healthy controls and calcium oxalate stone formers: does a universal discriminator exist?

    PubMed

    Rodgers, A L; Webber, D; Hibberd, B

    2015-11-01

    Nephrolithiasis is thought to be governed by urinary thermodynamic and kinetic risk factors. However, identification of one or more of these factors which consistently and unambiguously differentiates between healthy subjects (N) and calcium oxalate (CaOx) renal stone patients (SF) remains elusive. The present study addresses this challenge. 24 h urines were collected from 15 N and 10 SF. Urine compositions were used to compute thermodynamic risk indices including urinary ratios, quotients and supersaturation (SS) values, while CaOx metastable limits (MSL) were determined experimentally. Crystallisation kinetics was determined by measuring rates of particle formation (number, volume, size) using a Coulter counter multisizer (CC) and a Coulter flow cytometer (FC). Particle shapes were qualitatively differentiated by FC and were viewed directly by scanning electron microscopy. Several urinary composition ratios and risk quotients were significantly different between the groups. However, there were no significant differences between CaOx MSL or SS values. Using transformed FC data, the rate of CaOx crystallisation in SF was significantly greater than in N. This was not supported by CC measurements. There were no significant differences between the groups with respect to particle size or CaOx crystal growth rates. Single and aggregated CaOx dihydrate crystals were observed in both groups with equal frequency and there were no differences in the kinetic properties of these deposits. A few CaOx monohydrate crystals were observed in SF. Although several risk factors were found to be significantly different between the groups, none of them were consistently robust when compared to other cognate factors. Arguments were readily invoked which demonstrated inter-factor inconsistencies and conflicts. We suspect that a unique discriminatory factor, such as any of those which we investigated in the present study, may not exist. PMID:26198547

  16. The osteopontin-controlled switching of calcium oxalate monohydrate morphologies in artificial urine provides insights into the formation of papillary kidney stones.

    PubMed

    Langdon, Aaron; Grohe, Bernd

    2016-10-01

    The protein osteopontin (OPN) plays an important role in preventing the formation of calcium oxalate monohydrate (COM) kidney stones. To gain insight into these mechanisms, crystallization was induced by addition of human kidney OPN to artificial urine (ionic strength comparable to urine; without citrate), and the OPN-COM interaction studied using a combination of scanning electron (SEM) and confocal microscopy. By SEM, we found that increasing OPN concentrations formed large monoclinic penetration twins (no protein added) and, at higher concentrations (1-, 2μg/ml OPN), super and hyper twins with crystal habits not found in previous studies. For instance, the hyper twins indicate well-facetted gearwheel-like habits with "teeth" developed in all crystallographic directions. At OPN concentrations ≥2μg/ml, a switching to small dumbbell-shaped COM habits with fine-textured surfaces occurred. Confocal microscopy of these dumbbells indicates protein incorporation in almost the entire crystal structure (in contrast to facetted COM), proposing a threshold concentration of ∼2μg/ml OPN for the facetted to the non-facetted habit transformation. Both the gearwheel-like and the dumbbell-shaped habit are again found side-by-side (presumably triggered by OPN concentration gradients within the sample) in in-vitro formed conglomerates, which resemble cross-sections of papillary kidney stones. The abrupt transformation from facetted to non-facetted habits and the unique compliance of the two in-vitro formed habits with the two main morphologies found in papillary kidney stones propose that OPN is a main effector in direct stone-forming processes. Moreover, stone structures which exhibit these two morphologies side-by-side might serve as a novel indicator for OPN concentrations surrounding those structures. PMID:27362921

  17. Acute oxalate nephropathy due to 'Averrhoa bilimbi' fruit juice ingestion.

    PubMed

    Bakul, G; Unni, V N; Seethaleksmy, N V; Mathew, A; Rajesh, R; Kurien, G; Rajesh, J; Jayaraj, P M; Kishore, D S; Jose, P P

    2013-07-01

    Irumban puli (Averrhoa bilimbi) is commonly used as a traditional remedy in the state of Kerala. Freshly made concentrated juice has a very high oxalic acid content and consumption carries a high risk of developing acute renal failure (ARF) by deposition of calcium oxalate crystals in renal tubules. Acute oxalate nephropathy (AON) due to secondary oxalosis after consumption of Irumban puli juice is uncommon. AON due to A. bilimbi has not been reported before. We present a series of ten patients from five hospitals in the State of Kerala who developed ARF after intake of I. puli fruit juice. Seven patients needed hemodialysis whereas the other three improved with conservative management. PMID:23960349

  18. Poly(acrylic acid) to induce competitive crystallization of a theophylline/oxalic acid cocrystal and a theophylline polymorph

    NASA Astrophysics Data System (ADS)

    Jang, Jisun; Kim, Il Won

    2016-01-01

    Polymeric additives to induce competitive crystallization of pharmaceutical compounds were explored. A cocrystal of theophylline and oxalic acid was used as a model system, and poly(acrylic acid), poly(caprolactone), and poly(ethylene glycol) were the additives. The cocrystal formation was selectively hindered with addition of poly(acrylic acid). First the size of the cocrystals were reduced, and eventually the cocrystallization was inhibited to generate neat theophylline crystals. The theophylline crystals were of a distinctively different crystal structure from known polymorphs, based on powder X-ray diffraction. They were also obtained in nanoscale size, when millimeter-scale crystals formed without poly(acrylic acid). Polymeric additives that could form specific interactions with crystallizing compounds seem to be useful tools for the phase and size control of pharmaceutical crystals.

  19. Diagnosis and clinical manifestations of calcium pyrophosphate and basic calcium phosphate crystal deposition diseases.

    PubMed

    Ea, Hang-Korng; Lioté, Frédéric

    2014-05-01

    Basic calcium phosphate and pyrophosphate calcium crystals are the 2 main calcium-containing crystals that can deposit in all skeletal tissues. These calcium crystals give rise to numerous manifestations, including acute inflammatory attacks that can mimic alarming and threatening differential diagnoses, osteoarthritis-like lesions, destructive arthropathies, and calcific tendinitis. Awareness of uncommon localizations and manifestations such as intraspinal deposition (eg, crowned dens syndrome, tendinitis of longus colli muscle, massive cervical myelopathy compression) prevents inappropriate procedures and cares. Coupling plain radiography, ultrasonography, computed tomography, and synovial fluid analysis allow accurate diagnosis by directly or indirectly identifying the GRAAL of microcrystal-related symptoms. PMID:24703344

  20. Nanouric acid or nanocalcium phosphate as central nidus to induce calcium oxalate stone formation: a high-resolution transmission electron microscopy study on urinary nanocrystallites

    PubMed Central

    Gao, Jie; Xue, Jun-Fa; Xu, Meng; Gui, Bao-Song; Wang, Feng-Xin; Ouyang, Jian-Ming

    2014-01-01

    Purpose This study aimed to accurately analyze the relationship between calcium oxalate (CaOx) stone formation and the components of urinary nanocrystallites. Method High-resolution transmission electron microscopy (HRTEM), selected area electron diffraction, fast Fourier transformation of HRTEM, and energy dispersive X-ray spectroscopy were performed to analyze the components of these nanocrystallites. Results The main components of CaOx stones are calcium oxalate monohydrate and a small amount of dehydrate, while those of urinary nanocrystallites are calcium oxalate monohydrate, uric acid, and calcium phosphate. The mechanism of formation of CaOx stones was discussed based on the components of urinary nanocrystallites. Conclusion The formation of CaOx stones is closely related both to the properties of urinary nanocrystallites and to the urinary components. The combination of HRTEM, fast Fourier transformation, selected area electron diffraction, and energy dispersive X-ray spectroscopy could be accurately performed to analyze the components of single urinary nanocrystallites. This result provides evidence for nanouric acid and/or nanocalcium phosphate crystallites as the central nidus to induce CaOx stone formation. PMID:25258530

  1. Oxalate in grain amaranth.

    PubMed

    Gélinas, Bruce; Seguin, Philippe

    2007-06-13

    Grain amaranth (Amaranthus spp.) is a widely adaptable C4 pseudo-cereal crop that has interesting nutritional characteristics including high protein and calcium concentrations and a lack of gluten. To date, no antinutrient has been found at problematic levels in grain amaranth; however, oxalate has not been thoroughly studied. Dietary oxalate is a potential risk factor for kidney stone development, and its presence in food lowers calcium and magnesium availability. Oxalate concentration and forms and calcium and magnesium concentrations were determined in 30 field-grown grain amaranth genotypes from the species A. cruentus, A. hybrid, and A. hypochondriacus. The effects of seeding date and fertilization with calcium ammonium nitrate were evaluated in field experiments conducted in multiple environments; the effects of cooking were also evaluated. Mean total oxalate concentration in the 30 genotypes analyzed was 229 mg/100 g, with values ranging between 178 and 278 mg/100 g, the greatest proportion being insoluble (average of 80%). Calcium concentration averaged 186 mg/100 g and ranged between 134 and 370 mg/100 g, whereas magnesium averaged 280 mg/100 g and ranged between 230 and 387 mg/100 g. Fertilization only marginally increased total oxalate concentration and had no effects on other variables. Seeding date had no effects on any of the variables studied. Boiling increased the proportion of soluble oxalate but did not affect total oxalate concentration. Grain amaranth can be considered a high oxalate source, however, as most is in insoluble form, and due to its high calcium and magnesium concentrations, oxalate absorbability could be low. This should be confirmed by bioavailability studies. PMID:17511467

  2. The role of interfacial chemistry in surface nucleation and growth of calcium oxalate

    SciTech Connect

    Song, L.; Campbell, A.A.; Bunker, B.C.

    1993-06-01

    The surface adsorption of Ca{sup 2+} and oxalate anions (Ox{sup 2{minus}}) on SiO{sub 2}, TiO{sub 2} and Al{sub 2}O{sub 3} oxide colloids were by electrosonic amplitude measurements. Kinetics studies of CaO{sub x} formation on the model oxide surfaces were carried out using constant composition method. Results suggested Ca{sup 2+} and Ox{sup 2{minus}} adsorptiopn was promoted on the oxide surfaces with opposite charges, and the specific adsorption of the divalent ions also resulted in surface charge reversal. For heterogeous nucleation of CaO{sub x} on the three model oxide surfaces, induction times ranged from 270 to 360 minutes compared with 1200 minutes estimated for homogeneous nucleation and 700 minutes for spontaneous or nucleation at pH 6.5 and S = 3.3. Lower nucleation barriers, 27 mJ/m{sup 2} for SiO{sub 2}, 26 mJ/m{sup 2} for TiO{sub 2}, were observed by studying the dependence of nucleation induction times as the function of solution supersaturation.

  3. Theoretical and experimental studies of the molecular orbital bonding coefficients for Cu2+ ion in cesium hydrogen oxalate single crystals

    NASA Astrophysics Data System (ADS)

    Kalfaoǧlu, Emel; Karabulut, Bünyamin

    2016-03-01

    Electron paramagnetic resonance (EPR) and optical absorption spectra of Cu2+ ions in cesium hydrogen oxalate single crystals have been investigated at room temperature. The spin-Hamiltonian parameters (g and A), have been determined. Crystalline field around the Cu2+ ion is almost axially symmetric. The results show a single paramagnetic site which confirms the triclinic crystal symmetry. Molecular orbital bonding coefficients are studied from the EPR and optical data. Theoretical octahedral field parameter and the tetragonal field parameters have been evaluated from the superposition model. Using these parameters, various bonding parameters are analyzed and the nature of bonding in the complex is discussed. The theoretical results are supported by experimental results.

  4. Growth, structural, thermal, dielectric, mechanical and optical characterization of 2, 3-Dimethoxy-10-oxostrychnidinium hydrogen oxalate dihydrate single crystal

    NASA Astrophysics Data System (ADS)

    Krishnan, P.; Gayathri, K.; Jayasakthi, M.; Gunasekaran, S.; Anbalagan, G.

    2013-11-01

    Single crystal of 2, 3-Dimethoxy-10-oxostrychnidinium hydrogen oxalate dihydrate has been grown by slow evaporation solution growth technique (SEST) using ethanol-water solution at room temperature. It crystallizes in the orthorhombic system with space group of P212121. The crystalline perfection of the grown single crystal has been examined by high resolution X-ray diffraction analysis (HRXRD). The optical absorption studies show that the crystal is transparent in the visible region with a lower cut-off wavelength of 342 nm and the optical energy band gap Eg is found to be 3.52 eV. The electrical properties have been assessed by dielectric measurement at different temperatures. Hardness values measured using Vickers hardness indenter show considerable anisotropy. Laser damage threshold study is also carried out for the grown crystal.

  5. Calcium oxalate is the main toxic component in clinical presentations of alocasis macrorrhiza (L) Schott and Endl poisonings.

    PubMed

    Lin, T J; Hung, D Z; Hu, W H; Yang, D Y; Wu, T C; Deng, J F

    1998-04-01

    Alocasia macrorrhiza (L) Schott and Endl is called Hai Yu, Tien Ho, Shan Yu, Kuan Yin Lien, Tu Chiao lien, Lao Hu Yu and Lang Du in Chinese. Its common English name is Giant Elephant's Ear. The toxic effects of A macrorrhiza arise from sapotoxin and include gastroenteritis and paralysis of the nerve centers. From 1985 to 1993 all individuals who called the Poison Control Center asking for information regarding macrorrhiza were included in this retrospective study. A questionnaire filled out by the Poison Control Center staff collected the demographic data of the victim, the reason for consumption, the prescribed part, clinical symptoms and signs of the victim, and medical outcome of poisonings. Among 27 cases of A macrorrhiza poisoning, the age was 1.5 to 68 y with 12 females and 15 males. One had skin contact and 1 had eye contact. In the 25 cases that consumed the plant leaf or tuber either raw or cooked, the primary symptom was in injected sore throat and the secondary symptom was numbness of the oral cavity. Some patients had salivation, dysphonia, abdominal pain, ulcers of the oral cavity, difficulty in swallowing, thoracodynia, chest tightness and swollen lips. We believe the presence of sapotoxin alone is not sufficient to explain the injected swollen and ulcerative lesions. Calcium oxalate is reported distributed in the entire plant and results in inflammation of the oral cavity and mucous membranes just as our patients had. PMID:9554063

  6. Do teas rich in antioxidants reduce the physicochemical and peroxidative risk factors for calcium oxalate nephrolithiasis in humans? Pilot studies with Rooibos herbal tea and Japanese green tea.

    PubMed

    Rodgers, A; Mokoena, M; Durbach, I; Lazarus, J; de Jager, S; Ackermann, H; Breytenbach, I; Okada, A; Usami, M; Hirose, Y; Ando, R; Yasui, T; Kohri, K

    2016-08-01

    Several experimental and animal studies have demonstrated that substances rich in antioxidants can reduce the physicochemical and peroxidative risk factors for calcium oxalate (CaOx) renal stone formation in urine and blood. However, there are very few such investigations in humans. In the present pilot study, two varieties of tea, a green one from Japan (JGT) and a herbal one from South Africa (Rooibos) (RT), both rich in antioxidants, were administered to a group of CaOx stone formers (SF) (n = 8) for 30 days. Both teas were analysed for polyphenols by high-performance liquid chromatography and for minerals by plasma atomic and optical emission spectroscopy. 24 h urines (baseline and day 30) were analysed for lithogenic factors. CaOx metastable limits and crystal nucleation and growth kinetics were also determined in each urine sample. Deposited crystals were inspected by scanning electron microscopy. Blood samples were collected (baseline and day 30). Biomarkers of oxidative stress including plasma and urinary thiobarbituric acid reactive substances (TBARS) and urinary N-acetyl-β-D-glucosaminidase (NAG) were also determined. Urinary physicochemical risk factors were also investigated after ingestion of RT for 30 days in two control groups (CG1 and CG2), the latter one of which consisted of habitual JGT drinkers. Statistical analyses were performed using Wilcoxon signed rank tests and Mann-Whitney tests for paired and independent measurements, respectively. Several flavonoids and catechins were quantified in RT and JGT, respectively, confirming that both teas are rich sources of antioxidants. Mineral content was found to be far below dietary reference intakes. There were no significant changes in any of the urinary physicochemical or peroxidative risk factors in the control groups or in SF, except for the supersaturation (SS) of brushite (Bru) which decreased in the latter group after ingestion of JGT. Crystal morphology showed a tendency to change from

  7. Massive excretion of calcium oxalate from late prepupal salivary glands of Drosophila melanogaster demonstrates active nephridial-like anion transport.

    PubMed

    Farkaš, Robert; Pečeňová, Ludmila; Mentelová, Lucia; Beňo, Milan; Beňová-Liszeková, Denisa; Mahmoodová, Silvia; Tejnecký, Václav; Raška, Otakar; Juda, Pavel; Svidenská, Silvie; Hornáček, Matúš; Chase, Bruce A; Raška, Ivan

    2016-08-01

    The Drosophila salivary glands (SGs) were well known for the puffing patterns of their polytene chromosomes and so became a tissue of choice to study sequential gene activation by the steroid hormone ecdysone. One well-documented function of these glands is to produce a secretory glue, which is released during pupariation to fix the freshly formed puparia to the substrate. Over the past two decades SGs have been used to address specific aspects of developmentally-regulated programmed cell death (PCD) as it was thought that they are doomed for histolysis and after pupariation are just awaiting their fate. More recently, however, we have shown that for the first 3-4 h after pupariation SGs undergo tremendous endocytosis and vacuolation followed by vacuole neutralization and membrane consolidation. Furthermore, from 8 to 10 h after puparium formation (APF) SGs display massive apocrine secretion of a diverse set of cellular proteins. Here, we show that during the period from 11 to 12 h APF, the prepupal glands are very active in calcium oxalate (CaOx) extrusion that resembles renal or nephridial excretory activity. We provide genetic evidence that Prestin, a Drosophila homologue of the mammalian electrogenic anion exchange carrier SLC26A5, is responsible for the instantaneous production of CaOx by the late prepupal SGs. Its positive regulation by the protein kinases encoded by fray and wnk lead to increased production of CaOx. The formation of CaOx appears to be dependent on the cooperation between Prestin and the vATPase complex as treatment with bafilomycin A1 or concanamycin A abolishes the production of detectable CaOx. These data demonstrate that prepupal SGs remain fully viable, physiologically active and engaged in various cellular activities at least until early pupal period, that is, until moments prior to the execution of PCD. PMID:27397870

  8. Multi-element analysis of milk by ICP-oa-TOF-MS after precipitation of calcium and proteins by oxalic and nitric acid.

    PubMed

    Husáková, Lenka; Urbanová, Iva; Šrámková, Jitka; Konečná, Michaela; Bohuslavová, Jana

    2013-03-15

    In this work a simple technique employing oxalic and nitric acid to cow's milk samples prior to analysis by inductively coupled plasma orthogonal acceleration time-of-flight mass spectrometry (ICP-oa-TOF-MS) was introduced. After the precipitation of calcium and proteins via oxalic and nitric acid, respectively, the resulting liquid phase was aspirated with a concentric glass nebulizer for ICP-TOF-MS determination of trace elements. Precipitation of proteins is essential for better separation of solid and liquid phase of modified samples. Separation of calcium as a precipitated non-soluble oxalate enables the elimination of spectral interferences originating from different calcium containing species like (40)Ca(35)Cl(+), (40)Ca(37)Cl(+), (43)Ca(16)O(+), (40)Ca(18)O(+), (44)Ca(16)O(+), (43)Ca(16)O(1)H(+) onto the determination of As, Se, Co and Ni whose assay is more difficult when using conventional quadrupole instruments. High detection capability is further an advantage as the approach enables the analysis without dilution. The methodology may serve, in addition, for a fast and sensitive determination of some other elements. After that, direct, reliable and simultaneous determination of 16 elements (Li, Be, B, V, Cr, Mn, Ni, Co, Ga, As, Se, Mo, Sn, Sb, Cs, Tl) at trace and ultra-trace levels in milk can be performed under optimum instrumental conditions and by using Rh as an internal standard. Accuracy and precision was assessed by measuring NCS ZC73015 milk powder control standard, yielding results in agreement with certified values and RSD <10%. The accuracy was also checked by comparison of the results of the proposed method with those found by a method based on a microwave-assisted digestion of real samples. PMID:23598096

  9. Alginate hydrogel-mediated crystallization of calcium carbonate

    SciTech Connect

    Ma, Yufei; Feng, Qingling

    2011-05-15

    We documented a specific method for combining calcium ions and alginate molecules slowly and continuously in the mineralization system for the purpose of understanding the mediating function of alginate on the crystallization of calcium carbonate. The alginate was involved in the nucleation and the growth process of CaCO{sub 3}. The crystal size, morphology and roughness of crystal surface were significantly influenced by the type of the alginate, which could be accounted for by the length of the G blocks in alginate. A combination of Fourier transform infrared spectroscopy and thermogravimetric analysis showed that there were the chemical interactions between the alginate and the mineral phase. This strategic approach revealed the biologically controlled CaCO{sub 3} mineralization within calcium alginate hydrogels via the selective nucleation and the confined crystallization of CaCO{sub 3}. The results presented here could contribute to the understanding of the mineralization process in hydrogel systems. -- Graphical abstract: Schematic illustration of the growth of calcite aggregates with different morphologies obtained from (a) Low G alginate gels and (b) High G alginate gels. Display Omitted highlights: > We use a specific method for combining calcium ions and alginate molecules slowly and continuously in the mineralization system to understand the mediating function of alginate on the crystallization of CaCO{sub 3} crystals. > The crystal size, morphology and crystal surface roughness are influenced by the length of G blocks in alginate. There are chemical interactions between the alginate and the mineral phase. > We propose a potential mechanism of CaCO{sub 3} crystallization within High G and Low G calcium alginate hydrogel.

  10. The role of polymer nanosurface roughness and submicron pores in improving bladder urothelial cell density and inhibiting calcium oxalate stone formation

    NASA Astrophysics Data System (ADS)

    Chun, Young Wook; Khang, Dongwoo; Haberstroh, Karen M.; Webster, Thomas J.

    2009-02-01

    Synthetic polymers have been proposed for replacing resected cancerous bladder tissue. However, conventional (or nanosmooth) polymers used in such applications (such as poly(ether) urethane (PU) and poly-lactic-co-glycolic acid (PLGA)) often fail clinically due to poor bladder tissue regeneration, low cytocompatibility properties, and excessive calcium stone formation. For the successful reconstruction of bladder tissue, polymer surfaces should be modified to combat these common problems. Along these lines, implementing nanoscale surface features that mimic the natural roughness of bladder tissue on polymer surfaces can promote appropriate cell growth, accelerate bladder tissue regeneration and inhibit bladder calcium stone formation. To test this hypothesis, in this study, the cytocompatibility properties of both a non-biodegradable polymer (PU) and a biodegradable polymer (PLGA) were investigated after etching in chemicals (HNO3 and NaOH, respectively) to create nanoscale surface features. After chemical etching, PU possessed submicron sized pores and numerous nanometer surface features while PLGA possessed few pores and large amounts of nanometer surface roughness. Results from this study strongly supported the assertion that nanometer scale surface roughness produced on PU and PLGA promoted the density of urothelial cells (cells that line the interior of the bladder), with the greatest urothelial cell densities observed on nanorough PLGA. In addition, compared to respective conventional polymers, the results provided evidence that nanorough PU and PLGA inhibited calcium oxalate stone formation; submicron pored nanorough PU inhibited calcium oxalate stone formation the most. Thus, results from the present study suggest the importance of nanometer topographical cues for designing better materials for bladder tissue engineering applications.

  11. Identification of crystals deposited in brain and kidney after xylitol administration by biochemical, histochemical, and electron diffraction methods.

    PubMed

    Evans, G W; Phillips, G; Mukherjee, T M; Snow, M R; Lawrence, J R; Thomas, D W

    1973-01-01

    The positive identification of crystals of calcium oxalate occurring in brain and kidney after xylitol administration is described. Biochemical, histochemical, conventional light and electron microscopical methods, including selected area electron diffraction, were used to characterize the crystals. PMID:4693896

  12. Identification of crystals deposited in brain and kidney after xylitol administration by biochemical, histochemical, and electron diffraction methods

    PubMed Central

    Evans, G. W.; Phillips, Gael; Mukherjee, T. M.; Snow, M. R.; Lawrence, J. R.; Thomas, D. W.

    1973-01-01

    The positive identification of crystals of calcium oxalate occurring in brain and kidney after xylitol administration is described. Biochemical, histochemical, conventional light and electron microscopical methods, including selected area electron diffraction, were used to characterize the crystals. Images PMID:4693896

  13. Acute oxalate nephropathy due to ‘Averrhoa bilimbi’ fruit juice ingestion

    PubMed Central

    Bakul, G.; Unni, V. N.; Seethaleksmy, N. V.; Mathew, A.; Rajesh, R.; Kurien, G.; Rajesh, J.; Jayaraj, P. M.; Kishore, D. S.; Jose, P. P.

    2013-01-01

    Irumban puli (Averrhoa bilimbi) is commonly used as a traditional remedy in the state of Kerala. Freshly made concentrated juice has a very high oxalic acid content and consumption carries a high risk of developing acute renal failure (ARF) by deposition of calcium oxalate crystals in renal tubules. Acute oxalate nephropathy (AON) due to secondary oxalosis after consumption of Irumban puli juice is uncommon. AON due to A. bilimbi has not been reported before. We present a series of ten patients from five hospitals in the State of Kerala who developed ARF after intake of I. puli fruit juice. Seven patients needed hemodialysis whereas the other three improved with conservative management. PMID:23960349

  14. Oxalate content of cereals and cereal products.

    PubMed

    Siener, Roswitha; Hönow, Ruth; Voss, Susanne; Seidler, Ana; Hesse, Albrecht

    2006-04-19

    Detailed knowledge of food oxalate content is of essential importance for dietary treatment of recurrent calcium oxalate urolithiasis. Dietary oxalate can contribute considerably to the amount of urinary oxalate excretion. Because cereal foods play an important role in daily nutrition, the soluble and total oxalate contents of various types of cereal grains, milling products, bread, pastries, and pasta were analyzed using an HPLC-enzyme-reactor method. A high total oxalate content (>50 mg/100 g) was found in whole grain wheat species Triticum durum (76.6 mg/100 g), Triticum sativum (71.2 mg/100 g), and Triticum aestivum (53.3 mg/100 g). Total oxalate content was comparably high in whole grain products of T. aestivum, that is, wheat flakes and flour, as well as in whole grain products of T. durum, that is, couscous, bulgur, and pasta. The highest oxalate content was demonstrated for wheat bran (457.4 mg/100 g). The higher oxalate content in whole grain than in refined grain cereals suggests that oxalic acid is primarily located in the outer layers of cereal grains. Cereals and cereal products contribute to the daily oxalate intake to a considerable extent. Vegetarian diets may contain high amounts of oxalate when whole grain wheat and wheat products are ingested. Recommendations for prevention of recurrence of calcium oxalate stone disease have to take into account the oxalate content of these foodstuffs. PMID:16608223

  15. Crystal structure of bis­[3-meth­oxy-17β-estra-1,3,5(10)-trien-17-yl] oxalate

    PubMed Central

    Harrison, William T. A.; Nahar, Lutfun; Turner, Alan B.

    2014-01-01

    In the title compound, C40H50O6, a symmetrical steroid oxalate diester, the dihedral angle between the CO2 planes of the oxalate linker is 61.5 (5)° and the C—C bond length is 1.513 (6) Å. The steroid B, C and D rings adopt half-chair, chair and envelope conformations, respectively, in both halves of the mol­ecule, which adopts an overall shallow V-shaped conformation. In the crystal, mol­ecules are linked by weak C—H⋯O inter­actions, forming a three-dimensional network. PMID:25249855

  16. Acute oxalate nephropathy associated with orlistat

    PubMed Central

    Humayun, Youshay; Ball, Kenneth C.; Lewin, Jack R.; Lerant, Anna A.; Fülöp, Tibor

    2016-01-01

    Background: Obesity is a major world-wide epidemic which has led to a surge of various weight loss-inducing medical or surgical treatments. Orlistat is a gastrointestinal lipase inhibitor used as an adjunct treatment of obesity and type 2 diabetes mellitus to induce clinically significant weight loss via fat malabsorption. Case Presentation: We describe a case of a 76-year-old female with past medical history of chronic kidney disease (baseline serum creatinine was 1.5-2.5 mg/dL), hypertension, gout and psoriatic arthritis, who was admitted for evaluation of elevated creatinine, peaking at 5.40 mg/dL. She was started on orlistat 120 mg three times a day six weeks earlier. Initial serologic work-up remained unremarkable. Percutaneous kidney biopsy revealed massive calcium oxalate crystal depositions with acute tubular necrosis and interstitial inflammation. Serum oxalate level returned elevated at 45 mm/l (normal <27). Timed 24-hour urine collection documented increased oxalate excretion repeatedly (54-96 mg/24 hour). After five renal dialysis sessions in eighth days she gradually regained her former baseline kidney function with creatinine around 2 mg/dL. Given coexisting proton-pump inhibitor therapy, only per os calcium-citrate provided effective intestinal oxalate chelation to control hyperoxaluria. Conclusions: Our case underscores the potential of medically induced fat malabsorption to lead to an excessive oxalate absorption and acute kidney injury (AKI), especially in subjects with pre-existing renal impairment. Further, it emphasizes the importance of kidney biopsy to facilitate early diagnosis and treatment. PMID:27152294

  17. Molecular mechanism of crystallization impacting calcium phosphate cements

    SciTech Connect

    Giocondi, J L; El-Dasher, B S; Nancollas, G H; Orme, C A

    2009-05-31

    In summary, SPM data has shown that (1) Mg inhibits growth on all steps but relatively high Mg/Ca ratios are needed. Extracting the mechanism of interaction requires more modeling of the kinetic data, but step morphology is consistent with incorporation. (2) Citrate has several effects depending on the citrate/Ca ratio. At the lowest concentrations, citrate increases the step free energy without altering the step kinetics; at higher concentrations, the polar step is slowed. (3) Oxalate also slows the polar step but additionally stabilizes a new facet, with a [100]{sub Cc} step. (4) Etidronate has the greatest kinetic impact of the molecules studied. At 7{micro}M concentrations, the polar step slows by 60% and a new polar step appears. However, at the same time the [10-1]{sub Cc} increases by 67%. It should be noted that all of these molecules complex calcium and can effect kinetics by altering the solution supersaturation or the Ca to HPO{sub 4}{sup 2-} ratio. For the SPM data shown, this effect was corrected for to distinguish the effect of the molecule at the crystal surface from the effect of the molecule on the solution speciation. The goal of this paper is to draw connections between fundamental studies of atomic step motion and potential strategies for materials processing. It is not our intent to promote the utility of SPM for investigating processes in cement dynamics. The conditions are spectacularly different in many ways. The data shown in this paper are fairly close to equilibrium (S=1.6) whereas the nucleation of cements is initiated at supersaturation ratios in the thousands to millions. Of course, after the initial nucleation phase, the growth will occur at more modest supersaturations and as the cement evolves towards equilibrium certainly some of the growth will occur in regimes such as shown here. In addition to the difference in supersaturation, cements tend to have lower additive to calcium ratios. As an example, the additive to Ca ratio is

  18. Turning sunlight into stone: the oxalate-carbonate pathway in a tropical tree ecosystem

    NASA Astrophysics Data System (ADS)

    Cailleau, G.; Braissant, O.; Verrecchia, E. P.

    2011-07-01

    An African oxalogenic tree, the iroko tree (Milicia excelsa), has the property to enhance carbonate precipitation in tropical oxisols, where such accumulations are not expected due to the acidic conditions in these types of soils. This uncommon process is linked to the oxalate-carbonate pathway, which increases soil pH through oxalate oxidation. In order to investigate the oxalate-carbonate pathway in the iroko system, fluxes of matter have been identified, described, and evaluated from field to microscopic scales. In the first centimeters of the soil profile, decaying of the organic matter allows the release of whewellite crystals, mainly due to the action of termites and saprophytic fungi. In addition, a concomitant flux of carbonate formed in wood tissues contributes to the carbonate flux and is identified as a direct consequence of wood feeding by termites. Nevertheless, calcite biomineralization of the tree is not a consequence of in situ oxalate consumption, but rather related to the oxalate oxidation inside the upper part of the soil. The consequence of this oxidation is the presence of carbonate ions in the soil solution pumped through the roots, leading to preferential mineralization of the roots and the trunk base. An ideal scenario for the iroko biomineralization and soil carbonate accumulation starts with oxalatization: as the iroko tree grows, the organic matter flux to the soil constitutes the litter, and an oxalate pool is formed on the forest ground. Then, wood rotting agents (mainly termites, saprophytic fungi, and bacteria) release significant amounts of oxalate crystals from decaying plant tissues. In addition, some of these agents are themselves producers of oxalate (e.g. fungi). Both processes contribute to a soil pool of "available" oxalate crystals. Oxalate consumption by oxalotrophic bacteria can then start. Carbonate and calcium ions present in the soil solution represent the end products of the oxalate-carbonate pathway. The solution is

  19. Turning sunlight into stone: the oxalate-carbonate pathway in a tropical tree ecosystem

    NASA Astrophysics Data System (ADS)

    Cailleau, G.; Braissant, O.; Verrecchia, E. P.

    2011-02-01

    An African oxalogenic tree, the iroko tree (Milicia excelsa), has the property to enhance carbonate precipitation in tropical oxisols, where such accumulations are not expected due to the theoretical acidic conditions of these soils. This uncommon process is linked to the oxalate-carbonate pathway, which increases soil pH through oxalate oxidation. In order to investigate the oxalate-carbonate pathway in the iroko system, fluxes of matter have been identified, described, and evaluated from field to microscopic scales. In the first centimeters of the soil profile, decaying of the organic matter allows the release of whewellite crystals, mainly due to the action of termites and saprophytic fungi. Regarding the carbonate flux, another direct consequence of wood feeding is a concomitant flux of carbonate formed in wood tissues, which is not consumed by termites. Nevertheless, calcite biomineralization of the tree is not a consequence of in situ oxalate consumption, but rather related to the oxalate oxidation inside the upper part of the soil. The consequence of this oxidation is the presence of carbonate ions in the soil solution pumped through the roots, leading to preferential mineralization of the roots and the trunk base. An ideal scenario for the iroko biomineralization and soil carbonate accumulation starts with oxalatization: as the iroko tree grows, the organic matter flux to the soil constitutes the litter. Therefore, an oxalate pool is formed on the forest ground. Then, wood rotting gents (mainly termites, fungi, and bacteria) release significant amounts of oxalate crystals from decaying plant tissues. In addition some of these gents are themselves producers of oxalate (fungi). Both processes contribute to a soil pool of "available" oxalate crystals. Oxalate consumption by oxalotrophic bacteria can start. Carbonate and calcium ions present in the soil solution represent the end products of the oxalate-carbonate pathway. The solution is pumped through the

  20. Crucibleless crystal growth and Radioluminescence study of calcium tungstate single crystal fiber

    NASA Astrophysics Data System (ADS)

    Silva, M. S.; Jesus, L. M.; Barbosa, L. B.; Ardila, D. R.; Andreeta, J. P.; Silva, R. S.

    2014-11-01

    In this article, single phase and high optical quality scheelite calcium tungstate single crystal fibers were grown by using the crucibleless laser heated pedestal growth technique. The as-synthesized calcium tungstate powders used for shaping seed and feed rods were investigated by X-ray diffraction technique. As-grown crystals were studied by Raman spectroscopy and Radioluminescence measurements. The results indicate that in both two cases, calcined powder and single crystal fiber, only the expected scheelite CaWO4 phase was observed. It was verified large homogeneity in the crystal composition, without the presence of secondary phases. The Radioluminescence spectra of the as-grown single crystal fibers are in agreement with that present in Literature for bulk single crystals, presented a single emission band centered at 420 nm when irradiated with β-rays.

  1. Biomimetic Mineralization of the Alginate/Gelatin/Calcium Oxalate Matrix for Immobilization of Pectinase: Influence of Matrix on the Pectinolytic Activity.

    PubMed

    Bustamante-Vargas, Cindy Elena; de Oliveira, Débora; Valduga, Eunice; Venquiaruto, Luciana Dornelles; Paroul, Natalia; Backes, Geciane Toniazzo; Dallago, Rogério Marcos

    2016-07-01

    Pectinases catalyze the degradation of pectic substances and are used in several processes, mainly in food and textile industries. In this study, a biomimetic matrix of alginate/gelatin/calcium oxalate (AGOCa) was synthesized for the in situ immobilization via encapsulation of crude pectinase from Aspergillus niger ATCC 9642, obtaining an immobilization efficiency of about 61.7 %. To determine the performance of AGOCa matrix, this was compared to control matrices of alginate/calcium oxalate (AOxal) and alginate/water (ACa). By the evaluation of pH and temperature effects on the enzyme activity, it was observed an increase on pectinolytic activity for both three tested matrices with an increase on pH and temperature. The kinetic parameters for pectinase immobilized in the three matrices were determined using citric pectin as substrate. Values of K m of 0.003, 0.0013, and 0.0022 g mL(-1) and V max of 3.85, 4.32, and 3.17 μmol min(-1) g(-1) for AGOCa, AOxal, and ACa matrices were obtained, respectively. After 33 days of storage, the pectinase immobilized in the three different matrices kept its initial activity, but that immobilized in AGOCa presented high stability to the storage with a relative activity of about 160 %. The enzyme immobilized in AGOCa, AOxal, and ACa could be used in 10, 8, and 7 cycles, respectively, keeping 40 % of its initial activity. PMID:27040530

  2. Hydrogen bonded structures in organic amine oxalates

    NASA Astrophysics Data System (ADS)

    Vaidhyanathan, R.; Natarajan, S.; Rao, C. N. R.

    2002-05-01

    Oxalates of n-propylamine, n-butylamine, ethylenediamine, 1,4-butanediamine, piperazine, guanidine and 1,4-diazabicyclo[2,2,2]octane (DABCO) have been synthesized and characterized by single crystal X-ray diffraction and other techniques. The amine oxalates show different types of hydrogen bonded networks, linear hydrogen bonded chains characterizing the oxalates of the first five amines. Guanidinium oxalate has a sheet like structure while DABCO oxalate has dimeric hydrogen bonded rings. Hydrogen bonded structures of these oxalates are discussed in detail, besides relating their thermal stability to the strengths of the networks.

  3. Bulk crystal growth, optical, mechanical and ferroelectric properties of new semiorganic nonlinear optical and piezoelectric Lithium nitrate monohydrate oxalate single crystal

    NASA Astrophysics Data System (ADS)

    Dalal, Jyoti; Kumar, Binay

    2016-01-01

    New semiorganic nonlinear optical single crystals of Lithium nitrate oxalate monohydrate (LNO) were grown by slow evaporation solution technique. Single crystal X-ray diffraction study indicated that LNO crystal belongs to the triclinic system with space group P1. Various functional groups present in the material were identified by FTIR and Raman analysis. UV-vis study showed the high transparency of crystals with a wide band gap 5.01 eV. Various Optical constants i.e. Urbach energy (Eu), extinction coefficient (K), refractive index, optical conductivity, electric susceptibility with real and imaginary parts of dielectric constant were calculated using the transmittance data which have applications in optoelectronic devices. A sharp emission peak was found at 438 nm in photoluminescence measurement, which revealed suitability of crystal for fabricating violet lasers. In dielectric studies, a peak has been observed at 33 °C which is due to ferroelectric to paraelectric phase transition. Piezoelectric charge coefficients (d33 = 9.2 pC/N and g33) have been calculated, which make it a suitable for piezoelectric devices applications. In ferroelectric studies, a saturated loop was found in which the values of coercive field and remnant polarization were found to be 2.18 kV/cm and 0.39 μC/cm2, respectively. Thermal behavior was studied by TGA and DSC studies. The relative SHG efficiency of LNO was found to be 1.2 times that of KDP crystal. In microhardness study, Meyer's index value was found to be 1.78 which revealed its soft nature. These optical, dielectric, piezoelectric, ferroelectric, mechanical and non-linear optical properties of grown crystal establish the usefulness of this material for optoelectronics, non-volatile memory and piezoelectric devices applications.

  4. Mesoscale crystallization of calcium phosphate nanostructures in protein (casein) micelles

    NASA Astrophysics Data System (ADS)

    Thachepan, Surachai; Li, Mei; Mann, Stephen

    2010-11-01

    Aqueous micelles of the multi-protein calcium phosphate complex, casein, were treated at 60 °C and pH 7 over several months. Although partial dissociation of the micelles into 12 nm sized amorphous calcium phosphate (ACP)/protein nanoparticles occurred within a period of 14 days, crystallization of the ACP nanoclusters into bundles of hydroxyapatite (HAP) nanofilaments was not observed until after 12 weeks. The HAP nanofilaments were formed specifically within the partially disrupted protein micelles suggesting a micelle-mediated pathway of mesoscale crystallization. Similar experiments using ACP-containing synthetic micelles prepared from β-casein protein alone indicated that co-aligned bundles of HAP nanofilaments were produced within the protein micelle interior after 24 hours at temperatures as low as 35 °C. The presence of Mg2+ ions in the casein micelles, as well as a possible synergistic effect associated with the multi-protein nature of the native aggregates, could account for the marked inhibition in mesoscale crystallization observed in the casein micelles compared with the single-component β-casein constructs.Aqueous micelles of the multi-protein calcium phosphate complex, casein, were treated at 60 °C and pH 7 over several months. Although partial dissociation of the micelles into 12 nm sized amorphous calcium phosphate (ACP)/protein nanoparticles occurred within a period of 14 days, crystallization of the ACP nanoclusters into bundles of hydroxyapatite (HAP) nanofilaments was not observed until after 12 weeks. The HAP nanofilaments were formed specifically within the partially disrupted protein micelles suggesting a micelle-mediated pathway of mesoscale crystallization. Similar experiments using ACP-containing synthetic micelles prepared from β-casein protein alone indicated that co-aligned bundles of HAP nanofilaments were produced within the protein micelle interior after 24 hours at temperatures as low as 35 °C. The presence of Mg2+ ions in

  5. Crystallization Kinetics of Calcium-magnesium Aluminosilicate (CMAS) Glass

    NASA Technical Reports Server (NTRS)

    Wiesner, Valerie L.; Bansal, Narottam P.

    2015-01-01

    The crystallization kinetics of a calcium-magnesium aluminosilicate (CMAS) glass with composition relevant for aerospace applications, like air-breathing engines, were evaluated using differential thermal analysis (DTA) in powder and bulk forms. Activation energy and frequency factor values for crystallization of the glass were evaluated. X-ray diffraction (XRD) was used to investigate the onset of crystallization and the phases that developed after heat treating bulk glass at temperatures ranging from 690 to 960 deg for various times. Samples annealed at temperatures below 900 deg remained amorphous, while specimens heat treated at and above 900 deg exhibited crystallinity originating at the surface. The crystalline phases were identified as wollastonite (CaSiO3) and aluminum diopside (Ca(Mg,Al) (Si,Al)2O6). Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were employed to examine the microstructure and chemical compositions of crystalline phases formed after heat treatment.

  6. Citrus Bioflavonoids Ameliorate Hyperoxaluria Induced Renal Injury and Calcium Oxalate Crystal Deposition in Wistar Rats

    PubMed Central

    Badrinathan, Sridharan; Shiju, Micheal Thomas; Arya, Ramachandran; Rajesh, Ganesh Nachiappa; Viswanathan, Pragasam

    2015-01-01

    Purpose: Citrus is considered as a medically important plant from ancient times and the bioflavonoids of different variety of citrus fruits were well explored for their biological activities. The study aim was to explore the effect of citrus bioflavonoids (CB) to prevent and cure hyperoxaluria induced urolithiasis. Methods: Twenty four Wistar rats were segregated into 4 Groups. Group 1: Control; Group 2: Urolithic (EG-0.75%); Group 3: Preventive study (EG+CB, day 1-50); Group 4: Curative study (EG+CB, day 30-50). Animals received CB orally (20mg/kg body weight) after performing a toxicity study. Results: Urinary risk factors and serum renal function parameters were significantly reduced by CB administration in both preventive and curative study (p<0.001). Hematoxylin & Eosin and von Kossa staining demonstrated that renal protection was offered by CB against EG insult. Immunohistochemical analyses revealed over expression and abnormal localization of THP and NF-κB in urolithic rats, while it was effectively regulated by CB supplementation. Conclusion: CB prevented and significantly controlled lithogenic factors and CaOx deposition in rats. We propose CB as a potential therapy in management of urolithiasis. PMID:26504765

  7. Vertical Bridgman growth of calcium lithium niobium gallium garnet crystals

    NASA Astrophysics Data System (ADS)

    Xu, Xuewu; Chong, Tow-Chong; Zhang, Guangyu; Li, Minghua; Soo, Lay Hiok; Xu, Wei; Freeman, Bill

    2003-03-01

    The growth of calcium lithium niobium gallium garnet (CLNGG) crystal has been carried out using platinum crucibles in a vertical Bridgman (VB) furnace with three resistance-heating zones. Transparent CLNGG crystals grown from the congruent melts with and without weight loss compensation are different in color and are 25 mm in diameter and about 70 mm in length. The phase identification of the sintered raw materials, grown crystals and white compound formed on the side surface of the grown crystal has been done using the powder X-ray diffraction method. The formation of the white compound is related to the {1 0 0} facet growth near the side surface. The naturally selected growth direction of the CLNGG crystal grown without a seed is near <1 1 1> , which is in good agreement with the morphological importance analysis according to the BFDH law. The VB-grown CLNGG also shows a cleavable feature parallel to {1 1 0} face and no absorption peaks in the wavelength range of 1100-1600 nm. The linear thermal-expansion coefficient of the CLNGG crystal along <1 1 1> direction is also reported and compared with that of CNGG, GGG and platinum crucible.

  8. Pathogenic Role of Basic Calcium Phosphate Crystals in Destructive Arthropathies

    PubMed Central

    Ea, Hang-Korng; Chobaz, Véronique; Nguyen, Christelle; Nasi, Sonia; van Lent, Peter; Daudon, Michel; Dessombz, Arnaud; Bazin, Dominique; McCarthy, Geraldine; Jolles-Haeberli, Brigitte; Ives, Annette; Van Linthoudt, Daniel; So, Alexander; Lioté, Frédéric; Busso, Nathalie

    2013-01-01

    Background basic calcium phosphate (BCP) crystals are commonly found in osteoarthritis (OA) and are associated with cartilage destruction. BCP crystals induce in vitro catabolic responses with the production of metalloproteases and inflammatory cytokines such as interleukin-1 (IL-1). In vivo, IL-1 production induced by BCP crystals is both dependant and independent of NLRP3 inflammasome. We aimed to clarify 1/ the role of BCP crystals in cartilage destruction and 2/ the role of IL-1 and NLRP3 inflammasome in cartilage degradation related to BCP crystals. Methodology/ Principal Findings synovial membranes isolated from OA knees were analysed by alizarin Red and FTIR. Pyrogen free BCP crystals were injected into right knees of WT, NLRP3 -/-, ASC -/-, IL-1α -/- and IL-1β-/- mice and PBS was injected into left knees. To assess the role of IL-1, WT mice were treated by intra-peritoneal injections of anakinra, the IL-1Ra recombinant protein, or PBS. Articular destruction was studied at d4, d17 and d30 assessing synovial inflammation, proteoglycan loss and chondrocyte apoptosis. BCP crystals were frequently found in OA synovial membranes including low grade OA. BCP crystals injected into murine knee joints provoked synovial inflammation characterized by synovial macrophage infiltration that persisted at day 30, cartilage degradation as evidenced by loss of proteoglycan staining by Safranin-O and concomitant expression of VDIPEN epitopes, and increased chondrocyte apoptosis. BCP crystal-induced synovitis was totally independent of IL-1α and IL-1β signalling and no alterations of inflammation were observed in mice deficient for components of the NLRP3-inflammasome, IL-1α or IL-1β. Similarly, treatment with anakinra did not prevent BCP crystal effects. In vitro, BCP crystals elicited enhanced transcription of matrix degrading and pro-inflammatory genes in macrophages. Conclusions/ Significance intra-articular BCP crystals can elicit synovial inflammation and cartilage

  9. Crystal structure of calcium dodecin (Rv0379), from Mycobacterium tuberculosis with a unique calcium-binding site

    SciTech Connect

    Arockiasamy, Arulandu; Aggarwal, Anup; Savva, Christos G.; Holzenburg, Andreas; Sacchettini, James C.

    2011-09-28

    In eukaryotes, calcium-binding proteins play a pivotal role in diverse cellular processes, and recent findings suggest similar roles for bacterial proteins at different stages in their life cycle. Here, we report the crystal structure of calcium dodecin, Rv0379, from Mycobacterium tuberculosis with a dodecameric oligomeric assembly and a unique calcium-binding motif. Structure and sequence analysis were used to identify orthologs of Rv0379 with different ligand-binding specificity

  10. PHz current switching in calcium fluoride single crystal

    NASA Astrophysics Data System (ADS)

    Kwon, Ojoon; Kim, D.

    2016-05-01

    We demonstrate that a current can be induced and switched in a sub-femtosecond time-scale in an insulating calcium fluoride single crystal by an intense optical field. This measurement indicates that a sizable current can be generated and also controlled by an optical field in a dielectric medium, implying the capability of rapid current switching at a rate of optical frequency, PHz (1015 Hz), which is a couple of orders of magnitude higher than that of contemporary electronic signal processing. This demonstration may serve to facilitate the development of ultrafast devices in PHz frequency.

  11. The influence of xanthan on the crystallization of calcium carbonate

    NASA Astrophysics Data System (ADS)

    Yang, Xiaodeng; Xu, Guiying

    2011-01-01

    Calcium carbonate (CaCO 3) was crystallized in xanthan (XC) aqueous solutions. The CaCO 3 particles were characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and thermogravimetry analysis (TGA) methods. The concentrations of XC, Ca 2+ and CO 32- ions and the ratios [Ca 2+]/[CO 32-] and [Mg 2+]/[Ca 2+] show evident influence on the aggregation and growth of CaCO 3 particles. The presence of Mg 2+ ions influences not only the morphology, but also the polymorph of CaCO 3.

  12. Egg-white-mediated crystallization of calcium carbonate

    NASA Astrophysics Data System (ADS)

    Zheng, Liang; Hu, Yanli; Ma, Yongjun; Zhou, Yong; Nie, Fude; Liu, Xun; Pei, Chonghua

    2012-12-01

    In this paper, shape-controlled crystallization and self-assembly of CaCO3 hierarchical architectures has been successfully synthesized via the gas diffusion method in egg white solution. Stepwise growth and assembly of CaCO3 nanoparticles has been observed from transition of an amorphous CaCO3 to the crystallization and stabilization of platelet-like nanoparticles and eventually, the wool sphere-like CaCO3 hierarchical architectures assembling of nanoparticles. The proteins binding on nanoparticle surfaces proved to regulate the growth of nanoparticles and subsequent assembly into hierarchical superstructures via electrostatic and dipole interactions. The samples were characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and nano mechanical Tester. The measured average elastic modulus and the hardness of calcium carbonate hybrid materials were 5.32 GPa and 0.1886 GPa by the nano-indenter test, respectively.

  13. Recyclable chemosensor for oxalate based on bimetallic complexes of a dinucleating bis(iminopyridine) ligand.

    PubMed

    Beattie, J W; White, D S; Bheemaraju, A; Martin, P D; Groysman, S

    2014-06-01

    Herein we describe bimetallic di-nickel and di-copper complexes [Ni2(L)Br4] (1) and [Cu2(L)Br4(NCMe)2] (2) (L = (1E,1'E)-N,N'-(1,4-phenylenebis(methylene))bis(1-(6-(2,4,6-triisopropylphenyl)pyridin-2-yl)methanimine)) that bind oxalate intramolecularly to form [Ni2(L)Br2(C2O4)(NCMe)] (3) and [Cu2(L)Br2(C2O4)] (4). For the di-nickel complex 1, oxalate incorporation is accompanied by a significant colour change, from red-pink (1) to deep green (3). Mass spectrometric experiments demonstrate that the compound 1 is selective for oxalate versus related mono- and di-carboxylates tested. Oxalate can be released by the addition of slight excess of calcium bromide that forms insoluble calcium oxalate and restores the original Ni2(L)Br4 species. The product of the oxalate release was crystallized as [Ni2(L)Br4]·CaBr2(THF)4 species. PMID:24715149

  14. Crystal structure of iso­butyl­ammonium hydrogen oxalate hemihydrate

    PubMed Central

    Dziuk, Błażej; Zarychta, Bartosz; Ejsmont, Krzysztof

    2014-01-01

    In the title hydrated mol­ecular salt, C4H12N+·C2HO4 −·0.5H2O, the O atom of the water mol­ecule lies on a crystallographic twofold axis. The dihedral angle between the CO2 and CO2H planes of the anion is 18.47 (8)°. In the crystal, the anions are connected to each other by strong near-linear O—H⋯O hydrogen bonds. The water mol­ecules are located between the chains of anions and iso­butyl­amine cations; their O atoms participate as donors and acceptors, respectively, in O—H⋯O and N—H⋯O hydrogen bonds, which form channels (dimensions = 4.615 and 3.387 Å) arranged parallel to [010]. PMID:25484814

  15. Estimation of the oxalate content of foods and daily oxalate intake

    NASA Technical Reports Server (NTRS)

    Holmes, R. P.; Kennedy, M.

    2000-01-01

    BACKGROUND: The amount of oxalate ingested may be an important risk factor in the development of idiopathic calcium oxalate nephrolithiasis. Reliable food tables listing the oxalate content of foods are currently not available. The aim of this research was to develop an accurate and reliable method to measure the food content of oxalate. METHODS: Capillary electrophoresis (CE) and ion chromatography (IC) were compared as direct techniques for the estimation of the oxalate content of foods. Foods were thoroughly homogenized in acid, heat extracted, and clarified by centrifugation and filtration before dilution in water for analysis. Five individuals consuming self-selected diets maintained food records for three days to determine their mean daily oxalate intakes. RESULTS: Both techniques were capable of adequately measuring the oxalate in foods with a significant oxalate content. With foods of very low oxalate content (<1.8 mg/100 g), IC was more reliable than CE. The mean daily intake of oxalate by the five individuals tested was 152 +/- 83 mg, ranging from 44 to 352 mg/day. CONCLUSIONS: CE appears to be the method of choice over IC for estimating the oxalate content of foods with a medium (>10 mg/100 g) to high oxalate content due to a faster analysis time and lower running costs, whereas IC may be better suited for the analysis of foods with a low oxalate content. Accurate estimates of the oxalate content of foods should permit the role of dietary oxalate in urinary oxalate excretion and stone formation to be clarified. Other factors, apart from the amount of oxalate ingested, appear to exert a major influence over the amount of oxalate excreted in the urine.

  16. Fibrinogen Alpha Chain Precursor and Apolipoprotein A-I in Urine as Biomarkers for Noninvasive Diagnosis of Calcium Oxalate Nephrolithiasis: A Proteomics Study

    PubMed Central

    Zhu, Wei; Liu, Min; Wang, Guang-Chun; Peng, Bo; Yan, Yang; Che, Jian-Ping; Ma, Qing-Wei; Yao, Xu-Dong; Zheng, Jun-Hua

    2014-01-01

    Calcium oxalate nephrolithiasis is the most common urological disease, but noninvasive and convenient methods of diagnosis are rarely available. Objective. The present study aimed to identify potential urine biomarkers for noninvasive diagnosis of CaOx nephrolithiasis. Methodology. Urine samples from 72 patients with CaOx nephrolithiasis and 30 healthy controls were collected and proteomics analysis was performed using matrix-assisted laser desorption/ionization-time of flight-mass spectrometer (MALDI-TOF-MS). Results. Thirteen proteins/peptides displayed statistically significant differences. The peptides of m/z 1207.23 and 2773.86 were selected by the genetic algorithm (GA) to build a possible diagnostic model. The area under the curve of m/z 1207.23 and 2773.86 was 0.936 and 0.987, respectively. The diagnostic model in distinguishing patients and healthy subjects showed 100% sensitivity and specificity. The peak at m/z 2773.86 was identified as fibrinogen alpha chain (FGA) with the sequence G.EGDFLAEGGGVR.G, and the peak at m/z 2773.86 was identified as apolipoprotein A-I (apoA-I) with the sequence L.PVLESFKVSFLSALEEYTKKLNTQ. Conclusion. The study results strongly suggested that urinary FGA and apoA-I are highly sensitive and specific biomarkers for noninvasive diagnosis of CaOx nephrolithiasis. PMID:25147800

  17. Determination of uric acid in urine, saliva and calcium oxalate renal calculi by high-performance liquid chromatography/mass spectrometry.

    PubMed

    Perelló, Joan; Sanchis, Pilar; Grases, Félix

    2005-09-25

    A very simple and direct method for determination of uric acid, in various biological matrices, based on high-performance liquid chromatography and mass spectrometry is described. Chromatographic separations were performed with a stationary phase Zorbax Sax Column, an anion exchange resin, with 50% sodium citrate 1 mM at pH 6.5 and 50% acetonitrile as mobile phase delivered at a flow rate of 1 ml/min. The detector counted negative ions by monitoring m/z 167.1, which corresponds to the urate anion. The method does not use an internal standard but quality control samples were used. Intra-day precision ranged between 1.1 and 1.5%, whereas inter-day precision was between 1.3 and 2.8% (n=5) working with some selected standards. Recovery tests of added standard have been successfully performed in urine and saliva samples, thus showing an appropriate accuracy of the method. The limit of quantitation found was 70 microg/l. Different urine and saliva samples were analyzed using an alternative analytical methodology based on an enzymatic reaction and photometric detection at 520 nm, resulting both methods comparable at a 95% confidence level. The method has been also applied to the determination of trace amounts of uric acid in the core of some selected calcium oxalate renal calculi. PMID:16061429

  18. Biomineralization of calcium phosphate crystals on chitin nanofiber hydrogel for bone regeneration material.

    PubMed

    Kawata, Mari; Azuma, Kazuo; Izawa, Hironori; Morimoto, Minoru; Saimoto, Hiroyuki; Ifuku, Shinsuke

    2016-01-20

    We previously reported a chitin nanofiber hydrogel from squid pen β-chitin by a simple NaOH treatment. In the present study, a calcium phosphate/chitin nanofiber hydrogel was prepared for bone tissue engineering. Calcium phosphate was mineralized on the hydrogel by incubation in a solution of diammonium hydrogen phosphate solution followed by calcium nitrate tetrahydrate. X-ray diffractometry and Fourier transform infrared spectroscopy showed the formation of calcium phosphate crystals. The morphology of the calcium phosphate crystals changed depending on the calcification time. After mineralization, the mechanical properties of the hydrogel improved due to the reinforcement effect of calcium phosphate crystal. In an animal experiment, calcium phosphate/chitin nanofiber hydrogel accelerated mineralization in subcutaneous tissues. Morphological osteoblasts were observed. PMID:26572435

  19. Oxalates in some Indian green leafy vegetables.

    PubMed

    Radek, M; Savage, G P

    2008-05-01

    The soluble and total oxalate contents of 11 leafy vegetables grown in India were determined. Spinach, purple and green amaranth and colocasia contained high levels of total oxalates, which ranged from 5,138.0 +/- 37.6 mg/100 g dry matter up to 12,576.1 +/- 107.9 mg/100 g dry matter. Seven other leafy vegetables (curry, drumstick, shepu, fenugreek, coriander, radish and onion stalks) contained only insoluble oxalate, which ranged from 209.0 +/- 5.0 mg/100 g dry matter to 2,774.9 +/-18.4 mg/100 g dry matter. In vitro digestion of the samples showed that the gastric available oxalate was 10% lower than the values obtained from acid extraction and that intestinal available oxalate was 20% lower than the values obtained following hot water extraction. The percentage calcium bound in the insoluble oxalate fraction of the dried leafy vegetables ranged from 3.3% to 86.7% of the total calcium. Addition of four different sources of calcium (low fat milk, whole milk, calcium carbonate and calcium sulphate) resulted in a range of 32-100% reductions of intestinal available oxalate in the mixture. PMID:18335334

  20. Crystal structure of the epithelial calcium channel TRPV6.

    PubMed

    Saotome, Kei; Singh, Appu K; Yelshanskaya, Maria V; Sobolevsky, Alexander I

    2016-06-23

    Precise regulation of calcium homeostasis is essential for many physiological functions. The Ca(2+)-selective transient receptor potential (TRP) channels TRPV5 and TRPV6 play vital roles in calcium homeostasis as Ca(2+) uptake channels in epithelial tissues. Detailed structural bases for their assembly and Ca(2+) permeation remain obscure. Here we report the crystal structure of rat TRPV6 at 3.25 Å resolution. The overall architecture of TRPV6 reveals shared and unique features compared with other TRP channels. Intracellular domains engage in extensive interactions to form an intracellular 'skirt' involved in allosteric modulation. In the K(+) channel-like transmembrane domain, Ca(2+) selectivity is determined by direct coordination of Ca(2+) by a ring of aspartate side chains in the selectivity filter. On the basis of crystallographically identified cation-binding sites at the pore axis and extracellular vestibule, we propose a Ca(2+) permeation mechanism. Our results provide a structural foundation for understanding the regulation of epithelial Ca(2+) uptake and its role in pathophysiology. PMID:27296226

  1. Birefringence simulation of annealed ingot of calcium fluoride single crystal

    NASA Astrophysics Data System (ADS)

    Ogino, H.; Miyazaki, N.; Mabuchi, T.; Nawata, T.

    2008-01-01

    We developed a method for simulating birefringence of an annealed ingot of calcium fluoride single crystal caused by the residual stress after annealing process. The method comprises the heat conduction analysis that provides the temperature distribution during the ingot annealing, the elastic thermal stress analysis using the assumption of the stress-free temperature that provides the residual stress after annealing, and the birefringence analysis of an annealed ingot induced by the residual stress. The finite element method was applied to the heat conduction analysis and the elastic thermal stress analysis. In these analyses, the temperature dependence of material properties and the crystal anisotropy were taken into account. In the birefringence analysis, the photoelastic effect gives the change of refractive indices, from which the optical path difference in the annealed ingot is calculated by the Jones calculus. The relation between the Jones calculus and the approximate method using the stress components averaged along the optical path is discussed theoretically. It is found that the result of the approximate method agrees very well with that of the Jones calculus in birefringence analysis. The distribution pattern of the optical path difference in the annealed ingot obtained from the present birefringence calculation methods agrees reasonably well with that of the experiment. The calculated values also agree reasonably well with those of the experiment, when a stress-free temperature is adequately selected.

  2. Bilateral Olecranon Bursitis – A Rare Clinical presentation of Calcium Pyrophosphate Crystal Deposition Disease

    PubMed Central

    Patel, Jignesh; Girishkumar; Mruthyunjaya; Rupakumar, C. S

    2014-01-01

    Introduction: Calcium pyrophosphate crystal deposition disease (CPPD) is the most common form of crystal arthropathy second only to gout. Common clinical presentation is an acute monoarticular arthritis commonly occurring in knee joints. We presented a case of bilateral olecranon bursitis in a calcium pyrophosphate crystal deposition disease. Case Report: A 42-year-old female patient is presented with golf ball sized painless swellings in the posterior aspect of her elbows. Elbow joints were clinically normal except for restriction of terminal flexion. X-ray showed mild erosion at the tip of olecranon. Excision biopsy of the swelling showed positive birefringent calcium pyrophosphate dehydrate crystals on the inner wall of the specimen on polarized light microscopy. Conclusion: Bilateral olecranon bursitis may be part of the extraarticular manifestations of calcium pyrophosphate dihydrate crystal deposition disease with good prognosis following in toto bursa excision. PMID:27298934

  3. Crystal growth of calcium carbonate in silk fibroin/sodium alginate hydrogel

    NASA Astrophysics Data System (ADS)

    Ming, Jinfa; Zuo, Baoqi

    2014-01-01

    As known, silk fibroin-like protein plays a pivotal role during the formation of calcium carbonate (CaCO3) crystals in the nacre sheets. Here, we have prepared silk fibroin/sodium alginate nanofiber hydrogels to serve as templates for calcium carbonate mineralization. In this experiment, we report an interesting finding of calcium carbonate crystal growth in the silk fibroin/sodium alginate nanofiber hydrogels by the vapor diffusion method. The experimental results indicate calcium carbonate crystals obtained from nanofiber hydrogels with different proportions of silk fibroin/sodium alginate are mixture of calcite and vaterite with unusual morphologies. Time-dependent growth study was carried out to investigate the crystallization process. It is believed that nanofiber hydrogels play an important role in the process of crystallization. This study would help in understanding the function of organic polymers in natural mineralization, and provide a novel pathway in the design and synthesis of new materials related unique morphology and structure.

  4. The nucleation and growth of calcium phosphate crystals at protein and phosphatidylserine liposome surfaces.

    PubMed

    Nancollas, G H; Tsortos, A; Zieba, A

    1996-01-01

    The kinetics of calcium phosphate crystal growth at the surfaces of proteins and phospholipids has been investigated using free drift and constant composition methods in supersaturated calcium phosphate solutions (relative supersaturations: with respect to hydroxyapatite, HAP, sigma HAP = 15.0, and with respect to octacalcium phosphate, OCP, sigma OCP = 1.9). Fibrinogen and collagen molecules adsorbed at hydrophobic surfaces as well as uncross-linked collagen fibrils induce ion binding and subsequent nucleation of calcium phosphate. The formation of OCP on phosphatidylserine vesicles introduced to highly supersaturated calcium phosphate solutions probably involves the interaction of the calcium ions with the ionized carboxylic groups of the phospholipid. PMID:9813627

  5. Origin of Urinary Oxalate

    NASA Astrophysics Data System (ADS)

    Holmes, Ross P.; Knight, John; Assimos, Dean G.

    2007-04-01

    Urinary oxalate is mostly derived from the absorption of ingested oxalate and endogenous synthesis. The breakdown of vitamin C may also contribute small amounts to the urinary oxalate pool. The amount of oxalate absorbed is influenced by the oxalate content of the diet, the concentrations of divalent cations in the gut, the presence of oxalate-degrading organisms, transport characteristics of the intestinal epithelium, and other factors associated with the intestinal environment. Knowledge of pathways associated with endogenous oxalate synthesis is limited. Urinary oxalate excretion can be modified using strategies that limit dietary oxalate absorption and the ingestion of oxalogenic substrates such as hydroxyproline.

  6. Effect of dietary water intake on urinary output, specific gravity and relative supersaturation for calcium oxalate and struvite in the cat.

    PubMed

    Buckley, Catherine M F; Hawthorne, Amanda; Colyer, Alison; Stevenson, Abigail E

    2011-10-01

    It has been reported that daily fluid intake influences urinary dilution, and consequently the risk of urolithiasis in human subjects and dogs. The aim of the present study was to investigate the role of dietary moisture on urinary parameters in healthy adult cats by comparing nutritionally standardised diets, varying only in moisture content. A total of six cats were fed a complete dry food (6.3 % moisture) hydrated to 25.4, 53.2 and 73.3 % moisture for 3 weeks in a randomised block cross-over design. Urinary specific gravity (SG), urine volume, water drunk and total fluid intake were measured daily; relative supersaturation (RSS) for calcium oxalate (CaOx) and struvite was calculated using the SUPERSAT computer program. Cats fed the 73.3 % moisture diet produced urine with a significantly lower SG (P < 0.001) compared with diets containing 53.2 % moisture or lower. Mean RSS for CaOx was approaching the undersaturated zone (1.14 (sem 0.21); P = 0.001) for cats fed the diet with 73.3 % moisture and significantly lower than the 6.3 % moisture diet (CaOx RSS 2.29 (sem 0.21)). The effect of diet on struvite RSS was less clear, with no significant difference between treatment groups. Total fluid intake was significantly increased (P < 0.001) in the 73.3 % moisture diet (144.7 (SEM 5.2) ml, or 30 ml/kg body weight per d) compared with the 6.3 % (103.4 (SEM 5.3) ml), 25.4 % (98.6 (SEM 5.3) ml) and 53.3 % (104.7 (SEM 5.3) ml) moisture diets, despite voluntary water intake decreasing as dietary moisture intake increased. Cats fed the 73.3 % moisture diet had a higher total daily fluid intake resulting in a more dilute urine with a lower risk of CaOx when compared with the lower-moisture diets. PMID:22005408

  7. Oxalobacter formigenes Colonization and Oxalate Dynamics in a Mouse Model.

    PubMed

    Li, Xingsheng; Ellis, Melissa L; Knight, John

    2015-08-01

    Animal and human studies have provided compelling evidence that colonization of the intestine with Oxalobacter formigenes reduces urinary oxalate excretion and lowers the risk of forming calcium oxalate kidney stones. The mechanism providing protection appears to be related to the unique ability of O. formigenes to rely on oxalate as a major source of carbon and energy for growth. However, much is not known about the factors that influence colonization and host-bacterium interactions. We have colonized mice with O. formigenes OxCC13 and systematically investigated the impacts of diets with different levels of calcium and oxalate on O. formigenes intestinal densities and urinary and intestinal oxalate levels. Measurement of intestinal oxalate levels in mice colonized or not colonized with O. formigenes demonstrated the highly efficient degradation of soluble oxalate by O. formigenes relative to other microbiota. The ratio of calcium to oxalate in diets was important in determining colonization densities and conditions where urinary oxalate and fecal oxalate excretion were modified, and the results were consistent with those from studies we have performed with colonized and noncolonized humans. The use of low-oxalate purified diets showed that 80% of animals retained O. formigenes colonization after a 1-week dietary oxalate deprivation. Animals not colonized with O. formigenes excreted two times more oxalate in feces than they had ingested. This nondietary source of oxalate may play an important role in the survival of O. formigenes during periods of dietary oxalate deprivation. These studies suggest that the mouse will be a useful model to further characterize interactions between O. formigenes and the host and factors that impact colonization. PMID:25979889

  8. Oxalobacter formigenes Colonization and Oxalate Dynamics in a Mouse Model

    PubMed Central

    Li, Xingsheng; Ellis, Melissa L.

    2015-01-01

    Animal and human studies have provided compelling evidence that colonization of the intestine with Oxalobacter formigenes reduces urinary oxalate excretion and lowers the risk of forming calcium oxalate kidney stones. The mechanism providing protection appears to be related to the unique ability of O. formigenes to rely on oxalate as a major source of carbon and energy for growth. However, much is not known about the factors that influence colonization and host-bacterium interactions. We have colonized mice with O. formigenes OxCC13 and systematically investigated the impacts of diets with different levels of calcium and oxalate on O. formigenes intestinal densities and urinary and intestinal oxalate levels. Measurement of intestinal oxalate levels in mice colonized or not colonized with O. formigenes demonstrated the highly efficient degradation of soluble oxalate by O. formigenes relative to other microbiota. The ratio of calcium to oxalate in diets was important in determining colonization densities and conditions where urinary oxalate and fecal oxalate excretion were modified, and the results were consistent with those from studies we have performed with colonized and noncolonized humans. The use of low-oxalate purified diets showed that 80% of animals retained O. formigenes colonization after a 1-week dietary oxalate deprivation. Animals not colonized with O. formigenes excreted two times more oxalate in feces than they had ingested. This nondietary source of oxalate may play an important role in the survival of O. formigenes during periods of dietary oxalate deprivation. These studies suggest that the mouse will be a useful model to further characterize interactions between O. formigenes and the host and factors that impact colonization. PMID:25979889

  9. Synthesis of some calcium phosphate crystals using the useful biomass for immobilization of microorganisms

    NASA Astrophysics Data System (ADS)

    Kohiruimaki, T.

    2011-10-01

    Three sources of biomass generated by primary industry were used as the raw material for the synthesis of calcium phosphate crystals. Phosphoric acid was extracted from burned rice chaff using a 30% nitric acid solution, while scallop shells and gypsum of plasterboard were used as calcium sources. The calcium phosphate crystals were synthesized by a method involving homogeneous precipitation, and the relationship between the composition and shape of the crystals and the pH at the time of the precipitation was investigated. Monetite crystals in a petal form with a diameter ranging from 0.1 to 2 μm were precipitated at pH 2.0, while granular apatite crystals with a mean diameter of 1 μm were precipitated at pH 6.0. We also investigated the ability of the synthesized calcium phosphate crystals to immobilize lactic acid bacteria for practical use in industrial bioreactor. It was determined that monetite crystals with a diameter of 2 μm had the highest ability to fix lactic acid bacteria. The population of lactic acid bacteria was estimated to exceed 1,300 bacteria per crystal surface of 50 μm2 suggesting that these crystals may be of practical use in industrial fermenters.

  10. Enzymatic hydrolysis of phytate and effects on soluble oxalate concentration in foods.

    PubMed

    Israr, Beenish; Frazier, Richard A; Gordon, Michael H

    2017-01-01

    Soluble oxalate in foods is major concern for kidney stone formers due to its tendency to increase urinary oxalate concentration. Phytate forms complexes with cations, which increases soluble oxalate by making cations unavailable to precipitate oxalate. Thus, in order to reduce soluble oxalate, bran samples (wheat, oat and barley) and bean samples (red kidney bean and white bean) were treated with phytase. Release of phosphate after phytate degradation and its association with calcium was determined. Phosphate concentration increased after application of phytase in all samples, but effect on soluble oxalate concentration varied. Wheat and oat bran showed significant reduction (P<0.05) in soluble oxalate compared to bean samples. Wheat bran, oat bran and white bean had a lower calcium:phosphate ratio than barley bran and red kidney beans. Correlation of the calcium:phosphate molar ratio with release of phosphate depends on concentration of calcium ions and this influences soluble oxalate concentration. PMID:27507467

  11. Identifying alkali metal inhibitors of crystal growth: a selection criterion based on ion pair hydration energy.

    PubMed

    Farmanesh, Sahar; Alamani, Bryan G; Rimer, Jeffrey D

    2015-09-21

    We show that alkali metals function as effective modifiers of calcium oxalate monohydrate (COM) crystallization wherein alkali-oxalate ion parings reduce the rate of crystal growth by as much as 60%. Our findings reveal a distinct trend in alkali metal efficacy that cannot be explained by colloidal theories or simple descriptors, such as ion size, but is consistent with a theoretical model that accounts for the ion pair's affinity for water. PMID:26242310

  12. Co-crystallization of cholesterol and calcium phosphate as related to atherosclerosis

    NASA Astrophysics Data System (ADS)

    Hirsch, Danielle; Azoury, Reuven; Sarig, Sara

    1990-09-01

    Calcification of atherosclerotic plaques occurs very frequently and aggravates the disease. In biological systems, epitaxial relationships between crystal structures may be important in nucleating the deposit of a solid phase. The biologically preferred calcium phosphate species, apatite, and cholesterol crystal have structurally compatible crystallographic faces which allow epitaxial growth of one crystal upon another. The present study describes a new approach to explore, in vitro, the crystallization processes of calcium phosphate (CaP) with cholesterol (CS) and cholestanol (CN) which are related to atherosclerosis. Aqueous solutions containing calcium and phosphate ions or CaP crystals as hydroxyapatite were added into saturated ethanolic solutions of CS or CS and 10% CN. After precipitation, crystals were collected and analyzed by nuclear magnetic resonance (NMR), infra-red (IR), X-ray, scanning electron microscope (SEM-LINK), differential scanning calorimeter (DSC) and atomic absorption. The principal result is the well-formed crystals precipitation when an aqueous solution and CaP seed crystals were added to saturated solutions of CS and 10% CN. Cholesterol-cholestanol dihydrate (CC2W) crystals precipitated in the presence of CaP seeds were compared to the CC2W crystals obtained without the mineral compound. The results of this comparison indicate a special link between crystals of CaP and CC2W, and support the epitaxial relationship between the two kinds of crystals. The potential of CC2W crystals to be precipitated by CaP seed crystals prove likewise the possible significant role of the cholestanol metabolite in the process of cholesterol crystallization and calcification in the arteries.

  13. Sequestration of Sr(II) By Calcium Oxalate - a Batch Uptake Study And EXAFS Analysis of Model Compounds And Reaction Products

    SciTech Connect

    Singer, D.M.; Johnson, S.B.; Catalano, J.G.; Farges, F.; Brown, G.E.; Jr.

    2009-05-26

    Calcium oxalate monohydrate (CaC{sub 2}O{sub 4}{center_dot}H{sub 2}O -- abbreviated as CaOx) is produced by two-thirds of all plant families, comprising up to 80 wt.% of the plant tissue and found in many surface environments. It is unclear, however, how CaOx in plants and soils interacts with metal ions and possibly sequesters them. This study examines the speciation of Sr(II){sub aq} following its reaction with CaOx. Batch uptake experiments were conducted over the pH range 4--10, with initial Sr solution concentrations, [Sr]{sub aq}, ranging from 1 x 10{sup -4} to 1 x 10{sup -3} M and ionic strengths ranging of 0.001--0.1 M, using NaCl as the background electrolyte. Experimental results indicate that Sr uptake is independent of pH and ionic strength over these ranges. After exposure of CaOx to Sr{sub aq} for two days, the solution Ca concentration, [Ca]{sup aq}, increased for all samples relative to the control CaOx suspension (with no Sr added). The amount of Sr{sub aq} removed from solution was nearly equal to the total [Ca]{sup aq} after exposure of CaOx to Sr. These results suggest that nearly 90% of the Sr is removed from solution to a solid phase as Ca is released into solution. We suggest that the other 10% is sequestered through surface adsorption on a solid phase, although we have no direct evidence for this. Extended X-ray absorption fine structure (EXAFS) spectroscopy was used to determine the molecular-level speciation of Sr in the reaction products. Deconvolutions of the Sr K-edge EXAFS spectra were performed to identify multi-electron excitation (MEE) features. MEE effects were found to give rise to low-frequency peaks in the Fourier transform before the first shell of oxygen atoms and do not affect EXAFS fitting results. Because of potential problems caused by asymmetric distributions of Sr-O distances when fitting Sr K-edge EXAFS data using the standard harmonic model, we also employed a cumulant expansion model and an asymmetric analytical model

  14. Improving nutritional quality and fungal tolerance in soya bean and grass pea by expressing an oxalate decarboxylase.

    PubMed

    Kumar, Vinay; Chattopadhyay, Arnab; Ghosh, Sumit; Irfan, Mohammad; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2016-06-01

    Soya bean (Glycine max) and grass pea (Lathyrus sativus) seeds are important sources of dietary proteins; however, they also contain antinutritional metabolite oxalic acid (OA). Excess dietary intake of OA leads to nephrolithiasis due to the formation of calcium oxalate crystals in kidneys. Besides, OA is also a known precursor of β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP), a neurotoxin found in grass pea. Here, we report the reduction in OA level in soya bean (up to 73%) and grass pea (up to 75%) seeds by constitutive and/or seed-specific expression of an oxalate-degrading enzyme, oxalate decarboxylase (FvOXDC) of Flammulina velutipes. In addition, β-ODAP level of grass pea seeds was also reduced up to 73%. Reduced OA content was interrelated with the associated increase in seeds micronutrients such as calcium, iron and zinc. Moreover, constitutive expression of FvOXDC led to improved tolerance to the fungal pathogen Sclerotinia sclerotiorum that requires OA during host colonization. Importantly, FvOXDC-expressing soya bean and grass pea plants were similar to the wild type with respect to the morphology and photosynthetic rates, and seed protein pool remained unaltered as revealed by the comparative proteomic analysis. Taken together, these results demonstrated improved seed quality and tolerance to the fungal pathogen in two important legume crops, by the expression of an oxalate-degrading enzyme. PMID:26798990

  15. Calcium distribution in globoid crystals of cucurbita cotyledon protein bodies.

    PubMed

    Lott, J N; Spitzer, E; Vollmer, C M

    1979-05-01

    Energy-dispersive x-ray analysis was used to investigate the location of globoid crystals with relatively high Ca levels within cotyledons of Cucurbita maxima, Cucurbita mixta, and Cucurbita andreana. The small globoid crystals in both upper and lower epidermal cells commonly contained Ca. Ca was present in globoid crystals of all provascular regions with the exception of the very small provascular regions of C. maxima. In C. maxima and C. mixta cotyledons, some cases were observed where Ca was found in the globoid crystals of the first layer of mesophyll cells surrounding the provascular region, but in general Ca was absent from globoid crystals of palisade and spongy mesophyll cells. In C. andreana, globoid crystals of palisade and spongy mesophyll cells commonly contained at least some Ca. Cell position and cell type are factors affecting the Ca content of globoid crystals in protein bodies. PMID:16660825

  16. Effect of silk sericin on morphology and structure of calcium carbonate crystal

    NASA Astrophysics Data System (ADS)

    Zhao, Rui-Bo; Han, Hua-Feng; Ding, Shao; Li, Ze-Hao; Kong, Xiang-Dong

    2013-06-01

    In this paper, silk sericin was employed to regulate the mineralization of calcium carbonate (CaCO3). CaCO3 composite particles were prepared by the precipitation reaction of sodium carbonate with calcium chloride solution in the presence of silk sericin. The as-prepared samples were collected at different reaction time to study the crystallization process of CaCO3 by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). The results showed that silk sericin significantly affected the morphology and crystallographic polymorph of CaCO3. With increasing the reaction time, the crystal phase of CaCO3 transferred from calcite dominated to vaterite dominated mixtures, while the morphology of CaCO3 changed from disk-like calcite crystal to spherical vaterite crystal. These studies showed the potential of silk sericin used as a template molecule to control the growth of inorganic crystal.

  17. Growth and characterization of a novel nonlinear optical borate crystal - Yttrium calcium borate (YCB)

    NASA Astrophysics Data System (ADS)

    Arun Kumar, R.; Arivanandhan, M.; Dhanasekaran, R.; Hayakawa, Y.

    2013-06-01

    A new nonlinear optical single crystal yttrium calcium borate Y2CaB10O19 (YCB) was grown for the first time from its melt. The starting materials were prepared by the solid-state reaction method. The melting point of the synthesized material was identified to be 967 °C. YCB crystal exhibits monoclinic crystal structure with the space group C2. The crystalline perfection of the grown YCB crystal was found to be good. From the UV-VIS-NIR studies, the lower cutoff wavelength of the crystal occurs below 200 nm. The functional groups of the grown crystal were assigned using the FTIR data. The second harmonic generation (SHG) of the YCB crystal was observed using a Nd:YAG laser with a fundamental wavelength of 1064 nm. The laser damage threshold value of the YCB crystal was found to be very high - 10.5 GW/cm2.

  18. Growth and characterization of a novel nonlinear optical borate crystal--yttrium calcium borate (YCB).

    PubMed

    Arun Kumar, R; Arivanandhan, M; Dhanasekaran, R; Hayakawa, Y

    2013-06-01

    A new nonlinear optical single crystal yttrium calcium borate Y2CaB10O19 (YCB) was grown for the first time from its melt. The starting materials were prepared by the solid-state reaction method. The melting point of the synthesized material was identified to be 967 °C. YCB crystal exhibits monoclinic crystal structure with the space group C2. The crystalline perfection of the grown YCB crystal was found to be good. From the UV-VIS-NIR studies, the lower cutoff wavelength of the crystal occurs below 200 nm. The functional groups of the grown crystal were assigned using the FTIR data. The second harmonic generation (SHG) of the YCB crystal was observed using a Nd:YAG laser with a fundamental wavelength of 1064 nm. The laser damage threshold value of the YCB crystal was found to be very high - 10.5 GW/cm(2). PMID:23583874

  19. Dissolution and crystallization of calcium sulfite platelets. Report for Sep 84-Aug 86

    SciTech Connect

    Gleason, C.L.; Rochelle, G.T.

    1987-01-01

    This paper discusses the dissolution and crystallization of calcium sulfite platelets. The rates of calcium sulfite dissolution and crystallization are important in slurry scrubbing processes for flue-gas desulfurization. The rates affect the scrubber solution composition, SO{sub 2} absorption, sulfite oxidation, and limestone utilization. The dissolution and crystallization rates of platelet shaped calcium sulfite crystals were measured in the pH stat apparatus. The solution pH was varied from 3.0 to 6.0. The effects of sulfate content in the solids and solution were also investigated. The measured rates for the platelets were compared to the rates previously determined for agglomerates. It was determined that there are subtle differences between platelet and agglomerated calcium sulfite. The platelet sample with low solid sulfate content dissolved and crystallized slower than the sample with a high solid sulfate content and the agglomerated samples. The inhibiting effect of dissolved sulfate was also greater for the low solid sulfate sample. The sample with a high solid sulfate content dissolved and crystallized at approximately the same rate as the agglomerates.

  20. Calcium carbonate crystal growth beneath Langmuir monolayers of acidic β-hairpin peptides.

    PubMed

    Gong, Haofei; Yang, Yi; Pluntke, Manuela; Marti, Othmar; Majer, Zsuzsa; Sewald, Norbert; Volkmer, Dirk

    2014-11-28

    Four amphiphilic peptides with designed hairpin structure were synthesized and their monolayers were employed as model systems to study biologically inspired calcium carbonate crystallization. Langmuir monolayers of hairpin peptides were investigated by surface pressure area isotherms, surface potential isotherms, Brewster angle microscopy (BAM), atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectroscopy. A β-hairpin conformation was found for all peptides at the air-water interface although their packing arrangements seem to be different. Crystallization of calcium carbonate under these peptide monolayers was investigated at different surface pressures and growth times both by in situ optical microscopy, BAM and ex situ investigations such as scanning electron microscopy (SEM) and transmission electron microscopy (TEM). An amorphous calcium carbonate precursor was found at the initial crystallization stage. The crystallization process occurred in three stages. It starts from the nucleation of amorphous particles being a kinetically controlled process. Crystal nuclei subsequently aggregate to large particles and vaterite crystals start to form inside the amorphous layer, with the monolayer fluidity exerting an important role. The third process includes the re-crystallization of vaterite to calcite, which is thermodynamically controlled by monolayer structural factors including the monolayer flexibility and packing arrangement of the polar headgroups. Thus, the kinetic factors, monolayer fluidity and flexibility as well as structure factors govern the crystal morphology and polymorph distribution simultaneously and synergistically. PMID:25292256

  1. Results of the TTF-TCNQ and the calcium carbonate crystallization on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Nielsen, Kjeld Flemming; Lind, M. David

    1992-01-01

    Experiment A0139A on the Long Duration Exposure Facility (LDEF) carried four large containers into orbit five years with crystal growth solutions for lead sulfide, calcium carbonate, and TTF-TCNQ. Although temperature data was lost, the experimental program had been working since the valves in all containers had been opened. All four experiments produced crystals of varying quality. The calcium carbonate crystals had the best appearance. The TTF-TCNQ crystals were packed together near the valve openings of the container. When taken apart, the single crystals showed some unusual morphological properties. X ray investigations as well as conductivity measurements on long duration space grown TTF-TCNQ crystals will be presented. Comparisons will be made with our previous space solution growth experiments. The TTF-TCNQ crystals are no longer of the highest interest, so this activity has been terminated in favor of calcium carbonate and calcium phosphate crystallizations.

  2. Postprandial hyperoxaluria and intestinal oxalate absorption in idiopathic renal stone disease

    SciTech Connect

    Schwille, P.O.; Hanisch, E.; Scholz, D.

    1984-10-01

    Calcium and oxalate were studied in daily, fasting and postprandial urine specimens from healthy subjects and patients with idiopathic renal calcium stones in response to a test meal free of oxalate, and supplemented with calcium and 14carbon-oxalic acid. The data showed that the amount of oxalate in fasting urine of patients with stones did not differ from that in controls. Generally, patients with stones had considerable postprandial hyperoxaluria in terms of excretion and concentration, associated with a significantly higher degree of supersaturation with regard to calcium oxalate compared to controls. These findings were paralleled by decreased intestinal absorption of 14carbon-oxalate and by unchanged 24-hour urinary oxalate. Although the source of increased p

  3. Mitogenic effects of hydroxyapatite and calcium pyrophosphate dihydrate crystals on cultured mammalian cells.

    PubMed

    Cheung, H S; Story, M T; McCarty, D J

    1984-06-01

    Synthetic hydroxyapatite (HA) crystals in 1% serum stimulated 3H thymidine uptake into quiescent canine synovial fibroblasts and human foreskin fibroblast cultures, as did 10% serum. The onset of stimulation and peak uptake of thymidine after crystal addition were delayed by 2-3 hours as compared with the effects produced by 10% serum. Stimulation of 3H thymidine uptake was proportional to the serum concentration used. HA crystals (50 micrograms/ml) stimulated nuclide uptake at each serum concentration used. 3H thymidine uptake was also proportional to the dose of HA or calcium pyrophosphate dihydrate crystals, although larger doses of the latter crystal were required to produce equivalent effects. Not all particulates were effective mitogenic agents. Latex beads and diamond crystals had no effect. Monosodium urate crystals modestly stimulated and calcium urate crystals markedly stimulated nuclide uptake. The more complex crystals found in a naturally occurring condition (calcinosis) were as mitogenic as the pure synthetic HA. The synovial cell hyperplasia sometimes associated with crystals might be explained in part by their mitogenic activity. PMID:6329235

  4. Solubility of the Sodium and Ammonium Salts of Oxalic Acid in Water with Ammonium Sulfate.

    PubMed

    Buttke, Lukas G; Schueller, Justin R; Pearson, Christian S; Beyer, Keith D

    2016-08-18

    The solubility of the sodium and ammonium salts of oxalic acid in water with ammonium sulfate present has been studied using differential scanning calorimetry, X-ray crystallography, and infrared spectroscopy. The crystals that form from aqueous mixtures of ammonium sulfate/sodium hydrogen oxalate were determined to be sodium hydrogen oxalate monohydrate under low ammonium sulfate conditions and ammonium hydrogen oxalate hemihydrate under high ammonium sulfate conditions. Crystals from aqueous mixtures of ammonium sulfate/sodium oxalate were determined to be ammonium oxalate monohydrate under moderate to high ammonium sulfate concentrations and sodium oxalate under low ammonium sulfate concentrations. It was also found that ammonium sulfate enhances the solubility of the sodium oxalate salts (salting in effect) and decreases the solubility of the ammonium oxalate salts (salting out effect). In addition, a partial phase diagram for the ammonium hydrogen oxalate/water system was determined. PMID:27482644

  5. Potential contribution of optional urease-positive bacteria to idiopathic urinary calcium stone formation. II. Microlith formation kinetics in a fermenter model of the urinary tract infected by optional urease-positive microorganisms.

    PubMed

    Leusmann, D B; Sabinski, F

    1996-01-01

    We investigated the effects of weak to moderate urease hydrolysis by optional urease-positive microorganisms in an artificial urine model enriched with calcium phosphate and calcium oxalate in respect of calcium stone formation. The incubation experiments were performed using a discontinuously running fermenter device to simulate the urinary system. The kinetics of cell division rates, pH and ammonium ion production were measured and correlated to crystallite appearance in the incubation medium. Qualitative analyses of the sediments revealed apatite. Investigations using light microscopy and scanning electron microscopy (SEM) confirmed the matrix effect of bacterial glycoproteins. It was shown that initiation of calcium oxalate stone formation is in all probability equally determined by matrix effects and by heteronuclear crystallization if the urinary tract is infected by optional urease-positive bacteria. When urinary inorganic phosphate is present, calcium phosphate nidi are always initially formed, and may subsequently be coated by calcium oxalate. PMID:8740975

  6. Ureaplasma urealyticum-induced crystallization of magnesium ammonium phosphate and calcium phosphates in synthetic urine.

    PubMed

    Grenabo, L; Brorson, J E; Hedelin, H; Pettersson, S

    1984-10-01

    Crystallization of struvite and calcium phosphates was studied in vitro as encrustations on glass rods immersed in synthetic urine, to evaluate the crystallization capacity of Ureaplasma urealyticum and compare it with that of known urease and non-urease-producing bacteria. Inoculation of the synthetic urine with Ureaplasma urealyticum resulted in alkalinization of the synthetic urine and crystallization of struvite and brushite. Inoculation with Proteus mirabilis caused a faster and more pronounced alkalinization as well as crystallization of struvite and apatite. The alkalinization and crystallization caused by Ureaplasma urealyticum and Proteus mirabilis was completely prevented by acetohydroxamic acid, a potent urease inhibitor, linking the crystallization to the urease activity of the microorganisms. When the synthetic urine was inoculated with urease-negative Escherichia coli no alkalinization and no crystallization were seen. PMID:6381769

  7. The effect of pigeon yolk sac fluid on the growth behavior of calcium carbonate crystals.

    PubMed

    Song, Juan; Cheng, Haixia; Shen, Xinyu; Tong, Hua

    2015-03-01

    Previous experiments have proved that thermodynamically unstable calcium carbonate vaterite can exist for long periods in the yolk sac of a pigeon embryo. The aim of this article was to demonstrate the effect of in vitro mineralization of yolk sac fluid on calcium carbonate by direct precipitation. Experiments were conducted using pigeon yolk sac fluid and using lecithin extracted from pigeon yolk sac fluid as a control to investigate the regulating effects of the organic components in the embryo on the formation of the calcium carbonate precipitate. Multiple characterization methods were employed to study the various morphological patterns, sizes, crystal growth, and crystal phase transformations of the calcium carbonate precipitates as regulated by the yolk sac fluid extracted at different stages of incubation. The experimental results demonstrate that as the incubation proceeds towards the later stages, the composition and environmental features of the yolk sac fluid become more favorable for the formation of relatively unstable calcium carbonate phases with high energies of the vaterite state. The experiments conducted with extracted lecithin as the template for crystal growth yielded similar results. A large amount of organic molecules with polar functional groups carried by the yolk sac fluid have strong effects and can both initially induce the crystallization and regulate the aggregation of calcium carbonate. Furthermore, this regulation process is found to be closely related to the lecithin contained in yolk sac fluid. These observations confirm the changes in yolk sac fluid composition during incubation have significant effects on the production of vaterite, which implicates the calcium transport during embryo growth. PMID:25681477

  8. Dehydration and crystallization of amorphous calcium carbonate in solution and in air

    PubMed Central

    Ihli, Johannes; Wong, Wai Ching; Noel, Elizabeth H.; Kim, Yi-Yeoun; Kulak, Alexander N.; Christenson, Hugo K.; Duer, Melinda J.; Meldrum, Fiona C.

    2014-01-01

    The mechanisms by which amorphous intermediates transform into crystalline materials are poorly understood. Currently, attracting enormous interest is the crystallization of amorphous calcium carbonate, a key intermediary in synthetic, biological and environmental systems. Here we attempt to unify many contrasting and apparently contradictory studies by investigating this process in detail. We show that amorphous calcium carbonate can dehydrate before crystallizing, both in solution and in air, while thermal analyses and solid-state nuclear magnetic resonance measurements reveal that its water is present in distinct environments. Loss of the final water fraction—comprising less than 15% of the total—then triggers crystallization. The high activation energy of this step suggests that it occurs by partial dissolution/recrystallization, mediated by surface water, and the majority of the particle then crystallizes by a solid-state transformation. Such mechanisms are likely to be widespread in solid-state reactions and their characterization will facilitate greater control over these processes. PMID:24469266

  9. Effects of Monocarboxylic Acid Addition on Crystallization of Calcium Phosphate in a Hydrogel Matrix

    NASA Astrophysics Data System (ADS)

    Yokoi, T.; Kawashita, M.; Ohtsuki, C.

    2011-10-01

    In biomineralization, it is thought that water-soluble organic substances control crystal growth of minerals in hard tissues. The roles of organic substances are not well understood, because the biomineralization process is established by complicated parameters. Crystal growth in hydrogel matrixes can be regarded as simplified model system of biomineralization. In the present study, we investigated the effects of propionic acid (Pro) on crystalline phases and crystal morphologies of calcium phosphate formed in polymeric hydrogel matrixes as the model system of biomineralization. Crystalline phase of the precipitates was octacalcium phosphate (OCP) with spherical shape regardless of Pro concentrations. The fibrous crystals formed under the condition without addition of Pro. The crystal morphologies composing spherical crystals were changed from fibrous to plate-like shape with increasing Pro concentrations. Generally, OCP crystal has plate-like shape exposing (100) face, which calcium ions exist on. Therefore, crystal growth rate of [100] direction of OCP was decreased by Pro adsorbed on (100) face. As a result, crystal morphology composing spherulite became plate-like shape with increasing Pro concentrations.

  10. Influence of calcium carbonate and carbon nanotubes on the crystallization kinetics of polypropylene at high supercooling

    NASA Astrophysics Data System (ADS)

    Schawe, Jürgen E. K.

    2016-03-01

    Polymer fillers have been classified as active or inactive regarding their nucleation performance. Whereas an active filler significantly accelerates the crystallization process, an inactive filler has a significantly reduced influence on the crystallization kinetics. The majority of the studies of the filler influence on the crystallization process are performed at relatively low supercooling or at low cooling rates. In this paper, we use the Fast Scanning DSC to study the crystallization process of differently filled polypropylene (PP) in the temperature range between 120 °C and 0 °C. The inactive filler calcium carbonate reduces the crystallization rate of the α-phase at low supercooling (above 80 °C). Between 45 °C and 80 °C, calcium carbonate significantly accelerates the α-phase crystallization of PP. The mesophase crystallization is not affected by this filler. As an example of active filler, carbon nanotubes are used. Even with small filler content the α-phase crystallization of PP is significantly accelerated. Also in this case the mesophase crystallization is not significantly affected.

  11. An Unusual Association: Iliopsoas Bursitis Related to Calcium Pyrophosphate Crystal Arthritis

    PubMed Central

    Di Carlo, Marco; Draghessi, Antonella; Carotti, Marina; Salaffi, Fausto

    2015-01-01

    A 71-year-old man with osteoarthritis and chondrocalcinosis came to our observation developing a swelling in the groin region after a recent left colectomy for adenocarcinoma. The imaging techniques revealed the presence of an iliopsoas bursitis in connection with the hip. The synovial fluid analysis detected the presence of calcium pyrophosphate (CPP) crystals and allowed the final and unusual diagnosis of iliopsoas bursitis related to acute CPP crystal hip arthritis. PMID:26550514

  12. Characterization of the terbium-doped calcium fluoride single crystal

    NASA Astrophysics Data System (ADS)

    Zheleznov, Dmitry S.; Starobor, Aleksey V.; Palashov, Oleg V.

    2015-08-01

    Optical, thermo-optical and magneto-optical characteristics of the terbium-doped (10 at.%) calcium fluoride sample were investigated. It was made the analysis, confirmed the possibility of development of a Faraday isolator and a cryogenic Faraday isolator based on the studied medium, which will provide more than 30 dB isolation ratio of laser radiation in the "eye-safe" wavelength range (1530-1620 nm) at the 5 and 20 kW power, respectively.

  13. Dentin Hypersensitivity and Oxalates

    PubMed Central

    Cunha-Cruz, J.; Stout, J.R.; Heaton, L.J.; Wataha, J.C.

    2011-01-01

    Treatment of dentin hypersensitivity with oxalates is common, but oxalate efficacy remains unclear. Our objective was to systematically review clinical trials reporting an oxalate treatment compared with no treatment or placebo with a dentin hypersensitivity outcome. Risk-of-bias assessment and data extraction were performed independently by two reviewers. Standardized mean differences (SMD) were estimated by random-effects meta-analysis. Of 677 unique citations, 12 studies with high risk-of-bias were included. The summary SMD for 3% monohydrogen-monopotassium oxalate (n = 8 studies) was -0.71 [95% Confidence Interval: -1.48, 0.06]. Other treatments, including 30% dipotassium oxalate (n = 1), 30% dipotassium oxalate plus 3% monohydrogen monopotassium oxalate (n = 3), 6% monohydrogen monopotassium oxalate (n = 1), 6.8% ferric oxalate (n = 1), and oxalate-containing resin (n = 1), also were not statistically significantly different from placebo treatments. With the possible exception of 3% monohydrogen monopotassium oxalate, available evidence currently does not support the recommendation of dentin hypersensitivity treatment with oxalates. PMID:21191127

  14. Oxalate catabolism in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxalic acid is found in most plant species and can serve beneficial roles that protect the plant from a variety of environmental stresses. Excessive amounts of oxalate, however, can be detrimental to plant health. Thus, careful coordination of oxalate metabolism is needed. Despite the important impa...

  15. Crystal structure and spectroscopic analysis of a new oxalate-bridged Mn(II) compound: catena-poly[guanidinium [[aqua-chlorido-manganese(II)]-μ2-oxalato-κ(4) O (1),O (2):O (1'),O (2')] monohydrate].

    PubMed

    Sehimi, Hiba; Chérif, Ichraf; Zid, Mohamed Faouzi

    2016-05-01

    As part of our studies on the synthesis and the characterization of oxalate-bridged compounds M-ox-M (ox = oxalate dianion and M = transition metal ion), we report the crystal structure of a new oxalate-bridged Mn(II) phase, {(CH6N3)[Mn(C2O4)Cl(H2O)]·H2O} n . In the compound, a succession of Mn(II) ions (situated on inversion centers) adopting a distorted octa-hedral coordination and bridged by oxalate ligands forms parallel zigzag chains running along the c axis. These chains are inter-connected through O-H⋯O hydrogen-bonding inter-actions to form anionic layers parallel to (010). Individual layers are held together via strong hydrogen bonds involving the guanidinium cations (N-H⋯O and N-H⋯Cl) and the disordered non-coordinating water mol-ecule (O-H⋯O and O-H⋯Cl), as well as by guanidinium π-π stacking. The structural data were confirmed by IR and UV-Visible spectroscopic analysis. PMID:27308028

  16. The "crowned dens" revisited: imaging findings in calcium crystal deposition diseases around the odontoid.

    PubMed

    Viana, Sergio L; Fernandes, João L; De Araújo Coimbra, Pablo P; De Mendonça, José L F; Freitas, Flávia M O; De Carvalho Barbosa Viana, Maria A

    2010-10-01

    The so-called "crowned dens" is a peculiar manifestation of calcium crystal deposition diseases, either caused by calcium pyrophosphate dihydrate or caused by calcium hydroxiapatite crystals, characterized by the presence of calcific deposits around the odontoid, often showing a crown-like configuration on imaging. It has protean clinical and radiological pictures, and care should be taken to avoid misinterpretation and diagnostic errors. Although asymptomatic in many patients, this entity may present as a predominantly algic or febrile condition, and in some cases, signs of compression of the spinal cord may be the major complaint. The detection of calcifications in the periodontoid tissues is the key to the diagnosis, erosive osseous changes, and variably calcified soft-tissue masses being occasionally associated. Computed tomography is the most important imaging study to be performed in this setting. PMID:19344369

  17. Characterization of calcium crystals in Abelia using x-ray diffraction and electron microscopes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Localization, chemical composition, and morphology of calcium crystals in leaves and stems of Abelia mosanensis and A. ×grandiflora were analyzed with a variable pressure scanning electron microscope (VP-SEM) equipped with an X-ray diffraction system, low temperature SEM (LT-SEM) and a transmission ...

  18. Crystal and molecular structure and spectroscopic behavior of isotypic synthetic analogs of the oxalate minerals stepanovite and zhemchuzhnikovite

    NASA Astrophysics Data System (ADS)

    Piro, Oscar E.; Echeverría, Gustavo A.; González-Baró, Ana C.; Baran, Enrique J.

    2016-04-01

    The crystal structure of synthetic stepanovite, Na[Mg(H2O)6][Fe(C2O4)3]·3H2O, and zhemchuzhnikovite, Na[Mg(H2O)6][Al0.55Fe0.45(C2O4)3]·3H2O, has been determined by single-crystal X-ray diffraction methods. The compounds are isotypic to each other and to the previously reported Na[Mg(H2O)6][M(C2O4)3]·3H2O (M: Cr, Al). They crystallize in the trigonal P3 c1 space group with Z = 6 molecules per unit cell and (hexagonal axes) a = 17.0483(4), c = 12.4218(4) Å for the iron compound, and a = 16.8852(5), c = 12.5368(5) Å for the Al/Fe solid solution. Comparison of our crystallographic results with previous X-ray diffraction and chemical data of type stepanovite and zhemchuzhnikovite minerals provides compelling evidence that these natural materials possess the same crystal and molecular structure as their synthetic counterparts. It is shown that the originally reported unit cell for stepanovite represents a pronounced sub-cell and that the correct unit cell and space group are based on weak superstructure reflections. The infrared and Raman spectra of both synthetic analogs were also recorded and are briefly discussed.

  19. Calcium

    MedlinePlus

    ... of calcium dietary supplements are carbonate and citrate. Calcium carbonate is inexpensive, but is absorbed best when taken ... antacid products, such as Tums® and Rolaids®, contain calcium carbonate. Each pill or chew provides 200–400 mg ...

  20. Crystal chemistry and structure refinement of five hydrated calcium borates

    USGS Publications Warehouse

    Clark, J.R.; Appleman, D.E.; Christ, C.L.

    1964-01-01

    The crystal structures of the five known members of the series Ca2B6O11??xH2O (x = 1, 5, 5, 7, 9, and 13) have been refined by full-matrix least-squares techniques, yielding bond distances and angles with standard errors of less than 0??01 A?? and 0??5??, respectively. The results illustrate the crystal chemical principles that govern the structures of hydrated borate compounds. The importance of hydrogen bonding in the ferroelectric transition of colemanite is confirmed by more accurate proton assignments. ?? 1964.

  1. Growth Conditions To Reduce Oxalic Acid Content of Spinach

    NASA Technical Reports Server (NTRS)

    Johnson-Rutzke, Corinne

    2003-01-01

    A controlled-environment agricultural (CEA) technique to increase the nutritive value of spinach has been developed. This technique makes it possible to reduce the concentration of oxalic acid in spinach leaves. It is desirable to reduce the oxalic acid content because oxalic acid acts as an anti-nutritive calcium-binding component. More than 30 years ago, an enzyme (an oxidase) that breaks down oxalic acid into CO2 and H2O2 was discovered and found to be naturally present in spinach leaves. However, nitrate, which can also be present because of the use of common nitratebased fertilizers, inactivates the enzyme. In the CEA technique, one cuts off the supply of nitrate and keeps the spinach plants cool while providing sufficient oxygen. This technique provides the precise environment that enables the enzyme to naturally break down oxalate. The result of application of this technique is that the oxalate content is reduced by 2/3 in one week.

  2. Powder XRD and dielectric studies of gel grown calcium pyrophosphate crystals

    NASA Astrophysics Data System (ADS)

    Parekh, Bharat; Parikh, Ketan; Joshi, Mihir

    2013-06-01

    Formation of calcium pyrophosphate dihydrate (CPPD) crystals in soft tissues such as cartilage, meniscus and synovial tissue leads to CPPD deposition diseases. The appearance of these crystals in the synovial fluid can give rise to an acute arthritic attack with pain and inflammation of the joints, a condition called pseudo-gout. The growth of CPP crystals has been carried out, in the present study, using the single diffusion gel growth technique, which can broadly mimic in vitro the condition in soft tissues. The crystals were characterized by different techniques. The FTIR study revealed the presence of various functional groups. Powder XRD study was also carried out to verify the crystal structure. The dielectric study was carried out at room temperature by applying field of different frequency from 500 Hz to 1 MHz. The dielectric constant, dielectric loss and a.c. resistivity decreased as frequency increased, whereas the a.c. conductivity increased as frequency increased.

  3. Preparation, crystal growth and luminescence in calcium sulphide

    NASA Astrophysics Data System (ADS)

    Brightwell, J. W.; Ray, B.; Buckley, C. N.

    1982-09-01

    The preparation of microcrystalline CaS of high purity, as determined from X-ray fluorescence and atomic absorption spectrophotometry, is reported. Systematic doping of CaS with between 2.0×10 -5 and 1.5×10 -3 mole parts of Mn has been carried out. Single crystal CaS, taking an octahedral habit with side dimensions up to 1 mm, has been prepared by chemical vapour transport using iodine at a concentration of 1 μg mm -3 for growth over a temperature differential 1200 to 800°C. A model supported by thermodynamic data is advanced for crystal growth of CaS with HI rather than I 2 being postulated as the principal transporting agent. Fluorescent emission spectra have indicated substantial emission in the blue-green for undoped single crystal CaS and for microcrystalline CaS with low Mn levels, whilst for 7.5×10 -4 and 1.5×10 -3 mole parts of Mn significant orange emission at 575 nm

  4. Transformation of amorphous calcium carbonate to rod-like single crystal calcite via "copying" collagen template.

    PubMed

    Xue, Zhonghui; Hu, Binbin; Dai, Shuxi; Du, Zuliang

    2015-10-01

    Collagen Langmuir films were prepared by spreading the solution of collagen over deionized water, CaCl2 solution and Ca(HCO3)2 solution. Resultant collagen Langmuir monolayers were then compressed to a lateral pressure of 10 mN/m and held there for different duration, allowing the crystallization of CaCO3. The effect of crystallization time on the phase composition and microstructure of CaCO3 was investigated. It was found that amorphous calcium carbonate (ACC) was obtained at a crystallization time of 6 h. The amorphous CaCO3 was transformed to rod-like single crystal calcite crystals at an extended crystallization time of 12 h and 24 h, via "copying" the symmetry and dimensionalities of collagen fibers. Resultant calcite crystallites were well oriented along the longitudinal axis of collagen fibers. The ordered surface structure of collagen fibers and electrostatic interactions played key roles in tuning the oriented nucleation and growth of the calcite crystallites. The mineralized collagen possessing both desired mechanical properties of collagen fiber and good biocompatibility of calcium carbonate may be assembled into an ideal biomaterial for bone implants. PMID:26117783

  5. Synthesis of calcium antimonate nano-crystals by the 18th dynasty Egyptian glassmakers

    NASA Astrophysics Data System (ADS)

    Lahlil, S.; Biron, I.; Cotte, M.; Susini, J.; Menguy, N.

    2010-01-01

    During the 18th Egyptian dynasty (1570-1292 B.C.), opaque white, blue and turquoise glasses were opacified by calcium antimonate crystals dispersed in a vitreous matrix. The technological processes as well as the antimony sources used to manufacture these crystals remain unknown. Our results shed a new light on glassmaking history: contrary to what was thought, we demonstrate that Egyptian glassmakers did not use in situ crystallization but first synthesized calcium antimonate opacifiers, which do not exist in nature, and then added them to a glass. Furthermore, using transmission electron microscopy (TEM) for the first time in the study of Egyptian opaque glasses, we show that these opacifiers were nano-crystals. Prior to this research, such a process for glassmaking has not been suggested for any kind of ancient opaque glass production. Studying various preparation methods for calcium antimonate, we propose that Egyptian craftsmen could have produced Ca2Sb2O7 by using mixtures of Sb2O3 or Sb2O5 with calcium carbonates (atomic ratio Sb/Ca=1) heat treated between 1000 and 1100°C. We developed an original strategy focused on the investigation of the crystals and the vitreous matrices using an appropriate suite of high-sensitivity and high-resolution micro- and nano-analytical techniques (scanning electron microscopy (SEM), X-ray diffraction (XRD), TEM). Synchrotron-based micro X-ray absorption near edge spectroscopy (μ-XANES) proved to be very well suited to the selective measure of the antimony oxidation state in the vitreous matrix. This work is the starting point for a complete reassessment not only of ancient Egyptian glass studies but more generally of high-temperature technologies used throughout antiquity.

  6. Chaga mushroom-induced oxalate nephropathy.

    PubMed

    Kikuchi, Yuko; Seta, Koichi; Ogawa, Yayoi; Takayama, Tatsuya; Nagata, Masao; Taguchi, Takashi; Yahata, Kensei

    2014-06-01

    Chaga mushrooms have been used in folk and botanical medicine as a remedy for cancer, gastritis, ulcers, and tuberculosis of the bones. A 72-year-old Japanese female had been diagnosed with liver cancer 1 year prior to presenting at our department. She underwent hepatectomy of the left lobe 3 months later. Chaga mushroom powder (4 - 5 teaspoons per day) had been ingested for the past 6 months for liver cancer. Renal function decreased and hemodialysis was initiated. Renal biopsy specimens showed diffuse tubular atrophy and interstitial fibrosis. Oxalate crystals were detected in the tubular lumina and urinary sediment and oxalate nephropathy was diagnosed. Chaga mushrooms contain extremely high oxalate concentrations. This is the first report of a case of oxalate nephropathy associated with ingestion of Chaga mushrooms. PMID:23149251

  7. Effect of Lagenaria siceraria fruit powder on sodium oxalate induced urolithiasis in Wistar rats

    PubMed Central

    Takawale, Rahul V.; Mali, Vishal R.; Kapase, Chinmay U.; Bodhankar, Subhash L.

    2012-01-01

    Background: In spite of advances in the present practice of medicine, the formation and growth of calculi continues to trouble mankind, as there is no satisfactory drug to treat kidney stones. In India, many indigenous drugs are in use for the treatment of urinary calculus disease. Objective: The present study was intended to determine anti-urolithiatic effect of Lagenaria siceraria fruit powder (LSFP) against sodium oxalate (NaOx) induced urolithiasis in rats. Materials and Methods: Animals were grouped as Vehicle Group (received vehicle gum acacia 2% w/v 1 mL/kg/p.o.), NaOx Group(Sodium oxalate 70 mg/kg,i.p.), LSFP Group (500 mg/kg, p.o. LSFP suspended in gum acacia 2% + Sodium oxalate 70 mg/kg), Cystone Group (500 mg/kg, p.o. Cystone suspended in gum acacia 2% + Sodium oxalate 70 mg/kg). Result: The increased severity of microscopic calcium oxalate (CaOx) crystals deposition along with increased concentration in the kidney was seen after 7 days of NaOx (70 mg/kg, i.p.) pre-treatment. LSFP (500 mg/kg, p.o.) and standard marketed formulation Cystone (500 mg/kg, p.o.) caused a significant reversal of NaOx-induced changes in ion excretion and urinary CaOx concentration in 7 days treatment. Conclusion: From the results, it was concluded that LSFP showed beneficial effect against urolithiasis by decreasing CaOx excretion and preventing crystal deposition in the kidney tubules. PMID:22707863

  8. Calcium

    MedlinePlus

    ... body stores more than 99 percent of its calcium in the bones and teeth to help make and keep them ... in the foods you eat. Foods rich in calcium include Dairy products such as milk, cheese, and yogurt Leafy, green vegetables Fish with soft bones that you eat, such as canned sardines and ...

  9. Molecular modifiers reveal a mechanism of pathological crystal growth inhibition.

    PubMed

    Chung, Jihae; Granja, Ignacio; Taylor, Michael G; Mpourmpakis, Giannis; Asplin, John R; Rimer, Jeffrey D

    2016-08-25

    Crystalline materials are crucial to the function of living organisms, in the shells of molluscs, the matrix of bone, the teeth of sea urchins, and the exoskeletons of coccoliths. However, pathological biomineralization can be an undesirable crystallization process associated with human diseases. The crystal growth of biogenic, natural and synthetic materials may be regulated by the action of modifiers, most commonly inhibitors, which range from small ions and molecules to large macromolecules. Inhibitors adsorb on crystal surfaces and impede the addition of solute, thereby reducing the rate of growth. Complex inhibitor-crystal interactions in biomineralization are often not well elucidated. Here we show that two molecular inhibitors of calcium oxalate monohydrate crystallization--citrate and hydroxycitrate--exhibit a mechanism that differs from classical theory in that inhibitor adsorption on crystal surfaces induces dissolution of the crystal under specific conditions rather than a reduced rate of crystal growth. This phenomenon occurs even in supersaturated solutions where inhibitor concentration is three orders of magnitude less than that of the solute. The results of bulk crystallization, in situ atomic force microscopy, and density functional theory studies are qualitatively consistent with a hypothesis that inhibitor-crystal interactions impart localized strain to the crystal lattice and that oxalate and calcium ions are released into solution to alleviate this strain. Calcium oxalate monohydrate is the principal component of human kidney stones and citrate is an often-used therapy, but hydroxycitrate is not. For hydroxycitrate to function as a kidney stone treatment, it must be excreted in urine. We report that hydroxycitrate ingested by non-stone-forming humans at an often-recommended dose leads to substantial urinary excretion. In vitro assays using human urine reveal that the molecular modifier hydroxycitrate is as effective an inhibitor of nucleation of

  10. The role of prenucleation clusters in surface-induced calcium phosphate crystallization

    NASA Astrophysics Data System (ADS)

    Dey, Archan; Bomans, Paul H. H.; Müller, Frank A.; Will, Julia; Frederik, Peter M.; de With, Gijsbertus; Sommerdijk, Nico A. J. M.

    2010-12-01

    Unravelling the processes of calcium phosphate formation is important in our understanding of both bone and tooth formation, and also of pathological mineralization, for example in cardiovascular disease. Serum is a metastable solution from which calcium phosphate precipitates in the presence of calcifiable templates such as collagen, elastin and cell debris. A pathological deficiency of inhibitors leads to the uncontrolled deposition of calcium phosphate. In bone and teeth the formation of apatite crystals is preceded by an amorphous calcium phosphate (ACP) precursor phase. ACP formation is thought to proceed through prenucleation clusters-stable clusters that are present in solution already before nucleation-as was recently demonstrated for CaCO3 (refs 15,16). However, the role of such nanometre-sized clusters as building blocks for ACP has been debated for many years. Here we demonstrate that the surface-induced formation of apatite from simulated body fluid starts with the aggregation of prenucleation clusters leading to the nucleation of ACP before the development of oriented apatite crystals.

  11. Oxalic acid poisoning

    MedlinePlus

    Symptoms of oxalic acid poisoning include: Abdominal pain Burns and blisters where the acid contacted the skin Collapse Convulsions Mouth pain Shock Throat pain Tremors (unintentional trembling) Vomiting

  12. Piridoxilate-induced oxalate nephropathy can lead to end-stage renal failure.

    PubMed

    Mousson, C; Justrabo, E; Rifle, G; Sgro, C; Chalopin, J M; Gérard, C

    1993-01-01

    A 71-year-old woman was admitted with end-stage renal failure and histological evidence of oxalosis. This case of diffuse renal tubular crystal calcium oxalate deposits seems to be induced by long-term piridoxilate therapy (10 years) or simultaneous intake of both piridoxilate and vitamin C (500 mg/day for 6 months), since no other cause of secondary oxalosis could be found. So, it seems necessary to monitor the serum creatinine level, especially in the elderly, during piridoxilate therapy and to avoid high vitamin C intakes in patients under such treatment to prevent development of renal insufficiency. PMID:8446234

  13. Calcium Carbonate Storage in Amorphous Form and Its Template-Induced Crystallization

    SciTech Connect

    Han, T Y; Aizenberg, J

    2007-08-31

    Calcium carbonate crystallization in organisms often occurs through the transformation from the amorphous precursor. It is believed that the amorphous phase could be temporarily stabilized and stored, until its templated transition to the crystalline form is induced. Here we develop a bio-inspired crystallization strategy that is based on the above mechanism. Amorphous calcium carbonate (ACC) spherulitic particles are formed and stabilized on a self-assembled monolayer (SAM) of hydroxy-terminated alkanethiols on Au surface. The ACC is stored as a reservoir for ions and is induced to crystallize on command by introducing a secondary surface that is functionalized with carboxylic acid-terminated SAM. This secondary surface acts as a template for oriented and patterned nucleation. Various oriented crystalline arrays and micropatterned films are formed. We also show that the ACC phase can be doped with foreign ions (e.g. Mg) and organic molecules (e.g. dyes) and that these dopants later function as growth modifiers of calcite crystals and become incorporated into the crystals during the transformation process of ACC to calcite. We believe that our strategy opens the way of using a stabilized amorphous phase as a versatile reservoir system that can be converted in a highly controlled fashion to a crystalline form upon contacting the nucleating template.

  14. Influence of maleic acid copolymers on calcium orthophosphates crystallization at low temperature

    NASA Astrophysics Data System (ADS)

    Pelin, Irina M.; Popescu, Irina; Suflet, Dana M.; Aflori, Magdalena; Bulacovschi, Victor

    2013-08-01

    The goal of this study was to investigate the maleic acid copolymers role on calcium orthophosphates crystallization at low temperature. In this respect, two maleic acid copolymers with different structures [poly(sodium maleate-co-vinyl acetate) and poly(sodium maleate-co-methyl methacrylate)] were used. The syntheses of the calcium orthophosphates in the absence and in the presence of the copolymers were performed through the wet chemical method using calcium nitrate, ammonium dihydrogen phosphate and ammonium hydroxide as reactants. The syntheses were monitored in situ by potentiometric and conductometric measurements. To ensure the transformation of less thermodynamically stable calcium orthophosphates into more stable forms, the samples were aged 30 days in mother solutions, at room temperature. The presence of the copolymers in the final products was evidenced by FTIR spectroscopy and thermogravimetric analysis. Scanning and transmission electron microscopy and laser light scattering measurements gave information about the composites morphology and the size of the formed structures. X-ray diffraction evidenced that, as a function of comonomer structure and of copolymer concentration, the products could contain hydroxyapatite with low crystallinity, calcium-deficient or carbonated hydroxyapatite. At high concentration of poly(sodium maleate-co-methyl methacrylate) the transformation of brushite into apatitic structures was inhibited.

  15. Determination of Oxalate Content in Herbal Remedies and Dietary Supplements Based on Plant Extracts.

    PubMed

    Siener, Roswitha; López-Mesas, Montserrat; Valiente, Manuel; Blanco, Francisco

    2016-02-01

    Lifestyle, especially diet, is a prominent risk factor that affects the formation of calcium oxalate stones. Urinary oxalate excretion is directly related to the amount of oral intake and intestinal absorption rate of oxalate. This work evaluated the possibility of increasing oxalate ingestion, which could lead to secondary hyperoxaluria, associated with the intake of herbal remedies and dietary supplements containing plant extracts. A wide variety of 17 commercially available drugs and dietary supplements were analyzed using ion chromatography. The results showed remarkable differences in oxalate contents of the extracts. Total oxalate concentrations ranged from 0.03 to 2.2 mg/g in solid samples and from 0.005 to 0.073 mg/mL in liquid samples. The selected herbal remedies and dietary supplements containing plant extracts represent only a low risk for calcium oxalate stone formers, if the recommended daily dose is not exceeded. PMID:26670692

  16. Crystal structure of complex natural aluminum magnesium calcium iron oxide

    SciTech Connect

    Rastsvetaeva, R. K. Aksenov, S. M.; Verin, I. A.

    2010-07-15

    The structure of a new natural oxide found near the Tashelga River (Eastern Siberia) was studied by X-ray diffraction. The pseudo-orthorhombic unit cell parameters are a = 5.6973(1) A, b = 17.1823(4) A, c = 23.5718(5) A, {beta} = 90{sup o}, sp. gr. Pc. The structure was refined to R = 0.0516 based on 4773 reflections with vertical bar F vertical bar > 7{sigma}(F) taking into account the twin plane perpendicular to the z axis (the twin components are 0.47 and 0.53). The crystal-chemical formula (Z = 4) is Ca{sub 2}Mg{sub 2}{sup IV}Fe{sub 2}{sup (2+)IV}[Al{sub 14}{sup VI}O{sub 31}(OH)][Al{sub 2}{sup IV}O][Al{sup IV}]AL{sup IV}(OH)], where the Roman numerals designate the coordination of the atoms. The structure of the mineral is based on wide ribbons of edge-sharing Al octahedra (an integral part of the spinel layer). The ribbons run along the shortest x axis and are inclined to the y and z axes. The adjacent ribbons are shifted with respect to each other along the y axis, resulting in the formation of step-like layers in which the two-ribbon thickness alternates with the three-ribbon thickness. Additional Al octahedra and Mg and Fe{sup 2+} tetrahedra are located between the ribbons. The layers are linked together to form a three-dimensional framework by Al tetrahedra, Ca polyhedra, and hydrogen bonds with the participation of OH groups.

  17. Revisiting spatial distribution and biochemical composition of calcium-containing crystals in human osteoarthritic articular cartilage

    PubMed Central

    2013-01-01

    Introduction Calcium-containing (CaC) crystals, including basic calcium phosphate (BCP) and calcium pyrophosphate dihydrate (CPP), are associated with destructive forms of osteoarthritis (OA). We assessed their distribution and biochemical and morphologic features in human knee OA cartilage. Methods We prospectively included 20 patients who underwent total knee replacement (TKR) for primary OA. CaC crystal characterization and identification involved Fourier-transform infra-red spectrometry and scanning electron microscopy of 8 to 10 cartilage zones of each knee, including medial and lateral femoral condyles and tibial plateaux and the intercondyle zone. Differential expression of genes involved in the mineralization process between cartilage with and without calcification was assessed in samples from 8 different patients by RT-PCR. Immunohistochemistry and histology studies were performed in 6 different patients. Results Mean (SEM) age and body mass index of patients at the time of TKR was 74.6 (1.7) years and 28.1 (1.6) kg/m², respectively. Preoperative X-rays showed joint calcifications (chondrocalcinosis) in 4 cases only. The medial femoro-tibial compartment was the most severely affected in all cases, and mean (SEM) Kellgren-Lawrence score was 3.8 (0.1). All 20 OA cartilages showed CaC crystals. The mineral content represented 7.7% (8.1%) of the cartilage weight. All patients showed BCP crystals, which were associated with CPP crystals for 8 joints. CaC crystals were present in all knee joint compartments and in a mean of 4.6 (1.7) of the 8 studied areas. Crystal content was similar between superficial and deep layers and between medial and femoral compartments. BCP samples showed spherical structures, typical of biological apatite, and CPP samples showed rod-shaped or cubic structures. The expression of several genes involved in mineralization, including human homolog of progressive ankylosis, plasma-cell-membrane glycoprotein 1 and tissue

  18. Calcium

    MedlinePlus

    ... milligrams) of calcium each day. Get it from: Dairy products. Low-fat milk, yogurt, cheese, and cottage ... lactase that helps digest the sugar (lactose) in dairy products, and may have gas, bloating, cramps, or ...

  19. Experimental models of renal calcium stones in rodents

    PubMed Central

    Bilbault, Héloïse; Haymann, Jean-Philippe

    2016-01-01

    In human nephrolithiasis, most stones are containing calcium and are located within urinary cavities; they may contain monohydrate calcium oxalate, dihydrate calcium oxalate and/or calcium phosphates in various proportion. Nephrolithiasis may also be associated with nephrocalcinosis, i.e., crystal depositions in tubular lumen and/or interstitium, an entity which suggests specific pathological processes. Several rodents models have been developed in order to study the pathophysiology of intrarenal crystal formation. We review here calcium rodent models classified upon the presence of nephrolithiasis and/or nephrocalcinosis. As rodents are not prone to nephrolithiasis, models require the induction of a long standing hypercalciuria or hyperoxaluria (thus explaining the very few studies reported), conversely to nephrocalcinosis which may occur within hours or days. Whereas a nephrotoxicity leading to tubular injury and regeneration appears as a critical event for crystal retention in nephrocalcinosis models, surprisingly very little is known about the physiopathology of crystal attachment to urothelium in nephrolithiasis. Creating new models of nephrolithiasis especially in different genetic mice strains appears an important challenge in order to unravel the early mechanisms of urinary stone formation in papilla and fornices. PMID:26981444

  20. Experimental models of renal calcium stones in rodents.

    PubMed

    Bilbault, Héloïse; Haymann, Jean-Philippe

    2016-03-01

    In human nephrolithiasis, most stones are containing calcium and are located within urinary cavities; they may contain monohydrate calcium oxalate, dihydrate calcium oxalate and/or calcium phosphates in various proportion. Nephrolithiasis may also be associated with nephrocalcinosis, i.e., crystal depositions in tubular lumen and/or interstitium, an entity which suggests specific pathological processes. Several rodents models have been developed in order to study the pathophysiology of intrarenal crystal formation. We review here calcium rodent models classified upon the presence of nephrolithiasis and/or nephrocalcinosis. As rodents are not prone to nephrolithiasis, models require the induction of a long standing hypercalciuria or hyperoxaluria (thus explaining the very few studies reported), conversely to nephrocalcinosis which may occur within hours or days. Whereas a nephrotoxicity leading to tubular injury and regeneration appears as a critical event for crystal retention in nephrocalcinosis models, surprisingly very little is known about the physiopathology of crystal attachment to urothelium in nephrolithiasis. Creating new models of nephrolithiasis especially in different genetic mice strains appears an important challenge in order to unravel the early mechanisms of urinary stone formation in papilla and fornices. PMID:26981444

  1. Effects of polymer concentration on the morphology of calcium phosphate crystals formed in polyacrylamide hydrogels

    NASA Astrophysics Data System (ADS)

    Yokoi, Taishi; Kawashita, Masakazu; Ohtsuki, Chikara

    2013-11-01

    Growing crystals in hydrogels is an attractive method to form inorganic solids with designed morphology under ambient conditions. Precipitation of the inorganic solids in a hydrogel matrix can be regarded as mimicking the process of biomineralization. In the construction of biominerals, an organic template composed of insoluble macromolecules is used to control the crystal growth of the inorganic compounds. The morphological control in biomineralization can be applied to artificial reaction systems. In this study, the morphology of calcium phosphate crystals formed in polymeric hydrogels of various polymer concentrations was investigated. Spherical octacalcium phosphate (OCP) precipitated in the polyacrylamide (PAAm) hydrogels. Fibrous crystals gradually covered the surface of the spherical crystals as the polymer concentration of the gel increased. The morphology of the OCP crystals changed from sea urchin shapes to wool-ball shapes with increasing PAAm concentration. The morphological change is generated by the template effect of the polymer wall, which is made up of stacked PAAm sheets, surrounding the spherical OCP crystals.

  2. Optical planar waveguide in sodium-doped calcium barium niobate crystals by carbon ion implantation

    NASA Astrophysics Data System (ADS)

    Zhao, Jin-Hua; Qin, Xi-Feng; Wang, Feng-Xiang; Fu, Gang; Wang, Hui-Lin; Wang, Xue-Lin

    2013-07-01

    There is great interest in niobate crystals which belong to the tetragonal tungsten bronze (TTB) families owing to their intriguing properties. As one representative of such crystals, CBN (calcium barium niobate) has attracted rapidly growing attention. Because it has a higher Curie temperature than SBN (strontium barium niobate), possesses outstanding ferroelectric and it possesses optical properties. In addition, doped with sodium, CBN will show a higher Curie temperature than pure CBN. We report on the fabrication and characterization of optical planar waveguide in x-cut sodium-doped calcium barium niobate crystal by using C ion implantation. The guided-mode properties at the wavelength of 633 and 1539 nm are investigated through prism-coupling measurements, respectively. By applying direct end-face coupling arrangement, the near-field optical intensity distribution of waveguide modes is measured at 633 nm. For comparison, the modal profile of the same guided mode is also numerically calculated by the finite difference beam-propagation method via computer software BeamPROP. The transmission spectra of the waveguide before and after ion implantation treatments were investigated also. Our experiment results reveal that the waveguide could propagate light with transverse magnetic polarized direction only and it is assumed that the polarization selectivity of CBN crystal may responsible for this phenomenon.

  3. Crystallization from Gels

    NASA Astrophysics Data System (ADS)

    Narayana Kalkura, S.; Natarajan, Subramanian

    Among the various crystallization techniques, crystallization in gels has found wide applications in the fields of biomineralization and macromolecular crystallization in addition to crystallizing materials having nonlinear optical, ferroelectric, ferromagnetic, and other properties. Furthermore, by using this method it is possible to grow single crystals with very high perfection that are difficult to grow by other techniques. The gel method of crystallization provides an ideal technique to study crystal deposition diseases, which could lead to better understanding of their etiology. This chapter focuses on crystallization in gels of compounds that are responsible for crystal deposition diseases. The introduction is followed by a description of the various gels used, the mechanism of gelling, and the fascinating phenomenon of Liesegang ring formation, along with various gel growth techniques. The importance and scope of study on crystal deposition diseases and the need for crystal growth experiments using gel media are stressed. The various crystal deposition diseases, viz. (1) urolithiasis, (2) gout or arthritis, (3) cholelithiasis and atherosclerosis, and (4) pancreatitis and details regarding the constituents of the crystal deposits responsible for the pathological mineralization are discussed. Brief accounts of the theories of the formation of urinary stones and gallstones and the role of trace elements in urinary stone formation are also given. The crystallization in gels of (1) the urinary stone constituents, viz. calcium oxalate, calcium phosphates, uric acid, cystine, etc., (2) the constituents of the gallstones, viz. cholesterol, calcium carbonate, etc., (3) the major constituent of the pancreatic calculi, viz., calcium carbonate, and (4) cholic acid, a steroidal hormone are presented. The effect of various organic and inorganic ions, trace elements, and extracts from cereals, herbs, and fruits on the crystallization of major urinary stone and gallstone

  4. Acute oxalate nephropathy following kidney transplantation: Report of three cases

    PubMed Central

    Taheri, Diana; Gheissari, Alaleh; Shaabani, Pooria; Tabibian, Seyed Reza; Mortazavi, Mojgan; Seirafian, Shiva; Merrikhi, Alireza; Fesharakizadeh, Mehdi; Dolatkhah, Shahaboddin

    2015-01-01

    Calcium oxalate (CaOx) crystal deposition is a common finding immediately after kidney transplantation. However, small depositions of CaOx could be benign while extensive depositions lead to poor graft outcome. Here we report three cases with end-stage renal disease (ESRD), bilateral nephrolithiasis, and unknown diagnosis of primary hyperoxaluria (PH) who underwent a renal transplant and experienced an early-onset graft failure. Although an acute rejection was suspected, renal allograft biopsies and subsequent allograft nephrectomies showed extensive CaOx deposition, which raised a suspicion of PH. Even though increased urinary excretion of CaOx was found in all patients, this diagnosis could be confirmed with further tests including genetic study and metabolic assay. In conclusion, massive CaOx deposition in kidney allograft is an important cause of poor allograft survival and needs special management. Furthermore, our cases suggest patients with ESRD and a history of nephrolithiasis should be screened for elevated urinary oxalate excretion and rule out of PH. PMID:26664431

  5. Effect of Hydraulic Activity on Crystallization of Precipitated Calcium Carbonate (PCC) for Eco-Friendly Paper

    PubMed Central

    Kim, Jung-Ah; Han, Gi-Chun; Lim, Mihee; You, Kwang-Suk; Ryu, Miyoung; Ahn, Ji-Whan; Fujita, Toyohisa; Kim, Hwan

    2009-01-01

    Wt% of aragonite, a CaCO3 polymorph, increased with higher hydraulic activity (°C) of limestone in precipitated calcium carbonate (PCC) from the lime-soda process (Ca(OH)2-NaOH-Na2CO3). Only calcite, the most stable polymorph, was crystallized at hydraulic activity under 10 °C, whereas aragonite also started to crystallize over 10 °C. The crystallization of PCC is more dependent on the hydraulic activity of limestone than CaO content, a factor commonly used to classify limestone ores according to quality. The results could be effectively applied to the determination of polymorphs in synthetic PCC for eco-friendly paper manufacture. PMID:20087470

  6. Basic calcium phosphate crystal-induced Egr-1 expression stimulates mitogenesis in human fibroblasts

    SciTech Connect

    Zeng, Xiao R.; Sun Yubo; Wenger, Leonor; Cheung, Herman S. . E-mail: hcheung@med.miami.edu

    2005-05-13

    Previously, we have reported that basic calcium phosphate (BCP) crystals stimulate mitogenesis and synthesis of matrix metalloproteinases in cultured human foreskin and synovial fibroblasts. However, the detailed mechanisms involved are still unclear. In the present study, using RT-PCR and Egr-1 promoter analysis we showed that BCP crystals could stimulate early growth response gene Egr-1 transcription through a PKC{alpha}-dependent p44/p42 MAPK pathway. Using a retrovirus gene expression system (Clontech) to overexpress Egr-1 in human fibroblast BJ-1 cells resulted in promotion of mitogenesis measured either by MTT cell proliferation analysis or by direct cell counting. The results demonstrate that Egr-1 may play a key role in mediating BCP crystal-induced synovial fibroblast mitogenesis.

  7. Oxalic acid in saliva, teeth and tooth tartar.

    PubMed

    Wahl, R; Kallee, E

    1994-11-01

    Oxalic acid was determined in human saliva, teeth, tartar, and in animal teeth. Saliva from dentally healthy male subjects contained 0.10 +/- 0.09 mmol/l (n = 41) and those of dentally healthy female subjects 0.18 +/- 0.17 mmol/l (n = 40). Oxalic acid in tartar from 16 patients was 3.3 +/- 1.2 mmol/kg tartar. In human teeth, oxalic acid was 1.0 +/- 0.3 mmol/kg in milk teeth (n = 12) and 0.9 +/- 0.6 mmol/kg in permanent teeth (n = 60). Human teeth were sorted into age groups and into molars, incisors and premolars. In animal teeth, oxalic acid content varied widely. The formed calcium oxalate is proposed to be a 'physiological' protective mechanism for teeth. PMID:7888477

  8. Transformation and Crystallization Energetics of Synthetic and Biogenic Amorphous Calcium Carbonate

    SciTech Connect

    Radha, A. V.; Forbes, Tori Z.; Killian, Christopher E.; Gilbert, P.U.P.A; Navrotsky, Alexandra

    2010-01-01

    Amorphous calcium carbonate (ACC) is a metastable phase often observed during low temperature inorganic synthesis and biomineralization. ACC transforms with aging or heating into a less hydrated form, and with time crystallizes to calcite or aragonite. The energetics of transformation and crystallization of synthetic and biogenic (extracted from California purple sea urchin larval spicules, Strongylocentrotus purpuratus) ACC were studied using isothermal acid solution calorimetry and differential scanning calorimetry. Transformation and crystallization of ACC can follow an energetically downhill sequence: more metastable hydrated ACC → less metastable hydrated ACC→anhydrous ACC ~ biogenic anhydrous ACC→vaterite → aragonite → calcite. In a given reaction sequence, not all these phases need to occur. The transformations involve a series of ordering, dehydration, and crystallization processes, each lowering the enthalpy (and free energy) of the system, with crystallization of the dehydrated amorphous material lowering the enthalpy the most. ACC is much more metastable with respect to calcite than the crystalline polymorphs vaterite or aragonite. The anhydrous ACC is less metastable than the hydrated, implying that the structural reorganization during dehydration is exothermic and irreversible. Dehydrated synthetic and anhydrous biogenic ACC are similar in enthalpy. The transformation sequence observed in biomineralization could be mainly energetically driven; the first phase deposited is hydrated ACC, which then converts to anhydrous ACC, and finally crystallizes to calcite. The initial formation of ACC may be a first step in the precipitation of calcite under a wide variety of conditions, including geological CO₂ sequestration.

  9. High variability of the heterogeneous ice nucleation potential of oxalic acid dihydrate and sodium oxalate

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Leisner, T.

    2010-04-01

    The heterogeneous ice nucleation potential of airborne oxalic acid dihydrate and sodium oxalate particles in the deposition and condensation mode has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 244 and 228 K. Previous laboratory studies have highlighted the particular role of oxalic acid dihydrate as the only species amongst a variety of other investigated dicarboxylic acids to be capable of acting as a heterogeneous ice nucleus in both the deposition and immersion mode. We could confirm a high deposition mode ice activity for 0.03 to 0.8 μm sized oxalic acid dihydrate particles that were either formed by nucleation from a gaseous oxalic acid/air mixture or by rapid crystallisation of highly supersaturated aqueous oxalic acid solution droplets. The critical saturation ratio with respect to ice required for deposition nucleation was found to be less than 1.1 and the size-dependent ice-active fraction of the aerosol population was in the range from 0.1 to 22%. In contrast, oxalic acid dihydrate particles that had crystallised from less supersaturated solution droplets and had been allowed to slowly grow in a supersaturated environment from still unfrozen oxalic acid solution droplets over a time period of several hours were found to be much poorer heterogeneous ice nuclei. We speculate that under these conditions a crystal surface structure with less-active sites for the initiation of ice nucleation was generated. Such particles partially proved to be almost ice-inactive in both the deposition and condensation mode. At times, the heterogeneous ice nucleation ability of oxalic acid dihydrate significantly changed when the particles had been processed in preceding cloud droplet activation steps. Such behaviour was also observed for the second investigated species, namely sodium oxalate. Our experiments address the atmospheric scenario that coating layers

  10. High variability of the heterogeneous ice nucleation potential of oxalic acid dihydrate and sodium oxalate

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Leisner, T.

    2010-08-01

    The heterogeneous ice nucleation potential of airborne oxalic acid dihydrate and sodium oxalate particles in the deposition and condensation mode has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 244 and 228 K. Previous laboratory studies have highlighted the particular role of oxalic acid dihydrate as the only species amongst a variety of other investigated dicarboxylic acids to be capable of acting as a heterogeneous ice nucleus in both the deposition and immersion mode. We could confirm a high deposition mode ice activity for 0.03 to 0.8 μm sized oxalic acid dihydrate particles that were either formed by nucleation from a gaseous oxalic acid/air mixture or by rapid crystallisation of highly supersaturated aqueous oxalic acid solution droplets. The critical saturation ratio with respect to ice required for deposition nucleation was found to be less than 1.1 and the size-dependent ice-active fraction of the aerosol population was in the range from 0.1 to 22%. In contrast, oxalic acid dihydrate particles that had crystallised from less supersaturated solution droplets and had been allowed to slowly grow in a supersaturated environment from still unfrozen oxalic acid solution droplets over a time period of several hours were found to be much poorer heterogeneous ice nuclei. We speculate that under these conditions a crystal surface structure with less-active sites for the initiation of ice nucleation was generated. Such particles partially proved to be almost ice-inactive in both the deposition and condensation mode. At times, the heterogeneous ice nucleation ability of oxalic acid dihydrate significantly changed when the particles had been processed in preceding cloud droplet activation steps. Such behaviour was also observed for the second investigated species, namely sodium oxalate. Our experiments address the atmospheric scenario that coating layers

  11. Structural and optical properties of calcium neodymium hexaaluminates single crystals, potential laser materials

    NASA Astrophysics Data System (ADS)

    Alablanche, S.; Kahn-Harari, A.; Thery, J.; Viana, B.; Vivien, D.; Dexpert-Ghys, J.; Faucher, M.

    1992-05-01

    The structural and optical properties of calcium-neodymium hexaaluminates crystals Ca 1- xNd xMg x Al 12- xO 19 (labeled Ca 1- xNd x) with a magnetoplumbite (MP) structure are investigated. The floating zone method is used to grow single crystals in the composition range 0.1 ≤ x ≤ 0.7, although for high calcium content, the melting of the compounds is no longer congruent. The X-ray structural determination, optical absorption at 4 K, and ESR investigation agree in the localization of Nd 3+ at the regular large cations site of the MP structure with axial ( D3 h) symmetry. A set of crystal field and free ion parameters which fits the absorption spectrum of Nd 3+ in this site is calculated. When x increases, Nd 3+ ions tend to occupy also a second site with lower symmetry. Moreover some anomalous behavior observed in the absorption and ESR spectra at high neodymium concentration may be related to Nd 3+-Nd 3+ ion pairing. Fluorescence intensity and lifetime measurements as a function of the x value are reported. There is evidence of strong cross-relaxation between neighboring neodymium ions for high x values. The results obtained for the Ca 1- xNd x compounds can be extended to other series in which Nd 3+ is replaced by another lanthanide ion. Preliminary investigations have been performed with Pr 3+ and are also reported.

  12. The influence of polyaspartate additive on the growth and morphology of calcium carbonate crystals

    NASA Astrophysics Data System (ADS)

    Gower, Laurie Anne

    The addition of low levels of polyaspartate to a supersaturated calcium carbonate (CaCOsb3) solution leads to unusual morphologies in the inorganic phase. Spherulitic vaterite aggregates with helical protrusions, and distorted calcite crystals that contain spiral pits, have been produced. The helical particles are coated with an inorganic membrane that appears to be responsible for the helical twist. The polymer also causes deposition of thin CaCOsb3 tablets and films on the glass substrate. Two distinct types of films are deposited; the first is a mosaic of calcite crystals, and the second is spherulitic vaterite. In situ observations of the crystallization reaction have determined that the thin-film morphology is a result of the phase separation of a hydrated CaCOsb3/polymer liquid-precursor, whereby accumulation of isotropic droplets creates a coating on the substrate, and subsequent dehydration and crystallization yields birefringent CaCOsb3 films. During the amorphous to crystalline transition, incremental growth steps lead to "transition bars" and sectored calcite tablets. This in vitro system was originally modeled after certain aspects of CaCOsb3 biomineralization, in which the soluble proteins extracted from biominerals tend to have high levels of aspartic acid residues. Based on the similarities between features exhibited by the products of this system and those in biominerals, an argument has been presented to suggest that this polymer-induced liquid-precursor (PILP) process is involved in the morphogenesis of CaCOsb3 biominerals. These features include the following: thin CaCOsb3 tablets that grow laterally; tablets that express unstable crystallographic faces; non-faceted single crystals with curved surfaces; spatially-delineated single crystals; sectored calcite tablets; hollow-shell spheres; calcium carbonate cements; and magnesium-bearing calcites. This work has demonstrated that a means of morphological control can be accomplished through non

  13. Reduction of Oxalate Levels in Tomato Fruit and Consequent Metabolic Remodeling Following Overexpression of a Fungal Oxalate Decarboxylase1[W

    PubMed Central

    Chakraborty, Niranjan; Ghosh, Rajgourab; Ghosh, Sudip; Narula, Kanika; Tayal, Rajul; Datta, Asis; Chakraborty, Subhra

    2013-01-01

    The plant metabolite oxalic acid is increasingly recognized as a food toxin with negative effects on human nutrition. Decarboxylative degradation of oxalic acid is catalyzed, in a substrate-specific reaction, by oxalate decarboxylase (OXDC), forming formic acid and carbon dioxide. Attempts to date to reduce oxalic acid levels and to understand the biological significance of OXDC in crop plants have met with little success. To investigate the role of OXDC and the metabolic consequences of oxalate down-regulation in a heterotrophic, oxalic acid-accumulating fruit, we generated transgenic tomato (Solanum lycopersicum) plants expressing an OXDC (FvOXDC) from the fungus Flammulina velutipes specifically in the fruit. These E8.2-OXDC fruit showed up to a 90% reduction in oxalate content, which correlated with concomitant increases in calcium, iron, and citrate. Expression of OXDC affected neither carbon dioxide assimilation rates nor resulted in any detectable morphological differences in the transgenic plants. Comparative proteomic analysis suggested that metabolic remodeling was associated with the decrease in oxalate content in transgenic fruit. Examination of the E8.2-OXDC fruit proteome revealed that OXDC-responsive proteins involved in metabolism and stress responses represented the most substantially up- and down-regulated categories, respectively, in the transgenic fruit, compared with those of wild-type plants. Collectively, our study provides insights into OXDC-regulated metabolic networks and may provide a widely applicable strategy for enhancing crop nutritional value. PMID:23482874

  14. Lack of evidence for the association of ornithine decarboxylase (+316 G>A), spermidine/spermine acetyl transferase (−1415 T>C) gene polymorphisms with calcium oxalate stone disease

    PubMed Central

    ÇOKER-GÜRKAN, AJDA; ARISAN, SERDAR; ARISAN, ELIF DAMLA; ÜNSAL, NARÇIN PALAVAN

    2014-01-01

    Urolithiasis is a complex and multifactorial disorder characterized by the presence of stones in the urinary tract. Urea cycle is an important process involved in disease progression. L-ornithine is a key amino acid in the urea cycle and is converted to putrescine by ornithine decarboxylase (ODC). Putrescine, spermidine and spermine are natural polyamines that are catabolized by a specific enzyme, spermidine/spermine acetyltransferase (SSAT). The single-nucleotide polymorphisms (SNPs) in the intron region of ODC (+316 G>A) and promoter region of SSAT (−1415 T>C) genes have been found to be associated with the polyamines expression levels. The aim of this study was to examine whether the ODC (+316 G>A) intron 1 region gene polymorphism and SAT-1 promoter region (−1415 T>C) gene polymorphisms are potential genetic markers for susceptibility to urolithiasis. A control group of 104 healthy subjects and a group of 65 patients with recurrent idiopathic calcium oxalate stone disease were enrolled into this study. Polymerase chain reaction (PCR)-based restriction analysis was performed for the ODC intron 1 (+316 G>A) region and SAT-1 (−1415 T>C) promoter gene polymorphisms by PstI and MspI restriction enzyme digestion, respectively. The genotype distribution of polymorphisms studied in the ODC intron 1 region (+316 G>A) and SAT-1 −1415 T>C promoter region did not reveal a significant difference between urolithiasis and the control groups (P=0.713 and 0.853), respectively. Furthermore, no significant difference was observed between the control and patient groups for ODC +316 G>A and SAT-1 −1415 T>C allele frequencies (P=0.877 and 0.644), respectively. In conclusion, results of the present study suggest that ODC + 316 G>A and SAT-1 −1415 T>C gene polymorphisms might not be a risk factor for urolithiasis. PMID:24649071

  15. Lack of evidence for the association of ornithine decarboxylase (+316 G>A), spermidine/spermine acetyl transferase (-1415 T>C) gene polymorphisms with calcium oxalate stone disease.

    PubMed

    Coker-Gürkan, Ajda; Arisan, Serdar; Arisan, Elif Damla; Unsal, Narçin Palavan

    2014-01-01

    Urolithiasis is a complex and multifactorial disorder characterized by the presence of stones in the urinary tract. Urea cycle is an important process involved in disease progression. L-ornithine is a key amino acid in the urea cycle and is converted to putrescine by ornithine decarboxylase (ODC). Putrescine, spermidine and spermine are natural polyamines that are catabolized by a specific enzyme, spermidine/spermine acetyltransferase (SSAT). The single-nucleotide polymorphisms (SNPs) in the intron region of ODC (+316 G>A) and promoter region of SSAT (-1415 T>C) genes have been found to be associated with the polyamines expression levels. The aim of this study was to examine whether the ODC (+316 G>A) intron 1 region gene polymorphism and SAT-1 promoter region (-1415 T>C) gene polymorphisms are potential genetic markers for susceptibility to urolithiasis. A control group of 104 healthy subjects and a group of 65 patients with recurrent idiopathic calcium oxalate stone disease were enrolled into this study. Polymerase chain reaction (PCR)-based restriction analysis was performed for the ODC intron 1 (+316 G>A) region and SAT-1 (-1415 T>C) promoter gene polymorphisms by PstI and MspI restriction enzyme digestion, respectively. The genotype distribution of polymorphisms studied in the ODC intron 1 region (+316 G>A) and SAT-1 -1415 T>C promoter region did not reveal a significant difference between urolithiasis and the control groups (P=0.713 and 0.853), respectively. Furthermore, no significant difference was observed between the control and patient groups for ODC +316 G>A and SAT-1 -1415 T>C allele frequencies (P=0.877 and 0.644), respectively. In conclusion, results of the present study suggest that ODC + 316 G>A and SAT-1 -1415 T>C gene polymorphisms might not be a risk factor for urolithiasis. PMID:24649071

  16. Crystal structure of barium titanyl oxalate BaTiO(C 2O 4) 2 · 4.5H 2O

    NASA Astrophysics Data System (ADS)

    Loue¨r, M.; Loue¨r, D.; Gotor, F. J.; Criado, J. M.

    1991-06-01

    The hydrated phase of barium titanyl oxalate, BaTiO(C 2O 4) 2 · 4.5H 2O, is monoclinic with a = 13.382(2), b = 13.812(2), c = 14.044(2) Å, β = 91.48(1)°, space group P2 1/ n, Z = 8. The structure has been determined from Patterson and Fourier syntheses. The refinement was done by the method of least-squares. The final R values were R = 0.056 and R w = 0.079 for 3261 unique reflections. The structure is characterized by a body-centered arrangement of finite groups consisting of four vertex-sharing TiO 6 distorted octahedra. These groups are connected by barium polyhedra and oxalate groups. The study shows that the water molecule number is 4.5 by formula rather than 4 reported previously. This conclusion is supported by TG measurements.

  17. Structural study and crystal chemistry of the first stage calcium graphite intercalation compound

    SciTech Connect

    Emery, Nicolas; Herold, Claire . E-mail: Claire.Herold@lcsm.uhp-nancy.fr; Lagrange, Philippe

    2005-09-15

    A novel and efficient synthesis method concerning the preparation of the first stage calcium graphite intercalation compound is provided. It makes use of a reaction between liquid metallic alloy and pyrolytic graphite. From now on it is especially easy to obtain bulk CaC{sub 6} samples. Thanks to such samples, it was possible to study in detail the crystal structure of this binary intercalation compound. It has been entirely specified, so that we know that CaC{sub 6} crystal is rhombohedral and belongs to the R3-bar m space group with the following parameters: a=517pm and {alpha}=49.55 deg. The elemental unit cell contains one calcium atom and six carbon atoms. In this paper, we show also how the various MC{sub 6} structures evolve according to the size of the intercalated element and to the bond nature that appears in the final compound. CaC{sub 6} is unique, since all the other MC{sub 6} compounds exhibit a hexagonal symmetry.

  18. Influence of acid-soluble proteins from bivalve Siliqua radiata ligaments on calcium carbonate crystal growth

    NASA Astrophysics Data System (ADS)

    Huang, Zeng-Qiong; Zhang, Gang-Sheng

    2016-08-01

    In vitro biomimetic synthesis of calcium carbonate (CaCO3) in the presence of shell proteins is a heavily researched topic in biomineralization. However, little is known regarding the function of bivalve ligament proteins in the growth of CaCO3 crystals. In this study, using fibrous protein K58 from Siliqua radiata ligaments or coverslips as substrates, we report the results of our study of CaCO3 precipitation in the presence or absence of acid-soluble proteins (ASP) from inner ligament layers. ASP can disturb the controlling function of K58 or a coverslip on the crystalline phase, resulting in the formation of aragonite, calcite, and vaterite. In addition, we identified the following four primary components from ASP by mass spectroscopy: alkaline phosphatase (ALP), ABC transporter, keratin type II cytoskeletal 1 (KRT 1), and phosphate ABC transporter, phosphate-binding protein (PstS). Further analysis revealed that the first three proteins and especially ALP, which is important in bone mineralisation, could affect the polymorphism and morphology of CaCO3 crystals by trapping calcium ions in their domains. Our results indicate that ALP may play an important role in the formation of aragonite in S. radiata ligaments. This paper may facilitate our understanding of the biomineralization process.

  19. Nanoscale Confinement Controls the Crystallization of Calcium Phosphate: Relevance to Bone Formation

    PubMed Central

    Cantaert, Bram; Beniash, Elia; Meldrum, Fiona C.

    2015-01-01

    A key feature of biomineralization processes is that they take place within confined volumes, in which the local environment can have significant effects on mineral formation. Herein, we investigate the influence of confinement on the formation mechanism and structure of calcium phosphate (CaP). This is of particular relevance to the formation of dentine and bone, structures of which are based on highly mineralized collagen fibrils. CaP was precipitated within 25–300 nm diameter, cylindrical pores of track etched and anodised alumina membranes under physiological conditions, in which this system enables systematic study of the effects of the pore size in the absence of a structural match between the matrix and the growing crystals. Our results show that the main products were polycrystalline hydroxapatite (HAP) rods, together with some single crystal octacalcium phosphate (OCP) rods. Notably, we demonstrate that these were generated though an intermediate amorphous calcium phosphate (ACP) phase, and that ACP is significantly stabilised in confinement. This effect may have significance to the mineralization of bone, which can occur through a transient ACP phase. We also show that orientation of the HAP comparable, or even superior to that seen in bone can be achieved through confinement effects alone. Although this simple experimental system cannot be considered, a direct mimic of the in vivo formation of ultrathin HAP platelets within collagen fibrils, our results show that the effects of physical confinement should not be neglected when considering the mechanisms of formation of structures, such as bones and teeth. PMID:24115275

  20. A Rare Case of Tumoral Calcium Pyrophosphate Dihydrate Crystal Deposition Disease of the Wrist Joint

    PubMed Central

    Nakamura, Osamu; Kaji, Yoshio; Yamagami, Yoshiki; Yamaguchi, Kounosuke; Nishimura, Hideki; Fukuoka, Natsuko; Yamamoto, Tetsuji

    2015-01-01

    Introduction. Tumoral calcium pyrophosphate dihydrate (CPPD) crystal deposition disease (CPPDCD), also known as tophaceous calcium pyrophosphate deposition disease (CPDD), is a tumorlike lesion, and it should be distinguished from usual CPDD that causes severe joint inflammation and arthralgia. A case of tumoral CPPDCD of the wrist joint that required differentiation from synovial osteochondromatosis is described. Case Presentation. The patient was a 78-year-old woman with a 5-year history of nodular lesions at the right wrist that had gradually increased in size. An excisional biopsy and a histological examination of the excised nodular lesions by hematoxylin and eosin (H&E) staining were performed, demonstrating numerous polarizable, rhabdoid, and rectangular crystals, surrounded by fibroblasts, macrophages, and foreign body-type giant cells, consistent with tumoral CPPDCD. Conclusion. Tumoral CPPDCD, especially at the wrist joint, is rare, and, to the best of our knowledge, only 2 articles have been published. This case seems to need further follow-up for recurrence, because tumoral CPPDCD may recur after complete or incomplete surgical excision. PMID:26783477

  1. Crystallization and assembling behavior of calcium carbonate controlled by Ca-organic fibers

    NASA Astrophysics Data System (ADS)

    Chen, Anliang; Ma, Peiyan; Fu, Zhengyi; Wu, Yan; Kong, Wei

    2013-08-01

    Calcium carbonate (CaCO3) crystals with different phases were obtained on the basis of one-dimensional Ca-deoxycholate fibers (Ca-DC fibers) under ambient conditions. Ca-DC fibers were prepared by the combination of Ca2+ ions and sodium deoxycholate (SDC) before the addition of sodium bicarbonate. Vaterite dominated mixtures could be easily obtained in the presence of Ca-DC fibers in the aqueous system at 10 °C. As the temperature was increased to 30 and 120 °C, pure vaterite and aragonite with novel morphologies were obtained, respectively. The framework formed by one-dimensional Ca-DC fibers was demonstrated to be the key role in mediating the crystallization and assembling behaviors of calcium carbonate. In this study, Ca-DC fibers, prepared as a novel insoluble organic polymorph controller, could even play an important role in the industrial production of CaCO3 with different polymorphs in future and other similar Ca-organic fibers are believed to have same functions as well.

  2. Acute oxalate nephropathy due to pancreatic atrophy in newly diagnosed pancreatic carcinoma.

    PubMed

    Moinuddin, Irfan; Bala, Asif; Ali, Butool; Khan, Husna; Bracamonte, Erika; Sussman, Amy

    2016-02-01

    Acute oxalate nephropathy can occur due to primary hyperoxaluria and secondary hyperoxaluria. The primary hyperoxalurias are a group of autosomal recessive disorders of endogenous oxalate overproduction. Secondary hyperoxaluria may occur as a result of excess dietary intake, poisoning with oxalate precursors (ethylene glycol), or enteric hyperoxaluria. The differential diagnosis of enteric hyperoxaluria includes inflammatory bowel disease, short bowel syndrome, bariatric surgery (with jejunoileal bypass or Roux-en-Y gastric bypass), celiac disease, partial colectomy, and chronic pancreatitis. The common etiology in all these processes is fat malabsorption, steatorrhea, saponification of calcium, and absorption of free oxalate. Hyperoxaluria causes increased urinary oxalate excretion, urolithiasis (promoted by hypovolemia, decreased urinary pH caused by metabolic acidosis, and decreased citrate and magnesium concentrations in urine), tubulointerstitial oxalate deposits, and tubulointerstitial nephritis. We report a rare case of acute oxalate nephropathy due to pancreatic atrophy and exocrine insufficiency caused by newly diagnosed pancreatic cancer. PMID:26614399

  3. Thermal-Diffusivity Dependence on Temperature of Gadolinium Calcium Oxoborate Single Crystals

    NASA Astrophysics Data System (ADS)

    Trefon-Radziejewska, D.; Bodzenta, J.; Łukasiewicz, T.

    2013-05-01

    Thermal diffusivities of pure and doped gadolinium calcium oxoborate (GdCOB) single crystals were measured as a function of the temperature along optical indicatrix axes X, Y, and Z. Three GdCOB samples were investigated, chemically pure single crystal, the one doped with 4 at% of Nd and the next one doped with 7 at% of Yb. Measurements were carried out for temperature range 40 °C to 300 °C. Determination of the thermal diffusivity based on an analysis of thermal wave propagation in the sample. For a detection of temperature disturbance propagating in the sample the mirage effect was used. Obtained results show that the thermal diffusivity decreases with the increase of sample temperature for all investigated crystals. The GdCOB single crystals reveal a strong anisotropy. The thermal diffusivity along Y direction has the highest value while values obtained in X and Z axes are much lower. Dopants cause decrease in the thermal diffusivity for all investigated directions.

  4. Crystallization and preliminary X-ray characterization of the genetically encoded fluorescent calcium indicator protein GCaMP2

    SciTech Connect

    Rodríguez Guilbe, María M.; Alfaro Malavé, Elisa C.; Akerboom, Jasper; Marvin, Jonathan S.; Looger, Loren L.; Schreiter, Eric R.

    2008-07-01

    The genetically encoded fluorescent calcium-indicator protein GCaMP2 was crystallized in the calcium-saturated form. X-ray diffraction data were collected to 2.0 Å resolution and the structure was solved by molecular replacement. Fluorescent proteins and their engineered variants have played an important role in the study of biology. The genetically encoded calcium-indicator protein GCaMP2 comprises a circularly permuted fluorescent protein coupled to the calcium-binding protein calmodulin and a calmodulin target peptide, M13, derived from the intracellular calmodulin target myosin light-chain kinase and has been used to image calcium transients in vivo. To aid rational efforts to engineer improved variants of GCaMP2, this protein was crystallized in the calcium-saturated form. X-ray diffraction data were collected to 2.0 Å resolution. The crystals belong to space group C2, with unit-cell parameters a = 126.1, b = 47.1, c = 68.8 Å, β = 100.5° and one GCaMP2 molecule in the asymmetric unit. The structure was phased by molecular replacement and refinement is currently under way.

  5. Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate

    PubMed Central

    Radha, A. V.; Forbes, Tori Z.; Killian, Christopher E.; Gilbert, P. U. P. A.; Navrotsky, Alexandra

    2010-01-01

    Amorphous calcium carbonate (ACC) is a metastable phase often observed during low temperature inorganic synthesis and biomineralization. ACC transforms with aging or heating into a less hydrated form, and with time crystallizes to calcite or aragonite. The energetics of transformation and crystallization of synthetic and biogenic (extracted from California purple sea urchin larval spicules, Strongylocentrotus purpuratus) ACC were studied using isothermal acid solution calorimetry and differential scanning calorimetry. Transformation and crystallization of ACC can follow an energetically downhill sequence: more metastable hydrated ACC → less metastable hydrated ACC⇒anhydrous ACC ∼ biogenic anhydrous ACC⇒vaterite → aragonite → calcite. In a given reaction sequence, not all these phases need to occur. The transformations involve a series of ordering, dehydration, and crystallization processes, each lowering the enthalpy (and free energy) of the system, with crystallization of the dehydrated amorphous material lowering the enthalpy the most. ACC is much more metastable with respect to calcite than the crystalline polymorphs vaterite or aragonite. The anhydrous ACC is less metastable than the hydrated, implying that the structural reorganization during dehydration is exothermic and irreversible. Dehydrated synthetic and anhydrous biogenic ACC are similar in enthalpy. The transformation sequence observed in biomineralization could be mainly energetically driven; the first phase deposited is hydrated ACC, which then converts to anhydrous ACC, and finally crystallizes to calcite. The initial formation of ACC may be a first step in the precipitation of calcite under a wide variety of conditions, including geological CO2 sequestration. PMID:20810918

  6. Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis.

    PubMed

    Mulay, Shrikant R; Desai, Jyaysi; Kumar, Santhosh V; Eberhard, Jonathan N; Thomasova, Dana; Romoli, Simone; Grigorescu, Melissa; Kulkarni, Onkar P; Popper, Bastian; Vielhauer, Volker; Zuchtriegel, Gabriele; Reichel, Christoph; Bräsen, Jan Hinrich; Romagnani, Paola; Bilyy, Rostyslav; Munoz, Luis E; Herrmann, Martin; Liapis, Helen; Krautwald, Stefan; Linkermann, Andreas; Anders, Hans-Joachim

    2016-01-01

    Crystals cause injury in numerous disorders, and induce inflammation via the NLRP3 inflammasome, however, it remains unclear how crystals induce cell death. Here we report that crystals of calcium oxalate, monosodium urate, calcium pyrophosphate dihydrate and cystine trigger caspase-independent cell death in five different cell types, which is blocked by necrostatin-1. RNA interference for receptor-interacting protein kinase 3 (RIPK3) or mixed lineage kinase domain like (MLKL), two core proteins of the necroptosis pathway, blocks crystal cytotoxicity. Consistent with this, deficiency of RIPK3 or MLKL prevents oxalate crystal-induced acute kidney injury. The related tissue inflammation drives TNF-α-related necroptosis. Also in human oxalate crystal-related acute kidney injury, dying tubular cells stain positive for phosphorylated MLKL. Furthermore, necrostatin-1 and necrosulfonamide, an inhibitor for human MLKL suppress crystal-induced cell death in human renal progenitor cells. Together, TNF-α/TNFR1, RIPK1, RIPK3 and MLKL are molecular targets to limit crystal-induced cytotoxicity, tissue injury and organ failure. PMID:26817517

  7. Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis

    PubMed Central

    Mulay, Shrikant R.; Desai, Jyaysi; Kumar, Santhosh V.; Eberhard, Jonathan N.; Thomasova, Dana; Romoli, Simone; Grigorescu, Melissa; Kulkarni, Onkar P.; Popper, Bastian; Vielhauer, Volker; Zuchtriegel, Gabriele; Reichel, Christoph; Bräsen, Jan Hinrich; Romagnani, Paola; Bilyy, Rostyslav; Munoz, Luis E.; Herrmann, Martin; Liapis, Helen; Krautwald, Stefan; Linkermann, Andreas; Anders, Hans-Joachim

    2016-01-01

    Crystals cause injury in numerous disorders, and induce inflammation via the NLRP3 inflammasome, however, it remains unclear how crystals induce cell death. Here we report that crystals of calcium oxalate, monosodium urate, calcium pyrophosphate dihydrate and cystine trigger caspase-independent cell death in five different cell types, which is blocked by necrostatin-1. RNA interference for receptor-interacting protein kinase 3 (RIPK3) or mixed lineage kinase domain like (MLKL), two core proteins of the necroptosis pathway, blocks crystal cytotoxicity. Consistent with this, deficiency of RIPK3 or MLKL prevents oxalate crystal-induced acute kidney injury. The related tissue inflammation drives TNF-α-related necroptosis. Also in human oxalate crystal-related acute kidney injury, dying tubular cells stain positive for phosphorylated MLKL. Furthermore, necrostatin-1 and necrosulfonamide, an inhibitor for human MLKL suppress crystal-induced cell death in human renal progenitor cells. Together, TNF-α/TNFR1, RIPK1, RIPK3 and MLKL are molecular targets to limit crystal-induced cytotoxicity, tissue injury and organ failure. PMID:26817517

  8. [Pathophysiology, diagnosis and conservative therapy in calcium kidney calculi].

    PubMed

    Hess, B

    2003-02-01

    Annual incidences of kidney stones are about 0.1-0.4% of the population, and lifetime prevalences in the USA and Europe range between 8 and 15%. Kidney stones occur more frequently with increasing age and among men. Within ten years, the disease usually recurs in more than 50% of patients. Nowadays, about 85% of all kidney stones contain calcium salts (calcium oxalate and/or calcium phosphate) as their main crystalline components. Because human urine is commonly supersaturated with respect to calcium salts as well as to uric acid, crystalluria is very common, i.e. healthy people excrete up to ten millions of microcrystals every day. Recurrent stone formers appear to excrete lower amounts or structurally defective forms of crystallization inhibitors which allows for the formation of large crystal aggregates as precursors of stones. Alternatively, crystal adhesion to urothelial surfaces may be enhanced in stone formers. Medical treatment of renal colic is based on nonsteroidal antiinflammatory drugs, because prostaglandins appear to play a crucial role in the pathophysiology of pain during ureteral obstruction. In addition, centrally acting analgesics such as pethidine-HCl may be required in many cases. The administration of high amounts (3-4 liters/day) of intravenous fluids should be abandoned, since it may raise intraureteral pressure whereby pain increases and kidney pelvis or fornices may rupture. All first-stone formers should undergo a simple basic evaluation, including stone analysis (x-ray diffraction or infrared spectrometry), serum values of ionized calcium (alternatively: total calcium and albumin) and creatinine, urinalysis and repeated measurements of fasting urine pH in order to detect urinary acidification disorders or low urine pH. In high-risk patients with as first stone episode (i.e. strongly positive family history, inflammatory bowel disease, short-bowel syndrome, nephrocalcinosis, bilateral stones, hypercalcemia, renal tubular acidosis, airline

  9. Divalent europium doped and un-doped calcium iodide scintillators: Scintillator characterization and single crystal growth

    SciTech Connect

    Boatner, L. A.; Ramey, J. O.; Kolopus, J. A.; Neal, John S.

    2015-02-21

    Initially, the alkaline-earth scintillator, CaI2:Eu2+, was discovered around 1964 by Hofstadter, Odell, and Schmidt. Serious practical problems quickly arose, however, that were associated with the growth of large monolithic single crystals of this material due to its lamellar, mica-like structure. As a result of its theoretically higher light yield, CaI2:Eu2+ has the potential to exceed the excellent scintillation performance of SrI2:Eu2+. In fact, theoretical predictions for the light yield of CaI2:Eu2+ scintillators suggested that an energy resolution approaching 2% at 662 keV could be achievable. Like the early SrI2:Eu2+ scintillator, the performance of CaI2:Eu2+ scintillators has traditionally suffered due, at least in part, to outdated materials synthesis, component stoichiometry/purity, and single-crystal-growth techniques. Based on our recent work on SrI2:Eu2+ scintillators in single-crystal form, we have developed new techniques that are applied here to CaI2:Eu2+ and pure CaI2 with the goal of growing large un-cracked crystals and, potentially, realizing the theoretically predicted performance of the CaI2:Eu2+ form of this material. Calcium iodide does not adhere to modern glassy carbon Bridgman crucibles - so there should be no differential thermal-contraction-induced crystal/crucible stresses on cooling that would result in crystal cracking of the lamellar structure of CaI2. Here we apply glassy carbon crucible Bridgman growth, high-purity growth-charge compounds, our molten salt processing/filtration technique, and extended vacuum-melt-pumping methods to the growth of both CaI2:Eu2+ and un-doped CaI2. Moreover, large scintillating single crystals were obtained, and detailed characterization studies of the

  10. Divalent europium doped and un-doped calcium iodide scintillators: Scintillator characterization and single crystal growth

    DOE PAGESBeta

    Boatner, L. A.; Ramey, J. O.; Kolopus, J. A.; Neal, John S.

    2015-02-21

    Initially, the alkaline-earth scintillator, CaI2:Eu2+, was discovered around 1964 by Hofstadter, Odell, and Schmidt. Serious practical problems quickly arose, however, that were associated with the growth of large monolithic single crystals of this material due to its lamellar, mica-like structure. As a result of its theoretically higher light yield, CaI2:Eu2+ has the potential to exceed the excellent scintillation performance of SrI2:Eu2+. In fact, theoretical predictions for the light yield of CaI2:Eu2+ scintillators suggested that an energy resolution approaching 2% at 662 keV could be achievable. Like the early SrI2:Eu2+ scintillator, the performance of CaI2:Eu2+ scintillators has traditionally suffered due, atmore » least in part, to outdated materials synthesis, component stoichiometry/purity, and single-crystal-growth techniques. Based on our recent work on SrI2:Eu2+ scintillators in single-crystal form, we have developed new techniques that are applied here to CaI2:Eu2+ and pure CaI2 with the goal of growing large un-cracked crystals and, potentially, realizing the theoretically predicted performance of the CaI2:Eu2+ form of this material. Calcium iodide does not adhere to modern glassy carbon Bridgman crucibles - so there should be no differential thermal-contraction-induced crystal/crucible stresses on cooling that would result in crystal cracking of the lamellar structure of CaI2. Here we apply glassy carbon crucible Bridgman growth, high-purity growth-charge compounds, our molten salt processing/filtration technique, and extended vacuum-melt-pumping methods to the growth of both CaI2:Eu2+ and un-doped CaI2. Moreover, large scintillating single crystals were obtained, and detailed characterization studies of the scintillation properties of CaI2:Eu2+ and pure CaI2 single crystals are presented that include studies of the effects of plastic deformation of the crystals on the scintillator performance.« less

  11. Coordination Modes of Americium in the Am2(C2O4)3(H2O)6·4H2O Oxalate: Synthesis, Crystal Structure, Spectroscopic Characterizations and Comparison in the M2(C2O4)3(H2O)6·nH2O (M = Ln, An) Series.

    PubMed

    Tamain, C; Arab-Chapelet, B; Rivenet, M; Legoff, X F; Loubert, G; Grandjean, S; Abraham, F

    2016-01-01

    Americium oxalate single crystals, Am2(C2O4)3(H2O)6·4H2O, were prepared by in situ oxalic acid generation by slow hydrolysis of the diester. Their structure was determined by single-crystal X-ray diffraction and was solved by the direct methods and Fourier difference techniques. The structure (space group P21/c, a = 11.184(4) Å, b = 9.489(4) Å, c = 10.234(4) Å, β = 114.308(8)°, Z = 2) consists of layers formed by six-membered rings of actinide metals connected through oxalate ions. The americium atoms are nine-coordinated by six oxygen atoms from three bidentate oxalate ligands and three water molecules. The distances within the coordination sphere as well as infrared and Raman spectra of several isostructural lanthanide (Ce(III), Pr(III), Nd(III), Sm(III), Gd(III)) and actinide (Pu(III), Am(III)) oxalates were compared to evaluate the similarities and the differences between the two series. PMID:26675037

  12. Oxalate minerals on Mars?

    NASA Astrophysics Data System (ADS)

    Applin, D. M.; Izawa, M. R. M.; Cloutis, E. A.; Goltz, D.; Johnson, J. R.

    2015-06-01

    Small amounts of unidentified organic compounds have only recently been inferred on Mars despite strong reasons to expect significant concentrations and decades of searching. Based on X-ray diffraction and reflectance spectroscopic analyses we show that solid oxalic acid and its most common mineral salts are stable under the pressure and ultraviolet irradiation environment of the surface of Mars, and could represent a heretofore largely overlooked reservoir of organic carbon in the martian near-surface. In addition to the delivery to Mars by carbonaceous chondrites, oxalate minerals are among the predicted breakdown products of meteoritic organic matter delivered to the martian surface, as well as any endogenic organic carbon reaching the martian surface from the interior. A reinterpretation of pyrolysis experiments from the Viking, Phoenix, and Mars Science Laboratory missions shows that all are consistent with the presence of significant concentrations of oxalate minerals. Oxalate minerals could be important in numerous martian geochemical processes, including acting as a possible nitrogen sink (as ammonium oxalate), and contributing to the formation of “organic” carbonates, methane, and hydroxyl radicals.

  13. All three Ca[superscript 2+]-binding loops of photoproteins bind calcium ions: The crystal structures of calcium-loaded apo-aequorin and apo-obelin

    SciTech Connect

    Deng, Lu; Vysotski, Eugene S.; Markova, Svetlana V.; Liu, Zhi-Jie; Lee, John; Rose, John; Wang, Bi-Cheng

    2010-07-13

    The crystal structures of calcium-loaded apoaequorin and apo-obelin have been determined at resolutions 1.7 {angstrom} and 2.2 {angstrom}, respectively. A calcium ion is observed in each of the three EF-hand loops that have the canonical calcium-binding sequence, and each is coordinated in the characteristic pentagonal bipyramidal configuration. The calcium-loaded apo-proteins retain the same compact scaffold and overall fold as the unreacted photoproteins containing the bound substrate, 2-hydroperoxycoelenterazine, and also the same as the Ca{sup 2+}-discharged obelin bound with the product, coelenteramide. Nevertheless, there are easily discerned shifts in both helix and loop regions, and the shifts are not the same between the two proteins. It is suggested that these subtle shifts are the basis of the ability of these photoproteins to sense Ca{sup 2+} concentration transients and to produce their bioluminescence response on the millisecond timescale. A mechanism of intrastructural transmission of the calcium signal is proposed.

  14. CLearance of calcium pyrophosphate dihydrate crystals in vivo. II. Studies using triclinic crystals doubly labeled with 45Ca and 85Sr.

    PubMed

    McCarty, D J; Palmer, D W; James, C

    1979-10-01

    The clearance rate of isotopically labeled synthetic triclinic calcium pyrophosphate dihydrate (CPPD) crystals injection into rabbit joints was estimated by serial counting. Kinetic analysis using a four compartment model showed that half of the injected dose was cleared from 4 rabbit knee joints in 19.1 +/- 0.42 (SEM) days. Profound hypomagnesemia, produced in 2 rabbits with a low magnesium diet, did not affect the rate of crystal clearance detectably. Lavage of joints with solutions known to promote CPPD crystal solubility failed to remove detectable radioactivity. The previous finding of CPPD crystals in synovial phagocytes by electron microscopy, together with the finding of nuclide activity in the synovium and the failure to remove such activity by joint lavage, suggests that endocytosis by synovial cells is an important, effective mechanism controlling the synovial fluid concentration of crystals in patients with CPPD crystal deposition disease. PMID:226098

  15. Crystal structure analysis reveals Pseudomonas PilY1 as an essential calcium-dependent regulator of bacterial surface motility

    SciTech Connect

    Orans, Jillian; Johnson, Michael D.L.; Coggan, Kimberly A.; Sperlazza, Justin R.; Heiniger, Ryan W.; Wolfgang, Matthew C.; Redinbo, Matthew R.

    2010-09-21

    Several bacterial pathogens require the 'twitching' motility produced by filamentous type IV pili (T4P) to establish and maintain human infections. Two cytoplasmic ATPases function as an oscillatory motor that powers twitching motility via cycles of pilus extension and retraction. The regulation of this motor, however, has remained a mystery. We present the 2.1 {angstrom} resolution crystal structure of the Pseudomonas aeruginosa pilus-biogenesis factor PilY1, and identify a single site on this protein required for bacterial translocation. The structure reveals a modified {beta}-propeller fold and a distinct EF-hand-like calcium-binding site conserved in pathogens with retractile T4P. We show that preventing calcium binding by PilY1 using either an exogenous calcium chelator or mutation of a single residue disrupts Pseudomonas twitching motility by eliminating surface pili. In contrast, placing a lysine in this site to mimic the charge of a bound calcium interferes with motility in the opposite manner - by producing an abundance of nonfunctional surface pili. Our data indicate that calcium binding and release by the unique loop identified in the PilY1 crystal structure controls the opposing forces of pilus extension and retraction. Thus, PilY1 is an essential, calcium-dependent regulator of bacterial twitching motility.

  16. Crystal structure analysis reveals Pseudomonas PilY1 as an essential calcium-dependent regulator of bacterial surface motility.

    PubMed

    Orans, Jillian; Johnson, Michael D L; Coggan, Kimberly A; Sperlazza, Justin R; Heiniger, Ryan W; Wolfgang, Matthew C; Redinbo, Matthew R

    2010-01-19

    Several bacterial pathogens require the "twitching" motility produced by filamentous type IV pili (T4P) to establish and maintain human infections. Two cytoplasmic ATPases function as an oscillatory motor that powers twitching motility via cycles of pilus extension and retraction. The regulation of this motor, however, has remained a mystery. We present the 2.1 A resolution crystal structure of the Pseudomonas aeruginosa pilus-biogenesis factor PilY1, and identify a single site on this protein required for bacterial translocation. The structure reveals a modified beta-propeller fold and a distinct EF-hand-like calcium-binding site conserved in pathogens with retractile T4P. We show that preventing calcium binding by PilY1 using either an exogenous calcium chelator or mutation of a single residue disrupts Pseudomonas twitching motility by eliminating surface pili. In contrast, placing a lysine in this site to mimic the charge of a bound calcium interferes with motility in the opposite manner--by producing an abundance of nonfunctional surface pili. Our data indicate that calcium binding and release by the unique loop identified in the PilY1 crystal structure controls the opposing forces of pilus extension and retraction. Thus, PilY1 is an essential, calcium-dependent regulator of bacterial twitching motility. PMID:20080557

  17. Results of the TTF-TCNQ- and the calcium carbonate-crystallization on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Nielsen, Kjeld Flemming; Lind, M. David

    1991-01-01

    Experiment AO139A on the Long Duration Exposure Facility (LDEF) carried four large containers into orbit for five years with crystal growth solutions for lead sulfide, calcium carbonate, and tetra thiafulvalene- tetra cyanoquino methane (TTF-TCNQ). The LDEF was in excellent condition after the long orbital stay, and although the temperature data was lost, the experiment program had been working since the valves in all containers were opened. All four experiments produced crystals; however, they were of varying quality. The calcium carbonate crystals had the best appearance. The TTF-TCNQ crystals were packed together near the valve openings of the container. When taken apart, the single crystals showed some unusual morphological properties. X-ray investigations as well as conductivity measurements on the long duration space grown TTF-TCNQ crystals are presented, and pictures of the calcium carbonate are shown. Comparisons are made with previous space solution growth experiments on the European Spacelab Mission and the Apollo-Soyuz Test Project.

  18. Posterior C1-C2 calcium pyrophosphate dihydrate crystal deposition disease.

    PubMed

    Ng, Isaac Bing-Yi; Arkun, Knarik; Riesenburger, Ron I

    2016-01-01

    Calcium pyrophosphate dihydrate (CPPD) crystal deposition disease rarely occurs in the posterior aspect of the craniocervical junction (CCJ). To the best of our knowledge, there have been only 2 previously reported cases of patients with posterior CPPD lesions in this region that have led to cervical myelopathy. We report the case of a 70-year-old man presenting with neck pain and cervical myelopathy with multilevel stenosis from C1-C6. The stenosis was worst at C1-C2, secondary to compression by a CPPD lesion posterior to the spinal cord. The patient underwent a C2-C6 laminectomy and fusion with resection of the CPPD lesion. In this report, we discuss the patient and present a novel theory to explain the preponderance of CPPD lesions in the CCJ occurring anteriorly and not posteriorly to the spinal cord. PMID:26976840

  19. Peptide induced crystallization of calcium carbonate on wrinkle patterned substrate: implications for chitin formation in molluscs.

    PubMed

    Ghatak, Anindita Sengupta; Koch, Marcus; Guth, Christina; Weiss, Ingrid M

    2013-01-01

    We here present the nucleation and growth of calcium carbonate under the influence of synthetic peptides on topographically patterned poly(dimethylsiloxane) (PDMS) substrates, which have a controlled density of defects between the wrinkles. Experiments with two lysine-rich peptides derived from the extracellular conserved domain E22 of the mollusc chitin synthase Ar-CS1, AKKKKKAS (AS8) and EEKKKKKES (ES9) on these substrates showed their influence on the calcium carbonate morphology. A transition from polycrystalline composites to single crystalline phases was achieved with the peptide AS8 by changing the pH of the buffer solution. We analyzed three different pH values as previous experiments showed that E22 interacts with aragonite biominerals more strongly at pH 7.75 than at pH 9.0. At any given pH, crystals appeared in characteristic morphologies only on wrinkled substrates, and did not occur on the flat, wrinkle-free PDMS substrate. These results suggest that these wrinkled substrates could be useful for controlling the morphologies of other mineral/peptide and mineral/protein composites. In nature, these templates are formed enzymatically by glycosyltransferases containing pH-sensitive epitopes, similar to the peptides investigated here. Our in vitro test systems may be useful to gain understanding of the formation of distinct 3D morphologies in mollusc shells in response to local pH shifts during the mineralization of organic templates. PMID:23736692

  20. Calcium sulfate crystallization along citrus root channels in a Florida soil exhibiting acid sulfate properties

    SciTech Connect

    Syslo, S.K.; Myhre, D.L.; Harris, W.G.

    1988-02-01

    The authors observed euhedral crystals in Manatee soil in a citrus grove in St. Lucie County, Florida. The material was identified as gypsum (CaSO/sub 4/ /times/ 2H/sub 2/O) using x-ray diffraction and infrared spectra. Photomicrography and scanning electron microscopy revealed that gypsum accumulated both in old root channels and within citrus root tissue of the Btg horizon. The subsurface horizons had elevated sulfate levels, a low initial pH, a drop (0.5 unit) in pH upon air-drying. Electrical conductivity paralleled the concentration of water-soluble sulfate. High levels of calcium and sulfate occurred for horizons above the water table. This accumulation is attributed to groundwater bearing these ions and subsequently discharging them to the overlying soil. Dead citrus roots appear to act as wicks to aid water transfer from lower to higher horizons. The roots and their empty channels provide spaces in which the gypsum can precipitate if the concentrations of calcium and sulfate in the evaporating groundwater exceed the solubility product of gypsum.

  1. Photoinduced crystallization of calcium carbonate from a homogeneous precursor solution in the presence of partially hydrolyzed poly(vinyl alcohol)

    NASA Astrophysics Data System (ADS)

    Nishio, Takashi; Naka, Kensuke

    2015-04-01

    Photoinduced crystallization of calcium carbonate (CaCO3) was demonstrated by the photodecarboxylation of ketoprofen (KP, 2-(3-benzoylphenyl)propionic acid) under alkaline conditions (pH 10). In this method, a homogeneous solution comprising KP, calcium chloride, ammonia, and partially hydrolyzed poly(vinyl alcohol) (PVAPS, degree of saponification: 86.5-89.0 mol %) was used as the precursor solution and was exposed to ultraviolet (UV) irradiation for different time periods. Thermogravimetric analysis of the obtained xerogels showed that increasing the UV irradiation time increased the amount of CaCO3 formed and the complete conversion of calcium ions to calcite was achieved after 50 min of UV irradiation. Furthermore, solid phase analyses suggested that nanometer-to-micron-sized calcite crystals were formed and dispersed in the obtained PVAPS matrix.

  2. Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues.

    PubMed

    Toyoshima, Chikashi; Nomura, Hiromi; Tsuda, Takeo

    2004-11-18

    P-type ion transporting ATPases are ATP-powered ion pumps that establish ion concentration gradients across biological membranes. Transfer of bound cations to the lumenal or extracellular side occurs while the ATPase is phosphorylated. Here we report at 2.3 A resolution the structure of the calcium-ATPase of skeletal muscle sarcoplasmic reticulum, a representative P-type ATPase that is crystallized in the absence of Ca2+ but in the presence of magnesium fluoride, a stable phosphate analogue. This and other crystal structures determined previously provide atomic models for all four principal states in the reaction cycle. These structures show that the three cytoplasmic domains rearrange to move six out of ten transmembrane helices, thereby changing the affinity of the Ca2+-binding sites and the gating of the ion pathway. Release of ADP triggers the opening of the lumenal gate and release of phosphate its closure, effected mainly through movement of the A-domain, the actuator of transmembrane gates. PMID:15448704

  3. Crystal structure of metastasis-associated protein S100A4 in the active, calcium-bound form

    PubMed Central

    Pathuri, Puja; Vogeley, Lutz; Luecke, Hartmut

    2008-01-01

    Summary S100A4 (metastasin) is a member of the S100 family of calcium-binding proteins that is directly involved in tumorgenesis. Until recently, the only structural information available was the solution NMR structure of the inactive, calcium-free form of the protein. Here we report the crystal structure of human S100A4 in the active, calcium-bound state at 2.03 Å resolution that was solved by molecular replacement in the space group P65 with two molecules in the asymmetric unit from perfectly merohedrally twinned crystals. The Ca2+-bound S100A4 structure reveals a large conformational change in the three-dimensional structure of the dimeric S100A4 protein upon calcium binding. This calcium-dependent conformational change opens up a hydrophobic binding pocket that is capable of binding to target proteins such as annexin A2, the p53 tumor suppressor protein, and myosin IIA. The structure of the active form of S100A4 provides insight into its interactions with its binding partners and a better understanding on its role in metastasis. PMID:18783790

  4. Detection of calcium phosphate crystals in the joint fluid of patients with osteoarthritis – analytical approaches and challenges

    PubMed Central

    Yavorskyy, Alexander; Hernandez-Santana, Aaron; McCarthy, Geraldine

    2008-01-01

    Clinically, osteoarthritis (OA) is characterised by joint pain, stiffness after immobility, limitation of movement and, in many cases, the presence of basic calcium phosphate (BCP) crystals in the joint fluid. The detection of BCP crystals in the synovial fluid of patients with OA is fraught with challenges due to the submicroscopic size of BCP, the complex nature of the matrix in which they are found and the fact that other crystals can co-exist with them in cases of mixed pathology. Routine analysis of joint crystals still relies almost exclusively on the use of optical microscopy, which has limited applicability for BCP crystal identification due to limited resolution and the inherent subjectivity of the technique. The purpose of this Critical Review is to present an overview of some of the main analytical tools employed in the detection of BCP to date and the potential of emerging technologies such as atomic force microscopy (AFM) and Raman microspectroscopy for this purpose. PMID:18299743

  5. Comparison of oxalate formation from ascorbic and glyoxyl acids in detached glandular heads of tobacco trichomes

    SciTech Connect

    Vogeli-Lange, R.; Wagner, G.J.

    1987-08-01

    Ca-oxalate crystal containing cells from detached glandular heads of trichomes from Nicotiana tabacum, TI 1068, are capable of converting (1-/sup 14/C) ascorbic acid (AA) and (1-/sup 14/C) glyoxylic acid (GA) to oxalate. AA was found to be a better precursor for oxalate formation than GA. In detached glandular heads, 3.6x more label was converted to oxalate from AA than from GA, in the epidermis the factor was 3x while that with petiole tissue was 7x. Oxalate formation from AA, in detached glandular heads, was only partially inhibited in the dark and in the presence of metabolic inhibitors, suggesting that a nonenzymatic component might be involved. Oxalate formation from GA increased in the presence of metabolic inhibitors. During treatment of detached glandular heads with 2 mM Ca-acetate for 2 days, oxalate formation from AA was stimulated 3 fold, while the presence of 2mM Ca-acetate had no effect on the oxalate formation from GA. These results suggest that Ca/sup 2 +/ stimulates the formation of Ca-oxalate crystals in glandular head cells, and that AA can serve as a precursor for oxalate production.

  6. Urine oxalate biological variation in patients with primary hyperoxaluria.

    PubMed

    Clifford-Mobley, Oliver; Sjögren, Anna; Lindner, Elisabeth; Rumsby, Gill

    2016-08-01

    Hyperoxaluria is a well-recognised risk factor for urolithiasis and patients with primary hyperoxaluria (PH) gradually build up calcium oxalate deposits leading to chronic kidney disease. Efforts to improve treatment for PH have focused on reducing urine oxalate excretion and thus decreasing lithogenesis. To determine the efficacy of treatments designed to alter a biochemical parameter it is necessary to know the biological and analytical variation of that parameter. In this study, we estimated the intra-individual biological variation of urine oxalate excretion in patients with PH, and from this determined what would constitute a significant change in the form of a reference change value (RCV). Each patient collected four 24-h urines on consecutive weeks. The intra-individual biological variation of oxalate excretion calculated from these samples ranged from 0 to 36 % with a mean of 14 %. The corresponding RCVs were 4-84 % with a mean of 32 %. This result implies that, on average, a reduction of almost one-third in urine oxalate excretion is required to prove an effect from treatment. The wide range of biological variation between individuals may reflect other, as yet unknown, determinants of oxaluria in PH, as well as inaccuracies in urine collection. The data suggest that it is more appropriate to use individual RCVs established prior to treatment to determine its efficacy: a relatively small fall in urine oxalate excretion may be outside the biological variation of some patients but not of others. PMID:26857252

  7. Literature review for oxalate oxidation processes and plutonium oxalate solubility

    SciTech Connect

    Nash, C. A.

    2015-10-01

    A literature review of oxalate oxidation processes finds that manganese(II)-catalyzed nitric acid oxidation of oxalate in precipitate filtrate is a viable and well-documented process. The process has been operated on the large scale at Savannah River in the past, including oxidation of 20 tons of oxalic acid in F-Canyon. Research data under a variety of conditions show the process to be robust. This process is recommended for oxalate destruction in H-Canyon in the upcoming program to produce feed for the MOX facility. Prevention of plutonium oxalate precipitation in filtrate can be achieved by concentrated nitric acid/ferric nitrate sequestration of oxalate. Organic complexants do not appear practical to sequester plutonium. Testing is proposed to confirm the literature and calculation findings of this review at projected operating conditions for the upcoming campaign.

  8. Unidirectional growth of non-linear optical triglycine calcium dibromide single crystal by a Sankaranaryanan-Ramasamy method

    NASA Astrophysics Data System (ADS)

    Babu Rao, G.; Rajesh, P.; Ramasamy, P.

    2016-04-01

    Single crystals oriented along prerequisite direction are very important in terms of reducing loss of material and cost during nonlinear optical device fabrication. A transparent uniaxial triglycine calcium dibromide single crystal having dimension of 10 mm diameter and 126 mm length was grown by a Sankaranarayanan-Ramasamy (SR) method with a growth rate of 2 mm per day. From the optical transmittance study it is observed that the crystal grown by the SR method has 10% higher transmittance compared to a conventional method grown crystals. High intense luminescence at 368 nm for the SR method grown crystal is observed from the photoluminescence study. The etch pit density of the conventional and SR method grown crystal is found as 4.5×103 cm-2 and 3.5×103 cm-2 respectively. The average laser damage threshold obtained on the conventional method grown crystal was 3.74 Gw/cm2 whereas a high damage threshold of 4.78 Gw/cm2 was obtained for the SR grown crystal. The crystal grown by the SR method shows high mechanical strength and good laser damage stability with low dislocation density which make it suitable for the SHG device fabrication.

  9. Enzyme-accelerated and structure-guided crystallization of calcium carbonate: role of the carbonic anhydrase in the homologous system.

    PubMed

    Müller, Werner E G; Schlossmacher, Ute; Schröder, Heinz C; Lieberwirth, Ingo; Glasser, Gunnar; Korzhev, Michael; Neufurth, Meik; Wang, Xiaohong

    2014-01-01

    The calcareous spicules from sponges, e.g. from Sycon raphanus, are composed of almost pure calcium carbonate. In order to elucidate the formation of those structural skeletal elements, the function of the enzyme carbonic anhydrase (CA), isolated from this species, during the in vitro calcium carbonate-based spicule formation, was investigated. It is shown that the recombinant sponge CA substantially accelerates calcium carbonate formation in the in vitro diffusion assay. A stoichiometric calculation revealed that the turnover rate of the sponge CA during the calcification process amounts to 25 CO2s(-1) × molecule CA(-1). During this enzymatically driven process, initially pat-like particles are formed that are subsequently transformed to rhomboid/rhombohedroid crystals with a dimension of ~50 μm. The CA-catalyzed particles are smaller than those which are formed in the absence of the enzyme. The Martens hardness of the particles formed is ~4 GPa, a value which had been determined for other biogenic calcites. This conclusion is corroborated by energy-dispersive X-ray spectroscopy, which revealed that the particles synthesized are composed predominantly of the elements calcium, oxygen and carbon. Surprising was the finding, obtained by light and scanning electron microscopy, that the newly formed calcitic crystals associate with the calcareous spicules from S. raphanus in a highly ordered manner; the calcitic crystals almost perfectly arrange in an array orientation along the two opposing planes of the spicules, leaving the other two plane arrays uncovered. It is concluded that the CA is a key enzyme controlling the calcium carbonate biomineralization process, which directs the newly formed particles to existing calcareous spicular structures. It is expected that with the given tools new bioinspired materials can be fabricated. PMID:23978410

  10. Histopathological and ultrastructural studies of synovium in Milwaukee shoulder syndrome--a basic calcium phosphate crystal arthropathy.

    PubMed Central

    Halverson, P B; Garancis, J C; McCarty, D J

    1984-01-01

    Light and electron microscopic study of synovial specimens from four patients with the Milwaukee shoulder syndrome disclosed vascular congestion, villous and focal synovial lining cell hyperplasia, occasional giant cells, and fibrin deposition both within and on the surface of the synovium. Although these changes are non-specific, the finding of basic calcium phosphate crystal aggregates in all four cases and the near total absence of an inflammatory reaction are helpful in distinguishing this condition from other types of arthritis. The focal areas of synovial cell hyperplasia may relate to the powerful mitogenic effect of both synthetic and naturally occurring calcium-containing crystals in concentrations found in the synovial fluid of these patients. Images PMID:6497465

  11. Preclinical Evaluation of Antiurolithiatic Activity of Viburnum opulus L. on Sodium Oxalate-Induced Urolithiasis Rat Model

    PubMed Central

    İlhan, Mert; Ergene, Burçin; Süntar, Ipek; Özbilgin, Serkan; Saltan Çitoğlu, Gülçin; Demirel, M. Ayşe; Keleş, Hikmet; Altun, Levent; Küpeli Akkol, Esra

    2014-01-01

    The aim of the present research is to evaluate the antiurolithiatic effect of the various extracts prepared from the fruits of Viburnum opulus L., in regard to its ethnobotanical record. To induce urolithiasis, 70 mg/kg sodium oxalate was injected to the rats which were housed individually in metabolic cages. The test materials were applied during 7 days. Biochemical (urine and serum parameters), histopathological and antioxidant (TBARs, TSH and GSH) assays were conducted. The urine samples were examined by light microscope for the determination of the calcium oxalate crystals. Lyophilized juice of V. opulus (LJVO) and lyophilized commercial juice of V. opulus (LCJVO) exerted potential antiurolithiatic activity which was attributed to its diuretic effect along with the inhibitory action on the oxalate levels and free radical production. We also determined the chlorogenic acid content of the LJVO by high-performance liquid chromatography (HPLC). Chlorogenic acid was determined by using Supelcosil LC-18 (250 × 4.6 mm, 5 µm) column and acetonitrile: water: 0.2% o-phosphoric acid as a mobile phase. The chlorogenic acid content of V. opulus was found to be 0.3227 mg/mL in fruit juice. The results obtained in this study have provided a scientific evidence for the traditional usage of V. opulus on passing kidney stones in Turkish folk medicine. PMID:25165481

  12. Crystal Structures of the GCaMP Calcium Sensor Reveal the Mechanism of Fluorescence Signal Change and Aid Rational Design

    SciTech Connect

    Akerboom, Jasper; Velez Rivera, Jonathan D.; Rodriguez Guilbe, María M.; Alfaro Malavé, Elisa C.; Hernandez, Hector H.; Tian, Lin; Hires, S. Andrew; Marvin, Jonathan S.; Looger, Loren L.; Schreiter, Eric R.

    2009-03-16

    The genetically encoded calcium indicator GCaMP2 shows promise for neural network activity imaging, but is currently limited by low signal-to-noise ratio. We describe x-ray crystal structures as well as solution biophysical and spectroscopic characterization of GCaMP2 in the calcium-free dark state, and in two calcium-bound bright states: a monomeric form that dominates at intracellular concentrations observed during imaging experiments and an unexpected domain-swapped dimer with decreased fluorescence. This series of structures provides insight into the mechanism of Ca{sup 2+}-induced fluorescence change. Upon calcium binding, the calmodulin (CaM) domain wraps around the M13 peptide, creating a new domain interface between CaM and the circularly permuted enhanced green fluorescent protein domain. Residues from CaM alter the chemical environment of the circularly permuted enhanced green fluorescent protein chromophore and, together with flexible inter-domain linkers, block solvent access to the chromophore. Guided by the crystal structures, we engineered a series of GCaMP2 point mutants to probe the mechanism of GCaMP2 function and characterized one mutant with significantly improved signal-to-noise. The mutation is located at a domain interface and its effect on sensor function could not have been predicted in the absence of structural data.

  13. Cellular Ultrastructure and Crystal Development in Amorphophallus (Araceae)

    PubMed Central

    Prychid, Christina J.; Jabaily, Rachel Schmidt; Rudall, Paula J.

    2008-01-01

    Background and Aims Species of Araceae accumulate calcium oxalate in the form of characteristically grooved needle-shaped raphide crystals and multi-crystal druses. This study focuses on the distribution and development of raphides and druses during leaf growth in ten species of Amorphophallus (Araceae) in order to determine the crystal macropatterns and the underlying ultrastructural features associated with formation of the unusual raphide groove. Methods Transmission electron microscopy (TEM), scanning electron microscopy (SEM) and both bright-field and polarized-light microscopy were used to study a range of developmental stages. Key Results Raphide crystals are initiated very early in plant development. They are consistently present in most species and have a fairly uniform distribution within mature tissues. Individual raphides may be formed by calcium oxalate deposition within individual crystal chambers in the vacuole of an idioblast. Druse crystals form later in the true leaves, and are absent from some species. Distribution of druses within leaves is more variable. Druses initially develop at leaf tips and then increase basipetally as the leaf ages. Druse development may also be initiated in crystal chambers. Conclusions The unusual grooved raphides in Amorphophallus species probably result from an unusual crystal chamber morphology. There are multiple systems of transport and biomineralization of calcium into the vacuole of the idioblast. Differences between raphide and druse idioblasts indicate different levels of cellular regulation. The relatively early development of raphides provides a defensive function in soft, growing tissues, and restricts build-up of dangerously high levels of calcium in tissues that lack the ability to adequately regulate calcium. The later development of druses could be primarily for calcium sequestration. PMID:18285357

  14. Divisive effect of alcohol-water mixed solvents on growth morphology of calcium carbonate crystals.

    PubMed

    Zhang, Li; Yue, Lin-Hai; Wang, Fei; Wang, Qi

    2008-08-28

    Controlling the process of crystal growth is of importance to the biomineralization and materials science. In this work, some novel morphology of calcium carbonate (CaCO3) was precipitated in an ethanol-water binary solvent (EWBS) with a CaCl2/Na2CO3 reaction system. For the solutions of CaCl2/Na2CO3 in EWBS, the alcoholization and hydration of Ca2+ and CO3(2-) were discussed from the radial distribution functions by molecular dynamics simulations, and the number density profiles of water molecules around and approximately 15 A away from CO3(2-) were employed to reveal the distribution of water molecules. It is found that EWBS has a divisive effect on Ca2+ and CO3(2-), and the local inhomogeneity of EWBS would be enhanced by adding some Na2CO3 into it. This inhomogeneity results in an aqueous two-phase system as x E goes up to 0.7. In addition, the novel morphology of CaCO3 under different molar ratios of Ca2+/CO3(2-) and in different mixed solvents were confirmed by XRD and SEM, and the relationships between the morphology of CaCO 3 and the structural properties of mixed solvents were further explored. PMID:18681476

  15. Planar waveguides in neodymium-doped calcium niobium gallium garnet crystals produced by proton implantation

    NASA Astrophysics Data System (ADS)

    Chun-Xiao, Liu; Meng, Chen; Li-Li, Fu; Rui-Lin, Zheng; Hai-Tao, Guo; Zhi-Guang, Zhou; Wei-Nan, Li; She-Bao, Lin; Wei, Wei

    2016-04-01

    In this work, the fabrication and optical properties of a planar waveguide in a neodymium-doped calcium niobium gallium garnet (Nd:CNGG) crystal are reported. The waveguide is produced by proton (H+) implantation at 480 keV and a fluence of 1.0×1017 ions/cm2. The prism-coupling measurement is performed to obtain the dark mode of the waveguide at a wavelength of 632.8 nm. The reflectivity calculation method (RCM) is used to reconstruct the refractive index profile. The finite-difference beam propagation method (FD-BPM) is employed to calculate the guided mode profile of the waveguide. The stopping and range of ions in matter 2010 (SRIM 2010) code is used to simulate the damage profile induced by the ion implantation. The experimental and theoretical results indicate that the waveguide can confine the light propagation. Project supported by the National Natural Science Foundation of China (Grant Nos. 11405041, 61405240, 61077070, 61177086, 51002181, and 61177084), the Scientific Research Starting Foundation for New Teachers of Nanjing University of Posts and Telecommunications (NUPTSF) (Grant No. NY214159), and the Research Center of Optical Communications Engineering & Technology, Jiangsu Province, China (Grant No. ZSF0401).

  16. LITERATURE REVIEW FOR OXALATE OXIDATION PROCESSES AND PLUTONIUM OXALATE SOLUBILITY

    SciTech Connect

    Nash, C.

    2012-02-03

    A literature review of oxalate oxidation processes finds that manganese(II)-catalyzed nitric acid oxidation of oxalate in precipitate filtrate is a viable and well-documented process. The process has been operated on the large scale at Savannah River in the past, including oxidation of 20 tons of oxalic acid in F-Canyon. Research data under a variety of conditions show the process to be robust. This process is recommended for oxalate destruction in H-Canyon in the upcoming program to produce feed for the MOX facility. Prevention of plutonium oxalate precipitation in filtrate can be achieved by concentrated nitric acid/ferric nitrate sequestration of oxalate. Organic complexants do not appear practical to sequester plutonium. Testing is proposed to confirm the literature and calculation findings of this review at projected operating conditions for the upcoming campaign. H Canyon plans to commence conversion of plutonium metal to low-fired plutonium oxide in 2012 for eventual use in the Mixed Oxide Fuel (MOX) Facility. The flowsheet includes sequential operations of metal dissolution, ion exchange, elution, oxalate precipitation, filtration, and calcination. All processes beyond dissolution will occur in HB-Line. The filtration step produces an aqueous filtrate that may have as much as 4 M nitric acid and 0.15 M oxalate. The oxalate needs to be removed from the stream to prevent possible downstream precipitation of residual plutonium when the solution is processed in H Canyon. In addition, sending the oxalate to the waste tank farm is undesirable. This report addresses the processing options for destroying the oxalate in existing H Canyon equipment.

  17. Influence of Sticky Rice and Anionic Polyacrylamide on the Crystallization of Calcium Carbonate in Chinese Organic Sanhetu

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Peng, Changsheng; Dai, Min; Gu, Qingbao; Song, Shaoxian

    2015-09-01

    The crystallization of calcium carbonate (CaCO3) in soil controlled by natural organic material was considered a very important reason to enhance the property of ancient Chinese organic Sanhetu (COS), but how the organic material affected the crystallization of CaCO3 in COS is still unclear. In this paper, a natural organic material (sticky rice, SR) and a synthetic organic material (anionic polyacrylamide, APAM) were selected as additives to investigate their effect on the crystallization of CaCO3. The experimental results showed that the morphology and size of CaCO3 crystals could be affected by the concentration of additives and reaction time, while only the size of CaCO3 crystals could be affected by the concentration of reactant. Although the morphology and size of CaCO3 crystals varied greatly with the variation of additive concentration, reactant concentration and reaction time, the polymorph of CaCO3 crystals were always calcite, according to SEM/EDX, XRD and FTIR analyses. This study may help us to better understand the mechanism of the influence of organic materials on CaCO3 crystallization and properties of COS.

  18. Characterisation of Calcium Phosphate Crystals on Calcified Human Aortic Vascular Smooth Muscle Cells and Potential Role of Magnesium

    PubMed Central

    Louvet, Loïc; Bazin, Dominique; Büchel, Janine; Steppan, Sonja; Passlick-Deetjen, Jutta; Massy, Ziad A.

    2015-01-01

    Background Cardiovascular disease including vascular calcification (VC) remains the leading cause of death in patients suffering from chronic kidney disease (CKD). The process of VC seems likely to be a tightly regulated process where vascular smooth muscle cells are playing a key role rather than just a mere passive precipitation of calcium phosphate. Characterisation of the chemical and crystalline structure of VC was mainly led in patients or animal models with CKD. Likewise, Mg2+ was found to be protective in living cells although a potential role for Mg2+ could not be excluded on crystal formation and precipitation. In this study, the crystal formation and the role of Mg2+ were investigated in an in vitro model of primary human aortic vascular smooth muscle cells (HAVSMC) with physical techniques. Methodology/Principal Findings In HAVSMC incubated with increased Ca x Pi medium, only calcium phosphate apatite crystals (CPA) were detected by Micro-Fourier Transform InfraRed spectroscopy (µFTIR) and Field Effect Scanning Electron Microscope (FE — SEM) and Energy Dispersive X-ray spectrometry (EDX) at the cell layer level. Supplementation with Mg2+ did not alter the crystal composition or structure. The crystal deposition was preferentially positioned near or directly on cells as pictured by FE — SEM observations and EDX measurements. Large µFTIR maps revealed spots of CPA crystals that were associated to the cellular layout. This qualitative analysis suggests a potential beneficial effect of Mg2+ at 5 mM in noticeably reducing the number and intensities of CPA µFTIR spots. Conclusions/Significance For the first time in a model of HAVSMC, induced calcification led to the formation of the sole CPA crystals. Our data seems to exclude a physicochemical role of Mg2+ in altering the CPA crystal growth, composition or structure. Furthermore, Mg2+ beneficial role in attenuating VC should be linked to an active cellular role. PMID:25607936

  19. Crystal structure of a mixed-ligand terbium(III) coordination polymer containing oxalate and formate ligands, having a three-dimensional fcu topology

    PubMed Central

    Kittipong, Chainok; Khemthong, Phailyn; Kielar, Filip; Zhou, Yan

    2016-01-01

    The title compound, poly[(μ 3-formato)(μ 4-oxalato)terbium(III)], [Tb(CHO2)(C2O4)]n, is a three-dimensional coordination polymer, and is isotypic with the LaIII, CeIII and SmIII analogues. The asymmetric unit contains one TbIII ion, one formate anion (CHO2 −) and half of an oxalate anion (C2O4 2−), the latter being completed by application of inversion symmetry. The TbIII ion is nine-coordinated in a distorted tricapped trigonal–prismatic manner by two chelating carboxyl­ate groups from two C2O4 2− ligands, two carboxyl­ate oxygen atoms from another two C2O4 2− ligands and three oxygen atoms from three CHO2 − ligands, with the Tb—O bond lengths and the O—Tb—O bond angles ranging from 2.4165 (19) to 2.478 (3) Å and 64.53 (6) to 144.49 (4)°, respectively. The CHO2 − and C2O4 2− anions adopt μ 3-bridging and μ 4-chelating-bridging coordination modes, respectively, linking adjacent TbIII ions into a three-dimensional 12-connected fcu topology with point symbol (324.436.56). The title compound exhibits thermal stability up to 623 K, and also displays strong green photoluminescence in the solid state at room temperature. PMID:26870593

  20. Crystal structure of a mixed-ligand terbium(III) coordination polymer containing oxalate and formate ligands, having a three-dimensional fcu topology.

    PubMed

    Kittipong, Chainok; Khemthong, Phailyn; Kielar, Filip; Zhou, Yan

    2016-01-01

    The title compound, poly[(μ 3-formato)(μ 4-oxalato)terbium(III)], [Tb(CHO2)(C2O4)] n , is a three-dimensional coordination polymer, and is isotypic with the La(III), Ce(III) and Sm(III) analogues. The asymmetric unit contains one Tb(III) ion, one formate anion (CHO2 (-)) and half of an oxalate anion (C2O4 (2-)), the latter being completed by application of inversion symmetry. The Tb(III) ion is nine-coordinated in a distorted tricapped trigonal-prismatic manner by two chelating carboxyl-ate groups from two C2O4 (2-) ligands, two carboxyl-ate oxygen atoms from another two C2O4 (2-) ligands and three oxygen atoms from three CHO2 (-) ligands, with the Tb-O bond lengths and the O-Tb-O bond angles ranging from 2.4165 (19) to 2.478 (3) Å and 64.53 (6) to 144.49 (4)°, respectively. The CHO2 (-) and C2O4 (2-) anions adopt μ 3-bridging and μ 4-chelating-bridging coordination modes, respectively, linking adjacent Tb(III) ions into a three-dimensional 12-connected fcu topology with point symbol (3(24).4(36).5(6)). The title compound exhibits thermal stability up to 623 K, and also displays strong green photoluminescence in the solid state at room temperature. PMID:26870593

  1. Crystal structure and spectroscopic analysis of a new oxalate-bridged MnII compound: catena-poly[guanidinium [[aqua­chlorido­manganese(II)]-μ2-oxalato-κ4 O 1,O 2:O 1′,O 2′] monohydrate

    PubMed Central

    Sehimi, Hiba; Chérif, Ichraf; Zid, Mohamed Faouzi

    2016-01-01

    As part of our studies on the synthesis and the characterization of oxalate-bridged compounds M–ox–M (ox = oxalate dianion and M = transition metal ion), we report the crystal structure of a new oxalate-bridged MnII phase, {(CH6N3)[Mn(C2O4)Cl(H2O)]·H2O}n. In the compound, a succession of MnII ions (situated on inversion centers) adopting a distorted octa­hedral coordination and bridged by oxalate ligands forms parallel zigzag chains running along the c axis. These chains are inter­connected through O—H⋯O hydrogen-bonding inter­actions to form anionic layers parallel to (010). Individual layers are held together via strong hydrogen bonds involving the guanidinium cations (N—H⋯O and N—H⋯Cl) and the disordered non-coordinating water mol­ecule (O—H⋯O and O—H⋯Cl), as well as by guanidinium π–π stacking. The structural data were confirmed by IR and UV–Visible spectroscopic analysis. PMID:27308028

  2. Putative Aspergillus niger-induced oxalate nephrosis in sheep.

    PubMed

    Botha, C J; Truter, M; Bredell, T; Lange, L; Mülders, M S G

    2009-03-01

    A sheep farmer provided a maize-based brewer's grain (mieliemaroek) and bales of Eragrostis curvula hay to ewes and their lambs, kept on zero-grazing in pens. The 'mieliemaroek' was visibly mouldy. After 14 days in the feedlot, clinical signs, including generalised weakness, ataxia of the hind limbs, tremors and recumbency, were noticed. Six ewes died within a period of 7 days. A post mortem examination was performed on 1 ewe. The carcass appeared to be cachectic with mild effusions into the body cavities; mild lung congestion and pallor of the kidneys were observed. Microscopical evaluation revealed nephrosis and birefringent oxalate crystals in the renal tubules when viewed under polarised light. A provisional diagnosis of oxalate nephrosis with subsequent kidney failure was made. Amongst other fungi, Aspergillus niger was isolated from 'mieliemaroek' samples submitted for fungal culture and identification. As A. niger is known to synthesise oxalates, a qualitative screen to detect oxalic acid in the mieliemaroek and purified A. niger isolates was performed using high-performance liquid chromatography (HPLC). Oxalic acid was detected, which supported a diagnosis of soluble oxalate-induced nephropathy. PMID:19653520

  3. Urine risk factors in children with calcium kidney stones and their siblings.

    PubMed

    Bergsland, Kristin J; Coe, Fredric L; White, Mark D; Erhard, Michael J; DeFoor, William R; Mahan, John D; Schwaderer, Andrew L; Asplin, John R

    2012-06-01

    Calcium nephrolithiasis in children is increasing in prevalence and tends to be recurrent. Although children have a lower incidence of nephrolithiasis than adults, its etiology in children is less well understood; hence, treatments targeted for adults may not be optimal in children. To better understand metabolic abnormalities in stone-forming children, we compared chemical measurements and the crystallization properties of 24-h urine collections from 129 stone formers matched to 105 non-stone-forming siblings and 183 normal, healthy children with no family history of stones, all aged 6 to 17 years. The principal risk factor for calcium stone formation was hypercalciuria. Stone formers have strikingly higher calcium excretion along with high supersaturation for calcium oxalate and calcium phosphate, and a reduced distance between the upper limit of metastability and supersaturation for calcium phosphate, indicating increased risk of calcium phosphate crystallization. Other differences in urine chemistry that exist between adult stone formers and normal individuals such as hyperoxaluria, hypocitraturia, abnormal urine pH, and low urine volume were not found in these children. Hence, hypercalciuria and a reduction in the gap between calcium phosphate upper limit of metastability and supersaturation are crucial determinants of stone risk. This highlights the importance of managing hypercalciuria in children with calcium stones. PMID:22358148

  4. Urine risk factors in children with calcium kidney stones and their siblings

    PubMed Central

    Bergsland, Kristin J.; Coe, Fredric L.; White, Mark D.; Erhard, Michael J.; DeFoor, William R.; Mahan, John D.; Schwaderer, Andrew L.; Asplin, John R.

    2012-01-01

    Calcium nephrolithiasis in children is increasing in prevalence and tends to be recurrent. Although children have a lower incidence of nephrolithiasis than adults, its etiology in children is less well understood; hence treatments targeted for adults may not be optimal in children. To better understand metabolic abnormalities in stone forming children, we compared chemical measurements and the crystallization properties of 24-hour urine collections from 129 stone formers matched to 105 non-stone forming siblings and 183 normal, healthy children with no family history of stones; all aged 6 to 17 years. The principal risk factor for calcium stone formation was hypercalciuria. Stone formers have strikingly higher calcium excretion along with high supersaturation for calcium oxalate and calcium phosphate, and a reduced distance between the upper limit of metastability and supersaturation for calcium phosphate, indicating increased risk of calcium phosphate crystallization. Other differences in urine chemistry that exist between adult stone formers and normal individuals such as hyperoxaluria, hypocitraturia, abnormal urine pH and low urine volume were not found in these children. Hence, hypercalciuria and a reduction in the gap between calcium phosphate upper limit of metastability and supersaturation are crucial determinants of stone risk. This highlights the importance of managing hypercalciuria in children with calcium stones. PMID:22358148

  5. Vapor diffusion method: Dependence of polymorphs and morphologies of calcium carbonate crystals on the depth of an aqueous solution

    NASA Astrophysics Data System (ADS)

    Liu, Qing; Wang, Hai-Shui; Zeng, Qiang

    2016-09-01

    The polymorph control of calcium carbonate by the vapor diffusion method is still a challenging issue because the resultant crystal polymorphs and morphologies highly depend on the experimental setup. In this communication, we demonstrated that the concentration gradients accompanied by the vapor diffusion method (ammonia concentration, pH and the ratio of CO32- to Ca2+ are changed with the solution depth and with time) are probably the main reasons to significantly affect the formation of crystal polymorphs. Raman, SEM and XRD data showed that calcite and vaterite crystals were preferred to nucleate and grow in the upper or the lower areas of aqueous solution respectively. The above results can be explained by the gradient effect.

  6. The fluorimetric determination of oxalic acid in blood and other biological materials

    PubMed Central

    Zarembski, P. M.; Hodgkinson, A.

    1965-01-01

    1. Oxalic acid is separated from interfering substances by extraction with tri-n-butyl phosphate followed by co-precipitation with calcium sulphate. The precipitated oxalic acid is then reduced to glyoxylic acid, which is coupled with resorcinol to form a coloured fluorescent complex. 2. The spectrofluorometric method described is sensitive and highly specific, the minimum detectable amount of oxalic acid being 0·9μmole under the recommended conditions. 3. The concentration of oxalic acid in blood from 15 normal adults was 200–320μg./100ml. For serum the range was 135–280μg./100ml. The urinary excretion of oxalic acid by 60 normal adults on a normal diet was 9·0–28·5mg./24hr. PMID:5862411

  7. Oxalate desensitising treatment of dentinal surface.

    PubMed

    Mongiorgi, R; Prati, C; Toschi, E; Riva di Sanseverino, L

    1991-04-01

    It is well known that a typical painful feeling is caused by impact of different agents and by thermodynamic conditions upon the dentine layer of the tooth. Therefore the action by artificial solutions should be tested to study how the induced modifications might inhibit the pain. The aim of the present study is to evaluate by scanning electron microscopy (SEM) the morphology of dentine surface after different chemical treatments. Oxalate solutions are able to produce a layer of large crystals, while acid solutions remove the smear layer and open the dentinal tubules. PMID:1910743

  8. Synthesis, crystal structure refinement, and nonlinear-optical properties of CaB3O5(OH): Comparative crystal chemistry of calcium triborates

    NASA Astrophysics Data System (ADS)

    Yamnova, N. A.; Aksenov, S. M.; Stefanovich, S. Yu.; Volkov, A. S.; Dimitrova, O. V.

    2015-09-01

    Calcium triborate CaB3O5(OH) obtained by hydrothermal synthesis in the Ca(OH)2-H3BO3-Na2CO3-KCl system is studied by single-crystal X-ray diffraction. The parameters of the orthorhombic unit cell are as follows: a = 13.490(1), b = 6.9576(3), and c = 4.3930(2) Å; V = 412.32(3) Å3 and space group Pna21. The structure is refined in the anisotropic approximation of the atomic displacement parameters to R = 4.28% using 972 | F| > 4σ( F). It is confirmed that the crystal structure of Ca triborate CaB3O5(OH) is identical to that described earlier. The hydrogen atom is localized. An SHG signal stronger than that of the quartz standard is registered. The phase transition of calcium triborate into calciborite is found on heating. The comparative crystal-chemical analysis of a series of borates with the general chemical formula 2CaО · 3В2О3 · nH2О ( n = 0-13) with the constant CaО: В2О3= 2: 3 ratio and variable content of water is performed.

  9. Synthesis, crystal structure refinement, and nonlinear-optical properties of CaB{sub 3}O{sub 5}(OH): Comparative crystal chemistry of calcium triborates

    SciTech Connect

    Yamnova, N. A. Aksenov, S. M.; Stefanovich, S. Yu.; Volkov, A. S.; Dimitrova, O. V.

    2015-09-15

    Calcium triborate CaB{sub 3}O5(OH) obtained by hydrothermal synthesis in the Ca(OH){sub 2}–H{sub 3}BO{sub 3}–Na{sub 2}CO{sub 3}–KCl system is studied by single-crystal X-ray diffraction. The parameters of the orthorhombic unit cell are as follows: a = 13.490(1), b = 6.9576(3), and c = 4.3930(2) Å; V = 412.32(3) Å{sup 3} and space group Pna2{sub 1}. The structure is refined in the anisotropic approximation of the atomic displacement parameters to R = 4.28% using 972 vertical bar F vertical bar > 4σ(F). It is confirmed that the crystal structure of Ca triborate CaB{sub 3}O{sub 5}(OH) is identical to that described earlier. The hydrogen atom is localized. An SHG signal stronger than that of the quartz standard is registered. The phase transition of calcium triborate into calciborite is found on heating. The comparative crystal-chemical analysis of a series of borates with the general chemical formula 2CaO · 3B{sub 2}O{sub 3} · nH{sub 2}O (n = 0–13) with the constant CaO: B{sub 2}O{sub 3}= 2: 3 ratio and variable content of water is performed.

  10. Transmission electron microscopic identification of silicon-containing particles in synovial fluid: potential confusion with calcium pyrophosphate dihydrate and apatite crystals.

    PubMed Central

    Bardin, T; Schumacher, H R; Lansaman, J; Rothfuss, S; Dryll, A

    1984-01-01

    Silicon-containing particles were identified by transmission electron microscopy (TEM) in thin sections of two synovial fluids, which also contained calcium pyrophosphate dihydrate (CPPD) crystals, aspirated during acute attacks of pseudogout. Such particles, which are interpreted as probably being artefacts from glassware, were electron dense and similar in appearance to some CPPD or hydroxyapatite crystals. Images PMID:6476921

  11. Interactions of Organic Additives with Ionic Crystal Hydrates

    NASA Astrophysics Data System (ADS)

    Füredi-Milhofer, H.; Sikirić, M.; Tunik, L.; Filipović-Vinceković, N.; Garti, N.

    The interactions of two groups of hydrated model crystals, calcium hydrogenphosphate dihydrate (DCPD) vs. octacalcium phosphate (OCP) and calcium oxalate monohydrate (COM) vs. calcium oxalate dihydrate (COD) with different organic additives are considered. DCPD precipitates as platelet-like crystals with the dominant faces shielded by hydrated layers and charged lateral faces. In the second system COM has charged surfaces, while all faces of COD are covered with layers containing water molecules. The organic molecules tested include negatively charged, flexible and rigid small and macromolecules (glutamic and aspartic acid, citrate, hexaammonium polyphosphate, phytate and polyaspartate) and anionic surfactants (sodium dodecyl sulphate, SDS, sodium diisooctyl sulfosuccinate, AOT, sodium cholate NaC and disodium oleoamido PEG-2 sulfosuccinate, PEG). Two types of effects have been demonstrated: (1) Effect on crystal growth morphology: Flexible organic molecules with high charge density and anionic surfactants affected the growth morphology of DCPD and COM by selectively interacting with the charged lateral faces while rigid molecules (phytate, polyaspartate) specifically recognized the dominant (010) face of DCPD due to structural and stereochemical compatibility. (2) Effect on phase composition: Anionic surfactants at concentrations above the cmc promoted growth of OCP and COD respectively by selectively adsorbing at, and inhibiting growth oif nuclei of DCPD and/or COM, which were dominant in the respective control systems. The effect was especially pronounced in the calcium oxalate precipitation system, where in some cases complete reversal of the phase composition occurred. The important role of the hydrated layer, as part of the structure of the investigated crystal hydrates, in the above crystal additive interactions is discussed.

  12. Calcium Carbonate Crystal Growth in Porous Media, in the presence of Water Miscible and Non-Miscible Organic Fluids

    NASA Astrophysics Data System (ADS)

    Jaho, Sofia; Sygouni, Varvara; Paraskeva, Christakis A.

    2015-04-01

    The deposition of sparingly soluble salts (scaling) within porous media is a major problem encountered in many industrial and environmental applications. In the oil industry scaling causes severe operational malfunctions and, therefore, increasing the total operating and maintenance cost [1]. The most common types of sparingly soluble salts located in oil fields include carbonate and sulfate salts of calcium, strondium and barium[1,2]. Multiple phase flow and tubing surface properties are some of the factors affecting scale formation [3]. The main purpose of the present work was the investigation of the precipitation mechanisms of calcium carbonate (CaCO3) through in situ mixing of two soluble salt solutions in a flow granular medium, in the presence of water miscible organic fluid (ethylene glycol) or non-miscible organic fluid (n-dodecane). All series of experiments were carried out in a two dimensional porous medium made of Plexiglas. For all solutions used in the experiments, the contact angles with the surface of the porous medium and the interfacial tensions were measured. During the experiments, the calcium carbonate crystal growth was continuously monitored and recorded through an optical microscope equipped with a digital programmed video camera. The snap-shots were taken within specific time intervals and their detailed procession gave information concerning the crystal growth rate and kinetics. The pH of the effluent was measured and fluids samples were collected for calcium analysis using Atomic Absorption Spectroscopy (AAS). In all experiments effluent calcium concentration decreased as a function of time, suggesting that CaCO3 precipitation took place inside the porous medium. Crystals of the precipitated salt were identified using Infrared Spectroscopy (IR) and the morphology of the crystals was examined using Scanning Electron Microscopy (SEM). The induction time for precipitation of CaCO3 crystals in the presence of n-dodecane was significantly

  13. Hemocytes participate in calcium carbonate crystal formation, transportation and shell regeneration in the pearl oyster Pinctada fucata.

    PubMed

    Li, Shiguo; Liu, Yangjia; Liu, Chuang; Huang, Jingliang; Zheng, Guilan; Xie, Liping; Zhang, Rongqing

    2016-04-01

    In this study, light microscope, scanning and transmission electron microscope, hematoxylin-eosin and fluorescent staining, and mass spectrometry methods were employed to observe the calcium carbonate (CaCO3) crystal formation, hemocyte release and transportation, and hemocyte distribution at the shell regeneration area and to analyse the proteome of hemocytes in the pearl oyster, Pinctada fucata. The results indicated that intracellular CaCO3 crystals were observed in circulating hemocytes in P. fucata, implying that there was a suitable microenvironment for crystal formation in the hemocytes. This conclusion was further supported by the proteome analysis, in which various biomineralization-related proteins were detected. The crystal-bearing hemocytes, mainly granulocytes, may be released to extrapallial fluid (EPF) by the secretory cavities distributed on the outer surface of the mantle centre. These granulocytes in the EPF and between the regenerated shells were abundant and free. In the regenerated prismatic layer, the granulocytes were fused into each column and fragmented with the duration of shell maturation, suggesting the direct involvement of hemocytes in shell regeneration. Overall, this study provided evidence that hemocytes participated in CaCO3 crystal formation, transportation and shell regeneration in the pearl oyster. These results are helpful to further understand the exact mechanism of hemocyte-mediated biomineralization in shelled molluscs. PMID:26923245

  14. Acute renal failure following oxalic acid poisoning: a case report

    PubMed Central

    2012-01-01

    Oxalic acid poisoning is being recognized as an emerging epidemic in the rural communities of Sri Lanka as it is a component of locally produced household laundry detergents. Herein we describe a case of a 32 year old female, presenting after direct ingestion of oxalic acid. She then went on to develop significant metabolic acidosis and acute renal failure, requiring dialysis. Renal biopsy revealed acute tubulointerstitial nephritis associated with diffuse moderate acute tubular damage with refractile crystals in some of the tubules. The patient symptomatically improved with haemodialysis and renal functions subsequently returned to normal. PMID:22978510

  15. Apo And Calcium-Bound Crystal Structures of Alpha-11 Giardin, An Unusual Annexin From 'Giardia Lamblia'

    SciTech Connect

    Pathuri, P.; Nguyen, E.T.; Svard, S.G.; Luecke, H.; /UC, Irvine /Uppsala U. /Karolinska Inst.

    2007-07-12

    Alpha-11 giardin is a member of the multi-gene alpha-giardin family in the intestinal protozoan, Giardia lamblia. This gene family shares an ancestry with the annexin super family, whose common characteristic is calcium-dependent binding to membranes that contain acidic phospholipids. Several alpha giardins are highly expressed during parasite-induced diarrhea in humans. Despite being a member of a large family of proteins, little is known about the function and cellular localization of alpha-11 giardin, although giardins are often associated with the cytoskeleton. It has been shown that Giardia exhibits high levels of alpha-11 giardin mRNA transcript throughout its life cycle; however, constitutive over-expression of this protein is lethal to the parasite. Determining the three-dimensional structure of an alpha-giardin is essential to identifying functional domains shared in the alpha-giardin family. Here we report the crystal structures of the apo and Ca{sup 2+}-bound forms of alpha-11 giardin, the first alpha giardin to be characterized structurally. Crystals of apo and Ca{sup 2+}-bound alpha-11 giardin diffracted to 1.1 angstroms and 2.93 angstroms, respectively. The crystal structure of selenium-substituted apo alpha-11 giardin reveals a planar array of four tandem repeats of predominantly {alpha}-helical domains, reminiscent of previously determined annexin structures, making this the highest-resolution structure of an annexin to date. The apo alpha-11 giardin structure also reveals a hydrophobic core formed between repeats I/IV and II/III, a region typically hydrophilic in other annexins. Surprisingly, the Ca{sup 2+}-bound structure contains only a single calcium ion, located in the DE loop of repeat I and coordinated differently from the two types of calcium sites observed in previous annexin structures. The apo and Ca{sup 2+}-bound alpha-11 giardin structures assume overall similar conformations; however, Ca2+-bound alpha-11 giardin crystallized in a lower

  16. Enteric oxalate secretion is not directly mediated by the human CFTR chloride channel

    PubMed Central

    Hatch, Marguerite

    2013-01-01

    The secretion of the oxalate anion by intestinal epithelia is a functionally significant component of oxalate homeostasis and hence a relevant factor in the etiology and management of calcium oxalate urolithiasis. To test the hypothesis that human cystic fibrosis transmembrane conductance regulator (hCFTR) can directly mediate the efflux of the oxalate anion, we compared cAMP-stimulated 36Cl−, 14C-oxalate, and 35SO42− efflux from Xenopus oocytes expressing hCFTR with water-injected control oocytes. hCFTR-expressing oocytes exhibited a large, reversible cAMP-dependent increase in whole cell conductance measured using a two-electrode voltage clamp and a 13-fold increase in rate of cAMP-stimulated 36Cl− efflux. In contrast, the rate constants of oxalate and sulfate efflux were low and unaffected by cAMP in either control or hCFTR-expressing oocytes. We conclude that the human CFTR gene product does not directly mediate oxalate efflux in secretory epithelia and hence is not directly involved in oxalate homeostasis in humans. PMID:18563405

  17. Perlwapin, an abalone nacre protein with three four-disulfide core (whey acidic protein) domains, inhibits the growth of calcium carbonate crystals.

    PubMed

    Treccani, Laura; Mann, Karlheinz; Heinemann, Fabian; Fritz, Monika

    2006-10-01

    We have isolated a new protein from the nacreous layer of the shell of the sea snail Haliotis laevigata (abalone). Amino acid sequence analysis showed the protein to consist of 134 amino acids and to contain three sequence repeats of approximately 40 amino acids which were very similar to the well-known whey acidic protein domains of other proteins. The new protein was therefore named perlwapin. In addition to the major sequence, we identified several minor variants. Atomic force microscopy was used to explore the interaction of perlwapin with calcite crystals. Monomolecular layers of calcite crystals dissolve very slowly in deionized water and recrystallize in supersaturated calcium carbonate solution. When perlwapin was dissolved in the supersaturated calcium carbonate solution, growth of the crystal was inhibited immediately. Perlwapin molecules bound tightly to distinct step edges, preventing the crystal layers from growing. Using lower concentrations of perlwapin in a saturated calcium carbonate solution, we could distinguish native, active perlwapin molecules from denaturated ones. These observations showed that perlwapin can act as a growth inhibitor for calcium carbonate crystals in saturated calcium carbonate solution. The function of perlwapin in nacre growth may be to inhibit the growth of certain crystallographic planes in the mineral phase of the polymer/mineral composite nacre. PMID:16861275

  18. Perlwapin, an Abalone Nacre Protein with Three Four-Disulfide Core (Whey Acidic Protein) Domains, Inhibits the Growth of Calcium Carbonate Crystals

    PubMed Central

    Treccani, Laura; Mann, Karlheinz; Heinemann, Fabian; Fritz, Monika

    2006-01-01

    We have isolated a new protein from the nacreous layer of the shell of the sea snail Haliotis laevigata (abalone). Amino acid sequence analysis showed the protein to consist of 134 amino acids and to contain three sequence repeats of ∼40 amino acids which were very similar to the well-known whey acidic protein domains of other proteins. The new protein was therefore named perlwapin. In addition to the major sequence, we identified several minor variants. Atomic force microscopy was used to explore the interaction of perlwapin with calcite crystals. Monomolecular layers of calcite crystals dissolve very slowly in deionized water and recrystallize in supersaturated calcium carbonate solution. When perlwapin was dissolved in the supersaturated calcium carbonate solution, growth of the crystal was inhibited immediately. Perlwapin molecules bound tightly to distinct step edges, preventing the crystal layers from growing. Using lower concentrations of perlwapin in a saturated calcium carbonate solution, we could distinguish native, active perlwapin molecules from denaturated ones. These observations showed that perlwapin can act as a growth inhibitor for calcium carbonate crystals in saturated calcium carbonate solution. The function of perlwapin in nacre growth may be to inhibit the growth of certain crystallographic planes in the mineral phase of the polymer/mineral composite nacre. PMID:16861275

  19. Immobilization of oxalate-degrading enzymes into p(HEMA) for inhibiting encrustation on ureteral stents

    NASA Astrophysics Data System (ADS)

    Mellman, James Kenneth

    Ureteral stents develop calcium-bearing deposits, called encrustation, that diminish their biocompatibility due to complications, such as chronic abrasion to the lumen of the ureter wall and subsequent infection. A reduction of encrustation, namely calcium oxalate, will improve the lifetime, health care costs, and infection resistance of such devices. The purpose of this research project is to study oxalate-degrading enzymes entrapped into a coating material that will control the interface to the urinary environment for ureteral stents. The coating material was a lightly crosslinked poly(2-hydroxyethyl methacrylate) (p(HEMA)) matrix in which the active enzymes were entrapped within the bulk material's free volume. The swelling of p(HEMA) films was comparable in ddH2O and urine. This hydrophilic matrix allows oxalate anions to diffuse into the bulk so that enzyme activity against oxalate can lower its local concentration, and thereby reduce the supersaturation of calcium oxalate. Oxalate oxidase (OxO) and oxalate decarboxylase (OxDc) were the oxalate-degrading enzymes examined herein. Michaelis Menten kinetic models were applied to free and immobilized enzyme activity. A substrate inhibition model was applied to OxO. The free form of OxO had a Vmax of 1.8 +/- 0.1 muM/min-mug, a km of 1.8 +/- 0.1 mM, and a ks of 35.4 +/- 3.7 mM while the immobilized form had a Vmax of 1.2 +/- 0.2 muM/min-mug, a km of 4.1 +/- 0.6 mM, and a ks of 660 +/- 140 mM. The free form of OxDc had a Vmax of 23.5 +/- 1.4 muM/min-mug and a km of 0.5 +/- 0.1 mM while the immobilized form had a Vmax of 5.0 +/- 1.9 muM/min-mug and km of 23.2 +/- 9.1 mM. The enzyme activity was measured to indicate viable application conditions for the coating, such as storing the films in urine over time. The maximum activity was shown at pH 4.2 to 4.5 and activity drops to be negligible by pH 7.0. Storing the enzyme at pH 6.1 exhibited a larger retained activity than storing at pH 4.2, yet storing in urine showed

  20. Nucleation reduction strategy of BaNH{4}MgHPO{4} (barium ammonium magnesium hydrogen phosphate, in vitro approach-1) crystals grown in silica gel medium and its characterization studies

    NASA Astrophysics Data System (ADS)

    Suresh, P.; Kanchana, G.; Sundaramoorthi, P.

    2009-02-01

    Kidney stones consist of various organic, inorganic and semi-organic compounds. Mineral oxalate monohydrate and di-hydrate is the main inorganic constituent of kidney stones. However, the mechanisms for the formation of crystal mineral oxalate are not clearly understood. In this field of study there are many hypothesis including nucleation, crystal growth and or aggregation of formation of AOMH (ammonium oxalate monohydrate) and AODH (ammonium oxalate di-hydrate) crystals. The effect of some urinary species such as ammonium oxalates, calcium, citrate, proteins and trace mineral elements have been previously reported by the author. The kidney stone constituents are grown in the kidney environments, the sodium meta silica gel medium (SMS) provides the necessary growth simulation (in vitro). In the artificial urinary stone growth process, growth parameters within the different chemical environments are identified. The author has reported the growth of urinary crystals such as CHP, SHP, BHP and AHP. In the present study, BaNH{4}MgHPO{4} (barium ammonium magnesium hydrogen phosphate) crystals have been grown in three different growth faces to attain the total nucleation reductions. As an extension of this research, many characterization studies have been carried out and the results are reported.

  1. Spin waves in antiferromagnetically coupled bimetallic oxalates.

    PubMed

    Reis, Peter L; Fishman, Randy S

    2009-01-01

    Bimetallic oxalates are molecule-based magnets with transition-metal ions M(II) and M(')(III) arranged on an open honeycomb lattice. Performing a Holstein-Primakoff expansion, we obtain the spin-wave spectrum of antiferromagnetically coupled bimetallic oxalates as a function of the crystal-field angular momentum L(2) and L(3) on the M(II) and M(')(III) sites. Our results are applied to the Fe(II)Mn(III), Ni(II)Mn(III) and V(II)V(III) bimetallic oxalates, where the spin-wave gap varies from 0 meV for quenched angular momentum to as high as 15 meV. The presence or absence of magnetic compensation appears to have no effect on the spin-wave gap. PMID:21817242

  2. Calcium Distribution in Globoid Crystals of Cucurbita Cotyledon Protein Bodies 1

    PubMed Central

    Lott, John N. A.; Spitzer, Ernest; Vollmer, Catherine M.

    1979-01-01

    Energy-dispersive x-ray analysis was used to investigate the location of globoid crystals with relatively high Ca levels within cotyledons of Cucurbita maxima, Cucurbita mixta, and Cucurbita andreana. The small globoid crystals in both upper and lower epidermal cells commonly contained Ca. Ca was present in globoid crystals of all provascular regions with the exception of the very small provascular regions of C. maxima. In C. maxima and C. mixta cotyledons, some cases were observed where Ca was found in the globoid crystals of the first layer of mesophyll cells surrounding the provascular region, but in general Ca was absent from globoid crystals of palisade and spongy mesophyll cells. In C. andreana, globoid crystals of palisade and spongy mesophyll cells commonly contained at least some Ca. Cell position and cell type are factors affecting the Ca content of globoid crystals in protein bodies. PMID:16660825

  3. Diff Quik staining method for detection and identification of monosodium urate and calcium pyrophosphate crystals in synovial fluids

    PubMed Central

    Selvi, E; Manganelli, S; Catenaccio, M; De Stefano, R; Frati, E; Cucini, S; Marcolongo, R

    2001-01-01

    OBJECTIVE—To evaluate whether the Diff Quik (DQ) staining method might prove useful in identifying monosodium urate (MSU) and calcium pyrophosphate dihydrate (CPPD) crystals on permanent mounted stained slides.
METHODS—27 synovial fluid (SF) samples obtained from the knees of 21 patients with acute CPPD disease and 6 with acute gout were studied. Wet analysis for crystal detection and identification was performed within one hour of joint aspiration. In addition, 16 inflammatory synovial effusions obtained from patients with knee arthritis induced by non-crystalline inflammatory diseases were studied. For each SF, a DQ stained slide was analysed by two of the authors trained in SF analysis. The observers were blinded to the type of crystals present in the SF. Each slide was analysed by compensated polarised as well as transmitted light microscopy. An SF was considered positive if intracellular and/or extracellular crystals were clearly identified. In addition, the observer was asked to identify the type of the crystals using compensated polarised light microscopy. Sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV) of the DQ staining method were determined.
RESULTS—51 true positive and 28 true negative cases were correctly classified (39 CPPD samples, 12 MSU samples, 28 samples of crystal unrelated arthropathies). Overall, four false positive and three false negative cases were reported. In all the false positive cases, extracellular CPPD crystals were erroneously identified, whereas CPPD crystals present in the SF were not identified in the three false negative cases. All MSU specimens were correctly diagnosed. The overall specificity, sensitivity, and accuracy using DQ stained slides for crystal confirmation were respectively 87.5%, 94.4%, and 91.9%. The PPV was 92.7% and the NPV 90.3%. In particular, the specificity, sensitivity, and accuracy for CPPD detection were 90.9%, 92.9%, and 91

  4. The oxalate-carbonate pathway: at the interface between biology and geology

    NASA Astrophysics Data System (ADS)

    Junier, P.; Cailleau, G.; Martin, G.; Guggiari, M.; Bravo, D.; Clerc, M.; Aragno, M.; Job, D.; Verrecchia, E.

    2012-04-01

    The formation of calcite in otherwise carbonate-free acidic soils through the biological degradation of oxalate is a mechanism termed oxalate-carbonate pathway. This pathway lies at the interface between biological and geological systems and constitutes an important, although underestimated, soil mineral carbon sink. In this case, atmospheric CO2 is fixed by the photosynthetic activity of oxalogenic plants, which is partly destined to the production of oxalate used for the chelation of metals, and particularly, calcium. Fungi are also able to produce oxalate to cope with elevated concentrations of metals. In spite of its abundance as a substrate, oxalate is a very stable organic anion that can be metabolized only by a group of bacteria that use it as carbon and energy sources. These bacteria close the biological cycle by degrading calcium oxalate, releasing Ca2+ and inducing a change in local soil pH. If parameters are favourable, the geological part of the pathway begins, because this change in pH will indirectly lead to the precipitation of secondary calcium carbonate (calcite) in unexpected geological conditions. Due to the initial acidic soil conditions, and the absence of geological carbonate in the basement, it is unexpected to find C in the form of calcite. The activity of the oxalate-carbonate pathway has now been demonstrated in several places around the world, suggesting that its importance can be even greater than expected. In addition, new roles for each of the biological players of the pathway have been revealed recently forcing us to reconsider a global biogeochemical model for oxalate cycling.

  5. Importance of oxalate precursors for oxalate metabolism in rats.

    PubMed

    Ogawa, Y; Miyazato, T; Hatano, T

    1999-11-01

    Three metabolic precursors of oxalate were compared after intravenous administration to rats by measuring the urinary excretion of oxalate and related substances using capillary electrophoresis. Urine specimens were collected hourly from eight male Wistar rats (approximately 200 g) in each group. Glyoxylate (2 mg), glycolate (10 mg), and hydroxypyruvate (100 mg) were almost equally oxalogenic based on urinary oxalate excretion, with 22.0, 6.1, and 0.4% of the respective doses being converted into oxalate, 3, 8.9, and 0.2% into glycolate, and 1, 0.1, and 0.003% into glyoxylate. The mean urinary excretion of oxalate peaked between 1 and 2 h, while that of glycolate peaked at 1 h. The baseline urinary excretion of glycolate and glyoxylate was 0.11 to 0.24 micromol/h and 0.0 to 8.3 nmol/h, respectively, and all three agents caused a significant increase of urinary glycolate excretion for 2 to 3 h. Only glyoxylate administration increased urinary glyoxylate excretion at 1 h. Hydroxypyruvate administration significantly increased urinary hydroxypyruvate, glycerate, and citrate excretion at 1 to 2 h. The increase of urinary citrate excretion remains to be explained. PMID:10541259

  6. Precipitation of Calcium, Magnesium, Strontium and Barium in Tissues of Four Acacia Species (Leguminosae: Mimosoideae)

    PubMed Central

    He, Honghua; Bleby, Timothy M.; Veneklaas, Erik J.; Lambers, Hans; Kuo, John

    2012-01-01

    Precipitation of calcium in plants is common. There are abundant studies on the uptake and content of magnesium, strontium and barium, which have similar chemical properties to calcium, in comparison with those of calcium in plants, but studies on co-precipitation of these elements with calcium in plants are rare. In this study, we compared morphologies, distributional patterns, and elemental compositions of crystals in tissues of four Acacia species grown in the field as well as in the glasshouse. A comparison was also made of field-grown plants and glasshouse-grown plants, and of phyllodes of different ages for each species. Crystals of various morphologies and distributional patterns were observed in the four Acacia species studied. Magnesium, strontium and barium were precipitated together with calcium, mainly in phyllodes of the four Acacia species, and sometimes in branchlets and primary roots. These elements were most likely precipitated in forms of oxalate and sulfate in various tissues, including epidermis, mesophyll, parenchyma, sclerenchyma (fibre cells), pith, pith ray and cortex. In most cases, precipitation of calcium, magnesium, strontium and barium was biologically induced, and elements precipitated differed between soil types, plant species, and tissues within an individual plant; the precipitation was also related to tissue age. Formation of crystals containing these elements might play a role in regulating and detoxifying these elements in plants, and protecting the plants against herbivory. PMID:22848528

  7. Crystallization behavior and kinetics of calcium carbonate in highly alkaline and supersaturated system

    NASA Astrophysics Data System (ADS)

    Zhu, Ganyu; Li, Huiquan; Li, Shaopeng; Hou, Xinjuan; Xu, Dehua; Lin, Rongyi; Tang, Qing

    2015-10-01

    In causticization process of Na2CO3-Ca(OH)2, which is a liquid-solid system with high alkalinity and supersaturation, agglomeration and morphology instability of CaCO3 crystal have greatly limited its application. To deeply investigate the internal relations between crystallization process and condition control in this system, crystallization kinetics was conducted in a continuously operated crystallizer. The kinetic equations of growth rate, nucleation rate and agglomeration kernel were correlated in terms of power law kinetic expressions based on the agglomeration population balance equation. Magma density and mean residence time exert a considerable effect on crystal growth, nucleation, and agglomeration. Crystal growth and nucleation are surface-integration-limited and size-limited, respectively. Agglomeration increases with increasing mean residence time, but the increase in magma density break down the agglomerates by frequent and energetic collisions. Through the study, crystallization behavior of CaCO3 in causticization system was revealed, and the particle size and morphology were efficiently predicted and controlled. These results can provide a basis for understanding the design of the reactor.

  8. The Effects of Crystal Phase and Particle Morphology of Calcium Phosphates on Proliferation and Differentiation of Human Mesenchymal Stromal Cells.

    PubMed

    Danoux, Charlène; Pereira, Daniel; Döbelin, Nicola; Stähli, Christoph; Barralet, Jake; van Blitterswijk, Clemens; Habibovic, Pamela

    2016-07-01

    Calcium phosphate (CaP) ceramics are extensively used for bone regeneration; however, their clinical performance is still considered inferior to that of patient's own bone. To improve the performance of CaP bone graft substitutes, it is important to understand the effects of their individual properties on a biological response. The aim of this study is to investigate the effects of the crystal phase and particle morphology on the behavior of human mesenchymal stromal cells (hMSCs). To study the effect of the crystal phase, brushite, monetite, and octacalcium phosphate (OCP) are produced by controlling the precipitation conditions. Brushite and monetite are produced as plate-shaped and as needle-shaped particles, to further investigate the effect of particle morphology. Proliferation of hMSCs is inhibited on OCP as compared to brushite and monetite in either morphology. Brushite needles consistently show the lowest expression of most osteogenic markers, whereas the expression on OCP is in general high. There is a trend toward a higher expression of the osteogenic markers on plate-shaped than on needle-shaped particles for both brushite and monetite. Within the limits of CaP precipitation, these data indicate the effect of both crystal phase and particle morphology of CaPs on the behavior of hMSCs. PMID:27232450

  9. Role of CaCO3° Neutral Pair in Calcium Carbonate Crystallization

    PubMed Central

    2016-01-01

    The molecular structure of the units that get incorporated into the nuclei of the crystalline phase and sustain their growth is a fundamental issue in the pathway from a supersaturated solution to the formation of crystals. Using a fluorescent dye we have recorded the variation of the pH value in time along a gel where CaCl2 and NaHCO3 counter-diffuse to crystallize CaCO3. The same pH–space–time distribution maps were also computationally obtained using a chemical speciation code (phreeqc). Using data arising from this model we investigated the space-time evolution of the activity of the single species (ions and ion pairs) involved in the crystallization process. Our combined results suggest that, whatever the pathway from solution to crystals, the neutral pair CaCO3° is a key species in the CaCO3 precipitation system. PMID:27512345

  10. Control of calcium carbonate crystallization by using anionic polymethylsiloxanes as templates

    NASA Astrophysics Data System (ADS)

    Neira-Carrillo, Andrónico; Vásquez-Quitral, Patricio; Paz Díaz, María; Soledad Fernández, María; Luis Arias, José; Yazdani-Pedram, Mehrdad

    2012-10-01

    Sulfonated (SO3H-PMS) and carboxylated (CO2H-PMS) polymethylsiloxanes were synthesized and their effects as anionic template modifier on the CaCO3 crystal morphologies were evaluated. In vitro crystallization assays of CaCO3 were performed at room temperature by using gas diffusion method at different concentration, pH and time. SEM images of CaCO3 showed well-defined short calcite piles (ca. 5 μm) and elongated calcite (ca. 20 μm) when SO3H-PMS was used. When CO2H-PMS was used, the morphology of CaCO3 crystals was single-truncated at pH 7-9 and aggregated-modified calcite at pH 10-11. However, at pH 12 the least stable donut-shaped vaterite crystals were formed. EDS and XRD confirmed the presence of Si from anionic PMS templates on the CaCO3 surfaces and its polymorphism, respectively. Results showed that the selective morphologies of CaCO3 reflect the electrostatic interaction of anionic groups of functionalized PMS with Ca2+ adsorbed on CaCO3 crystals. Rounded and truncated-modified fluorescent CaCO3 was also produced by the inclusion of functionalized PMS into the lattice of CaCO3 matrix. We demonstrated that the anionic PMS offer a good modifier for polymer-controlled crystallization and a convenient approach for understanding the biomineralization field.

  11. Oxalate films and red stains on Carrara marble.

    PubMed

    Realini, Marco; Colombo, Chiara; Sansonetti, Antonio; Rampazzi, Laura; Colombini, Maria Perla; Bonaduce, Ilaria; Zanardini, Elisabetta; Abbruscato, Pamela

    2005-01-01

    The analytical studies carried out during two different diagnostic surveys, respectively in 1983 and 2003, offered the opportunity to control decay phenomena development on stones facing Certosa of Pavia (Italy). Calcium oxalate films and red stains, present on Carrara marble surface, have been particularly focused; these are the only decay phenomena which apparently have remained unchanged during a period of twenty years. More sensitive and in-depth analytical studies (FTIR equipped with diamond cell, GC-MS, SEM-EDS and optical microscopy) achieved a better knowledge about their composition. Results allowed a critical evaluation of the role of oxalate films on the external marble surface and to suggest new hypotheses about the formation of red stains. PMID:16485663

  12. Crystallization of sodium chloride from a concentrated calcium chloride-potassium chloride-sodium chloride solution in a CMSMPR crystallizer: Observation of crystal size distribution and model validation

    NASA Astrophysics Data System (ADS)

    Choi, Byung Sang

    Compared to overwhelming technical data available in other advanced technologies, knowledge about particle technology, especially in particle synthesis from a solution, is still poor due to the lack of available equipment to study crystallization phenomena in a crystallizer. Recent technical advances in particle size measurement such as Coulter counter and laser light scattering have made in/ex situ study of some of particle synthesis, i.e., growth, attrition, and aggregation, possible with simple systems. Even with these advancements in measurement technology, to grasp fully the crystallization phenomena requires further theoretical and technical advances in understanding such particle synthesis mechanisms. Therefore, it is the motive of this work to establish the general processing parameters and to produce rigorous experimental data with reliable performance and characterization that rigorously account for the crystallization phenomena of nucleation, growth, aggregation, and breakage including their variations with time and space in a controlled continuous mixed-suspension mixed-product removal (CMSMPR) crystallizer. This dissertation reports the results and achievements in the following areas: (1) experimental programs to support the development and validation of the phenomenological models and generation of laboratory data for the purpose of testing, refining, and validating the crystallization process, (2) development of laboratory well-mixed crystallizer system and experimental protocols to generate crystal size distribution (CSD) data, (3) the effects of feed solution concentration, crystallization temperature, feed flow rate, and mixing speed, as well as different types of mixers resulting in the evolution of CSDs with time from a concentrated brine solution, (4) with statistically designed experiments the effects of processing variables on the resultant particle structure and CSD at steady state were quantified and related to each of those operating

  13. Allyl­ammonium hydrogen oxalate hemihydrate

    PubMed Central

    Dziuk, Błażej; Zarychta, Bartosz; Ejsmont, Krzysztof

    2014-01-01

    In the title hydrated mol­ecular salt, C3H8N+·C2HO4 −·0.5H2O, the water O atom lies on a crystallographic twofold axis. The C=C—C—N torsion angle in the cation is 2.8 (3)° and the dihedral angle between the CO2 and CO2H planes in the anion is 1.0 (4)°. In the crystal, the hydrogen oxalate ions are linked by O—H⋯O hydrogen bonds, generating [010] chains. The allyl­ammonium cations bond to the chains through N—H⋯O and N—H⋯(O,O) hydrogen bonds. The water mol­ecule accepts two N—H⋯O hydrogen bonds and makes two O—H⋯O hydrogen bonds. Together, the hydrogen bonds generate (100) sheets. PMID:25249903

  14. Crystallization of calcium carbonate (CaCO3) in a flowing system: Influence of Cu2+ additives on induction time and crystalline phase transformation

    NASA Astrophysics Data System (ADS)

    Usmany, Y.; Putranto, W. A.; Bayuseno, A. P.; Muryanto, S.

    2016-04-01

    Scaling of calcium carbonate (CaCO3) is commonly found in piping systems in oil, gas, desalination and other chemical processes. The scale may create technical problems, leading to the reduction of heat transfer, increase of energy consumption and unscheduled equipment shutdown. This paper presents crystallization scaling experiments and evaluation of the effect of Cu2+ additives on the induction time and calcium carbonate transformation. The crystals precursors were prepared using equimolar of CaCl2 and Na2CO3 resulted in concentrations of 3000 ppm Ca2+ in the solution. The Cu2+ in amounts of 0, 1 and 10 ppm was separately added in the solution. The flow rates (20, 35, and 60 mL/min) and elevated temperatures (27, 35 and 45°C) were selected in the study. The induction time for crystallization of CaCO3 was observed by measuring the solution conductivity over time, while the phase transformation of calcium carbonate was examined by XRD method and SEM/EDX. It was found that the conductivity remained steady for a certain period reflecting to the induction time of crystal formation, and then decreased sharply afterwards,. The induction time was increased from 34 and 48 minutes in the presence of Cu additives (1 and 10 ppm), depending on the flow rates and temperature observed. In all the experiments, the Cu2+ addition leads to the reduction of mass of crystals. Apparently, the presence of Cu2+ could inhibit the CaCO3 crystallization. In the absence of Cu2+ and at elevated temperature, the crystals obtained were a mixture of vaterite and calcite. In the presence of Cu2+ and at elevated temperature, the crystals formed were aragonite and calcite. Here, the presence of Cu2+ additives might have controlled the crystal transformation of CaCO3.

  15. Control of calcium carbonate crystallization by using anionic polymethylsiloxanes as templates

    SciTech Connect

    Neira-Carrillo, Andronico; Vasquez-Quitral, Patricio; Paz Diaz, Maria; Soledad Fernandez, Maria; Luis Arias, Jose; Yazdani-Pedram, Mehrdad

    2012-10-15

    Sulfonated (SO{sub 3}H-PMS) and carboxylated (CO{sub 2}H-PMS) polymethylsiloxanes were synthesized and their effects as anionic template modifier on the CaCO{sub 3} crystal morphologies were evaluated. In vitro crystallization assays of CaCO{sub 3} were performed at room temperature by using gas diffusion method at different concentration, pH and time. SEM images of CaCO{sub 3} showed well-defined short calcite piles (ca. 5 {mu}m) and elongated calcite (ca. 20 {mu}m) when SO{sub 3}H-PMS was used. When CO{sub 2}H-PMS was used, the morphology of CaCO{sub 3} crystals was single-truncated at pH 7-9 and aggregated-modified calcite at pH 10-11. However, at pH 12 the least stable donut-shaped vaterite crystals were formed. EDS and XRD confirmed the presence of Si from anionic PMS templates on the CaCO{sub 3} surfaces and its polymorphism, respectively. Results showed that the selective morphologies of CaCO{sub 3} reflect the electrostatic interaction of anionic groups of functionalized PMS with Ca{sup 2+} adsorbed on CaCO{sub 3} crystals. Rounded and truncated-modified fluorescent CaCO{sub 3} was also produced by the inclusion of functionalized PMS into the lattice of CaCO{sub 3} matrix. We demonstrated that the anionic PMS offer a good modifier for polymer-controlled crystallization and a convenient approach for understanding the biomineralization field. - Graphical abstract: Optical photographs of rounded and truncated-modified fluorescent CaCO{sub 3} produced by the inclusion of sulfonated (SO{sub 3}H-PMS) polymethylsiloxanes into the lattice of CaCO{sub 3} matrix. Insert represents the simulation of modified and fluorescent CaCO{sub 3} crystals using Software JCrystal, (2008). Highlights: Black-Right-Pointing-Pointer We prepared two anionic polymethylsiloxanes (PMS) as templates. Black-Right-Pointing-Pointer Their modifier capacity on the CaCO{sub 3} crystal morphologies was demonstrated. Black-Right-Pointing-Pointer At pH 12, the least stable donut-shaped vaterite

  16. Crystal growth of calcite from calcium bicarbonate solutions at constant PCO2 and 25°C: a test of a calcite dissolution model

    USGS Publications Warehouse

    Reddy, Michael M.; Plummer, L. Neil; Busenberg, E.

    1981-01-01

    A highly reproducible seeded growth technique was used to study calcite crystallization from calcium bicarbonate solutions at 25°C and fixed carbon dioxide partial pressures between 0.03 and 0.3 atm. The results are not consistent with empirical crystallization models that have successfully described calcite growth at low PCO2 (< 10−3 atm). Good agreement was found between observed crystallization rates and those calculated from the calcite dissolution rate law and mechanism proposed by Plummer et al. (1978).

  17. Energy-dispersive x-Ray Analysis of Phosphorus, Potassium, Magnesium, and Calcium in Globoid Crystals in Protein Bodies from Different Regions of Cucurbita maxima Embryos 1

    PubMed Central

    Lott, John N. A.; Greenwood, John S.; Vollmer, Catherine M.; Buttrose, Mark S.

    1978-01-01

    The seeds of Cucurbita maxima contain protein bodies with electrondense globoid crystals. Because of their density globoid crystals are ideal material for energy-dispersive x-ray (EDX) analysis studies of elemental composition. Fixation trials were carried out to test globoid crystal extraction during glutaraldehyde fixation, water washing, and ethanol dehydration. Glutaraldehyde fixation without subsequent washing or dehydration alone produced no significant changes in elemental composition of cotyledon globoid crystals. If glutaraldehyde fixation was followed by water washes or ethanol dehydration there was some loss of the major globoid crystal elements but the relative percentages of the elements P, K, Ca, and Mg remained relatively unchanged. In this paper results of a study of the P, K, Mg, and Ca content of globoid crystals in different tissues of squash embryos are presented. The globoid crystals in the radicle were found to be the least dense in the embryo. Globoid crystals from all embryo regions contained P, K, and Mg. In the various embryo regions P and Mg maintained relatively constant proportions of the globoid crystal composition while K and Ca varied. Of particular significance is the distribution of Ca which is generally an immobile element. Calcium was found in highest amounts in the globoid crystals of the radicle and stem regions while globoid crystals in much of the cotyledon contained little, if any, Ca. The Ca storage thus seems to be spatially arranged in a manner that would aid early growth of the root-shoot axis. PMID:16660439

  18. Energy-dispersive x-Ray Analysis of Phosphorus, Potassium, Magnesium, and Calcium in Globoid Crystals in Protein Bodies from Different Regions of Cucurbita maxima Embryos.

    PubMed

    Lott, J N; Greenwood, J S; Vollmer, C M

    1978-06-01

    The seeds of Cucurbita maxima contain protein bodies with electrondense globoid crystals. Because of their density globoid crystals are ideal material for energy-dispersive x-ray (EDX) analysis studies of elemental composition. Fixation trials were carried out to test globoid crystal extraction during glutaraldehyde fixation, water washing, and ethanol dehydration. Glutaraldehyde fixation without subsequent washing or dehydration alone produced no significant changes in elemental composition of cotyledon globoid crystals. If glutaraldehyde fixation was followed by water washes or ethanol dehydration there was some loss of the major globoid crystal elements but the relative percentages of the elements P, K, Ca, and Mg remained relatively unchanged. In this paper results of a study of the P, K, Mg, and Ca content of globoid crystals in different tissues of squash embryos are presented. The globoid crystals in the radicle were found to be the least dense in the embryo. Globoid crystals from all embryo regions contained P, K, and Mg. In the various embryo regions P and Mg maintained relatively constant proportions of the globoid crystal composition while K and Ca varied. Of particular significance is the distribution of Ca which is generally an immobile element. Calcium was found in highest amounts in the globoid crystals of the radicle and stem regions while globoid crystals in much of the cotyledon contained little, if any, Ca. The Ca storage thus seems to be spatially arranged in a manner that would aid early growth of the root-shoot axis. PMID:16660439

  19. Molecular Basis of Urolithiasis: Role of Crystal Retention

    NASA Astrophysics Data System (ADS)

    Koul, Hari K.; Koul, Sweaty

    2008-09-01

    Urolithiasis is a multifactorial disorder, and it is unlikely that a single cause is responsible for entire spectrum of this disorder. Nonetheless, increased concentrations of various urinary constituents (e.g., calcium and/or oxalate) have been associated with a majority of stone formers. Irrespective of the underlying metabolic conditions, crystal precipitation and crystal retention along the urinary tract are two essential pre-requisites for urinary tract stone formation. In this chapter we summarize underlying metabolic abnormalities associated with various subsets of stone formers. We will also present evidence in support of our hypothesis that crystal formation is a normal physiological process of eliminating toxic wastes as solid complexes, and that pathological events begin with crystal retention. In the end we present evidence supporting various mechanisms of crystal retention.

  20. Immobilizing Water into Crystal Lattice of Calcium Sulfate for its Separation from Water-in-Oil Emulsion.

    PubMed

    Jiang, Guangming; Li, Junxi; Nie, Yunliang; Zhang, Sen; Dong, Fan; Guan, Baohong; Lv, Xiaoshu

    2016-07-19

    This work report a facile approach to efficiently separate surfactant-stabilized water (droplet diameter of around 2.0 μm) from water-in-oil emulsion via converting liquid water into solid crystal water followed by removal with centrifugation. The liquid-solid conversion is achieved through the solid-to-solid phase transition of calcium sulfate hemihydrate (CaSO4. 0.5H2O, HH) to dihydrate (CaSO4·2H2O, DH), which could immobilize the water into crystal lattice of DH. For emulsion of 10 mg mL(-1) water, the immobilization-separation process using polycrystalline HH nanoellipsoids could remove 95.87 wt % water at room temperature. The separation efficiency can be further improved to 99.85 wt % by optimizing the HH dosage, temperature, HH size and crystalline structure. Property examination of the recycled oil confirms that our method has neglectable side-effect on oil quality. The byproduct DH was recycled to alpha-HH (a valuable cemetitious material widely used in construction and binding field), which minimizes the risk of secondary pollution and promotes the practicality of our method. With the high separation efficiency, the "green" feature and the recyclability of DH byproduct, the HH-based immobilization-separation approach is highly promising in purifying oil with undesired water contamination. PMID:27322639

  1. Urolithiasis in a Herd of Beef Cattle Associated with Oxalate Ingestion

    PubMed Central

    Waltner-Toews, D.; Meadows, D. H.

    1980-01-01

    An unusually high incidence of urinary calculi in a group of feeder cattle is described. Necropsy findings in one affected animal suggested that oxalates in the feed, specifically in fescue (Festuca spp.) seed screenings, may have been the cause. Low dietary calcium and decreased water intake by the cattle appear to have been predisposing factors. Control measures are discussed. PMID:7363261

  2. SM50 repeat-polypeptides self-assemble into discrete matrix subunits and promote appositional calcium carbonate crystal growth during sea urchin tooth biomineralization.

    PubMed

    Mao, Yelin; Satchell, Paul G; Luan, Xianghong; Diekwisch, Thomas G H

    2016-01-01

    The two major proteins involved in vertebrate enamel formation and echinoderm sea urchin tooth biomineralization, amelogenin and SM50, are both characterized by elongated polyproline repeat domains in the center of the macromolecule. To determine the role of polyproline repeat polypeptides in basal deuterostome biomineralization, we have mapped the localization of SM50 as it relates to crystal growth, conducted self-assembly studies of SM50 repeat polypeptides, and examined their effect on calcium carbonate and apatite crystal growth. Electron micrographs of the growth zone of Strongylocentrotus purpuratus sea urchin teeth documented a series of successive events from intravesicular mineral nucleation to mineral deposition at the interface between tooth surface and odontoblast syncytium. Using immunohistochemistry, SM50 was detected within the cytoplasm of cells associated with the developing tooth mineral, at the mineral secreting front, and adjacent to initial mineral deposits, but not in muscles and ligaments. Polypeptides derived from the SM50 polyproline alternating hexa- and hepta-peptide repeat region (SM50P6P7) formed highly discrete, donut-shaped self-assembly patterns. In calcium carbonate crystal growth studies, SM50P6P7 repeat peptides triggered the growth of expansive networks of fused calcium carbonate crystals while in apatite growth studies, SM50P6P7 peptides facilitated the growth of needle-shaped and parallel arranged crystals resembling those found in developing vertebrate enamel. In comparison, SM50P6P7 surpassed the PXX24 polypeptide repeat region derived from the vertebrate enamel protein amelogenin in its ability to promote crystal nucleation and appositional crystal growth. Together, these studies establish the SM50P6P7 polyproline repeat region as a potent regulator in the protein-guided appositional crystal growth that occurs during continuous tooth mineralization and eruption. In addition, our studies highlight the role of species

  3. Bioprecipitation of Calcium Carbonate Crystals by Bacteria Isolated from Saline Environments Grown in Culture Media Amended with Seawater and Real Brine.

    PubMed

    Silva-Castro, G A; Uad, I; Gonzalez-Martinez, A; Rivadeneyra, A; Gonzalez-Lopez, J; Rivadeneyra, M A

    2015-01-01

    The precipitation of calcium carbonate and calcium sulphate by isolated bacteria from seawater and real brine obtained in a desalination plant growth in culture media containing seawater and brine as mineral sources has been studied. However, only bioprecipitation was detected when the bacteria were grown in media with added organic matter. Biomineralization process started rapidly, crystal formation taking place in the beginning a few days after inoculation of media; roughly 90% of total cultivated bacteria showed. Six major colonies with carbonate precipitation capacity dominated bacterial community structure cultivated in heterotrophic platable bacteria medium. Taxonomic identification of these six strains through partial 16S rRNA gene sequences showed their affiliation with Gram-positive Bacillus and Virgibacillus genera. These strains were able to form calcium carbonate minerals, which precipitated as calcite and aragonite crystals and showed bacterial fingerprints or bacteria calcification. Also, carbonic anhydrase activity was observed in three of these isolated bacteria. The results of this research suggest that microbiota isolated from sea water and brine is capable of precipitation of carbonate biominerals, which can occur in situ with mediation of organic matter concentrations. Moreover, calcium carbonate precipitation ability of this microbiota could be of importance in bioremediation of CO2 and calcium in certain environments. PMID:26273646

  4. Bioprecipitation of Calcium Carbonate Crystals by Bacteria Isolated from Saline Environments Grown in Culture Media Amended with Seawater and Real Brine

    PubMed Central

    Silva-Castro, G. A.; Uad, I.; Gonzalez-Martinez, A.; Rivadeneyra, A.; Gonzalez-Lopez, J.; Rivadeneyra, M. A.

    2015-01-01

    The precipitation of calcium carbonate and calcium sulphate by isolated bacteria from seawater and real brine obtained in a desalination plant growth in culture media containing seawater and brine as mineral sources has been studied. However, only bioprecipitation was detected when the bacteria were grown in media with added organic matter. Biomineralization process started rapidly, crystal formation taking place in the beginning a few days after inoculation of media; roughly 90% of total cultivated bacteria showed. Six major colonies with carbonate precipitation capacity dominated bacterial community structure cultivated in heterotrophic platable bacteria medium. Taxonomic identification of these six strains through partial 16S rRNA gene sequences showed their affiliation with Gram-positive Bacillus and Virgibacillus genera. These strains were able to form calcium carbonate minerals, which precipitated as calcite and aragonite crystals and showed bacterial fingerprints or bacteria calcification. Also, carbonic anhydrase activity was observed in three of these isolated bacteria. The results of this research suggest that microbiota isolated from sea water and brine is capable of precipitation of carbonate biominerals, which can occur in situ with mediation of organic matter concentrations. Moreover, calcium carbonate precipitation ability of this microbiota could be of importance in bioremediation of CO2 and calcium in certain environments. PMID:26273646

  5. Evidence for size and charge permselectivity of rat ascending colon. Effects of ricinoleate and bile salts on oxalic acid and neutral sugar transport.

    PubMed Central

    Kathpalia, S C; Favus, M J; Coe, F L

    1984-01-01

    We have measured unidirectional transmural fluxes of oxalate and neutral sugars across rat ascending colon in vitro, under short-circuit conditions, to characterize permeability barriers selective for size and charge. Ionic oxalate appears to be transported preferentially to sodium oxalate. Mucosal addition of taurocholate (1 mM), deoxycholate (1 mM), or ricinoleate (1 mM) increased bidirectional oxalate fluxes, and the ricinoleate effects were independent of medium calcium. Bidirectional fluxes of uncharged sugar molecules fell sharply at molecular weights above 76 (molecular radius above 3 A), and oxalate transport was retarded relative to that of uncharged molecules of similar size, suggesting that there is both size and charge permselectivity. Ricinoleate increased fluxes of all neutral molecules tested but changed neither the exclusion limits nor the cation selectivity of the epithelium. Bile salts and ricinoleate increase oxalate transport, probably by making more channels available, but do not alter size and charge selectivity. PMID:6432849

  6. The molecular characteristics of a human pancreatic acidic phosphoprotein that inhibits calcium carbonate crystal growth.

    PubMed Central

    De Caro, A; Multigner, L; Lafont, H; Lombardo, D; Sarles, H

    1984-01-01

    A CaCO3-crystal-growth inhibitor was isolated from human pancreatic stones by using EDTA demineralization, followed by DEAE-Trisacryl chromatography. The isolated inhibitor was found to be a phosphoglycoprotein with Mr 14017 and having an unusual chemical composition. It is characterized by a high (42%) acidic amino acid content, but lacks methionine and gamma-carboxyglutamic acid. The protein contains 2.65 mol of P/mol of protein, as phosphoserine (2 mol) and phosphothreonine (0.5 mol). Isoelectric focusing of the protein yields one major band corresponding to an isoelectric point of 4.2. Immunochemical quantification of the crystal-growth inhibitor in pure pancreatic juice reveals that it constitutes 14% of the normal exocrine secretion. Our findings demonstrate that this is a novel secretory protein, which has no enzymic activity and which maintains pancreatic juice in a supersaturated state with respect to CaCO3. Images Fig. 3. Fig. 4. PMID:6487269

  7. Dielectric relaxation in ytterbium- and lead-doped calcium fluoride crystals

    NASA Astrophysics Data System (ADS)

    Stef, Marius; Nicoara, Irina; Stef, Florica

    2013-04-01

    YbF3-doped and 1 mol% PbF2 co-doped CaF2 crystals were grown by vertical Bridgman method using a shaped graphite furnace in vacuum. Dielectric spectra and optical absorption spectra were measured in order to study the influence of Pb2+ ions on the charge compensating defects formation. The influence of Pb2+ ions on the various charge compensating defects depend on the YbF3 concentration. For low YbF3 concentrations the influence is stronger than for concentrations higher than 1 mol% YbF3. Dielectric relaxation in double doped (Yb,Pb):CaF2 crystals in order the study the charge compensating defects formation was not reported before.

  8. Layered double hydroxide formation in Bayer liquor and its promotional effect on oxalate precipitation

    SciTech Connect

    Perrotta, A.J.; Williams, F.

    1996-10-01

    Enhancing the precipitation of sodium oxalate from Bayer process liquor to improve the quality of alumina product remains an important objective for Bayer refining. The formation of layered double hydroxides by the reaction of alkaline earth oxides, such as lime and magnesia, with Bayer liquor gives a crystal structure which is capable of intercalating anions, both inorganic and organic, within its structure. Both lime and magnesia, with long contact times in Bayer liquor, show layered double hydroxide formation. This layered double hydroxide formation is accompanied with a decrease in the sodium oxalate content in the liquor from about 3 g/L to below 1 g/L. Short contact times lead to a destabilization of the liquor which facilitates sodium oxalate precipitation. Additional work on magnesium hydroxide shows, in comparison to lime and magnesia, much less layered double hydroxide formation with equivalent residence time in the liquor. Destabilization of the liquor also occurs, giving enhanced oxalate precipitation with less alumina being consumed in agreement with lower layered double hydroxide formation. Thermal regeneration of these structures, followed by in-situ recrystallization in Bayer liquor, also gives enhanced oxalate precipitation, suggesting that there is an opportunity for a regenerable oxalate reduction system. The implementation of these experiments and other related technology into the plant has resulted in the Purox Process for enhancing the precipitation of sodium oxalate from Bayer liquor.

  9. The polymorphic weddellite crystals in three species of Cephalocereus (Cactaceae).

    PubMed

    Bárcenas-Argüello, María-Luisa; Gutiérrez-Castorena, Ma C-del-Carmen; Terrazas, Teresa

    2015-10-01

    Mineral inclusions in plant cells are genetically regulated, have an ecological function and are used as taxonomic characters. In Cactaceae, crystals in epidermal and cortical tissues have been reported; however, few studies have conducted chemical and morphological analyses on these crystals, and even fewer have reported non-mineral calcium to determine its systematic value. Cephalocereus apicicephalium, C. totolapensis and C. nizandensis are Cactaceae species endemic to the Isthmus of Tehuantepec, Mexico with abundant epidermal prismatic crystals. In the present study, we characterize the mineral cell inclusions, including their chemical composition and their morphology, for three species of Cephalocereus. Crystals of healthy branches of the three species were isolated and studied. The crystals were identified by X-ray diffraction (XRD), their morphology was described using a petrographic and scanning electron microscope (SEM), and their elemental composition was measured with Energy Dispersive X-ray (EDXAR). The three species synthesized weddellite with different degrees of hydration depending on the species. The optical properties of calcium oxalate crystals were different from the core, which was calcium carbonate. We observed a large diversity of predominantly spherical forms with SEM. EDXAR analysis detected different concentrations of Ca and significant amounts of elements, such as Si, Mg, Na, K, Cl, and Fe, which may be related to the edaphic environment of these cacti. The occurrence of weddellite is novel for the genus according to previous reports. The morphological diversity of the crystals may be related to their elemental composition and may be a source of phylogenetic characters. PMID:26070169

  10. Suggestive Evidence for the Involvement of the Second Calcium and Surface Loop in Interfacial Binding: Monoclinci and Trigonal Crystal Structures of a Quadruple Mutant of Phospholipase A2

    SciTech Connect

    Sekar,K.; Yogavel, M.; Kanaujia, S.; Sharma, A.; Velmurugan, D.; Poi, M.; Dauter, Z.; Tsai, M.

    2006-01-01

    The crystal structures of the monoclinic and trigonal forms of the quadruple mutant K53,56,120,121M of recombinant bovine pancreatic phospholipase A{sub 2} (PLA{sub 2}) have been solved and refined at 1.9 and 1.1 Angstroms resolution, respectively. Interestingly, the monoclinic form reveals the presence of the second calcium ion. Furthermore, the surface-loop residues are ordered and the conformation of residues 62-66 is similar to that observed in other structures containing the second calcium ion. On the other hand, in the trigonal form the surface loop is disordered and the second calcium is absent. Docking studies suggest that the second calcium and residues Lys62 and Asp66 from the surface loop could be involved in the interaction with the polar head group of the membrane phospholipid. It is hypothesized that the two structures of the quadruple mutant, monoclinic and trigonal, represent the conformations of PLA2 at the lipid interface and in solution, respectively. A docked structure with a phospholipid molecule and with a transition-state analogue bound, one at the active site coordinating to the catalytic calcium and the other at the second calcium site, but both at the i-face, is presented.

  11. Influence of samarium impurity on spectral characteristics of calcium iodide crystals

    NASA Astrophysics Data System (ADS)

    Novosad, S. S.; Novosad, I. S.

    2013-03-01

    The influence of a SmBr3 impurity on optical absorption spectra and x-ray-, photo-, and thermally stimulated luminescence of CaI2 scintillator was studied in the temperature range 90-295 K. Activation of CaI2 from the melt by SmBr3 caused absorption bands related to 4 f 6 → 4 f 55 d electronic transitions in Sm2+ to appear in the spectra. Excitation and emission spectra of CaI2:SmBr3 (0.01 mol%) were represented mainly by bands characteristic of the matrix. The photoluminescence spectrum at 90 K upon optical excitation of the crystal in the impurity absorption region (λex = 280 nm) was approximated by individual Gaussian bands with maxima near 345, 395, 430, 470, 500, and 520 nm. The photoluminescence spectrum of CaI2:SmBr3 (0.5 mol%) at 295 K with excitation by radiation from an LGI-21 nitrogen laser (λex = 337.1 nm) was represented mainly by a band at 465 nm. The intensity of this band weakened, its maximum shifted to 470 nm, luminescence in the 520 nm region increased, and weak emission with a maximum near 585 nm was also observed upon lowering the crystal temperature to 90 K. Doping CaI2 with the Sm impurity decreased the yield and changed the spectral composition of its x-ray-luminescence. CaI2:SmBr3 stored a small light sum in shallow trapping levels upon x-ray excitation at 90 K. The nature of the emission and trapping centers in the investigated crystals was discussed.

  12. Crystal Structure of Pure and Aluminous Calcium Silicate Perovskites at Mantle Related Pressure and Temperature

    NASA Astrophysics Data System (ADS)

    Chen, H.; Shim, S. H.; Leinenweber, K. D.; Meng, Y.; Prakapenka, V.

    2015-12-01

    CaSiO3-perovskite (CaPv) is believed to be the third most abundant mineral (5 wt%) in the Earth's lower mantle (LM). Subducted slabs contain 23 wt% CaPv at the LM related pressure (P) and temperature (T), where Al2O3 could be incorporated into the crystal structure of CaPv (AlCaPv). However, there remains important discrepancy between computations and experiments on the crystal structure of CaPv at high P and low T. Some computations have predicted a tetragonal I4/mcm structure with a pseudo-cubic axial ratio (cp/ap) greater than 1, while X-ray diffraction (XRD) studies have suggested a tetragonal P4/mmm structure with cp/ap ~ 0.995. Using Ne as a pressure medium, we conducted in-situ XRD of CaSiO3 and 5 wt% Al-bearing CaSiO3 in the laser heated diamond anvil cell at the GSECARS and HPCAT sectors of the Advanced Photon Source. Rietveld refinements are performed on the diffraction patterns of CaPv at 300 K and 20-60 GPa. Similar to previous studies, we observed splitting of the 200 and 211 peaks after T-quench in pure CaPv. However, unlike previous experiments, diffraction patterns were more consistent with a tetragonal I4/mcm structure with cp/ap ~ 1.005 than P4/mmm. All the previous diffraction patterns have been measured with an Ar or MgO medium, or even without a medium, while we used more hydrostatic Ne medium. Considering the small free energy differences among different perovskite structures, the crystal structure of CaPv may be very sensitive to non-hydrostatic stresses. In runs with AlCaPv, asymmetrical 200 peaks are found up to 60 GPa and 2200 K, showing that non-cubic could be still stable at mantle geotherm temperatures in AlCaPv. The extreme sensitivity of CaPv on deviatoric stresses may have important implications for the elastic properties of the mantle regions with strong deformations, because the elastic anisotropy can change with the crystal structure of CaPv.

  13. Investigation of early growth of calcium hydroxide crystals in cement solution by soft x-ray transmission microscopy

    SciTech Connect

    Harutyunyan, V. S.; Kirchheim, A. P.; Monteiro, P. J. M.; Aivazyan, A. P.; Fischer, P.

    2009-02-02

    Research on cement hydration was performed at the full-field soft transmission X-ray microscope XM-1 located at beamline 6.1.2 at the Advanced Light Source (ALS) in Berkeley CA which is operated by the Center for X-ray Optics, Lawrence Berkeley National Laboratory, Berkeley, California. A series of works [1-3] has been conducted using this microscope for the in situ observation and qualitative analysis of through-solution hydration products and products of topochemical reactions, which form in cementitious aqueous solutions. This paper studies the precipitation of the calcium hydroxide (CH) crystals from the cement solution. The analysis of successive images of the hydration process provides critical quantitative information about the growth rate of calcium hydroxide (CH) crystals, the supersaturation ratio, and the kinetic and diffusion coefficients of the growth process. ASTM Type II portland cement and 6% C{sub 4}A{sub 3}{bar S} admixture were mixed in aqueous solution and saturated with respect to CH and gypsum. The C{sub 4}A{sub 3}{bar S} admixture was included in the experimental program because of the general research program on expansive cements, and adding C{sub 4}A{sub 3}{bar S} to portland cement is an efficient method of generating ettringite and significant early-age expansion. The solution/solid materials ratio was 10 cm{sup 3}/g, which is higher than the one existing in regular concrete and mortars; to compensate for this dilution, the solution was originally saturated with CH and gypsum. To allow sufficient transmission of the soft X-rays, a small droplet was taken from the supernatant solution and assembled in the sample holder, and then squeezed between two silicon nitride windows for the analysis. The X-ray optical setup of the microscope XM-1 is described elsewhere [2]. In this experiment, a wavelength of 2.4 nm (516.6 eV) was used. The radiation transmitting the sample was detected using an X-ray CCD camera, with a resolution of 35 nm provided

  14. Laser- and gamma-ray induced crystallization of IR-transmitting calcium gallate glass

    NASA Astrophysics Data System (ADS)

    Nishida, T.; Kubuki, S.; Takashima, Y.; Mikami, M.; Yagi, T.

    1994-12-01

    Ar+-laser ( λ=488 nm) irradiation of calcium gallate (CG) glass with the composition of 60CaO·39Ga2O3·Fe2O3 resulted in a distinct decrease in the IR transmittance ( T) due to the formation of crystalline CaGa2O4 and CaGa4O9 phases. The Mössbauer spectrum of non-irradiated glass comprised a broad doublet due to distorted Fe3+(Td) with δ, Δ, and Γ of 0.20, 1.33, and 1.00 mm s-1, respectively. An additional doublet due to Fe3+(Td) was observed in the Ar+-irradiated glass and δ, Δ, and Γ were 0.17, 1.32, and 0.75 mm s-1, respectively. A decrease in T was also observed after the60Co γ-ray irradiation with doses ≥105Gy, and the precipitation of CaO, Ga2O3, and CaGa4O7 phases was confirmed by X-ray diffraction.

  15. An unusual cause of acute kidney injury due to oxalate nephropathy in systemic scleroderma.

    PubMed

    Mascio, Heather M; Joya, Christie A; Plasse, Richard A; Baker, Thomas P; Flessner, Michael F; Nee, Robert

    2015-08-01

    Oxalate nephropathy is an uncommon cause of acute kidney injury. Far rarer is its association with scleroderma, with only one other published case report in the literature. We report a case of a 75-year-old African-American female with a history of systemic scleroderma manifested by chronic pseudo-obstruction and small intestinal bacterial overgrowth (SIBO) treated with rifaximin, who presented with acute kidney injury with normal blood pressure. A renal biopsy demonstrated extensive acute tubular injury with numerous intratubular birefringent crystals, consistent with oxalate nephropathy. We hypothesize that her recent treatment with rifaximin for SIBO and decreased intestinal transit time in pseudo-obstruction may have significantly increased intestinal oxalate absorption, leading to acute kidney injury. Oxalate nephropathy should be considered in the differential diagnosis of acute kidney injury in scleroderma with normotension, and subsequent evaluation should be focused on bowel function to include alterations in gut flora due to antibiotic administration. PMID:25500295

  16. Colony-Stimulating Factor-1 Signaling Suppresses Renal Crystal Formation

    PubMed Central

    Taguchi, Kazumi; Kitamura, Hiroshi; Yasui, Takahiro; Naiki, Taku; Hamamoto, Shuzo; Ando, Ryosuke; Mizuno, Kentaro; Kawai, Noriyasu; Tozawa, Keiichi; Asano, Kenichi; Tanaka, Masato; Miyoshi, Ichiro; Kohri, Kenjiro

    2014-01-01

    We recently reported evidence suggesting that migrating macrophages (Mϕs) eliminate renal crystals in hyperoxaluric mice. Mϕs can be inflammatory (M1) or anti-inflammatory (M2), and colony-stimulating factor-1 (CSF-1) mediates polarization to the M2Mϕ phenotype. M2Mϕs promote renal tissue repair and regeneration, but it is not clear whether these cells are involved in suppressing renal crystal formation. We investigated the role of M2Mϕs in renal crystal formation during hyperoxaluria using CSF-1–deficient mice, which lack M2Mϕs. Compared with wild-type mice, CSF-1–deficient mice had significantly higher amounts of renal calcium oxalate crystal deposition. Treatment with recombinant human CSF-1 increased the expression of M2-related genes and markedly decreased the number of renal crystals in both CSF-1–deficient and wild-type mice. Flow cytometry of sorted renal Mϕs showed that CSF-1 deficiency resulted in a smaller population of CD11b+F4/80+CD163+CD206hi cells, which represent M2-like Mϕs. Additionally, transfusion of M2Mϕs into CSF-1–deficient mice suppressed renal crystal deposition. In vitro phagocytosis assays with calcium oxalate monohydrate crystals showed a higher rate of crystal phagocytosis by M2-polarized Mϕs than M1-polarized Mϕs or renal tubular cells. Gene array profiling showed that CSF-1 deficiency resulted in disordered M2- and stone-related gene expressions. Collectively, our results provide compelling evidence for a suppressive role of CSF-1 signaling in renal crystal formation. PMID:24578130

  17. Calcium carbonate microparticle growth controlled by a conjugate drug-copolymer and crystallization time.

    PubMed

    Doroftei, Florica; Damaceanu, Mariana Dana; Simionescu, Bogdan C; Mihai, Marcela

    2014-04-01

    The influence of crystallization reaction time on CaCO3 microparticle growth from supersaturate aqueous solutions, in the presence of a conjugate drug-copolymer, has been investigated. The polymer conjugate, P(NVP-MA-Ox), is based on poly(N-vinylpyrrolidone-co-maleic anhydride) as the support and 2-amino-5-(4-methoxyphenyl)-1,3,4-oxadiazole as the drug. The microparticles are characterized by optical, scanning and transmission electron microscopy, dynamic light scattering, X-ray diffraction, flow particle image analysis and particle charge density. X-ray diffraction (XRD) investigations showed that calcite polymorph content increased with an increase in crystallization time, even if the electrostatic interactions between Ca(2+) and polyanionic sites of P(NVP-MA-Ox) structure conduct to an increased vaterite phase stability. The strong particle size increase after 6 h of ageing can be ascribed to partially vaterite recrystallization and adsorption of nano-scaled calcite crystallite nuclei at microparticles surfaces. The pH stability of the particles was shown by zeta potential changes and their adsorption capacity as a function of their composition, and characteristics were tested using methylene blue. The sorption capacity of composite materials was strongly influenced by the ratio between polymorphs in the composites, and increased with the increase of calcite content and ageing time. PMID:24675592

  18. An in situ annealing study of lead implanted single crystal calcium titanate

    NASA Astrophysics Data System (ADS)

    Rankin, J.; Hobbs, L. W.; Boatner, L. A.; White, C. W.

    1988-05-01

    In situ annealing studies have been carried out in ion-implanted single crystals of CaTiO 3. These crystals were implanted along both the a and b axes of this orthorhombic perovskite structure (Pcmn). Through the use of a Panasonic video cassette recorder connected to a Gatan television system on a JEOL 200CX transmission electron microscope, the regrowth process was observed and the growth rate monitored. Samples were annealed in a Gatan single tilt hot stage at ˜ 475° C. The near-surface region of this material, approximately 190 nm, is turned amorphous by the implantation of 540 keV Pb ions at a fluence of 1 × 10 15/cm 2. Annealing at 475° C results in the epitaxial regrowth of the damaged region. The regrowth process begins at the original amorphous/crystalline interface and proceeds outward to the surface. This phenomenon has been studied for implantations along both the <010> and the <100> crystallographic directions. For constant accelerating voltage and fluence of the implanted lead ions, transmission electron microscopy (TEM) and Rutherford backscattering spectroscopy (RBS) [C.W. White et al., to be published in Proc. of Radiation Effects in Insulators, Lyon, France, 1987.] indicate that the regrowth rate is linear with time but strongly dependent on the oxygen partial pressure in the annealing atmosphere, and the implantation and subsequent regrowth direction.

  19. Calcium carbonate crystallizations on hypogean mural paintings: a pilot study of monitoring and diagnostics in Roman catacombs

    NASA Astrophysics Data System (ADS)

    Tapete, D.; Fratini, F.; Mazzei, B.; Camaiti, M.; Cantisani, E.; Riminesi, C.; Manganelli Del Fà, R.; Cuzman, O.; Tiano, P.

    2012-04-01

    One of the deterioration processes affecting mural paintings and rock surfaces within manmade hypogea consists in the formation of calcium carbonate crystallizations, which can create thick coverage and incrustations, even in some cases speleothems. These chemical reactions necessarily require the availability of calcium sources, which can be also of anthropogenic origin (e.g., lime-based mortars). Microclimate parameters also represent environmental forcing factors, on which the morphology and the degree of crystallinity of the precipitated carbonates depend. Understanding past/recent dynamics of carbonate precipitation implies a deep knowledge of the relationships between the exposed surfaces and the microclimate conditions, the impacts of external factors (e.g., groundwater infiltration and percolation from the overlying soil) and how they change over time. This is particularly fundamental for the preservation of hypogean sites which have not comparison with other typologies of environment due to their uniqueness, such as the ancient catacombs carved underneath the suburbs of Rome (Italy), since the 2nd century AD. In this paper we present the multidisciplinary methodological approach designed for the instrumental monitoring of the microphysical environment of the Catacombs of Saints Mark, Marcellian and Damasus, in the framework of the co-operation between the Institute for the Conservation and Valorization of Cultural Heritage and Pontifical Commission for Sacred Archaeology, Vatican, on the project HYPOGEA. Temperature inside the catacomb and on the surfaces, air relative humidity and CO2 concentration are the main of the parameters continuously measured by means of data loggers installed within the cubicles. Contemporarily, standardized methods of photographic documentation and digital micro-photogrammetry are used for change detection analysis of the painted surfaces and ancient plasters, as well as of the test areas purposely realized by applying fresh

  20. Bis(tetra­ethyl­ammonium) oxalate dihydrate

    PubMed Central

    McNeese, Timothy J.; Pike, Robert D.

    2012-01-01

    The title compound, 2C8H20N+·C2O4 2−·2H2O, synthesized by neutralizing H2C2O4·2H2O with (C2H5)4NOH in a 1:2 molar ratio, is a deliquescent solid. The oxalate ion is nonplanar, with a dihedral angle between carboxyl­ate groups of 64.37 (2)°. O—H⋯O hydrogen bonds of moderate strength link the O atoms of the water mol­ecules and the oxalate ions into rings parallel to the c axis. The rings exhibit the graph-set motif R 4 4(12). In addition, there are weak C—H⋯O inter­actions in the crystal structure. PMID:22904842

  1. Supramolecular architectures of novel chromium(III) oxalate complexes: steric effects of the ligand size and building-blocks approach.

    PubMed

    Androš, Lidija; Jurić, Marijana; Molčanov, Krešimir; Planinić, Pavica

    2012-12-28

    Five new oxalate complexes of chromium(III), [Hphen][Cr(phen)(C(2)O(4))(2)]·2H(2)O (1), [Cr(phen)(2)(C(2)O(4))][Cr(phen)(C(2)O(4))(2)]·3H(2)O (2), [Cr(phen)(2)(C(2)O(4))]NO(3)·H(2)C(2)O(4)·H(2)O (3), [Cr(bpy)(2)(C(2)O(4))][Cr(bpy)(C(2)O(4))(2)]·3H(2)O (4) and [Cr(bpy)(2)(C(2)O(4))]NO(3)·1/2H(2)C(2)O(4)·4H(2)O (5) (phen = 1,10-phenanthroline, bpy = 2,2'-bipyridine), were prepared by using an (oxalato)tantalate(V) solution as a source of oxalate ligands. The compounds contain either the discrete mononuclear [Cr(L)(2)(C(2)O(4))](+) cation [L = phen (3); L = bpy (5)] or the discrete mononuclear [Cr(L)(C(2)O(4))(2)](-) anion [L = phen (1)], or both types of mononuclear ions [L = phen (2); L = bpy (4)]. The crystal structures are dominated by the hydrogen-bonding and π···π-stacking interactions that give rise to the overall two- (compounds 1, 2, 4, 5) or three-dimensional (compound 3) architectures. Compounds 2 and 4 represent a borderline case between isostructurality and non-isostructurality; they exhibit an analogous packing of the cation and the anion units, but the crystallization water molecules occupy different positions - due to a difference in size between the phen and bpy ligands. The influence of steric factors is evident also in the case of 3 and 5, which, despite very similar chemical formulae, exert a completely different packing of the constituents. By the self-assembling of 1 and 4, used as building blocks in the reaction with calcium(II) cations, the heterobimetallic polymeric compounds {[CaCr(2)(phen)(2)(C(2)O(4))(4)]·5H(2)O}(n) (6) and {[CaCr(2)(bpy)(2)(C(2)O(4))(4)]·0.83H(2)O}(n) (7) were obtained. The crystal structure of 7 is reported: the [Cr(bpy)(C(2)O(4))(2)](-) unit, through the two oxalate groups, acts as a chelating ligand towards Ca cations, resulting in heterometallic one-dimensional double zigzag chains, formed of diamond-shaped units. The characterization of the compounds obtained was accomplished by the spectroscopy and

  2. Near-infrared waveguide formation and RBS/channeling spectrometry analysis for damage in calcium barium niobate crystals via ion implantation

    NASA Astrophysics Data System (ADS)

    Zhang, Lian; Zhao, Jin-Hua; Gao, Wen-Lan; Liu, Peng; Zhou, Yu-Fan; Yu, Xiao-Fei; Wang, Tie-Jun; Song, Hong-Lian; Qiao, Mei; Wang, Xue-Lin

    2015-11-01

    We report on the fabrication of planar waveguide structures in calcium barium niobate crystals via C ion implantation at room temperature. The SRIM code was applied to calculate damage profiles of the C ions implanted into Ca0.32Ba0.68Nb2O6 crystals. The low-damage profiles in the near-surface of the implanted regions were verified by Rutherford backscattering/channeling spectrometry. The waveguide characteristics were investigated in the near-infrared bands. The propagation loss of the waveguide was estimated to be 0.88 dB/cm.

  3. Ascorbic acid intake and oxalate synthesis.

    PubMed

    Knight, John; Madduma-Liyanage, Kumudu; Mobley, James A; Assimos, Dean G; Holmes, Ross P

    2016-08-01

    In humans, approximately 60 mg of ascorbic acid (AA) breaks down in the body each day and has to be replaced by a dietary intake of 70 mg in women and 90 mg in men to maintain optimal health and AA homeostasis. The breakdown of AA is non-enzymatic and results in oxalate formation. The exact amount of oxalate formed has been difficult to ascertain primarily due to the limited availability of healthy human tissue for such research and the difficulty in measuring AA and its breakdown products. The breakdown of 60 mg of AA to oxalate could potentially result in the formation of up to 30 mg oxalate per day. This exceeds our estimates of the endogenous production of 10-25 mg oxalate per day, indicating that degradative pathways that do not form oxalate exist. In this review, we examine what is known about the pathways of AA metabolism and how oxalate forms. We further identify how gaps in our knowledge may be filled to more precisely determine the contribution of AA breakdown to oxalate production in humans. The use of stable isotopes of AA to directly assess the conversion of vitamin to oxalate should help fill this void. PMID:27002809

  4. Thermally induced crystallization and phase evolution in powders derived from amorphous calcium phosphate precipitates with a Ca/P ratio of 1:1

    NASA Astrophysics Data System (ADS)

    Zyman, Zoltan; Epple, Matthias; Goncharenko, Anton; Rokhmistrov, Dmytro; Prymak, Oleg; Loza, Kateryna

    2016-09-01

    Calcium phosphate powders of calcium pyrophosphate α1-CPP (the metastable phase of the high-temperature polymorph α-CPP) and the polymorph β-CPP (stable in this range), of α1-CPP, β-CPP, α1-TCP (metastable polymorph of the high-temperature phase α-tricalcium phosphate) and β-tricalcium phosphate β-TCP were prepared by heating amorphous calcium phosphate (ACP) precipitates with the nominal Ca/P ratio of 1:1 by nitrate synthesis. α1-CPP/β-CPP resulted from a crystallization at 530-640 °C and subsequent heating to 980 °C of unwashed and lyophilized ACP. α1-CPP/β-CPP/α1-TCP/β-TCP was formed by crystallization at 620-720 °C, followed by heating of six-time washed and lyophilized ACP precipitates from an ultra-short synthesis. The activation energy for the crystallization of ACP to α1-CPP was determined with 165 kJ mol-1. The reason for the occurrence of the TCP phases (Ca/P ratio=1.5) from ACP (Ca/P ratio=1) is discussed. The powders are prospective biomaterials for bone substitution because they combine effective bioactive phases with the metastable polymorphs α1-CPP and α1-TCP.

  5. Accelerating calcium phosphate growth on NaOH-treated poly-(lactic- co-glycolic acid) by evaporation-induced surface crystallization

    NASA Astrophysics Data System (ADS)

    Duan, Ke; Tang, Allen; Wang, Rizhi

    2008-12-01

    Poly(lactic- co-glycolic acid) (PLGA) is a promising material for the regeneration of bone tissue, but its surface properties are not optimal for the application. Coating the surface of PLGA with a continuous layer of calcium phosphate is an effective approach to address the limitation. Current coating techniques for PLGA require immersion in supersaturated calcium phosphate solutions for days to weeks. In this study, we report a simple technique to accelerate the coating process to only 2 h immersion in supersaturated solutions. PLGA pellets were first treated with NaOH to increase their hydrophilicity. The NaOH-treated PLGA pellets were repeatedly dipped in a supersaturated calcium phosphate solution and dried in air. After 10 times of the dip-and-dry treatment, a layer of calcium phosphate crystallites uniformly covered the surfaces of the pellets. After the crystallite-covered pellets were immersed in the supersaturated solution for 2 h, about 5-μm thick continuous calcium phosphate coatings formed on the surfaces. The dip-and-dry technique was also applied on a variety of metals and porous structures. An evaporation-induced surface crystallization process was suggested as the mechanism for the dip-and-dry treatment.

  6. Potential etiologic role of brushite in the formation of calcium (renal) stones

    NASA Astrophysics Data System (ADS)

    Pak, Charles Y. C.

    1981-05-01

    Brushite may play an important regulatory role in the formation of calcium -containing renal stones. The urinary environment from patients with hypercalciuric nephrolithiasis is typically supersaturated and shows an increased propensity for the spontaneous nucleation of brushite. Brushite has been identified in "stone-forming" urine and in stones. This crystalline phase may undergo phase transformation to hydroxyapatite or cause heterogeneous nucleation or epitaxial growth of calcium oxalate. Thus, brushite may also participate in the formation of stones of hydroxypatite or calcium oxalate.

  7. Interdomain communication in calcium pump as revealed in the crystal structures with transmembrane inhibitors

    PubMed Central

    Takahashi, Mihoko; Kondou, Youhei; Toyoshima, Chikashi

    2007-01-01

    Ca2+-ATPase of skeletal muscle sarcoplasmic reticulum is an ATP-driven Ca2+ pump consisting of three cytoplasmic domains and 10 transmembrane helices. In the absence of Ca2+, the three cytoplasmic domains gather to form a compact headpiece, but the ATPase is unstable without an inhibitor. Here we describe the crystal structures of Ca2+-ATPase in the absence of Ca2+ stabilized with cyclopiazonic acid alone and in combination with other inhibitors. Cyclopiazonic acid is located in the transmembrane region of the protein near the cytoplasmic surface. The binding site partially overlaps with that of 2,5-di-tert-butyl-1,4-dihydroxybenzene but is separate from that of thapsigargin. The overall structure is significantly different from that stabilized with thapsigargin: The cytoplasmic headpiece is more upright, and the transmembrane helices M1–M4 are rearranged. Cyclopiazonic acid primarily alters the position of the M1′ helix and thereby M2 and M4 and then M5. Because M5 is integrated into the phosphorylation domain, the whole cytoplasmic headpiece moves. These structural changes show how an event in the transmembrane domain can be transmitted to the cytoplasmic domain despite flexible links between them. They also reveal that Ca2+-ATPase has considerable plasticity even when fixed by a transmembrane inhibitor, presumably to accommodate thermal fluctuations. PMID:17389383

  8. Oxalate-induced changes in renal epithelial cell function: role in stone disease.

    PubMed

    Scheid, C; Honeyman, T; Kohjimoto, Y; Cao, L C; Jonassen, J

    2000-01-01

    Many studies on the etiology of stone disease have focused on the properties of urine that affect crystal nucleation and growth. More recent studies have focused on the properties of the renal epithelium and the role of injury in crystal retention. The latter studies have shown that oxalate exposure per se can damage renal epithelial cells and enhance crystal binding. This overview summarizes findings of specific biochemical and genetic alterations observed in renal epithelial cells after exposure to oxalate. In LLC-PK1 and MDCK cells, oxalate exposure produces marked effects on membranes, causing a redistribution of phosphatidylserine and activation of two lipid signaling cascades, one involving phospholipase A(2) (PLA(2)) and one involving ceramide. Longer exposure to oxalate leads to membrane damage and cell death. Adaptive responses are also observed, including proliferation (for replacement of damaged cells) and induction of various genes (for cellular replacement and repair). Many or all of these responses are blocked by antioxidants, and many can be mimicked by PLA(2) agonists/products. This finding suggests links between oxalate-induced increases in oxidant stress, lipid signaling pathways, and subsequent molecular responses that may eventuate in renal cell damage or death. Whether such changes play a role in stone disease in vivo, and whether strategies to inhibit these changes would be beneficial therapeutically, is unknown. PMID:11156705

  9. Diet and calcium stones.

    PubMed Central

    Hughes, J; Norman, R W

    1992-01-01

    OBJECTIVE: To review the current literature on the dietary modification of urinary risk factors as a means of reducing the likelihood of recurrent stone formation and to develop practical dietary recommendations that might be useful to this end. DATA SOURCES: MEDLINE was searched for English-language articles published from 1983 to 1990. Additional references were selected from the bibliographies of identified articles. STUDY SELECTION: Nonrandomized trials and retrospective reviews were included because of a paucity of randomized controlled trials. DATA SYNTHESIS: Information on the dietary intake of calcium, oxalate, protein, sodium and fibre and on alcohol and fluid intake was used to develop practical guidelines on dietary modification. CONCLUSION: Dietary modification plays an important role in the reduction of urinary risk factors in patients with calcium stone disease of the urinary tract. As an initial form of prevention attention should be directed toward moderating the intake of calcium, oxalate, protein, sodium and alcohol and increasing the intake of fibre and water. Future research should include an assessment of the long-term reduction of dietary and urinary risk factors and the rates of recurrence of calcium stones. PMID:1310430

  10. Potential Pharmacologic Treatments for Cystinuria and for Calcium Stones Associated with Hyperuricosuria

    SciTech Connect

    Goldfarb, David S.

    2012-03-14

    Two new potential pharmacologic therapies for recurrent stone disease are described. The role of hyperuricosuria in promoting calcium stones is controversial with only some but not all epidemiologic studies demonstrating associations between increasing urinary uric acid excretion and calcium stone disease. The relationship is supported by the ability of uric acid to 'salt out' (or reduce the solubility of) calcium oxalate in vitro. A randomized, controlled trial of allopurinol in patients with hyperuricosuria and normocalciuria was also effective in preventing recurrent stones. Febuxostat, a nonpurine inhibitor of xanthine oxidase (also known as xanthine dehydrogenase or xanthine oxidoreductase) may have advantages over allopurinol and is being tested in a similar protocol, with the eventual goal of determining whether urate-lowering therapy prevents recurrent calcium stones. Treatments for cystinuria have advanced little in the past 30 years. Atomic force microscopy has been used recently to demonstrate that effective inhibition of cystine crystal growth is accomplished at low concentrations of L-cystine methyl ester and L-cystine dimethyl ester, structural analogs of cystine that provide steric inhibition of crystal growth. In vitro, L-cystine dimethyl ester had a significant inhibitory effect on crystal growth. The drug's safety and effectiveness will be tested in an Slc3a1 knockout mouse that serves as an animal model of cystinuria.

  11. Calcium orthophosphates

    PubMed Central

    Dorozhkin, Sergey V.

    2011-01-01

    The present overview is intended to point the readers’ attention to the important subject of calcium orthophosphates. This type of materials is of special significance for human beings, because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with calcium orthophosphates, while dental caries and osteoporosis mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenphosphates. Therefore, the processes of both normal and pathological calcifications are just an in vivo crystallization of calcium orthophosphates. Similarly, dental caries and osteoporosis might be considered an in vivo dissolution of calcium orthophosphates. Thus, calcium orthophosphates hold a great significance for humankind, and in this paper, an overview on the current knowledge on this subject is provided. PMID:23507744

  12. Association analysis for oxalate concentration in spinach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Screening and breeding low-oxalate germplasm is a major objective in spinach breeding. This research aims to conduct association analysis and identify SNP markers associated with oxalate concentration in spinach germplasm. A total of 310 spinach genotypes including 300 USDA germplasm accessions and ...

  13. Effect of Potassium Citrate on Calcium Phosphate Stones in a Model of Hypercalciuria.

    PubMed

    Krieger, Nancy S; Asplin, John R; Frick, Kevin K; Granja, Ignacio; Culbertson, Christopher D; Ng, Adeline; Grynpas, Marc D; Bushinsky, David A

    2015-12-01

    Potassium citrate is prescribed to decrease stone recurrence in patients with calcium nephrolithiasis. Citrate binds intestinal and urine calcium and increases urine pH. Citrate, metabolized to bicarbonate, should decrease calcium excretion by reducing bone resorption and increasing renal calcium reabsorption. However, citrate binding to intestinal calcium may increase absorption and renal excretion of both phosphate and oxalate. Thus, the effect of potassium citrate on urine calcium oxalate and calcium phosphate supersaturation and stone formation is complex and difficult to predict. To study the effects of potassium citrate on urine supersaturation and stone formation, we utilized 95th-generation inbred genetic hypercalciuric stone-forming rats. Rats were fed a fixed amount of a normal calcium (1.2%) diet supplemented with potassium citrate or potassium chloride (each 4 mmol/d) for 18 weeks. Urine was collected at 6, 12, and 18 weeks. At 18 weeks, stone formation was visualized by radiography. Urine citrate, phosphate, oxalate, and pH levels were higher and urine calcium level was lower in rats fed potassium citrate. Furthermore, calcium oxalate and calcium phosphate supersaturation were higher with potassium citrate; however, uric acid supersaturation was lower. Both groups had similar numbers of exclusively calcium phosphate stones. Thus, potassium citrate effectively raises urine citrate levels and lowers urine calcium levels; however, the increases in urine pH, oxalate, and phosphate levels lead to increased calcium oxalate and calcium phosphate supersaturation. Potassium citrate induces complex changes in urine chemistries and resultant supersaturation, which may not be beneficial in preventing calcium phosphate stone formation. PMID:25855777

  14. High pressure Raman and single crystal X-ray diffraction of the alkali/calcium carbonate, shortite

    NASA Astrophysics Data System (ADS)

    Williams, Q. C.; Vennari, C.; O'Bannon, E. F., III

    2015-12-01

    Raman and synchrotron-based single crystal x-ray diffraction data have been collected on shortite (Na2Ca2(CO3)3) up to 10 GPa at 300 K. Shortite is of geological importance due to its presence in the ground-mass of kimberlites, and the alkaline-/carbon-rich character of kimberlitic eruptions. This investigation focuses on shortite's high pressure behavior and is relevant to the behavior of alkali-carbonate systems within Earth's upper mantle. X-ray data demonstrate that shortite's symmetry remains stable at high pressures—retaining orthorhombic C crystal system (Amm2) up to 10 GPa; diffraction data show a 12% volume decrease from room pressure, and a bulk modulus of 71.0(3) GPa. These also demonstrate that the c-axis is twice as compressible as the a- and b-axes. This anisotropic compression is likely due to the orientation of the relatively stiff carbonate groups, a third of which are oriented close to the plane of the a- and b-axes, c axis compression primarily involves the compaction of the 9-fold coordinate sodium and calcium polyhedral. The two distinct carbonate sites within the unit cell give rise to two Raman symmetric stretching modes of the symmetric stretch; the carbonate group stretching vibration which is close to in plane with the a- and b-axes shifts at 3.75 cm-1/GPa as opposed to the carbonate groups which is closer to in plane with the b- and c-axes which shift at 4.25 cm-1/GPa. This furthers evidence for anisotropic compression observed using x-ray diffraction--as the carbonate in plane with the a- and b-axes is compressed, the strength of oxygen bonds along the c-axis with the cations increases, thus decreasing the pressure shift of the mode. The out of plane bending vibration shifts at -0.48 cm-1/GPa, indicating an enhanced interaction of the oxygens with the cations. The multiple in plane bending modes all shift positively, as do at the low frequency lattice modes, indicating that major changes in bonding do not occur up to 10 GPa. The data

  15. Biogenesis of Oxalate in Plant Tissues

    PubMed Central

    Chang, Chi-Cheng; Beevers, Harry

    1968-01-01

    Red beet root discs aerated in potassium phosphate for 2 to 3 days and young spinach leaves actively produce oxalate. A series of labeled compounds was supplied to each of these tissues to determine the extent of conversion to oxalate. Similar results were obtained with the 2 tissues except that in the leaf tissue glyoxylate and glycolate were outstandingly good precursors. Carbon from glucose, acetate, and particularly from some acids of the tricarboxylic acid cycle was recovered in oxalate. Extracts from both tissues were found to contain an enzyme which converts oxaloacetate to oxalate and acetate. The enzyme was partially purified and some of its properties are described. A pathway of oxalate synthesis which does not include glycolate or its oxidase is therefore proposed. PMID:16656975

  16. Bioavailability of calcium and its absorption inhibitors in raw and cooked green leafy vegetables commonly consumed in India--an in vitro study.

    PubMed

    Amalraj, Augustine; Pius, Anitha

    2015-03-01

    The objectives of this research were to assess the bioavailability of calcium using equilibrium dialysis after simulated gastric digestion method in 20 commonly consumed green leafy vegetables (GLVs) from the typical Indian diet, provide data on the content of calcium absorption inhibitors, like oxalate, phytate, tannin and dietary fibres, and evaluate the inhibitory effect of these compounds on calcium bioavailability in raw and cooked GLVs. Cooking did not affect significantly calcium bioavailability in any GLVs. Sesbania grandiflora had a very high content of total oxalates, tannins and dietary fibers, which reduced calcium bioavailability. Calcium content was determined by atomic absorption spectroscopy, oxalate by titrimetry, phytate and tannin by colorimetric and dietary fibres by an enzymatic gravimetric method. Chenopodium album, Alternanthera philoxeroides and Centella asiatica, with lower total calcium content, had nearly twice as much bioavailable calcium than other GLVs, because of low fibres, oxalate, phytate and tannin content. PMID:25306367

  17. STEATORRHEA AND HYPEROXALURIA OCCUR AFTER GASTRIC BYPASS SURGERY IN OBESE RATS REGARDLESS OF DIETARY FAT OR OXALATE

    PubMed Central

    Canales, Benjamin K.; Ellen, Joseph; Khan, Saeed R.; Hatch, Marguerite

    2013-01-01

    Purpose To determine the effect of dietary fat and oxalate on fecal fat excretion and urine parameters in a rat model of Roux-en-Y gastric bypass (RYGB) surgery. Materials and Methods Diet-induced obese Sprague Dawley rats underwent sham (Control, n=16) or RYGB (n=19) surgery. Once recovered, animals were fed ad lib normal calcium, high fat (40%) diet with (Ox) or without (No Ox) 1.5% potassium oxalate for 5 weeks, then normal (10%) fat diet for 2 weeks. Stool and urine were collected after each period. Fecal fat was determined by gas chromatography and urine metabolites by assay spectrophotometry. Results Daily fecal fat excretion remained low in controls on either diet. RYGB animals, however, ingested similar food quantity as controls yet had 8-fold higher fecal fat excretion (p<0.001) and heavier stools (p=0.02). On high fat, RYGB Ox had 5-fold increase in urine oxalate excretion (p<0.001) while RYGB No Ox had 2-fold increase in urine calcium (p<0.01) versus controls. Lowering dietary fat in RYGB Ox animals led to a 50% decrease in oxalate excretion (p<0.01), a 30% reduction in urinary calcium, and an increase in urine pH by 0.3 units (p<0.001). Conclusions In this RYGB model, high fat feeding resulted in steatorrhea, hyperoxaluria, and low urine pH, partially reversible by lowering dietary fat and oxalate content. RYGB animals on normal fat and no oxalate diets excreted twice as much oxalate as age-matched, sham controls. Although RYGB-hyperoxaluria appears primarily gut and diet-mediated, secondary causes of oxalogenesis from liver or other mechanisms deserve further exploration. PMID:23499748

  18. Isolation and characterization of mesophilic, oxalate-degrading Streptomyces from plant rhizosphere and forest soils.

    PubMed

    Sahin, Nurettin

    2004-10-01

    The present work was aimed at the isolation of additional new pure cultures of oxalate-degrading Streptomyces and its preliminary characterization for further work in the field of oxalate metabolism and taxonomic studies. Mesophilic, oxalate-degrading Streptomyces were enriched and isolated from plant rhizosphere and forest soil samples. Strains were examined for cultural, morphological (spore chain morphology, spore mass colour, diffusible and melanin pigment production), physiological (antibiosis, growth in the presence of inhibitory compounds, assimilation of organic acids and enzyme substrates) and chemotaxonomic characters (cellular lipid components and diagnostic cell-wall diamino acid). The taxonomic data obtained were analysed by using the simple matching (SSM) and Jaccard (Sj) coefficients, clustering was achieved using the UPGMA algorithm. All strains were able to utilize sodium-, potassium-, calcium- and ammonium-oxalate salts. Based on the results of numerical taxonomy, isolates were grouped into five cluster groups with a > or =70% S(SM) similarity level. Streptomyces rochei was the most common of the cluster groups, with a Willcox probability of P > 0.8. Streptomyces antibioticus, S. anulatus, S. fulvissimus, S. halstedii and S. violaceusniger are newly reported as oxalate-utilizing Streptomyces. PMID:15448922

  19. INSIGHTS INTO OXALATE BIOSYNTHESIS: DEVELOPING STRATEGIES TO IMPROVE THE NUTRITIONAL QUALITY AND PRODUCTION OF PLANT FOODS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxalate is known to be produced in a vast number of organisms, from simple microbes to complex animals. In animals the accumulation of these crystals is often associated with the pathological condition of urinary stone formation. In contrast to animals, other organisms appear to benefit from the a...

  20. CONCENTRATION OF Pu USING OXALATE TYPE CARRIER

    DOEpatents

    Ritter, D.M.; Black, R.P.S.

    1960-04-19

    A method is given for dissolving and reprecipitating an oxalate carrier precipitate in a carrier precipitation process for separating and recovering plutonium from an aqueous solution. Uranous oxalate, together with plutonium being carried thereby, is dissolved in an aqueous alkaline solution. Suitable alkaline reagents are the carbonates and oxulates of the alkali metals and ammonium. An oxidizing agent selected from hydroxylamine and hydrogen peroxide is then added to the alkaline solution, thereby oxidizing uranium to the hexavalent state. The resulting solution is then acidified and a source of uranous ions provided in the acidified solution, thereby forming a second plutoniumcarrying uranous oxalate precipitate.

  1. Automated homogeneous oxalate precipitation of Pu(III)

    SciTech Connect

    Yarbro, S.L.; Schreiber, S.B.; Dunn, S.L.; Mills, C.W.

    1990-01-01

    Homogeneous oxalate precipitation using diethyl oxalate was compared to precipitating Pu(III) oxalate with solid oxalic acid. The diethyl oxalate technique at 75{degree}C is better because it gives 50% less plutonium in the filtrate with a reasonable filtering time. Also, the procedure for the homogeneous precipitation is easier to automate because the liquid diethyl oxalate is simpler to introduce into the precipitator than solid oxalic acid. It also provides flexibility because the hydrolysis rate and therefore the precipitation rate can be controlled by varying the temperature. 5 refs., 3 figs., 3 tabs.

  2. Oxalate Blockage of Calcium and Iron: A Student Learning Activity.

    ERIC Educational Resources Information Center

    Walker, Noojin

    1988-01-01

    Describes a student learning activity used to teach the meaning of percentage composition, mole concept, selective precipitation, and limiting factors. Presents two word problems and their solutions. (CW)

  3. Bis[(E)-4-(hydroxy­imino­meth­yl)pyridinium] oxalate

    PubMed Central

    Seidel, Rüdiger W.; Winter, Manuela V.; Oppel, Iris M.

    2008-01-01

    The formula unit of the title compound, 2C6H7N2O+·C2O4 2−, comprises two symmetry-equivalent 4-(hydroxy­imino­meth­yl)­pyridinium cations on general positions, linked through hydrogen bonding via an oxalate anion that resides on a crystallographic centre of symmetry. The crystal structure consists of infinite chains of cations and oxalate anions directed by O—H⋯O and multicentre N—H⋯O inter­molecular hydrogen-bonding inter­actions. PMID:21200745

  4. In Situ Investigation of a Self-Accelerated Cocrystal Formation by Grinding Pyrazinamide with Oxalic Acid.

    PubMed

    Kulla, Hannes; Greiser, Sebastian; Benemann, Sigrid; Rademann, Klaus; Emmerling, Franziska

    2016-01-01

    A new cocrystal of pyrazinamide with oxalic acid was prepared mechanochemically and characterized by PXRD, Raman spectroscopy, solid-state NMR spectroscopy, DTA-TG, and SEM. Based on powder X-ray diffraction data the structure was solved. The formation pathway of the reaction was studied in situ using combined synchrotron PXRD and Raman spectroscopy. Using oxalic acid dihydrate the initially neat grinding turned into a rapid self-accelerated liquid-assisted grinding process by the release of crystallization water. Under these conditions, the cocrystal was formed directly within two minutes. PMID:27428942

  5. Effects of acid-base variables and the role of carbonic anhydrase on oxalate secretion by the mouse intestine in vitro

    PubMed Central

    Whittamore, Jonathan M; Frost, Susan C; Hatch, Marguerite

    2015-01-01

    Hyperoxaluria is a major risk factor for calcium oxalate kidney stones and the intestine is recognized as an important extra-renal pathway for eliminating oxalate. The membrane-bound chloride/bicarbonate (Cl−/) exchangers are involved in the transcellular movement of oxalate, but little is understood about how they might be regulated. , CO2, and pH are established modulators of intestinal NaCl cotransport, involving Na+/H+ and Cl−/ exchange, but their influence on oxalate transport is unknown. Measuring 14C-oxalate and 36Cl fluxes across isolated, short-circuited segments of the mouse distal ileum and distal colon we examined the role of these acid-base variables and carbonic anhydrase (CA) in oxalate and Cl− transport. In standard buffer both segments performed net oxalate secretion (and Cl− absorption), but only the colon, and the secretory pathway were responsive to and CO2. Ethoxzolamide abolished net oxalate secretion by the distal colon, and when used in tandem with an impermeant CA inhibitor, signaled an intracellular CA isozyme was required for secretion. There was a clear dependence on as their removal eliminated secretion, while at 42 mmol/L was also decreased and eradicated. Independent of pH, raising Pco2 from 28 to 64 mmHg acutely stimulated net oxalate secretion 41%. In summary, oxalate secretion by the distal colon was dependent on , CA and specifically modulated by CO2, whereas the ileum was remarkably unresponsive. These findings highlight the distinct segmental heterogeneity along the intestine, providing new insights into the oxalate transport mechanism and how it might be regulated. PMID:25716924

  6. Artificial photosynthesis of oxalate and oxalate-based polymer by a photovoltaic reactor

    PubMed Central

    Nong, Guangzai; Chen, Shan; Xu, Yuanjin; Huang, Lijie; Zou, Qingsong; Li, Shiqiang; Mo, Haitao; Zhu, Pingchuan; Cen, Weijian; Wang, Shuangfei

    2014-01-01

    A photovoltaic reactor was designed for artificial photosynthesis, based on the reactions involved in high energy hydrogen atoms, which were produced from water electrolysis. Water and CO2, under the conditions studied, were converted to oxalate (H2C2O4) and a polymer. This was the first time that the oxalates and oxalate-based polymer were produced from the artificial photosynthesis process. PMID:24389750

  7. Artificial photosynthesis of oxalate and oxalate-based polymer by a photovoltaic reactor

    NASA Astrophysics Data System (ADS)

    Nong, Guangzai; Chen, Shan; Xu, Yuanjin; Huang, Lijie; Zou, Qingsong; Li, Shiqiang; Mo, Haitao; Zhu, Pingchuan; Cen, Weijian; Wang, Shuangfei

    2014-01-01

    A photovoltaic reactor was designed for artificial photosynthesis, based on the reactions involved in high energy hydrogen atoms, which were produced from water electrolysis. Water and CO2, under the conditions studied, were converted to oxalate (H2C2O4) and a polymer. This was the first time that the oxalates and oxalate-based polymer were produced from the artificial photosynthesis process.

  8. Artificial photosynthesis of oxalate and oxalate-based polymer by a photovoltaic reactor.

    PubMed

    Nong, Guangzai; Chen, Shan; Xu, Yuanjin; Huang, Lijie; Zou, Qingsong; Li, Shiqiang; Mo, Haitao; Zhu, Pingchuan; Cen, Weijian; Wang, Shuangfei

    2014-01-01

    A photovoltaic reactor was designed for artificial photosynthesis, based on the reactions involved in high energy hydrogen atoms, which were produced from water electrolysis. Water and CO2, under the conditions studied, were converted to oxalate (H2C2O4) and a polymer. This was the first time that the oxalates and oxalate-based polymer were produced from the artificial photosynthesis process. PMID:24389750

  9. Calcium supplements

    MedlinePlus

    ... TYPES OF CALCIUM SUPPLEMENTS Forms of calcium include: Calcium carbonate: Over-the-counter (OTC) antacid products, such as Tums and Rolaids, contain calcium carbonate. These sources of calcium do not cost much. ...

  10. Theoretical calculation of zero field splitting parameters of Cr3+ doped ammonium oxalate monohydrate

    NASA Astrophysics Data System (ADS)

    Kripal, Ram; Yadav, Awadhesh Kumar

    2015-06-01

    Zero field splitting parameters (ZFSPs) D and E of Cr3+ ion doped ammonium oxalate monohydrate (AOM) are calculated with formula using the superposition model. The theoretically calculated ZFSPs for Cr3+ in AOM crystal are compared with the experimental value obtained by electron paramagnetic resonance (EPR). Theoretical ZFSPs are in good agreement with the experimental ones. The energy band positions of optical absorption spectra of Cr3+ in AOM crystal calculated with CFA package are in good match with the experimental values.

  11. In vivo oxalate degradation by liposome encapsulated oxalate oxidase in rat model of hyperoxaluria

    PubMed Central

    Dahiya, Tulika; Pundir, C.S.

    2013-01-01

    Background & objectives: High level of urinary oxalate substantially increases the risk of hyperoxaluria, a significant risk factor for urolithiasis. The primary goal of this study was to reduce urinary oxalate excretion employing liposome encapsulated oxalate oxidase in animal model. Methods: A membrane bound oxalate oxidase was purified from Bougainvillea leaves. The enzyme in its native form was less effective at the physiological pH of the recipient animal. To increase its functional viability, the enzyme was immobilized on to ethylene maleic anhydride (EMA). Rats were injected with liposome encapsulated EMA- oxalate oxidase and the effect was observed on degradation of oxalic acid. Results: The enzyme was purified to apparent homogeneity with 60-fold purification and 31 per cent yield. The optimum pH of EMA-derivative enzyme was 6.0 and it showed 70 per cent of its optimal activity at pH 7.0. The EMA-bound enzyme encapsulated into liposome showed greater oxalate degradation in 15 per cent casein vitamin B6 deficient fed rats as compared with 30 per cent casein vitamin B6 deficient fed rats and control rats. Interpretation & conclusions: EMA-oxalate oxidase encapsulated liposome caused oxalate degradation in experimental hyperoxaluria indicating that the enzyme could be used as a therapeutic agent in hyperoxaluria leading to urinary stones. PMID:23481063

  12. Activation of S6 kinase in human neutrophils by calcium pyrophosphate dihydrate crystals: protein kinase C-dependent and phosphatidylinositol-3-kinase-independent pathways.

    PubMed Central

    Tudan, C; Jackson, J K; Charlton, L; Pelech, S L; Sahl, B; Burt, H M

    1998-01-01

    Phosphatidylinositol 3-kinase (PI 3-kinase) has been shown previously to be a central enzyme in crystal-induced neutrophil activation. Since activation of the 70 kDa S6 kinase (p70S6K) has been shown to be dependent on PI 3-kinase activation in mammalian cells, and since the former is a key enzyme in the transmission of signals to the cell nucleus, activation of p70(S6K) was investigated in crystal-stimulated neutrophils. Cytosolic fractions from calcium pyrophosphate dihydrate (CPPD)-crystal-activated neutrophils were separated by Mono Q chromatography and analysed for phosphotransferase activity using a range of substrates and probed by Western analysis using antibodies to p70(S6K) and mitogen-activated protein kinase (MAP kinase). CPPD crystals induced a robust, transient activation (peak activity at 2 min) of p70(S6K) that was fully inhibited by pretreatment with rapamycin. This is the first report of the activation of p70(S6K) in neutrophil signal transduction pathways induced by an agonist. This crystal-induced activation of p70(S6K) could also be inhibited by a protein kinase C (PKC) inhibitor (Compound 3), but not by the PI 3-kinase inhibitor wortmannin. CPPD crystals also activated the ERK1 and ERK2 forms of MAP kinase (wortmannin insensitive), PKC (Compound 3 sensitive) and protein kinase B (wortmannin sensitive) in neutrophils. These data suggest that activation of p70(S6K) may proceed through a PI 3-kinase- and protein kinase B-independent but PKC-dependent pathway in crystal-activated neutrophils. PMID:9531494

  13. Proteome Dynamics of the Specialist Oxalate Degrader Oxalobacter formigenes

    PubMed Central

    Ellis, Melissa E; Mobley, James A; Holmes, Ross P; Knight, John

    2016-01-01

    Oxalobacter formigenes is a unique intestinal organism that relies on oxalate degradation to meet most of its energy and carbon needs. A lack of colonization is a risk factor for calcium oxalate kidney stone disease. The release of the genome sequence of O. formigenes has provided an opportunity to increase our understanding of the biology of O. formigenes. This study used mass spectrometry based shotgun proteomics to examine changes in protein levels associated with the transition of growth from log to stationary phase. Of the 1867 unique protein coding genes in the genome of O. formigenes strain OxCC13, 1822 proteins were detected, which is at the lower end of the range of 1500–7500 proteins found in free-living bacteria. From the protein datasets presented here it is clear that O. formigenes contains a repertoire of metabolic pathways expected of an intestinal microbe that permit it to survive and adapt to new environments. Although further experimental testing is needed to confirm the physiological and regulatory processes that mediate adaptation with nutrient shifts, the O. formigenes protein datasets presented here can be used as a reference for studying proteome dynamics under different conditions and have significant potential for hypothesis development. PMID:26924912

  14. Calcium pyrophosphate arthritis

    MedlinePlus

    ... that can cause attacks of arthritis. Like with gout, crystals form in the joints. But in calcium ... pyrophosphate arthritis can be misdiagnosed as: Gouty arthritis (gout) Osteoarthritis Rheumatoid arthritis

  15. The effects of CeO{sub 2} addition on crystallization behavior and pore size in microporous calcium titanium phosphate glass ceramics

    SciTech Connect

    Soleimani, F.; Rezvani, M.

    2012-06-15

    Highlights: ► We prepare a phosphate glass ceramic in the system of CaO–TiO{sub 2}–P{sub 2}O{sub 5} and add 2 to 6 mol% CeO{sub 2} to it. We determine the optimum percentage of CeO{sub 2} addition. ► We study phase separation, suitable time and temperature for crystallization in the microporous Calcium Titanium Phosphate Glass Ceramics utilizing DTA, SEM and XRD. ► We investigate on pore size utilizing BET and SEM techniques before and after CeO{sub 2} addition. ► CeO{sub 2} increases the pore size in the Calcium Titanium Phosphate Glass Ceramics. -- Abstract: In this research the effect of the addition of CeO{sub 2} to microporous Calcium Titanium Phosphate glass ceramics was studied. Different molar percentages of CeO{sub 2} were added to three samples of a base glass whose composition was P{sub 2}O{sub 5} 30, CaO 45, TiO{sub 2} 25 (mol%). The first sample had 2 mol% CeO{sub 2}, the second sample had 4 mol% CeO{sub 2}, and the third sample had 6 mol% CeO{sub 2}. The fourth sample did not contain any CeO{sub 2}. The glass samples were melted and crystallized to bulk glass ceramics by a conventional method. Differential Thermal Analysis (DTA) was utilized to determine the appropriate nucleation and crystallization temperatures. Among the samples, the DTA curve of the sample which had 2 mol% CeO{sub 2} had the sharpest crystallization peak. Therefore, this sample was chosen to prepare the glass ceramics. Using X-ray Diffraction (XRD) it was found that in all samples β-Ca{sub 3}(PO{sub 4}){sub 2} and CaTi{sub 4}(PO{sub 4}){sub 6} were the major phases. The β-Ca{sub 3}(PO{sub 4}){sub 2} phase was dissolved away by soaking the glass ceramics in HCl, leaving a porous skeleton of CaTi{sub 4}(PO{sub 4}){sub 6}. CeO{sub 2} addition increased the glass transition temperature and decreased the crystallization time and temperature. It was shown that CeO{sub 2} addition resulted in an increase in the mean pore diameter while the specific surface area decreased

  16. Calcium promotes cadmium elimination as vaterite grains by tobacco trichomes

    NASA Astrophysics Data System (ADS)

    Isaure, Marie-Pierre; Sarret, Géraldine; Harada, Emiko; Choi, Yong-Eui; Marcus, Matthew A.; Fakra, Sirine C.; Geoffroy, Nicolas; Pairis, Sébastien; Susini, Jean; Clemens, Stephan; Manceau, Alain

    2010-10-01

    In tobacco plants, elimination of Zn and Cd via the production of Ca-containing grains at the top of leaf hairs, called trichomes, is a potent detoxification mechanism. This study examines how Cd is incorporated in these biominerals, and how calcium growth supplement modifies their nature. Scanning electron microscopy coupled with energy dispersive X-ray microanalysis (SEM-EDX), microfocused X-ray diffraction (μ-XRD), and microfocused X-ray absorption near edge structure (μ-XANES) spectroscopy were used to image the morphology of the grains, identify the crystallized mineral phases, and speciate Cd, respectively. The mineralogy of the grains and chemical form of Cd varied with the amount of Ca. When tobacco plants were grown in a nutrient solution containing 25 μM Cd and low Ca supplement (Ca/Cd = 11 mol ratio), most of the grains were oblong-shaped and low-Cd-substituted calcite. When exposed to the same amount of Cd and high Ca supplement (Ca/Cd = 131 mol ratio), grains were more abundant and diverse in compositions, and in total more Cd was eliminated. Most grains in the high Ca/Cd experiment were round-shaped and composed predominantly of Cd-substituted vaterite, a usually metastable calcium carbonate polymorph, and subordinate calcite. Calcium oxalate and a Ca amorphous phase were detected occasionally in the two treatments, but were devoid of Cd. The biomineralization of cadmium and implications of results for Cd exposure of smokers and phytoremediation are discussed.

  17. Modeling the Adsorption of Oxalate onto Montmorillonite.

    PubMed

    Ramos, M Elena; Emiroglu, Caglayan; García, David; Sainz-Díaz, C Ignacio; Huertas, F Javier

    2015-11-01

    In this work, a multiscale modeling of the interaction of oxalate with clay mineral surfaces from macroscale thermodynamic equilibria simulations to atomistic calculations is presented. Previous results from macroscopic adsorption data of oxalate on montmorillonite in 0.01 M KNO3 media at 25 °C within the pH range from 2.5 to 9 have been used to develop a surface complexation model. The experimental adsorption edge data were fitted using the triple-layer model (TLM) with the aid of the FITEQL 4.0 computer program. Surface complexation of oxalate is described by two reactions: >AlOH + Ox(2-) + 2H(+) = >AlOxH + H2O (log K = 14.39) and >AlOH + Ox(2-) + H(+) = >AlOx(-) + H2O (log K = 10.39). The monodentate complex >AlOxH dominated adsorption below pH 4, and the bidentate complex >AlOx(-) was predominant at higher pH values. Both of the proposed inner-sphere oxalate species are qualitatively consistent with previously published diffuse reflectance FTIR spectroscopic results for oxalate on montmorillonite edge surface (Chem. Geol. 2014, 363, 283-292). Atomistic computational studies have been performed to understand the interactions at the molecular level between adsorbates and mineral surface, showing the atomic structures and IR frequency shifts of the adsorption complexes of oxalate with the edge surface of a periodic montmorillonite model. PMID:26444928

  18. Chronic metabolic acidosis reduces urinary oxalate excretion and promotes intestinal oxalate secretion in the rat.

    PubMed

    Whittamore, Jonathan M; Hatch, Marguerite

    2015-11-01

    Urinary oxalate excretion is reduced in rats during a chronic metabolic acidosis, but how this is achieved is not clear. In this report, we re-examine our prior work on the effects of a metabolic acidosis on urinary oxalate handling [Green et al., Am J Physiol Ren Physiol 289(3):F536-F543, 2005], offering a more detailed analysis and interpretation of the data, together with new, previously unpublished observations revealing a marked impact on intestinal oxalate transport. Sprague-Dawley rats were provided with 0.28 M ammonium chloride in their drinking water for either 4 or 14 days followed by 24 h urine collections, blood-gas and serum ion analysis, and measurements of (14)C-oxalate fluxes across isolated segments of the distal colon. Urinary oxalate excretion was significantly reduced by 75% after just 4 days compared to control rats, and this was similarly sustained at 14 days. Oxalate:creatinine clearance ratios indicated enhanced net re-absorption of oxalate by the kidney during a metabolic acidosis, but this was not associated with any substantive changes to serum oxalate levels. In the distal colon, oxalate transport was dramatically altered from net absorption in controls (6.20 ± 0.63 pmol cm(-2) h(-1)), to net secretion in rats with a metabolic acidosis (-5.19 ± 1.18 and -2.07 ± 1.05 pmol cm(-2) h(-1) at 4 and 14 days, respectively). Although we cannot rule out modifications to bi-directional oxalate movements along the proximal tubule, these findings support a gut-kidney axis in the management of oxalate homeostasis, where this shift in renal handling during a metabolic acidosis is associated with compensatory adaptations by the intestine. PMID:26162424

  19. Crystal structure of a polymeric calcium levulinate dihydrate: catena-poly[[di­aqua­calcium]-bis­(μ2-4-oxo­butano­ato)

    PubMed Central

    Amarasekara, Ananda S.; Sterling-Wells, Dominique T.; Ordonez, Carlos; Ohoueu, Marie-Josiane; Fonari, Marina S.

    2015-01-01

    In the title calcium levulinate complex, [Ca(C5H7O3)2(H2O)2]n, the Ca2+ ion lies on a twofold rotation axis and is octa­coordinated by two aqua ligands and six O atoms from four symmetry-related carboxyl­ate ligands, giving a distorted square-anti­prismatic coordination stereochemistry [Ca—O bond-length range = 2.355 (1)–2.599 (1) Å]. The levulinate ligands act both in a bidentate carboxyl O,O′-chelate mode and in a bridging mode through one carboxyl O atom with an inversion-related Ca2+ atom, giving a Ca⋯Ca separation of 4.0326 (7) Å. A coordination polymeric chain structure is generated, extending along the c-axial direction. The coordinating water mol­ecules act as double donors and participate in intra-chain O—H⋯O hydrogen bonds with carboxyl O atoms, and in inter-chain O—H⋯O hydrogen bonds with carbonyl O atoms, thus forming an overall three-dimensional structure. PMID:25995864

  20. Diamine incorporated compounds derived from polymeric nickel(II) fumarates and oxalates: Crystal structure, spectral and thermal properties of [Ni(en) 3](O 2C sbnd CH dbnd CH sbnd CO 2)·3H 2O and [Ni(en) 3](O 2C sbnd CO 2)

    NASA Astrophysics Data System (ADS)

    Padmanabhan, M.; Joseph, James C.; Huang, Xiaoying; Li, Jing

    2008-08-01

    Lewis-base mediated fragmentation of polymeric nickel(II) fumarate and oxalate are attempted using chelating σ-donor diamines like ethylenediamine (en) and 1,3-diaminopropane (dap) in various conditions which yielded [Ni(en) 3](fum)·3H 2O ( 1), [Ni(en) 3](ox) ( 2), [Ni(dap) 2(fum)] ( 3) and [Ni(dap)(ox)]·2H 2O ( 4). While 1 and 2 are molecular products each containing octahedral [Ni(en) 3] 2+ moieties and the anionic dicarboxylate species, 3 and 4 are dap-incorporated polymeric products. The fumarate derivative 1 containing [Ni(en) 3] 2+ moieties crystallizes in the monoclinic space group C2/ c with a = 17.899(4) Å, b = 11.747(2) Å, c = 10.748(2) Å, β = 125.59(3)°, V = 1837.7(6) Å 3, Z = 4, while the oxalate analogue 2 is seen to be in the trigonal space group P-31 c with a = 8.8770(13) Å, b = 8.8770(13) Å, c = 10.482(2) Å, γ = 120°, V = 715.3(2) Å 3, Z = 2. The octahedral [Ni(en) 3] units in both 1 and 2 are seen to be strongly H-bonded to the dicarboxylate moieties through the coordinated en units leading to a three-dimensional network. However, in 1 the water molecules also take part in the H-bonding and contribute to the overall 3D structure. In both 1 and 2 the crystal packing is done with the [Ni(en) 3] 2+ units with absolute configuration Λ( δδδ) and its mirror conformer with Δ configuration in exactly equal numbers. Spectral (IR and UV-Visible) and magnetic measurements were carried out and some of the ligand-field parameters like Dq, B and β were evaluated for all the four compounds. These values suggest the presence of octahedrally coordinated nickel(II) in all the four complexes. Spectral data suggest that 3 has the two chelating dap moieties and the fumarate coordinated in η 1 form through both its carboxylate moieties while 4 has one chelating dap and the oxalate moiety coordinated in η 4-bis-chelating form. Though both 1 and 2 are made of the same type of [Ni(en) 3] 2+ units their thermograms give entirely different thermal

  1. Structural, vibrational and ab initio studies of L-histidine oxalate.

    PubMed

    Dammak, T; Fourati, N; Abid, Y; Boughzala, H; Mlayah, A; Minot, C

    2007-04-01

    Single crystals of L-histidine oxalate were obtained by slow evaporation of an aqueous solution at room temperature. The grown crystals have been subjected to X-ray diffraction (XRD), Infrared, and Raman spectroscopy. The title compound crystallises in the non-centrosymmetric space group P2(1)2(1)2(1,) the crystal cohesion is achieved by relatively strong hydrogen bonds, so that the NH3 groups show significant distortion with respect to the tetrahedral symmetry. Raman and infrared spectra of the title compound were recorded in the frequency range 300-3200 and 400-4000 cm-1, respectively. To obtain a reliable assignment of the observed spectral lines, we have calculated the geometry and the frequencies of the vibrational modes of histidine cation and the oxalate anion using the semi empirical PM3 method. PMID:16876465

  2. Structural, vibrational and ab initio studies of L-histidine oxalate

    NASA Astrophysics Data System (ADS)

    Dammak, T.; Fourati, N.; Abid, Y.; Boughzala, H.; Mlayah, A.; Minot, C.

    2007-04-01

    Single crystals of L-histidine oxalate were obtained by slow evaporation of an aqueous solution at room temperature. The grown crystals have been subjected to X-ray diffraction (XRD), Infrared, and Raman spectroscopy. The title compound crystallises in the non-centrosymmetric space group P2 12 12 1, the crystal cohesion is achieved by relatively strong hydrogen bonds, so that the NH 3 groups show significant distortion with respect to the tetrahedral symmetry. Raman and infrared spectra of the title compound were recorded in the frequency range 300-3200 and 400-4000 cm -1, respectively. To obtain a reliable assignment of the observed spectral lines , we have calculated the geometry and the frequencies of the vibrational modes of histidine cation and the oxalate anion using the semi empirical PM3 method.

  3. Calcium aluminate silicate Ca2Al2SiO7 single crystal applicable to piezoelectric sensors at high temperature

    NASA Astrophysics Data System (ADS)

    Takeda, Hiroaki; Hagiwara, Manabu; Noguchi, Hiroaki; Hoshina, Takuya; Takahashi, Tomoko; Kodama, Nobuhiro; Tsurumi, Takaaki

    2013-06-01

    Ca2Al2SiO7 (CAS) bulk single crystals were grown by the Czochralski method. Material constants of the crystal were determined over the driving temperature range of a typical combustion pressure sensor. The electrical resistivity at 800 °C was found to be of the order of 108 Ωcm. We constructed a measurement system for the direct piezoelectric effect at high temperature, and characterized the crystals in a simulated engine cylinder combustion environment. Output charge signal against applied stress was detected at 700 °C. These observations suggest that CAS crystals are superior candidate materials for high temperature for stress sensing.

  4. Calcium - ionized

    MedlinePlus

    ... at both ionized calcium and calcium attached to proteins. You may need to have a separate ionized calcium test if you have factors that increase or decrease total calcium levels. These may include abnormal blood levels ...

  5. Induced urinary crystal formation as an analytical strategy for the prediction and monitoring of urolithiasis and other metabolism-related disorders

    PubMed Central

    2014-01-01

    Crystal formation reflects the entire composition of the surrounding solution. In case of urolithiasis, induced crystal formation in native urine has led to the development of the Bonn-Risk-Index (BRI), a valuable tool to quantify an individual's risk of calcium oxalate urolithiasis. If the progression of a disease is associated with characteristic changes in the activities of urinary components, this leads to an altered urinary crystallisation capacity. Therefore, the results of induced urinary crystal formation can be used to detect and monitor any disease linked to the altered urinary composition. Since crystal formation inherently takes into account the entire urinary composition, the influence of the disease on individual urinary parameters does not have to be known in order to monitor the consequent pathologic alterations. In this paper, we review the background of urinary crystal formation analysis and describe its established application in urolithiasis monitoring as well as potential further fields of clinical application. PMID:25206937

  6. Characterization of calcium carbonate/chitosan composites

    SciTech Connect

    Gonsalves, K.E.; Zhang, S.

    1995-12-31

    The crystal growth of calcium carbonate on a chitosan substrate was achieved using a supersaturated calcium carbonate solution, by using various additives, polyacrylic acid (PAA). Polyacrylic acid modified the chitosan-film surface and promoted the nucleation of calcium carbonate crystals.

  7. ADVANCED OXIDATION: OXALATE DECOMPOSITION TESTING WITH OZONE

    SciTech Connect

    Ketusky, E.; Subramanian, K.

    2012-02-29

    At the Savannah River Site (SRS), oxalic acid is currently considered the preferred agent for chemically cleaning the large underground Liquid Radioactive Waste Tanks. It is applied only in the final stages of emptying a tank when generally less than 5,000 kg of waste solids remain, and slurrying based removal methods are no-longer effective. The use of oxalic acid is preferred because of its combined dissolution and chelating properties, as well as the fact that corrosion to the carbon steel tank walls can be controlled. Although oxalic acid is the preferred agent, there are significant potential downstream impacts. Impacts include: (1) Degraded evaporator operation; (2) Resultant oxalate precipitates taking away critically needed operating volume; and (3) Eventual creation of significant volumes of additional feed to salt processing. As an alternative to dealing with the downstream impacts, oxalate decomposition using variations of ozone based Advanced Oxidation Process (AOP) were investigated. In general AOPs use ozone or peroxide and a catalyst to create hydroxyl radicals. Hydroxyl radicals have among the highest oxidation potentials, and are commonly used to decompose organics. Although oxalate is considered among the most difficult organic to decompose, the ability of hydroxyl radicals to decompose oxalate is considered to be well demonstrated. In addition, as AOPs are considered to be 'green' their use enables any net chemical additions to the waste to be minimized. In order to test the ability to decompose the oxalate and determine the decomposition rates, a test rig was designed, where 10 vol% ozone would be educted into a spent oxalic acid decomposition loop, with the loop maintained at 70 C and recirculated at 40L/min. Each of the spent oxalic acid streams would be created from three oxalic acid strikes of an F-area simulant (i.e., Purex = high Fe/Al concentration) and H-area simulant (i.e., H area modified Purex = high Al/Fe concentration) after nearing

  8. Jahn-Teller Transitions in the Bimetallic Oxalates

    SciTech Connect

    Fishman, Randy Scott

    2011-01-01

    Bimetallic oxalates are a class of layered molecule-based magnets with transition-metal ions M(II) and M'(III) coupled by oxalate molecules (C2O4)-2 in an open honeycomb structure. Magnetic compensation (MC) has been observed in ferrimagnetic Fe(II)Fe(III) compounds with certain cations between the bimetallic layers. This behavior can be explained [1] by considering the C3-symmetric crystal field produced by the six oxygen atoms surrounding each Fe ion, which splits the L = 2, 3d6 multiplet on the Fe(II) sites into two doublets and one singlet. MC occurs when the doublet lies lowest in energy and carries an orbital angular momentum Lz between about 0.25 and 1.0. Because the low-energy doublet is half-filled, a Jahn-Teller (JT) distortion may break the C3 symmetry near the ferrimagnetic transition temperature. In the absence of spin-orbit coupling on the Fe(II) sites, the JT distortion would always occur at T = 0. However, due to the competition between the spin-orbit coupling and JT energies, the JT distortion disappears at low temperatures in compounds that display MC [2]. Comparison is made with recent experiments and predictions are made for controlling the MC and JT critical temperatures.

  9. Effects of Zn Content on Crystal Structure, Cytocompatibility, Antibacterial Activity, and Chemical Stability in Zn-Modified Calcium Silicate Coatings

    NASA Astrophysics Data System (ADS)

    Li, Kai; Yu, Jiangming; Xie, Youtao; Huang, Liping; Ye, Xiaojian; Zheng, Xuebin

    2013-08-01

    In our previous study, Zn-modified calcium silicate coatings possess not only excellent chemical stability but also well antibacterial activity. Still, effects of zinc content on these properties and cytocompatibility remain unclear. In this paper, two kinds of Zn-modified calcium silicate coatings (ZC0.3, ZC0.5) were fabricated on Ti-6Al-4V substrates via plasma spraying technology. X-ray diffraction results and transmission electron microscopy observations showed that the ZC0.5 coating was composed of pure hardystonite (Ca2ZnSi2O7) phase, while, besides Ca2ZnSi2O7 phase, the amorphous CaSiO3 phase was also detected in the ZC0.3 coating. Chemical stability in Tris-HCl buffer solution and antibacterial activity of the Zn-modified calcium silicate coatings increased with an increase in zinc content. In vitro cytocompatibility evaluation demonstrated that the proliferation and alkaline phosphatase activity and collagen type I (COLI) secretion of osteoblast-like MC3T3-E1 cells on Zn-modified coatings were significantly enhanced compared to the Zn-free coating and Ti-6Al-4V control, and no cytotoxicity appeared on Zn-modified coatings. The better antibacterial activity and the enhanced capability to promote MC3T3-E1 cells differentiation of Zn-modified coatings should be attributed to the slow and constant Zn2+ releasing from the coatings.

  10. Separation of americium, curium, and rare earths from high-level wastes by oxalate precipitation: experiments with synthetic waste solutions

    SciTech Connect

    Forsberg, C.W.

    1980-01-01

    The separation of trivalent actinides and rare earths from other fission products in high-level nuclear wastes by oxalate precipitation followed by ion exchange (OPIX) was experimentally investigated using synthetic wastes and a small-scale, continuous-flow oxalic acid precipitation and solid-liquid separation system. Trivalent actinide and rare earth oxalates are relatively insoluble in 0.5 to 1.0 M HNO/sub 3/ whereas other fission product oxalates are not. The continuous-flow system consisted of one or two stirred-tank reactors in series for crystal growth. Oxalic acid and waste solutions were mixed in the first tank, with the product solid-liquid slurry leaving the second tank. Solid-liquid separation was tested by filters and by a gravity settler. The experiments determined the fraction of rare earths precipitated and separated from synthetic waste streams as a function of number of reactors, system temperature, oxalic acid concentration, liquid residence time in the process, power input to the stirred-tank reactors, and method of solid-liquid separation. The crystalline precipitate was characterized with respect to form, size, and chemical composition. These experiments are only the first step in converting a proposed chemical flowsheet into a process flowsheet suitable for large-scale remote operations at high activity levels.

  11. Vacuolar deposition of ascorbate-derived oxalic acid in barley

    SciTech Connect

    Wagner, G.J.

    1981-03-01

    L-(1-/sup 14/C)Ascorbic acid was supplied to detached barley seedlings to determine the subcellular location of oxalic acid, one of its metabolic products. Intact vacuoles isolated from protoplasts of labeled leaves contained (/sup 14/C)oxalic acid which accounted for about 70% of the intraprotoplast soluble oxalic acid. Tracer-labeled oxalate accounted for 36 and 72% of the /sup 14/C associated with leaf vacuoles of seedlings labeled for 22 and 96 hours, respectively.

  12. Eight years of follow-up after laminectomy of calcium pyrophosphate crystal deposition in the cervical yellow ligament of patient with Coffin–Lowry syndrome

    PubMed Central

    Morino, Tadao; Ogata, Tadanori; Horiuchi, Hideki; Yamaoka, Shintaro; Fukuda, Mitsumasa; Miura, Hiromasa

    2016-01-01

    Abstract Background: We report 8 years of follow-up after decompression to treat cervical myelopathy in a patient with Coffin–Lowry syndrome (CLS). CLS is a rare X-linked semidominant syndrome associated with growth and psychomotor retardation, general hypoto