Science.gov

Sample records for calcium regulate nuclear

  1. Nuclear and cytosolic calcium are regulated independently

    PubMed Central

    Leite, M. F.; Thrower, E. C.; Echevarria, W.; Koulen, P.; Hirata, K.; Bennett, A. M.; Ehrlich, B. E.; Nathanson, M. H.

    2003-01-01

    Nuclear calcium (Ca2+) regulates a number of important cellular processes, including gene transcription, growth, and apoptosis. However, it is unclear whether Ca2+ signaling is regulated differently in the nucleus and cytosol. To investigate this possibility, we examined subcellular mechanisms of Ca2+ release in the HepG2 liver cell line. The type II isoform of the inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) was expressed to a similar extent in the endoplasmic reticulum and nucleus, whereas the type III InsP3R was concentrated in the endoplasmic reticulum, and the type I isoform was not expressed. Ca2+ signals induced by low InsP3 concentrations started earlier or were larger in the nucleus than in the cytosol, indicating higher sensitivity of nuclear Ca2+ stores for InsP3. Nuclear InsP3R channels were active at lower InsP3 concentrations than InsP3R from cytosol. Enriched expression of type II InsP3R in the nucleus results in greater sensitivity of the nucleus to InsP3, thus providing a mechanism for independent regulation of Ca2+-dependent processes in this cellular compartment. PMID:12606721

  2. Intracellular calcium levels can regulate Importin-dependent nuclear import

    SciTech Connect

    Kaur, Gurpreet; Ly-Huynh, Jennifer D.; Jans, David A.

    2014-07-18

    Highlights: • High intracellular calcium inhibits Impα/β1- or Impβ1-dependent nuclear protein import. • The effect of Ca{sup 2+} on nuclear import does not relate to changes in the nuclear pore. • High intracellular calcium can result in mislocalisation of Impβ1, Ran and RCC1. - Abstract: We previously showed that increased intracellular calcium can modulate Importin (Imp)β1-dependent nuclear import of SRY-related chromatin remodeling proteins. Here we extend this work to show for the first time that high intracellular calcium inhibits Impα/β1- or Impβ1-dependent nuclear protein import generally. The basis of this relates to the mislocalisation of the transport factors Impβ1 and Ran, which show significantly higher nuclear localization in contrast to various other factors, and RCC1, which shows altered subnuclear localisation. The results here establish for the first time that intracellular calcium modulates conventional nuclear import through direct effects on the nuclear transport machinery.

  3. Calcium-regulated nuclear enzymes: potential mediators of phytochrome-induced changes in nuclear metabolism?

    NASA Technical Reports Server (NTRS)

    Roux, S. J.

    1992-01-01

    Calcium ions have been proposed to serve as important regulatory elements in stimulus-response coupling for phytochrome responses. An important test of this hypothesis will be to identify specific targets of calcium action that are required for some growth or development process induced by the photoactivated form of phytochrome (Pfr). Initial studies have revealed that there are at least two enzymes in pea nuclei that are stimulated by Pfr in a Ca(2+)-dependent fashion, a calmodulin-regulated nucleoside triphosphatase and a calmodulin-independent but Ca(2+)-dependent protein kinase. The nucleoside triphosphatase appears to be associated with the nuclear envelope, while the protein kinase co-purifies with a nuclear fraction highly enriched for chromatin. This short review summarizes the latest findings on these enzymes and relates them to what is known about Pfr-regulated nuclear metabolism.

  4. Current evidence suggests independent regulation of nuclear calcium.

    PubMed

    Badminton, M N; Kendall, J M; Rembold, C M; Campbell, A K

    1998-01-01

    We review and present current evidence supporting independent regulation of nuclear Ca2+ ([Ca2+]n). The nucleus and nuclear envelope contain proteins to both regulate and respond to changes in [Ca2+]n. However, this does not prove that [Ca2+]n is independently regulated from cytosolic Ca2+ ([Ca2+]c). Studies using fluorescent dyes suggested that changes in [Ca2+]n differed in magnitude from changes in [Ca2+]c. These studies have been criticised as the nuclear environment alters the fluorescent characteristics of these dyes. We have evaluated this question with aequorin targeted to the nucleus and cytoplasm and shown that the characteristics of the indicators are not altered in their respective environments. We have demonstrated that different stimuli induce changes in [Ca2+]n and [Ca2+]c that vary both temporally and in magnitude. The nucleus appeared to be shielded from increases in [Ca2+]c, either through a mechanism involving the nuclear envelope or by cytosolic buffering of localised increases in Ca2+. In addition, agonist stimulation resulted in an increase in [Ca2+]n, consistent with release from the perinuclear Ca2+ store. There was a stimulus dependence of the relation between [Ca2+]n and [Ca2+]c suggesting differential regulation of [Ca2+]n. These results have important implications for the role of Ca2+ as a specific regulator of nuclear events through Ca2+ binding proteins. In addition, they highlight the advantages of using targeted aequorin in intact cells to monitor changes in organelle [Ca2+]. PMID:9601602

  5. Calcium-dependent regulation of NEMO nuclear export in response to genotoxic stimuli.

    PubMed

    Berchtold, Craig M; Wu, Zhao-Hui; Huang, Tony T; Miyamoto, Shigeki

    2007-01-01

    The mechanisms involved in activation of the transcription factor NF-kappaB by genotoxic agents are not well understood. Previously, we provided evidence that a regulatory subunit of the IkappaB kinase (IKK) complex, NF-kappaB essential modulator (NEMO)/IKKgamma, is a component of a nuclear signal that is generated after DNA damage to mediate NF-kappaB activation. Here, we found that etoposide (VP16) and camptothecin induced increases in intracellular free calcium levels at 60 min after stimulation of CEM T leukemic cells. Inhibition of calcium increases by calcium chelators, BAPTA-AM and EGTA-AM, abrogated NF-kappaB activation by these agents in several cell types examined. Conversely, thapsigargin and ionomycin attenuated the BAPTA-AM effects and promoted NF-kappaB activation by the genotoxic stimuli. Analyses of nuclear NEMO levels in VP16-treated cells suggested that calcium was required for nuclear export of NEMO. Inhibition of the nuclear exporter CRM1 by leptomycin B did not interfere with NEMO nuclear export. Similarly, deficiency of a plausible calcium-dependent nuclear export receptor, calreticulin, failed to prevent NF-kappaB activation by VP16. However, temperature inactivation of the Ran guanine nucleotide exchange factor RCC1 in the tsBN2 cell line harboring a temperature-sensitive mutant of RCC1 blocked NF-kappaB activation induced by genotoxic stimuli. Overexpression of Ran in this cell model showed that DNA damage stimuli induced formation of a complex between Ran and NEMO, suggesting that RCC1 regulated NF-kappaB activation through the modulation of RanGTP. Indeed, evidence for VP16-inducible interaction between Ran-GTP and NEMO could be obtained by means of glutathione S-transferase (GST) pull-down assays using GST fused to the Ran binding domain of RanBP2, which specifically interacts with the GTP-bound form of Ran. BAPTA-AM did not alter these interactions, suggesting that calcium is a necessary step beyond the formation of a Ran

  6. Dictyostelium calcium-binding protein 4a interacts with nucleomorphin, a BRCT-domain protein that regulates nuclear number.

    PubMed

    Myre, Michael A; O'Day, Danton H

    2004-09-17

    Nucleomorphin from Dictyostelium discoideum is a nuclear calmodulin-binding protein that is a member of the BRCT-domain containing cell cycle checkpoint proteins. Two differentially expressed isoforms, NumA and NumB, share an extensive acidic domain (DEED) that when deleted produces highly multinucleated cells. We performed a yeast two-hybrid screen of a Dictyostelium cDNA library using NumA as bait. Here we show that nucleomorphin interacts with calcium-binding protein 4a (CBP4a) in a Ca(2+)-dependent manner. Further deletion analysis suggests this interaction requires residues found within the DEED domain. NumA and CBP4a mRNAs are expressed at the same stages of development. CBP4a belongs to a large family of Dictyostelium CBPs, for which no cellular or developmental functions had previously been determined. Since the interaction of CBP4a with nucleomorphin requires the DEED domain, this suggests that CBP4a may respond to Ca(2+)-signalling through modulating factors that might function in concert to regulate nuclear number. PMID:15325281

  7. Troponin T3 regulates nuclear localization of the calcium channel Cavβ1a subunit in skeletal muscle.

    PubMed

    Zhang, Tan; Taylor, Jackson; Jiang, Yang; Pereyra, Andrea S; Messi, Maria Laura; Wang, Zhong-Min; Hereñú, Claudia; Delbono, Osvaldo

    2015-08-15

    The voltage-gated calcium channel (Cav) β1a subunit (Cavβ1a) plays an important role in excitation-contraction coupling (ECC), a process in the myoplasm that leads to muscle-force generation. Recently, we discovered that the Cavβ1a subunit travels to the nucleus of skeletal muscle cells where it helps to regulate gene transcription. To determine how it travels to the nucleus, we performed a yeast two-hybrid screening of the mouse fast skeletal muscle cDNA library and identified an interaction with troponin T3 (TnT3), which we subsequently confirmed by co-immunoprecipitation and co-localization assays in mouse skeletal muscle in vivo and in cultured C2C12 muscle cells. Interacting domains were mapped to the leucine zipper domain in TnT3 COOH-terminus (160-244 aa) and Cavβ1a NH2-terminus (1-99 aa), respectively. The double fluorescence assay in C2C12 cells co-expressing TnT3/DsRed and Cavβ1a/YFP shows that TnT3 facilitates Cavβ1a nuclear recruitment, suggesting that the two proteins play a heretofore unknown role during early muscle differentiation in addition to their classical role in ECC regulation. PMID:25981458

  8. Regulation of calcium transporters: The role of a nuclear-localized CAX-interacting protein, CXIP4

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Regulation of calcium transporters is essential for modulating the Ca(2+) signaling and/or Ca(2+) homeostasis that are involved in the growth and adaptation of all organisms. The Arabidopsis H(+) /Ca(2+) antiporters, CAX1 and CAX1-like transporters, are autoinhibited and unable to suppress the hype...

  9. Calcium regulation of mitochondrial carriers.

    PubMed

    Del Arco, Araceli; Contreras, Laura; Pardo, Beatriz; Satrustegui, Jorgina

    2016-10-01

    Mitochondrial function is regulated by calcium. In addition to the long known effects of matrix Ca(2+), regulation of metabolite transport by extramitochondrial Ca(2+) represents an alternative Ca(2+)-dependent mechanism to regulate mitochondrial function. The Ca(2+) regulated mitochondrial transporters (CaMCs) are well suited for that role, as they contain long N-terminal extensions harboring EF-hand Ca(2+) binding domains facing the intermembrane space. They fall in two groups, the aspartate/glutamate exchangers, AGCs, major components of the NADH malate aspartate shuttle (MAS) and urea cycle, and the ATP-Mg(2+)/Pi exchangers or short CaMCs (APCs or SCaMCs). The AGCs are activated by relatively low Ca(2+) levels only slightly higher than resting Ca(2+), whereas all SCaMCs studied so far require strong Ca(2+) signals, above micromolar, for activation. In addition, AGCs are not strictly Ca(2+) dependent, being active even in Ca(2+)-free conditions. Thus, AGCs are well suited to respond to small Ca(2+) signals and that do not reach mitochondria. In contrast, ATP-Mg(2+)/Pi carriers are inactive in Ca(2+) free conditions and activation requires Ca(2+) signals that will also activate the calcium uniporter (MCU). By changing the net content of adenine nucleotides of the matrix upon activation, SCaMCs regulate the activity of the permeability transition pore, and the Ca(2+) retention capacity of mitochondria (CRC), two functions synergizing with those of the MCU. The different Ca(2+) activation properties of the two CaMCs are discussed in relation to their newly obtained structures. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou. PMID:27033520

  10. Regulation of Calcium signaling through spatial Organization

    NASA Astrophysics Data System (ADS)

    Ullah, Aman; Ullah, Ghanim; Machaca, Khalid; Jung, Peter

    2010-03-01

    Calcium waves and signals in oocytes are produced and sustained by the release of Ca^2+ from the Endoplasmic Reticulum (ER) through clustered release channels. Changes in the spatial organization of calcium signaling effectors regulate the spatiotemporal features of the calcium signal as is e.g. observed during oocyte maturation. We report here how specific changes in the clustering of the calcium release channels in conjunction with physiologic alterations of other signaling effectors can affect a) the sensitivity of the signaling machinery to external factors, b) the time course of global intracellular signals and c), the speed and propagation range of intracellular calcium waves.

  11. Calcium regulates caveolin-1 expression at the transcriptional level

    SciTech Connect

    Yang, Xiao-Yan; Huang, Cheng-Cheng; Kan, Qi-Ming; Li, Yan; Liu, Dan; Zhang, Xue-Cheng; Sato, Toshinori; Yamagata, Sadako; Yamagata, Tatsuya

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer Caveolin-1 expression is regulated by calcium signaling at the transcriptional level. Black-Right-Pointing-Pointer An inhibitor of or siRNA to L-type calcium channel suppressed caveolin-1 expression. Black-Right-Pointing-Pointer Cyclosporine A or an NFAT inhibitor markedly reduced caveolin-1 expression. Black-Right-Pointing-Pointer Caveolin-1 regulation by calcium signaling is observed in several mouse cell lines. -- Abstract: Caveolin-1, an indispensable component of caveolae serving as a transformation suppressor protein, is highly expressed in poorly metastatic mouse osteosarcoma FBJ-S1 cells while highly metastatic FBJ-LL cells express low levels of caveolin-1. Calcium concentration is higher in FBJ-S1 cells than in FBJ-LL cells; therefore, we investigated the possibility that calcium signaling positively regulates caveolin-1 in mouse FBJ-S1 cells. When cells were treated with the calcium channel blocker nifedipine, cyclosporin A (a calcineurin inhibitor), or INCA-6 (a nuclear factor of activated T-cells [NFAT] inhibitor), caveolin-1 expression at the mRNA and protein levels decreased. RNA silencing of voltage-dependent L-type calcium channel subunit alpha-1C resulted in suppression of caveolin-1 expression. This novel caveolin-1 regulation pathway was also identified in mouse NIH 3T3 cells and Lewis lung carcinoma cells. These results indicate that caveolin-1 is positively regulated at the transcriptional level through a novel calcium signaling pathway mediated by L-type calcium channel/Ca{sup 2+}/calcineurin/NFAT.

  12. Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum

    PubMed Central

    Echevarría, Wihelma; Leite, M. Fatima; Guerra, Mateus T.; Zipfel, Warren R.; Nathanson, Michael H.

    2013-01-01

    Calcium is a second messenger in virtually all cells and tissues1. Calcium signals in the nucleus have effects on gene transcription and cell growth that are distinct from those of cytosolic calcium signals; however, it is unknown how nuclear calcium signals are regulated. Here we identify a reticular network of nuclear calcium stores that is continuous with the endoplasmic reticulum and the nuclear envelope. This network expresses inositol 1,4,5-trisphosphate (InsP3) receptors, and the nuclear component of InsP3-mediated calcium signals begins in its locality. Stimulation of these receptors with a little InsP3 results in small calcium signals that are initiated in this region of the nucleus. Localized release of calcium in the nucleus causes nuclear protein kinase C (PKC) to translocate to the region of the nuclear envelope, whereas release of calcium in the cytosol induces translocation of cytosolic PKC to the plasma membrane. Our findings show that the nucleus contains a nucleoplasmic reticulum with the capacity to regulate calcium signals in localized subnuclear regions. The presence of such machinery provides a potential mechanism by which calcium can simultaneously regulate many independent processes in the nucleus. PMID:12717445

  13. Troponin T3 regulates nuclear localization of the calcium channel Ca{sub v}β{sub 1a} subunit in skeletal muscle

    SciTech Connect

    Zhang, Tan; Taylor, Jackson; Jiang, Yang; Pereyra, Andrea S.; Messi, Maria Laura; Wang, Zhong-Min; Hereñú, Claudia; Delbono, Osvaldo

    2015-08-15

    The voltage-gated calcium channel (Ca{sub v}) β{sub 1a} subunit (Ca{sub v}β{sub 1a}) plays an important role in excitation–contraction coupling (ECC), a process in the myoplasm that leads to muscle-force generation. Recently, we discovered that the Ca{sub v}β{sub 1a} subunit travels to the nucleus of skeletal muscle cells where it helps to regulate gene transcription. To determine how it travels to the nucleus, we performed a yeast two-hybrid screening of the mouse fast skeletal muscle cDNA library and identified an interaction with troponin T3 (TnT3), which we subsequently confirmed by co-immunoprecipitation and co-localization assays in mouse skeletal muscle in vivo and in cultured C2C12 muscle cells. Interacting domains were mapped to the leucine zipper domain in TnT3 COOH-terminus (160–244 aa) and Ca{sub v}β{sub 1a} NH{sub 2}-terminus (1–99 aa), respectively. The double fluorescence assay in C2C12 cells co-expressing TnT3/DsRed and Ca{sub v}β{sub 1a}/YFP shows that TnT3 facilitates Ca{sub v}β{sub 1a} nuclear recruitment, suggesting that the two proteins play a heretofore unknown role during early muscle differentiation in addition to their classical role in ECC regulation. - Highlights: • Previously, we demonstrated that Ca{sub v}β{sub 1a} is a gene transcription regulator. • Here, we show that TnT3 interacts with Ca{sub v}β{sub 1a}. • We mapped TnT3 and Ca{sub v}β{sub 1a} interaction domain. • TnT3 facilitates Ca{sub v}β{sub 1a} nuclear enrichment. • The two proteins play a heretofore unknown role during early muscle differentiation.

  14. Role of Calcium and Calmodulin in Plant Cell Regulation

    NASA Technical Reports Server (NTRS)

    Cormier, M. J.

    1983-01-01

    The role of calcium and calmodulin in plant cell regulation is discussed. Experiments are done to discover the level of calcium in plants and animals. The effect of intracellular calcium on photosynthesis is discussed.

  15. Calcium-dependent regulation of photosynthesis.

    PubMed

    Hochmal, Ana Karina; Schulze, Stefan; Trompelt, Kerstin; Hippler, Michael

    2015-09-01

    The understanding of calcium as a second messenger in plants has been growing intensively over the last decades. Recently, attention has been drawn to the organelles, especially the chloroplast but focused on the stromal Ca2+ transients in response to environmental stresses. Herein we will expand this view and discuss the role of Ca2+ in photosynthesis. Moreover we address of how Ca2+ is delivered to chloroplast stroma and thylakoids. Thereby, new light is shed on the regulation of photosynthetic electron flow and light-dependent metabolism by the interplay of Ca2+, thylakoid acidification and redox status. This article is part of a Special Issue entitled: Chloroplast biogenesis. PMID:25687895

  16. Nuclear Calcium Signaling Induces Expression of the Synaptic Organizers Lrrtm1 and Lrrtm2*

    PubMed Central

    Hayer, Stefanie N.; Bading, Hilmar

    2015-01-01

    Calcium transients in the cell nucleus evoked by synaptic activity in hippocampal neurons function as a signaling end point in synapse-to-nucleus communication. As an important regulator of neuronal gene expression, nuclear calcium is involved in the conversion of synaptic stimuli into functional and structural changes of neurons. Here we identify two synaptic organizers, Lrrtm1 and Lrrtm2, as targets of nuclear calcium signaling. Expression of both Lrrtm1 and Lrrtm2 increased in a synaptic NMDA receptor- and nuclear calcium-dependent manner in hippocampal neurons within 2–4 h after the induction of action potential bursting. Induction of Lrrtm1 and Lrrtm2 occurred independently of the need for new protein synthesis and required calcium/calmodulin-dependent protein kinases and the nuclear calcium signaling target CREB-binding protein. Analysis of reporter gene constructs revealed a functional cAMP response element in the proximal promoter of Lrrtm2, indicating that at least Lrrtm2 is regulated by the classical nuclear Ca2+/calmodulin-dependent protein kinase IV-CREB/CREB-binding protein pathway. These results suggest that one mechanism by which nuclear calcium signaling controls neuronal network function is by regulating the expression of Lrrtm1 and Lrrtm2. PMID:25527504

  17. Nuclear regulation and safety

    SciTech Connect

    Hendrie, J.M.

    1982-01-01

    Nuclear regulation and safety are discussed from the standpoint of a hypothetical country that is in the process of introducing a nuclear power industry and setting up a regulatory system. The national policy is assumed to be in favor of nuclear power. The regulators will have responsibility for economic, reliable electric production as well as for safety. Reactor safety is divided into three parts: shut it down, keep it covered, take out the afterheat. Emergency plans also have to be provided. Ways of keeping the core covered with water are discussed. (DLC)

  18. Regulation of protein degradation in muscle by calcium

    NASA Technical Reports Server (NTRS)

    Zeman, Richard J.; Kameyama, Tsuneo; Matsumoto, Kazue; Bernstein, Paul; Etlinger, Joseph D.

    1985-01-01

    Calcium-dependent regulation of intracellular protein degradation was studied in isolated rat skeletal muscles incubated in vitro in the presence of a large variety of agents known to affect calcium movement and distribution. The effect of different classes of protease inhibitors was tested to determine the responsible proteolytic systems involved in calcium-dependent degradation. The results suggest that nonlysosomal leupetin- and E-64-c-sensitive proteases are resposible for calcium-dependent proteolysis in muscle.

  19. Biotic Nitrogen Enrichment Regulates Calcium Sources to Forests

    NASA Astrophysics Data System (ADS)

    Pett-Ridge, J. C.; Perakis, S. S.; Hynicka, J. D.

    2015-12-01

    Calcium is an essential nutrient in forest ecosystems that is susceptible to leaching loss and depletion. Calcium depletion can affect plant and animal productivity, soil acid buffering capacity, and fluxes of carbon and water. Excess nitrogen supply and associated soil acidification are often implicated in short-term calcium loss from soils, but the long-term role of nitrogen enrichment on calcium sources and resupply is unknown. Here we use strontium isotopes (87Sr/86Sr) as a proxy for calcium to investigate how soil nitrogen enrichment from biological nitrogen fixation interacts with bedrock calcium to regulate both short-term available supplies and the long-term sources of calcium in montane conifer forests. Our study examines 22 sites in western Oregon, spanning a 20-fold range of bedrock calcium on sedimentary and basaltic lithologies. In contrast to previous studies emphasizing abiotic control of weathering as a determinant of long-term ecosystem calcium dynamics and sources (via bedrock fertility, climate, or topographic/tectonic controls) we find instead that that biotic nitrogen enrichment of soil can strongly regulate calcium sources and supplies in forest ecosystems. For forests on calcium-rich basaltic bedrock, increasing nitrogen enrichment causes calcium sources to shift from rock-weathering to atmospheric dominance, with minimal influence from other major soil forming factors, despite regionally high rates of tectonic uplift and erosion that can rejuvenate weathering supply of soil minerals. For forests on calcium-poor sedimentary bedrock, we find that atmospheric inputs dominate regardless of degree of nitrogen enrichment. Short-term measures of soil and ecosystem calcium fertility are decoupled from calcium source sustainability, with fundamental implications for understanding nitrogen impacts, both in natural ecosystems and in the context of global change. Our finding that long-term nitrogen enrichment increases forest reliance on atmospheric

  20. Simulation strategies for calcium microdomains and calcium-regulated calcium channels.

    PubMed

    von Wegner, Frederic; Wieder, Nicolas; Fink, Rainer H A

    2012-01-01

    In this article, we present an overview of simulation strategies in the context of subcellular domains where calcium-dependent signaling plays an important role. The presentation follows the spatial and temporal scales involved and represented by each algorithm. As an exemplary cell type, we will mainly cite work done on striated muscle cells, i.e. skeletal and cardiac muscle. For these cells, a wealth of ultrastructural, biophysical and electrophysiological data is at hand. Moreover, these cells also express ubiquitous signaling pathways as they are found in many other cell types and thus, the generalization of the methods and results presented here is straightforward.The models considered comprise the basic calcium signaling machinery as found in most excitable cell types including Ca(2+) ions, diffusible and stationary buffer systems, and calcium regulated calcium release channels. Simulation strategies can be differentiated in stochastic and deterministic algorithms. Historically, deterministic approaches based on the macroscopic reaction rate equations were the first models considered. As experimental methods elucidated highly localized Ca(2+) signaling events occurring in femtoliter volumes, stochastic methods were increasingly considered. However, detailed simulations of single molecule trajectories are rarely performed as the computational cost implied is too large. On the mesoscopic level, Gillespie's algorithm is extensively used in the systems biology community and with increasing frequency also in models of microdomain calcium signaling. To increase computational speed, fast approximations were derived from Gillespie's exact algorithm, most notably the chemical Langevin equation and the τ-leap algorithm. Finally, in order to integrate deterministic and stochastic effects in multiscale simulations, hybrid algorithms are increasingly used. These include stochastic models of ion channels combined with deterministic descriptions of the calcium buffering

  1. Restructuring nuclear regulations.

    PubMed Central

    Mossman, Kenneth L

    2003-01-01

    Nuclear regulations are a subset of social regulations (laws to control activities that may negatively impact the environment, health, and safety) that concern control of ionizing radiation from radiation-producing equipment and from radioactive materials. The impressive safety record among nuclear technologies is due, in no small part, to the work of radiation safety professionals and to a protection system that has kept pace with the rapid technologic advancements in electric power generation, engineering, and medicine. The price of success, however, has led to a regulatory organization and philosophy characterized by complexity, confusion, public fear, and increasing economic costs. Over the past 20 years, regulatory costs in the nuclear sector have increased more than 250% in constant 1995 U.S. dollars. Costs of regulatory compliance can be reduced sharply, particularly when health and environmental benefits of risk reduction are questionable. Three key regulatory areas should be closely examined and modified to improve regulatory effectiveness and efficiency: a) radiation protection should be changed from a risk-based to dose-based system; b) the U.S. government should adopt the modern metric system (International System of Units), and radiation quantities and units should be simplified to facilitate international communication and public understanding; and c) a single, independent office is needed to coordinate nuclear regulations established by U.S. federal agencies and departments. PMID:12515683

  2. PTH-independent regulation of blood calcium concentration by the calcium-sensing receptor.

    PubMed

    Loupy, Alexandre; Ramakrishnan, Suresh Krishna; Wootla, Bharath; Chambrey, Régine; de la Faille, Renaud; Bourgeois, Soline; Bruneval, Patrick; Mandet, Chantal; Christensen, Erik Ilso; Faure, Hélène; Cheval, Lydie; Laghmani, Kamel; Collet, Corinne; Eladari, Dominique; Dodd, Robert H; Ruat, Martial; Houillier, Pascal

    2012-09-01

    Tight regulation of calcium levels is required for many critical biological functions. The Ca2+-sensing receptor (CaSR) expressed by parathyroid cells controls blood calcium concentration by regulating parathyroid hormone (PTH) secretion. However, CaSR is also expressed in other organs, such as the kidney, but the importance of extraparathyroid CaSR in calcium metabolism remains unknown. Here, we investigated the role of extraparathyroid CaSR using thyroparathyroidectomized, PTH-supplemented rats. Chronic inhibition of CaSR selectively increased renal tubular calcium absorption and blood calcium concentration independent of PTH secretion change and without altering intestinal calcium absorption. CaSR inhibition increased blood calcium concentration in animals pretreated with a bisphosphonate, indicating that the increase did not result from release of bone calcium. Kidney CaSR was expressed primarily in the thick ascending limb of the loop of Henle (TAL). As measured by in vitro microperfusion of cortical TAL, CaSR inhibitors increased calcium reabsorption and paracellular pathway permeability but did not change NaCl reabsorption. We conclude that CaSR is a direct determinant of blood calcium concentration, independent of PTH, and modulates renal tubular calcium transport in the TAL via the permeability of the paracellular pathway. These findings suggest that CaSR inhibitors may provide a new specific treatment for disorders related to impaired PTH secretion, such as primary hypoparathyroidism. PMID:22886306

  3. Vasopressin regulates renal calcium excretion in humans

    PubMed Central

    Hanouna, Guillaume; Haymann, Jean-Philippe; Baud, Laurent; Letavernier, Emmanuel

    2015-01-01

    Antidiuretic hormone or arginine vasopressin (AVP) increases water reabsorption in the collecting ducts of the kidney. Three decades ago, experimental models have shown that AVP may increase calcium reabsorption in rat kidney. The objective of this study was to assess whether AVP modulates renal calcium excretion in humans. We analyzed calcium, potassium, and sodium fractional excretion in eight patients affected by insipidus diabetes (nephrogenic or central) under acute vasopressin receptor agonist action and in 10 patients undergoing oral water load test affected or not by inappropriate antidiuretic hormone secretion (SIADH). Synthetic V2 receptor agonist (dDAVP) reduced significantly calcium fractional excretion from 1.71% to 0.58% (P < 0.05) in patients with central diabetes insipidus. In patients with nephrogenic diabetes insipidus (resistant to AVP), calcium fractional excretion did not change significantly after injection (0.48–0.68%, P = NS). In normal subjects undergoing oral water load test, calcium fractional excretion increased significantly from 1.02% to 2.54% (P < 0.05). Patients affected by SIADH had a high calcium fractional excretion at baseline that remained stable during test from 3.30% to 3.33% (P = NS), possibly resulting from a reduced calcium absorption in renal proximal tubule. In both groups, there was a significant correlation between urine output and calcium renal excretion. In humans, dDAVP decreases calcium fractional excretion in the short term. Conversely, water intake, which lowers AVP concentration, increases calcium fractional excretion. The correlation between urine output and calcium excretion suggests that AVP-related antidiuresis increases calcium reabsorption in collecting ducts. PMID:26620256

  4. The importance of calcium in the regulation of megakaryocyte function.

    PubMed

    Di Buduo, Christian Andrea; Moccia, Francesco; Battiston, Monica; De Marco, Luigi; Mazzucato, Mario; Moratti, Remigio; Tanzi, Franco; Balduini, Alessandra

    2014-04-01

    Platelet release by megakaryocytes is regulated by a concert of environmental and autocrine factors. We previously showed that constitutively released adenosine diphosphate by human megakaryocytes leads to platelet production. Here we show that adenosine diphosphate elicits, in human megakaryocytes, an increase in cytosolic calcium concentration, followed by a plateau, which is lowered in the absence of extracellular calcium, suggesting the involvement of Store-Operated Calcium Entry. Indeed, we demonstrate that megakaryocytes express the major candidates to mediate Store-Operated Calcium Entry, stromal interaction molecule 1, Orai1 and canonical transient receptor potential 1, which are activated upon either pharmacological or physiological depletion of the intracellular calcium pool. This mechanism is inhibited by phospholipase C or inositol-3-phosphate receptor inhibitors and by a specific calcium entry blocker. Studies on megakaryocyte behavior, on extracellular matrix proteins that support proplatelet extension, show that calcium mobilization from intracellular stores activates signaling cascades that trigger megakaryocyte adhesion and proplatelet formation, and promotes extracellular calcium entry which is primarily involved in the regulation of the contractile force responsible for megakaryocyte motility. These findings provide the first evidence that both calcium mobilization from intracellular stores and extracellular calcium entry specifically regulate human megakaryocyte functions. PMID:24463213

  5. The importance of calcium in the regulation of megakaryocyte function

    PubMed Central

    Andrea Di Buduo, Christian; Moccia, Francesco; Battiston, Monica; De Marco, Luigi; Mazzucato, Mario; Moratti, Remigio; Tanzi, Franco; Balduini, Alessandra

    2014-01-01

    Platelet release by megakaryocytes is regulated by a concert of environmental and autocrine factors. We previously showed that constitutively released adenosine diphosphate by human megakaryocytes leads to platelet production. Here we show that adenosine diphosphate elicits, in human megakaryocytes, an increase in cytosolic calcium concentration, followed by a plateau, which is lowered in the absence of extracellular calcium, suggesting the involvement of Store-Operated Calcium Entry. Indeed, we demonstrate that megakaryocytes express the major candidates to mediate Store-Operated Calcium Entry, stromal interaction molecule 1, Orai1 and canonical transient receptor potential 1, which are activated upon either pharmacological or physiological depletion of the intracellular calcium pool. This mechanism is inhibited by phospholipase C or inositol-3-phosphate receptor inhibitors and by a specific calcium entry blocker. Studies on megakaryocyte behavior, on extracellular matrix proteins that support proplatelet extension, show that calcium mobilization from intracellular stores activates signaling cascades that trigger megakaryocyte adhesion and proplatelet formation, and promotes extracellular calcium entry which is primarily involved in the regulation of the contractile force responsible for megakaryocyte motility. These findings provide the first evidence that both calcium mobilization from intracellular stores and extracellular calcium entry specifically regulate human megakaryocyte functions. PMID:24463213

  6. Brain calcium - Role in temperature regulation.

    NASA Technical Reports Server (NTRS)

    Hanegan, J. L.; Williams, B. A.

    1973-01-01

    Perfusion of the preoptic-anterior hypothalamus with excess calcium ion in ground squirrels produces a drop in core temperature. The magnitude of the drop is directly dependent on ambient temperature. Respiration, heart rate, and oxygen consumption are also reduced during perfusion of calcium ion. It is concluded that the depression of body temperature during calcium ion perfusion is due to generalized depression of the neurons of the preoptic-anterior hypothalamus.

  7. Intracellular calcium ions as regulators of renal tubular sodium transport.

    PubMed

    Windhager, E; Frindt, G; Yang, J M; Lee, C O

    1986-09-15

    This review addresses the putative role of intracellular calcium ions in the regulation of sodium transport by renal tubules. Cytoplasmic calcium-ion activities in proximal tubules of Necturus are less than 10(-7) M and can be increased by lowering the electrochemical potential gradient for sodium ions across the peritubular cell membrane, or by addition of quinidine or ionomycin to peritubular fluid. Whereas lowering of the peritubular Na concentration increases cytosolic [Ca++] and [H+], ionomycin, a calcium ionophore, raises intracellular [Ca++] without decreasing pHi. The intracellular calcium-ion level is maintained by transport processes in the plasma membrane and membranes of intracellular organelles, as well as by calcium-binding proteins. Calcium ions inhibit net transport of sodium by reducing the rate of sodium entry across the luminal cell membrane. In the collecting tubule this inhibition is caused, at least in part, by an indirect reduction in the activity of the amiloride-sensitive sodium channel. PMID:2430134

  8. Mitochondrial calcium uniporter regulator 1 (MCUR1) regulates the calcium threshold for the mitochondrial permeability transition.

    PubMed

    Chaudhuri, Dipayan; Artiga, Daniel J; Abiria, Sunday A; Clapham, David E

    2016-03-29

    During the mitochondrial permeability transition, a large channel in the inner mitochondrial membrane opens, leading to the loss of multiple mitochondrial solutes and cell death. Key triggers include excessive reactive oxygen species and mitochondrial calcium overload, factors implicated in neuronal and cardiac pathophysiology. Examining the differential behavior of mitochondrial Ca(2+)overload inDrosophilaversus human cells allowed us to identify a gene,MCUR1, which, when expressed inDrosophilacells, conferred permeability transition sensitive to electrophoretic Ca(2+)uptake. Conversely, inhibiting MCUR1 in mammalian cells increased the Ca(2+)threshold for inducing permeability transition. The effect was specific to the permeability transition induced by Ca(2+), and such resistance to overload translated into improved cell survival. Thus,MCUR1expression regulates the Ca(2+)threshold required for permeability transition. PMID:26976564

  9. Redox Regulation of Neuronal Voltage-Gated Calcium Channels

    PubMed Central

    Jevtovic-Todorovic, Vesna

    2014-01-01

    Abstract Significance: Voltage-gated calcium channels are ubiquitously expressed in neurons and are key regulators of cellular excitability and synaptic transmitter release. There is accumulating evidence that multiple subtypes of voltage-gated calcium channels may be regulated by oxidation and reduction. However, the redox mechanisms involved in the regulation of channel function are not well understood. Recent Advances: Several studies have established that both T-type and high-voltage-activated subtypes of voltage-gated calcium channel can be redox-regulated. This article reviews different mechanisms that can be involved in redox regulation of calcium channel function and their implication in neuronal function, particularly in pain pathways and thalamic oscillation. Critical Issues: A current critical issue in the field is to decipher precise mechanisms of calcium channel modulation via redox reactions. In this review we discuss covalent post-translational modification via oxidation of cysteine molecules and chelation of trace metals, and reactions involving nitric oxide-related molecules and free radicals. Improved understanding of the roles of redox-based reactions in regulation of voltage-gated calcium channels may lead to improved understanding of novel redox mechanisms in physiological and pathological processes. Future Directions: Identification of redox mechanisms and sites on voltage-gated calcium channel may allow development of novel and specific ion channel therapies for unmet medical needs. Thus, it may be possible to regulate the redox state of these channels in treatment of pathological process such as epilepsy and neuropathic pain. Antioxid. Redox Signal. 21, 880–891. PMID:24161125

  10. MicroRNA-30 family members regulate calcium/calcineurin signaling in podocytes

    PubMed Central

    Wu, Junnan; Zheng, Chunxia; Wang, Xiao; Yun, Shifeng; Zhao, Yue; Liu, Lin; Lu, Yuqiu; Ye, Yuting; Zhu, Xiaodong; Zhang, Changming; Shi, Shaolin; Liu, Zhihong

    2015-01-01

    Calcium/calcineurin signaling is critical for normal cellular physiology. Abnormalities in this pathway cause many diseases, including podocytopathy; therefore, understanding the mechanisms that underlie the regulation of calcium/calcineurin signaling is essential. Here, we showed that critical components of calcium/calcineurin signaling, including TRPC6, PPP3CA, PPP3CB, PPP3R1, and NFATC3, are the targets of the microRNA-30 family (miR-30s). We found that these 5 genes are highly expressed as mRNA, but the level of the proteins is low in normal podocytes. Conversely, protein levels were markedly elevated in podocytes from rats treated with puromycin aminonucleoside (PAN) and from patients with focal segmental glomerulosclerosis (FSGS). In both FSGS patients and PAN-treated rats, miR-30s were downregulated in podocytes. In cultured podocytes, PAN or a miR-30 sponge increased TRPC6, PPP3CA, PPP3CB, PPP3R1, and NFATC3 expression; calcium influx; intracellular Ca2+ concentration; and calcineurin activity. Moreover, NFATC3 nuclear translocation, synaptopodin degradation, integrin β3 (ITGB3) activation, and actin fiber loss, which are downstream of calcium/calcineurin signaling, were induced by miR-30 reduction but blocked by the calcineurin inhibitor FK506. Podocyte-specific expression of the miR-30 sponge in mice increased calcium/calcineurin pathway component protein expression and calcineurin activity. The mice developed podocyte foot process effacement and proteinuria, which were prevented by FK506. miR-30s also regulated calcium/calcineurin signaling in cardiomyocytes. Together, our results identify miR-30s as essential regulators of calcium/calcineurin signaling. PMID:26436650

  11. NFAT regulates calcium-sensing receptor-mediated TNF production

    SciTech Connect

    abdullah, huda ismail; Pedraza, Paulina L.; Hao, Shoujin; Rodland, Karin D.; McGiff, John C.; Ferreri, Nicholas R.

    2006-05-01

    Because nuclear factor of activated T cells (NFAT) has been implicated in TNF production as well as osmoregulation and salt and water homeostasis, we addressed whether calcium-sensing receptor (CaR)-mediated TNF production in medullary thick ascending limb (mTAL) cells was NFAT dependent. TNF production in response to addition of extracellular Ca2+ (1.2 mM) was abolished in mTAL cells transiently transfected with a dominant-negative CaR construct (R796W) or pretreated with the phosphatidylinositol phospholipase C (PI-PLC) inhibitor U-73122. Cyclosporine A (CsA), an inhibitor of the serine/threonine phosphatase calcineurin, and a peptide ligand, VIVIT, that selectively inhibits calcineurin-NFAT signaling, also prevented CaR-mediated TNF production. Increases in calcineurin activity in cells challenged with Ca2+ were inhibited after pretreatment with U-73122 and CsA, suggesting that CaR activation increases calcineurin activity in a PI-PLC-dependent manner. Moreover, U-73122, CsA, and VIVIT inhibited CaR-dependent activity of an NFAT construct that drives expression of firefly luciferase in transiently transfected mTAL cells. Collectively, these data verify the role of calcineurin and NFAT in CaR-mediated TNF production by mTAL cells. Activation of the CaR also increased the binding of NFAT to a consensus oligonucleotide, an effect that was blocked by U-73122 and CsA, suggesting that a calcineurin- and NFAT-dependent pathway increases TNF production in mTAL cells. This mechanism likely regulates TNF gene transcription as U-73122, CsA, and VIVIT blocked CaR-dependent activity of a TNF promoter construct. Elucidating CaR-mediated signaling pathways that regulate TNF production in the mTAL will be crucial to understanding mechanisms that regulate extracellular fluid volume and salt balance.

  12. L-type Calcium Channel Auto-Regulation of Transcription

    PubMed Central

    Satin, Jonathan; Schroder, Elizabeth A.; Crump, Shawn M.

    2011-01-01

    L-type calcium channels (LTCC) impact the function of nearly all excitable cells. The classical LTCC function is to mediate trans-sarcolemmal Ca2+ flux. This review focuses on the contribution of a mobile segment of the LTCC that regulates ion channel function, and also serves as a regulator of transcription in the nucleus. Specifically we highlight recent work demonstrating an auto-feedback regulatory pathway whereby the LTCC transcription factor regulates the LTCC. Also discussed is acute and long-term regulation of function by the LTCC-transcription regulator. PMID:21295347

  13. NRC - regulator of nuclear safety

    SciTech Connect

    1997-05-01

    The U.S. Nuclear Regulatory Commission (NRC) was formed in 1975 to regulate the various commercial and institutional uses of nuclear energy, including nuclear power plants. The agency succeeded the Atomic Energy Commission, which previously had responsibility for both developing and regulating nuclear activities. Federal research and development work for all energy sources, as well as nuclear weapons production, is now conducted by the U.S. Department of Energy. Under its responsibility to protect public health and safety, the NRC has three principal regulatory functions: (1) establish standards and regulations, (2) issue licenses for nuclear facilities and users of nuclear materials, and (3) inspect facilities and users of nuclear materials to ensure compliance with the requirements. These regulatory functions relate to both nuclear power plants and to other uses of nuclear materials - like nuclear medicine programs at hospitals, academic activities at educational institutions, research work, and such industrial applications as gauges and testing equipment. The NRC places a high priority on keeping the public informed of its work. The agency recognizes the interest of citizens in what it does through such activities as maintaining public document rooms across the country and holding public hearings, public meetings in local areas, and discussions with individuals and organizations.

  14. Buffer regulation of calcium puff sequences

    NASA Astrophysics Data System (ADS)

    Fraiman, Daniel; Ponce Dawson, Silvina

    2014-02-01

    Puffs are localized Ca2 + signals that arise in oocytes in response to inositol 1,4,5-trisphosphate (IP3). They are the result of the liberation of Ca2 + from the endoplasmic reticulum through the coordinated opening of IP3 receptor/channels clustered at a functional release site. The presence of buffers that trap Ca2 + provides a mechanism that enriches the spatio-temporal dynamics of cytosolic calcium. The expression of different types of buffers along the cell's life provides a tool with which Ca2 + signals and their responses can be modulated. In this paper we extend the stochastic model of a cluster of IP3R-Ca2 + channels introduced previously to elucidate the effect of buffers on sequences of puffs at the same release site. We obtain analytically the probability laws of the interpuff time and of the number of channels that participate of the puffs. Furthermore, we show that under typical experimental conditions the effect of buffers can be accounted for in terms of a simple inhibiting function. Hence, by exploring different inhibiting functions we are able to study the effect of a variety of buffers on the puff size and interpuff time distributions. We find the somewhat counter-intuitive result that the addition of a fast Ca2 + buffer can increase the average number of channels that participate of a puff.

  15. Regulation of neurogenesis by calcium signaling.

    PubMed

    Toth, Anna B; Shum, Andrew K; Prakriya, Murali

    2016-03-01

    Calcium (Ca(2+)) signaling has essential roles in the development of the nervous system from neural induction to the proliferation, migration, and differentiation of neural cells. Ca(2+) signaling pathways are shaped by interactions among metabotropic signaling cascades, intracellular Ca(2+) stores, ion channels, and a multitude of downstream effector proteins that activate specific genetic programs. The temporal and spatial dynamics of Ca(2+) signals are widely presumed to control the highly diverse yet specific genetic programs that establish the complex structures of the adult nervous system. Progress in the last two decades has led to significant advances in our understanding of the functional architecture of Ca(2+) signaling networks involved in neurogenesis. In this review, we assess the literature on the molecular and functional organization of Ca(2+) signaling networks in the developing nervous system and its impact on neural induction, gene expression, proliferation, migration, and differentiation. Particular emphasis is placed on the growing evidence for the involvement of store-operated Ca(2+) release-activated Ca(2+) (CRAC) channels in these processes. PMID:27020657

  16. Essential infrastructure: national nuclear regulation.

    PubMed

    Paperiello, Carl J

    2011-01-01

    In order for nuclear power to expand to many countries that do not currently have it, it will be essential for these countries to have laws, regulations, guidance and organizations that can license or permit nuclear power plants and support nuclear facilities, ensure compliance by inspection, and enforce nuclear regulations. The viability of nuclear power worldwide depends on an extremely high level of safety everywhere, and compliance with a number of international treaties is required before supplier nations will provide the material, both hardware and software, to build and operate nuclear power plants. While infrastructure support can be obtained from the IAEA and other countries, an essential core of expertise must exist in the country seeking to establish domestic nuclear power generation. While some reliance can be placed on the safety reviews of standard reactor designs by the nuclear regulators in supplier nations, the certification of fuel design, the quality of instruments, and the matching of a new reactor to a proposed site in the importing nation will require site-specific reviews. National arrangements are also needed for emergency preparedness, environmental protection, fuel transportation and the storage, transportation and disposal of radioactive waste. If foreign contractors and consultants are engaged to perform much of the technical work for the regulatory body(s) that has to be performed by the importing nation, that nation must have a core cadre of technically knowledgeable regulators and an organization to provide management and oversight of the contractors and consultants. Consistency in national nuclear regulations, the deployment of standardized nuclear power plant designs and standardized supporting material infrastructure can promote the safe and secure worldwide growth in nuclear power. PMID:21399415

  17. Nitrogen enrichment regulates calcium sources in forests

    USGS Publications Warehouse

    Hynicka, Justin D.; Pett-Ridge, Julie C; Perakis, Steven

    2016-01-01

    Nitrogen (N) is a key nutrient that shapes cycles of other essential elements in forests, including calcium (Ca). When N availability exceeds ecosystem demands, excess N can stimulate Ca leaching and deplete Ca from soils. Over the long term, these processes may alter the proportion of available Ca that is derived from atmospheric deposition vs. bedrock weathering, which has fundamental consequences for ecosystem properties and nutrient supply. We evaluated how landscape variation in soil N, reflecting long-term legacies of biological N fixation, influenced plant and soil Ca availability and ecosystem Ca sources across 22 temperate forests in Oregon. We also examined interactions between soil N and bedrock Ca using soil N gradients on contrasting basaltic vs. sedimentary bedrock that differed 17-fold in underlying Ca content. We found that low-N forests on Ca-rich basaltic bedrock relied strongly on Ca from weathering, but that soil N enrichment depleted readily weatherable mineral Ca and shifted forest reliance toward atmospheric Ca. Forests on Ca-poor sedimentary bedrock relied more consistently on atmospheric Ca across all levels of soil N enrichment. The broad importance of atmospheric Ca was unexpected given active regional uplift and erosion that are thought to rejuvenate weathering supply of soil minerals. Despite different Ca sources to forests on basaltic vs. sedimentary bedrock, we observed consistent declines in plant and soil Ca availability with increasing N, regardless of the Ca content of underlying bedrock. Thus, traditional measures of Ca availability in foliage and soil exchangeable pools may poorly reflect long-term Ca sources that sustain soil fertility. We conclude that long-term soil N enrichment can deplete available Ca and cause forests to rely increasingly on Ca from atmospheric deposition, which may limit ecosystem Ca supply in an increasingly N-rich world.

  18. Aberrant subcellular neuronal calcium regulation in aging and Alzheimer's disease.

    PubMed

    Camandola, Simonetta; Mattson, Mark P

    2011-05-01

    In this mini-review/opinion article we describe evidence that multiple cellular and molecular alterations in Alzheimer's disease (AD) pathogenesis involve perturbed cellular calcium regulation, and that alterations in synaptic calcium handling may be early and pivotal events in the disease process. With advancing age neurons encounter increased oxidative stress and impaired energy metabolism, which compromise the function of proteins that control membrane excitability and subcellular calcium dynamics. Altered proteolytic cleavage of the β-amyloid precursor protein (APP) in response to the aging process in combination with genetic and environmental factors results in the production and accumulation of neurotoxic forms of amyloid β-peptide (Aβ). Aβ undergoes a self-aggregation process and concomitantly generates reactive oxygen species that can trigger membrane-associated oxidative stress which, in turn, impairs the functions of ion-motive ATPases and glutamate and glucose transporters thereby rendering neurons vulnerable to excitotoxicity and apoptosis. Mutations in presenilin-1 that cause early-onset AD increase Aβ production, but also result in an abnormal increase in the size of endoplasmic reticulum calcium stores. Some of the events in the neurodegenerative cascade can be counteracted in animal models by manipulations that stabilize neuronal calcium homeostasis including dietary energy restriction, agonists of glucagon-like peptide 1 receptors and drugs that activate mitochondrial potassium channels. Emerging knowledge of the actions of calcium upstream and downstream of Aβ provides opportunities to develop novel preventative and therapeutic interventions for AD. This article is part of a Special Issue entitled: 11th European Symposium on Calcium. PMID:20950656

  19. Regulation of PKC Mediated Signaling by Calcium during Visceral Leishmaniasis

    PubMed Central

    Roy, Nivedita; Chakraborty, Supriya; Paul Chowdhury, Bidisha; Banerjee, Sayantan; Halder, Kuntal; Majumder, Saikat; Majumdar, Subrata; Sen, Parimal C.

    2014-01-01

    Calcium is an ubiquitous cellular signaling molecule that controls a variety of cellular processes and is strictly maintained in the cellular compartments by the coordination of various Ca2+ pumps and channels. Two such fundamental calcium pumps are plasma membrane calcium ATPase (PMCA) and Sarco/endoplasmic reticulum calcium ATPase (SERCA) which play a pivotal role in maintaining intracellular calcium homeostasis. This intracellular Ca2+ homeostasis is often disturbed by the protozoan parasite Leishmania donovani, the causative organism of visceral leishmaniasis. In the present study we have dileneated the involvement of PMCA4 and SERCA3 during leishmaniasis. We have observed that during leishmaniasis, intracellular Ca2+ concentration was up-regulated and was further controlled by both PMCA4 and SERCA3. Inhibition of these two Ca2+-ATPases resulted in decreased parasite burden within the host macrophages due to enhanced intracellular Ca2+. Contrastingly, on the other hand, activation of PMCA4 was found to enhance the parasite burden. Our findings also highlighted the importance of Ca2+ in the modulation of cytokine balance during leishmaniasis. These results thus cumulatively suggests that these two Ca2+-ATPases play prominent roles during visceral leishmaniasis. PMID:25329062

  20. Regulation of PKC mediated signaling by calcium during visceral leishmaniasis.

    PubMed

    Roy, Nivedita; Chakraborty, Supriya; Paul Chowdhury, Bidisha; Banerjee, Sayantan; Halder, Kuntal; Majumder, Saikat; Majumdar, Subrata; Sen, Parimal C

    2014-01-01

    Calcium is an ubiquitous cellular signaling molecule that controls a variety of cellular processes and is strictly maintained in the cellular compartments by the coordination of various Ca2+ pumps and channels. Two such fundamental calcium pumps are plasma membrane calcium ATPase (PMCA) and Sarco/endoplasmic reticulum calcium ATPase (SERCA) which play a pivotal role in maintaining intracellular calcium homeostasis. This intracellular Ca2+ homeostasis is often disturbed by the protozoan parasite Leishmania donovani, the causative organism of visceral leishmaniasis. In the present study we have dileneated the involvement of PMCA4 and SERCA3 during leishmaniasis. We have observed that during leishmaniasis, intracellular Ca2+ concentration was up-regulated and was further controlled by both PMCA4 and SERCA3. Inhibition of these two Ca2+-ATPases resulted in decreased parasite burden within the host macrophages due to enhanced intracellular Ca2+. Contrastingly, on the other hand, activation of PMCA4 was found to enhance the parasite burden. Our findings also highlighted the importance of Ca2+ in the modulation of cytokine balance during leishmaniasis. These results thus cumulatively suggests that these two Ca2+-ATPases play prominent roles during visceral leishmaniasis. PMID:25329062

  1. Nuclear-localized cyclic nucleotide-gated channels mediate symbiotic calcium oscillations.

    PubMed

    Charpentier, Myriam; Sun, Jongho; Vaz Martins, Teresa; Radhakrishnan, Guru V; Findlay, Kim; Soumpourou, Eleni; Thouin, Julien; Véry, Anne-Aliénor; Sanders, Dale; Morris, Richard J; Oldroyd, Giles E D

    2016-05-27

    Nuclear-associated Ca(2+) oscillations mediate plant responses to beneficial microbial partners--namely, nitrogen-fixing rhizobial bacteria that colonize roots of legumes and arbuscular mycorrhizal fungi that colonize roots of the majority of plant species. A potassium-permeable channel is known to be required for symbiotic Ca(2+) oscillations, but the calcium channels themselves have been unknown until now. We show that three cyclic nucleotide-gated channels in Medicago truncatula are required for nuclear Ca(2+) oscillations and subsequent symbiotic responses. These cyclic nucleotide-gated channels are located at the nuclear envelope and are permeable to Ca(2+) We demonstrate that the cyclic nucleotide-gated channels form a complex with the postassium-permeable channel, which modulates nuclear Ca(2+) release. These channels, like their counterparts in animal cells, might regulate multiple nuclear Ca(2+) responses to developmental and environmental conditions. PMID:27230377

  2. Identification and quantitive analysis of calcium phosphate microparticles in intestinal tissue by nuclear microscopy

    NASA Astrophysics Data System (ADS)

    Gomez-Morilla, Inmaculada; Thoree, Vinay; Powell, Jonathan J.; Kirkby, Karen J.; Grime, Geoffrey W.

    2006-08-01

    Microscopic particles (0.5-2 μm diameter), rich in calcium and phosphorus, are found in the lumen of the mid-distal gut of all mammals investigated, including humans, and these may play a role in immuno-surveillance and immune regulation of antigens from food and symbiotic bacteria that are contained in the gut. Whether these particles can cross in to tissue of the intestinal mucosa is unclear. If so, characterising their morphology and chemical composition is an important task in elucidating their function. The analysis of calcium phosphate in biological tissues has been approached in several ways including optical microscopy, scanning electron microscopy and, most recently in this work, with nuclear microscopy. In this paper, we describe the use of microPIXE and microRBS to locate these particles and to determine, accurately, the ratio of phosphorus to calcium using the information on sample thickness obtained from RBS to allow the PIXE ratios to be corrected. A commercial sample of hydroxy apatite was used to demonstrate accuracy and precision of the technique. Then, in a pilot study on intestinal tissue of mice, we demonstrated the presence of calcium phosphate microparticles, consistent with confocal microscopy observations, and we identified the average molar P:Ca molar ratio as 1.0. Further work will confirm the exact chemical speciation of these particles and will examine the influence of differing calcium containing diets on the formation of these microparticles.

  3. Nuclear safety: risks and regulation

    SciTech Connect

    Wood, W.C.

    1983-01-01

    Taking a fresh look at nuclear safety regulations, this study finds that the mandate and organization of the Nuclear Regulatory Commission (NRC) militate against its making sound decisions. The author criticizes failures to make hard decisions on societal risk, to clarify responsibility, and to implement cost-effective safety measures. Among his recommendations are reorganization of the NRC under a single authoritative administrator, separation of technical issues from social ones, and reform of the Price-Anderson Act. The author concludes that the worst eventuality would be to continue the current state of indecision. 161 references, 6 figures, 4 tables.

  4. Role of intracellular calcium in cellular volume regulation

    SciTech Connect

    Wong, S.M.; Chase, H.S. Jr.

    1986-06-01

    We investigated the role of intracellular calcium in epithelial cell volume regulation using cells isolated from the toad urinary bladder. A suspension of cells was prepared by treatment of the bladder with collagenase followed by ethyleneglycol-bis(beta-aminoethylether)-N,N'-tetraacetic acid. The cells retained their ion-transporting capabilities: ouabain (1 mM) and amiloride (10 microM) inhibited cellular uptake of /sup 86/Rb and /sup 22/Na, respectively. Using a Coulter counter to measure cellular volume, we found that we could swell cells either by reducing the extracellular osmolality or by adding the permeant solute urea (45 mM) isosmotically. Under both conditions, cells first swelled and then returned to their base-line volume, in spite of the continued presence of the stimulus to swell. Volume regulation was inhibited when cells were swelled at low extracellular (Ca) (100 nM) and was retarded in cells preloaded with the calcium buffer quin 2. Swelling increased the intracellular free calcium concentration ((Ca)i), as measured by quin 2 fluorescence: (Ca)i increased 35 +/- 9 nM (n = 6) after hypotonic swelling and 42 +/- 3 nM (n = 3) after urea swelling. Reducing extracellular (Ca) to less than 100 nM prevented the swelling-induced increase in (Ca)i, suggesting that the source of the increase in (Ca)i was extracellular. This result was confirmed in measurements of cellular uptake of 45Ca: the rate of uptake was significantly higher in swollen cells compared with control (1.1 +/- 0.2 vs. 0.4 +/- 0.1 fmol . cell-1 X 5 min-1). Our experiments provide the first demonstration that cellular swelling increases (Ca)i. This increase is likely to play a critical role in cellular volume regulation.

  5. Sodium-Calcium Exchanger 1 Regulates Epithelial Cell Migration via Calcium-dependent Extracellular Signal-regulated Kinase Signaling*

    PubMed Central

    Balasubramaniam, Sona Lakshme; Gopalakrishnapillai, Anilkumar; Gangadharan, Vimal; Duncan, Randall L.; Barwe, Sonali P.

    2015-01-01

    Na+/Ca2+ exchanger-1 (NCX1) is a major calcium extrusion mechanism in renal epithelial cells enabling the efflux of one Ca2+ ion and the influx of three Na+ ions. The gradient for this exchange activity is provided by Na,K-ATPase, a hetero-oligomer consisting of a catalytic α-subunit and a regulatory β-subunit (Na,K-β) that also functions as a motility and tumor suppressor. We showed earlier that mice with heart-specific ablation (KO) of Na,K-β had a specific reduction in NCX1 protein and were ouabain-insensitive. Here, we demonstrate that Na,K-β associates with NCX1 and regulates its localization to the cell surface. Madin-Darby canine kidney cells with Na,K-β knockdown have reduced NCX1 protein and function accompanied by 2.1-fold increase in free intracellular calcium and a corresponding increase in the rate of cell migration. Increased intracellular calcium up-regulated ERK1/2 via calmodulin-dependent activation of PI3K. Both myosin light chain kinase and Rho-associated kinase acted as mediators of ERK1/2-dependent migration. Restoring NCX1 expression in β-KD cells reduced migration rate and ERK1/2 activation, suggesting that NCX1 functions downstream of Na,K-β in regulating cell migration. In parallel, inhibition of NCX1 by KB-R7943 in Madin-Darby canine kidney cells, LLC-PK1, and human primary renal epithelial cells (HREpiC) increased ERK1/2 activation and cell migration. This increased migration was associated with high myosin light chain phosphorylation by PI3K/ERK-dependent mechanism in HREpiC cells. These data confirm the role of NCX1 activity in regulating renal epithelial cell migration. PMID:25770213

  6. Calcium regulation of exocytosis in PC12 cells.

    PubMed

    Chen, Y A; Scales, S J; Duvvuri, V; Murthy, M; Patel, S M; Schulman, H; Scheller, R H

    2001-07-13

    The calcium (Ca(2+)) regulation of neurotransmitter release is poorly understood. Here we investigated several aspects of this process in PC12 cells. We first showed that osmotic shock by 1 m sucrose stimulated rapid release of neurotransmitters from intact PC12 cells, indicating that most of the vesicles were docked at the plasma membrane. Second, we further investigated the mechanism of rescue of botulinum neurotoxin E inhibition of release by recombinant SNAP-25 COOH-terminal coil, which is known to be required in the triggering stage. We confirmed here that Ca(2+) was required simultaneously with the SNAP-25 peptide, with no significant increase in release if either the peptide or Ca(2+) was present during the priming stage as well as the triggering, suggesting that SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor) complex assembly was involved in the final Ca(2+)-triggered event. Using this rescue system, we also identified a series of acidic surface SNAP-25 residues that rescued better than wild-type when mutated, due to broadened Ca(2+) sensitivity, suggesting that this charged patch may interact electrostatically with a negative regulator of membrane fusion. Finally, we showed that the previously demonstrated stimulation of exocytosis in this system by calmodulin required calcium binding, since calmodulin mutants defective in Ca(2+)-binding were not able to enhance release. PMID:11359785

  7. TMEM203 Is a Novel Regulator of Intracellular Calcium Homeostasis and Is Required for Spermatogenesis

    PubMed Central

    Shambharkar, Prashant B.; Bittinger, Mark; Latario, Brian; Xiong, ZhaoHui; Bandyopadhyay, Somnath; Davis, Vanessa; Lin, Victor; Yang, Yi; Valdez, Reginald; Labow, Mark A.

    2015-01-01

    Intracellular calcium signaling is critical for initiating and sustaining diverse cellular functions including transcription, synaptic signaling, muscle contraction, apoptosis and fertilization. Trans-membrane 203 (TMEM203) was identified here in cDNA overexpression screens for proteins capable of modulating intracellular calcium levels using activation of a calcium/calcineurin regulated transcription factor as an indicator. Overexpression of TMEM203 resulted in a reduction of Endoplasmic Reticulum (ER) calcium stores and elevation in basal cytoplasmic calcium levels. TMEM203 protein was localized to the ER and found associated with a number of ER proteins which regulate ER calcium entry and efflux. Mouse Embryonic Fibroblasts (MEFs) derived from Tmem203 deficient mice had reduced ER calcium stores and altered calcium homeostasis. Tmem203 deficient mice were viable though male knockout mice were infertile and exhibited a severe block in spermiogenesis and spermiation. Expression profiling studies showed significant alternations in expression of calcium channels and pumps in testes and concurrently Tmem203 deficient spermatocytes demonstrated significantly altered calcium handling. Thus Tmem203 is an evolutionarily conserved regulator of cellular calcium homeostasis, is required for spermatogenesis and provides a causal link between intracellular calcium regulation and spermiogenesis. PMID:25996873

  8. Calcium and cargoes as regulators of myosin 5a activity

    SciTech Connect

    Sellers, James R. Thirumurugan, Kavitha; Sakamoto, Takeshi; Hammer, John A.; Knight, Peter J.

    2008-04-25

    Myosin 5a is a two-headed actin-dependent motor that transports various cargoes in cells. Its enzymology and mechanochemistry have been extensively studied in vitro. It is a processive motor that takes multiple 36 nm steps on actin. The enzymatic activity of myosin 5 is regulated by an intramolecular folding mechanism whereby its lever arms fold back against the coiled-coil tail such that the motor domains directly bind the globular tail domains. We show that the structure seen in individual folded molecules is consistent with electron density map of two-dimensional crystals of the molecule. In this compact state, the actin-activated MgATPase activity of the molecule is markedly inhibited and the molecule cannot move processively on surface bound actin filaments. The actin-activated MgATPase activity of myosin 5a is activated by increasing the calcium concentration or by binding of a cargo-receptor molecule, melanophilin, in vitro. However, calcium binding to the calmodulin light chains results in dissociation of some of the calmodulin which disrupts the ability of myosin 5a to move on actin filaments in vitro. Thus we propose that the physiologically relevant activation pathway in vivo involves binding of cargo-receptor proteins.

  9. Two-pore channels: Regulation by NAADP and customized roles in triggering calcium signals.

    PubMed

    Patel, Sandip; Marchant, Jonathan S; Brailoiu, Eugen

    2010-06-01

    NAADP is a potent regulator of cytosolic calcium levels. Much evidence suggests that NAADP activates a novel channel located on an acidic (lysosomal-like) calcium store, the mobilisation of which results in further calcium release from the endoplasmic reticulum. Here, we discuss the recent identification of a family of poorly characterized ion channels (the two-pore channels) as endo-lysosomal NAADP receptors. The generation of calcium signals by these channels is likened to those evoked by depolarisation during excitation-contraction coupling in muscle. We discuss the idea that two-pore channels can mediate a trigger release of calcium which is then amplified by calcium-induced calcium release from the endoplasmic reticulum. This is similar to the activation of voltage-sensitive calcium channels and subsequent mobilisation of sarcoplasmic reticulum calcium stores in cardiac tissue. We suggest that two-pore channels may physically interact with ryanodine receptors to account for more direct release of calcium from the endoplasmic reticulum in analogy with the conformational coupling of voltage-sensitive calcium channels and ryanodine receptors in skeletal muscle. Interaction of two-pore channels with other calcium release channels likely occurs between stores "trans-chatter" and possibly within the same store "cis-chatter". We also speculate that trafficking of two-pore channels through the endo-lysosomal system facilitates interactions with calcium entry channels. Strategic placing of two-pore channels thus provides a versatile means of generating spatiotemporally complex cellular calcium signals. PMID:20621760

  10. The regulation of neuronal mitochondrial metabolism by calcium.

    PubMed

    Llorente-Folch, I; Rueda, C B; Pardo, B; Szabadkai, G; Duchen, M R; Satrustegui, J

    2015-08-15

    Calcium signalling is fundamental to the function of the nervous system, in association with changes in ionic gradients across the membrane. Although restoring ionic gradients is energetically costly, a rise in intracellular Ca(2+) acts through multiple pathways to increase ATP synthesis, matching energy supply to demand. Increasing cytosolic Ca(2+) stimulates metabolite transfer across the inner mitochondrial membrane through activation of Ca(2+) -regulated mitochondrial carriers, whereas an increase in matrix Ca(2+) stimulates the citric acid cycle and ATP synthase. The aspartate-glutamate exchanger Aralar/AGC1 (Slc25a12), a component of the malate-aspartate shuttle (MAS), is stimulated by modest increases in cytosolic Ca(2+) and upregulates respiration in cortical neurons by enhancing pyruvate supply into mitochondria. Failure to increase respiration in response to small (carbachol) and moderate (K(+) -depolarization) workloads and blunted stimulation of respiration in response to high workloads (veratridine) in Aralar/AGC1 knockout neurons reflect impaired MAS activity and limited mitochondrial pyruvate supply. In response to large workloads (veratridine), acute stimulation of respiration occurs in the absence of MAS through Ca(2+) influx through the mitochondrial calcium uniporter (MCU) and a rise in matrix [Ca(2+) ]. Although the physiological importance of the MCU complex in work-induced stimulation of respiration of CNS neurons is not yet clarified, abnormal mitochondrial Ca(2+) signalling causes pathology. Indeed, loss of function mutations in MICU1, a regulator of MCU complex, are associated with neuromuscular disease. In patient-derived MICU1 deficient fibroblasts, resting matrix Ca(2+) is increased and mitochondria fragmented. Thus, the fine tuning of Ca(2+) signals plays a key role in shaping mitochondrial bioenergetics. PMID:25809592

  11. The regulation of neuronal mitochondrial metabolism by calcium

    PubMed Central

    Llorente-Folch, I; Rueda, C B; Pardo, B; Szabadkai, G; Duchen, M R; Satrustegui, J

    2015-01-01

    Calcium signalling is fundamental to the function of the nervous system, in association with changes in ionic gradients across the membrane. Although restoring ionic gradients is energetically costly, a rise in intracellular Ca2+ acts through multiple pathways to increase ATP synthesis, matching energy supply to demand. Increasing cytosolic Ca2+ stimulates metabolite transfer across the inner mitochondrial membrane through activation of Ca2+-regulated mitochondrial carriers, whereas an increase in matrix Ca2+ stimulates the citric acid cycle and ATP synthase. The aspartate–glutamate exchanger Aralar/AGC1 (Slc25a12), a component of the malate–aspartate shuttle (MAS), is stimulated by modest increases in cytosolic Ca2+ and upregulates respiration in cortical neurons by enhancing pyruvate supply into mitochondria. Failure to increase respiration in response to small (carbachol) and moderate (K+-depolarization) workloads and blunted stimulation of respiration in response to high workloads (veratridine) in Aralar/AGC1 knockout neurons reflect impaired MAS activity and limited mitochondrial pyruvate supply. In response to large workloads (veratridine), acute stimulation of respiration occurs in the absence of MAS through Ca2+ influx through the mitochondrial calcium uniporter (MCU) and a rise in matrix [Ca2+]. Although the physiological importance of the MCU complex in work-induced stimulation of respiration of CNS neurons is not yet clarified, abnormal mitochondrial Ca2+ signalling causes pathology. Indeed, loss of function mutations in MICU1, a regulator of MCU complex, are associated with neuromuscular disease. In patient-derived MICU1 deficient fibroblasts, resting matrix Ca2+ is increased and mitochondria fragmented. Thus, the fine tuning of Ca2+ signals plays a key role in shaping mitochondrial bioenergetics. PMID:25809592

  12. Nuclear proton dynamics and interactions with calcium signaling.

    PubMed

    Hulikova, Alzbeta; Swietach, Pawel

    2016-07-01

    Biochemical signals acting on the nucleus can regulate gene expression. Despite the inherent affinity of nucleic acids and nuclear proteins (e.g. transcription factors) for protons, little is known about the mechanisms that regulate nuclear pH (pHnuc), and how these could be exploited to control gene expression. Here, we show that pHnuc dynamics can be imaged using the DNA-binding dye Hoechst 33342. Nuclear pores allow the passage of medium-sized molecules (calcein), but protons must first bind to mobile buffers in order to gain access to the nucleoplasm. Fixed buffering residing in the nucleus of permeabilized cells was estimated to be very weak on the basis of the large amplitude of pHnuc transients evoked by photolytic H(+)-uncaging or exposure to weak acids/bases. Consequently, the majority of nuclear pH buffering is sourced from the cytoplasm in the form of mobile buffers. Effective proton diffusion was faster in nucleoplasm than in cytoplasm, in agreement with the higher mobile-to-fixed buffering ratio in the nucleus. Cardiac myocyte pHnuc changed in response to maneuvers that alter nuclear Ca(2+) signals. Blocking Ca(2+) release from inositol-1,4,5-trisphosphate receptors stably alkalinized the nucleus. This Ca(2+)-pH interaction may arise from competitive binding to common chemical moieties. Competitive binding to mobile buffers may couple the efflux of Ca(2+)via nuclear pores with a counterflux of protons. This would generate a stable pH gradient between cytoplasm and nucleus that is sensitive to the state of nuclear Ca(2+) signaling. The unusual behavior of protons in the nucleus provides new mechanisms for regulating cardiac nuclear biology. PMID:26183898

  13. Physiology and Regulation of Calcium Channels in Stomatal Guard Cells

    SciTech Connect

    Schroeder, Julian I.

    2007-05-02

    Stomatal pores in the epidermis of leaves regulate the diffusion of CO2 into leaves for photosynthetic carbon fixation and control water loss of plants during drought periods. Guard cells sense CO2, water status, light and other environmental conditions to regulate stomatal apertures for optimization of CO2 intake and plant growth under drought stress. The cytosolic second messenger calcium contributes to stomatal movements by transducing signals and regulating ion channels in guard cells. Studies suggest that both plasma membrane Ca2+ influx channels and vacuolar/organellar Ca2+ release channels contribute to ABA-induced Ca2+ elevations in guard cells. Recent research in the P.I.'s laboratory has led to identification of a novel major cation-selective Ca2+-permeable influx channel (Ica) in the plasma membrane of Arabidopsis guard cells. These advances will allow detailed characterization of Ica plasma membrane Ca2+ influx channels in guard cells. The long term goal of this research project is to gain a first detailed characterization of these novel plasma membrane Ca2+-permeable channel currents in Arabidopsis guard cells. The proposed research will investigate the hypothesis that Ica represents an important Ca2+ influx pathway for ABA and CO2 signal transduction in Arabidopsis guard cells. These studies will lead to elucidation of key signal transduction mechanisms by which plants balance CO2 influx into leaves and transpirational water loss and may contribute to future strategies for manipulating gas exchange for improved growth of crop plants and for biomass production.

  14. Calcium

    MedlinePlus

    ... of calcium dietary supplements are carbonate and citrate. Calcium carbonate is inexpensive, but is absorbed best when taken ... antacid products, such as Tums® and Rolaids®, contain calcium carbonate. Each pill or chew provides 200–400 mg ...

  15. Calcium release-activated calcium (CRAC) channels mediate the β(2)-adrenergic regulation of Na,K-ATPase.

    PubMed

    Keller, Michael J; Lecuona, Emilia; Prakriya, Murali; Cheng, Yuan; Soberanes, Saul; Budinger, G R Scott; Sznajder, Jacob I

    2014-12-20

    β2-Adrenergic agonists have been shown to regulate Na,K-ATPase in the alveolar epithelium by recruiting Na,K-ATPase-containing vesicles to the plasma membrane of alveolar epithelial cells (AEC). Here, we provide evidence that β2-agonists induce store-operated calcium entry (SOCE) in AECs. This calcium entry is necessary for β2-agonist-induced recruitment of Na,K-ATPase to the plasma membrane of AECs. Specifically, we show that β2-agonists induce SOCE via stromal interaction molecule 1 (STIM1)-associated calcium release-activated calcium (CRAC) channels. We also demonstrate that the magnitude of SOCE affects the abundance of Na,K-ATPase at the plasma membrane of AECs. PMID:25447523

  16. Calcium Release-Activated Calcium (CRAC) Channels Mediate the β2-Adrenergic Regulation of Na,K-ATPase

    PubMed Central

    Keller, Michael J.; Lecuona, Emilia; Prakriya, Murali; Cheng, Yuan; Soberanes, Saul; Scott Budinger, G.R.; Sznajder, Jacob I.

    2014-01-01

    β2-adrenergic agonists have been shown to regulate Na,K-ATPase in the alveolar epithelium by recruiting Na,K-ATPase-containing vesicles to the plasma membrane of alveolar epithelial cells (AEC). Here, we provide evidence that β2-agonists induce store-operated calcium entry (SOCE) in AECs. This calcium entry is necessary for β2-agonist-induced recruitment of Na,K-ATPase to the plasma membrane of AECs. Specifically, we show that β2-agonists induce SOCE via stromal interaction molecule 1 (STIM1)-associated calcium release-activated calcium (CRAC) channels. We also demonstrate that the magnitude of SOCE affects the abundance of Na,K-ATPase at the plasma membrane of AECs. PMID:25447523

  17. The role of uncoupling protein 3 regulating calcium ion uptake into mitochondria during sarcopenia

    NASA Astrophysics Data System (ADS)

    Nikawa, Takeshi; Choi, Inho; Haruna, Marie; Hirasaka, Katsuya; Maita Ohno, Ayako; Kondo Teshima, Shigetada

    Overloaded mitochondrial calcium concentration contributes to progression of mitochondrial dysfunction in aged muscle, leading to sarcopenia. Uncoupling protein 3 (UCP3) is primarily expressed in the inner membrane of skeletal muscle mitochondria. Recently, it has been reported that UCP3 is associated with calcium uptake into mitochondria. However, the mechanisms by which UCP3 regulates mitochondrial calcium uptake are not well understood. Here we report that UCP3 interacts with HS-1 associated protein X-1 (Hax-1), an anti-apoptotic protein that is localized in mitochondria, which is involved in cellular responses to calcium ion. The hydrophilic sequences within the loop 2, matrix-localized hydrophilic domain of mouse UCP3 are necessary for binding to Hax-1 of the C-terminal domain in adjacent to mitochondrial innermembrane. Interestingly, these proteins interaction occur the calcium-dependent manner. Indeed, overexpression of UCP3 significantly enhanced calcium uptake into mitochondria on Hax-1 endogenously expressing C2C12 myoblasts. In addition, Hax-1 knock-down enhanced calcium uptake into mitochondria on both UCP3 and Hax-1 endogenously expressing C2C12 myotubes, but not myoblasts. Finally, the dissociation of UCP3 and Hax-1 enhances calcium uptake into mitochondria in aged muscle. These studies identify a novel UCP3-Hax-1 complex regulates the influx of calcium ion into mitochondria in muscle. Thus, the efficacy of UCP3-Hax-1 in mitochondrial calcium regulation may provide a novel therapeutic approach against mitochondrial dysfunction-related disease containing sarcopenia.

  18. Presynaptic Calcium Channel Localization and Calcium Dependent Synaptic Vesicle Exocytosis Regulated by the Fuseless Protein

    PubMed Central

    Long, A. Ashleigh; Kim, Eunju; Leung, Hung-Tat; Woodruff, Elvin; An, Lingling; Doerge, R. W.; Pak, William L.; Broadie, Kendal

    2009-01-01

    Summary A systematic forward genetic Drosophila screen for electroretinogram mutants lacking synaptic transients identified the fuseless (fusl) gene, which encodes a predicted 8-pass transmembrane protein in the presynaptic membrane. Null fusl mutants display >75% reduction in evoked synaptic transmission but, conversely, a ~3-fold increase in the frequency and amplitude of spontaneous synaptic vesicle fusion events. These neurotransmission defects are rescued by a wildtype fusl transgene targeted only to the presynaptic cell, demonstrating a strictly presynaptic requirement for Fusl function. Defects in FM dye turnover at the synapse show a severely impaired exo-endo synaptic vesicle cycling pool. Consistently, ultrastructural analyses reveal accumulated vesicles arrested in clustered and docked pools at presynaptic active zones. In the absence of Fusl, calcium-dependent neurotransmitter release is dramatically compromised and there is little enhancement of synaptic efficacy with elevated external Ca2+ concentrations. These defects are causally linked with severe loss of the Cacophony voltage-gated Ca2+ channels, which fail to localize normally at presynaptic active zone domains in the absence of Fusl. These data indicate that Fusl regulates assembly of the presynaptic active zone Ca2+ channel domains required for efficient coupling of the Ca2+ influx and synaptic vesicle exocytosis during neurotransmission. PMID:18385325

  19. Osteoclast cytosolic calcium, regulated by voltage-gated calcium channels and extracellular calcium, controls podosome assembly and bone resorption

    NASA Technical Reports Server (NTRS)

    Miyauchi, A.; Hruska, K. A.; Greenfield, E. M.; Duncan, R.; Alvarez, J.; Barattolo, R.; Colucci, S.; Zambonin-Zallone, A.; Teitelbaum, S. L.; Teti, A.

    1990-01-01

    The mechanisms of Ca2+ entry and their effects on cell function were investigated in cultured chicken osteoclasts and putative osteoclasts produced by fusion of mononuclear cell precursors. Voltage-gated Ca2+ channels (VGCC) were detected by the effects of membrane depolarization with K+, BAY K 8644, and dihydropyridine antagonists. K+ produced dose-dependent increases of cytosolic calcium ([Ca2+]i) in osteoclasts on glass coverslips. Half-maximal effects were achieved at 70 mM K+. The effects of K+ were completely inhibited by dihydropyridine derivative Ca2+ channel blocking agents. BAY K 8644 (5 X 10(-6) M), a VGCC agonist, stimulated Ca2+ entry which was inhibited by nicardipine. VGCCs were inactivated by the attachment of osteoclasts to bone, indicating a rapid phenotypic change in Ca2+ entry mechanisms associated with adhesion of osteoclasts to their resorption substrate. Increasing extracellular Ca2+ ([Ca2+]e) induced Ca2+ release from intracellular stores and Ca2+ influx. The Ca2+ release was blocked by dantrolene (10(-5) M), and the influx by La3+. The effects of [Ca2+]e on [Ca2+]i suggests the presence of a Ca2+ receptor on the osteoclast cell membrane that could be coupled to mechanisms regulating cell function. Expression of the [Ca2+]e effect on [Ca2+]i was similar in the presence or absence of bone matrix substrate. Each of the mechanisms producing increases in [Ca2+]i, (membrane depolarization, BAY K 8644, and [Ca2+]e) reduced expression of the osteoclast-specific adhesion structure, the podosome. The decrease in podosome expression was mirrored by a 50% decrease in bone resorptive activity. Thus, stimulated increases of osteoclast [Ca2+]i lead to cytoskeletal changes affecting cell adhesion and decreasing bone resorptive activity.

  20. Discrete-State Stochastic Models of Calcium-Regulated Calcium Influx and Subspace Dynamics Are Not Well-Approximated by ODEs That Neglect Concentration Fluctuations

    PubMed Central

    Weinberg, Seth H.; Smith, Gregory D.

    2012-01-01

    Cardiac myocyte calcium signaling is often modeled using deterministic ordinary differential equations (ODEs) and mass-action kinetics. However, spatially restricted “domains” associated with calcium influx are small enough (e.g., 10−17 liters) that local signaling may involve 1–100 calcium ions. Is it appropriate to model the dynamics of subspace calcium using deterministic ODEs or, alternatively, do we require stochastic descriptions that account for the fundamentally discrete nature of these local calcium signals? To address this question, we constructed a minimal Markov model of a calcium-regulated calcium channel and associated subspace. We compared the expected value of fluctuating subspace calcium concentration (a result that accounts for the small subspace volume) with the corresponding deterministic model (an approximation that assumes large system size). When subspace calcium did not regulate calcium influx, the deterministic and stochastic descriptions agreed. However, when calcium binding altered channel activity in the model, the continuous deterministic description often deviated significantly from the discrete stochastic model, unless the subspace volume is unrealistically large and/or the kinetics of the calcium binding are sufficiently fast. This principle was also demonstrated using a physiologically realistic model of calmodulin regulation of L-type calcium channels introduced by Yue and coworkers. PMID:23509597

  1. Store-operated channels regulate intracellular calcium in mammalian rods.

    PubMed

    Molnar, Tünde; Barabas, Peter; Birnbaumer, Lutz; Punzo, Claudio; Kefalov, Vladimir; Križaj, David

    2012-08-01

    Exposure to daylight closes cyclic nucleotide-gated (CNG) and voltage-operated Ca(2+) -permeable channels in mammalian rods. The consequent lowering of the cytosolic calcium concentration ([Ca(2+)](i)), if protracted, can contribute to light-induced damage and apoptosis in these cells. We here report that mouse rods are protected against prolonged lowering of [Ca(2+)](i) by store-operated Ca(2+) entry (SOCE). Ca(2+) stores were depleted in Ca(2+)-free saline supplemented with the endoplasmic reticulum (ER) sequestration blocker cyclopiazonic acid. Store depletion elicited [Ca(2+)](i) signals that exceeded baseline [Ca(2+)](i) by 5.9 ± 0.7-fold and were antagonized by an inhibitory cocktail containing 2-APB, SKF 96365 and Gd(3+). Cation influx through SOCE channels was sufficient to elicit a secondary activation of L-type voltage-operated Ca2+ entry. We also found that TRPC1, the type 1 canonical mammalian homologue of the Drosophila photoreceptor TRP channel, is predominantly expressed within the outer nuclear layer of the retina. Rod loss in Pde6b(rdl) (rd1), Chx10/Kip1(-/-rdl) and Elovl4(TG2) dystrophic models was associated with ∼70% reduction in Trpc1 mRNA content whereas Trpc1 mRNA levels in rodless cone-full Nrl(-/-) retinas were decreased by ∼50%. Genetic ablation of TRPC1 channels, however, had no effect on SOCE, the sensitivity of the rod phototransduction cascade or synaptic transmission at rod and cone synapses. Thus, we localized two new mechanisms, SOCE and TRPC1, to mammalian rods and characterized the contribution of SOCE to Ca(2+) homeostasis. By preventing the cytosolic [Ca(2+)](i) from dropping too low under sustained saturating light conditions, these signalling pathways may protect Ca(2+)-dependent mechanisms within the ER and the cytosol without affecting normal rod function. PMID:22674725

  2. Calcium

    MedlinePlus

    ... body stores more than 99 percent of its calcium in the bones and teeth to help make and keep them ... in the foods you eat. Foods rich in calcium include Dairy products such as milk, cheese, and yogurt Leafy, green vegetables Fish with soft bones that you eat, such as canned sardines and ...

  3. Calcium in the regulation of gravitropism by light

    NASA Technical Reports Server (NTRS)

    Perdue, D. O.; LaFavre, A. K.; Leopold, A. C.

    1988-01-01

    The red light requirement for positive gravitropism in roots of corn (Zea mays cv "Merit") provides an entry for examining the participation of calcium in gravitropism. Applications of calcium chelators inhibit the light response. Calcium channel blockers (verapamil, lanthanum) can also inhibit the light response, and a calcium ionophore, A23187, can substitute for light. One can substitute for red light by treatments which have elsewhere been shown to trigger Ca2+ influx into the cytosol, e.g. heat or cold shock. Agents which are known to be agonists of the phosphatidylinositol second messenger system (serotonin, 2,4-dichlorophenoxyacetic acid, deoxycholate) can each partially substitute for the red light, and Li+ can inhibit the light effect. These experiments suggest that the induction of positive gravitropism by red light involves a rise in cytoplasmic Ca2+ concentration, and that a contribution to this end may be made by the phosphatidylinositol second messenger system.

  4. Regulation of Arterial Tone by Activation of Calcium-Dependent Potassium Channels

    NASA Astrophysics Data System (ADS)

    Brayden, Joseph E.; Nelson, Mark T.

    1992-04-01

    Blood pressure and tissue perfusion are controlled in part by the level of intrinsic (myogenic) vascular tone. However, many of the molecular determinants of this response are unknown. Evidence is now presented that the degree of myogenic tone is regulated in part by the activation of large-conductance calcium-activated potassium channels in arterial smooth muscle. Tetraethylammonium ion (TEA^+) and charybdotoxin (CTX), at concentrations that block calcium-activated potassium channels in smooth muscle cells isolated from cerebral arteries, depolarized and constricted pressurized cerebral arteries with myogenic tone. Both TEA^+ and CTX had little effect on arteries when intracellular calcium was reduced by lowering intravascular pressure or by blocking calcium channels. Elevation of intravascular pressure through membrane depolarization and an increase in intracellular calcium may activate calcium-activated potassium channels. Thus, these channels may serve as a negative feedback pathway to control the degree of membrane depolarization and vasoconstriction.

  5. Cellular Architecture Regulates Collective Calcium Signaling and Cell Contractility

    PubMed Central

    Hoying, James B.; Deymier, Pierre A.; Zhang, Donna D.; Wong, Pak Kin

    2016-01-01

    A key feature of multicellular systems is the ability of cells to function collectively in response to external stimuli. However, the mechanisms of intercellular cell signaling and their functional implications in diverse vascular structures are poorly understood. Using a combination of computational modeling and plasma lithography micropatterning, we investigate the roles of structural arrangement of endothelial cells in collective calcium signaling and cell contractility. Under histamine stimulation, endothelial cells in self-assembled and microengineered networks, but not individual cells and monolayers, exhibit calcium oscillations. Micropatterning, pharmacological inhibition, and computational modeling reveal that the calcium oscillation depends on the number of neighboring cells coupled via gap junctional intercellular communication, providing a mechanistic basis of the architecture-dependent calcium signaling. Furthermore, the calcium oscillation attenuates the histamine-induced cytoskeletal reorganization and cell contraction, resulting in differential cell responses in an architecture-dependent manner. Taken together, our results suggest that endothelial cells can sense and respond to chemical stimuli according to the vascular architecture via collective calcium signaling. PMID:27196735

  6. Space-flight simulations of calcium metabolism using a mathematical model of calcium regulation

    NASA Technical Reports Server (NTRS)

    Brand, S. N.

    1985-01-01

    The results of a series of simulation studies of calcium matabolic changes which have been recorded during human exposure to bed rest and space flight are presented. Space flight and bed rest data demonstrate losses of total body calcium during exposure to hypogravic environments. These losses are evidenced by higher than normal rates of urine calcium excretion and by negative calcium balances. In addition, intestinal absorption rates and bone mineral content are assumed to decrease. The bed rest and space flight simulations were executed on a mathematical model of the calcium metabolic system. The purpose of the simulations is to theoretically test hypotheses and predict system responses which are occurring during given experimental stresses. In this case, hypogravity occurs through the comparison of simulation and experimental data and through the analysis of model structure and system responses. The model reliably simulates the responses of selected bed rest and space flight parameters. When experimental data are available, the simulated skeletal responses and regulatory factors involved in the responses agree with space flight data collected on rodents. In addition, areas within the model that need improvement are identified.

  7. Calcium-dependent regulation of tumour necrosis factor-alpha receptor signalling by copine.

    PubMed Central

    Tomsig, Jose Luis; Sohma, Hitoshi; Creutz, Carl E

    2004-01-01

    The role of copines in regulating signalling from the TNF-alpha (tumour necrosis factor-alpha) receptor was probed by the expression of a copine dominant-negative construct in HEK293 (human embryonic kidney 293) cells. The construct was found to reduce activation of the transcription factor NF-kappaB (nuclear factor-kappaB) by TNF-alpha. The introduction of calcium into HEK293 cells either through the activation of muscarinic cholinergic receptors or through the application of the ionophore A23187 was found to enhance TNF-alpha-dependent activation of NF-kappaB. This effect of calcium was completely blocked by the copine dominant-negative construct. TNF-alpha was found to greatly enhance the expression of endogenous copine I, and the responsiveness of the TNF-alpha signalling pathway to muscarinic stimulation increased in parallel with the increased copine I expression. The copine dominant-negative construct also inhibited the TNF-alpha-dependent degradation of IkappaB, a regulator of NF-kappaB. All of the effects of the dominant-negative construct could be reversed by overexpression of full-length copine I, suggesting that the construct acts specifically through competitive inhibition of copine. One of the identified targets of copine I is the NEDD8-conjugating enzyme UBC12 (ubiquitin C12), that promotes the degradation of IkappaB through the ubiquitin ligase enzyme complex SCF(betaTrCP). Therefore the copine dominant-negative construct might inhibit TNF-alpha signalling by dysregulation or mislocalization of UBC12. Based on these results, a hypothesis is presented for possible roles of copines in regulating other signalling pathways in animals, plants and protozoa. PMID:14674885

  8. Regulating Intracellular Calcium in Plants: From Molecular Genetics to Physiology

    SciTech Connect

    Heven Sze

    2008-06-22

    To grow, develop, adapt, and reproduce, plants have evolved mechanisms to regulate the uptake, translocation and sorting of calcium ions into different cells and subcellular compartments. Yet how plants accomplish this remarkable feat is still poorly understood. The spatial and temporal changes in intracellular [Ca2+] during growth and during responses to hormonal and environmental stimuli indicate that Ca2+ influx and efflux transporters are diverse and tightly regulated in plants. The specific goals were to determine the biological roles of multiple Ca pumps (ECAs) in the model plant Arabidopsis thaliana. We had pioneered the use of K616 yeast strain to functionally express plant Ca pumps, and demonstrated two distinct types of Ca pumps in plants (Sze et al., 2000. Annu Rev Plant Biol. 51,433). ACA2 represented one type that was auto-inhibited by the N-terminal region and stimulated by calmodulin. ECA1 represented another type that was not sensitive to calmodulin and phylogenetically distinct from ACAs. The goal to determine the biological roles of multiple ECA-type Ca pumps in Arabidopsis has been accomplished. Although we demonstrated ECA1 was a Ca pump by functional expression in yeast, the in vivo roles of ECAs was unclear. A few highlights are described. ECA1 and/or ECA4 are Ca/Mn pumps localized to the ER and are highly expressed in all cell types. Using homozygous T-DNA insertional mutants of eca1, we demonstrated that the ER-bound ECA1 supports growth and confers tolerance of plants growing on medium low in Ca or containing toxic levels of Mn. This is the first genetic study to determine the in vivo function of a Ca pump in plants. A phylogenetically distinct ECA3 is also a Ca/Mn pump that is localized to endosome, such as post-Golgi compartments. Although it is expressed at lower levels than ECA1, eca3 mutants are impaired in Ca-dependent root growth and in pollen tube elongation. Increased secretion of wall proteins in mutants suggests that Ca and Mn

  9. Calcium

    MedlinePlus

    ... milligrams) of calcium each day. Get it from: Dairy products. Low-fat milk, yogurt, cheese, and cottage ... lactase that helps digest the sugar (lactose) in dairy products, and may have gas, bloating, cramps, or ...

  10. Paramecium calmodulin mutants defective in ion channel regulation can bind calcium and undergo calcium-induced conformational switching.

    PubMed

    Jaren, O R; Harmon, S; Chen, A F; Shea, M A

    2000-06-13

    Calmodulin (CaM) is an essential eukaryotic protein that binds calcium ions cooperatively at four EF-hand binding sites to regulate signal transduction pathways. Interactions between the apo domains of vertebrate CaM reduce the calcium affinities of sites I and II below their intrinsic values, allowing sequential opening of the two hydrophobic clefts in CaM. Viable domain-specific mutants of Parameciumcalmodulin (PCaM) differentially affect ion channels and provide a unique opportunity to dissect the roles of the two highly homologous half-molecule domains. Calcium binding induced an increase in the level of ordered secondary structure and a decrease in Stokes radius in these mutants; such changes were identical in direction to those of wild type CaM, but the magnitude depended on the mutation. Calcium titrations monitored by changes in the intrinsic fluorescence of Y138 in site IV showed that the affinities of sites III and IV of wild type PCaM were (i) higher than those of the same sites in rat CaM, (ii) equivalent to those of the same sites in PCaM mutants altered between sites I and II, and (iii) higher than those of PCaM mutants modified in sites III and IV. Thus, calcium saturation drove all mutants to undergo conformational switching in the same direction but not to the same extent as wild type PCaM. The disruption of the allosteric mechanism that is manifest as faulty channel regulation may be explained by altered properties of switching among the 14 possible partially saturated species of PCaM rather than by an inability to adopt two end-state conformations or target interactions similar to those of the wild type protein. PMID:10841769

  11. In or out? Regulating nuclear transport.

    PubMed

    Hood, J K; Silver, P A

    1999-04-01

    The compartmentalization of proteins within the nucleus or cytoplasm of a eukaryotic cell offers opportunity for regulation of cell cycle progression and signalling pathways. Nuclear localization of proteins is determined by their ability to interact with specific nuclear import and export factors. In the past year, substrate phosphorylation has emerged as a common mechanism for controlling this interaction. PMID:10209150

  12. Members of the thrombospondin gene family bind stromal interaction molecule 1 and regulate calcium channel activity

    PubMed Central

    Duquette, Mark; Nadler, Monica; Okuhara, Dayne; Thompson, Jill; Shuttleworth, Trevor; Lawler, Jack

    2015-01-01

    The thrombospondins (TSPs) are a family of matricellular proteins that regulate cellular phenotype through interactions with a myriad of other proteins and proteoglycans. We have identified a novel interaction of the members of the TSP gene family with stromal interaction molecule 1 (STIM1). This association is robust since it is preserved in Triton X-100, can be detected with multiple anti-TSP-1 and anti-STIM1 antibodies, and is detected in a wide range of cell types. We have also found that STIM1 co-immunoprecipitates with TSP-4 and cartilage oligomeric matrix protein (COMP), and that a recombinant version of the N-terminal domain of STIM1 binds to the signature domain of TSP-1 and COMP. The association of the TSPs with STIM1 is observed in both the presence and absence of calcium indicating that the calcium-dependent conformation of the signature domain of TSPs is not required for binding. Thus, this interaction could occur in the ER under conditions of normal or low calcium concentration. Furthermore, we observed that the expression of COMP in HEK 293 cells decreases STIM1-mediated calcium release activated calcium (CRAC) channel currents and increases arachidonic acid calcium (ARC) channel currents. These data indicate that the TSPs regulate STIM1 function and participate in the reciprocal regulation of two channels that mediate calcium entry into the cell. PMID:24845346

  13. Skeletal muscle sarcolemma in malignant hyperthermia: evidence for a defect in calcium regulation.

    PubMed

    Mickelson, J R; Ross, J A; Hyslop, R J; Gallant, E M; Louis, C F

    1987-03-12

    Sarcolemmal properties implicated in the skeletal muscle disorder, malignant hyperthermia (MH), were examined using sarcolemma-membrane vesicles isolated from normal and MH-susceptible (MHS) porcine skeletal muscle. MHS and normal sarcolemma did not differ in the distribution of the major proteins, cholesterol or phospholipid content, vesicle size and sidedness, (Na+ + K+)-ATPase activity, ouabain binding, or adenylate cyclase activity (total and isoproterenol sensitivity). The regulation of the initial rates of MHS and normal sarcolemmal ATP-dependent calcium transport (calcium uptake after 1 min) by Ca2+ (K1/2 = 0.64-0.81 microM), calmodulin, and cAMP-dependent protein kinase were similar. However, when sarcolemmal calcium content was measured at either 2 or 20 min after the initiation of active calcium transport, a significant difference between MHS and normal sarcolemmal calcium uptake became apparent, with MHS sarcolemma accumulating approximately 25% less calcium than normal sarcolemma. Calcium transport by MHS and normal sarcolemma, at 2 or 20 min, had a similar calmodulin dependence (C1/2 = 150 nM), and was stimulated to a similar extent by cAMP-dependent protein kinase or calmodulin. Halothane inhibited MHS and normal sarcolemmal active calcium uptake in a similar fashion (half-maximal inhibition at 10 mM halothane), while dantrolene (30 microM) and nitrendipine (1 microM) had little effect on either MHS or normal sarcolemmal calcium transport. After 20 min of ATP-supported calcium uptake, 2 mM EGTA plus 10 microM sodium orthovanadate were added to initiate sarcolemmal calcium efflux. Following an initial rapid phase of calcium release, an extended slow phase of calcium efflux (k = 0.012 min-1) was similar for both MHS and normal sarcolemma vesicles. We conclude that although a number of sarcolemmal properties, including passive calcium permeability, are normal in MH, a small but significant defect in MHS sarcolemmal ATP-dependent calcium transport may

  14. Hormonal Regulation of Nuclear Permeability*◆

    PubMed Central

    O'Brien, Elizabeth M.; Gomes, Dawidson A.; Sehgal, Sona; Nathanson, Michael H.

    2010-01-01

    Transport into the nucleus is critical for regulation of gene transcription and other intranuclear events. Passage of molecules into the nucleus depends in part upon their size and the presence of appropriate targeting sequences. However, little is known about the effects of hormones or their second messengers on transport across the nuclear envelope. We used localized, two-photon activation of a photoactivatable green fluorescent protein to investigate whether hormones, via their second messengers, could alter nuclear permeability. Vasopressin other hormones that increase cytosolic Ca2+ and activate protein kinase C increased permeability across the nuclear membrane of SKHep1 liver cells in a rapid unidirectional manner. An increase in cytosolic Ca2+ was both necessary and sufficient for this process. Furthermore, localized photorelease of caged Ca2+ near the nuclear envelope resulted in a local increase in nuclear permeability. Neither activation nor inhibition of protein kinase C affected nuclear permeability. These findings provide evidence that hormones linking to certain G protein-coupled receptors increase nuclear permeability via cytosolic Ca2+. Short term regulation of nuclear permeability may provide a novel mechanism by which such hormones permit transcription factors and other regulatory molecules to enter the nucleus, thereby regulating gene transcription in target cells. PMID:17158097

  15. Depletion of calcium stores regulates calcium influx and signal transmission in rod photoreceptors

    PubMed Central

    Szikra, Tamas; Cusato, Karen; Thoreson, Wallace B; Barabas, Peter; Bartoletti, Theodore M; Krizaj, David

    2008-01-01

    Tonic synapses are specialized for sustained calcium entry and transmitter release, allowing them to operate in a graded fashion over a wide dynamic range. We identified a novel plasma membrane calcium entry mechanism that extends the range of rod photoreceptor signalling into light-adapted conditions. The mechanism, which shares molecular and physiological characteristics with store-operated calcium entry (SOCE), is required to maintain baseline [Ca2+]i in rod inner segments and synaptic terminals. Sustained Ca2+ entry into rod cytosol is augmented by store depletion, blocked by La3+ and Gd3+ and suppressed by organic antagonists MRS-1845 and SKF-96365. Store depletion and the subsequent Ca2+ influx directly stimulated exocytosis in terminals of light-adapted rods loaded with the activity-dependent dye FM1–43. Moreover, SOCE blockers suppressed rod-mediated synaptic inputs to horizontal cells without affecting presynaptic voltage-operated Ca2+ entry. Silencing of TRPC1 expression with small interference RNA disrupted SOCE in rods, but had no effect on cone Ca2+ signalling. Rods were immunopositive for TRPC1 whereas cone inner segments immunostained with TRPC6 channel antibodies. Thus, SOCE modulates Ca2+ homeostasis and light-evoked neurotransmission at the rod photoreceptor synapse mediated by TRPC1. PMID:18755743

  16. Synaptic Calcium Regulation in Hair Cells of the Chicken Basilar Papilla

    PubMed Central

    Im, Gi Jung; Moskowitz, Howard S.; Lehar, Mohammed; Hiel, Hakim

    2014-01-01

    Cholinergic inhibition of hair cells occurs by activation of calcium-dependent potassium channels. A near-membrane postsynaptic cistern has been proposed to serve as a store from which calcium is released to supplement influx through the ionotropic ACh receptor. However, the time and voltage dependence of acetylcholine (ACh)-evoked potassium currents reveal a more complex relationship between calcium entry and release from stores. The present work uses voltage steps to regulate calcium influx during the application of ACh to hair cells in the chicken basilar papilla. When calcium influx was terminated at positive membrane potential, the ACh-evoked potassium current decayed exponentially over ∼100 ms. However, at negative membrane potentials, this current exhibited a secondary rise in amplitude that could be eliminated by dihydropyridine block of the voltage-gated calcium channels of the hair cell. Calcium entering through voltage-gated channels may transit through the postsynaptic cistern, since ryanodine and sarcoendoplasmic reticulum calcium-ATPase blockers altered the time course and magnitude of this secondary, voltage-dependent contribution to ACh-evoked potassium current. Serial section electron microscopy showed that efferent and afferent synaptic structures are juxtaposed, supporting the possibility that voltage-gated influx at afferent ribbon synapses influences calcium homeostasis during long-lasting cholinergic inhibition. In contrast, spontaneous postsynaptic currents (“minis”) resulting from stochastic efferent release of ACh were made briefer by ryanodine, supporting the hypothesis that the synaptic cistern serves primarily as a calcium barrier and sink during low-level synaptic activity. Hypolemmal cisterns such as that at the efferent synapse of the hair cell can play a dynamic role in segregating near-membrane calcium for short-term and long-term signaling. PMID:25505321

  17. [The role of calcium, calcitriol and their receptors in parathyroid regulation].

    PubMed

    Carrillo-López, N; Fernández-Martín, J L; Cannata-Andía, J B

    2009-01-01

    The mechanism of regulation of Parathyroid hormone (PTH) is complex, and diverse factors are involved: the fundamental ones are calcium, calcitriol and phosphorus. Calcium and calcitriol's mechanism of action takes place through its specific receptors, the calcium-sensing receptor (CaR) and the Vitamin D Receptor (VDR). These two factors have an effect not only on its specific receptors, but also they can modify the other receptor in a positive manner, promoting its actions and demonstrating a cooperative effect between the two. Along with calcium and calcitriol, drugs used in the treatment of Chronic Kidney Disease Mineral Bone Disorders (CKD-MBD) also act directly or indirectly on CaR and VDR and therefore are also responsible for the regulation of the parathyroid gland. PMID:19396314

  18. Calcium-induced contraction of sarcomeres changes the regulation of mitochondrial respiration in permeabilized cardiac cells.

    PubMed

    Anmann, Tiia; Eimre, Margus; Kuznetsov, Andrey V; Andrienko, Tatiana; Kaambre, Tuuli; Sikk, Peeter; Seppet, Evelin; Tiivel, Toomas; Vendelin, Marko; Seppet, Enn; Saks, Valdur A

    2005-06-01

    The relationships between cardiac cell structure and the regulation of mitochondrial respiration were studied by applying fluorescent confocal microscopy and analysing the kinetics of mitochondrial ADP-stimulated respiration, during calcium-induced contraction in permeabilized cardiomyocytes and myocardial fibers, and in their 'ghost' preparations (after selective myosin extraction). Up to 3 microm free calcium, in the presence of ATP, induced strong contraction of permeabilized cardiomyocytes with intact sarcomeres, accompanied by alterations in mitochondrial arrangement and a significant decrease in the apparent K(m) for exogenous ADP and ATP in the kinetics of mitochondrial respiration. The V(max) of respiration showed a moderate (50%) increase, with an optimum at 0.4 microm free calcium and a decrease at higher calcium concentrations. At high free-calcium concentrations, the direct flux of ADP from ATPases to mitochondria was diminished compared to that at low calcium levels. All of these effects were unrelated either to mitochondrial calcium overload or to mitochondrial permeability transition and were not observed in 'ghost' preparations after the selective extraction of myosin. Our results suggest that the structural changes transmitted from contractile apparatus to mitochondria modify localized restrictions of the diffusion of adenine nucleotides and thus may actively participate in the regulation of mitochondrial function, in addition to the metabolic signalling via the creatine kinase system. PMID:15955072

  19. Computer simulation studies in fluid and calcium regulation and orthostatic intolerance

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The systems analysis approach to physiological research uses mathematical models and computer simulation. Major areas of concern during prolonged space flight discussed include fluid and blood volume regulation; cardiovascular response during shuttle reentry; countermeasures for orthostatic intolerance; and calcium regulation and bone atrophy. Potential contributions of physiologic math models to future flight experiments are examined.

  20. Proton enhanced scattering and nuclear reaction analysis microcharacterization of ternary graphite-lithium-calcium intercalation compounds

    NASA Astrophysics Data System (ADS)

    Berger, P.; Pruvost, S.; Hérold, C.; Lagrange, P.

    2004-06-01

    Intercalation of lithium into graphite is of great interest, due to its largely expanded use as negative electrode material in the Li-ion batteries, especially the LiC 6 compound. Recently, the first ternary intercalation compounds associating lithium with a second metallic element were synthesized by immersing pyrographite platelet in a molten Ca-Li alloy. Photonic and neutronic diffractions on these graphite-lithium-calcium compounds reveal that lithium and calcium layers are intercalated between graphene sheets. However, the precise elemental composition still lacks. Chemical analysis gives an average composition but carbon is not measured in the same sample as calcium and lithium. Electron microprobe, SEM and TEM do not allow to determine lithium concentration and its distribution in these compounds. This paper reports the first elemental characterization of carbon-calcium-lithium intercalation compounds by means of nuclear microprobe. Using a 3.1 MeV proton beam, both lithium, calcium and carbon can be determined within a single measurement, from the 7Li(p,α) 4He nuclear reaction and from elastic scattering for calcium and carbon respectively. In the graphite-lithium-calcium system, three different intercalation compounds were synthesized, containing low to high lithium content. The mapping of the samples reveals lateral and also mainly in depth heterogeneity (along the c axis).

  1. The plasma membrane protein Rch1 is a negative regulator of cytosolic calcium homeostasis and positively regulated by the calcium/calcineurin signaling pathway in budding yeast.

    PubMed

    Zhao, Yunying; Yan, Hongbo; Happeck, Ricardo; Peiter-Volk, Tina; Xu, Huihui; Zhang, Yan; Peiter, Edgar; van Oostende Triplet, Chloë; Whiteway, Malcolm; Jiang, Linghuo

    2016-01-01

    Saccharomyces cerevisiae Rch1 is structurally similar to both the vertebrate solute carrier SLC10A7 and Candida albicans Rch1. We show here that ScRCH1 is a functional homolog of CaRCH1. In S. cerevisiae, overexpression of ScRCH1 suppresses, but deletion of ScRCH1 does not affect, the lithium and rapamycin tolerance of pmr1 cells. Overexpression of ScRCH1 reduces expression of ENA1, prevents sustained accumulation of cytosolic calcium and reduces the activation level of calcium/calcineurin signaling in pmr1 cells. Therefore, similar to the situation in the pathogen C. albicans, ScRch1 negatively regulates the cytosolic homeostasis in response to high levels of extracellular calcium. ScRch1 proteins distribute as multiple foci in the plasma membrane prior to cell division, move toward and concentrate at the bud neck as the bud grows in size, and disperse again along the plasma membrane immediately prior to cytokinesis. Furthermore, our genetic and biochemical data also demonstrate that transcriptional expression of RCH1 is positively regulated by calcium/calcineurin signaling through the sole CDRE element in its promoter. PMID:26832117

  2. Localization of the calcium-regulated citrate transport process in proximal tubule cells.

    PubMed

    Hering-Smith, Kathleen S; Mao, Weibo; Schiro, Faith R; Coleman-Barnett, Joycelynn; Pajor, Ana M; Hamm, L Lee

    2014-06-01

    Urinary citrate is an important inhibitor of calcium-stone formation. Most of the citrate reabsorption in the proximal tubule is thought to occur via a dicarboxylate transporter NaDC1 located in the apical membrane. OK cells, an established opossum kidney proximal tubule cell line, transport citrate but the characteristics change with extracellular calcium such that low calcium solutions stimulate total citrate transport as well as increase the apparent affinity for transport. The present studies address several fundamental properties of this novel process: the polarity of the transport process, the location of the calcium-sensitivity and whether NaDC1 is present in OK cells. OK cells grown on permeable supports exhibited apical >basolateral citrate transport. Apical transport of both citrate and succinate was sensitive to extracellular calcium whereas basolateral transport was not. Apical calcium, rather than basolateral, was the predominant determinant of changes in transport. Also 2,3-dimethylsuccinate, previously identified as an inhibitor of basolateral dicarboxylate transport, inhibited apical citrate uptake. Although the calcium-sensitive transport process in OK cells is functionally not typical NaDC1, NaDC1 is present in OK cells by Western blot and PCR. By immunolocalization studies, NaDC1 was predominantly located in discrete apical membrane or subapical areas. However, by biotinylation, apical NaDC1 decreases in the apical membrane with lowering calcium. In sum, OK cells express a calcium-sensitive/regulated dicarboxylate process at the apical membrane which responds to variations in apical calcium. Despite the functional differences of this process compared to NaDC1, NaDC1 is present in these cells, but predominantly in subapical vesicles. PMID:24652587

  3. Calcium-sensing receptor regulates stomatal closure through hydrogen peroxide and nitric oxide in response to extracellular calcium in Arabidopsis.

    PubMed

    Wang, Wen-Hua; Yi, Xiao-Qian; Han, Ai-Dong; Liu, Ting-Wu; Chen, Juan; Wu, Fei-Hua; Dong, Xue-Jun; He, Jun-Xian; Pei, Zhen-Ming; Zheng, Hai-Lei

    2012-01-01

    The Arabidopsis calcium-sensing receptor CAS is a crucial regulator of extracellular calcium-induced stomatal closure. Free cytosolic Ca(2+) (Ca(2+)(i)) increases in response to a high extracellular calcium (Ca(2+)(o)) level through a CAS signalling pathway and finally leads to stomatal closure. Multidisciplinary approaches including histochemical, pharmacological, fluorescent, electrochemical, and molecular biological methods were used to discuss the relationship of hydrogen peroxide (H(2)O(2)) and nitric oxide (NO) signalling in the CAS signalling pathway in guard cells in response to Ca(2+)(o). Here it is shown that Ca(2+)(o) could induce H(2)O(2) and NO production from guard cells but only H(2)O(2) from chloroplasts, leading to stomatal closure. In addition, the CASas mutant, the atrbohD/F double mutant, and the Atnoa1 mutant were all insensitive to Ca(2+)(o)-stimulated stomatal closure, as well as H(2)O(2) and NO elevation in the case of CASas. Furthermore, it was found that the antioxidant system might function as a mediator in Ca(2+)(o) and H(2)O(2) signalling in guard cells. The results suggest a hypothetical model whereby Ca(2+)(o) induces H(2)O(2) and NO accumulation in guard cells through the CAS signalling pathway, which further triggers Ca(2+)(i) transients and finally stomatal closure. The possible cross-talk of Ca(2+)(o) and abscisic acid signalling as well as the antioxidant system are discussed. PMID:21940718

  4. Structural and mechanistic insights into MICU1 regulation of mitochondrial calcium uptake

    PubMed Central

    Wang, Lele; Yang, Xue; Li, Siwei; Wang, Zheng; Liu, Yu; Feng, Jianrong; Zhu, Yushan; Shen, Yuequan

    2014-01-01

    Mitochondrial calcium uptake is a critical event in various cellular activities. Two recently identified proteins, the mitochondrial Ca2+ uniporter (MCU), which is the pore-forming subunit of a Ca2+ channel, and mitochondrial calcium uptake 1 (MICU1), which is the regulator of MCU, are essential in this event. However, the molecular mechanism by which MICU1 regulates MCU remains elusive. In this study, we report the crystal structures of Ca2+-free and Ca2+-bound human MICU1. Our studies reveal that Ca2+-free MICU1 forms a hexamer that binds and inhibits MCU. Upon Ca2+ binding, MICU1 undergoes large conformational changes, resulting in the formation of multiple oligomers to activate MCU. Furthermore, we demonstrate that the affinity of MICU1 for Ca2+ is approximately 15–20 μM. Collectively, our results provide valuable details to decipher the molecular mechanism of MICU1 regulation of mitochondrial calcium uptake. PMID:24514027

  5. Regulation of Multi-drug Resistance in hepatocellular carcinoma cells is TRPC6/Calcium Dependent

    PubMed Central

    Wen, Liang; Liang, Chao; Chen, Enjiang; Chen, Wei; Liang, Feng; Zhi, Xiao; Wei, Tao; Xue, Fei; Li, Guogang; Yang, Qi; Gong, Weihua; Feng, Xinhua; Bai, Xueli; Liang, Tingbo

    2016-01-01

    Hepatocellular carcinoma (HCC) is notoriously refractory to chemotherapy because of its tendency to develop multi-drug resistance (MDR), whose various underlying mechanisms make it difficult to target. The calcium signalling pathway is associated with many cellular biological activities, and is also a critical player in cancer. However, its role in modulating tumour MDR remains unclear. In this study, stimulation by doxorubicin, hypoxia and ionizing radiation was used to induce MDR in HCC cells. A sustained aggregation of intracellular calcium was observed upon these stimuli, while inhibition of calcium signalling enhanced the cells’ sensitivity to various drugs by attenuating epithelial-mesenchymal transition (EMT), Hif1-α signalling and DNA damage repair. The effect of calcium signalling is mediated via transient receptor potential canonical 6 (TRPC6), a subtype of calcium-permeable channel. An in vivo xenograft model of HCC further confirmed that inhibiting TRPC6 enhanced the efficacy of doxorubicin. In addition, we deduced that STAT3 activation is a downstream signalling pathway in MDR. Collectively, this study demonstrated that the various mechanisms regulating MDR in HCC cells are calcium dependent through the TRPC6/calcium/STAT3 pathway. We propose that targeting TRPC6 in HCC may be a novel antineoplastic strategy, especially combined with chemotherapy. PMID:27011063

  6. Possible site of calcium regulation in rat exocrine pancreas cells: an X-ray microanalytical study

    SciTech Connect

    Roos, N.

    1988-03-01

    We analysed four subcellular compartments in rat exocrine pancreas cells, zymogen granules, cytoplasm surrounding the zymogen granules, mitochondria and cytoplasm in the basal part of the cells for sodium, magnesium, phosphorus, sulfur, chlorine, potassium and calcium content, using ultrathin frozen-dried cryosections. The highest concentrations of calcium were measured in the zymogen granules and the surrounding apical part of the cell containing Golgi apparatus, smooth endoplasmic reticulum and condensing vacuoles. Calcium concentrations in the basal part of the cells (mostly rough endoplasmic reticulum) were 60% lower than in the apical part of the cells. The lowest calcium concentrations were measured in mitochondria. The results suggest that other subcellular compartments than the rough endoplasmic reticulum and mitochondria might be involved in the intracellular Ca2+ regulation.

  7. Nuclear transport factors: global regulation of mitosis.

    PubMed

    Forbes, Douglass J; Travesa, Anna; Nord, Matthew S; Bernis, Cyril

    2015-08-01

    The unexpected repurposing of nuclear transport proteins from their function in interphase to an equally vital and very different set of functions in mitosis was very surprising. The multi-talented cast when first revealed included the import receptors, importin alpha and beta, the small regulatory GTPase RanGTP, and a subset of nuclear pore proteins. In this review, we report that recent years have revealed new discoveries in each area of this expanding story in vertebrates: (a) The cast of nuclear import receptors playing a role in mitotic spindle regulation has expanded: both transportin, a nuclear import receptor, and Crm1/Xpo1, an export receptor, are involved in different aspects of spindle assembly. Importin beta and transportin also regulate nuclear envelope and pore assembly. (b) The role of nucleoporins has grown to include recruiting the key microtubule nucleator - the γ-TuRC complex - and the exportin Crm1 to the mitotic kinetochores of humans. Together they nucleate microtubule formation from the kinetochores toward the centrosomes. (c) New research finds that the original importin beta/RanGTP team have been further co-opted by evolution to help regulate other cellular and organismal activities, ranging from the actual positioning of the spindle within the cell perimeter, to regulation of a newly discovered spindle microtubule branching activity, to regulation of the interaction of microtubule structures with specific actin structures. (d) Lastly, because of the multitudinous roles of karyopherins throughout the cell cycle, a recent large push toward testing their potential as chemotherapeutic targets has begun to yield burgeoning progress in the clinic. PMID:25982429

  8. Calcium binding to calmodulin mutants having domain-specific effects on the regulation of ion channels.

    PubMed

    VanScyoc, Wendy S; Newman, Rhonda A; Sorensen, Brenda R; Shea, Madeline A

    2006-12-01

    Calmodulin (CaM) is an essential, eukaryotic protein comprised of two highly homologous domains (N and C). CaM binds four calcium ions cooperatively, regulating a wide array of target proteins. A genetic screen of Paramecia by Kung [Kung, C. et al. (1992) Cell Calcium 13, 413-425] demonstrated that the domains of CaM have separable physiological roles: "under-reactive" mutations affecting calcium-dependent sodium currents mapped to the N-domain, while "over-reactive" mutations affecting calcium-dependent potassium currents localized to the C-domain of CaM. To determine whether and how these mutations affected intrinsic calcium-binding properties of CaM domains, phenylalanine fluorescence was used to monitor calcium binding to sites I and II (N-domain) and tyrosine fluorescence was used to monitor sites III and IV (C-domain). To explore interdomain interactions, binding properties of each full-length mutant were compared to those of its corresponding domain fragments. The calcium-binding properties of six under-reactive mutants (V35I/D50N, G40E, G40E/D50N, D50G, E54K, and G59S) and one over-reactive mutant (M145V) were indistinguishable from those of wild-type CaM, despite their deleterious physiological effects on ion-channel regulation. Four over-reactive mutants (D95G, S101F, E104K, and H135R) significantly decreased the calcium affinity of the C-domain. Of these, one (E104K) also increased the calcium affinity of the N-domain, demonstrating that the magnitude and direction of wild-type interdomain coupling had been perturbed. This suggests that, while some of these mutations alter calcium-binding directly, others probably alter CaM-channel association or calcium-triggered conformational change in the context of a ternary complex with the affected ion channel. PMID:17128970

  9. Regulation of Intestinal Epithelial Calcium Transport Proteins by Stanniocalcin-1 in Caco2 Cells.

    PubMed

    Xiang, Jinmei; Guo, Rui; Wan, Chunyun; Wu, Liming; Yang, Shijin; Guo, Dingzong

    2016-01-01

    Stanniocalcin-1 (STC1) is a calcium and phosphate regulatory hormone. However, the exact molecular mechanisms underlying how STC1 affects Ca(2+) uptake remain unclear. Here, the expression levels of the calcium transport proteins involved in transcellular transport in Caco2 cells were examined following over-expression or inhibition of STC1. These proteins include the transient receptor potential vanilloid members (TRPV) 5 and 6, the plasma membrane calcium ATPase 1b (PMCA1b), the sodium/calcium exchanger (NCX1), and the vitamin D receptor (VDR). Both gene and protein expressions of TRPV5 and TRPV6 were attenuated in response to over-expression of STC1, and the opposite trend was observed in cells treated with siRNASTC1. To further investigate the ability of STC1 to influence TRPV6 expression, cells were treated with 100 ng/mL of recombinant human STC1 (rhSTC1) for 4 h following pre-transfection with siRNASTC1 for 48 h. Intriguingly, the increase in the expression of TRPV6 resulting from siRNASTC1 was reversed by rhSTC1. No significant effect of STC1 on the expression of PMCA1b, NCX1 or VDR was observed in this study. In conclusion, the effect of STC1 on calcium transport in intestinal epithelia is due to, at least in part, its negative regulation of the epithelial channels TRPV5/6 that mediate calcium influx. PMID:27409607

  10. Regulation of Intestinal Epithelial Calcium Transport Proteins by Stanniocalcin-1 in Caco2 Cells

    PubMed Central

    Xiang, Jinmei; Guo, Rui; Wan, Chunyun; Wu, Liming; Yang, Shijin; Guo, Dingzong

    2016-01-01

    Stanniocalcin-1 (STC1) is a calcium and phosphate regulatory hormone. However, the exact molecular mechanisms underlying how STC1 affects Ca2+ uptake remain unclear. Here, the expression levels of the calcium transport proteins involved in transcellular transport in Caco2 cells were examined following over-expression or inhibition of STC1. These proteins include the transient receptor potential vanilloid members (TRPV) 5 and 6, the plasma membrane calcium ATPase 1b (PMCA1b), the sodium/calcium exchanger (NCX1), and the vitamin D receptor (VDR). Both gene and protein expressions of TRPV5 and TRPV6 were attenuated in response to over-expression of STC1, and the opposite trend was observed in cells treated with siRNASTC1. To further investigate the ability of STC1 to influence TRPV6 expression, cells were treated with 100 ng/mL of recombinant human STC1 (rhSTC1) for 4 h following pre-transfection with siRNASTC1 for 48 h. Intriguingly, the increase in the expression of TRPV6 resulting from siRNASTC1 was reversed by rhSTC1. No significant effect of STC1 on the expression of PMCA1b, NCX1 or VDR was observed in this study. In conclusion, the effect of STC1 on calcium transport in intestinal epithelia is due to, at least in part, its negative regulation of the epithelial channels TRPV5/6 that mediate calcium influx. PMID:27409607

  11. Tight junction regulates epidermal calcium ion gradient and differentiation

    SciTech Connect

    Kurasawa, Masumi; Maeda, Tetsuo; Oba, Ai; Yamamoto, Takuya; Sasaki, Hiroyuki

    2011-03-25

    Research highlights: {yields} We disrupted epidermal tight junction barrier in reconstructed epidermis. {yields} It altered Ca{sup 2+} distribution and consequentially differentiation state as well. {yields} Tight junction should affect epidermal homeostasis by maintaining Ca{sup 2+} gradient. -- Abstract: It is well known that calcium ions (Ca{sup 2+}) induce keratinocyte differentiation. Ca{sup 2+} distributes to form a vertical gradient that peaks at the stratum granulosum. It is thought that the stratum corneum (SC) forms the Ca{sup 2+} gradient since it is considered the only permeability barrier in the skin. However, the epidermal tight junction (TJ) in the granulosum has recently been suggested to restrict molecular movement to assist the SC as a secondary barrier. The objective of this study was to clarify the contribution of the TJ to Ca{sup 2+} gradient and epidermal differentiation in reconstructed human epidermis. When the epidermal TJ barrier was disrupted by sodium caprate treatment, Ca{sup 2+} flux increased and the gradient changed in ion-capture cytochemistry images. Alterations of ultrastructures and proliferation/differentiation markers revealed that both hyperproliferation and precocious differentiation occurred regionally in the epidermis. These results suggest that the TJ plays a crucial role in maintaining epidermal homeostasis by controlling the Ca{sup 2+} gradient.

  12. Differential expression of calcium-regulated SlSRs in response to abiotic and biotic stresses in tomato fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium has been shown to increase stress tolerance, enhance fruit firmness and reduce decay. Previously we reported that seven tomato SlSRs encode calcium/calmodulin-regulated proteins, and that their expressions are developmentally regulated during fruit development and ripening, and are also resp...

  13. CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis.

    PubMed

    Cheong, Yong Hwa; Kim, Kyung-Nam; Pandey, Girdhar K; Gupta, Rajeev; Grant, John J; Luan, Sheng

    2003-08-01

    Although calcium is a critical component in the signal transduction pathways that lead to stress gene expression in higher plants, little is known about the molecular mechanism underlying calcium function. It is believed that cellular calcium changes are perceived by sensor molecules, including calcium binding proteins. The calcineurin B-like (CBL) protein family represents a unique group of calcium sensors in plants. A member of the family, CBL1, is highly inducible by multiple stress signals, implicating CBL1 in stress response pathways. When the CBL1 protein level was increased in transgenic Arabidopsis plants, it altered the stress response pathways in these plants. Although drought-induced gene expression was enhanced, gene induction by cold was inhibited. In addition, CBL1-overexpressing plants showed enhanced tolerance to salt and drought but reduced tolerance to freezing. By contrast, cbl1 null mutant plants showed enhanced cold induction and reduced drought induction of stress genes. The mutant plants displayed less tolerance to salt and drought but enhanced tolerance to freezing. These studies suggest that CBL1 functions as a positive regulator of salt and drought responses and a negative regulator of cold response in plants. PMID:12897256

  14. Alpha-1 giardin is an annexin with highly unusual calcium-regulated mechanisms.

    PubMed

    Weeratunga, Saroja K; Osman, Asiah; Hu, Nien-Jen; Wang, Conan K; Mason, Lyndel; Svärd, Staffan; Hope, Greg; Jones, Malcolm K; Hofmann, Andreas

    2012-10-19

    Alpha-giardins constitute the annexin proteome (group E annexins) in the intestinal protozoan parasite Giardia and, as such, represent the evolutionary oldest eukaryotic annexins. The dominance of alpha-giardins in the cytoskeleton of Giardia with its greatly reduced actin content emphasises the importance of the alpha-giardins for the structural integrity of the parasite, which is particularly critical in the transformation stage between cyst and trophozoite. In this study, we report the crystal structures of the apo- and calcium-bound forms of α1-giardin, a protein localised to the plasma membrane of Giardia trophozoites that has recently been identified as a vaccine target. The calcium-bound crystal structure of α1-giardin revealed the presence of a type III site in the first repeat as known from other annexin structures, as well as a novel calcium binding site situated between repeats I and IV. By means of comparison, the crystal structures of three different alpha-giardins known to date indicate that these proteins engage different calcium coordination schemes, among each other, as well as compared to annexins of groups A-D. Evaluation of the calcium-dependent binding to acidic phosphoplipid membranes revealed that this process is not only mediated but also regulated by the environmental calcium concentration. Uniquely within the large family of annexins, α1-giardin disengages from the phospholipid membrane at high calcium concentrations possibly due to formation of a dimeric species. The observed behaviour is in line with changing calcium levels experienced by the parasite during excystation and may thus provide first insights into the molecular mechanisms underpinning the transformation and survival of the parasite in the host. PMID:22796298

  15. [Roles of intracellular calcium and monomeric G-proteins in regulating exocytosis of human neutrophils].

    PubMed

    Zhu, Ying; Wang, Jun-Han; Wu, Jian-Min; Xu, Tao; Zhang, Chun-Guang

    2003-12-25

    Neutrophils play a major role in host defense against microbial infection. There are some clues indicate that neutrophils may also play a role in the pathophysiology of the airway obstruction in chronic asthma. We studied the roles of intracellular calcium and GTP gamma S in the regulation of neutrophils exocytosis using pipette perfusion and membrane capacitance measurement technique in whole cell patch clamp configuration. The results showed that the membrane capacitance increase induced by calcium revealed a biphasic process. The first phase occurred when the calcium level was between 0.2-14 micromol/L with a plateau amplitude of 1.23 pF and a calcium EC50 of 1.1 micromol/L. This phase might correspond to the release of the tertiary granules. The second phase occurred when the calcium concentration was between 20-70 micromol/L with a plateau increment of 6.36 pF, the calcium EC50 being about 33 micromol/L. This phase might represent the release of the primary and secondary granules. Intracellular calcium also simultaneously increased the exocytotic rate and the eventual extent in neutrophils. On the other hand, GTP gamma S can increase the exocytotic rate in a dose-dependent manner but had no effect on the eventual extent of membrane capacitance increment (>6 pF) if the cell was stimulated for a long period (>20 min). GTP gamma S (ranging from 20 to 100 micromol/L) induced the neutrophils to release all four types of the granules at very low intracellular calcium level. PMID:14695488

  16. Peripheral serotonin regulates maternal calcium trafficking in mammary epithelial cells during lactation in mice.

    PubMed

    Laporta, Jimena; Keil, Kimberly P; Vezina, Chad M; Hernandez, Laura L

    2014-01-01

    Lactation is characterized by massive transcellular flux of calcium, from the basolateral side of the mammary alveolar epithelium (blood) into the ductal lumen (milk). Regulation of calcium transport during lactation is critical for maternal and neonatal health. The monoamine serotonin (5-HT) is synthesized by the mammary gland and functions as a homeostatic regulation of lactation. Genetic ablation of tryptophan hydroxylase 1 (Tph1), which encodes the rate-limiting enzyme in non-neuronal serotonin synthesis, causes a deficiency in circulating serotonin. As a consequence maternal calcium concentrations decrease, mammary epithelial cell morphology is altered, and cell proliferation is decreased during lactation. Here we demonstrate that serotonin deficiency decreases the expression and disrupts the normal localization of calcium transporters located in the apical (PMCA2) and basolateral (CaSR, ORAI-1) membranes of the lactating mammary gland. In addition, serotonin deficiency decreases the mRNA expression of calcium transporters located in intracellular compartments (SERCA2, SPCA1 and 2). Mammary expression of serotonin receptor isoform 2b and its downstream pathways (PLCβ3, PKC and MAP-ERK1/2) are also decreased by serotonin deficiency, which might explain the numerous phenotypic alterations described above. In most cases, addition of exogenous 5-hydroxy-L-tryptophan to the Tph1 deficient mice rescued the phenotype. Our data supports the hypothesis that serotonin is necessary for proper mammary gland structure and function, to regulate blood and mammary epithelial cell transport of calcium during lactation. These findings can be applicable to the treatment of lactation-induced hypocalcemia in dairy cows and can have profound implications in humans, given the wide-spread use of selective serotonin reuptake inhibitors as antidepressants during pregnancy and lactation. PMID:25299122

  17. Peripheral Serotonin Regulates Maternal Calcium Trafficking in Mammary Epithelial Cells during Lactation in Mice

    PubMed Central

    Laporta, Jimena; Keil, Kimberly P.; Vezina, Chad M.; Hernandez, Laura L.

    2014-01-01

    Lactation is characterized by massive transcellular flux of calcium, from the basolateral side of the mammary alveolar epithelium (blood) into the ductal lumen (milk). Regulation of calcium transport during lactation is critical for maternal and neonatal health. The monoamine serotonin (5-HT) is synthesized by the mammary gland and functions as a homeostatic regulation of lactation. Genetic ablation of tryptophan hydroxylase 1 (Tph1), which encodes the rate-limiting enzyme in non-neuronal serotonin synthesis, causes a deficiency in circulating serotonin. As a consequence maternal calcium concentrations decrease, mammary epithelial cell morphology is altered, and cell proliferation is decreased during lactation. Here we demonstrate that serotonin deficiency decreases the expression and disrupts the normal localization of calcium transporters located in the apical (PMCA2) and basolateral (CaSR, ORAI-1) membranes of the lactating mammary gland. In addition, serotonin deficiency decreases the mRNA expression of calcium transporters located in intracellular compartments (SERCA2, SPCA1 and 2). Mammary expression of serotonin receptor isoform 2b and its downstream pathways (PLCβ3, PKC and MAP-ERK1/2) are also decreased by serotonin deficiency, which might explain the numerous phenotypic alterations described above. In most cases, addition of exogenous 5-hydroxy-L-tryptophan to the Tph1 deficient mice rescued the phenotype. Our data supports the hypothesis that serotonin is necessary for proper mammary gland structure and function, to regulate blood and mammary epithelial cell transport of calcium during lactation. These findings can be applicable to the treatment of lactation-induced hypocalcemia in dairy cows and can have profound implications in humans, given the wide-spread use of selective serotonin reuptake inhibitors as antidepressants during pregnancy and lactation. PMID:25299122

  18. Mechanical regulation of nuclear structure and function.

    PubMed

    Martins, Rui P; Finan, John D; Guilak, Farshid; Lee, David A

    2012-01-01

    Mechanical loading induces both nuclear distortion and alterations in gene expression in a variety of cell types. Mechanotransduction is the process by which extracellular mechanical forces can activate a number of well-studied cytoplasmic signaling cascades. Inevitably, such signals are transduced to the nucleus and induce transcription factor-mediated changes in gene expression. However, gene expression also can be regulated through alterations in nuclear architecture, providing direct control of genome function. One putative transduction mechanism for this phenomenon involves alterations in nuclear architecture that result from the mechanical perturbation of the cell. This perturbation is associated with direct mechanical strain or osmotic stress, which is transferred to the nucleus. This review describes the current state of knowledge relating the nuclear architecture and the transfer of mechanical forces to the nucleus mediated by the cytoskeleton, the nucleoskeleton, and the LINC (linker of the nucleoskeleton and cytoskeleton) complex. Moreover, remodeling of the nucleus induces alterations in nuclear stiffness, which may be associated with cell differentiation. These phenomena are discussed in relation to the potential influence of nuclear architecture-mediated mechanoregulation of transcription and cell fate. PMID:22655599

  19. Calmodulin regulation (calmodulation) of voltage-gated calcium channels

    PubMed Central

    Ben-Johny, Manu

    2014-01-01

    Calmodulin regulation (calmodulation) of the family of voltage-gated CaV1-2 channels comprises a prominent prototype for ion channel regulation, remarkable for its powerful Ca2+ sensing capabilities, deep in elegant mechanistic lessons, and rich in biological and therapeutic implications. This field thereby resides squarely at the epicenter of Ca2+ signaling biology, ion channel biophysics, and therapeutic advance. This review summarizes the historical development of ideas in this field, the scope and richly patterned organization of Ca2+ feedback behaviors encompassed by this system, and the long-standing challenges and recent developments in discerning a molecular basis for calmodulation. We conclude by highlighting the considerable synergy between mechanism, biological insight, and promising therapeutics. PMID:24863929

  20. Coping with Stresses: Roles of Calcium- and Calcium/Calmodulin-Regulated Gene Expression[W][OA

    PubMed Central

    Reddy, Anireddy S.N.; Ali, Gul S.; Celesnik, Helena; Day, Irene S.

    2011-01-01

    Abiotic and biotic stresses are major limiting factors of crop yields and cause billions of dollars of losses annually around the world. It is hoped that understanding at the molecular level how plants respond to adverse conditions and adapt to a changing environment will help in developing plants that can better cope with stresses. Acquisition of stress tolerance requires orchestration of a multitude of biochemical and physiological changes, and most of these depend on changes in gene expression. Research during the last two decades has established that different stresses cause signal-specific changes in cellular Ca2+ level, which functions as a messenger in modulating diverse physiological processes that are important for stress adaptation. In recent years, many Ca2+ and Ca2+/calmodulin (CaM) binding transcription factors (TFs) have been identified in plants. Functional analyses of some of these TFs indicate that they play key roles in stress signaling pathways. Here, we review recent progress in this area with emphasis on the roles of Ca2+- and Ca2+/CaM-regulated transcription in stress responses. We will discuss emerging paradigms in the field, highlight the areas that need further investigation, and present some promising novel high-throughput tools to address Ca2+-regulated transcriptional networks. PMID:21642548

  1. A G-protein subunit translocation embedded network motif underlies GPCR regulation of calcium oscillations.

    PubMed

    Giri, Lopamudra; Patel, Anilkumar K; Karunarathne, W K Ajith; Kalyanaraman, Vani; Venkatesh, K V; Gautam, N

    2014-07-01

    G-protein βγ subunits translocate reversibly from the plasma membrane to internal membranes on receptor activation. Translocation rates differ depending on the γ subunit type. There is limited understanding of the role of the differential rates of Gβγ translocation in modulating signaling dynamics in a cell. Bifurcation analysis of the calcium oscillatory network structure predicts that the translocation rate of a signaling protein can regulate the damping of system oscillation. Here, we examined whether the Gβγ translocation rate regulates calcium oscillations induced by G-protein-coupled receptor activation. Oscillations in HeLa cells expressing γ subunit types with different translocation rates were imaged and quantitated. The results show that differential Gβγ translocation rates can underlie the diversity in damping characteristics of calcium oscillations among cells. Mathematical modeling shows that a translocation embedded motif regulates damping of G-protein-mediated calcium oscillations consistent with experimental data. The current study indicates that such a motif may act as a tuning mechanism to design oscillations with varying damping patterns by using intracellular translocation of a signaling component. PMID:24988358

  2. Subcellular localization of calcium and Ca-ATPase activity during nuclear maturation in Bufo arenarum oocytes.

    PubMed

    Ramos, Inés; Cisint, Susana B; Crespo, Claudia A; Medina, Marcela F; Fernández, Silvia N

    2009-08-01

    The localization of calcium and Ca-ATPase activity in Bufo arenarum oocytes was investigated by ultracytochemical techniques during progesterone-induced nuclear maturation, under in vitro conditions. No Ca2+ deposits were detected in either control oocytes or progesterone-treated ones for 1-2 h. At the time when nuclear migration started, electron dense deposits of Ca2+ were visible in vesicles, endoplasmic reticulum cisternae and in the space between the annulate lamellae membranes. Furthermore, Ca-ATPase activity was also detected in these membrane structures. As maturation progressed, the cation deposits were observed in the cytomembrane structures, which underwent an important reorganization and redistribution. Thus, they moved from the subcortex and became located predominantly in the oocyte cortex area when nuclear maturation ended. Ca2+ stores were observed in vesicles surrounding or between the cortical granules, which are aligned close to the plasma membrane. The positive Ca-ATPase reaction in these membrane structures could indicate that the calcium deposit is an ATP-dependent process. Our results suggest that during oocyte maturation calcium would be stored in membrane structures where it remains available for release at the time of fertilization. Data obtained under our experimental conditions indicate that calcium from the extracellular medium would be important for the oocyte maturation process. PMID:19397840

  3. Oxidative Regulation of Large Conductance Calcium-Activated Potassium Channels

    PubMed Central

    Tang, Xiang D.; Daggett, Heather; Hanner, Markus; Garcia, Maria L.; McManus, Owen B.; Brot, Nathan; Weissbach, Herbert; Heinemann, Stefan H.; Hoshi, Toshinori

    2001-01-01

    Reactive oxygen/nitrogen species are readily generated in vivo, playing roles in many physiological and pathological conditions, such as Alzheimer's disease and Parkinson's disease, by oxidatively modifying various proteins. Previous studies indicate that large conductance Ca2+-activated K+ channels (BKCa or Slo) are subject to redox regulation. However, conflicting results exist whether oxidation increases or decreases the channel activity. We used chloramine-T, which preferentially oxidizes methionine, to examine the functional consequences of methionine oxidation in the cloned human Slo (hSlo) channel expressed in mammalian cells. In the virtual absence of Ca2+, the oxidant shifted the steady-state macroscopic conductance to a more negative direction and slowed deactivation. The results obtained suggest that oxidation enhances specific voltage-dependent opening transitions and slows the rate-limiting closing transition. Enhancement of the hSlo activity was partially reversed by the enzyme peptide methionine sulfoxide reductase, suggesting that the upregulation is mediated by methionine oxidation. In contrast, hydrogen peroxide and cysteine-specific reagents, DTNB, MTSEA, and PCMB, decreased the channel activity. Chloramine-T was much less effective when concurrently applied with the K+ channel blocker TEA, which is consistent with the possibility that the target methionine lies within the channel pore. Regulation of the Slo channel by methionine oxidation may represent an important link between cellular electrical excitability and metabolism. PMID:11222629

  4. 10 CFR 1.43 - Office of Nuclear Reactor Regulation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Office of Nuclear Reactor Regulation. 1.43 Section 1.43 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Program Offices § 1.43 Office of Nuclear Reactor Regulation. The Office of Nuclear Reactor Regulation— (a) Develops, promulgates and...

  5. Glucagon-like peptide-1 regulates calcium homeostasis and electrophysiological activities of HL-1 cardiomyocytes.

    PubMed

    Huang, Jen-Hung; Chen, Yao-Chang; Lee, Ting-I; Kao, Yu-Hsun; Chazo, Tze-Fan; Chen, Shih-Ann; Chen, Yi-Jen

    2016-04-01

    Glucagon like-peptide-1 (GLP-1) is an incretin hormone with antidiabetic effects through stimulating insulin secretion, β cell neogenesis, satiety sensation, and inhibiting glucagon secretion. Administration of GLP-1 provides cardioprotective effects through attenuating cardiac inflammation and insulin resistance. GLP-1 also modulates the heart rate and systolic pressure, which suggests that GLP-1 may have cardiac electrical effects. Therefore, the purposes of this study were to evaluate whether GLP-1 has direct cardiac effects and identify the underlying mechanisms. Patch clamp, confocal microscopy with Fluo-3 fluorescence, and Western blot analyses were used to evaluate the electrophysiological characteristics, calcium homeostasis, and calcium regulatory proteins in HL-1 atrial myocytes with and without GLP-1 (1 and 10nM) incubation for 24h. GLP-1 (1 and 10nM) and control cells had similar action potential durations. However, GLP-1 at 10nM significantly increased calcium transients and sarcoplasmic reticular Ca(2+) contents. Compared to the control, GLP-1 (10nM)-treated cells significantly decreased phosphorylation of the ryanodine receptor at S2814 and total phospholamban, but there were similar protein levels of sarcoplasmic reticular Ca(2+)-ATPase and the sodium-calcium exchanger. Moreover, exendin (9-39) amide (a GLP-1 receptor antagonist, 10nM) attenuated GLP-1-mediated effects on total SR content and phosphorylated ryanodine receptor S2814. This study demonstrates GLP-1 may regulate HL-1 cell arrhythmogenesis through modulating calcium handling proteins. PMID:26930508

  6. Effects of adrenalectomy on the control and adrenergic regulation of cytosolic free calcium in hepatocytes

    SciTech Connect

    Freudenrich, C.C.

    1987-01-01

    The purpose of this study was to investigate the effects of adrenalectomy on the control and ..cap alpha..-adrenergic regulation of the concentration of cytosolic free calcium (Ca/sub i/) in hepatocytes. In hepatocytes isolated from adrenalectomized (adx) and sham-operated male rats 7-1 days after surgery, Ca/sub i/ at rest and in response to epinephrine (EPI) was measured with the calcium-sensitive photoprotein aequorin, /sup 45/Ca efflux was measured, and Ca/sup 2 +/ release from intracellular stores in response to inositol triphosphate (IP/sub 3/) was measured in saponin-permeabilized cells. Liver calmodulin content was also assayed by radioimmunoassay. It was found in adx rats that the resting Ca/sub i/ was elevated, the rise in Ca/sub i/ during EPI stimulation was reduced at physiological EPI concentrations, and the rise in calcium efflux evoked by EPI was reduced. Furthermore, the slope of the relationship between Ca/sub i/ and calcium efflux was reduced 60% in adx. Adx did not alter the characteristics of Ca/sup 2 +/ release from intracellular calcium pools in response to IP/sub 3/ in permeabilized cells. Finally, the liver calmodulin contents were not significantly different between the 2 groups.

  7. LRRK2 Regulates Voltage-Gated Calcium Channel Function

    PubMed Central

    Bedford, Cade; Sears, Catherine; Perez-Carrion, Maria; Piccoli, Giovanni; Condliffe, Steven B.

    2016-01-01

    Voltage-gated Ca2+ (CaV) channels enable Ca2+ influx in response to membrane depolarization. CaV2.1 channels are localized to the presynaptic membrane of many types of neurons where they are involved in triggering neurotransmitter release. Several signaling proteins have been identified as important CaV2.1 regulators including protein kinases, G-proteins and Ca2+ binding proteins. Recently, we discovered that leucine rich repeat kinase 2 (LRRK2), a protein associated with inherited Parkinson’s disease, interacts with specific synaptic proteins and influences synaptic transmission. Since synaptic proteins functionally interact with CaV2.1 channels and synaptic transmission is triggered by Ca2+ entry via CaV2.1, we investigated whether LRRK2 could impact CaV2.1 channel function. CaV2.1 channel properties were measured using whole cell patch clamp electrophysiology in HEK293 cells transfected with CaV2.1 subunits and various LRRK2 constructs. Our results demonstrate that both wild type (wt) LRRK2 and the G2019S LRRK2 mutant caused a significant increase in whole cell Ca2+ current density compared to cells expressing only the CaV2.1 channel complex. In addition, LRRK2 expression caused a significant hyperpolarizing shift in voltage-dependent activation while having no significant effect on inactivation properties. These functional changes in CaV2.1 activity are likely due to a direct action of LRRK2 as we detected a physical interaction between LRRK2 and the β3 CaV channel subunit via coimmunoprecipitation. Furthermore, effects on CaV2.1 channel function are dependent on LRRK2 kinase activity as these could be reversed via treatment with a LRRK2 inhibitor. Interestingly, LRRK2 also augmented endogenous voltage-gated Ca2+ channel function in PC12 cells suggesting other CaV channels could also be regulated by LRRK2. Overall, our findings support a novel physiological role for LRRK2 in regulating CaV2.1 function that could have implications for how mutations in LRRK2

  8. Single Low-Dose Radiation Induced Regulation of Keratinocyte Differentiation in Calcium-Induced HaCaT Cells

    PubMed Central

    Hahn, Hyung Jin; Youn, Hae Jeong; Cha, Hwa Jun; Kim, Karam; An, Sungkwan

    2016-01-01

    Background We are continually exposed to low-dose radiation (LDR) in the range 0.1 Gy from natural sources, medical devices, nuclear energy plants, and other industrial sources of ionizing radiation. There are three models for the biological mechanism of LDR: the linear no-threshold model, the hormetic model, and the threshold model. Objective We used keratinocytes as a model system to investigate the molecular genetic effects of LDR on epidermal cell differentiation. Methods To identify keratinocyte differentiation, we performed western blots using a specific antibody for involucrin, which is a precursor protein of the keratinocyte cornified envelope and a marker for keratinocyte terminal differentiation. We also performed quantitative polymerase chain reaction. We examined whether LDR induces changes in involucrin messenger RNA (mRNA) and protein levels in calcium-induced keratinocyte differentiation. Results Exposure of HaCaT cells to LDR (0.1 Gy) induced p21 expression. p21 is a key regulator that induces growth arrest and represses stemness, which accelerates keratinocyte differentiation. We correlated involucrin expression with keratinocyte differentiation, and examined the effects of LDR on involucrin levels and keratinocyte development. LDR significantly increased involucrin mRNA and protein levels during calcium-induced keratinocyte differentiation. Conclusion These studies provide new evidence for the biological role of LDR, and identify the potential to utilize LDR to regulate or induce keratinocyte differentiation. PMID:27489424

  9. Distinct regulation of dopamine D2S and D2L autoreceptor signaling by calcium.

    PubMed

    Gantz, Stephanie C; Robinson, Brooks G; Buck, David C; Bunzow, James R; Neve, Rachael L; Williams, John T; Neve, Kim A

    2015-01-01

    D2 autoreceptors regulate dopamine release throughout the brain. Two isoforms of the D2 receptor, D2S and D2L, are expressed in midbrain dopamine neurons. Differential roles of these isoforms as autoreceptors are poorly understood. By virally expressing the isoforms in dopamine neurons of D2 receptor knockout mice, this study assessed the calcium-dependence and drug-induced plasticity of D2S and D2L receptor-dependent G protein-coupled inwardly rectifying potassium (GIRK) currents. The results reveal that D2S, but not D2L receptors, exhibited calcium-dependent desensitization similar to that exhibited by endogenous autoreceptors. Two pathways of calcium signaling that regulated D2 autoreceptor-dependent GIRK signaling were identified, which distinctly affected desensitization and the magnitude of D2S and D2L receptor-dependent GIRK currents. Previous in vivo cocaine exposure removed calcium-dependent D2 autoreceptor desensitization in wild type, but not D2S-only mice. Thus, expression of D2S as the exclusive autoreceptor was insufficient for cocaine-induced plasticity, implying a functional role for the co-expression of D2S and D2L autoreceptors. PMID:26308580

  10. Nuclear myosin I regulates cell membrane tension.

    PubMed

    Venit, Tomáš; Kalendová, Alžběta; Petr, Martin; Dzijak, Rastislav; Pastorek, Lukáš; Rohožková, Jana; Malohlava, Jakub; Hozák, Pavel

    2016-01-01

    Plasma membrane tension is an important feature that determines the cell shape and influences processes such as cell motility, spreading, endocytosis and exocytosis. Unconventional class 1 myosins are potent regulators of plasma membrane tension because they physically link the plasma membrane with adjacent cytoskeleton. We identified nuclear myosin 1 (NM1) - a putative nuclear isoform of myosin 1c (Myo1c) - as a new player in the field. Although having specific nuclear functions, NM1 localizes predominantly to the plasma membrane. Deletion of NM1 causes more than a 50% increase in the elasticity of the plasma membrane around the actin cytoskeleton as measured by atomic force microscopy. This higher elasticity of NM1 knock-out cells leads to 25% higher resistance to short-term hypotonic environment and rapid cell swelling. In contrast, overexpression of NM1 in wild type cells leads to an additional 30% reduction of their survival. We have shown that NM1 has a direct functional role in the cytoplasm as a dynamic linker between the cell membrane and the underlying cytoskeleton, regulating the degree of effective plasma membrane tension. PMID:27480647

  11. Nuclear myosin I regulates cell membrane tension

    PubMed Central

    Venit, Tomáš; Kalendová, Alžběta; Petr, Martin; Dzijak, Rastislav; Pastorek, Lukáš; Rohožková, Jana; Malohlava, Jakub; Hozák, Pavel

    2016-01-01

    Plasma membrane tension is an important feature that determines the cell shape and influences processes such as cell motility, spreading, endocytosis and exocytosis. Unconventional class 1 myosins are potent regulators of plasma membrane tension because they physically link the plasma membrane with adjacent cytoskeleton. We identified nuclear myosin 1 (NM1) - a putative nuclear isoform of myosin 1c (Myo1c) - as a new player in the field. Although having specific nuclear functions, NM1 localizes predominantly to the plasma membrane. Deletion of NM1 causes more than a 50% increase in the elasticity of the plasma membrane around the actin cytoskeleton as measured by atomic force microscopy. This higher elasticity of NM1 knock-out cells leads to 25% higher resistance to short-term hypotonic environment and rapid cell swelling. In contrast, overexpression of NM1 in wild type cells leads to an additional 30% reduction of their survival. We have shown that NM1 has a direct functional role in the cytoplasm as a dynamic linker between the cell membrane and the underlying cytoskeleton, regulating the degree of effective plasma membrane tension. PMID:27480647

  12. Calcium Induced Regulation of Skeletal Troponin — Computational Insights from Molecular Dynamics Simulations

    PubMed Central

    Genchev, Georgi Z.; Kobayashi, Tomoyoshi; Lu, Hui

    2013-01-01

    The interaction between calcium and the regulatory site(s) of striated muscle regulatory protein troponin switches on and off muscle contraction. In skeletal troponin binding of calcium to sites I and II of the TnC subunit results in a set of structural changes in the troponin complex, displaces tropomyosin along the actin filament and allows myosin-actin interaction to produce mechanical force. In this study, we used molecular dynamics simulations to characterize the calcium dependent dynamics of the fast skeletal troponin molecule and its TnC subunit in the calcium saturated and depleted states. We focused on the N-lobe and on describing the atomic level events that take place subsequent to removal of the calcium ion from the regulatory sites I and II. A main structural event - a closure of the A/B helix hydrophobic pocket results from the integrated effect of the following conformational changes: the breakage of H-bond interactions between the backbone nitrogen atoms of the residues at positions 2, 9 and sidechain oxygen atoms of the residue at position 12 (N2-OE12/N9-OE12) in sites I and II; expansion of sites I and II and increased site II N-terminal end-segment flexibility; strengthening of the β-sheet scaffold; and the subsequent re-packing of the N-lobe hydrophobic residues. Additionally, the calcium release allows the N-lobe to rotate relative to the rest of the Tn molecule. Based on the findings presented herein we propose a novel model of skeletal thin filament regulation. PMID:23554884

  13. Motility initiation in herring sperm is regulated by reverse sodium-calcium exchange

    PubMed Central

    Vines, Carol A.; Yoshida, Kaoru; Griffin, Frederick J.; Pillai, Murali C.; Morisawa, Masaaki; Yanagimachi, Ryuzo; Cherr, Gary N.

    2002-01-01

    Sperm of the Pacific herring, Clupea pallasi, are unique in that they are immotile upon spawning in the environment. Herring sperm have evolved to remain motionless for up to several days after spawning, yet are still capable of fertilizing eggs. An egg chorion ligand termed “sperm motility initiation factor” (SMIF) induces motility in herring sperm and is required for fertilization. In this study, we show that SMIF induces calcium influx, sodium efflux, and a membrane depolarization in herring sperm. Sperm motility initiation by SMIF depended on decreased extracellular sodium (<350 mM) and could be induced in the absence of SMIF in very low sodium seawater. Motility initiation depended on ≥ 1 mM extracellular calcium. Calcium influx caused by SMIF involved both the opening of voltage-gated calcium channels and reverse sodium–calcium (Na+/Ca2+) exchange. Membrane depolarization was slightly inhibited by a calcium channel blocker and markedly inhibited by a Na+/Ca2+ exchange inhibitor. Sodium efflux caused by SMIF-initiated motility was observed when using both extracellular and intracellular sodium probes. A Na+/Ca2+ exchange antigen was shown to be present on the surface of the sperm, primarily over the midpiece, by using an antibody to the canine Na+/Ca2+ exchanger. This antibody recognized a 120-kDa protein that comigrated with the canine myocyte Na+/Ca2+ exchanger. Sperm of Pacific herring are now shown to use reverse Na+/Ca2+ exchange in motility initiation. This mechanism of regulation of motility initiation may have evolved for both maintenance of immotility after spawning as well as ligand-induced motility initiation. PMID:11842223

  14. Characterization of a calcium/calmodulin-regulated SR/CAMTA gene family during tomato fruit development and ripening

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is well established that calcium treatment delays fruit ripening and senescence. However, the underlying molecular mechanisms remain unclear. Previous studies have shown that calcium/calmodulin-regulated SR/CAMTA genes are important for modulation of disease resistance, cold sensitivity and wound...

  15. Bone Is a Major Target of PTH/PTHrP Receptor Signaling in Regulation of Fetal Blood Calcium Homeostasis

    PubMed Central

    Hirai, Takao; Kobayashi, Tatsuya; Nishimori, Shigeki; Karaplis, Andrew C.; Goltzman, David

    2015-01-01

    The blood calcium concentration during fetal life is tightly regulated within a narrow range by highly interactive homeostatic mechanisms that include transport of calcium across the placenta and fluxes in and out of bone; the mechanisms of this regulation are poorly understood. Our findings that endochondral bone-specific PTH/PTHrP receptor (PPR) knockout (KO) mice showed significant reduction of fetal blood calcium concentration compared with that of control littermates at embryonic day 18.5 led us to focus on bone as a possibly major determinant of fetal calcium homeostasis. We found that the fetal calcium concentration of Runx2 KO mice was significantly higher than that of control littermates, suggesting that calcium flux into bone had a considerable influence on the circulating calcium concentration. Moreover, Runx2:PTH double mutant fetuses showed calcium levels similar to those of Runx2 KO mice, suggesting that part of the fetal hypocalcemia in PTH KO mice was caused by the increment of the mineralized bone mass allowed by the formation of osteoblasts. Finally, Rank:PTH double mutant mice had a blood calcium concentration even lower than that of the either Rank KO or PTH KO mice alone at embryonic day 18.5. These observations in our genetic models suggest that PTH/PTHrP receptor signaling in bones has a significant role of the regulation of fetal blood calcium concentration and that both placental transport and osteoclast activation contribute to PTH's hypercalcemic action. They also show that PTH-independent deposition of calcium in bone is the major controller of fetal blood calcium level. PMID:26052897

  16. Bone Is a Major Target of PTH/PTHrP Receptor Signaling in Regulation of Fetal Blood Calcium Homeostasis.

    PubMed

    Hirai, Takao; Kobayashi, Tatsuya; Nishimori, Shigeki; Karaplis, Andrew C; Goltzman, David; Kronenberg, Henry M

    2015-08-01

    The blood calcium concentration during fetal life is tightly regulated within a narrow range by highly interactive homeostatic mechanisms that include transport of calcium across the placenta and fluxes in and out of bone; the mechanisms of this regulation are poorly understood. Our findings that endochondral bone-specific PTH/PTHrP receptor (PPR) knockout (KO) mice showed significant reduction of fetal blood calcium concentration compared with that of control littermates at embryonic day 18.5 led us to focus on bone as a possibly major determinant of fetal calcium homeostasis. We found that the fetal calcium concentration of Runx2 KO mice was significantly higher than that of control littermates, suggesting that calcium flux into bone had a considerable influence on the circulating calcium concentration. Moreover, Runx2:PTH double mutant fetuses showed calcium levels similar to those of Runx2 KO mice, suggesting that part of the fetal hypocalcemia in PTH KO mice was caused by the increment of the mineralized bone mass allowed by the formation of osteoblasts. Finally, Rank:PTH double mutant mice had a blood calcium concentration even lower than that of the either Rank KO or PTH KO mice alone at embryonic day 18.5. These observations in our genetic models suggest that PTH/PTHrP receptor signaling in bones has a significant role of the regulation of fetal blood calcium concentration and that both placental transport and osteoclast activation contribute to PTH's hypercalcemic action. They also show that PTH-independent deposition of calcium in bone is the major controller of fetal blood calcium level. PMID:26052897

  17. Interactions between calcium and phosphorus in the regulation of the production of fibroblast growth factor 23 in vivo

    PubMed Central

    Quinn, Stephen J.; Thomsen, Alex R. B.; Pang, Jian L.; Kantham, Lakshmi; Bräuner-Osborne, Hans; Pollak, Martin; Goltzman, David

    2013-01-01

    Calcium and phosphorus homeostasis are highly interrelated and share common regulatory hormones, including FGF23. However, little is known about calcium's role in the regulation of FGF23. We sought to investigate the regulatory roles of calcium and phosphorus in FGF23 production using genetic mouse models with targeted inactivation of PTH (PTH KO) or both PTH and the calcium-sensing receptor (CaSR; PTH-CaSR DKO). In wild-type, PTH KO, and PTH-CaSR DKO mice, elevation of either serum calcium or phosphorus by intraperitoneal injection increased serum FGF23 levels. In PTH KO and PTH-CaSR DKO mice, however, increases in serum phosphorus by dietary manipulation were accompanied by severe hypocalcemia, which appeared to blunt stimulation of FGF23 release. Increases in dietary phosphorus in PTH-CaSR DKO mice markedly decreased serum 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] despite no change in FGF23, suggesting direct regulation of 1,25(OH)2D3 synthesis by serum phosphorus. Calcium-mediated increases in serum FGF23 required a threshold level of serum phosphorus of about 5 mg/dl. Analogously, phosphorus-elicited increases in FGF23 were markedly blunted if serum calcium was less than 8 mg/dl. The best correlation between calcium and phosphorus and serum FGF23 was found between FGF23 and the calcium × phosphorus product. Since calcium stimulated FGF23 production in the PTH-CaSR DKO mice, this effect cannot be mediated by the full-length CaSR. Thus the regulation of FGF23 by both calcium and phosphorus appears to be fundamentally important in coordinating the serum levels of both mineral ions and ensuring that the calcium × phosphorus product remains within a physiological range. PMID:23233539

  18. Focal adhesion kinases and calcium/calmodulin-dependent protein kinases regulate protein tyrosine phosphorylation in stallion sperm.

    PubMed

    González-Fernández, Lauro; Macías-García, Beatriz; Loux, Shavahn C; Varner, Dickson D; Hinrichs, Katrin

    2013-06-01

    Protein tyrosine phosphorylation (PY) is a hallmark of sperm capacitation. In stallion sperm, calcium inhibits PY at pH <7.8, mediated by calmodulin. To explore the mechanism of that inhibition, we incubated stallion sperm in media without added calcium, with calcium, or with calcium plus the calmodulin inhibitor W-7 (Ca/W-7 treatment). Treatment with inhibitors of calcium/calmodulin-dependent kinases, protein kinase A (PRKA), or Src family kinases suppressed the PY induced by the absence of added calcium, but not that induced by the Ca/W-7 treatment, indicating that PY in the absence of added calcium occurred via the canonical PRKA pathway, but that PY in the Ca/W-7 treatment did not. This suggested that when calmodulin was inhibited, calcium stimulated PY via a noncanonical pathway. Incubation with PF-431396, an inhibitor of focal adhesion kinases (FAKs), a family of calcium-induced protein tyrosine kinases, inhibited the PY induced both by the absence of added calcium and by the Ca/W-7 treatment. Western blotting demonstrated that both FAK family members, protein tyrosine kinases 2 and 2B, were phosphorylated in the absence of added calcium and in the Ca/W-7 treatment, but not in the presence of calcium without calmodulin inhibitors. Inhibition of FAK proteins inhibited PY in stallion sperm incubated under capacitating conditions (in the presence of calcium, bovine serum albumin, and bicarbonate at pH >7.8). These results show for the first time a role for calcium/calmodulin-dependent kinases in PRKA-dependent sperm PY; a non-PRKA-dependent pathway regulating sperm PY; and the apparent involvement of the FAK family of protein tyrosine kinases downstream in both pathways. PMID:23595906

  19. Trpm4 differentially regulates Th1 and Th2 function by altering calcium signaling and NFAT localization

    PubMed Central

    Weber, K. Scott; Hildner, Kai; Murphy, Kenneth M.; Allen, Paul M.

    2010-01-01

    T helper cell subsets have unique calcium (Ca2+) signals when activated with identical stimuli. The regulation of these Ca2+ signals and their correlation to the biological function of each T cell subset remains unclear. Trpm4 is a Ca2+-activated cation channel that we found is expressed at higher levels in Th2 cells compared to Th1 cells. Inhibition of Trpm4 expression increased Ca2+ influx and oscillatory levels in Th2 cells and decreased influx and oscillations in Th1 cells. This inhibition of Trpm4 expression also significantly altered T cell cytokine production and motility. Our experiments revealed that decreasing Trpm4 levels divergently regulates nuclear localization of NFATc1. Consistent with this, gene profiling did not show Trpm4 dependent transcriptional regulation and T-bet and GATA-3 levels remain identical. Thus, Trpm4 is expressed at different levels on T helper cells and plays a distinctive role in T cell function by differentially regulating Ca2+ signaling and NFATc1 localization. PMID:20656926

  20. Phospholipase C and D regulation of Src, calcium release and membrane fusion during Xenopus laevis development.

    PubMed

    Stith, Bradley J

    2015-05-15

    This review emphasizes how lipids regulate membrane fusion and the proteins involved in three developmental stages: oocyte maturation to the fertilizable egg, fertilization and during first cleavage. Decades of work show that phosphatidic acid (PA) releases intracellular calcium, and recent work shows that the lipid can activate Src tyrosine kinase or phospholipase C during Xenopus fertilization. Numerous reports are summarized to show three levels of increase in lipid second messengers inositol 1,4,5-trisphosphate and sn 1,2-diacylglycerol (DAG) during the three different developmental stages. In addition, possible roles for PA, ceramide, lysophosphatidylcholine, plasmalogens, phosphatidylinositol 4-phosphate, phosphatidylinositol 5-phosphate, phosphatidylinositol 4,5-bisphosphate, membrane microdomains (rafts) and phosphatidylinositol 3,4,5-trisphosphate in regulation of membrane fusion (acrosome reaction, sperm-egg fusion, cortical granule exocytosis), inositol 1,4,5-trisphosphate receptors, and calcium release are discussed. The role of six lipases involved in generating putative lipid second messengers during fertilization is also discussed: phospholipase D, autotaxin, lipin1, sphingomyelinase, phospholipase C, and phospholipase A2. More specifically, proteins involved in developmental events and their regulation through lipid binding to SH3, SH4, PH, PX, or C2 protein domains is emphasized. New models are presented for PA activation of Src (through SH3, SH4 and a unique domain), that this may be why the SH2 domain of PLCγ is not required for Xenopus fertilization, PA activation of phospholipase C, a role for PA during the calcium wave after fertilization, and that calcium/calmodulin may be responsible for the loss of Src from rafts after fertilization. Also discussed is that the large DAG increase during fertilization derives from phospholipase D production of PA and lipin dephosphorylation to DAG. PMID:25748412

  1. Phospholipase C and D regulation of Src, calcium release and membrane fusion during Xenopus laevis development

    PubMed Central

    Stith, Bradley J.

    2015-01-01

    This review emphasizes how lipids regulate membrane fusion and the proteins involved in three developmental stages: oocyte maturation to the fertilizable egg, fertilization and during first cleavage. Decades of work show that phosphatidic acid (PA) releases intracellular calcium, and recent work shows that the lipid can activate Src tyrosine kinase or phospholipase C during Xenopus fertilization. Numerous reports are summarized to show three levels of increase in lipid second messengers inositol 1,4,5-trisphosphate and sn 1,2-diacylglycerol (DAG) during the three different developmental stages. In addition, possible roles for PA, ceramide, lysophosphatidylcholine, plasmalogens, phosphatidylinositol 4-phosphate, phosphatidylinositol 5-phosphate, phosphatidylinositol 4,5-bisphosphate, membrane microdomains (rafts) and phosphatidylinositol 3,4,5-trisphosphate in regulation of membrane fusion (acrosome reaction, sperm-egg fusion, cortical granule exocytosis), inositol 1,4,5-trisphosphate receptors, and calcium release are discussed. The role of six lipases involved in generating putative lipid second messengers during fertilization is also discussed: phospholipase D, autotaxin, lipin1, sphingomyelinase, phospholipase C, and phospholipase A2. More specifically, proteins involved in developmental events and their regulation through lipid binding to SH3, SH4, PH, PX, or C2 protein domains is emphasized. New models are presented for PA activation of Src (through SH3, SH4 and a unique domain), that this may be why the SH2 domain of PLCγ is not required for Xenopus fertilization, PA activation of phospholipase C, a role for PA during the calcium wave after fertilization, and that calcium/calmodulin may be responsible for the loss of Src from rafts after fertilization. Also discussed is that the large DAG increase during fertilization derives from phospholipase D production of PA and lipin dephosphorylation to DAG. PMID:25748412

  2. Death-Associated Protein Kinase Activity Is Regulated by Coupled Calcium/Calmodulin Binding to Two Distinct Sites.

    PubMed

    Simon, Bertrand; Huart, Anne-Sophie; Temmerman, Koen; Vahokoski, Juha; Mertens, Haydyn D T; Komadina, Dana; Hoffmann, Jan-Erik; Yumerefendi, Hayretin; Svergun, Dmitri I; Kursula, Petri; Schultz, Carsten; McCarthy, Andrew A; Hart, Darren J; Wilmanns, Matthias

    2016-06-01

    The regulation of many protein kinases by binding to calcium/calmodulin connects two principal mechanisms in signaling processes: protein phosphorylation and responses to dose- and time-dependent calcium signals. We used the calcium/calmodulin-dependent members of the death-associated protein kinase (DAPK) family to investigate the role of a basic DAPK signature loop near the kinase active site. In DAPK2, this loop comprises a novel dimerization-regulated calcium/calmodulin-binding site, in addition to a well-established calcium/calmodulin site in the C-terminal autoregulatory domain. Unexpectedly, impairment of the basic loop interaction site completely abolishes calcium/calmodulin binding and DAPK2 activity is reduced to a residual level, indicative of coupled binding to the two sites. This contrasts with the generally accepted view that kinase calcium/calmodulin interactions are autonomous of the kinase catalytic domain. Our data establish an intricate model of multi-step kinase activation and expand our understanding of how calcium binding connects with other mechanisms involved in kinase activity regulation. PMID:27133022

  3. The Plasma Membrane Ca2+ ATPase and the Plasma Membrane Sodium Calcium Exchanger Cooperate in the Regulation of Cell Calcium

    PubMed Central

    Brini, Marisa; Carafoli, Ernesto

    2011-01-01

    Calcium is an ambivalent signal: it is essential for the correct functioning of cell life, but may also become dangerous to it. The plasma membrane Ca2+ ATPase (PMCA) and the plasma membrane Na+/Ca2+ exchanger (NCX) are the two mechanisms responsible for Ca2+ extrusion. The NCX has low Ca2+ affinity but high capacity for Ca2+ transport, whereas the PMCA has a high Ca2+ affinity but low transport capacity for it. Thus, traditionally, the PMCA pump has been attributed a housekeeping role in maintaining cytosolic Ca2+, and the NCX the dynamic role of counteracting large cytosolic Ca2+ variations (especially in excitable cells). This view of the roles of the two Ca2+ extrusion systems has been recently revised, as the specific functional properties of the numerous PMCA isoforms and splicing variants suggests that they may have evolved to cover both the basal Ca2+ regulation (in the 100 nM range) and the Ca2+ transients generated by cell stimulation (in the μM range). PMID:21421919

  4. Fission yeast homolog of neuronal calcium sensor-1 (Ncs1p) regulates sporulation and confers calcium tolerance.

    PubMed

    Hamasaki-Katagiri, Nobuko; Molchanova, Tatiana; Takeda, Kazuyo; Ames, James B

    2004-03-26

    The neuronal calcium sensor (NCS) proteins (e.g. recoverin, neurocalcins, and frequenin) are expressed at highest levels in excitable cells, and some of them regulate desensitization of G protein-coupled receptors. Here we present NMR analysis and genetic functional studies of an NCS homolog in fission yeast (Ncs1p). Ncs1p binds three Ca2+ ions at saturation with an apparent affinity of 2 microm and Hill coefficient of 1.9. Analysis of NMR and fluorescence spectra of Ncs1p revealed significant Ca2+-induced protein conformational changes indicative of a Ca2+-myristoyl switch. The amino-terminal myristoyl group is sequestered inside a hydrophobic cavity of the Ca2+-free protein and becomes solvent-exposed in the Ca2+-bound protein. Subcellular fractionation experiments showed that myristoylation and Ca2+ binding by Ncs1p are essential for its translocation from cytoplasm to membranes. The ncs1 deletion mutant (ncs1Delta) showed two distinct phenotypes: nutrition-insensitive sexual development and a growth defect at high levels of extracellular Ca2+ (0.1 m CaCl(2)). Analysis of Ncs1p mutants lacking myristoylation (Ncs1p(G2A)) or deficient in Ca2+ binding (Ncs1p(E84Q/E120Q/E168Q)) revealed that Ca2+ binding was essential for both phenotypes, while myristoylation was less critical. Exogenous cAMP, a key regulator for sexual development, suppressed conjugation and sporulation of ncs1Delta, suggesting involvement of Ncs1p in the adenylate cyclase pathway turned on by the glucose-sensing G protein-coupled receptor Git3p. Starvation-independent sexual development of ncs1Delta was also complemented by retinal recoverin, which controls Ca2+-regulated desensitization of rhodopsin. In contrast, the Ca2+-intolerance of ncs1Delta was not affected by cAMP or recoverin, suggesting that the two ncs1Delta phenotypes are mechanistically independent. We propose that Schizosaccharomyces pombe Ncs1p negatively regulates sporulation perhaps by controlling Ca2+-dependent desensitization

  5. Hyperoside regulates the level of thymic stromal lymphopoietin through intracellular calcium signalling.

    PubMed

    Han, Na-Ra; Go, Ji-Hyun; Kim, Hyung-Min; Jeong, Hyun-Ja

    2014-07-01

    Hyperoside (HYP) is the principle active component of Crataegus pinnatifida. Thymic stromal lymphopoietin (TSLP) plays a vital role in the pathogenesis of allergic reactions. Here, we investigated how HYP regulates the levels of TSLP in a human mast cell line, HMC-1 cells. We analyzed the levels of TSLP by treatment with HYP in phorbol myristate acetate plus calcium ionophore A23187-stimulated HMC-1 cells with ELISA and a polymerase chain reaction analysis. We also analyzed the pathway that HYP regulates TSLP by measuring the level of fluorescent intracellular calcium and using a Western blot analysis. HYP decreased the level of intracellular calcium in stimulated HMC-1 cells. It also significantly decreased the production and mRNA expression of TSLP in stimulated HMC-1 cells. It significantly decreased the levels of receptor-interacting protein 2 and active caspase-1 in stimulated HMC-1 cells. HYP significantly decreased the translocation of NF-κB into the nucleus and degradation of IκBα in the cytoplasm in stimulated HMC-1 cells. Furthermore, it significantly decreased the production and mRNA expression of interleukin-1β and interleukin-6 in stimulated HMC-1 cells. Taken together, our findings establish HYP as a potential agent for the treatment of allergic reactions. PMID:24338918

  6. Regulation of Angiogenic Functions by Angiopoietins through Calcium-Dependent Signaling Pathways

    PubMed Central

    Pafumi, Irene; Favia, Annarita; Gambara, Guido; Papacci, Francesca; Ziparo, Elio; Palombi, Fioretta; Filippini, Antonio

    2015-01-01

    Angiopoietins are vascular factors essential for blood vessel assembly and correct organization and maturation. This study describes a novel calcium-dependent machinery activated through Angiopoietin-1/2-Tie receptor system in HUVECs monolayer. Both cytokines were found to elicit intracellular calcium mobilization. Targeting intracellular Ca2+ signaling, antagonizing IP3 with 2-APB or cADPR with 8Br-cADPR, was found to modulate in vitro angiogenic responses to Angiopoietins in a specific way. 2-APB and 8Br-cADPR impaired the phosphorylation of AKT and FAK induced by Ang-1 and Ang-2. On the other hand, phosphorylation of ERK1/2 and p38, as well as cell proliferation, was not affected by either inhibitor. The ability of ECs to migrate following Angs stimulation, evaluated by “scratch assay,” was reduced by either 2-APB or 8Br-cADPR following Ang-2 stimulation and only slightly affected by 2-APB in cells stimulated with Ang-1. These results identify a novel calcium-dependent machinery involved in the complex interplay regulating angiogenic processes showing that IP3- and cADPR-induced Ca2+ release specifically regulates distinct Angs-mediated angiogenic steps. PMID:26146638

  7. IGF-1 induces IP3 -dependent calcium signal involved in the regulation of myostatin gene expression mediated by NFAT during myoblast differentiation.

    PubMed

    Valdés, Juan A; Flores, Sylvia; Fuentes, Eduardo N; Osorio-Fuentealba, Cesar; Jaimovich, Enrique; Molina, Alfredo

    2013-07-01

    Skeletal muscle differentiation is a complex and highly regulated process characterized by cell cycle arrest, which is associated with morphological changes including myoblast alignment, elongation, and fusion into multinucleated myotubes. This is a balanced process dynamically coordinated by positive and negative signals such as the insulin-like growth factor I (IGF-1) and myostatin (MSTN), respectively. In this study, we report that the stimulation of skeletal myoblasts during differentiation with IGF-1 induces a rapid and transient calcium increase from intracellular stores, which are principally mediated through the phospholipase C gamma (PLC γ)/inositol 1,4,5-triphosphate (IP3 )-dependent signaling pathways. This response was completely blocked when myoblasts were incubated with LY294002 or transfected with the dominant-negative p110 gamma, suggesting a fundamental role of phosphatidylinositol 3-kinase (PI3K) in PLCγ activation. Additionally, we show that calcium released via IP3 and induced by IGF-1 stimulates NFAT-dependent gene transcription and nuclear translocation of the GFP-labeled NFATc3 isoform. This activation was independent of extracellular calcium influx and calcium release mediated by ryanodine receptor (RyR). Finally, we examined mstn mRNA levels and mstn promoter activity in myoblasts stimulated with IGF-1. We found a significant increase in mRNA contents and in reporter activity, which was inhibited by cyclosporin A, 11R-VIVIT, and by inhibitors of the PI3Kγ, PLCγ, and IP3 receptor. Our results strongly suggest that IGF-1 regulates myostatin transcription through the activation of the NFAT transcription factor in an IP3 /calcium-dependent manner. This is the first study to demonstrate a role of calcium-dependent signaling pathways in the mRNA expression of myostatin. PMID:23255067

  8. Calcium-Oxidant Signaling Network Regulates AMP-activated Protein Kinase (AMPK) Activation upon Matrix Deprivation*

    PubMed Central

    Sundararaman, Ananthalakshmy; Amirtham, Usha; Rangarajan, Annapoorni

    2016-01-01

    The AMP-activated protein kinase (AMPK) has recently been implicated in anoikis resistance. However, the molecular mechanisms that activate AMPK upon matrix detachment remain unexplored. In this study, we show that AMPK activation is a rapid and sustained phenomenon upon matrix deprivation, whereas re-attachment to the matrix leads to its dephosphorylation and inactivation. Because matrix detachment leads to loss of integrin signaling, we investigated whether integrin signaling negatively regulates AMPK activation. However, modulation of focal adhesion kinase or Src, the major downstream components of integrin signaling, failed to cause a corresponding change in AMPK signaling. Further investigations revealed that the upstream AMPK kinases liver kinase B1 (LKB1) and Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) contribute to AMPK activation upon detachment. In LKB1-deficient cells, we found AMPK activation to be predominantly dependent on CaMKKβ. We observed no change in ATP levels under detached conditions at early time points suggesting that rapid AMPK activation upon detachment was not triggered by energy stress. We demonstrate that matrix deprivation leads to a spike in intracellular calcium as well as oxidant signaling, and both these intracellular messengers contribute to rapid AMPK activation upon detachment. We further show that endoplasmic reticulum calcium release-induced store-operated calcium entry contributes to intracellular calcium increase, leading to reactive oxygen species production, and AMPK activation. We additionally show that the LKB1/CaMKK-AMPK axis and intracellular calcium levels play a critical role in anchorage-independent cancer sphere formation. Thus, the Ca2+/reactive oxygen species-triggered LKB1/CaMKK-AMPK signaling cascade may provide a quick, adaptable switch to promote survival of metastasizing cancer cells. PMID:27226623

  9. Regulation of gamma T-cell antigen receptor expression by intracellular calcium in acute lymphoblastic leukemia cell line DND41.

    PubMed

    Peralta-Zaragoza, O; Martínez-Valdez, H; Madrid-Marina, V

    1996-01-01

    The calcium ionophore, ionomycin, promotes an increase of intracellular calcium and regulates mRNA expression of gamma/delta-TcR gene in human T lymphocytes. The mechanism of this regulation is not yet clear. Thus, the regulation by intracellular calcium requires elucidation. We studied the gamma-TcR gene expression in acute lymphoblastic leukemia cell line DND41 (CD4- CD8-) by Northern blot and flow cytometric analysis. The mRNA levels of gamma-TcR increased by ionomycin, anti-CD3, and with TPA. TPA had an antagonistic effect to both ionomycin and anti-CD3. Also, TPA inhibits the increased intracellular calcium promoted by ionomycin but not the increase promoted by anti-CD3 and ionomycin. Our results suggest that intracellular calcium induces mRNA and protein expression of gamma-TcR chain. This effect is antagonized by protein kinase C-activation. Thus, we conclude that the target cells of the differential regulation on gamma-TcR mRNA expression by intracellular calcium modulators are the CD4- CD8- cells, and this is due to cytosolic calcium mobilization. PMID:8854386

  10. Activity-dependent regulation of calcium and ribosomes in the chick cochlear nucleus.

    PubMed

    Call, C L; Hyson, R L

    2016-03-01

    Cochlea removal results in the death of 20-30% of neurons in the chick cochlear nucleus, nucleus magnocellularis (NM). Two potentially cytotoxic events, a dramatic rise in intracellular calcium concentration ([Ca(2+)]i) and a decline in the integrity of ribosomes are observed within 1h of deafferentation. Glutamatergic input from the auditory nerve has been shown to preserve NM neuron health by activating metabotropic glutamate receptors (mGluRs), maintaining both normal [Ca(2+)]i and ribosomal integrity. One interpretation of these results is that a common mGluR-activated signaling cascade is required for the maintenance of both [Ca(2+)]i and ribosomal integrity. This could happen if both responses are influenced directly by a common messenger, or if the loss of mGluR activation causes changes in one component that secondarily causes changes in the other. The present studies tested this common-mediator hypothesis in slice preparations by examining activity-dependent regulation of [Ca(2+)]i and ribosomes in the same tissue after selectively blocking group I mGluRs (1-Aminoindan-1,5-dicarboxylic acid (AIDA)) or group II mGluRs (LY 341495) during unilateral auditory nerve stimulation. Changes in [Ca(2+)]i of NM neurons were measured using fura-2 ratiometric calcium imaging and the tissue was subsequently processed for Y10B immunoreactivity (Y10B-ir), an antibody that recognizes a ribosomal epitope. The group I mGluR antagonist blocked the activity-dependent regulation of both [Ca(2+)]i and Y10B-ir, but the group II antagonist blocked only the activity-dependent regulation of Y10B-ir. That is, even when group II receptors were blocked, stimulation continued to maintain low [Ca(2+)]i, but it did not maintain Y10B-ir. These results suggest a dissociation in how calcium and ribosomes are regulated in NM neurons and that ribosomes can be regulated through a mechanism that is independent of calcium regulation. PMID:26739326

  11. An N-terminal nuclear localization sequence but not the calmodulin-binding domain mediates nuclear localization of nucleomorphin, a protein that regulates nuclear number in Dictyostelium.

    PubMed

    Myre, Michael A; O'Day, Danton H

    2005-06-24

    Nucleomorphin is a novel nuclear calmodulin (CaM)-binding protein (CaMBP) containing an extensive DEED (glu/asp repeat) domain that regulates nuclear number. GFP-constructs of the 38 kDa NumA1 isoform localize as intranuclear patches adjacent to the inner nuclear membrane. The translocation of CaMBPs into nuclei has previously been shown by others to be mediated by both classic nuclear localization sequences (NLSs) and CaM-binding domains (CaMBDs). Here we show that NumA1 possesses a CaMBD (171EDVSRFIKGKLLQKQQKIYKDLERF195) containing both calcium-dependent-binding motifs and an IQ-like motif for calcium-independent binding. GFP-constructs containing only NumA1 residues 1-129, lacking the DEED and CaMBDs, still localized as patches at the internal periphery of nuclei thus ruling out a direct role for the CaMBD in nuclear import. These constructs contained the amino acid residues 48KKSYQDPEIIAHSRPRK64 that include both a putative bipartite and classical NLS. GFP-bipartite NLS constructs localized uniformly within nuclei but not as patches. As with previous work, removal of the DEED domain resulted in highly multinucleate cells. However as shown here, multinuclearity only occurred when the NLS was present allowing the protein to enter nuclei. Site-directed mutation analysis in which the NLS was changed to 48EF49 abolished the stability of the GFP fusion at the protein but not RNA level preventing subcellular analyses. Cells transfected with the 48EF49 construct exhibited slowed growth when compared to parental AX3 cells and other GFP-NumA1 deletion mutants. In addition to identifying an NLS that is sufficient for nuclear translocation of nucleomorphin and ruling out CaM-binding in this event, this work shows that the nuclear localization of NumA1 is crucial to its ability to regulate nuclear number in Dictyostelium. PMID:15896312

  12. Calcium Regulation of Hemorrhagic Fever Virus Budding: Mechanistic Implications for Host-Oriented Therapeutic Intervention.

    PubMed

    Han, Ziying; Madara, Jonathan J; Herbert, Andrew; Prugar, Laura I; Ruthel, Gordon; Lu, Jianhong; Liu, Yuliang; Liu, Wenbo; Liu, Xiaohong; Wrobel, Jay E; Reitz, Allen B; Dye, John M; Harty, Ronald N; Freedman, Bruce D

    2015-10-01

    Hemorrhagic fever viruses, including the filoviruses (Ebola and Marburg) and arenaviruses (Lassa and Junín viruses), are serious human pathogens for which there are currently no FDA approved therapeutics or vaccines. Importantly, transmission of these viruses, and specifically late steps of budding, critically depend upon host cell machinery. Consequently, strategies which target these mechanisms represent potential targets for broad spectrum host oriented therapeutics. An important cellular signal implicated previously in EBOV budding is calcium. Indeed, host cell calcium signals are increasingly being recognized to play a role in steps of entry, replication, and transmission for a range of viruses, but if and how filoviruses and arenaviruses mobilize calcium and the precise stage of virus transmission regulated by calcium have not been defined. Here we demonstrate that expression of matrix proteins from both filoviruses and arenaviruses triggers an increase in host cytoplasmic Ca2+ concentration by a mechanism that requires host Orai1 channels. Furthermore, we demonstrate that Orai1 regulates both VLP and infectious filovirus and arenavirus production and spread. Notably, suppression of the protein that triggers Orai activation (Stromal Interaction Molecule 1, STIM1) and genetic inactivation or pharmacological blockade of Orai1 channels inhibits VLP and infectious virus egress. These findings are highly significant as they expand our understanding of host mechanisms that may broadly control enveloped RNA virus budding, and they establish Orai and STIM1 as novel targets for broad-spectrum host-oriented therapeutics to combat these emerging BSL-4 pathogens and potentially other enveloped RNA viruses that bud via similar mechanisms. PMID:26513362

  13. Calcium Regulation of Hemorrhagic Fever Virus Budding: Mechanistic Implications for Host-Oriented Therapeutic Intervention

    PubMed Central

    Han, Ziying; Madara, Jonathan J.; Herbert, Andrew; Prugar, Laura I.; Ruthel, Gordon; Lu, Jianhong; Liu, Yuliang; Liu, Wenbo; Liu, Xiaohong; Wrobel, Jay E.; Reitz, Allen B.; Dye, John M.; Harty, Ronald N.; Freedman, Bruce D.

    2015-01-01

    Hemorrhagic fever viruses, including the filoviruses (Ebola and Marburg) and arenaviruses (Lassa and Junín viruses), are serious human pathogens for which there are currently no FDA approved therapeutics or vaccines. Importantly, transmission of these viruses, and specifically late steps of budding, critically depend upon host cell machinery. Consequently, strategies which target these mechanisms represent potential targets for broad spectrum host oriented therapeutics. An important cellular signal implicated previously in EBOV budding is calcium. Indeed, host cell calcium signals are increasingly being recognized to play a role in steps of entry, replication, and transmission for a range of viruses, but if and how filoviruses and arenaviruses mobilize calcium and the precise stage of virus transmission regulated by calcium have not been defined. Here we demonstrate that expression of matrix proteins from both filoviruses and arenaviruses triggers an increase in host cytoplasmic Ca2+ concentration by a mechanism that requires host Orai1 channels. Furthermore, we demonstrate that Orai1 regulates both VLP and infectious filovirus and arenavirus production and spread. Notably, suppression of the protein that triggers Orai activation (Stromal Interaction Molecule 1, STIM1) and genetic inactivation or pharmacological blockade of Orai1 channels inhibits VLP and infectious virus egress. These findings are highly significant as they expand our understanding of host mechanisms that may broadly control enveloped RNA virus budding, and they establish Orai and STIM1 as novel targets for broad-spectrum host-oriented therapeutics to combat these emerging BSL-4 pathogens and potentially other enveloped RNA viruses that bud via similar mechanisms. PMID:26513362

  14. CASK regulates CaMKII autophosphorylation in neuronal growth, calcium signaling, and learning

    PubMed Central

    Gillespie, John M.; Hodge, James J. L.

    2013-01-01

    Calcium (Ca2+)/calmodulin (CaM)-dependent kinase II (CaMKII) activity plays a fundamental role in learning and memory. A key feature of CaMKII in memory formation is its ability to be regulated by autophosphorylation, which switches its activity on and off during synaptic plasticity. The synaptic scaffolding protein CASK (calcium (Ca2+)/calmodulin (CaM) associated serine kinase) is also important for learning and memory, as mutations in CASK result in intellectual disability and neurological defects in humans. We show that in Drosophila larvae, CASK interacts with CaMKII to control neuronal growth and calcium signaling. Furthermore, deletion of the CaMK-like and L27 domains of CASK (CASK β null) or expression of overactive CaMKII (T287D) produced similar effects on synaptic growth and Ca2+ signaling. CASK overexpression rescues the effects of CaMKII overactivity, consistent with the notion that CASK and CaMKII act in a common pathway that controls these neuronal processes. The reduction in Ca2+ signaling observed in the CASK β null mutant caused a decrease in vesicle trafficking at synapses. In addition, the decrease in Ca2+ signaling in CASK mutants was associated with an increase in Ether-à-go-go (EAG) potassium (K+) channel localization to synapses. Reducing EAG restored the decrease in Ca2+ signaling observed in CASK mutants to the level of wildtype, suggesting that CASK regulates Ca2+ signaling via EAG. CASK knockdown reduced both appetitive associative learning and odor evoked Ca2+ responses in Drosophila mushroom bodies, which are the learning centers of Drosophila. Expression of human CASK in Drosophila rescued the effect of CASK deletion on the activity state of CaMKII, suggesting that human CASK may also regulate CaMKII autophosphorylation. PMID:24062638

  15. Calmodulin effects on steroids-regulated plasma membrane calcium pump activity.

    PubMed

    Zylinska, Ludmila; Kowalska, Iwona; Ferenc, Bozena

    2009-03-01

    It is now generally accepted that non-genomic steroids action precedes their genomic effects by modulation of intracellular signaling pathways within seconds after application. Ca(2+) is a very potent and ubiquitous ion in all cells, and its concentration is precisely regulated. The most sensitive on Ca(2+) increase is ATP-consuming plasma membrane calcium pump (PMCA). The enzyme is coded by four genes, but isoforms diversity was detected in excitable and non-excitable cells. It is the only ion pump stimulated directly by calmodulin (CaM). We examined the role of PMCA isoforms composition and CaM effect in regulation of Ca(2+) uptake by estradiol, dehydroepiandrosterone (DHEA), pregnenolone (PREG), and their sulfates in a concentration range from 10(-9) to 10(-6) M, using the membranes from rat cortical synaptosomes, differentiated PC12 cells, and human erythrocytes. In excitable membranes with full set of PMCAs steroids apparently increased Ca(2+) uptake, although to a variable extent. In most of the cases, CaM decreased transport by 30-40% below controls. Erythrocyte PMCA was regulated by the steroids somewhat differently than excitable cells. CaM strongly increased the potency for Ca(2+) extrusion in membranes incubated with 17-beta-estradiol and PREG. Our results indicated that steroids may sufficiently control cytoplasmic calcium concentration within physiological and therapeutic range. The response depended on the cell type, PMCA isoforms expression profile, CaM presence, and the steroids structure. PMID:19226536

  16. Hyphal Orientation of Candida albicans Is Regulated by a Calcium-Dependent Mechanism

    PubMed Central

    Brand, Alexandra; Shanks, Scott; Duncan, Vanessa M.S.; Yang, Meng; Mackenzie, Kevin; Gow, Neil A.R.

    2007-01-01

    Summary Eukaryotic cells from fungal hyphae to neurites that grow by polarized extension must coordinate cell growth and cell orientation to enable them to exhibit growth tropisms and to respond to relevant environmental cues. Such cells generally maintain a tip-high Ca2+ cytoplasmic gradient, which is correlated with their ability to exhibit polarized tip growth and to respond to growth-directing extracellular signals [1–5]. In yeast and other fungi, the polarisome, exocyst, Arp2/3, and Spitzenkörper protein complexes collectively orchestrate tip growth and cell polarity, but it is not clear whether these molecular complexes also regulate cell orientation or whether they are influenced by cytoplasmic Ca2+ gradients. Hyphae of the human pathogenic fungus Candida albicans reorient their growth axis in response to underlying surface topography (thigmotropism) [6] and imposed electric fields (galvanotropism) [7]. The establishment and maintenance of directional growth in relation to these environmental cues was Ca2+ dependent. Tropisms were attenuated in media containing low Ca2+, or calcium-channel blockers, and in mutants where calcium channels or elements of the calcium signaling pathway were deleted. Therefore galvanotropism and thigmotropism may both be mediated by localized Ca2+ influx at sites of polarized growth via Ca2+ channels that are activated by appropriate environmental signals. PMID:17275302

  17. Calcium participates in feedback regulation of the oscillating ROP1 Rho GTPase in pollen tubes

    PubMed Central

    Yan, An; Xu, Guanshui; Yang, Zhen-Biao

    2009-01-01

    Biological oscillation occurs at various levels, from cellular signaling to organismal behaviors. Mathematical modeling has allowed a quantitative understanding of slow oscillators requiring changes in gene expression (e.g., circadian rhythms), but few theoretical studies have focused on the rapid oscillation of cellular signaling. The tobacco pollen tube, which exhibits growth bursts every 80 s or so, is an excellent system for investigating signaling oscillation. Pollen tube growth is controlled by a tip-localized ROP1 GTPase, whose activity oscillates in a phase about 90 degrees ahead of growth. We constructed a mathematical model of ROP1 activity oscillation consisting of interlinking positive and negative feedback loops involving F-actin and calcium, ROP1-signaling targets that oscillate in a phase about 20 degrees and 110 degrees behind ROP1 activity, respectively. The model simulates the observed changes in ROP1 activity caused by F-actin disruption and predicts a role for calcium in the negative feedback regulation of the ROP1 activity. Our experimental data strongly support this role of calcium in tip growth. Thus, our findings provide insight into the mechanism of pollen tube growth and the oscillation of cellular signaling. PMID:19955439

  18. The calcium-sensing receptor as a regulator of cellular fate in normal and pathological conditions.

    PubMed

    Diez-Fraile, A; Lammens, T; Benoit, Y; D'Herde, K G M A

    2013-02-01

    The calcium-sensing receptor (CaSR) belongs to the evolutionarily conserved family of plasma membrane G protein-coupled receptors (GPCRs). Early studies identified an essential role for the CaSR in systemic calcium homeostasis through its ability to sense small changes in circulating calcium concentration and to couple this information to intracellular signaling pathways that influence parathyroid hormone secretion. However, the presence of CaSR protein in tissues is not directly involved in regulating mineral ion homeostasis points to a role for the CaSR in other cellular functions including the control of cellular proliferation, differentiation and apoptosis. This position at the crossroads of cellular fate designates the CaSR as an interesting study subject is likely to be involved in a variety of previously unconsidered human pathologies, including cancer, atherosclerosis and Alzheimer's disease. Here, we will review the recent discoveries regarding the relevance of CaSR signaling in development and disease. Furthermore, we will discuss the rational for developing and using CaSR-based therapeutics. PMID:23228129

  19. Atypical calcium regulation of the PKD2-L1 polycystin ion channel

    PubMed Central

    DeCaen, Paul G; Liu, Xiaowen; Abiria, Sunday; Clapham, David E

    2016-01-01

    Native PKD2-L1 channel subunits are present in primary cilia and other restricted cellular spaces. Here we investigate the mechanism for the channel's unusual regulation by external calcium, and rationalize this behavior to its specialized function. We report that the human PKD2-L1 selectivity filter is partially selective to calcium ions (Ca2+) moving into the cell, but blocked by high internal Ca2+concentrations, a unique feature of this transient receptor potential (TRP) channel family member. Surprisingly, we find that the C-terminal EF-hands and coiled-coil domains do not contribute to PKD2-L1 Ca2+-induced potentiation and inactivation. We propose a model in which prolonged channel activity results in calcium accumulation, triggering outward-moving Ca2+ ions to block PKD2-L1 in a high-affinity interaction with the innermost acidic residue (D523) of the selectivity filter and subsequent long-term channel inactivation. This response rectifies Ca2+ flow, enabling Ca2+ to enter but not leave small compartments such as the cilium. DOI: http://dx.doi.org/10.7554/eLife.13413.001 PMID:27348301

  20. Atypical calcium regulation of the PKD2-L1 polycystin ion channel.

    PubMed

    DeCaen, Paul G; Liu, Xiaowen; Abiria, Sunday; Clapham, David E

    2016-01-01

    Native PKD2-L1 channel subunits are present in primary cilia and other restricted cellular spaces. Here we investigate the mechanism for the channel's unusual regulation by external calcium, and rationalize this behavior to its specialized function. We report that the human PKD2-L1 selectivity filter is partially selective to calcium ions (Ca(2+)) moving into the cell, but blocked by high internal Ca(2+)concentrations, a unique feature of this transient receptor potential (TRP) channel family member. Surprisingly, we find that the C-terminal EF-hands and coiled-coil domains do not contribute to PKD2-L1 Ca(2+)-induced potentiation and inactivation. We propose a model in which prolonged channel activity results in calcium accumulation, triggering outward-moving Ca(2+) ions to block PKD2-L1 in a high-affinity interaction with the innermost acidic residue (D523) of the selectivity filter and subsequent long-term channel inactivation. This response rectifies Ca(2+) flow, enabling Ca(2+) to enter but not leave small compartments such as the cilium. PMID:27348301

  1. Regulation of nuclear radiation exposures in India.

    PubMed

    Mishra, U C

    2004-01-01

    India has a long-term program of wide spread applications of nuclear radiations and radioactive sources for peaceful applications in medicine, industry, agriculture and research and is already having several thousand places in the country where such sources are being routinely used. These places are mostly outside the Department of Atomic Energy (DAE) installations. DAE supplies such sources. The most important application of nuclear energy in DAE is in electricity generation through nuclear power plants. Fourteen such plants are operating and many new plants are at various stages of construction. In view of the above mentioned wide spread applications, Indian parliament through an Act, called Atomic Energy Act, 1964 created an autonomous body called Atomic Energy Regulatory Board (AERB) with comprehensive authority and powers. This Board issues codes, guides, manuals, etc., to regulate such installations so as to ensure safe use of such sources and personnel engaged in such installations and environment receives radiation exposures within the upper bounds prescribed by them. Periodic reports are submitted to AERB to demonstrate compliance of its directives. Health, Safety and Environment Group of Bhabha Atomic Research Centres, Mumbai carries out necessary surveillance and monitoring of all installations of the DAE on a routine basis and also periodic inspections of other installations using radiation sources. Some of the nuclear fuel cycle plants like nuclear power plants and fuel reprocessing involve large radioactive source inventories and have potential of accidental release of radioactivity into the environment, an Environmental Surveillance Laboratory (ESL) is set up at each such site much before the facility goes into operation. These ESL's collect baseline data and monitor the environment throughout the life of the facilities including the decommissioning stage. The data is provided to AERB and is available to members of the public. In addition, a multi

  2. Oxidative Stress in the Hypothalamus: the Importance of Calcium Signaling and Mitochondrial ROS in Body Weight Regulation

    PubMed Central

    Gyengesi, Erika; Paxinos, George; Andrews, Zane B

    2012-01-01

    A considerable amount of evidence shows that reactive oxygen species (ROS) in the mammalian brain are directly responsible for cell and tissue function and dysfunction. Excessive reactive oxygen species contribute to various conditions including inflammation, diabetes mellitus, neurodegenerative diseases, tumor formation, and mental disorders such as depression. Increased intracellular calcium levels have toxic roles leading to cell death. However, the exact connection between reactive oxygen production and high calcium stress is not yet fully understood. In this review, we focus on the role of reactive oxygen species and calcium stress in hypothalamic arcuate neurons controlling feeding. We revisit the role of NPY and POMC neurons in the regulation of appetite and energy homeostasis, and consider how ROS and intracellular calcium levels affect these neurons. These novel insights give a new direction to research on hypothalamic mechanisms regulating energy homeostasis and may offer novel treatment strategies for obesity and type-2 diabetes. PMID:23730258

  3. Forskolin Regulates L-Type Calcium Channel through Interaction between Actinin 4 and β3 Subunit in Osteoblasts

    PubMed Central

    Guo, Lin; Hei, Hongya; Tian, Lulu; Peng, Wen; Cai, Hui

    2015-01-01

    Voltage-dependent L-type calcium channels that permit cellular calcium influx are essential in calcium-mediated modulation of cellular signaling. Although the regulation of voltage-dependent L-type calcium channels is linked to many factors including cAMP-dependent protein kinase A (PKA) activity and actin cytoskeleton, little is known about the detailed mechanisms underlying the regulation in osteoblasts. Our present study investigated the modulation of L-type calcium channel activities through the effects of forskolin on actin reorganization and on its functional interaction with actin binding protein actinin 4. The results showed that forskolin did not significantly affect the trafficking of pore forming α1c subunit and its interaction with actin binding protein actinin 4, whereas it significantly increased the expression of β3 subunit and its interaction with actinin 4 in osteoblast cells as assessed by co-immunoprecipitation, pull-down assay, and immunostaining. Further mapping showed that the ABD and EF domains of actinin 4 were interaction sites. This interaction is independent of PKA phosphorylation. Knockdown of actinin 4 significantly decreased the activities of L-type calcium channels. Our study revealed a new aspect of the mechanisms by which the forskolin activation of adenylyl cyclase - cAMP cascade regulates the L-type calcium channel in osteoblast cells, besides the PKA mediated phosphorylation of the channel subunits. These data provide insight into the important role of interconnection among adenylyl cyclase, cAMP, PKA, the actin cytoskeleton, and the channel proteins in the regulation of voltage-dependent L-type calcium channels in osteoblast cells. PMID:25902045

  4. Calcium and Calcineurin-NFAT Signaling Regulate Granulocyte-Monocyte Progenitor Cell Cycle via Flt3-L

    PubMed Central

    Fric, Jan; Lim, Clarice XF; Mertes, Alexandra; Lee, Bernett TK; Viganò, Elena; Chen, Jinmiao; Zolezzi, Francesca; Poidinger, Michael; Larbi, Anis; Strobl, Herbert; Zelante, Teresa; Ricciardi-Castagnoli, Paola

    2014-01-01

    Abstract Maintenance of myeloid progenitor cells is controlled by complex regulatory mechanisms and is orchestrated by multiple different transcription factors. Here, we report that the activation of the transcription factor nuclear factor of activated T cells (NFAT) by calcium-sensing protein calcineurin inhibits the proliferation of myeloid granulocyte–monocyte progenitors (GMPs). Myeloid progenitor subtypes exhibit variable sensitivity to induced Ca2+ entry and consequently display differential engagement of the calcineurin-NFAT pathway. This study shows that inhibition of the calcineurin-NFAT pathway enhances the proliferation of GMPs both in vitro and in vivo and demonstrates that calcineurin-NFAT signaling in GMPs is initiated by Flt3-L. Inhibition of the calcineurin-NFAT pathway modified expression of the cell cycle regulation genes Cdk4, Cdk6, and Cdkn1a (p21), thus enabling rapid cell cycle progression specifically in GMPs. NFAT inhibitor drugs are extensively used in the clinic to restrict the pathological activation of lymphoid cells, and our data reveal for the first time that these therapies also exert potent effects on maintenance of the myeloid cell compartment through specific regulation of GMP proliferation. Stem Cells 2014;32:3232–3244 PMID:25100642

  5. The regulation of sarco(endo)plasmic reticulum calcium-ATPases (SERCA).

    PubMed

    Stammers, Andrew N; Susser, Shanel E; Hamm, Naomi C; Hlynsky, Michael W; Kimber, Dustin E; Kehler, D Scott; Duhamel, Todd A

    2015-10-01

    The sarco(endo)plasmic reticulum calcium ATPase (SERCA) is responsible for transporting calcium (Ca(2+)) from the cytosol into the lumen of the sarcoplasmic reticulum (SR) following muscular contraction. The Ca(2+) sequestering activity of SERCA facilitates muscular relaxation in both cardiac and skeletal muscle. There are more than 10 distinct isoforms of SERCA expressed in different tissues. SERCA2a is the primary isoform expressed in cardiac tissue, whereas SERCA1a is the predominant isoform expressed in fast-twitch skeletal muscle. The Ca(2+) sequestering activity of SERCA is regulated at the level of protein content and is further modified by the endogenous proteins phospholamban (PLN) and sarcolipin (SLN). Additionally, several novel mechanisms, including post-translational modifications and microRNAs (miRNAs) are emerging as integral regulators of Ca(2+) transport activity. These regulatory mechanisms are clinically relevant, as dysregulated SERCA function has been implicated in the pathology of several disease states, including heart failure. Currently, several clinical trials are underway that utilize novel therapeutic approaches to restore SERCA2a activity in humans. The purpose of this review is to examine the regulatory mechanisms of the SERCA pump, with a particular emphasis on the influence of exercise in preventing the pathological conditions associated with impaired SERCA function. PMID:25730320

  6. TRPC6 is the endothelial calcium channel that regulates leukocyte transendothelial migration during the inflammatory response.

    PubMed

    Weber, Evan W; Han, Fei; Tauseef, Mohammad; Birnbaumer, Lutz; Mehta, Dolly; Muller, William A

    2015-10-19

    Leukocyte transendothelial migration (TEM) is a tightly regulated, multistep process that is critical to the inflammatory response. A transient increase in endothelial cytosolic free calcium ion concentration (↑[Ca(2+)]i) is required for TEM. However, the mechanism by which endothelial ↑[Ca(2+)]i regulates TEM and the channels mediating this ↑[Ca(2+)]i are unknown. Buffering ↑[Ca(2+)]i in endothelial cells does not affect leukocyte adhesion or locomotion but selectively blocks TEM, suggesting a role for ↑[Ca(2+)]i specifically for this step. Transient receptor potential canonical 6 (TRPC6), a Ca(2+) channel expressed in endothelial cells, colocalizes with platelet/endothelial cell adhesion molecule-1 (PECAM) to surround leukocytes during TEM and clusters when endothelial PECAM is engaged. Expression of dominant-negative TRPC6 or shRNA knockdown in endothelial cells arrests neutrophils apically over the junction, similar to when PECAM is blocked. Selectively activating endothelial TRPC6 rescues TEM during an ongoing PECAM blockade, indicating that TRPC6 functions downstream of PECAM. Furthermore, endothelial TRPC6 is required for trafficking of lateral border recycling compartment membrane, which facilitates TEM. Finally, mice lacking TRPC6 in the nonmyeloid compartment (i.e., endothelium) exhibit a profound defect in neutrophil TEM with no effect on leukocyte trafficking. Our findings identify endothelial TRPC6 as the calcium channel mediating the ↑[Ca(2+)]i required for TEM at a step downstream of PECAM homophilic interactions. PMID:26392222

  7. TRPC6 is the endothelial calcium channel that regulates leukocyte transendothelial migration during the inflammatory response

    PubMed Central

    Weber, Evan W.; Han, Fei; Tauseef, Mohammad; Birnbaumer, Lutz; Mehta, Dolly

    2015-01-01

    Leukocyte transendothelial migration (TEM) is a tightly regulated, multistep process that is critical to the inflammatory response. A transient increase in endothelial cytosolic free calcium ion concentration (↑[Ca2+]i) is required for TEM. However, the mechanism by which endothelial ↑[Ca2+]i regulates TEM and the channels mediating this ↑[Ca2+]i are unknown. Buffering ↑[Ca2+]i in endothelial cells does not affect leukocyte adhesion or locomotion but selectively blocks TEM, suggesting a role for ↑[Ca2+]i specifically for this step. Transient receptor potential canonical 6 (TRPC6), a Ca2+ channel expressed in endothelial cells, colocalizes with platelet/endothelial cell adhesion molecule-1 (PECAM) to surround leukocytes during TEM and clusters when endothelial PECAM is engaged. Expression of dominant-negative TRPC6 or shRNA knockdown in endothelial cells arrests neutrophils apically over the junction, similar to when PECAM is blocked. Selectively activating endothelial TRPC6 rescues TEM during an ongoing PECAM blockade, indicating that TRPC6 functions downstream of PECAM. Furthermore, endothelial TRPC6 is required for trafficking of lateral border recycling compartment membrane, which facilitates TEM. Finally, mice lacking TRPC6 in the nonmyeloid compartment (i.e., endothelium) exhibit a profound defect in neutrophil TEM with no effect on leukocyte trafficking. Our findings identify endothelial TRPC6 as the calcium channel mediating the ↑[Ca2+]i required for TEM at a step downstream of PECAM homophilic interactions. PMID:26392222

  8. TRPM7 Regulates Cell Adhesion by Controlling the Calcium-dependent Protease Calpain*S

    PubMed Central

    Su, Li-Ting; Agapito, Maria A.; Li, Mingjiang; Simonson, William T. N.; Huttenlocher, Anna; Habas, Raymond; Yue, Lixia; Runnels, Loren W.

    2011-01-01

    m-Calpain is a protease implicated in the control of cell adhesion through focal adhesion disassembly. The mechanism by which the enzyme is spatially and temporally controlled is not well understood, particularly because the dependence of calpain on calcium exceeds the submicromolar concentrations normally observed in cells. Here we show that the channel kinase TRPM7 localizes to peripheral adhesion complexes with m-calpain, where it regulates cell adhesion by controlling the activity of the protease. Our research revealed that overexpression of TRPM7 in cells caused cell rounding with a concomitant loss of cell adhesion that is dependent upon the channel of the protein but not its kinase activities. Knockdown of m-calpain blocked TRPM7-induced cell rounding and cell detachment. Silencing of TRPM7 by RNA interference, however, strengthened cell adhesion and increased the number of peripheral adhesion complexes in the cells. Together, our results suggest that the ion channel TRPM7 regulates cell adhesion through m-calpain by mediating the local influx of calcium into peripheral adhesion complexes. PMID:16436382

  9. Phospho-regulation and nucleocytoplasmic trafficking of CrzA in response to calcium and alkaline-pH stress in Aspergillus nidulans.

    PubMed

    Hernández-Ortiz, Patricia; Espeso, Eduardo A

    2013-08-01

    Tolerance to abiotic stresses by microorganisms require of appropriate signalling and regulatory pathways. Calcineurin phosphatases mediate calcium-dependent signalling pathways which are widely distributed among phylogeny. In Saccharomyces cerevisiae, calcineurin mediates the post-translational modification of downstream effectors, most of them transcription factors, being the best-characterized calcineurin-regulated zinc-finger factor 1, Crz1p. Here we study the signalling process of CrzA, a filamentous fungal Crz orthologue, in response to calcium and ambient-pH alkalinization. In Aspergillus nidulans resting cells CrzA locates in the cytoplasm being excluded from nuclei. CrzA is a phospho-protein and upon calcium, manganese or alkaline-pH stresses, accumulates in nuclei in a calcineurin-dependent manner. Functional analysis of CrzA defined the presence of a nuclear-export and two nuclear-localization signals as well as a PSINVE sequence that constitutes the major calcineurin-docking domain. First 450 amino acids of CrzA contain these functional motifs and in this region is where phosphorylated residues locate. Different phosphorylation steps are identified in CrzA and activities of casein kinase 1 homologue, CkiA, and of glycogen synthase kinase-3β, identified for the first time here as GskA, are involved. The phospho-signalling process and nucleocytoplasmic trafficking of CrzA shows similarities to those described in yeast for Crz1p homologues and of NFATs in mammals. PMID:23772954

  10. Calcium regulates independently ciliary beat and cell contraction in Paramecium cells.

    PubMed

    Iwadate, Yoshiaki; Nakaoka, Yasuo

    2008-08-01

    Intracellular Ca(2+) concentration is a well-known signal regulator for various physiological activities. In many cases, Ca(2+) simultaneously regulates individual functions in single cells. How can Ca(2+) regulate these functions independently? In Paramecium cells, the contractile cytoskeletal network and cilia are located close to each other near the cell surface. Cell body contraction, ciliary reversal, and rises in ciliary beat frequency are regulated by intracellular Ca(2+) concentration. However, they are not always triggered simultaneously. We injected caged calcium into Paramecium caudatum cells and continuously applied weak ultraviolet light to the cells to slowly increase intracellular Ca(2+) concentration. The cell bodies began to contract just after the start of ultraviolet light application, and the degree of contraction increased gradually thereafter. On the other hand, cilia began to reverse 1.4s after the start of ultraviolet application and reversed completely within 100ms. Ciliary beat frequency in the reverse direction was significantly higher than in the normal direction. These results indicate that cell body contraction is regulated by Ca(2+) in a dose-dependent manner in living P. caudatum. On the other hand, ciliary reversal and rise in ciliary beat frequency are triggered by Ca(2+) in an all-or-none manner. PMID:18179819

  11. Neuronal MHC Class I Expression Is Regulated by Activity Driven Calcium Signaling

    PubMed Central

    Peng, Yaqin; Liu, Jiane; Miao, Fengqin; Zhang, Jianqiong

    2015-01-01

    MHC class I (MHC-I) molecules are important components of the immune system. Recently MHC-I have been reported to also play important roles in brain development and synaptic plasticity. In this study, we examine the molecular mechanism(s) underlying activity-dependent MHC-I expression using hippocampal neurons. Here we report that neuronal expression level of MHC-I is dynamically regulated during hippocampal development after birth in vivo. Kainic acid (KA) treatment significantly increases the expression of MHC-I in cultured hippocampal neurons in vitro, suggesting that MHC-I expression is regulated by neuronal activity. In addition, KA stimulation decreased the expression of pre- and post-synaptic proteins. This down-regulation is prevented by addition of an MHC-I antibody to KA treated neurons. Further studies demonstrate that calcium-dependent protein kinase C (PKC) is important in relaying KA simulation activation signals to up-regulated MHC-I expression. This signaling cascade relies on activation of the MAPK pathway, which leads to increased phosphorylation of CREB and NF-κB p65 while also enhancing the expression of IRF-1. Together, these results suggest that expression of MHC-I in hippocampal neurons is driven by Ca2+ regulated activation of the MAPK signaling transduction cascade. PMID:26263390

  12. Calcium-dependent immediate-early gene induction in lymphocytes is negatively regulated by p21Ha-ras.

    PubMed Central

    Chen, C Y; Forman, L W; Faller, D V

    1996-01-01

    The induction of immediate-early (IE) response genes, such as egr-1, c-fos, and c-jun, occurs rapidly after the activation of T lymphocytes. The process of activation involves calcium mobilization, activation of protein kinase C (PKC), and phosphorylation of tyrosine kinases. p21(ras), a guanine nucleotide binding factor, mediates T-cell signal transduction through PKC-dependent and PKC-independent pathways. The involvement of p21(ras) in the regulation of calcium-dependent signals has been suggested through analysis of its role in the activation of NF-AT. We have investigated the inductions of the IE genes in response to calcium signals in Jurkat cells (in the presence of activated p21(ras)) and their correlated consequences. The expression of activated p21(ras) negatively regulated the induction of IE genes by calcium ionophore. This inhibition of calcium-activated IE gene induction was reversed by treatment with cyclosporin A, suggesting the involvement of calcineurin in this regulation. A later result of inhibition of this activation pathway by p21(ras) was down-regulation of the activity of the transcription factor AP-1 and subsequent coordinate reductions in IL-2 gene expression and protein production. These results suggest that p2l(ras) is an essential mediator in generating not only positive but also negative modulatory mechanisms controlling the competence of T cells in response to inductive stimulations. PMID:8887687

  13. Role of AQP2 in activation of calcium entry by hypotonicity: implications in cell volume regulation.

    PubMed

    Galizia, L; Flamenco, M P; Rivarola, V; Capurro, C; Ford, P

    2008-03-01

    We previously reported in a rat cortical collecting duct cell line (RCCD(1)) that the presence of aquaporin 2 (AQP2) in the cell membrane is critical for the rapid activation of regulatory volume decrease mechanisms (RVD) (Ford et al. Biol Cell 97: 687-697, 2005). The aim of our present work was to investigate the signaling pathway that links AQP2 to this rapid RVD activation. Since it has been previously described that hypotonic conditions induce intracellular calcium ([Ca(2+)](i)) increases in different cell types, we tested the hypothesis that AQP2 could have a role in activation of calcium entry by hypotonicity and its implication in cell volume regulation. Using a fluorescent probe technique, we studied [Ca(2+)](i) and cell volume changes in response to a hypotonic shock in WT-RCCD(1) (not expressing aquaporins) and in AQP2-RCCD(1) (transfected with AQP2) cells. We found that after a hypotonic shock only AQP2-RCCD(1) cells exhibit a substantial increase in [Ca(2+)](i). This [Ca(2+)](i) increase is strongly dependent on extracellular Ca(2+) and is partially inhibited by thapsigargin (1 muM) indicating that the rise in [Ca(2+)](i) reflects both influx from the extracellular medium and release from intracellular stores. Exposure of AQP2-RCCD(1) cells to 100 muM gadolinium reduced the increase in [Ca(2+)](i) suggesting the involvement of a mechanosensitive calcium channel. Furthermore, exposure of cells to all of the above described conditions impaired rapid RVD. We conclude that the expression of AQP2 in the cell membrane is critical to produce the increase in [Ca(2+)](i) which is necessary to activate RVD in RCCD(1) cells. PMID:18094031

  14. Analysis of Conditional Paralytic Mutants in Drosophila Sarco-Endoplasmic Reticulum Calcium ATPase Reveals Novel Mechanisms for Regulating Membrane Excitability

    PubMed Central

    Sanyal, S.; Consoulas, C.; Kuromi, H.; Basole, A.; Mukai, L.; Kidokoro, Y.; Krishnan, K. S.; Ramaswami, M.

    2005-01-01

    Individual contributions made by different calcium release and sequestration mechanisms to various aspects of excitable cell physiology are incompletely understood. SERCA, a sarco-endoplasmic reticulum calcium ATPase, being the main agent for calcium uptake into the ER, plays a central role in this process. By isolation and extensive characterization of conditional mutations in the Drosophila SERCA gene, we describe novel roles of this key protein in neuromuscular physiology and enable a genetic analysis of SERCA function. At motor nerve terminals, SERCA inhibition retards calcium sequestration and reduces the amplitude of evoked excitatory junctional currents. This suggests a direct contribution of store-derived calcium in determining the quantal content of evoked release. Conditional paralysis of SERCA mutants is also marked by prolonged neural activity-driven muscle contraction, thus reflecting the phylogenetically conserved role of SERCA in terminating contraction. Further analysis of ionic currents from mutants uncovers SERCA-dependent mechanisms regulating voltage-gated calcium channels and calcium-activated potassium channels that together control muscle excitability. Finally, our identification of dominant loss-of-function mutations in SERCA indicates novel intra- and intermolecular interactions for SERCA in vivo, overlooked by current structural models. PMID:15520268

  15. [Regulation of potential-dependant calcium channels by 5-HT1B serotonin receptors in various populations of hippocampal cells].

    PubMed

    Kononov, A V; Ivanov, S V; Zinchenko, V P

    2013-01-01

    Metabotropic serotonin receptors of 5HT1-type in brain neurons participate in regulation of such human emotional states as aggression, fear and dependence on alcohol. Activated presynaptic 5-HT1B receptors suppress the Ca2+ influx through the potential-dependent calcium channels in certain neurons. The Ca2+ influx into the cells has been measured by increase of calcium ions concentration in cytoplasm in reply to the depolarization caused by 35mM KC1. Using system of image analysis in hippocampal cells culture we found out that Ca2+-signals to depolarization oin various populations of neurons differed in form, speed and amplitude. 5HT1B receptor agonists in 86 +/- 3 % of neurons slightly suppressed the activity of potential-dependent calcium channels. Two minor cell populations (5-8 % of cells each) were found out, that strongly differed in Ca2+ signal desensitization. Calcium signal caused by depolarization in one cells population differed in characteristic delay and high rate of decay. 5HT1B receptor agonists strongly inhibited the amplitude of the Ca2+ response on KCl only in this population of neurons. The calcium signal in second cell population differed by absence desensitization and smaller amplitude which constantly increased during depolarization. 5HT 1 B receptor agonists increased the calcium response amplitude to depolarization in this population of neurons. Thus we show various sensitivity of potential-dependent calcium channels of separate neurons to 5HTB1 receptor agonist. PMID:23659057

  16. Regulation of Differentiation by Calcium-Sensing Receptor in Normal and Tumoral Developing Nervous System

    PubMed Central

    Mateo-Lozano, Silvia; García, Marta; Rodríguez-Hernández, Carlos J.; de Torres, Carmen

    2016-01-01

    During normal development of the nervous system (NS), neural progenitor cells (NPCs) produce specialized populations of neurons and glial cells upon cell fate restriction and terminal differentiation. These sequential processes require the dynamic regulation of thousands of genes. The calcium-sensing receptor (CaSR) is temporally and spatially regulated in both neurons and glial cells during development of the NS. In particular, CaSR expression and function have been shown to play a significant role during differentiation of NPCs toward the oligodendrocyte lineage and also in maturation of cerebellar granule cell precursors (GCPs). Moreover, CaSR regulates axonal and dendritic growth in both central and peripheral nervous systems (PNSs), a process necessary for proper construction of mature neuronal networks. On the other hand, several lines of evidence support a role for CaSR in promotion of cell differentiation and inhibition of proliferation in neuroblastoma, a tumor arising from precursor cells of developing PNS. Thus, among the variety of NS functions in which the CaSR participates, this mini-review focuses on its role in differentiation of normal and tumoral cells. Current knowledge of the mechanisms responsible for CaSR regulation and function in these contexts is also discussed, together with the therapeutic opportunities provided by CaSR allosteric modulators. PMID:27242543

  17. Crystal structure analysis reveals Pseudomonas PilY1 as an essential calcium-dependent regulator of bacterial surface motility

    SciTech Connect

    Orans, Jillian; Johnson, Michael D.L.; Coggan, Kimberly A.; Sperlazza, Justin R.; Heiniger, Ryan W.; Wolfgang, Matthew C.; Redinbo, Matthew R.

    2010-09-21

    Several bacterial pathogens require the 'twitching' motility produced by filamentous type IV pili (T4P) to establish and maintain human infections. Two cytoplasmic ATPases function as an oscillatory motor that powers twitching motility via cycles of pilus extension and retraction. The regulation of this motor, however, has remained a mystery. We present the 2.1 {angstrom} resolution crystal structure of the Pseudomonas aeruginosa pilus-biogenesis factor PilY1, and identify a single site on this protein required for bacterial translocation. The structure reveals a modified {beta}-propeller fold and a distinct EF-hand-like calcium-binding site conserved in pathogens with retractile T4P. We show that preventing calcium binding by PilY1 using either an exogenous calcium chelator or mutation of a single residue disrupts Pseudomonas twitching motility by eliminating surface pili. In contrast, placing a lysine in this site to mimic the charge of a bound calcium interferes with motility in the opposite manner - by producing an abundance of nonfunctional surface pili. Our data indicate that calcium binding and release by the unique loop identified in the PilY1 crystal structure controls the opposing forces of pilus extension and retraction. Thus, PilY1 is an essential, calcium-dependent regulator of bacterial twitching motility.

  18. Mechanical regulation of cardiac muscle by coupling calcium kinetics with cross-bridge cycling: a dynamic model.

    PubMed

    Landesberg, A; Sideman, S

    1994-08-01

    This study describes the regulation of mechanical activity in the intact cardiac muscle, the effects of the free calcium transients and the mechanical constraints, and emphasizes the central role of the troponin complex in regulating muscle activity. A "loose coupling" between calcium binding to troponin and cross-bridge cycling is stipulated, allowing the existence of cross bridges in the strong conformation without having bound calcium on the neighboring troponin. The model includes two feedback mechanisms: 1) a positive feedback, or cooperativity, in which the cycling cross bridges affect the affinity of troponin for calcium, and 2) a negative mechanical feedback, where the filament-sliding velocity affects cross-bridge cycling. The model simulates the reported experimental force-length and force-velocity relationships at different levels of activation. The dependence of the shortening velocity on calcium concentration, sarcomere length, internal load, and rate of cross-bridge cycling is described analytically in agreement with reported data. Furthermore, the model provides an analytic solution for Hill's equation of the force-velocity relationship and for the phenomena of unloaded shortening velocity and force deficit. The model-calculated changes in free calcium in various mechanical conditions are in good agreement with the available experimental results. PMID:8067434

  19. Crystal structure analysis reveals Pseudomonas PilY1 as an essential calcium-dependent regulator of bacterial surface motility.

    PubMed

    Orans, Jillian; Johnson, Michael D L; Coggan, Kimberly A; Sperlazza, Justin R; Heiniger, Ryan W; Wolfgang, Matthew C; Redinbo, Matthew R

    2010-01-19

    Several bacterial pathogens require the "twitching" motility produced by filamentous type IV pili (T4P) to establish and maintain human infections. Two cytoplasmic ATPases function as an oscillatory motor that powers twitching motility via cycles of pilus extension and retraction. The regulation of this motor, however, has remained a mystery. We present the 2.1 A resolution crystal structure of the Pseudomonas aeruginosa pilus-biogenesis factor PilY1, and identify a single site on this protein required for bacterial translocation. The structure reveals a modified beta-propeller fold and a distinct EF-hand-like calcium-binding site conserved in pathogens with retractile T4P. We show that preventing calcium binding by PilY1 using either an exogenous calcium chelator or mutation of a single residue disrupts Pseudomonas twitching motility by eliminating surface pili. In contrast, placing a lysine in this site to mimic the charge of a bound calcium interferes with motility in the opposite manner--by producing an abundance of nonfunctional surface pili. Our data indicate that calcium binding and release by the unique loop identified in the PilY1 crystal structure controls the opposing forces of pilus extension and retraction. Thus, PilY1 is an essential, calcium-dependent regulator of bacterial twitching motility. PMID:20080557

  20. State regulation of nuclear power and national energy policy

    SciTech Connect

    Moeller, J.W.

    1992-12-31

    In April 1983 and January 1984, the United States Supreme Court rendered two decisions that redefined the metes and bounds of federal preemption of commercial nuclear power plant regulation. In Pacific Gas & Electric Co. v. State Energy Resources Conservation and Development Commission (PG&E), the court decided that the Atomic Energy Act of 1954, as amended (the Act), did not preempt a California state law that established a moratorium on commercial nuclear power plant construction. In Silkwood v. Kerr-McGee Corporation, the Court also decided that the Act did not preempt a claim for damages under state tort law for radiological injuries suffered in a nuclear fuel facility regulated by the United States Nuclear Regulatory Commission (NRC). The two decisions redefined the extent of federal preemption, under the Act and other federal law, of nuclear plant regulation as well as the extend of state regulation of nuclear plants. In the eight years since PG&E and Silkwood, numerous other developments have eroded further the breadth of federal preemption of commercial nuclear power plant regulation. This Article explores the developments, since PG&E and Silkwood, that have expanded further the scope of state and local regulation of commercial nuclear power plants. Specifically, the Article first identifies the extent of state and local participation in nuclear power regulation provided by the Act and other federal loan relevant to commercial nuclear power. Second, it discusses in detail the PG&E and Silkwood decisions. The Article also considers the impact of seven specific developments on the legislative implementation of a national energy policy that contemplates a role for nuclear power.

  1. Inhibition of calmodulin - regulated calcium pump activity in rat brain by toxaphene

    SciTech Connect

    Trottman, C.H.; Moorthy, K.S.

    1986-03-05

    In vivo effects of toxaphene on calcium pump activity in rat brain synaptosomes was studied. Male Sprague-Dawley rats were dosed with toxaphene at 0,25,50, and 100 mg/kg/day for 3 days and sacrificed 24 h after last dose. Ca/sup 2 +/-ATPase activity and /sup 45/Ca uptake were determined in brain P/sub 2/ fraction. Toxaphene inhibited both Ca/sup 2 +/-ATPase activity and /sup 45/Ca/sup 2 +/ uptake and the inhibition was dose dependent. Both substrate and Ca/sup 2 +/ activation kinetics of Ca/sup 2 +/-ATPase indicated non-competitive type of inhibition as evidenced by decreased catalytic velocity but not enzyme-substrate affinity. The inhibited Ca/sup 2 +/-ATPase activity and Ca/sup 2 +/ uptake were restored to normal level by exogenously added calmodulin which increased both velocity and affinity. The inhibition of Ca/sup 2 +/-ATPase activity and Ca/sup 2 +/ uptake and restoration by calmodulin suggests that toxaphene may impair active calcium transport mechanisms by decreasing regulator protein calmodulin levels.

  2. A forward genetic screen reveals that calcium-dependent protein kinase 3 regulates egress in Toxoplasma.

    PubMed

    Garrison, Erin; Treeck, Moritz; Ehret, Emma; Butz, Heidi; Garbuz, Tamila; Oswald, Benji P; Settles, Matt; Boothroyd, John; Arrizabalaga, Gustavo

    2012-01-01

    Egress from the host cell is a crucial and highly regulated step in the biology of the obligate intracellular parasite, Toxoplasma gondii. Active egress depends on calcium fluxes and appears to be a crucial step in escaping the attack from the immune system and, potentially, in enabling the parasites to shuttle into appropriate cells for entry into the brain of the host. Previous genetic screens have yielded mutants defective in both ionophore-induced egress and ionophore-induced death. Using whole genome sequencing of one mutant and subsequent analysis of all mutants from these screens, we find that, remarkably, four independent mutants harbor a mis-sense mutation in the same gene, TgCDPK3, encoding a calcium-dependent protein kinase. All four mutations are predicted to alter key regions of TgCDPK3 and this is confirmed by biochemical studies of recombinant forms of each. By complementation we confirm a crucial role for TgCDPK3 in the rapid induction of parasite egress and we establish that TgCDPK3 is critical for formation of latent stages in the brains of mice. Genetic knockout of TgCDPK3 confirms a crucial role for this kinase in parasite egress and a non-essential role for it in the lytic cycle. PMID:23209419

  3. Calcium-dependent growth regulation of small cell lung cancer cells by neuropeptides.

    PubMed

    Gudermann, Thomas; Roelle, Susanne

    2006-12-01

    Approximately 15-25% of all primary cancers of the lung are classified histologically as small cell lung carcinoma (SCLC), a subtype characterized by rapid growth and a poor prognosis. Neuropeptide hormones like bombesin/gastrin-releasing peptide, bradykinin or galanin are the principal mitogenic stimuli of this tumour entity. The mitogenic signal is transmitted into the cell via heptahelical neuropeptide hormone receptors, which couple to the heterotrimeric G proteins of the Gq/11 familiy. Subsequent activation of phospholipase Cbeta (PLCbeta) entails the activation of protein kinase C and the elevation of the intracellular calcium concentration. There is mounting evidence to support the notion that calcium mobilization is the key event that initiates different mitogen-activated protein kinase cascades. Neuropeptide-dependent proliferation of SCLC cells relies on parallel activation of the Gq/11/PLCbeta/Ras/extracellular signal-regulated kinase and the c-jun N-terminal kinase pathways, while selective engagement of either signalling cascade alone results in growth arrest and differentiation or apoptotic cell death. Basic experimental research has the potential to identify and validate novel therapeutic targets located at critical points of convergence of different mitogenic signal transduction pathways. In the case of SCLC, targeting the distinct components of the Ca2+ influx pathway as well as critical Ca2+-dependent cellular effectors may be rewarding in this regard. PMID:17158754

  4. Calcium regulates the interaction of amyloid precursor protein with Homer3 protein.

    PubMed

    Kyratzi, Elli; Efthimiopoulos, Spiros

    2014-09-01

    Ca(2+) dysregulation is an important factor implicated in Alzheimer's disease pathogenesis. The mechanisms mediating the reciprocal regulation of Ca(2+) homeostasis and amyloid precursor protein (APP) metabolism, function, and protein interactions are not well known. We have previously shown that APP interacts with Homer proteins, which inhibit APP processing toward amyloid-β. In this study, we investigated the effect of Ca(2+) homeostasis alterations on APP/Homer3 interaction. Influx of extracellular Ca(2+) upon treatment of HEK293 cells with the ionophore A23187 or addition of extracellular Ca(2+) in cells starved of calcium specifically reduced APP/Homer3 but not APP/X11a interaction. Endoplasmic reticulum Ca(2+) store depletion by thapsigargin followed by store-operated calcium entry also decreased the interaction. Interestingly, application of a phospholipase C stimulator, which causes inositol 1,4,5-trisphosphate-induced endoplasmic reticulum Ca(2+) release, caused dissociation of APP/Homer3 complex. In human neuroblastoma cells, membrane depolarization also disrupted the interaction. This is the first study showing that changes in Ca(2+) homeostasis affect APP protein interactions. Our results suggest that Ca(2+) and Homers play a significant role in the development of Alzheimer's disease pathology. PMID:24792907

  5. Regulation of cytochrome P450 (CYP) genes by nuclear receptors.

    PubMed Central

    Honkakoski, P; Negishi, M

    2000-01-01

    Members of the nuclear-receptor superfamily mediate crucial physiological functions by regulating the synthesis of their target genes. Nuclear receptors are usually activated by ligand binding. Cytochrome P450 (CYP) isoforms often catalyse both formation and degradation of these ligands. CYPs also metabolize many exogenous compounds, some of which may act as activators of nuclear receptors and disruptors of endocrine and cellular homoeostasis. This review summarizes recent findings that indicate that major classes of CYP genes are selectively regulated by certain ligand-activated nuclear receptors, thus creating tightly controlled networks. PMID:10749660

  6. Red Liriope platyphylla stimulated the insulin secretion through the regulation of calcium concentration in rat insulinoma cells and animal models.

    PubMed

    Lee, Hye-Ryun; Kim, Ji-Eun; Lee, Young-Ju; Kwak, Moon-Hwa; Im, Dong-Soon; Hwang, Dae-Youn

    2013-06-01

    The aim of this study was to investigate the effects of Red L. platyphylla (RLP) on calcium and glucose levels during insulin secretion. To achieve this, alteration of insulin and calcium concentrations was measured in rat insulinoma-1 (INS-1) cells and animal models in response to RLP treatment. In INS-1 cells, maximum secretion of insulin was detected upon treatment with 200 µg/mL of RLP for 20 min. Nifedipine, an L-type calcium channel blocker, effectively inhibited insulin secretion from INS-1 cells. Regarding calcium levels, the maximum concentration of intracellular calcium in INS-1 cells was obtained by treatment with 100 µg/mL of RLP, whereas this level was reduced under conditions of 200 µg/mL of RLP. Further, RLP-treated INS-1 cells showed a higher level of intracellular calcium than that of L. platyphylla (LP), Korea White Ginseng (KWG), or Korea Red Ginseng (KRG)-treated cells. This RLP-induced increase in intracellular calcium was abrogated but not completely abolished upon treatment with 40 µM nifedipine in a dose-dependent manner. Furthermore, the insulin level was dramatically elevated upon co-treatment with high concentrations of glucose and RLP, whereas it was maintained at a low level in response to glucose and RLP co-treatment at low concentrations. In an animal experiment, the serum concentration of calcium increased or decreased upon RLP treatment according to glucose level compared to vehicle treatment. Therefore, these results suggest that insulin secretion induced by RLP treatment may be tightly correlated with calcium regulation, which suggests RLP is an excellent candidate for diabetes treatment. PMID:23825481

  7. Red Liriope platyphylla stimulated the insulin secretion through the regulation of calcium concentration in rat insulinoma cells and animal models

    PubMed Central

    Lee, Hye-Ryun; Kim, Ji-Eun; Lee, Young-Ju; Kwak, Moon-Hwa; Im, Dong-Soon

    2013-01-01

    The aim of this study was to investigate the effects of Red L. platyphylla (RLP) on calcium and glucose levels during insulin secretion. To achieve this, alteration of insulin and calcium concentrations was measured in rat insulinoma-1 (INS-1) cells and animal models in response to RLP treatment. In INS-1 cells, maximum secretion of insulin was detected upon treatment with 200 µg/mL of RLP for 20 min. Nifedipine, an L-type calcium channel blocker, effectively inhibited insulin secretion from INS-1 cells. Regarding calcium levels, the maximum concentration of intracellular calcium in INS-1 cells was obtained by treatment with 100 µg/mL of RLP, whereas this level was reduced under conditions of 200 µg/mL of RLP. Further, RLP-treated INS-1 cells showed a higher level of intracellular calcium than that of L. platyphylla (LP), Korea White Ginseng (KWG), or Korea Red Ginseng (KRG)-treated cells. This RLP-induced increase in intracellular calcium was abrogated but not completely abolished upon treatment with 40 µM nifedipine in a dose-dependent manner. Furthermore, the insulin level was dramatically elevated upon co-treatment with high concentrations of glucose and RLP, whereas it was maintained at a low level in response to glucose and RLP co-treatment at low concentrations. In an animal experiment, the serum concentration of calcium increased or decreased upon RLP treatment according to glucose level compared to vehicle treatment. Therefore, these results suggest that insulin secretion induced by RLP treatment may be tightly correlated with calcium regulation, which suggests RLP is an excellent candidate for diabetes treatment. PMID:23825481

  8. Regulation of human myometrial contractility during pregnancy and labour: are calcium homeostatic pathways important?

    PubMed

    Tribe, R M

    2001-03-01

    If we are to develop new strategies for the treatment and management of preterm and dysfunctional term labour, it is imperative that we improve current understanding of the control of human uterine activity. Despite many studies of animal pregnancy, there is a paucity of knowledge relating to the complex control of human myometrium during pregnancy. It is hypothesized that human myometrium is relatively quiescent during the majority of pregnancy and that as term approaches there is cascade of molecular events that prepare the uterus for labour. This review will consider the cellular mechanisms involved in the regulation of human myometrial activity and the modulation of these by hormonal and mechanical signals. In particular, the contribution of calcium homeostatic pathways to the control of human myometrial contractility during gestation will be discussed. Experimental Physiology (2001) 86.2, 247-254. PMID:11429641

  9. Human water, sodium, and calcium regulation during space flight and exercise

    NASA Astrophysics Data System (ADS)

    Doty, S. E.; Seagrave, R. C.

    2000-05-01

    When one is exposed to microgravity, fluid which is normally pooled in the lower extremities is redistributed headward and weight bearing bones begin to demineralize due to reduced mechanical stresses. The kidney, which is the primary regulator of body fluid volume and composition, responds to the fluid shift and bone demineralization by increasing the urinary output of water, sodium, and calcium. This research involves developing a mathematical description of how water and electrolytes are internally redistributed and exchanged with the environment during space flight. This model consequently involves kidney function and the associated endocrine system. The model agrees well with actual data, including that a low sodium diet can prevent bone demineralization. Therefore, assumptions made to develop the model are most likely valid. Additionally, various levels of activity are also considered in the model since exercise may help to eliminate some of the undesired effects of space flight such as muscle atrophy and bone demineralization.

  10. Human water, sodium, and calcium regulation during space flight and exercise

    NASA Astrophysics Data System (ADS)

    Doty, S. E.; Seagrave, R. C.

    When one is exposed to microgravity, fluid which is normally pooled in the lower extremities is redistributed headward and weight bearing bones begin to demineralize due to reduced mechanical stresses. The kidney, which is the primary regulator of body fluid volume and composition, responds to the fluid shift and bone demineralization by increasing the urinary output of water, sodium, and calcium. This research involves developing a mathematical description of how water and electrolytes are internally redistributed and exchanged with the environment during space flight. This model consequently involves kidney function and the associated endocrine system. The model agrees well with actual data, including that a low sodium diet can prevent bone demineralization. Therefore, assumptions made to develop the model are most likely valid. Additionally, various levels of activity are also considered in the model since exercise may help to eliminate some of the undesired effects of space flight such as muscle atrophy and bone demineralization.

  11. Calcium-regulated in vivo protein phosphorylation in Zea mays L. root tips

    NASA Technical Reports Server (NTRS)

    Raghothama, K. G.; Reddy, A. S.; Friedmann, M.; Poovaiah, B. W.

    1987-01-01

    Calcium dependent protein phosphorylation was studied in corn (Zea mays L.) root tips. Prior to in vivo protein phosphorylation experiments, the effect of calcium, ethyleneglycol-bis-(beta-aminoethyl ether)-N-N' -tetraacetic acid (EGTA) and calcium ionophore (A-23187) on phosphorus uptake was studied. Calcium increased phosphorus uptake, whereas EGTA and A-23187 decreased it. Consequently, phosphorus concentration in the media was adjusted so as to attain similar uptake in different treatments. Phosphoproteins were analyzed by two-dimensional gel electrophoresis. Distinct changes in phosphorylation were observed following altered calcium levels. Calcium depletion in root tips with EGTA and A-23187 decreased protein phosphorylation. However, replenishment of calcium following EGTA and ionophore pretreatment enhanced phosphorylation of proteins. Preloading of the root tips with 32P in the presence of EGTA and A-23187 followed by a ten minute calcium treatment, resulted in increased phosphorylation indicating the involvement of calcium, calcium and calmodulin-dependent kinases. Calmodulin antagonist W-7 was effective in inhibiting calcium-promoted phosphorylation. These studies suggest a physiological role for calcium-dependent phosphorylation in calcium-mediated processes in plants.

  12. Regulation of T-type calcium channel expression by sodium butyrate in prostate cancer cells.

    PubMed

    Weaver, Erika M; Zamora, Francis J; Puplampu-Dove, Yvonne A; Kiessu, Ezechielle; Hearne, Jennifer L; Martin-Caraballo, Miguel

    2015-02-15

    Several cellular mechanisms contribute to the neuroendocrine differentiation of prostate cancer cells, including exposure to sodium butyrate (NaBu), a naturally occurring salt of the short chain fatty acid n-butyric acid. NaBu belongs to a class of histone deacetylase inhibitors with potential anticancer function. T-type calcium channel expression constitutes an important route for calcium influx in tumor cells that may trigger changes in cell proliferation and differentiation. In this work we investigated the role NaBu on the differentiation of lymph node carcinoma of the prostate (LNCaP) cells and its effect on T-type Ca(2+) channel expression. NaBu stimulates the morphological and molecular differentiation of LNCaP cells. Stimulation of LNCaP cells with NaBu evokes a significant increase in the expression of the Cav3.2 T-type channel subunits. Furthermore, the increased Cav3.2 expression promotes membrane insertion of T-type Ca(2+) channels capable of generating fast inactivating Ca(2+) currents, sensitive to 100μM Ni(2+) ions. Inhibition of T-type Ca(2+) channel function reduces the outgrowth of neurite-like processes in LNCaP cells. NaBu-evoked expression of T-type Ca(2+) channels is also involved in the regulation of cell viability. Inhibition of T-type Ca(2+) channels causes a significant reduction in the viability of LNCaP cells treated with 1mM NaBu, suggesting that Ca(2+) influx via T-type channels can promote cell proliferation. However, increased expression of T-type Ca(2+) channels enhanced the cytotoxic effect of thapsigargin and paclitaxel on cell proliferation. These findings demonstrate that NaBu stimulates T-type Ca(2+) channel expression, thereby regulating both the morphological differentiation and growth of prostate cancer cells. PMID:25557765

  13. TRPC3 is the erythropoietin-regulated calcium channel in human erythroid cells.

    PubMed

    Tong, Qin; Hirschler-Laszkiewicz, Iwona; Zhang, Wenyi; Conrad, Kathleen; Neagley, David W; Barber, Dwayne L; Cheung, Joseph Y; Miller, Barbara A

    2008-04-18

    Erythropoietin (Epo) stimulates a significant increase in the intracellular calcium concentration ([Ca(2+)](i)) through activation of the murine transient receptor potential channel TRPC2, but TRPC2 is a pseudogene in humans. TRPC3 expression increases on normal human erythroid progenitors during differentiation. Here, we determined that erythropoietin regulates calcium influx through TRPC3. Epo stimulation of HEK 293T cells transfected with Epo receptor and TRPC3 resulted in a dose-dependent increase in [Ca(2+)](i), which required extracellular calcium influx. Treatment with the phospholipase C (PLC) inhibitor U-73122 or down-regulation of PLCgamma1 by RNA interference inhibited the Epo-stimulated increase in [Ca(2+)](i) in TRPC3-transfected HEK 293T cells and in primary human erythroid precursors, demonstrating a requirement for PLC. TRPC3 associated with PLCgamma, and substitution of predicted PLCgamma Src homology 2 binding sites (Y226F, Y555F, Y648F, and Y674F) on TRPC3 reduced the interaction of TRPC3 with PLCgamma and inhibited the rise in [Ca(2+)](i). Substitution of Tyr(226) alone with phenylalanine significantly reduced the Epo-stimulated increase in [Ca(2+)](i) but not the association of PLCgamma with TRPC3. PLC activation results in production of inositol 1,4,5-trisphosphate (IP(3)). To determine whether IP(3) is involved in Epo activation of TRPC3, TRPC3 mutants were prepared with substitution or deletion of COOH-terminal IP(3) receptor (IP(3)R) binding domains. In cells expressing TRPC3 with mutant IP(3)R binding sites and Epo receptor, interaction of IP(3)R with TRPC3 was abolished, and Epo-modulated increase in [Ca(2+)](i) was reduced. Our data demonstrate that Epo modulates TRPC3 activation through a PLCgamma-mediated process that requires interaction of PLCgamma and IP(3)R with TRPC3. They also show that TRPC3 Tyr(226) is critical in Epo-dependent activation of TRPC3. These data demonstrate a redundancy of TRPC channel activation mechanisms by

  14. Regulation of large conductance calcium- and voltage-activated potassium (BK) channels by S-palmitoylation.

    PubMed

    Shipston, Michael J

    2013-02-01

    BK (large conductance calcium- and voltage-activated potassium) channels are important determinants of physiological control in the nervous, endocrine and vascular systems with channel dysfunction associated with major disorders ranging from epilepsy to hypertension and obesity. Thus the mechanisms that control channel surface expression and/or activity are important determinants of their (patho)physiological function. BK channels are S-acylated (palmitoylated) at two distinct sites within the N- and C-terminus of the pore-forming α-subunit. Palmitoylation of the N-terminus controls channel trafficking and surface expression whereas palmitoylation of the C-terminal domain determines regulation of channel activity by AGC-family protein kinases. Recent studies are beginning to reveal mechanistic insights into how palmitoylation controls channel trafficking and cross-talk with phosphorylation-dependent signalling pathways. Intriguingly, each site of palmitoylation is regulated by distinct zDHHCs (palmitoyl acyltransferases) and APTs (acyl thioesterases). This supports that different mechanisms may control substrate specificity by zDHHCs and APTs even within the same target protein. As palmitoylation is dynamically regulated, this fundamental post-translational modification represents an important determinant of BK channel physiology in health and disease. PMID:23356260

  15. Movement of scallop myosin on Nitella actin filaments: regulation by calcium.

    PubMed Central

    Vale, R D; Szent-Gyorgyi, A G; Sheetz, M P

    1984-01-01

    In order to determine if Ca2+ regulates scallop myosin movement on actin, we have measured motility of scallop myosin along actin filaments using a direct visual assay. This procedure consists of covalently linking myosin to 1-micron beads and pipetting them onto a parallel array of actin filaments located on the cytoplasmic face of a Nitella internodal cell. In the absence of Ca2+, scallop myosin-coated beads exhibit no directed motion; however, in the presence of pCa2+ of greater than 5.84, these beads undergo linear translocations with average velocities of 2.0 micron/s. This Ca2+ -sensitive motility requires the presence of regulatory light chains on the scallop myosin. Removal of regulatory light chains with 10 mM EDTA produces a "desensitized" myosin, no longer sensitive to Ca2+, which moves at rates of 0.09-0.3 micron in the presence or absence of Ca2+. Readdition of regulatory light chains to preparations of desensitized myosin once again confers Ca2+-sensitive motility. The Ca2+ dependence of scallop-myosin motility shows a sharp transition, consistent with the Ca2+ activation sensitivity of the actin-activated ATPase. Furthermore, relative rates of movement of calcium-regulated myosins from various molluscan species are consistent with their respective rates of ATP hydrolysis. Thus, myosin motility along actin filaments provides a sensitive and direct assay of myosin activity and is suitable for studying myosin regulation. PMID:6238334

  16. Light-regulated root gravitropism: a role for, and characterization of, a calcium/calmodulin-dependent protein kinase homolog

    NASA Technical Reports Server (NTRS)

    Lu, Y. T.; Feldman, L. J.

    1997-01-01

    Roots of many species grow downward (orthogravitropism) only when illuminated. Previous work suggests that this is a calcium-regulated response and that both calmodulin and calcium/calmodulin-dependent kinases participate in transducing gravity and light stimuli. A genomic sequence has been obtained for a calcium/calmodulin-dependent kinase homolog (MCK1) expressed in root caps, the site of perception for both light and gravity. This homolog consists of 7265 base pairs and contains 11 exons and 10 introns. Since MCK1 is expressed constitutively in both light and dark, it is unlikely that the light directly affects MCK1 expression, though the activity of the protein may be affected by light. In cultivars showing light-regulated gravitropism, we hypothesize that MCK1, or a homolog, functions in establishing the auxin asymmetry necessary for orthogravitropism.

  17. ER-Mitochondria contact sites: A new regulator of cellular calcium flux comes into play.

    PubMed

    Krols, Michiel; Bultynck, Geert; Janssens, Sophie

    2016-08-15

    Endoplasmic reticulum (ER)-mitochondria membrane contacts are hotspots for calcium signaling. In this issue, Raturi et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201512077) show that the thioredoxin TMX1 inhibits the calcium pump SERCA2b at ER-mitochondria contact sites, thereby affecting ER-mitochondrial calcium transfer and mitochondrial bioenergetics. PMID:27528654

  18. Epigenetic Regulation of MicroRNAs Controlling CLDN14 Expression as a Mechanism for Renal Calcium Handling

    PubMed Central

    Gong, Yongfeng; Himmerkus, Nina; Plain, Allein; Bleich, Markus

    2015-01-01

    The kidney has a major role in extracellular calcium homeostasis. Multiple genetic linkage and association studies identified three tight junction genes from the kidney—claudin-14, -16, and -19—as critical for calcium imbalance diseases. Despite the compelling biologic evidence that the claudin-14/16/19 proteins form a regulated paracellular pathway for calcium reabsorption, approaches to regulate this transport pathway are largely unavailable, hindering the development of therapies to correct calcium transport abnormalities. Here, we report that treatment with histone deacetylase (HDAC) inhibitors downregulates renal CLDN14 mRNA and dramatically reduces urinary calcium excretion in mice. Furthermore, treatment of mice with HDAC inhibitors stimulated the transcription of renal microRNA-9 (miR-9) and miR-374 genes, which have been shown to repress the expression of claudin-14, the negative regulator of the paracellular pathway. With renal clearance and tubule perfusion techniques, we showed that HDAC inhibitors transiently increase the paracellular cation conductance in the thick ascending limb. Genetic ablation of claudin-14 or the use of a loop diuretic in mice abrogated HDAC inhibitor-induced hypocalciuria. The genetic mutations in the calcium-sensing receptor from patients with autosomal dominant hypocalcemia (ADH) repressed the transcription of miR-9 and miR-374 genes, and treatment with an HDAC inhibitor rescued the phenotypes of cell and animal models of ADH. Furthermore, systemic treatment of mice with antagomiRs against these miRs relieved claudin-14 gene silencing and caused an ADH-like phenotype. Together, our findings provide proof of concept for a novel therapeutic principle on the basis of epigenetic regulation of renal miRs to treat hypercalciuric diseases. PMID:25071082

  19. Regulation of calf renal 25-hydroxyvitamin D-hydroxylase activities by calcium-regulating hormones.

    PubMed

    Engstrom, G W; Goff, J P; Horst, R L; Reinhardt, T A

    1987-11-01

    Parathyroid hormone and 1,25-dihydroxyvitamin D3 had opposite effects on calf renal 25-hydroxyvitamin D3 24-, 23-, and 1 alpha-hydroxylase activities. Parathyroid hormone administration increased renal 25-hydroxyvitamin D3-1 alpha-hydroxylase activity 7-fold while 25-hydroxyvitamin D3-23- and 24-hydroxylase activities were essentially the same as controls. Administration of 1,25-dihydroxyvitamin D3 increased 25-hydroxyvitamin D3-23-hydroxylase and 24-hydroxylase activities 4-fold and decreased 25-hydroxyvitamin D3-1 alpha-hydroxylase activity to undetectable concentrations. Vitamin D deficiency increased 25-hydroxyvitamin D3-1 alpha -hydroxylase activity 13-fold, and 25-hydroxyvitamin D3-23-hydroxylase and 24-hydroxylase activities were undetectable. These results confirm previous reports with regard to control of renal 25-hydroxyvitamin D3-24-hydroxylase and 1 alpha -hydroxylase in other species and represent new findings relative to the control of 25-hydroxyvitamin D3-23-hydroxylase. Plasma P was lower and 1,25-dihydroxyvitamin D3 higher in calves treated with parathyroid hormone, and Ca and 1,25-dihydroxyvitamin D3 were lower in the vitamin D-deficient calves. 1,25-Dihydroxyvitamin D3-treated calves had higher plasma P and lower Mg than controls. Further studies using this calf model should lead to better understanding of Ca-regulating hormones control of vitamin D metabolism. PMID:3693631

  20. 10 CFR 1.43 - Office of Nuclear Reactor Regulation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... produced at facilities licensed under 10 CFR parts 50, 52, and 54; (3) Operators of such facilities; (4... 10 Energy 1 2012-01-01 2012-01-01 false Office of Nuclear Reactor Regulation. 1.43 Section 1.43 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION...

  1. 10 CFR 1.43 - Office of Nuclear Reactor Regulation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... produced at facilities licensed under 10 CFR parts 50, 52, and 54; (3) Operators of such facilities; (4... 10 Energy 1 2014-01-01 2014-01-01 false Office of Nuclear Reactor Regulation. 1.43 Section 1.43 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION...

  2. 10 CFR 1.43 - Office of Nuclear Reactor Regulation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... produced at facilities licensed under 10 CFR parts 50, 52, and 54; (3) Operators of such facilities; (4... 10 Energy 1 2011-01-01 2011-01-01 false Office of Nuclear Reactor Regulation. 1.43 Section 1.43 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION...

  3. 10 CFR 1.43 - Office of Nuclear Reactor Regulation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... produced at facilities licensed under 10 CFR parts 50, 52, and 54; (3) Operators of such facilities; (4... 10 Energy 1 2010-01-01 2010-01-01 false Office of Nuclear Reactor Regulation. 1.43 Section 1.43 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION...

  4. Calcium signals inhibition sensitizes ovarian carcinoma cells to anti-Bcl-xL strategies through Mcl-1 down-regulation.

    PubMed

    Bonnefond, Marie-Laure; Lambert, Bernard; Giffard, Florence; Abeilard, Edwige; Brotin, Emilie; Louis, Marie-Hélène; Gueye, Mor Sény; Gauduchon, Pascal; Poulain, Laurent; N'Diaye, Monique

    2015-04-01

    Ovarian carcinoma is the leading cause of death from gynecologic cancer in the developed world and is characterized by acquired chemoresistance leading to an overall 5-year survival rate of about 30 %. We previously showed that Bcl-xL and Mcl-1 cooperatively protect platinum-resistant ovarian cancer cells from apoptosis. Despite BH3-mimetics represent promising drugs to target Bcl-xL, anti-Mcl-1 strategies are still in pre-clinical studies and required new investigations. Calcium is a universal second messenger and dysregulation of calcium signal is often observed during carcinogenesis. As change in cytosolic free calcium concentration [Ca(2+)]i is known to control the fate of the cell by regulating Bcl-2 family members, we wonder if calcium signal could impact on Mcl-1 expression and if its pharmacological inhibition could be useful to sensitize ovarian carcinoma cells to anti-Bcl-xL strategies. We therefore studied the effect of different calcium signals inhibitors in ovarian carcinoma cell lines SKOV3 and IGROV1-R10 and analysed their effects on proliferation and Mcl-1 expression. We also exposed these cells to these inhibitors in combination with anti-Bcl-xL strategies (siRNA or BH3-mimetic: ABT-737). We found that calcium signaling regulates Mcl-1 through translational events and a calmodulin-mediated pathway. BAPTA-AM and calmodulin inhibitor combination with ABT-737 leads to apoptosis, a process that is reversed by Mcl-1 enforced expression. As Mcl-1 represents a crucial hurdle to the success of chemotherapy, these results could open to new area of investigation using calcium modulators to directly or indirectly target Mcl-1 and thus efficiently sensitize ovarian carcinoma cells to anti-Bcl-xL strategies. PMID:25627260

  5. Constant change: dynamic regulation of membrane transport by calcium signalling networks keeps plants in tune with their environment.

    PubMed

    Kleist, Thomas J; Luan, Sheng

    2016-03-01

    Despite substantial variation and irregularities in their environment, plants must conform to spatiotemporal demands on the molecular composition of their cytosol. Cell membranes are the major interface between organisms and their environment and the basis for controlling the contents and intracellular organization of the cell. Membrane transport proteins (MTPs) govern the flow of molecules across membranes, and their activities are closely monitored and regulated by cell signalling networks. By continuously adjusting MTP activities, plants can mitigate the effects of environmental perturbations, but effective implementation of this strategy is reliant on precise coordination among transport systems that reside in distinct cell types and membranes. Here, we examine the role of calcium signalling in the coordination of membrane transport, with an emphasis on potassium transport. Potassium is an exceptionally abundant and mobile ion in plants, and plant potassium transport has been intensively studied for decades. Classic and recent studies have underscored the importance of calcium in plant environmental responses and membrane transport regulation. In reviewing recent advances in our understanding of the coding and decoding of calcium signals, we highlight established and emerging roles of calcium signalling in coordinating membrane transport among multiple subcellular locations and distinct transport systems in plants, drawing examples from the CBL-CIPK signalling network. By synthesizing classical studies and recent findings, we aim to provide timely insights on the role of calcium signalling networks in the modulation of membrane transport and its importance in plant environmental responses. PMID:26139029

  6. The calcium response of mouse sperm flagella: role of calcium ions in the regulation of dynein activity.

    PubMed

    Lesich, Kathleen A; Kelsch, Courtney B; Ponichter, Kristen L; Dionne, Benjamin J; Dang, Loan; Lindemann, Charles B

    2012-04-01

    Triton X-100-extracted mouse sperm treated with 0.1 mM ATP and 1.0 mM Ca(2+) exhibit an extremely coiled configuration that has been previously described as a curlicue. Sperm in the curlicue configuration exhibit a monotonically curved flagellum where the shear angle of the flagellum can reach a value as high as 14 radians at the flagellar tip. We utilized this strong reaction to Ca(2+) to elucidate the mechanism of the calcium response. The disintegration of the axoneme was facilitated by the use of an extraction procedure that removed the mitochondrial sheath without eliminating the calcium response. The order of emergence of the doublet microtubule outer dense fiber complexes was observed in the presence and absence of added Ca(2+). The identity of the emergent elements was confirmed by transmission electron microscopy. Ca(2+) altered the order of emergence of internal axoneme elements to favor the appearance of the elements of the 9-1-2 side of the axoneme. These elements are propelled baseward by the action of dyneins on doublets 1 and 2. It was also possible to establish that the motive force for maintaining the curlicue configuration is dynein-based. The curlicues were relaxed by inhibition with 50 μM NaVO(3) and were reestablished by disinhibiting the vanadate with 2.5 mM catechol. PMID:22262695

  7. Calcium regulation in frog peripheral nerve by the blood-nerve barrier

    SciTech Connect

    Wadhwani, K.C.

    1986-01-01

    The objectives of this research were: (a) to investigate the characteristics of calcium transport across the perineurium and the endoneurial capillaries, and (b) to gain a better understanding of the extent of calcium homeostasis in the endoneurial space. To study the nature of calcium transport across the perineurium, the flux of radiotracer /sup 45/Ca was measured through the perineurial cylinder, isolated from the frog sciatic nerve, and through the perineurium into the nerve in situ. To study the nature of calcium transport across the endoneurial capillaries, the permeability-surface area product (PA) of /sup 45/Ca was determined as a function of the calcium concentration in the blood. To study calcium homeostasis, the calcium content of the frog sciatic nerve was determined as a function of chronic changes in plasma (Ca).

  8. Sex and age dependent effects of androgens on glutamate-induced cell death and intracellular calcium regulation in the developing hippocampus

    PubMed Central

    Zup, Susan L.; Edwards, N. Shalon; McCarthy, Margaret M.

    2014-01-01

    Hippocampal neurons must maintain control over cytosolic calcium levels, especially during development, as excitation and calcium flux is necessary for proper growth and function. But excessive calcium can lead to excitotoxic cell death. Previous work suggests that neonatal male and female hippocampal neurons regulate cytosolic calcium differently, thereby leading to differential susceptibility to excitotoxic damage. Hippocampal neurons are also exposed to gonadal hormones during development and express high levels of androgen receptors. Androgens have both neuroprotective and neurotoxic effects in adults and developing animals. The present study sought to examine the effect of androgen on cell survival after an excitatory stimulus in the developing hippocampus, and whether androgen mediated calcium regulation was the governing mechanism. We observed that glutamate did not induce robust or sexually dimorphic apoptosis in cultured hippocampal neurons at an early neonatal time point, but did five days later – only in males. Further, pretreatment with the androgen dihydrotestosterone (DHT) protected males from apoptosis during this time, but had no effect on females. Calcium imaging of sex specific cultures revealed that DHT decreased the peak of intracellular calcium induced by glutamate, but only in males. To determine a possible mechanism for this androgen neuroprotection and calcium regulation, we quantified three calcium regulatory proteins, plasma membrane calcium ATPase1 (PMCA1), sodium/calcium exchanger1 (NCX1), and the sarco/endoplasmic reticulum calcium ATPase 2 (SERCA2). Surprisingly, there was no sex difference in the level of any of the three proteins. Treatment with DHT significantly decreased PMCA1 and NCX1, but increased SERCA2 protein levels in very young animals but not at a later timepoint. Taken together, these data suggest a complex interaction of sex, hormones, calcium regulation and developmental age; however androgens acting during the first

  9. Antagonistic Regulation of Parvalbumin Expression and Mitochondrial Calcium Handling Capacity in Renal Epithelial Cells

    PubMed Central

    Henzi, Thomas; Schwaller, Beat

    2015-01-01

    Parvalbumin (PV) is a cytosolic Ca2+-binding protein acting as a slow-onset Ca2+ buffer modulating the shape of Ca2+ transients in fast-twitch muscles and a subpopulation of neurons. PV is also expressed in non-excitable cells including distal convoluted tubule (DCT) cells of the kidney, where it might act as an intracellular Ca2+ shuttle facilitating transcellular Ca2+ resorption. In excitable cells, upregulation of mitochondria in “PV-ergic” cells in PV-/- mice appears to be a general hallmark, evidenced in fast-twitch muscles and cerebellar Purkinje cells. Using Gene Chip Arrays and qRT-PCR, we identified differentially expressed genes in the DCT of PV-/- mice. With a focus on genes implicated in mitochondrial Ca2+ transport and membrane potential, uncoupling protein 2 (Ucp2), mitocalcin (Efhd1), mitochondrial calcium uptake 1 (Micu1), mitochondrial calcium uniporter (Mcu), mitochondrial calcium uniporter regulator 1 (Mcur1), cytochrome c oxidase subunit 1 (COX1), and ATP synthase subunit β (Atp5b) were found to be up-upregulated. At the protein level, COX1 was increased by 31 ± 7%, while ATP-synthase subunit β was unchanged. This suggested that these mitochondria were better suited to uphold the electrochemical potential across the mitochondrial membrane, necessary for mitochondrial Ca2+ uptake. Ectopic expression of PV in PV-negative Madin-Darby canine kidney (MDCK) cells decreased COX1 and concomitantly mitochondrial volume, while ATP synthase subunit β levels remained unaffected. Suppression of PV by shRNA in PV-expressing MDCK cells led subsequently to an increase in COX1 expression. The collapsing of the mitochondrial membrane potential by the uncoupler CCCP occurred at lower concentrations in PV-expressing MDCK cells than in control cells. In support, a reduction of the relative mitochondrial mass was observed in PV-expressing MDCK cells. Deregulation of the cytoplasmic Ca2+ buffer PV in kidney cells was counterbalanced in vivo and in vitro by

  10. Calcium-Mediated Regulation of Proton-Coupled Sodium Transport - Final Report

    SciTech Connect

    Schumaker, Karen S

    2013-10-24

    The long-term goal of our experiments was to understand mechanisms that regulate energy coupling by ion currents in plants. Activities of living organisms require chemical, mechanical, osmotic or electrical work, the energy for which is supplied by metabolism. Adenosine triphosphate (ATP) has long been recognized as the universal energy currency, with metabolism supporting the synthesis of ATP and the hydrolysis of ATP being used for the subsequent work. However, ATP is not the only energy currency in living organisms. A second and very different energy currency links metabolism to work by the movement of ions passing from one side of a membrane to the other. These ion currents play a major role in energy capture and they support a range of physiological processes from the active transport of nutrients to the spatial control of growth and development. In Arabidopsis thaliana (Arabidopsis), the activity of a plasma membrane Na+/H+ exchanger, SALT OVERLY SENSITIVE1 (SOS1), is essential for regulation of sodium ion homeostasis during plant growth in saline conditions. Mutations in SOS1 result in severely reduced seedling growth in the presence of salt compared to the growth of wild type. SOS1 is a secondary active transporter coupling movement of sodium ions out of the cell using energy stored in the transplasma membrane proton gradient, thereby preventing the build-up of toxic levels of sodium in the cytosol. SOS1 is regulated by complexes containing the SOS2 and CALCINEURIN B-LIKE10 (CBL10) or SOS3 proteins. CBL10 and SOS3 (also identified as CBL4) encode EF-hand calcium sensors that interact physically with and activate SOS2, a serine/threonine protein kinase. The CBL10/SOS2 or SOS3/SOS2 complexes then activate SOS1 Na+/H+ exchange activity. We completed our studies to understand how SOS1 activity is regulated. Specifically, we asked: (1) how does CBL10 regulate SOS1 activity? (2) What role do two putative CBL10-interacting proteins play in SOS1 regulation? (3) Are

  11. Hippuric Acid as a Significant Regulator of Supersaturation in Calcium Oxalate Lithiasis: The Physiological Evidence

    PubMed Central

    Atanassova, Stoyanka S.; Gutzow, Ivan S.

    2013-01-01

    At present, the clinical significance of existing physicochemical and biological evidence and especially the results we have obtained from our previous in vitro experiments have been analyzed, and we have come to the conclusion that hippuric acid (C6H5CONHCH2COOH) is a very active solvent of Calcium Oxalate (CaOX) in physiological solutions. Two types of experiments have been discussed: clinical laboratory analysis on the urine excretion of hippuric acid (HA) in patients with CaOX lithiasis and detailed measurements of the kinetics of the dissolution of CaOX calculi in artificial urine, containing various concentrations of HA. It turns out that the most probable value of the HA concentration in the control group is approximately ten times higher than the corresponding value in the group of the stone-formers. Our in vitro analytical measurements demonstrate even a possibility to dissolve CaOX stones in human urine, in which increased concentration of HA have been established. A conclusion can be that drowning out HA is a significant regulator of CaOX supersaturation and thus a regulation of CaOX stone formation in human urine. Discussions have arisen to use increased concentration of HA in urine both as a solubilizator of CaOX stones in the urinary tract and on the purpose of a prolonged metaphylactic treatment. PMID:24307993

  12. A STIM2 splice variant negatively regulates store-operated calcium entry

    PubMed Central

    Miederer, Anna-Maria; Alansary, Dalia; Schwär, Gertrud; Lee, Po-Hsien; Jung, Martin; Helms, Volkhard; Niemeyer, Barbara A.

    2015-01-01

    Cellular homeostasis relies upon precise regulation of Ca2+ concentration. Stromal interaction molecule (STIM) proteins regulate store-operated calcium entry (SOCE) by sensing Ca2+ concentration in the ER and forming oligomers to trigger Ca2+ entry through plasma membrane-localized Orai1 channels. Here we characterize a STIM2 splice variant, STIM2.1, which retains an additional exon within the region encoding the channel-activating domain. Expression of STIM2.1 is ubiquitous but its abundance relative to the more common STIM2.2 variant is dependent upon cell type and highest in naive T cells. STIM2.1 knockdown increases SOCE in naive CD4+ T cells, whereas knockdown of STIM2.2 decreases SOCE. Conversely, overexpression of STIM2.1, but not STIM2.2, decreases SOCE, indicating its inhibitory role. STIM2.1 interaction with Orai1 is impaired and prevents Orai1 activation, but STIM2.1 shows increased affinity towards calmodulin. Our results imply STIM2.1 as an additional player tuning Orai1 activation in vivo. PMID:25896806

  13. Cdk9 T-loop Phosphorylation is Regulated by the Calcium Signaling Pathway

    PubMed Central

    Ramakrishnan, Rajesh; Rice, Andrew P.

    2011-01-01

    Eukaryotic RNA polymerase II transcriptional elongation is a tightly regulated process and is dependent upon positive transcription elongation factor-b (P-TEFb). The core P-TEFb complex is composed of Cdk9 and Cyclin T and is essential for the expression of most protein coding genes. Cdk9 kinase function is dependent upon phosphorylation of Thr186 in its T-loop. In this study, we examined kinases and signaling pathways that influence Cdk9 T-loop phosphorylation. Using an RNAi screen in HeLa cells, we found that Cdk9 T-loop phosphorylation is regulated by Calcium/Calmodulin- dependent kinase 1D (CaMK1D). Using small molecules inhibitors in HeLa cells and primary CD4+ T lymphocytes, we found that the Ca2+ signaling pathway is required for Cdk9 T-loop phosphorylation. Inhibition of Ca2+ signaling led to dephosphorylation of Thr186 on Cdk9. In reporter plasmid assays, inhibition of the Ca2+ signaling pathway repressed the PCNA promoter and HIV-1 Tat transactivation of the HIV-1 LTR, but not HTLV-1 Tax transactivation of the HTLV-1 LTR, suggesting that perturbation of the Ca2+ pathway and reduction of Cdk9 T-loop phosphorylation inhibits transcription units that have a rigorous requirement for P-TEFb function. PMID:21448926

  14. Serotonin Regulates Calcium Homeostasis in Lactation by Epigenetic Activation of Hedgehog Signaling

    PubMed Central

    Laporta, Jimena; Keil, Kimberly P.; Weaver, Samantha R.; Cronick, Callyssa M.; Prichard, Austin P.; Crenshaw, Thomas D.; Heyne, Galen W.; Vezina, Chad M.; Lipinski, Robert J.

    2014-01-01

    Calcium homeostasis during lactation is critical for maternal and neonatal health. We previously showed that nonneuronal/peripheral serotonin [5-hydroxytryptamine (5-HT)] causes the lactating mammary gland to synthesize and secrete PTHrP in an acute fashion. Here, using a mouse model, we found that genetic inactivation of tryptophan hydroxylase 1 (Tph1), which catalyzes the rate-limiting step in peripheral 5-HT synthesis, reduced circulating and mammary PTHrP expression, osteoclast activity, and maternal circulating calcium concentrations during the transition from pregnancy to lactation. Tph1 inactivation also reduced sonic hedgehog signaling in the mammary gland during lactation. Each of these deficiencies was rescued by daily injections of 5-hydroxy-L-tryptophan (an immediate precursor of 5-HT) to Tph1-deficient dams. We used immortalized mouse embryonic fibroblasts to demonstrate that 5-HT induces PTHrP through a sonic hedgehog-dependent signal transduction mechanism. We also found that 5-HT altered DNA methylation of the Shh gene locus, leading to transcriptional initiation at an alternate start site and formation of a variant transcript in mouse embryonic fibroblasts in vitro and in mammary tissue in vivo. These results support a new paradigm of 5-HT-mediated Shh regulation involving DNA methylation remodeling and promoter switching. In addition to having immediate implications for lactation biology, identification and characterization of a novel functional regulatory relationship between nonneuronal 5-HT, hedgehog signaling, and PTHrP offers new avenues for the study of these important factors in development and disease. PMID:25192038

  15. Ryanodine receptors are involved in nuclear calcium oscillation in primary pancreatic {beta}-cells

    SciTech Connect

    Zheng, Ji; Chen, Zheng; Yin, Wenxuan; Miao, Lin; Zhou, Zhansong; Ji, Guangju

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer We found that RyRs are expressed on the nuclear envelope in single primary pancreatic {beta}-cells and isolated nuclei. Black-Right-Pointing-Pointer We showed that the pattern of glucose-induced Ca{sup 2+} oscillation in the nucleus and cytosol was similar. Black-Right-Pointing-Pointer Our results demonstrate that ryanodine-sensitive Ca{sup 2+} stores exist and have function in the pancreatic {beta}-cell nucleus. -- Abstract: Ryanodine receptors (RyRs) are mainly located on the endoplasmic reticulum (ER) and play an important role in regulating glucose-induced cytosolic Ca{sup 2+} oscillation in pancreatic {beta}-cells. However, subcellular locations and functions of RyRs on other cell organelles such as nuclear envelope are not well understood. In order to investigate the role of RyRs in nuclear Ca{sup 2+} oscillation we designed and conducted experiments in intact primary pancreatic {beta}-cells. Immunocytochemistry was used to examine the expression of RYRs on the nuclear envelope. Confocal microscopy was used to evaluate the function of RYRs on the nuclear envelope. We found that RyRs are expressed on the nuclear envelope in single primary pancreatic {beta}-cells and isolated nuclei. Laser scanning confocal microscopy studies indicated that application of glucose to the cells co-incubated with Ca{sup 2+} indicator Fluo-4 AM and cell-permeable nuclear indicator Hoechst 33342 resulted in nuclear Ca{sup 2+} oscillation. The pattern of glucose-induced Ca{sup 2+} oscillation in the nucleus and cytosol was similar. The reduction of Ca{sup 2+} oscillation amplitude by ryanodine was much greater in the nucleus though both the cytosol and the nucleus Ca{sup 2+} amplitude decreased by ryanodine. Our results suggest that functional ryanodine receptors not only exist in endoplasmic reticulum but are also expressed in nuclear envelope of pancreatic {beta}-cells.

  16. Sodium entry through endothelial store-operated calcium entry channels: regulation by Orai1

    PubMed Central

    Xu, Ningyong; Cioffi, Donna L.; Alexeyev, Mikhail; Rich, Thomas C.

    2014-01-01

    Orai1 interacts with transient receptor potential protein of the canonical subfamily (TRPC4) and contributes to calcium selectivity of the endothelial cell store-operated calcium entry current (ISOC). Orai1 silencing increases sodium permeability and decreases membrane-associated calcium, although it is not known whether Orai1 is an important determinant of cytosolic sodium transitions. We test the hypothesis that, upon activation of store-operated calcium entry channels, Orai1 is a critical determinant of cytosolic sodium transitions. Activation of store-operated calcium entry channels transiently increased cytosolic calcium and sodium, characteristic of release from an intracellular store. The sodium response occurred more abruptly and returned to baseline more rapidly than did the transient calcium rise. Extracellular choline substitution for sodium did not inhibit the response, although 2-aminoethoxydiphenyl borate and YM-58483 reduced it by ∼50%. After this transient response, cytosolic sodium continued to increase due to influx through activated store-operated calcium entry channels. The magnitude of this sustained increase in cytosolic sodium was greater when experiments were conducted in low extracellular calcium and when Orai1 expression was silenced; these two interventions were not additive, suggesting a common mechanism. 2-Aminoethoxydiphenyl borate and YM-58483 inhibited the sustained increase in cytosolic sodium, only in the presence of Orai1. These studies demonstrate that sodium permeates activated store-operated calcium entry channels, resulting in an increase in cytosolic sodium; the magnitude of this response is determined by Orai1. PMID:25428882

  17. Sodium entry through endothelial store-operated calcium entry channels: regulation by Orai1.

    PubMed

    Xu, Ningyong; Cioffi, Donna L; Alexeyev, Mikhail; Rich, Thomas C; Stevens, Troy

    2015-02-15

    Orai1 interacts with transient receptor potential protein of the canonical subfamily (TRPC4) and contributes to calcium selectivity of the endothelial cell store-operated calcium entry current (ISOC). Orai1 silencing increases sodium permeability and decreases membrane-associated calcium, although it is not known whether Orai1 is an important determinant of cytosolic sodium transitions. We test the hypothesis that, upon activation of store-operated calcium entry channels, Orai1 is a critical determinant of cytosolic sodium transitions. Activation of store-operated calcium entry channels transiently increased cytosolic calcium and sodium, characteristic of release from an intracellular store. The sodium response occurred more abruptly and returned to baseline more rapidly than did the transient calcium rise. Extracellular choline substitution for sodium did not inhibit the response, although 2-aminoethoxydiphenyl borate and YM-58483 reduced it by ∼50%. After this transient response, cytosolic sodium continued to increase due to influx through activated store-operated calcium entry channels. The magnitude of this sustained increase in cytosolic sodium was greater when experiments were conducted in low extracellular calcium and when Orai1 expression was silenced; these two interventions were not additive, suggesting a common mechanism. 2-Aminoethoxydiphenyl borate and YM-58483 inhibited the sustained increase in cytosolic sodium, only in the presence of Orai1. These studies demonstrate that sodium permeates activated store-operated calcium entry channels, resulting in an increase in cytosolic sodium; the magnitude of this response is determined by Orai1. PMID:25428882

  18. T-Type voltage-sensitive calcium channels mediate mechanically-induced intracellular calcium oscillations in osteocytes by regulating endoplasmic reticulum calcium dynamics.

    PubMed

    Brown, Genevieve N; Leong, Pui L; Guo, X Edward

    2016-07-01

    One of the earliest responses of bone cells to mechanical stimuli is a rise in intracellular calcium (Ca(2+)), and osteocytes in particular exhibit robust oscillations in Ca(2+) when subjected to loading. Previous studies implicate roles for both the endoplasmic reticulum (ER) and T-Type voltage-sensitive calcium channels (VSCC) in these responses, but their interactions or relative contributions have not been studied. By observing Ca(2+) dynamics in the cytosol (Ca(2+)cyt) and the ER (Ca(2+)ER), the focus of this study was to explore the role of the ER and T-Type channels in Ca(2+) signaling in bone cells. We demonstrate that inhibition of T-Type VSCC in osteocytes significantly reduces the number of Ca(2+)cyt responses and affects Ca(2+)ER depletion dynamics. Simultaneous observation of Ca(2+) exchange among these spaces revealed high synchrony between rises in Ca(2+)cyt and depressions in Ca(2+)ER, and this synchrony was significantly reduced by challenging T-Type VSCC. We further confirmed that this effect was mediated directly through the ER and not through store-operated Ca(2+) entry (SOCE) pathways. Taken together, our data suggests that T-Type VSCC facilitate the recovery of Ca(2+)ER in osteocytes to sustain mechanically-induced Ca(2+) oscillations, uncovering a new mechanism underlying the behavior of osteocytes as mechanosensors. PMID:27108342

  19. Microtubule-Dependent Mitochondria Alignment Regulates Calcium Release in Response to Nanomechanical Stimulus in Heart Myocytes.

    PubMed

    Miragoli, Michele; Sanchez-Alonso, Jose L; Bhargava, Anamika; Wright, Peter T; Sikkel, Markus; Schobesberger, Sophie; Diakonov, Ivan; Novak, Pavel; Castaldi, Alessandra; Cattaneo, Paola; Lyon, Alexander R; Lab, Max J; Gorelik, Julia

    2016-01-01

    Arrhythmogenesis during heart failure is a major clinical problem. Regional electrical gradients produce arrhythmias, and cellular ionic transmembrane gradients are its originators. We investigated whether the nanoscale mechanosensitive properties of cardiomyocytes from failing hearts have a bearing upon the initiation of abnormal electrical activity. Hydrojets through a nanopipette indent specific locations on the sarcolemma and initiate intracellular calcium release in both healthy and heart failure cardiomyocytes, as well as in human failing cardiomyocytes. In healthy cells, calcium is locally confined, whereas in failing cardiomyocytes, calcium propagates. Heart failure progressively stiffens the membrane and displaces sub-sarcolemmal mitochondria. Colchicine in healthy cells mimics the failing condition by stiffening the cells, disrupting microtubules, shifting mitochondria, and causing calcium release. Uncoupling the mitochondrial proton gradient abolished calcium initiation in both failing and colchicine-treated cells. We propose the disruption of microtubule-dependent mitochondrial mechanosensor microdomains as a mechanism for abnormal calcium release in failing heart. PMID:26725114

  20. Regulation of Synaptic Transmission at the Caenorhabditis elegans M4 Neuromuscular Junction by an Antagonistic Relationship Between Two Calcium Channels

    PubMed Central

    Steciuk, Mark; Cheong, Mi Cheong; Waite, Christopher; You, Young-Jai; Avery, Leon

    2014-01-01

    In wild-type Caenorhabditis elegans, the synapse from motor neuron M4 to pharyngeal terminal bulb (TB) muscles is silent, and the muscles are instead excited by gap junction connections from adjacent muscles. An eat-5 innexin mutant lacking this electrical connection has few TB contractions and is unable to grow well on certain foods. We showed previously that this defect can be overcome by activation of the M4 → TB synapse. To identify genes that negatively regulate synaptic transmission, we isolated new suppressors of eat-5. To our surprise, these suppressors included null mutations in NPQR-type calcium channel subunit genes unc-2 and unc-36. Our results are consistent with the hypothesis that Ca2+ entry through the NPQR-type channel inhibits synaptic transmission by activating the calcium-activated K+ channel SLO-1, thus antagonizing the EGL-19 L-type calcium channel. PMID:25378475

  1. Growth Control in Colon Epithelial Cells: Gadolinium Enhances Calcium-Mediated Growth Regulation

    PubMed Central

    Attili, Durga; Jenkins, Brian; Aslam, Muhammad Nadeem; Dame, Michael K.

    2013-01-01

    Gadolinium, a member of the lanthanoid family of transition metals, interacts with calcium-binding sites on proteins and other biological molecules. The overall goal of the present investigation was to determine if gadolinium could enhance calcium-induced epithelial cell growth inhibition in the colon. Gadolinium at concentrations as low as 1–5 µM combined with calcium inhibits proliferation of human colonic epithelial cells more effectively than calcium alone. Gadolinium had no detectable effect on calcium-induced differentiation in the same cells based on change in cell morphology, induction of E-cadherin synthesis, and translocation of E-cadherin from the cytosol to the cell surface. When the colon epithelial cells were treated with gadolinium and then exposed to increased calcium concentrations, movement of extracellular calcium into the cell was suppressed. In contrast, gadolinium treatment had no effect on ionomycin-induced release of stored intracellular calcium into the cytoplasm. Whether these in vitro observations can be translated into an approach for reducing abnormal proliferation in the colonic mucosa (including polyp formation) is not known. These results do, however, provide an explanation for our recent findings that a multi-mineral supplement containing all of the naturally occurring lanthanoid metals including gadolinium are more effective than calcium alone in preventing colon polyp formation in mice on a high-fat diet. PMID:23008064

  2. Mechanism of the calcium-regulation of muscle contraction — In pursuit of its structural basis —

    PubMed Central

    WAKABAYASHI, Takeyuki

    2015-01-01

    The author reviewed the research that led to establish the structural basis for the mechanism of the calcium-regulation of the contraction of striated muscles. The target of calcium ions is troponin on the thin filaments, of which the main component is the double-stranded helix of actin. A model of thin filament was generated by adding tropomyosin and troponin. During the process to provide the structural evidence for the model, the troponin arm was found to protrude from the calcium-depleted troponin and binds to the carboxyl-terminal region of actin. As a result, the carboxyl-terminal region of tropomyosin shifts and covers the myosin-binding sites of actin to block the binding of myosin. At higher calcium concentrations, the troponin arm changes its partner from actin to the main body of calcium-loaded troponin. Then, tropomyosin shifts back to the position near the grooves of actin double helix, and the myosin-binding sites of actin becomes available to myosin resulting in force generation through actin-myosin interactions. PMID:26194856

  3. State-federal interactions in nuclear regulation

    SciTech Connect

    Pasternak, A.D.; Budnitz, R.J.

    1987-12-01

    The Atomic Energy Act of 1954 established, and later Congressional amendments have confirmed, that except in areas which have been explicitly granted to the states, the federal government possesses preemptive authority to regulate radiation hazards associated with the development and use of atomic energy. Since the passage of the original Act, numerous decisions by the courts have reaffirmed the legitimacy of federal preemption, and have defined and redefined its scope. In this study, the aim is to explore the underlying issues involved in federal preemption of radiation-hazard regulation, and to recommend actions that the Department of Energy and other agencies and groups should consider undertaking in the near term to protect the preemption principle. Appropriate roles of the states are discussed, as well as recent state-level activities and their rationale, and several current arenas in which state-federal conflicts about regulation of hazards are being played out. The emphasis here is on four particular arenas that are now important arenas of conflict, but the issues discussed are far broader in scope. These four arenas are: state-level moratorium activity; emergency planning for reactors; conflicts arising from state financial regulation; and inroads in federal preemption through litigation under state law.

  4. REGULATION OF SPERM NUCLEAR REACTIVATION DURING FERTILIZATION

    EPA Science Inventory

    Upon fusion of sperm and oocyte at fertilization, a series of events is initiated whereby the highly compacted sperm nucleus expands and is transformed into a male pronucleus capable of DNA synthesis. The regulation of these early post-fusion fertilization events has been studied...

  5. The extracellular calcium-sensing receptor regulates human fetal lung development via CFTR

    PubMed Central

    Brennan, Sarah C.; Wilkinson, William J.; Tseng, Hsiu-Er; Finney, Brenda; Monk, Bethan; Dibble, Holly; Quilliam, Samantha; Warburton, David; Galietta, Luis J.; Kemp, Paul J.; Riccardi, Daniela

    2016-01-01

    Optimal fetal lung growth requires anion-driven fluid secretion into the lumen of the developing organ. The fetus is hypercalcemic compared to the mother and here we show that in the developing human lung this hypercalcaemia acts on the extracellular calcium-sensing receptor, CaSR, to promote fluid-driven lung expansion through activation of the cystic fibrosis transmembrane conductance regulator, CFTR. Several chloride channels including TMEM16, bestrophin, CFTR, CLCN2 and CLCA1, are also expressed in the developing human fetal lung at gestational stages when CaSR expression is maximal. Measurements of Cl−-driven fluid secretion in organ explant cultures show that pharmacological CaSR activation by calcimimetics stimulates lung fluid secretion through CFTR, an effect which in humans, but not mice, was also mimicked by fetal hypercalcemic conditions, demonstrating that the physiological relevance of such a mechanism appears to be species-specific. Calcimimetics promote CFTR opening by activating adenylate cyclase and we show that Ca2+-stimulated type I adenylate cyclase is expressed in the developing human lung. Together, these observations suggest that physiological fetal hypercalcemia, acting on the CaSR, promotes human fetal lung development via cAMP-dependent opening of CFTR. Disturbances in this process would be expected to permanently impact lung structure and might predispose to certain postnatal respiratory diseases. PMID:26911344

  6. Calmodulin and lipid binding to synaptobrevin regulates calcium-dependent exocytosis.

    PubMed

    Quetglas, Stephanie; Iborra, Cecile; Sasakawa, Nobuyuki; De Haro, Luc; Kumakura, Konosuke; Sato, Kazuki; Leveque, Christian; Seagar, Michael

    2002-08-01

    Neurotransmitter release involves the assembly of a heterotrimeric SNARE complex composed of the vesicle protein synaptobrevin (VAMP 2) and two plasma membrane partners, syntaxin 1 and SNAP-25. Calcium influx is thought to control this process via Ca(2+)-binding proteins that associate with components of the SNARE complex. Ca(2+)/calmodulin or phospholipids bind in a mutually exclusive fashion to a C-terminal domain of VAMP (VAMP(77-90)), and residues involved were identified by plasmon resonance spectroscopy. Microinjection of wild-type VAMP(77-90), but not mutant peptides, inhibited catecholamine release from chromaffin cells monitored by carbon fibre amperometry. Pre-incubation of PC12 pheochromocytoma cells with the irreversible calmodulin antagonist ophiobolin A inhibited Ca(2+)-dependent human growth hormone release in a permeabilized cell assay. Treatment of permeabilized cells with tetanus toxin light chain (TeNT) also suppressed secretion. In the presence of TeNT, exocytosis was restored by transfection of TeNT-resistant (Q(76)V, F(77)W) VAMP, but additional targeted mutations in VAMP(77-90) abolished its ability to rescue release. The calmodulin- and phospholipid-binding domain of VAMP 2 is thus required for Ca(2+)-dependent exocytosis, possibly to regulate SNARE complex assembly. PMID:12145198

  7. A Calcium-dependent switch in a CREST-BRG1 complex regulates activity-dependent gene expression

    PubMed Central

    Qiu, Zilong; Ghosh, Anirvan

    2009-01-01

    Activity-dependent gene expression plays an important role in mediating the effects of sensory experience on nervous system development and function. While several activity-dependent transcription factors have been identified, the mechanism by which calcium signaling converts a promoter from a silenced to an active state is not well understood. Here we show that a CREST-BRG1 complex plays a critical role in regulating promoter activation by orchestrating a calcium-dependent release of a repressor complex, and a recruitment of an activator complex. In resting neurons, transcription of the c-fos promoter is inhibited by BRG1-dependent recruitment of a phospho-Rb-HDAC repressor complex. Upon calcium influx, Rb becomes dephosphorylated at Serine 795 by Calcineurin, which leads to release of the repressor complex. At the same time there is increased recruitment of CBP to the promoter by a CREST-dependent mechanism, which leads to transcriptional activation. The CREST-BRG1 also binds to the NR2B promoter and activity-dependent induction of NR2B expression involves a release of HDAC1 and recruitment of CBP, suggesting that this mechanism may be generally involved in regulating calcium-dependent transcription of neuronal genes. PMID:19081374

  8. Calcium regulation of HCN channels supports persistent activity in a multiscale model of neocortex.

    PubMed

    Neymotin, S A; McDougal, R A; Bulanova, A S; Zeki, M; Lakatos, P; Terman, D; Hines, M L; Lytton, W W

    2016-03-01

    Neuronal persistent activity has been primarily assessed in terms of electrical mechanisms, without attention to the complex array of molecular events that also control cell excitability. We developed a multiscale neocortical model proceeding from the molecular to the network level to assess the contributions of calcium (Ca(2+)) regulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in providing additional and complementary support of continuing activation in the network. The network contained 776 compartmental neurons arranged in the cortical layers, connected using synapses containing AMPA/NMDA/GABAA/GABAB receptors. Metabotropic glutamate receptors (mGluR) produced inositol triphosphate (IP3) which caused the release of Ca(2+) from endoplasmic reticulum (ER) stores, with reuptake by sarco/ER Ca(2+)-ATP-ase pumps (SERCA), and influence on HCN channels. Stimulus-induced depolarization led to Ca(2+) influx via NMDA and voltage-gated Ca(2+) channels (VGCCs). After a delay, mGluR activation led to ER Ca(2+) release via IP3 receptors. These factors increased HCN channel conductance and produced firing lasting for ∼1min. The model displayed inter-scale synergies among synaptic weights, excitation/inhibition balance, firing rates, membrane depolarization, Ca(2+) levels, regulation of HCN channels, and induction of persistent activity. The interaction between inhibition and Ca(2+) at the HCN channel nexus determined a limited range of inhibition strengths for which intracellular Ca(2+) could prepare population-specific persistent activity. Interactions between metabotropic and ionotropic inputs to the neuron demonstrated how multiple pathways could contribute in a complementary manner to persistent activity. Such redundancy and complementarity via multiple pathways is a critical feature of biological systems. Mediation of activation at different time scales, and through different pathways, would be expected to protect against disruption, in

  9. Differential neurotrophic regulation of sodium and calcium channels in an adult sympathetic neuron.

    PubMed

    Ford, Christopher P; Wong, Kenneth V; Lu, Van B; Posse de Chaves, Elena; Smith, Peter A

    2008-03-01

    Adult neuronal phenotype is maintained, at least in part, by the sensitivity of individual neurons to a specific selection of neurotrophic factors and the availability of such factors in the neurons' environment. Nerve growth factor (NGF) increases the functional expression of Na(+) channel currents (I(Na)) and both N- and L-type Ca(2+) currents (I(Ca,N) and I(Ca,L)) in adult bullfrog sympathetic ganglion (BFSG) B-neurons. The effects of NGF on I(Ca) involve the mitogen-activated protein kinase (MAPK) pathway. Prolonged exposure to the ganglionic neurotransmitter luteinizing hormone releasing hormone (LHRH) also increases I(Ca,N) but the transduction mechanism remains to be elucidated as does the transduction mechanism for NGF regulation of Na(+) channels. We therefore exposed cultured BFSG B-neurons to chicken II LHRH (0.45 microM; 6-9 days) or to NGF (200 ng/ml; 9-10 days) and used whole cell recording, immunoblot analysis, and ras or rap-1 pulldown assays to study effects of various inhibitors and activators of transduction pathways. We found that 1) LHRH signals via ras-MAPK to increase I(Ca,N), 2) this effect is mediated via protein kinase C-beta (PKC-beta-IotaIota), 3) protein kinase A (PKA) is necessary but not sufficient to effect transduction, 4) NGF signals via phosphatidylinositol 3-kinase (PI3K) to increase I(Na), and 5) long-term exposure to LHRH fails to affect I(Na). Thus downstream signaling from LHRH has access to the ras-MAPK pathway but not to the PI3K pathway. This allows for differential retrograde and anterograde neurotrophic regulation of sodium and calcium channels in an adult sympathetic neuron. PMID:18216230

  10. Plasma Membrane Calcium ATPase Activity Is Regulated by Actin Oligomers through Direct Interaction*

    PubMed Central

    Dalghi, Marianela G.; Fernández, Marisa M.; Ferreira-Gomes, Mariela; Mangialavori, Irene C.; Malchiodi, Emilio L.; Strehler, Emanuel E.; Rossi, Juan Pablo F. C.

    2013-01-01

    As recently described by our group, plasma membrane calcium ATPase (PMCA) activity can be regulated by the actin cytoskeleton. In this study, we characterize the interaction of purified G-actin with isolated PMCA and examine the effect of G-actin during the first polymerization steps. As measured by surface plasmon resonance, G-actin directly interacts with PMCA with an apparent 1:1 stoichiometry in the presence of Ca2+ with an apparent affinity in the micromolar range. As assessed by the photoactivatable probe 1-O-hexadecanoyl-2-O-[9-[[[2-[125I]iodo-4-(trifluoromethyl-3H-diazirin-3-yl)benzyl]oxy]carbonyl]nonanoyl]-sn-glycero-3-phosphocholine, the association of PMCA to actin produced a shift in the distribution of the conformers of the pump toward a calmodulin-activated conformation. G-actin stimulates Ca2+-ATPase activity of the enzyme when incubated under polymerizing conditions, displaying a cooperative behavior. The increase in the Ca2+-ATPase activity was related to an increase in the apparent affinity for Ca2+ and an increase in the phosphoenzyme levels at steady state. Although surface plasmon resonance experiments revealed only one binding site for G-actin, results clearly indicate that more than one molecule of G-actin was needed for a regulatory effect on the pump. Polymerization studies showed that the experimental conditions are compatible with the presence of actin in the first stages of assembly. Altogether, these observations suggest that the stimulatory effect is exerted by short oligomers of actin. The functional interaction between actin oligomers and PMCA represents a novel regulatory pathway by which the cortical actin cytoskeleton participates in the regulation of cytosolic Ca2+ homeostasis. PMID:23803603

  11. Regulation of myofibrillar accumulation in chick muscle cultures - Evidence for the involvement of calcium and lysosomes in non-uniform turnover of contractile proteins

    NASA Technical Reports Server (NTRS)

    Silver, Geri; Etlinger, Joseph D.

    1985-01-01

    The effects of calcium on the synthesis and the degradation of individual myofibrillar proteins were investigated using primary chick-leg skeletal muscle cultures labeled with S-35-methionine (for protein accumulation experiments) or Ca(2+)-45 (for calcium efflux experiments). It was found that the turnover of individual contractile proteins is regulated nonuniformly by a calcium-dependent mechanism involving lysosomes. The results also indicate that contractile proteins are released from the myofibril before their breakdown to amino acids.

  12. Identification and purification of a calcium-binding protein in hepatic nuclear membranes.

    PubMed

    Gilchrist, J S; Pierce, G N

    1993-02-25

    Recent evidence suggests that nuclei possess Ca2+ transport mechanisms to regulate nucleoplasmic/cytosolic Ca2+ gradients. We, therefore, investigated the possibility that Ca(2+)-binding proteins may also exist within the nucleus. Electrophoretic analysis revealed the presence of an acidic 93-kDa protein (p93) in the membranes of isolated nuclei. p93 stained blue with "Stains-All" in SDS-polyacrylamide gels and was the major 45Ca(2+)- and ruthenium red-binding nuclear envelope protein in electroblot overlays. p93 was resistant to extraction by 6 M urea but was solubilized in 2% Triton X-100. Citric acid was highly effective in removing the outer nuclear membrane (ER) with concomitant reduction (< 10-fold) of mannose-6-phosphatase activity, but not p93. 45Ca(2+)-binding assays of purified p93 revealed the presence of high capacity Ca(2+)-binding sites comparable to calreticulin. This evidence strongly suggests that p93 is a major Ca(2+)-binding protein of the inner nuclear envelope membrane. Partial amino acid sequence analysis revealed that p93 was close to 100% homologous with a recently identified ER Ca(2+)-binding protein known as calnexin. It is likely, therefore, that p93 is calnexin. However, mild CHAPS detergent treatment of nuclear envelopes and ER revealed distinctly different solubility properties of each membrane for the extraction of p93. This, together with the citrate data, strongly suggests that p93/calnexin, in isolated nuclear envelopes, is mostly bound to the inner membrane. It is possible that p93 may be involved with the regulation of Ca2+ transients between the nucleoplasm and perinuclear space. PMID:8440713

  13. Regulation of Cellular Calcium in Vestibular Supporting Cells by Otopetrin 1

    PubMed Central

    Kim, Euysoo; Hyrc, Krzysztof L.; Speck, Judith; Lundberg, Yunxia W.; Salles, Felipe T.; Kachar, Bechara; Goldberg, Mark P.; Warchol, Mark E.

    2010-01-01

    Otopetrin 1 (OTOP1) is a multitransmembrane domain protein, which is essential for mineralization of otoconia, the calcium carbonate biominerals required for vestibular function, and the normal sensation of gravity. The mechanism driving mineralization of otoconia is poorly understood, but it has been proposed that supporting cells and a mechanism to maintain high concentrations of calcium are critical. Using Otop1 knockout mice and a utricular epithelial organ culture system, we show that OTOP1 is expressed at the apex of supporting cells and functions to increase cytosolic calcium in response to purinergic agonists, such as adenosine 5′-triphosphate (ATP). This is achieved by blocking mobilization of calcium from intracellular stores in an extracellular calcium-dependent manner and by mediating influx of extracellular calcium. These data support a model in which OTOP1 acts as a sensor of the extracellular calcium concentration near supporting cells and responds to ATP in the endolymph to increase intracellular calcium levels during otoconia mineralization. PMID:20554841

  14. Dominant regulation of interendothelial cell gap formation by calcium-inhibited type 6 adenylyl cyclase

    PubMed Central

    Cioffi, Donna L.; Moore, Timothy M.; Schaack, Jerry; Creighton, Judy R.; Cooper, Dermot M.F.; Stevens, Troy

    2002-01-01

    Acute transitions in cytosolic calcium ([Ca2+]i) through store-operated calcium entry channels catalyze interendothelial cell gap formation that increases permeability. However, the rise in [Ca2+]i only disrupts barrier function in the absence of a rise in cAMP. Discovery that type 6 adenylyl cyclase (AC6; EC 4.6.6.1) is inhibited by calcium entry through store-operated calcium entry pathways provided a plausible explanation for how inflammatory [Ca2+]i mediators may decrease cAMP necessary for endothelial cell gap formation. [Ca2+]i mediators only modestly decrease global cAMP concentrations and thus, to date, the physiological role of AC6 is unresolved. Present studies used an adenoviral construct that expresses the calcium-stimulated AC8 to convert normal calcium inhibition into stimulation of cAMP, within physiologically relevant concentration ranges. Thrombin stimulated a dose-dependent [Ca2+]i rise in both pulmonary artery (PAECs) and microvascular (PMVEC) endothelial cells, and promoted intercellular gap formation in both cell types. In PAECs, gap formation was progressive over 2 h, whereas in PMVECs, gap formation was rapid (within 10 min) and gaps resealed within 2 h. Expression of AC8 resulted in a modest calcium stimulation of cAMP, which virtually abolished thrombin-induced gap formation in PMVECs. Findings provide the first direct evidence that calcium inhibition of AC6 is essential for endothelial gap formation. PMID:12082084

  15. The role of calcium in the regulation of hormone transport in gravistimulated roots

    NASA Astrophysics Data System (ADS)

    Evans, Michael L.; Young, Linda M.; Hasenstein, Karl H.

    Prior research has shown that gravistimulation induces preferential movement of calcium toward the lower side of the tips of maize roots and that roots depleted of calcium show impaired gravitropism. To further investigate the role of calcium in root gravitropism, we examined the effects of calcium on auxin movement in both vertical and gravistimulated roots of maize. Longitudinal movement of auxin was basipetally polar in intact roots but acropetally polar in decapped roots. Treatment of the root tip with calcium increased basipetal auxin movement in both intact and decapped roots. Gravistimulation induced asymmetric auxin movement toward the lower side of the root tip. Both asymmetric auxin movement and gravicurvature were inhibited by treatment of the root tip with auxin transport inhibitors or with EGTA. The results indicate that there is a close correlation between curvature and gravity-induced asymmetric auxin movement across the root cap. Since gravistimulation causes calcium movement toward the lower side of the root tip, our observation that calcium promotes basipetal auxin movement supports the idea that gravity-induced calcium asymmetry is a key step linking gravistimulation to the establishment of auxin asymmetry during root gravitropism.

  16. Flavonoids as dietary regulators of nuclear receptor activity

    PubMed Central

    Avior, Yishai; Bomze, David; Ramon, Ory

    2013-01-01

    Metabolic diseases such as obesity, type II diabetes, and dyslipidemia are a rising cause of mortality worldwide. The progression of many metabolic diseases is fundamentally regulated on the transcriptional level by a family of ligand-activated transcription factors, called nuclear receptors, which detect and respond to metabolic changes. Their role in maintaining metabolic homeostasis makes nuclear receptors an important pharmaceutical and dietary target. This review will present the growing evidence that flavonoids, natural secondary plant metabolites, are important regulators of nuclear receptor activity. Structural similarities between flavonoids and cholesterol derivatives combined with the promiscuous nature of most nuclear receptors provide a wealth of possibilities for pharmaceutical and dietary modulation of metabolism. While the challenges of bringing flavonoid-derived therapeutics to the market are significant, we consider this rapidly growing field to be an essential aspect of the functional food initiative and an important mine for pharmaceutical compounds. PMID:23598551

  17. Transduction of the Root Gravitropic Stimulus: Can Apical Calcium Regulate Auxin Distribution?

    NASA Technical Reports Server (NTRS)

    Edwards, K. L.

    1985-01-01

    The hypothesis was tested that calcium, asymmetrically distributes in the root cap upon reorientation to gravity, affects auxin transport and thereby auxin distribution at the elongation zone. It is assumed that calcium exists in the root cap and is asymmetrically transported in root caps altered from a vertical to a horizontal position and that the meristem, the tissue immediately adjacent to the root cap and lying between the site of gravity perception and the site of gravity response, is essential for mediation of gravitropism. Tip calcium in root gravicurvature was implicated. The capstone evidence is that the root cap has the capacity to polarly translocate exogenous calcium downward when tissue is oriented horizontally, and that exogenous calcium, when supplied asymmetrically at the root tip, induces curvature and dictates the direction of curvature in both vertical and horizontal corn roots.

  18. Reciprocal regulation of calcium-/phosphate-regulating hormones in cyclists during the Giro d'Italia 3-week stage race.

    PubMed

    Lombardi, G; Corsetti, R; Lanteri, P; Grasso, D; Vianello, E; Marazzi, M G; Graziani, R; Colombini, A; Galliera, E; Corsi Romanelli, M M; Banfi, G

    2014-10-01

    Calcium and phosphate are essential for cell functions, and their serum concentrations result from the balance between intestinal absorption, bony storage, and urinary excretion. Fibroblast growth factor 23 (FGF23), expressed by osteocytes and osteoblasts, acts in the kidney, leading to hypophosphatemia and low 1,25-dihydroxycholecalciferol synthesis, but suppresses parathyroid function. The aim of this study was to explore the effects of a high-energy demanding cycling race on this bone-kidney-parathyroid axis. We studied nine cyclists during the 2011 Giro d'Italia stage race. Pre-analytical and analytical phases followed academic and anti-doping recommendations. Serum parathyroid hormone (PTH), 25(OH)D, total calcium, inorganic phosphorus, and plasma FGF23 were measured on days -1, 12, and 22 and corrected for changes in plasma volume. Dietary calcium and phosphorus, anthropometric parameters (height, weight, and body mass index) and indexes of metabolic effort (net energy expenditure, power output) were recorded. Dietary calcium and phosphorus intakes were kept at the same levels throughout the race. Twenty-five (OH)D, PTH, and calcium concentrations remained stable. FGF23 increased 50% with a positive correlation with the indexes of metabolic effort and, consequently, phosphorous decreased, although only in the first half. The strong metabolic effort acts on the bone-kidney-parathyroid system, and the rise in FGF23 plasma concentration might be aimed at maintaining calcium and phosphorus homeostasis. PMID:23647316

  19. Fetal calcium regulates branching morphogenesis in the developing human and mouse lung: involvement of voltage-gated calcium channels.

    PubMed

    Brennan, Sarah C; Finney, Brenda A; Lazarou, Maria; Rosser, Anne E; Scherf, Caroline; Adriaensen, Dirk; Kemp, Paul J; Riccardi, Daniela

    2013-01-01

    Airway branching morphogenesis in utero is essential for optimal postnatal lung function. In the fetus, branching morphogenesis occurs during the pseudoglandular stage (weeks 9-17 of human gestation, embryonic days (E)11.5-16.5 in mouse) in a hypercalcaemic environment (~1.7 in the fetus vs. ~1.1-1.3 mM for an adult). Previously we have shown that fetal hypercalcemia exerts an inhibitory brake on branching morphogenesis via the calcium-sensing receptor. In addition, earlier studies have shown that nifedipine, a selective blocker of L-type voltage-gated Ca(2+) channels (VGCC), inhibits fetal lung growth, suggesting a role for VGCC in lung development. The aim of this work was to investigate the expression of VGCC in the pseudoglandular human and mouse lung, and their role in branching morphogenesis. Expression of L-type (CaV1.2 and CaV1.3), P/Q type (CaV2.1), N-type (CaV2.2), R-type (CaV2.3), and T-type (CaV3.2 and CaV3.3) VGCC was investigated in paraffin sections from week 9 human fetal lungs and E12.5 mouse embryos. Here we show, for the first time, that Cav1.2 and Cav1.3 are expressed in both the smooth muscle and epithelium of the developing human and mouse lung. Additionally, Cav2.3 was expressed in the lung epithelium of both species. Incubating E12.5 mouse lung rudiments in the presence of nifedipine doubled the amount of branching, an effect which was partly mimicked by the Cav2.3 inhibitor, SNX-482. Direct measurements of changes in epithelial cell membrane potential, using the voltage-sensitive fluorescent dye DiSBAC2(3), demonstrated that cyclic depolarisations occur within the developing epithelium and coincide with rhythmic occlusions of the lumen, driven by the naturally occurring airway peristalsis. We conclude that VGCC are expressed and functional in the fetal human and mouse lung, where they play a role in branching morphogenesis. Furthermore, rhythmic epithelial depolarisations evoked by airway peristalsis would allow for branching to match

  20. Fetal Calcium Regulates Branching Morphogenesis in the Developing Human and Mouse Lung: Involvement of Voltage-Gated Calcium Channels

    PubMed Central

    Brennan, Sarah C.; Finney, Brenda A.; Lazarou, Maria; Rosser, Anne E.; Scherf, Caroline; Adriaensen, Dirk; Kemp, Paul J.; Riccardi, Daniela

    2013-01-01

    Airway branching morphogenesis in utero is essential for optimal postnatal lung function. In the fetus, branching morphogenesis occurs during the pseudoglandular stage (weeks 9–17 of human gestation, embryonic days (E)11.5–16.5 in mouse) in a hypercalcaemic environment (∼1.7 in the fetus vs. ∼1.1–1.3 mM for an adult). Previously we have shown that fetal hypercalcemia exerts an inhibitory brake on branching morphogenesis via the calcium-sensing receptor. In addition, earlier studies have shown that nifedipine, a selective blocker of L-type voltage-gated Ca2+ channels (VGCC), inhibits fetal lung growth, suggesting a role for VGCC in lung development. The aim of this work was to investigate the expression of VGCC in the pseudoglandular human and mouse lung, and their role in branching morphogenesis. Expression of L-type (CaV1.2 and CaV1.3), P/Q type (CaV2.1), N-type (CaV2.2), R-type (CaV2.3), and T-type (CaV3.2 and CaV3.3) VGCC was investigated in paraffin sections from week 9 human fetal lungs and E12.5 mouse embryos. Here we show, for the first time, that Cav1.2 and Cav1.3 are expressed in both the smooth muscle and epithelium of the developing human and mouse lung. Additionally, Cav2.3 was expressed in the lung epithelium of both species. Incubating E12.5 mouse lung rudiments in the presence of nifedipine doubled the amount of branching, an effect which was partly mimicked by the Cav2.3 inhibitor, SNX-482. Direct measurements of changes in epithelial cell membrane potential, using the voltage-sensitive fluorescent dye DiSBAC2(3), demonstrated that cyclic depolarisations occur within the developing epithelium and coincide with rhythmic occlusions of the lumen, driven by the naturally occurring airway peristalsis. We conclude that VGCC are expressed and functional in the fetal human and mouse lung, where they play a role in branching morphogenesis. Furthermore, rhythmic epithelial depolarisations evoked by airway peristalsis would allow for branching to

  1. Multiplexed Dendritic Targeting of α Calcium Calmodulin-dependent Protein Kinase II, Neurogranin, and Activity-regulated Cytoskeleton-associated Protein RNAs by the A2 Pathway

    PubMed Central

    Gao, Yuanzheng; Tatavarty, Vedakumar; Korza, George; Levin, Mikhail K.

    2008-01-01

    In neurons, many different RNAs are targeted to dendrites where local expression of the encoded proteins mediates synaptic plasticity during learning and memory. It is not known whether each RNA follows a separate trafficking pathway or whether multiple RNAs are targeted to dendrites by the same pathway. Here, we show that RNAs encoding α calcium calmodulin-dependent protein kinase II, neurogranin, and activity-regulated cytoskeleton-associated protein are coassembled into the same RNA granules and targeted to dendrites by the same cis/trans-determinants (heterogeneous nuclear ribonucleoprotein [hnRNP] A2 response element and hnRNP A2) that mediate dendritic targeting of myelin basic protein RNA by the A2 pathway in oligodendrocytes. Multiplexed dendritic targeting of different RNAs by the same pathway represents a new organizing principle for coordinating gene expression at the synapse. PMID:18305102

  2. PP2A Regulates HDAC4 Nuclear Import

    PubMed Central

    Paroni, Gabriela; Cernotta, Nadia; Dello Russo, Claudio; Gallinari, Paola; Pallaoro, Michele; Foti, Carmela; Talamo, Fabio; Orsatti, Laura; Steinkühler, Christian

    2008-01-01

    Different signal-regulated serine/threonine kinases phosphorylate class II histone deacetylases (HDACs) to promote nuclear export, cytosolic accumulation, and activation of gene transcription. However, little is known about mechanisms operating in the opposite direction, which, possibly through phosphatases, should promote class II HDACs nuclear entry and subsequent gene repression. Here we show that HDAC4 forms a complex with the PP2A holoenzyme Cα, Aα, B/PR55α. In vitro and in vivo binding studies demonstrate that the N-terminus of HDAC4 interacts with the catalytic subunit of PP2A. HDAC4 is dephosphorylated by PP2A and experiments using okadaic acid or RNA interference have revealed that PP2A controls HDAC4 nuclear import. Moreover, we identified serine 298 as a putative phosphorylation site important for HDAC4 nuclear import. The HDAC4 mutant mimicking phosphorylation of serine 298 is defective in nuclear import. Mutation of serine 298 to alanine partially rescues the defect in HDAC4 nuclear import observed in cells with down-regulated PP2A. These observations suggest that PP2A, via the dephosphorylation of multiple serines including the 14-3-3 binding sites and serine 298, controls HDAC4 nuclear import. PMID:18045992

  3. Regulation of Multidrug Resistance-Associated Protein 2 by Calcium Signaling in Mouse Liver

    PubMed Central

    Cruz, Laura N.; Guerra, Mateus T.; Kruglov, Emma; Mennone, Albert; Garcia, Celia R. S.; Chen, Ju; Nathanson, Michael H.

    2011-01-01

    Multidrug resistance associated protein 2 (Mrp2) is a canalicular transporter responsible for organic anion secretion into bile. Mrp2 activity is regulated by insertion into the plasma membrane; however, the factors that control this are not understood. Calcium (Ca2+) signaling regulates exocytosis of vesicles in most cell types, and the type II inositol 1,4,5-triphosphate receptor (InsP3R2) regulates Ca2+ release in the canalicular region of hepatocytes. However, the role of InsP3R2 and of Ca2+ signals in canalicular insertion and function of Mrp2 is not known. The aim of this study was to determine the role of InsP3R2-mediated Ca2+ signals in targeting Mrp2 to the canalicular membrane. Livers, isolated hepatocytes, and hepatocytes in collagen sandwich culture from wild-type (WT) and InsP3R2 knockout (KO) mice were used for western blots, confocal immunofluorescence, and time-lapse imaging of Ca2+ signals and of secretion of a fluorescent organic anion. Plasma membrane insertion of green fluorescent protein (GFP)-Mrp2 expressed in HepG2 cells was monitored by total internal reflection microscopy. InsP3R2 was concentrated in the canalicular region of WT mice but absent in InsP3R2 KO livers, whereas expression and localization of InsP3R1 was preserved, and InsP3R3 was absent from both WT and KO livers. Ca2+ signals induced by either adenosine triphosphate (ATP) or vasopressin were impaired in hepatocytes lacking InsP3R2. Canalicular secretion of the organic anion 5-chloromethylfluorescein diacetate (CMFDA) was reduced in KO hepatocytes, as well as in WT hepatocytes treated with 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA). Moreover, the choleretic effect of tauroursodeoxycholic acid (TUDCA) was impaired in InsP3R2 KO mice. Finally, ATP increased GFP-Mrp2 fluorescence in the plasma membrane of HepG2 cells, and this also was reduced by BAPTA. Conclusion InsP3R2-mediated Ca2+ signals enhance organic anion secretion into bile by targeting Mrp2 to

  4. 1,25-DIHYDROXYVITAMIN D AND 25-HYDROXYVITAMIN D-MEDIATED REGULATION OF TRPV6 (A PUTATIVE EPITHELIAL CALCIUM CHANNEL) MRNA EXPRESSION IN CACO-2 CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    TRPV6 is a member of the vanilloid subfamily of transient receptor potential (TRP) proteins and likely functions as an epithelial calcium channel in calcium-transporting organs, such as the intestine, kidney, and placenta. TRPV6 mRNA expression is strongly regulated by 1,25-dihydroxyvitamin D, the a...

  5. Mechanics regulates ATP-stimulated collective calcium response in fibroblast cells.

    PubMed

    Lembong, Josephine; Sabass, Benedikt; Sun, Bo; Rogers, Matthew E; Stone, Howard A

    2015-07-01

    Cells constantly sense their chemical and mechanical environments. We study the effect of mechanics on the ATP-induced collective calcium response of fibroblast cells in experiments that mimic various tissue environments. We find that closely packed two-dimensional cell cultures on a soft polyacrylamide gel (Young's modulus E = 690 Pa) contain more cells exhibiting calcium oscillations than cultures on a rigid substrate (E = 36 000 Pa). Calcium responses of cells on soft substrates show a slower decay of calcium level relative to those on rigid substrates. Actin enhancement and disruption experiments for the cell cultures allow us to conclude that actin filaments determine the collective Ca(2+) oscillatory behaviour in the culture. Inhibition of gap junctions results in a decrease of the oscillation period and reduced correlation of calcium responses, which suggests additional complexity of signalling upon cell-cell contact. Moreover, the frequency of calcium oscillations is independent of the rigidity of the substrate but depends on ATP concentration. We compare our results with those from similar experiments on individual cells. Overall, our observations show that collective chemical signalling in cell cultures via calcium depends critically on the mechanical environment. PMID:26063818

  6. Potential role of cytoplasmic calcium ions in the regulation of sodium transport in renal tubules.

    PubMed

    Frindt, G; Lee, C O; Yang, J M; Windhager, E E

    1988-01-01

    Experimental maneuvers that increase intracellular calcium ion levels inhibit sodium transport by renal tubules. In the isolated perfused renal tubule, intracellular calcium ion activity (aiCa) changes in response to alterations in the magnitude of the electrochemical potential gradient for sodium ions across the basolateral cell membrane. However, a potassium-induced depolarization of this cell boundary does not cause a rise but rather a fall in intracellular calcium ion levels. Ionomycin raises aiCa without causing intracellular acidification. This observation does not support the view that high cytosolic calcium produces intracellular acidification. At least in the case of ionomycin, the inhibition of sodium transport appears to be due to ionophore-induced increases in aiCa. The changes in intracellular calcium ion concentration found in the different experimental conditions studied were consistent with the notion that cytosolic calcium ions may mediate a feedback mechanism that links the luminal entry to the peritubular extrusion of sodium ions. The mechanisms by which cytosolic calcium alters entry is not yet clear but recent experiments suggest an indirect effect on sodium channel activity. PMID:3279295

  7. Mechanics regulates ATP-stimulated collective calcium response in fibroblast cells

    PubMed Central

    Lembong, Josephine; Sabass, Benedikt; Sun, Bo; Rogers, Matthew E.; Stone, Howard A.

    2015-01-01

    Cells constantly sense their chemical and mechanical environments. We study the effect of mechanics on the ATP-induced collective calcium response of fibroblast cells in experiments that mimic various tissue environments. We find that closely packed two-dimensional cell cultures on a soft polyacrylamide gel (Young's modulus E = 690 Pa) contain more cells exhibiting calcium oscillations than cultures on a rigid substrate (E = 36 000 Pa). Calcium responses of cells on soft substrates show a slower decay of calcium level relative to those on rigid substrates. Actin enhancement and disruption experiments for the cell cultures allow us to conclude that actin filaments determine the collective Ca2+ oscillatory behaviour in the culture. Inhibition of gap junctions results in a decrease of the oscillation period and reduced correlation of calcium responses, which suggests additional complexity of signalling upon cell–cell contact. Moreover, the frequency of calcium oscillations is independent of the rigidity of the substrate but depends on ATP concentration. We compare our results with those from similar experiments on individual cells. Overall, our observations show that collective chemical signalling in cell cultures via calcium depends critically on the mechanical environment. PMID:26063818

  8. Extracellular calcium regulates keratinocyte proliferation and HPV 16 E6 RNA expression in vitro.

    PubMed

    Turunen, Aaro; Syrjänen, Stina

    2014-09-01

    Human papillomaviruses (HPV) are known to immortalize oral keratinocytes in vitro, but the underlying mechanisms causing the following resistance to differentiation remain unclear. We investigated the effect of extracellular calcium on the proliferation of HPV16-positive keratinocytes and on the mRNA expression of the viral E6-oncogene. HPV16-positive hypopharyngeal carcinoma cells (UD-SCC-2), spontaneously immortalized- (HMK) and HPV16 E6/E7-immortalized human gingival keratinocytes (IHGK) were grown for 3, 6 and 9 days in Keratinocyte Serum-free Medium with calcium concentrations ranging from 0 mM to 6 mM. Calcium concentrations up to 0.09 mM increased cellular proliferation, which decreased at higher concentrations. A shift of calcium concentration from 0 to 4 mM increased E6 expression in UD-SCC-2 cells 2.4-fold by day 9. Simultaneously, E2 expression increased. The most significant upregulation of E6 and E2 expressions was observed at day 9, grown in high-calcium media and the increase in E6 expression coincided with an increase in involucrin expression, likely indicating cell differentiation. Despite this, HPV-positive cells continued to proliferate even at high-calcium media in contrast to HPV-negative cells. Overexpression of E6 mRNA may be an important feature of HPV16-positive cells to resist the natural calcium gradient in differentiating keratinocytes allowing cell proliferation. PMID:25295350

  9. Molecular mechanism underlying β1 regulation in voltage- and calcium-activated potassium (BK) channels

    PubMed Central

    Castillo, Karen; Contreras, Gustavo F.; Pupo, Amaury; Torres, Yolima P.; Neely, Alan; González, Carlos; Latorre, Ramon

    2015-01-01

    Being activated by depolarizing voltages and increases in cytoplasmic Ca2+, voltage- and calcium-activated potassium (BK) channels and their modulatory β-subunits are able to dampen or stop excitatory stimuli in a wide range of cellular types, including both neuronal and nonneuronal tissues. Minimal alterations in BK channel function may contribute to the pathophysiology of several diseases, including hypertension, asthma, cancer, epilepsy, and diabetes. Several gating processes, allosterically coupled to each other, control BK channel activity and are potential targets for regulation by auxiliary β-subunits that are expressed together with the α (BK)-subunit in almost every tissue type where they are found. By measuring gating currents in BK channels coexpressed with chimeras between β1 and β3 or β2 auxiliary subunits, we were able to identify that the cytoplasmic regions of β1 are responsible for the modulation of the voltage sensors. In addition, we narrowed down the structural determinants to the N terminus of β1, which contains two lysine residues (i.e., K3 and K4), which upon substitution virtually abolished the effects of β1 on charge movement. The mechanism by which K3 and K4 stabilize the voltage sensor is not electrostatic but specific, and the α (BK)-residues involved remain to be identified. This is the first report, to our knowledge, where the regulatory effects of the β1-subunit have been clearly assigned to a particular segment, with two pivotal amino acids being responsible for this modulation. PMID:25825713

  10. A cardiac mitochondrial cAMP signaling pathway regulates calcium accumulation, permeability transition and cell death

    PubMed Central

    Wang, Z; Liu, D; Varin, A; Nicolas, V; Courilleau, D; Mateo, P; Caubere, C; Rouet, P; Gomez, A-M; Vandecasteele, G; Fischmeister, R; Brenner, C

    2016-01-01

    Although cardiac cytosolic cyclic 3′,5′-adenosine monophosphate (cAMP) regulates multiple processes, such as beating, contractility, metabolism and apoptosis, little is known yet on the role of this second messenger within cardiac mitochondria. Using cellular and subcellular approaches, we demonstrate here the local expression of several actors of cAMP signaling within cardiac mitochondria, namely a truncated form of soluble AC (sACt) and the exchange protein directly activated by cAMP 1 (Epac1), and show a protective role for sACt against cell death, apoptosis as well as necrosis in primary cardiomyocytes. Upon stimulation with bicarbonate (HCO3−) and Ca2+, sACt produces cAMP, which in turn stimulates oxygen consumption, increases the mitochondrial membrane potential (ΔΨm) and ATP production. cAMP is rate limiting for matrix Ca2+ entry via Epac1 and the mitochondrial calcium uniporter and, as a consequence, prevents mitochondrial permeability transition (MPT). The mitochondrial cAMP effects involve neither protein kinase A, Epac2 nor the mitochondrial Na+/Ca2+ exchanger. In addition, in mitochondria isolated from failing rat hearts, stimulation of the mitochondrial cAMP pathway by HCO3− rescued the sensitization of mitochondria to Ca2+-induced MPT. Thus, our study identifies a link between mitochondrial cAMP, mitochondrial metabolism and cell death in the heart, which is independent of cytosolic cAMP signaling. Our results might have implications for therapeutic prevention of cell death in cardiac pathologies. PMID:27100892

  11. Molecular mechanism underlying β1 regulation in voltage- and calcium-activated potassium (BK) channels.

    PubMed

    Castillo, Karen; Contreras, Gustavo F; Pupo, Amaury; Torres, Yolima P; Neely, Alan; González, Carlos; Latorre, Ramon

    2015-04-14

    Being activated by depolarizing voltages and increases in cytoplasmic Ca(2+), voltage- and calcium-activated potassium (BK) channels and their modulatory β-subunits are able to dampen or stop excitatory stimuli in a wide range of cellular types, including both neuronal and nonneuronal tissues. Minimal alterations in BK channel function may contribute to the pathophysiology of several diseases, including hypertension, asthma, cancer, epilepsy, and diabetes. Several gating processes, allosterically coupled to each other, control BK channel activity and are potential targets for regulation by auxiliary β-subunits that are expressed together with the α (BK)-subunit in almost every tissue type where they are found. By measuring gating currents in BK channels coexpressed with chimeras between β1 and β3 or β2 auxiliary subunits, we were able to identify that the cytoplasmic regions of β1 are responsible for the modulation of the voltage sensors. In addition, we narrowed down the structural determinants to the N terminus of β1, which contains two lysine residues (i.e., K3 and K4), which upon substitution virtually abolished the effects of β1 on charge movement. The mechanism by which K3 and K4 stabilize the voltage sensor is not electrostatic but specific, and the α (BK)-residues involved remain to be identified. This is the first report, to our knowledge, where the regulatory effects of the β1-subunit have been clearly assigned to a particular segment, with two pivotal amino acids being responsible for this modulation. PMID:25825713

  12. Calcium-dependent regulation of Rab activation and vesicle fusion by an intracellular P2X ion channel.

    PubMed

    Parkinson, Katie; Baines, Abigail E; Keller, Thomas; Gruenheit, Nicole; Bragg, Laricia; North, R Alan; Thompson, Christopher R L

    2014-01-01

    Rab GTPases play key roles in the delivery, docking and fusion of intracellular vesicles. However, the mechanism by which spatial and temporal regulation of Rab GTPase activity is controlled is poorly understood. Here we describe a mechanism by which localized calcium release through a vesicular ion channel controls Rab GTPase activity. We show that activation of P2XA, an intracellular ion channel localized to the Dictyostelium discoideum contractile vacuole system, results in calcium efflux required for downregulation of Rab11a activity and efficient vacuole fusion. Vacuole fusion and Rab11a downregulation require the activity of CnrF, an EF-hand-containing Rab GAP found in a complex with Rab11a and P2XA. CnrF Rab GAP activity for Rab11a is enhanced by the presence of calcium and the EF-hand domain. These findings suggest that P2XA activation results in vacuolar calcium release, which triggers activation of CnrF Rab GAP activity and subsequent downregulation of Rab11a to allow vacuole fusion. PMID:24335649

  13. Calciotropic hormones and lipolysis of human adipose tissue: role of extracellular calcium as conditioning but not regulating factor.

    PubMed

    Ziegler, R; Jobst, W; Minne, H; Faulhaber, J D

    1980-01-01

    The influences of different calcium concentrations (0, 0.924 and 2.772 mMol/l) on lipolysis of in vitro incubated human adipose tissue slices or adipocytes were studied under the conditions of stimulation with isoproterenol and parathyroid hormone preparations or inhibition by insulin. Extractive bovine PTH (as well as synthetic PTH 1--34) stimulated glycerol release in a biphasic pattern similarly to isoproterenol; PTH was about half as potent as isoproterenol. The optimal conditions for lipolysis were observed using a calcium concentration of 0.924 mMol/l, whereas lipolysis was distinctly impaired at concentrations of 0 or 2.772 mMol/l; this was true for basal as well as isoproterenol- and PTH stimulated lipolysis or the inhibitory effect of insulin. In contrast to partially purified extractive calcitonin, pure synthetic calcitonin did not inhibit lipolysis. Isoproterenol- and PTH-administrations led to cAMP accumulation in the adipose tissue, this process was also diminished at the non-optimal calcium concentrations. The results suggest a conditioning, but not a regulating significance of extracellular calcium for lipolysis, whereas the importance of the lipolytic potency of PTH remains to be elucidated. PMID:6245862

  14. The role of research in nuclear regulation: A Korean perspective

    SciTech Connect

    Yoon, Won-Hyo

    1997-01-01

    Korea has carried out a very ambitious nuclear power program since the 1970`s as part of the nation`s industrialization policy. Ever since, Korea has also maintained a strong commitment to nuclear power development as an integral part of the national energy policy which aims at reducing external vulnerability and ensuring against a global fossil fuel shortage. The introduction of nuclear power into Korea has progressed through three stages: the first was a turn-key package supplied by the manufacturer; the second involved a major contractor who was responsible for project management, and design and construction was contracted out, with Korean industry becoming more involved; the third stage has seen Korean industries involved as main contractors based on experience gained from earlier plants. The success of Korea`s nuclear power program depends in large part on how to insure safety. Safety has the highest priority in nuclear energy development. Public acceptance has been the most critical problem faced by the nuclear industry in Korea. The public demands the highest level of safety all through the design, construction, and operation of nuclear power plants. Korea has learned that a nuclear plant designed with well addressed safety, implementation of a well grounded QA program during construction, and operated with a proven record of safety, are the only ways to earn public support. Competent and efficient regulation with a strong safety culture and openness in all issues is the most desirable image for regulators to strive for. Korea established a ten year R & D program to obtain self-reliance in nuclear technology and international competitiveness by the early 2000`s in 1992. It has actively participated in coordinated research programs in safety issues with bodies including the USNRC, AECB of Canada, IAEA, and OECD/NEA.

  15. Mechanical stretch regulates TRPC expression and calcium entry in human myometrial smooth muscle cells.

    PubMed

    Dalrymple, A; Mahn, K; Poston, L; Songu-Mize, E; Tribe, R M

    2007-03-01

    Stretch is known to stimulate myometrial hyperplasia and hypertrophy in early pregnancy and uterine contraction at term. We propose that transduction of the stretch signal involves alteration of intracellular calcium signalling, including changes in transient receptor potential canonical (TRPC) isoform expression. The aim of the present study was to investigate the effect of prolonged mechanical (tonic) stretch in vitro on human myometrial smooth muscle cell calcium signalling and TRPC expression. Cells were cultured from myometrial biopsies, obtained from women undergoing elective Caesarean section at term, grown on Flexiplates and subjected to 25% tonic mechanical stretch for 1, 4 and 14 h. Time-matched control cells were not stretched. Mechanical stretch (14 h) increased basal calcium entry and cyclopiazonic acid (CPA)-induced calcium/Mn(2+) entry (P < 0.05) in Fura-2 loaded cells. The calcium selectivity of CPA-thapsigarin induced inward currents, measured by patch clamp electrophysiology, was also increased in stretched cells compared with control cells (P < 0.05). Real time PCR and Western blot data demonstrated that TRPC3 and TRPC4 mRNA and TRPC3 protein expression were increased by stretch (P < 0.05), respectively. These data support the hypothesis that uterine stretch modulates uterine growth and contractility in pregnancy via alterations in calcium signalling. PMID:17208928

  16. Differential regulation of calcium signalling pathways by components of Piper methysticum ('Awa).

    PubMed

    Shimoda, L M N; Showman, A; Baker, J D; Lange, I; Koomoa, D L; Stokes, A J; Borris, R P; Turner, H

    2015-04-01

    Kava is a soporific, anxiolytic and relaxant in widespread ritual and recreational use throughout the Pacific. Traditional uses of kava by indigenous Pacific Island peoples reflect a complex pharmacopeia, centered on GABA-ergic effects of the well-characterized kavalactones. However, peripheral effects of kava suggest active components other than the CNS-targeted kavalactones. We have previously shown that immunocytes exhibit calcium mobilization in response to traditionally prepared kava extracts, and that the kavalactones do not induce these calcium responses. Here, we characterize the complex calcium-mobilizing activity of traditionally prepared and partially HPLC-purified kava extracts, noting induction of both calcium entry and store release pathways. Kava components activate intracellular store depletion of thapsigargin-sensitive and -insensitive stores that are coupled to the calcium release activated (CRAC) current, and cause calcium entry through non-store-operated pathways. Together with the pepper-like potency reported by kava users, these studies lead us to hypothesize that kava extracts contain one or more ligands for the transient receptor potential (TRP) family of ion channels. Indeed, TRP-like conductances are observed in kava-treated cells under patch clamp. Thus TRP-mediated cellular effects may be responsible for some of the reported pharmacology of kava. PMID:25640812

  17. Differential regulation of calcium signalling pathways by components of Piper methysticum (‘Awa)

    PubMed Central

    Shimoda, L.M.N; Showman, A.; Baker, J.D.; Lange, I.; Koomoa, D.L.; Stokes, A.J.; Borris, R.P.; Turner, H.

    2015-01-01

    Kava is a soporific, anxiolytic and relaxant in widespread ritual and recreational use throughout the Pacific. Traditional uses of kava by indigenous Pacific Island peoples reflect a complex pharmacopeia, centered on GABA-ergic effects of the well-characterized kavalactones. However, peripheral effects of kava suggest active components other than the CNS-targeted kavalactones. We have previously shown that immunocytes exhibit calcium mobilization in response to traditionally-prepared kava extracts, and that the kavalactones do not induce these calcium responses. Here, we characterize the complex calcium-mobilizing activity of traditionally-prepared and partially HPLC-purified kava extracts, noting induction of both calcium entry and store release pathways. Kava components activate intracellular store depletion of thapsigargin-sensitive and –insensitive stores that are coupled to the calcium release activated (CRAC) current, and cause calcium entry through non-store-operated pathways. Together with the pepper-like potency reported by kava users, these studies lead us to hypothesize that kava extracts contain one or more ligands for the transient receptor potential (TRP) family of ion channels. Indeed, TRP-like conductances are observed in kava-treated cells under patch clamp. Thus TRP-mediated cellular effects may be responsible for some of the reported pharmacology of kava. PMID:25640812

  18. Reprint of "Nuclear transport factors: global regulation of mitosis".

    PubMed

    Forbes, Douglass J; Travesa, Anna; Nord, Matthew S; Bernis, Cyril

    2015-06-01

    The unexpected repurposing of nuclear transport proteins from their function in interphase to an equally vital and very different set of functions in mitosis was very surprising. The multi-talented cast when first revealed included the import receptors, importin alpha and beta, the small regulatory GTPase RanGTP, and a subset of nuclear pore proteins. In this review, we report that recent years have revealed new discoveries in each area of this expanding story in vertebrates: (a) The cast of nuclear import receptors playing a role in mitotic spindle regulation has expanded: both transportin, a nuclear import receptor, and Crm1/Xpo1, an export receptor, are involved in different aspects of spindle assembly. Importin beta and transportin also regulate nuclear envelope and pore assembly. (b) The role of nucleoporins has grown to include recruiting the key microtubule nucleator – the γ-TuRC complex – and the exportin Crm1 to the mitotic kinetochores of humans. Together they nucleate microtubule formation from the kinetochores toward the centrosomes. (c) New research finds that the original importin beta/RanGTP team have been further co-opted by evolution to help regulate other cellular and organismal activities, ranging from the actual positioning of the spindle within the cell perimeter, to regulation of a newly discovered spindle microtubule branching activity, to regulation of the interaction of microtubule structures with specific actin structures. (d) Lastly, because of the multitudinous roles of karyopherins throughout the cell cycle, a recent large push toward testing their potential as chemotherapeutic targets has begun to yield burgeoning progress in the clinic. PMID:26196321

  19. Regulation of mammalian transcription and splicing by Nuclear RNAi

    PubMed Central

    Kalantari, Roya; Chiang, Cheng-Ming; Corey, David R.

    2016-01-01

    RNA interference (RNAi) is well known as a mechanism for controlling mammalian mRNA translation in the cytoplasm, but what would be the consequences if it also functions in cell nuclei? Although RNAi has also been found in nuclei of plants, yeast, and other organisms, there has been relatively little progress towards understanding the potential involvement of mammalian RNAi factors in nuclear processes including transcription and splicing. This review summarizes evidence for mammalian RNAi factors in cell nuclei and mechanisms that might contribute to the control of gene expression. When RNAi factors bind small RNAs, they form ribonucleoprotein complexes that can be selective for target sequences within different classes of nuclear RNA substrates. The versatility of nuclear RNAi may supply a previously underappreciated layer of regulation to transcription, splicing, and other nuclear processes. PMID:26612865

  20. Statin Therapy and the Expression of Genes that Regulate Calcium Homeostasis and Membrane Repair in Skeletal Muscle

    PubMed Central

    Draeger, Annette; Sanchez-Freire, Verónica; Monastyrskaya, Katia; Hoppeler, Hans; Mueller, Matthias; Breil, Fabio; Mohaupt, Markus G.; Babiychuk, Eduard B.

    2010-01-01

    In skeletal muscle of patients with clinically diagnosed statin-associated myopathy, discrete signs of structural damage predominantly localize to the T-tubular region and are suggestive of a calcium leak. The impact of statins on skeletal muscle of non-myopathic patients is not known. We analyzed the expression of selected genes implicated in the molecular regulation of calcium and membrane repair, in lipid homeostasis, myocyte remodeling and mitochondrial function. Microscopic and gene expression analyses were performed using validated TaqMan custom arrays on skeletal muscle biopsies of 72 age-matched subjects who were receiving statin therapy (n = 38), who had discontinued therapy due to statin-associated myopathy (n = 14), and who had never undergone statin treatment (n = 20). In skeletal muscle, obtained from statin-treated, non-myopathic patients, statins caused extensive changes in the expression of genes of the calcium regulatory and the membrane repair machinery, whereas the expression of genes responsible for mitochondrial function or myocyte remodeling was unaffected. Discontinuation of treatment due to myopathic symptoms led to a normalization of gene expression levels, the genes encoding the ryanodine receptor 3, calpain 3, and dystrophin being the most notable exceptions. Hence, even in clinically asymptomatic (non-myopathic) patients, statin therapy leads to an upregulation in the expression of genes that are concerned with skeletal muscle regulation and membrane repair. PMID:20489141

  1. Effects of adrenalectomy on the alpha-adrenergic regulation of cytosolic free calcium in hepatocytes

    SciTech Connect

    Freudenrich, C.C.; Borle, A.B.

    1988-06-25

    We have previously published that bilateral adrenalectomy in the rat reduces the Ca2+-mediated alpha-adrenergic activation of hepatic glycogenolysis, while it increases the cellular calcium content of hepatocytes. In the experiments presented here, the concentration of cytosolic free calcium (Ca2+i) at rest and in response to epinephrine was measured in aequorin-loaded hepatocytes isolated from sham and adrenalectomized male rats. We found that in adrenalectomized rats the resting Ca2+i was elevated, the rise in Ca2+i evoked by epinephrine was reduced, and the rise in /sup 45/Ca efflux that follows such stimulation was depressed. Furthermore, the slope of the relationship between Ca2+i and calcium efflux was decreased 60% in adrenalectomized. Adrenalectomy did not change Ca2+ release from intracellular calcium pools in response to IP3 in saponin-permeabilized hepatocytes. The EC50 for inositol 1,4,5-triphosphate and the maximal Ca2+ released were similar in both sham and adrenalectomized animals. Finally, the liver calmodulin content determined by radioimmunoassay was not significantly different between sham and adrenalectomized rats. These results suggest that 1) adrenalectomy reduces calcium efflux from the hepatocyte, probably by an effect on the plasma membrane (Ca2+-Mg2+)-ATPase-dependent Ca2+ pump and thus alters cellular calcium homeostasis; 2) adrenalectomy decreases the rise in Ca2+i in response to epinephrine; 3) this decreased rise in Ca2+i is not due to defects in the intracellular Ca2+ storage and mobilization processes; and 4) the effects of adrenalectomy on cellular calcium metabolism and on alpha-adrenergic activation of glycogenolysis are not caused by a reduction in soluble calmodulin.

  2. Cellular stress induces Bax-regulated nuclear bubble budding and rupture followed by nuclear protein release.

    PubMed

    Lindenboim, Liora; Sasson, Tiki; Worman, Howard J; Borner, Christoph; Stein, Reuven

    2014-01-01

    Cellular stress triggers many pathways including nuclear protein redistribution. We previously discovered that this process is regulated by Bax but the underlying mechanism has not yet been studied. Here we define this mechanism by showing that apoptotic stimuli cause Bax-regulated disturbances in lamin A/C and nuclear envelope (NE)-associated proteins which results in the generation and subsequent rupture of nuclear protein-containing bubbles. The bubbles do not contain DNA and are encapsulated by impaired nuclear pore-depleted NE. Stress-induced generation and rupture of nuclear bubbles ultimately leads to the discharge of nuclear proteins into the cytoplasm. This process precedes morphological changes of apoptosis and occurs independently of caspases. Rescue experiments revealed that this Bax effect is non-canonical, i.e. it requires the BH3 domain and α-helices 5 and 6 but it is not inhibited by Bcl(-)xL. Targeting Bax to the NE by the Klarsicht/ANC-1/Syne-1 homology (KASH) domain effectively triggers the generation and rupture of nuclear bubbles. Overall, our findings provide evidence for a novel stress-response, which is regulated by a non-canonical action of Bax on the NE. PMID:25482068

  3. Cytosolic and nuclear calcium signaling in atrial myocytes: IP3-mediated calcium release and the role of mitochondria

    PubMed Central

    Hohendanner, Felix; Maxwell, Joshua T; Blatter, Lothar A

    2015-01-01

    In rabbit atrial myocytes Ca signaling has unique features due to the lack of transverse (t) tubules, the spatial arrangement of mitochondria and the contribution of inositol-1,4,5-trisphosphate (IP3) receptor-induced Ca release (IICR). During excitation-contraction coupling action potential-induced elevation of cytosolic [Ca] originates in the cell periphery from Ca released from the junctional sarcoplasmic reticulum (j-SR) and then propagates by Ca-induced Ca release from non-junctional (nj-) SR toward the cell center. The subsarcolemmal region between j-SR and the first array of nj-SR Ca release sites is devoid of mitochondria which results in a rapid propagation of activation through this domain, whereas the subsequent propagation through the nj-SR network occurs at a velocity typical for a propagating Ca wave. Inhibition of mitochondrial Ca uptake with the Ca uniporter blocker Ru360 accelerates propagation and increases the amplitude of Ca transients (CaTs) originating from nj-SR. Elevation of cytosolic IP3 levels by rapid photolysis of caged IP3 has profound effects on the magnitude of subcellular CaTs with increased Ca release from nj-SR and enhanced CaTs in the nuclear compartment. IP3 uncaging restricted to the nucleus elicites ‘mini’-Ca waves that remain confined to this compartment. Elementary IICR events (Ca puffs) preferentially originate in the nucleus in close physical association with membrane structures of the nuclear envelope and the nucleoplasmic reticulum. The data suggest that in atrial myocytes the nucleus is an autonomous Ca signaling domain where Ca dynamics are primarily governed by IICR. PMID:25891132

  4. Nuclear Receptor Regulation of Aquaporin-2 in the Kidney.

    PubMed

    Zhang, Xiao-Yan; Wang, Bing; Guan, You-Fei

    2016-01-01

    Aquaporin-2 (AQP2) is a vasopressin-regulated water channel responsible for regulating water reabsorption through the apical plasma membrane of the principal cells of renal collecting ducts. It has been found that dysregulation and dysfunction of AQP2 cause many disorders related to water balance in people and animals, including polyuria and dilutional hyponatremia. Classically, AQP2 mRNA and protein expression and its membrane translocation are regulated by systemic vasopressin involving short-term regulation of AQP2 trafficking to and from the apical plasma membrane and long-term regulation of the total amount of the AQP2 protein in the cell. Recently, increasing evidence has demonstrated that collecting duct AQP2 expression and membrane translocation are also under the control of many other local factors, especially nuclear receptors. Here, we briefly review the progress of studies in this area and discuss the role of nuclear receptors in the regulation of water reabsorption via affecting AQP2 expression and function. PMID:27409611

  5. Nuclear Receptor Regulation of Aquaporin-2 in the Kidney

    PubMed Central

    Zhang, Xiao-Yan; Wang, Bing; Guan, You-Fei

    2016-01-01

    Aquaporin-2 (AQP2) is a vasopressin-regulated water channel responsible for regulating water reabsorption through the apical plasma membrane of the principal cells of renal collecting ducts. It has been found that dysregulation and dysfunction of AQP2 cause many disorders related to water balance in people and animals, including polyuria and dilutional hyponatremia. Classically, AQP2 mRNA and protein expression and its membrane translocation are regulated by systemic vasopressin involving short-term regulation of AQP2 trafficking to and from the apical plasma membrane and long-term regulation of the total amount of the AQP2 protein in the cell. Recently, increasing evidence has demonstrated that collecting duct AQP2 expression and membrane translocation are also under the control of many other local factors, especially nuclear receptors. Here, we briefly review the progress of studies in this area and discuss the role of nuclear receptors in the regulation of water reabsorption via affecting AQP2 expression and function. PMID:27409611

  6. Modulation of iron metabolism by iron chelation regulates intracellular calcium and increases sensitivity to doxorubicin

    PubMed Central

    Yalcintepe, Leman; Halis, Emre

    2016-01-01

    Increased intracellular iron levels can both promote cell proliferation and death, as such; iron has a “two-sided effect” in the delicate balance of human health. Though the role of iron in the development of cancer remains unclear, investigations of iron chelators as anti-tumor agents have revealed promising results. Here, we investigated the influence of iron and desferrioxamine (DFO), the iron chelating agent on intracellular calcium in a human leukemia cell line, K562. Iron uptake is associated with increased reactive oxygen species (ROS) generation. Therefore, we showed that iron also caused dose-dependent ROS generation in K562 cells. The measurement of intracellular calcium was determined using Furo-2 with a fluorescence spectrophotometer. The iron delivery process to the cytoplasmic iron pool was examined by monitoring the fluorescence of cells loaded with calcein-acetoxymethyl. Our data showed that iron increased intracellular calcium, and this response was 8 times higher when cells were incubated with DFO. K562 cells with DFO caused a 3.5 times increase of intracellular calcium in the presence of doxorubicin (DOX). In conclusion, DFO induces intracellular calcium and increases their sensitivity to DOX, a chemotherapeutic agent. PMID:26773173

  7. The calcium sensor Copine-6 regulates spine structural plasticity and learning and memory

    PubMed Central

    Reinhard, Judith R.; Kriz, Alexander; Galic, Milos; Angliker, Nico; Rajalu, Mathieu; Vogt, Kaspar E.; Ruegg, Markus A.

    2016-01-01

    Hippocampal long-term potentiation (LTP) represents the cellular response of excitatory synapses to specific patterns of high neuronal activity and is required for learning and memory. Here we identify a mechanism that requires the calcium-binding protein Copine-6 to translate the initial calcium signals into changes in spine structure. We show that Copine-6 is recruited from the cytosol of dendrites to postsynaptic spine membranes by calcium transients that precede LTP. Cpne6 knockout mice are deficient in hippocampal LTP, learning and memory. Hippocampal neurons from Cpne6 knockouts lack spine structural plasticity as do wild-type neurons that express a Copine-6 calcium mutant. The function of Copine-6 is based on its binding, activating and recruiting the Rho GTPase Rac1 to cell membranes. Consistent with this function, the LTP deficit of Cpne6 knockout mice is rescued by the actin stabilizer jasplakinolide. These data show that Copine-6 links activity-triggered calcium signals to spine structural plasticity necessary for learning and memory. PMID:27194588

  8. Disrupted-in-schizophrenia-1 (DISC1) Regulates Endoplasmic Reticulum Calcium Dynamics

    PubMed Central

    Park, Sung Jin; Jeong, Jaehoon; Park, Young-Un; Park, Kyung-Sun; Lee, Haeryun; Lee, Namgyu; Kim, Sung-Mo; Kuroda, Keisuke; Nguyen, Minh Dang; Kaibuchi, Kozo; Park, Sang Ki

    2015-01-01

    Disrupted-in-schizophrenia-1 (DISC1) has emerged as a convincing susceptibility gene for multiple mental disorders, but its mechanistic link to the pathogenesis of schizophrenia related psychiatric conditions is yet to be further understood. Here, we showed that DISC1 localizes to the outer surface of the endoplasmic reticulum (ER). EXOC1, a subunit of the exocyst complex, interacted with DISC1 and affected its recruitment to inositol-1,4,5-trisphosphate receptor 1 (IP3R1). Notably, knockdown of DISC1 and EXOC1 elicited an exaggerated ER calcium response upon stimulation of IP3R agonists. Similar abnormal ER calcium responses were observed in hippocampal neurons from DISC1-deficient mutant mice. Moreover, perturbation of ER calcium dynamics upon DISC1 knockdown was effectively reversed by treatment with antipsychotic drugs, such as clozapine and haloperidol. These results collectively indicate that DISC1 is a regulatory factor in ER calcium dynamics, linking a perturbed intracellular calcium signaling and schizophrenia pathogenesis. PMID:25732993

  9. The calcium sensor Copine-6 regulates spine structural plasticity and learning and memory.

    PubMed

    Reinhard, Judith R; Kriz, Alexander; Galic, Milos; Angliker, Nico; Rajalu, Mathieu; Vogt, Kaspar E; Ruegg, Markus A

    2016-01-01

    Hippocampal long-term potentiation (LTP) represents the cellular response of excitatory synapses to specific patterns of high neuronal activity and is required for learning and memory. Here we identify a mechanism that requires the calcium-binding protein Copine-6 to translate the initial calcium signals into changes in spine structure. We show that Copine-6 is recruited from the cytosol of dendrites to postsynaptic spine membranes by calcium transients that precede LTP. Cpne6 knockout mice are deficient in hippocampal LTP, learning and memory. Hippocampal neurons from Cpne6 knockouts lack spine structural plasticity as do wild-type neurons that express a Copine-6 calcium mutant. The function of Copine-6 is based on its binding, activating and recruiting the Rho GTPase Rac1 to cell membranes. Consistent with this function, the LTP deficit of Cpne6 knockout mice is rescued by the actin stabilizer jasplakinolide. These data show that Copine-6 links activity-triggered calcium signals to spine structural plasticity necessary for learning and memory. PMID:27194588

  10. Disrupted-in-schizophrenia-1 (DISC1) Regulates Endoplasmic Reticulum Calcium Dynamics.

    PubMed

    Park, Sung Jin; Jeong, Jaehoon; Park, Young-Un; Park, Kyung-Sun; Lee, Haeryun; Lee, Namgyu; Kim, Sung-Mo; Kuroda, Keisuke; Nguyen, Minh Dang; Kaibuchi, Kozo; Park, Sang Ki

    2015-01-01

    Disrupted-in-schizophrenia-1 (DISC1) has emerged as a convincing susceptibility gene for multiple mental disorders, but its mechanistic link to the pathogenesis of schizophrenia related psychiatric conditions is yet to be further understood. Here, we showed that DISC1 localizes to the outer surface of the endoplasmic reticulum (ER). EXOC1, a subunit of the exocyst complex, interacted with DISC1 and affected its recruitment to inositol-1,4,5-trisphosphate receptor 1 (IP3R1). Notably, knockdown of DISC1 and EXOC1 elicited an exaggerated ER calcium response upon stimulation of IP3R agonists. Similar abnormal ER calcium responses were observed in hippocampal neurons from DISC1-deficient mutant mice. Moreover, perturbation of ER calcium dynamics upon DISC1 knockdown was effectively reversed by treatment with antipsychotic drugs, such as clozapine and haloperidol. These results collectively indicate that DISC1 is a regulatory factor in ER calcium dynamics, linking a perturbed intracellular calcium signaling and schizophrenia pathogenesis. PMID:25732993

  11. Incentive regulation of investor-owned nuclear power plants by public utility regulators. Revision 1

    SciTech Connect

    McKinney, M.D.; Seely, H.E.; Merritt, C.R.; Baker, D.C.

    1995-04-01

    The US Nuclear Regulatory Commission (NRC) periodically surveys the Federal Energy Regulatory Commission (FERC) and state regulatory commissions that regulate utility owners of nuclear power plants. The NRC is interested in identifying states that have established economic or performance incentive programs applicable to nuclear power plants, how the programs are being implemented, and in determining the financial impact of the programs on the utilities. The NRC interest stems from the fact that such programs have the potential to adversely affect the safety of nuclear power plants. The current report is an update of NUREG/CR-5975, Incentive Regulation of Investor-Owned Nuclear Power Plants by Public Utility Regulators, published in January 1993. The information in this report was obtained from interviews conducted with each state regulatory agency that administers an incentive program and each utility that owns at least 10% of an affected nuclear power plant. The agreements, orders, and settlements that form the basis for each incentive program were reviewed as required. The interviews and supporting documentation form the basis for the individual state reports describing the structure and financial impact of each incentive program.

  12. Phosphorylation of the Cav3.2 T-type calcium channel directly regulates its gating properties.

    PubMed

    Blesneac, Iulia; Chemin, Jean; Bidaud, Isabelle; Huc-Brandt, Sylvaine; Vandermoere, Franck; Lory, Philippe

    2015-11-01

    Phosphorylation is a major mechanism regulating the activity of ion channels that remains poorly understood with respect to T-type calcium channels (Cav3). These channels are low voltage-activated calcium channels that play a key role in cellular excitability and various physiological functions. Their dysfunction has been linked to several neurological disorders, including absence epilepsy and neuropathic pain. Recent studies have revealed that T-type channels are modulated by a variety of serine/threonine protein kinase pathways, which indicates the need for a systematic analysis of T-type channel phosphorylation. Here, we immunopurified Cav3.2 channels from rat brain, and we used high-resolution MS to construct the first, to our knowledge, in vivo phosphorylation map of a voltage-gated calcium channel in a mammalian brain. We identified as many as 34 phosphorylation sites, and we show that the vast majority of these sites are also phosphorylated on the human Cav3.2 expressed in HEK293T cells. In patch-clamp studies, treatment of the channel with alkaline phosphatase as well as analysis of dephosphomimetic mutants revealed that phosphorylation regulates important functional properties of Cav3.2 channels, including voltage-dependent activation and inactivation and kinetics. We also identified that the phosphorylation of a locus situated in the loop I-II S442/S445/T446 is crucial for this regulation. Our data show that Cav3.2 channels are highly phosphorylated in the mammalian brain and establish phosphorylation as an important mechanism involved in the dynamic regulation of Cav3.2 channel gating properties. PMID:26483470

  13. Up-regulation of ryanodine receptor expression increases the calcium-induced calcium release and spontaneous calcium signals in cerebral arteries from hindlimb unloaded rats.

    PubMed

    Morel, Jean-Luc; Dabertrand, Fabrice; Porte, Yves; Prevot, Anne; Macrez, Nathalie

    2014-08-01

    Microgravity induces a redistribution of blood volume. Consequently, astronauts' body pressure is modified so that the upright blood pressure gradient is abolished, thereby inducing a modification in cerebral blood pressure. This effect is mimicked in the hindlimb unloaded rat model. After a duration of 8 days of unloading, Ca2+ signals activated by depolarization and inositol-1,4,5-trisphosphate intracellular release were increased in cerebral arteries. In the presence of ryanodine and thapsigargin, the depolarization-induced Ca2+ signals remained increased in hindlimb suspended animals, indicating that Ca2+ influx and Ca2+-induced Ca2+ release mechanism were both increased. Spontaneous Ca2+ waves and localized Ca2+ events were also investigated. Increases in both amplitude and frequency of spontaneous Ca2+ waves were measured in hindlimb suspension conditions. After pharmacological segregation of Ca2+ sparks and Ca2+ sparklets, their kinetic parameters were characterized. Hindlimb suspension induced an increase in the frequencies of both Ca2+ localized events, suggesting an increase of excitability. Labeling with bodipy compounds suggested that voltage-dependent Ca2+ channels and ryanodine receptor expressions were increased. Finally, the expression of the ryanodine receptor subtype 1 (RyR1) was increased in hindlimb unloading conditions. Taken together, these results suggest that RyR1 expression and voltage-dependent Ca2+ channels activity are the focal points of the regulation of Ca2+ signals activated by vasoconstriction in rat cerebral arteries with an increase of the voltage-dependent Ca2+ influx. PMID:24233561

  14. STIM1/Orai1 coiled-coil interplay in the regulation of store-operated calcium entry

    PubMed Central

    Stathopulos, Peter B.; Schindl, Rainer; Fahrner, Marc; Zheng, Le; Gasmi-Seabrook, Geneviève M.; Muik, Martin; Romanin, Christoph; Ikura, Mitsuhiko

    2013-01-01

    Orai1 calcium channels in the plasma membrane are activated by stromal interaction molecule-1 (STIM1), an endoplasmic reticulum calcium sensor, to mediate store-operated calcium entry (SOCE). The cytosolic region of STIM1 contains a long putative coiled-coil (CC)1 segment and shorter CC2 and CC3 domains. Here we present solution nuclear magnetic resonance structures of a trypsin-resistant CC1–CC2 fragment in the apo and Orai1-bound states. Each CC1–CC2 subunit forms a U-shaped structure that homodimerizes through antiparallel interactions between equivalent α-helices. The CC2:CC2′ helix pair clamps two identical acidic Orai1 C-terminal helices at opposite ends of a hydrophobic/basic STIM–Orai association pocket. STIM1 mutants disrupting CC1:CC1′ interactions attenuate, while variants promoting CC1 stability spontaneously activate Orai1 currents. CC2 mutations cause remarkable variability in Orai1 activation because of a dual function in binding Orai1 and autoinhibiting STIM1 oligomerization via interactions with CC3. We conclude that SOCE is activated through dynamic interplay between STIM1 and Orai1 helices. PMID:24351972

  15. miR-155 acts as an anti-inflammatory factor in atherosclerosis-associated foam cell formation by repressing calcium-regulated heat stable protein 1

    PubMed Central

    Li, Xiaoyi; Kong, Deyong; Chen, Heming; Liu, Shuiyi; Hu, Hui; Wu, Tangwei; Wang, Jing; Chen, Weiqun; Ning, Yong; Li, Yong; Lu, Zhongxin

    2016-01-01

    Atherosclerosis (AS) is chronic inflammation in response to lipid accumulation. MicroRNA-155 (miR-155) is being increasingly studied to evaluate its potential as diagnostic biomarkers and therapeutic targets in many diseases. However, delineating the role of miR-155 in AS remains difficult. Here, we detected constitutive expression of several microRNAs (miRNAs) possibly associated with cardiovascular disease in foam cells and clinical specimens from patients with AS. Among them, we found that the level of miR-155 in foam cells was the most significantly elevated in a dose- and time-dependent manner. In addition, the expression of miR-155 was elevated in the plasma and plaque of patients with AS. We also reported for the first time that miR-155 targets calcium-regulated heat stable protein 1 (CARHSP1), which regulates the stability of tumor necrosis factor alpha (TNF-α) mRNA. Furthermore, we investigated the mechanism by which the miR-155 level is elevated. miR-155 upregulation is due to transcriptional regulation by nuclear factor (NF)-κB, which is activated by the inflammatory factor TNF-α. In summary, increased miR-155 relieves chronic inflammation by a negative feedback loop and plays a protective role during atherosclerosis-associated foam cell formation by signaling through the miR-155–CARHSP1–TNF-α pathway. PMID:26899994

  16. miR-155 acts as an anti-inflammatory factor in atherosclerosis-associated foam cell formation by repressing calcium-regulated heat stable protein 1.

    PubMed

    Li, Xiaoyi; Kong, Deyong; Chen, Heming; Liu, Shuiyi; Hu, Hui; Wu, Tangwei; Wang, Jing; Chen, Weiqun; Ning, Yong; Li, Yong; Lu, Zhongxin

    2016-01-01

    Atherosclerosis (AS) is chronic inflammation in response to lipid accumulation. MicroRNA-155 (miR-155) is being increasingly studied to evaluate its potential as diagnostic biomarkers and therapeutic targets in many diseases. However, delineating the role of miR-155 in AS remains difficult. Here, we detected constitutive expression of several microRNAs (miRNAs) possibly associated with cardiovascular disease in foam cells and clinical specimens from patients with AS. Among them, we found that the level of miR-155 in foam cells was the most significantly elevated in a dose- and time-dependent manner. In addition, the expression of miR-155 was elevated in the plasma and plaque of patients with AS. We also reported for the first time that miR-155 targets calcium-regulated heat stable protein 1 (CARHSP1), which regulates the stability of tumor necrosis factor alpha (TNF-α) mRNA. Furthermore, we investigated the mechanism by which the miR-155 level is elevated. miR-155 upregulation is due to transcriptional regulation by nuclear factor (NF)-κB, which is activated by the inflammatory factor TNF-α. In summary, increased miR-155 relieves chronic inflammation by a negative feedback loop and plays a protective role during atherosclerosis-associated foam cell formation by signaling through the miR-155-CARHSP1-TNF-α pathway. PMID:26899994

  17. Parasitoid wasp venom SERCA regulates Drosophila calcium levels and inhibits cellular immunity

    PubMed Central

    Mortimer, Nathan T.; Goecks, Jeremy; Kacsoh, Balint Z.; Mobley, James A.; Bowersock, Gregory J.; Taylor, James; Schlenke, Todd A.

    2013-01-01

    Because parasite virulence factors target host immune responses, identification and functional characterization of these factors can provide insight into poorly understood host immune mechanisms. The fruit fly Drosophila melanogaster is a model system for understanding humoral innate immunity, but Drosophila cellular innate immune responses remain incompletely characterized. Fruit flies are regularly infected by parasitoid wasps in nature and, following infection, flies mount a cellular immune response culminating in the cellular encapsulation of the wasp egg. The mechanistic basis of this response is largely unknown, but wasps use a mixture of virulence proteins derived from the venom gland to suppress cellular encapsulation. To gain insight into the mechanisms underlying wasp virulence and fly cellular immunity, we used a joint transcriptomic/proteomic approach to identify venom genes from Ganaspis sp.1 (G1), a previously uncharacterized Drosophila parasitoid species, and found that G1 venom contains a highly abundant sarco/endoplasmic reticulum calcium ATPase (SERCA) pump. Accordingly, we found that fly immune cells termed plasmatocytes normally undergo a cytoplasmic calcium burst following infection, and that this calcium burst is required for activation of the cellular immune response. We further found that the plasmatocyte calcium burst is suppressed by G1 venom in a SERCA-dependent manner, leading to the failure of plasmatocytes to become activated and migrate toward G1 eggs. Finally, by genetically manipulating plasmatocyte calcium levels, we were able to alter fly immune success against G1 and other parasitoid species. Our characterization of parasitoid wasp venom proteins led us to identify plasmatocyte cytoplasmic calcium bursts as an important aspect of fly cellular immunity. PMID:23690612

  18. Molecular imaging of in vivo calcium ion expression in area postrema of total sleep deprived rats: Implications for cardiovascular regulation by TOF-SIMS analysis

    NASA Astrophysics Data System (ADS)

    Mai, Fu-Der; Chen, Li-You; Ling, Yong-Chien; Chen, Bo-Jung; Wu, Un-In; Chang, Hung-Ming

    2010-05-01

    Excessive calcium influx in chemosensitive neurons of area postrema (AP) is detrimental for sympathetic activation and participates in the disruption of cardiovascular activities. Since total sleep deprivation (TSD) is a stressful condition known to harm the cardiovascular function, the present study is aimed to determine whether the in vivo calcium expression in AP would significantly alter following TSD by the use of time-of-flight secondary ion mass spectrometry (TOF-SIMS) and calretinin (a specific calcium sensor protein in AP neurons) immunohistochemistry. The results indicated that in normal rats, the calcium intensity was estimated to be 0.5 × 10 5 at m/ z 40.08. However, following TSD, the intensity for calcium ions was greatly increased to 1.2 × 10 5. Molecular imaging revealed that after TSD, various strongly expressed calcium signals were distributed throughout AP with clear identified profiles instead of randomly scattered within this region in normal rats. Immunohistochemical staining corresponded well with ionic image in which a majority of calcium-enriched gathering co-localized with calretinin positive neurons. The functional significance of TSD-induced calcium augmentation was demonstrated by increased heart rate and mean arterial pressure, clinical markers for cardiovascular dysfunction. Considering AP-mediated sympathetic activation is important for cardiovascular regulation, exaggerated calcium influx in AP would render this neurocircuitry more vulnerable to over-excitation, which might serve as the underlying mechanism for the development of TSD-relevant cardiovascular deficiency.

  19. Novel Nuclear Localization Signal Regulated by Ambient Tonicity in Vertebrates*

    PubMed Central

    Kwon, Min Seong; Lee, Sang Do; Kim, Jeong-Ah; Colla, Emanuela; Choi, Yu Jeong; Suh, Pann-Ghil; Kwon, H. Moo

    2008-01-01

    TonEBP is a Rel domain-containing transcription factor implicated in adaptive immunity, viral replication, and cancer. In the mammalian kidney, TonEBP is a central regulator of water homeostasis. Animals deficient in TonEBP suffer from life-threatening dehydration due to renal water loss. Ambient tonicity (effective osmolality) is the prominent signal for TonEBP in a bidirectional manner; TonEBP activity decreases in hypotonicity, whereas it increases in hypertonicity. Here we found that TonEBP displayed nuclear export in response to hypotonicity and nuclear import in response to hypertonicity. The nuclear export of TonEBP was not mediated by the nuclear export receptor CRM1 or discrete nuclear export signal. In contrast, a dominant nuclear localization signal (NLS) was found in a small region of 16 amino acid residues. When short peptides containing the NLS were fused to constitutively cytoplasmic proteins, the fusion proteins displayed tonicity-dependent nucleocytoplasmic trafficking like TonEBP. Thus, tonicity-dependent activation of the NLS is crucial in the nucleocytoplasmic trafficking of TonEBP. The novel NLS is present only in the vertebrates, indicating that it developed late in evolution. PMID:18579527

  20. A chloroplast retrograde signal regulates nuclear alternative splicing

    PubMed Central

    Petrillo, Ezequiel; Herz, Micaela A. Godoy; Fuchs, Armin; Reifer, Dominik; Fuller, John; Yanovsky, Marcelo J.; Simpson, Craig; Brown, John W. S.; Barta, Andrea; Kalyna, Maria; Kornblihtt, Alberto R.

    2015-01-01

    Light is a source of energy and also a regulator of plant physiological adaptations. We show here that light/dark conditions affect alternative splicing of a subset of Arabidopsis genes preferentially encoding proteins involved in RNA processing. The effect requires functional chloroplasts and is also observed in roots when the communication with the photosynthetic tissues is not interrupted, suggesting that a signaling molecule travels through the plant. Using photosynthetic electron transfer inhibitors with different mechanisms of action we deduce that the reduced pool of plastoquinones initiates a chloroplast retrograde signaling that regulates nuclear alternative splicing and is necessary for proper plant responses to varying light conditions. PMID:24763593

  1. Transcriptional regulation of α1H T-type calcium channel under hypoxia.

    PubMed

    Sellak, Hassan; Zhou, Chun; Liu, Bainan; Chen, Hairu; Lincoln, Thomas M; Wu, Songwei

    2014-10-01

    The low-voltage-activated T-type Ca(2+) channels play an important role in mediating the cellular responses to altered oxygen tension. Among three T-type channel isoforms, α1G, α1H, and α1I, only α1H was found to be upregulated under hypoxia. However, mechanisms underlying such hypoxia-dependent isoform-specific gene regulation remain incompletely understood. We, therefore, studied the hypoxia-dependent transcriptional regulation of α1G and α1H gene promoters with the aim to identify the functional hypoxia-response elements (HREs). In rat pulmonary artery smooth muscle cells (PASMCs) and pheochromocytoma (PC12) cells after hypoxia (3% O2) exposure, we observed a prominent increase in α1H mRNA at 12 h along with a significant rise in α1H-mediated T-type current at 24 and 48 h. We then cloned two promoter fragments from the 5'-flanking regions of rat α1G and α1H gene, 2,000 and 3,076 bp, respectively, and inserted these fragments into a luciferase reporter vector. Transient transfection of PASMCs and PC12 cells with these recombinant constructs and subsequent luciferase assay revealed a significant increase in luciferase activity from the reporter containing the α1H, but not α1G, promoter fragment under hypoxia. Using serial deletion and point mutation analysis strategies, we identified a functional HRE at site -1,173cacgc-1,169 within the α1H promoter region. Furthermore, an electrophoretic mobility shift assay using this site as a DNA probe demonstrated an increased binding activity to nuclear protein extracts from the cells after hypoxia exposure. Taken together, these findings indicate that hypoxia-induced α1H upregulation involves binding of hypoxia-inducible factor to an HRE within the α1H promoter region. PMID:25099734

  2. Transcriptional regulation of α1H T-type calcium channel under hypoxia

    PubMed Central

    Sellak, Hassan; Zhou, Chun; Liu, Bainan; Chen, Hairu; Lincoln, Thomas M.

    2014-01-01

    The low-voltage-activated T-type Ca2+ channels play an important role in mediating the cellular responses to altered oxygen tension. Among three T-type channel isoforms, α1G, α1H, and α1I, only α1H was found to be upregulated under hypoxia. However, mechanisms underlying such hypoxia-dependent isoform-specific gene regulation remain incompletely understood. We, therefore, studied the hypoxia-dependent transcriptional regulation of α1G and α1H gene promoters with the aim to identify the functional hypoxia-response elements (HREs). In rat pulmonary artery smooth muscle cells (PASMCs) and pheochromocytoma (PC12) cells after hypoxia (3% O2) exposure, we observed a prominent increase in α1H mRNA at 12 h along with a significant rise in α1H-mediated T-type current at 24 and 48 h. We then cloned two promoter fragments from the 5′-flanking regions of rat α1G and α1H gene, 2,000 and 3,076 bp, respectively, and inserted these fragments into a luciferase reporter vector. Transient transfection of PASMCs and PC12 cells with these recombinant constructs and subsequent luciferase assay revealed a significant increase in luciferase activity from the reporter containing the α1H, but not α1G, promoter fragment under hypoxia. Using serial deletion and point mutation analysis strategies, we identified a functional HRE at site −1,173cacgc−1,169 within the α1H promoter region. Furthermore, an electrophoretic mobility shift assay using this site as a DNA probe demonstrated an increased binding activity to nuclear protein extracts from the cells after hypoxia exposure. Taken together, these findings indicate that hypoxia-induced α1H upregulation involves binding of hypoxia-inducible factor to an HRE within the α1H promoter region. PMID:25099734

  3. Calcium Signaling Is Required for Erythroid Enucleation

    PubMed Central

    Russell, Sarah M.; Humbert, Patrick O.

    2016-01-01

    Although erythroid enucleation, the property of erythroblasts to expel their nucleus, has been known for 7ore than a century, surprisingly little is known regarding the molecular mechanisms governing this unique developmental process. Here we show that similar to cytokinesis, nuclear extrusion requires intracellular calcium signaling and signal transduction through the calmodulin (CaM) pathway. However, in contrast to cytokinesis we found that orthochromatic erythroblasts require uptake of extracellular calcium to enucleate. Together these functional studies highlight a critical role for calcium signaling in the regulation of erythroid enucleation. PMID:26731108

  4. Calcium Signaling Is Required for Erythroid Enucleation.

    PubMed

    Wölwer, Christina B; Pase, Luke B; Russell, Sarah M; Humbert, Patrick O

    2016-01-01

    Although erythroid enucleation, the property of erythroblasts to expel their nucleus, has been known for 7ore than a century, surprisingly little is known regarding the molecular mechanisms governing this unique developmental process. Here we show that similar to cytokinesis, nuclear extrusion requires intracellular calcium signaling and signal transduction through the calmodulin (CaM) pathway. However, in contrast to cytokinesis we found that orthochromatic erythroblasts require uptake of extracellular calcium to enucleate. Together these functional studies highlight a critical role for calcium signaling in the regulation of erythroid enucleation. PMID:26731108

  5. Regulation of nuclear transport in proliferating and quiescent cells.

    PubMed

    Feldherr, C M; Akin, D

    1993-03-01

    Previously, we compared signal-mediated nuclear transport in proliferating and quiescent BALB/c 3T3 cells and found that both the relative rate of nuclear uptake and the functional size of the transport channels were significantly greater in proliferating cells. In this study, the possible causes of these permeability differences were investigated. To determine if the decrease in transport capacity in quiescent cells was due to a reduction in the availability of soluble cytoplasmic factors (i.e., ATP or receptors for nuclear location sequences), or changes in the properties of the pores themselves, proliferating and quiescent cells were fused, and nuclear import of nucleoplasmin-coated gold (NP-gold) particles was assayed in the heterokaryons 50-60 min later. Significant differences in nuclear uptake were maintained following fusion, even though the two nuclei shared a common cytoplasm, consistent with the view that permeability is regulated at the level of the pores. Cell shape also influenced signal-mediated nuclear import. This was demonstrated by studying transport in rounded and flattened cells attached to different-size palladium domains that were deposited on a nonadhesive substrate. Based on analysis of the nuclear uptake rates of large (110-270 A in diameter) and small (50-80 A in diameter) coated gold particles, it was determined that the functional size of the pores was significantly greater in flattened cells. The effect of growth factors on recovery of nuclear transport capacity following serum depletion was also analyzed. Partial recovery was achieved by treating cells with physiological concentrations of EGF, IGF-1, or PDGF; however, complete recovery required both EGF and IGF-1. PMID:8453991

  6. Fascin Regulates Nuclear Movement and Deformation in Migrating Cells.

    PubMed

    Jayo, Asier; Malboubi, Majid; Antoku, Susumu; Chang, Wakam; Ortiz-Zapater, Elena; Groen, Christopher; Pfisterer, Karin; Tootle, Tina; Charras, Guillaume; Gundersen, Gregg G; Parsons, Maddy

    2016-08-22

    Fascin is an F-actin-bundling protein shown to stabilize filopodia and regulate adhesion dynamics in migrating cells, and its expression is correlated with poor prognosis and increased metastatic potential in a number of cancers. Here, we identified the nuclear envelope protein nesprin-2 as a binding partner for fascin in a range of cell types in vitro and in vivo. Nesprin-2 interacts with fascin through a direct, F-actin-independent interaction, and this binding is distinct and separable from a role for fascin within filopodia at the cell periphery. Moreover, disrupting the interaction between fascin and nesprin-2 C-terminal domain leads to specific defects in F-actin coupling to the nuclear envelope, nuclear movement, and the ability of cells to deform their nucleus to invade through confined spaces. Together, our results uncover a role for fascin that operates independently of filopodia assembly to promote efficient cell migration and invasion. PMID:27554857

  7. Regulation of nuclear shape and size in plants.

    PubMed

    Meier, Iris; Griffis, Anna Hn; Groves, Norman R; Wagner, Alecia

    2016-06-01

    Nuclear shape and size changes have long been used by cytopathologists to diagnose, stage, and prognose cancer. However, the underlying causalities and molecular mechanisms are largely unknown. The current eukaryotic tree of life groups eukaryotes into five supergroups, with all organisms between humans and yeast falling into the supergroup Opisthokonta. The emergence of model organisms with strong molecular genetic methodology in the other supergroups has recently facilitated a broader evolutionary approach to pressing biological questions. Here, we review what is known about the control of nuclear shape and size in the Archaeplastidae, the supergroup containing the higher plants. We discuss common themes as well as differences toward a more generalized model of how eukaryotic organisms regulate nuclear morphology. PMID:27030912

  8. Characterization of a calcium/calmodulin-dependent protein kinase homolog from maize roots showing light-regulated gravitropism

    NASA Technical Reports Server (NTRS)

    Lu, Y. T.; Hidaka, H.; Feldman, L. J.

    1996-01-01

    Roots of many species respond to gravity (gravitropism) and grow downward only if illuminated. This light-regulated root gravitropism is phytochrome-dependent, mediated by calcium, and inhibited by KN-93, a specific inhibitor of calcium/calmodulin-dependent protein kinase II (CaMK II). A cDNA encoding MCK1, a maize homolog of mammalian CaMK, has been isolated from roots of maize (Zea mays L.). The MCK1 gene is expressed in root tips, the site of perception for both light and gravity. Using the [35S]CaM gel-overlay assay we showed that calmodulin-binding activity of the MCK1 is abolished by 50 microM KN-93, but binding is not affected by 5 microM KN-93, paralleling physiological findings that light-regulated root gravitropism is inhibited by 50 microM KN-93, but not by 5 microM KN-93. KN-93 inhibits light-regulated gravitropism by interrupting transduction of the light signal, not light perception, suggesting that MCK1 may play a role in transducing light. This is the first report suggesting a physiological function for a CaMK homolog in light signal transduction.

  9. The Neuronal Calcium Sensor Protein Acrocalcin: A Potential Target of Calmodulin Regulation during Development in the Coral Acropora millepora

    PubMed Central

    Reyes-Bermudez, Alejandro; Miller, David J.; Sprungala, Susanne

    2012-01-01

    To understand the calcium-mediated signalling pathways underlying settlement and metamorphosis in the Scleractinian coral Acropora millepora, a predicted protein set derived from larval cDNAs was scanned for the presence of EF-hand domains (Pfam Id: PF00036). This approach led to the identification of a canonical calmodulin (AmCaM) protein and an uncharacterised member of the Neuronal Calcium Sensor (NCS) family of proteins known here as Acrocalcin (AmAC). While AmCaM transcripts were present throughout development, AmAC transcripts were not detected prior to gastrulation, after which relatively constant mRNA levels were detected until metamorphosis and settlement. The AmAC protein contains an internal CaM-binding site and was shown to interact in vitro with AmCaM. These results are consistent with the idea that AmAC is a target of AmCaM in vivo, suggesting that this interaction may regulate calcium-dependent processes during the development of Acropora millepora. PMID:23284743

  10. DPF2 regulates OCT4 protein level and nuclear distribution.

    PubMed

    Liu, Chao; Zhang, Dijuan; Shen, Yuxian; Tao, Xiaofang; Liu, Lihua; Zhong, Yongwang; Fang, Shengyun

    2015-12-01

    The amount of transcription factor OCT4 is strictly regulated. A tight regulation of OCT4 levels is crucial for mammalian embryonic development and oncogenesis. However, the mechanisms underlying regulation of OCT4 protein expression and nuclear distribution are largely unknown. Here, we report that DPF2, a plant homeodomain (PHD) finger protein, is upregulated during H9 cell differentiation induced by retinoic acid. Endogenous interaction between DPF2 and OCT4 in P19 cells was revealed by an immunoprecipitation assay. GST-pull down assay proved that OCT4 protein in H9 cells and recombinant OCT4 can precipitate with DPF2 in vitro. In vitro ubiquitination assay demonstrated DPF2 might serve as an E3 ligase. Knock down of dpf2 using siRNA increased OCT4 protein level and stability in P19 cells. DPF2 siRNAs also up-regulates OCT4 but not NANOG in H9 cells. However, RA fails to downregulates OCT4 protein level in cells infected by lenitviruses containing DPF2 siRNA. Moreover, overexpression of both DPF2 and OCT4 in 293 cells proved the DPF2-OCT4 interaction. DPF2 but not PHD2 mutant DPF2 enhanced ubiquitination and degradation of OCT4 in 293 cells co-expressed DPF2 and OCT4. Both wild type DPF2 and PHD2 mutant DPF2 redistributes nuclear OCT4 without affecting DPF2-OCT4 interaction. Further analysis indicated that DPF2 decreases monomeric and mono-ubiquitinated OCT4, assembles poly-ubiquitin chains on OCT4 mainly through Ub-K48 linkage. These findings contribute to an understanding of how OCT4 protein level and nuclear distribution is regulated by its associated protein. PMID:26417682

  11. Regulation of Cardiac ATP-sensitive Potassium Channel Surface Expression by Calcium/Calmodulin-dependent Protein Kinase II*

    PubMed Central

    Sierra, Ana; Zhu, Zhiyong; Sapay, Nicolas; Sharotri, Vikas; Kline, Crystal F.; Luczak, Elizabeth D.; Subbotina, Ekaterina; Sivaprasadarao, Asipu; Snyder, Peter M.; Mohler, Peter J.; Anderson, Mark E.; Vivaudou, Michel; Zingman, Leonid V.; Hodgson-Zingman, Denice M.

    2013-01-01

    Cardiac ATP-sensitive potassium (KATP) channels are key sensors and effectors of the metabolic status of cardiomyocytes. Alteration in their expression impacts their effectiveness in maintaining cellular energy homeostasis and resistance to injury. We sought to determine how activation of calcium/calmodulin-dependent protein kinase II (CaMKII), a central regulator of calcium signaling, translates into reduced membrane expression and current capacity of cardiac KATP channels. We used real-time monitoring of KATP channel current density, immunohistochemistry, and biotinylation studies in isolated hearts and cardiomyocytes from wild-type and transgenic mice as well as HEK cells expressing wild-type and mutant KATP channel subunits to track the dynamics of KATP channel surface expression. Results showed that activation of CaMKII triggered dynamin-dependent internalization of KATP channels. This process required phosphorylation of threonine at 180 and 224 and an intact 330YSKF333 endocytosis motif of the KATP channel Kir6.2 pore-forming subunit. A molecular model of the μ2 subunit of the endocytosis adaptor protein, AP2, complexed with Kir6.2 predicted that μ2 docks by interaction with 330YSKF333 and Thr-180 on one and Thr-224 on the adjacent Kir6.2 subunit. Phosphorylation of Thr-180 and Thr-224 would favor interactions with the corresponding arginine- and lysine-rich loops on μ2. We concluded that calcium-dependent activation of CaMKII results in phosphorylation of Kir6.2, which promotes endocytosis of cardiac KATP channel subunits. This mechanism couples the surface expression of cardiac KATP channels with calcium signaling and reveals new targets to improve cardiac energy efficiency and stress resistance. PMID:23223335

  12. Structural Role of Alkali Cations in Calcium Aluminosilicate Glasses as Examined Using Oxygen-17 Solid-State Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sukenaga, Sohei; Kanehashi, Koji; Shibata, Hiroyuki; Saito, Noritaka; Nakashima, Kunihiko

    2016-05-01

    The structural roles of alkali and calcium cations are important for understanding the physical and chemical properties of aluminosilicate melts and glasses. Recently, oxygen-17 nuclear magnetic resonance (17O NMR) studies of calcium-sodium aluminosilicate glasses showed that these structural roles are not randomly given, but rather each cation has its own preferential role. However, the relationship between cation type and role preference in calcium aluminosilicate glass is not completely understood. In the present study, the structural roles of lithium, sodium, and potassium cations in selected calcium aluminosilicate glasses are investigated using 17O solid-state NMR experiments. Data from these experiments clearly show that potassium cations have a notably stronger tendency to act as charge compensators within the network structure, compared to sodium and lithium cations. The result of 17O NMR experiment also showed that sodium and lithium cations in part act as network modifier alongside with calcium cations.

  13. Structural Role of Alkali Cations in Calcium Aluminosilicate Glasses as Examined Using Oxygen-17 Solid-State Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sukenaga, Sohei; Kanehashi, Koji; Shibata, Hiroyuki; Saito, Noritaka; Nakashima, Kunihiko

    2016-08-01

    The structural roles of alkali and calcium cations are important for understanding the physical and chemical properties of aluminosilicate melts and glasses. Recently, oxygen-17 nuclear magnetic resonance (17O NMR) studies of calcium-sodium aluminosilicate glasses showed that these structural roles are not randomly given, but rather each cation has its own preferential role. However, the relationship between cation type and role preference in calcium aluminosilicate glass is not completely understood. In the present study, the structural roles of lithium, sodium, and potassium cations in selected calcium aluminosilicate glasses are investigated using 17O solid-state NMR experiments. Data from these experiments clearly show that potassium cations have a notably stronger tendency to act as charge compensators within the network structure, compared to sodium and lithium cations. The result of 17O NMR experiment also showed that sodium and lithium cations in part act as network modifier alongside with calcium cations.

  14. Regulation of spent nuclear fuel shipment: A state perspective

    SciTech Connect

    Halstead, R.J.; Sinderbrand, C.; Woodbury, D.

    1987-01-01

    In 1985, the Wisconsin Department of Natural Resources (WDNR) sought to regulate rail shipments of spent nuclear fuel through the state, because federal regulations did not adequately protect the environmentally sensitive corridor along the route of the shipments. A state interagency working group identified five serious deficiencies in overall federal regulatory scheme: 1) failure to consider the safety or environmental risks associated with selected routes; 2) abscence of route-specific emergency response planning; 3) failure of the NRC to regulate the carrier of spent nuclear fuel or consider its safety record; 4) abscence of requirements for determination of need for, or the propriety of, specific shipments of spent nuclear fuel; and 5) the lack of any opportunity for meaningful public participation with respect to the decision to transport spent nuclear fuel. Pursuant to Wisconsin's hazardous substance statutes, the WDNR issues an order requiring the utility to file a spill prevention and mitigation plan or cease shipping through Wisconsin. A state trial court judge upheld the utility's challenge to Wisconsin's spill plan requirements, based on federal preemption of state authority. The state is now proposing federal legislation which would require: 1) NRC determination of need prior to approval of offsite shipment of spent fuel by the licensees; 2) NRC assessment of the potential environmental impacts of shipments along the proposed route, and comparative evaluation of alternative modes and routes; and 3) NRC approval of a route-specific emergency response and mitigation plan, including local training and periodic exercises. Additionally, the proposed legislation would authorize States and Indian Tribes to establish regulatory programs providing for permits, inspection, contingency plans for monitoring, containments, cleanup and decontamination, surveillance, enforcement and reasonable fees. 15 refs.

  15. Homeostatic synaptic depression is achieved through a regulated decrease in presynaptic calcium channel abundance.

    PubMed

    Gaviño, Michael A; Ford, Kevin J; Archila, Santiago; Davis, Graeme W

    2015-01-01

    Homeostatic signaling stabilizes synaptic transmission at the neuromuscular junction (NMJ) of Drosophila, mice, and human. It is believed that homeostatic signaling at the NMJ is bi-directional and considerable progress has been made identifying mechanisms underlying the homeostatic potentiation of neurotransmitter release. However, very little is understood mechanistically about the opposing process, homeostatic depression, and how bi-directional plasticity is achieved. Here, we show that homeostatic potentiation and depression can be simultaneously induced, demonstrating true bi-directional plasticity. Next, we show that mutations that block homeostatic potentiation do not alter homeostatic depression, demonstrating that these are genetically separable processes. Finally, we show that homeostatic depression is achieved by decreased presynaptic calcium channel abundance and calcium influx, changes that are independent of the presynaptic action potential waveform. Thus, we identify a novel mechanism of homeostatic synaptic plasticity and propose a model that can account for the observed bi-directional, homeostatic control of presynaptic neurotransmitter release. PMID:25884248

  16. Role of mitochondrial calcium uniporter in regulating mitochondrial fission in the cerebral cortexes of living rats.

    PubMed

    Liang, Nan; Wang, Peng; Wang, Shilei; Li, Shuhong; Li, Yu; Wang, Jinying; Wang, Min

    2014-06-01

    The mitochondrial calcium uniporter (MCU) transports Ca2+ from the cytoplasm to the mitochondrial matrix and thus maintains Ca2+ homeostasis. Previous studies have reported that inhibition of MCU by ruthenium red (RR) protects the brain from ischemia/reperfusion (I/R) injury and that mitochondrial fission plays an important role in I/R injury. However, it is still not known whether MCU affects mitochondrial fission. In the present study, treatment with RR was found to decrease the concentration of free calcium in the mitochondria, calcineurin enzyme activity and dynamin-related protein 1 expression, and treatment with spermine was found to have the opposite effect in organisms subjected to occlusion of the middle cerebral artery lasting 2 h followed by 24 h reperfusion. These results indicate that MCU may be related to mitochondrial fission via modulating mitochondrial Ca2+ uptake and this relationship between MCU and mitochondrial fission may protect the brain from I/R injury. PMID:24510075

  17. Tonoplast calcium sensors CBL2 and CBL3 control plant growth and ion homeostasis through regulating V-ATPase activity in Arabidopsis

    PubMed Central

    Tang, Ren-Jie; Liu, Hua; Yang, Yang; Yang, Lei; Gao, Xiao-Shu; Garcia, Veder J; Luan, Sheng; Zhang, Hong-Xia

    2012-01-01

    Plant responses to developmental and environmental cues are often mediated by calcium (Ca2+) signals that are transmitted by diverse calcium sensors. The calcineurin B-like (CBL) protein family represents calcium sensors that decode calcium signals through specific interactions with a group of CBL-interacting protein kinases. We report functional analysis of Arabidopsis CBL2 and CBL3, two closely related CBL members that are localized to the vacuolar membrane through the N-terminal tonoplast-targeting sequence. While cbl2 or cbl3 single mutant did not show any phenotypic difference from the wild type, the cbl2 cbl3 double mutant was stunted with leaf tip necrosis, underdeveloped roots, shorter siliques and fewer seeds. These defects were reminiscent of those in the vha-a2 vha-a3 double mutant deficient in vacuolar H+-ATPase (V-ATPase). Indeed, the V-ATPase activity was reduced in the cbl2 cbl3 double mutant, connecting tonoplast CBL-type calcium sensors to the regulation of V-ATPase. Furthermore, cbl2 cbl3 double mutant was compromised in ionic tolerance and micronutrient accumulation, consistent with the defect in V-ATPase activity that has been shown to function in ion compartmentalization. Our results suggest that calcium sensors CBL2 and CBL3 serve as molecular links between calcium signaling and V-ATPase, a central regulator of intracellular ion homeostasis. PMID:23184060

  18. Requirement for non-regulated, constitutive calcium influx in macrophage survival signaling

    SciTech Connect

    Tano, Jean-Yves; Vazquez, Guillermo

    2011-04-08

    Highlights: {yields} We examine the role of constitutive Ca{sup 2+} influx in macrophage survival. {yields} Survival signaling exhibits a mandatory requirement for constitutive Ca{sup 2+} influx. {yields} CAM/CAMKII couples constitutive Ca{sup 2+} influx to survival signaling. -- Abstract: The phosphatidylinositol-3-kinase (PI3K)/AKT axis and the Nuclear Factor kappa B (NF{kappa}B) pathway play critical roles in macrophage survival. In cells other than macrophages proper operation of those two pathways requires Ca{sup 2+} influx into the cell, but if that is the case in macrophages remains unexplored. In the present work we used THP-1-derived macrophages and a pharmacological approach to examine for the first time the role of constitutive, non-regulated Ca{sup 2+} influx in PI3K/AKT and NF{kappa}B signaling. Blocking constitutive function of Ca{sup 2+}-permeable channels with the organic channel blocker SKF96365 completely prevented phosphorylation of I{kappa}B{alpha}, AKT and its downstream target BAD in TNF{alpha}-treated macrophages. A similar effect was observed upon treating macrophages with the calmodulin (CAM) inhibitor W-7 or the calmodulin-dependent kinase II (CAMKII) inhibitor KN-62. In addition, pre-treating macrophages with SKF96365 significantly enhanced TNF{alpha}-induced apoptosis. Our findings suggest that in THP-1-derived macrophages survival signaling depends, to a significant extent, on constitutive Ca{sup 2+} influx presumably through a mechanism that involves the CAM/CAMKII axis as a coupling component between constitutive Ca{sup 2+} influx and activation of survival signaling.

  19. [Study of the calmodulin-dependent regulation of calcium adenosine triphosphatase of erythrocyte membranes in patients with ischemic heart disease].

    PubMed

    Malaia, L T; Petruniaka, V V; Rudyk, Iu S

    1991-01-01

    The inhibitor calmodulin (R 24571) was examined for effects on the activity of red blood cell Ca-ATPases in patients with coronary heart disease during the treatment with nitrates, beta-blockers and calcium antagonists. The maximum activity of Ca-ATPase was measured in the erythrocytes perforated with saponine in the presence of endogenous regulators at a concentration of Ca2+ of 3-5 microM. Patients with high and low Ca-ATPase activity were identified. In the control group R24571 failed to affect Ca-ATPase activity. In patients, the calmodulin inhibitor caused both Ca-ATPase activation and inhibition. The effects of R 24571 correlated with the severity of the patients' condition. In effective therapy, the action of the calmodulin inhibitor became lower on Ca-ATPase activity. It was concluded that there was Ca-ATPase regulation imbalance in patients with coronary heart diseases. PMID:1838226

  20. Revised seismic and geologic siting regulations for nuclear power plants

    SciTech Connect

    Murphy, A.J.; Chokshi, N.C.

    1997-02-01

    The primary regulatory basis governing the seismic design of nuclear power plants is contained in Appendix A to Part 50, General Design Criteria for Nuclear Power Plants, of Title 10 of the Code of Federal Regulations (CFR). General Design Criteria (GDC) 2 defines requirements for design bases for protection against natural phenomena. GDC 2 states the performance criterion that {open_quotes}Structures, systems, and components important to safety shall be designed to withstand the effects of natural phenomena such as earthquakes, . . . without loss of capability to perform their safety functions. . .{close_quotes}. Appendix A to Part 100, Seismic and Geologic Siting Criteria for Nuclear Power Plants, has been the principal document which provided detailed criteria to evaluate the suitability of proposed sites and suitability of the plant design basis established in consideration of the seismic and geologic characteristics of the proposed sites. Appendix A defines required seismological and geological investigations and requirements for other design conditions such as soil stability, slope stability, and seismically induced floods and water waves, and requirements for seismic instrumentation. The NRC staff is in the process of revising Appendix A. The NRC has recently revised seismic siting and design regulations for future applications. These revisions are discussed in detail in this paper.

  1. Risk analysis of nuclear safeguards regulations. [Aggregated Systems Model (ASM)

    SciTech Connect

    Al-Ayat, R.A.; Altman, W.D.; Judd, B.R.

    1982-06-01

    The Aggregated Systems Model (ASM), a probabilisitic risk analysis tool for nuclear safeguards, was applied to determine benefits and costs of proposed amendments to NRC regulations governing nuclear material control and accounting systems. The objective of the amendments was to improve the ability to detect insiders attempting to steal large quantities of special nuclear material (SNM). Insider threats range from likely events with minor consequences to unlikely events with catastrophic consequences. Moreover, establishing safeguards regulations is complicated by uncertainties in threats, safeguards performance, and consequences, and by the subjective judgments and difficult trade-offs between risks and safeguards costs. The ASM systematically incorporates these factors in a comprehensive, analytical framework. The ASM was used to evaluate the effectiveness of current safeguards and to quantify the risk of SNM theft. Various modifications designed to meet the objectives of the proposed amendments to reduce that risk were analyzed. Safeguards effectiveness was judged in terms of the probability of detecting and preventing theft, the expected time to detection, and the expected quantity of SNM diverted in a year. Data were gathered in tours and interviews at NRC-licensed facilities. The assessment at each facility was begun by carefully selecting scenarios representing the range of potential insider threats. A team of analysts and facility managers assigned probabilities for detection and prevention events in each scenario. Using the ASM we computed the measures of system effectiveness and identified cost-effective safeguards modifications that met the objectives of the proposed amendments.

  2. Mini-dystrophin Expression Down-regulates IP3-mediated Calcium Release Events in Resting Dystrophin-deficient Muscle Cells

    PubMed Central

    Balghi, Haouaria; Sebille, Stéphane; Mondin, Ludivine; Cantereau, Anne; Constantin, Bruno; Raymond, Guy; Cognard, Christian

    2006-01-01

    We present here evidence for the enhancement, at rest, of an inositol 1,4,5-trisphosphate (IP3)–mediated calcium signaling pathway in myotubes from dystrophin-deficient cell lines (SolC1(−)) as compared to a cell line from the same origin but transfected with mini-dystrophin (SolD(+)). With confocal microscopy, the number of sites discharging calcium (release site density [RSD]) was quantified and found more elevated in SolC1(−) than in SolD(+) myotubes. Variations of membrane potential had no significant effect on this difference, and higher resting [Ca2+]i in SolC1(−) (Marchand, E., B. Constantin, H. Balghi, M.C. Claudepierre, A. Cantereau, C. Magaud, A. Mouzou, G. Raymond, S. Braun, and C. Cognard. 2004. Exp. Cell Res. 297:363–379) cannot explain alone higher RSD. The exposure with SR Ca2+ channel inhibitors (ryanodine and 2-APB) and phospholipase C inhibitor (U73122) significantly reduced RSD in both cell types but with a stronger effect in dystrophin-deficient SolC1(−) myotubes. Immunocytochemistry allowed us to localize ryanodine receptors (RyRs) as well as IP3 receptors (IP3Rs), IP3R-1 and IP3R-2 isoforms, indicating the presence of both RyRs-dependent and IP3-dependent release systems in both cells. We previously reported evidence for the enhancement, through a Gi protein, of the IP3-mediated calcium signaling pathway in SolC1(−) as compared to SolD(+) myotubes during a high K+ stimulation (Balghi, H., S. Sebille, B. Constantin, S. Patri, V. Thoreau, L. Mondin, E. Mok, A. Kitzis, G. Raymond, and C. Cognard. 2006. J. Gen. Physiol. 127:171–182). Here we show that, at rest, these regulation mechanisms are also involved in the modulation of calcium release activities. The enhancement of resting release activity may participate in the calcium overload observed in dystrophin-deficient myotubes, and our findings support the hypothesis of the regulatory role of mini-dystrophin on intracellular signaling. PMID:16847098

  3. Spatiotemporal Regulation of Nuclear Transport Machinery and Microtubule Organization

    PubMed Central

    Okada, Naoyuki; Sato, Masamitsu

    2015-01-01

    Spindle microtubules capture and segregate chromosomes and, therefore, their assembly is an essential event in mitosis. To carry out their mission, many key players for microtubule formation need to be strictly orchestrated. Particularly, proteins that assemble the spindle need to be translocated at appropriate sites during mitosis. A small GTPase (hydrolase enzyme of guanosine triphosphate), Ran, controls this translocation. Ran plays many roles in many cellular events: nucleocytoplasmic shuttling through the nuclear envelope, assembly of the mitotic spindle, and reorganization of the nuclear envelope at the mitotic exit. Although these events are seemingly distinct, recent studies demonstrate that the mechanisms underlying these phenomena are substantially the same as explained by molecular interplay of the master regulator Ran, the transport factor importin, and its cargo proteins. Our review focuses on how the transport machinery regulates mitotic progression of cells. We summarize translocation mechanisms governed by Ran and its regulatory proteins, and particularly focus on Ran-GTP targets in fission yeast that promote spindle formation. We also discuss the coordination of the spatial and temporal regulation of proteins from the viewpoint of transport machinery. We propose that the transport machinery is an essential key that couples the spatial and temporal events in cells. PMID:26308057

  4. Regulation of Nuclear Localization of Signaling Proteins by Cytokinin

    SciTech Connect

    Kieber, J.J.

    2010-05-01

    Cytokinins are a class of mitogenic plant hormones that play an important role in most aspects of plant development, including shoot and root growth, vascular and photomorphogenic development and leaf senescence. A model for cytokinin perception and signaling has emerged that is similar to bacterial two-component phosphorelays. In this model, binding of cytokinin to the extracellular domain of the Arabidopsis histidine kinase (AHKs) receptors induces autophosphorylation within the intracellular histidine-kinase domain. The phosphoryl group is subsequently transferred to cytosolic Arabidopsis histidine phosphotransfer proteins (AHPs), which have been suggested to translocate to the nucleus in response to cytokinin treatment, where they then transfer the phosphoryl group to nuclear-localized response regulators (Type-A and Type-B ARRs). We examined the effects of cytokinin on AHP subcellular localization in Arabidopsis and, contrary to expectations, the AHPs maintained a constant nuclear/cytosolic distribution following cytokinin treatment. Furthermore, mutation of the conserved phosphoacceptor histidine residue of the AHP, as well as disruption of multiple cytokinin signaling elements, did not affect the subcellular localization of the AHP proteins. Finally, we present data indicating that AHPs maintain a nuclear/cytosolic distribution by balancing active transport into and out of the nucleus. Our findings suggest that the current models indicating relocalization of AHP protein into the nucleus in response to cytokinin are incorrect. Rather, AHPs actively maintain a consistent nuclear/cytosolic distribution regardless of the status of the cytokinin response pathway.

  5. Nuclear fuel, refueling, fuel handling, and licensing and regulation. Volume eleven

    SciTech Connect

    Not Available

    1986-01-01

    Volume eleven covers nuclear fuel (what is nuclear fuel, the nuclear fuel cycle, uranium mining, milling, and refining, uranium enrichment, nuclear fuel fabrication, fuel reprocessing), refueling and fuel handling (fuel assembly identification, fuel handling equipment, the fueling and refueling process, PWR refueling, BWR refueling), and licensing and regulation requirements (development of nuclear energy, federal licensing and regulatory organization, schedule for nuclear power plants, contents of reports to the Federal regulatory agency, nuclear power plant operator qualification).

  6. Native store-operated calcium channels are functionally expressed in mouse spinal cord dorsal horn neurons and regulate resting calcium homeostasis

    PubMed Central

    Xia, Jingsheng; Pan, Rong; Gao, Xinghua; Meucci, Olimpia; Hu, Huijuan

    2014-01-01

    Store-operated calcium channels (SOCs) are calcium-selective cation channels that mediate calcium entry in many different cell types. Store-operated calcium entry (SOCE) is involved in various cellular functions. Increasing evidence suggests that impairment of SOCE is responsible for numerous disorders. A previous study demonstrated that YM-58483, a potent SOC inhibitor, strongly attenuates chronic pain by systemic or intrathecal injection and completely blocks the second phase of formalin-induced spontaneous nocifensive behaviour, suggesting a potential role of SOCs in central sensitization. However, the expression of SOCs, their molecular identity and function in spinal cord dorsal horn neurons remain elusive. Here, we demonstrate that SOCs are expressed in dorsal horn neurons. Depletion of calcium stores from the endoplasmic reticulum (ER) induced large sustained calcium entry, which was blocked by SOC inhibitors, but not by voltage-gated calcium channel blockers. Depletion of ER calcium stores activated inward calcium-selective currents, which was reduced by replacing Ca2+ with Ba2+ and reversed by SOC inhibitors. Using the small inhibitory RNA knockdown approach, we identified both STIM1 and STIM2 as important mediators of SOCE and SOC current, and Orai1 as a key component of the Ca2+ release-activated Ca2+ channels in dorsal horn neurons. Knockdown of STIM1, STIM2 or Orai1 decreased resting Ca2+ levels. We also found that activation of neurokinin 1 receptors led to SOCE and activation of SOCs produced an excitatory action in dorsal horn neurons. Our findings reveal that a novel SOC signal is present in dorsal horn neurons and may play an important role in pain transmission. PMID:24860175

  7. Calmodulin and calcium differentially regulate the neuronal Nav1.1 voltage-dependent sodium channel

    SciTech Connect

    Gaudioso, Christelle; Carlier, Edmond; Youssouf, Fahamoe; Clare, Jeffrey J.; Debanne, Dominique; Alcaraz, Gisele

    2011-07-29

    Highlights: {yields} Both Ca{sup ++}-Calmodulin (CaM) and Ca{sup ++}-free CaM bind to the C-terminal region of Nav1.1. {yields} Ca{sup ++} and CaM have both opposite and convergent effects on I{sub Nav1.1}. {yields} Ca{sup ++}-CaM modulates I{sub Nav1.1} amplitude. {yields} CaM hyperpolarizes the voltage-dependence of activation, and increases the inactivation rate. {yields} Ca{sup ++} alone antagonizes CaM for both effects, and depolarizes the voltage-dependence of inactivation. -- Abstract: Mutations in the neuronal Nav1.1 voltage-gated sodium channel are responsible for mild to severe epileptic syndromes. The ubiquitous calcium sensor calmodulin (CaM) bound to rat brain Nav1.1 and to the human Nav1.1 channel expressed by a stably transfected HEK-293 cell line. The C-terminal region of the channel, as a fusion protein or in the yeast two-hybrid system, interacted with CaM via a consensus C-terminal motif, the IQ domain. Patch clamp experiments on HEK1.1 cells showed that CaM overexpression increased peak current in a calcium-dependent way. CaM had no effect on the voltage-dependence of fast inactivation, and accelerated the inactivation kinetics. Elevating Ca{sup ++} depolarized the voltage-dependence of fast inactivation and slowed down the fast inactivation kinetics, and for high concentrations this effect competed with the acceleration induced by CaM alone. Similarly, the depolarizing action of calcium antagonized the hyperpolarizing shift of the voltage-dependence of activation due to CaM overexpression. Fluorescence spectroscopy measurements suggested that Ca{sup ++} could bind the Nav1.1 C-terminal region with micromolar affinity.

  8. The Intermediate Conductance Calcium-activated Potassium Channel KCa3.1 Regulates Vascular Smooth Muscle Cell Proliferation via Controlling Calcium-dependent Signaling*

    PubMed Central

    Bi, Dan; Toyama, Kazuyoshi; Lemaître, Vincent; Takai, Jun; Fan, Fan; Jenkins, David P.; Wulff, Heike; Gutterman, David D.; Park, Frank; Miura, Hiroto

    2013-01-01

    The intermediate conductance calcium-activated potassium channel KCa3.1 contributes to a variety of cell activation processes in pathologies such as inflammation, carcinogenesis, and vascular remodeling. We examined the electrophysiological and transcriptional mechanisms by which KCa3.1 regulates vascular smooth muscle cell (VSMC) proliferation. Platelet-derived growth factor-BB (PDGF)-induced proliferation of human coronary artery VSMCs was attenuated by lowering intracellular Ca2+ concentration ([Ca2+]i) and was enhanced by elevating [Ca2+]i. KCa3.1 blockade or knockdown inhibited proliferation by suppressing the rise in [Ca2+]i and attenuating the expression of phosphorylated cAMP-response element-binding protein (CREB), c-Fos, and neuron-derived orphan receptor-1 (NOR-1). This antiproliferative effect was abolished by elevating [Ca2+]i. KCa3.1 overexpression induced VSMC proliferation, and potentiated PDGF-induced proliferation, by inducing CREB phosphorylation, c-Fos, and NOR-1. Pharmacological stimulation of KCa3.1 unexpectedly suppressed proliferation by abolishing the expression and activity of KCa3.1 and PDGF β-receptors and inhibiting the rise in [Ca2+]i. The stimulation also attenuated the levels of phosphorylated CREB, c-Fos, and cyclin expression. After KCa3.1 blockade, the characteristic round shape of VSMCs expressing high l-caldesmon and low calponin-1 (dedifferentiation state) was maintained, whereas KCa3.1 stimulation induced a spindle-shaped cellular appearance, with low l-caldesmon and high calponin-1. In conclusion, KCa3.1 plays an important role in VSMC proliferation via controlling Ca2+-dependent signaling pathways, and its modulation may therefore constitute a new therapeutic target for cell proliferative diseases such as atherosclerosis. PMID:23609438

  9. Rab1 Small GTP-Binding Protein Regulates Cell Surface Trafficking of the Human Calcium-Sensing Receptor

    PubMed Central

    Zhuang, Xiaolei; Adipietro, Kaylin A.; Datta, Shomik; Northup, John K.; Ray, Kausik

    2010-01-01

    The human calcium-sensing receptor (hCaR) is a family-3/C G-protein-coupled receptor that regulates Ca2+ homeostasis by controlling parathyroid hormone secretion. Here we investigated the role of Rab1, a small GTP-binding protein that specifically regulates protein transport from the endoplasmic reticulum to the Golgi, in cell surface transport of the hCaR. Cell surface expression of hCaR transiently expressed in human embryonic kidney 293 cells was strongly augmented by coexpression of Rab1 and attenuated by disruption of endogenous Rab1 function by expression of the dominant-negative Rab1N124I mutant or depletion of Rab1 with small interfering RNA. Rab1N124I expression also partially attenuated cell surface expression and signaling response to gain-of-function mutants of hCaR with truncated carboxyl-terminal sequences at positions 895 and 903. These carboxyl-tail truncations are similar to a deletion between residues S895 and V1075 found in a patient family causing autosomal dominant hypocalcemia. In addition, coexpression with wild-type Rab1 increased cell surface expression of the loss-of-function missense mutation R185Q, located on the hCaR amino-terminal extracellular ligand-binding domain (ECD), which causes familial hypocalciuric hypercalcemia. Truncated hCaR variants containing either the ECD with the first transmembrane helix or only the ECD also display Rab1-dependent cell surface expression or secretion into the culture medium, respectively. These data reveal a role for Rab1 in hCaR trafficking from the endoplasmic reticulum to the Golgi that regulates receptor cell surface expression and thereby cell signaling responsiveness to extracellular calcium. PMID:20861236

  10. Pleiotropic effects of the beta-adrenoceptor blocker carvedilol on calcium regulation during oxidative stress-induced apoptosis in cardiomyocytes.

    PubMed

    Wang, Ruijuan; Miura, Toshiro; Harada, Nozomu; Kametani, Ryosuke; Shibuya, Masaki; Fukagawa, Yasuhiro; Kawamura, Shuji; Ikeda, Yasuhiro; Hara, Masayuki; Matsuzaki, Masunori

    2006-07-01

    Carvedilol is a nonselective beta-adrenoceptor blocker with multiple pleiotropic actions. A recent clinical study suggested that carvedilol may be superior to other beta-adrenoceptor blockers in the treatment of heart failure. Despite numerous investigations, the underlying mechanisms of carvedilol on improving heart failure are yet to be fully established. The purpose of this study is to clarify the pleiotropic effect of carvedilol on cytosolic and mitochondrial calcium regulation during oxidative stress-induced apoptosis in cardiomyocytes. Carvedilol (10 microM), but not metoprolol (10 microM), reduced H2O2 (100 microM)-induced apoptosis in neonatal rat cardiomyocytes. During the process, changes in cytosolic calcium concentration ([Ca2+]i) and mitochondrial calcium concentration ([Ca2+]m) and mitochondrial membrane potential (DeltaPsim) were measured by fluorescent probes [Fluo-3/acetoxymethyl ester (AM), Rhod-2/AM, and tetramethylrhodamine ethyl ester, respectively] and imaged by laser confocal microscopy. The results showed that H2O2 caused [Ca2]m overload first, followed by [Ca2+]i overload, leading to DeltaPsim dissipation and the induction of apoptosis. Carvedilol (10 microM) significantly delayed these processes and reduced apoptosis. These effects were not observed with other beta-adrenoceptor blockers (metoprolol, atenolol, and propranolol) or with a combination of the alpha (phentolamine)- and the beta-adrenoceptor blocker. The antioxidant N-acetyl-L-cysteine (NAC, 5 mM) and the combination of NAC and propranolol (10 microM) showed an effect similar to that of carvedilol. Therefore, the effect of carvedilol on H2O2-induced changes in [Ca2+]m, [Ca2+]i, and DeltaPsi(m) is independent of alpha- and beta-adrenoceptors but is probably dependent on the antioxidant effect. PMID:16611853

  11. Regulation of proteolysis in Bacillus subtilis: effects of calcium ions and energy poisons

    SciTech Connect

    O'Hara, M.B.; Hageman, J.H.

    1987-05-01

    Bacillus subtilis cells carry out extensive intracellular proteolysis (k = 0.15-0.23/h) during sporulation. Protein degradation was measured in cells growing in chemically defined sporulation medium, by following the release of ( UC)-leucine from the cells during spore formation. Sodium arsenate, carbonyl cyanide 3-chlorophenyl hydrazone, and sodium azide strongly inhibited proteolysis without altering cell viability greatly, which suggested that bulk proteolysis in B. subtilis is energy dependent. The authors have tested the hypothesis that the energy requirement may be for pumping in CaS . When (CaS ) was < 1 x 10 W, rates of proteolysis in sporulating cells were reduced 4-8 times that in cells in calcium ion- sufficient medium. Further, omission of CaS from the medium prevented the increase in the activity of the major intracellular serine protease. However, the presence of energy poisons in the media at levels which inhibited proteolysis, had no detectable effect on the uptake of by cells (UVCa). The authors concluded that B. subtilis cells required both metabolic energy and calcium ions for normal proteolysis.

  12. LOX-1 regulates estrogenesis via intracellular calcium release from bovine granulosa cells.

    PubMed

    Weitzel, J M; Vernunft, A; Krüger, B; Plinski, C; Viergutz, T

    2014-01-01

    Estradiol produced by ovarian granulosa cells triggers the luteinizing hormone surge which in turn initiates ovulation in female mammals. Disturbances in estradiol production from granulosa cells are a major reason for reproductive dysfunctions in dairy cows. Endogenous estradiol production might be altered by reactive oxygen species (ROS) such as oxidized low-density lipoprotein (ox-LDL). Inhibition of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), a receptor of ox-LDL, leads to increased estrogenesis in granulosa cells. This activity is mediated by calcium release from endoplasmic reticulum (ER)-dependent and ER-independent calcium pools. Inhibition of the LOX-1 signal transduction pathway is followed by mitochondrial alterations. The membrane potential ΔΨ increases and the ROS production decreases in mitochondria after blocking LOX-1. Our data indicate that blocking the LOX-1 receptor signal pathway might be a promising way to improve steroid hormone concentrations in metabolically highly active female mammals and, therefore, to defend against reproductive dysfunctions in humans and animals. PMID:24115745

  13. Cell-specific vacuolar calcium storage mediated by "CAX1" regulates apoplastic calcium concentration, gas exchange, and plant productivity in "Arabidopsis"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The physiological role and mechanism of nutrient storage within vacuoles of specific cell types is poorly understood. Transcript profiles from "Arabidopsis thaliana" leaf cells differing in calcium concentration ([Ca], epidermis 60 mM) were compared using a microarray screen...

  14. Regulation of the cytosolic sulfotransferases by nuclear receptors

    PubMed Central

    Runge-Morris, Melissa; Kocarek, Thomas A.; Falany, Charles N.

    2013-01-01

    The cytosolic sulfotransferases (SULTs) are a multigene family of enzymes that catalyze the transfer of a sulfonate group from the physiologic sulfate donor, 3′-phosphoadenosine-5′-phosphosulfate, to a nucleophilic substrate to generate a polar product that is more amenable to elimination from the body. As catalysts of both xenobiotic and endogenous metabolism, the SULTs are major points of contact between the external and physiological environments, and modulation of SULT-catalyzed metabolism can not only affect xenobiotic disposition, but it can also alter endogenous metabolic processes. Therefore, it is not surprising that SULT expression is regulated by numerous members of the nuclear receptor (NR) superfamily that function as sensors of xenobiotics as well as endogenous molecules, such as fatty acids, bile acids, and oxysterols. These NRs include the peroxisome proliferator-activated receptors, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, liver X receptors, farnesoid X receptor, retinoid-related orphan receptors, and estrogen-related receptors. This review summarizes current information about NR regulation of SULT expression. Because species differences in SULT subfamily composition and tissue-, sex-, development-, and inducer-dependent regulation are prominent, these differences will be emphasized throughout the review. In addition, because of the central role of the SULTs in cellular physiology, the effect of NR-mediated SULT regulation on physiological and pathophysiological processes will be discussed. Gaps in current knowledge that require further investigation are also highlighted. PMID:23330539

  15. THE ROLE OF INTRACELLULAR SODIUM (Na+) IN THE REGULATION OF CALCIUM (Ca2+)-MEDIATED SIGNALING AND TOXICITY

    PubMed Central

    Yu, Xian-Min; Groveman, Bradley R; Fang, Xiao-Qian; Lin, Shuang-Xiu

    2010-01-01

    It is known that activated N-methyl-D-aspartate receptors (NMDARs) are a major route of excessive calcium ion (Ca2+) entry in central neurons, which may activate degradative processes and thereby cause cell death. Therefore, NMDARs are now recognized to play a key role in the development of many diseases associated with injuries to the central nervous system (CNS). However, it remains a mystery how NMDAR activity is recruited in the cellular processes leading to excitotoxicity and how NMDAR activity can be controlled at a physiological level. The sodium ion (Na+) is the major cation in extracellular space. With its entry into the cell, Na+ can act as a critical intracellular second messenger that regulates many cellular functions. Recent data have shown that intracellular Na+ can be an important signaling factor underlying the up-regulation of NMDARs. While Ca2+ influx during the activation of NMDARs down-regulates NMDAR activity, Na+ influx provides an essential positive feedback mechanism to overcome Ca2+-induced inhibition and thereby potentiate both NMDAR activity and inward Ca2+ flow. Extensive investigations have been conducted to clarify mechanisms underlying Ca2+-mediated signaling. This review focuses on the roles of Na+ in the regulation of Ca2+-mediated NMDAR signaling and toxicity. PMID:21243124

  16. Fus1/Tusc2 Is a Novel Regulator of Mitochondrial Calcium Handling, Ca2+-Coupled Mitochondrial Processes, and Ca2+-Dependent NFAT and NF-κB Pathways in CD4+ T Cells

    PubMed Central

    Uzhachenko, Roman; Ivanov, Sergey V.; Yarbrough, Wendell G.; Shanker, Anil; Medzhitov, Ruslan

    2014-01-01

    Abstract Aims: Fus1 has been established as mitochondrial tumor suppressor, immunomodulator, and antioxidant protein, but molecular mechanism of these activities remained to be identified. Based on putative calcium-binding and myristoyl-binding domains that we identified in Fus1, we explored our hypothesis that Fus1 regulates mitochondrial calcium handling and calcium-coupled processes. Results: Fus1 loss resulted in reduced rate of mitochondrial calcium uptake in calcium-loaded epithelial cells, splenocytes, and activated CD4+ T cells. The reduced rate of mitochondrial calcium uptake in Fus1-deficient cells correlated with cytosolic calcium increase and dysregulation of calcium-coupled mitochondrial parameters, such as reactive oxygen species production, ΔμH+, mitochondrial permeability transition pore opening, and GSH content. Inhibition of calcium efflux via mitochondria, Na+/Ca2+ exchanger significantly improved the mitochondrial calcium uptake in Fus1−/− cells. Ex vivo analysis of activated CD4+ T cells showed Fus1-dependent changes in calcium-regulated processes, such as surface expression of CD4 and PD1/PD-L1, proliferation, and Th polarization. Fus1−/− T cells showed increased basal expression of calcium-dependent NF-κB and NFAT targets but were unable to fully activate these pathways after stimulation. Innovation: Our results establish Fus1 as one of the few identified regulators of mitochondrial calcium handling. Our data support the idea that alterations in mitochondrial calcium dynamics could lead to the disruption of metabolic coupling in mitochondria that, in turn, may result in multiple cellular and systemic abnormalities. Conclusion: Our findings suggest that Fus1 achieves its protective role in inflammation, autoimmunity, and cancer via the regulation of mitochondrial calcium and calcium-coupled parameters. Antioxid. Redox Signal. 20, 1533–1547. PMID:24328503

  17. Cloning and expression of two human genes encoding calcium-binding proteins that are regulated during myeloid differentiation.

    PubMed Central

    Lagasse, E; Clerc, R G

    1988-01-01

    The cellular mechanisms involved in chronic inflammatory processes are poorly understood. This is especially true for the role of macrophages, which figure prominently in the inflammatory response. Two proteins, MRP8 and MRP14, which are expressed in infiltrate macrophages during inflammatory reactions but not in normal tissue macrophages, have been characterized. Here we report that MRP8 and MRP14 mRNAs are specifically expressed in human cells of myeloid origin and that their expression is regulated during monocyte-macrophage and granulocyte differentiation. To initiate the analysis of cis-acting elements governing the tissue-specific expression of the MRP genes, we cloned the human genes encoding MRP8 and MRP14. Both genes contain three exons, are single copy, and have a strikingly similar organization. They belong to a novel subfamily of highly homologous calcium-binding proteins which includes S100 alpha, S100 beta, intestinal calcium-binding protein, P11, and calcyclin (2A9). A transient expression assay was devised to investigate the tissue-specific regulatory elements responsible for MRP gene expression after differentiation in leukemia HL60 cells. The results of this investigation demonstrated that the cis-acting elements responsible for MRP expression are present on the cloned DNA fragment containing the MRP gene loci. Images PMID:3405210

  18. Miro1 Regulates Activity-Driven Positioning of Mitochondria within Astrocytic Processes Apposed to Synapses to Regulate Intracellular Calcium Signaling.

    PubMed

    Stephen, Terri-Leigh; Higgs, Nathalie F; Sheehan, David F; Al Awabdh, Sana; López-Doménech, Guillermo; Arancibia-Carcamo, I Lorena; Kittler, Josef T

    2015-12-01

    It is fast emerging that maintaining mitochondrial function is important for regulating astrocyte function, although the specific mechanisms that govern astrocyte mitochondrial trafficking and positioning remain poorly understood. The mitochondrial Rho-GTPase 1 protein (Miro1) regulates mitochondrial trafficking and detachment from the microtubule transport network to control activity-dependent mitochondrial positioning in neurons. However, whether Miro proteins are important for regulating signaling-dependent mitochondrial dynamics in astrocytic processes remains unclear. Using live-cell confocal microscopy of rat organotypic hippocampal slices, we find that enhancing neuronal activity induces transient mitochondrial remodeling in astrocytes, with a concomitant, transient reduction in mitochondrial trafficking, mediated by elevations in intracellular Ca(2+). Stimulating neuronal activity also induced mitochondrial confinement within astrocytic processes in close proximity to synapses. Furthermore, we show that the Ca(2+)-sensing EF-hand domains of Miro1 are important for regulating mitochondrial trafficking in astrocytes and required for activity-driven mitochondrial confinement near synapses. Additionally, activity-dependent mitochondrial positioning by Miro1 reciprocally regulates the levels of intracellular Ca(2+) in astrocytic processes. Thus, the regulation of intracellular Ca(2+) signaling, dependent on Miro1-mediated mitochondrial positioning, could have important consequences for astrocyte Ca(2+) wave propagation, gliotransmission, and ultimately neuronal function. PMID:26631479

  19. Regulation of hepatic energy metabolism by the nuclear receptor PXR.

    PubMed

    Hakkola, Jukka; Rysä, Jaana; Hukkanen, Janne

    2016-09-01

    The pregnane X receptor (PXR) is a nuclear receptor that is traditionally thought to be specialized for sensing xenobiotic exposure. In concurrence with this feature PXR was originally identified to regulate drug-metabolizing enzymes and transporters. During the last ten years it has become clear that PXR harbors broader functions. Evidence obtained both in experimental animals and humans indicate that ligand-activated PXR regulates hepatic glucose and lipid metabolism and affects whole body metabolic homeostasis. Currently, the consequences of PXR activation on overall metabolic health are not yet fully understood and varying results on the effect of PXR activation or knockout on metabolic disorders and weight gain have been published in mouse models. Rifampicin and St. John's wort, the prototypical human PXR agonists, impair glucose tolerance in healthy volunteers. Chronic exposure to PXR agonists could potentially represent a risk factor for diabetes and metabolic syndrome. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie. PMID:27041449

  20. Calcium supplements

    MedlinePlus

    ... TYPES OF CALCIUM SUPPLEMENTS Forms of calcium include: Calcium carbonate: Over-the-counter (OTC) antacid products, such as Tums and Rolaids, contain calcium carbonate. These sources of calcium do not cost much. ...

  1. Calcium and Mitosis

    NASA Technical Reports Server (NTRS)

    Hepler, P.

    1983-01-01

    Although the mechanism of calcium regulation is not understood, there is evidence that calcium plays a role in mitosis. Experiments conducted show that: (1) the spindle apparatus contains a highly developed membrane system that has many characteristics of sarcoplasmic reticulum of muscle; (2) this membrane system contains calcium; and (3) there are ionic fluxes occurring during mitosis which can be seen by a variety of fluorescence probes. Whether the process of mitosis can be modulated by experimentally modulating calcium is discussed.

  2. Apoptosis-linked gene-2 (ALG-2)/Sec31 interactions regulate endoplasmic reticulum (ER)-to-Golgi transport: a potential effector pathway for luminal calcium.

    PubMed

    Helm, Jared R; Bentley, Marvin; Thorsen, Kevin D; Wang, Ting; Foltz, Lauren; Oorschot, Viola; Klumperman, Judith; Hay, Jesse C

    2014-08-22

    Luminal calcium released from secretory organelles has been suggested to play a regulatory role in vesicle transport at several steps in the secretory pathway; however, its functional roles and effector pathways have not been elucidated. Here we demonstrate for the first time that specific luminal calcium depletion leads to a significant decrease in endoplasmic reticulum (ER)-to-Golgi transport rates in intact cells. Ultrastructural analysis revealed that luminal calcium depletion is accompanied by increased accumulation of intermediate compartment proteins in COPII buds and clusters of unfused COPII vesicles at ER exit sites. Furthermore, we present several lines of evidence suggesting that luminal calcium affected transport at least in part through calcium-dependent interactions between apoptosis-linked gene-2 (ALG-2) and the Sec31A proline-rich region: 1) targeted disruption of ALG-2/Sec31A interactions caused severe defects in ER-to-Golgi transport in intact cells; 2) effects of luminal calcium and ALG-2/Sec31A interactions on transport mutually required each other; and 3) Sec31A function in transport required luminal calcium. Morphological phenotypes of disrupted ALG-2/Sec31A interactions were characterized. We found that ALG-2/Sec31A interactions were not required for the localization of Sec31A to ER exit sites per se but appeared to acutely regulate the stability and trafficking of the cargo receptor p24 and the distribution of the vesicle tether protein p115. These results represent the first outline of a mechanism that connects luminal calcium to specific protein interactions regulating vesicle trafficking machinery. PMID:25006245

  3. Genetic interactions between Rch1 and the high-affinity calcium influx system Cch1/Mid1/Ecm7 in the regulation of calcium homeostasis, drug tolerance, hyphal development and virulence in Candida albicans.

    PubMed

    Xu, Dayong; Cheng, Jianqing; Cao, Chunlei; Wang, Litong; Jiang, Linghuo

    2015-11-01

    The high-affinity calcium influx system (HACS) consisted of CaCch1, CaMid1 and CaEcm7 controls calcium influx into the cell in response to environmental stimuli. The plasma membrane protein CaRch1 is a negative regulator of calcium influx in Candida albicans. In this study, we show that deletion of any of the HACS components suppresses the calcium hypersensitivity of, and the elevated activation level of calcium/calcineurin signaling in, C. albicans cells lacking CaRCH1. In contrast, CaRCH1 is epistatic to the HACS system in the tolerance of antifungal drugs. In addition, cells lacking CaRCH1 are sensitive to tunicamycin, show a delay in in vitro filamentation and an altered colony surface morphology, and are attenuated in virulence in a mouse systemic model. Cells lacking CaCCH1 and CaMID1, but not CaECM7, are sensitive to tunicamycin. Deletion of CaRCH1 increases the tunicamycin sensitivity of cells lacking CaECM7 or CaMID1, but not CaCCH1. Furthermore, deletion of CaRCH1 suppresses the defect in hyphal development due to the deletion of CaCCH1 or CaECM7, and increases the virulence of cells lacking any of the HACS components. Therefore, CaRch1 genetically interacts with the HACS components in different fashions for these functions. PMID:26323599

  4. Regulation of calcium and phosphoinositides at endoplasmic reticulum-membrane junctions.

    PubMed

    Dickson, Eamonn J; Jensen, Jill B; Hille, Bertil

    2016-04-15

    Effective cellular function requires both compartmentalization of tasks in space and time, and coordination of those efforts. The endoplasmic reticulum's (ER) expansive and ramifying structure makes it ideally suited to serve as a regulatory platform for organelle-organelle communication through membrane contacts. These contact sites consist of two membranes juxtaposed at a distance less than 30 nm that mediate the exchange of lipids and ions without the need for membrane fission or fusion, a process distinct from classical vesicular transport. Membrane contact sites are positioned by organelle-specific membrane-membrane tethering proteins and contain a growing number of additional proteins that organize information transfer to shape membrane identity. Here we briefly review the role of ER-containing membrane junctions in two important cellular functions: calcium signalling and phosphoinositide processing. PMID:27068956

  5. Structure of a Calcium-dependent 11R-Lipoxygenase Suggests a Mechanism for Ca[superscript 2+] Regulation

    SciTech Connect

    Eek, Priit; Järving, Reet; Järving, Ivar; Gilbert, Nathaniel C.; Newcomer, Marcia E.; Samel, Nigulas

    2012-08-31

    Lipoxygenases (LOXs) are a key part of several signaling pathways that lead to inflammation and cancer. Yet, the mechanisms of substrate binding and allosteric regulation by the various LOX isoforms remain speculative. Here we report the 2.47-{angstrom} resolution crystal structure of the arachidonate 11R-LOX from Gersemia fruticosa, which sheds new light on the mechanism of LOX catalysis. Our crystallographic and mutational studies suggest that the aliphatic tail of the fatty acid is bound in a hydrophobic pocket with two potential entrances. We speculate that LOXs share a common T-shaped substrate channel architecture that gives rise to the varying positional specificities. A general allosteric mechanism is proposed for transmitting the activity-inducing effect of calcium binding from the membrane-targeting PLAT (polycystin-1/lipoxygenase/{alpha}-toxin) domain to the active site via a conserved {pi}-cation bridge.

  6. BcIqg1, a fungal IQGAP homolog, interacts with NADPH oxidase, MAP kinase and calcium signaling proteins and regulates virulence and development in Botrytis cinerea.

    PubMed

    Marschall, Robert; Tudzynski, Paul

    2016-07-01

    NADPH oxidases (Nox) produce reactive oxygen species (ROS) in multicellular eukaryotic organisms. They trigger defense reactions ('oxidative burst') - in phagocytes and plant cells -, and are involved in a broad range of differentiation processes. Fungal Nox-complexes play a central role in vegetative, sexual and pathogenic processes. In contrast to mammalian systems, knowledge is limited about composition, localisation and connection to major signaling cascades in fungi. Here, we characterize a fungal homolog of the RasGAP scaffold protein IQGAP, which links several major signaling processes, including Nox in mammalian cell lines. We show that BcIqg1 interacts directly with a cytosolic, regulatory component (BcRac) and a membrane-associated subunit (BcNoxD) of a Nox-complex in the pathogen Botrytis cinerea. Thus, this protein may be a scaffold that mediates interaction of the catalytic subunits with the regulator BcNoxR. The protein interacts with modules of the MAP kinase- and calcium-dependent signaling pathways. Functional analysis of BcIqg1 substantiated its involvement in different signaling pathways. It mediates the Ca(2+) -triggered nuclear translocation of - BcCRZ1 and the MAP kinase BcBmp1. BcIqg1 is involved in resistance against oxidative and membrane stress and is required for several developmental processes including formation of sclerotia, conidial anastomosis tubes and infection cushions as well as for virulence. PMID:27062300

  7. Fluctuations in Cytosolic Calcium Regulate the Neuronal Malate-Aspartate NADH Shuttle: Implications for Neuronal Energy Metabolism.

    PubMed

    Satrústegui, Jorgina; Bak, Lasse K

    2015-12-01

    The malate-aspartate NADH shuttle (MAS) operates in neurons and other cells to translocate reducing equivalents from the cytosol to the mitochondrial matrix, thus allowing a continued flux through the glycolytic pathway and metabolism of extracellular lactate. Recent discoveries have taught us that MAS is regulated by fluctuations in cytosolic Ca(2+) levels, and that this regulation is required to maintain a tight coupling between neuronal activity and mitochondrial respiration and oxidative phosphorylation. At cytosolic Ca(2+) fluctuations below the threshold of the mitochondrial calcium uniporter, there is a positive correlation between Ca(2+) and MAS activity; however, if cytosolic Ca(2+) increases above the threshold, MAS activity is thought to be reduced by an intricate mechanism. The latter forces the neurons to partly rely on anaerobic glycolysis producing lactate that may be metabolized subsequently, by neurons or other cells. In this review, we will discuss the evidence for Ca(2+)-mediated regulation of MAS that have been uncovered over the last decade or so, together with the need for further verification, and examine the metabolic ramifications for neurons. PMID:26138554

  8. Voltage-gated calcium and sodium channels mediate Sema3A retrograde signaling that regulates dendritic development.

    PubMed

    Yamashita, Naoya; Aoki, Reina; Chen, Sandy; Jitsuki-Takahashi, Aoi; Ohura, Shunsuke; Kamiya, Haruyuki; Goshima, Yoshio

    2016-01-15

    Growing axons rely on local signaling at the growth cone for guidance cues. Semaphorin3A (Sema3A), a secreted repulsive axon guidance molecule, regulates synapse maturation and dendritic branching. We previously showed that local Sema3A signaling in the growth cones elicits retrograde retrograde signaling via PlexinA4 (PlexA4), one component of the Sema3A receptor, thereby regulating dendritic localization of AMPA receptor GluA2 and proper dendritic development. In present study, we found that nimodipine (voltage-gated L-type Ca(2+) channel blocker) and tetrodotoxin (TTX; voltage-gated Na(+) channel blocker) suppress Sema3A-induced dendritic localization of GluA2 and dendritic branch formation in cultured hippocampal neurons. The local application of nimodipine or TTX to distal axons suppresses retrograde transport of Venus-Sema3A that has been exogenously applied to the distal axons. Sema3A facilitates axonal transport of PlexA4, which is also suppressed in neurons treated with either TTX or nimodipine. These data suggest that voltage-gated calcium and sodium channels mediate Sema3A retrograde signaling that regulates dendritic GluA2 localization and branch formation. PMID:26638837

  9. 49 CFR 1580.111 - Harmonization of federal regulation of nuclear facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 9 2011-10-01 2011-10-01 false Harmonization of federal regulation of nuclear facilities. 1580.111 Section 1580.111 Transportation Other Regulations Relating to Transportation (Continued... regulation of nuclear facilities. TSA will coordinate activities under this subpart with the...

  10. 49 CFR 1580.111 - Harmonization of federal regulation of nuclear facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Harmonization of federal regulation of nuclear facilities. 1580.111 Section 1580.111 Transportation Other Regulations Relating to Transportation (Continued... regulation of nuclear facilities. TSA will coordinate activities under this subpart with the...

  11. Role of calcium ions in phytochrome responses: an update

    NASA Technical Reports Server (NTRS)

    Roux, S. J.; Wayne, R. O.; Datta, N.

    1986-01-01

    Recent findings related to the role of calcium ions in phytochrome responses are reviewed and summarized. Hypotheses tested are the activation of calmodulin by light-regulated Ca2+ transport in cells and the photoinduction of calmodulin-activated enzyme activities. Discussion focuses on evidence that Ca2+ helps to regulate phytochrome responses, calcium requirements for photoinduced spore germination in the fern Onoclea, Ca2+ fluxes and phytochrome function in the alga Mougeotia, calmodulin antagonist blocking of red-light stimulated chloroplast rotation, the role of phosphorylation in calmodulin-regulated responses, and phytochrome regulation of nuclear protein phosphorylation.

  12. Binding of Y-P30 to Syndecan 2/3 Regulates the Nuclear Localization of CASK

    PubMed Central

    Landgraf, Peter; Mikhaylova, Marina; Macharadze, Tamar; Borutzki, Corinna; Zenclussen, Ana-Claudia; Wahle, Petra; Kreutz, Michael R.

    2014-01-01

    The survival promoting peptide Y-P30 has documented neuroprotective effects as well as cell survival and neurite outgrowth promoting activity in vitro and in vivo. Previous work has shown that multimerization of the peptide with pleiotrophin (PTN) and subsequent binding to syndecan (SDC) -2 and -3 is involved in its neuritogenic effects. In this study we show that Y-P30 application regulates the nuclear localization of the SDC binding partner Calcium/calmodulin-dependent serine kinase (CASK) in neuronal primary cultures during development. In early development at day in vitro (DIV) 8 when mainly SDC-3 is expressed supplementation of the culture medium with Y-P30 reduces nuclear CASK levels whereas it has the opposite effect at DIV 18 when SDC-2 is the dominant isoform. In the nucleus CASK regulates gene expression via its association with the T-box transcription factor T-brain-1 (Tbr-1) and we indeed found that gene expression of downstream targets of this complex, like the GluN2B NMDA-receptor, exhibits a corresponding down- or up-regulation at the mRNA level. The differential effect of Y-P30 on the nuclear localization of CASK correlates with its ability to induce shedding of the ectodomain of SDC-2 but not -3. shRNA knockdown of SDC-2 at DIV 18 and SDC-3 at DIV 8 completely abolished the effect of Y-P30 supplementation on nuclear CASK levels. During early development a protein knockdown of SDC-3 also attenuated the effect of Y-P30 on axon outgrowth. Taken together these data suggest that Y-P30 can control the nuclear localization of CASK in a SDC-dependent manner. PMID:24498267

  13. TRPV4 and AQP4 Channels Synergistically Regulate Cell Volume and Calcium Homeostasis in Retinal Müller Glia

    PubMed Central

    Jo, Andrew O.; Phuong, Tam T.T.; Verkman, Alan S.; Yarishkin, Oleg; MacAulay, Nanna

    2015-01-01

    fine-tunes astroglial volume regulation by integrating osmosensing, calcium signaling, and water transport and, when overactivated, triggers pathological swelling. SIGNIFICANCE STATEMENT We characterize the physiological features of interactions between the astroglial swelling sensor transient receptor potential isoform 4 (TRPV4) and the aquaporin 4 (AQP4) water channel in retinal Müller cells. Our data reveal an elegant and complex set of mechanisms involving reciprocal interactions at the level of glial gene expression, calcium homeostasis, swelling, and volume regulation. Specifically, water influx through AQP4 drives calcium influx via TRPV4 in the glial end foot, which regulates expression of Aqp4 and Kir4.1 genes and facilitates the time course and amplitude of hypotonicity-induced swelling and regulatory volume decrease. We confirm the crucial facets of the signaling mechanism in heterologously expressing oocytes. These results identify the molecular mechanism that contributes to dynamic regulation of glial volume but also provide new insights into the pathophysiology of glial reactivity and edema formation. PMID:26424896

  14. The mitochondrial calcium uniporter regulates breast cancer progression via HIF-1α.

    PubMed

    Tosatto, Anna; Sommaggio, Roberta; Kummerow, Carsten; Bentham, Robert B; Blacker, Thomas S; Berecz, Tunde; Duchen, Michael R; Rosato, Antonio; Bogeski, Ivan; Szabadkai, Gyorgy; Rizzuto, Rosario; Mammucari, Cristina

    2016-01-01

    Triple-negative breast cancer (TNBC) represents the most aggressive breast tumor subtype. However, the molecular determinants responsible for the metastatic TNBC phenotype are only partially understood. We here show that expression of the mitochondrial calcium uniporter (MCU), the selective channel responsible for mitochondrial Ca(2+) uptake, correlates with tumor size and lymph node infiltration, suggesting that mitochondrial Ca(2+) uptake might be instrumental for tumor growth and metastatic formation. Accordingly, MCU downregulation hampered cell motility and invasiveness and reduced tumor growth, lymph node infiltration, and lung metastasis in TNBC xenografts. In MCU-silenced cells, production of mitochondrial reactive oxygen species (mROS) is blunted and expression of the hypoxia-inducible factor-1α (HIF-1α) is reduced, suggesting a signaling role for mROS and HIF-1α, downstream of mitochondrial Ca(2+) Finally, in breast cancer mRNA samples, a positive correlation of MCU expression with HIF-1α signaling route is present. Our results indicate that MCU plays a central role in TNBC growth and metastasis formation and suggest that mitochondrial Ca(2+) uptake is a potential novel therapeutic target for clinical intervention. PMID:27138568

  15. Agouti regulation of intracellular calcium: Role in the insulin resistance of viable yellow mice

    SciTech Connect

    Zemel, M.B.; Kim, J.H.; Woychik, R.P.; Michaud, E.J.; Hadwell, S.H.; Patel, I.R.; Wilkison, W.O.

    1995-05-23

    Several dominant mutations at the agouti locus in the mouse cause a syndrome of marked obesity, hyperinsulinemia, and insulin resistance. Although it is known that the agouti gene is expressed in an ectopic manner in these mutants, the precise mechanism by which the agouti gene product mediates these effects is unclear. Since intracellular Ca{sup 2+} is believed to play a role in mediating insulin action and dysregulation of Ca{sup 2+} flux is observed in diabetic animals and humans, we examined the status of intracellular Ca{sup 2+} in mice carrying the dominant agouti allele, viable yellow (A{sup vy}). We show here that in mice carrying this mutation, the intracellular free calcium concentration ([Ca{sup 2+}]{sub i}) is elevated in skeletal muscle, and the degree of elevation is closely correlated with the degree to which the mutant traits are expressed in individual animals. Moreover, we demonstrate that the agouti gene product is capable of inducing increased [Ca{sup 2+}]{sub i} in cultured and freshly isolated skeletal muscle myocytes from wild-type mice. Based on these findings, we present a model in which we propose that the agouti polypeptide promotes insulin resistance in mutant animals through its ability to increase [Ca{sup 2+}]{sub i}. 36 refs., 3 figs., 2 tabs.

  16. β-Arrestin-Dependent Dopaminergic Regulation of Calcium Channel Activity in the Axon Initial Segment.

    PubMed

    Yang, Sungchil; Ben-Shalom, Roy; Ahn, Misol; Liptak, Alayna T; van Rijn, Richard M; Whistler, Jennifer L; Bender, Kevin J

    2016-08-01

    G-protein-coupled receptors (GPCRs) initiate a variety of signaling cascades, depending on effector coupling. β-arrestins, which were initially characterized by their ability to "arrest" GPCR signaling by uncoupling receptor and G protein, have recently emerged as important signaling effectors for GPCRs. β-arrestins engage signaling pathways that are distinct from those mediated by G protein. As such, arrestin-dependent signaling can play a unique role in regulating cell function, but whether neuromodulatory GPCRs utilize β-arrestin-dependent signaling to regulate neuronal excitability remains unclear. Here, we find that D3 dopamine receptors (D3R) regulate axon initial segment (AIS) excitability through β-arrestin-dependent signaling, modifying CaV3 voltage dependence to suppress high-frequency action potential generation. This non-canonical D3R signaling thereby gates AIS excitability via pathways distinct from classical GPCR signaling pathways. PMID:27452469

  17. Nuclear receptor corepressor complexes in cancer: mechanism, function and regulation

    PubMed Central

    Wong, Madeline M; Guo, Chun; Zhang, Jinsong

    2014-01-01

    Nuclear receptor corepressor (NCoR) and silencing mediator for retinoid and thyroid hormone receptors (SMRT) function as corepressors for diverse transcription factors including nuclear receptors such as estrogen receptors and androgen receptors. Deregulated functions of NCoR and SMRT have been observed in many types of cancers and leukemias. NCoR and SMRT directly bind to transcription factors and nucleate the formation of stable complexes that include histone deacetylase 3, transducin b-like protein 1/TBL1-related protein 1, and G-protein pathway suppressor 2. These NCoR/SMRT-interacting proteins also show deregulated functions in cancers. In this review, we summarize the literature on the mechanism, regulation, and function of the core components of NCoR/SMRT complexes in the context of their involvement in cancers and leukemias. While the current studies support the view that the corepressors are promising targets for cancer treatment, elucidation of the mechanisms of corepressors involved in individual types of cancers is likely required for effective therapy. PMID:25374920

  18. Germ Cell Nuclear Factor Regulates Gametogenesis in Developing Gonads

    PubMed Central

    Sabour, Davood; Xu, Xueping; Chung, Arthur C. K.; Le Menuet, Damien; Ko, Kinarm; Tapia, Natalia; Araúzo-Bravo, Marcos J.; Gentile, Luca; Greber, Boris; Hübner, Karin; Sebastiano, Vittorio; Wu, Guangming; Schöler, Hans R.; Cooney, Austin J.

    2014-01-01

    Expression of germ cell nuclear factor (GCNF; Nr6a1), an orphan member of the nuclear receptor gene family of transcription factors, during gastrulation and neurulation is critical for normal embryogenesis in mice. Gcnf represses the expression of the POU-domain transcription factor Oct4 (Pou5f1) during mouse post-implantation development. Although Gcnf expression is not critical for the embryonic segregation of the germ cell lineage, we found that sexually dimorphic expression of Gcnf in germ cells correlates with the expression of pluripotency-associated genes, such as Oct4, Sox2, and Nanog, as well as the early meiotic marker gene Stra8. To elucidate the role of Gcnf during mouse germ cell differentiation, we generated an ex vivo Gcnf-knockdown model in combination with a regulated CreLox mutation of Gcnf. Lack of Gcnf impairs normal spermatogenesis and oogenesis in vivo, as well as the derivation of germ cells from embryonic stem cells (ESCs) in vitro. Inactivation of the Gcnf gene in vivo leads to loss of repression of Oct4 expression in both male and female gonads. PMID:25140725

  19. Nonstructural 5A Protein of Hepatitis C Virus Regulates Soluble Resistance-Related Calcium-Binding Protein Activity for Viral Propagation

    PubMed Central

    Tran, Giao V. Q.; Luong, Trang T. D.; Park, Eun-Mee; Kim, Jong-Wook; Choi, Jae-Woong; Park, Chorong; Lim, Yun-Sook

    2015-01-01

    ABSTRACT Hepatitis C virus (HCV) is a major cause of chronic liver disease and is highly dependent on cellular proteins for virus propagation. To identify the cellular factors involved in HCV propagation, we recently performed protein microarray assays using the HCV nonstructural 5A (NS5A) protein as a probe. Of 90 cellular protein candidates, we selected the soluble resistance-related calcium-binding protein (sorcin) for further characterization. Sorcin is a calcium-binding protein and is highly expressed in certain cancer cells. We verified that NS5A interacted with sorcin through domain I of NS5A, and phosphorylation of the threonine residue 155 of sorcin played a crucial role in protein interaction. Small interfering RNA (siRNA)-mediated knockdown of sorcin impaired HCV propagation. Silencing of sorcin expression resulted in a decrease of HCV assembly without affecting HCV RNA and protein levels. We further demonstrated that polo-like kinase 1 (PLK1)-mediated phosphorylation of sorcin was increased by NS5A. We showed that both phosphorylation and calcium-binding activity of sorcin were required for HCV propagation. These data indicate that HCV modulates sorcin activity via NS5A protein for its own propagation. IMPORTANCE Sorcin is a calcium-binding protein and regulates intracellular calcium homeostasis. HCV NS5A interacts with sorcin, and phosphorylation of sorcin is required for protein interaction. Gene silencing of sorcin impaired HCV propagation at the assembly step of the HCV life cycle. Sorcin is phosphorylated by PLK1 via protein interaction. We showed that sorcin interacted with both NS5A and PLK1, and PLK1-mediated phosphorylation of sorcin was increased by NS5A. Moreover, calcium-binding activity of sorcin played a crucial role in HCV propagation. These data provide evidence that HCV regulates host calcium metabolism for virus propagation, and thus manipulation of sorcin activity may represent a novel therapeutic target for HCV. PMID:26719254

  20. Calcium-activated afterhyperpolarizations regulate synchronization and timing of epileptiform bursts in hippocampal CA3 pyramidal neurons.

    PubMed

    Fernández de Sevilla, David; Garduño, Julieta; Galván, Emilio; Buño, Washington

    2006-12-01

    Calcium-activated potassium conductances regulate neuronal excitability, but their role in epileptogenesis remains elusive. We investigated in rat CA3 pyramidal neurons the contribution of the Ca(2+)-activated K(+)-mediated afterhyperpolarizations (AHPs) in the genesis and regulation of epileptiform activity induced in vitro by 4-aminopyridine (4-AP) in Mg(2+)-free Ringer. Recurring spike bursts terminated by prolonged AHPs were generated. Burst synchronization between CA3 pyramidal neurons in paired recordings typified this interictal-like activity. A downregulation of the medium afterhyperpolarization (mAHP) paralleled the emergence of the interictal-like activity. When the mAHP was reduced or enhanced by apamin and EBIO bursts induced by 4-AP were increased or blocked, respectively. Inhibition of the slow afterhyperpolarization (sAHP) with carbachol, t-ACPD, or isoproterenol increased bursting frequency and disrupted burst regularity and synchronization between pyramidal neuron pairs. In contrast, enhancing the sAHP by intracellular dialysis with KMeSO(4) reduced burst frequency. Block of GABA(A-B) inhibitions did not modify the abnormal activity. We describe novel cellular mechanisms where 1) the inhibition of the mAHP plays an essential role in the genesis and regulation of the bursting activity by reducing negative feedback, 2) the sAHP sets the interburst interval by decreasing excitability, and 3) bursting was synchronized by excitatory synaptic interactions that increased in advance and during bursts and decreased throughout the subsequent sAHP. These cellular mechanisms are active in the CA3 region, where epileptiform activity is initiated, and cooperatively regulate the timing of the synchronized rhythmic interictal-like network activity. PMID:16971683

  1. S-acylation dependent post-translational cross-talk regulates large conductance calcium- and voltage- activated potassium (BK) channels.

    PubMed

    Shipston, Michael J

    2014-01-01

    Mechanisms that control surface expression and/or activity of large conductance calcium-activated potassium (BK) channels are important determinants of their (patho)physiological function. Indeed, BK channel dysfunction is associated with major human disorders ranging from epilepsy to hypertension and obesity. S-acylation (S-palmitoylation) represents a major reversible, post-translational modification controlling the properties and function of many proteins including ion channels. Recent evidence reveals that both pore-forming and regulatory subunits of BK channels are S-acylated and control channel trafficking and regulation by AGC-family protein kinases. The pore-forming α-subunit is S-acylated at two distinct sites within the N- and C-terminus, each site being regulated by different palmitoyl acyl transferases (zDHHCs) and acyl thioesterases (APTs). S-acylation of the N-terminus controls channel trafficking and surface expression whereas S-acylation of the C-terminal domain determines regulation of channel activity by AGC-family protein kinases. S-acylation of the regulatory β4-subunit controls ER exit and surface expression of BK channels but does not affect ion channel kinetics at the plasma membrane. Furthermore, a significant number of previously identified BK-channel interacting proteins have been shown, or are predicted to be, S-acylated. Thus, the BK channel multi-molecular signaling complex may be dynamically regulated by this fundamental post-translational modification and thus S-acylation likely represents an important determinant of BK channel physiology in health and disease. PMID:25140154

  2. S-acylation dependent post-translational cross-talk regulates large conductance calcium- and voltage- activated potassium (BK) channels

    PubMed Central

    Shipston, Michael J.

    2014-01-01

    Mechanisms that control surface expression and/or activity of large conductance calcium-activated potassium (BK) channels are important determinants of their (patho)physiological function. Indeed, BK channel dysfunction is associated with major human disorders ranging from epilepsy to hypertension and obesity. S-acylation (S-palmitoylation) represents a major reversible, post-translational modification controlling the properties and function of many proteins including ion channels. Recent evidence reveals that both pore-forming and regulatory subunits of BK channels are S-acylated and control channel trafficking and regulation by AGC-family protein kinases. The pore-forming α-subunit is S-acylated at two distinct sites within the N- and C-terminus, each site being regulated by different palmitoyl acyl transferases (zDHHCs) and acyl thioesterases (APTs). S-acylation of the N-terminus controls channel trafficking and surface expression whereas S-acylation of the C-terminal domain determines regulation of channel activity by AGC-family protein kinases. S-acylation of the regulatory β4-subunit controls ER exit and surface expression of BK channels but does not affect ion channel kinetics at the plasma membrane. Furthermore, a significant number of previously identified BK-channel interacting proteins have been shown, or are predicted to be, S-acylated. Thus, the BK channel multi-molecular signaling complex may be dynamically regulated by this fundamental post-translational modification and thus S-acylation likely represents an important determinant of BK channel physiology in health and disease. PMID:25140154

  3. Detection of differentially regulated subsarcolemmal calcium signals activated by vasoactive agonists in rat pulmonary artery smooth muscle cells

    PubMed Central

    Subedi, Krishna P.; Paudel, Omkar

    2013-01-01

    Intracellular calcium (Ca2+) plays pivotal roles in distinct cellular functions through global and local signaling in various subcellular compartments, and subcellular Ca2+ signal is the key factor for independent regulation of different cellular functions. In vascular smooth muscle cells, subsarcolemmal Ca2+ is an important regulator of excitation-contraction coupling, and nucleoplasmic Ca2+ is crucial for excitation-transcription coupling. However, information on Ca2+ signals in these subcellular compartments is limited. To study the regulation of the subcellular Ca2+ signals, genetically encoded Ca2+ indicators (cameleon), D3cpv, targeting the plasma membrane (PM), cytoplasm, and nucleoplasm were transfected into rat pulmonary arterial smooth muscle cells (PASMCs) and Ca2+ signals were monitored using laser scanning confocal microscopy. In situ calibration showed that the Kd for Ca2+ of D3cpv was comparable in the cytoplasm and nucleoplasm, but it was slightly higher in the PM. Stimulation of digitonin-permeabilized cells with 1,4,5-trisphosphate (IP3) elicited a transient elevation of Ca2+ concentration with similar amplitude and kinetics in the nucleoplasm and cytoplasm. Activation of G protein-coupled receptors by endothelin-1 and angiotensin II preferentially elevated the subsarcolemmal Ca2+ signal with higher amplitude in the PM region than the nucleoplasm and cytoplasm. In contrast, the receptor tyrosine kinase activator, platelet-derived growth factor, elicited Ca2+ signals with similar amplitudes in all three regions, except that the rise-time and decay-time were slightly slower in the PM region. These data clearly revealed compartmentalization of Ca2+ signals in the subsarcolemmal regions and provide the basis for further investigations of differential regulation of subcellular Ca2+ signals in PASMCs. PMID:24352334

  4. Cell-specific vacuolar calcium storage mediated by "CAX1" regulates apoplastic calcium concentration, gas exchange, and plant productivity in "Arabidopsis"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The physiological role and mechanism of nutrient storage within vacuoles of specific cell types is poorly understood. Transcript profiles from "Arabidopsis thaliana" leaf cells differing in calcium concentration ([Ca], epidermis <10 mM versus mesophyll >60 mM) were compared using a microarray screen...

  5. Mast cells regulate myofilament calcium sensitization and heart function after myocardial infarction.

    PubMed

    Ngkelo, Anta; Richart, Adèle; Kirk, Jonathan A; Bonnin, Philippe; Vilar, Jose; Lemitre, Mathilde; Marck, Pauline; Branchereau, Maxime; Le Gall, Sylvain; Renault, Nisa; Guerin, Coralie; Ranek, Mark J; Kervadec, Anaïs; Danelli, Luca; Gautier, Gregory; Blank, Ulrich; Launay, Pierre; Camerer, Eric; Bruneval, Patrick; Menasche, Philippe; Heymes, Christophe; Luche, Elodie; Casteilla, Louis; Cousin, Béatrice; Rodewald, Hans-Reimer; Kass, David A; Silvestre, Jean-Sébastien

    2016-06-27

    Acute myocardial infarction (MI) is a severe ischemic disease responsible for heart failure and sudden death. Inflammatory cells orchestrate postischemic cardiac remodeling after MI. Studies using mice with defective mast/stem cell growth factor receptor c-Kit have suggested key roles for mast cells (MCs) in postischemic cardiac remodeling. Because c-Kit mutations affect multiple cell types of both immune and nonimmune origin, we addressed the impact of MCs on cardiac function after MI, using the c-Kit-independent MC-deficient (Cpa3(Cre/+)) mice. In response to MI, MC progenitors originated primarily from white adipose tissue, infiltrated the heart, and differentiated into mature MCs. MC deficiency led to reduced postischemic cardiac function and depressed cardiomyocyte contractility caused by myofilament Ca(2+) desensitization. This effect correlated with increased protein kinase A (PKA) activity and hyperphosphorylation of its targets, troponin I and myosin-binding protein C. MC-specific tryptase was identified to regulate PKA activity in cardiomyocytes via protease-activated receptor 2 proteolysis. This work reveals a novel function for cardiac MCs modulating cardiomyocyte contractility via alteration of PKA-regulated force-Ca(2+) interactions in response to MI. Identification of this MC-cardiomyocyte cross-talk provides new insights on the cellular and molecular mechanisms regulating the cardiac contractile machinery and a novel platform for therapeutically addressable regulators. PMID:27353089

  6. DNA Ligase IV regulates XRCC4 nuclear localization

    PubMed Central

    Francis, Dailia B.; Kozlov, Mikhail; Chavez, Jose; Chu, Jennifer; Malu, Shruti; Hanna, Mary; Cortes, Patricia

    2014-01-01

    DNA Ligase IV, along with its interacting partner XRCC4, are essential for repairing DNA double strand breaks by non-homologous end joining (NHEJ). Together, they complete the final ligation step resolving the DNA break. Ligase IV is regulated by XRCC4 and XLF. However, the mechanism(s) by which Ligase IV control the NHEJ reaction and other NHEJ factor(s) remains poorly characterized. Here, we show that a C-terminal region of Ligase IV (aa 620 to 800), which encompasses a NLS, the BRCT I, and the XRCC4 interacting region (XIR), is essential for nuclear localization of its co-factor XRCC4. In Ligase IV deficient cells, XRCC4 showed deregulated localization remaining in the cytosol even after induction of DNA double strand breaks. DNA Ligase IV was also required for efficient localization of XLF into the nucleus. Additionally, human fibroblasts that harbor hypomorphic mutations within the Ligase IV gene displayed decreased levels of XRCC4 protein, implicating that DNA Ligase IV is also regulating XRCC4 stability. Our results provide evidence for a role of DNA Ligase IV in controlling the cellular localization and protein levels of XRCC4. PMID:24984242

  7. Regulation of glomerulotubular balance. III. Implication of cytosolic calcium in flow-dependent proximal tubule transport.

    PubMed

    Du, Zhaopeng; Weinbaum, Sheldon; Weinstein, Alan M; Wang, Tong

    2015-04-15

    In the proximal tubule, axial flow (drag on brush-border microvilli) stimulates Na(+) and HCO3 (-) reabsorption by modulating both Na/H exchanger 3 (NHE3) and H-ATPase activity, a process critical to glomerulotubular balance. We have also demonstrated that blocking the angiotensin II receptor decreases baseline transport, but preserves the flow effect; dopamine leaves baseline fluxes intact, but abrogates the flow effect. In the current work, we provide evidence implicating cytosolic calcium in flow-dependent transport. Mouse proximal tubules were microperfused in vitro at perfusion rates of 5 and 20 nl/min, and reabsorption of fluid (Jv) and HCO3 (-) (JHCO3) were measured. We examined the effect of high luminal Ca(2+) (5 mM), 0 mM Ca(2+), the Ca(2+) chelator BAPTA-AM, the inositol 1,4,5-trisphosphate (IP3) receptor antagonist 2-aminoethoxydiphenyl borate (2-APB), and the Ca-ATPase inhibitor thapsigargin. In control tubules, increasing perfusion rate from 5 to 20 nl/min increased Jv by 62% and JHCO3 by 104%. With respect to Na(+) reabsorption, high luminal Ca(2+) decreased transport at low flow, but preserved the flow-induced increase; low luminal Ca(2+) had little impact; both BAPTA and 2-APB had no effect on baseline flux, but abrogated the flow effect; thapsigargin decreased baseline flow, leaving the flow effect intact. With respect to HCO3 (-) reabsorption, high luminal Ca(2+) decreased transport at low flow and mildly diminished the flow-induced increase; low luminal Ca(2+) had little impact; both BAPTA and 2-APB had no effect on baseline flux, but abrogated the flow effect. These data implicate IP3 receptor-mediated intracellular Ca(2+) signaling as a critical step in transduction of microvillous drag to modulate Na(+) and HCO3 (-) transport. PMID:25651568

  8. Transcriptional Regulation of T-type Calcium Channel CaV3.2

    PubMed Central

    van Loo, Karen M. J.; Schaub, Christina; Pernhorst, Katharina; Yaari, Yoel; Beck, Heinz; Schoch, Susanne; Becker, Albert J.

    2012-01-01

    The pore-forming Ca2+ channel subunit CaV3.2 mediates a low voltage-activated (T-type) Ca2+ current (ICaT) that contributes pivotally to neuronal and cardiac pacemaker activity. Despite the importance of tightly regulated CaV3.2 levels, the mechanisms regulating its transcriptional dynamics are not well understood. Here, we have identified two key factors that up- and down-regulate the expression of the gene encoding CaV3.2 (Cacna1h). First, we determined the promoter region and observed several stimulatory and inhibitory clusters. Furthermore, we found binding sites for the transcription factor early growth response 1 (Egr1/Zif268/Krox-24) to be highly overrepresented within the CaV3.2 promoter region. mRNA expression analyses and dual-luciferase promoter assays revealed that the CaV3.2 promoter was strongly activated by Egr1 overexpression in vitro and in vivo. Subsequent chromatin immunoprecipitation assays in NG108-15 cells and mouse hippocampi confirmed specific Egr1 binding to the CaV3.2 promoter. Congruently, whole-cell ICaT values were significantly larger after Egr1 overexpression. Intriguingly, Egr1-induced activation of the CaV3.2 promoter was effectively counteracted by the repressor element 1-silencing transcription factor (REST). Thus, Egr1 and REST can bi-directionally regulate CaV3.2 promoter activity and mRNA expression and, hence, the size of ICaT. This mechanism has critical implications for the regulation of neuronal and cardiac Ca2+ homeostasis under physiological conditions and in episodic disorders such as arrhythmias and epilepsy. PMID:22431737

  9. LKB1 Regulates Mitochondria-Dependent Presynaptic Calcium Clearance and Neurotransmitter Release Properties at Excitatory Synapses along Cortical Axons

    PubMed Central

    Kwon, Seok-Kyu; Sando, Richard; Maximov, Anton; Polleux, Franck

    2016-01-01

    Individual synapses vary significantly in their neurotransmitter release properties, which underlie complex information processing in neural circuits. Presynaptic Ca2+ homeostasis plays a critical role in specifying neurotransmitter release properties, but the mechanisms regulating synapse-specific Ca2+ homeostasis in the mammalian brain are still poorly understood. Using electrophysiology and genetically encoded Ca2+ sensors targeted to the mitochondrial matrix or to presynaptic boutons of cortical pyramidal neurons, we demonstrate that the presence or absence of mitochondria at presynaptic boutons dictates neurotransmitter release properties through Mitochondrial Calcium Uniporter (MCU)-dependent Ca2+ clearance. We demonstrate that the serine/threonine kinase LKB1 regulates MCU expression, mitochondria-dependent Ca2+ clearance, and thereby, presynaptic release properties. Re-establishment of MCU-dependent mitochondrial Ca2+ uptake at glutamatergic synapses rescues the altered neurotransmitter release properties characterizing LKB1-null cortical axons. Our results provide novel insights into the cellular and molecular mechanisms whereby mitochondria control neurotransmitter release properties in a bouton-specific way through presynaptic Ca2+ clearance. PMID:27429220

  10. LKB1 Regulates Mitochondria-Dependent Presynaptic Calcium Clearance and Neurotransmitter Release Properties at Excitatory Synapses along Cortical Axons.

    PubMed

    Kwon, Seok-Kyu; Sando, Richard; Lewis, Tommy L; Hirabayashi, Yusuke; Maximov, Anton; Polleux, Franck

    2016-07-01

    Individual synapses vary significantly in their neurotransmitter release properties, which underlie complex information processing in neural circuits. Presynaptic Ca2+ homeostasis plays a critical role in specifying neurotransmitter release properties, but the mechanisms regulating synapse-specific Ca2+ homeostasis in the mammalian brain are still poorly understood. Using electrophysiology and genetically encoded Ca2+ sensors targeted to the mitochondrial matrix or to presynaptic boutons of cortical pyramidal neurons, we demonstrate that the presence or absence of mitochondria at presynaptic boutons dictates neurotransmitter release properties through Mitochondrial Calcium Uniporter (MCU)-dependent Ca2+ clearance. We demonstrate that the serine/threonine kinase LKB1 regulates MCU expression, mitochondria-dependent Ca2+ clearance, and thereby, presynaptic release properties. Re-establishment of MCU-dependent mitochondrial Ca2+ uptake at glutamatergic synapses rescues the altered neurotransmitter release properties characterizing LKB1-null cortical axons. Our results provide novel insights into the cellular and molecular mechanisms whereby mitochondria control neurotransmitter release properties in a bouton-specific way through presynaptic Ca2+ clearance. PMID:27429220

  11. The Extracellular Calcium-Sensing Receptor in the Intestine: Evidence for Regulation of Colonic Absorption, Secretion, Motility, and Immunity

    PubMed Central

    Tang, Lieqi; Cheng, Catherine Y.; Sun, Xiangrong; Pedicone, Alexandra J.; Mohamadzadeh, Mansour; Cheng, Sam X.

    2016-01-01

    Different from other epithelia, the intestinal epithelium has the complex task of providing a barrier impeding the entry of toxins, food antigens, and microbes, while at the same time allowing for the transfer of nutrients, electrolytes, water, and microbial metabolites. These molecules/organisms are transported either transcellularly, crossing the apical and basolateral membranes of enterocytes, or paracellularly, passing through the space between enterocytes. Accordingly, the intestinal epithelium can affect energy metabolism, fluid balance, as well as immune response and tolerance. To help accomplish these complex tasks, the intestinal epithelium has evolved many sensing receptor mechanisms. Yet, their roles and functions are only now beginning to be elucidated. This article explores one such sensing receptor mechanism, carried out by the extracellular calcium-sensing receptor (CaSR). In addition to its established function as a nutrient sensor, coordinating food digestion, nutrient absorption, and regulating energy metabolism, we present evidence for the emerging role of CaSR in the control of intestinal fluid homeostasis and immune balance. An additional role in the modulation of the enteric nerve activity and motility is also discussed. Clearly, CaSR has profound effects on many aspects of intestinal function. Nevertheless, more work is needed to fully understand all functions of CaSR in the intestine, including detailed mechanisms of action and specific pathways involved. Considering the essential roles CaSR plays in gastrointestinal physiology and immunology, research may lead to a translational opportunity for the development of novel therapies that are based on CaSR's unique property of using simple nutrients such as calcium, polyamines, and certain amino acids/oligopeptides as activators. It is possible that, through targeting of intestinal CaSR with a combination of specific nutrients, oral solutions that are both inexpensive and practical may be

  12. A voltage-gated calcium channel regulates lysosomal fusion with endosomes and autophagosomes and is required for neuronal homeostasis.

    PubMed

    Tian, Xuejun; Gala, Upasana; Zhang, Yongping; Shang, Weina; Nagarkar Jaiswal, Sonal; di Ronza, Alberto; Jaiswal, Manish; Yamamoto, Shinya; Sandoval, Hector; Duraine, Lita; Sardiello, Marco; Sillitoe, Roy V; Venkatachalam, Kartik; Fan, Hengyu; Bellen, Hugo J; Tong, Chao

    2015-03-01

    Autophagy helps deliver sequestered intracellular cargo to lysosomes for proteolytic degradation and thereby maintains cellular homeostasis by preventing accumulation of toxic substances in cells. In a forward mosaic screen in Drosophila designed to identify genes required for neuronal function and maintenance, we identified multiple cacophony (cac) mutant alleles. They exhibit an age-dependent accumulation of autophagic vacuoles (AVs) in photoreceptor terminals and eventually a degeneration of the terminals and surrounding glia. cac encodes an α1 subunit of a Drosophila voltage-gated calcium channel (VGCC) that is required for synaptic vesicle fusion with the plasma membrane and neurotransmitter release. Here, we show that cac mutant photoreceptor terminals accumulate AV-lysosomal fusion intermediates, suggesting that Cac is necessary for the fusion of AVs with lysosomes, a poorly defined process. Loss of another subunit of the VGCC, α2δ or straightjacket (stj), causes phenotypes very similar to those caused by the loss of cac, indicating that the VGCC is required for AV-lysosomal fusion. The role of VGCC in AV-lysosomal fusion is evolutionarily conserved, as the loss of the mouse homologues, Cacna1a and Cacna2d2, also leads to autophagic defects in mice. Moreover, we find that CACNA1A is localized to the lysosomes and that loss of lysosomal Cacna1a in cerebellar cultured neurons leads to a failure of lysosomes to fuse with endosomes and autophagosomes. Finally, we show that the lysosomal CACNA1A but not the plasma-membrane resident CACNA1A is required for lysosomal fusion. In summary, we present a model in which the VGCC plays a role in autophagy by regulating the fusion of AVs with lysosomes through its calcium channel activity and hence functions in maintaining neuronal homeostasis. PMID:25811491

  13. A Voltage-Gated Calcium Channel Regulates Lysosomal Fusion with Endosomes and Autophagosomes and Is Required for Neuronal Homeostasis

    PubMed Central

    Zhang, Yongping; Shang, Weina; Nagarkar Jaiswal, Sonal; di Ronza, Alberto; Jaiswal, Manish; Yamamoto, Shinya; Sandoval, Hector; Duraine, Lita; Sardiello, Marco; Sillitoe, Roy V.; Venkatachalam, Kartik; Fan, Hengyu; Bellen, Hugo J.; Tong, Chao

    2015-01-01

    Autophagy helps deliver sequestered intracellular cargo to lysosomes for proteolytic degradation and thereby maintains cellular homeostasis by preventing accumulation of toxic substances in cells. In a forward mosaic screen in Drosophila designed to identify genes required for neuronal function and maintenance, we identified multiple cacophony (cac) mutant alleles. They exhibit an age-dependent accumulation of autophagic vacuoles (AVs) in photoreceptor terminals and eventually a degeneration of the terminals and surrounding glia. cac encodes an α1 subunit of a Drosophila voltage-gated calcium channel (VGCC) that is required for synaptic vesicle fusion with the plasma membrane and neurotransmitter release. Here, we show that cac mutant photoreceptor terminals accumulate AV-lysosomal fusion intermediates, suggesting that Cac is necessary for the fusion of AVs with lysosomes, a poorly defined process. Loss of another subunit of the VGCC, α2δ or straightjacket (stj), causes phenotypes very similar to those caused by the loss of cac, indicating that the VGCC is required for AV-lysosomal fusion. The role of VGCC in AV-lysosomal fusion is evolutionarily conserved, as the loss of the mouse homologues, Cacna1a and Cacna2d2, also leads to autophagic defects in mice. Moreover, we find that CACNA1A is localized to the lysosomes and that loss of lysosomal Cacna1a in cerebellar cultured neurons leads to a failure of lysosomes to fuse with endosomes and autophagosomes. Finally, we show that the lysosomal CACNA1A but not the plasma-membrane resident CACNA1A is required for lysosomal fusion. In summary, we present a model in which the VGCC plays a role in autophagy by regulating the fusion of AVs with lysosomes through its calcium channel activity and hence functions in maintaining neuronal homeostasis. PMID:25811491

  14. The Extracellular Calcium-Sensing Receptor in the Intestine: Evidence for Regulation of Colonic Absorption, Secretion, Motility, and Immunity.

    PubMed

    Tang, Lieqi; Cheng, Catherine Y; Sun, Xiangrong; Pedicone, Alexandra J; Mohamadzadeh, Mansour; Cheng, Sam X

    2016-01-01

    Different from other epithelia, the intestinal epithelium has the complex task of providing a barrier impeding the entry of toxins, food antigens, and microbes, while at the same time allowing for the transfer of nutrients, electrolytes, water, and microbial metabolites. These molecules/organisms are transported either transcellularly, crossing the apical and basolateral membranes of enterocytes, or paracellularly, passing through the space between enterocytes. Accordingly, the intestinal epithelium can affect energy metabolism, fluid balance, as well as immune response and tolerance. To help accomplish these complex tasks, the intestinal epithelium has evolved many sensing receptor mechanisms. Yet, their roles and functions are only now beginning to be elucidated. This article explores one such sensing receptor mechanism, carried out by the extracellular calcium-sensing receptor (CaSR). In addition to its established function as a nutrient sensor, coordinating food digestion, nutrient absorption, and regulating energy metabolism, we present evidence for the emerging role of CaSR in the control of intestinal fluid homeostasis and immune balance. An additional role in the modulation of the enteric nerve activity and motility is also discussed. Clearly, CaSR has profound effects on many aspects of intestinal function. Nevertheless, more work is needed to fully understand all functions of CaSR in the intestine, including detailed mechanisms of action and specific pathways involved. Considering the essential roles CaSR plays in gastrointestinal physiology and immunology, research may lead to a translational opportunity for the development of novel therapies that are based on CaSR's unique property of using simple nutrients such as calcium, polyamines, and certain amino acids/oligopeptides as activators. It is possible that, through targeting of intestinal CaSR with a combination of specific nutrients, oral solutions that are both inexpensive and practical may be

  15. Calcium binding by the PKD1 domain regulates interdomain flexibility in Vibrio cholerae metalloprotease PrtV☆

    PubMed Central

    Edwin, Aaron; Rompikuntal, Pramod; Björn, Erik; Stier, Gunter; Wai, Sun N.; Sauer-Eriksson, A. Elisabeth

    2013-01-01

    Vibrio cholerae, the causative agent of cholera, releases several virulence factors including secreted proteases when it infects its host. These factors attack host cell proteins and break down tissue barriers and cellular matrix components such as collagen, laminin, fibronectin, keratin, elastin, and they induce necrotic tissue damage. The secreted protease PrtV constitutes one virulence factors of V. cholerae. It is a metalloprotease belonging to the M6 peptidase family. The protein is expressed as an inactive, multidomain, 102 kDa pre-pro-protein that undergoes several N- and C-terminal modifications after which it is secreted as an intermediate variant of 81 kDa. After secretion from the bacteria, additional proteolytic steps occur to produce the 55 kDa active M6 metalloprotease. The domain arrangement of PrtV is likely to play an important role in these maturation steps, which are known to be regulated by calcium. However, the molecular mechanism by which calcium controls proteolysis is unknown. In this study, we report the atomic resolution crystal structure of the PKD1 domain from V. cholera PrtV (residues 755–838) determined at 1.1 Å. The structure reveals a previously uncharacterized Ca2+-binding site located near linker regions between domains. Conformational changes in the Ca2+-free and Ca2+-bound forms suggest that Ca2+-binding at the PKD1 domain controls domain linker flexibility, and plays an important structural role, providing stability to the PrtV protein. PMID:23905008

  16. TRPV4 is endogenously expressed in vertebrate spermatozoa and regulates intracellular calcium in human sperm.

    PubMed

    Kumar, Ashutosh; Majhi, Rakesh Kumar; Swain, Nirlipta; Giri, S C; Kar, Sujata; Samanta, Luna; Goswami, Chandan

    2016-05-13

    Transient Receptor Potential Vanilloid sub-type 4 (TRPV4) is a non-selective cationic channel involved in regulation of temperature, osmolality and different ligand-dependent Ca(2+)-influx. Recently, we have demonstrated that TRPV4 is conserved in all vertebrates. Now we demonstrate that TRPV4 is endogenously expressed in all vertebrate sperm cells ranging from fish to mammals. In human sperm, TRPV4 is present as N-glycosylated protein and its activation induces Ca(2+)-influx. Its expression and localization differs in swim-up and swim-down cells suggesting that TRPV4 is an important determining factor for sperm motility. We demonstrate that pharmacological activation or inhibition of TRPV4 regulates Ca(2+)-wave propagation from head to tail. Such findings may have wide application in male fertility-infertility, contraception and conservation of endangered species as well. PMID:27003252

  17. Role of Scaffolding Proteins in the Regulation of TRPC-Dependent Calcium Entry.

    PubMed

    Constantin, Bruno

    2016-01-01

    Plasma membrane ion channels, and in particular TRPC channels need a specific membrane environment and association with scaffolding, signaling, and cytoskeleton proteins in order to play their important functional role. The molecular composition of TRPC channels is an important factor in determining channel activation mechanisms. TRPC proteins are incorporated in macromolecular complexes including several key Ca(2 +) signaling proteins as well as proteins involved in vesicle trafficking, cytoskeletal interactions, and scaffolding. Evidence has been provided for association of TRPC with calmodulin (CaM), IP3R, PMCA, Gq/11, RhoA, and a variety of scaffolding proteins. The interaction between TRPC channels with adaptor proteins, determines their mode of regulation as well as their cellular localization and function. Adaptor proteins do not display any enzymatic activity but act as scaffold for the building of signaling complexes. The scaffolding proteins are involved in the assembling of these Ca(2+) signaling complexes, the correct sub-cellular localization of protein partners, and the regulation of the TRPC channelosome. In particular, these proteins, via their multiple protein-protein interaction motifs, can interact with various ion channels involved in the transmembrane potential, and membrane excitability. Scaffolding proteins are key components for the functional organization of TRPC channelosomes that serves as a platform regulating slow Ca(2+) entry, spatially and temporally controlled [Ca(2+)]i signals and Ca(2+) -dependent cellular functions. PMID:27161237

  18. Mucolipin-3 Regulates Luminal Calcium, Acidification, and Membrane Fusion in the Endosomal Pathway*

    PubMed Central

    Lelouvier, Benjamin; Puertollano, Rosa

    2011-01-01

    Mucolipin-3 (MCOLN3) is a pH-regulated Ca2+ channel that localizes to the endosomal pathway. Gain-of-function mutation in MCOLN3 causes the varitint-waddler (Va) phenotype in mice, which is characterized by hearing loss, vestibular dysfunction, and coat color dilution. The Va phenotype results from a punctual mutation (A419P) in the pore region of MCOLN3 that locks the channel in an open conformation causing massive entry of Ca2+ inside cells and inducing cell death by apoptosis. Overexpression of wild-type MCOLN3 produces severe alterations of the endosomal pathway, including enlargement and clustering of endosomes, delayed EGF receptor degradation, and impaired autophagosome maturation, thus suggesting that MCOLN3 plays an important role in the regulation of endosomal function. To understand better the physiological role of MCOLN3, we inhibited MCOLN3 function by expression of a channel-dead dominant negative mutant (458DD/KK) or by knockdown of endogenous MCOLN3. Remarkably, we found that impairment of MCOLN3 activity caused a significant accumulation of luminal Ca2+ in endosomes. This accumulation led to severe defects in endosomal acidification as well as to increased endosomal fusion. Our findings reveal a prominent role for MCOLN3 in regulating Ca2+ homeostasis at the endosomal pathway and confirm the importance of luminal Ca2+ for proper acidification and membrane fusion. PMID:21245134

  19. Calcium-dependent phosphorylation regulates neuronal stability and plasticity in a highly precise pacemaker nucleus

    PubMed Central

    Macleod, Gregory T.; Zakon, Harold H.

    2011-01-01

    Specific types of neurons show stable, predictable excitability properties, while other neurons show transient adaptive plasticity of their excitability. However, little attention has been paid to how the cellular pathways underlying adaptive plasticity interact with those that maintain neuronal stability. We addressed this question in the pacemaker neurons from a weakly electric fish because these neurons show a highly stable spontaneous firing rate as well as an N-methyl-d-aspartate (NMDA) receptor-dependent form of plasticity. We found that basal firing rates were regulated by a serial interaction of conventional and atypical PKC isoforms and that this interaction establishes individual differences within the species. We observed that NMDA receptor-dependent plasticity is achieved by further activation of these kinases. Importantly, the PKC pathway is maintained in an unsaturated baseline state to allow further Ca2+-dependent activation during plasticity. On the other hand, the Ca2+/calmodulin-dependent phosphatase calcineurin does not regulate baseline firing but is recruited to control the duration of the NMDA receptor-dependent plasticity and return the pacemaker firing rate back to baseline. This work illustrates how neuronal plasticity can be realized by biasing ongoing mechanisms of stability (e.g., PKC) and terminated by recruiting alternative mechanisms (e.g., calcineurin) that constrain excitability. We propose this as a general model for regulating activity-dependent change in neuronal excitability. PMID:21525377

  20. Regulation of cardiac sodium-calcium exchanger by beta-adrenergic agonists.

    PubMed Central

    Fan, J; Shuba, Y M; Morad, M

    1996-01-01

    Na+-Ca2+ exchanger and Ca2+ channel are two major sarcolemmal Ca2+-transporting proteins of cardiac myocytes. Although the Ca2+ channel is effectively regulated by protein kinase A-dependent phosphorylation, no enzymatic regulation of the exchanger protein has been identified as yet. Here we report that in frog ventricular myocytes, isoproterenol down-regulates the Na+-Ca2+ exchanger, independent of intracellular Ca2+ and membrane potential, by activation of the beta-receptor/adenylate-cyclase/cAMP-dependent cascade, resulting in suppression of transmembrane Ca2+ transport via the exchanger and providing for the well-documented contracture-suppressant effect of the hormone on frog heart. The beta-blocker propranolol blocks the isoproterenol effect, whereas forskolin, cAMP, and theophylline mimic it. In the frog heart where contractile Ca2+ is transported primarily by the Na+-Ca2+ exchanger, the beta-agonists' simultaneous enhancement of Ca2+ current, ICa, and suppression of Na+-Ca2+ exchanger current, INa-Ca would enable the myocyte to develop force rapidly at the onset of depolarization (enhancement of ICa) and to decrease Ca2+ influx (suppression of INa-Ca) later in the action potential. This unique adrenergically induced shift in the Ca2+ influx pathways may have evolved in response to paucity of the sarcoplasmic reticulum Ca2+-ATPase/phospholamban complex and absence of significant intracellular Ca2+ release pools in the frog heart. PMID:8643609

  1. CLOCK-BMAL1 regulate the cardiac L-type calcium channel subunit CACNA1C through PI3K-Akt signaling pathway.

    PubMed

    Chen, Yanhong; Zhu, Didi; Yuan, Jiamin; Han, Zhonglin; Wang, Yao; Qian, Zhiyong; Hou, Xiaofeng; Wu, Tingting; Zou, Jiangang

    2016-09-01

    The heterodimerized transcription factors CLOCK-BMAL1 regulate the cardiomyocyte circadian rhythms. The L-type calcium currents play important role in the cardiac electrogenesis and arrhythmogenesis. Whether and how the CLOCK-BMAL1 regulate the cardiac L-type calcium channels are yet to be determined. The functions of the L-type calcium channels were evaluated with patch clamping techniques. Recombinant adenoviruses of CLOCK and BMAL1 were used in the expression experiments. We reported that the expressions and functions of CACNA1C (the α-subunit of the L-type calcium channels) showed circadian rhythms, with the peak at zeitgeber time 3 (ZT3). The endocardial action potential durations 90 (APD90) were correspondingly longer at ZT3. The protein levels of the phosphorylated Akt at threonine 308 (pAkt T308) also showed circadian rhythms. Overexpressions of CLOCK-BMAL1 significantly reduced the levels of CACNA1C while increasing the levels of pAkt T308 and pik3r1. Furthermore, the inhibitory effects of CLOCK-BMAL1 on CACNA1C could be abolished by the Akt inhibitor MK2206 or the PDK1 inhibitor GSK2334470. Collectively, our findings suggested that the expressions of the cardiac CACNA1C were under the CLOCK-BMAL1 regulation, probably through the PI3K-Akt signal pathway. PMID:27376484

  2. Regulation of the synthesis of barley aleurone. cap alpha. -amylase by gibberellic acid and calcium ions

    SciTech Connect

    Jones, R.L.; Carbonell, J.

    1984-09-01

    The effects of gibberellic acid (GA/sub 3/) and calcium ions on the production of ..cap alpha..-amylase and acid phosphatase by isolated aleurone layers of barley (Hordeum vulgare L. cv Himalaya) were studied. Aleurone layers not previously exposed to GA/sub 3/ or CA/sup 2 +/ show qualitative and quantitative changes in hydrolase production following incubation in either GA/sub 3/ or CA/sup 2 +/ or both. In cubation in H/sub 2/O or CA/sup 2 +/ results in the production of low levels of ..cap alpha..-amylase or acid phosphatase. The addition of GA/sub 3/ to the incubation medium causes 10- to 20-fold increase in the amounts of these enzymes released from the tissue, and addition of CA/sup 2 +/ at 10 millimolar causes a further 8- to 9-fold increase in ..cap alpha..-amylase release and a 75% increase in phosphatase release. Production of ..cap alpha..-amylase isoenzymes is also modified by the levels of GA/sub 3/ and CA/sup 2 +/ in the incubation medium. ..cap alpha..-amylase 2 is produced under all conditions of incubation, while ..cap alpha..-amylase 1 appears only when layers are incubated in GA/sub 3/ or GA/sub 3/ plus CA/sup 2 +/. The synthesis of ..cap alpha..-amylases 3 and 4 requires the presence of both GA/sub 3/ and CA/sup 2 +/ in the incubation medium. Laurell rocket immunoelectrophoresis shows that two distinct groups of ..cap alpha..-amylase antigens are present in incubation media of aleurone layers incubated with both GA/sub 3/ and CA/sup 2 +/, while only one group of antigens is found in media of layers incubated in GA/sub 3/ alone. Strontium ions can be substituted for CA/sup 2 +/ in increasing hydrolase production, although higher concentrations of Sr/sup 2 +/ are requried for maximal response. We conclude that GA/sub 3/ is required for the production of ..cap alpha..-amylase 1 and that both GA/sub 3/ and either CA/sup 2 +/ or Sr/sup 2 +/ are required for the production of isoenzymes 3 and 4 of barley aleurone ..cap alpha..-amylase. 22 references, 8

  3. Intracellular calcium and its sodium-independent regulation in voltage-clamped snail neurones.

    PubMed Central

    Kennedy, H J; Thomas, R C

    1995-01-01

    1. We have used both Ca(2+)-sensitive microelectrodes and fura-2 to measure the intracellular free calcium ion concentration ([Ca2+]i or its negative log, pCai) of snail neurones voltage clamped to -50 or -60 mV. Using Ca(2+)-sensitive microelectrodes, [Ca2+]i was found to be approximately 174 nM and pCai, 6.76 +/- 0.09 (mean +/- S.E.M.; n = 11); using fura-2, [Ca2+]i was approximately 40 nM and pCai, 7.44 +/- 0.06 (mean +/- S.E.M., n = 10). 2. Depolarizations (1-20 s) caused an increase in [Ca2+]i which was abolished by removal of extracellular Ca2+, indicating that the rise in [Ca2+]i was due to Ca2+ influx through voltage-activated Ca2+ channels. 3. Caffeine (10-20 mM) caused an increase in [Ca2+]i in the presence or absence of extracellular Ca2+. The effects of caffeine on [Ca2+]i could be prevented by ryanodine. 4. Thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a small increase in resting [Ca2+]i and slowed the rate of recovery from Ca2+ loads following 20 s depolarizations. 5. Neither replacement of extracellular sodium with N-methyl-D-glucamine (NMDG), nor loading the cells with intracellular sodium, had any effect on resting [Ca2+]i or the rate of recovery of [Ca2+]i following depolarizations. 6. The mitochondrial uncoupling agent carbonyl cyanide m-chlorophenylhydrazone (CCmP) caused a small gradual rise in resting [Ca2+]i. Removal of extracellular sodium during exposure to CCmP had no further effect on [Ca2+]i. 7. Intracellular orthovanadate caused an increase in resting [Ca2+]i and prevented the full recovery of [Ca2+]i following small Ca2+ loads, but removal of extracellular sodium did not cause a rise in [Ca2+]i. We conclude that there is no Na(+)-Ca2+ exchanger present in the cell body of these neurones and that [Ca2+]i is maintained by an ATP-dependent Ca2+ pump. Images Figure 1 PMID:7623274

  4. Calcium - ionized

    MedlinePlus

    ... at both ionized calcium and calcium attached to proteins. You may need to have a separate ionized calcium test if you have factors that increase or decrease total calcium levels. These may include abnormal blood levels ...

  5. Ionic osmolytes and intracellular calcium regulate tissue production in chondrocytes cultured in a 3D charged hydrogel.

    PubMed

    Farnsworth, Nikki L; Mead, Benjamin E; Antunez, Lorena R; Palmer, Amy E; Bryant, Stephanie J

    2014-11-01

    The goal of this study was to investigate the role of fixed negative charges in regulating cartilage-like tissue production by chondrocytes under static and dynamic three-dimensional culture, and to determine whether intracellular calcium ([Ca(2+)]i) is involved in mediating this response. Initial experiments using the 3D neutral hydrogel were conducted in static isotonic culture with ionic and non-ionic osmolytes added to the culture medium. Tissue production by bovine chondrocytes with non-ionic osmolytes was 1.9-fold greater than with ionic osmolytes, suggesting that the ionic nature of the osmolyte is an important regulator of tissue production. To investigate fixed negative charges, a 3D culture system containing encapsulated chondrocytes was employed based on a synthetic and neutral hydrogel platform within which negatively charged chondroitin sulfate was incorporated in a controlled manner. Incorporation of negative charges did not affect the mechanical properties of the hydrogel; however, intracellular ion concentration was elevated from the culture medium (330 mOsm) and estimated to be similar to that in ~400 mOsm culture medium. With dynamic loading, GAG synthesis decreased by 26% in neutral hydrogels cultured in 400mOsm medium, and increased by 26% in charged gels cultured in 330 mOsm. Treatment of chondrocyte-seeded hydrogels with the Ca(2+) chelator BAPTA-AM decreased GAG synthesis by 32-46% and was similar among all conditions, suggesting multiple roles for Ca(2+) mediated tissue production including with ionic osmolytes. In conclusion, findings from this study suggest that a dynamic ionic environment regulates tissue synthesis and points to [Ca(2+)]i signaling as a potential mediator. PMID:25128592

  6. Regulation of calcium signaling in dendritic cells by 1,25-dihydroxyvitamin D3.

    PubMed

    Shumilina, Ekaterina; Xuan, Nguyen Thi; Matzner, Nicole; Bhandaru, Madhuri; Zemtsova, Irina M; Lang, Florian

    2010-06-01

    Dendritic cells (DCs) are antigen-presenting cells that provide a link between innate and adaptive immunity. Ca(2+)-dependent signaling plays a central regulatory role in DC responses to diverse antigens. DCs are a primary target of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], a secosteroid hormone, that, in addition to its well-established action on Ca(2+) homeostasis, possesses immunomodulatory properties. Surprisingly, nothing is known about its effects on DC cytosolic Ca(2+) activity. The present study explored whether 1,25(OH)(2)D(3) modifies the intracellular Ca(2+) concentration ([Ca(2+)](i)) in DCs. Here we show that mouse DCs expressed K(+)-independent (NCX1-3) and K(+)-dependent (NCKX1, 3, 4, and 5) Na(+)/Ca(2+) exchangers. Acute application of LPS (100 ng/ml) to DCs increased [Ca(2+)](i), an effect significantly blunted by prior incubation with 1,25(OH)(2)D(3). 1,25(OH)(2)D(3) increased the membrane abundance of the NCKX1 protein, up-regulated the K(+)- and Na(+)-dependent Ca(2+) entry and enhanced the K(+)-dependent Na(+)/Ca(2+) exchanger currents. The NCKX blocker 3',4'-dichlorobenzamyl (DBZ) reversed the inhibitory effect of 1,25(OH)(2)D(3) on the LPS-induced increase of [Ca(2+)](i). Expression of the costimulatory molecule CD86 was down-regulated by 1,25(OH)(2)D(3), an effect reversed by DBZ. In summary, 1,25(OH)(2)D(3) blunts the LPS-induced increase in [Ca(2+)](i) by stimulation of Na(+)/Ca(2+) exchanger-dependent Ca(2+) extrusion, an effect that contributes to 1,25(OH)(2)D(3)-mediated immunosuppression. The results disclose completely novel mechanisms in the regulation of DC maturation and function. PMID:20124438

  7. Calcium transporters: From fields to the table

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium transporters regulate calcium fluxes within cells. Plants, like all organisms, contain channels, pumps, and exchangers to carefully modulate intracellular calcium levels. This review presents a summary of the recent advances in cloning and characterizing of these transporters and highlight...

  8. Model Vestibular Nuclei Neurons Can Exhibit a Boosting Nonlinearity Due to an Adaptation Current Regulated by Spike-Triggered Calcium and Calcium-Activated Potassium Channels

    PubMed Central

    Schneider, Adam D.

    2016-01-01

    In vitro studies have previously found a class of vestibular nuclei neurons to exhibit a bidirectional afterhyperpolarization (AHP) in their membrane potential, due to calcium and calcium-activated potassium conductances. More recently in vivo studies of such vestibular neurons were found to exhibit a boosting nonlinearity in their input-output tuning curves. In this paper, a Hodgkin-Huxley (HH) type neuron model, originally developed to reproduce the in vitro AHP, is shown to produce a boosting nonlinearity similar to that seen in vivo for increased the calcium conductance. Indicative of a bifurcation, the HH model is reduced to a generalized integrate-and-fire (IF) model that preserves the bifurcation structure and boosting nonliearity. By then projecting the neuron model’s phase space trajectories into 2D, the underlying geometric mechanism relating the AHP and boosting nonlinearity is revealed. Further simplifications and approximations are made to derive analytic expressions for the steady steady state firing rate as a function of bias current, μ, as well as the gain (i.e. its slope) and the position of its peak at μ = μ*. Finally, although the boosting nonlinearity has not yet been experimentally observed in vitro, testable predictions indicate how it might be found. PMID:27427914

  9. ESCRT components regulate the expression of the ER/Golgi calcium pump gene PMR1 through the Rim101/Nrg1 pathway in budding yeast.

    PubMed

    Zhao, Yunying; Du, Jingcai; Xiong, Bing; Xu, Huihui; Jiang, Linghuo

    2013-10-01

    The endosomal sorting complex required for transport (ESCRT) complexes function to form multivesicular bodies for sorting of proteins destined for the yeast vacuole or the mammalian lysosome. ESCRT components are well conserved in eukaryotes, and their mutations cause neurodegenerative diseases and other cellular pathologies in humans. PMR1 is the orthologous gene of two human genes for calcium pumps secretory pathway Ca(2+)-ATPase (SPCA1, ATP2C1) and sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA, ATP2A2), which are mutated in Hailey-Hailey and Darier genetic diseases, respectively. Here we show that deletion mutation of ESCRT components Snf7, Snf8, Stp22, Vps20, Vps25, Vps28, or Vps36 activates the calcium/calcineurin signaling in yeast cells, but surprisingly leads to a nearly 50% reduction in expression of the ER/Golgi calcium pump gene PMR1 independent of calcium stress. These ESCRT mutants are known to have a defect in Rim101 activation. Ectopic expression of a constitutively active form of Rim101 or further deletion of NRG1 in these mutants partially suppresses their calcium hypersensitivity. Deletion of NRG1 also completely rescues the expression of PMR1 in these mutants to the level of the wild type. Promoter mutagenesis, gel electrophoretic mobility shift assay, and chromatin immunoprecipitation analysis demonstrate that Nrg1 binds to two motifs in the PMR1 promoter. In addition, expression of PMR1 under the control of its promoters with mutated Nrg1-binding motifs suppresses the calcium hypersensitivity of these ESCRT mutants. Collectively, these data have uncovered a function of ESCRT components in regulating PMR1 expression through the Nrg1/Rim101 pathway. Our findings provide important clues for understanding human diseases related to calcium homeostasis. PMID:23933635

  10. Micromolar-Affinity Benzodiazepine Receptors Regulate Voltage-Sensitive Calcium Channels in Nerve Terminal Preparations

    NASA Astrophysics Data System (ADS)

    Taft, William C.; Delorenzo, Robert J.

    1984-05-01

    Benzodiazepines in micromolar concentrations significantly inhibit depolarization-sensitive Ca2+ uptake in intact nerve-terminal preparations. Benzodiazepine inhibition of Ca2+ uptake is concentration dependent and stereospecific. Micromolar-affinity benzodiazepine receptors have been identified and characterized in brain membrane and shown to be distinct from nanomolar-affinity benzodiazepine receptors. Evidence is presented that micromolar, and not nanomolar, benzodiazepine binding sites mediate benzodiazepine inhibition of Ca2+ uptake. Irreversible binding to micromolar benzodiazepine binding sites also irreversibly blocked depolarization-dependent Ca2+ uptake in synaptosomes, indicating that these compounds may represent a useful marker for identifying the molecular components of Ca2+ channels in brain. Characterization of benzodiazepine inhibition of Ca2+ uptake demonstrates that these drugs function as Ca2+ channel antagonists, because benzodiazepines effectively blocked voltage-sensitive Ca2+ uptake inhibited by Mn2+, Co2+, verapamil, nitrendipine, and nimodipine. These results indicate that micromolar benzodiazepine binding sites regulate voltage-sensitive Ca2+ channels in brain membrane and suggest that some of the neuronal stabilizing effects of micromolar benzodiazepine receptors may be mediated by the regulation of Ca2+ conductance.

  11. TRPV4 regulates calcium homeostasis, cytoskeletal remodeling, conventional outflow and intraocular pressure in the mammalian eye.

    PubMed

    Ryskamp, Daniel A; Frye, Amber M; Phuong, Tam T T; Yarishkin, Oleg; Jo, Andrew O; Xu, Yong; Lakk, Monika; Iuso, Anthony; Redmon, Sarah N; Ambati, Balamurali; Hageman, Gregory; Prestwich, Glenn D; Torrejon, Karen Y; Križaj, David

    2016-01-01

    An intractable challenge in glaucoma treatment has been to identify druggable targets within the conventional aqueous humor outflow pathway, which is thought to be regulated/dysregulated by elusive mechanosensitive protein(s). Here, biochemical and functional analyses localized the putative mechanosensitive cation channel TRPV4 to the plasma membrane of primary and immortalized human TM (hTM) cells, and to human and mouse TM tissue. Selective TRPV4 agonists and substrate stretch evoked TRPV4-dependent cation/Ca(2+) influx, thickening of F-actin stress fibers and reinforcement of focal adhesion contacts. TRPV4 inhibition enhanced the outflow facility and lowered perfusate pressure in biomimetic TM scaffolds populated with primary hTM cells. Systemic delivery, intraocular injection or topical application of putative TRPV4 antagonist prodrug analogs lowered IOP in glaucomatous mouse eyes and protected retinal neurons from IOP-induced death. Together, these findings indicate that TRPV4 channels function as a critical component of mechanosensitive, Ca(2+)-signaling machinery within the TM, and that TRPV4-dependent cytoskeletal remodeling regulates TM stiffness and outflow. Thus, TRPV4 is a potential IOP sensor within the conventional outflow pathway and a novel target for treating ocular hypertension. PMID:27510430

  12. TRPV4 regulates calcium homeostasis, cytoskeletal remodeling, conventional outflow and intraocular pressure in the mammalian eye

    PubMed Central

    Ryskamp, Daniel A.; Frye, Amber M.; Phuong, Tam T. T.; Yarishkin, Oleg; Jo, Andrew O.; Xu, Yong; Lakk, Monika; Iuso, Anthony; Redmon, Sarah N.; Ambati, Balamurali; Hageman, Gregory; Prestwich, Glenn D.; Torrejon, Karen Y.; Križaj, David

    2016-01-01

    An intractable challenge in glaucoma treatment has been to identify druggable targets within the conventional aqueous humor outflow pathway, which is thought to be regulated/dysregulated by elusive mechanosensitive protein(s). Here, biochemical and functional analyses localized the putative mechanosensitive cation channel TRPV4 to the plasma membrane of primary and immortalized human TM (hTM) cells, and to human and mouse TM tissue. Selective TRPV4 agonists and substrate stretch evoked TRPV4-dependent cation/Ca2+ influx, thickening of F-actin stress fibers and reinforcement of focal adhesion contacts. TRPV4 inhibition enhanced the outflow facility and lowered perfusate pressure in biomimetic TM scaffolds populated with primary hTM cells. Systemic delivery, intraocular injection or topical application of putative TRPV4 antagonist prodrug analogs lowered IOP in glaucomatous mouse eyes and protected retinal neurons from IOP-induced death. Together, these findings indicate that TRPV4 channels function as a critical component of mechanosensitive, Ca2+-signaling machinery within the TM, and that TRPV4-dependent cytoskeletal remodeling regulates TM stiffness and outflow. Thus, TRPV4 is a potential IOP sensor within the conventional outflow pathway and a novel target for treating ocular hypertension. PMID:27510430

  13. Current view on regulation of voltage-gated sodium channels by calcium and auxiliary proteins.

    PubMed

    Pitt, Geoffrey S; Lee, Seok-Yong

    2016-09-01

    In cardiac and skeletal myocytes, and in most neurons, the opening of voltage-gated Na(+) channels (NaV channels) triggers action potentials, a process that is regulated via the interactions of the channels' intercellular C-termini with auxiliary proteins and/or Ca(2+) . The molecular and structural details for how Ca(2+) and/or auxiliary proteins modulate NaV channel function, however, have eluded a concise mechanistic explanation and details have been shrouded for the last decade behind controversy about whether Ca(2+) acts directly upon the NaV channel or through interacting proteins, such as the Ca(2+) binding protein calmodulin (CaM). Here, we review recent advances in defining the structure of NaV intracellular C-termini and associated proteins such as CaM or fibroblast growth factor homologous factors (FHFs) to reveal new insights into how Ca(2+) affects NaV function, and how altered Ca(2+) -dependent or FHF-mediated regulation of NaV channels is perturbed in various disease states through mutations that disrupt CaM or FHF interaction. PMID:27262167

  14. The mobility of Bach2 nuclear foci is regulated by SUMO-1 modification

    SciTech Connect

    Kono, Kazuteru; Harano, Yumi; Hoshino, Hideto; Kobayashi, Masao; Bazett-Jones, David P.; Muto, Akihiko; Igarashi, Kazuhiko; Tashiro, Satoshi

    2008-02-15

    The small ubiquitin-like modifier-1 (SUMO-1) modulates the functions of nuclear proteins by changing their structure and/or subnuclear localization. Several nuclear proteins form dynamic higher order nuclear structures, termed non-chromatin nuclear domains, which are involved in the regulation of nuclear function. However, the role that SUMO modification of the component proteins plays in the regulation of the activity and function of nuclear domains is unclear. Here we demonstrate that nuclear domains formed by Bach2, a transcription repressor, show restricted movement and undergo fusion events upon oxidative stress. Mutation of the SUMO-acceptor lysines in Bach2 alters the behavior of these nuclear foci and results in a decreased frequency of fusion events. We propose that SUMO modification is an important regulatory system for the mobility of the nuclear domains formed by Bach2.

  15. Towards a unified theory of calmodulin regulation (calmodulation) of voltage-gated calcium and sodium channels

    PubMed Central

    Yue, David T.

    2016-01-01

    Voltage-gated Na and Ca2+ channels represent two major ion channel families that enable myriad biological functions including the generation of action potentials and the coupling of electrical and chemical signaling in cells. Calmodulin regulation (calmodulation) of these ion channels comprises a vital feedback mechanism with distinct physiological implications. Though long-sought, a shared understanding of the channel families remained elusive for two decades as the functional manifestations and the structural underpinnings of this modulation often appeared to diverge. Here, we review recent advancements in the understanding of calmodulation of Ca2+ and Na channels that suggest a remarkable similarity in their regulatory scheme. This interrelation between the two channel families now paves the way towards a unified mechanistic framework to understand vital calmodulin-dependent feedback and offers shared principles to approach related channelopathic diseases. An exciting era of synergistic study now looms. PMID:25966688

  16. Regulation of Arabidopsis defense responses against Spodoptera littoralis by CPK-mediated calcium signaling

    PubMed Central

    2010-01-01

    Background Plant Ca2+ signals are involved in a wide array of intracellular signaling pathways after pest invasion. Ca2+-binding sensory proteins such as Ca2+-dependent protein kinases (CPKs) have been predicted to mediate the signaling following Ca2+ influx after insect herbivory. However, until now this prediction was not testable. Results To investigate the roles CPKs play in a herbivore response-signaling pathway, we screened the characteristics of Arabidopsis CPK mutants damaged by a feeding generalist herbivore, Spodoptera littoralis. Following insect attack, the cpk3 and cpk13 mutants showed lower transcript levels of plant defensin gene PDF1.2 compared to wild-type plants. The CPK cascade was not directly linked to the herbivory-induced signaling pathways that were mediated by defense-related phytohormones such as jasmonic acid and ethylene. CPK3 was also suggested to be involved in a negative feedback regulation of the cytosolic Ca2+ levels after herbivory and wounding damage. In vitro kinase assays of CPK3 protein with a suite of substrates demonstrated that the protein phosphorylates transcription factors (including ERF1, HsfB2a and CZF1/ZFAR1) in the presence of Ca2+. CPK13 strongly phosphorylated only HsfB2a, irrespective of the presence of Ca2+. Furthermore, in vivo agroinfiltration assays showed that CPK3-or CPK13-derived phosphorylation of a heat shock factor (HsfB2a) promotes PDF1.2 transcriptional activation in the defense response. Conclusions These results reveal the involvement of two Arabidopsis CPKs (CPK3 and CPK13) in the herbivory-induced signaling network via HsfB2a-mediated regulation of the defense-related transcriptional machinery. This cascade is not involved in the phytohormone-related signaling pathways, but rather directly impacts transcription factors for defense responses. PMID:20504319

  17. Tonoplast CBL-CIPK calcium signaling network regulates magnesium homeostasis in Arabidopsis.

    PubMed

    Tang, Ren-Jie; Zhao, Fu-Geng; Garcia, Veder J; Kleist, Thomas J; Yang, Lei; Zhang, Hong-Xia; Luan, Sheng

    2015-03-10

    Although Mg(2+) is essential for a myriad of cellular processes, high levels of Mg(2+) in the environment, such as those found in serpentine soils, become toxic to plants. In this study, we identified two calcineurin B-like (CBL) proteins, CBL2 and CBL3, as key regulators for plant growth under high-Mg conditions. The Arabidopsis mutant lacking both CBL2 and CBL3 displayed severe growth retardation in the presence of excess Mg(2+), implying elevated Mg(2+) toxicity in these plants. Unexpectedly, the cbl2 cbl3 mutant plants retained lower Mg content than wild-type plants under either normal or high-Mg conditions, suggesting that CBL2 and CBL3 may be required for vacuolar Mg(2+) sequestration. Indeed, patch-clamp analysis showed that the cbl2 cbl3 mutant exhibited reduced Mg(2+) influx into the vacuole. We further identified four CBL-interacting protein kinases (CIPKs), CIPK3, -9, -23, and -26, as functionally overlapping components downstream of CBL2/3 in the signaling pathway that facilitates Mg(2+) homeostasis. The cipk3 cipk9 cipk23 cipk26 quadruple mutant, like the cbl2 cbl3 double mutant, was hypersensitive to high-Mg conditions; furthermore, CIPK3/9/23/26 physically interacted with CBL2/3 at the vacuolar membrane. Our results thus provide evidence that CBL2/3 and CIPK3/9/23/26 constitute a multivalent interacting network that regulates the vacuolar sequestration of Mg(2+), thereby protecting plants from Mg(2+) toxicity. PMID:25646412

  18. Intracellular calcium regulation among subpopulations of rat dorsal root ganglion neurons

    PubMed Central

    Lu, Shao-Gang; Zhang, Xiulin; Gold, Michael S

    2006-01-01

    Primary afferent neurons are functionally heterogeneous. To determine whether this functional heterogeneity reflects, in part, heterogeneity in the regulation of the concentration of intracellular Ca2+ ([Ca2+]i), the magnitude and decay of evoked Ca2+ transients were assessed in subpopulations of dorsal root ganglion (DRG) neurons with voltage clamp and fura-2 ratiometric imaging. To determine whether differences in evoked Ca2+ transients among subpopulations of DRG neurons reflected differences in the contribution of Ca2+ regulatory mechanisms, pharmacological techniques were employed to assess the contribution of influx, efflux, release and uptake pathways. Subpopulations of DRG neurons were defined by cell body size, binding of the plant lectin IB4 and responsiveness to the algogenic compound capsaicin (CAP). Ca2+ transients were evoked with 30 mm K+ or voltage steps to 0 mV. There were marked differences between subpopulations of neurons with respect to both the magnitude and decay of the Ca2+ transient, with the largest and most slowly decaying Ca2+ transients in small-diameter, IB4-positive, CAP-responsive neurons. The smallest and most rapidly decaying transients were in large-diameter, IB4-negative and CAP-unresponsive DRG neurons. These differences were not due to a differential distribution of voltage-gated Ca2+ currents. However, these differences did appear to reflect a differential contribution of other influx, efflux, release and uptake mechanisms between subpopulations of neurons. These results suggest that electrical activity in subpopulations of DRG neurons will have a differential influence on Ca2+-regulated phenomena such as spike adaptation, transmitter release and gene transcription. Significantly more activity should be required in large-diameter non-nociceptive afferents than in small-diameter nociceptive afferents to have a comparable influence on these processes. PMID:16945973

  19. Regulation of ciliary reversal in triton-extracted Paramecium by calcium and cyclic adenosine monophosphate.

    PubMed

    Nakaoka, Y; Ooi, H

    1985-08-01

    A Triton-extracted model of Paramecium swims forwards when the Ca2+ concentration in the reactivation medium containing ATP is below 10(-6) M and swims backwards when Ca2+ concentration is above 10(-6) M. We found that cAMP (adenosine 3':5'-cyclic monophosphoric acid) inhibited Ca-induced backward swimming of the model and caused forward swimming even when the [Ca2+] was above 10(-6) M. This effect of cAMP was abolished by an inhibitor of cAMP-dependent protein kinase. In order to study the possible role of phosphorylation in the regulation of ciliary orientation, ATP in the reactivation medium was replaced by an ATP analogue, ARP gamma S (adenosine 5'-O-3-thiotriphosphate), which irreversibly thiophosphorylates proteins. In ATP gamma S medium, the model ceased both swimming and ciliary beating, but the orientation of cilia was dependent on [Ca2+]. At low [Ca2+], cilia were perpendicular to the cell surface and, with increase in [Ca2+], their orientation gradually changed towards the cell anterior. Such a change in ciliary orientation corresponds roughly to the change in the swimming direction observed in ATP medium. The ciliary orientation towards the anterior of the cell in ATP gamma S medium at high [Ca2+] was maintained when [Ca2+] was decreased. In contrast, in ATP medium, the swimming direction was reversibly changed with changes in [Ca2+]. These results suggest that the ciliary orientation is regulated not only by Ca2+ but also by cAMP, probably via protein phosphorylation. PMID:3003129

  20. Mitochondrial regulation of cancer associated nuclear DNA methylation

    SciTech Connect

    Xie Chenghui; Naito, Akihiro; Mizumachi, Takatsugu; Evans, Teresa T.; Douglas, Michael G.; Cooney, Craig A.; Fan Chunyang; Higuchi, Masahiro

    2007-12-21

    The onset and progression of cancer is associated with the methylation-dependent silencing of specific genes, however, the mechanism and its regulation have not been established. We previously demonstrated that reduction of mitochondrial DNA content induces cancer progression. Here we found that mitochondrial DNA-deficient LN{rho}0-8 activates the hypermethylation of the nuclear DNA promoters including the promoter CpG islands of the endothelin B receptor, O{sup 6}-methylguanine-DNA methyltransferase, and E-cadherin. These are unmethylated and the corresponding gene products are expressed in the parental LNCaP containing mitochondrial DNA. The absence of mitochondrial DNA induced DNA methyltransferase 1 expression which was responsible for the methylation patterns observed. Inhibition of DNA methyltransferase eliminated hypermethylation and expressed gene products in LN{rho}0-8. These studies demonstrate loss or reduction of mitochondrial DNA resulted in the induction of DNA methyltransferase 1, hypermethylation of the promoters of endothelin B receptor, O{sup 6}-methylguanine-DNA methyltransferase, and E-cadherin, and reduction of the corresponding gene products.

  1. The calcium pump plasma membrane Ca2+-ATPase 2 (PMCA2) regulates breast cancer cell proliferation and sensitivity to doxorubicin

    PubMed Central

    Peters, Amelia A.; Milevskiy, Michael J. G.; Lee, Wei C.; Curry, Merril C.; Smart, Chanel E.; Saunus, Jodi M.; Reid, Lynne; da Silva, Leonard; Marcial, Daneth L.; Dray, Eloise; Brown, Melissa A.; Lakhani, Sunil R.; Roberts-Thomson, Sarah J.; Monteith, Gregory R.

    2016-01-01

    Regulation of Ca2+ transport is vital in physiological processes, including lactation, proliferation and apoptosis. The plasmalemmal Ca2+ pump isoform 2 (PMCA2) a calcium ion efflux pump, was the first protein identified to be crucial in the transport of Ca2+ ions into milk during lactation in mice. In these studies we show that PMCA2 is also expressed in human epithelia undergoing lactational remodeling and also report strong PMCA2 staining on apical membranes of luminal epithelia in approximately 9% of human breast cancers we assessed. Membrane protein expression was not significantly associated with grade or hormone receptor status. However, PMCA2 mRNA levels were enriched in Basal breast cancers where it was positively correlated with survival. Silencing of PMCA2 reduced MDA-MB-231 breast cancer cell proliferation, whereas silencing of the related isoforms PMCA1 and PMCA4 had no effect. PMCA2 silencing also sensitized MDA-MB-231 cells to the cytotoxic agent doxorubicin. Targeting PMCA2 alone or in combination with cytotoxic therapy may be worthy of investigation as a therapeutic strategy in breast cancer. PMCA2 mRNA levels are also a potential tool in identifying poor responders to therapy in women with Basal breast cancer. PMID:27148852

  2. CO2/HCO3−- and Calcium-regulated Soluble Adenylyl Cyclase as a Physiological ATP Sensor*

    PubMed Central

    Zippin, Jonathan H.; Chen, Yanqiu; Straub, Susanne G.; Hess, Kenneth C.; Diaz, Ana; Lee, Dana; Tso, Patrick; Holz, George G.; Sharp, Geoffrey W. G.; Levin, Lonny R.; Buck, Jochen

    2013-01-01

    The second messenger molecule cAMP is integral for many physiological processes. In mammalian cells, cAMP can be generated from hormone- and G protein-regulated transmembrane adenylyl cyclases or via the widely expressed and structurally and biochemically distinct enzyme soluble adenylyl cyclase (sAC). sAC activity is uniquely stimulated by bicarbonate ions, and in cells, sAC functions as a physiological carbon dioxide, bicarbonate, and pH sensor. sAC activity is also stimulated by calcium, and its affinity for its substrate ATP suggests that it may be sensitive to physiologically relevant fluctuations in intracellular ATP. We demonstrate here that sAC can function as a cellular ATP sensor. In cells, sAC-generated cAMP reflects alterations in intracellular ATP that do not affect transmembrane AC-generated cAMP. In β cells of the pancreas, glucose metabolism generates ATP, which corresponds to an increase in cAMP, and we show here that sAC is responsible for an ATP-dependent cAMP increase. Glucose metabolism also elicits insulin secretion, and we further show that sAC is necessary for normal glucose-stimulated insulin secretion in vitro and in vivo. PMID:24100033

  3. The calcium pump plasma membrane Ca(2+)-ATPase 2 (PMCA2) regulates breast cancer cell proliferation and sensitivity to doxorubicin.

    PubMed

    Peters, Amelia A; Milevskiy, Michael J G; Lee, Wei C; Curry, Merril C; Smart, Chanel E; Saunus, Jodi M; Reid, Lynne; da Silva, Leonard; Marcial, Daneth L; Dray, Eloise; Brown, Melissa A; Lakhani, Sunil R; Roberts-Thomson, Sarah J; Monteith, Gregory R

    2016-01-01

    Regulation of Ca(2+) transport is vital in physiological processes, including lactation, proliferation and apoptosis. The plasmalemmal Ca(2+) pump isoform 2 (PMCA2) a calcium ion efflux pump, was the first protein identified to be crucial in the transport of Ca(2+) ions into milk during lactation in mice. In these studies we show that PMCA2 is also expressed in human epithelia undergoing lactational remodeling and also report strong PMCA2 staining on apical membranes of luminal epithelia in approximately 9% of human breast cancers we assessed. Membrane protein expression was not significantly associated with grade or hormone receptor status. However, PMCA2 mRNA levels were enriched in Basal breast cancers where it was positively correlated with survival. Silencing of PMCA2 reduced MDA-MB-231 breast cancer cell proliferation, whereas silencing of the related isoforms PMCA1 and PMCA4 had no effect. PMCA2 silencing also sensitized MDA-MB-231 cells to the cytotoxic agent doxorubicin. Targeting PMCA2 alone or in combination with cytotoxic therapy may be worthy of investigation as a therapeutic strategy in breast cancer. PMCA2 mRNA levels are also a potential tool in identifying poor responders to therapy in women with Basal breast cancer. PMID:27148852

  4. Kinematics and host-galaxy properties suggest a nuclear origin for calcium-rich supernova progenitors

    NASA Astrophysics Data System (ADS)

    Foley, Ryan J.

    2015-09-01

    Calcium-rich supernovae (Ca-rich SNe) are peculiar low-luminosity SNe Ib with relatively strong Ca spectral lines at ˜2 months after peak brightness. This class also has an extended projected offset distribution, with several members of the class offset from their host galaxies by 30-150 kpc. There is no indication of any stellar population at the SN positions. Using a sample of 13 Ca-rich SNe, we present kinematic evidence that the progenitors of Ca-rich SNe originate near the centres of their host galaxies and are kicked to the locations of the SN explosions. Specifically, SNe with small projected offsets have large line-of-sight velocity shifts as determined by nebular lines, while those with large projected offsets have no significant velocity shifts. Therefore, the velocity shifts must not be primarily the result of the SN explosion. Additionally, nearly every Ca-rich SN is hosted by a galaxy with indications of a recent merger and/or is in a dense environment. We propose a progenitor model which fits all current data: the progenitor system for a Ca-rich SN is a double white dwarf (WD) system where at least one WD has a significant He abundance. This system, through an interaction with a super-massive black hole (SMBH) is ejected from its host galaxy and the binary is hardened, significantly reducing the merger time. After 10-100 Myr (on average), the system explodes with a large physical offset. The rate for such events is significantly enhanced for galaxies which have undergone recent mergers, potentially making Ca-rich SNe new probes of both the galaxy merger rate and (binary) SMBH population.

  5. Structural Features of Ion Transport and Allosteric Regulation in Sodium-Calcium Exchanger (NCX) Proteins.

    PubMed

    Giladi, Moshe; Tal, Inbal; Khananshvili, Daniel

    2016-01-01

    Na(+)/Ca(2+) exchanger (NCX) proteins extrude Ca(2+) from the cell to maintain cellular homeostasis. Since NCX proteins contribute to numerous physiological and pathophysiological events, their pharmacological targeting has been desired for a long time. This intervention remains challenging owing to our poor understanding of the underlying structure-dynamic mechanisms. Recent structural studies have shed light on the structure-function relationships underlying the ion-transport and allosteric regulation of NCX. The crystal structure of an archaeal NCX (NCX_Mj) along with molecular dynamics simulations and ion flux analyses, have assigned the ion binding sites for 3Na(+) and 1Ca(2+), which are being transported in separate steps. In contrast with NCX_Mj, eukaryotic NCXs contain the regulatory Ca(2+)-binding domains, CBD1 and CBD2, which affect the membrane embedded ion-transport domains over a distance of ~80 Å. The Ca(2+)-dependent regulation is ortholog, isoform, and splice-variant dependent to meet physiological requirements, exhibiting either a positive, negative, or no response to regulatory Ca(2+). The crystal structures of the two-domain (CBD12) tandem have revealed a common mechanism involving a Ca(2+)-driven tethering of CBDs in diverse NCX variants. However, dissociation kinetics of occluded Ca(2+) (entrapped at the two-domain interface) depends on the alternative-splicing segment (at CBD2), thereby representing splicing-dependent dynamic coupling of CBDs. The HDX-MS, SAXS, NMR, FRET, equilibrium (45)Ca(2+) binding and stopped-flow techniques provided insights into the dynamic mechanisms of CBDs. Ca(2+) binding to CBD1 results in a population shift, where more constraint conformational states become highly populated without global conformational changes in the alignment of CBDs. This mechanism is common among NCXs. Recent HDX-MS studies have demonstrated that the apo CBD1 and CBD2 are stabilized by interacting with each other, while Ca(2+) binding to CBD1

  6. Cardiac neuronal nitric oxide synthase isoform regulates myocardial contraction and calcium handling.

    PubMed

    Sears, Claire E; Bryant, Simon M; Ashley, Euan A; Lygate, Craig A; Rakovic, Stevan; Wallis, Helen L; Neubauer, Stefan; Terrar, Derek A; Casadei, B

    2003-03-21

    A neuronal isoform of nitric oxide synthase (nNOS) has recently been located to the cardiac sarcoplasmic reticulum (SR). Subcellular localization of a constitutive NOS in the proximity of an activating source of Ca2+ suggests that cardiac nNOS-derived NO may regulate contraction by exerting a highly specific and localized action on ion channels/transporters involved in Ca2+ cycling. To test this hypothesis, we have investigated myocardial Ca2+ handling and contractility in nNOS knockout mice (nNOS-/-) and in control mice (C) after acute nNOS inhibition with 100 micromol/L L-VNIO. nNOS gene disruption or L-VNIO increased basal contraction both in left ventricular (LV) myocytes (steady-state cell shortening 10.3+/-0.6% in nNOS-/- versus 8.1+/-0.5% in C; P<0.05) and in vivo (LV ejection fraction 53.5+/-2.7 in nNOS-/- versus 44.9+/-1.5% in C; P<0.05). nNOS disruption increased ICa density (in pA/pF, at 0 mV, -11.4+/-0.5 in nNOS-/- versus -9.1+/-0.5 in C; P<0.05) and prolonged the slow time constant of inactivation of ICa by 38% (P<0.05), leading to an increased Ca2+ influx and a greater SR load in nNOS-/- myocytes (in pC/pF, 0.78+/-0.04 in nNOS-/- versus 0.64+/-0.03 in C; P<0.05). Consistent with these data, [Ca2+]i transient (indo-1) peak amplitude was greater in nNOS-/- myocytes (410/495 ratio 0.34+/-0.01 in nNOS-/- versus 0.31+/-0.01 in C; P<0.05). These findings have uncovered a novel mechanism by which intracellular Ca2+ is regulated in LV myocytes and indicate that nNOS is an important determinant of basal contractility in the mammalian myocardium. The full text of this article is available at http://www.circresaha.org. PMID:12623875

  7. Reciprocal Regulation of Mitochondrial Dynamics and Calcium Signaling in Astrocyte Processes

    PubMed Central

    Jackson, Joshua G.

    2015-01-01

    We recently showed that inhibition of neuronal activity, glutamate uptake, or reversed-Na+/Ca2+-exchange with TTX, TFB-TBOA, or YM-244769, respectively, increases mitochondrial mobility in astrocytic processes. In the present study, we examined the interrelationships between mitochondrial mobility and Ca2+ signaling in astrocyte processes in organotypic cultures of rat hippocampus. All of the treatments that increase mitochondrial mobility decreased basal Ca2+. As recently reported, we observed spontaneous Ca2+ spikes with half-lives of ∼1 s that spread ∼6 μm and are almost abolished by a TRPA1 channel antagonist. Virtually all of these Ca2+ spikes overlap mitochondria (98%), and 62% of mitochondria are overlapped by these spikes. Although tetrodotoxin, TFB-TBOA, or YM-244769 increased Ca2+ signaling, the specific effects on peak, decay time, and/or frequency were different. To more specifically manipulate mitochondrial mobility, we explored the effects of Miro motor adaptor proteins. We show that Miro1 and Miro2 are both expressed in astrocytes and that exogenous expression of Ca2+-insensitive Miro mutants (KK) nearly doubles the percentage of mobile mitochondria. Expression of Miro1KK had a modest effect on the frequency of these Ca2+ spikes but nearly doubled the decay half-life. The mitochondrial proton ionophore, FCCP, caused a large, prolonged increase in cytosolic Ca2+ followed by an increase in the decay time and the spread of the spontaneous Ca2+ spikes. Photo-ablation of mitochondria in individual astrocyte processes has similar effects on Ca2+. Together, these studies show that Ca2+ regulates mitochondrial mobility, and mitochondria in turn regulate Ca2+ signals in astrocyte processes. SIGNIFICANCE STATEMENT In neurons, the movement and positioning of mitochondria at sites of elevated activity are important for matching local energy and Ca2+ buffering capacity. Previously, we demonstrated that mitochondria are immobilized in astrocytes in response

  8. Molecular Mechanisms Contributing to TARP Regulation of Channel Conductance and Polyamine Block of Calcium-Permeable AMPA Receptors

    PubMed Central

    Coombs, Ian D.; Gratacòs-Batlle, Esther

    2014-01-01

    Many properties of fast synaptic transmission in the brain are influenced by transmembrane AMPAR regulatory proteins (TARPs) that modulate the pharmacology and gating of AMPA-type glutamate receptors (AMPARs). Although much is known about TARP influence on AMPAR pharmacology and kinetics through their modulation of the extracellular ligand-binding domain (LBD), less is known about their regulation of the ion channel region. TARP-induced modifications in AMPAR channel behavior include increased single-channel conductance and weakened block of calcium-permeable AMPARs (CP-AMPARs) by endogenous intracellular polyamines. To investigate how TARPs modify ion flux and channel block, we examined the action of γ-2 (stargazin) on GluA1 and GluA4 CP-AMPARs. First, we compared the permeation of organic cations of different sizes. We found that γ-2 increased the permeability of several cations but not the estimated AMPAR pore size, suggesting that TARP-induced relief of polyamine block does not reflect altered pore diameter. Second, to determine whether residues in the TARP intracellular C-tail regulate polyamine block and channel conductance, we examined various γ-2 C-tail mutants. We identified the membrane proximal region of the C terminus as crucial for full TARP-attenuation of polyamine block, whereas complete deletion of the C-tail markedly enhanced the TARP-induced increase in channel conductance; thus, the TARP C-tail influences ion permeation. Third, we identified a site in the pore-lining region of the AMPAR, close to its Q/R site, that is crucial in determining the TARP-induced changes in single-channel conductance. This conserved residue represents a site of TARP action, independent of the AMPAR LBD. PMID:25164663

  9. Trolox-Sensitive Reactive Oxygen Species Regulate Mitochondrial Morphology, Oxidative Phosphorylation and Cytosolic Calcium Handling in Healthy Cells

    PubMed Central

    Distelmaier, Felix; Valsecchi, Federica; Forkink, Marleen; van Emst-de Vries, Sjenet; Swarts, Herman G.; Rodenburg, Richard J.T.; Verwiel, Eugène T.P.; Smeitink, Jan A.M.; Willems, Peter H.G.M.

    2012-01-01

    Abstract Aims: Cell regulation by signaling reactive oxygen species (sROS) is often incorrectly studied through extracellular oxidant addition. Here, we used the membrane-permeable antioxidant Trolox to examine the role of sROS in mitochondrial morphology, oxidative phosphorylation (OXPHOS), and cytosolic calcium (Ca2+) handling in healthy human skin fibroblasts. Results and Innovation: Trolox treatment reduced the levels of 5-(and-6)-chloromethyl-2′,7′-dichlorodihydro-fluorescein (CM-H2DCF) oxidizing ROS, lowered cellular lipid peroxidation, and induced a less oxidized mitochondrial thiol redox state. This was paralleled by increased glutathione- and mitofusin-dependent mitochondrial filamentation, increased expression of fully assembled mitochondrial complex I, elevated activity of citrate synthase and OXPHOS enzymes, and a higher cellular O2 consumption. In contrast, Trolox did not alter hydroethidium oxidation, cytosolic thiol redox state, mitochondrial NAD(P)H levels, or mitochondrial membrane potential. Whole genome expression profiling revealed that Trolox did not trigger significant changes in gene expression, suggesting that Trolox acts downstream of this process. Cytosolic Ca2+ transients, induced by the hormone bradykinin, were of a higher amplitude and decayed faster in Trolox-treated cells. These effects were dose-dependently antagonized by hydrogen peroxide. Conclusions: Our findings suggest that Trolox-sensitive sROS are upstream regulators of mitochondrial mitofusin levels, morphology, and function in healthy human skin fibroblasts. This information not only facilitates the interpretation of antioxidant effects in cell models (of oxidative-stress), but also contributes to a better understanding of ROS-related human pathologies, including mitochondrial disorders. Antioxid. Redox Signal. 17, 1657–1669. PMID:22559215

  10. Calcium regulates motility and protein phosphorylation by changing cAMP and ATP concentrations in boar sperm in vitro.

    PubMed

    Li, Xinhong; Wang, Lirui; Li, Yuhua; Zhao, Na; Zhen, Linqing; Fu, Jieli; Yang, Qiangzhen

    2016-09-01

    Considering the importance of calcium (Ca(2+)) in regulating sperm capacitation, hyperactivation and acrosome reaction, little is known about the molecular mechanism of action of this ion in this process. In the present study, assessment of the molecular mechanism from the perspective of energy metabolism occurred. Sperm motility variables were determined using computer-assisted sperm analysis (CASA) and the phosphorylation of PKA substrates, tyrosine residues and AMP-activated protein kinase (AMPK) were analyzed by Western blot. Moreover, intracellular sperm-specific glyceraldehyde 3-phosphatedehydrogenase (GAPDH) activity, 3'-5'-cyclic adenosine monophosphate (cAMP) and adenosine 5'-triphosphate (ATP) concentrations were assessed in boar sperm treated with Ca(2+). Results of the present study indicated that, under greater extracellular Ca(2+)concentrations (≥3.0mM), sperm motility and protein phosphorylation were inhibited. Interestingly, these changes were correlated with that of GAPDH activity, AMPK phosphorylation, cAMP and ATP concentrations. The negative effects of Ca(2+) on these intracellular processes were attenuated by addition of the calmodulin (CaM) inhibitor W7 and the inhibitor of calmodulin-dependent protein kinase (CaMK), KN-93. In the presence of greater extracellular Ca(2+), however, the phosphorylation pathway was suppressed by H-89. Taken together, these results suggested that Ca(2+) had a dual role in regulating boar sperm motility and protein phosphorylation due to the changes of cAMP and ATP concentrations, in response to cAMP-mediated signal transduction and the Ca(2+) signaling cascade. The present study provided some novel insights into the molecular mechanism underlying the effects of Ca(2+) on boar sperm as well as the involvement of energy metabolism in this mechanism. PMID:27423488

  11. Calcium Oscillations

    PubMed Central

    Dupont, Geneviève; Combettes, Laurent; Bird, Gary S.; Putney, James W.

    2011-01-01

    Calcium signaling results from a complex interplay between activation and inactivation of intracellular and extracellular calcium permeable channels. This complexity is obvious from the pattern of calcium signals observed with modest, physiological concentrations of calcium-mobilizing agonists, which typically present as sequential regenerative discharges of stored calcium, a process referred to as calcium oscillations. In this review, we discuss recent advances in understanding the underlying mechanism of calcium oscillations through the power of mathematical modeling. We also summarize recent findings on the role of calcium entry through store-operated channels in sustaining calcium oscillations and in the mechanism by which calcium oscillations couple to downstream effectors. PMID:21421924

  12. Calcium-independent activation of extracellular signal-regulated kinases 1 and 2 by cyclic strain

    NASA Technical Reports Server (NTRS)

    Ikeda, M.; Takei, T.; Mills, I.; Sumpio, B. E.

    1998-01-01

    We have previously demonstrated that cyclic strain induces extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation in endothelial cells (EC). The aim of this study was to investigate the effect of Ca2+ on the activation of ERK1/2. Bovine aortic EC were pretreated with a chelator of extracellular Ca2+, ethylaneglycol-bis(aminoethylether)-tetra-acetate (EGTA), a depleter of Ca2+ pools, 2,5-Di-(tert-butyl)-1,4-benzohydroquinone (BHQ), or a Ca2+ channel blocker, GdCl3, and subjected to an average 10 % strain at a rate of 60 cycles/min for 10 min. BHQ and GdCl3 did not inhibit the strain-induced ERK1/2 activation. Chelation of normal extracellular Ca2+ (1.8 mM) medium with EGTA (3 mM) acutely stimulated baseline phosphorylation and activation of ERK1/2, thereby obscuring any strain-induced activation of ERK1/2. However, in EC preincubated for 24 hours in Ca2+-free medium, elevated baseline phosphorylation was minimally activated by EGTA (200 microM) such that cyclic strain stimulated ERK1/2 in the presence or absence of BHQ. These results suggest a Ca2+ independence of the ERK1/2 signaling pathway by cyclic strain. Copyright 1998 Academic Press.

  13. Regulator of G-protein signaling 2 (RGS2) suppresses premature calcium release in mouse eggs.

    PubMed

    Bernhardt, Miranda L; Lowther, Katie M; Padilla-Banks, Elizabeth; McDonough, Caitlin E; Lee, Katherine N; Evsikov, Alexei V; Uliasz, Tracy F; Chidiac, Peter; Williams, Carmen J; Mehlmann, Lisa M

    2015-08-01

    During oocyte maturation, capacity and sensitivity of Ca(2+) signaling machinery increases dramatically, preparing the metaphase II (MII)-arrested egg for fertilization. Upon sperm-egg fusion, Ca(2+) release from IP3-sensitive endoplasmic reticulum stores results in cytoplasmic Ca(2+) oscillations that drive egg activation and initiate early embryo development. Premature Ca(2+) release can cause parthenogenetic activation prior to fertilization; thus, preventing inappropriate Ca(2+) signaling is crucial for ensuring robust MII arrest. Here, we show that regulator of G-protein signaling 2 (RGS2) suppresses Ca(2+) release in MII eggs. Rgs2 mRNA was recruited for translation during oocyte maturation, resulting in ∼ 20-fold more RGS2 protein in MII eggs than in fully grown immature oocytes. Rgs2-siRNA-injected oocytes matured to MII; however, they had increased sensitivity to low pH and acetylcholine (ACh), which caused inappropriate Ca(2+) release and premature egg activation. When matured in vitro, RGS2-depleted eggs underwent spontaneous Ca(2+) increases that were sufficient to cause premature zona pellucida conversion. Rgs2(-/-) females had reduced litter sizes, and their eggs had increased sensitivity to low pH and ACh. Rgs2(-/-) eggs also underwent premature zona pellucida conversion in vivo. These findings indicate that RGS2 functions as a brake to suppress premature Ca(2+) release in eggs that are poised on the brink of development. PMID:26160904

  14. Modification of bursting in a Helix neuron by drugs influencing intracellular regulation of calcium level.

    PubMed

    Salánki, J; Budai, D; Véró, M

    1983-01-01

    The effect of ruthenium red, caffein and EGTA (ethyleneglycol tetraacetic acid) influencing intracellular Ca2+ level as well as that of pH-lowering was investigated on identified RPal neuron of Helix pomatia characterized by bimodal pacemaker (bursting) activity. Drugs were applied both extracellularly and intracellularly. Intracellular injection was performed from micropipettes by pressure. It was found that intracellular injection of ruthenium red, caffein, EGTA and pH-lowering caused immediate short hyperpolarization and suspension of bursting. The effect of caffein and lowering of pH was biphasic, hyperpolarization was followed by an increase of spiking. Following EGTA injection the amplitudes of interburst hyperpolarizing waves decreased, and prolongation of spikes occurred. Extracellular application of ruthenium red caused slight depolarization, while caffein produced mainly effects that were similar to those of the intracellular injection. Adding EGTA into the bath resulted in cessation of bursting, and later on also spike generation was blocked. All these effects could be eliminated by washing. It is concluded that Ca-influx during spiking cannot be considered as a single factor in maintaining bursting activity, nevertheless, intracellular binding and liberation of Ca depending on the cell metabolism should also be taken into consideration as a possible mechanism of burst regulation. PMID:6198869

  15. Chimeric calcium/calmodulin-dependent protein kinase in tobacco: differential regulation by calmodulin isoforms

    NASA Technical Reports Server (NTRS)

    Liu, Z.; Xia, M.; Poovaiah, B. W.

    1998-01-01

    cDNA clones of chimeric Ca2+/calmodulin-dependent protein kinase (CCaMK) from tobacco (TCCaMK-1 and TCCaMK-2) were isolated and characterized. The polypeptides encoded by TCCaMK-1 and TCCaMK-2 have 15 different amino acid substitutions, yet they both contain a total of 517 amino acids. Northern analysis revealed that CCaMK is expressed in a stage-specific manner during anther development. Messenger RNA was detected when tobacco bud sizes were between 0.5 cm and 1.0 cm. The appearance of mRNA coincided with meiosis and became undetectable at later stages of anther development. The reverse polymerase chain reaction (RT-PCR) amplification assay using isoform-specific primers showed that both of the CCaMK mRNAs were expressed in anther with similar expression patterns. The CCaMK protein expressed in Escherichia coli showed Ca2+-dependent autophosphorylation and Ca2+/calmodulin-dependent substrate phosphorylation. Calmodulin isoforms (PCM1 and PCM6) had differential effects on the regulation of autophosphorylation and substrate phosphorylation of tobacco CCaMK, but not lily CCaMK. The evolutionary tree of plant serine/threonine protein kinases revealed that calmodulin-dependent kinases form one subgroup that is distinctly different from Ca2+-dependent protein kinases (CDPKs) and other serine/threonine kinases in plants.

  16. Down-regulation of the small conductance calcium-activated potassium channels in diabetic mouse atria.

    PubMed

    Yi, Fu; Ling, Tian-You; Lu, Tong; Wang, Xiao-Li; Li, Jingchao; Claycomb, William C; Shen, Win-Kuang; Lee, Hon-Chi

    2015-03-13

    The small conductance Ca(2+)-activated K(+) (SK) channels have recently been found to be expressed in the heart, and genome-wide association studies have shown that they are implicated in atrial fibrillation. Diabetes mellitus is an independent risk factor of atrial fibrillation, but the ionic mechanism underlying this relationship remains unclear. We hypothesized that SK channel function is abnormal in diabetes mellitus, leading to altered cardiac electrophysiology. We found that in streptozotocin-induced diabetic mice, the expression of SK2 and SK3 isoforms was down-regulated by 85 and 92%, respectively, whereas that of SK1 was not changed. SK currents from isolated diabetic mouse atrial myocytes were significantly reduced compared with controls. The resting potentials of isolated atrial preparations were similar between control and diabetic mice, but action potential durations were significantly prolonged in the diabetic atria. Exposure to apamin significantly prolonged action potential durations in control but not in diabetic atria. Production of reactive oxygen species was significantly increased in diabetic atria and in high glucose-cultured HL-1 cells, whereas exposure of HL-1 cells in normal glucose culture to H2O2 reduced the expression of SK2 and SK3. Tyrosine nitration in SK2 and SK3 was significantly increased by high glucose culture, leading to accelerated channel turnover. Treatment with Tiron prevented these changes. Our results suggest that increased oxidative stress in diabetes results in SK channel-associated electrical remodeling in diabetic atria and may promote arrhythmogenesis. PMID:25605734

  17. Calcium- and calmodulin-regulated breakdown of phospholipid by microsomal membranes from bean cotyledons

    SciTech Connect

    Paliyath, G.; Thompson, J.E.

    1987-01-01

    Evidence for the involvement of Ca/sup 2 +/ and calmodulin in the regulation of phospholipid breakdown by microsomal membranes from bean cotyledons has been obtained by following the formation of radiolabeled degradation products from (U-/sup 14/C)phosphatidylcholine. Three membrane-associated enzymes were found to mediate the breakdown of (U-/sup 14/C) phosphatidylcholine, viz. phospholipase D phosphatidic acid phosphatase and lipolytic acyl hydrolase. Phospholipase D and phosphatidic acid phosphatase were both stimulated by physiological levels of free Ca/sup 2 +/, whereas lipolytic acyl hydrolase proved to be insensitive to Ca/sup 2 +/. Phospholipase D was unaffected by calmodulin, but the activity of phosphatidic acid phosphatase was additionally stimulated by nanomolar levels of calmodulin in the presence of 15 micromolar free Ca/sup 2 +/. Calmidazolium, a calmodulin antagonist, inhibited phosphatidic acid phosphatase activity at IC/sub 50/ values ranging from 10 to 15 micromolar. Thus, the Ca/sup 2 +/-induced stimulation of phosphatidic acid phosphatase appears to be mediated through calmodulin, whereas the effect of Ca/sup 2 +/ on phospholipase D is independent of calmodulin. The role of Ca/sup 2 +/ as a second messenger in the initiation of membrane lipid degradation is discussed.

  18. Nitric oxide-induced calcium release via ryanodine receptors regulates neuronal function

    PubMed Central

    Kakizawa, Sho; Yamazawa, Toshiko; Chen, Yili; Ito, Akihiro; Murayama, Takashi; Oyamada, Hideto; Kurebayashi, Nagomi; Sato, Osamu; Watanabe, Masahiko; Mori, Nozomu; Oguchi, Katsuji; Sakurai, Takashi; Takeshima, Hiroshi; Saito, Nobuhito; Iino, Masamitsu

    2012-01-01

    Mobilization of intracellular Ca2+ stores regulates a multitude of cellular functions, but the role of intracellular Ca2+ release via the ryanodine receptor (RyR) in the brain remains incompletely understood. We found that nitric oxide (NO) directly activates RyRs, which induce Ca2+ release from intracellular stores of central neurons, and thereby promote prolonged Ca2+ signalling in the brain. Reversible S-nitrosylation of type 1 RyR (RyR1) triggers this Ca2+ release. NO-induced Ca2+ release (NICR) is evoked by type 1 NO synthase-dependent NO production during neural firing, and is essential for cerebellar synaptic plasticity. NO production has also been implicated in pathological conditions including ischaemic brain injury, and our results suggest that NICR is involved in NO-induced neuronal cell death. These findings suggest that NICR via RyR1 plays a regulatory role in the physiological and pathophysiological functions of the brain. PMID:22036948

  19. Parvulin 17-catalyzed Tubulin Polymerization Is Regulated by Calmodulin in a Calcium-dependent Manner*

    PubMed Central

    Burgardt, Noelia Inés; Schmidt, Andreas; Manns, Annika; Schutkowski, Alexandra; Jahreis, Günther; Lin, Yi-Jan; Schulze, Bianca; Masch, Antonia; Lücke, Christian; Weiwad, Matthias

    2015-01-01

    Recently we have shown that the peptidyl-prolyl cis/trans isomerase parvulin 17 (Par17) interacts with tubulin in a GTP-dependent manner, thereby promoting the formation of microtubules. Microtubule assembly is regulated by Ca2+-loaded calmodulin (Ca2+/CaM) both in the intact cell and under in vitro conditions via direct interaction with microtubule-associated proteins. Here we provide the first evidence that Ca2+/CaM interacts also with Par17 in a physiologically relevant way, thus preventing Par17-promoted microtubule assembly. In contrast, parvulin 14 (Par14), which lacks only the first 25 N-terminal residues of the Par17 sequence, does not interact with Ca2+/CaM, indicating that this interaction is exclusive for Par17. Pulldown experiments and chemical shift perturbation analysis with 15N-labeled Par17 furthermore confirmed that calmodulin (CaM) interacts in a Ca2+-dependent manner with the Par17 N terminus. The reverse experiment with 15N-labeled Ca2+/CaM demonstrated that the N-terminal Par17 segment binds to both CaM lobes simultaneously, indicating that Ca2+/CaM undergoes a conformational change to form a binding channel between its two lobes, apparently similar to the structure of the CaM-smMLCK796–815 complex. In vitro tubulin polymerization assays furthermore showed that Ca2+/CaM completely suppresses Par17-promoted microtubule assembly. The results imply that Ca2+/CaM binding to the N-terminal segment of Par17 causes steric hindrance of the Par17 active site, thus interfering with the Par17/tubulin interaction. This Ca2+/CaM-mediated control of Par17-assisted microtubule assembly may provide a mechanism that couples Ca2+ signaling with microtubule function. PMID:25940090

  20. Calcium signaling regulates ventricular hypertrophy during development independent of contraction or blood flow.

    PubMed

    Andersen, Nicholas D; Ramachandran, Kapil V; Bao, Michelle M; Kirby, Margaret L; Pitt, Geoffrey S; Hutson, Mary R

    2015-03-01

    In utero interventions aimed at restoring left ventricular hemodynamic forces in fetuses with prenatally diagnosed hypoplastic left heart syndrome failed to stimulate ventricular myocardial growth during gestation, suggesting chamber growth during development may not rely upon fluid forces. We therefore hypothesized that ventricular hypertrophy during development may depend upon fundamental Ca(2+)-dependent growth pathways that function independent of hemodynamic forces. To test this hypothesis, zebrafish embryos were treated with inhibitors or activators of Ca(2+) signaling in the presence or absence of contraction during the period of chamber development. Abolishment of contractile function alone in the setting of preserved Ca(2+) signaling did not impair ventricular hypertrophy. In contrast, inhibition of L-type voltage-gated Ca(2+) influx abolished contraction and led to reduced ventricular hypertrophy, whereas increasing L-type voltage-gated Ca(2+) influx led to enhanced ventricular hypertrophy in either the presence or absence of contraction. Similarly, inhibition of the downstream Ca(2+)-sensitive phosphatase calcineurin, a known regulator of adult cardiac hypertrophy, led to reduced ventricular hypertrophy in the presence or absence of contraction, whereas hypertrophy was rescued in the absence of L-type voltage-gated Ca(2+) influx and contraction by expression of a constitutively active calcineurin. These data suggest that ventricular cardiomyocyte hypertrophy during chamber formation is dependent upon Ca(2+) signaling pathways that are unaffected by heart function or hemodynamic forces. Disruption of Ca(2+)-dependent hypertrophy during heart development may therefore represent one mechanism for impaired chamber formation that is not related to impaired blood flow. PMID:25536179

  1. Vacuolar ATPase regulates surfactant secretion in rat alveolar type II cells by modulating lamellar body calcium.

    PubMed

    Chintagari, Narendranath Reddy; Mishra, Amarjit; Su, Lijing; Wang, Yang; Ayalew, Sahlu; Hartson, Steven D; Liu, Lin

    2010-01-01

    Lung surfactant reduces surface tension and maintains the stability of alveoli. How surfactant is released from alveolar epithelial type II cells is not fully understood. Vacuolar ATPase (V-ATPase) is the enzyme responsible for pumping H(+) into lamellar bodies and is required for the processing of surfactant proteins and the packaging of surfactant lipids. However, its role in lung surfactant secretion is unknown. Proteomic analysis revealed that vacuolar ATPase (V-ATPase) dominated the alveolar type II cell lipid raft proteome. Western blotting confirmed the association of V-ATPase a1 and B1/2 subunits with lipid rafts and their enrichment in lamellar bodies. The dissipation of lamellar body pH gradient by Bafilomycin A1 (Baf A1), an inhibitor of V-ATPase, increased surfactant secretion. Baf A1-stimulated secretion was blocked by the intracellular Ca(2+) chelator, BAPTA-AM, the protein kinase C (PKC) inhibitor, staurosporine, and the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), KN-62. Baf A1 induced Ca(2+) release from isolated lamellar bodies. Thapsigargin reduced the Baf A1-induced secretion, indicating cross-talk between lamellar body and endoplasmic reticulum Ca(2+) pools. Stimulation of type II cells with surfactant secretagogues dissipated the pH gradient across lamellar bodies and disassembled the V-ATPase complex, indicating the physiological relevance of the V-ATPase-mediated surfactant secretion. Finally, silencing of V-ATPase a1 and B2 subunits decreased stimulated surfactant secretion, indicating that these subunits were crucial for surfactant secretion. We conclude that V-ATPase regulates surfactant secretion via an increased Ca(2+) mobilization from lamellar bodies and endoplasmic reticulum, and the activation of PKC and CaMKII. Our finding revealed a previously unrealized role of V-ATPase in surfactant secretion. PMID:20169059

  2. Developmental regulation of the gene for chimeric calcium/calmodulin-dependent protein kinase in anthers.

    PubMed

    Poovaiah, B W; Xia, M; Liu, Z; Wang, W; Yang, T; Sathyanarayanan, P V; Franceschi, V R

    1999-08-01

    Chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK) was cloned from developing anthers of lily (Lilium longiflorum Thumb. cv. Nellie White) and tobacco (Nicotiana tabacum L. cv. Xanthi). Previous biochemical characterization and structure/function studies had revealed that CCaMK has dual modes of regulation by Ca(2+) and Ca(2+)/calmodulin. The unique structural features of CCaMK include a catalytic domain, a calmodulin-binding domain, and a neural visinin-like Ca(2+)-binding domain. The existence of these three features in a single polypeptide distinguishes it from other kinases. Western analysis revealed that CCaMK is expressed in a stage-specific manner in developing anthers. Expression of CCaMK was first detected in pollen mother cells and continued to increase, reaching a peak around the tetrad stage of meiosis. Following microsporogenesis, CCaMK expression rapidly decreased and at later stages of microspore development, no expression was detected. A tobacco genomic clone of CCaMK was isolated and transgenic tobacco plants were produced carrying the CCaMK promoter fused to the beta-glucuronidase reporter gene. Both CCaMK mRNA and protein were detected in the pollen sac and their localizations were restricted to the pollen mother cells and tapetal cells. Consistent results showing a stage-specific expression pattern were obtained by beta-glucuronidase analysis, in-situ hybridization and immunolocalization. The stage- and tissue-specific appearance of CCaMK in anthers suggests that it could play a role in sensing transient changes in free Ca(2+) concentration in target cells, thereby controlling developmental events in the anther. PMID:10436217

  3. Calcium release channel RyR2 regulates insulin release and glucose homeostasis

    PubMed Central

    Santulli, Gaetano; Pagano, Gennaro; Sardu, Celestino; Xie, Wenjun; Reiken, Steven; D’Ascia, Salvatore Luca; Cannone, Michele; Marziliano, Nicola; Trimarco, Bruno; Guise, Theresa A.; Lacampagne, Alain; Marks, Andrew R.

    2015-01-01

    The type 2 ryanodine receptor (RyR2) is a Ca2+ release channel on the endoplasmic reticulum (ER) of several types of cells, including cardiomyocytes and pancreatic β cells. In cardiomyocytes, RyR2-dependent Ca2+ release is critical for excitation-contraction coupling; however, a functional role for RyR2 in β cell insulin secretion and diabetes mellitus remains controversial. Here, we took advantage of rare RyR2 mutations that were identified in patients with a genetic form of exercise-induced sudden death (catecholaminergic polymorphic ventricular tachycardia [CPVT]). As these mutations result in a “leaky” RyR2 channel, we exploited them to assess RyR2 channel function in β cell dynamics. We discovered that CPVT patients with mutant leaky RyR2 present with glucose intolerance, which was heretofore unappreciated. In mice, transgenic expression of CPVT-associated RyR2 resulted in impaired glucose homeostasis, and an in-depth evaluation of pancreatic islets and β cells from these animals revealed intracellular Ca2+ leak via oxidized and nitrosylated RyR2 channels, activated ER stress response, mitochondrial dysfunction, and decreased fuel-stimulated insulin release. Additionally, we verified the effects of the pharmacological inhibition of intracellular Ca2+ leak in CPVT-associated RyR2-expressing mice, in human islets from diabetic patients, and in an established murine model of type 2 diabetes mellitus. Taken together, our data indicate that RyR2 channels play a crucial role in the regulation of insulin secretion and glucose homeostasis. PMID:25844899

  4. Contractile reserve and calcium regulation are depressed in myocytes from chronically unloaded hearts

    NASA Technical Reports Server (NTRS)

    Ito, Kenta; Nakayama, Masaharu; Hasan, Faisal; Yan, Xinhua; Schneider, Michael D.; Lorell, Beverly H.

    2003-01-01

    BACKGROUND: Chronic cardiac unloading of the normal heart results in the reduction of left ventricular (LV) mass, but effects on myocyte contractile function are not known. METHODS AND RESULTS: Cardiac unloading and reduction in LV mass were induced by heterotopic heart transplantation to the abdominal aorta in isogenic rats. Contractility and [Ca(2+)](i) regulation in LV myocytes were studied at both 2 and 5 weeks after transplantation. Native in situ hearts from recipient animals were used as the controls for all experiments. Contractile function indices in myocytes from 2-week unloaded and native (control) hearts were similar under baseline conditions (0.5 Hz, 1.2 mmol/L [Ca(2+)](o), and 36 degrees C) and in response to stimulation with high [Ca(2+)](o) (range 2.5 to 4.0 mmol/L). In myocytes from 5-week unloaded hearts, there were no differences in fractional cell shortening and peak-systolic [Ca(2+)](i) at baseline; however, time to 50% relengthening and time to 50% decline in [Ca(2+)](i) were prolonged compared with controls. Severe defects in fractional cell shortening and peak-systolic [Ca(2+)](i) were elicited in myocytes from 5-week unloaded hearts in response to high [Ca(2+)](o). However, there were no differences in the contractile response to isoproterenol between myocytes from unloaded and native hearts. In 5-week unloaded hearts, but not in 2-week unloaded hearts, LV protein levels of phospholamban were increased (345% of native heart values). Protein levels of sarcoplasmic reticulum Ca(2+) ATPase and the Na(+)/Ca(2+) exchanger were not changed. CONCLUSIONS: Chronic unloading of the normal heart caused a time-dependent depression of myocyte contractile function, suggesting the potential for impaired performance in states associated with prolonged cardiac atrophy.

  5. Large conductance, calcium- and voltage-gated potassium (BK) channels: regulation by cholesterol

    PubMed Central

    Dopico, Alejandro M.; Bukiya, Anna N.; Singh, Aditya K.

    2012-01-01

    Cholesterol (CLR) is an essential component of eukaryotic plasma membranes. CLR regulates the membrane physical state, microdomain formation and the activity of membrane-spanning proteins, including ion channels. Large conductance, voltage- and Ca2+-gated K+ (BK) channels link membrane potential to cell Ca2+ homeostasis. Thus, they control many physiological processes and participate in pathophysiological mechanisms leading to human disease. Because plasmalemma BK channels cluster in CLR-rich membrane microdomains, a major driving force for studying BK channel-CLR interactions is determining how membrane CLR controls the BK current phenotype, including its pharmacology, channel sorting, distribution, and role in cell physiology. Since both BK channels and CLR tissue levels play a pathophysiological role in human disease, identifying functional and structural aspects of the CLR-BK channel interaction may open new avenues for therapeutic intervention. Here, we review the studies documenting membrane CLR-BK channel interactions, dissecting out the many factors that determine the final BK current response to changes in membrane CLR content. We also summarize work in reductionist systems where recombinant BK protein is studied in artificial lipid bilayers, which documents a direct inhibition of BK channel activity by CLR and builds a strong case for a direct interaction between CLR and the BK channel-forming protein. Bilayer lipid-mediated mechanisms in CLR action are also discussed. Finally, we review studies of BK channel function during hypercholesterolemia, and underscore the many consequences that the CLR-BK channel interaction brings to cell physiology and human disease. PMID:22584144

  6. Calcium sensing and cell signaling processes in the local regulation of osteoclastic bone resorption.

    PubMed

    Zaidi, Mone; Moonga, Baljit S; Huang, Christopher L H

    2004-02-01

    The skeletal matrix in terrestrial vertebrates undergoes continual cycles of removal and replacement in the processes of bone growth, repair and remodeling. The osteoclast is uniquely important in bone resorption and thus is implicated in the pathogenesis of clinically important bone and joint diseases. Activated osteoclasts form a resorptive hemivacuole with the bone surface into which they release both acid and osteoclastic lysosomal hydrolases. This article reviews cell physiological studies of the local mechanisms that regulate the resorptive process. These used in vitro methods for the isolation, culture and direct study of the properties of neonatal rat osteoclasts. They demonstrated that both local microvascular agents and products of the bone resorptive process such as ambient Ca2+ could complement longer-range systemic regulatory mechanisms such as those that might be exerted through calcitonin (CT). Thus elevated extracellular [Ca2+], or applications of surrogate divalent cation agonists for Ca2+, inhibited bone resorptive activity and produced parallel increases in cytosolic [Ca2+], cell retraction and longer-term inhibition of enzyme release in isolated rat osteoclasts. These changes showed specificity, inactivation, and voltage-dependent properties that implicated a cell surface Ca2+ receptor (CaR) sensitive to millimolar extracellular [Ca2+]. Pharmacological, biophysical and immunochemical evidence implicated a ryanodine-receptor (RyR) type II isoform in this process and localized it to a unique, surface membrane site, with an outward-facing channel-forming domain. Such a surface RyR might function either directly or indirectly in the process of extracellular [Ca2+] sensing and in turn be modulated by cyclic adenosine diphosphate ribose (cADPr) produced by the ADP-ribosyl cyclase, CD38. The review finishes by speculating about possible detailed models for these transduction events and their possible interactions with other systemic mechanisms involved

  7. Sensory Flask Cells in Sponge Larvae Regulate Metamorphosis via Calcium Signaling.

    PubMed

    Nakanishi, Nagayasu; Stoupin, Daniel; Degnan, Sandie M; Degnan, Bernard M

    2015-12-01

    The Porifera (sponges) is one of the earliest phyletic lineages to branch off the metazoan tree. Although the body-plan of sponges is among the simplest in the animal kingdom and sponges lack nervous systems that communicate environmental signals to other cells, their larvae have sensory systems that generate coordinated responses to environmental cues. In eumetazoans (Cnidaria and Bilateria), the nervous systems of larvae often regulate metamorphosis through Ca(2+)-dependent signal transduction. In sponges, neither the identity of the receptor system that detects an inductive environmental cue (hereafter "metamorphic cues") nor the signaling system that mediates settlement and metamorphosis are known. Using a combination of behavioral assays and surgical manipulations, we show here that specialized epithelial cells-referred to as flask cells-enriched in the anterior third of the Amphimedon queenslandica larva are most likely to be the sensory cells that detect the metamorphic cues. Surgical removal of the region enriched in flask cells in a larva inhibits the initiation of metamorphosis. The flask cell has an apical sensory apparatus with a cilium surrounded by an apical F-actin-rich protrusion, and numerous vesicles, hallmarks of eumetazoan sensory-neurosecretory cells. We demonstrate that these flask cells respond to metamorphic cues by elevating intracellular Ca(2+) levels, and that this elevation is necessary for the initiation of metamorphosis. Taken together, these analyses suggest that sponge larvae have sensory-secretory epithelial cells capable of converting exogenous cues into internal signals via Ca(2+)-mediated signaling, which is necessary for the initiation of metamorphosis. Similarities in the morphology, physiology, and function of the sensory flask cells in sponge larvae with the sensory/neurosecretory cells in eumetazoan larvae suggest this sensory system predates the divergence of Porifera and Eumetazoa. PMID:25898842

  8. Developmental regulation of the gene for chimeric calcium/calmodulin-dependent protein kinase in anthers

    NASA Technical Reports Server (NTRS)

    Poovaiah, B. W.; Xia, M.; Liu, Z.; Wang, W.; Yang, T.; Sathyanarayanan, P. V.; Franceschi, V. R.

    1999-01-01

    Chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK) was cloned from developing anthers of lily (Lilium longiflorum Thumb. cv. Nellie White) and tobacco (Nicotiana tabacum L. cv. Xanthi). Previous biochemical characterization and structure/function studies had revealed that CCaMK has dual modes of regulation by Ca(2+) and Ca(2+)/calmodulin. The unique structural features of CCaMK include a catalytic domain, a calmodulin-binding domain, and a neural visinin-like Ca(2+)-binding domain. The existence of these three features in a single polypeptide distinguishes it from other kinases. Western analysis revealed that CCaMK is expressed in a stage-specific manner in developing anthers. Expression of CCaMK was first detected in pollen mother cells and continued to increase, reaching a peak around the tetrad stage of meiosis. Following microsporogenesis, CCaMK expression rapidly decreased and at later stages of microspore development, no expression was detected. A tobacco genomic clone of CCaMK was isolated and transgenic tobacco plants were produced carrying the CCaMK promoter fused to the beta-glucuronidase reporter gene. Both CCaMK mRNA and protein were detected in the pollen sac and their localizations were restricted to the pollen mother cells and tapetal cells. Consistent results showing a stage-specific expression pattern were obtained by beta-glucuronidase analysis, in-situ hybridization and immunolocalization. The stage- and tissue-specific appearance of CCaMK in anthers suggests that it could play a role in sensing transient changes in free Ca(2+) concentration in target cells, thereby controlling developmental events in the anther.

  9. Calcium regulation by temperature-sensitive transient receptor potential channels in human uveal melanoma cells.

    PubMed

    Mergler, Stefan; Derckx, Raissa; Reinach, Peter S; Garreis, Fabian; Böhm, Arina; Schmelzer, Lisa; Skosyrski, Sergej; Ramesh, Niraja; Abdelmessih, Suzette; Polat, Onur Kerem; Khajavi, Noushafarin; Riechardt, Aline Isabel

    2014-01-01

    Uveal melanoma (UM) is both the most common and fatal intraocular cancer among adults worldwide. As with all types of neoplasia, changes in Ca(2+) channel regulation can contribute to the onset and progression of this pathological condition. Transient receptor potential channels (TRPs) and cannabinoid receptor type 1 (CB1) are two different types of Ca(2+) permeation pathways that can be dysregulated during neoplasia. We determined in malignant human UM and healthy uvea and four different UM cell lines whether there is gene and functional expression of TRP subtypes and CB1 since they could serve as drug targets to either prevent or inhibit initiation and progression of UM. RT-PCR, Ca(2+) transients, immunohistochemistry and planar patch-clamp analysis probed for their gene expression and functional activity, respectively. In UM cells, TRPV1 and TRPM8 gene expression was identified. Capsaicin (CAP), menthol or icilin induced Ca(2+) transients as well as changes in ion current behavior characteristic of TRPV1 and TRPM8 expression. Such effects were blocked with either La(3+), capsazepine (CPZ) or BCTC. TRPA1 and CB1 are highly expressed in human uvea, but TRPA1 is not expressed in all UM cell lines. In UM cells, the CB1 agonist, WIN 55,212-2, induced Ca(2+) transients, which were suppressed by La(3+) and CPZ whereas CAP-induced Ca(2+) transients could also be suppressed by CB1 activation. Identification of functional TRPV1, TRPM8, TRPA1 and CB1 expression in these tissues may provide novel drug targets for treatment of this aggressive neoplastic disease. PMID:24084605

  10. Microdomains bounded by endoplasmic reticulum segregate cell cycle calcium transients in syncytial Drosophila embryos

    PubMed Central

    Parry, Huw; McDougall, Alex; Whitaker, Michael

    2005-01-01

    Cell cycle calcium signals are generated by the inositol trisphosphate (InsP3)–mediated release of calcium from internal stores (Ciapa, B., D. Pesando, M. Wilding, and M. Whitaker. 1994. Nature. 368:875–878; Groigno, L., and M. Whitaker. 1998. Cell. 92:193–204). The major internal calcium store is the endoplasmic reticulum (ER); thus, the spatial organization of the ER during mitosis may be important in shaping and defining calcium signals. In early Drosophila melanogaster embryos, ER surrounds the nucleus and mitotic spindle during mitosis, offering an opportunity to determine whether perinuclear localization of ER conditions calcium signaling during mitosis. We establish that the nuclear divisions in syncytial Drosophila embryos are accompanied by both cortical and nuclear localized calcium transients. Constructs that chelate InsP3 also prevent nuclear division. An analysis of nuclear calcium concentrations demonstrates that they are differentially regulated. These observations demonstrate that mitotic calcium signals in Drosophila embryos are confined to mitotic microdomains and offer an explanation for the apparent absence of detectable global calcium signals during mitosis in some cell types. PMID:16216922

  11. Calcium silicate hydrates investigated by solid-state high resolution {sup 1}H and {sup 29}Si nuclear magnetic resonance

    SciTech Connect

    Meducin, Fabienne . E-mail: meducin@cnrs-orleans.fr; Bresson, Bruno; Lequeux, Nicolas; Noirfontaine, Marie-Noelle de; Zanni, Helene

    2007-05-15

    This work focuses on phases formed during cement hydration under high pressure and temperature: portlandite Ca(OH){sub 2} (CH); hillebrandite Ca{sub 2}(SiO{sub 3})(OH){sub 2} ({beta}-dicalcium silicate hydrate); calcium silicate hydrate (C-S-H); jaffeite Ca{sub 6}(Si{sub 2}O{sub 7})(OH){sub 6} (tricalcium silicate hydrate); {alpha}-C{sub 2}SH Ca{sub 2}(SiO{sub 3})(OH){sub 2} ({alpha}-dicalcium silicate hydrate); xonotlite Ca{sub 6}(Si{sub 6}O{sub 17})(OH){sub 2} and kilchoanite Ca{sub 6}(SiO{sub 4})(Si{sub 3}O{sub 10}). Portlandite and hillebrandite were synthesized and characterised by high resolution solid-state {sup 1}H and {sup 29}Si Nuclear Magnetic Resonance. In addition, information from the literature concerning the last five phases was gathered. In certain cases, a schematic 3D-structure could be determined. These data allow identification of the other phases present in a mixture. Their morphology was also observed by Scanning Electron Microscopy.

  12. Sodium-dependent calcium extrusion and sensitivity regulation in retinal cones of the salamander.

    PubMed Central

    Nakatani, K; Yau, K W

    1989-01-01

    several times higher than in normal Ringer solution. 8. A roughly similar increase in light sensitivity was observed for a rod under the same conditions. 9. We conclude that the Na+-dependent Ca2+ efflux, through lowering intracellular free Ca2+ in the light, has a role in regulating the absolute light sensitivity in cones as it does in rods.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2479741

  13. A maize calcium-dependent protein kinase gene, ZmCPK4, positively regulated abscisic acid signaling and enhanced drought stress tolerance in transgenic Arabidopsis.

    PubMed

    Jiang, Shanshan; Zhang, Dan; Wang, Li; Pan, Jiaowen; Liu, Yang; Kong, Xiangpei; Zhou, Yan; Li, Dequan

    2013-10-01

    Calcium-dependent protein kinases (CDPKs) play essential roles in calcium-mediated signal transductions in plant response to abiotic stress. Several members have been identified to be regulators for plants response to abscisic acid (ABA) signaling. Here, we isolated a subgroup I CDPK gene, ZmCPK4, from maize. Quantitative real time PCR (qRT-PCR) analysis revealed that the ZmCPK4 transcripts were induced by various stresses and signal molecules. Transient and stable expression of the ZmCPK4-GFP fusion proteins revealed ZmCPK4 localized to the membrane. Moreover, overexpression of ZmCPK4 in the transgenic Arabidopsis enhanced ABA sensitivity in seed germination, seedling growth and stomatal movement. The transgenic plants also enhanced drought stress tolerance. Taken together, the results suggest that ZmCPK4 might be involved in ABA-mediated regulation of stomatal closure in response to drought stress. PMID:23911729

  14. Structures and regulation of non-X orphan nuclear receptors: A retinoid hypothesis.

    PubMed

    Zhi, Xiaoyong; Zhou, X Edward; Melcher, Karsten; Xu, H Eric

    2016-03-01

    Nuclear receptors are defined as a family of ligand regulated transcription factors [1-6]. While this definition reflects that ligand binding is a key property of nuclear receptors, it is still a heated subject of debate if all the nuclear receptors (48 human members) can bind ligands (ligands referred here to both physiological and synthetic ligands). Recent studies in nuclear receptor structure biology and pharmacology have undoubtedly increased our knowledge of nuclear receptor functions and their regulation. As a result, they point to new avenues for the discovery and development of nuclear receptor regulators, including nuclear receptor ligands. Here we review the recent literature on orphan nuclear receptor structural analysis and ligand identification, particularly on the orphan nuclear receptors that do not heterodimerize with retinoid X receptors, which we term as non-X orphan receptors. We also propose a speculative "retinoid hypothesis" for a subset of non-X orphan nuclear receptors, which we hope to help shed light on orphan nuclear receptor biology and drug discovery. This article is part of a Special Issue entitled 'Orphan Nuclear Receptors'. PMID:26159912

  15. Regulation of L-type calcium current by intracellular magnesium in rat cardiac myocytes

    PubMed Central

    Wang, Min; Tashiro, Michiko; Berlin, Joshua R

    2004-01-01

    calcineurin. Thus, physiologically relevant [Mg2+]i modulates ICa by counteracting the effects of Ca2+ channel phosphorylation and by an unknown [Ca2+]i-dependent mechanism. The magnitude of these effects suggests that changes in [Mg2+]i could be critical in regulating l-type channel gating. PMID:14617671

  16. Regulation of unloaded cell shortening by sarcolemmal sodium-calcium exchange in isolated rat ventricular myocytes.

    PubMed Central

    Bouchard, R A; Clark, R B; Giles, W R

    1993-01-01

    1. Regulation of unloaded cell shortening and relaxation by sarcolemmal Na(+)-Ca2+ exchange was investigated in rat ventricular myocytes. Contraction of single cells at 22 +/- 1 degrees C was measured simultaneously with membrane current and voltage using the whole-cell voltage clamp technique in combination with a video edge-detection device. 2. The extent of mechanical activation (cell shortening amplitude) was strongly dependent on diastolic membrane potential over the voltage range -140 to -50 mV. This voltage sensitivity of contraction was abolished completely when a recently described inhibitory peptide of the cardiac Na(+)-Ca2+ exchanger (XIP, 2 x 10(-5) M) was present in the recording pipette, demonstrating that in rat ventricular cells Na(+)-Ca2+ exchange is modulated by diastolic membrane potential. 3. Possible influences of Na(+)-Ca2+ exchange on contraction were studied from a holding potential of -80 mV. Depolarizations (-50 to +60 mV) resulted in a bell-shaped shortening-voltage (S-V) relationship. These contractions were suppressed completely by either Cd2+ (10(-4) M) or verapamil (10(-5) M), but remained unchanged during superfusion with tetrodotoxin (TTX, 1.5 x 10(-5) M), when [NA+]o was reduced from 140 to 10 mM by substitution with either Li+ or Cs+ ions or when pipette Na+ was varied between 8 and 13 mM. XIP (2 x 10(-5) M) increased the magnitude and duration of twitch contractions, but had no effect on the shape of the S-V relationship. Thus, the Ca2+ current but not the Na+ current or Ca2+ influx due to reversed Na(+)-Ca2+ exchange can release Ca2+ from the sarcoplasmic reticulum (SR) under these experimental conditions. 4. The effect of the rate of repolarization on cell shortening was studied under voltage clamp by applying ramp waveforms immediately following the depolarizations which activated contraction. Although slowing of the rate of repolarization had no effect on the first contraction following a train of conditioning depolarizations

  17. Calcium efflux from the endoplasmic reticulum regulates cisplatin-induced apoptosis in human cervical cancer HeLa cells

    PubMed Central

    SHEN, LUYAN; WEN, NAIYAN; XIA, MEIHUI; ZHANG, YU; LIU, WEIMIN; XU, YE; SUN, LIANKUN

    2016-01-01

    The function of calcium efflux from the endoplasmic reticulum (ER) in cisplatin-induced apoptosis is not fully understood in cancer cells. The present study used western blot analysis, flow cytometry, immunofluorescence and 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay to investigate calcium signaling in human cervical cancer cells exposed to cisplatin. In the present study, treatment with cisplatin increased free Ca2+ levels in the cytoplasm and mitochondria of human cervical cancer HeLa cells, which further triggers the mitochondria-mediated and ER stress-associated apoptosis pathways. Notably, blocking calcium signaling using the calcium chelating agent bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid acetoxymethyl ester inhibited cisplatin-induced apoptosis via downregulation of the calcium-dependent proteases, the calpains, and innate apoptosis proteins, such as caspsae-3, caspase-4 and C/EBP homologous protein (CHOP). In addition, use of the inositol triphosphate receptor inhibitor, 2-aminoethyl diphenylborinate, to inhibit calcium efflux from the ER resulted in similar effects. This data indicated that calcium efflux from the ER plays a significant role in cisplatin-induced apoptosis in human cervical cancer HeLa cells, which provides further mechanistic insights into the tumor cell-killing effect of cisplatin and potential therapeutic strategies to improve cisplatin chemotherapy. PMID:27073489

  18. A terD Domain-Encoding Gene (SCO2368) Is Involved in Calcium Homeostasis and Participates in Calcium Regulation of a DosR-Like Regulon in Streptomyces coelicolor

    PubMed Central

    Daigle, François; Lerat, Sylvain; Bucca, Giselda; Sanssouci, Édith; Smith, Colin P.; Malouin, François

    2014-01-01

    Although Streptomyces coelicolor is not resistant to tellurite, it possesses several TerD domain-encoding (tdd) genes of unknown function. To elucidate the function of tdd8, the transcriptomes of S. coelicolor strain M145 and of a tdd8 deletion mutant derivative (the Δtdd8 strain) were compared. Several orthologs of Mycobacterium tuberculosis genes involved in dormancy survival were upregulated in the deletion mutant at the visual onset of prodiginine production. These genes are organized in a putative redox stress response cluster comprising two large loci. A binding motif similar to the dormancy survival regulator (DosR) binding site of M. tuberculosis has been identified in the upstream sequences of most genes in these loci. A predicted role for these genes in the redox stress response is supported by the low NAD+/NADH ratio in the Δtdd8 strain. This S. coelicolor gene cluster was shown to be induced by hypoxia and NO stress. While the tdd8 deletion mutant (the Δtdd8 strain) was unable to maintain calcium homeostasis in a calcium-depleted medium, the addition of Ca2+ in Δtdd8 culture medium reduced the expression of several genes of the redox stress response cluster. The results shown in this work are consistent with Tdd8 playing a significant role in calcium homeostasis and redox stress adaptation. PMID:25535276

  19. Functional domains of plant chimeric calcium/calmodulin-dependent protein kinase: regulation by autoinhibitory and visinin-like domains

    NASA Technical Reports Server (NTRS)

    Ramachandiran, S.; Takezawa, D.; Wang, W.; Poovaiah, B. W.

    1997-01-01

    A novel calcium-binding calcium/calmodulin-dependent protein kinase (CCaMK) with a catalytic domain, calmodulin-binding domain, and a neural visinin-like domain was cloned and characterized from plants [Patil et al., (1995) Proc. Natl. Acad. Sci. USA 92, 4797-4801; Takezawa et al. (1996) J. Biol. Chem. 271, 8126-8132]. The mechanisms of CCaMK activation by calcium and calcium/calmodulin were investigated using various deletion mutants. The use of deletion mutants of CCaMK lacking either one, two, or all three calcium-binding EF hands indicated that all three calcium-binding sites in the visinin-like domain were crucial for the full calcium/calmodulin-dependent kinase activity. As each calcium-binding EF hand was deleted, there was a gradual reduction in calcium/calmodulin-dependent kinase activity from 100 to 4%. Another mutant (amino acids 1-322) which lacks both the visinin-like domain containing three EF hands and the calmodulin-binding domain was constitutively active, indicating the presence of an autoinhibitory domain around the calmodulin-binding domain. By using various synthetic peptides and the constitutively active mutant, we have shown that CCaMK contains an autoinhibitory domain within the residues 322-340 which overlaps its calmodulin-binding domain. Kinetic studies with both ATP and the GS peptide substrate suggest that the autoinhibitory domain of CCaMK interacts only with the peptide substrate binding motif of the catalytic domain, but not with the ATP-binding motif.

  20. Rho, nuclear actin, and actin-binding proteins in the regulation of transcription and gene expression

    PubMed Central

    Rajakylä, Eeva Kaisa; Vartiainen, Maria K

    2014-01-01

    Actin cytoskeleton is one of the main targets of Rho GTPases, which act as molecular switches on many signaling pathways. During the past decade, actin has emerged as an important regulator of gene expression. Nuclear actin plays a key role in transcription, chromatin remodeling, and pre-mRNA processing. In addition, the “status” of the actin cytoskeleton is used as a signaling intermediate by at least the MKL1-SRF and Hippo-pathways, which culminate in the transcriptional regulation of cytoskeletal and growth-promoting genes, respectively. Rho GTPases may therefore regulate gene expression by controlling either cytoplasmic or nuclear actin dynamics. Although the regulation of nuclear actin polymerization is still poorly understood, many actin-binding proteins, which are downstream effectors of Rho, are found in the nuclear compartment. In this review, we discuss the possible mechanisms and key proteins that may mediate the transcriptional regulation by Rho GTPases through actin. PMID:24603113

  1. Rho, nuclear actin, and actin-binding proteins in the regulation of transcription and gene expression.

    PubMed

    Rajakylä, Eeva Kaisa; Vartiainen, Maria K

    2014-01-01

    Actin cytoskeleton is one of the main targets of Rho GTPases, which act as molecular switches on many signaling pathways. During the past decade, actin has emerged as an important regulator of gene expression. Nuclear actin plays a key role in transcription, chromatin remodeling, and pre-mRNA processing. In addition, the "status" of the actin cytoskeleton is used as a signaling intermediate by at least the MKL1-SRF and Hippo-pathways, which culminate in the transcriptional regulation of cytoskeletal and growth-promoting genes, respectively. Rho GTPases may therefore regulate gene expression by controlling either cytoplasmic or nuclear actin dynamics. Although the regulation of nuclear actin polymerization is still poorly understood, many actin-binding proteins, which are downstream effectors of Rho, are found in the nuclear compartment. In this review, we discuss the possible mechanisms and key proteins that may mediate the transcriptional regulation by Rho GTPases through actin. PMID:24603113

  2. Orphan nuclear receptor Nur77 affects cardiomyocyte calcium homeostasis and adverse cardiac remodelling

    PubMed Central

    Medzikovic, Lejla; Schumacher, Cees A.; Verkerk, Arie O.; van Deel, Elza D.; Wolswinkel, Rianne; van der Made, Ingeborg; Bleeker, Natascha; Cakici, Daniella; van den Hoogenhof, Maarten M. G.; Meggouh, Farid; Creemers, Esther E.; Ann Remme, Carol; Baartscheer, Antonius; de Winter, Robbert J.; de Vries, Carlie J. M.; Arkenbout, E. Karin; de Waard, Vivian

    2015-01-01

    Distinct stressors may induce heart failure. As compensation, β-adrenergic stimulation enhances myocardial contractility by elevating cardiomyocyte intracellular Ca2+ ([Ca2+]i). However, chronic β-adrenergic stimulation promotes adverse cardiac remodelling. Cardiac expression of nuclear receptor Nur77 is enhanced by β-adrenergic stimulation, but its role in cardiac remodelling is still unclear. We show high and rapid Nur77 upregulation in cardiomyocytes stimulated with β-adrenergic agonist isoproterenol. Nur77 knockdown in culture resulted in hypertrophic cardiomyocytes. Ventricular cardiomyocytes from Nur77-deficient (Nur77-KO) mice exhibited elevated diastolic and systolic [Ca2+]i and prolonged action potentials compared to wild type (WT). In vivo, these differences resulted in larger cardiomyocytes, increased expression of hypertrophic genes, and more cardiac fibrosis in Nur77-KO mice upon chronic isoproterenol stimulation. In line with the observed elevated [Ca2+]i, Ca2+-activated phosphatase calcineurin was more active in Nur77-KO mice compared to WT. In contrast, after cardiac pressure overload by aortic constriction, Nur77-KO mice exhibited attenuated remodelling compared to WT. Concluding, Nur77-deficiency results in significantly altered cardiac Ca2+ homeostasis and distinct remodelling outcome depending on the type of insult. Detailed knowledge on the role of Nur77 in maintaining cardiomyocyte Ca2+ homeostasis and the dual role Nur77 plays in cardiac remodelling will aid in developing personalized therapies against heart failure. PMID:26486271

  3. Calcium-regulating hormones, bone mineral content, breaking load and trabecular remodeling are altered in growing pigs fed calcium-deficient diets.

    PubMed

    Eklou-Kalonji, E; Zerath, E; Colin, C; Lacroix, C; Holy, X; Denis, I; Pointillart, A

    1999-01-01

    Studies on calcium nutrition in appropriate large animal models can be directly relevant to humans. We have examined the effect of dietary Ca deficiency on various bone and bone-related variables, including plasma markers, histomorphometry, mineral content and breaking strength in pigs. Three groups of eight 38-d-old female pigs were fed adequate (0.9%; control), low (0.4%; LCa) or very low (0.1%; VLCa) Ca diets for 32 d. Plasma Ca significantly decreased over time only in the VLCa-deficient pigs. The concentrations of the parathyroid hormones (PTH) and calcitriol increased as Ca deficiency developed, and the plasma PTH and calcitriol levels varied inversely with dietary Ca. The total bone ash contents, bending moments, trabecular bone volume and the mineral apposition rate all decreased as the calcium intake decreased. The osteoclast surface areas were greater than those of controls in both Ca-deficient groups, whereas the osteoblast surface areas were greater only in the VLCa group. The plasma osteoblast-related markers (alkaline phosphatase, carboxy-terminal propeptide of type I procollagen and osteocalcin) were either greater or unaffected in the Ca-deficient pigs. The results indicate that deficient bone mineralization combined with an increased bone resorption led to bone loss and fragility. The differences in the changes in bone cells (number and activity) between LCa and VLCa groups might be due to differences (time and extent) of circulating PTH and calcitriol. The defective mineralization in both Ca-depleted groups resulted mainly from the lack of Ca because their osteoblast activity was either maintained or stimulated. The results also underline the progressive sensitivity of pigs to Ca supply and the usefulness of this model. PMID:9915898

  4. Structure-dynamic basis of splicing-dependent regulation in tissue-specific variants of the sodium-calcium exchanger.

    PubMed

    Lee, Su Youn; Giladi, Moshe; Bohbot, Hilla; Hiller, Reuben; Chung, Ka Young; Khananshvili, Daniel

    2016-03-01

    Tissue-specific splice variants of Na(+)/Ca(2+) exchangers contain 2 Ca(2+)-binding regulatory domains (CBDs), CBD1 and CBD2. Ca(2+) interaction with CBD1 activates sodium-calcium exchangers (NCXs), and Ca(2+) binding to CBD2 alleviates Na(+)-dependent inactivation. A combination of mutually exclusive (A, B) and cassette (C-F) exons in CBD2 raises functionally diverse splice variants through unknown mechanisms. Here, the effect of exons on CBDs backbone dynamics were investigated in the 2-domain tandem (CBD12) of the brain, kidney, and cardiac splice variants by using hydrogen-deuterium exchange mass spectrometry and stopped-flow techniques. Mutually exclusive exons stabilize interdomain interactions in the apoprotein, which primarily predefines the extent of responses to Ca(2+) binding. Deuterium uptake levels were up to 20% lower in the cardiac vs. the brain CBD12, reveling that elongation of the CBD2 FG loop by cassette exons rigidifies the interdomain Ca(2+) salt bridge at the 2-domain interface, which secondarily modulates the Ca(2+)-bound states. In matching splice variants, the extent of Ca(2+)-induced rigidification correlates with decreased (up to 10-fold) Ca(2+) off rates, where the cardiac CBD12 exhibits the slowest Ca(2+) off rates. Collectively, structurally disordered/dynamic segments at mutually exclusive and cassette exons have local and distant effects on the folded structures nearby the Ca(2+) binding sites, which may serve as a structure-dynamic basis for splicing-dependent regulation of NCX. PMID:26644350

  5. Grape seed extract enhances eNOS expression and NO production through regulating calcium-mediated AKT phosphorylation in H2O2-treated endothelium.

    PubMed

    Feng, Zhe; Wei, Ri-Bao; Hong, Quan; Cui, Shao-Yuan; Chen, Xiang-Mei

    2010-10-01

    GSE (grape seed extract) has been shown to exhibit protective effects against cardiovascular events and atherosclerosis, although the underlying molecular mechanisms of action are unknown. Herein, we assessed the ability of GSE to enhance eNOS (endothelial nitric oxide synthase) expression and NO (nitric oxide) production in H2O2 (hydrogen peroxide)-treated HUVECs (human umbilical vein endothelial cells). GSE enhanced eNOS expression and NO release in H2O2-treated cells in a dose-dependent manner. GSE inhibited intracellular ROS (reactive oxygen species) and reduced intracellular calcium in a dose-dependent manner in H2O2-treated cells, as shown by confocal microscopy. ROS was inhibited in cells pretreated with 5.0 microM GSE, 2.0 microM TG (thapsigargin) and 20.0 microM 2-APB (2-aminoethoxydiphenyl borate) instead of 0.25 microM extracellular calcium. In addition, GSE enhanced eNOS expression and reduced ROS production via increasing p-AKT (AKT phosphorylation) with high extracellular calcium (13 mM). In conclusion, GSE protected against endothelial injury by up-regulation of eNOS and NO expression via inhibiting InsP3Rs (inositol 1,4,5-trisphosphate receptors)-mediated intracellular excessive calcium release and by activating p-AKT in endothelial cells. PMID:20513234

  6. Structural dynamics and topology of phosphorylated phospholamban homopentamer reveal its role in the regulation of calcium transport in sarcoplasmic reticulum

    PubMed Central

    Vostrikov, Vitaly V.; Mote, Kaustubh R.; Verardi, Raffaello; Veglia, Gianluigi

    2013-01-01

    Phospholamban (PLN) inhibits the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA), thereby regulating cardiac diastole. In membranes, PLN assembles into homopentamers that in both the phosphorylated and non-phosphorylated states have been proposed to form ion-selective channels. Here, we determined the structure of the phosphorylated pentamer using a combination of solution and solid-state nuclear magnetic resonance methods. We found that the pinwheel architecture of the homopentamer is preserved upon phosphorylation, with each monomer having an L-shaped conformation of each monomer. The TM domains form a hydrophobic pore of approximately 24 Å long, and 2 Å in diameter, which is inconsistent with canonical Ca2+ selective channels. Phosphorylation, however, enhances the conformational dynamics of the cytoplasmic region of PLN, causing the partial unwinding of the amphipathic helix. We propose that PLN oligomers act as storage for active monomers, keeping SERCA function within a physiological window. PMID:24207128

  7. Calcium-induced cleavage of DNA topoisomerase I involves the cytoplasmic-nuclear shuttling of calpain 2.

    PubMed

    Chou, Shang-Min; Huang, Ting-Hsiang; Chen, Hsiang-Chin; Li, Tsai-Kun

    2011-08-01

    Important to the function of calpains is temporal and spatial regulation of their proteolytic activity. Here, we demonstrate that cytoplasm-resident calpain 2 cleaves human nuclear topoisomerase I (hTOP1) via Ca(2+)-activated proteolysis and nucleoplasmic shuttling of proteases. This proteolysis of hTOP1 was induced by either ionomycin-caused Ca(2+) influx or addition of Ca(2+) in cellular extracts. Ca(2+) failed to induce hTOP1 proteolysis in calpain 2-knockdown cells. Moreover, calpain 2 cleaved hTOP1 in vitro. Furthermore, calpain 2 entered the nucleus upon Ca(2+) influx, and calpastatin interfered with this process. Calpain 2 cleavage sites were mapped at K(158) and K(183) of hTOP1. Calpain 2-truncated hTOP1 exhibited greater relaxation activity but remained able to interact with nucleolin and to form cleavable complexes. Interestingly, calpain 2 appears to be involved in ionomycin-induced protection from camptothecin-induced cytotoxicity. Thus, our data suggest that nucleocytoplasmic shuttling may serve as a novel type of regulation for calpain 2-mediated nuclear proteolysis. PMID:21086148

  8. Down-Regulation of S100A11, a Calcium-Binding Protein, in Human Endometrium May Cause Reproductive Failure

    PubMed Central

    Liu, Xin-Mei; Ding, Guo-Lian; Jiang, Ying; Pan, Hong-Jie; Zhang, Dan; Wang, Ting-Ting; Zhang, Run-Ju; Shu, Jing

    2012-01-01

    Background: Low expression levels of S100A11 proteins were demonstrated in the placental villous tissue of patients with early pregnancy loss, and S100A11 is a Ca2+-binding protein that interprets the calcium fluctuations and elicits various cellular responses. Objectives: The objective of the study was to determine S100A11 expression in human endometrium and its roles in endometrial receptivity and embryo implantation. Methods: S100A11 expression in human endometrium was analyzed using quantitative RT-PCR, Western blot, and immunohistochemical techniques. The effects of S100A11 on embryo implantation were examined using in vivo mouse model, and JAr (a human choriocarcinoma cell line) spheroid attachment assays. The effects of endometrial S100A11 on factors related to endometrial receptivity and immune responses were examined. Using a fluorescence method, we examined the changes in cytosolic Ca2+ and Ca2+ release from intracellular stores in epidermal growth factor (EGF)-treated endometrial cells transfected with or without S100A11 small interfering RNA. Results: S100A11 was expressed in human endometrium. S100A11 protein levels were significantly lower in endometrium of women with failed pregnancy than that in women with successful pregnancy outcomes. The knockdown of endometrial S100A11 not only reduced embryo implantation rate in mouse but also had adverse effects on the expression of factors related to endometrial receptivity and immune responses in human endometrial cells. Immunofluorescence analysis showed that S100A11 proteins were mainly localized in endoplasmic reticulum. The EGF up-regulated endometrial S100A11 expression and promoted the Ca2+ uptake and release from Ca2+ stores, which was inhibited by the knockdown of S100A11. Conclusions: Endometrial S100A11 is a crucial intermediator in EGF-stimulated embryo adhesion, endometrium receptivity, and immunotolerance via affecting Ca2+ uptake and release from intracellular Ca2+ stores. Down-regulation of S

  9. Calcium Carbonate

    MedlinePlus

    Calcium carbonate is a dietary supplement used when the amount of calcium taken in the diet is not ... for healthy bones, muscles, nervous system, and heart. Calcium carbonate also is used as an antacid to relieve ...

  10. Calcium - urine

    MedlinePlus

    ... best treatment for the most common type of kidney stone , which is made of calcium. This type of ... the kidneys into the urine, which causes calcium kidney stones Sarcoidosis Taking too much calcium Too much production ...

  11. Genome-wide RNAi screen for nuclear actin reveals a network of cofilin regulators

    PubMed Central

    Dopie, Joseph; Rajakylä, Eeva K.; Joensuu, Merja S.; Huet, Guillaume; Ferrantelli, Evelina; Xie, Tiao; Jäälinoja, Harri; Jokitalo, Eija; Vartiainen, Maria K.

    2015-01-01

    ABSTRACT Nuclear actin plays an important role in many processes that regulate gene expression. Cytoplasmic actin dynamics are tightly controlled by numerous actin-binding proteins, but regulation of nuclear actin has remained unclear. Here, we performed a genome-wide RNA interference (RNAi) screen in Drosophila cells to identify proteins that influence either nuclear polymerization or import of actin. We validate 19 factors as specific hits, and show that Chinmo (known as Bach2 in mammals), SNF4Aγ (Prkag1 in mammals) and Rab18 play a role in nuclear localization of actin in both fly and mammalian cells. We identify several new regulators of cofilin activity, and characterize modulators of both cofilin kinases and phosphatase. For example, Chinmo/Bach2, which regulates nuclear actin levels also in vivo, maintains active cofilin by repressing the expression of the kinase Cdi (Tesk in mammals). Finally, we show that Nup98 and lamin are candidates for regulating nuclear actin polymerization. Our screen therefore reveals new aspects of actin regulation and links nuclear actin to many cellular processes. PMID:26021350

  12. Genome-wide RNAi screen for nuclear actin reveals a network of cofilin regulators.

    PubMed

    Dopie, Joseph; Rajakylä, Eeva K; Joensuu, Merja S; Huet, Guillaume; Ferrantelli, Evelina; Xie, Tiao; Jäälinoja, Harri; Jokitalo, Eija; Vartiainen, Maria K

    2015-07-01

    Nuclear actin plays an important role in many processes that regulate gene expression. Cytoplasmic actin dynamics are tightly controlled by numerous actin-binding proteins, but regulation of nuclear actin has remained unclear. Here, we performed a genome-wide RNA interference (RNAi) screen in Drosophila cells to identify proteins that influence either nuclear polymerization or import of actin. We validate 19 factors as specific hits, and show that Chinmo (known as Bach2 in mammals), SNF4Aγ (Prkag1 in mammals) and Rab18 play a role in nuclear localization of actin in both fly and mammalian cells. We identify several new regulators of cofilin activity, and characterize modulators of both cofilin kinases and phosphatase. For example, Chinmo/Bach2, which regulates nuclear actin levels also in vivo, maintains active cofilin by repressing the expression of the kinase Cdi (Tesk in mammals). Finally, we show that Nup98 and lamin are candidates for regulating nuclear actin polymerization. Our screen therefore reveals new aspects of actin regulation and links nuclear actin to many cellular processes. PMID:26021350

  13. The Nuclear Non-Proliferation Treaty: Regulating Nuclear Weapons around the World

    ERIC Educational Resources Information Center

    Middleton, Tiffany Willey

    2010-01-01

    In May 2010, scientists, national security experts, and state delegates from nations around the world will convene in New York for the 2010 Nuclear Non-Proliferation Treaty Review Conference. They will review current guidelines for nuclear testing and possession of nuclear weapons in accordance with the Nuclear Non-Proliferation Treaty of 1968,…

  14. Water vapor absorption in porous media polluted by calcium nitrate studied by time domain nuclear magnetic resonance.

    PubMed

    Gombia, Mirko; Bortolotti, Villiam; Brown, Robert J S; Camaiti, Mara; Cavallero, Luisa; Fantazzini, Paola

    2009-08-01

    Nuclear magnetic resonance relaxation analysis of liquid water (1)H nuclei in real porous media, selected for their similar composition (carbonate rocks) and different pore space architecture, polluted with calcium nitrate, is presented to study the kinetics of water condensation and salt deliquescence inside the pore space. These phenomena are responsible for deterioration of porous materials when exposed to environmental injury by pollution in a humid atmosphere. The theory is well described for simple pore geometries, but it is not yet well understood in real porous media with wide distributions of pore sizes and connections. The experiment is performed by following in time the formation of liquid water inside the pore space by T(1) and T(2) relaxation time distributions. The distributions allow one to see the effects of both the salt concentration and the pore space structure on the amount of water vapor condensed and its kinetics. It is shown that, for a given lithotype, even with different amounts of pollutant, the rate-average relaxation time T(1ra) tends to increase monotonically with NMR signal, proportional to the amount of liquid water. T(1ra) is often inversely associated with surface-to-volume ratio. This suggests a trend toward the filling of larger pores as amounts of liquid water increase, but it does not indicate a strict sequential filling of pores in order of size and starting with the smallest; in fact, relaxation time distributions show clearly that this is not the case. Increased amounts of salt lead to both markedly increased rates and markedly increased amounts of water absorption. NMR measurements of amounts of water, together with relaxation time distributions, give the possibility of information on the effect of pollution in porous materials exposed to humid atmospheres but sheltered from liquid water, even before the absorption of large amounts of moisture and subsequent damage. These phenomena are of importance also in other fields

  15. Cytoskeletal prestress regulates nuclear shape and stiffness in cardiac myocytes.

    PubMed

    Lee, Hyungsuk; Adams, William J; Alford, Patrick W; McCain, Megan L; Feinberg, Adam W; Sheehy, Sean P; Goss, Josue A; Parker, Kevin Kit

    2015-11-01

    Mechanical stresses on the myocyte nucleus have been associated with several diseases and potentially transduce mechanical stimuli into cellular responses. Although a number of physical links between the nuclear envelope and cytoplasmic filaments have been identified, previous studies have focused on the mechanical properties of individual components of the nucleus, such as the nuclear envelope and lamin network. The mechanical interaction between the cytoskeleton and chromatin on nuclear deformability remains elusive. Here, we investigated how cytoskeletal and chromatin structures influence nuclear mechanics in cardiac myocytes. Rapid decondensation of chromatin and rupture of the nuclear membrane caused a sudden expansion of DNA, a consequence of prestress exerted on the nucleus. To characterize the prestress exerted on the nucleus, we measured the shape and the stiffness of isolated nuclei and nuclei in living myocytes during disruption of cytoskeletal, myofibrillar, and chromatin structure. We found that the nucleus in myocytes is subject to both tensional and compressional prestress and its deformability is determined by a balance of those opposing forces. By developing a computational model of the prestressed nucleus, we showed that cytoskeletal and chromatin prestresses create vulnerability in the nuclear envelope. Our studies suggest the cytoskeletal-nuclear-chromatin interconnectivity may play an important role in mechanics of myocyte contraction and in the development of laminopathies by lamin mutations. PMID:25908635

  16. Calcineurin and Calcium Channel CchA Coordinate the Salt Stress Response by Regulating Cytoplasmic Ca2+ Homeostasis in Aspergillus nidulans.

    PubMed

    Wang, Sha; Liu, Xiao; Qian, Hui; Zhang, Shizhu; Lu, Ling

    2016-06-01

    The eukaryotic calcium/calmodulin-dependent protein phosphatase calcineurin is crucial for the environmental adaption of fungi. However, the mechanism of coordinate regulation of the response to salt stress by calcineurin and the high-affinity calcium channel CchA in fungi is not well understood. Here we show that the deletion of cchA suppresses the hyphal growth defects caused by the loss of calcineurin under salt stress in Aspergillus nidulans Additionally, the hypersensitivity of the ΔcnaA strain to extracellular calcium and cell-wall-damaging agents can be suppressed by cchA deletion. Using the calcium-sensitive photoprotein aequorin to monitor the cytoplasmic Ca(2+) concentration ([Ca(2+)]c) in living cells, we found that calcineurin negatively regulates CchA on calcium uptake in response to external calcium in normally cultured cells. However, in salt-stress-pretreated cells, loss of either cnaA or cchA significantly decreased the [Ca(2+)]c, but a deficiency in both cnaA and cchA switches the [Ca(2+)]c to the reference strain level, indicating that calcineurin and CchA synergistically coordinate calcium influx under salt stress. Moreover, real-time PCR results showed that the dysfunction of cchA in the ΔcnaA strain dramatically restored the expression of enaA (a major determinant for sodium detoxification), which was abolished in the ΔcnaA strain under salt stress. These results suggest that double deficiencies of cnaA and cchA could bypass the requirement of calcineurin to induce enaA expression under salt stress. Finally, YvcA, a member of the transient receptor potential channel (TRPC) protein family of vacuolar Ca(2+) channels, was proven to compensate for calcineurin-CchA in fungal salt stress adaption.IMPORTANCE The feedback inhibition relationship between calcineurin and the calcium channel Cch1/Mid1 has been well recognized from yeast. Interestingly, our previous study (S. Wang et al., PLoS One 7:e46564, 2012, http://dx.doi.org/10.1371/journal

  17. 78 FR 71675 - Update of the Office of Nuclear Reactor Regulation's Electronic Operating Reactor Correspondence

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... COMMISSION Update of the Office of Nuclear Reactor Regulation's Electronic Operating Reactor Correspondence... public of a slight change in the manner of distribution of publicly available operating reactor licensing... Division of Operating Reactor Licensing began transmitting correspondence to addressees and...

  18. Nuclear RhoA signaling regulates MRTF-dependent SMC-specific transcription

    PubMed Central

    Staus, Dean P.; Weise-Cross, Laura; Mangum, Kevin D.; Medlin, Matt D.; Mangiante, Lee; Taylor, Joan M.

    2014-01-01

    We have previously shown that RhoA-mediated actin polymerization stimulates smooth muscle cell (SMC)-specific transcription by regulating the nuclear localization of the myocardin-related transcription factors (MRTFs). On the basis of the recent demonstration that nuclear G-actin regulates MRTF nuclear export and observations from our laboratory and others that the RhoA effector, mDia2, shuttles between the nucleus and cytoplasm, we investigated whether nuclear RhoA signaling plays a role in regulating MRTF activity. We identified sequences that control mDia2 nuclear-cytoplasmic shuttling and used mDia2 variants to demonstrate that the ability of mDia2 to fully stimulate MRTF nuclear accumulation and SMC-specific gene transcription was dependent on its localization to the nucleus. To test whether RhoA signaling promotes nuclear actin polymerization, we established a fluorescence recovery after photobleaching (FRAP)-based assay to measure green fluorescent protein-actin diffusion in the nuclear compartment. Nuclear actin FRAP was delayed in cells expressing nuclear-targeted constitutively active mDia1 and mDia2 variants and in cells treated with the polymerization inducer, jasplakinolide. In contrast, FRAP was enhanced in cells expressing a nuclear-targeted variant of mDia that inhibits both mDia1 and mDia2. Treatment of 10T1/2 cells with sphingosine 1-phosphate induced RhoA activity in the nucleus and forced nuclear localization of RhoA or the Rho-specific guanine nucleotide exchange factor (GEF), leukemia-associated RhoGEF, enhanced the ability of these proteins to stimulate MRTF activity. Taken together, these data support the emerging idea that RhoA-dependent nuclear actin polymerization has important effects on transcription and nuclear structure. PMID:24906914

  19. Cytoskeletal prestress regulates nuclear shape and stiffness in cardiac myocytes

    PubMed Central

    Lee, Hyungsuk; Adams, William J; Alford, Patrick W; McCain, Megan L; Feinberg, Adam W; Sheeny, Sean P; Goss, Josue A

    2015-01-01

    Mechanical stresses on the myocyte nucleus have been associated with several diseases and potentially transduce mechanical stimuli into cellular responses. Although a number of physical links between the nuclear envelope and cytoplasmic filaments have been identified, previous studies have focused on the mechanical properties of individual components of the nucleus, such as the nuclear envelope and lamin network. The mechanical interaction between the cytoskeleton and chromatin on nuclear deformability remains elusive. Here, we investigated how cytoskeletal and chromatin structures influence nuclear mechanics in cardiac myocytes. Rapid decondensation of chromatin and rupture of the nuclear membrane caused a sudden expansion of DNA, a consequence of prestress exerted on the nucleus. To characterize the prestress exerted on the nucleus, we measured the shape and the stiffness of isolated nuclei and nuclei in living myocytes during disruption of cytoskeletal, myofibrillar, and chromatin structure. We found that the nucleus in myocytes is subject to both tensional and compressional prestress and its deformability is determined by a balance of those opposing forces. By developing a computational model of the prestressed nucleus, we showed that cytoskeletal and chromatin prestresses create vulnerability in the nuclear envelope. Our studies suggest the cytoskeletal–nuclear–chromatin interconnectivity may play an important role in mechanics of myocyte contraction and in the development of laminopathies by lamin mutations. PMID:25908635

  20. 6-Methoxyluteolin from Chrysanthemum zawadskii var. latilobum suppresses histamine release and calcium influx via down-regulation of FcεRI α chain expression.

    PubMed

    Shim, Sun-Yup; Park, Jeong-Ro; Byun, Dae-Seok

    2012-05-01

    Mast cells and basophils are important effector cells in immunoglobulin-E (IgE)-mediated allergic reactions. Using the human basophilic KU812F cells, we assessed the inhibitory effects of 6-methoxyluteolin, isolated from Chrysanthemum zawadskii, in the FcεRI-mediated allergic reaction. We determined that 6-methoxyluteolin inhibited anti-FcεRI α chain antibody (CRA-1)-induced histamine release, as well as elevation of intracellular calcium concentration [Ca2+]i in a dose-dependent manner. Moreover, the inhibitory effects of 6-methoxyluteolin on the cell surface expression and the mRNA level of the FcεRI α chain were determined by flow cytometric analysis and reverse transcription-polymerase chain reaction (RTPCR), respectively. Therefore, these results show that 6- methoxyluteolin is a potent inhibitor of histamine release and calcium influx via down-regulation of the FcεRI α chain. PMID:22561855

  1. A tyrosine-phosphorylated 55-kilodalton motility-associated bovine sperm protein is regulated by cyclic adenosine 3',5'-monophosphates and calcium.

    PubMed

    Vijayaraghavan, S; Trautman, K D; Goueli, S A; Carr, D W

    1997-06-01

    Sperm motility is regulated by protein phosphorylation. We have recently shown that a serine/threonine phosphatase system is involved in motility regulation. Two of the components of the phosphatase system, GSK-3 and PP1gamma2, are regulated by tyrosine phosphorylation. During our investigation of sperm tyrosine-phosphorylated proteins we discovered a 55-kDa protein whose tyrosine phosphorylation correlates closely to the motility state of sperm. This protein is tyrosine phosphorylated to a much higher degree in motile caudal than in immotile caput epididymal sperm. Motility inhibition of caudal epididymal sperm by protein kinase A (PKA) anchoring inhibition or by ionomycin-induced calcium overload led to the virtual disappearance of tyrosine phosphorylation of the 55-kDa protein. Conversely, treatment of sperm with motility activators, isobutylmethylxanthine or 8-bromo-cAMP, resulted in increased tyrosine phosphorylation of the protein. The protein was present in the soluble 100 000 x g supernatants of sperm extracts and was heat labile. Chromatography through diethylaminoethyl-cellulose and Western blot analysis showed that this 55-kDa protein is not a regulatory subunit of PKA or alpha-tubulin. Our results represent the identification of a soluble protein whose tyrosine phosphorylation varies directly with motility and suggest that motility regulation may involve cross talk between PKA, calcium, and tyrosine kinase pathways. PMID:9166697

  2. Contribution of phosphodiesterase isozymes to the regulation of the L-type calcium current in human cardiac myocytes

    PubMed Central

    Kajimoto, Katsuya; Hagiwara, Nobuhisa; Kasanuki, Hiroshi; Hosoda, Saichi

    1997-01-01

    To determine the contribution of the various phosphodiesterase (PDE) isozymes to the regulation of the L-type calcium current (ICa(L)) in the human myocardium, we investigated the effect of selective and non-selective PDE inhibitors on ICa(L) in single human atrial cells by use of the whole-cell patch-clamp method. We repeated some experiments in rabbit atrial myocytes, to make a species comparison. In human atrial cells, 100 μM pimobendan increased ICa(L) (evoked by depolarization to +10 mV from a holding potential of −40 mV) by 250.4±45.0% (n=15), with the concentration for half-maximal stimulation (EC50) being 1.13 μM. ICa(L) was increased by 100 μM UD-CG 212 by 174.5±30.2% (n=10) with an EC50 value of 1.78 μM in human atrial cells. These two agents inhibit PDE III selectively. A selective PDE IV inhibitor, rolipram (1–100 μM), did not itself affect ICa(L) in human atrial cells. However, 100 μM rolipram significantly enhanced the effect of 100 μM UD-CG 212 on ICa(L) (increase with UD-CG 212 alone, 167.9±33.9, n=5; increase with the two agents together, 270.0±52.2%; n=5, P<0.05). Rolipram also enhanced isoprenaline (5 nM)-stimulated ICa(L) by 52.9±9.3% (n=5) in human atrial cells. In rabbit atrial cells, ICa(L) at +10 mV was increased by 22.1±9.0% by UD-CG 212 (n=10) and by 67.4±12.0% (n=10) by pimobendan (each at 100 μM). These values were significantly lower than those obtained in human atrial cells (P<0.0001). Rolipram (1–100 μM) did not itself affect ICa(L) in rabbit atrial cells. However, ICa(L) was increased by 215.7±65.2% (n=10) by the combination of 100 μM UD-CG 212 and 100 μM rolipram. This value was almost 10 times larger than that obtained for the effect of 100 μM UD-CG 212 alone. These results imply a species difference: in the human atrium, the PDE III isoform seems dominant, whereas PDE IV may be more important in the rabbit atrium for regulating ICa(L). However, PDE IV might contribute

  3. L-Type Calcium Channels Play a Critical Role in Maintaining Lens Transparency by Regulating Phosphorylation of Aquaporin-0 and Myosin Light Chain and Expression of Connexins

    PubMed Central

    Maddala, Rupalatha; Nagendran, Tharkika; de Ridder, Gustaaf G.; Schey, Kevin L.; Rao, Ponugoti Vasantha

    2013-01-01

    Homeostasis of intracellular calcium is crucial for lens cytoarchitecture and transparency, however, the identity of specific channel proteins regulating calcium influx within the lens is not completely understood. Here we examined the expression and distribution profiles of L-type calcium channels (LTCCs) and explored their role in morphological integrity and transparency of the mouse lens, using cDNA microarray, RT-PCR, immunoblot, pharmacological inhibitors and immunofluorescence analyses. The results revealed that Ca (V) 1.2 and 1.3 channels are expressed and distributed in both the epithelium and cortical fiber cells in mouse lens. Inhibition of LTCCs with felodipine or nifedipine induces progressive cortical cataract formation with time, in association with decreased lens weight in ex-vivo mouse lenses. Histological analyses of felodipine treated lenses revealed extensive disorganization and swelling of cortical fiber cells resembling the phenotype reported for altered aquaporin-0 activity without detectable cytotoxic effects. Analysis of both soluble and membrane rich fractions from felodipine treated lenses by SDS-PAGE in conjunction with mass spectrometry and immunoblot analyses revealed decreases in β-B1-crystallin, Hsp-90, spectrin and filensin. Significantly, loss of transparency in the felodipine treated lenses was preceded by an increase in aquaporin-0 serine-235 phosphorylation and levels of connexin-50, together with decreases in myosin light chain phosphorylation and the levels of 14-3-3ε, a phosphoprotein-binding regulatory protein. Felodipine treatment led to a significant increase in gene expression of connexin-50 and 46 in the mouse lens. Additionally, felodipine inhibition of LTCCs in primary cultures of mouse lens epithelial cells resulted in decreased intracellular calcium, and decreased actin stress fibers and myosin light chain phosphorylation, without detectable cytotoxic response. Taken together, these observations reveal a crucial

  4. Pneumococal Surface Protein A (PspA) Regulates Programmed Death Ligand 1 Expression on Dendritic Cells in a Toll-Like Receptor 2 and Calcium Dependent Manner

    PubMed Central

    Vashishta, Mohit; Khan, Naeem; Mehto, Subhash; Sehgal, Devinder; Natarajan, Krishnamurthy

    2015-01-01

    Pneumonia leads to high mortality in children under the age of five years worldwide, resulting in close to 20 percent of all deaths in this age group. Therefore, investigations into host-pathogen interactions during Streptococcus pneumoniae infection are key in devising strategies towards the development of better vaccines and drugs. To that end, in this study we investigated the role of S. pneumoniae and its surface antigen Pneumococcal surface protein A (PspA) in modulating the expression of co-stimulatory molecule Programmed Death Ligand 1 (PD-L1) expression on dendritic cells (DCs) and the subsequent effects of increased PD-L1 on key defence responses. Our data indicate that stimulation of DCs with PspA increases the surface expression of PD-L1 in a time and dose dependent manner. Characterization of mechanisms involved in PspA induced expression of PD-L1 indicate the involvement of Toll-Like Receptor 2 (TLR2) and calcium homeostasis. While calcium release from intracellular stores positively regulated PD-L1 expression, calcium influx from external milieu negatively regulated PD-L1 expression. Increase in PD-L1 expression, when costimulated with PspA and through TLR2 was higher than when stimulated with PspA or through TLR2. Further, knockdown of TLR2 and the intermediates in the TLR signaling machinery pointed towards the involvement of a MyD88 dependent pathway in PspA induced PD-L1 expression. Incubation of DCs with S. pneumoniae resulted in the up-regulation of PD-L1 expression, while infection with a strain lacking surface PspA failed to do so. Our data also suggests the role of PspA in ROS generation. These results suggest a novel and specific role for PspA in modulating immune responses against S. pneumoniae by regulating PD-L1 expression. PMID:26214513

  5. The Mammalian Cell Cycle Regulates Parvovirus Nuclear Capsid Assembly

    PubMed Central

    Riolobos, Laura; Domínguez, Carlos; Kann, Michael; Almendral, José M.

    2015-01-01

    It is unknown whether the mammalian cell cycle could impact the assembly of viruses maturing in the nucleus. We addressed this question using MVM, a reference member of the icosahedral ssDNA nuclear parvoviruses, which requires cell proliferation to infect by mechanisms partly understood. Constitutively expressed MVM capsid subunits (VPs) accumulated in the cytoplasm of mouse and human fibroblasts synchronized at G0, G1, and G1/S transition. Upon arrest release, VPs translocated to the nucleus as cells entered S phase, at efficiencies relying on cell origin and arrest method, and immediately assembled into capsids. In synchronously infected cells, the consecutive virus life cycle steps (gene expression, proteins nuclear translocation, capsid assembly, genome replication and encapsidation) proceeded tightly coupled to cell cycle progression from G0/G1 through S into G2 phase. However, a DNA synthesis stress caused by thymidine irreversibly disrupted virus life cycle, as VPs became increasingly retained in the cytoplasm hours post-stress, forming empty capsids in mouse fibroblasts, thereby impairing encapsidation of the nuclear viral DNA replicative intermediates. Synchronously infected cells subjected to density-arrest signals while traversing early S phase also blocked VPs transport, resulting in a similar misplaced cytoplasmic capsid assembly in mouse fibroblasts. In contrast, thymidine and density arrest signals deregulating virus assembly neither perturbed nuclear translocation of the NS1 protein nor viral genome replication occurring under S/G2 cycle arrest. An underlying mechanism of cell cycle control was identified in the nuclear translocation of phosphorylated VPs trimeric assembly intermediates, which accessed a non-conserved route distinct from the importin α2/β1 and transportin pathways. The exquisite cell cycle-dependence of parvovirus nuclear capsid assembly conforms a novel paradigm of time and functional coupling between cellular and virus life

  6. Nuclear test lobbying: DOE regulations for contractors need reevaluation

    SciTech Connect

    Not Available

    1987-01-01

    Allegations had been made that the Department of Energy was improperly employing contractors to assist in lobbying the Congress on nuclear weapons testing issues. The antilobbying criminal statute has been interpreted by the Department of Justice as allowing federal officials to provide information to the Congress and to state their views on proposed legislation but prohibits ''grass-roots'' lobbying by federal employees. Thus, DOE's extensive briefings of congressional Members and staff to influence their views on nuclear weapons testing issues did not violate applicable statutory provisions.

  7. 49 CFR 1580.111 - Harmonization of federal regulation of nuclear facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 9 2013-10-01 2013-10-01 false Harmonization of federal regulation of nuclear facilities. 1580.111 Section 1580.111 Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY MARITIME AND LAND TRANSPORTATION SECURITY RAIL TRANSPORTATION...

  8. Role of calcium and AMP kinase in the regulation of mitochondrial biogenesis and GLUT4 levels in muscle.

    PubMed

    Ojuka, Edward O

    2004-05-01

    Contractile activity induces mitochondrial biogenesis and increases glucose transport capacity in muscle. There has been much research on the mechanisms responsible for these adaptations. The present paper reviews the evidence, which indicates that the decrease in the levels of high-energy phosphates, leading to activation of AMP kinase (AMPK), and the increase in cytosolic Ca(2+), which activates Ca(2+)/calmodulin-dependent protein kinase (CAMK), are signals that initiate these adaptative responses. Although the events downstream of AMPK and CAMK have not been well characterized, these events lead to activation of various transcription factors, including: nuclear respiratory factors (NRF) 1 and 2, which cause increased expression of proteins of the respiratory chain; PPAR-alpha, which up regulates the levels of enzymes of beta oxidation; mitochondrial transcription factor A, which activates expression of the mitochondrial genome; myocyte-enhancing factor 2A, the transcription factor that regulates GLUT4 expression. The well-orchestrated expression of the multitude of proteins involved in these adaptations is mediated by the rapid activation of PPAR gamma co-activator (PGC) 1, a protein that binds to various transcription factors to maximize transcriptional activity. Activating AMPK using 5-aminoimidizole-4-carboxamide-1-beta-D-riboside (AICAR) and increasing cytoplasmic Ca(2+) using caffeine, W7 or ionomycin in L6 myotubes increases the concentration of mitochondrial enzymes and GLUT4 and enhances the binding of NRF-1 and NRF-2 to DNA. AICAR and Ca-releasing agents also increase the levels of PGC-1, mitochondrial transcription factor A and myocyte-enhancing factors 2A and 2D. These results are similar to the responses seen in muscle during the adaptation to endurance exercise and show that L6 myotubes are a suitable model for studying the mechanisms by which exercise causes the adaptive responses in muscle mitochondria and glucose transport. PMID:15294043

  9. Transcriptional regulation of human small nuclear RNA genes

    PubMed Central

    Jawdekar, Gauri W.; Henry, R. William

    2009-01-01

    The products of human snRNA genes have been frequently described as performing housekeeping functions and their synthesis refractory to regulation. However, recent studies have emphasized that snRNA and other related non-coding RNA molecules control multiple facets of the central dogma, and their regulated expression is critical to cellular homeostasis during normal growth and in response to stress. Human snRNA genes contain compact and yet powerful promoters that are recognized by increasingly well-characterized transcription factors, thus providing a premier model system to study gene regulation. This review summarizes many recent advances deciphering the mechanism by which the transcription of human snRNA and related genes are regulated. PMID:18442490

  10. Regulating by the Numbers: Probabilistic Risk Assessment and Nuclear Power.

    ERIC Educational Resources Information Center

    Nichols, Elizabeth; Wildavsky, Aaron

    1988-01-01

    Probabilistic risk assessment has been promoted within the Nuclear Regulatory Commission as a means of judging risk to the public and of determining regulatory measures. Interviews with engineers and other technically trained personnel reveal the difficulties created by expectations that this form of assessment should be applied. (TJH)

  11. Improving the regulation of safety at DOE nuclear facilities. Final report: Appendices

    SciTech Connect

    1995-12-01

    The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE`s nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation.

  12. Improving the regulation of safety at DOE nuclear facilities. Final report

    SciTech Connect

    1995-12-01

    The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by DOE itself. The three major recommendations are: under any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE`s nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation.

  13. Chrysin suppresses mast cell-mediated allergic inflammation: Involvement of calcium, caspase-1 and nuclear factor-{kappa}B

    SciTech Connect

    Bae, Yunju; Lee, Soyoung; Kim, Sang-Hyun

    2011-07-01

    A great number of people are suffering from allergic inflammatory diseases such as asthma, atopic dermatitis, and sinusitis. Therefore discovery of drugs for the treatment of these diseases is an important subject in human health. Chrysin (5,7-dihydroxyflavone) is a natural flavonoid contained in propolis, blue passion flower, and fruits. Several studies reported that chrysin has beneficial effects including anti-tumor and anti-oxidant activities. The aim of the present study was to elucidate whether chrysin modulates the allergic inflammatory reaction and to study its possible mechanisms of action using mast cell-based in vitro and in vivo models. Chrysin inhibited immediate-type systemic hypersensitivity and serum histamine release. Chrysin attenuated immunoglobulin E-mediated local anaphylaxis. These inhibitory effects of chrysin on the systemic and local allergic reaction were more potent than cromolyn, a known anti-allergic drug. Chrysin reduced histamine release from mast cells. The inhibitory effect of chrysin on the histamine release was mediated by the modulation of intracellular calcium. In addition, chrysin decreased gene expression of pro-inflammatory cytokines such as, tumor necrosis factor-{alpha}, IL (interleukin)-1{beta}, IL-4, and IL-6 in mast cells. The inhibitory effect of chrysin on the pro-inflammatory cytokine was nuclear factor-{kappa}B and caspase-1 dependent. Our findings provide evidence that chrysin inhibits mast cell-derived allergic inflammatory reactions by blocking histamine release and pro-inflammatory cytokine expression, and suggest the mechanisms of action. Furthermore, in vivo and in vitro anti-allergic inflammatory effect of chrysin suggests a possible therapeutic application of this agent in allergic inflammatory diseases. - Research Highlights: > Discovery of drugs for the allergic inflammation is important in human health. > Chrysin is a natural flavonoid contained in propolis, blue passion flower, and fruits. > Chrysin

  14. Poly(acrylic acid)-regulated Synthesis of Rod-Like Calcium Carbonate Nanoparticles for Inducing the Osteogenic Differentiation of MC3T3-E1 Cells.

    PubMed

    Yang, Wei; Yao, Chenxue; Cui, Zhengyang; Luo, Dandan; Lee, In-Seop; Yao, Juming; Chen, Cen; Kong, Xiangdong

    2016-01-01

    Calcium carbonate, especially with nanostructure, has been considered as a good candidate material for bone regeneration due to its excellent biodegradability and osteoconductivity. In this study, rod-like calcium carbonate nanoparticles (Rod-CC NPs) with desired water dispersibility were achieved with the regulation of poly (acrylic acid). Characterization results revealed that the Rod-CC NPs had an average length of 240 nm, a width of 90 nm with an average aspect ratio of 2.60 and a negative ζ-potential of -22.25 ± 0.35 mV. The degradation study illustrated the nanoparticles degraded 23% at pH 7.4 and 45% at pH 5.6 in phosphate-buffered saline (PBS) solution within three months. When cultured with MC3T3-E1 cells, the Rod-CC NPs exhibited a positive effect on the proliferation of osteoblast cells. Alkaline phosphatase (ALP) activity assays together with the osteocalcin (OCN) and bone sialoprotein (BSP) expression observations demonstrated the nanoparticles could induce the differentiation of MC3T3-E1 cells. Our study developed well-dispersed rod-like calcium carbonate nanoparticles which have great potential to be used in bone regeneration. PMID:27164090

  15. Houttuyniae Herba protects rat primary cortical cells from Aβ(25-35)-induced neurotoxicity via regulation of calcium influx and mitochondria-mediated apoptosis.

    PubMed

    Park, H; Oh, Myung Sook

    2012-07-01

    Amyloid beta (Aβ) fibrils are believed to play a major role in the pathogenesis of Alzheimer's disease. Although the mechanisms underlying Aβ toxicity remain largely unknown, Aβ fibrils disrupt calcium homeostasis and generate free radicals, resulting in oxidative stress, mitochondrial dysfunction, and apoptotic cell death. Houttuyniae Herba, the aerial part of Houttuynia cordata Thunb. (Saururaceae), is a commonly used herb in traditional Asian medicine. It has been reported to have various bioactivities, including antioxidant effects. In the present study, we investigated the protective effect of standardised Houttuyniae Herba water extract (HCW) against Aβ(25-35)-induced neurotoxicity and its possible mechanisms in rat primary cortical cells. Pretreatment with HCW attenuated the cell damage caused by 8 μM Aβ(25-35) exposure, as evidenced by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, a lactate dehydrogenase assay, and microtubule-associated protein 2 immunostaining. Moreover, HCW inhibited the Aβ(25-35)-induced elevation of the intracellular calcium level, reactive oxygen species overproduction, mitochondrial membrane potential disruption, and caspase 3 activation. These results indicate that HCW protects rat primary cortical neurons against Aβ(25-35)-induced toxicity via the regulation of calcium and the inhibition of mitochondria-mediated apoptosis. PMID:22262263

  16. Poly(acrylic acid)-regulated Synthesis of Rod-Like Calcium Carbonate Nanoparticles for Inducing the Osteogenic Differentiation of MC3T3-E1 Cells

    PubMed Central

    Yang, Wei; Yao, Chenxue; Cui, Zhengyang; Luo, Dandan; Lee, In-Seop; Yao, Juming; Chen, Cen; Kong, Xiangdong

    2016-01-01

    Calcium carbonate, especially with nanostructure, has been considered as a good candidate material for bone regeneration due to its excellent biodegradability and osteoconductivity. In this study, rod-like calcium carbonate nanoparticles (Rod-CC NPs) with desired water dispersibility were achieved with the regulation of poly (acrylic acid). Characterization results revealed that the Rod-CC NPs had an average length of 240 nm, a width of 90 nm with an average aspect ratio of 2.60 and a negative ζ-potential of −22.25 ± 0.35 mV. The degradation study illustrated the nanoparticles degraded 23% at pH 7.4 and 45% at pH 5.6 in phosphate-buffered saline (PBS) solution within three months. When cultured with MC3T3-E1 cells, the Rod-CC NPs exhibited a positive effect on the proliferation of osteoblast cells. Alkaline phosphatase (ALP) activity assays together with the osteocalcin (OCN) and bone sialoprotein (BSP) expression observations demonstrated the nanoparticles could induce the differentiation of MC3T3-E1 cells. Our study developed well-dispersed rod-like calcium carbonate nanoparticles which have great potential to be used in bone regeneration. PMID:27164090

  17. Recent developments in intestinal calcium absorption.

    PubMed

    Bronner, Felix

    2009-02-01

    Calcium absorption proceeds by transcellular and paracellular flux, with the latter accounting for most absorbed calcium when calcium intake is adequate. Vitamin D helps regulate transcellular calcium transport by increasing calcium uptake via a luminal calcium channel and by inducing the cytosolic calcium transporting protein, calbindinD(9k). Recent studies utilizing knockout mice have challenged the functional importance of the channel and calbindin. To integrate the new findings with many previous studies, the function of the two molecules must be evaluated in the calcium transport and economy of mice. When calcium intake is high, transcellular calcium transport contributes little to total calcium absorption. Therefore, increasing calcium intake seems the most effective nutritional approach to ensure adequate absorption and prevent bone loss. PMID:19178653

  18. OsCCD1, a novel small calcium-binding protein with one EF-hand motif, positively regulates osmotic and salt tolerance in rice.

    PubMed

    Jing, Pei; Zou, Juanzi; Kong, Lin; Hu, Shiqi; Wang, Biying; Yang, Jun; Xie, Guosheng

    2016-06-01

    Calcium-binding proteins play key roles in the signal transduction in the growth and stress response in eukaryotes. However, a subfamily of proteins with one EF-hand motif has not been fully studied in higher plants. Here, a novel small calcium-binding protein with a C-terminal centrin-like domain (CCD1) in rice, OsCCD1, was characterized to show high similarity with a TaCCD1 in wheat. As a result, OsCCD1 can bind Ca(2+) in the in vitro EMSA and the fluorescence staining calcium-binding assays. Transient expression of green fluorescent protein (GFP)-tagged OsCCD1 in rice protoplasts showed that OsCCD1 was localized in the nucleus and cytosol of rice cells. OsCCD1 transcript levels were transiently induced by osmotic stress and salt stress through the calcium-mediated ABA signal. The rice seedlings of T-DNA mutant lines showed significantly less tolerance to osmotic and salt stresses than wild type plants (p<0.01). Conversely, its overexpressors can significantly enhance the tolerance to osmotic and salt stresses than wild type plants (p<0.05). Semi-quantitative RT-PCR analysis revealed that, OsDREB2B, OsAPX1 and OsP5CS genes are involved in the rice tolerance to osmotic and salt stresses. In sum, OsCCD1 gene probably affects the DREB2B and its downstream genes to positively regulate osmotic and salt tolerance in rice seedlings. PMID:27095404

  19. Physiology of Calcium and Phosphate Metabolism: 1980 Refresher Course, Syllabus.

    ERIC Educational Resources Information Center

    Knox, Franklyn G., Ed.

    1980-01-01

    This syllabus reviews information concerning calcium and phosphate regulation. Topics of interest include the following: calcium metabolism, phosphorus metabolism, bone, parathyroid hormone, calcitonin, and vitamin D. (CS)

  20. Calcium's role in mechanotransduction during muscle development.

    PubMed

    Benavides Damm, Tatiana; Egli, Marcel

    2014-01-01

    Mechanotransduction is a process where cells sense their surroundings and convert the physical forces in their environment into an appropriate response. Calcium plays a crucial role in the translation of such forces to biochemical signals that control various biological processes fundamental in muscle development. The mechanical stimulation of muscle cells may for example result from stretch, electric and magnetic stimulation, shear stress, and altered gravity exposure. The response, mainly involving changes in intracellular calcium concentration then leads to a cascade of events by the activation of downstream signaling pathways. The key calcium-dependent pathways described here include the nuclear factor of activated T cells (NFAT) and mitogen-activated protein kinase (MAPK) activation. The subsequent effects in cellular homeostasis consist of cytoskeletal remodeling, cell cycle progression, growth, differentiation, and apoptosis, all necessary for healthy muscle development, repair, and regeneration. A deregulation from the normal process due to disuse, trauma, or disease can result in a clinical condition such as muscle atrophy, which entails a significant loss of muscle mass. In order to develop therapies against such diseased states, we need to better understand the relevance of calcium signaling and the downstream responses to mechanical forces in skeletal muscle. The purpose of this review is to discuss in detail how diverse mechanical stimuli cause changes in calcium homeostasis by affecting membrane channels and the intracellular stores, which in turn regulate multiple pathways that impart these effects and control the fate of muscle tissue. PMID:24525559

  1. Natural compounds regulate energy metabolism by the modulating the activity of lipid-sensing nuclear receptors.

    PubMed

    Goto, Tsuyoshi; Kim, Young-Il; Takahashi, Nobuyuki; Kawada, Teruo

    2013-01-01

    Obesity causes excess fat accumulation in various tissues, most notoriously in the adipose tissue, along with other insulin-responsive organs such as skeletal muscle and the liver, which predisposes an individual to the development of metabolic abnormalities. The molecular mechanisms underlying obesity-induced metabolic abnormalities have not been completely elucidated; however, in recent years, the search for therapies to prevent the development of obesity and obesity-associated metabolic disorders has increased. It is known that several nuclear receptors, when activated by specific ligands, regulate carbohydrate and lipid metabolism at the transcriptional level. The expression of lipid metabolism-related enzymes is directly regulated by the activity of various nuclear receptors via their interaction with specific response elements in promoters of those genes. Many natural compounds act as ligands of nuclear receptors and regulate carbohydrate and lipid metabolism by regulating the activities of these nuclear receptors. In this review, we describe our current knowledge of obesity, the role of lipid-sensing nuclear receptors in energy metabolism, and several examples of food factors that act as agonists or antagonists of nuclear receptors, which may be useful for the management of obesity and the accompanying energy metabolism abnormalities. PMID:23180608

  2. Isolation of nuclear proteins from flax (Linum usitatissimum L.) seed coats for gene expression regulation studies

    PubMed Central

    2012-01-01

    Background While seed biology is well characterized and numerous studies have focused on this subject over the past years, the regulation of seed coat development and metabolism is for the most part still non-elucidated. It is well known that the seed coat has an essential role in seed development and its features are associated with important agronomical traits. It also constitutes a rich source of valuable compounds such as pharmaceuticals. Most of the cell genetic material is contained in the nucleus; therefore nuclear proteins constitute a major actor for gene expression regulation. Isolation of nuclear proteins responsible for specific seed coat expression is an important prerequisite for understanding seed coat metabolism and development. The extraction of nuclear proteins may be problematic due to the presence of specific components that can interfere with the extraction process. The seed coat is a rich source of mucilage and phenolics, which are good examples of these hindering compounds. Findings In the present study, we propose an optimized nuclear protein extraction protocol able to provide nuclear proteins from flax seed coat without contaminants and sufficient yield and quality for their use in transcriptional gene expression regulation by gel shift experiments. Conclusions Routinely, around 250 μg of nuclear proteins per gram of fresh weight were extracted from immature flax seed coats. The isolation protocol described hereafter may serve as an effective tool for gene expression regulation and seed coat-focused proteomics studies. PMID:22230709

  3. The Deubiquitinase USP17 Regulates the Stability and Nuclear Function of IL-33

    PubMed Central

    Ni, Yingmeng; Tao, Lianqin; Chen, Chen; Song, Huihui; Li, Zhiyuan; Gao, Yayi; Nie, Jia; Piccioni, Miranda; Shi, Guochao; Li, Bin

    2015-01-01

    IL-33 is a new member of the IL-1 family cytokines, which is expressed by different types of immune cells and non-immune cells. IL-33 is constitutively expressed in the nucleus, where it can act as a transcriptional regulator. So far, no direct target for nuclear IL-33 has been identified, and the regulation of IL-33 nuclear function remains largely unclear. Here, we report that the transcription of type 2 inflammatory cytokine IL-13 is positively regulated by nuclear IL-33. IL-33 can directly bind to the conserved non-coding sequence (CNS) before the translation initiation site in the IL13 gene locus. Moreover, IL-33 nuclear function and stability are regulated by the enzyme ubiquitin-specific protease 17 (USP17) through deubiquitination of IL-33 both at the K48 and at the K63 sites. Our data suggest that IL13 gene transcription can be directly activated by nuclear IL-33, which is negatively regulated by the deubiquitinase USP17. PMID:26610488

  4. Negative transcriptional regulation of mitochondrial transcription factor A (TFAM) by nuclear TFAM

    SciTech Connect

    Lee, Eun Jin; Kang, Young Cheol; Park, Wook-Ha; Jeong, Jae Hoon; Pak, Youngmi Kim

    2014-07-18

    Highlights: • TFAM localizes in nuclei and mitochondria of neuronal cells. • Nuclear TFAM does not bind the Tfam promoter. • Nuclear TFAM reduced the Tfam promoter activity via suppressing NRF-1 activity. • A novel self-negative feedback regulation of Tfam gene expression is explored. • FAM may play different roles depending on its subcellular localizations. - Abstract: The nuclear DNA-encoded mitochondrial transcription factor A (TFAM) is synthesized in cytoplasm and transported into mitochondria. TFAM enhances both transcription and replication of mitochondrial DNA. It is unclear, however, whether TFAM plays a role in regulating nuclear gene expression. Here, we demonstrated that TFAM was localized to the nucleus and mitochondria by immunostaining, subcellular fractionation, and TFAM-green fluorescent protein hybrid protein studies. In HT22 hippocampal neuronal cells, human TFAM (hTFAM) overexpression suppressed human Tfam promoter-mediated luciferase activity in a dose-dependent manner. The mitochondria targeting sequence-deficient hTFAM also repressed Tfam promoter activity to the same degree as hTFAM. It indicated that nuclear hTFAM suppressed Tfam expression without modulating mitochondrial activity. The repression required for nuclear respiratory factor-1 (NRF-1), but hTFAM did not bind to the NRF-1 binding site of its promoter. TFAM was co-immunoprecipitated with NRF-1. Taken together, we suggest that nuclear TFAM down-regulate its own gene expression as a NRF-1 repressor, showing that TFAM may play different roles depending on its subcellular localizations.

  5. PML nuclear bodies: regulation, function and therapeutic perspectives.

    PubMed

    Sahin, Umut; Lallemand-Breitenbach, Valérie; de Thé, Hugues

    2014-11-01

    PML nuclear bodies (NBs) were first described by electron microscopy and rediscovered through their treatment-reversible disruption in a rare leukaemia. They recruit multiple partner proteins and now emerge as interferon- and oxidative stress-responsive sumoylation factories. NBs mediate interferon-induced viral restriction, enhance proteolysis, finely tune metabolism and enforce stress-induced senescence. Apart from being markers of cellular stress, PML NBs could be harnessed pharmacologically in a number of conditions, including cancer, viral infection or neurodegenerative diseases. PMID:25138686

  6. Calcium ions regulate K⁺ uptake into brain mitochondria: the evidence for a novel potassium channel.

    PubMed

    Skalska, Jolanta; Bednarczyk, Piotr; Piwońska, Marta; Kulawiak, Bogusz; Wilczynski, Grzegorz; Dołowy, Krzysztof; Kudin, Alexei P; Kunz, Wolfram S; Szewczyk, Adam

    2009-03-01

    The mitochondrial response to changes of cytosolic calcium concentration has a strong impact on neuronal cell metabolism and viability. We observed that Ca(2+) additions to isolated rat brain mitochondria induced in potassium ion containing media a mitochondrial membrane potential depolarization and an accompanying increase of mitochondrial respiration. These Ca(2+) effects can be blocked by iberiotoxin and charybdotoxin, well known inhibitors of large conductance potassium channel (BK(Ca) channel). Furthermore, NS1619 - a BK(Ca) channel opener - induced potassium ion-specific effects on brain mitochondria similar to those induced by Ca(2+). These findings suggest the presence of a calcium-activated, large conductance potassium channel (sensitive to charybdotoxin and NS1619), which was confirmed by reconstitution of the mitochondrial inner membrane into planar lipid bilayers. The conductance of the reconstituted channel was 265 pS under gradient (50/450 mM KCl) conditions. Its reversal potential was equal to 50 mV, which proved that the examined channel was cation-selective. We also observed immunoreactivity of anti-beta(4) subunit (of the BK(Ca) channel) antibodies with ~26 kDa proteins of rat brain mitochondria. Immunohistochemical analysis confirmed the predominant occurrence of beta(4) subunit in neuronal mitochondria. We hypothesize that the mitochondrial BK(Ca) channel represents a calcium sensor, which can contribute to neuronal signal transduction and survival. PMID:19399240

  7. In silico synchronization reveals regulators of nuclear ruptures in lamin A/C deficient model cells

    PubMed Central

    Robijns, J.; Molenberghs, F.; Sieprath, T.; Corne, T. D. J.; Verschuuren, M.; De Vos, W. H.

    2016-01-01

    The nuclear lamina is a critical regulator of nuclear structure and function. Nuclei from laminopathy patient cells experience repetitive disruptions of the nuclear envelope, causing transient intermingling of nuclear and cytoplasmic components. The exact causes and consequences of these events are not fully understood, but their stochastic occurrence complicates in-depth analyses. To resolve this, we have established a method that enables quantitative investigation of spontaneous nuclear ruptures, based on co-expression of a firmly bound nuclear reference marker and a fluorescent protein that shuttles between the nucleus and cytoplasm during ruptures. Minimally invasive imaging of both reporters, combined with automated tracking and in silico synchronization of individual rupture events, allowed extracting information on rupture frequency and recovery kinetics. Using this approach, we found that rupture frequency correlates inversely with lamin A/C levels, and can be reduced in genome-edited LMNA knockout cells by blocking actomyosin contractility or inhibiting the acetyl-transferase protein NAT10. Nuclear signal recovery followed a kinetic that is co-determined by the severity of the rupture event, and could be prolonged by knockdown of the ESCRT-III complex component CHMP4B. In conclusion, our approach reveals regulators of nuclear rupture induction and repair, which may have critical roles in disease development. PMID:27461848

  8. In silico synchronization reveals regulators of nuclear ruptures in lamin A/C deficient model cells.

    PubMed

    Robijns, J; Molenberghs, F; Sieprath, T; Corne, T D J; Verschuuren, M; De Vos, W H

    2016-01-01

    The nuclear lamina is a critical regulator of nuclear structure and function. Nuclei from laminopathy patient cells experience repetitive disruptions of the nuclear envelope, causing transient intermingling of nuclear and cytoplasmic components. The exact causes and consequences of these events are not fully understood, but their stochastic occurrence complicates in-depth analyses. To resolve this, we have established a method that enables quantitative investigation of spontaneous nuclear ruptures, based on co-expression of a firmly bound nuclear reference marker and a fluorescent protein that shuttles between the nucleus and cytoplasm during ruptures. Minimally invasive imaging of both reporters, combined with automated tracking and in silico synchronization of individual rupture events, allowed extracting information on rupture frequency and recovery kinetics. Using this approach, we found that rupture frequency correlates inversely with lamin A/C levels, and can be reduced in genome-edited LMNA knockout cells by blocking actomyosin contractility or inhibiting the acetyl-transferase protein NAT10. Nuclear signal recovery followed a kinetic that is co-determined by the severity of the rupture event, and could be prolonged by knockdown of the ESCRT-III complex component CHMP4B. In conclusion, our approach reveals regulators of nuclear rupture induction and repair, which may have critical roles in disease development. PMID:27461848

  9. In silico synchronization reveals regulators of nuclear ruptures in lamin A/C deficient model cells

    NASA Astrophysics Data System (ADS)

    Robijns, J.; Molenberghs, F.; Sieprath, T.; Corne, T. D. J.; Verschuuren, M.; de Vos, W. H.

    2016-07-01

    The nuclear lamina is a critical regulator of nuclear structure and function. Nuclei from laminopathy patient cells experience repetitive disruptions of the nuclear envelope, causing transient intermingling of nuclear and cytoplasmic components. The exact causes and consequences of these events are not fully understood, but their stochastic occurrence complicates in-depth analyses. To resolve this, we have established a method that enables quantitative investigation of spontaneous nuclear ruptures, based on co-expression of a firmly bound nuclear reference marker and a fluorescent protein that shuttles between the nucleus and cytoplasm during ruptures. Minimally invasive imaging of both reporters, combined with automated tracking and in silico synchronization of individual rupture events, allowed extracting information on rupture frequency and recovery kinetics. Using this approach, we found that rupture frequency correlates inversely with lamin A/C levels, and can be reduced in genome-edited LMNA knockout cells by blocking actomyosin contractility or inhibiting the acetyl-transferase protein NAT10. Nuclear signal recovery followed a kinetic that is co-determined by the severity of the rupture event, and could be prolonged by knockdown of the ESCRT-III complex component CHMP4B. In conclusion, our approach reveals regulators of nuclear rupture induction and repair, which may have critical roles in disease development.

  10. Regulation of nuclear genes encoding mitochondrial proteins in Saccharomyces cerevisiae.

    PubMed Central

    Brown, T A; Evangelista, C; Trumpower, B L

    1995-01-01

    Selection for mutants which release glucose repression of the CYB2 gene was used to identify genes which regulate repression of mitochondrial biogenesis. We have identified two of these as the previously described GRR1/CAT80 and ROX3 genes. Mutations in these genes not only release glucose repression of CYB2 but also generally release respiration of the mutants from glucose repression. In addition, both mutants are partially defective in CYB2 expression when grown on nonfermentable carbon sources, indicating a positive regulatory role as well. ROX3 was cloned by complementation of a glucose-inducible flocculating phenotype of an amber mutant and has been mapped as a new leftmost marker on chromosome 2. The ROX3 mutant has only a modest defect in glucose repression of GAL1 but is substantially compromised in galactose induction of GAL1 expression. This mutant also has increased SUC2 expression on nonrepressing carbon sources. We have also characterized the regulation of CYB2 in strains carrying null mutation in two other glucose repression genes, HXK2 and SSN6, and show that HXK2 is a negative regulator of CYB2, whereas SSN6 appears to be a positive effector of CYB2 expression. PMID:7592476

  11. Direct transcriptional regulation by nuclear microRNAs.

    PubMed

    Salmanidis, Marika; Pillman, Katherine; Goodall, Gregory; Bracken, Cameron

    2014-09-01

    The function of microRNAs is well characterized in the cytoplasm, where they direct an Argonaute-containing complex to target and repress mRNAs. More recently, regulatory roles for microRNAs and Argonaute have also been reported in the nucleus where microRNAs guide Argonaute to target gene promoters and directly regulate transcription in either a positive or a negative manner. Deep sequencing has revealed a high abundance of endogenous microRNAs within the nucleus, and in silico target prediction suggests thousands of potential microRNA:promoter interaction sites. The predicted high frequency of miRNA:promoter interactions is supported by chromatin immunoprecipitation, indicating the microRNA-dependent recruitment of Argonaute to thousands of transcriptional start sites and the subsequent regulation of RNA polymerase-II occupancy and chromatin modifiers. In this review we discuss the evidence for, and mechanisms associated with, direct transcriptional regulation by microRNAs which may represent a significant and largely unexplored aspect of microRNA function. This article is part of a Directed Issue entitled: The non-coding RNA revolution. PMID:24680896

  12. The role of research in nuclear regulation: Opening remarks

    SciTech Connect

    Taylor, J.M.

    1997-01-01

    More than 20 years ago, the Energy Reorganization Act of 1974 created the USNRC and that same act provided for an office of nuclear regulatory research. It`s what is called a statutory office within the NRC. In providing for an NRC research program, our Congress had several things to say about the character of the research that would be performed. First, NRC should perform such research as is necessary for the effective performance of the Commission`s licensing and related regulatory functions. Second, the research may be characterized as confirmatory reassessment related to the safe operation and the protection of commercial reactors and other nuclear materials. Third, the NRC should have an independent capability for developing and analyzing technical information related to reactor safety, safeguards, and environmental protection in support of both the licensing and regulatory processes. Fourth, the research should not go beyond the need for confirmatory assessment, because the NRC should never be place in a position of having generated and then having to defend basic design data of its own. This has been and continues to be the role of research at the NRC. Somewhat different purposes might apply for regulatory agencies in other countries. Several regulatory agencies are represented here on this panel, so some of these difference may be discussed.

  13. Regulation of mRNA Trafficking by Nuclear Pore Complexes

    PubMed Central

    Bonnet, Amandine; Palancade, Benoit

    2014-01-01

    Over the last two decades, multiple studies have explored the mechanisms governing mRNA export out of the nucleus, a crucial step in eukaryotic gene expression. During transcription and processing, mRNAs are assembled into messenger ribonucleoparticles (mRNPs). mRNPs are then exported through nuclear pore complexes (NPCs), which are large multiprotein assemblies made of several copies of a limited number of nucleoporins. A considerable effort has been put into the dissection of mRNA export through NPCs at both cellular and molecular levels, revealing the conserved contributions of a subset of nucleoporins in this process, from yeast to vertebrates. Several reports have also demonstrated the ability of NPCs to sort out properly-processed mRNPs for entry into the nuclear export pathway. Importantly, changes in mRNA export have been associated with post-translational modifications of nucleoporins or changes in NPC composition, depending on cell cycle progression, development or exposure to stress. How NPC modifications also impact on cellular mRNA export in disease situations, notably upon viral infection, is discussed. PMID:25184662

  14. The protein phosphatase-1/inhibitor-2 complex differentially regulates GSK3 dephosphorylation and increases sarcoplasmic/endoplasmic reticulum calcium ATPase 2 levels

    SciTech Connect

    King, Taj D.; Gandy, Johanna C.; Bijur, Gautam N. . E-mail: gautam@uab.edu

    2006-11-01

    The ubiquitously expressed protein glycogen synthase kinase-3 (GSK3) is constitutively active, however its activity is markedly diminished following phosphorylation of Ser21 of GSK3{alpha} and Ser9 of GSK3{beta}. Although several kinases are known to phosphorylate Ser21/9 of GSK3, for example Akt, relatively much less is known about the mechanisms that cause the dephosphorylation of GSK3 at Ser21/9. In the present study KCl-induced plasma membrane depolarization of SH-SY5Y cells, which increases intracellular calcium concentrations caused a transient decrease in the phosphorylation of Akt at Thr308 and Ser473, and GSK3 at Ser21/9. Overexpression of the selective protein phosphatase-1 inhibitor protein, inhibitor-2, increased basal GSK3 phosphorylation at Ser21/9 and significantly blocked the KCl-induced dephosphorylation of GSK3{beta}, but not GSK3{alpha}. The phosphorylation of Akt was not affected by the overexpression of inhibitor-2. GSK3 activity is known to affect sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) levels. Overexpression of inhibitor-2 or treatment of cells with the GSK3 inhibitors lithium and SB216763 increased the levels of SERCA2. These results indicate that the protein phosphatase-1/inhibitor-2 complex differentially regulates GSK3 dephosphorylation induced by KCl and that GSK3 activity regulates SERCA2 levels.

  15. EFFECTS OF PHOSPHORYLATION ON THE SELF-ASSEMBLY OF NATIVE FULL-LENGTH PORCINE AMELOGENIN AND ITS REGULATION OF CALCIUM PHOSPHATE FORMATION IN VITRO

    PubMed Central

    Wiedemann-Bidlack, Felicitas B.; Kwak, Seo-Young; Beniash, Elia; Yamakoshi, Yasuo; Simmer, James P.; Margolis, Henry C.

    2010-01-01

    The self-assembly of the predominant extracellular enamel matrix protein amelogenin plays an essential role in regulating the growth and organization of enamel mineral during early stages of dental enamel formation. The present study describes the effect of the phosphorylation of a single site on the full-length native porcine amelogenin P173 on self-assembly and on the regulation of spontaneous calcium phosphate formation in vitro. Studies were also conducted using recombinant non-phosphorylated (rP172) porcine amelogenin, along with the most abundant amelogenin cleavage product (P148) and its recombinant form (rP147). Amelogenin self-assembly was assessed using dynamic light scattering (DLS) and transmission electron microscopy (TEM). Using these approaches, we have shown that self-assembly of each amelogenin is very sensitive to pH and appears to be affected by both hydrophilic and hydrophobic interactions. Furthermore, our results suggest that the phosphorylation of the full-length porcine amelogenin P173 has a small but potentially important effect on its higher-order self-assembly into chain-like structures under physiological conditions of pH, temperature, and ionic strength. Although phosphorylation has a subtle effect on the higher-order assembly of full-length amelogenin, native phosphorylated P173 was found to stabilize amorphous calcium phosphate for extended periods of time, in sharp contrast to previous findings using non-phosphorylated rP172. The biological relevance of these findings is discussed. PMID:21074619

  16. Downregualtion of dynamin-related protein 1 attenuates glutamate-induced excitotoxicity via regulating mitochondrial function in a calcium dependent manner in HT22 cells

    SciTech Connect

    Zhang, Chi; Yuan, Xian-rui; Li, Hao-yu; Zhao, Zi-jin; Liao, Yi-wei; Wang, Xiang-yu; Su, Jun; Sang, Shu-shan; Liu, Qing

    2014-01-03

    Highlights: •Downregulation of Drp-1 attenuates glutamate-induced excitotoxicity. •Downregulation of Drp-1 inhibits glutamate-induced apoptosis. •Downregulation of Drp-1 reduces glutamate-induced mitochondrial dysfunction. •Downregulation of Drp-1 preserves intracellular calcium homeostasis. -- Abstract: Glutamate-mediated excitotoxicity is involved in many acute and chronic brain diseases. Dynamin related protein 1 (Drp-1), one of the GTPase family of proteins that regulate mitochondrial fission and fusion balance, is associated with apoptotic cell death in cancer and neurodegenerative diseases. Here we investigated the effect of downregulating Drp-1 on glutamate excitotoxicity-induced neuronal injury in HT22 cells. We found that downregulation of Drp-1 with specific small interfering RNA (siRNA) increased cell viability and inhibited lactate dehydrogenase (LDH) release after glutamate treatment. Downregulation of Drp-1 also inhibited an increase in the Bax/Bcl-2 ratio and cleavage of caspase-9 and caspase-3. Drp-1 siRNA transfection preserved the mitochondrial membrane potential (MMP), reduced cytochrome c release, enhanced ATP production, and partly prevented mitochondrial swelling. In addition, Drp-1 knockdown attenuated glutamate-induced increases of cytoplasmic and mitochondrial Ca{sup 2+}, and preserved the mitochondrial Ca{sup 2+} buffering capacity after excitotoxicity. Taken together, these results suggest that downregulation of Drp-1 protects HT22 cells against glutamate-induced excitatory damage, and this neuroprotection may be dependent at least in part on the preservation of mitochondrial function through regulating intracellular calcium homeostasis.

  17. Voltage-Gated Calcium Channels

    NASA Astrophysics Data System (ADS)

    Zamponi, Gerald Werner

    Voltage Gated Calcium Channels is the first comprehensive book in the calcium channel field, encompassing over thirty years of progress towards our understanding of calcium channel structure, function, regulation, physiology, pharmacology, and genetics. This book balances contributions from many of the leading authorities in the calcium channel field with fresh perspectives from risings stars in the area, taking into account the most recent literature and concepts. This is the only all-encompassing calcium channel book currently available, and is an essential resource for academic researchers at all levels in the areas neuroscience, biophysics, and cardiovascular sciences, as well as to researchers in the drug discovery area.

  18. Calcium - urine

    MedlinePlus

    ... into the urine, which causes calcium kidney stones Sarcoidosis Taking too much calcium Too much production of ... Milk-alkali syndrome Proximal renal tubular acidosis Rickets Sarcoidosis Vitamin D Update Date 5/3/2015 Updated ...

  19. TRX-1 Regulates SKN-1 Nuclear Localization Cell Non-autonomously in Caenorhabditis elegans.

    PubMed

    McCallum, Katie C; Liu, Bin; Fierro-González, Juan Carlos; Swoboda, Peter; Arur, Swathi; Miranda-Vizuete, Antonio; Garsin, Danielle A

    2016-05-01

    The Caenorhabditis elegans oxidative stress response transcription factor, SKN-1, is essential for the maintenance of redox homeostasis and is a functional ortholog of the Nrf family of transcription factors. The numerous levels of regulation that govern these transcription factors underscore their importance. Here, we add a thioredoxin, encoded by trx-1, to the expansive list of SKN-1 regulators. We report that loss of trx-1 promotes nuclear localization of intestinal SKN-1 in a redox-independent, cell non-autonomous fashion from the ASJ neurons. Furthermore, this regulation is not general to the thioredoxin family, as two other C. elegans thioredoxins, TRX-2 and TRX-3, do not play a role in this process. Moreover, TRX-1-dependent regulation requires signaling from the p38 MAPK-signaling pathway. However, while TRX-1 regulates SKN-1 nuclear localization, classical SKN-1 transcriptional activity associated with stress response remains largely unaffected. Interestingly, RNA-Seq analysis revealed that loss of trx-1 elicits a general, organism-wide down-regulation of several classes of genes; those encoding for collagens and lipid transport being most prevalent. Together, these results uncover a novel role for a thioredoxin in regulating intestinal SKN-1 nuclear localization in a cell non-autonomous manner, thereby contributing to the understanding of the processes involved in maintaining redox homeostasis throughout an organism. PMID:26920757

  20. ATR-mediated regulation of nuclear and cellular plasticity.

    PubMed

    Kidiyoor, Gururaj Rao; Kumar, Amit; Foiani, Marco

    2016-08-01

    ATR (Ataxia Telangiectasia and Rad3-related) is a member of the Phosphatidylinositol 3-kinase-related kinases (PIKKs) family, amongst six other vertebrate proteins known so far. ATR is indispensable for cell survival and its essential role is in sensing DNA damage and initiating appropriate repair responses. In this review we highlight emerging and recent observations connecting ATR to alternative roles in controlling the nuclear envelope, nucleolus, centrosome and other organelles in response to both internal and external stress conditions. We propose that ATR functions control cell plasticity by sensing structural deformations of different cellular components, including DNA and initiating appropriate repair responses, most of which are yet to be understood completely. PMID:27283761

  1. Anomalies in Proposed Regulations for the Release of Redundant Material from Nuclear and Non-nuclear Industries

    SciTech Connect

    Menon, S.

    2002-02-26

    Now that increasing numbers of nuclear power stations are reaching the end of their commercially useful lives, the management of the large quantities of very low level radioactive material that arises during their decommissioning has become a major subject of discussion, with very significant economic implications. Much of this material can, in an environmentally advantageous manner, be recycled for reuse without radiological restrictions. Much larger quantities--2-3 orders of magnitude larger--of material, radiologically similar to the candidate material for recycling from the nuclear industry, arise in non-nuclear industries like coal, fertilizer, oil and gas, mining, etc. In such industries, naturally occurring radioactivity is artificially concentrated in products, by-products or waste to form TENORM (Technologically Enhanced Naturally Occurring Radioactive Material). It is only in the last decade that the international community has become aware of the prevalence of T ENORM, specially the activity levels and quantities arising in so many nonnuclear industries. The first reaction of international organizations seems to have been to propose ''double'' standards for the nuclear and non-nuclear industries, with very stringent release criteria for radioactive material from the regulated nuclear industry and up to a hundred times more liberal criteria for the release/exemption of TENORM from the as yet unregulated non-nuclear industries. There are, however, many significant strategic issues that need to be discussed and resolved. An interesting development, for both the nuclear and non-nuclear industries, is the increased scientific scrutiny that the populations of naturally high background dose level areas of the world are being subject to. Preliminary biological studies have indicated that the inhabitants of such areas, exposed to many times the permitted occupational doses for nuclear workers, have not shown any differences in cancer mortality, life expectancy

  2. The nuclear lamina regulates germline stem cell niche organization via modulation of EGFR signaling

    PubMed Central

    Chen, Haiyang; Chen, Xin; Zheng, Yixian

    2013-01-01

    Summary Stem cell-niche interactions have been studied extensively with regard to cell polarity and extracellular signaling. Less is known about the way in which signals and polarity cues integrate with intracellular structures to ensure appropriate niche organization and function. Here we report that nuclear lamins function in the cyst stem cells (CySCs) of Drosophila testis to control the interaction of CySCs with the hub. This interaction is important for regulation of CySC differentiation and organization of the niche that supports the germline stem cells (GSCs). Lamin promotes nuclear retention of phosphorylated ERK in the CySC lineage by regulating the distribution of specific nucleoporins within the nuclear pores. Lamin-regulated nuclear EGFR signaling in the CySC lineage is essential for proliferation and differentiation of the GSCs and the transient amplifying germ cells. Thus, we have uncovered a role for the nuclear lamina in integration of EGF signaling to regulate stem cell niche function. PMID:23827710

  3. Leptin-induced cardiomyocyte hypertrophy reveals both calcium-dependent and calcium-independent/RhoA-dependent calcineurin activation and NFAT nuclear translocation.

    PubMed

    Rajapurohitam, Venkatesh; Izaddoustdar, Farzad; Martinez-Abundis, Eduardo; Karmazyn, Morris

    2012-12-01

    Leptin, a product of the obesity gene, has been shown to produce cardiac hypertrophy. Although leptin's mechanism of action is poorly understood activation of the RhoA/ROCK pathway has been proposed as a contributing mechanism. The Ca(2+)-dependent phosphatase calcineurin plays a critical role in the hypertrophic program although it is not known whether leptin can activate this signaling pathway or whether there is a relationship between RhoA activation and calcineurin. Accordingly, we determined the effect of leptin on calcineurin activation and assessed the possible role of RhoA. Experiments were performed using cultured neonatal rat ventricular myocytes exposed to 50 ng/ml leptin for 24h which resulted in a robust hypertrophic response. Moreover, leptin significantly increased intracellular Ca(2+) and Na(+) concentrations which was associated with significantly reduced activity of the 3Na(+)-2K(+)ATPase. The hypertrophic response to leptin were completely abrogated by both C3 exoenzyme (C3), a RhoA inhibitor as well as the reverse mode 3Na(+)-1Ca(2+) exchange inhibitor KB-R7943 ((2-[2-[4-(4-nitrobenzyloxy)phenyl] ethyl]isothiourea methanesulfonate), however only the effect of the latter was associated with attenuation of intracellular Ca(2+) concentrations whereas Ca(2+) concentrations were unaffected by C3. Similarly, C3 and KB-R7943 significantly attenuated early leptin-induced increase in calcineurin activity as well as the increase in nuclear translocation of the transcriptional factor nuclear factor of activated T cells. The hypertrophic response to leptin was also associated with increased p38 and ERK1/2 MAPK phosphorylation and increased p38, but not ERK1/2, translocation into nuclei. Both p38 responses as well as hypertrophy were abrogated by KB-R7943 as well as the calcineurin inhibitor FK-506 although ERK1/2 phosphorylation was unaffected. Our study therefore demonstrates a critical role for the calcineurin pathway in mediating leptin

  4. Calcium supplements

    MedlinePlus

    ... SHOULD TAKE CALCIUM SUPPLEMENTS? Calcium is an important mineral for the human body. It helps build and protect your teeth ... absorb calcium. You can get vitamin D from sunlight exposure to your skin and from your diet. Ask your provider whether ...

  5. Calcium Dynamics of Ex Vivo Long-Term Cultured CD8+ T Cells Are Regulated by Changes in Redox Metabolism

    PubMed Central

    Gran, Margaret A.; Potnis, Anish; Hill, Abby; Lu, Hang

    2016-01-01

    T cells reach a state of replicative senescence characterized by a decreased ability to proliferate and respond to foreign antigens. Calcium release associated with TCR engagement is widely used as a surrogate measure of T cell response. Using an ex vivo culture model that partially replicates features of organismal aging, we observe that while the amplitude of Ca2+ signaling does not change with time in culture, older T cells exhibit faster Ca2+ rise and a faster decay. Gene expression analysis of Ca2+ channels and pumps expressed in T cells by RT-qPCR identified overexpression of the plasma membrane CRAC channel subunit ORAI1 and PMCA in older T cells. To test whether overexpression of the plasma membrane Ca2+ channel is sufficient to explain the kinetic information, we adapted a previously published computational model by Maurya and Subramaniam to include additional details on the store-operated calcium entry (SOCE) process to recapitulate Ca2+ dynamics after T cell receptor stimulation. Simulations demonstrated that upregulation of ORAI1 and PMCA channels is not sufficient to explain the observed alterations in Ca2+ signaling. Instead, modeling analysis identified kinetic parameters associated with the IP3R and STIM1 channels as potential causes for alterations in Ca2+ dynamics associated with the long term ex vivo culturing protocol. Due to these proteins having known cysteine residues susceptible to oxidation, we subsequently investigated and observed transcriptional remodeling of metabolic enzymes, a shift to more oxidized redox couples, and post-translational thiol oxidation of STIM1. The model-directed findings from this study highlight changes in the cellular redox environment that may ultimately lead to altered T cell calcium dynamics during immunosenescence or organismal aging. PMID:27526200

  6. A Role for Nuclear Actin in HDAC 1 and 2 Regulation

    PubMed Central

    Serebryannyy, Leonid A.; Cruz, Christina M.; de Lanerolle, Primal

    2016-01-01

    Class I histone deacetylases (HDACs) are known to remove acetyl groups from histone tails. This liberates positive charges on the histone tail and allows for tighter winding of DNA, preventing transcription factor binding and gene activation. Although the functions of HDAC proteins are becoming apparent both biochemically and clinically, how this class of proteins is regulated remains poorly understood. We identified a novel interaction between nuclear actin and HDAC 1 and HDAC 2. Nuclear actin has been previously shown to interact with a growing list of nuclear proteins including chromatin remodeling complexes, transcription factors and RNA polymerases. We find that monomeric actin is able to bind the class I HDAC complex. Furthermore, increasing the concentration of actin in HeLa nuclear extracts was able to suppress overall HDAC function. Conversely, polymerizing nuclear actin increased HDAC activity and decreased histone acetylation. Moreover, the interaction between class I HDACs and nuclear actin was found to be activity dependent. Together, our data suggest nuclear actin is able to regulate HDAC 1 and 2 activity. PMID:27345839

  7. Calcium alginate enhances wound healing by up-regulating the ratio of collagen types I/III in diabetic rats

    PubMed Central

    Wang, Tao; Gu, Qisheng; Zhao, Jun; Mei, Jiacai; Shao, Mingzhe; Pan, Ye; Zhang, Jian; Wu, Haisheng; Zhang, Zhen; Liu, Fang

    2015-01-01

    Calcium alginate has been proved to favor the skin ulcer healing and collagen synthesis was a critical factor for the wound closure. The present study was to elucidate the mechanism of calcium alginate on the diabetes skin ulceration. Calcium alginate dressing was applied daily on the full-thickness exercising wound created on the back of diabetic rat model as Alg-group (n=6), and the vaseline dressing was used as control (n=6). Rats were respectively sacrificed and the wound tissues were removed and used for the evaluation of various biochemical analysis contained collagen (type I and III) by Western blotting and hydroxyproline level changes by ELISA assay at 3 d, 7 d and 14 d after wounding. The expression of skin collagen I in Alg-group was enhanced from day 3 (0.66±0.25 vs. 0.42±0.09, P<0.05) to day 14 (1.09±0.14 vs. 0.78±0.16, P<0.05). However, no significant difference of collagen III expression was found between two groups during wound healing (P>0.05). And the ratio of collagen I/III in Alg-group was greater than that of Vas-group at day 7 (1.07±0.31 vs. 0.77±0.11, P<0.05) and 14 (1.18±0.30 vs. 0.83±0.14, P<0.05). The hydroxyproline level in skin homogenate of Alg-group was higher than that of Vas-group from day 3 (30.29±0.92 ng/ml vs. 27.52±0.83 ng/ml, P<0.05) to day 14 (89.58±4.97 ng/ml vs. 79.30±4.42 ng/ml, P<0.05). Calcium alginate accelerates the process of wound healing through improving type I collagen synthesis and increasing ratio of collagen I/III in diabetic rats. PMID:26261545

  8. Calcium alginate enhances wound healing by up-